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Flavor symmetry plays a crucial role in the standard model of particle physics but its origin is still 
unknown. We develop a new method (based on outer automorphisms of the Narain space group) to 
determine flavor symmetries within compactified string theory. A picture emerges where traditional 
(discrete) flavor symmetries, CP-like symmetries and modular symmetries (like T -duality) of string 
theory combine to unified flavor symmetries. The groups depend on the geometry of compact space and 
the geographical location of fields in the extra dimensions. We observe a phenomenon of “local flavor 
groups” with potentially different flavor symmetries for the various sectors of quarks and leptons. This 
should allow interesting connections to existing bottom-up attempts in flavor model building.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Traditionally, CP transformations and flavor symmetries were 
assumed to be of different origin. More recently, however, it was 
suggested that CP should be considered as an outer automor-
phism of the flavor group [1–5]. It was shown that such a link 
between flavor and CP has a natural embedding in a string theory 
framework [6]. In the present paper we show that in string theory, 
where symmetries arise from the geometry of compactified extra 
dimensions and string selection rules [7–9], an even stronger link 
can be established: the CP and flavor transformations of the low-
energy effective theory are unified in a common symmetry group. 
This observation has been made in the generalization of the dis-
cussion in [6] by including duality symmetries of string theory. In 
our examples, the full unified symmetry (including flavor and CP ) 
is a combination of the original flavor symmetry and the T -duality 
transformations [10–16] of the stringy extension. CP , originally an 
outer automorphism of the flavor group, now becomes an element 
(inner automorphism) of the unified flavor group. As it contains 
T -duality transformations, this unified flavor group depends on the 
location in moduli space: it is enhanced at special points of moduli 
space (where CP may be unbroken). At a generic point in mod-
uli space only the original flavor symmetry (possibly with CP as 
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an outer automorphism) is present. This allows a connection to 
the concept of “local grand unification” [17,18], where the various 
fields of the standard model of particle physics (quarks, leptons, 
and Higgs bosons) live at different locations in compactified higher 
dimensions and thus feel different subgroups of the unified flavor 
group. It leads to the flexibility to have different flavor symmetries 
in the various sectors (e.g. quark and lepton sectors) of the the-
ory. It also allows a connection to model constructions that use 
T -duality transformations, or more general subgroups of the mod-
ular transformations, as flavor symmetries [19–33], especially for 
the mixings in the lepton sector.

This unified picture of flavor and CP is rather common and can 
be derived through a general mechanism that allows a full classi-
fication of all flavor symmetries in the given string model. As we 
shall explain in this paper, the mechanism is based on the con-
sideration of outer automorphisms of the Narain-lattice construc-
tion [34,35] of string theory with compactified extra dimensions. It 
is a powerful tool that generalizes previous attempts in the search 
for flavor symmetries. We shall present the mechanism in its gen-
eral form and explain the results in the specific example of the 
two-dimensional Z3 orbifold already discussed in ref. [6]. There 
the flavor group was �(54), and a physical CP transformation had 
to be a non-trivial outer automorphism of this group. However, 
due to the specific group theoretical structure of �(54) as a “type 
I” group [4], the physical CP symmetry of the light spectrum was 
naturally broken by the presence of heavy �(54) doublet states. In 
the generalized picture, �(54) is still the symmetry at a generic 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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point in moduli space, but it will be enhanced at specific lines 
and points of the moduli space. Enhancements here include the 
groups SG(108, 17), SG(216, 87) and even SG(324, 39).1 For these 
enhancements, the CP transformation of the low-energy spectrum 
is no longer an outer automorphism, but it becomes an element 
(inner automorphism) of the unified flavor group. Thus, the low-
energy CP transformation is conserved at special points, but it will 
be spontaneously broken at a generic point in moduli space.

The main results of our paper originate from the discussion 
of the outer automorphisms of the “Narain space group” [37–39], 
where we find that non-Abelian flavor symmetries, modular sym-
metries of T -duality and CP have a common origin in string the-
ory. Hence, a complete classification of the unified flavor symmetry 
is possible. First we present a warm-up example by the consider-
ation of the outer automorphisms of the geometrical space group 
and then generalize to the discussion of the outer automorphisms 
of the “Narain space group”. The main results of the discussion in-
clude:

• The unification of flavor- and CP-symmetries,
• The extension of the traditional flavor group with modular 

symmetries,
• A diversification of flavor symmetries to “local flavor groups” 

that depend on the location of fields in compactified extra di-
mensions (and thus could lead e.g. to different flavor groups 
for quarks and leptons).

We shall apply this to our example of the two-dimensional Z3
orbifold and discuss the interplay of the original �(54) flavor 
symmetry and the relevant part of the modular transformation of 
T -duality, here given by �(3) (which is isomorphic to A4). We ex-
plore different regions in moduli space and construct the enhanced 
unified flavor groups.

2. Outer automorphisms of the space group

As a warm-up example we consider the two-dimensional Z3

orbifold R2/S . For the generators of the space group S we can 
choose (θ, 0), (1, e1), and (1, e2). The vectors e1 and e2 enclose an 
angle of 120◦ and have the same length, |e1| = |e2|. They span 
a two-dimensional lattice which defines the two-torus T2. Fur-
thermore, the so-called twist θ is a counter-clockwise 120◦ rota-
tion matrix with θ3 = 1 that maps the torus lattice to itself, i.e. 
θ e1 = e2. In this case, a general space group element g ∈ S can be 
expressed as

g = (θk, e n) with k ∈ {0,1,2} and n ∈Z2 . (1)

Here, the vielbein e contains the two basis vectors e1 and e2
as columns. The element g acts on a coordinate y ∈ R2 of the 
two spatial extra dimensions as y

g�→ g y = θk y + e n. Conse-
quently, two space group elements (θk, e n) and (θ�, e m) multiply 
as (θk, e n) (θ�, e m) = (θk+�, θke m + e n). Finally, the T2/Z3 orb-
ifold is defined as a quotient space, i.e. y1 ∼ y2 if there is a g ∈ S
such that y1 = g y2. This orbifold has three fixed points, i.e. points 
that are invariant (up to lattice translations) under the 120◦ rota-
tion, see Fig. 1.

Each element g = (θk, e n) ∈ S of the space group describes a 
boundary condition for a closed string on the orbifold [40,41]. For 
example, for a worldsheet boson y(τ , σ) of a closed string we im-
pose the boundary condition

1 Here, we use the SmallGroup library of GAP [36] to denote groups.
Fig. 1. The fundamental domain of the T2/Z3 orbifold is depicted in yellow and the 
three inequivalent fixed-points are blue. (X, Y , Z) denote three (left-chiral) twisted 
strings from the first twisted sector, while ( X̄, ̄Y , ̄Z) are three (right-chiral) twisted 
strings from the second twisted sector.

y(τ ,σ + 1) = g y(τ ,σ ) ⇔ y(τ ,σ + 1) = θk y(τ ,σ ) + e n .

(2)

g is called the constructing element of the closed string. If g has 
a fixed point yf ∈ R2, i.e. if g yf = yf , the corresponding string 
eq. (2) is localized at yf in compactified higher dimensions. How-
ever, since h y ∼ y on the orbifold for any h ∈ S , the boundary 
condition eq. (2) and

y(τ ,σ + 1) = h g h−1 y(τ ,σ ) (3)

describe the same closed string on the orbifold. Hence, closed 
strings on orbifolds are associated to conjugacy classes [g] =
{h g h−1 | h ∈ S} of the space group. Then, each conjugacy class [g]
of the space group S corresponds to a class of boundary conditions 
and, thereby, to a distinct string of the theory. The T2/Z3 orbifold 
has seven conjugacy classes that yield massless strings at a generic 
point in moduli space, i.e. for a generic size of the orbifold and 
for generic value of the background B-field: The conjugacy class 
[(1, 0)] gives the trivial boundary condition of massless untwisted 
strings and twisted strings correspond to the conjugacy classes

X : [(θ,0)] , Y : [(θ, e1)] , Z : [(θ, e1 + e2)] , (4a)

X̄ : [(θ2,0)] , Ȳ : [(θ2, e1 + e2)] , Z̄ : [(θ2, e2)] , (4b)

from the first (θ ) and second (θ2) twisted sector, respectively. We 
choose the convention that the string states (X, Y , Z) from the first 
twisted sector give rise to left-chiral degrees of freedom, while 
( X̄, Ȳ , Z̄) from the second twisted sector yield their right-chiral 
CPT-conjugates needed to form complete left-chiral superfields. 
Twisted strings are localized at the respective fixed points of their 
constructing elements. For example, the string X with construct-
ing element from the conjugacy class [(θ, 0)] is localized at yf = 0, 
see Fig. 1.

It is advantageous to change the basis from the so-called coor-
dinate basis to the so-called lattice basis. This can be performed 
for a general space group element, eq. (1), as

ĝ = (e−1,0) (θk, e n) (e,0) = (θ̂k,n) ∈ Ŝ ,

where θ̂ =
(

0 −1
1 −1

)
∈ GL(2,Z) (5)

is defined via θ̂ := e−1θ e, and Ŝ denotes the space group in the 
lattice basis. We can now look at the automorphisms of the space 
group. An inner automorphism,

ĝ
ĥ�→ ĥ ĝ ĥ−1 ∈ Ŝ with ĥ ∈ Ŝ , (6)
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Fig. 2. The T2/Z3 orbifold and the actions of the outer automorphisms: (a) the 180◦ rotation ĥ1 maps X to itself and interchanges Y and Z (and analogously for ( X̄, ̄Y , ̄Z)) 
and (b) the Z3 translation ĥ2 rotates the three twisted states.
maps each conjugacy class [ĝ] to itself and, consequently, each 
string to itself. Furthermore, for a (bosonic) string to be well-
defined on an orbifold, it has to be invariant under the action of 
the space group that defines the orbifolded string theory. Hence, 
inner automorphisms act trivially on orbifold-invariant strings. In 
contrast, an outer automorphism of the space group Ŝ can be 
described by conjugation of the constructing element with an ele-
ment that is not in Ŝ , i.e. there is a transformation ĥ := (σ̂ , t) /∈ Ŝ
such that for all constructing elements ĝ ∈ Ŝ we have

ĝ
ĥ�→ ĥ ĝ ĥ−1 !∈ Ŝ . (7)

Spelled out explicitly, this is equivalent to the following conditions 
on σ̂ ∈ GL(2, Z) and t: For each k ∈ {0, 1, 2} there must be a k′ ∈
{0, 1, 2} and n′ ∈Z2 such that2

σ̂ θ̂k σ̂−1 != θ̂k′
, (8a)(

1− σ̂ θ̂k σ̂−1
)

t
!= n′ . (8b)

This is a special case of the general consistency conditions for 
outer automorphisms [5]. Solutions to these conditions can be 
written as shifts or rotations, the ones relevant for our illustration 
are generated by the two elements ĥi given by

ĥ1 := (−1,0) , ĥ2 := (1, t) with t :=
( 2

3
1
3

)
. (9)

These elements of the outer automorphism group have the follow-
ing geometrical interpretation: ĥ1 yields a 180◦ rotation and ĥ2

gives a Z3 translation, since (ĥ2)
3 = (1, 3t) is an inner automor-

phism of Ŝ , see Figs. 2a and 2b.
Together, the transformations ĥ1 and ĥ2 generate the permuta-

tion group

S3 =
〈
ĥ1 , ĥ2

∣∣∣ (
ĥ1

)2 =
(

ĥ2

)3 =
(

ĥ2 ĥ1

)2 = 1

〉
, (10)

that acts geometrically as all permutations of the three fixed points 
of the Z3 orbifold. If one takes into account the Z3 × Z3 space 
group selection rule of the two-dimensional Z3 orbifold [42,43], 
the combined flavor symmetry results as [7]

�(54) = S3 � (Z3 ×Z3) . (11)

2 Here, we have used ĝ = (θ̂k, n) ∈ Ŝ , ĥ = (σ̂ , t) /∈ Ŝ and we have absorbed σ̂ n ∈
Z2 in the definition of n′ .
Note that in ref. [7] the S3-symmetry had been postulated from 
geometrical considerations while here we have deduced it from 
the outer automorphisms of the space group. As a remark, our ap-
proach eq. (8) is similar to the identification of flavor symmetries 
in complete intersection Calabi-Yau manifolds [44,45]. Still, this is 
not the full picture. To obtain the complete flavor group of string 
theory we have to analyze the outer automorphisms of the Narain 
space group. This Narain approach will also reveal “non-geometric” 
symmetries that are not accessible in the geometrical approach: 
For example, also the Z3 ×Z3 space group selection rules (as dis-
cussed in our warm-up example here) will be part of the outer 
automorphisms of the Narain space group. In the more general 
picture there will be enhanced flavor symmetries, some of which 
originate from the modular symmetries of string theory and ap-
pear to be non-universal in moduli space.

3. Outer automorphisms of the Narain space group

In this section we extend the discussion of outer automor-
phisms of the geometrical space group to the Narain space group. 
It turns out that the outer automorphisms of the Narain space 
group give rise to the full (non-Abelian) unified flavor symmetry 
of the theory: it includes (i) possible permutation symmetries of 
the various fixed points and sectors of the orbifold, (ii) the space 
group selection rule of strings splitting and joining while moving 
on the surface of the orbifold, (iii) the target-space modular sym-
metries of T -duality and (iv) CP-like transformations.3 In fact, the 
total resulting flavor symmetry depends on the precise value of the 
Kähler and complex structure moduli, i.e. colloquially speaking, on 
the region in moduli space. In more detail, for certain shapes/sizes 
of the orbifold and for certain values of the background B-field the 
(non-Abelian) flavor symmetry gets enhanced.

We focus mainly on the bosonic string coordinates and consider 
a symmetric TD/ZK orbifold with ZK twist � in the Narain for-
mulation, see appendix A. In this formulation the D-dimensional 
compactified string coordinates y are separated into D right- and 
D left-moving degrees of freedom, yR and yL, collectively denoted 
by Y = (yR, yL)

T. Now, in analogy to the geometrical construc-
tion discussed in section 2, Y is compactified on a 2D-dimensional 
torus defined by a 2D-dimensional Narain lattice with vielbein E , 
composed out of basis vectors Ei for i = 1, . . . , 2D , and a metric 
with (D, D) signature η = diag(−1, 1). The ZK Narain space group 
SNarain is defined by its generators (�, 0), (1, Ei) for i = 1, . . . , 2D . 
A general element g ∈ SNarain reads

3 A CP-like transformation is a transformation that acts like a physical CP trans-
formation on some but not all states of a theory [4].
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g = (�k, E N̂) , with � =
(

θR 0
0 θL

)
, k ∈ {0, . . . , K − 1}

and N̂ ∈Z2D , (12)

where N̂ contains the D winding and D Kaluza-Klein (KK) quan-
tum numbers of the string. The ZK Narain orbifold can be de-
scribed as an extension of the geometrical construction discussed 
in section 2 from coordinates y to right- and left-movers Y . There-
fore, one identifies

Y ∼ g Y = �k Y + E N̂ . (13)

A symmetric ZK orbifold is obtained under the assumption 
that the 2D-dimensional rotation matrix � acts left-right-
symmetrically on the 2D-dimensional Narain lattice, i.e. θR = θL =
θ for symmetric ZK orbifolds. Finally, we change the basis to the 
lattice basis (denoted by hatted quantities),

ĝ = (E−1,0) (�k, E N̂) (E,0) = (�̂k, N̂) ∈ ŜNarain ,

where �̂ := E−1� E . (14)

Similar to the geometric space group, a conjugacy class [ĝ] of 
the Narain space group defines a class of boundary conditions and, 
thereby, gives rise to a distinct string. Strings on orbifolds have 
to be invariant under inner automorphisms of the Narain space 
group ŜNarain. Hence, inner automorphisms of ŜNarain act trivially 
on orbifold-invariant strings. In contrast, outer automorphisms of 
ŜNarain correspond to the symmetries of the full (bosonic) string 
theory on orbifolds. Outer automorphisms of the Narain space 
group ŜNarain are given by transformations ĥ := (
̂, T̂ ) /∈ ŜNarain

which act on each element ĝ ∈ ŜNarain such that

ĝ
ĥ�→ ĥ ĝ ĥ−1 !∈ ŜNarain . (15)

Spelled out explicitly, this is equivalent to a set of consistency con-
ditions requiring that for each k there must be an k′ ∈ {0, . . . ,
K − 1} and N̂ ′ ∈Z2D such that 
̂ ∈ GL(2D, Z) and


̂ �̂k 
̂−1 != �̂k′
, (16a)(

1− 
̂ �̂k 
̂−1
)

T̂
!= N̂ ′ , (16b)

in analogy to eq. (8). The translational part can be fractional, i.e. 
T̂ /∈ Z2D , and 
̂ may not be a ZK rotation, i.e. 
̂ 
= �̂� for � =
1, . . . , K − 1. In addition to the consistency conditions, 
̂ must be 
a modular transformation (i.e. it must satisfy 
̂Tη̂ 
̂ = η̂) in order 
to be a symmetry of the Narain lattice.

As a solution to these conditions one can find a set of genera-
tors of the outer automorphism group of the form{
(
̂1,0), (
̂2,0), . . . , (1, T̂1), (1, T̂2), . . .

}
, (17)

i.e. the outer automorphism group can be generated by pure ro-
tations (
̂i, 0) /∈ ŜNarain and pure translations (1, T̂ j) /∈ ŜNarain – 
roto-translations (
̂, T̂ ) are not needed as generators.4

Finally, it is instructive to transform the matrix 
̂ back to the 
coordinate basis such that


̂ = E−1
 E , subject to the condition 
Tη

!= η . (18)

4 Assuming we had a non-trivial roto-translation (
̂, ̂T ) as a solution to eq. (16). 
Then also (
̂, 0) and (1, ̂T ) are solutions.
A flavor symmetry transformation 
 should leave (pR)2 and (pL)
2

invariant (and consequently the right- and left-moving string 
masses). Thus, we have to demand



!=

(
σR 0
0 σL

)
where σR,σL ∈ O(D) ⇔ 
T
 = 1 .

(19)

Demanding this condition on the outer automorphism (
, 0)

leaves the compactification moduli invariant. Such a transforma-
tion belongs to the traditional flavor symmetry.

Let us now specialize to traditional flavor symmetries in two 
compactified dimensions D = 2. Since in this case σR and σL are 
two-dimensional orthogonal matrices, σR, σL ∈ O(2), each of them 
can be uniquely parametrized by one angle, αR and αL, respec-
tively. For example

σR(αR) =
(

cos(αR) ∓ sin(αR)

sin(αR) ± cos(αR)

)
, (20)

where the different signs correspond to a rotation or a reflec-
tion, respectively. As a consequence of (16a), for ZK orbifolds with 
K 
= 2 in D = 2 the matrices σR and σL have to have the same 
determinant,

det(σR) = det(σL) . (21)

Hence, the matrices σR and σL describe either both rotations or 
both reflections, labeled by subscripts “rot.” or “refl.”, respectively. 
In both cases, 
 can be symmetric (i.e. σR = σL thus α = αR =
αL) or asymmetric (i.e. σR 
= σL thus αR 
= αL) and we denote the 
corresponding 
̂-matrix in the lattice basis by Ŝ(α) or Â(αR, αL), 
respectively. Consequently, going back to the lattice basis, the outer 
automorphisms (
̂, 0) fall into four categories, where 
̂ can be 
either

Ŝrot.(α) , Ŝrefl.(α) , Ârot.(αR,αL) , or Ârefl.(αR,αL) . (22)

Reflections are obviously of order 2, i.e. Ŝrefl.(α)2 =
Ârefl.(αR, αL)

2 = 1. On the other hand, rotations must map 
the four-dimensional Narain lattice to itself. Thus, the order of 
four-dimensional rotations is restricted to the values

{1,2,3,4,5,6,8,10,12} , (23)

using the Euler-φ function [46].
In general, the 4 × 4 matrices 
̂ = E−1
 E obtained from 

eq. (22) are integer matrices only for special values of the mod-
uli that parametrize the vielbein E of the Narain lattice. Thus, the 
traditional flavor symmetry obtained from the outer automorphism 
group of the Narain space group depends on the value of the mod-
uli.

4. Flavor symmetries of the Z3Z3Z3 orbifold

In this section we shall use the method based on the auto-
morphisms of the Narain space group to determine the traditional 
flavor symmetry of the T2/Z3 orbifold. We will see that the non-
Abelian flavor symmetry �(54) is a subgroup of the unified flavor 
group: �(54) will be enhanced in certain regions of moduli space 
by the modular symmetries of the underlying string theory.

To obtain the symmetric Z3 orbifold of the (2, 2)-dimensional 
Narain lattice � we choose a special Narain vielbein E (see ap-
pendix A) by setting

e = R

(
1 − 1

2

0
√

3

)
and B = b α′

(
0 1

−1 0

)
. (24)
2
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The real parameters b and r := R2/α′ are combined into the Kähler 
modulus T and the complex structure modulus U of the two-torus, 
i.e.

T = b + i

√
3

2
r and U = exp

(
2π i

3

)
. (25)

We see that the complex structure modulus U is frozen and the 
Kähler modulus T parametrizes the (b, r)-moduli space of the 
symmetric Z3 Narain orbifold in D = 2. This means that the Narain 
lattice � can be deformed by freely choosing the Kähler modulus 
T while the Z3 symmetry of � is kept intact. Now, the (left-
right-symmetric) Z3 Narain orbifold can be specified by the Narain 
space group defined by the elements

ĝ = (�̂k, N̂) ∈ ŜNarain , with �̂ = E−1� E =
(

θ̂ 0
0 θ̂−T

)
,

(26)

where the two-dimensional twist matrix θ̂ = e−1θ e is given in 
eq. (5). Due to the choice of the Narain vielbein E specified in 
eq. (24) and appendix A, the Narain twist �̂ in the lattice ba-
sis is a symmetry of the Narain lattice �̂Tη̂ �̂ = η̂, as necessary. 
The symmetries of the (2, 2)-dimensional Narain lattice are iso-
morphic to SL(2, Z)T × SL(2, Z)U and B �→ −B (together with 
G12 �→ −G12 [13]). After the orbifolding the complex structure 
modulus U is fixed, thus SL(2, Z)U is broken. Therefore, we can 
focus on the remaining SL(2, Z)T modular symmetry and on the 
CP-like transformation B �→ −B .

Under SL(2, Z)T modular transformations untwisted and 
twisted strings transform non-trivially [11]. Acting on massless 
strings only, the modular group turns out to be T′ , i.e. the double 
covering group of A4 
 �(3) [13]. Combined with the transfor-
mation B �→ −B the group gets further enhanced to GL(2, 3) (i.e. 
SG(48, 29)).

As described in section 3, the relevant outer automorphisms of 
the Narain lattice are described by pure rotations (
̂i, 0) from the 
modular symmetries 
̂i ∈ SL(2, Z)T and pure translations (1, T̂ j)

of the four-dimensional Narain lattice that fulfill the consistency 
condition (16). Generally, the transformations 
̂i act non-trivially 
on the T -modulus. However, at some specific points in moduli 
space some transformations 
̂i might leave the vacuum expecta-
tion value (VEV) 〈T 〉 of the Kähler modulus invariant. Then, 
̂i

is an element of the traditional flavor symmetry at the point 〈T 〉
in T -moduli space. If 
̂i leaves 〈T 〉 invariant we get 
i ∈ O(2) ×
O(2) and these rotations fall into the four categories specified in 
eq. (22): symmetric and asymmetric rotations and symmetric and 
asymmetric reflections. In the following we shall discuss these spe-
cific cases. We shall only present the results here and provide the 
more technical derivation in a future publication, which will in-
clude a derivation of the transformation behavior of twisted and 
untwisted strings under the action of the outer automorphisms of 
the Narain space group, and a full discussion of the origin of the 
modular symmetry GL(2, 3).

4.1. Generic point in 〈T 〉

At a generic point 〈T 〉 in the T -moduli space, the outer au-
tomorphisms that leave the Kähler modulus T invariant can be 
generated by two translations A and B and a symmetric rotation 
C given by Ŝrot.(π) = −1 in eq. (22), i.e.
A := (1, T̂1) , B := (1, T̂2) with

T̂1 :=

⎛
⎜⎜⎝

1
3
2
3
0
0

⎞
⎟⎟⎠ , T̂2 :=

⎛
⎜⎜⎝

0
0
1
3
1
3

⎞
⎟⎟⎠ , and C := (−1,0) . (27)

The automorphism A shifts the winding number and B shifts the 
KK number. Comparing eq. (27) to the generators of the outer 
automorphisms of the geometrical space group ĥ1 = (−1, 0) and 
ĥ2 = (1, t), listed in eq. (9), we can identify the correspondences

A2 ↔ ĥ2 and C ↔ ĥ1 . (28)

The Z3 Narain outer automorphism B is not accessible in the ge-
ometrical case. Acting with B on untwisted and twisted strings, 
we observe that A2B2AB and B give rise to the Z3 ×Z3 point and 
space group selection rules [42,43]. Altogether, A, B, and C generate 
the flavor symmetry �(54) at a generic point in moduli space from 
the outer automorphisms of the Narain space group. This should 
be compared to the result in our warm-up example discussed ear-
lier, where only the S3 subgroup could be obtained from the outer 
automorphisms of the geometrical space group.

4.2. Special B-field with b = 1
2 × integer

Let us now show that for generic radii r but quantized val-
ues of the B-field, b = nB/2 with nB ∈ Z , the flavor symmetry gets 
enhanced. Consider the left-right-symmetric reflective outer auto-
morphism transformation

D(nB) := ( Ŝrefl.(2π/6),0) , with

Ŝrefl.(α = 2π/6) =

⎛
⎜⎜⎝

1 0 0 0
1 −1 0 0

−nB nB 1 1
nB 0 0 −1

⎞
⎟⎟⎠ , (29)

where Ŝrefl. has been introduced in equation (22). This transfor-
mation has a residual moduli dependence (here in the form of 
nB ), which is a possibility already noted at the end of section 3. 
Nonetheless, D(nB )2 = (1, 0) as expected for a reflection. However, 
D(nB) is a symmetry of the Narain lattice only if nB takes integer 
values (cf. appendix A). The T -modulus transforms under D(nB ) as

T �→ nB − T . (30)

Hence, the VEV 〈T 〉 is invariant

〈T 〉 �→ nB − 〈T 〉 = 〈T 〉 for 〈T 〉 = nB

2
+ i

√
3

2
〈r〉 . (31)

Therefore, at regions in moduli space where b = nB/2 with nB ∈ Z
there appears an unbroken Z2 transformation generated by D(nB ). 
This enhances the �(54) flavor symmetry to SG(108,17), see Fig. 3.

The six-dimensional representation 6 of SG(108,17) acts faith-
fully on the six twisted strings (X, Y , Z , X̄, Ȳ , Z̄). The 6 branches 
into 3 ⊕ 3̄ of the �(54) subgroup, implying that A, B, and C
only act separately in the barred and unbarred subspaces. On 
the contrary, D(nB) acts as an interchange of (X, Y , Z) and their 
CP-partners ( X̄, Ȳ , Z̄) (possibly with nB -dependent phases). This 
is backed-up by that fact that, geometrically, D(nB ) acts as a re-
flection on the axis perpendicular to e2 and, consequently, it corre-
sponds to complex conjugation in the extra dimensions [47]. Thus, 
from a �(54) point of view, the Z2 transformation D(nB ) acts as 
a CP-like transformation. In the previous work [6] outer automor-
phisms of the flavor group �(54) were considered as candidates 
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Fig. 3. Points and curves of flavor symmetry enhancement in the moduli space T = b + i
√

3/2 r. The dark teal area is the fundamental domain of SL(2, Z)T , while the light teal 
area is the one of T′ (for both, modulo B �→ −B). On the vertical red lines and on the black semicircles the flavor group �(54) gets enhanced to SG(108, 17), see sections 4.2
and 4.3. When two lines intersect, i.e. points marked by blue squares, the symmetry is further enhanced to SG(216, 87), as discussed for (b, r) = (0, 2/√

3) in section 4.4. 
When three lines intersect, i.e. points marked by small green circles, the flavor group is even further enhanced to SG(324, 39), see section 4.5 for the point (b, r) = (1/2, 1).
for CP-like symmetries. And indeed, the Z2 transformation D(nB )

is contained in the outer automorphism group S4 of �(54). Alto-
gether, we see that at the specific lines b = nB/2 in moduli space 
the flavor- and CP-symmetries are unified into a single symmetry 
group.

Moreover, deflecting the VEV of the T -modulus away from the 
symmetry-enhanced point

〈T 〉 = nB

2
+ i

√
3

2
〈r〉 to 〈T ′〉 = 〈T 〉 + δT with Re(δT ) 
= 0 ,

(32)

induces a spontaneous symmetry breaking of SG(108,17) to �(54). 
This shows that the unified flavor symmetry, and more specifically 
the CP-like transformation D(nB ), can be broken spontaneously.

4.3. Black circles

There are more regions in the T -moduli space with an en-
hanced flavor symmetry. For example, on the semicircle

|T |2 = 1 with Im(T ) > 0 , (33)

a specific left-right-asymmetric reflection outer automorphism 
Ârefl. (αR,αL) becomes an element of the symmetry group. Here, 
αR and αL depend on T precisely in such a way as to ensure that 
the additional symmetry generated by

E := ( Ârefl.1,0) , with Ârefl.1 :=

⎛
⎜⎜⎝

0 0 0 1
0 0 1 1

−1 1 0 0
1 0 0 0

⎞
⎟⎟⎠ , (34)
holds everywhere on the semi-circle.
Similar to the case in section 4.2, amending the generators A, 

B, C by the Z2 transformation E enhances the �(54) flavor sym-
metry to SG(108,17) everywhere on the semicircle. Despite being 
isomorphic, the two SG(108,17) groups here and in section 4.2 are 
not identical, i.e. they are different extensions of �(54). Analogous 
enhancements happen on the other black semicircles depicted in 
Fig. 3.

4.4. Special point at b = 0 and r = 2/
√

3

Let us now consider a case where two lines meet, for example 
the point (b, r) = (0, 2/√

3) in the T -moduli space, marked by a blue 
square in Fig. 3. At this point, the unbroken generators, in addition 
to the usual ones of �(54), are D(0) and E. The total symmetry 
group at this point then can simply be computed as the closure of 
all generators, and the result is SG(216, 87).

We remark that other, apparently independent, transformations 
might be conserved at this point as well. For example, the left-
right-asymmetric 4-fold rotation Ârot.(2π/4, −2π/4). However, none 
of these additional transformations is independent of the transfor-
mations above as all of them are already contained in SG(216, 87).

4.5. Special point at b = 1/2 and r = 1

Finally, we consider a point in the T -moduli space where three 
lines meet, for example (b, r) = (1/2, 1). There, we identify the fol-
lowing flavor symmetries5: A, B, and C originate from the generic 

5 At the point (b, r) = (1/2, 1) there is an additional U(1)2 gauge symmetry en-
hancement.
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case, D(1) appears on the vertical line at b = 1/2, while E is the ad-
ditional flavor symmetry on the semicircle |T |2 = 1. In addition, for 
the semicircle with center (b, r) = (1, 0) we identify the unbroken 
reflection

F := ( Ârefl.2,0) , with Ârefl.2 :=

⎛
⎜⎜⎝

1 0 0 −1
1 −1 −1 −1
0 0 1 1
0 0 0 −1

⎞
⎟⎟⎠ . (35)

This transformation is not independent of the others, as F =
C E D(1)E. Also all other possible additional symmetries out of the 
set (22), which may be envisaged at this specific point, turn out 
to be dependent. Thus, the total flavor symmetry at (b, r) = (1/2, 1)

can be computed as the closure of {A, B, C, D(1), E} and the result 
is SG(324, 39), see Fig. 3.

5. Conclusions and outlook

In the present paper we have given a unified description of CP-
and flavor-symmetries in string theory. This was possible through 
the development of a new tool to obtain the full classification 
of flavor symmetries. It is based on the investigation of outer 
automorphisms of the Narain space group of compactified string 
theory. Apart from the traditional flavor symmetries (as discussed 
in [7–9]), this approach includes string dualities as well. The uni-
fied flavor group has the peculiar property that it is non-universal 
in the moduli space of compactified extra dimensions. Different 
regions (points or lines) in moduli space might enjoy enhanced fla-
vor symmetries. This allows the unification of CP-transformations 
within the unified flavor symmetries. The spontaneous breakdown 
of CP is then controlled by the vacuum expectation values of the 
moduli fields. We have illustrated this in a specific example based 
on the Z3 orbifold. There we identify the traditional universal fla-
vor group �(54) at generic points in moduli space, with enhance-
ments to unified flavor symmetries SG(108,17), SG(216,87) up to 
SG(324,39). The enhanced groups are pretty large although our 
analysis only considered a two-dimensional compactified space, 
whereas in string theory we have altogether six additional com-
pact space dimensions.

The picture discussed here makes contact to the previous work 
on CP-violation described in ref. [6]. The phenomenological impli-
cations are still valid here, but we have gained a new perspective 
in the sense that the explicit breakdown of CP in [6] can now 
be understood as a spontaneous breakdown of CP within the 
unified picture. In addition, the new perspective presented here 
offers novel directions for flavor model building. As we find dif-
ferent flavor symmetries at different points in moduli space (in 
particular in six compact dimensions), fields that live at different 
locations in moduli space feel a different amount of flavor symme-
try. Applied to the standard model of particle physics, this could 
explain, for example, why the observed flavor structure of quarks 
and leptons is so different. This is reminiscent of the concept of 
“local grand unification” [17,18] where we can identify different 
enhanced gauge groups at different “geographical” locations [48]
in compact extra dimensions.

The enhanced unified flavor groups are pretty large (especially 
in the realistic case of six compact dimensions) and allow flexibil-
ity for a step-wise breakdown through Wilson lines [49–51] and 
the vacuum expectation values of the moduli of compact space. 
This could lead to a different flavor- and CP-structure for the 
various sectors of the standard model like up- or down-quarks, 
charged leptons or neutrinos. Such a scheme would share similar-
ities with flavor constructions discussed recently [52,53]. It would 
also connect to bottom-up constructions that use duality trans-
formations for models of mixing in the quark and especially the 
lepton sector [21–33], although there are two major differences 
between these studies and our present point of view. The first one 
comes from the fact that in our picture the flavor symmetries are 
a hybrid combination of traditional and modular discrete symme-
tries, whereas in [21–33] the flavor symmetries are assumed to 
be completely contained within the modular group. The second 
difference is a consequence of the fact that in the string theory 
picture the Kähler potential (and thus the superpotential as well) 
transforms non-trivially under modular transformations [11–16] in 
contrast to the assumption of the papers mentioned above. We 
shall elaborate on the details of these differences in a future pub-
lication.

The present discussion shows that string theory naturally leads 
to a rich and flexible flavor structure that could explain many dif-
ferent aspects of flavor- and CP-symmetry in the standard model. 
It is worthwhile to go ahead with future research in that direction, 
both from the bottom-up and top-down perspective.
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Appendix A. Narain lattice

We consider string compactifications on a (D, D)-dimensional 
Narain lattice � and its (symmetric) TD/ZK orbifold in D ex-
tra dimensions, following the conventions of ref. [39]. In this 
case the Narain lattice is a 2D-dimensional lattice. It is defined 
by 2D basis vectors Ei=1,...,2D , which we combine into a (2D ×
2D)-dimensional vielbein matrix E . In more detail, the Narain lat-
tice � can be defined by a torus compactification of right- and 
left-moving bosonic string coordinates yR and yL, respectively, i.e.

Y ∼ Y + E N̂ with Y =
(

yR
yL

)
∈ R2D and

N̂ =
(

n
m

)
∈ Z2D , (36)

where n ∈ ZD and m ∈ ZD are the winding and Kaluza-Klein 
quantum numbers, respectively. The string coordinates y and their 
T -duals ỹ are related by(

y
ỹ

)
= 1√

2

(
1 1

−1 1

) (
yR
yL

)
. (37)

For the string theory to have a modular invariant partition func-
tion, the vielbein E has to span an even self-dual lattice with 
signature (D, D) – called the Narain lattice �. Hence, in the ab-
sence of Wilson lines the vielbein E can be parametrized as

E = 1√
2

⎛
⎜⎜⎜⎝

e−T

√
α′ (G − B) −√

α′ e−T

e−T

√
α′ (G + B)

√
α′ e−T

⎞
⎟⎟⎟⎠ , (38)

where e is the geometrical vielbein of the D-dimensional torus 
TD with metric G := eTe, e−T denotes the transposed inverse of 
e, α′ denotes the Regge slope, and B = −BT is the anti-symmetric 
B-field. From eq. (38) it follows that

ETη E = η̂ , where η :=
(−1 0

0 1

)
and η̂ :=

(
0 1
1 0

)
.

(39)
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A transformation of the vielbein E �→ E ′ = E M̂−1 is a symmetry 
of the Narain lattice � iff

M̂ ∈ GL(2D,Z) and M̂Tη̂ M̂ = η̂ . (40)
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