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ABSTRACT 1 

The goal of this study is to improve the operational performance of shared-use automated vehicle (AV) 2 

mobility services (SAMSs) via combining less frequent mid-term demand forecasts and vehicle 3 

repositioning (i.e. 1-3 hour look-ahead every 15 minutes) with short-term demand forecasts and vehicle 4 

repositioning (i.e. 15 minute look-ahead every 30 seconds). The short-term forecasts help the fleet 5 

controller reposition vehicles to handle small spatial discrepancies in vehicle supply and travel demand, in 6 

the near term over a limited spatial scale. Incorporating mid-term forecasts allows the fleet controller to 7 

reposition vehicles to overcome larger systemic spatio-temporal demand imbalances that exist over large 8 

spatial distances in the service region (e.g. the regional airport and the central business district). This 9 

study proposes a new math programming formulation for the mid-term repositioning policy, in addition to 10 

an existing joint user-vehicle assignment and short-term repositioning policy.  To test the ability of the 11 

mid-term forecast and repositioning strategy to improve the SAMS’s operational performance, this study 12 

employs an agent-based simulation model and runs a variety of scenarios using taxi data from Manhattan, 13 

NY and transportation network company data from Chicago, IL. The results indicate that incorporating 14 

mid-term repositioning strategies substantially improves the SAMS fleet performance. Without the mid-15 

term repositioning strategy, many vehicles become stuck in low-demand areas over the course of the 7-16 

day simulations resulting in the fleet serving less than 40% of requests; whereas, the dual-horizon 17 

approach serves 90% of requests with the same fleet size, at the expense of more empty vehicle miles. 18 

Keywords: Autonomous Vehicles, Mobility Service, Autonomous Mobility On-Demand, Demand 19 

Forecasting, Fleet Operations 20 

  21 



Dandl et al. 

3 

 

INTRODUCTION 1 

The emergence and growth of shared-use vehicle-based mobility service providers (MSPs) like Uber, 2 

Lyft, and Didi as well as the expected advent of fully-automated vehicles (AVs) has motivated significant 3 

research related to shared-use AV-enabled mobility services (SAMSs), including at the fleet operations 4 

level. Several studies aim to maximize the operational efficiency of SAMS fleets via proposing and 5 

comparing operational strategies (1–9). These studies focus on the online matching or dynamic 6 

assignment of vehicles to user requests and some also incorporate empty vehicle repositioning strategies. 7 

However, as far as the authors are aware, no SAMS fleet operational strategy exists in the literature that 8 

includes multiple time horizons for forecasting demand and repositioning empty vehicles. This study aims 9 

to fill this gap and improve upon the state-of-the-art SAMS fleet operational strategies. Although 10 

Mitrovic-Minic et al. (10) propose a double horizon approach to dynamically operate a vehicle fleet, their 11 

approach applies to the dynamic courier delivery problem which is quite different from operating a 12 

SAMS fleet serving on-demand passenger requests without shared rides.  13 

Like most firms, managerial decisions for MSPs can be separated into different time scales. At the 14 

longest term scale (annually to quarterly), the MSP must decide what type(s) of services to offer and how 15 

to price the services. At the second longest term scale (monthly to weekly), the MSP must determine the 16 

appropriate fleet size, assuming the MSP owns and operates its own vehicles (13–15). At the third longest 17 

term scale (weekly to daily), the MSP must decide when and where to perform maintenance and vehicle 18 

recharging/refueling. At the mid-term scale (hourly), the MSP must consider repositioning vehicles, long 19 

distances, to decrease systemic imbalances arising from uneven spatio-temporal demand distributions. 20 

Finally, at the short-term scale (minutes to seconds), the MSP must assign AVs to user requests and 21 

reposition AVs to adjust for small imbalances between supply and demand. The decisions made at each of 22 

these time scales are highly inter-related.  23 

In theory, making current decisions in order to optimize an objective function considering both 24 

current and future rewards within a time horizon can be addressed by (approximate) dynamic 25 

programming (11, 12). However, the scale of problems created by existing mobility services and 26 

complicated demand-supply interactions require approximations in order to allow real-time performant 27 

algorithms. 28 

Maciejewski et al. (2) and Hyland and Mahmassani (1) present several strategies to assign vehicles to 29 

user requests. Other research focuses on pooled services where multiple users share a ride at the same 30 

time (8, 16). Research also shows that the SAMS service design can constrain the vehicle-user assignment 31 

optimization potential (5). Even the time that the operator and users need to make decisions affects the 32 

fleet performance (6). 33 

These vehicle-user assignment strategies involve solving static optimization problems periodically. 34 

Since new requests are revealed over time, the available information changes over time and suboptimal 35 

decisions of a previous optimization period can lead to better system states over the course of time. This 36 

is the dynamic nature of the SAMS operation problem (17, 18). In order to make decisions that are 37 

beneficial for the near future, waiting strategies can be applied to save empty vehicle miles traveled 38 

(VMT) in case users are not very time sensitive (19, 20). Another approach to address the dynamic nature 39 

of the SAMS operation problem and improve myopic vehicle-user assignments is to utilize short-term 40 

demand forecasts and jointly assign vehicles to users and reposition tasks (9, 21).  41 
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Dandl et al. (21) argue that choosing spatial forecast resolutions should consider fleet performance 1 

rather than just forecast errors and that forecast accuracy significantly impacts performance at high spatial 2 

resolutions. Wen et al. (22) discuss more generally about the value of demand information and conclude 3 

from simulations that aggregate demand information are valuable to SAMS operators. Sayarshad and 4 

Chow (23) survey common short term demand forecast methods. Moreira-Matias et al. (24) use online 5 

streaming data to improve the forecast quality of a historic average model. 6 

Finally, there are studies that separate the repositioning problem from the user-assignment problem 7 

altogether (7, 25, 26). These approaches typically solve an optimization problem to determine the number 8 

of vehicles that should reposition from one area to another. However, these mid-term reposition strategies 9 

do not affect current assignments and do not consider the uncertainty of real demand forecasts. 10 

The main contribution of this research involves using a dual-horizon (short-term and mid-term) 11 

demand forecasting and AV repositioning strategy to improve the operational efficiency of SAMS fleets 12 

via anticipating and responding to (i) local and short-term fluctuations in the vehicle supply and traveler 13 

demand and (ii) systemic spatio-temporal demand imbalances across the service region. The motivation 14 

for the dual-horizon approach is summarized in FIGURE 1.  15 

The following section defines the research problem and hypothesizes why incorporating mid-term 16 

forecasts and repositioning should improve the efficiency of SAMS fleets. The next section presents the 17 

research methodology. The following section presents the experiments designed to test the operational 18 

policy. The penultimate section presents computational results and the final section concludes the paper 19 

with a summary and list of potential extensions.  20 
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 1 

FIGURE 1 Motivation for dual time-horizon approach for SAMS fleet operation. 2 



Dandl et al. 

6 

 

SERVICE DESCRIPTION AND PROBLEM DEFINITION 1 

SAMSs can have many different service specifications regarding user-operator interaction (who 2 

accepts/rejects, communication response times, and communicated information) and service 3 

considerations (pricing, ridepooling and vehicle capacity, waiting and detour time limitations, and ability 4 

to re-assign). The concept of operations and the underlying operational problem for the SAMS in this 5 

study is described as follows: 6 

The fleet controller continuously receives new on-demand requests from users. An incoming request 7 

𝑟 = (𝑜𝑟 , 𝑑𝑟, 𝜏𝑟) at time 𝜏𝑟 contains the origin 𝑜𝑟 and the destination 𝑑𝑟 of a user. These users are not 8 

willing to share their ride and only accept wait times smaller than 𝑇𝑤,𝑚𝑎𝑥; moreover, the operator must 9 

accept or decline a user request within one minute. The price of the SAMS in this study is exogenous and 10 

solely distance based; a user must pay 𝑓𝐷 per kilometer between her origin and destination 𝑑𝑟
𝑜𝑑. In the 11 

envisioned SAMS, the operator can re-assign a user to another vehicle up to three minutes before this 12 

user’s currently communicated pick-up time. After that, the vehicle-user assignment is locked and cannot 13 

be changed anymore. Additionally, this study assumes an environment in which users, whose request is 14 

rejected, are unforgiving and unwilling to use the service in the future. This expected future loss is 15 

modeled by a large assignment reward 𝜉. 16 

The objective of the studied SAMS is to maximize the sum of profit and additional reward for 17 

satisfying the wishes of served users 𝑟 ∈ 𝑅𝑆, in Eqn. 1.  18 

𝑂𝑏𝑗 = (∑ 𝜉 + 𝑓𝐷 ∙ 𝑑𝑟
𝑜𝑑

𝑟∈𝑅𝑆

) −∑𝑐𝐷 ∙ 𝑑𝑣
𝑣∈𝑉

 (1) 

To maximize the objective function, the SAMS fleet controller can dynamically assign 

vehicles at each decision period: to new requests, to reposition to nearby zones, or reposition to 

far away zones, or remain in their current location. 

 

RESEARCH METHODOLOGY 19 

Vehicle-User Assignment 20 

An operator only needs to consider the set of active requests 𝑅𝐴 consisting of new requests and the ones 21 

with unlocked vehicle-user assignments. The operator re-optimizes vehicle assignments every 𝑇𝐷,𝑠 = 30 22 

seconds, the short-term decision time step. Requests that were received within the last optimization period 23 

are either accepted or rejected in order to keep the response time within the limit. 24 

The operator checks the availability of its vehicles. Vehicle availability refers to the position 𝑝𝑣
𝑎𝑣 and 25 

time 𝑡𝑣
𝑎𝑣 at which vehicle 𝑣 can be assigned to new tasks. When a vehicle has locked tasks, these are the 26 

position at the end of the vehicle’s final task and the expected arrival time there. Idle vehicles in the set 27 

𝑉𝐼, and vehicles without locked assignment constitute the set 𝑉𝐴 of vehicles available right away at their 28 

current position. 29 

At time 𝑡, the operator can compute the estimated waiting time for a hypothetical vehicle-user 30 

assignment of vehicle 𝑣 with user request 𝑟 by 31 

𝑡𝑣𝑟 = 𝑡[𝑝𝑣
𝑎𝑣 → 𝑜𝑟] + 𝑡𝑣

𝑎𝑣 − 𝑡 (2) 
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where 𝑡[𝑝𝑣
𝑎𝑣 → 𝑜𝑟] denotes the travel time from 𝑝𝑣

𝑎𝑣 to 𝑜𝑟. We define 𝑑𝑣𝑟 to be the distance associated 1 

with that path and create a decision variable 𝑥𝑣𝑟 if 𝑡𝑣𝑟 ≤ 𝑇
𝑤,𝑚𝑎𝑥, the defining property of the set 𝑉(𝑟) of 2 

vehicles capable of serving request 𝑟. New user assignments are rewarded with the sum of the revenue of 3 

a user trip and the assignment reward 𝜉. Rejecting a previously assigned user is practically unacceptable 4 

and is penalized by a very large value of Ξ. This study defines 𝜒𝑟 to be 𝜉 for new and Ξ for previously 5 

assigned user requests r. The vehicle-user profit optimization then reads: 6 

max
𝑥𝑣𝑟

∑ ∑ (𝜒𝑟 + (𝑓
𝐷 − 𝑐𝐷)𝑑𝑟

𝑜𝑑 − 𝑐𝐷𝑑𝑣𝑟)𝑥𝑣𝑟
𝑣∈𝑉(𝑟)𝑟∈𝑅𝐴

 (3a) 

∑ 𝑥𝑣𝑟
𝑣∈𝑉(𝑟)

≤ 1 ∀𝑟 ∈ 𝑅𝐴 (3b) 

∑ 𝑥𝑣𝑟
𝑟∈𝑅𝐴

≤ 1 ∀𝑣 ∈ 𝑉 (3c) 

𝑥𝑣𝑟 ∈ {0,1} ∀𝑣 ∈ 𝑉, ∀𝑟 ∈ 𝑅𝐴 (3d) 

The constraints limit the number of assignments for each request to one (3b) and the number of 7 

unlocked assignments per vehicle to one (3c). 8 

Combined Vehicle-User and Short-Term Reposition Assignment 9 

An operator can use short-term demand forecasts to make decisions considering current and expected 10 

future demand within a time horizon 𝑇𝐻,𝑠. In the following, a superscript 𝑠/𝑚 will denote short-term/mid-11 

term variables, respectively. The additional demand information can affect vehicle-user assignments as 12 

illustrated in FIGURE 1b. In order to make predictions about demand, the operator typically divides the 13 

operating area into a set 𝐴 of disjoint areas 𝑎. When the operator needs to make decisions at time  𝑡, it 14 

predicts the number of trip requests originating from an area 𝑎 between 𝑡 and 𝑡 + 𝑇𝐻,𝑠, which we denote 15 

by 𝜆𝑎
𝑠 . For 𝑇𝐻,𝑠 in the range of the average trip duration, the vehicle supply can be predicted well by the 16 

vehicle availability constrained by current assignments. For each zone, we count the number of vehicles 17 

that will be available before the time horizon ends (𝑡𝑣
𝑎𝑣  ≤ 𝑡𝑖  +  𝑇

𝐻,𝑠). We define the short-term 18 

imbalance of zone 𝑎 as the difference between supply and demand: 19 

𝐼𝑎
𝑠 =

(

 
 

∑ 1

𝑣:𝑝𝑣
𝑎𝑣∈𝑎

𝑡𝑣
𝑎𝑣≤𝑇𝐻,𝑠 )

 
 
− 𝜆𝑎

𝑠  ∀𝑎 ∈ 𝐴 (4) 

We divide the operating area A into three disjoint subsets: 𝐴+
𝑠 , 𝐴0

𝑠 , and 𝐴−
𝑠 , where the subscript 20 

indicates vehicle surplus (+), deficit (-) or balanced supply and demand (0). Due to uncertainty in 21 

forecasts, it is reasonable to define the balanced interval to be bigger than just zero, which can be done by 22 

introducing a vehicle-imbalance buffer 𝐵𝑠 (for short-term strategy): 23 

𝐴+
𝑠 = {𝑎 ∈ 𝐴: 𝐼𝑎

𝑠 > 𝐵𝑠} (5a) 

𝐴−
𝑠 = {𝑎 ∈ 𝐴: 𝐼𝑎

𝑠 < −𝐵𝑠} (5b) 

While it makes sense to assign a new user request to a vehicle currently en-route to drop off a user in 24 

order to make an accept/reject decision, it is unnecessary to consider these vehicles for repositioning at 25 

the current decision time step. 26 
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Since the demand forecast does not extend beyond the time horizon, it is possible that a zone showing 1 

vehicle deficit within 𝑇𝐻,𝑠 no longer is a deficit zone thereafter. Hence, it only makes sense to assign a 2 

vehicle reposition when vehicle 𝑣 would arrive in zone 𝑎 before the time horizon ends, i.e. set the 3 

decision variable 𝑧𝑣𝑎 to zero if the vehicle would arrive after the time horizon: 4 

𝑧𝑣𝑎 = 0 ∀𝑣 ∈ 𝑉𝐴, ∀𝑎 ∈ 𝐴: 𝑡𝑣𝑎 = 𝑡[𝑝𝑣
𝑎𝑣 → 𝑎] > 𝑇𝐻,𝑠 (6) 

Furthermore, the set of decision variables 𝑧𝑣𝑎 can be reduced by acknowledging that vehicle 5 

repositioning should be from surplus areas 𝑜 ∈ 𝐴+
𝑠  to deficit areas 𝑎 ∈ 𝐴−

𝑠 . Therefore, we denote the set of 6 

currently available vehicles within all surplus areas by 𝑉+
𝐴 and a specific surplus area 𝑎+ by 𝑉𝑎+

𝐴  . Not 7 

moving more vehicles to/from an area than there is vehicle deficit/surplus (including the buffer) generates 8 

additional constraints, namely equations (7d/e). Finally, the reward for an assignment is set to the sum of 9 

𝜉 and the expected profit from the additional trip, which we approximate with the average profit 10 

generated by a user trip 𝑃𝑎𝑣𝑔. Finally, we introduce a discount factor 𝛾𝑠 ∈ [0,1] to weigh future rewards 11 

against current rewards of actual request assignments and costs of driving. 12 

Equations (7a-f) display the joint AV-user assignment and short-term repositioning problem: 13 

max
𝑥𝑣𝑟,𝑧𝑣𝑎

∑ ∑ 𝑢𝑣𝑟 ∙ 𝑥𝑣𝑟
𝑣∈𝑉(𝑟)𝑟∈𝑅𝐴

+ ∑ ∑ (𝛾𝑠(𝜉 + 𝑃𝑎𝑣𝑔) − 𝑐𝐷𝑑𝑣𝑎)𝑧𝑣𝑎
𝑎∈𝐴−𝑠𝑣∈𝑉+

𝐴

 (7a) 

∑ 𝑥𝑣𝑟
𝑣∈𝑉(𝑟)

≤ 1 ∀𝑟 ∈ 𝑅𝐴 (7b) 

∑ 𝑥𝑣𝑟
𝑟∈𝑅𝐴

+ ∑ 𝑧𝑣𝑎
𝑎∈𝐴−𝑠

≤ 1 ∀𝑣 ∈ 𝑉 (7c) 

∑ 𝑧𝑣𝑎
𝑣∈𝑉+

𝐴

≤ −(𝐼𝑎
𝑠 − 𝐵𝑠) ∀𝑎 ∈ 𝐴−

𝑠  (7d) 

∑ ∑ 𝑧𝑣𝑎 ≤ 𝐼𝑎
𝑠 −𝐵𝑠

𝑎∈𝐴−𝑠

 

𝑣∈𝑉𝑎+
𝐴

 ∀𝑎+ ∈ 𝐴+
𝑠  (7e) 

𝑥𝑣𝑟 ∈ {0,1}, 𝑧𝑣𝑎 ∈ {0,1} ∀𝑣 ∈ 𝑉, 𝑟 ∈ 𝑅𝐴, 𝑎 ∈ 𝐴−
𝑠  (7f) 

where 𝑢𝑣𝑟 denotes the reward/cost associated with 𝑥𝑣𝑟 from the user-assignment problem equation (3a) 14 

and 𝑑𝑣𝑎 the distance between vehicle 𝑣 and area 𝑎. Equation (7b) limits the number of assignments per 15 

user to one, while equation (7c) constrains the number of unlocked assignments, which can be either a 16 

user-assignment or a reposition-assignment to another zone, to one. 17 

In this study, we randomly assign a node within area 𝑎 as the destination for a reposition assignment 18 

to 𝑎 and use the average distance of the fastest paths from the vehicle position to each node in 𝑎 to 19 

approximate 𝑑𝑣𝑎 (the same method is used to determine 𝑡𝑣𝑎).  20 

Mid-Term Reposition Assignments 21 

Short-term repositioning uses a time horizon 𝑇𝐻,𝑠 in the range of average trip duration, which allows a 22 

very good prediction of the supply side since the current assignments determine vehicle availability very 23 

well. However, the short-time horizon limits the capability of balancing the fleet over larger operating 24 

areas. Vehicles will not reach distant areas in time and equation (6) will prohibit repositions. 25 
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Considering a longer time horizon, called the mid-term time horizon, 𝑇𝐻,𝑚 will allow vehicles to 1 

reach distant areas; however, future predictions are less reliable. While the quality of the prediction of 2 

future requests per area depends on the underlying demand patterns and could potentially even become 3 

better (which usually it does not), the troublesome part is the prediction of vehicle supply throughout that 4 

time horizon. Vehicles will be able to serve multiple trip requests during the longer time horizon and their 5 

current availability at 𝑡 is not very valuable as a long-term supply forecast (i.e. at 𝑡 + 30 minutes). The 6 

availability of vehicles at a future point in time is also dependent on all decisions between the present and 7 

then, which becomes infeasible to predict. An approximation to determine the imbalance inside an area 8 

𝑎 ∈ 𝐴 is to predict the number of requests 𝜆𝑎
𝑚 and the number of vehicle arrivals (at destinations of user-9 

trips) 𝜇𝑎
𝑚 within the time horizon: 𝐼𝑎

𝑚  = 𝜇𝑎
𝑚 − 𝜆𝑎

𝑚. 10 

Since serving current demand should be prioritized over possible future rewards, we separate the mid-11 

term repositioning problem from the short-term problem. As the forecasts of supply and demand over this 12 

longer time horizon are not prone to change every 30 seconds, it is sufficient to solve mid-term reposition 13 

problems less frequently. We denote the mid-term interval as 𝑇𝐷,𝑚. We introduce a discount factor 𝛾𝑚 ∈14 

[0,1], which generally should be smaller than 𝛾𝑠 because possible rewards are even further in the future. 15 

Moreover, we define sets for surplus, balanced, and deficit areas 𝐴+
𝑚, 𝐴0

𝑚, 𝐴−
𝑚, respectively. Even 16 

though the formal definition of the areas is the same (replacing 𝑠 → 𝑚 in equations (5a) and (5b)), the 17 

buffer 𝐵𝑚 to account for forecast uncertainty should scale with the size of the forecasted values. The 18 

scale of the buffer should also reflect the current utilization of the fleet: if there are hardly any idle 19 

vehicles, the buffer should prohibit extensive repositioning. We choose a simple linear function to 20 

account for both effects: 21 

𝐵𝑚 = 𝛼 ∙ (
1

2|𝐴|
∑𝜇𝑎

𝑚 + 𝜆𝑎
𝑚

𝑎∈𝐴

) ∙
|𝑉|

|𝑉𝐼|
 (8) 

The second factor scales the buffer with the average forecast value of both requests and arrivals and 22 

the third factor is the inverse share of idle vehicles. The hyper-parameter 𝛼 determines the 23 

“aggressiveness” of the repositioning strategy: a large value expects higher uncertainty in the forecasts 24 

and therefore generates less reposition assignments. 25 

In order to reduce computational complexity, we propose an area-based optimization problem instead 26 

of a vehicle-based optimization problem. The number of repositions from an area 𝑜 are constrained either 27 

by the number of idle vehicles within this area or by the expected vehicle surplus. We define the 28 

constraining condition for zone 𝑜 ∈ 𝐴+
𝑚 by 29 

𝐶𝑜
+ = min

 
(|𝑉𝑜+

𝐴 | , 𝐼𝑜
𝑚 − 𝐵𝑚) ∀𝑜 ∈ 𝐴+

𝑚 (9) 

The number of vehicles 𝑛𝑜𝑑 that will be repositioned from area 𝑜 ∈ 𝐴+
𝑚 to area 𝑑 ∈ 𝐴−

𝑚 should not be 30 

rewarded equally for each missing or surplus vehicle. Instead, the reward should depend on the magnitude 31 

of the vehicle imbalances in 𝑜 and 𝑑. We propose to include the following surplus (𝐹𝑜
+) and deficit (𝐹𝑑

−) 32 

share factors in the reward formulation: 33 

𝐹𝑜
+ = 1 + 𝐶𝑜

+ ∑ 𝐶𝑎
+

𝑎∈𝐴+
𝑚

⁄  ∀𝑜 ∈ 𝐴+
𝑚 (10a) 



Dandl et al. 

10 

 

𝐹𝑑
− = 1 + (𝐵𝑚 − 𝐼𝑑

𝑚) ( ∑ 𝐵𝑚 − 𝐼𝑎
𝑚

𝑎∈𝐴−𝑚

)⁄  ∀𝑑 ∈ 𝐴−
𝑚 (10b) 

Linear Model 1 

With these definitions, we formulate the linear mid-term repositioning model: 2 

max
𝑥𝑣𝑟

∑ ∑ (𝛾𝑚(𝜉 + 𝑃𝑎𝑣𝑔) ∙ 𝐹𝑜
+ ∙ 𝐹𝑑

− − 𝑐𝐷𝑑𝑜𝑑)𝑛𝑜𝑑
𝑑∈𝐴−𝑚𝑜∈𝐴+

𝑚

 (11a) 

∑ 𝑛𝑜𝑑
𝑑∈𝐴−𝑚

≤ 𝐶𝑜
+ ∀𝑜 ∈ 𝐴+

𝑚 (11b) 

∑ 𝑛𝑜𝑑
𝑜∈𝐴+

𝑚

≤ 𝐵𝑚 − 𝐼𝑑
𝑚 ∀𝑑 ∈ 𝐴−

𝑚 (11c) 

𝑛𝑜𝑑 = 0 ∀𝑜 ∈ 𝐴+
𝑚, 𝑑 ∈ 𝐴−

𝑚: 𝑡𝑜𝑑 > 𝑇
𝐻,𝑚  (11d) 

𝑛𝑜𝑑 ∈ ℕ0
+ ∀𝑜 ∈ 𝐴+

𝑚, ∀𝑑 ∈ 𝐴−
𝑚 (11e) 

Constraint (11b) limits the number of repositions originating from an area, equation (11c) constrains 3 

the number of repositioning vehicles ending in an area, constraint (11d) only allows repositioning a 4 

vehicle if it arrives at the destination area within the time horizon. The travel distance 𝑑𝑜𝑑 and time 𝑡𝑜𝑑 5 

are approximated by the average of the values of the respective fastest path from nodes in area 𝑜 to nodes 6 

in area 𝑑. 7 

Adding a repositioning trip between two areas trades off the reward and the distance-related costs in 8 

the objective function (11a). Due to the surplus and deficit share factors, the areas with the largest 9 

imbalances and vehicle stock are prioritized. The form of the factors in equation (11a) and (11b) is chosen 10 

such that the factor remains in the scale ~1 in order to keep the balance between total rewards and 11 

distance costs rather constant. FIGURE 2a) illustrates the effect of the buffer and the deficit share factors 12 

on the marginal reward of vehicle repositioning. 13 

As a final step, the operator needs to assign the repositioning trips to vehicles. We use a greedy 14 

algorithm that sequentially chooses a random single trip from 𝑜 ∈ 𝐴+
𝑚 to 𝑑 ∈ 𝐴−

𝑚 from the solution to 15 

(11a-e) and assigns it to the idle vehicle in 𝑜, which has the shortest distance to region 𝑑. These mid-term 16 

assignments are locked in order to keep them from being changed during the next short-term decision 17 

process. 18 

Non-linear model 19 

Even with the surplus and deficit share factors, the linear model cannot consider how many trips have 20 

already been assigned to a deficit area as long as there is still a deficit and all trips between an origin and 21 

a destination are rewarded the same. It makes sense to value the first assignments to a deficit area stronger 22 

than the following ones, i.e. make the marginal reward of an additional hypothetical assignment 23 

dependent on other assignments to this area, as shown in FIGURE 2b). For this reason, we replace the 24 

deficit share factor with the term 𝛽(𝐵𝑚 − 𝐼𝑑
𝑚 − 𝑛𝑜𝑑), thereby generating a quadratic term in the objective 25 

function. 26 

 27 
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max
𝑥𝑣𝑟

∑ ∑ (𝛾𝑚(𝜉 + 𝑃𝑎𝑣𝑔) ∙ 𝐹𝑜
+ ∙ 𝛽(𝐵𝑚 − 𝐼𝑑

𝑚 − 𝑛𝑜𝑑) − 𝑐
𝐷𝑑𝑜𝑑)𝑛𝑜𝑑

𝑑∈𝐴−𝑚𝑜∈𝐴+
𝑚

 (12a) 

∑ 𝑛𝑜𝑑
𝑑∈𝐴−𝑚

≤ 𝐶𝑜
+ ∀𝑜 ∈ 𝐴+

𝑚 (12b) 

∑ 𝑛𝑜𝑑
𝑜∈𝐴+

𝑚

≤ 𝐵𝑚 − 𝐼𝑑
𝑚 ∀𝑑 ∈ 𝐴−

𝑚 (12c) 

𝑛𝑜𝑑 = 0 ∀𝑜 ∈ 𝐴+
𝑚, 𝑑 ∈ 𝐴−

𝑚: 𝑡𝑜𝑑 > 𝑇
𝐻,𝑚  (12d) 

𝑛𝑜𝑑 ∈ ℕ0
+ ∀𝑜 ∈ 𝐴+

𝑚, ∀𝑑 ∈ 𝐴−
𝑚 (12e) 

The meaning of the hyper-parameters, which helps to set an initial value and ultimately to control the 1 

trade-offs between balancing the fleet and creating additional driving costs, becomes less interpretable 2 

with the introduction of this nonlinearity. From a mathematical point of view, 𝛽 is not required if we 3 

allow choosing 𝛾𝑚 different from the linear model. 4 

The constraints of the optimization problem remain the same as in the linear case. 5 
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FIGURE 2  Marginal benefit of mid-term repositioning depending on the initial expected vehicle deficit of the 1 
zone (top) and the remaining vehicle deficit depending on other repositioning assignments to that zone 2 
(bottom). 3 

Forecast Methodology 4 

The previously described SAMS operator strategies require frequent demand forecasts for the time 5 

horizon  𝑇𝐻,𝑠, and less frequent forecasts for number of requests and vehicle arrivals for time horizon 6 

𝑇𝐻,𝑚. 7 

In this study, we implement an online model correcting historic day-of-week period-of-day forecasts 8 

and test the operating strategies with perfect forecasts to test the robustness of the fleet operator 9 

algorithms. The perfect forecasts are generated by aggregating the trip request data. Averaging the 10 

recorded trip numbers y of a period 𝑝 for a weekday 𝑑 of the past 6 weeks determines the historic data 11 

forecast 𝑦̅𝑤,𝑑,𝑝: 12 
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𝑦̅𝑤,𝑑,𝑝 =
1

6
∑𝑦𝑤−𝑗,𝑑,𝑝

6

𝑗=1

  (13) 

The online forecast aims to improve that value by comparing the day-of-week period-of-day forecast 1 

(𝑦̅) and recorded (𝑦) trip data of the past few forecast periods. We assume an exponential decrease in 2 

importance of previous periods and use the values of the last four forecast periods: 3 

𝜂𝑗 = {

𝑦𝑤𝑑,𝑝−𝑗

𝑦̅𝑤,𝑑,𝑝−𝑗
𝑦̅𝑤,𝑑,𝑝−𝑗 > 0

1 𝑦̅𝑤,𝑑,𝑝−𝑗 = 0
 (14a) 

𝑦̂𝑤,𝑑,𝑝(𝑡𝑖) = 𝑦𝑤,𝑑,𝑝 ∙ (∑𝜂𝑗

4

𝑗=1

𝑒−𝑗) (14b) 

We expect that forecasts combining more advanced machine-learning methods and the inclusion 4 

other data sources for event and weather data would improve the quality of forecasts tremendously. 5 

Agent-Based Simulation Framework 6 

Our model contains three classes of agents: users, the operator, and the vehicles that the operator controls. 7 

A simulation starts at one second before 00:00 and runs for 24 hours in one-second time-steps. The initial 8 

vehicle positions and open tasks from the simulation of the previous day are used such that the end-of-day 9 

vehicle distribution matters. 10 

FIGURE 3 displays the procedure of the simulation. In each time step, the system state is updated 11 

based on the current assignments. Vehicles drive for one of four reasons: to drive an on-board user from 12 

her origin to her destination, to pick-up a passenger, to perform a short-term repositioning trip, or to 13 

perform a long-term repositioning trip. When a vehicle arrives at a pick-up or drop-off location, users can 14 

start boarding or disembarking, respectively. The state update phase terminates with new users revealing 15 

their trip requests to the operator. 16 

These trip requests are batched until the next short-term decision time step (𝑡%𝑇𝐷,𝑠 = 0). Depending 17 

on the studied SAMS strategy, the operator assigns requests and possibly short-term repositions to 18 

vehicles, then the operator accepts a new user request if it was assigned or rejects it. 19 

This framework assumes 𝑇𝐷,𝑚 % 𝑇𝐷,𝑠 = 0 and possibly runs a mid-term decision time step after 20 

short-term assignments in order to not block user-assignments by locked mid-term repositions. 21 

After the final time step, the vehicle positions and unfinished vehicle assignments are recorded for the 22 

simulation of the next day. 23 
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 1 

FIGURE 3  Flowchart describing the simulation framework. 2 

EXPERIMENTAL DESIGN 3 

We expect the benefit generated by the dual-horizon approach to be depending on the operating area 4 

and the demand patterns therein. Hence, we conduct simulations in Chicago and Manhattan as 5 

representatives of large cities with quite different spatial characteristics. 6 

Chicago TNC and New York City Yellow Taxi Data 7 

Demand forecasts and requests for the simulations are based on Chicago TNC data from 2019-02-01 8 

to 2019-03-31 and New York City Taxi data from 2018-10-01 to 2018-11-30. The first six weeks of each 9 

data set are solely used to create the historic forecasts 𝑦̅𝑤,𝑑,𝑝. This study sets the period for forecasts to the 10 

temporal accuracy of the Chicago TNC data, i.e. 15 minutes. The city of Chicago states privacy reasons 11 

for the 15-minute aggregation intervals, while the New York City taxi data provide time stamps down to 12 

seconds. We disaggregate the Chicago TNC data by random processes in order to get request times on the 13 

second level as well. The average recorded trip duration is approximately 13 minutes in Manhattan and 16 14 

minutes in Chicago. 15 

The set 𝐴 of areas covering the respective operating areas were chosen based on the trip record data 16 

as well. Both cities publish user pick-up and drop-off locations not with GPS data, but on an area level, 17 

once again for privacy reasons. In Chicago, most trips contain origin and destination information at the 18 

census tract level. However, about 18% only have valid information on community area level and 12% do 19 

not have any spatial information. Hence, we decided to use the community areas as set 𝐴 for Chicago. 20 

Furthermore, Chicago covers more than 600 km2 and the division into 800 TAZ-level areas would likely 21 

lead to computational problems during the optimization processes. We filtered the New York City data set 22 

for trips originating and ending in Manhattan, thereby removing 16% of trips of the original data set. User 23 

pick-up and drop-off points are recorded within Taxi zones, which are therefore used as the set 𝐴 for 24 

Manhattan. We applied two more filters to exclude possible trips with intermediary stops or even round 25 

trips and probably false records by removing trips with speeds below 1 m/s and above 30 m/s. After 26 

filtering, the trip data contain approximately 900k trips (2019-03-25 to 2019-03-31 in Chicago) and 27 

1500k (2018-11-12 to 2018-11-18 in Manhattan) in the respective 1-week periods. 28 

Both data sets show an imbalance between trip origins and destinations, as illustrated in FIGURE 4. 29 

Trip origins and destinations were counted for the respective 1-week period. Coincidently, the scales of 30 
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imbalances after one, three, five and 7 days are similar in both cities. The highest imbalances in Chicago, 1 

namely downtown in the east and the O’Hare airport in the northwest are more than 25 km apart; as a 2 

comparison, the scales in Manhattan are much shorter with the width of Manhattan around Central Park 3 

only being approximately 3 km. 4 

 

After 

Day 1 

 

 

After 

Day 3 

 

 

After 

Day 5 

 

 

After 

Day 7 

 
FIGURE 4  Cumulative recorded trip arrivals minus departures in Chicago (left) and in Manhattan (right). 5 



Dandl et al. 

16 

 

Chicago and Manhattan Street Network Data 1 

This study employs OpenStreetMap network data for both study areas and removes links that cannot 2 

be used by cars. Additionally, in Chicago, streets of type “living_street” and “residential” were removed 3 

to keep the number of links manageable. After the link filters, Chicago and Manhattan networks contain 4 

3963 nodes with 10059 unidirectional links and 4498 nodes with 9757 unidirectional links, respectively. 5 

Since SAMS vehicles likely will not be allowed to pick-up or drop-off customers everywhere (e.g. on 6 

motorways), the simulation model only allows boarding at nodes that are only connected to primary, 7 

secondary, and tertiary streets in Chicago and additionally residential and living streets in Manhattan. 8 

This process also excludes streets that are unclassified or have multiple entries. In order to derive free 9 

flow travel times in the network, the speed limit is set at 30 mph (Chicago) and 25 mph (Manhattan) on 10 

links without speed limit information. The nodes were projected onto the areas 𝐴 of the respective study 11 

area and the trip origins and destinations were randomly assigned to nodes within the recorded areas. In 12 

order to approximate realistic travel times, the velocities in the network were adapted to match the 13 

average velocities of trip records in 15-minute intervals. 14 

After setting the origin and destination nodes, we evaluated the trip distance distribution. The average 15 

trip distance is 6.7 km in Chicago, with quartiles of trip distance at 2.5 km, 4.6 km and 8.4 km; in 16 

Manhattan, the average is 3.1 km and the quartiles are at 1.7 km, 2.6 km and 3.9 km respectively. 17 

General Settings 18 

Many parameters need to be set in the agent-based simulation model and additionally in the SAMS 19 

operating strategy models. Requests are generated based on the spatially projected trip data, where the 20 

request time is set to the start time of the original trip in Manhattan and randomly drawn from the start 21 

time interval in Chicago. The fare for users is $0.5 per km on the fastest route between the user’s trip 22 

origin and destination. The study assumes the actual costs of driving are $0.25 per km and the fixed 23 

vehicle costs per day are $25. For simplicity, the average user-profit parameter 𝑃𝑎𝑣𝑔 in the operator 24 

strategies is set to the average trip distance multiplied by $0.25, thereby ignoring the costs of pick-up 25 

trips. Its value is $1.68 in Chicago and $0.77 in Manhattan. This study assumes a very high user 26 

dissatisfaction cost 𝜉 of $10, thereby modelling a system where users are likely not to use the system 27 

again if they cannot be picked-up within 6 minutes. 28 

Scenarios 29 

This study conducts 7-day scenarios/simulations by sequentially simulating single days and using the 30 

final vehicle positions and utilization as initial conditions for the simulations of the next day. Evaluating 31 

the number of concurrent travelers allows estimating the range of reasonable fleet sizes. This study 32 

compares the following operator strategies: “vehicle-user assignment only” (AO, equations 2a-d), “short-33 

term combined vehicle-user and reposition strategy” (ST, equations 6a-f), “short-term combined vehicle-34 

user strategy with mid-term linear optimization reposition” (ST-MTL, equations 6a-f and 10a-e) and 35 

“short-term combined vehicle-user strategy with mid-term quadratic optimization reposition” (ST-MTQ, 36 

equations 6a-f and 11a-e). Furthermore, the study compares different mid-term time-horizons and the 37 

impact of forecast accuracy on the mid-term repositioning policies. In total, this study conducts  2 ∙ 7 ∙ 3 ∙38 

(2 + 2 ∙ 3 ∙ 2) = 588 single-day simulations. All general and scenario-specific parameters are 39 

summarized in TABLE 1. 40 
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TABLE 1  Parameters for Simulation Scenarios 1 

Parameter Math 

Notation 

Values Unit 

General Parameter Settings 

Simulation Period  00:00 – 24:00  

Max. User Wait Time 𝑇𝑤,𝑚𝑎𝑥 6 min 

User Re-Assignment Limitation Before Pick-Up  3 min 

Distance-Based User Fare 𝑓𝐷 0.50 $/km 

User Dissatisfaction Cost / Assignment Reward 𝜉 10 $ 

Daily Fixed Vehicle Cost Per Vehicle  25 $ 

Vehicle Operating Cost 𝑐𝐷 0.25 $/km 

Short-Term Decision Time Step 𝑇𝐷,𝑠 0.5 min 

Short-Term Time Horizon 𝑇𝐻,𝑠 15 min 

Short-Term Discount Factor 𝛾𝑠 0.5  

Short-Term Vehicle-Imbalance Buffer 𝐵𝑠 1 veh 

Mid-Term Decision Time Step 𝑇𝐷,𝑚 15 min 

Mid-Term Discount Factor 𝛾𝑚 0.25  

Mid-Term Vehicle-Imbalance Buffer 

Coefficient 
𝛼 0.01  

Scenario Definition Parameters 

Study Area  Chicago (C), Manhattan (M)  

Simulated Days (Request Data Sets)  2019-03-[25 to 31] (C) 

2018-11-[12 to 18] (M) 

 

Fleet  Size |𝑉| 2750, 3250, 3750 (C) 

4000, 4500, 5000 (M) 

veh 

SAMS Operating Strategy AO: user assignment only 

ST: AO + short-term reposition 

ST-MTL: ST + mid-term linear reposition 

ST-MTQ: ST + mid-term nonlinear reposition 

Mid-Term Time Horizon 𝑇𝐻,𝑚 1,2,3 hour 

Forecast Methodology  online, perfect  

 2 

RESULTS 3 

This section briefly presents demand forecast results and then a detailed analysis and comparison of 4 

SAMS fleet operational strategies.   5 

Forecasting Results 6 

The demand forecasting results indicate superiority of the online model predictions over simply using 7 

historic data for both demand requests 𝜆𝑎
𝑠/𝑚

 and vehicle arrivals 𝜇𝑎
𝑠/𝑚

. The analysis employs the root 8 

mean squared error per minute of the prediction time horizon (RSME/TH) rather than a relative error 9 

measure as the latter measure over-emphasizes zone-time pairs with just a few predicted requests/vehicle 10 

arrivals.  11 

In Chicago, the RSME/TH over all time horizons is 0.42 for both the predictions of requests and 12 

vehicle arrivals. In Manhattan, the RSME/TH over all time horizons is 0.62 for vehicle arrival predictions 13 
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and 0.71 for request predictions. As expected, the advantage of the online model forecast over a historic 1 

data forecast decreases with the length of the time horizon. The online correction improves the average 2 

RMSE/TH of requests and arrivals from 0.90 to 0.60 in Manhattan and from 0.55 to 0.42 in Chicago for 3 

15-minute time horizon. The RMSE/TH value only decreases from 0.73 to 0.58 in Manhattan and from 4 

0.40 to 0.37 in Chicago for a 3-hour time horizon. The larger forecast errors and the bigger gap between 5 

the historic data and the online forecast in Manhattan can partly be explained by a strong storm that 6 

caused part of public transit system to stop service. 7 

SAMS Fleet Operational Performance Results 8 

Since the total values of the objective function are hard to interpret, this study uses the definition of 9 

value of information (VOI) in Eqn. 15, to measure the relative gain in the objective function of strategy 𝑥 10 

using short/mid-term forecasts compared to the AO strategy (10, 22): 11 

𝑉𝑂𝐼[𝑥] =  
𝑂𝑏𝑗[𝑥] − 𝑂𝑏𝑗[𝐴𝑂]

𝑂𝑏𝑗[𝐴𝑂]
  (15) 

 12 

TABLE 2 displays the fleet performance results where fleet size is exogenous and only the best mid-13 

term horizon length results are shown. In both cities, the AO strategies struggle to serve demand; many 14 

vehicles get stuck at the airport of Chicago and in the northeast part of Manhattan, which are outside of 15 

the maximum waiting time range of demand centers. The addition of short-term repositioning minimally 16 

impacts the results in Chicago, but more than doubles the rate of served requests in Manhattan while only 17 

producing 2-3% more empty VMT. In Manhattan, the ST strategy has a VOI greater than 1.5. The smaller 18 

benefit in Chicago relates to the airport being more than 𝑇𝐻 away from the other demand centers.  19 

TABLE 2 also indicates that the inclusion of a mid-term strategy significantly improves the objective 20 

function in both cities by orders of magnitude. In Manhattan, the choice of time horizon has a minimal 21 

impact on the VOI. However, in Chicago the linear model performs significantly better for a longer mid-22 

term time horizon, while the nonlinear model shows similar performance for all three tested time 23 

horizons. Unfortunately, the large difference in the objective function comes at the cost of significant 24 

increases in empty VMT. The MTL scenarios with a 60-minute time horizon that produce considerably 25 

lower VMT are also the ones that serve many fewer requests. With the chosen hyper-parameters, the ST-26 

MTQ generally produces more empty VMT, but the solution quality with perfect forecasts is always at 27 

least as good as the linear model. The operator should check whether a less sensitive MQT strategy, by 28 

modification of the hyper-parameters, could produce pareto-improving results.  29 

The analysis also compares the performance of the strategies under forecast uncertainty using online 30 

forecasts and perfect forecasts. All key performance indicators of the ST-MTQ model show robust results 31 

indicating the usefulness of the vehicle imbalance buffer 𝐵𝑚. The empty VMT increases by TABLE 32 

2approximately 1%, while serving a few more requests. A rather surprising result manifests for the ST-33 

MTL model, as the online forecasts scenarios with errors perform better than perfect forecast scenarios. 34 

The inaccurate forecasts cause the operator to reposition more vehicles, which happens to improve the 35 

overall fleet performance. The reason for this unexpected result is that the exact destination area 36 

determined by the forecasts is not as important, as long as vehicles drive in the direction of the demand 37 

centers. 38 

 39 
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TABLE 2  Results of 7-Day Simulations for Selected Scenarios (Best Mid-Term Time Horizon of Strategy) 1 

Study 

Area 

Fleet 

Size 

SAMS 

Operating 

Strategy 

Mid-

Term 

Horizon 

[hours] 

Forecast 

Method 

Value 

of Info 

Profit 

 

 

$ 

Served 

Requests 

 

[%] 

Empty 

VMT 

 

[%] 

Average 

Wait 

Time 

[min] 

C
h

ic
a

g
o
 

2750 AO - - 0 237k 33.3 6.4 5.1 

ST - perfect 0.03 225k 34.4 8.5 5.1 

ST-MTL 3 perfect 1.36 480k 78.7 17.0 4.7 

3 online 1.48 533k 83.1 19.6 4.7 

ST-MTQ 1 perfect 1.51 444k 85.2 23.5 4.4 

1 online 1.50 416k 85.3 24.7 4.5 

3250 AO - - 0 167k 34.8 6.5 5.1 

ST - perfect 0.05 165k 36.7 15.1 5.0 

ST-MTL 3 perfect 1.54 500k 87.6 18.7 4.4 

3 online 1.60 450k 90.4 21.5 4.3 

ST-MTQ 1 perfect 1.60 323k 91.5 25.9 4.1 

1 online 1.60 314k 91.7 26.6 4.1 

3750 AO - - 0 107k 37.0 6.6 5.1 

ST - perfect 0.07 101k 39.8 8.8 5.1 

ST-MTL 3 perfect 1.55 408k 92.7 20.3 4.1 

3 online 1.58 339k 94.5 23.5 4.0 

ST-MTQ 1 perfect 1.55 244k 94.4 26.5 3.8 

1 online 1.53 195k 94.5 28.4 3.8 

M
a
n

h
a
tt

a
n

 

3500 AO - - 0 -370k 17.3 9.7 6.2 

ST - perfect 1.81 -70k 42.3 12.6 6.4 

ST-MTL 3 perfect 4.82 242k 84.7 15.9 5.8 

3 online 5.13 255k 89.3 16.7 5.6 

ST-MTQ 3 perfect 5.13 200k 89.6 20.1 5.7 

3 online 5.17 189k 90.3 21.0 5.6 

4000 AO - - 0 -421k 20.6 9.9 6.3 

ST - perfect 1.64 -104k 47.7 12.6 6.3 

ST-MTL 3 perfect 4.34 190k 93.9 16.8 5.3 

3 online 4.51 187k 96.9 17.9 5.0 

ST-MTQ 3 perfect 4.47 114k 96.6 21.9 5.2 

3 online 4.49 98k 97.1 22.9 5.2 

4500 AO - - 0 -478k 23.6 10.0 6.4 

ST - perfect 1.58 -133k 53.7 12.5 6.2 

ST-MTL 3 perfect 3.84 104k 98.4 18.0 4.7 

2 online 3.90 91k 99.6 19.1 4.4 

ST-MTQ 1 perfect 3.87 22k 99.5 22.8 4.5 

1 online 3.87 8k 99.6 23.5 4.5 

 2 

FIGURE 5 illustrates the spatial distribution of the origins of unserved requests. The scale of the 3 

colorbar reflects the absolute number of unserved requests and is much higher for AO and ST than ST-4 

MTL and ST-MTQ. The spatial distribution of unserved requests mirrors the demand imbalance in 5 

FIGURE 4; however, the total number is much higher for the AO and ST strategies because the vehicles 6 

are mostly stuck at the airport in Chicago and the northeast of Manhattan. 7 
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The inclusion of short-term forecasts and repositioning in the ST strategy mitigates part of the AO 1 

strategy problem. In Manhattan, 𝑇𝐻,𝑠 is large enough to allow repositions from the northeast corner to the 2 

some areas in the center, thereby providing a possibility to reduce the number of stuck vehicles. 3 

FIGURE 6 displays fleet utilization over seven days for all four strategies in addition to the time-4 

dependent travel demand. MSP fleet operators can analyze the fleet utilization over time to determine 5 

when to perform maintenance and recharging/refueling. Typically, the vehicle utilization rate will follow 6 

the number of concurrent travelers in the system, which is the convolution of number of travel requests 7 

and the trip duration of these requests. This quantity describes the number of AVs with on-board users 8 

very well when service rates are high. 9 

FIGURE 6b) depicts the very strong degradation of the AO strategy in Manhattan in the first two days 10 

and the much slower degradation with ST repositioning. Both MT strategies generate very similar 11 

utilization rates in Manhattan that start increasing before the demand peak due to the rolling time-horizon 12 

approach. In comparison with the demand curve, the utilization plateaus because of vehicle repositions. 13 

The demand in Chicago generates the classical two peaks per day in FIGURE 6a). Vehicle repositions 14 

tend to take place in the time between these two peaks. The worse performance of the MTL model 15 

becomes evident in the inability to serve demand in the afternoon/evening peak, as the vehicle utilization 16 

does not even reach the level of the demand curve. The MTQ scenarios show very good results in this 17 

case with the majority of unserved requests originating from the time on March 29, when the theoretic 18 

demand even exceeded the fleet size. 19 

  20 
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FIGURE 5  Not served requests in 7-day simulations with fleet size 3250 in Chicago and 4000 in Manhattan. 1 



 
a) Fleet size of 3250 vehicles in Chicago. 

 
b) Fleet size of 4000 vehicles in Manhattan. 

FIGURE 6  Fleet utilization plots for different operator strategies. The “Recorded Travel Demand” curve represents concurrent travelers from the 1 
original trip data. 2 



CONCLUSISON 1 

Summary 2 

This study presents the idea of a dual-horizon forecast and reposition approach to improve the efficiency 3 

of SAMS fleet operations. In order to trade off the costs generated by vehicles driving empty against the 4 

rewards of moving vehicles from expected vehicle surplus to expected vehicle deficit areas, two new mid-5 

term repositioning problem formulations are introduced. The rewards in both the linear and the nonlinear 6 

optimization problem take the strength of the deficit and the surplus into account, whereas the nonlinear 7 

problem formulation even allows adapting the marginal reward of each additional vehicle sent to a deficit 8 

area. The introduction of a buffer parameter prohibits the algorithm from being too sensitive to 9 

uncertainties in demand forecasts. 10 

7-day simulations based on taxi data in Manhattan and TNC data in Chicago show that by applying 11 

this strategy an SAMS operator can balance the vehicle distribution in the operating area and thereby 12 

serve demand much better. This study assumes a situation where the operator puts a lot of emphasis on 13 

serving user requests, expressed in a large reward for an assignment or alternative penalty for a request 14 

that cannot be served within 6 minutes. With this assumption, the total objective can be improved by 15 

150% in Chicago and more than 350% in Manhattan with the dual-horizon repositioning approach. 16 

Future Work 17 

This study assumed a certain SAMS design with a high assignment reward value, which could represent a 18 

situation where an operator needs to strengthen its market position and user satisfaction is more important 19 

than immediate profitability. However, the methodology also must be tested for an operator having more 20 

focus on the immediate profitability of the system. This change will affect the choice of hyper-parameters 21 

of the reposition models, which control the balance of the tradeoff between driving costs and expected 22 

future reward. This study suggests reasonable values, but a real operator would optimize them. 23 

Finally, new reposition formulations that consider the spatio-temporal relations between areas rather than 24 

just trying to balance demand and supply in each area, might be another interesting approach to tackle the 25 

reposition problem. 26 

 27 

ACKNOWLEDGEMENTS 28 

The German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety provides 29 

partial funding for the first author through the project “City2Share”. 30 

The authors remain responsible for all findings and opinions presented in the paper. 31 

AUTHOR CONTRIBUTION 32 

All authors contributed to all aspects of the study from conception and design, to data collection, to 33 

analysis and interpretation of results, and manuscript preparation. All authors reviewed the results and 34 

approved the final version of the manuscript. 35 

 36 



Dandl et al. 

24 

 

REFERENCES 1 

1. Hyland, M. F., and H. S. Mahmassani. Dynamic Autonomous Vehicle Fleet Operations: 2 

Optimization-Based Strategies to Assign AVs to Immediate Traveler Demand Requests. TRB, 2018. 3 

2. Maciejewski, M., J. Bischoff, and K. Nagel. An Assignment-Based Approach to Efficient Real-Time 4 

City-Scale Taxi Dispatching. IEEE Intelligent Systems, Vol. 31, No. 1, 2016, pp. 68–77. 5 

3. Hörl, S., C. Ruch, F. Becker, E. Frazzoli, and K. W. Axhausen. Fleet Control Algorithms for 6 

Automated Mobility: A Simulation Assessment for Zurich. Presented at 96th Annual Meeting of the 7 

Transportation Research Board, Washington, D.C., 2017 8 

4. Fagnant, D. J., and K. Kockelman. Dynamic Ride-Sharing and Optimal Fleet Sizing for a System of 9 

Shared Autonomous Vehicles. Presented at 94th Annual Meeting of the Transportation Research 10 

Board, Washington, D.C., 2015 11 

5. Dandl, F., and K. Bogenberger. Booking Processes in Autonomous Carsharing and Taxi Systems. 12 

Proceedings of 7th Transport Research Arena, Vienna, 2018. 13 

6. Dandl, F., K. Bogenberger, and H. S. Mahmassani. Autonomous Mobility-on-Demand Real-Time 14 

Gaming Framework. IEEE International Conference on Models and Technologies for Intelligent 15 

Transportation Systems, 2019. 16 

7. Azevedo, C. L., K. Marczuk, S. Raveau, H. Soh, M. Adnan, K. Basak, H. Loganathan, N. 17 

Deshmunkh, D.-H. Lee, E. Frazzoli, and M. Ben-Akiva. Microsimulation of Demand and Supply of 18 

Autonomous Mobility on Demand. In Transportation Research Record: Journal of the 19 

Transportation Research Board, No. 1, 2016, pp. 21–30. 20 

8. Alonso-Mora, J., S. Samaranayake, A. Wallar, E. Frazzoli, and D. Rus. On-Demand High-Capacity 21 

Ride-Sharing via Dynamic Trip-Vehicle Assignment. Proceedings of the National Academy of 22 

Sciences, 2017, pp. 462–467. 23 

9. Alonso-Mora, J., A. Wallar, and D. Rus. Predictive Routing for Autonomous Mobility-on-Demand 24 

Systems with Ride-Sharing. In 2017 IEEE/RSJ International Conference on Intelligent Robots and 25 

Systems (IROS), Vancouver, BC, pp. 3583–3590. 26 

10. Mitrović-Minić, S., R. Krishnamurti, and G. Laporte. Double-Horizon Based Heuristics for the 27 

Dynamic Pickup and Delivery Problem with Time Windows. Transportation Research Part B: 28 

Methodological, Vol. 38, No. 8, 2004, pp. 669–685. 29 

11. Bertsekas, D. P. Dynamic Programming and Optimal Control. Athena Scientific, Belmont, Mass., 30 

2005. 31 

12. Powell, W. B. Approximate Dynamic Programming. Solving the Curses of Dimensionality. Wiley, 32 

Hoboken, New Jersey, 2011. 33 

13. Spieser, K., S. Samaranayake, W. Gruel, and E. Frazzoli. Shared-Vehicle Mobility-on-Demand 34 

Systems: Fleet Operator's Guide to Rebalancing Empty Vehicles. Presented at 95th Annual Meeting 35 

of the Transportation Research Board, Washington, D.C., 2016 36 



Dandl et al. 

25 

 

14. Dandl, F., and K. Bogenberger. Comparing Future Autonomous Electric Taxis with an Existing Free-1 

Floating Carsharing System. IEEE Transactions on Intelligent Transportation Systems, Vol. 20, 2 

No. 6, 2019, pp. 2037–2047. 3 

15. Vosooghi, R., J. Kamel, J. Puchinger, V. Leblond, and M. Jankovic. Robo-Taxi Service Fleet Sizing: 4 

Assessing the Impact of User Trust and Willingness-to-Use. Transportation, Vol. 67, 2019, p. 1. 5 

16. Engelhardt, R., F. Dandl, A. Bilali, and K. Bogenberger. Quantifying the Benefits of Autonomous 6 

on-Demand Ride-Pooling. A Simulation Study for Munich, Germany. accepted to IEEE ITSC, 2019. 7 

17. Psaraftis, H. N., M. Wen, and C. A. Kontovas. Dynamic Vehicle Routing Problems. Three Decades 8 

and Counting. Networks, Vol. 67, No. 1, 2016, pp. 3–31. 9 

18. Hyland, M. F., and H. S. Mahmassani. Taxonomy of Shared Autonomous Vehicle Fleet Management 10 

Problems to Inform Future Transportation Mobility. In Transportation Research Record: Journal of 11 

the Transportation Research Board, 2017, pp. 26–34. 12 

19. Pureza, V., and G. Laporte. Waiting and Buffering Strategies for the Dynamic Pickup and Delivery 13 

Problem with Time Windows. INFOR: Information Systems and Operational Research, Vol. 46, 14 

No. 3, 2008, pp. 165–175. 15 

20. Mitrović-Minić, S., and G. Laporte. Waiting Strategies for the Dynamic Pickup and Delivery 16 

Problem with Time Windows. Transportation Research Part B: Methodological, Vol. 38, No. 7, 17 

2004, pp. 635–655. 18 

21. Dandl, F., M. Hyland, K. Bogenberger, and H. S. Mahmassani. Evaluating the Impact of Spatio-19 

Temporal Demand Forecast Aggregation on the Operational Performance of Shared Autonomous 20 

Mobility Fleets. Transportation, Vol. 114, 2019, pp. 462–484. 21 

22. Wen, J., N. Nassir, and J. Zhao. Value of Demand Information in Autonomous Mobility-on-Demand 22 

Systems. Transportation Research Part A: Policy and Practice, Vol. 121, 2019, pp. 346–359. 23 

23. Sayarshad, H. R., and J. Y. J. Chow. Survey and Empirical Evaluation of Nonhomogeneous Arrival 24 

Process Models with Taxi Data. Journal of Advanced Transportation, Vol. 50, No. 7, 2016, 25 

pp. 1275–1294. 26 

24. Moreira-Matias, L., J. Gama, M. Ferreira, J. Mendes-Moreira, and L. Damas. Predicting Taxi–27 

Passenger Demand Using Streaming Data. IEEE Transactions on Intelligent Transportation Systems, 28 

Vol. 14, No. 3, 2013, pp. 1393–1402. 29 

25. Fagnant, D. J., K. Kockelman, and P. Bansal. Operations of Shared Autonomous Vehicle Fleet for 30 

Austin, Texas Market. In Transportation Research Record: Journal of the Transportation Research 31 

Board, 2015, pp. 98–106. 32 

26. Pavone, M., S. L. Smith, E. Frazzoli, and D. Rus. Robotic Load Balancing for Mobility-on-Demand 33 

Systems. The International Journal of Robotics Research, Vol. 31, No. 7, 2012, pp. 839–854. 34 

 35 


