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Abstract

The signature of a parametric curve is a sequence of tensors whose entries are iterated integrals. This
construction is central to the theory of rough paths in stochastic analysis. It is examined here through
the lens of algebraic geometry. We introduce varieties of signature tensors for both deterministic
paths and random paths. For the former, we focus on piecewise linear paths, on polynomial paths,
and on varieties derived from free nilpotent Lie groups. For the latter, we focus on Brownian motion
and its mixtures.

2010 Mathematics Subject Classification: 14Q15, 60H99

1. Introduction

A path is a continuous map X : [0,1] — R?. Unless otherwise stated, we
assume that the coordinate functions X, X5, ..., X, are (piecewise) continuously
differentiable functions. In particular, their differentials dX; () = X;(t) dt obey
the usual rules of calculus. The kth signature tensor of X has order k and format
d x d x --- x d. This tensor is denoted by o ® (X). Its d* entries o;,;,..;, are real
numbers. These are computed as iterated integrals:

1 tr 15} 5]
O’iliz--'ik == / / Tt / / dXil (tl) dXiz(t2) te dXik,1 (tk,]) dXik (tk) (1)
0 0 0 0

We also write dX (t) = (dX,(t),dX,(t),...,dX,(t)) for the differential of the
path X. The signature tensor can be written as an integral over tensor products of
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C. Améndola, P. Friz and B. Sturmfels 2

such differentials:
a®(X) =/ dX(1) ®dX(h) ® - ®dX (1). 2)
A

This integral is over the simplex A = {(tl, Lo eR0OLH - <y < 1}.
Signature tensors were introduced in the 1950s by Chen [7-9]. They are central
to the theory of rough paths [29], a revolutionary view on stochastic analysis, with
important contributions by Terry Lyons, Martin Hairer, and many others (cf. [18,
20, 31, 32]).
The step-n signature of a path X is the sequence of its first n signature tensors:

o' (X) = (1,0"(X), 0¥ (X), 0P (X), ..., 0" (X)). 3)

Here oV (X) = X(1) — X(0) is a vector, c®(X) is a matrix, and so forth.
As n goes to infinity, we get a tensor series o (X), referred as the signature
of X. Chen [9] proved that, up to a natural equivalence relation, each path X
is determined by its signature o (X). Hambly and Lyons [24] refined Chen’s
theory and obtained quantitative results for paths of bounded variation. This was
extended in [5] to arbitrary geometric rough paths. Algorithms for recovering
paths X from their signature o (X) are of considerable interest for applications [10,
30, 33-35].

This paper concerns paths X that depend on finitely many parameters. We focus
on two families: polynomial paths and piecewise linear paths. In the first case,
each coordinate X; is a polynomial in ¢ of degree m. In the second case, X; is
piecewise linear with m pieces. Each family has dm parameters. The integral (1)
is a polynomial of degree k in these parameters. The signature tensor o ® (X) is
a polynomial function of the dm parameters. These tensors trace out an algebraic
variety in the space of all tensors. Our aim is to study such varieties.

Stochastic analysis is the natural home for paths and their signatures. The
present article is different. It examines paths and their signatures through the
lens of algebraic geometry [13], commutative algebra [17], and representation
theory [28]. Our inspiration is drawn from algebraic statistics [16] and tensor
decomposition [25]. While the tensors we defined have their entries in R, the
associated varieties comprise tensors over the complex numbers C. We work with
homogeneous polynomials, so they are complex projective varieties.

This paper is organized as follows. In Section 2, we fix notation, we define our
objects of study, and we compute first examples. We explain the passage from
the real tensors o (X), where X ranges over paths of interest, to homogeneous
ideals and complex projective varieties. The resulting distinction between image
and variety is ubiquitous in applied algebraic geometry.
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Varieties of signature tensors 3

Section 3 concerns signature matrices. The case k = 2 is surprisingly rich and
interesting. Theorem 3.3 shows that the signature images for polynomial paths
of degree m agree with those for piecewise linear paths with m segments. This
result does not generalize to higher order tensors. Theorem 3.4 characterizes the
signature ideals in terms of rank constraints.

In Section 4, we investigate the algebraic underpinnings of the theory of rough
paths [20, Section 7]. We study the free Lie algebra and the associated nilpotent
Lie groups [39]. Theorem 4.10 characterizes their vanishing ideals by identifying
explicit Grobner bases. The order £ component of the nilpotent Lie group defines
a variety that contains the signature tensors of all deterministic paths. It serves as
the ambient space for the varieties in the next section.

Section 5 studies signature varieties for piecewise linear paths and for
polynomial paths. Chen’s theorem [7] gives a parametric representation for
the former, via tensor products of exponentials. The two cases are similar, but
different (Theorem 5.7). Both families interpolate between the Veronese variety,
which encodes line segments, and the universal variety (Theorem 5.6). Numerous
instances are computed explicitly. As an application, we answer a question due
to Lyons and Xu [34] concerning axis-parallel paths. We conclude the section by
introducing the rough Veronese, a variety comprising signatures of rough paths.

In Section 6, we examine the dimensions and identifiability of our signature
varieties. Theorem 6.1 shows that the universal variety U, is identifiable. We
conjecture the same for signature varieties of piecewise linear and polynomial
paths and we offer supporting evidence.

In Section 7, we shift gears, by turning to random paths and their expected
signatures. We focus on Brownian motion and mixtures of Brownian motion. This
leads to a non-Abelian refinement of the moment varieties in [2, 3]. The varieties
of expected signatures are computed in several cases. These are not contained
in the universal variety from Section 4. However, all expected signatures are
contained in the convex hull of the universal variety.

The main contribution of this paper is a new bridge between applied algebraic
geometry and stochastic analysis, where rough paths are encoded in signature
tensors. Varieties of such tensors offer a concise representation of geometric data
seen in numerous applications.

2. From integrals to projective varieties

In this section we develop the foundations for signature varieties of paths.

2.1. Computing iterated integrals. A first observation is that the integrals (1)
do not change if the path X undergoes translation. We therefore always assume
X (0) = 0. For such a path X in R?, consider the entries of the signature matrix
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0@ (X) = (0;;). They can be expressed as one-dimensional integrals:

1 pt 1
%:/0 /0 dX,»(s)de(t)=/o X;()X;(t)dt.

The symmetrization of this d x d matrix is the matrix X (1)-X(1)7. This
symmetric matrix has rank < 1. Conversely, every d x d matrix S whose
symmetrization S + S” has rank < 1 and is positive semidefinite arises from
some path X in R?. The set of such matrices is the signature image

jflz = {%v Qv+ Q:veR! QeR™ skew—symmetric} C R (4)

This converse is not obvious. It follows, for instance, from Theorem 3.3 below.

We are interested in polynomial equations that hold on the signature image.
Consider the case d = 2. The symmetric part of our 2 x 2 matrix has rank 1, so
its determinant vanishes. This means that the following quadratic equation holds
on the signature image:

(012 + 021)* — 401,095 = 0, (5)

Let Z/{f2 denote the set of solutions § = (o;;) to this equation in the space of
matrices R>*2. This is the smallest variety containing the signature image. The
latter is the semialgebraic set

2ifg:{‘geblfz:dll >Oand0’22>0},

For an algebraic geometer, it is natural to view the o;; as homogeneous
coordinates for the projective space IP3. In that ambient space, the quadratic
equation (5) defines the following surface, which will be our signature variety in
this case:

Uy, = {[011 D01 1 0 022] € P? such that (5) holds}.

See the next subsection for the relevant philosophy.

We next present explicit formulas for the entries of the signature tensors for two
special paths in R?. It is instructive to check the computation of these integrals by
hand ford <3 and k < 3.

EXAMPLE 2.1 (The canonical axis path). Let C,s be the path from (0,0, ...,
0) to (1,1, ..., 1) given by d linear steps in the unit directions ey, ey, ..., e; (in
that order). One finds its signature tensor o ®(C,;,) either directly by integration,
or via Chen’s Formula (38) for piecewise linear paths. The entry o;,;,..;, is zero
unless i; < ip < --- < i;. In that case, it equals 1/k! times the number of distinct
permutations of the string i,i, - - - i;. For example, if k = 4 then o, = ﬁ, o110 =

1 _ 1 _ 1 _ —
501122 = 71,0113 = 5,013 = 1 and 01243 = 0. <&
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Varieties of signature tensors 5
We next specify a blueprint for paths whose coordinates are polynomials.

EXAMPLE 2.2 (The canonical monomial path). Let Cy,,,, denote the monomial

path t +— (¢,¢%, ¢, ..., t%). It also travels from (0,0, ...,0) to (1,1,...,1), but
now along the rational normal curve. The entries 0;,;,..;, of the signature tensor
0% (Cpono) are given in (1), by integrating i,i, - - - i; times #]' "'~ ...t~ over

the simplex A. This computation reveals, for 1 < iy,i,...,i < d,

i i i3 Ik
i1 i+l it Iy +iy+ -+

Oiyigip =

The general linear group G = GL(d, R) acts on paths in R?. It also acts
on signatures, by the kth tensor power representation. This action extends to
noninvertible d x d matrices. The map X > o ® (X) is equivariant for this action.
This allows us to derive formulas for the following two special classes of paths.

Let X = (x;;) be a d x d matrix. Its jth column represents either a linear
step or a vector of coefficients associated to the monomial #/. Thus, XC,ys is a
piecewise linear path with d pieces, and XCy,ono 1 @ polynomial path of degree
d. Conversely, all such paths arise from some choice of matrix X. The signature
tensor o ® (XC,) is the image of 0 ® (C,) under action by X. For k = 2, this action
is multiplying the matrix o®(C,) by X on the left and by X” on the right.

EXAMPLE 2.3 (d = 3, k = 2). The signature matrices of the canonical paths are

0(2) (Caxis) = and 0(2)(Cm0n0) =

(6)

S O v
O NI=
D= ek
Bl —=
QDR B0 WIN
QW W W

The symmetric part of each signature matrix is the same constant rank 1 matrix:

1 1
6(2) (Caxis) + 6(2) (Caxis)T = 0(2) (Cmono) + 0(2) (Cmono)T = 1
1

We encode cubic paths X = XCy,on0 and 3-step paths X = XC ;s by 3 x 3 matrices

X11 X12 X113
X=1[xn x» x3
X311 X32 X33

In each case, the map X + o®(X) from paths to signature matrices is encoded
by the quadratic map X > Xo @ (C,)XT. This takes the space of 3 x 3 matrices
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C. Améndola, P. Friz and B. Sturmfels 6

to itself. The image consists of certain 3 x 3 matrices S whose symmetric part
1(S+ S7) has rank 1. <&

EXAMPLE 2.4 (d = 2, k = 3). Consider a general quadratic path in the plane R:

2
X21 X2 1

t
X (1) = (xnt + xpt%, X0t + x0t”)" = (x“ x”) ( ) (7)

Its third signature (k = 3) is a2 x 2 x 2 tensor. The eight entries of o (X) are

1
o = g +x12)°
1 1
o112 = ¢ (01 4 x12)” (a1 + X22) + g5 (Sxn + 4x12) (X1 X2 — X21X12)
i 1
o121 = §(X11 + x12)°(X21 + x22) + g5 (2x12) (X11X2 — X21X12)
1 i
011 = 5 (X11 + X12)*(X21 + X22) — 55(5x11 + 6X12) (X171 X2 — X21X12)
i i
0122 = ¢ (11 4 x12) (v 4 x22)% + g5 (5xa1 4 6x20) (X11 %22 — X21X12)
1 i
0212 = ¢ (11 4 X12) (21 4 X¥22)% — 55 (2x22) (X11X22 — X21%12)
1 1
om1 = ¢ (11 4 x12) (a1 4 x22)% — 55 (51 + 4x2) (X11X2 — X21X12)

1
0 = ¢ (X1 + x20)°.

®)

This is the transformation of the special tensor o ® (Cpono) in Example 2.2 under
the action of the 2 x 2 matrix X = (x;;). The symmetrization of o ®(X) is a tensor
of rank one, because

1 2 1 2
o112 + 0121 + 0211 = 01112 = 01102 = 50,02 = 5(x11 +x12)"(x21 + x22)

12 1 2
0122 + 0212 + 0221 = 01422 = 01022 = 50105 = 5(x11 +x12)(x21 + x22)°.

()]

The shuffle relations in the middle will be defined and play an important role
in Section 4. Of course, the equality of left- and right-hand sides in (9) can be
checked directly from (8).

We wish to find relations among the eight entries of o (X) that hold
for all quadratic paths. Hence, we want to eliminate the parameters x;; from
(8). This task, known as implicitization, arises frequently in computer algebra.
The standard approach using Grobner bases is explained in the undergraduate
textbook by Cox et al. [13, Section 3.3]. The output of the implicitization is the

prime ideal P, 3, of polynomial relations among the 0.
The ideal P, 3, is generated by nine quadratic relations. Three of them are

degree ideal generator
2 2
4,2) 30, — 01110122 — 1001120211 + 201210211 + 205, + 1101110212 — 701110221
(3,3) 1001220311 — 401120212 — 701210212 + 201120221 — 401210221 + 30111022
2 2
(2,4) 3051, — 100120201 + 2021201 + 2055, — 01120220 + 1101210227 — 702110225.
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Varieties of signature tensors 7

These three constraints on 2 x 2 x 2 signature tensors are specific to quadratic
paths in R2. The other six generators are valid for all paths in R?. Those are
shown in Example 4.13. All nine quadrics can be found with any computer algebra
system that offers Grobner bases. The computations with ideals reported in this
paper were carried out with the software Macaulay?2 [21]. <&

2.2. The many lives of a variety. We now step back to contemplate the title of
this article. Signature tensors were explained in the previous subsection. Our next
goal is to explain what is meant by their varieties. This is important because our
presentation rests on conventions from algebraic geometry that may be unfamiliar
to readers from stochastic analysis. The key point is that the geometric objects we
study are complex projective varieties along with their homogeneous ideals.

Consider an arbitrary map o : R? — R? whose coordinates o; are
homogeneous polynomials in p variables of degree k. We are interested in
the image of o. Algebraically, this is represented by an ideal F in the polynomial
ring in g variables, namely the kernel of the associated ring homomorphism
from that polynomial ring to the polynomial ring in p variables. The ideal F is
homogeneous and prime. It is generated by homogeneous polynomials. Being
prime means that the quotient modulo F is an integral domain [13, Section 5.1,
Proposition 4].

The image of o is a semialgebraic set in R?, denoted by F™ = image (o). This
set is often very complicated. One works with outer approximations by algebraic
varieties, namely the real and complex zeros of the ideal F. The complex variety
FC = VE(F) c C? contains the real variety F* = V*(F) C RY. Both of the
following two inclusions are usually strict:

Fm o FRc FC (10)

EXAMPLE 2.5. Let p =2,9g =4 and o : u — u ® u the map that takes a vector
2
u = (uy, uy) to the associated rank one matrix u @ u = (' “'}*). The ideal F

2

ujuy Uy
is generated by the linear form o1, — 03, and the quadratic form oy,02; — 01,07;.
The variety F*® is a real surface in R*, and F© is a complex surface in C*. These
are the symmetric 2 x 2 matrices of rank at most 1. The image '™ is the subset

of matrices in F® that are positive semidefinite. <&

From a geometric point of view, it is natural to work modulo scaling. This
means we work in a projective space: two nonzero vectors are identified when
they are parallel. Our degree k map o induces a rational map of complex
projective spaces o’ : Pé_l -—» IP’%_I, and this restricts to a rational map of real
projective spaces o” : P2~' --» PZ"'. Being rational means that ¢’ may not be
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everywhere defined. If u € C?\{0} satisfies o (1) = 0 then ¢’ is not defined at the
corresponding point [u] € ]P’fc’_l. Such points are known as base points.

Every subset 2/ of R? or C¢ gives rise to a subset in P4 ' or PZ™", namely the
set [U] of lines that are spanned by vectors in {/. We write this in symbols as

(U] = {[u] : u € U\{0}}.

If U\ {0} is an affine variety then [I/] is a projective variety [13, Section 8.2].
With this, the chain of inclusions in (10) is now taken into projective space:

image(c”) = [F™] C [F*] c [FC). (11)

We similarly have the inclusion image(c’) C [FC] in the complex projective
space IP’%_I. If we recast Example 2.5 in the projective setting then the left
inclusion in (11) becomes an equality. Indeed, for this example, [F'™] = [F®] in
IP?, because every 2 x 2 matrix of rank 1 is either positive or negative semidefinite.
Similarly, image(c’) = [F*] holds in P3.

The key word Zariski closure refers to the passage in (10) or (11) from images
on the left to varieties on the right. The Zariski closure is the smallest variety
containing a given set.

We have now introduced quite a few decorations for the symbol F, and these
decorations are important when making precise geometric statements pertaining
to the three dichotomies

image versus closure of image, real versus complex, affine versus projective.

In the literature in applied algebraic geometry, these distinctions are often swept
under the rug. This is a matter of convenience and simplicity. For the most part,
our article will follow that convention. The symbol F will stand for the complex
projective variety [F]. Some of our results will pertain to the images F'™ and
[F™] over the real numbers, and in those cases the decorations for F will be used
and highlighted. Thus P/~! is a projective space over C, and F is a subvariety in
that space. It is tacitly understood that F arose from some specific polynomial
map o and that F is a proxy for 7™ = image(c’). For instance, the map o in
Example 2.5 defines a quadratic curve F in a plane P? that lives in P,

Both of the fields R and C are peripheral when it comes to computations
with software. In most applications, including ours, the coordinates of ¢ have
coefficients in the field QQ of rational numbers. All polynomials seen in this article
have rational coefficients. In particular, the ideal F' lives in a polynomial ring with
coefficients in Q. The variety F is represented through its ideal F.

We conclude that the title of this paper refers to the algebro-geometric study
of a certain signature map o . Its coordinates are homogeneous polynomials of
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degree k. We seek to find the homogeneous prime ideal F of relations among these
polynomials. This is the signature ideal F . Its signature variety JF is the complex
projective variety, unless explicitly stated otherwise. The associated signature
image F™ is a semialgebraic set in real affine space.

Parameter identifiability is an important issue, and we shall address this in
Section 6. In Example 2.5, the map o : R? — F'™ is two-to-one. Each nonzero
matrix in F'™ has two preimages (u;, ;) and (—u;, —u,). On the other hand, the
map o’ : P! — F is one-to-one. Every point on the quadratic curve F is uniquely
represented by a point [u; : u,] in the parameter line P!. We express this by saying
that the variety JF is rationally identifiable.

Throughout this paper we use calligraphic letters for varieties and roman letters
for ideals. So, if F denotes a variety then we write F for its radical ideal. If F
is irreducible then F is prime, and if F is projective then F is homogeneous. For
any field K, such as C or R or Q, we also use the notation F(K) instead of FX
for the set of points with coordinates in K.

We illustrate this for some objects that will appear in Section 4. The (n-
truncated) free Lie algebra over R with d generators is denoted by Lie" (R?). This
is a linear subspace in an affine space of dimension d + d* + - - - + d", namely
the truncated tensor algebra over R. Its ideal lives in a polynomial ring over Q in
d+d*+---+d" variables. It is generated by the linear forms o, ; in Lemma 4.1.
The corresponding Lie group gj;; = exp(Lie" (RY)) is also an affine variety, with
ideal G, , generated by the quadratic polynomials o;0; — o, ;. The intersection
of this ideal with the polynomial subring for a fixed level k, where the variables
oy satisfy |I| = k, is a homogeneous prime ideal U, ;. The associated projective
variety U, ; is our universal variety. Its subset of real points, denoted U, ;(R),
contains the signature tensor o ®(X) for any deterministic path X in R?. This is
the Chen—Chow Theorem 4.4.

3. Varieties of signature matrices

We here study varieties of d x d signature matrices S = o®(X) of paths X in
R?. Any d x d matrix S can be written uniquely as the sum of its symmetric part
and skew-symmetric part:

S=P+Q, where P=3(5+5")and Q =1(5—S").

The (“1') entries p;; of P and the (%) entries g;; of Q serve as coordinates on the

. . 2 _ . . .
space of matrices, either RY*¢ or P4 ~!. Thus, in this section we transform our
coordinates as follows:

oii = pii, 0 =pij+q; and o; =p;—¢q; forl<i<j<d.
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The signature matrix of a path X in R¢ has real entries. We here restrict to
certain families of paths that depend on a parameter m. The resulting signature
matrices o ® (X) form the signature image. This is a semialgebraic subset in the
real affine space R?*?, as discussed in Section 2.2. We shall represent it as an
orbit of the group GL(d, R) with respect to its natural action on the tensor product
R?4 = R? ® RY. The signature variety is the Zariski closure of this orbit in the
projective space P4~ of complex d x d matrices.

3.1. Real signature matrices. We fix positive integers m < d. Let S!"
denote the d x d matrix whose upper left m x m block is the upper—trlangular
matrix 0 ?(C,;) in Example 2.1, with zeros in all other entries. Similarly, we
write SI4m for the d x d matrix whose upper left m x m block is the matrix
0 (Cpono) in Example 2.2. See equation (23) in Example 3.5 for the case d = 3,
m = 2. The decompositions of our matrices into symmetric and skew-symmetric

parts are

S[d ,m] P[d ,m] 4 Q.[dj{n] and S[d m] __ P[d m) 4 Q[d,m]. (12)

axis axis axis mono mono mono

A piecewise linear path X with m segments in R? is represented by any d x d
matrix X = (x;;) whose first m columns are the steps. The signature matrix of this
path equals

o@(X) =X sk XT, (13)

axis
The signature image for piecewise linear paths with m segments in R is the orbit
=X Sk X X e R c R (14)

A polynomial path of degree m in R? is represented by any d x d matrix X =
(x;;) whose first m columns give the coefficients of the polynomials. As in (13),
it has signature matrix

O—(2)(x) _ Sld m] XT (15)

mono

The signature image for polynomial paths of degree m in R is the resulting orbit

= X Shon - X2 X e R c R (16)

mono

EXAMPLE 3.1 (m = 1 and Veronese). The signature image for linear paths equals
=P, ={3XX": X eRY).

These are the symmetric positive definite matrices of rank < 1. The Zariski
closure of the set [L}" ;] in P! is the Veronese variety, which consists of all
complex symmetric rank 1 matrices, regarded up to scaling. <&
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EXAMPLE 3.2 (m = 2). The signature image for two-step paths equals
L, =X+ X)X + X)) + 31X X] — XoX]) 1 X1, X, e R (17)

For a matrix § = P + Q € LI, ,, the symmetric part P lies in L}, | and the
skew-symmetric part Q has rank < 2. The orthogonal complement of span(X,
X,) lies in the kernel of P and of Q. Hence, the d x 2d matrix [P Q], built by
concatenating P and Q, has rank < 2.

The signature image L%, , is not closed. To see this, consider any matrix S with
P = 0 and Q skew-symmetric of rank 2. Then § satisfies the constraints above
but it does not lie in LI", ,. Otherwise, P = 0 would imply X; = — X, and hence
Q = 0. However, S lies in the closure of LI, ,. One can construct a sequence
of nearly antipodal pairs (X¢, X5) € (R?)? such that Q° = Q for all ¢ > 0 and
P® — 0 for ¢ — 0. The same phenomenon arises for polynomial paths of the
form (7) of degree m = 2. A quadratic path with P = 0 satisfies Q = 0. Such
paths are tree-like [24]. A typical case is the path ¢ +— (t(l —1),t(1 — t)). &

The following theorem elucidates the relationship between piecewise linear
paths and polynomial paths in R¢. They have the same d x d signature matrices.

THEOREM 3.3. If k = 2 then the signature image for piecewise linear paths
equals the signature image for polynomial paths. In symbols, ﬁi}f‘z,m = 73“,“‘2,71 C
Rdxd'

Proof. We abbreviate the matrices in (12) by A := S!%" and M := SI7] Tt is
enough to treat the case m = d, since this proves the result for all m < d. We
shall build an invertible matrix H such that HM H” = A. This will prove that A
and M have the same orbit under the action by GL(d, R) which clearly yields the
desired set identity in R*“, The proof that follows proceeds by induction on d;
to this end, introduce the ‘refined’ notation MY = Sl4dl For d = 1 we have

A=M= (%) and H = (1). To go from dimension d to d + 1 we write

M[d-H] —
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Here M = M, Our goal is to find a row vector x € R? and a scalar y € R
with

T . T
X y M| X ‘H _(* ‘ Sk 3 ddtim]
(H 0 )( ) <y ‘ 0>_(() ‘ HMHT>_ : A _Saxis - (18)

The identity in the middle requires that (x) = %, (x¥)=(1---1)and o = 07 = (0,
..., 0)T. We carry out the (block) matrix multiplication, starting with

(b)) = () | o),

The requirement 0 = 07 in (18) implies H(Mx + y()) = 0 and hence Mx +

y(f) = 0. With this, the condition (x) = % translates into one quadratic equation

in d + 1 unknowns (x, y):

d .
1 i 1

v = —x;+ =y | =1/2. 19

y(( )x+2y) y(?=l dri+i" +2y> / (19)

The final condition (%) = (1, ..., 1) gives d linear equations for (x, y) € R**!:

xTMH" +y(--)HT =(,...,1) inR‘. (20)

Here (---) = (1/(d +2),...,d/(2d + 1)). The solution set to (20) is a line in
R, For any given y € R, there is a unique solution x = x(y). (It is an a fortiori
consequence of (21) below that M is invertible, as is M H” using the induction
hypothesis.) Substituting this into (19), we obtain a quadratic equation in one
variable y. Let y be one of its complex solutions. We claim that y is real.

Let H be the desired (d + 1) x (d + 1) transformation matrix on the left of
(18). By Laplace expansion with respect to the last column, its determinant equals
detH = + ydet H. Taking determinants on both sides of (18), and using det H =
det HT # 0, we conclude

1 1
2 2 [d+1]
y* - det(H)* - det(M'"™) = Edet(A) = S

At this point it suffices to know that det(M'“!) > 0 for all d € N. In fact, we claim
[licicjcai =7
l_lﬁizl l_[(;:] @+
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This identity holds because M'“! becomes a Cauchy matrix after we divide its jth
column by j. This positivity of det(M'“!) implies that y? is positive and hence y
is real. From (20), we obtain a (real) vector x = x(y). The resulting matrix H
completes the induction step. O

3.2. Determinantal varieties. The precise characterization of signature
images is a subtle matter. We already saw this in Example 3.2. In this article, we
address the easier problem of characterizing the polynomial equations that vanish
on these images. In other words, we study the signature varieties and their ideals.
The inequalities that hold on the signature images are left to future research.

Let M, ,, denote the prime ideal of homogeneous polynomials that vanishes
on LI, = Py .. This lives in the polynomial ring over Q with d* variables,
namely the (“1") variables p;; and the (%) variables g;;. The corresponding variety
M, lives in the projective space P! of d x d matrices. This signature variety
is the Zariski closure of the signature image. Our main result in this section
characterizes this variety in terms of the d x 2d matrix [P Q].

THEOREM 3.4. For each d and m, the following varieties in P! coincide:
(1) The variety of signature matrices of piecewise linear paths with m segments.
(2) The variety of signature matrices of polynomial paths of degree m.

(3) The variety of matrices S = P+ Q, with P symmetric and Q skew-symmetric,
such that rank(P) < 1 and rank([P Q]) < m.

For each fixed value of d, we have the following chain of varieties in Pl
Moy C Mg, C Mgz C--- CMyg=Magrn = Magin=--- (22)

Fixm < d. Then M, is irreducible of dimension md — (’;) — 1. If m is odd then
its ideal M, ,, is generated by the 2-minors of P and the (m + 1)-pfaffians of Q.
If m is even then M, ,, is generated by the 2-minors of P, the (m + 2)-pfaffians of

0, and the entries in P - C,,(Q) where C,,(Q) is the circuit matrix of m-pfaffians.

The matrix Q is skew-symmetric. Its principal minors of odd size are zero.
Each principal minor of even size m is the square of a polynomial of degree m /2
in the g;;. These polynomials are the m-pfaffians of Q. The circuit matrix C,,(Q)
has format d x (mil), with columns indexed by the (m + 1)-element subsets /
of {1,2,...,d}. The entry in row i and column / is O unless i € [. In that case
it equals the m-pfaffian of Q that is indexed by I'\{i}. Here the pfaffian must be
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taken with the correct sign. For instance, if d = 6 and m = 4 then

0 34456 — 435946 + G365 Guqs6 — qa5qas + Gasqas s — Gudss + @asq
434456 + d35qas — 436445 0 G1aqs6 — q159a T q16Gas 0 qi3qas — qiaqss + qisqsa
Ci(Q) = —q24qs6 + 425916 — G26945 —q14q56 + Q15946 — G16G45 0 G12dss — quadas + qisqas .
—4239s56 + G25q36 — 926435 —q13956 + q15q36 — q16935 —q12qs6 + 156 — Qi6Gas - qiagss — qi3qs T qisqas
—q23q46 + 424936 — G634 —q13q46 + 14936 — q16934 —q12G46 + q1aG26 — q16G24 e gy — i+ quds
—q23qss + qdss — qasqs —q13Gs5 + q14q35 — q15G34 —q12Gs5 + q14G2s — q15G24 e 0

The entries of this matrix are the 2-pfaffians of the 6 x 6 matrix Q. The 4-
pfaffians are homogeneous quartics with 15 terms. For any m and d, the columns
of the circuit matrix C,(Q) are canonical generators for the kernel of the matrix
0, provided Q has rank m. Think of Cramer’s rule for ker(Q). These generators
correspond to circuits in matroid theory [37].

EXAMPLE 3.5 (d = 3, m = 2). The variety M3, has dimension 4 and degree 6
in P8. It is the Zariski closure of the common orbit of the following two matrices
under the GL(3, R)-action:

110 30
Smr=10 1 o] or SEN=|1 2 0]. (23)
000 000

The variety M3, is cut out by the 2 x 2 minors of P = (p;;) and the 3 x 3
minors of
pPu P12 P13 0 q912 413
[POl=|pi2 P2 P3 —qn 0 g
P13 P»n P —qiz —qn 0

However, these do not generate the prime ideal M;,. For that we need nine
quadrics, namely the six 2-minors of P and the three entries of P - C,(Q) where
C(Q) = (q23, —q13, qlg)T. The fourfold M3, contains the Veronese surface
M, >~ P2, which lives in a P° inside P8. The ideal M5, of that surface is
generated by {g12, q13, ¢23} and the 2-minors of P. <&

Proof of Theorem 3.4. We consider pencils spanned by a symmetric matrix P
and a skew-symmetric matrix Q. These are called T-even matrix pencils in the
linear algebra literature. Their normal forms are found, for example, in [27, 40].
They correspond to normal forms of § = P + Q under the GL(d, C)-action by
congruence S — XSX'. By Theorem 3.3, our two canonical pencils in (12) are
in the same orbit. It consists of rank m pencils (P, Q) where P has rank 1. The
closure of this orbit also contains orbits where the rank drops from m to < m — 1.

If m is odd then Q has rank m — 1. There is no constraint imposed on the rank
1 matrix P. The normal form is the direct sum of one pencil ((1), (0)) andd —m
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Varieties of signature tensors 15

zero pencils and (m — 1)/2 pencils (0 0s -1 0) If m is even then image(P) C
image(Q) holds on the orbit in question. The normal form is the direct sum of
one pencil (33, ° §) and (m — 2)/2 pencils (5§, ° §). The rank constraints in
item 3 characterize the closure of this orbit. We conclude that the variety in item
3 is indeed irreducible and equals those in items 1 and 2.

To prove our formula for the dimension, we start with two binomial identities:

= (5)=[G) - (7)o =L G)- (75 77)) o

We claim that this is the dimension of the affine cone over M, ,. The
parenthesized expressions give the dimension of the variety of skew-symmetric
d x d matrices Q of rank < m. When m is odd then the formula on the right is
used. In that case we can set P = vv” where v is any column vector in R?. When
m is even then the formula in the middle is used. Given Q, we now choose v in
the column span of Q, so there are m degrees of freedom for P.

It remains to establish the assertions about the prime ideal M, ,, associated
with M, .. The polynomials we list are in that ideal, and they cut out the variety
M. set-theoretically. We must show that they generate a prime ideal. If m is
odd then this follows from the well-known fact that the 2-minors of P and the
(m + 1)-pfaffians of Q both generate prime ideals. Since they share no variables,
the sum of these two ideals is also prime. If m is even then we must argue that
incorporating the entries of P - C,,(Q), which are homogeneous of bidegree (1,
m/2), does not destroy primality. This can be shown by computing the reduced
Grobner basis with respect to the lexicographic term order, where the matrix
entries are ordered row-wise with the p;; coming before the ¢;;. The leading terms
in that Grobner basis are square-free. The initial ideal is radical, and hence so is
the ideal in question. Since it cuts out the correct irreducible variety, Hilbert’s
Nullstellensatz ensures that the ideal is prime. O

Table 1 lists invariants of the prime ideals M, ,. These can be computed in
Macaulay?2 [21]. The same format is used in later sections when we pass from
matrices to tensors. The column ‘a’ denotes the ambient dimension. This refers
to the smallest linear subspace of pd*-1 containing M, ,,. For instance, M3 ; is an
ideal in a polynomial ring with 9 unknowns and it contains 3 linear forms. Hence,
the ambient dimension is 5 = 9 — 3 — 1. Indeed, the quadratic Veronese surface
M, > P? lives in P°. The column ‘dim’ displays dim(M, ) = md — (';’) — 1.
The column ‘deg’ displays the degree of M, ,,. For m odd, this is 2¢~! times the
degree of the variety of skew-symmetric matrices of rank m — 1. The latter is a
Catalan number when m = 3, which explains deg(M,3) = (2¢™1)/(d — D (7).

Note also deg(My,) = (2d 2) The last column ‘gens’ lists ji,, 143, ... where
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Table 1. Invariants of the ideal M, ,, that defines the variety of signature matrices M .

d k m a dim deg gens d k m a dim deg gens
2 2 1 2 1 2 1 5 2 2 24 8 70 100

2 2 2 3 2 2 1 5 2 3 24 11 80 55
32 1 5 2 4 6 52 4 24 13 40 50,5
32 2 8 4 6 9 5 2 5 24 14 16 50

3 2 3 8 5 4 6 6 2 1 20 5 32 105

4 2 1 9 3 8 20 6 2 2 35 10 252 225

4 2 2 15 6 20 36 6 2 3 35 14 448 120

4 2 3 15 8 16 21 6 2 4 35 17 280 105,36
4 2 4 15 9 8 20 6 2 5 35 19 96 105, 1
5 2 1 14 4 16 50 6 2 6 35 20 32 105

W, is the number of minimal generators of M, ,, in degree i. For instance, Mg 3 is
generated by 120 quadrics, while Mg 4 is generated by 105 quadrics and 36 cubics.
The former express rank(P) = 1. The latter come from P - C4(Q).

4. Universal varieties from free Lie algebras

The kth signature tensor of a path X in R? is an element o ¥ (X) of the tensor
space (RY)®*, We denote the coordinates on this space by o;,,,..;, for 1 < ij,
iz, ..., iy < d. We write R[o®] for the polynomial ring generated by these d*
coordmates. This is the homogeneous coordinate ring of the projective space
P?~!, taken over either R or C. The general linear group G = GL(d, R) acts
naturally on the spaces (R?)®* and P4 ~!, and on the ring R[c®].

Signature matrices o ® (X) were characterized in Section 3. In this section, we
deal with signature tensors of order k > 3. We shall derive their signature varieties
in P““~'. This rests on the theory of free Lie algebras [39].

4.1. Tensor algebra, Lie polynomials and shuffles. For any positive integer
n, we consider the truncated tensor algebra

n
T"(R") = P®!)=". (24)

k=0
This is a noncommutative algebra whose multiplication is the tensor (or
concatenation) product, where tensors of order > n + 1 are set to zero. We
write 7" (R?) for the hyperplane in T"(R?) that consists of tensor polynomials
with constant term v. The standard basis of R is denoted by ey, e, ..., e,.
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The induced standard basis of 7" (R?) is abbreviated
Ciiyiy =€, €, e, forl <iy,i, ...,y <dand 0 < k < n.

We refer to basis vectors with k > 1 as words and we often write them simply
as i,i, - - - iy. The empty word spans the one-dimensional space (RY)®° = R of
constant terms in 7" (RY).

Following [23, Section 4] and [39], the truncated tensor algebra 7" (R?) also
carries several additional algebraic structures. First, it is a Lie algebra, where the
Lie bracket is the commutator

[P,O]=P®Q—-0Q0®P forP,QeT"RY.

Next, T"(R?) is a commutative algebra with respect to the shuffle product L,
where words of length > n+ 1 are set to zero. The shuffle product of two words of
lengths r and s (with r 4+ s < n) is the sum over the ("**) ways of interleaving the
two words. For a more formal definition see Reutenauer’s book [39, Section 1.4].
Here are some examples for the shuffle product:

€234 = €1z LLlesy = e1234 + €324 + €1342 + €3124 + €3142 + €3412,
€334 = €3 LLlejsy = e3134 + 2€1334 + €1343, €121 = 2€2121 + 4eniy,
et =4ein,  enwn =06eii1,  enwa = 2eim1 + e + e + 2e1.

The tensor algebra also carries two coproducts: the deconcatenation coproduct
Ag and the deshuffle coproduct AL, given by dualizing the corresponding
products. One so obtains two bialgebra (in fact, Hopf algebra) structures that are
in natural duality, see for example, [39, Proposition 1.9]. The truncated tensor
algebra naturally inherits most of these structures.

The ring of polynomial functions on 7"(R?) is denoted by R[oS"]. The
coordinate functions are o;, where I runs over all words of length < n. For
two words I and J of length > 1, let 6;,,,, be the linear form in R[oS"] that
corresponds to the shuffle product e¢; ,, ;. We refer to o;,,; as a shuffle linear form.
For instance, here are some examples of shuffle linear forms:

01211134 = 01234 + O1324 + 01342 + 03124 + 03142 + 03412,
03134 = 03134 + 2071334 + 01343, 02121 = 202121 + 40211,
orwin =401, onwn = 601111,

o221 = 201221 + 01212 + 02121 + 202112.

(25)

An element of T"(RY) is a Lie polynomial if it can be obtained from the
standard basis vectors ey, e;, ..., e; by iterating the operations of taking Lie
brackets and linear combinations. The resulting set of all Lie polynomials of
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degree < n is a vector space, denoted by Lie"(R?). Equivalently, Lie" (R?) is
the smallest Lie subalgebra of T"(R¢) containing R¢. By construction, all Lie
polynomials are elements of Tj'(RY) = {0} ® R & - - - & (RY)®".

LEMMA 4.1. Lie polynomials are characterized by the vanishing of all shuffle
linear forms:

Lie"(RY) = {P € TO"(]Rd) corws(P) =0 forall (nonempty) words 1, J}.

Proof. This is the equivalence between (i) and (iv) in [39, Theorem 3.1]. ]

We next recall (for example, from [39, Section 1.1]) that the familiar series for
the exponential function and the logarithm function determine polynomial maps
from 7" (RY) to itself:

1 _1 r—1
exp(P) = Z ;P‘g” and log(l+ P) = Z %P‘X”.
r>0 r>1

The image of 7;'(R?) under the exponential function is the set 7}"(R?) of tensor
polynomials with constant term 1. The logarithm function inverts the exponential
function on its image:

log(exp(P)) = P forall P € Tj'(RY).

The step-n free nilpotent Lie group is the image of the free Lie algebra under
the exponential map:

G"(RY) := exp(Lie"(R)) C T/"(RY). (26)

It is known (for example, [20, Theorem 7.30]) that G"(R?) is a Lie group,
with polynomial group law. It plays a central role as state space of geometric

rough paths (cf. Section 5.4). Elements in G"(R“) are also known as group-like
elements [23, 39].

LEMMA 4.2. Group-like elements are characterized by multiplicativity:
G'RY) ={P e TR :070,s(P) =0,(P)oy(P) forall I, J with |I|+|J| < n}.
Proof. This is a reformulation of [39, Theorem 3.2(ii)]. See also [23, (4.2)]. O

REMARK 4.3 (From R to K). The definitions above carry over verbatim from the
real numbers R to an arbitrary field K of characteristic zero. Lemmas 4.1 and 4.2
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remain unchanged. They furnish equational characterizations of the Lie algebra
Lie" (K?) and the Lie group G"(K?). The former is a linear space and the latter is
an affine algebraic variety.

We now come to the connection with paths. It is established by the following
fundamental result due to Chen [8, 9]. This can also be viewed as a consequence
of Chow’s work in [12].

THEOREM 4.4 (Chen—Chow). The step-n free nilpotent Lie group G"(RY) is
precisely the image of the step n signature map in (3) when that map is applied to
all smooth paths in RY:

G"(RY = {ag” (X) : X : [0, 11 = R%ny smooth path}. 27
We revisit the n = 2 case in Section 3 from the perspective of this theorem.

EXAMPLE 4.5 (n = 2). The truncated tensor algebra 7% (IR¢) consists of elements
4 ~—d d
P=3%_ 2 e+ Bei+y.

By Lemma 4.1, P is in Lie*(RY) if and onlyify =0and o ,; = o5 +aj; =0
for all i, j. Lemma 4.2 says that the exponentials of these Lie polynomials are
precisely the expressions

exp(P) = Y, Y5 oyjei; + iy over + 1.

where o;0; equals the shuffle linear form o0;,,; = 0;; + 0j; for 1 <1i,j < d.
These inhomogeneous quadratic equations cut out the step-2 free nilpotent Lie
group G*(R?). By eliminating o, ..., o, from these equations, we obtain the
homogeneous ideal M, , in Theorem 3.4. &

4.2. Grobner basis for the free Lie group. In what follows we work over an
algebraically closed field K of characteristic zero. Our varieties are defined over
Q. Computations refer to polynomials with rational coefficients. We consider the
following ideal in the ring K[o S"] of polynomial functions on 7" (K%):

Gy, = (a,a, — o7y : for all words I and J with [I]| + |J]| < n) (28)

This ideal is not homogeneous. Its affine variety G, , is precisely the free Lie
group G"(K?). The exponential map is a polynomial parametrization of this
variety. The following example illustrates the associated implicitization problem,
whose solution is given by Lemma 4.2.
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EXAMPLE 4.6 (d = 2,n = 3). The linear space Lie*(K?) has dimension 5. Its
elements are

o =re|+sey+tler,ex] +uler, [e1, ex]]l +vller, ex], ea]l, wherer, s, t,v,u € K.
Lie’ (K?) is the subspace of T (K?) ~ K'* defined by nine shuffle relations like
Owp =012 +021 =0, o =301 =0, o =201+ 0121 =0.

The exponential exp(o) of the Lie polynomial o is the following expression:

r? rs rs
1+r61+S€2+E€11+ ?—f—l‘ e+ ?—I e+ -

N rs? 5 N rs* st N N 53
— —2v e — ——4vle —ea.
; 212 G > 21+ cem

The coefficients of exp(c) define the exponential map from Lie® (K?) ~ K into
T} (K?) >~ K'". Its image is the 5-dimensional variety G, ;. We compute its ideal
G, 3 using the computer algebra package Macaulay?2 as follows:

R = QQ[sll1l,s21,s22,s111,s121,s211,s212,s221,8222,s81,s2,s812,s112,s122,
MonomialOrder=>Lex];

ExponentialMap map( QQ[r,s,t,u,v] , R,

{r°"2/2,r*s/2-t,s872/2,r°3/6,r " 2+xs/6-2%u,r " 2xs/6-r*xt/2+u,rxs"2/6-2*v,

r«s"2/6-s*t/2+v, s°3/6, r,s,rxs/2+t, r"2xs/6+r*xt/2+u, r*s"2/6+s*xt/2+Vv});

G23 = kernel ExponentialMap;

gens gb G23

G23 == ideal( s172-2%sl1l, slxs2-s12-s21, s272-2%s22, slxsll-3xslll,

s1xs12-2%s112-s5121, sl%s21-s121-2%xs211, sl%s22-s122-s212-s221,

s2xsl1l-s121-s211-s112, s2xs512-2%xs122-s5212, s2%xs21-2%xs221-s212,

S2%522-3%5222)

This computes the lexicographic Grobner basis with nine elements to be seen
in Theorem 4.10. The last command uses == to verify that G, ; is generated by
the quadratic relations 0,0, — o,5. &

We are interested in the structure of the free Lie group G, , as an affine algebraic
variety. To this end, we need to first record some combinatorial facts about free
Lie algebras.

A word [ on the alphabet {1, 2, ..., d} is a Lyndon word if it is strictly smaller
in lexicographic order than all of its rotations. Lyndon words are the Hall words
for a particular Hall set (cf. [39, Ch. 4]). Since they are easy to define, and seen
widely in the combinatorics literature, we use Lyndon words in what follows.
With any Lyndon word I one associates an iterated Lie bracketing b(I) by
induction on k = length(/). If k = 1 and I =i then b(I) = ¢;. If k > 2 then it is
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b(Il) = [b(1}), b(Iy)] where I = I, 1, and I, is the longest Lyndon word appearing
as a proper right factor of /. Some authors refer to the bracketing image (/) of
a Lyndon word I as Lyndon bracket. We point to [26]. That article also features
connections to Grobner bases. We use the following about Lyndon words.

PROPOSITION 4.7. The bracketings b(1) of Lyndon words 1 of length < n form
a basis for Lie" (K¢). The dimension of this Lie algebra, which is the number of
Lyndon words, equals

. 4
A = E E %d"/ Y, where w is the Mobius function.
k=1 ¢ divides k

Proof. The inner sum is the number of Lyndon words of length k. See [39,
Corollary 4.14]. O

EXAMPLE 4.8. There are A, , = 3 Lyndon words of length n < 2 and d = 2. Their
bracketings are e; = b(1), e; = b(2), e;;—ey; = b(12). These three elements form
a basis of Lie? (K?). <&

EXAMPLE 4.9 (d = 2, k = 4). The three Lyndon words have the bracketings

b(1112) = [1,[1, [1, 2]]] = e1112 — 3eria1 + 3ein11 — e,
b(1122) =[1,[[1, 2], 2]] = ej122 — 2e1212 + 2€2121 — €x11, (29)
b(1222) =[[[1, 2], 2], 2] = ei222 — 3€2122 + 3€212 — exa1.

The shuffle forms o 1,111, 01111 and o13,4,2; in (25) vanish on the span of (29), as
seen in Lemma 4.1. Hence the subspace of shuffle forms in K[o '] has dimension
13 =16 —3. <

We now present our main result in this subsection. It shows that the ideal G, ,
is prime. We fix a lexicographic term order in the polynomial ring K[o S™]. The
underlying variable ordering is assumed to satisfy the following requirement: we
have o; > oy if length(/) > length(J), or if J is obtained from / by rotation and
J is lexicographically smaller than /. Consider any word [ that is not a Lyndon
word. In the following theorem, the polynomial ¢; is the unique expression of o;
on G, ,, in terms of the unknowns o that are indexed by the Lyndon words J.

THEOREM 4.10. The ideal G, in (28) is prime. Its irreducible variety G, , has
dimension Ay, in T" (K9). The reduced Gréobner basis of Gy, consists of the
polynomials oy — ¢;(Oiynaon) Where I runs over non-Lyndon words of length < n.
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Example 4.6 illustrates Theorem 4.10 for d = 2, n = 3. The vector of Lyndon
variables equals Oiynaon = (01, 02, 012, O112, O122). Its length is A, 3 = 5. The last
line of the Macaulay?2 code is the right-hand side of (28). The output of the
command gens gb G2 3 is the reduced Grobner basis in Theorem 4.10.

Proof. By Lemma 4.2, the Lie group G,, is the zero set of the polynomials
oj0; — o7, y. This affine variety is irreducible because it is the image of the
linear space Lie" (K¢) under the polynomial map exp. This map has a polynomial
inverse, namely log. Hence the dimension of G, , agrees with that of Lie" (K%).
The latter dimension is A, ,, by Proposition 4.7.

Let 0jyngon denote the vector of all variables o, that are indexed by Lyndon
words J. We claim that, for every non-Lyndon word /, there is a polynomial
@1 = @1 (0O1yndon) in the Lyndon variables o such that the difference o; —; (0iyndon)
lies in the ideal G, ,. This follows from a theorem of Radford [38]. We shall prove
it by induction on lexicographic order.

We construct the polynomial ¢; with the technique used by Melangon and
Reutenauer in [36, Section 4]. The non-Lyndon word I has a unique factorization
into Lyndon words 1,1, - - - I.. Recall that shuffle multiplication is associative and
commutative. This ensures that the expression oy,.,p,11,...u1, — 01,01, - - - 07, lies in
the ideal G,,. Its highest term equals o; times a positive integer. We divide the
expression by that integer and then subtract it from o;. Each of the non-Lyndon
variables o seen in the resulting polynomial has either |I'| < |I| or |I'| = |I|
and I’ comes before /. Iterating this process, we are done by induction.

The prime ideal of G, ,, contains G, which in turn contains the ideal generated
by the expressions o; — @;(Oiyndon) for I non-Lyndon. The first ideal is prime by
definition. The third ideal is prime because its initial monomial ideal is prime.
This holds as it is generated by the variables o, for / non-Lyndon. Moreover, the
two prime ideals have the same dimension, namely A, ,. This implies that all three
ideals in our chain of inclusions are equal.

The argument also proves Radford’s result that the Lyndon variables o, are
algebraically independent modulo G, ,, so the polynomials ¢, seen in the Grobner
basis are unique. O

4.3. The universal variety. In this paper we study signature tensors of a fixed
order k. The elements in the Lie group G, , record these tensors simultaneously
for all values of k between 1 and n. We must extract the homogeneous component
of degree k, by projecting to the kth summand in (24). The algebraic counterpart
to the geometric operation of projection is the elimination of variables.

The universal ideal for order k tensors of format d x d x --- x d is defined as

Ui := Gar NK[o®]. (30)
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This is a homogeneous prime ideal in a polynomial ring in d* variables. We define
the universal variety Uy ;. to be the zero set of the ideal U, in the projective space
P4‘~!. As in earlier sections, the field K is algebraically closed of characteristic
zero. In applications to paths in R?, we would take K = C, but we could also
consider paths in K.

COROLLARY 4.11. If R C K then the universal variety U, is the smallest
projective variety in P~ that contains the kth signature tensors o® (X) of all
smooth paths X in RY.

Proof. This follows immediately from the Chen—Chow Theorem 4.4. O

The universal variety U/, is the ambient space for the varieties of signature
tensors in Section 5 below. We saw this already in the matrix case in Section 3.

EXAMPLE 4.12 (k = 2). The universal variety U, , is the variety M, 4 in (22).
Its points are the d x d matrices whose symmetrization has rank 1. It is universal
in the sense that, for all m € N, it contains the signature images L}, ,, and P
and their varieties M ,,. <

The varieties U, ; and its subvarieties in the next section are invariant under
the action of G = GL(d, K) on tensors. In describing their ideals, it is sometimes
convenient to perform a change of basis that realizes the decomposition of (K¢)®*
into irreducible G-modules.

EXAMPLE 4.13 (d = 2,k = 3). The universal variety 4, 3 lives in the space P’
of 2 x 2 x 2 tensors. We compute its ideal U, ; with the following two commands
after Example 4.6. The output consists of six quadrics:

U23 = eliminate({sl,s2,s1l1l,s12,s21,s22},G23)

codim U23, degree U23, betti mingens U23

To understand the output, we perform the change of coordinates
o111 =60y o1pp =20 — B op1=2a—y o1 =2m+B+1 31)
0220 =6ay op;=2a3—p orpp=2a3—yy o1 =2a3+pr+1r.

Here o;, B;, v, are coordinates on three irreducible G-modules S3 (K?), S, (K%,
S, (K?) in (K?)®. These have dimensions 4,2,2, by the Hook Length
Formula [28, Section 2.8]. The new coordinates reveal that the ideal U,; is
generated by the 2 x 2 minors of the 2 x 4 matrix

(3a1 W o 2ﬂ1+w>. (32)

a, a3 3oy —2B,—

The universal variety U, 3 has dimension 4 and degree 4 in P’. <&
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EXAMPLE 4.14 (d = k = 3). The universal variety /33 of 3 x 3 x 3 signature
tensors has dimension 13 and degree 24 in P?. Using Macaulay2, we find
that its homogeneous prime ideal U;; is minimally generated by 81 quadrics.
To exhibit these quadrics, we first decompose the ambient tensor space into four
irreducible G-modules:

(KH® = $3(K*) @S2 (K) @S2 (K) @ Sin(K’)  or K > K@K, @K @ Ky
The first and last component represent symmetric and skew-symmetric tensors

respectively. The following linear change of coordinates makes the isomorphisms
above explicit:

an =Su1, iz =Sz + 8210+ S20, 0 ans = Sus +Si3 8311, i = Si2 + S22 + 5221,
13 = 8123 + 132 + 8213 + 5231 + S312 + S321, Aizz = 8133 + 8313 + 5331, Gz = S,
ay3 = Sy3 + S + 530, Aoz = Su33 + 533 + S33, G333 = 8333, bioy = —4s1n + 25101 + 25011,

biyp = 25120 + 25010 — 4001, bios = 285103 + 25013 — 25031 — 25301, bizi = —4s13 + 25131 + 28311,
biza = 28130 — 25031 + 25312 — 25321, biss = 28133 + 25313 — 4saz1, oy = —4sa3 + 28030 + 2830,
byzy = 28533 + 28303 — 48330, €z = 28112 — 4101 + 25211, €z = 28113 — 4siz1 + 28311,

Cip = 2510 — 42120 + 28201, €13 = 28123 — 28013 — 28310 + 28301, 132 = 2130 — 28213 + 25031 — 28310,
Ci33 = 28133 — 48313 + 28331, €3 = 25;3 — 4somr + 2830, Co33 = 28933 — 4sans + 28332,
dip3 = S123 — S132 — S213 + S231 + S312 — 31

The ideal Us; 5 of the universal variety is generated by a space of 6-243-24-3-
3+6-7+ 12 = 81 quadrics. Its Z3-grading has 19 components that come in five
symmetry classes:

Six 4,2,0) 3ainam —611212, 6ai11b122 + 3ay11¢122 + 2a112b121 + ayacin,

three (3,3,0)  9ainam — ainan, 2ay112b122 + aypcinn + 2a1:b121 + arncin,
three (4, 1,1) 3ajans — 2ai2a13,  6a111bis + 3ayc13 — 3aydi + 2a112b131 + arpens,
6a11bi3 + 3aicias + 3aindis + 2a113b121 + aiern.

Six (3,2, 1)  6aians — andins, 2a112b13 + ai2¢103 + arpdins — 2a113b122 — ay3cin, . .. etc.

There are seven quadrics in degree (3, 2, 1). In addition, we have twelve quadrics
in the central degree (2, 2, 2), like 461112[?233 + 2a112C233 — 461122[?133 — 26l122C133 —
3aisdins — 4axsbia — 2ax;3¢11. <&

We computed the ideals U, ; for all values of d and k withd + k < 7. Since U, »
equals the matrix signature variety M, , (cf. Table 1), we only consider k > 3.
The results are listed in Table 2. In each case we computed, we found that U, ,
is generated by quadrics. The last column gives the number of generators. The
second-to-last column reports the degree of the variety U, , C Pt

In the first version of this paper we asked whether U, is always generated by
quadrics. This question has since been answered, to the negative, by Francesco
Galuppi. In Section 6 we shall prove that the universal variety U, has the
expected dimension A, — 1.
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Table 2. Invariants of the ideal U, ; that defines the universal variety U, ;.

a dim deg gens

7 4 4 6
15 7 12 33
31 13 40 150
26 13 24 81
80 31 672 954
63 29 200 486

AL LN
WA WUB AW

5. Piecewise linear paths and polynomial paths

This section is the heart of this paper. We introduce, study and relate the
signature varieties of two natural families of paths. These all live in the universal
varieties seen in Section 4.

5.1. Polynomial maps into tensor space. We now study paths X : [0, 1] —
R? whose coordinates are polynomials of degree m or piecewise linear with m
pieces. Each of these is represented by a real d x m matrix, also denoted by
X = (x;;). With this convention, a polynomial path has coordinate functions

Xi(t) = xitt 4 Xiot? + X3 + -+ A+ Xppt™ (33)
The differential 1-forms seen in the iterated integrals (1) are
dX;(t) = X\()dt = (x;1 + 2xppt + 3x331% + -+ - + mx;,t" ") dit. (34)

Each coordinate o;,;,..;, of the tensor o® (X) is a homogeneous polynomial of
degree k in the dm unknowns x;; with coefficients in Q. Formulas ford =2,k =3
are shown in Example 2.4. The d x d x --- x d tensor o ®¥(X) can be computed
from the m xm x - - - x m tensor 0¥ (Cpono) in Example 2.2 by multiplying each of
its k sides with the d x m matrix X. This is the tensor analogue to the congruence
action on matrix space seen in (15).

The x;; are homogeneous coordinates on the projective space P/"~! over an
algebraically closed field K that contains R. The matrix-tensor multiplication
described above defines a rational map of degree k:

o®  pim=l Pl X s oW (X)), (35)

The Zariski closure of the image of this map is the polynomial signature variety
Pax.m- The homogeneous prime ideal Py, of this variety in K[o®] is the
polynomial signature ideal.
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EXAMPLE 5.1 (d = k = 3,m = 2). The third signature variety P;;, for
quadratic paths in 3-space lies in the space of 3 x 3 x 3 tensors. Its linear span is
the hyperplane P* defined by

0123 — O132 — 0213 + 0231 + 0312 — 03 = 0. (36)

It is best to write the 162 quadrics in its ideal P53, as in Example 4.14. <

Piecewise linear paths are also represented by d x m matrices X. Their steps are
the column vectors X1, ..., X,, € R?. To be explicit, our path has the following
parametrization:

t> X+ 4+ X4+ mt—i+1)- X,

i—1
where

i :
<t —andi=1,2,...,m.
m

The tensor 0 ¥ (X) is obtained from the ‘upper-triangular’ m x m x - - - X m tensor
0% (Cis) in Example 2.1 by multiplying each of its k sides with the matrix X. This
defines a rational map (35) of degree k. The closure of its image is the piecewise
linear signature variety Ly .. Its homogeneous prime ideal L ,, in K[o®] is
called the piecewise linear signature ideal.

Let us reconcile these definitions with those for k = 2 in Section 3.1, by viewing
them through the lens of Section 2.2. We are ultimately interested in

e = {0®(X) : X :[0,1] = R? polynomial path of degree < m},

em = {o®(X) 1 X : [0, 1] - R? piecewise linear with m segments}. (37)

These signature images are semialgebraic subsets of (RY)®*. In this section we
study the polynomials that vanish on these sets. They are recorded in the ideals
Py im and L, ,,. Equivalently, we examine the tightest outer approximations of
(37) by algebraic varieties. Finding inequalities for j,“}(m inside 77}:,(,,”, and for
Ly, . inside L, . is left to future research.

REMARK 5.2. If m < d then P, ,, and Ly ,, are closures of GL(d, K)-orbits.

(a) If m = 1 then X is a linear path and L, is the Veronese variety, whose
points are symmetric tensors of rank 1. In general, m plays a role similar to
that of tensor rank in multilinear algebra [28].

(b) The varieties Ly, = Psom = My, were determined in Theorem 3.4.

Let X be the piecewise linear path with steps X, X5, ..., X,, in R?. Chen [7, 8]
showed that the n-step signature of the path X is given by the tensor product of
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tensor exponentials:
oS"(X) = exp(X) @ exp(X2) ® - - ®exp(X,) € T"(RY).  (38)

Hence the kth signature tensor of X is the following element of (R?)®* or P4"~!:
1
o®(X) = the sorted expansion of E(XI + X+ X34+ X% (39)

Here, by ‘sorted expansion’ we mean that every rank one summand X;, ® X;, ®
-+ ® X, is to be replaced by the corresponding rank one summand where the &
indices are sorted. This replacement is done after the expansion of the m* terms
and prior to summing them.

COROLLARY 5.3. The kth signature tensor of a piecewise polynomial path
equals

= 1
(k) X) = _. X.L. X.[ Xr PN Xr . 40
7 Zglh%M! ) & Xe) @ Xey @ -+ - @ Xriy (40)

The sum is over all weakly increasing functions t : {1,2, ...k} — {1,2,...,m}.

EXAMPLE 5.4. The third signature (k = 3) of a piecewise linear path X equals

m 1
XTI+ ) (XPeX+Xie X

i=1 1<i<j<m

o (X)

+ ) Xi®X;®X.

1<i<j<I<m
The fourth signature (k = 4) of a two-step path (im = 2) isthed x d xd x d

tensor

1
oV (X) = [X;@“ +4XP ® Xy +6X72 @ X5 +4X, @ X5 + X?“]. (41)

The projective variety £, 4, parametrizes tensors in P41 of this special form. <>
EXAMPLE 5.5 (d = m = 2,k = 4). Consider paths consisting of two segments

X, = (a,b) and X, = (A, B). The following Macaulay?2 code realizes the
equation (41) and it computes the ideal L, 45:
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)
I

QoQ[sl1111,s1112,s81121,s1122,81211,s1212,s1221,s1222,
s2111,s2112,s2121,s2122,s2211,s2212,52221,s2222];

S =0Q[ a,b, A,B ];

f = map(S,R, {

axaxaxa + 4xaxaxaxA + 6rxaxaxAxA + 4xaxAxAxA + AxAxAxA,
axaxaxb + 4xaxaxaxB + 6xaxaxAxB + 4xaxAxAxB + AxAxAxB,
axaxbxa + 4xaxaxbxA + 6*xaxaxBxA + 4xaxAxBxA + AxAxBx*A,
axaxbxb + 4xaxaxbxB + 6xaxaxBxB + 4xaxAxB*xB + AxAxB«*B,
axbxaxa + 4xaxbxaxA + 6xaxbxAxA + 4xaxBxAxA + AxBxAxA,
axbxaxb + 4xaxbxaxB + 6*xaxbxAxB + 4xaxBxAxB + AxBxAxB,
axbxbxa + 4xaxbxbxA + 6xaxb*BxA + 4xaxBxBxA + AxBxBx*A,
axbxbxb + 4xaxbxbxB + 6*xaxbxBxB + 4xaxBxB*B + AxBxB«*B,
bxaxaxa + 4xbxaxa*xA + 6xbxaxAxA + 4xbxAxAxA + BxAxAxA,
bxaxaxb + 4xbxaxaxB + 6xbxaxAxB + 4xbxAxAxB + B*xAxAxB,
brxaxbxa + 4xbxaxb*A + 6xbxaxBxA + 4xbxAxBxA + BxA%xBxA,
bxaxbxb + 4xbxaxb*B + 6+xbxa*xBxB + 4xbxAxBxB + BxAxBxB,
bxbxaxa + 4xbxbxaxA + 6xbxbxAxA + 4xbxBxAxA + B*xBxAxA,
bxbxaxb + 4xbxbxaxB + 6xbxb*AxB + 4xbxBxAxB + B*B*xAxB,
bxbxbxa + 4xbxbxb*A + 6xbxb*BxA + 4xb*xBxBxA + BxBxBxA,
bxbxbxb + 4xbxbxb*B + 6xbxb*B*B + 4xbxBxB%xB + BxB*xBx*B});

P = kernel f;
toString mingens P
dim P, degree P, betti mingens P

The output produced by this code reveals that the variety £, 4, is a threefold of
degree 24 in a hyperplane P'* inside the space P!> of 2 x 2 x 2 x 2 tensors. The
ideal L, 4, has 55 quadratic minimal generators. <&

5.2. Inclusions and separating invariants. Our aim in this subsection is to
compare polynomial paths and piecewise linear paths. Some intuition for our
choice of these two families is offered in Remark 5.9. Of course, numerous
other families would also be interesting, including piecewise-quadratic paths,
trigonometric paths, and so forth. Polynomial paths and piecewise linear paths
have the same signature tensors for all cases in Remark 5.2. Our next result states
that this also holds when m is large:

THEOREM 5.6. We have the following chains of inclusions between the kth
Veronese variety and the kth universal variety. Here M and M' are constants
that depend only on d and k:

_ k_
v (P = Laxi1 CLaxr CLaxs C-- CLaxmr CLapm =Usx C Pt

_ k_
v (P71 = Paxi CPaxs CPaxs C -+ CPakmw—1 CPapmw =Usp C Pt

Downloaded from https://www.cambridge.org/core. Technische Universitdt Miinchen, on 23 Apr 2020 at 10:50:56, subject to the
Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2019.3


https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2019.3
https://www.cambridge.org/core

Varieties of signature tensors 29

Proof. Chow’s theorem [20, Theorem 7.28] says that the elements in the step-n
free Lie group G"(RY) are precisely the signatures (38) of piecewise linear paths.
The projection of G"(R?) into the kth factor of (24) is the universal signature
image U, We conclude

[}
im __ im
d.k — U ﬁd,k,m‘
m=1

By passing to Zariski closures, we obtain the same result for the projective
varieties, namely Uy x = U, Laxn- The right-hand side is a nested family
of irreducible varieties, all contained in U, C P! The number of distinct
varieties in such a nested family is certainly bounded above by d*. Hence there
exists an integer M such that L, ; y = Uy .

Similarly, among the inclusions P, ; C Pgys.i+1, only finitely many can be
strict, since each set is an irreducible variety in P?“~!. Hence there exists a positive
integer M’ such that Py iy = Py w4, for all j > 0. Suppose that this terminal
signature variety P,y is strictly contained in U, ;. Then there exists a piecewise
linear path X such that § = o ®(X) is not in P, . In particular, there exists a
polynomial f € P, » such that f(S) = 1.

By the Weierstrass Approximation Theorem, the piecewise linear path X can
be approximated arbitrarily closely by a sequence of polynomial paths X, with
€ — 0. Here we employ a reparametrization with the property that X slows down
(to velocity zero) before each kink and then speeds up again. This allows us to
use the C! version of Weierstrass Approximation, which is what is needed here.
The signature tensors S, = o ®(X,) of the nearby paths depend continuously on
€, and they satisfy f(S.) = O for all ¢ > 0. This implies

0 =1lim._of(S.) = f(limHOSe) = f(S)=1.
From this contradiction we now conclude that P, ; » = Uy . ]

It was shown in Section 3 that the signature matrices of piecewise linear and
polynomial paths are the same. This result does not extend to signature tensors:

THEOREM 5.7. The two-segment paths and the quadratic paths in the plane R?

have different signature threefolds. More precisely, for k > 3 we have Ly}, #
,Pz,kyz in sz_].

Proof and discussion. For the sake of exposition, we show different proof
techniques for k = 3 and k = 4. The case k > 5 is obtained by embedding small
tensors into bigger ones.

We begin with k = 3. A computation shows that M = M’ = 3 in Theorem 5.6.
The ideal U,3 = L,33 = P33 is generated by six quadrics, displayed in
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Example 4.13. Both P, 3, and L, 3, are generated by three quadrics modulo U, 3.
For P, 3, these three generators are

2B1 + y1)? — 10(a2y1 + 3a12),
2B1 + vy (2B + v2) + 10(azy) + a2y2), (42)
(2B + y2)* — 10(a3y> + 3aur).

The generators of L, 5, are obtained by replacing the coefficient 10 by 9.

Now let k = 4. The varieties P, 4, and £, 4, are orbit closures for the GL(d,
K)-action on P'>. We can use invariant theory to show that these orbits are
different. According to Diehl and Reizenstein [15, Remark 14], the space of SL(d,
K)-invariants linear forms on (K?)®* has dimension 2 and is spanned by

£y = O — 01221 — 02112 + 021
and ¢, = o0y — O — 022 + Onii.

(43)

Their ratio £, /¢, is an absolute invariant, that is a rational function on P that
is constant on orbits. It takes value 0 on C,;s and value 1/5 on Cy,0,0. Hence the
orbit closures £, 4, and P, 4, are different. Indeed, Macaulay?2 confirms that
£, and 5¢; — ¢, are the unique linear forms in the ideals L, 4, and P,4,. This
explains the hyperplane P in Example 5.5. O

REMARK 5.8. It is instructive to explore the geometric meaning of linear
invariants such as (43). These specify hyperplanes that contain our signature
varieties. For instance, the invariant (36) is the volume of the convex hull of the
path in R3, provided the path contains no four coplanar points [15, Proposition
22], or it is a limit of such paths. This volume is zero for paths in R? that lie in a
plane. Therefore, the linear form (36) is contained in both of the ideals P; 3, and
L33p.

The analogous statement holds in all dimensions d. Consider the alternating
sum over all permutations, ), _¢ sign(/)o;. This invariant measures the volume
of the convex hull of a path in R, assuming no d points on the path lie in a
hyperplane. If d is even then such a path can be closed. Example 5.1 can thus be
generalized as follows. The projective variety P, 44—, has dimension d*> —d — 1,
and it lies on one hyperplane, given by the invariant above.

REMARK 5.9. One might wonder why polynomial and piecewise linear paths
are so similar. The ideals P, , and L, , have the same numbers of minimal
generators in all cases discussed so far. However, this is not always the case. Our
next example will show this: the ideal L, ,, can have more minimal generators
than P, ;... Both the similarities and the differences of our two models can
perhaps be understood via degenerations of polynomial maps P! — P¢~! to trees

Downloaded from https://www.cambridge.org/core. Technische Universitdt Miinchen, on 23 Apr 2020 at 10:50:56, subject to the
Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2019.3


https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2019.3
https://www.cambridge.org/core

Varieties of signature tensors 31

Table 3. Invariants of the ideals P, 4, Ly that define the varieties Py k. ms Lakm-

d k m a dim deg gens

2 3 2 7 3 6 9

2 3 =23 7 4 4 6

2 4 2 14 3 24 55

2 4 3 15 5 1927, 64~ (337, 34%), (07, 3%),?
2 4 24 15 17 12 33

2 5 2 25 3 60 220

2 5 3 31 5 12667, 492~ (1607, 185%), ?

2 6 2 41 3 120 670

2 6 3 62 5 43527, 1920% (9457, 1056%), ?
3 3 2 25 5 90 162

3 3 3 26 8 7567, 396~ (83%,91%),?

3 4 2 65 5 600 1536

3 4 3 80 8 ? (12427,1374%) , ?

of lines in P“~!. Indeed, an algebraic geometer might speculate that our signature
varieties are related to Kontsevich’s space of stable maps from P! to P4~

Table 3 summarizes the computational results we found for P, ,, and Ly -
Since Pyom = Laom = My, we only consider k > 3. The columns have the
same meanings as in Tables 1 and 2. We use upper indices P and £ to mark
distinctions between the polynomial case and the piecewise linear case. All our
computations were done with Macaulay?2 [21] and Bertini [4]. To compute
the degree we imposed linear constraints on the variety in question. We then
pulled the 