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A B S T R A C T

aFlux is a graphical flow-based programming tool designed to support the modelling of data analytics
applications. It supports high-level programming of Big Data applications with early-stage flow validation
and automatic code generation for frameworks like Spark, Flink, Pig and Hive. The graphical programming
concepts used in aFlux constitute the first approach towards supporting high-level Big Data application
development by making it independent of the target Big Data frameworks. This programming at a higher
level of abstraction helps to lower the complexity and its ensued learning curve involved in the development
of Big Data applications.
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1. Introduction

Data analytics has gained prominence in recent years. Nevertheless,
developing Big Data applications is not a trivial task. Writing Big Data
applications for frameworks like Spark [1], Flink [2], Pig [3], Hive [4]
requires interaction with several libraries and APIs, and working with
different data abstractions. Furthermore, developers might need to
include additional libraries within an application to ensure its success-
ful execution on Big Data clusters. This approach makes the process
cumbersome and challenging with regard to quickly prototyping ap-
plications for performing exploratory data researches. Therefore, the
learning curve associated with it is steep, and it requires a considerable
amount of expertise to use Big Data analytics. Additionally, there is no
support for end-user programming with Big Data, i.e. programming at
a higher abstraction level.

We believe that one promising solution is to enable domain experts,
who are not necessarily programmers, to develop the Big Data applica-
tions by providing them with domain-specific graphical tools based on
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the flow-based programming paradigm [5]. This conceptual approach
for high-level Big Data programming involves the following (see Fig. 1
for illustration of these ideas):

1. Analysing target Big Data frameworks like Spark and Flink,
extracting data abstractions and APIs which are compatible with
the flow-based programming paradigm, i.e. not supporting APIs
requiring user-defined data transformation functions or supporting
code-snippets during flow creation to interact with target framework
internals. Representing the selected APIs operating on the com-
patible data abstractions as modular, composable components.
These components are independent of the execution semantics of
flow-based programming tools and bundle a set of APIs invoked
in a specific order to perform a specific data analytics operation.

2. Developing a generic approach to parse graphical flows making
use of such modular components to generate native Big Data
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Fig. 1. Modular subset of Big Data systems compatible with flow-based programming
paradigm, as in [6] (tool-agnostic).

programs and with support for early-stage validation so that the
flow always yields a compilable and runnable Big Data program.

2. Software prototype

aFlux [7–10] is a graphical flow-based programming tool (mashup
tool) based on the actor model [11] to support the design of data
analytics applications with concurrent execution semantics, thereby
overcoming the prevalent architectural limitations in the state-of-the-
art mashup tools [12–14]. A flow-based programming model with
concurrent execution semantics is suitable for modelling a wide range
of Big Data applications currently used in Data Science. Without the
aforementioned semantics, designing a flow involving Big Data analyt-
ics would lead to components waiting to execute for a long time, as Big
Data jobs usually take a long time to finish their execution, leading to
the inefficient design of applications.

2.1. Conceptual approach

aFlux implements the modular composable components selected from
Big Data frameworks like Pig, Hive, Spark and Flink as actors and
enables high-level Big Data programming with flow validation and au-
tomatic code generation. The implemented components are available
on the front-end as graphical components for the user to drag and
create an application flow. The flow begins with components which
read datasets, followed by a series of data-transformation components
and ends with a data-output component. Every component has a set
of properties which the user can configure on the front-end. The
flow is parsed for correctness and internally represented as a directed
acyclic graph (DAG). From the DAG, the native Big Data application
is generated using an API-based code generation technique [15]. The
conceptual approach for flow creation and automatic code generation,
including some examples of supported components for flow creation, is
illustrated in Fig. 2.

2.2. Implementation and working [9]

aFlux consists of a web application and an execution environment
developed in Java and the Spring Framework.1 The web application
is composed of two main entities: the front-end and back-end, based
on REST API. The front-end of aFlux (Fig. 3) provides a GUI for
the creation of flow-based applications, while the back-end parses the
user flow to generate native application code. The application can be
executed in its internal execution environment or sent to an external

1 https://spring.io/.

Table 1
Comparison of aFlux with the state-of-the-art, following [6].

Solutions Target-framework
support

Extensibility Code generation

aFlux Spark, Flink, Pig
& Hive

Yes Yes

QM-IConf [22] Storm No Yes
Lemonade [23] Spark No Yes
QryGraph [24] Pig No Yes
SPSS Modeller [25] None No No
Nussknacker [26] Flink No No

environment. The front-end is based on React2 and Redux3 frameworks.
Applications are created by dragging and dropping available graphical
components from the left panel onto the canvas and wiring them. New
components are loaded from plug-ins [16]. The application shows a
console-like output in the footer, and the details regarding a selected
component are shown on the right-hand side panel. The ‘Application
Header & Menu Bar’ contains functionalities to control the execution
of an application, like starting the execution, stopping the execution,
saving the application etc. Using the aFlux front-end, a user can create
a flow by wiring several components together. Fig. 4 illustrates a
Pig graphical flow created on the front-end, its resultant generated
code and its output after execution. An illustrative example of Flink
flow creation and code generation has been explained via a video
demonstration.

2.3. Installation

aFlux uses Maven [17] for project management and can be installed
from the Git [18] repository (codemetadata table lists all requisite
information). It can be compiled4 on any operating system includ-
ing Windows, macOS and Linux if Java 8 development environment
is present. Any Java integrated development environment (IDE) like
Eclipse [19] or Intellij [20] can be used for importing and compil-
ing, which generates a Web Application Resource or Web application
ARchive (WAR) file. The WAR file is deployed inside Apache Tomcat,
a web server which supports the execution of Java code. On start-
up, the application requires a connection to a local MongoDB [21]
instance in order to save the program flows created and the application
configuration settings. All front-end graphical components are separate
Maven projects within the same Git repository. They are compiled
separately and loaded from the GUI of aFlux after it is up and running.
The web application can be accessed from any standard web browser
including Safari, Firefox, Opera and Google Chrome.

3. Comparison with the state-of-the-art

We compare and contrast aFlux with the existing solutions against
these parameters: (i) target-framework support : if the tool supports mul-
tiple target frameworks, (ii) extensibility : if the approach can be/has
been extended to other Big Data frameworks and (iii) code generation:
if the user flow results in a final executable code or if the flow runs in
the tool’s internal environment. The results are summarized in Table 1.

2 https://reactjs.org/.
3 https://redux.js.org/.
4 aFlux installation video: https://aflux.org/index.php/docs/5-aflux-

getting-started-videos.
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Fig. 2. Conceptual approach for flow creation and code generation in aFlux. This figure is based on the conceptual approach diagram discussed in [7].

Fig. 3. Graphical user interface of aFlux, as in [9,10,16].

Fig. 4. Example of a Pig flow creation in aFlux.

3.1. Overview of impact

aFlux impacts end-users as well as researchers in the following way:
(i) it supports graphical flow-based application development, thereby
enabling non-experts to quickly prototype Big Data applications [8]
and (ii) the graphical programming concepts used in aFlux is the first
approach to support high-level Big Data application development by
making it independent of the target Big Data frameworks, which is
a significant improvement achieved over the existing state-of-the-art.
It has been used to support frameworks like Spark [7], Flink [9], Pig
and Hive, which demonstrates (a) the extensibility of the approach and
(b) the generalizability of the code generation technique. The high-level
graphical programming approach abstracts the complexities of Big Data
application development from end-users, thereby lowering the associ-
ated learning curve and enabling less skilled Big Data programmers to
adopt Big Data analytics. The main research contributions have been
published in three peer-reviewed publications [7–9]. Recently, there
have been many commercial solutions aimed at enabling less-skilled
Big Data programmers to quickly prototype Big Data applications using
Spark and Flink via flow-based programming. Examples include Stratio
Sparta 2.0 [27] and StreamAnalytix [28]. The research contributions
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and results from open-sourced aFlux will pave the foundation for
further research in this area and will significantly help less-skilled Big
Data users in an academic environment adopt Big Data analytics.
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Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.simpa.2019.100007.

The illustrative example showcases how easy it is to create Flink
applications graphically from aFlux, by abstracting the code genera-
tion from the end-user. The example uses real data from the city of
Santander, Spain, offered as open data via public APIs [29]. In this
example, the user need not have programming skills or familiarity with
Flink framework. The user just needs to know how to use aFlux from the
end-user perspective (i.e. how to drag and drop graphical components,
etc.) and have some very basic knowledge of what Flink can do, from a
functionality point of view rather than from a developer point of view.
The flow created is designed to analyse traffic patterns in a particular
area of the city, so as to help decision makers in the city make the
appropriate calls.
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