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1 Introduction

In Classical Electrodynamics a change of gauge of the electromagnetic potential Aµ 7→
Aµ + ∂µχ has clearly no observable effect as it does not change the electromagnetic fields

Fµν . This argument does not extend to Quantum Electrodynamics, since the quantization

procedures always require some gauge fixing conditions to which we refer as ‘gauges’. In

spite of the seemingly unlimited gauge freedom, the list of conditions used in practice is

relatively short: the Lorenz gauge ∂µA
µ = 0, the Coulomb gauge∇·AAA = 0 and axial gauges

eµA
µ = 0 for various directions of the axis e are the most common choices. Some authors

have argued that the resulting theories are equivalent on the basis of partially heuristic

computations [13, 21]. In the present paper we consider external current QED (that is the

second-quantized electromagnetic field coupled to an external current) in the Coulomb and

axial gauges and show that actually the opposite is the case: the corresponding quantum

theories are not unitarily equivalent if the current has a non-zero electric charge. Our

analysis is ‘ghost-free’, the results are mathematically rigorous, and we exhibit a physical

mechanism behind the inequivalence of different gauges.

Let us outline this mechanism briefly: it is well known that the electric charge conser-

vation follows from the Noether theorem applied to the global U(1) symmetry. It is less well

known that the Noether theorem applied to the local gauge symmetry gives conservation

of the spacelike asymptotic flux of the electric field1

φ(n) = lim
r→∞

r2n ·E(nr), where |n| = 1, (1.1)

which commutes with all local observables. In an irreducible representation of the external

current QED the flux φ is thus a scalar function on the unit sphere, restricted only by the

Gauss Law. Any choice of this function corresponds to a different sector of the theory [3].

Not surprisingly, this function inherits the symmetry of the gauge-fixing condition used in

the quantization procedure: in the Coulomb gauge it is spherically symmetric, while in the

axial gauges it is only axially symmetric. Hence, the respective quantum theories are not

1The argument can be found e.g. in https://en.wikipedia.org/wiki/Infraparticle.
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unitarily equivalent and the same is true for axial gauges with distinct directions of the

axis. However, we show that they are related by a Bogolubov transformation, which can

be expressed by a Wilson loop over a contour limited by the two axes. Or, equivalently,

by the flux of the magnetic field through the area surrounded by this contour. This brings

to light certain similarity of our findings with the Aharonov-Bohm effect, where the phase

shift of a particle traveling along two paths with the same start and end points is given by

an analogous expression.

As our Bogolubov transformations change the asymptotic charge (1.1), they have a

non-trivial action at infinity. In this respect they resemble the large gauge transfor-

mations considered recently in the context of the Strominger’s ‘infrared triangle’, see

e.g. [7, 8, 11, 14], which, however, are residual transformations of the Lorenz gauge.2

For transformations between the Lorenz gauge and other covariant gauges, and their au-

tomorphic action on the field algebra we refer to [10, appendix A]. For relations between

the Aharonov-Bohm effect and the Gauss Law at the level of the algebra we refer to [23, 24].

An interesting discussion of the Gauss Law and the flux of the electromagnetic field in the

context of axial gauges was recently given in [2, 20]. In [20] the flux is computed in axial

gauges in low orders of perturbation theory, giving results similar to ours. However, the

external current discussion from this reference corresponds to the Coulomb gauge in our

setting. Finally, we refer to [9] and references therein for the complementary case of the

second quantized Dirac field in an external electromagnetic field and its sensitivity to the

choice of gauge. However, the problem of unitary inequivalence of different gauge fixing

conditions is not discussed in the above references and, to our knowledge, it does not have

a satisfactory treatment in the literature.

This paper is organized as follows: in section 2 we verify that the Coulomb gauge and

the axial gauge are not unitarily equivalent, if the external current has a non-zero total

charge. We also show the inequivalence of axial gauges with different directions of the axis.

These results are obtained by computing the flux (1.1) in different gauges. In section 3 we

identify the Bogolubov transformations linking different axial gauges and express them as

Wilson loops. In section 4 we summarize our work, outline briefly the case of angularly

smeared axial gauges and discuss future directions.

2 Asymptotic charges and inequivalence of different gauges

Let us first recall the standard formulas for the free transverse potential and free electro-

magnetic fields (see e.g. [27])

A⊥(t,x) :=
1

(2π)3/2

∑
λ=±

∫
d3kkk√
2|k|

εεελ(k)
(
ei|k|t−ik·xa∗λ(k) + e−i|k|t+ik·xaλ(k)

)
, (2.1)

Efr(x) := −∂tA⊥(t,x), Bfr(x) := ∇×A⊥(t,x), (2.2)

where a
(∗)
λ are the creation/annihilation operators of photons on the Fock space F and

εεελ are the polarization vectors. Now we consider the electromagnetic field coupled to the

2The existence of large gauge transformations of this type can be questioned [15].
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time-independent external current j = (j0, 0), where j0 is smooth and compactly supported.

The Dirac procedure of quantization with constraints applied to this theory in the Coulomb

gauge gives the familiar formulas for the electromagnetic fields (see e.g. [27])

EC(x) := Efr(x)+
1

∆
∇j0(x), (2.3)

BC(x) := Bfr(x). (2.4)

The same quantization procedure applied in the axial gauge for the axis direction e = (0, e)

gives instead (see e.g. [13])

Ee(x) := Efr(x)+
e

e · ∇+ 0
j0(x), (2.5)

Be(x) := Bfr(x). (2.6)

The Dirac quantization procedure is ambiguous here, as the constraint matrix has many

inverses corresponding to various regularizations of the singularity in (2.5). The choice of

+0 is natural as it corresponds to a string-like localized electromagnetic potential in the

axial gauge [19]. (A different derivation of (2.5), (2.6) will be given in section 3). The

electromagnetic fields are operator-valued distributions and we denote by

EC(f) :=

∫
d3xEC(x) · f(x) (2.7)

the smearing with an R3-valued, smooth, compactly supported function f (and analogously

for the remaining quantities). The smeared fields are self-adjoint, unbounded operators

and to avoid the discussion of domain questions we proceed to their bounded functions

exp iEC(f). Now we are ready to state and prove our main result:

Theorem 2.1 Suppose that q :=
∫
d3x j0(x) 6= 0. Then there is no unitary U on the

Fock space F such that

U exp i(EC(fel) + BC(fm))U∗ = exp i(Ee(fel) + Be(fm)) (2.8)

for all smearing functions fel, fm and some fixed unit vector e ∈ R3. (The statement remains

valid if we restrict attention to smearing functions fm ≡ 0 and fel supported in any fixed

string {x = |x|x̂ : |x| ∈ R+, x̂ ∈ ω }, where ω is an open subset of the unit sphere).

Given two unit vectors e 6= e′ there is no unitary V on F s.t.

V exp i(Ee(fel) + Be(fm))V ∗ = exp i(Ee′(fel) + Be′(fm)) (2.9)

for all smearing functions fel, fm.

We remark that the assumption q 6= 0 is essential. Currents with q = 0, for which differ-

ent gauges are unitarily equivalent, are in abundance. This can easily be seen from the

discussion in the next section.

We will prove the theorem by adapting the method of central sequence to the situation

at hand (cf. [5, 18]). Let us first show that a unitary U , as in (2.8), cannot exist. Since

– 3 –
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it is clear from (2.3)–(2.6) that the problem of inequivalence is related to the electric field,

we can set fm = 0. As fel we choose

fel,n,r(x) = n
1

r
f

(
x− nr

r

)
, (2.10)

where f is supported in a ball around the origin of radius much smaller than one and n is

a unit vector in R3. With this choice we have

EC(fel,n,r) =

∫
d3x f(x) r2n ·EC((x + n)r), (2.11)

which is a smeared version of the flux (1.1). It will be important in the later part of the

proof that the following expression is independent of r

〈0|eiEfr(fel,n,r)|0〉 = e−
1
4

∫
d3k |k||Ptrnf̃(k)|2 , (2.12)

where Ptr is the transverse projection and tilde denotes the Fourier transform.

Now we assume by contradiction that there exists a unitary U as in the theorem and

we compare the vacuum expectation values of the resulting equality

〈0|UeiEfr(fel,n,r)U∗|0〉ei
1
∆
∇j0(fel,n,r) = 〈0|eiEfr(fel,n,r)|0〉ei

e
e·∇+0

j0(fel,n,r). (2.13)

Since the C∗-algebra generated by the free electromagnetic fields acts irreducibly on F ,

we can find, by the Kadison transitivity theorem [16, Theorem 10.2.1], a unitary Ũ in this

algebra s.t. U∗|0〉 = Ũ∗|0〉. Then, by locality, limr→∞[eiEfr(fel,n,r), Ũ∗] = 0 in norm and we

can write

ei
1
∆
∇j0(fel,n,r) + o(r−1) = ei

e
e·∇+0

j0(fel,n,r), (2.14)

where o(r−1) denotes a term which tends to zero as r →∞.

Thus to conclude the proof of the first part of the theorem, we have to show that the

contributions to the flux coming from the c-number parts in (2.3) and (2.5) are different.

Concerning the Coulomb part, we have

1

∆
∇j0(fel,n,r) =

∫
d3xf(x)

∫
d3y

r2n · (nr + xr − y)

4π|nr + xr − y|3
j0(y)

→
r→∞

∫
d3xf(x)

qn · (n + x)

4π|n + x|3
. (2.15)

We note in passing that in the limit of no smearing (f(x)→ δ(x)) we obtain a spherically

symmetric distribution q
4π which manifestly respects the Gauss Law. As for the axial part,

– 4 –
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we set nx := n + x and compute

e

e · ∇+ 0
j0(fel,n,r) =

∫
d3xf(x) lim

ε→0

r2n · e
e · ∇y + ε

j0(y)|y=rnx

=

∫
d3xf(x)(r2n · e) lim

ε→0

∫ ∞
0

ds e−(e·∇y+ε)sj0(y)|y=rnx

=

∫
d3xf(x)(r2n · e)

∫ ∞
0

ds j0(rnx − se) (2.16)

=

∫
d3xf(x)(r2n · e)

∫ ∞
0

ds j0((r(nx · e)− s)e + rP⊥e nx)

=

∫
d3xf(x)(r2n · e)

∫ ∞
−r(nx·e)

ds j0(−se + rP⊥e nx), (2.17)

where P⊥e = 1−|e〉〈e|. Suppose first that n is not parallel to e. Then, if the support of f is

in a sufficiently small neighbourhood of zero, we have P⊥e nx 6= 0 and j0(−se+rP⊥e nx) = 0

for r sufficiently large and all s. Next, suppose that n = −e. Then, again for a sufficiently

small support of f , we have that (nx · e) < 0 and the expression vanishes for r sufficiently

large due to the shrinking of the region of s-integration. Finally we consider the case n = e.

Assuming that e is in the direction of the third axis of the coordinate frame, we can rewrite

expression (2.16) as follows

(2.16) =

∫
d3x f(x)r2

∫ ∞
0

ds j0(rx1, rx2, (r − s) + rx3)

=

∫
d3x f(x1, x2, x3)r

2

∫ r(1+x3)

−∞
ds′ j0(rx1, rx2, s

′)

=

∫
dy1dy2dx3 f(y1/r, y2/r, x3)

∫ r(1+x3)

−∞
ds′ j0(y1, y2, s

′)

→
r→∞

q

∫
dx3 f(0, 0, x3). (2.18)

Thus, summing up, we have

e

e · ∇+ 0
j0(fel,n,r) =

{
q
∫
ds f(se) for n = e,

0 for n 6= e.
(2.19)

We note as an aside that the first line in (2.19) is singular in the limit f(x) → δ(x),

thus there is no conflict with the Gauss Law here. By comparing the second line of (2.19)

with (2.15) we easily obtain a contradiction in (2.14) in the limit r →∞. The second part

of the theorem is proven analogously, making use of the first line in (2.19).

3 Large gauge transformations and Wilson loops

In this section we establish relations between different gauges which are less restrictive

than unitary equivalence and thus not in conflict with Theorem 2.1. We first introduce a

general class of gauge transformations of the external current QED, which is initially in

– 5 –
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the Coulomb gauge. Then we identify a transformation mapping the Coulomb gauge into

the axial gauge theory for a given direction of the axis.

We recall that the Coulomb gauge electromagnetic potential and the Hamiltonian have

the form

A0,C(t,x) :=− 1

∆
j0(x), AC(t,x) := A⊥(t,x), (3.1)

HC :=Hfr+
1

2

∫
d3xA0,C(x)j0(x), where Hfr :=

∑
λ=±

∫
d3k |k|a∗λ(k)aλ(k). (3.2)

The resulting electromagnetic fields are given by (2.3), (2.4). While the minimal coupling

is not manifest from the above formulas (note that HC depends quadratically on j0), its

remnant is the following relation

δHC

δj0(x)
= A0,C(x). (3.3)

To change the gauge we introduce a family of operator-valued distributions x 7→ χε(x)

s.t. [χε(x), χε(x
′)] = 0 for x,x′ ∈ R3. They depend on a regularization parameter ε > 0,

whose role will become clear in the example below, and which eventually will tend to zero.

For non-zero ε, and after smearing with real-valued test functions, these distributions are

assumed to yield self-adjoint operators. Thus we can define the unitaries

Wε := e−iχε(j0). (3.4)

Setting χε(t,x) := eiHCtχε(x)e−iHCt, we define a new potential as follows

Aε,0(t,x) := Wε(A0,C(t,x) + ∂tχε(t,x))W ∗ε , (3.5)

Aε(t,x) := Wε(AC(t,x)−∇χε(t,x))W ∗ε . (3.6)

Clearly, the resulting electromagnetic fields

Eε(t,x) = −∂tAε(t,x)−∇A0,ε(t,x) = WεEC(t,x)W ∗ε , (3.7)

Bε(t,x) = ∇×Aε(t,x) = WεBC(t,x)W ∗ε , (3.8)

satisfy the Maxwell equations with the same current j. Their time-evolution is governed

by the Hamiltonian

Hε := WεHCW
∗
ε . (3.9)

The presence of the transformation Wε(. . .)W
∗
ε in (3.5), (3.6) calls for a justification.

We remark that the Maxwell equations are insensitive to this transformation in our external

current situation.3 The same is true for the Dirac brackets, as they only fix the algebraic

relations between the potentials and the fields, and not the representation of the resulting

3For Pauli-Fierz type models with a dynamical electron the quantum Maxwell equations depend on

the electromagnetic potential via the electron’s velocity (see e.g. [25, formula (13.51)]). Then the form-

invariance of the Maxwell equations necessitates a transformation analogous to Wε(. . .)W
∗
ε in the definition

of gauge transformations.

– 6 –



J
H
E
P
1
1
(
2
0
1
9
)
1
2
6

algebra. However, global quantities, like the Hamiltonian, may be sensitive to the choice

of the representation. It is therefore not a surprise that the role of the transformation

Wε(. . .)W
∗
ε is to preserve the minimal coupling property (3.3), as can be seen from the

following computation:

δHε

δj0(x)
= e−iχε(j0)

δHC

δj0(x)
eiχε(j0) + e−iχε(j0)[−iχε(x), HC]eiχε(j0) = Aε,0(x). (3.10)

Let us now focus on the transformation from the Coulomb to axial gauge. By imposing

the axial gauge condition e ·Aε(x)→ 0 as ε→ 0 we read off from (3.6)

χe,ε(x) =
1

e · ∇ − ε
e ·AC(x). (3.11)

We remark that the choice of the −ε prescription will prove consistent with the choice made

in (2.5). The corresponding family of unitaries (3.4), similar to transformations considered

in [13], has the form

We,ε := exp

(
i

∫ ∞
0

ds e−εs(e ·AC)(j0)(se)

)
, (3.12)

where we used (e · ∇ − ε)−1 = −
∫∞
0 ds e(e·∇−ε)s. As we show in Lemma 3.1 below, the

resulting electromagnetic fields (3.7), (3.8) coincide with the axial gauge electromagnetic

fields (2.5), (2.6) from the previous section. This lemma should be compared with the first

part of Theorem 2.1. The key point here is that We,ε does not converge to a well-defined

unitary in the limit ε → 0 if q 6= 0. (For q = 0 such a limiting unitary may exist, and

the statement of Theorem 2.1 may not be valid). Nevertheless, limε→0We,ε( · )W ∗e,ε does

exist and defines a Bogolubov transformation or, in other words, an automorphism of the

C∗-algebra of the free electromagnetic fields.

Lemma 3.1 For a fixed unit vector e ∈ R3 and all smearing functions fel, fm we have

lim
ε→0

We,ε exp i(EC(fel) + BC(fm))W ∗e,ε = exp i(Ee(fel) + Be(fm)). (3.13)

This lemma is a consequence of the canonical commutation relations

[A⊥,i(x),−Efr,j(x
′)] = iδ⊥i,j(x− x′) := i(2π)−3

∫
d3k e−ik·(x−x

′)(δi,j − k̂ik̂j) (3.14)

and the following computation

We,εEfr,j(x)W ∗e,ε − Efr,j(x) =

[
i

∫ ∞
0

ds e−εs(e ·A⊥)(j0)(se), Efr,j(x)

]
= −i

∫ ∞
0

ds

∫
d3x′ e−εsieiδ

⊥
i,j(se + x′ − x)j0(x

′)

=
1

(2π)3/2

∫ ∞
0

ds

∫
d3k e−i(k·e−iε)s+ik·xei(δi,j − k̂ik̂j)j̃0(k)

=
1

(2π)3/2

∫
d3k eik·x

1

i(k · e− iε)
ej j̃0(k) (3.15)

− 1

(2π)3/2

∫
d3k eik·x

1

i(k · e− iε)
(e · k)

|k|2
kj j̃0(k). (3.16)

– 7 –
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Figure 1. Contour of integration in (3.22).
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flux(e’)

flux(e)

We’,e

Figure 2. W̃e′,e as a string-local flux-carrying

field.

We recall formulas (2.3) and (2.5), and note that

(3.15) =
ej

e · ∇+ ε
j0(x), (3.17)

(3.16) =
1

(2π)3/2

∫
d3k eik·x

1

|k|2
ikj j̃0(k) + o(ε) →

ε→0
−∇jj0(x)

∆
, (3.18)

where o(ε) denotes a term which tends to zero as ε → 0. Thus we conclude the proof of

Lemma 3.1, since We,ε commutes with the magnetic fields.

From (3.13) we can easily read off the large gauge transformation linking two axial

gauges with axes e 6= e′. The relation

lim
ε→0

We′,εW
∗
e,ε exp i(Ee(fel) + Be(fm))We,εW

∗
e′,ε = exp i(Ee′(fel) + Be′(fm)) (3.19)

should be compared with the second part of Theorem 2.1. It turns out that this trans-

formation has interesting geometric properties. To bring them to light, we change the

regularization method. That is, we define an auxiliary family of transformations

We,L := exp

(
i

∫ L

0
ds (e ·AC)(j0)(se)

)
(3.20)

and check by a straightforward computation that (3.19) remains true if the operators

We,ε,We′,ε are replaced with We,L,We′,L and the limit L → ∞ is taken. Clearly, we can

write

We′,e,L :=We′,LW
∗
e,L = exp

(
i

∫ L

0
ds′ (e′ ·AC)(j0)(s

′e′)+ i

∫ 0

−L
ds((−e) ·AC)(j0)(s(−e))

)
.

(3.21)

Let us denote the two regions of integration above by Ce,L, Ce′,L. Aiming at a Wilson

loop, we close Ce,L ∪ Ce′,L with a contour Ce′,e,L depicted in figure 1. We set ∂SL :=

Ce,L ∪ Ce′,L ∪ Ce′,e,L and define a new transformation

W̃e′,e,L := exp

(
i

∫
∂SL

AC(j0)(r) · dr
)

= exp

(
i

∫
SL

BC(j0)(r) · dS
)
, (3.22)

– 8 –
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where in the second step we used the Stokes law and SL is the surface enclosed by ∂SL.

Since BC is a local field, we see that the resulting Bogolubov transformation acts trivially

on all the observables spacelike separated w.r.t. the region
⋃
L≥0 SL + suppj0. Due to the

following theorem, closing the contour of integration has no effect in the limit L→∞. Thus

the operation of changing the axial gauge from e to e′ is localised in the string defined by

the two axes (see figure 2). In the light of formula (2.19), this operation has the physical

meaning of carrying the flux of the electric field (1.1) from one axis direction to another.

This observation may be relevant for a development of superselection theory for local gauge

invariance in the spirit of the Doplicher-Haag-Roberts analysis [12, chapter IV].

Theorem 3.2 For any fixed unit vectors e 6= e′ and all smearing functions fel, fm we have

lim
L→∞

W̃e′,e,L exp i(Ee(fel) + Be(fm))W̃ ∗e′,e,L = exp i(Ee′(fel) + Be′(fm)). (3.23)

Clearly, it suffices to show that the contribution to limL→∞ W̃e′,e,L( · )W̃ ∗e′,e,L coming from

the contour Ce′,e,L acts as the identity on the electromagnetic fields. As it is trivially true

for the magnetic fields, it suffices to show that

lim
L→∞

exp

(
i

∫
Ce′,e,L

AC(j0)(r) · dr

)
eiEfr(fel) exp

(
−i
∫
Ce′,e,L

AC(j0)(r) · dr

)
= eiEfr(fel).

(3.24)

For this purpose we compute, using the canonical commutation relations (3.14),[∫
Ce,e′,L

A⊥(j0)(r) · dr,−Efr,j(fel)

]

=

∫
d3x

∫
d3y j0(x)(fel)j(y)

∫
Ce′,e,L

(dr)i[A⊥,i(x + r),−Efr,j(y)]

= i

∫
d3x

∫
d3y j0(x)(fel)j(y)

∫
Ce′,e,L

(dr)i(2π)−3
∫
d3k e−ik·(x+r−y)(δi,j − k̂ik̂j)

= i

∫
Ce′,e,L

(dr)i

∫
d3k e−ik·r(δi,j − k̂ik̂j)j̃0(k)(f̃el)j(−k)

= i

∫
Ce′,e,L

(dr)iδi,j

∫
d3x j0(x)(fel)j(x + r) (3.25)

+ i

∫
Ce′,e,L

(dr)i

∫
d3x j0(x)

∫
d3y

1

4π|y + r|
∂i∂j(fel)j(x− y). (3.26)

We note that (3.25) vanishes for sufficiently large L since j0 and fel are compactly supported.

As for (3.26), we write in polar coordinates r = Lr̂ and assume that the contour is in the

plane {x3 = 0}. Then dr = Lϕ̂̂ϕ̂ϕdϕ and we have

(3.26) = i

∫ ϕ0

0
dϕϕ̂ϕϕi

∫
d3x j0(x)

∫
d3y

L

4π|y + Lr̂|
∂i∂j(fel)j(x− y). (3.27)

We take the limit L→∞ and then the integral w.r.t. y gives zero.
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4 Conclusion and outlook

In this paper we demonstrated the unitary inequivalence of different gauge-fixing conditions

in the presence of a non-zero electric charge. This was achieved by exhibiting an asymp-

totic charge which distinguished different gauges. Furthermore, we presented a general

formalism for computing large gauge transformations linking different gauges. We showed

that the transformation pertaining to the change of the axis direction of the axial gauge

is given by a Wilson loop over the region confined by the two axes. Although our analy-

sis was restricted to the external current situation, we believe that the main conclusions

remain valid in a larger generality. In particular, it is very plausible that the flux of the

electric field (1.1) retains the symmetry of the gauge fixing condition also in the presence

of dynamical charged particles.

It is well known that the axial gauge is very singular. In our case, the Hamiltonian (3.9)

exists in the limit ε → 0 only as a quadratic form and a presence of a self-adjoint Hamil-

tonian can be excluded using criteria from [22]. Similarly, A0,ε diverges in the limit ε→ 0.

These problems can be resolved by considering smeared axial gauges in the spirit of [19].

This amounts to replacing (3.11) with

χg,ε(x) =

∫
dΩ(e)g(e)

1

e · ∇ − ε
e ·AC(x), (4.1)

where dΩ is the spherical measure and g is a smooth, positive function, normalized to one

on the sphere S2. For this choice of χ the Hamiltonian and the electromagnetic potential

are well defined. It is not straightforward to relate the smeared axial gauge to the method

of Dirac brackets, but it is possible [26]. The discussion from the present paper can be

adapted to the gauges of the form (4.1). In particular, for g ≡ Cg 6= 0 on a subset Og ⊂ S2

and g ≡ 0 outside of some larger set Õg we have the following counterpart of formula (2.19)

lim
r→∞

∫
dΩ(e)g(e)

e

e · ∇+ 0
j0(fel,n,r) =

{
Cg
∫
d3xf(x) qn·(n+x)

4π|n+x|3 for n ∈ Og,
0 for n /∈ Õg.

(4.2)

It is obtained by similar steps as (2.19) and making use of the simple fact that for g ≡ 1/(4π)

formula (4.1) reproduces the Coulomb gauge. We note as an aside that the limit r → ∞
in (4.2) cannot be interchanged with the integral over dΩ, as then the result would be

zero by (2.19). Exploiting (4.2), one easily shows the inequivalence of different smeared

axial gauges, for suitable choices of smearing functions, in analogy with Theorem 2.1.

Furthermore, for a generic non-constant g the Hamiltonian Hg in the smeared axial gauge

does not have a ground state (cf. [1, formula (32)]). In this case there is clearly no unitary

U s.t. UHgU
∗ = HC, since HC has a ground state. Summing up, the case of smeared axial

gauges demonstrates that Theorem 2.1 is not just a manifestation of the known pathologies

of the sharp axial gauge.

It is an interesting question for future research how to reconcile the results of the present

paper with the generally expected gauge independence. One approach is to immerse the

system in a highly fluctuating but low-energetic background radiation (‘infravacuum’) and

try to restore the unitary equivalence of different gauges. Concrete examples of such in-

fravacua can be found in [5, 17, 18]. Another approach is to restrict attention to observables
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localised in a fixed future lightcone, so that the fluxes (1.1) cannot be measured. Then

one can try to prove the unitary equivalence on the resulting subalgebra, building on ideas

from [4, 6]. We hope to come back to these questions in future investigations.
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