
Software Impacts 2 (2019) 100007

Contents lists available at ScienceDirect

Software Impacts

journal homepage: www.journals.elsevier.com/software-impacts

aFlux: Graphical flow-based data analytics
Tanmaya Mahapatra ∗, Christian Prehofer
Lehrstuhl für Software und Systems Engineering, Fakultät für Informatik, Technische Universität München, Boltzmannstraße 03, 85748 Garching b.
München, Germany

A R T I C L E I N F O

Keywords:
Flow-based programming
Graphical pipelines
Mashup tools
Graphical Spark programming
graphical Flink programming

A B S T R A C T

aFlux is a graphical flow-based programming tool designed to support the modelling of data analytics
applications. It supports high-level programming of Big Data applications with early-stage flow validation
and automatic code generation for frameworks like Spark, Flink, Pig and Hive. The graphical programming
concepts used in aFlux constitute the first approach towards supporting high-level Big Data application
development by making it independent of the target Big Data frameworks. This programming at a higher
level of abstraction helps to lower the complexity and its ensued learning curve involved in the development
of Big Data applications.

Code metadata

Current code version 0.0.3.0
Permanent link to code/repository used for this code version https://github.com/SoftwareImpacts/SIMPAC-2019-6
Legal Code Licence Apache Licence Version 2.0
Code versioning system used GIT
Software code languages, tools, and services used Java 8, Spring 4.3.9, Akka 2.5.1, MongoDB 3.4.4, Apache Tomcat 8.5.16
Compilation requirements, operating environments & dependencies Maven & Java 8
If available Link to developer documentation/manual https://aflux.org/images/pdfs/docs/aFluxDocs.pdf
Support email for questions tanmaya.mahapatra@tum.de

1. Introduction

Data analytics has gained prominence in recent years. Nevertheless,
developing Big Data applications is not a trivial task. Writing Big Data
applications for frameworks like Spark [1], Flink [2], Pig [3], Hive [4]
requires interaction with several libraries and APIs, and working with
different data abstractions. Furthermore, developers might need to
include additional libraries within an application to ensure its success-
ful execution on Big Data clusters. This approach makes the process
cumbersome and challenging with regard to quickly prototyping ap-
plications for performing exploratory data researches. Therefore, the
learning curve associated with it is steep, and it requires a considerable
amount of expertise to use Big Data analytics. Additionally, there is no
support for end-user programming with Big Data, i.e. programming at
a higher abstraction level.

We believe that one promising solution is to enable domain experts,
who are not necessarily programmers, to develop the Big Data applica-
tions by providing them with domain-specific graphical tools based on

∗ Corresponding author.
E-mail address: tanmaya.mahapatra@tum.de (T. Mahapatra).

the flow-based programming paradigm [5]. This conceptual approach
for high-level Big Data programming involves the following (see Fig. 1
for illustration of these ideas):

1. Analysing target Big Data frameworks like Spark and Flink,
extracting data abstractions and APIs which are compatible with
the flow-based programming paradigm, i.e. not supporting APIs
requiring user-defined data transformation functions or supporting
code-snippets during flow creation to interact with target framework
internals. Representing the selected APIs operating on the com-
patible data abstractions as modular, composable components.
These components are independent of the execution semantics of
flow-based programming tools and bundle a set of APIs invoked
in a specific order to perform a specific data analytics operation.

2. Developing a generic approach to parse graphical flows making
use of such modular components to generate native Big Data

https://doi.org/10.1016/j.simpa.2019.100007
Received 20 June 2019; Received in revised form 27 August 2019; Accepted 4 September 2019

2665-9638/© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.simpa.2019.100007
http://www.journals.elsevier.com/software-impacts
http://www.journals.elsevier.com/software-impacts
http://crossmark.crossref.org/dialog/?doi=10.1016/j.simpa.2019.100007&domain=pdf
https://github.com/SoftwareImpacts/SIMPAC-2019-6
https://aflux.org/images/pdfs/docs/aFluxDocs.pdf
mailto:tanmaya.mahapatra@tum.de
mailto:tanmaya.mahapatra@tum.de
https://doi.org/10.1016/j.simpa.2019.100007
http://creativecommons.org/licenses/by/4.0/


T. Mahapatra and C. Prehofer Software Impacts 2 (2019) 100007

Fig. 1. Modular subset of Big Data systems compatible with flow-based programming
paradigm, as in [6] (tool-agnostic).

programs and with support for early-stage validation so that the
flow always yields a compilable and runnable Big Data program.

2. Software prototype

aFlux [7–10] is a graphical flow-based programming tool (mashup
tool) based on the actor model [11] to support the design of data
analytics applications with concurrent execution semantics, thereby
overcoming the prevalent architectural limitations in the state-of-the-
art mashup tools [12–14]. A flow-based programming model with
concurrent execution semantics is suitable for modelling a wide range
of Big Data applications currently used in Data Science. Without the
aforementioned semantics, designing a flow involving Big Data analyt-
ics would lead to components waiting to execute for a long time, as Big
Data jobs usually take a long time to finish their execution, leading to
the inefficient design of applications.

2.1. Conceptual approach

aFlux implements the modular composable components selected from
Big Data frameworks like Pig, Hive, Spark and Flink as actors and
enables high-level Big Data programming with flow validation and au-
tomatic code generation. The implemented components are available
on the front-end as graphical components for the user to drag and
create an application flow. The flow begins with components which
read datasets, followed by a series of data-transformation components
and ends with a data-output component. Every component has a set
of properties which the user can configure on the front-end. The
flow is parsed for correctness and internally represented as a directed
acyclic graph (DAG). From the DAG, the native Big Data application
is generated using an API-based code generation technique [15]. The
conceptual approach for flow creation and automatic code generation,
including some examples of supported components for flow creation, is
illustrated in Fig. 2.

2.2. Implementation and working [9]

aFlux consists of a web application and an execution environment
developed in Java and the Spring Framework.1 The web application
is composed of two main entities: the front-end and back-end, based
on REST API. The front-end of aFlux (Fig. 3) provides a GUI for
the creation of flow-based applications, while the back-end parses the
user flow to generate native application code. The application can be
executed in its internal execution environment or sent to an external

1 https://spring.io/.

Table 1
Comparison of aFlux with the state-of-the-art, following [6].

Solutions Target-framework
support

Extensibility Code generation

aFlux Spark, Flink, Pig
& Hive

Yes Yes

QM-IConf [22] Storm No Yes
Lemonade [23] Spark No Yes
QryGraph [24] Pig No Yes
SPSS Modeller [25] None No No
Nussknacker [26] Flink No No

environment. The front-end is based on React2 and Redux3 frameworks.
Applications are created by dragging and dropping available graphical
components from the left panel onto the canvas and wiring them. New
components are loaded from plug-ins [16]. The application shows a
console-like output in the footer, and the details regarding a selected
component are shown on the right-hand side panel. The ‘Application
Header & Menu Bar’ contains functionalities to control the execution
of an application, like starting the execution, stopping the execution,
saving the application etc. Using the aFlux front-end, a user can create
a flow by wiring several components together. Fig. 4 illustrates a
Pig graphical flow created on the front-end, its resultant generated
code and its output after execution. An illustrative example of Flink
flow creation and code generation has been explained via a video
demonstration.

2.3. Installation

aFlux uses Maven [17] for project management and can be installed
from the Git [18] repository (codemetadata table lists all requisite
information). It can be compiled4 on any operating system includ-
ing Windows, macOS and Linux if Java 8 development environment
is present. Any Java integrated development environment (IDE) like
Eclipse [19] or Intellij [20] can be used for importing and compil-
ing, which generates a Web Application Resource or Web application
ARchive (WAR) file. The WAR file is deployed inside Apache Tomcat,
a web server which supports the execution of Java code. On start-
up, the application requires a connection to a local MongoDB [21]
instance in order to save the program flows created and the application
configuration settings. All front-end graphical components are separate
Maven projects within the same Git repository. They are compiled
separately and loaded from the GUI of aFlux after it is up and running.
The web application can be accessed from any standard web browser
including Safari, Firefox, Opera and Google Chrome.

3. Comparison with the state-of-the-art

We compare and contrast aFlux with the existing solutions against
these parameters: (i) target-framework support : if the tool supports mul-
tiple target frameworks, (ii) extensibility : if the approach can be/has
been extended to other Big Data frameworks and (iii) code generation:
if the user flow results in a final executable code or if the flow runs in
the tool’s internal environment. The results are summarized in Table 1.

2 https://reactjs.org/.
3 https://redux.js.org/.
4 aFlux installation video: https://aflux.org/index.php/docs/5-aflux-

getting-started-videos.

2

https://spring.io/
https://reactjs.org/
https://redux.js.org/
https://aflux.org/index.php/docs/5-aflux-getting-started-videos
https://aflux.org/index.php/docs/5-aflux-getting-started-videos


T. Mahapatra and C. Prehofer Software Impacts 2 (2019) 100007

Fig. 2. Conceptual approach for flow creation and code generation in aFlux. This figure is based on the conceptual approach diagram discussed in [7].

Fig. 3. Graphical user interface of aFlux, as in [9,10,16].

Fig. 4. Example of a Pig flow creation in aFlux.

3.1. Overview of impact

aFlux impacts end-users as well as researchers in the following way:
(i) it supports graphical flow-based application development, thereby
enabling non-experts to quickly prototype Big Data applications [8]
and (ii) the graphical programming concepts used in aFlux is the first
approach to support high-level Big Data application development by
making it independent of the target Big Data frameworks, which is
a significant improvement achieved over the existing state-of-the-art.
It has been used to support frameworks like Spark [7], Flink [9], Pig
and Hive, which demonstrates (a) the extensibility of the approach and
(b) the generalizability of the code generation technique. The high-level
graphical programming approach abstracts the complexities of Big Data
application development from end-users, thereby lowering the associ-
ated learning curve and enabling less skilled Big Data programmers to
adopt Big Data analytics. The main research contributions have been
published in three peer-reviewed publications [7–9]. Recently, there
have been many commercial solutions aimed at enabling less-skilled
Big Data programmers to quickly prototype Big Data applications using
Spark and Flink via flow-based programming. Examples include Stratio
Sparta 2.0 [27] and StreamAnalytix [28]. The research contributions

3



T. Mahapatra and C. Prehofer Software Impacts 2 (2019) 100007

and results from open-sourced aFlux will pave the foundation for
further research in this area and will significantly help less-skilled Big
Data users in an academic environment adopt Big Data analytics.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

The authors are grateful to Shilpa Ghanashyam Gore, Federico
Alonso Fernández Moreno and Ioannis Varsamidakis who actively con-
tributed in the development of plug-ins for aFlux. Furthermore, we
would like to acknowledge the inputs and suggestions received from
Dr. Ilias Gerostathopoulos during various stages of this work.

This paper uses figures, tables and text from the Ph.D. dissertation
titled ‘‘High-level Graphical Programming for Big Data Applications’’ of
Tanmaya Mahapatra to be published in Technical University of Munich,
2019. All relevant inclusions from the dissertation have been cited
appropriately.

This work was supported by the German Research Foundation
(DFG) and the Technical University of Munich within the Open Access
Publishing Funding Programme.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.simpa.2019.100007.

The illustrative example showcases how easy it is to create Flink
applications graphically from aFlux, by abstracting the code genera-
tion from the end-user. The example uses real data from the city of
Santander, Spain, offered as open data via public APIs [29]. In this
example, the user need not have programming skills or familiarity with
Flink framework. The user just needs to know how to use aFlux from the
end-user perspective (i.e. how to drag and drop graphical components,
etc.) and have some very basic knowledge of what Flink can do, from a
functionality point of view rather than from a developer point of view.
The flow created is designed to analyse traffic patterns in a particular
area of the city, so as to help decision makers in the city make the
appropriate calls.

References

[1] Apache, Spark - Unified Analytics Engine for Big Data, 2014. URL https://spark.
apache.org. [Online; Accessed 20 June 2019].

[2] Apache, Flink: Stateful Computations over Data Streams, 2014. URL https://flink.
apache.org. [Online; Accessed 20 June 2019].

[3] Apache, Pig, 2008. URL https://pig.apache.org/. [Online; Accessed 20 June
2019].

[4] Apache, The Apache Hive data warehouse software, 2010. URL https://hive.
apache.org. [Online; Accessed 20 June 2019].

[5] J.P. Morrison, Flow-Based Programming, 2𝑛𝑑 Edition: A New Approach to
Application Development, CreateSpace, Paramount, CA, 2010.

[6] T. Mahapatra, High-level Graphical Programming for Big Data Applications,
Technische Universität München, München, 2019.

[7] T. Mahapatra, I. Gerostathopoulos, C. Prehofer, S.G. Gore, Graphical Spark
Programming in IoT Mashup Tools, in: 2018 Fifth International Conference
on Internet of Things: Systems, Management and Security 2018, pp. 163–170,
http://dx.doi.org/10.1109/IoTSMS.2018.8554665.

[8] T. Mahapatra, C. Prehofer, I. Gerostathopoulos, I. Varsamidakis, Stream Analytics
in IoT Mashup Tools, in: 2018 IEEE Symposium on Visual Languages and Human-
Centric Computing, VL/HCC, 2018, pp. 227–231, http://dx.doi.org/10.1109/
VLHCC.2018.8506548.

[9] T. Mahapatra, I. Gerostathopoulos, F.A. Fernández, C. Prehofer, Designing Flink
Pipelines in IoT Mashup Tools, in: Proceedings of the 4𝑡ℎ Norwegian Big Data
Symposium, NOBIDS, vol. 2316, no. 03, 2018, pp. 41–53, URL http://ceur-
ws.org/Vol-2316/paper3.pdf.

[10] T. Mahapatra, C. Prehofer, aFlux: Flow-based Programming for Big Data,
2019. URL https://aflux.org. [Online; Accessed 20 June 2019].

[11] G. Agha, Actors: A Model of Concurrent Computation in Distributed Systems,
MIT Press, Cambridge, MA, USA, 1986.

[12] T. Mahapatra, I. Gerostathopoulos, C. Prehofer, Towards Integration of Big Data
Analytics in Internet of Things Mashup Tools, in: Proceedings of the Seventh
International Workshop on the Web of Things, WoT ’16, ACM, New York, NY,
USA, 2016, pp. 11–16, http://dx.doi.org/10.1145/3017995.3017998.

[13] T. Mahapatra, C. Prehofer, Service Mashups and Developer Support, Digit. Mob.
Platforms Ecosyst. (2016) 48–65, http://dx.doi.org/10.14459/2016md1324021.

[14] J. Mineraud, O. Mazhelis, X. Su, S. Tarkoma, A gap analysis of internet-of-things
platforms, Comput. Commun. 89–90 (2016) 5–16, http://dx.doi.org/10.1016/j.
comcom.2016.03.015.

[15] T. Stahl, M. Voelter, K. Czarnecki, Model-Driven Software Development:
Technology, Engineering, Management, John Wiley & Sons, Inc., USA, 2006.

[16] F.A.F. Moreno, Modularizing Flink programs to enable stream analytics in IoT
Mashup tools = Modularización de programas Flink para el análisis de datos en
tiempo real en herramientas de Mashup para IOT, Telecomunicacion, 2018, URL
http://oa.upm.es/52898/.

[17] Apache, Maven, 2004. URL https://maven.apache.org. [Online; Accessed 18 July
2019].

[18] Git, Git. distributed-is-the-new-centralized, 2005. URL https://git-scm.com.
[Online; Accessed 18 July 2019].

[19] Eclipse, The platform for open innovation and collaboration, 2001. URL https:
//www.eclipse.org. [Online; Accessed 18 July 2019].

[20] JetBrains, Intellij IDEA: The java IDE for professional developers by jetbrains,
2001. URL https://www.jetbrains.com/idea/. [Online; Accessed 18 July 2019].

[21] MongoDB, The database for modern applications, 2009. URL https://www.
mongodb.com. [Online; Accessed 18 July 2019].

[22] H. Eichelberger, C. Qin, K. Schmid, Experiences with the Model-based Generation
of Big Data Pipelines, in: B. Mitschang, D. Nicklas, F. Leymann, H. Schöning, M.
Herschel, J. Teubner, T. Härder, O. Kopp, M. Wieland (Eds.), Datenbanksysteme
für Business, Technologie und Web (BTW 2017) - Workshopband, Gesellschaft
für Informatik e.V., Bonn, 2017, pp. 49–56.

[23] W.d. Santos, G.P. Avelar, M.H. Ribeiro, D. Guedes, W. Meira Jr., Scalable and
Efficient Data Analytics and Mining with Lemonade, Proc. VLDB Endow. 11 (12)
(2018) 2070–2073, http://dx.doi.org/10.14778/3229863.3236262.

[24] S. Schmid, I. Gerostathopoulos, C. Prehofer, QryGraph: A Graphical Tool for Big
Data Analytics, in: SMC’16, 2016.

[25] K. McCormick, D. Abbott, M.S. Brown, T. Khabaza, S.R. Mutchler, IBM SPSS
Modeler Cookbook, Packt Publishing, 2013.

[26] Touk, Nussknacker. Streaming processes diagrams, 2019. URL https://touk.
github.io/nussknacker/. [Online; Accessed 27 May 2019].

[27] Stratio, The definitive visual build tool for Apache Spark: Sparta 2.0,
2019. URL https://www.stratio.com/blog/apache-spark-visual-tool-sparta/. [On-
line; Accessed 20 June 2019].

[28] Streamanalytix, Self-Service Data Flow and Analytics, 2019. URL https://www.
streamanalytix.com. [Online; Accessed 20 June 2019].

[29] Santander City Council, Santander Open Data - REST API Documentation,
2018. URL http://datos.santander.es/documentacion-api/. [Online; Accessed 01
June 2018].

4

https://doi.org/10.1016/j.simpa.2019.100007
https://spark.apache.org
https://spark.apache.org
https://spark.apache.org
https://flink.apache.org
https://flink.apache.org
https://flink.apache.org
https://pig.apache.org/
https://hive.apache.org
https://hive.apache.org
https://hive.apache.org
http://refhub.elsevier.com/S2665-9638(19)30007-7/sb5
http://refhub.elsevier.com/S2665-9638(19)30007-7/sb5
http://refhub.elsevier.com/S2665-9638(19)30007-7/sb5
http://refhub.elsevier.com/S2665-9638(19)30007-7/sb6
http://refhub.elsevier.com/S2665-9638(19)30007-7/sb6
http://refhub.elsevier.com/S2665-9638(19)30007-7/sb6
http://dx.doi.org/10.1109/IoTSMS.2018.8554665
http://dx.doi.org/10.1109/VLHCC.2018.8506548
http://dx.doi.org/10.1109/VLHCC.2018.8506548
http://dx.doi.org/10.1109/VLHCC.2018.8506548
http://ceur-ws.org/Vol-2316/paper3.pdf
http://ceur-ws.org/Vol-2316/paper3.pdf
http://ceur-ws.org/Vol-2316/paper3.pdf
https://aflux.org
http://refhub.elsevier.com/S2665-9638(19)30007-7/sb11
http://refhub.elsevier.com/S2665-9638(19)30007-7/sb11
http://refhub.elsevier.com/S2665-9638(19)30007-7/sb11
http://dx.doi.org/10.1145/3017995.3017998
http://dx.doi.org/10.14459/2016md1324021
http://dx.doi.org/10.1016/j.comcom.2016.03.015
http://dx.doi.org/10.1016/j.comcom.2016.03.015
http://dx.doi.org/10.1016/j.comcom.2016.03.015
http://refhub.elsevier.com/S2665-9638(19)30007-7/sb15
http://refhub.elsevier.com/S2665-9638(19)30007-7/sb15
http://refhub.elsevier.com/S2665-9638(19)30007-7/sb15
http://oa.upm.es/52898/
https://maven.apache.org
https://git-scm.com
https://www.eclipse.org
https://www.eclipse.org
https://www.eclipse.org
https://www.jetbrains.com/idea/
https://www.mongodb.com
https://www.mongodb.com
https://www.mongodb.com
http://refhub.elsevier.com/S2665-9638(19)30007-7/sb22
http://refhub.elsevier.com/S2665-9638(19)30007-7/sb22
http://refhub.elsevier.com/S2665-9638(19)30007-7/sb22
http://refhub.elsevier.com/S2665-9638(19)30007-7/sb22
http://refhub.elsevier.com/S2665-9638(19)30007-7/sb22
http://refhub.elsevier.com/S2665-9638(19)30007-7/sb22
http://refhub.elsevier.com/S2665-9638(19)30007-7/sb22
http://refhub.elsevier.com/S2665-9638(19)30007-7/sb22
http://refhub.elsevier.com/S2665-9638(19)30007-7/sb22
http://dx.doi.org/10.14778/3229863.3236262
http://refhub.elsevier.com/S2665-9638(19)30007-7/sb24
http://refhub.elsevier.com/S2665-9638(19)30007-7/sb24
http://refhub.elsevier.com/S2665-9638(19)30007-7/sb24
http://refhub.elsevier.com/S2665-9638(19)30007-7/sb25
http://refhub.elsevier.com/S2665-9638(19)30007-7/sb25
http://refhub.elsevier.com/S2665-9638(19)30007-7/sb25
https://touk.github.io/nussknacker/
https://touk.github.io/nussknacker/
https://touk.github.io/nussknacker/
https://www.stratio.com/blog/apache-spark-visual-tool-sparta/
https://www.streamanalytix.com
https://www.streamanalytix.com
https://www.streamanalytix.com
http://datos.santander.es/documentacion-api/

	aFlux: Graphical flow-based data analytics
	Introduction
	Software prototype
	Conceptual approach
	Implementation and working mahapatraFlink 
	Installation

	Comparison with the state-of-the-art
	Overview of impact

	Declaration of competing interest
	Acknowledgements
	Appendix A. Supplementary data
	References


