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Abstract: With the increasing demand for robots to react and adapt to unforeseen events, it is essential
that a robot preserves agility at all times. While manipulability is a common measure to quantify agility
at a given joint configuration, an efficient direct evaluation in task space is usually not possible with
conventional methods, especially for redundant robots with an infinite number of Inverse Kinematic
solutions. Yet, this is essential for global online optimization of a robot posture. In this work, we
derive analytical expressions for a conventional 7-degrees of freedom (7-DOF) serial robot structure,
which enable the direct evaluation of manipulability from a reduced task space parametrization.
The resulting expressions allow array operation and thus achieve very high computational efficiency
with vector-optimized programming languages. This direct and simultaneous calculation of the
task space manipulability for large numbers of poses benefits many optimization problems in robotic
applications. We show applications in global optimization of robot mounting poses, as well as
redundancy resolution with global online optimization w.r.t. manipulability.

Keywords: manipulability; inverse kinematics function; kinematic optimization; redundant robot;
7-DOF; redundancy resolution

1. Introduction

It is a common requirement in robotic manipulation tasks to quantify the capabilities of a robot at
a given pose. Having such a scalar measure allows comparison of different kinematic configurations
in terms of the chosen metric, and can be considered at a path planning as well as at a control level.
While these measures are usually defined in terms of a given joint configuration [1–5], the task of the
robot is typically not given in this joint space. For a general robot the task space is usually defined in
SE(3), i.e., the space of 3D poses consisting of translation and rotation. For many practical problems
it is thus relevant to directly evaluate this measure w.r.t. a parametrization of SE(3) rather than the
joints. This requires combining the evaluation of the Inverse Kinematic (IK) with the selected capability
metric. But direct calculation of the IK is always robot-dependent and general analytic solutions are
not possible. This is especially true for redundant robots that have more degrees of freedom (DOF) in
joint space than in task space and thus admit an infinite number of IK solutions for a given end-effector
pose. While analytic IK solutions are well known for conventional 6-DOF kinematics [6], for general
robotic structures numeric IK solvers are applied. However, they require several iterations to find an
approximated joint configuration for a given end-effector pose. This is sufficient for calculating single
poses, but it is inefficient for optimization problem solvers that require evaluation of large numbers of
poses. This especially prevents time-critical computation of global optima. Expressions that can be
evaluated directly are thus superior for fast computation. While an analytical IK for a general robot
structure does not exist, our work focuses on the most commonly used articulated 6- and 7-DOF robot
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serial kinematics. Yet, the 6 axis version can be viewed as a finite set of particular null space solutions
of the 7-DOF.

1.1. Contribution

In this work, we develop a set of computationally efficient closed-form expressions to evaluate
the task space manipulability of a 7-DOF serial robot structure, i.e., the mapping from a task space
parametrization directly a manipulability measure. The main contributions of this work consist of:

1. a new parametrization of the state- and null space that results in concise IK expressions with
symmetric structure in the individual components

2. analytical closed-form expressions from task space to manipulability measure w.r.t. joint limits,
which allow array operation in vector-optimized programming languages. Note that array
operation is also called Vectorization in e.g., MATLAB. It refers to the exploitation of Single
Instruction Multiple Data (SIMD) instructions of modern Central Processing Unit (CPUs) and
allows to operate on multiple data points simultaneously.

3. sensitivity analysis of manipulability in task space
4. real-time capable application for evaluating the task space manipulability of the entire null

space, for globally optimal redundancy resolution w.r.t. manipulability of single poses and full
trajectories on SE(3)

1.2. Related Work

For this concise review, we group previous work on the topic into the three areas: (1) performance
measures in robotics, (2) direct methods for IK evaluation and algorithmic strategies on the velocity
level, and (3) approaches for optimizing manipulability.

1.2.1. Performance Measures

Arguably the most common performance measure for robot structures is the manipulability
measure defined by Yoshikawa [1]. It is proportional to the volume of an ellipsoid, spanned by
directional capabilities of a kinematic structure to generate velocities in task space at a given joint
configuration. It is purely kinematic and does not consider any dynamic components. Yoshikawa also
proposed a dynamic manipulability ellipsoid [2] on the acceleration level, for cases where dynamic
effects cannot be neglected. This formulation was improved by Chiacchio et al. [3] to correctly account
for gravity. A new formulation of a dynamic manipulability ellipsoid that better depicts the real
manipulator capabilities in terms of task space accelerations was proposed by Chiacchio [4].

Besides manipulability on the velocity and acceleration levels due to mere kinematic relations, it
is essential for practical applications to also consider joint limits as constraints directly on the position
level. Vahrenkamp et al. [5] extended Yoshkawa’s basic manipulability, by directly integrating joint
limit penalization into the definition of the kinematic velocity Jacobian. This is achieved via a joint
limit potential function.

Bong-Huan Jun et al. [7] introduce a task-oriented manipulability measure. While Yoshikawa’s
original measure [1] denotes the manipulability of the whole manipulator system, [7] considers
manipulability w.r.t. to sub-tasks that only affect parts of the task space, e.g., axis specific tasks. Karim
Abdel-Malek and Wei Yu [8] proposed an alternative dexterity measure for robot placement that does
not depend on explicit IK solutions. They analyze an augmented Jacobian matrix that does not only
hold information about position and orientation, but also joint limits of the end-effector. It represents
the reachable workspace with surface patches and is computationally very demanding.

Our work has the aim of developing closed-form solutions that allow efficient array operation.
For this reason, the task space manipulability formulation developed in this work applies Yoshikawa’s
original measure from [1]. Because its definition uses a determinant to map the joints to a scalar metric,
it thus allows expansion to a continuous polynomial expression for efficient evaluation.
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1.2.2. Inverse Kinematics

The IK problem of serial robot structures can be solved very elegantly on the velocity level,
due to the linear relation of joint and task space velocities. However, numeric integration of the
resulting joint velocities to joint angles needs stabilization against numerical drift and thus results in an
iterative scheme. Originally proposed by Wolovich and Elliot [9], this group of IK solvers is nowadays
typically referred to as Closed-Loop Inverse Kinematic (CLIK) solvers. Colomé and Torras [10] give an
overview of the most common CLIK solvers, with an additional experimental comparison in terms
of convergence, numerical error, singularity handling, joint limit avoidance, and the capability of
reaching secondary goals. Antonelli [11] conducted a stability analysis of priority-based kinematic
CLIK algorithms for redundant kinematics. He provides sufficient conditions for the control gains.
While different stabilization schemes for CLIK solvers are proposed, the choice of gain parameters
used in the control structure is rarely addressed. In practice these parameters are often empirically
tuned. Bjoerlykhaug [12] proposes the use of a genetic algorithm for optimizing the feedback gain
used in CLIK solvers, in order to minimize iteration cycles and maximize accuracy. In an experimental
evaluation, he achieved a 50% decrease in computation time through his feedback gain tuning. Reiter et
al. [13] propose a strategy for finding higher-order time-optimal IK solutions for redundant robots.
They lay out solutions for fourth-order time derivatives of joint trajectories, applying a multiple
shooting optimization method. This higher-order continuous differentiability is especially important
for application on elastic mechanisms.

Siciliano [14] gives a tutorial on early common online IK algorithms. He states the important
features of a direct inverse kinematics function, i.e., repeatability, cyclicity, or cyclic behaviour, and
online applicability. Shimizu et al. [15] outline an analytical IK computation for a 7-DOF serial robot.
The approach directly parametrizes the end-effector pose with Cartesian coordinates for translation
and a rotation matrix for orientation. However, the use of the 2-quadrant atan function, as opposed to
the 4-quadrant atan2 function, results in two problems. For one, the entire task space is not covered,
and two, it results in discontinuous joint functions w.r.t. the null space parameter and thus leads to
discontinuous IK solutions and corresponding null space limitations. A similar strategy, but extended
to the entire domain, is proposed by Faria et al. [16]. They propose a position-based IK solution for a
7-DOF serial manipulator with joint limit and singularity avoidance.

Besides approaches that use kinematic insight of a structure, several machine learning algorithms
are also considered in the literature. A detailed review is beyond the scope of this work, but we
want to give a concise overview of research activities. D’Souza et al. [17] apply a locally weighted
projection regression to learn the IK of a 30-DOF humanoid robot. This maps the non-convex problem
onto a locally convex problem that is suitable for direct learning. Tejomurtula and Kak [18], as well
as Köker et al. [19], applied artificial neural networks for finding an IK mapping for 3-DOF robots
and showed the feasibility of the problem using conventional error-backpropagation and Kohonen
networks. Sariyildiz et al. [20] compare support vector regression and artificial neural networks for
learning IK mappings of a 7-DOF serial robot. They find that support vector regression is less prone
to local minima and requires very few training data. Genetic algorithms were already early applied
by Parker et al. [21]. They pointed out low positioning accuracy, but emphasize its simplicity in
application. Köker [22] proposes a hybrid approach combining Elman neural networks with genetic
algorithms. He was able to significantly improve accuracy for IK solutions of a 6-DOF mechanism
in comparison to pure neural networks. Very recently, Dereli et al. [23] proposed a strategy to apply
quantum behaved particle swarm optimization for finding IK solutions of a 7-DOF serial robot.

The IK expressions developed in this work are similar to the analytical approaches in [15,16] in
terms of parametrizing the null space as arm angle. However, the new task space parametrization
that we introduce results in more concise and, more importantly, fully vectorizable expressions that
allow efficient array operations. In contrast to existing approaches in the literature, this computational
advantage makes our approach suitable for simultaneous evaluation of a large number of poses.
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1.2.3. Optimizing Manipulability

In conventional industrial contexts, optimizing cycling time is always of interest. Several
publications deal with this problem, e.g., Kamrani et al. [24] use the Response Surface Method [25] to
optimize robot placement w.r.t. cycling time. Chan and Dubey [26], as well as Dariush et al. [27], use a
projection method of the joint limit gradient potential function. This is used for local manipulability
optimization on the velocity level. Dufour and Suleiman [28] present an approach of integrating the
manipulability index into an optimization-based IK solver, by using linear approximations of the
nonlinear manipulability measure with numeric gradient calculations at every time step. Jin et al. [29]
mention the difficulty of real-time manipulability optimization that is related to a high computational
burden since the manipulability is a non-convex function to the joint angles of a robotic arm. Due
to the capability of high-speed parallel distributed processing, they propose an approach using dynamic
neural networks in order to implement manipulability optimization in real-time. Conducting computer
simulations, they show that the proposed method raises the manipulability by almost 40% on average
compared to existing methods.

Besides local optimization of a given joint configuration, for many robotic tasks it is required
to include manipulability as criteria for optimization of the whole trajectory. Lee [30] shows that a
required motion can be approximated by a series of manipulability ellipsoids. Guilamo et al. [31]
present an algorithm for trajectory generation that maximizes the volume of the manipulability
ellipsoid. Yoshikawa [1] already observed that the optimal postures of various manipulators form the
viewpoint of manipulability, and often show resemblance of those naturally taken by human arms.
This motivates the idea of manipulability transfer using a learning by demonstration strategy that is
introduced by Rozo et al. [32]. Their approach allows robots to learn and reproduce a continuous
set of manipulability ellipsoids by an expert’s demonstration. In order to encode and retrieve those
ellipsoids, they apply Gaussian Mixture Models and Gaussian Mixture Regression. In Jaquier et al. [33]
the same authors exploit tensor-based representation, to consider that manipulability ellipsoids lie
on the manifold of symmetric positive definite matrices. Faroni et al. [34] present an approach that
maximizes the average manipulability of the overall task. Their method is based on the optimization
of a cost function that depends on various points along a predetermined path. In particular, if the task
of the manipulator is known a priori, this approach provides global manipulability optimization.

An approach for directly quantifying manipulability of a redundant robot in task space is proposed
by Zacharias et al. [35]. They introduce a capability map, to guide the decision on how to place a
mobile robot relative to an object. It is a sampling-based approach, based on the manipulability index.
While the approach reveals in which regions the robot is capable of grasping objects from different
angles, the information of optimal approaching directions is lost.

The task space manipulability approach in this work enables for the first time global
manipulability optimization with real-time capabilities, due to its efficient formulation.

1.3. Outline

The remainder of the paper is organized as follows. The problem of a closed-loop task space
manipulation framework is outlined in Section 2. In Section 3, the derivation of all analytical mappings
is explained. Evaluation and analysis of the resulting task space manipulability is discussed in Section 4
and applied in global optimization formulations in Section 5. We conclude the work and outline future
directions of development in Section 6.
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2. Problem Formulation

Given a n-DOF serial robot, its forward kinematics

FK : Rn → SE(3)×Rn−6, q 7→ (z, λ) (1)

maps the joints q onto the 3D end-effector pose z at a particular null space solution parametrized by
λ. To quantify the capability of moving in the SE(3) task space at a given joint configuration q, a
manipulability metric function

M : Rn → R1, q 7→ µ (2)

is applied. A proper choice of parametrization for z and λ assures the existence of the inverse function

IK : SE(3)×Rn−6 → Rn, (z, λ) 7→ FK−1(z, λ) =: q. (3)

We define the task space manipulability as the direct mapping

M ◦ IK : SE(3)×Rn−6 → R1, (z, λ) 7→ µ (4)

of a desired pose z in task space onto the manipulability measure µ, considering all null space solutions
parametrized by λ. (M ◦ IK)(z, λ) denotes the function composition M(IK(z, λ)). Figure 1 illustrates
the task space manipulability for a certain end-effector pose z. Considering real-time critical online
applications and feasibility of global optimization formulations, the development of the task space
manipulability map can be broken down into three problems:

Problem 1: Find a parametrization of the task- and null space that exploits the kinematic structure for
concise expressions.

Problem 2: Find closed-form expressions for all mappings from task space to manipulability that
allow efficient array operation in vector-optimized programming languages.

Problem 3: Let Q ⊂ R7 be the space of admissible joint configurations. Find an analytical expression
of the range of the null space solutions Λ(z) := {λ ∈ Rn−6 | IK(z, λ) ∈ (Q)}, for which the
inverse kinematics function IK(·, λ) results in an admissible joint configuration q ∈ Q.

Figure 1. Illustration of the task space manipulability at a given end-effector pose. The null space of
this 7-DOF S-R-S kinematics consists of the free elbow position (joint 4) along a circle. This position
defines the direction of the forearm, i.e., the vector from the shoulder to the wrist. The colored fan
shows all possible forearm poses with the corresponding manipulability color-coded from dark red
(very bad) to light green (optimal). Colorless areas of the fan mark areas that violate joint constraints.
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In this work, we investigate in detail the case of a 7-DOF serial robot kinematics in conventional
Spherical-Revolute-Spherical (S-R-S) structure, such as the KUKA LBR series. In this context, S-R-S
refers to a kinematic 7-DOF structure with alternating revolute joints, of which the rotation axes of
the first and last 3 joints intersect. These two groups of intersecting axes behave kinematically like a
spherical joint and are often referred to as shoulder and wrist. This type of kinematic structure leads to
a 1-dimensional null space of solutions and thus λ ∈ R1.

3. Technical Approach

This section outlines the derivation of the closed-form task space manipulability for the considered
special case of a 7-DOF serial robot kinematics. We first discuss the chosen manipulability mapping and
possible reductions in joint space. Motivated by these reductions, we propose a task space projection
onto a parameter space, which yields concise expressions for the IK. Figure 2 summarizes all developed
mappings that are developed in this section. The section concludes with an analytic definition of the
admissible null space at a given parameter end-effector pose.

Task Space
z ∈ SE(3)

Parameter Space
(p, λ) ∈ R7 ×R1

Joint Space
q ∈ R7

Manipulability
µ ∈ R1

TSP

TSS

IK

FK

M

Figure 2. Relation of task space z, parameter space p, joint space q, and manipulability metric µ. The
mappings are referred to as Task Space Projection (TSP) and Task Space Surjection (TSS), Forward
Kinematic (FK) and Inverse Kinematic (IK), and Manipulability (M).

Notational Notes

Scalars are written in plain lower case, vectors in bold-face lower case. Matrices are bold-face
upper case, while plain upper case symbols refer to coordinate frames, mathematical spaces, and sets.

For vector indices, we use the common anthropomorphic analogy of a human arm. We refer to
the origin of the kinematic as base B, and to positions of joint 2, joint 4, and joint 6 as shoulder S, elbow
E, and wrist W respectively. Body-fixed frames of the individual robot links are numbered 1 to 7 and
relate to the bodies after the corresponding joints. The end-effector will be referred to as tool T.

Coordinate transformation matrices are written as Akj with 2 indices and are read from right to
left, e.g., A43 transforms the coordinate system from body-fixed frame of joint q3 to joint q4, whereas
vector indices are read from left to right and their reference frame is written as left-hand side subscript.
The notation BrSW thus describes a vector r pointing from shoulder S to wrist W, expressed in base
frame B. Cartesian base vectors of the coordinate systems are written as x̂, ŷ, and ẑ. If a vector does
not have a lower left index, it always refers to the base B.

3.1. Manipulability Measure

The central equation in robot kinematics is the linear forward velocity kinematic map

ż(q, q̇) := J(q)q̇ (5)

that relates general joint space velocities q̇ ∈ Rn to task space velocities ż ∈ R6, where the linear map
J(q) ∈ R6×n describes the velocity propagation from joint to task space at a given joint configuration
q ∈ Rn. It is defined by the kinematic chain and represents the derivative

J(q) =
∂ ż(q, q̇)

∂q̇
, (6)
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hence it is often referred to as Robot Jacobian.
Yoshikawa’s manipulability measure [1], which we use in this work, is defined as

M : Rn → R, q 7→

√
det

(
J(q) J(q)>

)
=: µ (7)

and is a measure, proportional to the volume of the velocity manipulability ellipsoid

q̇> q̇ = 1 (8a)

ż>( J J>)−1 ż = 1. (8b)

Note that (7) does not consider hardware-related joint limits. However, joint configurations that violate
these constraints must not be considered.

Zlatanov et al. [36] explain that the forward velocity kinematic map (5) is not sufficient for
exhaustive characterization of the singularities of a manipulator. Further, Staffetti et al. [37] show that
many of these often-used manipulability indices are not invariant to change of reference frames, scale,
or physical units. However, the big advantage of Yoshikawa’s original manipulability metric is the fact
that it can be expanded to a polynomial expression and thus qualifies for computationally efficient
array operation. Further, derivatives can be calculated analytically. As outlined by Staffetti et al. [37],
it is not a true metric for distance to a singularity but nonetheless serves as a relative comparison of
manipulability qualities between joint configurations [38].

For a n-DOF serial robot kinematics, we refer to the i = [1, n] absolute angular and translational
velocities of the individual links, i.e., the velocity between the robot base B and the body-fixed frame
of link i, as ωBi and vBi. Expressed w.r.t. the link frame i, the velocities of the kinematic chain are
calculated with

iωBi = Aip pωBp + iωpi (9a)

ivBi = Aip
(

pvBp + pωBp × prpi
)

, (9b)

where p = i− 1 is the predecessor link of i and (×) denotes the cross product R3 ×R3 → R3. In the
following, manipulability refers to Yoshikawa’s manipulability measure [1].

3.1.1. Reduction of First Joint

While Yoshikawa’s manipulability measure is not invariant w.r.t. scale or physical units, it is in
fact invariant to change of reference frames.

Proof. Given a vector of joint velocities q̇ and task space velocities ż w.r.t. to a reference frame A, the
Jacobian matrix

A J(q) =
∂ Aż(q, q̇)

∂q̇
(10)

is used to define the manipulability index

Aµ(q) =

√
det

(
A J(q) A J(q)>

)
. (11)

If this manipulability index is expressed in terms of a new reference frame B via the block
transformation matrix

Ablk
BA(q) =

[
ABA(q) 0

0 ABA(q)

]
, (12)
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consisting of rotation matrices ABA, the manipulability index reads

Bµ(q) =

√
det

(
Ablk

BA(q) A J(q)
(

Ablk
BA(q) A J(q)

)> ). (13)

Considering the fact that Euclidean transformation matrices have det (A) = 1, we find

Bµ(q) =

√
det

(
A J(q) A J(q)>

)
= Aµ(q) (14)

i.e., the manipulability measure µ is invariant to change of reference frames.

If the reference frame is chosen to be fixed to any link after the first joint, it results in an expression
for the manipulability measure that is independent of the first joint. This results from the fact that the
first joint rotates the whole kinematic structure including the reference frame, but does not alter any
geometric relations.

We consequently choose to formulate the Jacobian matrix w.r.t. to the end-effector frame, as this
does not only lead to the independence of q1, but also results in the most concise expression.

3.1.2. Reduction of Last Joint

For a special case of a 7-DOF serial kinematic, the parameter space of the manipulability
can be further reduced. This special case consists of kinematic structures, whose origin of the
end-effector frame lies on the rotation axis of the last joint qn. The purely angular contribution of
qn does not alter the kinematic configuration but only rotates the reference frame and with it the
manipulability ellipsoid. The shape of the ellipsoid is not affected and so qn can also not influence the
manipulability measure.

3.1.3. Closed-Form Expression

Exploiting these two reductions by formulating the T J w.r.t. to the end-effector frame T and
assuming the tool center point (TCP) along the last joint axis, it is possible to expand the entire
determinant expression of the matrix T J T J> ∈ R6×6 from (7) to a symbolic polynomial expression
using, e.g., MATLAB Symbolic Math Toolbox™. The advantage being that, unlike the original matrix
expression, the polynomial form allows array operation in vector-optimized programming languages.
This enables simultaneous evaluation of an entire set of joint configurations. The full manipulability
function is listed in Appendix A.

3.2. Task Space Parametrization

The decision of choosing a parametrization for the SE(3) pose, as well as the 1D null space, is
essential for the derivation of concise analytical formulations. We propose the following parameter
requirements (PR) for a suitable parametrization in regard to the IK functions. The parameter set must

PR1: uniquely define the null space parameter for the entire space of SE(3).
PR2: result in a minimal number of parameters for the components of the IK vector map p 7→ q.
PR3: allow direct application of the above-mentioned reductions.

Different approaches for null space parametrization were proposed in the literature. The
redundancy is either directly parametrized by a redundant joint [39,40], or more commonly by a
joint-independent arm angle [15,41]. Shimizu et al. [15] argued that joint-based parametrization
is not suitable for the discussed 7-DOF S-R-S mechanism due to possible ambiguous results.
Kreutz-Delgado et al. [41] define the arm angle as the angle between an arm and a reference plane.
The arm plane is spanned by shoulder, elbow, and wrist locations. The reference plane is defined by a
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fixed vector and the vector from shoulder to wrist. Shimizu et al. [15] point out arithmetic singularities
in the original definition whenever the two vectors are collinear. They enhance the robustness of the

definition by defining the reference plane in terms of a particular solution q3
!
= 0, which resembles

the solution of conventional non-redundant 6-DOF mechanisms. While this definition is unique
w.r.t. the conservative joint limits of their analyzed robot structure, it is ambiguous whenever the
reduced non-redundant 6-DOF mechanism admits multiple configurations that result in the same
end-effector pose.

In this work, we introduce a parametrization that fulfills all the above-discussed parameter
requirements. Figure 3 illustrates the following discussion. Independent of a desired end-effector pose,
positions of the base B and shoulder S are always stationary, where

BrBS := (lB + l1)ẑ (15)

with link lengths of the base link lB and the first link l1. Additionally, defining a desired end-effector
pose relative to the robot base in SE(3), consisting of BrBT for translation and ATB for orientation,
determines not only the location of the tool-center-point T but also the wrist position

BrBW := BrBT − AB6(l6 + l7 + lT)ẑ, (16)

with link lengths l6 and l7, and a potential tool length lT . This wrist position is used for define the
translational component of the end-effector pose z. The position BrSW is parametrized by spherical
coordinates (rref, γref, βref) with coordinate plane B x̂ẑ, origin S and Bẑ as polar axis. The parameters
are radius rref, longitudinal angle γref, and azimuthal angle βref. Note that γref and βref directly align
with the rotation axis of q1 and q2. These two angles also define the reference frame R with

ARB(γref, βref) := Ay(βref)Az(γref). (17)

The orientation is parametrized along a consecutive Euler angle sequence Z → Y
′ → Z

′′
, which again

corresponds to the sequence of the joint structure. However, instead of directly parametrizing ATB, we
parametrize the end-effector orientation with respect to the reference frame, i.e.,

ATR(γEE, βEE, ψEE) := Az(ψEE)Ay(βEE)Az(γEE). (18)

Regarding the stated parameter requirement PR2, this makes the IK functions of the wrist angles
(q5, q6, q7) as independent of the shoulder parameters (rref, γref, βref) as possible, as will be seen in the
IK Section 3.3.

The 1D null space is parametrized by the arm angle λ. In contrst to Shimizu et al. [15] we do not

define the arm angle w.r.t. to the non-redundant solution q3
!
= 0, but w.r.t. to the introduced reference

frame R. Let λ be the arm angle, which defines a new frame L with

ALB(γref, βref, λ) := Az(λ)ARB(γref, βref), (19)

such that the negative frame base vector (− L x̂) points in direction of the elbow E. This uniquely
defines the null space parameter as required in PR1. The full set of parameters is thus given with tuple
(p, λ) ∈ R6 ×R, consisting of the parameter vector

p := [rref, γref, βref, γEE, βEE, ψEE]
> (20)
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and arm angle λ. The individual parameter range definitions are

rref ∈
[

rmin
ref , rmax

ref

]
γref ∈

[
−π, +π

]
βref ∈

[
0, +π

]
γEE ∈

[
−π, +π

]
βEE ∈

[
0, +π

]
ψEE ∈

[
−π, +π

]
λ ∈

[
−π, +π

]
(21)

and form the parameter space P ⊂ R7. Note that the two parameters γref and ψEE solely affect joints q1

and q7, which do not influence manipulability. The task space manipulability developed in this work
can thus without loss of information be represented by the reduced parameter vector pred ∈ P red ⊂ R4

consisting of

pred := [rref, βref, γEE, βEE]
> . (22)

This complies with the stated requirement PR3. The presented parametrization is the fundamental
core for the concise mappings developed in the remaining section.

Figure 3. Parametrization of the Task Space. Positions of Base B and Shoulder S are fixed.
Translation reference parameters (rref, γref, βref) define the position of the Wrist W. The end-effector
parameters (γEE, βEE, ψEE) describe the rotation from reference frame R to tool frame T as consecutive
Z → Y

′ → Z
′′

Euler angles. The null space is parametrized with λ. It defines the position of the elbow
E via relative rotation between the elbow oriented frame L and frame R.

3.2.1. Task Space Projection

We refer to the extraction of the parameter vector p = [rref, γref, βref, γEE, βEE, ψEE]
> from a

given end-effector pose z ∈ SE(3) as Task Space Projection. Without loss of generality, we assume the
pose z ∈ SE(3) is described with Cartesian Coordinates (x, y, z) for translation BrBT together with a
Rotation matrix ATB for orientation. As a reference matrix for extracting the parameter space angles
(γEE, βEE, ψEE) we state the rotation matrix for a general ZYZ Euler sequence

Azyz(γ, β, ψ) := Az(ψ)Ay(β)Az(γ) = c (β) c (γ) c (ψ)− s (γ) s (ψ) c (γ) s (ψ) + c (β) c (ψ) s (γ) − c (ψ) s (β)

− c (ψ) s (γ)− c (β) c (γ) s (ψ) c (γ) c (ψ)− c (β) s (γ) s (ψ) s (β) s (ψ)
c (γ) s (β) s (β) s (γ) c (β)

 (23)
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that shows that we can define a mapping eulZYZ : SE(3)→ R3 as

eulZYZ : SE(3)→ R3, Azyz 7→


atan2

([
Azyz(z)

]
(3,2) ,

[
Azyz(z)

]
(3,1)

)
arccos

([
Azyz(z)

]
(3,3)

)
atan2

([
Azyz(z)

]
(2,3) , −

[
Azyz(z)

]
(1,3)

)
 =:


γ

β

ψ

 (24)

that extracts the Euler angles from a rotation matrix in SE(3). The operator [ · ](i,j) returns the element
at row i and column j of a matrix.

The Task Space Projection

TSP : SE(3)→ R6, z 7→ p (25a)

consists of the mappings

rref(z) := ‖ BrSW‖2 (25b)

βref(z) :=
π

2
− arctan

[ BrSW ](3)

[ BrSW ](1)
(25c)

γref(z) := atan2

([
BrSW

]
(2)

,
[

BrSW

]
(1)

)
(25d)γEE

βEE

ψEE

 (z) := eulZYZ(A7R(z, γref, βref)). (25e)

With the shoulder-wrist vector

BrSW := BrBR − BrBS

= BrBT − AB6 6ẑ(l6 + l7 + lT)− Bẑ(lB + l1).
(26)

and the rotation matrix

A7R(z, γref, βref) := A7T ATB(z)ABR(γref, βref), (27)

derived from the desired task space pose. Rotation A7T is the constant rotation matrix from body fixed
frame of link 7 to the TCP frame.

3.2.2. Task Space Surjection

We refer to the inverse mapping, i.e., from the parameter vector p to the task space pose z, as Task
Space Surjection (TSS)

TSS : R6 → SE(3), p 7→ z. (28a)

The relations are given with

BrBT := (lB + l1) Bẑ + ABR(γref, βref) ( Rẑrref + AR7(γEE, βEE, ψEE)(l6 + l7 + A7T lT)) (28b)

ATB := A7T A7R(γEE, βEE, ψEE)ARB(γref, βref) (28c)

using the established definitions in the previous sections.
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3.3. Inverse Kinematics

In this section we derive closed-form expressions for the IK map. After discussing the choice
of the default manipulator configuration, we derive the individual IK mappings of the robot joints.
Corresponding to the S-R-S structure, we group the joints into shoulder angles {q1, q2, q3}, the elbow
angle {q4}, and wrist angles {q5, q6, q7}.

3.3.1. Manipulator Configuration

Due to the possible reconfiguration of the robot kinematics, i.e., whenever 3 revolute joint axes
intersect in one point, with 2 being coaxial and the third being perpendicular to the links, there exists
an alternative configuration

FK(coaxial1, perpendicular, coaxial2) = FK(coaxial1 +π,−perpendicular2, coaxial2 +π) (29)

that results in the same FK. In the 7-DOF S-R-S structure considered in this work, this is the case for
the tuples (q1, q2, q3), (q3, q4, q5), and (q5, q6, q7). Therefore, defining only the end-effector pose as well
as the elbow position results in 8 possible configurations. Of course, it is important to derive an IK
map that results in one specific configuration for the entire parameter space. The following derivation
is designed to yield in a configuration as depicted in Figure 3 for the default case q1 = q3 = q5 = 0.
This is achieved by choosing the joint angle ranges

q1 ∈
[
−π, +π

]
q2 ∈

[
0, +π

]
q3 ∈

[
−π, +π

]
q4 ∈

[
0, +π

]
q5 ∈

[
−π, +π

]
q6 ∈

[
0, +π

]
q7 ∈

[
−π, +π

]
.

(30)

We refer to this definition as Qsc ⊂ R7, i.e., the space of joints in standard configuration.

3.3.2. Elbow Angles

The central geometric shape to express the arm portion of joints is the triangle SEW as depicted
in Figure 3. It is fully defined by the parameter rref, as well as the robot related constant link lengths

rSE := l3 + l4 (31)

rEW := l5 + l6. (32)

The law of cosines in this triangle allows direct calculation of joint 4

r2
ref = r2

SE + r2
EW − rSErEW cos (π − q4) (33)

q4(rref) := π − arccos

(
r2

SE + r2
EW − r2

ref
2rSErEW

)
(34)

as well as the adjoint angles

rSE = r2
ref + r2

EW − rrefrEW cos (θS) (35)

θS(rref) := arccos

(
r2

ref + r2
EW − rSE

2rrefrEW

)
(36)
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and

rEW = r2
ref + r2

SE − rrefrSE cos (θW) (37)

θW(rref) := arccos

(
r2

ref + r2
SE − rEW

2rrefrSE

)
. (38)

The latter are used to define alternative rotation frame compositions for the derivation of the remaining
joints. See Figure 4 for an overview of the relations between all introduced coordinate frames.

B 1 2 3 4 5 6 7 T

L

R

Shoulder Angles Elbow Angle Wrist Angles

Az(q1) Ay(q2) Az(q3)
Ay(q4) Az(q5) Ay(q6) Az(q7) AT7

Ayz(γref, βref)
Az(λ)

Azyz(γEE, βEE, ψEE)

Ay(θW)Ay(−θS)

Figure 4. Reference frames and their relations. The blue frames B to T are fixed to the corresponding
body-fixed coordinate systems of the robot links. Orange frames R and L are additional reference
frames for the introduced parameter space. The arrows mark the rotations between the frames of
reference.

3.3.3. Shoulder Angles

Reusing the ZYZ Euler sequence extraction function (24) makes it possible to directly define the
IK function of the shoulder angles {q1, q2, q3}. The parameter-related frames R and L (cf. Figure 4) are
used to compose the transformation matrix

A3B(p, λ) := Ay (−θW) Az (λ) ARB (βref, γref) (39)

and extract q1

q2

q3

 (p, λ) := eulZYZ (A3B(p, λ)) . (40)

3.3.4. Wrist Angles

Analogously to the shoulder angles, the wrist angles {q5, q6, q7} can be calculated by composing
the transformation matrix

A74(p, λ) := A7R (γEE, βEE, ψEE) Az(−λ)Ay (−θS) (41)

and extracting the wrist angles withq5

q6

q7

 (p, λ) := eulZYZ (A74(p)) . (42)
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3.3.5. Overview

All closed-form expressions resulting from the IK mapping are fully listed in Appendix B. The
parameter dependencies of the individual function components are

IK1 : R4 → R1, (θS(rref), γref, βref, λ) 7→ q1 (43a)

IK2 : R3 → R1, (θS(rref), βref, λ) 7→ q2 (43b)

IK3 : R3 → R1, (θS(rref), βref, λ) 7→ q3 (43c)

IK4 : R1 → R1, (rref) 7→ q4 (43d)

IK5 : R3 → R1, (θW(rref), γEE, βEE − λ) 7→ q5 (43e)

IK6 : R3 → R1, (θW(rref), γEE, βEE − λ) 7→ q6 (43f)

IK7 : R4 → R1, (θW(rref), γEE, βEE, ψEE − λ) 7→ q7 (43g)

and show the low dimensional dependency as required by PR2. Note that parameters γref and ψEE do
solely influence q1 and q7 resp., and thus do not influence manipulability. Further, in this formulation
the shoulder and wrist joints result in equivalent mappings, with symmetrical assignments. Their
relations are given as

IK5 = IK3(θW(rref), βEE, γEE − λ) (44a)

IK6 = IK2(θW(rref), βEE, γEE − λ) (44b)

IK7 = IK1(θW(rref), ψEE, βEE, γEE − λ). (44c)

This is an interesting geometrical insight that results from the chosen parameter set.

3.4. Forward Kinematics

Although not used in the task space manipulability mapping, we state—for the sake of
completeness—the forward mapping

FK : R7 → R6 ×R, q 7→ (p, λ) (45)

using the developed relations from the previous section on the IK problem. From the elbow angle q4

and the relation (33), rref is mapped by

rref(q4) :=
√

r2
SE + r2

EW − rSErEW cos (π − q4). (46)

The Euler angle extraction function (24) allows again a concise definition of the remaining mappings.
The shoulder joints {q1, q2, q3} with the adjoint shoulder angle θS(rref) from (35) parametrizeγref

βref
λ

 := eulZYZ (ALB(q, rref)) (47a)

where

ALB(q, rref) := Ay(θS(rref))Az(q3)Ay(q2)Az(q1). (47b)
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Analogously, the wrist joints {q5, q6, q7} and the adjoint wrist angle θW(rref) from (37) define the
end-effector parameters λ + γEE

βEE

ψEE

 := eulZYZ (A7L(q, rref) (48a)

where

A7L(q, rref) := Az(q7)Ay(q6)Az(q5)Ay(−θW(rref)). (48b)

The composition of rotations is in accordance with the structural relation depicted in Figure 4. This
concludes the FK problem.

3.5. Admissible Parameter Space

The compact analytical expressions also allow solving analytically for an upper and lower bound
of λ, given maximal joint angles qmax

i . Let Q :=
{

q | q ∈ Qsc , |qi| ≤ qmax
i
}

be the space of admissible
joint configurations. In this section, we determine the space of admissible parameters

A := {(p, λ) | IK(p, λ) ∈ Q} . (49)

Recall the definition of the parameter vector p := [rref, γref, βref, γEE, βEE, ψEE]
> from (20). Only rref is

of linear nature and thus has a limited range. The remaining parameters describe angles and hence
need not be limited. While IK4 directly relates joint limits of the elbow joint with the admissible range
of rref, the null space parameter λ is related to all remaining joints. Each of which can potentially
exclude partitions of the full range of λ. The set of admissible parameters Amust consider all joint
limits and results from the intersection

A =
n⋂

i=1

Ai , (50)

of the n individual joint-related portions.

3.5.1. Shoulder-Wrist Distance rref

Elbow joint 4 directly limits the parameter rref. Solving (43d) for rref gives

rref(q4) :=
√

r2
SE + r2

EW − 2rSErEW cos (π − q4) (51)

and defines the lower and upper bounds

rref(qmax
4 ) ≤ rref ≤ rref(0) (52)

with the upper boundary rref(0) being the stretched out configuration of the robot. This defines

A4 :=
{
(p, λ) ∈ P

∣∣∣∣ √
r2

SE + r2
EW − 2rSErEW cos

(
π − qmax

4
)
≤ rref ≤ rSE + rEW

}
(53)

as the admissible parameter set w.r.t. joint 4.

3.5.2. Null Space Parameter λ

All remaining joints, i.e., shoulder joints {q1, q2, q3} and wrist joints {q5, q6, q7}, limit parts of
the null space parameter λ. The 4-quadrant atan2 (·) functions from (43), however, are difficult to
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symbolically rewrite in terms of λ due to there piecewise definition. To circumvent this, we further
introduce IK mappings that calculate the absolute joint angles. We define the extraction map of
absolute values of the Euler sequence | eulZYZ | : SE(3)→ R3

+ as

| eulZYZ | : SE(3)→ R3
+, Azyz 7→



arccos

(
[Azyz(z)](3,1)

sin
(

arccos
(
[Azyz(z)](3,3)

))
)

arccos
([

Azyz(z)
]
(3,3)

)
arccos

(
−[Azyz(z)](1,3)

sin
(

arccos
(
[Azyz(z)](3,3)

))
)


=:



|γ|

|β|

|ψ|


(54)

which is used to find the absolute angles of the shoulder and wrist joints|q1 + γref|
|q2|
|q3|

 (p, λ) := | eulZYZ |(A3B(p, λ)) (55a)

 |q5|
|q6|

|q7 + ψEE|

 (p, λ) := | eulZYZ |(A74(p, λ)) (55b)

analogously to the mapping eulZYZ from the previous Section 3.3. See Appendix C for the full definition
of the absolute valued IK functions. Note that the mappings admit the same symmetrical assignments
between the shoulder and wrist portion as the actual IK mapping discussed in Section 3.3.5.

Due to the concise formulations of the IK (55a), all functions can be solved for the null space
parameter λ. By substituting the joint parameters with their respective limit, closed-form expressions
are formed that deliver si candidates for lambda ranges

λlim
i : R7 ×R → Csi , (p, qmax

i ) 7→ λlim
i (p, qmax

i ) ∀i ∈ [1, 7] \ 4 (56)

according to the i = [1, 7] joints. For q2 and q6, the respective middle joints of the shoulder and
wrist angle tuples (q1, q2, q3) and (q5, q6, q7), we directly find s2 = s6 = 2 symmetric solutions for a
positive and negative null space limit. However, solving the remaining mappings from IK (55a) for
λ, results in more solution candidates. This results from the fact that, depending on the parameter
configuration, these joints have the potential for cyclic behaviour for a linear increase in λ at a fixed
pose (discussed in [15]). Joints q3 and q5 can thus reach up to s3 = s5 = 4 null space angles marking
a joint limit. The first joint q1 and last joint q7 do also offer up to 4 critical values for λ, however,
due to additional additive parameters γref and ψEE resp., it is necessary to additionally consider
solutions for | − q1 + γref| and | − q7 + γref|. These solutions are evaluated with λlim

1 (p|−γref , qmax
1 )

and λlim
7 (p|−ψEE , qmax

7 ). Consequently, s1 = s7 = 8 solution candidates for the first and last joint of the
kinematic have to be considered.

Besides knowing the value of a critical limit, it is further essential for many applications to know
if it expresses an upper or a lower limit. Similar to the approach in [16], the partial derivatives of the
null space range mappings λlim

i w.r.t. the corresponding joint angle limit are used to characterize each
limit candidate. For every ` ∈ λlim

i , the corresponding partial derivative is evaluated to decide

` ∈


is upper limit if sign (`)

∂λlim
i

∂qmax
i

> 0

is lower limit if sign (`)
∂λlim

i
∂qmax

i
< 0

is no limit otherwise.

(57)
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In a second step, all solution candidates in λlim
i are tested for validity, to define the sets of actual upper

and lower null space limit angles

Lup
i (p) :=

{
λ ∈ λlim

i

∣∣∣∣ λ ∈ R ∧ | IKi(p, λ)| = qmax
i ∧ sign (λ)

∂λ

∂qmax
i

> 0
}
∀i ∈ [1, 7] \ 4 (58a)

Llow
i (p) :=

{
λ ∈ λlim

i

∣∣∣∣ λ ∈ R ∧ | IKi(p, λ)| = qmax
i ∧ sign (λ)

∂λ

∂qmax
i

< 0
}
∀i ∈ [1, 7] \ 4. (58b)

These upper and lower limits form j pairwise ranges Λi,j and define the remaining admissible
parameter sets

Ai :=

(p, λ) ∈ P
∣∣∣∣ λ ∈

⋃
j

Λi,j

 ∀i ∈ [1, 7] \ 4 , (59)

related to shoulder and wrist joints.
The full intersection set A, as defined in (50), may consist of several separate regions. Directly

evaluating all critical values of λ is especially interesting whenever planning a continuous path in
task space. We apply the admissible parameter space in application Sections 5.1.3 and 5.2.2. All full
function definitions of the limit candidates λlim

i are summarized in Appendix D.

4. Results

This section contains an evaluation of the task space manipulability framework developed in this
work. We first give a run-time comparison to show the computational advantage of our closed-form
expression in comparison to general numerical solutions. We show that uniform sampling in the new
parameter space results in a superior probability distribution of the manipulability in comparison
with direct sampling in joint space. Further, the sensitivity of the manipulability measure w.r.t. the
parameters is analyzed.

4.1. Accuracy

Unlike numerical IK solvers that approximate the inverse mapping iteratively [42], or CLIK
solvers [10–12] that converge to the solution from a control point of view, the analytical nature of our
closed-form task space manipulability expression delivers exact results in a single iteration.

4.2. Run-Time Comparison

Complete evaluation of the closed-form IK and M mapping as single expressions allows automatic
code generation of the symbolic expressions with e.g., the MATLAB Coder™ toolbox. These expressions
allow array operations, or vectorization in MATLAB, such that a large number of solutions can be
evaluated simultaneously. This leads to a significant computational boost, compared to algorithms
that rely on matrix arithmetic and consequently have to sequentially evaluate multiple evaluations
in programmatic loops. This property makes it further straightforward to calculate the task space
manipulability of multiple samples on a powerful Graphics Processing Unit (GPU). The following
run-time comparison was conducted in MATLAB 2019a, on a computer with Intel(R) Core(TM) i9-9900X
CPU @ 3.50 GHz, 128 GB memory, and a NVIDIA TITAN V graphics card.

Besides different versions of our presented algorithm, we also tested the run-time of [15],
representing typical analytical IK approaches in the literature, and the nonlinear optimization-based
IK algorithm from the Robotics System Toolbox™ for MATLAB, representing iterative solver approaches.
Figure 5 shows a run-time comparison of calculating the manipulability measures

µn := (M ◦ IK)(pn), for n = [1, N] (60)

of N random samples pn.
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Figure 5. Run-time comparison of processing N poses w.r.t. their task space manipulability. Considered
are the MATLAB robotics IK solver based on nonlinear optimization, the analytical IK solver by
Shimizu et al. [15], and the presented approach in three versions: a conventional sequential loop
structure, as well as vectorized evaluation on the central processing unit (CPU) and graphics processing
unit (GPU).

As expected, the iterative optimization algorithm (applying BFGS Gradient Projection with
solution tolerance 0.01) is the computationally most expensive solution method. It required an
average of 37 iterations per pose and did not allow for direct selection of the arm angle. Two orders of
magnitude faster and in addition producing exact inverse solutions are the analytical IK solvers found
in the literature. They rely on matrix calculus and thus a for-loop structure for evaluation of multiple
poses.

Our approach, which is entirely reduced to direct individual expressions, is over 10 times faster
when implemented with the same conventional for-loop structure. Already for 200 evaluated samples,
a simultaneous vectorized evaluation achieves another performance increase of factor 10. At the
maximal evaluated amount of 107 samples, vectorization enables an even 50 times faster computation,
compared to the implementation using for-loops. The advantage of calculating the task space
manipulability on a GPU starts at an amount of 105 sample points. For a smaller number of samples,
the overhead of initializing the data on the GPU does not pay off. Processing 107 samples, calculations
on the GPU are 10 times faster then vectorized treatment on the CPU, and even 700 times faster than
for conventional loop structures.Note that all time measurements include the generation of random
samples on the CPU and GPU respectively.

Considering real-time application for a robot with a typical 1 kHz sampling rate, our approach
allows evaluation of 1000 end-effector poses for their task space manipulability.

4.3. Sampling in Task Space

Not having to calculate the IK in an iterative fashion as done by CLIK solvers, evaluating
manipulability directly in task space is computationally not much more expensive than directly
calculating manipulability in joint space. However, choosing a different space for sampling random
poses do have an influence on the probability distribution of resulting manipulability measures.

Before analyzing this difference, we first discuss the used sampling strategies. For a fair
comparison, we cover the entire space without consideration of possible limits on the individual
joints or parameters.

Let u ∈ R be a random number drawn from a uniform distribution in the range of [0, 1]. Uniform
sampling in joint space is straightforward with

quniform
i : R → R, u 7→ −π + 2πu ∀i ∈ [1, 7] (61)

due to the independence of its joints q ∈ R7.
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For a random end-effector pose sample (pred, λ) = [rref, βref, γEE, βEE, λ]> from the parameter
space, one can choose the same strategy

pnaive
1 : R → R, u 7→ rmin

ref + (rmax
ref − rmin

ref )u (62a)

pnaive
i : R → R, u 7→ −π + 2πu ∀i ∈ [2, 5] (62b)

with respective scaling for the linear parameter rref. However, this naive form of sampling does not
lead to a uniform distribution of samples in the task space SE(3), due to the interdependence of the
coordinate components.

Recall that the first two parameters rref and βref describe translation in polar coordinates. Unlike
in Cartesian coordinates, the base vectors are not constant. Consequently, direct uniform sampling
of the radial coordinate rref, leads to sparser sampling further from the origin, due to the increasing
circumference proportionally to rref. Proper uniform sampling of the translational part can be
achieved by

puniform
1 : R → R, u 7→

√(
rmin

ref

)2
+
((

rmax
ref

)2 −
(
rmin

ref

)2
)

u (63a)

puniform
2 : R → R, u 7→ −π + 2πu. (63b)

An efficient method of uniform sampling on SO(3), i.e., 3D orientations, is proposed by Kuffner [43].
Uniform sampling of the individual angles of the Euler sequence results in a bias towards the polar
regions of the unit sphere. He proposes to use an arctan function on the second angle to compensate
for this bias. Uniform sampling of the end-effector orientation, parametrized by γEE and βEE, is thus
achieved with

puniform
3 : R → R, u 7→ −π + 2πu (63c)

puniform
4 : R → R, u 7→ arccos (1− 2u) . (63d)

The last portion in our parameter tuple (p, λ) is the null space parameter λ that is independent and
thus remains

puniform
5 : R → R, u 7→ −π + 2πu. (63e)

Figure 6 illustrates the uniform sampling of the task space applying the uniform sampling strategy (63).
The above-discussed sampling strategies are now analyzed in conjunction with their respective

mapping to the manipulability measure. Figure 7 shows the approximated cumulative distribution
function (CDF) of manipulability resulting from 107 random samples. It shows that random sampling
in joint space according to (61) is more likely to result in a joint configuration with poor manipulability
of the robot. Uniform sampling in parameter space (63) produces much fewer joint configurations
with poor manipulability, while at the same time more configurations with high manipulability. Naive
sampling in parameter space (61) performs similarly good in the low manipulability section. However,
it produces also fewer configurations with high manipulability. Considering a conventional 6-DOF
robot, i.e., fixing the null space parameter λ to 0 or π, results in a slightly better probability density
function (PDF) than for the discussed 7-DOF mechanism. This is a surprising result, as it is always
argued that the redundancy improves manipulability. While it is true that the additional DOF has the
potential to improve performance measures, poor exploitation might achieve the opposite.
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(a) (b)
Figure 6. Uniform distributed sampling of the task space (2000 samples). (a) End-effector translation;
(b) End-effector orientation.

Figure 7. Approximated cumulative distribution function (CDF) from a histogram of manipulability
w.r.t. different sampling strategies (107 samples).

Kuhlemann et al. [44] showed in different use-cases that the seventh DOF of the KUKA LBR iiwa
increased the average dexterity by 16% in comparison to a conventional 6 DOF KUKA KR 10. Both
the shortcomings of the naive parameter sampling strategy and the apparent advantage of the 6-DOF
mechanism are discussed in Section 4.4.4.

The average normalized manipulabilities achieved are 37% for uniform joint space sampling, 43%
for naive parameter space sampling, and 50% for uniform sampling in parameter space. All numbers
are w.r.t. the maximal encountered manipulability.

4.4. Parameter Sensitivity Analysis of Manipulability in Parameter Space

The sensitivity of the task space manipulability w.r.t. its parameters are analyzed by generating
107 random samples according to (63). These samples represent a uniform distribution of task space
configurations. Figure 8 shows the bi-variate histograms of manipulability µ(pred, λ) w.r.t. to the
individual parameters.

Colors approximate the PDF of µ(rref, βref, γEE, βEE, λ) at fixed values of the respective parameter.
For all parameter values we find unimodal distributions, i.e., distributions with a single maxima.
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Figure 8. Bi-variate histograms of µ(rref, βref, γEE, βEE, λ) w.r.t. to the individual parameters, based on
107 uniformly distributed parameter space samples. Colors are normalized along with the particular
value of the parameter on the x-axis.

4.4.1. Translation Parameters rref and βref

The PDF of µ along the shoulder-wrist distance rref shows a preferred value of 0.57 m. Although
a manipulability optimizing configuration cannot be found at this given value, the mode of the
corresponding PDF, i.e., its local maxima, has the highest value of manipulability. Further, the
probability of good manipulation is decreasing with rref towards the workspace singularity, i.e., a fully
stretched arm of robot configuration.

The polar angle βref between the vertical and the shoulder-wrist reference vector has the highest
manipulability mode at π

2 rad, although manipulability maximizing configurations are not found. For
values approaching 0 and π rad, i.e., placing the wrist in line with the axis of base joint q1, typically
cause so-called shoulder singularities on conventional 6-DOF robots. While the 7-DOF kinematics do
not necessarily result in a kinematic singularity, high manipulability is not possible either.

4.4.2. Orientation Parameters γEE and βEE

The third parameter γEE, which describes a rotation around the shoulder-wrist vector, is the only
one that seems to cause little variation in the manipulability PDF and does not allow a conclusion over
a preferred configuration.

The consecutive rotation angle βEE shows a similar influence as the reference angle βref. However,
the mode of these PDFs is less prominent and tendentiously marks a lower manipulability.

4.4.3. Null Space Parameter λ

The null space parameter λ reveals that the highest manipulabilities can be found at
λ = {0,±π}rad, i.e., the conventional upper and lower elbow configuration of 6-DOF kinematics.
Although missing the absolute top manipulability poses, only small deviations of about ±0.1 rad from
these configurations result in a decrease of the manipulability mode of 25%, i.e., from 0.8 to 0.6. Better
modes are found at λ = {±π

2 }rad. Not only is their peak at a slightly higher manipulability of 0.85,
but they are also less sensitive to a parameter change in λ. The latter is especially valuable for staying
agile during unforeseen events.

4.4.4. Discussion of Manipulability in Different Sampling Strategies

The different sampling strategies discussed in Section 4.3 result in differences in the approximated
CDFs, cf. Figure 7.

Naive vs. Uniformly Distributed Sampling

The difference between naive and uniform sampling solely affects parameters rref and βEE. That
is, the corresponding uniform sampling functions (63a) and (63d) correct the biases of the radial
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coordinate rref towards the origin, and the orientation towards the pole regions with azimuthal angle
βEE = {0, π}rad, respectively. Consequently, these regions are sparser sampled in the uniformly
distributed strategy. While this correction is negligible for the range of rref in this particular robot
example, the improvement of the CDF towards better manipulability stems from a sparser sampling
of the boundary regions of βEE. Because exactly these boundaries lack high manipulability poses, as
visible in the according bi-variate histogram in Figure 8.

6-DOF vs. 7-DOF Kinematics

According to Section 4.4.3, the apparent slight advantage of uniform distributed sampling of
a conventional 6-DOF robot only holds for the over-all manipulability distribution illustrated in
Figure 7. The parameter-specific histogram w.r.t. to the arm angle λ in Figure 8, on the other hand,
reveals that the conventional 6-DOF configurations λ = {0,±π}rad do have a good manipulability
distribution, but λ = {±π

2 }rad configurations are preferable. A 7-DOF kinematics hence not only
enables agile adaptation of the kinematic structure, but also contains arm angles that have a better
PDFs of manipulability than its 6-DOF counterpart. At the same time, other arm angles show higher
variability in the histogram and are more prone to decrease performance. An increase in manipulability
by the additional DOF thus relies on a well-conceived utilization of such.

4.5. Number of Local Optima

While the analysis shown in the previous section gives insight in the probability distribution of
the manipulability measure, it does not allow conclusions on how manipulability changes along the
null space. Table 1 lists the number of local optima for a given end-effector pose. It shows that 80%
of the robot poses do not have a unique manipulability maximizing null space solution, but up to 4
distinct optima.

Table 1. Distribution of local optima among 107 samples.

# optima 1 2 3 4

percentage 20% 41% 27% 12%

5. Applications

Two application directions that benefit from the closed-form expressions of the task space
manipulability are outlined in this section. First, we demonstrate how global optimization problems can
be formulated that profit from massive multi-start point pre-evaluation. Second, we propose a novel
way of real-time redundancy resolution on the position level, which enables global manipulability
optimization of single poses as well as for provided end-effector trajectories in SE(3).

5.1. Optimal Robot Placement

The analytic results from the previous Section 3 allow formulating interesting questions in terms
of optimization problems. We consider the problem of optimal placement of the robot.

5.1.1. Best Overall Robot Configuration

The most basic optimization problem we considere is the question of finding the best overall robot
configuration w.r.t. to manipulability. Mathematically, this problem can be stated as an unconstrained
optimization problem

maximize
q

µ(q) (64)

directly finding the optimal joint configuration w.r.t. the manipulability measure. The global optimum
is found with a multi-start strategy [45], where random samples are drawn from the admissible
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parameter space P and used as starting points for local optimizations. Figure 9, left side, shows the
results of such a global optimization process with 1000 starting points. Note that the same problem
can be formulated in parameter space and does yield the same result. All optimization iterations result
in one of 8 equally good global optima, which can be reduced to 4 solutions due to symmetry of the
shoulder joint. They further describe configurations in the pure xz-plane with λ ∈ {0,±180}°. This is
equivalent to the configurations achievable by a conventional 6-DOF robot.

(a) (b)
Figure 9. Results of the task space manipulability optimization of a robot mounting pose. (a): Overall
best robot configuration. There are a total of 8 global optima with equal manipulability µmax = 0.143.
From 1000 random initial starting points, 83% of the optimization runs converged to one of the global
optima. (b): Optimizing relative pose w.r.t. a workspace envelope of size (∆x, ∆y, ∆z) = (0.4, 0.4, 0.3)m.
Note that the cubic volume is projected onto the parameter space, hence the distortion in the illustration.
The resulting configuration for pose z0, again lies fully on the xz-plane. However, unlike the single
best pose, only one single optimum is found.

5.1.2. Best Robot Configuration for Multiple Task Poses

In industrial settings, robots are often required to work at a certain number i ∈ Z+ of different
task poses zi. While the relative distances ∆zi = zi − z1 between this poses is defined, the optimal
placement of the robot can be found by solving the optimization problem

maximize
z,λ

∑
i
(M ◦ IK ◦TSP)(z + ∆zi, λ) (65)

to find the relative pose z that maximizes the average manipulability of all i poses. Solving this problem
directly, results in an infinite number of global poses. These solutions are rotationally symmetric
around the base joint q1 as well as the last joint q7, as both these joints do not have an influence on the
manipulability of the 7-DOF robot structure at consideration (discussed in Section 3.1).

The complexity of the optimization problem, as well as the number of global optima, can be
drastically reduced by formulating the same problem in the lower dimensional parameter space

maximize
p,λ

∑
i
(M ◦ IK)(p + ∆ pi, λ) (66)

where pi = TSP(zi). The resulting optimal p can eventually be mapped to the corresponding task
space parameter z = TSS(p). This result is useful for deciding on how to mount a robot relative to a
given set of task poses zi, or recalculating it online if task poses are time-variant and the robot structure
is e.g., mounted on a mobile platform.
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5.1.3. Optimizing Robot Mounting Positions Regarding a Workspace Envelope

In a modern scenario where robots are not only expected to repetitively execute the same
tasks, a set of pre-defined task poses cannot always be formulated. But it is rather necessary
for the robot to perform well in a defined workspace volume, e.g., given as a cubical volume
V = [−∆ x

2 ,+∆ x
2 ] × [−∆ y

2 ,+∆ y
2 ] × [0,+∆z]. Due to all mappings involved in the task space

manipulability being continuous, formulating a cost function for such a volume can be done using
Fubini’s theorem [46]. It allows calculation of the volume integral as triple integral. The objective for
this optimization problem in task space reads

maximize
z0,λ

∫∫∫
V

(M ◦ IK ◦TSP)(z0 + z(x, y, z), λ)dx dy dz

subject to TSP (z0,+z(x, y, z), λ) ∈ A,

(67)

where the optimal task space volume origin z0 needs to be found. This optimization can again be
transformed to the lower dimensional parameter space

maximize
p0,λ

∫∫∫
V

(M ◦ IK ◦TSP)(TSS(p0) + z(x, y, z), λ)dx dy dz

subject to TSP (TSS(p0, λ) + z(x, y, z), λ) ∈ A
(68)

with the condition that the whole Volume projected to parameter space must be within the set of
admissible parameters. Figure 9, right side, shows the result of such a global optimization.

5.2. Redundancy Resolution

Solving for optimal robot poses online is essential for a robot to stay agile at all times. We
demonstrate how the task space manipulability expressions developed in this work can be applied for
real-time global manipulability optimization of single poses as well as full trajectories. The following
run-time evaluations were conducted in MATLAB 2019a, on a computer with Intel(R) Core(TM) i3-7100
CPU @ 3.9 GHz and 32 GB memory.

5.2.1. Redundancy Resolution for Global Manipulability Optima

Approaches typically found in the literature focus on local optimization of manipulability based on
local gradient information. Analysis of the number of existing local optima from Section 4.5, however,
revealed that only 20% of end-effector poses have a unique global optimum. The computational
advantage of our approach permits evaluating the manipulability of many poses simultaneously. Given
a current robot pose z, our framework makes it possible to not only locally improve manipulability,
but solve

arg max
λ

(M ◦ IK ◦TSP)(z, λ) (69)

with a representative number of null space solution at a high resolution in real-time. Given the
information of this greedy optimization strategy, the close-to-global optimum configuration can simply
be picked. Solving for global optima in 0.25 ms at a resolution of 1° for λ enables application at typical
robot sampling rates of 1 kHz.

Figure 10 shows manipulability of the full null space at a particular configuration.
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Figure 10. Multiple local optima of manipulability µ in the null space of pred = [0.6, 0.7, 1.4, 0.7]>.

This is an example of a pose with 4 local optima. If the current configuration of the robot is the
solution for the given pose with the null space parameter λ ∈ [0, 85]°, a local optimization will only
drive the redundancy resolution into a sub-optimal minima. In contrast, our approach allows finding
the globally best configuration w.r.t. the admissible parameter space.

5.2.2. Optimizing Null Space Solution of Given End-Effector Trajectory

Several approaches can be found in the literature that maximize either the volume of a
manipulability ellipsoid [31,47–49] or a predefined shape of the ellipsoid [33]. Yet all these approaches
consider only local optimization.

Finding the best joint configuration for a given pose in task space simplifies to a 1D line search.
However, given a full path in SE(3) it is also possible to find an optimal elbow trajectory that maximizes,
e.g., the average manipulability while avoiding getting trapped in regions of poor manipulability. Note
that a real manipulation task relies on a sophisticated path planner, capable of generating task-related
paths that avoid obstacles while potentially fulfilling additional criteria. Knowledge about the task
space manipulability, e.g., provided by our approach, may even be exploited by such a planner. This
is, however, not the direct scope of this work. Instead, for a minimal working example, we use direct
interpolation

p(s) = s pstart + (s− 1)pend with s = [0, 1] (70)

between two poses as a simple path planner. Given are two random poses as depicted in Figure 11 to
the left. On the right side of Figure 11, a contour plot of the manipulability of the full null space along
the trajectory is shown. Red lines indicate not passable values in the null space due to joint limits, cf.
Section 3.5. The blue line marks the trajectory that results from local optimization of manipulability.
Note that at s = 0.4, the local optimization hits a joint limit of q2. We stopped the line here, because it
depends on a potential strategy for joint limit avoidance, which is not the scope of this work. A global
optimization strategy that has predictive knowledge of the full null space development can exploit an
initially sub-optimal path toward negative values of λ to circumvent the region of poor manipulability
between s = [0.6, 1]. But this is usually not feasible in an online scenario with conventional global
optimization strategies.

The computational advantage of our strategy, as seen in Figure 5, allows the computation of such a
map with, e.g., a resolution of 100 steps in both parameters, s and λ, in under 5 ms. In combination with
an online trajectory generator directly on SE(3), e.g., [50], this qualifies our task space manipulability
approach to be used for predictive online manipulability optimization, e.g., with a receding horizon.
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(a) (b)
Figure 11. Null space manipulability over a parameter trajectory. The 3D plot (a) shows an exemplary
start p(s = 0) and end configuration p(s = 1). The contour plot (b) shows the manipulability µ(p, λ)

of the full null space. Red lines mark the limits λ(p, qmax) of the admissible null space region. The
numbers refer to the invoking joint. Blue circles mark desired λd(s = 0) and λd(s = 1), and the blue
line marks a trajectory as it would be chosen by local optimization of λmax(p).

6. Conclusions

Today’s demand for adaptive and reactive robot behaviour requires sustaining the agility of a
kinematic structure at all times. While manipulability is a common metric in robot research to quantify
the capabilities of a robot at a given joint configuration, the robot task is directly defined in end-effector
poses, which allows for multiple possible solutions. Unlike common metrics, which do not include
the robot IK, a task space manipulability formulation is required to directly map an end-effector pose
together with its null space solution onto the manipulability metric.

To achieve reactive robot behaviour, optimization of the null space at given poses must be
performed online. In general, this requires efficient evaluation of a large number of configurations,
especially in the case of redundant robots. In this work we developed a new closed-form approach
for calculating manipulability directly from task space poses, for a redundant 7-DOF S-R-S serial
robot kinematics. A novel parametrization of the task- and null space leads to concise IK, as well
as admissible parameter mappings, which show symmetry in the structures of their individual
expressions. Analysis of the resulting task space manipulability further revealed that the majority of
end-effector poses do not have a unique, manipulability-maximizing null space solution. We thus
argue that local optimization of the manipulability measure is not sufficient. A global optimization
at high sampling frequencies, however, is not feasible with current approaches in the literature. The
entire composition of the task space manipulability map proposed in this work allows for efficient
array operations that can be exploited in vector-optimized programming languages, as well as GPU
computing. Consequently, the simultaneous computation of a large number of poses in real-time is
made possible. Our method, therefore, enables global online optimization of manipulability for single
poses and even full SE(3) trajectories.

Future work will focus on further application development of our framework. Combining our
task space manipulability approach with online planners opens an interesting field of predictive
redundancy resolution for global manipulability optimization.
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Abbreviations

The following abbreviations are used in this manuscript:

CDF cumulative distribution function
CLIK Closed-Loop Inverse Kinematic
CPU Central Processing Unit
DOF degree of freedom
FK Forward Kinematic
GPU Graphics Processing Unit
IK Inverse Kinematic
M Manipulability
PDF probability density function
PR parameter requirements
SIMD Single Instruction Multiple Data
S-R-S Spherical-Revolute-Spherical
TCP tool center point
TSP Task Space Projection
TSS Task Space Surjection

Appendix A. Manipulability

The full manipulability map M, discussed in Section 3.1, is given with µ(q) =
√

det
(

T J T J>
)
.

Note that the Jacobian matrices are formulated w.r.t. the tool frame T at the end-effector. The full
symbolic expression for the determinant of the R6×6 matrix results in the trigonometric polynomial

µ(q)2 := 2rSE
2 rEW

2
(

c (q4)
2 − 1

) (
+ rSE

2 c (q5)
2 c (q6)

2
(

c (q2)
2 + c (q4)

2 − c (q2)
2 c (q4)

2 − 1
)

+ rEW
2 c (q2)

2 c (q3)
2
(

c (q4)
2 + c (q6)

2 − c (q4)
2 c (q6)

2 − 1
)

+
(

rSE
2 + 2 rSE rEW c (q4)

) (
c (q2)

2 + c (q6)
2 − c (q2)

2c (q6)
2 − 1

)
+
(

rSE
2 s (q4) s (q6) c (q4) c (q5) c (q6) + rSE rEW s (q4) s (q6) c (q5) c (q6)

) (
1− c (q2)

2
)

+

( (
rSE rEW + rEW

2 c (q4)
)

s (q2) s (q4) c (q2) c (q3) + rEW
2 c (q2)

2 − rEW
2
)(

1− c (q6)
2
)

)
. (A1)

Note that the manipulability measure µ does not depend on joints q1 nor q7. Further, the link lengths
rBS and rWT do not affect manipulability.
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Appendix B. Inverse Kinematic Functions from (43)

q1(p, λ) := γref + atan2
(
− s (λ) s (θS) , s (βref) c (θS)− c (βref) c (λ) s (θS)

)
(A2)

q2(p, λ) := acos
(

c (βref) c (θS) + c (λ) s (βref) s (θS)

)
(A3)

q3(p, λ) := atan2
(

s (βref) s (λ) , c (λ) s (βref) c (θS)− c (βref) s (θS)

)
(A4)

q4(p, λ) := π − acos

 rEW
2

2 + rSE
2

2 −
rref

2

2
rEW rSE

 (A5)

q5(p, λ) := atan2
(

s (γEE − λ) s (βEE) , s (βEE) c (θW) c (γEE − λ)− c (βEE) s (θW)

)
(A6)

q6(p, λ) := acos
(

c (βEE) c (θW) + s (βEE) s (θW) c (γEE − λ)

)
(A7)

q7(p, λ) := ψEE + atan2
(
− s (γEE − λ) s (θW) , s (βEE) c (θW)− c (βEE) s (θW) c (γEE − λ)

)
(A8)

Appendix C. Absolute Valued Inverse Kinematics Functions from (55a)

|q1(p, λ)| := γref + acos

 s (βref) c (θS)− c (βref) c (λ) s (θS)√
1− (c (βref) c (θS) + c (λ) s (βref) s (θS))

2

 (A9)

|q2(p, λ)| := acos
(

c (βref) c (θS) + c (λ) s (βref) s (θS)

)
(A10)

|q3(p, λ)| := π − acos

 c (βref) s (θS)− c (λ) s (βref) c (θS)√
1− (c (βref) c (θS) + c (λ) s (βref) s (θS))

2

 (A11)

|q4(p, λ)| := π − acos

 rEW
2

2 + rSE
2

2 −
rref

2

2
rEW rSE

 (A12)

|q5(p, λ)| := π − acos

 c (βEE) s (θW)− s (βEE) c (θW) c (γEE − λ)√
1− (c (βEE) c (θW) + s (βEE) s (θW) c (γEE − λ))2

 (A13)

|q6(p, λ)| := acos
(

c (βEE) c (θW) + s (βEE) s (θW) c (γEE − λ)

)
(A14)

|q7(p, λ)| := ψEE + acos

 s (βEE) c (θW)− c (βEE) s (θW) c (γEE − la)√
1− (c (βEE) c (θW) + s (βEE) s (θW) c (γEE − la))2

 (A15)
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Appendix D. Admissible Null Space Parameter Functions from (56)

λlim
1 (θS, γref, βref, qmax) :=

±
(

π − acos

(√
s(θS)

2−s(γref−qmax)2 s(βref)
2+c(βref) s(βref) c(θS) s(θS)(1−c(γref−qmax)2)

|s(θS)| |c(γref−qmax)| s(θS)
2 (s(γref−qmax)2 s(βref)

2−1)

))

±
(

acos

(√
s(θS)

2−s(γref−qmax)2 s(βref)
2+c(βref) s(βref) c(θS) s(θS)(c(γref−qmax)2−1)

|s(θS)| |c(γref−qmax)| s(θS)
2 (s(γref−qmax)2 s(βref)

2−1)

))
 (A16)

λlim
2 (θS, βref, qmax) :=

{
± acos

(
c(qmax)−c(βref) c(θS)

s(βref) s(θS)

) }
(A17)

λlim
3 (θS, βref, qmax) :=
±
(

π − acos

(√
−c(βref)

2−c(qmax)2 c(θS)
2+c(qmax)2+c(θS)

2+c(βref) c(θS) s(θS)(1−c(qmax)2)
|c(qmax)| s(βref) (s(qmax)2 s(θS)

2−1)

))

±
(

acos

(√
−c(βref)

2−c(qmax)2 c(θS)
2+c(qmax)2+c(θS)

2+c(βref) c(θS) s(θS)(c(qmax)2−1)
|c(qmax)| s(βref) (s(qmax)2 s(θS)

2−1)

))
 (A18)

λlim
5 (θW, βEE, qmax) := γEE − λlim

3 (θW, βEE, qmax) (A19)

λlim
6 (θW, βEE, qmax) := γEE − λlim

2 (θW, βEE, qmax) (A20)

λlim
7 (θW, γEE, βEE, qmax) := γEE − λlim

1 (θW, γEE, βEE, qmax). (A21)
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