
Fakultät für Informatik
Technische Universität München

Using Deep Neural Networks
for Scene Understanding and Behaviour Prediction

in Autonomous Driving

Oliver Scheel

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender:
Prof. Dr. Nils Thürey

Prüfende der Dissertation:
1. Priv.-Doz. Dr. Federico Tombari
2. Assistant Prof. Alexandre Alahi, Ph.D.
3. Prof. Dr. Matthias Nießner

Die Dissertation wurde am 11.05.2020 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 12.09.2020 angenommen.

Abstract

Autonomous driving inherently is a sequential problem: Vehicles
encounter complex, dynamically changing traffic scenes, and have
to anticipate future behaviour of other agents while planning safe
trajectories for themselves. To solve this ambitious task, data-
driven end-to-end methods are experimented with, as well as more
traditional, stack-based approaches. In these, the problem is han-
dled in a layered fashion, and separate, modular components solve
specific subtasks. Typical layers are perception, fusion, prediction,
planning and control. This thesis addresses the fields prediction
and planning, exploiting their sequential nature.

In recent years, recurrent neural networks have become widely
used in a variety of fields, achieving promising results, and often
outperforming other methods. Exemplary applications include
natural language processing, machine translation and trajectory
prediction. Here, we apply such techniques for solving pending
challenges in the area of autonomous driving.

We begin by analyzing the problem of predicting discrete driv-
ing manoeuvres. For this, we develop a recurrent model which
processes full scenes as inputs and yields accurate predictions.
In particular, compared to previous works, we employ additional
features, such as dynamic and static environment information, in
order to improve performance. As ambiguity is present in many
scenes, we continue by exploring ways of modelling such ambiguity
and uncertainty. Therefore, we propose a framework for extending
existing recurrent models to predict multiple hypotheses.

We then turn our focus towards planning problems: To circum-
vent known issues of data-driven methods for solving such tasks,
we introduce a novel supporting layer. The aim of this layer is
to analyze complex traffic situations and generate recommenda-
tions for other planning algorithms, supporting them in decision
making w.r.t. feasible manoeuvres. We further examine interest-
ing connections between the two related tasks of predicting and
planning manoeuvres.

Finally, we address the issue of shifting domains, since autonomous
vehicles need to be able to navigate in various environmental con-
ditions and all over the world. Therefore, we propose a framework
to assist deployment of our previously learned prediction models
in new domains.

iii

Zusammenfassung

Autonomes Fahren ist von Natur aus ein sequentielles Problem:
Fahrzeuge durchlaufen komplexe, dynamische Fahrsituationen und
müssen zukünftiges Verhalten anderer Agenten antizipieren, während
sie sichere Trajektorien für sich selber planen. Um dieses anspruchsvolle
Problem zu lösen, wird mit datengetriebenen Ende-zu-Ende Meth-
oden sowie traditionelleren, Stack-basierten Ansätzen experimen-
tiert. In diesen wird das Problem auf einen schichten-basierten
Ansatz heruntergebrochen und eigenständige, modulare Kompo-
nenten lösen spezifische Unteraufgaben. Typische Schichten sind
Perzeption, Sensorfusion, Prädiktion, Planung und Kontrolle. Diese
Dissertation behandelt die Felder Prädiktion und Planung unter
Ausnutzung ihrer sequentiellen Natur.

In den letzten Jahren wurden rekurrente neuronale Netzwerke in
einer Vielfalt von Anwendungsgebieten eingesetzt und haben in
diesen vielversprechende Ergebnisse geliefert. Beispielanwendun-
gen umfassen Computerlinguistik, maschinelle Übersetzung und
Trajektorienprädiktion. Hier wenden wir solche Netzwerke auf
bestehende Herausforderungen im Bereich des autonomen Fahrens
an.

Wir beginnen mit der Erkundung des Problems der Prädiktion
von diskreten Manövern. Dafür entwickeln wir ein rekurrentes
neuronales Netzwerk, welches komplette Fahrszenarien als Eingabe
verarbeitet und genaue Prädiktionen liefert. Im Vergleich zu vorheri-
gen Arbeiten benutzen wir zusätzliche Eingabefeatures, wie dy-
namische und statische Umgebungsinformationen, und verbessern
damit die Prädiktionsleistung. Da Mehrdeutigkeit in vielen solcher
Szenarien vorhanden ist, untersuchen wir im Weiteren Möglichkeiten,
solche Mehrdeutigkeiten und Unsicherheiten zu modellieren. Dafür
führen wir ein Framework ein, mit welchem existierende rekur-
rente Modelle für die Prädiktion von multiplen Hypothesen er-
weitert werden.

Danach konzentrieren wir uns auf Planungsprobleme: Um bekannte
Nachteile datengetriebener Methoden für solche Aufgaben zu umge-
hen, führen wir eine neue, unterstützende Schicht ein. Ziel dieser
Schicht ist die Analyse von komplexen Verkehrssituationen, die
Erzeugung von Empfehlungen für andere Planungsalgorithmen
und die Unterstützung dieser in der Entscheidungsfindung von
geeigneten Manövern.

Schließlich behandeln wir das Thema Domänentransfer, da au-
tonome Fahrzeuge in verschiedensten Umgebungen einsetzbar sein
müssen. Dafür schlagen wir ein Framework zur Übertragung der
vorher eingeführten Prädiktionsmodelle in neue Domänen vor.

iv

Acknowledgements

This thesis resulted from a cooperation of BMW Group and Tech-
nical University of Munich. I would like to thank both organiza-
tions for this possibility: TU Munich for the honour of allowing
me to enroll in their PhD programme, and BMW Group for let-
ting me join their autonomous driving department. It has been
an incredible time, and fulfilled everything I dared dreaming for,
and more.

This would not have been possible without my supervisor PD Dr.
Ing. Habil. Federico Tombari, who taught me everything I know
today, and to whom I will forever be grateful. The same holds
for my supervisor from BMW’s side, Dr. Loren Schwarz, who was
always there for me with great support and mentorship. I would
also like to thank Prof. Dr. Nassir Navab for his incredibly warm
welcome into his research group and allowing access to the chair’s
facilities.

Throughout this PhD, I have had the immense pleasure of work-
ing with many great scientists and colleagues: I would like to
thank Prof. Dr. Luigi Di Stefano for his great feedback and
lengthy discussions about including ambiguity in computer vision
and machine learning applications. The same holds for Alessandro
Berlati, whose great work started this collaboration. I was blessed
to have the opportunity of learning from many incredible people,
who helped shape this PhD into what it is now, and always happily
offered time for questions and discussions of any kind. In partic-
ular, I wish to thank Naveen Shankar Nagaraja, Mira Slavcheva,
Christian Rupprecht, Iro Laina and Nikolas Brasch.

Further, I would like to thank my amazing colleagues from BMW
Group and the Chair for Computer Aided Medical Procedures
at the Technical University of Munich. Next to all the scientific
development and knowledge exchange, people are what makes a
job special. Unfortunately, the list of great colleagues is way too
long to name them all, but special thanks to Alexander and Lukas
Frickenstein, Jakob Mayr, Dmitrij Schitz, Luca Puccetti, Thomas
Barowski, Egon Ye, Chen Ee Heng, Artem Savkin, Markus Herb,
Johanna Wald, Fabian Manhardt, Helisa Dhamo, Maria Tirindelli,
Mai Bui and numerous others.

Although I look back with joy, times have not always been easy,
and I would like to thank my friends for bearing with me and
supporting me and this thesis, particularly Anja Leckel and Jordi
Chervitz.

Last, but definitely not least, I want to thank my parents, Brigitte
and Werner. They were always there for me, and helped me
through this with their continuous support and encouragement.

v

Contents

Contents vii

List of Figures xi

List of Tables xix

Abbreviations xxi

I Introduction and Fundamentals 1

1 Introduction 3

1.1 Motivation . 4

1.2 Objectives . 6

1.3 Contributions . 7

1.4 Outline . 8

2 Fundamentals 11

2.1 Machine Learning Basics . 11

2.2 Recurrent Neural Networks . 14

2.2.1 Long Short-term Memory Networks 16

2.2.2 Drawbacks of Recurrent Neural Networks 18

2.3 Predicting Multiple Hypotheses . 18

2.4 Transfer Learning . 19

2.5 Autonomous Driving . 20

2.5.1 Prediction . 24

2.5.2 Planning . 24

vii

CONTENTS

II Prediction 27

3 Manoeuvre Prediction 29

3.1 Introduction . 30

3.2 Related Work . 31

3.3 Recurrent Models for Predicting Lane Changes 32

3.3.1 Scene Representation . 32

3.3.2 Models . 34

3.3.2.1 Baseline Models . 34

3.3.2.2 Attention Mechanism 34

3.4 Evaluation . 37

3.4.1 Datasets . 37

3.4.2 Metrics . 39

3.4.3 Results . 40

3.4.3.1 Comparison of Models on Full Datasets 42

3.4.3.2 Scenario-Based Evaluation 43

3.4.3.3 Determining Feature Importances 47

3.4.3.4 Qualitative Results 50

3.5 Conclusion . 52

4 Considering Ambiguity 55

4.1 Introduction . 55

4.2 Related Work . 56

4.3 Multiple Hypothesis Prediction Framework 59

4.3.1 Prerequisites . 59

4.3.2 Sequence-to-Sequence Prediction 61

4.3.3 Encoder-Decoder Architecture 61

4.3.4 Sequence Generation . 62

4.3.5 Multimodal Metric . 63

4.3.5.1 Discrete Labels . 65

4.3.5.2 Continuous Labels 66

4.4 Evaluation . 66

4.4.1 Problems and Datasets . 66

4.4.1.1 Toy Intersection . 66

4.4.1.2 Lane Change Prediction 67

4.4.1.3 Trajectory Prediction 67

4.4.1.4 Text Generation . 68

4.4.2 Results . 68

4.4.2.1 Classification . 69

4.4.2.2 Regression . 72

4.4.2.3 Sequence Generation 75

4.5 Conclusion . 78

viii

CONTENTS

III Planning 81

5 Assessing Situations 83
5.1 Introduction . 84

5.2 Related Work . 85

5.3 Recurrent Models for Assessing Situations 86

5.3.1 Problem Definition . 86

5.3.2 Models . 88

5.3.2.1 LSTM Network . 88

5.3.2.2 Bidirectional LSTM Extension 89

5.4 Evaluation . 91

5.5 Conclusion . 94

6 Combining Prediction and Planning 97
6.1 Introduction . 97

6.2 Combined Approaches for Predicting Lane Changes and Assessing
Situations . 99

6.2.1 Joint Training . 99

6.2.2 Label Pruning . 100

6.3 Evaluation . 101

6.3.1 Joint Training . 101

6.3.2 Label Pruning . 102

6.4 Conclusion . 104

IV Transfer Learning 105

7 Knowledge Transfer 107
7.1 Introduction . 108

7.2 Related Work . 109

7.3 A Framework for Domain Adaptation 111

7.3.1 Corresponding Samples . 111

7.3.2 Model . 113

7.3.3 Simplifying Assumptions . 116

7.3.3.1 Image Data . 116

7.3.3.2 Sequential Data . 116

7.4 Evaluation . 116

7.4.1 Datasets . 117

7.4.2 Metrics . 118

7.4.3 Results . 118

7.4.3.1 Baseline Methods 118

7.4.3.2 Rotated MNIST . 120

7.4.3.3 Toy Sequence . 121

7.4.3.4 Lane Change Prediction 122

ix

CONTENTS

7.5 Conclusion . 124

V Conclusion and Outlook 127

8 Conclusion 129
8.1 Summary . 129
8.2 Limitations and Future Work . 131
8.3 Epilogue . 131

Bibliography 133

x

List of Figures

1.1 Depiction of a typical stack-based architecture used for au-
tonomous vehicles: A perception layer processes inputs of different
sensors, such as cameras, Radar and LiDAR sensors. A subsequent
fusion layer fuses these information to generate an understanding of
traffic scenes. Next, a prediction component turns this static under-
standing into a dynamic one, predicting how the scene will unfold
over time. A planning layer is responsible for planning how the ego
vehicle moves through the scene, e.g. calculating trajectories. A sub-
sequent control layers then converts these requirements into actuator
commands. 5

2.1 Sample usage of a CNN for classifying images. A convolution layer
consists of moving a kernel over the image and recording responses.
This is often followed by a pooling layer, which aggregates these re-
sponses in a certain way (e.g. max-pooling is common). Eventually,
fully connected layers generate probabilities of possible classes and
thus predictions. 13

2.2 Depiction of a simple RNN: At timestep t, the network processes
an input xt, and generates an output yt. Stored information, e.g. a
hidden state, is fed back to the network for the next timestep, such
that reasoning about temporal context is possible. 13

2.3 Unrolled visualization of the RNN from Figure 2.2. 13

xi

LIST OF FIGURES

2.4 Depiction of an LSTM cell: The complete flow of information as
explained in Equation 2.5 is shown. In each timestep, previous cell
and hidden state ct−1 and ht−1 are passed to the cell, as well as the
input xt of timestep t. Using the described gates, a new cell state is
calculated, from which a new hidden state is derived, which serves as
output at timestep t (visualization motivated by [1]). 17

3.1 Depiction of all considered neighbouring vehicles of vehicle “tar-
get”: On each lane, a preceding and following vehicle is observed and
used for further calculation (image from [2]). 33

3.2 Visualization of E-LSTM . Each feature group is processed by an
independent LSTM cell and subsequent fully connected layer (FC).
The outputs are eventually fused together to return the final predic-
tion y (image from [2]). 35

3.3 Visualization of our used attention scheme. For the sake of
simplicity, in this example 3 features and a temporal window of size 5
is used. For each feature, these windows are embedded into a higher
dimensional space, and projected once more. The resulting serves as
key for the attention function Ψ, and the hidden state h of the LSTM
cells is used as query. Ψ returns weighting factors for each such em-
bedding, which are then changed accordingly in intensity. Eventually,
this is summed together, resulting in an accumulated representation
of the scene, the context vector c (image from [2]). 36

3.4 Depiction of the highway segment recorded in the US 101
dataset. Vehicles drive from left to right on 6 lanes, if also counting
an auxiliary lane for merging from the existing on-ramp or towards
the off-ramp. Size proportions are not realistic in this drawing, image
taken from [3]. 38

3.5 Visualization of the I 80 subset. As can be seen, the area of
interest is similar to that in US 101, except missing the off-ramp. . . 38

3.6 Sample scene recording from the front camera of a fleet vehicle.
The target vehicle, which is doing a lane change, is marked by the
green bounding box, while its neighbouring vehicles are highlighted
in orange (image from [4]). 39

3.7 Depiction of a sample sequence to visualize the proposed metrics
Delay, Overlap, Frequency and Miss. The sample sequence spans over
12s, ground truth labels are depicted on top, model predictions in the
bottom. The sequence begins with a Follow period, followed by a
lane change to the Left , and ends with a lane change to the Right . . 40

xii

LIST OF FIGURES

3.8 Depiction of the calculation of Precision and Recall per ma-
noeuvre. The same sample scene as in Figure 3.7 is used. Calcula-
tion of precision is “bottom-up”: The fraction of correctly predicted
frames per homogeneous prediction chunk is calculated and averaged.
Conversely, the calculation of Recall is “top-down”: For this, the frac-
tion of correctly predicted frames per ground truth label is averaged
(image from [2]). 41

3.9 Depiction of a lane change to the left on the NGSIM dataset. The
target vehicle is drawn in green, neighbouring vehicles in orange and
other vehicles in blue. The direction of travel is to the right. Below,
predicted probabilities of a lane change from the models RF, LSTM
and E-LSTM-A are plotted over time (image from [2]). 50

3.10 Depiction of a lane change to the right on the highD dataset. The
target vehicle is drawn in green, neighbouring vehicles in orange, other
vehicles in blue. Note that on the highD dataset, vehicles are going
in both directions, respective lanes are separated by a grass strip in
the middle: Vehicles in the upper half drive towards the left, vehicles
in the lower one towards the right. Below, the predicted probabilities
of a lane change to the right, as predicted by the models RF, LSTM
and E-LSTM-A, are plotted over time (image from [2]). 50

3.11 Two scenes of a lane change to the left on the highD dataset are
shown. The target vehicle is drawn in green, neighbouring vehicles
in orange, other vehicles in blue. Note that on the highD dataset,
vehicles are going in both directions, respective lanes are separated
by a grass strip in middle: Vehicles in the upper half drive towards the
left, vehicles in the lower one towards the right. Scene a and b stem
from the same lane change, but b) is an artificially modified version
of a): We increased the distance to PV . For both scenes, the left
image shows a frame early in the lane change, while the right shows a
frame close before the point of crossing lane boundaries (image from
[2]). 51

3.12 Two frames showing a lane change to the right on the NGSIM
dataset are shown, both recorded at similar timesteps and from iden-
tical scenes. Again though, in the scene corresponding to the right
image distances to neighbouring vehicles on the target lane were re-
duced artificially. The target vehicle is drawn in green, neighbouring
vehicles in orange and other vehicles in blue. The direction of travel
is to the right. E-LSTM-A predicts a lane change to the right when
corresponding gaps are large enough, and Follow when these are too
small. In unison with that, Right is given a higher weight, indicat-
ing that the model correctly considers these features in its decision-
making process (image from [2]). 52

xiii

LIST OF FIGURES

4.1 Depiction of the proposed sequence-to-sequence architec-
ture. M fully connected layers process the hidden state of the LSTM
cell to generate M predictions (image from [5]). 61

4.2 Visualization of the proposed encoder-decoder model. M
linear layers process enc, generating M different starting symbols.
With these, the same decoder is run M times (image from [5]). . . . 62

4.3 Visualization of the used toy intersection. Vehicles approach
the intersection from the bottom, and consequently follow of one three
possible paths over the intersection (image from [5]). 66

4.4 Comparison of semantic map and captured drone image. . . 68

4.5 The correctness of predictions w.r.t. to the M2 metric is visual-
ized: If the set of predictions is identical to the set of labels obtained
through the M2 procedure, the point is drawn in green, otherwise in
red (image from [5]). 70

4.6 Visualization of the re-labelling step conducted for the M2 met-
ric (image from [5]). 70

4.7 Depiction of the new labels generated by the M2 metric. 72

4.8 Resulting prediction for a sample trajectory, in which the cor-
responding vehicle is making a right turn. The decoder’s input is
depicted in blue, the ground truth in green, and the predictions in
yellow (image from [5]). 73

4.9 Comparing predictions of different models in an ambiguous
scene of the SDD (image from [5]). 74

4.10 Resulting predictions in a non-ambiguous scene of the SDD. . 74

4.11 Comparison of generated trajectories using the SHP and MHP
models. The ground truth is depicted in green, the predictions in
yellow (image from [5]). 76

4.12 Visualization of the created tree at different timesteps. Points of
the tree are drawn in orange, the resulting hypotheses produced by
ChooseTreePaths, in case CheckSplit returns true, in yellow. . . . 76

4.13 Sample sentences created with scheme 3 (top: MHP model,
bottom: SHP model). The MHP model creates more coherent and
less repetitive results. 78

5.1 Depiction of two sample lane changes, one is considered in our
training set, while the other is not. In both scenes, the lane change of
the target car (drawn in green) happens in the second frame. In scene
a), frames during TN and TP are nearly identical, thus this sample
is removed from the training set. In scene b) however, we observe a
significant change in situations, increasing the chance of this example
having meaningful label (image from [3]). 87

xiv

LIST OF FIGURES

5.2 Visualization of the used LSTM networks. The distances to
neighbouring vehicles on current and desired driving lane are used
as inputs and encoded as one-hot vectors. These are embedded and
passed on the LSTM network, a final fully connected layer and softmax

function generates the resulting prediction. For the standard LSTM
network, only the LSTM cell colored in red is used. In the bidirec-
tional LSTM, also the orange colored LSTM is used, which processes
the information in reversed temporal fashion (image from [3]). 89

5.3 Visualizations of three different scenarios when using the au-
tomatic labelling scheme. The ego vehicle is drawn in green, the
relevant neighbouring vehicles in white, thus marking the target lane.
The prediction at timestep t = 0 is reported on the right: The ground
truth label and the predicted labels from SVM, LSTM and Bi-LSTM
are shown in this order. “1” describes a situation suited for a lane
change, a “0“ the opposite. For a better understanding, the resulting
scene after 2 seconds is depicted in the right image (figure from [3]). 93

5.4 A closer analysis of situation c) from Fig. 5.3 to examine
the prediction quality of the IDM: The predicted and actual scene
is depicted 2 and 4 seconds after the initial image. One can observe
a rather accurate prediction from the IDM. Note that the ego vehi-
cle will have overtaken different vehicles, thus resulting in different
neighbouring vehicles (white) - the “old” neighbouring vehicles being
predicted are depicted in yellow (figure from [3]). 93

5.5 Visualization of the temporal development of a scene. Each
image is recorded 1 second apart. The diagram below shows the
correct label of each frame as well as prediction (probability for ot =
1) from SVM and Bi-LSTM (figure from [3]). 94

6.1 Visualization of the connection between the tasks planning
and predicting lane changes. In green, outputs of the model as-
sessing situations are shown: A lane change to the left is deemed
feasible for the ego car with high probability, as the target gap in
that lane is sufficient. A lane change to the right is rejected, due to
other vehicles blocking this lane. Conversely, we can treat the green
vehicle as target car in a lane change prediction task: The red arrows
indicate predicted probabilities of the three manoeuvre classes Left,
Follow and Right. One can observe the similarities between these
tasks, which mostly differ in input structure and expected output.
In particular, a good prediction model should consider surrounding
vehicles as well, and not predict lane changes in unsuited situations
(to the left in this example) (image from [2]). 98

xv

LIST OF FIGURES

6.2 Depiction of the modified situation assessment model: In-
stead of embedding actual distances, temporal distances are used, i.e.
feature group GE . Features for both target lanes are processed by a
single LSTM cell, and two independent fully connected layers (FC)
followed by a softmax function return resulting predictions for both
lanes simultaneously (image from [2]). 99

6.3 Visualization of our proposed architecture for jointly solving
the tasks assessing situations and predicting lane changes: The archi-
tecture consists of the same models used for the single tasks, except
cell LSTME is now shared between both (figure from [2]). 100

6.4 Depiction of the mentioned re-labelling procedures: The up-
per two blocks indicate original resulting labels of the action-based
and automatic labelling scheme for a lane change sequence. In row
3, the predicted probability of such manoeuvre is depicted, and the
thresholds t1 and 1 − t2 marked. When the predicted probability of
a lane change exceeds t1, automatic labels are changed to Yes. Con-
versely, when the predicted probability of Follow exceeds t2 (which
equals that the predicted probability for a lane change is less than
1 − t2), action-based labels are changed from No to Ignore. On the
right, the fraction of frames with matching label, w.r.t. the action-
based labelling, is depicted (figure from [2]). 103

7.1 Side-by-side comparison of two lane changes in different domains.
While the blue car executes its lane change smoothly, the red one ex-
hibits a noisy driving style, most likely causing many false predictions
in models not exposed to this (image from [6]). 108

7.2 Comparison of our used correspondence mapping f to triplet
loss. When using triplet loss, an anchor point A is paired with a
positive sample P and a negative one (N). In our interpretation, f ,
and thus the resulting model, is a generative way of converting A to
another domain, ideally resulting in the mean of given correspondence
points (image from [6]). 113

7.3 Visualization of our proposed framework, showing a sample
application of adapting a model trained on standard MNIST images
to rotated images. Steps 1 and 2 concern training the Converter C:
First, we pre-train it with an (expected) rotation, i.e. requiring the
outputted transformation matrix T to equal a rotation matrix. Then,
C is trained using correspondence pairs for each sample (here, n = 2).
In Step 3, L is fine-tuned on the new dataset, i.e. weights of the last
layers of M are adjusted while the complex part drawn in red is frozen
(image from [6]). 115

xvi

LIST OF FIGURES

7.4 Depiction of a simulated lane change to the right. The distance
to the lane’s left lane boundary is plotted on the y-axis, time in sec-
onds on the x-axis. The “noisy” lane change from domain B is shown
in red, and a corresponding one from domain A in blue (for sake of
simplicity, just one of the n corresponding ones is shown). The trans-
formed sample after application of the Converter (i.e., the lane change
from domain B multiplied by the generated transformation matrix T)
is drawn in green (with T2), yielding a very plausible converted lane
change (image from [6]). 122

7.5 Depiction of a lane change to the left. In both plots, time in
seconds is plotted on the x-axis. In the top plot, m, once in raw
form from domain B (red), and once after being processed by the
Converter (green). Similar values are plotted for v, which are drawn
using dashed lines. In the bottom plot, corresponding ground truth
labels are drawn in yellow, the predictions of fine-tuning in red and
the output of our model (T2) in green. Here, 1 / -1 denote lane
changes to the left / right, 0 Follow and -2 Ignore labels. As de-
scribed in Chapter 3, the latter are inserted between Follow and lane
change labels, and after execution of such manoeuvres, to give models
time to reset. Results of applying the Converter are strongly visible,
smoothing out fluctuations and scaling down extreme values of the in-
put features, especially during Follow periods. Our proposed model
outperforms fine-tuning, exhibiting much less false positive predic-
tions and yielding near identical lane change predictions (figure from
[6]). 126

xvii

List of Tables

3.1 Results of all models on the NGSIM dataset. 42

3.2 Results of all models on the fleet data. 42

3.3 Results of all models on the highD dataset. 42

3.4 Results of all algorithms in scenario Left on the highD dataset.
Number of frames in this scenario: 11579. 44

3.5 Results of all algorithms in scenario Follow on the highD
dataset. Number of frames in this scenario: 1067662. 45

3.6 Results of all algorithms in scenario Right on the highD dataset.
Number of frames in this scenario: 18222. 45

3.7 Results of all algorithms in scenario Left-Blocked on the
NGSIM dataset. Number of frames in this scenario: 18372. 45

3.8 Summarized scenario results for the NGSIM dataset. For
each model, Rank is listed for each scenario, and then summed over
all scenarios in row Total. 46

3.9 Summarized scenario results for the highD dataset. For each
model, Rank is listed for each scenario, and then summed over all
scenarios in row Total. 46

3.10 Feature importances for the highD dataset. 48

3.11 Feature importances for the NGSIM dataset in scenario L1
(only showing top-8 features). Number of frames in this scenario:
107370. 49

3.12 Feature Importances for the NGSIM dataset in scenario
Right-Blocked (only showing top-8 features). Number of frames
in this scenario: 202560. 49

4.1 Results of the toy classification task (γ repoted in brackets). . . 70

xix

LIST OF TABLES

4.2 Number of samples, ordered by label class. Originally, each frame
is given one of the labels L, F or R. After re-labelling, similar to the
toy classification task, multiple combinations of labels are possible. . 71

4.3 Results on the NGSIM dataset (γ listed in brackets). 71
4.4 Results of the toy prediction task. 73
4.5 Results on the SDD. 74
4.6 Results on the toy sequence generation task. 76
4.7 Means (and variances) of the Perplexity scores of the different

evaluation schemes on PTB (lower Perplexity is better). 78

5.1 Results of all analyzed algorithms for both labelling schemes. . 92

6.1 Comparison of single- and multi-task models for predicting lane
changes on the NGSIM dataset. 101

6.2 Summarized comparison of single- and multi-task models for
predicting lane changes on the NGSIM dataset, split by scenario (L-
/R-PV and L-/R-B denote the scenarios Left-/Right-PV and Left-
/Right-Blocked. For each model, Rank is listed for each scenario. . . 102

6.3 Summarized comparison of single- and multi-task models for
analyzing situations on the NGSIM dataset. For each, mean accuracy
is specified. 102

6.4 Resulting label correspondence of action-based and automatic
labelling scheme on the NGSIM dataset, listed in %. 103

7.1 Results on the MNIST dataset. 120
7.2 Results of the toy sequence problem. Smaller values for Fre-

quency, Delay and Miss are better, larger ones for Score. 122
7.3 Results of the lane change prediction problem. Smaller values

for Frequency, Delay and Miss are better, larger ones for Score. . . . 123

xx

Abbreviations

ACC Automatic Cruise Control
ADE Average Displacement Error
AGI Artificial General Intelligence
BPTT Backpropagation Through Time
CNN Convolutional Neural Networks
CVAE Conditional Variational Autoencoder
DBN Dynamic Bayesian Nnetwork
ECU Electronic Control Unit
ELBO Evidence Lower Bound
FDE Final Displacement Error
GAN Generative Adversarial Network
GPU Graphics Processing Unit
GRU Gated Recurrent Unit
HD High Definition
IDM Intelligent Driver Model
IL Imitation Learning
LSTM Long Short-term Memory
MCL Multiple Choice Learning
MDN Mixture Density Network
MHP Multiple Hypothesis Prediction
MLP Multi-layer Perceptron
NLP Natural Language Processing
PTB Penn Tree Bank Dataset
RF Random Forests
RL Reinforcement Learning
RNN Recurrent Neural Network
SDD Stanford Drone Dataset
SfM Structure-from-Motion
STN Spatial Transformer Network
SVM Support Vector Machine

xxi

Abbreviations

TBPTT Truncated Backpropagation Through Time
VAE Variational Autoencoder
VI Variational Bayesian Inference

xxii

Part I

Introduction and Fundamentals

1

1
Introduction

Automobiles have drastically changed the way billions of people around the globe
live: Their invention, and successive cost reduction following innovations in indus-
trial production, for the first time in history provided common people with an easy
way of individual mobility. Nowadays, for us it is normal to visit distant places and
regularly cover medium distances, either for work or leisure time.

Today, we are close to another revolution: Autonomous vehicles are on the verge
of completion, and we might see fully autonomous vehicles on the road within this
decade. This will drastically increase safety for all traffic participants, reduce traffic
congestion, and again completely reshape our way of transportation: Ride and car
sharing is made easier, as owners could simply “send away” their vehicles to au-
tonomously transport other passengers. The need for parking in already congested
urban environments would decrease, as vehicles could autonomously find suitable
parking possibilities outside these areas, freeing up space for pedestrians and green
spaces.

Already in the 80s people were experimenting in the field of autonomous driving,
equipping series cars with cameras and (for our terms) rather simple perception
and control algorithms, and testing these on highways [7]. But it is only now, that
fully autonomous driving is deemed feasible and will likely be available in a not
too-distant future. Reasons for this are advances in computer science, software and
hardware, especially the ability to effectively train deep neural networks on Graphics
Processing Units (GPUs). Due to this, nearly all large automobile manufacturers
and many research institutes as well as a multitude of startups currently are heavily
focusing on making autonomous driving available for the customer. Although launch
schedules have been moved forward in time, it is expected to see fully autonomous
vehicles within this decade.

Many experts believe artificial intelligence to be one of the key enablers towards
this goal. Techniques from machine learning, especially deep neural networks, have
already revolutionized our way of solving problems in many fields and are consid-
ered state-of-the-art in these: In the fields image classification, segmentation and

3

1 Introduction

bounding box detection Convolutional Neural Networks (CNNs) are best-performing
models and have replaced their predecessors. Whereas earlier image classification
pipelines consisted of multiple steps, e.g. extracting hand-crafted features and then
training a machine learning classifier on these, CNNs solve the whole problem in
one step. It is a similar case for sequential problems, such as Natural Language
Processing (NLP): A conventional pipeline consisting of extracting expert features
and modelling language properties is replaced by deep models, such as Recurrent
Neural Networks (RNNs).

Due to their capability of being able to memorize information, RNNs are especially
suited for the understanding of time-series data, for which they excel. This makes
them noteworthy candidates for an application in the field of autonomous driving, as
here we naturally deal with data varying over time, such as complex traffic scenes and
trajectories. However, prior research has typically addressed these using “classical”
methods. Therefore, goal of this thesis is exploring the possibility of employing
RNNs for the use in different areas of autonomous driving, and thus helping bringing
the dream of driverless vehicles one step closer.

1.1 Motivation

For solving the problem of fully autonomous driving, numerous solution candidates
exist. From an architectural point of view, these can be classified into end-to-end,
mid-to-mid or more traditional, stack-based approaches. End-to-end learning de-
scribes the process of mapping raw sensor inputs directly to, e.g., a steering angle.
So far more common in the field of robotics as of today is a stack-based architecture.
This is a layered architecture, in which each layer serves a specific purpose. Advan-
tages are a better modularity and decomposability of the system, specific functions
and layers can be considered and verified separately. For autonomous driving, typ-
ically the five building blocks perception, fusion, prediction, planning and control
are used (see Figure 1.1).

An autonomous vehicle needs to be able to perceive its environment. For this, var-
ious sensors, such as cameras, Radar and LiDAR sensors, are employed. Perception
describes the handling of these raw sensor inputs. The many different sensors are
typically redundant and overlapping, regarding e.g. their field of view. In particular,
in addition to employing different sensor types as mentioned before, vehicles are usu-
ally equipped with several such sensors, e.g. exhibiting multiple cameras. The layer
Fusion describes the fusion of these separate sensory inputs into one global under-
standing of the environment. Since driving scenes are virtually always dynamic, it is
important to model them as such, i.e. incorporate at least some basic assumptions
about how they unfold in the future. Prediction is concerned with these aspects.
Planning constitutes of planning a path for the vehicle, given all this information,
and is hierarchically structured itself: One begins with global / mission planning
(finding routes in maps) and moves down in abstraction levels towards actual tra-
jectories and driving paths. The field control then translates these into commands

4

1.1 Motivation

Figure 1.1: Depiction of a typical stack-based architecture used for autonomous ve-
hicles: A perception layer processes inputs of different sensors, such as cameras,
Radar and LiDAR sensors. A subsequent fusion layer fuses these information
to generate an understanding of traffic scenes. Next, a prediction component
turns this static understanding into a dynamic one, predicting how the scene
will unfold over time. A planning layer is responsible for planning how the ego
vehicle moves through the scene, e.g. calculating trajectories. A subsequent
control layers then converts these requirements into actuator commands.

for control units and actuators. In this thesis we concentrate on the fields planning
and prediction.

Possible prediction targets are continuous trajectories (e.g. from other traffic par-
ticipants, such as other vehicles or pedestrians) or discrete manoeuvres, such as lane
change events. Research in trajectory prediction is very active, especially regarding
pedestrians on public datasets. Knowing such future behaviour is important, as
it helps the planning task and reduces risk. Predicting discrete manoeuvres, such
as lane changes, is another important task, and e.g. needed for driving assistance
functions already existing in current series cars: When steering the vehicle through
lane keeping assistant and Automatic Cruise Control (ACC), we would like to know
in advance, when other vehicles will merge into our lane, so as to enable smooth and
early reactions. Most works in this field employ more traditional, classical methods
to model this task, such as Random Forests (RF). We see the potential and advan-
tages of describing this as a sequential problem and applying deep neural networks
on this.

Another important aspect of general machine learning applications is the predic-
tion of multiple hypotheses. By default, most models only output a single hypoth-
esis, and underestimate the variance of possible solutions. This is especially true
for sequential problems, as here often multiple futures are equally likely, and for
the problem of autonomous driving in particular: While driving, agents are faced

5

1 Introduction

with multiple possibilities, and have to account for the numerous possible choices by
other agents. Helping improve understanding and prediction performance in these
scenarios constitutes another topic of this thesis.

Planning can either be addressed jointly in an end-to-end system, or as a separate
tasks. Possible data-driven methods are Imitation Learning (IL) and Reinforcement
Learning (RL). IL tries to mimic expert behaviour to solve a task, while in RL an
agent explores vast action-spaces and learns by reward and punishment. Although
yielding promising results in many other fields, applications of such techniques in
this field are still rare. One reason is the difficult verification process for such
black-box models, as well as known limitations of either approach: RL requires a
realistic driving simulator, but still exhibits a performance drop when changing to
real-world data. IL is know to suffer from compounding errors over time and overfits
characteristic expert behaviours. We believe, a combination of both paradigms will
be necessary for solving this problem, and further advocate development of new
models, which are able to understand complex and dynamic scenes.

Transfer learning describes the process of applying learned knowledge to another
domain or even task. In automotive, this is especially important, as different do-
mains arise on many levels: Multimodal sensory inputs are used, whose hardware
and software change over time, autonomous vehicles need to navigate through all
weather conditions and across diverse countries with country-specific driving styles
and rules. Most works in this field focus on image-data, e.g. learn generative models
for hallucinating samples from different domains, and pay less attention to interme-
diate data representations as well as time-series data.

1.2 Objectives

Goal of this thesis is to build up knowledge about applying RNNs for different
problems in the field of autonomous driving, and thus help advance this topic. For
all of these, we use intermediate feature representations, i.e. no raw sensor data,
but instead fused high-level features such as object lists.

We begin with the field of prediction: We would like to know how traffic scenes
continue to unfold over time. For this, we propose and analyze different prediction
methods to predict future discrete manoeuvres or continuous trajectories of other
traffic participants. In the next part, we examine ways of generating multimodal
outputs. In particular, we propose a general way of extending recurrent methods to
account for ambiguity, and show its applicability for automotive use cases. Moving
on to planning, we develop a deep network capable of understanding dynamic traffic
scenes. This supporting layer can be queried by other ones in the software stack, such
as planning, answering queries whether certain manoeuvres currently are possible
and feasible for the ego vehicle, or not. Eventually, due to the numerous scene
variations possible when tackling the problem of autonomous driving, we set out to
make our previously introduced models robust to domain changes and to develop

6

1.3 Contributions

methods of transferring knowledge between domains. Summarized, our objectives
are:

• early and accurate prediction models;

• extension to multimodal prediction models;

• scene understanding of complex scenes;

• transfer learning for prediction models.

1.3 Contributions

To fulfill the objectives outlined above, we develop several algorithms:

• Predicting Lane Change Manoeuvres: We employ RNNs to predict future
lane change manoeuvres of other traffic participants. Predictions should be as
early as possible, while simultaneously resulting in few false predictions, as
these have a strong negative influence on felt driving comfort. In addition we
propose usage of an attention mechanism, to model selective focus and allow
models to focus on certain important aspects of a scene. This results in better
and more interpretable models.

• Predicting Multiple Futures: We extend the Multiple Hypothesis Predic-
tion (MHP) framework [8] to recurrent models and show how to incorporate it
into different state-of-the-art recurrent architectures, such as encoder-decoder
models. We showcase its usefulness for predicting multiple hypotheses with
our lane change prediction model and trajectory forecasting models.

• Situation Assessment for Lane Changes: We train a bidirectional RNN
for scene understanding w.r.t. lane changes. Output in each step is a binary
decision indicating whether the scene is suited for a lane change or not. This
can be queried by any planning algorithm, whether it is a classical rule-based
planner or consists of IL or RL techniques. Due to this, we are invariant
to model-specific up- and downsides of learned planning methods, but still
make use of the power of deep learning. Incorporating assumptions about
rational drivers and physical constraints allows us to explicitly model future
scene developments and thus the usage of a bidirectional RNN.

• Transfer Learning: We develop a framework for transfer learning, which is
explicitly tailored for automotive use cases, e.g. due to its calculation of an
explicit transformation between domains. This transformation can be initial-
ized based on domain knowledge, and be used in further safety verification
processes.

• Evaluation Metrics: We propose several metrics for evaluating lane change
prediction models, also applicable to general manoeuvre prediction. Core idea

7

1 Introduction

is their interpretation of lane changes as event-wise continuous sequences, and
they allow better quantification of what drivers inside vehicles actually expe-
rience, compared to traditional metrics.

1.4 Outline

This section provides a brief overview over the following chapters. Most of the pro-
posed methods are published or under submission for a major conference or journal.
We thus indicate the corresponding publications, and also refer the interested reader
to the conference websites to consult further supplementary material.

Chapter 2 In this chapter we briefly introduce fundamentals of techniques applied
in this thesis. We begin by introducing general machine learning concepts, and then
move on to more specific topics, such as RNNs, considering ambiguity and transfer
learning. Eventually, we introduce the topic of autonomous driving, defining relevant
subproblems and methods for solving them.

Chapter 3 In this chapter we present our recurrent approach for predicting lane
change manoeuvres. After defining the problem and introducing used scene rep-
resentation, which we will reuse throughout the thesis, we showcase the proposed
methods and describe findings of numerous experiments. The related publications
are:

• O. Scheel, N. S. Nagaraja, L. Schwarz, N. Navab, F. Tombari, “Attention-
based Lane Change Prediction”, Int. Conf. on Robotics and Automation
(ICRA), 2019 [4]

• O. Scheel, N. S. Nagaraja, L. Schwarz, N. Navab, F. Tombari, “Recurrent
Models for Planning and Predicting Lane Changes”, submitted to Transactions
on Robotics (T-RO), 2020 [2]

Chapter 4 Here, we propose a general framework for predicting multiple hypothe-
ses with recurrent models. We examine different recurrent architectures, such as
encoder-decoder models, and diverse problems. In particular, we modify the ma-
noeuvre prediction approach from Chapter 3, predict multimodal trajectories and
generate text. The corresponding publication is:

• A. Berlati, O. Scheel, L. Di Stefano, F. Tombari, “Ambiguity in Sequential
Data: Predicting Uncertain Futures with Recurrent Models”, Robotics and
Automation Letters, also accepted for publication at Int. Conf. on Robotics
and Automation (ICRA), 2020 [5]

8

1.4 Outline

Chapter 5 In Chapter 5 we focus on the area of planning. We introduce a support-
ing layer for other planning algorithms, analyzing situations w.r.t. their suitability
for lane changes. The related publication is:

• O. Scheel, L. Schwarz, N. Navab, F. Tombari, “Situation Assessment for Plan-
ning Lane Changes: Combining Recurrent Models and Prediction”, Int. Conf.
on Robotics and Automation (ICRA), 2018 [3]

Chapter 6 Eventually, in this chapter we examine the problem of changing domains
and propose a framework for addressing this issue. In particular, we consider the
task of predicting lane changes from Chapter 3, and showcase the transfer of a
learned model to a new domain. The resulting publication is:

• O. Scheel, L. Schwarz, N. Navab, F. Tombari, “Explicit Domain Adaptation
with Loosely Coupled Samples”, submitted to Robotics and Automation Let-
ters and Int. Conf. on Intelligent Robots and Systems (IROS), 2020 [6]

9

2
Fundamentals

This chapter provides an overview of concepts from machine learning and autonomous
driving that will be used throughout the thesis. We begin by introducing fundamen-
tal machine learning techniques, such as the most commonly used neural network
architectures. We then focus on RNNs, as these are employed for a majority of
this thesis. Next topics are dealing with uncertainty and ambiguity and the field of
transfer learning. Finally, we move to the area of autonomous driving. We intro-
duce fundamentals, such as used sensors, and then give a brief overview over fields
particularly relevant for us, namely prediction and planning.

2.1 Machine Learning Basics

General goal of machine learning is to design machines and algorithms, which learn
to perform a task from experience. Often, this can be expressed as a function:

y = f(x,w) (2.1)

In this, x denotes input data given to the algorithm or machine, and y an expected
output. Consider the problem of classifying images: Inputs in this case are images
or image patches, and we want to obtain a classification of these, denoting what kind
of object is depicted in the image (e.g., is it a cat or a dog). As the name suggests,
essence of machine learning methods are models capable of learning. Assume we
have a model designed for image classification. Initially, without any prior knowledge
output of this model will be random, and useless to us. We can, however, train this
model by showing it corresponding pairs of inputs x and associated labels y, and
update its internal weights or parameters w in such a way that its performance for
this task increases.

Types of Learning Such training can be conducted in various ways: Most promi-
nent methods are supervised, unsupervised and reinforcement learning. The previ-
ously introduced example of image classification is a typical application of supervised

11

2 Fundamentals

learning. The task consists of corresponding pairs of inputs and known outputs. For
each input, a label (also called ground truth), is given, which serves as training
target for the learning algorithm. Models are trained on a dataset, with aims of
predicting the correct output for as many samples as possible. If the desired output
is discrete, we speak of classification problems (such as image classification). In case
of continuous outputs the problem is called regression, and models try to predict
continuous outputs as close to the ground truth as possible. One example for this
is the prediction of stock prices based on historical data.

Aim of unsupervised learning instead is to learn patterns in the given data, without
any explicitly given labels. One example application is clustering, in which clusters
of corresponding data samples are to be found (imagine for example the detection of
communities in social networks). Also hybrid methods are possible, such as (semi)
supervised learning, in which partial labels for data subsets are available.

Reinforcement learning generates a training impulse via reward and punishment:
Agents are able to freely explore certain environments and interact with these. No
explicit labelling of good and bad actions is given; instead, certain states or actions
are associated with a reward or punishment. Goal of the agent is to maximize its
reward, this way it implicitly learns to exhibit desired behaviour. Consider the
problem of learning to drive autonomously: Rewards could be allotted for reaching
certain speeds and following desired driving lanes, whereas crashes and similar would
induce a high punishment.

A distinction between discriminative and generative models exists, mostly in the
field of supervised learning: Discriminative methods directly learn a decision bound-
ary based on posterior class probabilities. Via this they assign most probable classes
to every input sample. One well-performing example are Support Vector Machines
(SVMs). Generative models, on the other hand, explicitly model and employ joint
probability distributions. Using these, still class-membership can be inferred, but
additionally it is also possible to sample new data points. Especially for image do-
mains fascinating results are achieved using e.g. Generative Adversarial Networks
(GANs), such as transforming objects or full scenes.

Deep Learning The term deep learning describes the usage of so-called deep mod-
els, i.e. models consisting of many successively stacked layers. Often, these are
neural networks. Despite their perception as fundamentally new domain, artificial
neural networks have been around for decades: When Rosenblatt invented the Per-
ceptron in 1957 [9], it sparked huge media interest, with people assuming algorithms
for general intelligence would soon be available. However, when Minsky and Papert
showed, that (single-layer) perceptrons cannot model arbitrary functions [10], this
drastically decreased interest in this field. It should be noted that results only hold
for single-layer perceptrons though, and multi-layer perceptrons with non-linear ac-
tivation functions are universal function approximators. This realization and others,
like the introduction of the backpropagation algorithm, led to a short resurgence of
neural networks in the 80s. As they, still, proved to be hard to train and lacked

12

2.1 Machine Learning Basics

Figure 2.1: Sample usage of a CNN for classifying images. A convolution layer consists
of moving a kernel over the image and recording responses. This is often
followed by a pooling layer, which aggregates these responses in a certain way
(e.g. max-pooling is common). Eventually, fully connected layers generate
probabilities of possible classes and thus predictions.

Figure 2.2: Depiction of a simple RNN: At timestep t, the network processes an input
xt, and generates an output yt. Stored information, e.g. a hidden state, is fed
back to the network for the next timestep, such that reasoning about temporal
context is possible.

Figure 2.3: Unrolled visualization of the RNN from Figure 2.2.

intuition as to what inner layers of these networks actually learn, it was not be-
fore the first decade of the year 2000 that neural networks became truly feasible for
practical problems. Reasons for this were vastly improved computing capabilities,
among others using GPUs, which allowed better training of neural networks and
further the processing and generation of large datasets. A major breakthrough was
achieved on the ImageNet challenge in 2012, when a CNN outperformed traditional
computer vision approaches [11].

13

2 Fundamentals

Nowadays, deep neural networks are state-of-the-art for many problems, such as
image classification and machine translation. Common network types are:

• Multi-layer Perceptron (MLP): An MLP is the simplest feed-forward neural
network, and consists of input neurons for handling input, and output neurons
for outputting results. In between these, a number of hidden layers can be
implemented. For each neuron, a (possibly) non-linear activation function
such as tanh and sigmoid can be used. Adding non-linearities in a network
is important, as otherwise outputs are just linear combinations of the inputs.
Despite their simplicity, MLPs are universal function approximators, and thus
can approximate any function arbitrary well.

• Convolutional Neural Network (CNN) [12]: CNNs are exceptional in process-
ing spatial, structured data such as images and are top-performing methods
for many tasks, such as image classification, object detection and semantic seg-
mentation. CNNs drastically reduce the amount of free parameters by sharing
parameters (so-called kernels) across different locations. These kernels are
stacked in depth to form filters, additionally pooling layers guarantee spatial
invariance. See Figure 2.1 for an example.

• (Variational) Autoencoder (VAE) [13]: Autoencoders employ two inverse net-
works, first projecting inputs into a subspace and then trying to recover the
original input from this latent representation. One possible application are
learned compression algorithms. By enforcing some kind of regularity over the
latent space (Variational Autoencoders), these models can be used as genera-
tive models and for sampling new data.

• Generative Adversarial Network (GAN) [14]: A typical GAN consists of two
networks named Generator and Discriminator. The generator tries to generate
data, s.t. this matches the actual ground truth data distribution as well as pos-
sible, while the discriminator tries to distinguish between generated and real
samples. Using this, among others fascinating images can be “hallucinated”.

• Recurrent Neural Networks (RNNs) [13]: So far, all mentioned models can
only handle static, non-changing inputs of fixed length. But what, if length of
the input data is not known in advance, for example in the case of sequential
data streams? For this, RNNs were introduced. They excel in the processing
of time-series data by sharing parameters over time and processing sequential
inputs by storing a memory state. Figure 2.2 visualizes such a network. In the
next section, we will introduce RNNs in more details.

2.2 Recurrent Neural Networks

Since most of our proposed methods employ RNNs, in this section we introduce
basic motivation behind them, explore advanced forms, as well as discuss training

14

2.2 Recurrent Neural Networks

procedures and drawbacks. To understand why RNNs are an important addition
to the zoo of deep learning architectures, consider how other models, like CNNs,
process inputs: Input of such models is data of a fixed size, for example an image
of size 28 × 28. It is possible to process sequences of images, however this is done
independently: In each step, the CNN accepts one image as input, and produces
one output. When the next image is processed, no information from the previous
one is available. This differs from how humans think, and is contrary to relations
available in many problems. When we read a sentence like “The wolf ate the deer,
because it was hungry.”, we know to which noun “it” refers to, as we are able
to memorize information from previous timesteps. These principles, being able to
process sequences of arbitrary length and saving information between states, describe
the mode of operation of RNNs: RNNs are networks with looping connections,
consider Figure 2.2. At timestep t, RNN network A processes input xt, and outputs
a value ht. This information is fed back to the network, and is available when
processing the next input xt+1. An alternative way of visualizing these relations is
to unroll the network over time - this is depicted in Figure 2.3.

This intuition of a simple RNN can be formalized as follows: Let xt be the cor-
responding input at timestep t. A way of memorizing information for the RNN is
its hidden state ht. Its calculation depends on the previous hidden state as well as
current input:

ht = f(Uxt + Wht−1) (2.2)

U and W are weight matrices of according size, f can be any function, often a non-
linearity like ReLU or tanh is used. Finally, in each step an output yt is produced:

yt = g(Vht) (2.3)

Again, V denotes a weight matrix, and g some function, such as softmax, in case a
multi-class classification problem is addressed.

RNNs are trained with a variation of the standard Backpropagation algorithm,
dubbed Backpropagation Through Time (BPTT). Let Et denote the error at timestep
t. When now for example calculating the gradient of Et w.r.t. W, i.e. δEt

W , this
depends on the current state st, but according to the chain rule also on all previous
states (st−1, . . . , s0). Similar to a standard, deep CNN, where gradients have to be
backpropagated through all layers back to the input, here they have to be backprop-
agated over time, while keeping in mind that parameters over each step are shared.
Due to this, gradients for W are summed at each timestep. One problem of this
approach is its computational complexity and resource consumption: Sequences can
easily consist of thousands of timesteps, making full BPTT very slow. A common
way of tackling this problem is to truncate backpropagation to k steps through the
network (Truncated Backpropagation Through Time - TBPTT). This though only
results in an approximation of the true gradient, but empirical results indicate its
success. Further, a meaningful selection of k helps training, in addition states can
be saved in-between batches, s.t. in theory longer dependencies can be learned still.

15

2 Fundamentals

However, aside from this algorithmic restriction two other problems arise when
applying RNN architectures to time-series data: Recall that the unrolled networks
become “deeper” the longer the sequences get. Therefore, due to the chain-rule, gra-
dients are calculated by recurrent matrix multiplications. In consequence, gradients
smaller than 1 tend to exponentially shrink towards zero, while gradients larger than
1 bloat towards infinity. The first case is known as the Vanishing Gradient problem,
and results in models being unable to learn longer sequences. Case number two is
called Exploding Gradients, and also prevents any meaningful learning to happen.
Note that these problems can arise for any deep learning architecture, but it can be
argued that RNNs are more prone to it, due to their internal structure and large
number of timesteps.

The problem of exploding gradients can be addressed by a rather simple fix: In
each step, clip each occurring gradient s.t. its norm does not exceed a certain
maximal value. This common technique is known as Gradient Clipping.

Alleviating the problem of vanishing gradients, and in general discovering and
learning long-term dependencies in sequential data, unfortunately is much harder.
In the next section we introduce one possible method of doing so.

2.2.1 Long Short-term Memory Networks

One way of addressing the issue of learning long-term dependencies is the usage of so
called Long Short-term Memory Networks (LSTMs) [15]. They were introduced by
Schmidhuber and Hochreiter in 1997, and since then have been employed successfully
for many problems from different fields. (We should mention, that there are in fact
many proposed architectures for handling long-term dependencies - such as Gated
Recurrent Units (GRUs) [16] - but since we will be using LSTMs throughout, we
will not go into details of these.) Recall the definition of a simple RNN network
(Equation 2.2): A state s is kept and updated over time, to model memory of such
network. LSTMs follow a similar principle, but use two separate values for storing
temporal information, namely cell state (c) and hidden state (h). Encapsulating
with LSTM the internal calculations of one step, Equation 2.2 thus becomes:

(ht, ct) = LSTM(xt,ht−1, ct−1) (2.4)

In addition, LSTM networks contain several gates, such as an input and forget gate,
which control the flow of information. A general gating function g of a vector v
returns an element-wise sigmoid function, and its output subsequently is multiplied
with v. Due to the range of sigmoid being (0, 1), this resembles an element-wise
filter-out or pass decision for each value stored in v.

16

2.2 Recurrent Neural Networks

Figure 2.4: Depiction of an LSTM cell: The complete flow of information as explained
in Equation 2.5 is shown. In each timestep, previous cell and hidden state ct−1

and ht−1 are passed to the cell, as well as the input xt of timestep t. Using
the described gates, a new cell state is calculated, from which a new hidden
state is derived, which serves as output at timestep t (visualization motivated
by [1]).

We first list all equations describing the internal operations of one LSTM cell, and
then explain each in detail:

ft = σ(Wf · [ht−1,xt] + bf)

it = σ(Wi · [ht−1,xt] + bi)

c̃t = tanh(WC · [ht−1,xt] + bC)

ct = ft ∗ ct−1 + it ∗ c̃t

ot = σ(Wo · [ht−1,xt] + bo)

ht = ot ∗ tanh(ct)

(2.5)

f , i and o denote the forget, input and output gate of the cell. All are identical in
structure, and just differ in used weight matrices and biases: Based on the previous
hidden state ht−1 and current input xt, output of f and i can be interpreted as a
quantitative measure of how much old information shall be forgotten and how much
new information shall be stored, respectively. c̃t describes a potential new cell state
candidate: Based on ht−1 and xt, decide which new information shall be present in
the new cell state. ft and it are now used to balance between old state ct−1 and new
information c̃t, resulting in ct, the resulting state of step t. Eventually, the output
gate o decides how much of the cell state to output, resulting in the hidden state
ht. See Figure 2.4 for a visualization of such cell.

17

2 Fundamentals

2.2.2 Drawbacks of Recurrent Neural Networks

Although LSTMs work very well for the problems analyzed in this thesis, there exists
a trend implying to replace RNNs, and we would like to mention it for completeness.
Two main drawbacks of RNNs are their limited ability of understanding long-term
dependencies, and their resource consumption, especially time required for training
and inference. Although e.g. LSTM cells significantly lessen the first problem, still
every two points in time are connected via linear paths, requiring information to
travel long distances. In practise, it has been shown that LSTMs are much better in
modelling such dependencies than RNNs, but still are limited in their capabilities,
and nowhere near the theoretical limit of being able to model infinitely long depen-
dencies. In addition, due to the sharing of states and weights, for both training and
inference, all sequences have to be processed sequentially, any calculation for time
step t can only be done once all previous time steps have been calculated.

To address these issues, several alternative architectures have been proposed,
among others using only feed-forward networks and attention [17] or (dilated) 1D-
convolutions [18]. All methods allow for a parallelization of calculation steps, and
some additionally focus on reducing path lengths between timesteps to sub-linear.

To end, note that for problems, in which input is processed online, such as au-
tonomous driving, during inference no speed-up can be achieved using these meth-
ods, as input xt only becomes available at timestep t.

2.3 Predicting Multiple Hypotheses

For most problems models are commonly trained to select and output the best possi-
ble hypothesis, e.g. predicting the most likely class of an object present in the scene,
or the best translation of a sentence to a different language. Often though, ambigu-
ity is present in problems, and a single prediction is neither desired nor correct: For
difficult image classification instances, we might have k likely guesses, while on the
other hand being able to definitely rule out all other classes. In textual, video or
trajectory sequences, many possible futures are thinkable. Thus, one important, and
currently heavily researched aspect of machine learning is the ability of predicting
multiple hypotheses, and measuring uncertainty in the resulting predictions.

Although, in theory, predicted probability distributions over outputs are available
(consider e.g. the outputs of a softmax layer for classification), this distribution
usually is biased and overconfident (due to several reasons, such as the existence of
unbounded gradients when employing the common ReLU activation function). This
gives rise to the need for models specifically designed for such a task. In Chapter 4
we discuss and explore a newly proposed framework, and here give a brief overview
over existing methods.

One such concept are Mixture Density Networks (MDNs) [19]. Core of these is
modifying common regression models to output parameters describing a Gaussian
mixture distribution, namely n-dimensional means, variances and weighting coeffi-
cients. During training, the standard approach of maximizing likelihood is used, in

18

2.4 Transfer Learning

which now the used probability is modelled as said Gaussian mixture distribution.
During inference, for each point the conditional probability of corresponding output
variables is returned, s.t. one can sample from these or estimate uncertainty and
ambiguity.

Another commonly used method is Multiple Choice Learning [20] (MCL). Here,
M separate copies of a base model are used as an ensemble, in order to generate M
outputs. In early stages, more complex training procedures were used for optimiz-
ing such models, before Lee et al. introduced a modification of backpropagation for
efficient training [21]: Gradients are only backpropagated to the lowest-error predic-
tors, which results in the forming of M experts for different inputs, and encourages
diverse predictions.

(Conditional) Variational Autoencoders (CVAEs) are yet another general method
of outputting multiple hypotheses. Variational Autoencoders differ from regular
autoencoders in that they enforce some kind of structure over the resulting latent
space, in particular the Kullback-Leibler divergence between the latent distribution
and a Normal distribution is added to existing losses. This way, we now can sample
from the latent space, and by employing the decoder part of the autoencoder generate
multiple samples in the output space.

2.4 Transfer Learning

In early times of machine and deep learning, all problems and tasks were addressed
separately and models trained independently: Models for classifying images of ani-
mals had no connections to models detecting cars, language translation models were
kept separate from question answering models. However, in more recent times, there
is an always-growing interest of leveraging knowledge between domains and tasks.
This is similar to how we humans learn: When faced with a new challenge, like a
new ball sports, typically we can access a large amount of prior knowledge, such as
physical constraints and skills in related disciplines. What makes humans excep-
tional at grasping new concepts, should also work for machines: Transfer learning
describes the field of re-using existing knowledge and models between domains and
tasks. Possible advantages are faster learning, and the lesser need of data, due to
already stored prior knowledge. The latter point is especially important for deep
learning techniques, as these commonly require huge amounts of data for training
from scratch.

In the following, we give a brief overview over transfer learning techniques, in the
process closely following [22]. In general, one can distinguish between inductive,
transductive and unsupervised transfer learning methods:

• Inductive Transfer Learning: In inductive transfer learning, source and target
domain are identical, but the tasks to be solved differ. One example is multi-
task learning, in which a model simultaneously learns to solve different tasks
on the same dataset.

19

2 Fundamentals

• Transductive Transfer Learning: Here, in both domains identical tasks are
addressed, but the domains differ. Often, less data is available in the target
domain, resulting in the need for transfer learning techniques.

• Unsupervised Transfer Learning: This resembles inductive transfer learning,
where domains are similar but tasks different. However, no labelled data is
available in any domain.

In our works, we focus on the fields inductive and transductive transfer learning.
Now that we defined the taxonomy of transfer learning, we take a look at what

kind of methods exist for actually implementing algorithms. There exists a multitude
of methods, each of which can be applied in at least one of the above introduced use
cases. We concentrate on methods applicable to deep learning architectures:

• Off-the-shelf feature extraction / fine-tuning: Assume, we are given a complex
model M trained on some domain and task. To transfer this knowledge to a
new domain or task, cut off the last L layers of M , and train a new, shallow
model (such as an SVM) on this intermediate representation. Alternatively,
we can freeze most parts of M , only retraining layers L on our new domain or
task.

• Domain Adaptation: In contrast to retraining models on new domains to
achieve better performance, the field of domain adaptation aims at minimizing
differences between domains, s.t. models trained on the source domain also
work in the target domain. Possible methods range from simple mean and
variance transformations [23] to more complex, generative ones [24].

• Zero-shot / one-shot / few-shot Learning: Methods from these fields can be
counted to the field of transfer learning, as well, since their purpose is transfer-
ring prior knowledge to unseen or rare data samples. Although many possibil-
ities exist, a common one is using Siamese networks to first learn similarities
between objects from the training set, and then applying this knowledge for
categorizing unseen ones [25].

• Multi-task learning: Core idea of multi-task learning is learning different
tasks simultaneously while using a shared base architecture. Possible appli-
cations are the joint learning of semantic segmentation and depth estimation
or combining perception and planning losses in end-to-end autonomous sys-
tems. Sharing parameters over different tasks has been shown to improve
performance, among others due to the additional amount of labelled data and
exploitable relations between tasks [26, 27].

2.5 Autonomous Driving

Autonomous driving undoubtedly is one of the most exciting fields of applied re-
search nowadays, with the potential of changing the world as we know it: Through

20

2.5 Autonomous Driving

using powerful sensors as well as computing resources and removing human errors
from the equation, fully autonomous driving is expected to lower the number of
traffic accidents drastically - some even share a vision of zero accidents. Currently,
unfortunately more than a million people each year die in road traffic incidents [28].
Furthermore, also the number of harmful emissions caused by traffic is expected
to reduce significantly: Vehicle-to-vehicle as well as vehicle-to-infrastructure com-
munication allow a better traffic control and planning, avoiding congestions and
unreasonable acceleration peaks. Fully autonomous driving even reduces the needed
number of parking possibilities in urban areas, as vehicles might drive autonomously
to designated, compact parking areas in less crowded environments - thus freeing up
space for people and nature.

History The dream of autonomous vehicles has been pursued for over thirty years
now: Already in the 1980s, vehicle Alvinn conducted first autonomous drives on
highways [29]. By the end of the 90s, an autonomous shuttle bus, billed the “world’s
first driverless vehicle”, was put into operation, transporting people on designated
routes by making use of artificial magnetic reference points [30]. In the next century,
DARPA’s Grand Challenge resulted in much progress in the field: In its first holding,
vehicles were required to autonomously follow a 150-mile course through the Mojave
Desert, but no team made it [31]. A year later, several vehicles finished the course,
and 2007 the challenge was moved to an urban environment [31]. In 2012, researchers
from BMW managed to routinely drive in full autonomous fashion from München to
Ingolstadt through dense highway traffic [32]. In recent years, progress and interest
in the field has grown even more, with many major tech companies investing in
and developing self-driving vehicles, to just name a few: Google, Apple, Intel, Uber
and Lyft. By 2020, Waymo’s autonomous vehicles had driven 20 million miles on
public roads [33]. Still, no fully autonomous vehicle is commercially available yet,
and plans for doing so have been pushed backwards as well as confined to certain
scenarios and locations, such as highways and specific cities. Experts agree though
that the goal is in graspable reach, and that deep learning will be one of the main
drivers for this.

Levels of Automation Autonomous driving typically is partitioned into five levels,
which model a successive transfer of responsibility from driver to vehicle: Level
0 describes a classical vehicle without any driving assistance functions. A Level
1 vehicle contains such functions, although these mostly are of indicatory nature,
informing and warning the driver. Level 2 describes partial automation, for the
first time actively accessing the vehicle actuators: Steering and control assistants
can guide the vehicle, e.g. in lane-following or traffic jam scenarios, such as an
ACC. Earlier, most such functions focused on longitudinal control, while now also
lateral control is possible (e.g. lane changes can be executed autonomously). Still,
the driver bears full responsibility for the vehicle and has to watch and monitor
the traffic situation at any time, immediately being able to regain control once the

21

2 Fundamentals

system reacts wrongfully. Most commercially available vehicles nowadays contain
Level 2 functions. Level 3 vehicles exhibit conditional automation: Under certain
circumstances, drivers are allowed to divert their attention from the road and focus
on other tasks. Still, within a limited time period, drivers need to be able to re-focus
on the road, controlling and guiding the vehicle through situations it is not able to
handle. One difficulty when developing such functions is equipping these with ways
of knowing, whether automation for the next n seconds is possible. One distinction
between Level 3 and Level 4 automation is the vehicle’s ability to handle failures
and unforeseen situations: While in Level 3 drivers have to regain control of the
vehicle, a Level 4 system will always stay in a safe state even without the driver’s
intervention. This could mean the vehicle coming to a safe stop on the road side,
when it is not able to safely continue on its trip. Therefore, drivers need to be able
to drive in general, moving their vehicle across critical passages until automation is
possible again. Level 5 describes full automation, absolutely no human interaction
is necessary. Level 5 vehicles could actually be produced without any typical input
components we see today, such as steering wheels or pedals.

Sensors To be able to progress through these levels of automation, vehicles need to
understand complex traffic scenes. Crucial for this is the usage of powerful sensors,
s.t. the vehicle can perceive its environment. Most common sensors are cameras,
Radar and LiDAR, each coming with their own distinct advantages as well as dis-
advantages. It is believed that a combination of all sensor types will be necessary to
achieve full automation, although Tesla seems to choose a different path [34]. Cam-
eras are a well-working and mature technology. Combing them with deep neural
networks results in state-of-the-art methods for many tasks needed for autonomous
driving, such as object detection and semantic segmentation. There are downsides
though, which actually closely resemble those of our human eye: Adverse weather
conditions, such as rain or snow, severely influence camera performance. Radar
sensors emit electromagnetic waves, determining range but also velocities of ob-
jects based on reflection patterns. Electromagnetic waves are hardly influenced by
weather conditions, thus Radar is ideal in these scenarios. The ability to determine
relative velocities can come in handy, as well. On the downside, current Radar sen-
sors only offer limited resolution, resulting in blurry images and making it hard to
react precisely to small, localized threats. LiDAR sensors, on the other hand, are
able to generate incredibly detailed 3D maps of the environment. They work by
sending out laser pulses and measuring their reflection. With such accurate mea-
surements, one can achieve very precise localization of vehicles in High Definition
(HD) maps using Structure-from-Motion (SfM) techniques. However, LiDAR sen-
sors exhibit a limited range only, and additionally are very expensive, in terms of
production costs but also needed computation power.

Architectures For building a self-driving vehicle, two philosophies exist, with vari-
ous implementations in-between: More traditional approaches employ a stack-based

22

2.5 Autonomous Driving

architecture consisting of multiple layers, on the other hand data-driven end-to-end
systems aim at solving the whole problem with a single component. A stack-based
architecture generally consists of the following layers:

• Perception: The perception layer handles processing of information from all
available sensors and a subsequent detection of objects and other points of
interest. Typically at this stage such processing still is done separately per
sensor, e.g. outputting a list of detected objects or other relevant information
per sensor.

• Fusion: The fusion layer then fuses these into a complete understanding of the
surrounding environment. Such understanding ideally should be as complete
as possible, and include among others lane markings, detected pedestrians and
vehicles, as well as traffic lights and symbols.

• Prediction: Goal of the prediction layer is to transform the previously built
static environment understanding into a dynamic one. How will the scene
unfold, where might other agents go?

• Planning: Based on these assumptions and observations, one now can plan a
possible path for the ego vehicle. One can further distinguish short- and long-
term planning: Long-term planning describes the finding of certain waypoints
the vehicle has to approach, such as highway exits or turning lanes. Comple-
mentary, short-term planning calculates trajectories to meet these waypoint
requirements.

• Control: Purpose of the control layer is to translate the given trajectories into
actual commands for on-board electronic control units (ECUs), i.e. actuate
steering and acceleration.

Motivated by breakthroughs in other fields, such a image classification and speech
recognition, there also exist approaches to replace this multi-step pipeline by just
a single component. End-to-end learning describes exactly this, namely going from
raw sensor inputs to steering commands. Possible approaches are [35, 36, 37, 27],
which use camera images, LiDAR point clouds or some intermediate representation
as inputs, and employ IL and RL techniques. Both approaches, stack-based and
end-to-end systems, exhibit their own advantages and disadvantages: A stack-based
system more resembles principles from classical software engineering. Common func-
tionality is bundled and encapsulated into different components, which can be de-
veloped and tested independently. This allows parallel development and enables a
better understanding and verifiability of the system. However, in each abstraction
layer most likely information is lost, and each component is designed from scratch,
neglecting the potential many complex interactions between them. On the other
hand, an end-to-end architecture leverages these interactions, all components profit
from all available data and assumptions and share their knowledge. However, train-
ing such a model is much more complex, and finding errors is more tedious, as know
the whole system essentially is a black-box model.

23

2 Fundamentals

This work more fits into a stack-based architecture and mainly considers the fields
planning and prediction. Thus, in the following, we take a closer look at these. Of
course, mixed solutions are possible and applicable, and any end-to-end system
implicitly models planning and prediction targets. Therefore also methods from
these areas will be addressed.

2.5.1 Prediction

The field prediction turns a static scene understanding into a dynamic one. As agents
typically move around a scene, just examining a static snapshot is not sufficient.
Predicting future movements thus is a crucial part for any autonomous system and
builds important foundations for later planning steps. Methods used for prediction
range from simple ones, such as predicting linear follow-up trajectories or modelling
rational drivers in lane following scenarios [38] to more complex ones, e.g. using
deep learning techniques.

We can distinguish between discrete and continuous prediction: Discrete predic-
tion aims at predicting discrete manoeuvres, such as lane changes and turning ma-
noeuvres [39, 4]. This often gives a good high-level understanding of dynamic scenes,
and is beneficial in situations where such priors are available. Urban or highway en-
vironments are one such example, as here designated lanes are available which are
followed by drivers. Restricting predictions to discrete, possible manoeuvres dras-
tically simplifies the hypotheses space compared to allowing arbitrary, continuous
predictions. Continuous prediction requires less prior knowledge, but often comes
with a greater expressiveness and flexibility. Aim is predicting continuous trajec-
tories. Formally, a trajectory is defined as the path an object follows through its
spatial environment in relation to a temporal component. Thus, a trajectory defines
a spatial path annotated with temporal information, i.e. expressing at what time
an object reaches which coordinates.

Many works regarding trajectory prediction involve predicting movements of VRUs
[40, 41]. Possible solution techniques include encoder-decoder RNNs [40, 41] and gen-
erative models [42, 43]. Often, agent-agent interactions as well as agent-environment
interactions are taken into account, sometimes coupled with an attention mechanism
to quantify the strength of such interactions [41, 40, 43].

2.5.2 Planning

The planning layer builds on the previously established dynamic scene understand-
ing and tries to find an optimal path considering different constraints for the ego
vehicle. The found solution should take into account physical limits and estimate
felt driving comfort given different velocity profiles, lead towards a specified goal
(such as a navigation target) and naturally avoid accidents and result in safe, law-
abiding driving. We can further subdivide the planning layer: At a very high level,
navigation information is used to calculate a route towards a certain target. This
could include roads and highways to use and specifying which exits to take. One ab-

24

2.5 Autonomous Driving

straction level below, this is further specified by finding discrete waypoints to model
such route: Which lanes need to be used to reach a certain exit or turning lane on
an intersection, which manoeuvres need to be executed to end on these waypoints?
Lastly, a continuous trajectory needs to be generated, satisfying all previously de-
scribed constraints and expressing a path containing all designated waypoints.

Common approaches are search algorithms and some kind of rule-based systems:
Algorithms like A* or Dijkstra’s algorithm can determine a navigation path via
search in discretized environments, logic-based systems generate optimal manoeu-
vres given certain situations, and mathematical optimization is used to find contin-
uous trajectories. Possible data-driven solutions are IL and RL. Depending on used
inputs and outputs, these techniques can be applied in stack-based architectures as
well as end-to-end systems.

IL is a supervised learning method, in which models try to imitate expert be-
haviour. In the case of autonomous driving, large amounts of data are recorded
daily by companies all over the world. This data essentially defines a ground truth
of (near) optimal driving behaviour, which can be used to train complex models [27].
Downsides of this technique are potential overfitting to certain expert behaviour, as
well as compounding errors, which lead to a degradation of trajectories over time
from which the system cannot recover.

Core principle of RL, in contrast, is allowing the model to teach itself by rewarding
or punishing it for certain actions. Typically, this is done in some kind of simulator,
in which any kind of driving behaviour can be executed safely. A reward function is
designed (consider, e.g. driven kilometers without traffic accidents), and the model
discovers optimal policies by itself [36]. While this sounds very promising, training
is not easy, and we need to handle the domain gap between simulated and real-word
driving data. Further, safety guarantees for learned behaviour are even harder to
determine than for other deep learning methods.

25

Part II

Prediction

27

3
Manoeuvre Prediction

In most countries, traffic is highly regulated - designated lane markings confine vehi-
cles to certain areas, numerous traffic rules and signs control its flow. It thus makes
sense to discretize prediction space, and in our first prediction application we will
do exactly that: Goal is to predict discrete manoeuvres, in particular predict lane
change manoeuvres on highways. Obtaining a precise prediction for these manoeu-
vres is extremely important, also for many driving assistance functions commercially
available today, such as an ACC: in lane following situations, the ego vehicle needs
to react to vehicles merging into one’s driving lane. The earlier and more accurate
the prediction, the smoother the reaction to this can be controlled.

For this, we require a prediction model which is able to predict forthcoming lane
changes early, while simultaneously minimizes the number of false positive predic-
tions, as these could lead to wrong and abrupt breaking manoeuvres. We develop
a powerful RNN achieving promising prediction results. To better quantify such
cases and further relate this to driving comfort felt by the driver, we additionally
introduce novel and better suited metrics.

In summary, our contributions are:

• We introduce a novel RNN model for predicting lane changes. We further
extend this by an attention mechanism, which results in improved prediction
performance as well as allows insights into which features the model deems im-
portant. Such capability of being able to explain decisions is a very interesting
field of research, and especially important in safety-critical applications.

• We introduce novel metrics, specifically designed for the problem of predicting
lane changes. These directly relate to felt driving comfort, and thus allow
exact quantification how changes in prediction performance effect customer
satisfaction.

• We provide extensive experiments and benchmarks of different algorithms,
comparing them on multiple datasets and further also introduce the study of
various corner cases.

29

3 Manoeuvre Prediction

3.1 Introduction

In the field of autonomous driving, predicting lane change manoeuvres is a field
of great interest, due to its high importance for many driving assistance functions.
More generally, it strongly relates to activity anticipation. Jain et al. introduce
a framework for predicting driving manoeuvres of the ego vehicle, making use of
internal and external driving features, such as driver’s head pose and map informa-
tion [39]. They use different, decoupled RNN cells and achieve impressive results
for this task, and greatly motivated our work. For predicting lane changes, often
more classical, frame-based methods are used: Random Forests offer good results
[44], further SVMs [45] and Bayesian Networks [46] are employed. Schlechtriemen
et al. [47] analyze the expressive power of different input features, concluding that
the features distance to the lane boundaries, lateral velocity and relative velocity to
the preceding vehicle are most decisive.

We propose to use an RNN made out of LSTM cells for tackling this problem, as it
is our strong belief, that lane change prediction essentially is a time-series problem,
and thus ideally suited for recurrent models. Understanding temporal dynamics of
the problem and differences between frames naturally gives a greater understanding
and should allow better and more stable predictions. Consider a driver oscillating
around lane boundaries: While classical, frame-based models might predict alternat-
ing lane changes, a recurrent model could learn this behaviour and smoothly predict
a follow manoeuvre. Additionally, we employ an attention mechanism. This further
improves performance as well as allows insights into the decision-making process of
our model.

In accordance with many works in this field, we work with intermediate feature
representations instead of raw senor data. In particular, turn signals are not part
of our feature set, as these are hard to detect and often unreliable [48]. Using such
high-level representations generally leads to good performance, and allows for better
transfer to different domains, and is compatible with the concept of a stack-based
architecture.

Often, metrics motivated by information-retrieval applications, such as Precision
and Recall, are used to assess lane change prediction algorithms. However, it is not
clear, how these numerical results translate to real driving behaviour on the road.
Therefore, we introduce novel metrics, directly tying our prediction performance to
actual driving experience, when such a prediction model is used as input for different
control functions.

As stated before, results indicate a high importance of few core features, such as
distances to the lane boundaries and lateral velocity. In addition to their obvious
expressiveness, another reason for this is that a large amount of lane changes can
be classified as “easy” to predict: In many cases, drivers will smoothly initiate and
execute a lane change manoeuvre, and otherwise follow their intended lanes in an
orderly fashion. This makes improving existing models hard, and also complicates a
precise evaluation, as many metrics will be dominated by this large amount of “easy”
manoeuvres. To combat this, we introduce a novel, scenario-based evaluation, for

30

3.2 Related Work

the first time standardizing different driving scenarios and listing performances of
different algorithms over multiple datasets.

In strong correlation with that, our models employ a multitude of different fea-
tures, ranging from features of the target vehicle (such as lateral velocity) to dynamic
environment features (distances to neighbouring vehicles) and static environment
features (such as map information). These should greatly increase prediction per-
formance of our model in certain corner cases, observable through the previously
introduced scenario-based evaluation.

3.2 Related Work

Jain et al. employ LSTM networks for anticipating driving manoeuvres [39]. They
use various sensory inputs, partitioned into inside and outside features: Inside fea-
tures describe the driver’s behaviour, such as head pose. Outside features conversely
represent the outside world and contain among others map information, such as dis-
tances to intersections. To better be able to model different modalities of such
feature streams, the authors use two separate RNNs and later fuse the results. Us-
ing this scheme, manoeuvres can accurately be predicted around 3.5s before they
are actually executed by the driver.

Schlechtriemen et al. analyze a multitude of features for predicting lane changes,
coming to the conclusion that the features distances to the lane boundaries, lateral
velocity and relative velocity towards the preceding vehicle are most telling for such
a prediction [47]. Based on these features, they employ Naive Bayesian methods as
well as extend them with a Hidden Markov model. In another work, Schlechtriemen
et al. consider the problem of predicting trajectories [44]. For this, lane change pre-
diction is queried as a helping subtask, and solved by using Random Forests. Weidl
et al. employ Dynamic Bayesian Networks (DBNs), and use hand-crafted safety dis-
tances as additional inputs to model physical plausibility of lane change manoeuvres
[46]. Further deepening this topic, Woo et al. propose usage of an energy field to
express relationship between vehicles and free space [45]. This combined with other
features serves as input to an SVM model. Combining scene understanding with
deep learning, Patel et al. apply Structural-RNNs to model lane change behaviour
[49]. Three LSTM cells are used to model the target’s driving lane as well as its
adjacent lanes to the left and right. Information is exchanged between these cells,
s.t. a full scene understanding is achieved. Zeisler et al. approach the problem
differently, using raw video inputs as prediction cues, in particular optical flow [50].

Attention is widely used in fields like machine translation and image processing
[51, 52, 53]. Basic idea is to allow models a selective focus onto different input
parts. Consider a machine translation application: When generating a word in the
target sentence, specific key words in the source sentence are particularly telling
regarding which translation is correct. Attention mechanisms weigh these words
according to their importance. In general, needed values are called queries, keys
and values: W.r.t. a query, different importance scores for all keys are calculated,

31

3 Manoeuvre Prediction

and an accumulated representation of all values based on these scores is determined.
More formally, we assign an importance weight a to each value vi, which is based
on a score between the query q and the keys k:

a(vi) =
exp(score(q,k))∑
k′ exp(score(q,k′))

(3.1)

Eventually, based on this a weighted accumulation c is calculated:

c =
∑
vi

a(vi) · vi (3.2)

For calculating score functions, a multitude of possibilities exist, such as [53]:

score(q,k) =


qTk dot

qTWk general

vTtanh(W[q; k]) concat

(3.3)

For some applications, just using attention even outperforms RNNs, like shown in the
Transformer [17]. Here, queries, keys and values are obtained by projecting similar
input values into different latent spaces (self-attention), and this in combination with
feed-forward networks results in state-of-the-art machine translation performance.

3.3 Recurrent Models for Predicting Lane Changes

In this section we introduce our proposed model. We begin by formally introducing
the problem and used feature set.

3.3.1 Scene Representation

A driving scene may contain N vehicles. For each vehicle n, we collect a sequence
sn of all frames it occurs in, sn = {F1, . . . , FL}. Each frame Ft, t ∈ {1, . . . , L},
is a numerical representation of the driving scene at time t and is centered around
vehicle n. This way, vehicle n acts as a “target” vehicle in sn, and sn is used
for obtaining predictions about its behaviour. We subdivide each frame into three
feature categories GZt , G

E
t , G

M
t :

• GZt = (m, vlat, vlong, alat, h). GZt describes features of the target vehicle. They
are, in order, distance to the lane’s center line, lateral velocity, longitudinal
velocity, lateral acceleration and heading angle. All are measured in Frenet
coordinates: These follow a lane’s center line, describing a point by its longi-
tudinal distance along this (possibly curved) line and lateral offset.

• GEt = (dtX for X ∈ {PV, RV, PLVL, PLVR, PFVL, PFVR}) describes
dynamic environment features, namely relations of the target vehicle to neigh-
boring vehicles. In particular, we measure temporal distances, which is the

32

3.3 Recurrent Models for Predicting Lane Changes

Figure 3.1: Depiction of all considered neighbouring vehicles of vehicle “target”: On
each lane, a preceding and following vehicle is observed and used for further
calculation (image from [2]).

spatial distance divided by the velocity of the trailing vehicle. Any car can
have at most six neighbours, a preceding and following vehicle on its left and
right neighbouring as well as current driving lane. See Figure 3.1 for a visual-
ization.

• GMt denote static environment features, which slightly depend on the dataset
used and amount of information available. Overall, available features in this
category are lane ID (lID), distances to next on- and off-ramps, and speed
limit information.

Additionally, each frame is given a label lt, which serves as training target during
training and needs to be correctly predicted in each step during inference. Four
possible labels exist: Left (L), Follow (F), Right (R) and Ignore (I). Models need
to output one prediction every timestep. Predicting L or R indicates the model’s
belief, that a lane change to the respective side is imminent. Conversely, predicting F
expresses the model’s belief that the vehicle will continue in its driving lane. What
models understand as “imminent”, strongly corresponds to our labeling scheme,
which we will introduce in the next paragraph. Label I is used to assign a weight of
0 to certain frames, and thus effectively removing them from training and test set.

Labelling Scheme We use automatic and manual labelling techniques. Assume,
a lane change happens at time step t1 (that is, the target’s center of mass crosses
lane boundaries). In the automatic labelling scheme, we label all frames in the
window t1 - 3 seconds to t1 with the corresponding lane change label. Frames in
[t1 − 5, t1 − 3) are labelled with I. This way, we do not punish early predictions.
In the manual labelling scheme, lane change frames are labelled via human labelers.
They assign lane change labels when humans perceive a lane change as such, and
thus the duration of a lane change is variable. In both schemes, we label 5s after a
lane change with I to give models time to adjust. Additionally, we filter out “noisy”
lane changes, i.e. driving sequences where drivers oscillate around lane boundaries.
All other frames are labelled with F .

33

3 Manoeuvre Prediction

3.3.2 Models

In this section we introduce used models for predicting lane changes. We first intro-
duce two “baseline” LSTM networks, which we then extend by an attention mecha-
nism. In accordance with Section 2.2.1 we use the following short-hand notation to
encapsulate internal calculations of an LSTM cell per timestep:

(ht, c̃t) = LSTM(xt,ht−1, c̃t−1) (3.4)

3.3.2.1 Baseline Models

In our first proposed recurrent model (named LSTM), a single LSTM cell processes
all available input features GZt , G

E
t , G

M
t . A subsequent fully connected layer then

generates a manoeuvre prediction in each step. This is expressed mathematically as
follows:

(ht, c̃t) = LSTM(concat(GZt , G
E
t , G

M
t),ht−1, c̃t−1)

yt = softmax(Wsht + bs)
(3.5)

Our next variant is motivated by the approach from Jain et al. for predicting
driving manoeuvres [39]: Core idea is partitioning features into groups, s.t. intra-
group correlation is high and inter-group correlation low, and then processing these
feature groups by separate LSTM cells, later fusing the results. This way, LSTM cells
can focus on learning feature-specific patterns, such as different temporal modalities
of the input streams. In our extended model (dubbed E-LSTM), we employ three
different LSTM cells, which process the feature groups GZt , GEt and GMt separately:

ut = WF [concat(WXhXt + bX)] + bF

ot = tanh(Wu · ut + bu)

yt = softmax(Wo · ot + bo)

(3.6)

In this, X ∈ {GZ , GE , GM} denotes the specific feature group. An overview over
the model is given in Figure 3.2.

3.3.2.2 Attention Mechanism

We now extend both previously introduced base LSTM models with an attention
mechanism. This way, models can focus on specific parts of the scene, and weigh in-
put features accordingly. This approach is motivated by how humans assess scenes,
especially while driving: Also humans use selective focus, and normally do not spend
their full attention on full scenes, but often on the most important cues, such as vehi-
cles in front or approaching on- and off-ramps. Modelling this algorithmically should
help improve prediction quality, and also result in interpretable models. One often
used side-effect of attention (or design purpose, depending on the interpretation) is
a direct indication, what the model deems important in its decision-making. In ma-
chine translation, for each translated word in the target sentence, attention indicates

34

3.3 Recurrent Models for Predicting Lane Changes

Figure 3.2: Visualization of E-LSTM . Each feature group is processed by an indepen-
dent LSTM cell and subsequent fully connected layer (FC). The outputs are
eventually fused together to return the final prediction y (image from [2]).

which words of the source sentence are most influential. In image processing, atten-
tion allows an insight into which image regions are considered for each classification.
This becomes even more important in safety-critical applications, like autonomous
driving, as assuring safety guarantees for black-box models such as neural networks
is hard. For completeness, we should note though that there are other methods for
gaining deeper insights into neural networks, as well. Some of these also are applied
in practise with good success, such as Saliency Maps for CNNs [54]. We compare
against such methods in Section 3.4, but find that results for RNNs are relatively
unreliable.

We refer to Section 3.2 for a general introduction of attention and the terms
queries, keys, and values. Here, hidden states of the respective LSTM cells serve as
queries. We embed features into a higher-dimensional space, these representations
simultaneously serve as keys and values, meaning we calculate importances based on
them and accumulate them in weighted fashion. As score function we use Luong’s
general function [53]:

Ψ(W,v, q, k) = vTtanh(W[q; k]) (3.7)

We first introduce the attention extension of LSTM, and then apply the same
concept to LSTM-E. A temporal window of T values for each feature is embedded
into a higher dimensional space E, and them embedded once more (J), in order
to achieve more comparable subspaces. With J as keys and hidden state h of the
LSTM cell as query, the embeddings J (the values) are assigned importances via the
score function Ψ. Based on these, after applying a softmax function, a weighted
sum of the values is calculated, now denoting a compressed scene representation.
This vector is concatenated with h and serves as base for the classification. Let
F = [GZt , G

E
t , G

M
t] be the set of all 14 input features, and further let Xi

t, i ∈ F ,
denote input value of feature i at timestep t. Then, the following describes the
calculation of attention formally (while W’s and b’s denote weight matrices and

35

3 Manoeuvre Prediction

Figure 3.3: Visualization of our used attention scheme. For the sake of simplicity,
in this example 3 features and a temporal window of size 5 is used. For each
feature, these windows are embedded into a higher dimensional space, and
projected once more. The resulting serves as key for the attention function
Ψ, and the hidden state h of the LSTM cells is used as query. Ψ returns
weighting factors for each such embedding, which are then changed accordingly
in intensity. Eventually, this is summed together, resulting in an accumulated
representation of the scene, the context vector c (image from [2]).

bias vectors):

Ei
t = WEi[X

i
t−T ; . . . ;Xi

t] + bEi

Jit = WJiE
i
t + bJi

γit = Ψ(WFi,vFi,ht,J
i
t)

γt = softmax([concat(γit)])

ct =
∑
i∈F

γit · Jit

ut = [ht; ct]

(3.8)

Figure 3.3 visualizes the calculation steps involved in the attention mechanism.
Eventually, using two fully connected layers, a prediction is obtained based on this:

ot = tanh(Wo · ut + bo)

yt = softmax(Ws · ot + bs)
(3.9)

For E-LSTM, calculations are identical, except ut now contains a concatenation of
the hidden states of all three LSTM cells, and this is further used as query. We denote
the extensions of LSTM and E-LSTM by LSTM-A and E-LSTM-A, respectively.

36

3.4 Evaluation

Training Scheme Similar to [39], we use an exponentially growing loss during
training, increasing weighting of frames exponentially more the closer the moment
of crossing lane boundaries. This way, correct classifications become more impor-
tant the closer the lane change, modelling the huge cost of not detecting imminent
lane changes. On the other hand, wrong predictions earlier in time are penalized
much less, accepting that such predictions are much harder, and implicitly encour-
aging models for early anticipation. As loss function we use standard cross-entropy,
weighing each frame t with wt, which is inversely proportional to the class’ relative
frequency. Additionally, lane change manoeuvres are weighted by the previously
introduced exponential weighting scheme, multiplying wt with α ·exp(−T), assum-
ing the moment of lane change execution is T seconds away. We choose α s.t. the
average value of α·exp(−T) over all frames of a lane change equals 1.

As many lane change manoeuvres could be predicted well using only a few very
telling features, such as distance to the lane boundaries and lateral velocity, models
could fall back to these, ignoring complex interactions and especially ignoring the
attention scheme: Thus, we introduce dropout in the calculation of ut:

ut = [WDrop,Fusion; WDrop,c] · [ht; ct] + bdrop

In this, default values of WDrop,Fusion and WDrop,c are 1, but set to 0 with a
probability of 1/3 each, thus forcing models to only focus on direct feature inputs
or attention, and creating a meaningful gradient flow in call cases. In addition to
difficulties during training time, the large number of “easily” detectable lane changes
also causes problems during inference and evaluation: Most simple metrics would
be dominated by such lane changes, indicating that in order to fully understand
our models, it is necessary to look at certain corner-cases. In the next section we
describe methods for this.

3.4 Evaluation

In this section we describe detailed experiments evaluating the performance of our
proposed LSTM models and compare them against other baselines. We begin by
introducing used datasets and then explain used metrics, which are particularly
suited for the problem of predicting lane changes. Eventually, we give detailed
evaluations of a multitude of experiments, also analyzing feature importances and
specific corner-cases, in order to better understand prediction models.

3.4.1 Datasets

NGSIM The publicly available NGSIM dataset [55] contains four subsets, we use
US 101 and I-80. These are recorded on the respective highway / interstate in
the United States. All contain traffic recordings of a certain area, recorded from a
bird’s eye view camera. Raw image data is available, as well, but also processed
information, such as lane boundaries, vehicle coordinates and velocities. We use

37

3 Manoeuvre Prediction

Figure 3.4: Depiction of the highway segment recorded in the US 101 dataset.
Vehicles drive from left to right on 6 lanes, if also counting an auxiliary lane for
merging from the existing on-ramp or towards the off-ramp. Size proportions
are not realistic in this drawing, image taken from [3].

Figure 3.5: Visualization of the I 80 subset. As can be seen, the area of interest is
similar to that in US 101, except missing the off-ramp.

the latter, using and calculating missing ones s.t. finally we obtain all features
GZt , G

E
t , G

M
t . The relevant segments of US 101 and I-80 are multi-lane roads, with

one on-and off-ramp or just an off-ramp. Only one direction of traffic is recorded.
Figures 3.4 and 3.5 show simplified drawings of US 101 and I-80. Recordings are
done with a frequency of 10Hz. After filtering out noisy trajectories, we are left with
3180 lane changes. In addition to lID, we add the distances to the on- and off-ramp
(don, doff) to the feature set GM .

highD In terms of structure and available features, the highD dataset [56] is very
similar to the NGSIM dataset. Traffic is recorded at 25Hz on different German high-
way segments from a bird’s eye view, and similar high-level features are calculated.
In contrast to NGSIM though both traffic directions are recorded. Due to our used
feature representation, this does not affect our models, but needs to be considered
in the preprocessing step (i.e., normalize direction of travel and signs of velocity
vectors etc.). After filtering, 7572 lane changes are available. We resample all tracks
to 10Hz. Since no on- and off-ramps are present but speed limit information is
available, in this case GM = {lID, vmax}.

Fleet data In addition, for our experiments we use proprietary BMW fleet data,
which comes from recordings of in-production cars. They are equipped with several
camera and Radar sensors to allow a 360◦ perception of the environment. Data
is collected at 25Hz, but again resampled to 10Hz. From the sensory inputs we
calculate all needed high-level features. Figure 3.6 shows a sample recording of a

38

3.4 Evaluation

Figure 3.6: Sample scene recording from the front camera of a fleet vehicle. The target
vehicle, which is doing a lane change, is marked by the green bounding box,
while its neighbouring vehicles are highlighted in orange (image from [4]).

traffic scene from the front camera. After filtering, we obtain 830 lane changes.
Here, GM only contains {lID}. While for all other datasets we use an automatic
labelling scheme, our fleet data is humanly labelled.

3.4.2 Metrics

Most works concerning the prediction of lane changes, but also manoeuvres in gen-
eral, apply metrics such as Precision and Recall, which are motivated by information
retrieval problems. These exhibit two downsides when applied to the problem of
predicting lane changes: For one, they discard the fact that ground truth labels for
such manoeuvres are event-wise continuous. This should also be reflected by used
metrics, however, fast-changing and spiky predictions obtain identical scores as con-
tinuous ones, when the overall percentage of correctly classified frames is identical.
Second, although such metrics do give a rough estimate of prediction performance,
there is no direct connection to what drivers and passengers inside vehicles experi-
ence. When using lane change prediction models in (partially) autonomous vehicles,
controlling functions have to react to predictions, especially cut-ins to the ego-lane:
The earlier and more accurate the prediction, the smoother the controller’s reac-
tion. When predictions are wrong, for example a lane change is wrongly predicted,
this results in unnecessary breaking and acceleration behaviour, which significantly
reduces drivers’ comfort. Ideally, our metrics should be able to capture such sit-
uations, and help us quantify the behaviour of our models, such as “on average
the vehicle drives 100 kilometres without false positive predictions”. Therefore, we
employ metrics specifically tailored for predicting lane changes. These are:

• Delay : Delay measures the earliness of prediction for lane change events, i.e.
the number of seconds passed between the ground truth label and first correct
corresponding prediction of a manoeuvre. A perfect algorithm would exhibit
a Delay of 0. When using our automatic labelling scheme, a Delay of 3s is
maximal.

39

3 Manoeuvre Prediction

Figure 3.7: Depiction of a sample sequence to visualize the proposed metrics Delay,
Overlap, Frequency and Miss. The sample sequence spans over 12s, ground
truth labels are depicted on top, model predictions in the bottom. The se-
quence begins with a Follow period, followed by a lane change to the Left , and
ends with a lane change to the Right .

• Overlap: Controllers often react (or have to) to the first lane change predic-
tion due to safety reasons. Thus, this is of great importance, and the metric
Overlap measures the percentage of overlap of the first lane change prediction
and the ground truth. Ideally, Overlap is 1, indicating that the model’s first
prediction corresponds with the full manoeuvre, i.e. all frames are predicted
correctly.

• Frequency : Frequency indicates the absolute number of times an event is
predicted per ground truth event. For Follow events, this is also known as the
false positive rate (FPR). A high Frequency indicates a spiky and discontinuous
prediction, and, as stated before, this significantly reduces driver’s comfort,
among others because of provoking stop-and-go behaviour. A Frequency of 1
is optimal.

• Miss: Miss describes the percentage of lane changes completely missed, i.e.
no frame is correctly classified. A large number of misses obviously also has
a high negative influence on the drivers’ comfort, as they potentially have to
intervene in critical situations.

Figure 3.7 visualizes these metrics. Further, we adapt the well-known metrics Pre-
cision and Recall to the event-wise continuous interpretation. Figure 3.8 explains
this principle: For both metrics, we split all tracks (which are all frames of a specific
target vehicle) into homogeneous chunks. For Precision, we split w.r.t. the model’s
prediction, for Recall w.r.t. the ground truth label. Then, we calculate the fraction
of correctly predicted frames for each chunk and average (image from [2].

3.4.3 Results

Model LSTM consists of a single LSTM cell with size 128. In E-LSTM a single layer
per cell is used, as well, the hidden sizes of LSTMZ , LSTME and LSTMM (the

40

3.4 Evaluation

Figure 3.8: Depiction of the calculation of Precision and Recall per manoeuvre.
The same sample scene as in Figure 3.7 is used. Calculation of precision is
“bottom-up”: The fraction of correctly predicted frames per homogeneous
prediction chunk is calculated and averaged. Conversely, the calculation of
Recall is “top-down”: For this, the fraction of correctly predicted frames per
ground truth label is averaged (image from [2]).

cells responsible for processing the input feature groups GZ , GE and GM) are 128,
128 and 32, respectively. Layer o has size 32. In the attention scheme, a temporal
window of 10 frames (1s) is used. Both the layers E and J live in a 16-dimensional
space. We further employ L2 regularization with weighting factor 0.0000001, and
perturb samples during training by adding independent Gaussian noise on feature
inputs (ranging from -5% to +5% of original values).

Baseline Methods We implement several baseline methods to compare our algo-
rithms against.

• Random Forest: We apply Schlechtriemen’s [44] Random Forests, just tuning
hyperparameters ourselves and extending them for a temporal understanding.
In the simple form, Random Forests consisting of 10 decision trees with a max-
imal depth of 10 examine each frame separately (using features GZt , G

E
t , G

M
t)

for obtaining a prediction (RF). To allow a better understanding of temporal
dependencies, we introduce RF-L, which only differs from RF by its input fea-
tures, which now are a concatenation of 10 equidistant frames spanning over
2 seconds.

• Naive Bayes (NB): Similar to [47], we fit a Naive Bayesian approach for pre-
diction, considering input features m, vlat and PVdt.

• Structural RNN (S-RNN): We implement an S-RNN according to [49]. Three
LSTM cells process target’s driving lane as well as left and right adjacent
lanes. Each cell is given input features Q of three vehicles, namely target, as
well as its two neighbours on that lane (PFVL / PLVL - PV / RV - PFVR
/ PLVR). Q contains absolute vehicle coordinates, lateral and longitudinal
velocity, heading angle and number of lanes to the left and right. The outputs
of the three LSTM cells are processed by another cell, which eventually outputs
the prediction.

To evaluate and compare different algorithms, we use the metrics introduced in
Section 3.4.2: Delay (De), Overlap (Ov) and Miss are only evaluated for lane change

41

3 Manoeuvre Prediction

manoeuvres, and usually averaged over lane changes to the left and right. Frequency
(Fr) is only reported for Follow events, due to the huge impact of false positive
predictions on felt driving comfort. Precision (Pr) and Recall (Re) are evaluated
for Follow events as well as lane changes, again averaged over directions. To better
compare our results with previous works, we additionally report standard Accuracy
(Acc) for all manoeuvre classes. We then sort algorithms, one metric at a time,
assigning points based on the resulting ranking, and sum all points, resulting in
Rank. The algorithm with the lowest points performs best when averaging over all
metrics.

3.4.3.1 Comparison of Models on Full Datasets

In this section we compare all algorithms on full datasets. Tables 3.1, 3.2 and 3.3
show results on the NGSIM, fleet and highD dataset, respectively.

Differences between models are smallest on the NGSIM dataset. Random Forests,
the Naive Bayesian approach and our LSTM models perform comparably. Experi-

Table 3.1: Results of all models on the NGSIM dataset.

Algorithm Acc LC Acc F Miss LC De LC Ov LC Pr LC Re LC Fr F Pr F Re F Rank
NB 0.697 0.886 0.003 0.705 0.618 - - 7.271 - - 43
RF 0.72 0.935 0.003 0.597 0.584 0.037 0.724 6.843 0.973 0.907 36

RF-L 0.71 0.935 0.006 0.66 0.584 0.034 0.712 6.017 0.972 0.898 45
S-RNN 0.515 0.905 0.167 0.789 0.461 - - 6.686 - - 61
LSTM 0.671 0.973 0.004 0.777 0.584 0.056 0.678 3.442 0.961 0.918 47

E-LSTM 0.689 0.975 0.006 0.731 0.596 0.074 0.696 3.38 0.958 0.93 38
LSTM-A 0.687 0.974 0.005 0.7 0.568 0.068 0.696 4.075 0.96 0.932 44

E-LSTM-A 0.71 0.975 0.005 0.653 0.594 0.078 0.718 4.064 0.962 0.935 22

Table 3.2: Results of all models on the fleet data.

Algorithm Acc LC Acc F Miss LC De LC Ov LC Pr LC Re LC Fr F Pr F Re F Rank
NB 0.823 0.773 0.044 0.155 0.691 - - 3.461 - - 54
RF 0.81 0.905 0.067 0.151 0.602 0.097 0.761 2.984 0.943 0.84 60

RF-L 0.836 0.946 0.101 0.184 0.631 0.149 0.76 2.038 0.932 0.891 50
S-RNN 0.860 0.834 0.052 0.223 0.777 - - 2.28 - - 52
LSTM 0.897 0.894 0.038 0.19 0.808 0.112 0.84 1.722 0.967 0.803 38

E-LSTM 0.922 0.882 0.028 0.13 0.826 0.078 0.872 1.779 0.976 0.777 31
LSTM-A 0.878 0.937 0.04 0.185 0.772 0.144 0.827 1.619 0.961 0.864 32

E-LSTM-A 0.887 0.932 0.042 0.18 0.78 0.136 0.83 1.653 0.969 0.852 31

Table 3.3: Results of all models on the highD dataset.

Algorithm Acc LC Acc F Miss LC De LC Ov LC Pr LC Re LC Fr F Pr F Re F Rank
RF 0.962 0.989 0.0 0.088 0.926 0.242 0.966 1.093 0.949 0.984 45

RF-L 0.951 0.99 0.007 0.118 0.909 0.211 0.94 1.107 0.941 0.984 56
LSTM 0.988 0.995 0.0 0.027 0.988 0.28 0.99 1.006 0.956 0.98 28

E-LSTM 0.986 0.995 0.0 0.036 0.987 0.308 0.988 0.994 0.954 0.973 30
LSTM-A 0.99 0.994 0.0 0.024 0.989 0.294 0.991 1.023 0.959 0.989 23

E-LSTM-A 0.992 0.995 0.0 0.019 0.99 0.288 0.992 1.02 0.96 0.99 14

42

3.4 Evaluation

ments with S-RNN did not yield fruitful results. Overall though, E-LSTM-A per-
forms best. In general we observe, that splitting input features into groups and using
different LSTM cells to process these improves performance over the base variant,
same holds for the introduction of attention. Frequency is much lower (around 50%)
for our proposed LSTM variants than for all other models. This confirms our as-
sumption, that LSTMs are better suited for time-series data, and usually yield more
stable, time-consistent predictions. LSTMs and RNNs in general can be seen as
low-pass filters, filtering out noise and fluctuations with high frequency in the pre-
dictions. In particular, consider the example of drivers wiggling around their driving
lanes. While frame-based models, like Random Forests, might result in alternating
lane change predictions, LSTMs can learn such behaviour and smoothly predict
Follow. In fact, RF-L worsens the performance of RF, indicating that, although
Random Forests have proven to be universal and well-working classification models,
in the understanding of temporal sequences they are inferior to recurrent models.
Thus, we argue that RNNs should be considered state-of-the-art for manoeuvre and
especially lane change prediction problems.

Results on our fleet data are similar, except now all our LSTM variants perform
better than other baseline methods.

This trend continues on the highD dataset. The gap between recurrent models and
frame-based approaches grows, and E-LSTM-A now outperforms all other methods.
This indicates, that such a complex model strictly is more powerful and reduces
prediction bias, and that, given enough data, this method performs better than all
others.

3.4.3.2 Scenario-Based Evaluation

In this section we discuss more fine-grained evaluations of examined models. For
this, we focus on our proposed LSTM models and pick Random Forests as best-
performing baselines. As hinted before, many lane changes are “easy” to predict,
and many simple models might do well by just focusing on features like distances
to lane boundaries and lateral velocities. These models, however, would fail in more
complex situations, e.g. when lateral movement to a lane boundary is detected but
the lane is blocked by another vehicle, which makes a lane change rather unlikely. As
such situations only constitute a minority of situations of recorded datasets, concern
is, that such results are neglected by standard evaluations. Therefore, we introduce
a number of standardized scenarios, spanning different corner-cases motivated from
important real-world examples, and analyze our models separately for each. The
introduced scenarios are:

• Left : All frames labelled with L.

• Follow : All frames labelled with F .

• Right : All frames labelled with R.

43

3 Manoeuvre Prediction

• Left-PV : Same as Left, but additionally a close preceding vehicle (PV) is
present. In particular, a frame i is contained in this scenario, if the average
value of dtPV over a 3s-window before i is less than 1.5s, and this distance
reduces over time, i.e. the target vehicle is approaching PV .

• Right-PV : Similar to Left-PV, but containing frames labelled with R.

• Left-Blocked : Same as Follow, but putting additional constraints on lateral
movements: In particular, this scenario contains Follow situations, which eas-
ily might be misclassified as lane changes. A strong lateral velocity needs to
be observed (greater or equal to 0.2 m/s towards the lane boundary on average
over a 0.5s window before a frame), and the average distance to the left lane
boundary needs to be less or equal to 40% of the lane width. Additionally, the
left lane needs to be blocked, for which we require the average values of dtPLVL
or dtPFVL over the same window to be less or equal to 0.3s

• Right-Blocked : Same as Left-Blocked, but mirrored.

• L1 : Frames in the scenario fulfill the lateral movement criterion from Left-
Blocked, but only contain vehicles on the left-most lane, where no lane change
to the left is possible.

As evaluating all models in all situations generates numerous tables, we only high-
light specific results in detail and summarize the rest in compressed form. Further,
we adapt resulting tables to only contain meaningful metrics: As all scenarios only
contain frames with a certain label, we only include metrics concerning this label,
and further remove Precision, as this always evaluates to 1.

To begin, let us analyze the scenarios Left, Follow and Right on the highD dataset,
which are shown in Tables 3.4 to 3.6. This again proves the superiority of RNN
models when enough data is present, especially for Follow scenarios, as here the gap
is largest.

One assumption, why attention models produce good results, is that they are
particularly suited to understand complex situations, and could for example assign

Table 3.4: Results of all algorithms in scenario Left on the highD dataset. Number
of frames in this scenario: 11579.

Algorithm Acc L Miss L De L Ov L Re L Rank

RF 0.964 0.0 0.081 0.92 0.968 22
RF-L 0.953 0.001 0.112 0.918 0.951 31

LSTM 0.995 0.0 0.012 0.994 0.996 9
LSTM-E 0.996 0.0 0.011 0.996 0.996 6
A-LSTM 0.991 0.0 0.021 0.99 0.992 17

A-LSTM-E 0.994 0.0 0.016 0.99 0.994 14

44

3.4 Evaluation

high weights to neighbouring vehicles when these block a lane, but lateral move-
ments towards that lane is observed. Thus, let us examine Left-Blocked on the
NGSIM dataset, as shown in Table 3.7. However, this does not fully support our
claim. Although results are close, attention does not provide a significant increase
in performance. Note though, that the amount of data for each scenario is limited,
and thus likely exhibits some variance in the results.

Table 3.5: Results of all algorithms in scenario Follow on the highD dataset.
Number of frames in this scenario: 1067662.

Algorithm Acc F Fr F Re F Rank

RF 0.989 1.093 0.984 15
RF-L 0.99 1.107 0.984 15

LSTM 0.995 1.006 0.98 9
LSTM-E 0.995 0.994 0.973 9
A-LSTM 0.994 1.023 0.989 11

A-LSTM-E 0.995 1.02 0.99 6

Table 3.6: Results of all algorithms in scenario Right on the highD dataset. Number
of frames in this scenario: 18222.

Algorithm Acc F Miss R De R Ov R Re R Rank

RF 0.96 0.0 0.095 0.932 0.964 22
RF-L 0.949 0.013 0.123 0.9 0.929 31

LSTM 0.982 0.001 0.041 0.982 0.984 18
LSTM-E 0.976 0.0 0.06 0.978 0.979 18
A-LSTM 0.989 0.0 0.027 0.988 0.99 10

A-LSTM-E 0.99 0.0 0.021 0.989 0.991 6

Table 3.7: Results of all algorithms in scenario Left-Blocked on the NGSIM
dataset. Number of frames in this scenario: 18372.

Algorithm Acc F Fr F Pr F Re F Rank

RF 0.85 2.068 0.999 0.855 16
RF-L 0.826 2.147 0.999 0.835 19

LSTM 0.924 1.484 0.998 0.927 14
E-LSTM 0.951 1.314 0.998 0.954 8
LSTM-A 0.944 1.511 0.998 0.947 13

E-LSTM-A 0.954 1.362 0.998 0.956 7

45

3 Manoeuvre Prediction

Tables 3.8 and 3.9 show summarized results on the NGSIM and highD dataset.
This allows a detailed and complete understanding of examined algorithms. We
observe, that for the NGSIM dataset Random Forests are comparable to LSTMs,
and in lane change situations often perform better. Still, in Follow scenarios we
again observe a superiority of recurrent models, and would like to emphasize the
importance of the metric Frequency : False lane change predictions have a significant
negative impact on felt driving comfort, as these in many situations lead to abrupt
and unsmooth behaviour. It can be argued, that this metric is more important than
other ones, e.g. in comparison to Miss and Delay : Miss anyways often is negligibly
low, and small Delay differences might not be observable to the driver.

Table 3.8: Summarized scenario results for the NGSIM dataset. For each model,
Rank is listed for each scenario, and then summed over all scenarios in row
Total.

Scenario RF RF-L LSTM E-LSTM LSTM-A E-LSTM-A

Left 11 12 18 30 23 15
Follow 18 16 11 6 9 7
Right 6 16 26 19 23 17

Left-PV 13 25 13 19 17 8
Right-PV 12 24 25 15 17 8

Left-Blocked 16 19 14 8 13 7
Right-Blocked 16 19 7 8 12 15

L1 18 8 15 10 8 8

Total 110 139 129 115 122 85

Table 3.9: Summarized scenario results for the highD dataset. For each model,
Rank is listed for each scenario, and then summed over all scenarios in row
Total.

Scenario RF RF-L LSTM E-LSTM LSTM-A E-LSTM-A

Left 22 31 9 6 17 14
Follow 15 15 9 9 11 6
Right 22 31 18 18 10 6

Left-PV 23 25 18 8 14 21
Right-PV 22 26 18 14 6 6

Left-Blocked 9 19 8 14 11 16
Right-Blocked 20 20 9 9 11 11

L1 17 22 12 10 9 8

Total 150 189 101 88 89 88

46

3.4 Evaluation

When more data is available, like for the highD dataset, RNN models overall
improve, now outperforming Random Forests in nearly all categories. Again E-
LSTM-A performs best overall.

3.4.3.3 Determining Feature Importances

Especially for safety-critical applications like autonomous driving, treating neural
networks as black-box models is problematic: It is not clear, how one can verify
their behaviour and guarantee provable performance bounds. One plausible way
of doing so is using statistical tests, i.e. calculating or estimating accident rates
of a system, and then comparing this to human drivers or other used systems.
Still, no guarantees exist about what neural networks will do in certain, especially
unexpected, situations. Although not solving this problem, understandable models,
which are able to explain their decisions, still are a step in the right direction:
When models explain their decisions, and such reasoning seems logical, one might
trust such systems easier, particularly in critical situations. When e.g. using a visual
attention mechanism in traffic light detection algorithms, we expect it to focus on
actual traffic lights and their colours. When, however, attention puts much emphasis
on, e.g., lower parts of the supporting pole of traffic lights or other road elements,
this could indicate, that our model has overfit certain situations from the training set
(maybe all traffic lights at that intersection showed a green signal). Analyzing which
features are most relevant for certain decisions, or using attention mechanisms, is
one possibility of doing so, thus in this section we will examine such methods.

Schlechtriemen et al. [47] analyze feature importances for the problem of predict-
ing lane changes, using Naive Bayes and Hidden Markov models. They conclude,
that the features distance to the lane’s center line, lateral velocity and relative
distance to the preceding vehicle are most relevant. Here we examine feature impor-
tances of RNNs for this problem, evaluating these among others using our attention
mechanism. We further detail this analysis by using the scenarios introduced in
the previous section, finding valuable results for different driving scenarios. The
methods used for evaluating feature importances are:

• Train-k : We train model LSTM (due to simplicity) while leaving out one
feature in each training. By doing so for all features and evaluating the results,
we can rank features w.r.t. their importance. The ranking is obtained by using
column Rank as before, here we additionally normalize values.

• d-LSTM : Similar to Saliency Maps for CNNs [54], we form the derivative of
the prediction by each feature Xi, i.e. dyt

dXt
i
. This indicates the sensitivity of the

prediction to each feature, thus indicating how much each feature contributes
to the result.

• LSTM-A / E-LSTM-A: Our proposed attention schemes directly output fea-
ture importances, namely the values γit . These indicate the weights used when

47

3 Manoeuvre Prediction

accumulating the feature embeddings, more important features are assigned a
higher weight.

In the following, feature names are identical as introduced in Section 3.3.1, except
features dtX are abbreviated by X.

We begin by analyzing feature importances over the full highD dataset, as shown
in Table 3.10. Train-k deems very meaningful features as most important overall,
the top-3 ranked features are: distance to the lane’s center line, lateral acceleration
and temporal distance to the preceding vehicle. This is nearly identical to [47], and
a first assuring, but not surprising result: It proves, that these features indeed are
the most relevant ones for predicting lane changes, and that such results do not
depend on the model being used. Results of the derivative and attention methods
are slightly different, but overall similar. Attention particularly weighs distances to
adjacent vehicles on neighbouring lanes highly, which interestingly models behaviour
of a human driver, regularly checking safety distances. More detailed evaluations
are needed though, thus we continue with a scenario-based assessment. Another
downside of such general evaluation is that, again, Follow frames dominate the
results.

For this, we examine two sample scenarios on the NGSIM dataset. Table 3.11
shows results for scenario L1. Here, Train-k deems m and lID as most important,
which makes a lot of sense, as the lane ID should have a great positive influence
on a Follow prediction. LSTM-A and E-LSTM-A also indicate m and lID as most
relevant features, showing the applicability of our attention mechanism. d-LSTM
however only ranks lID in the lower half of all features. This as well as other
experiments (consider for example the small changes w.r.t. Table 3.12) indicate,

Table 3.10: Feature importances for the highD dataset.

Train-k d-LSTM LSTM-A E-LSTM-A

m (0.115) alat (0.158) m (0.265) PFVL (0.232)
alat (0.114) m (0.153) PLVR (0.119) PLVR (0.161)
PV (0.112) vlat (0.098) PLVL (0.094) vlong (0.138)
lID (0.109) lID (0.096) PV (0.057) RV (0.114)
vlong (0.096) RV (0.085) RV (0.057) PLVL (0.088)
vlat (0.072) PFVR (0.074) h (0.047) PFVR (0.064)
PFVL (0.069) h (0.068) vlong (0.042) don (0.063)
PLVR (0.062) PFVL (0.063) PFVR (0.037) lID (0.059)
PLVL (0.062) vlong (0.056) PFVL (0.027) PV (0.027)
h (0.055) PV (0.050) don (0.026) h (0.015)

PFVR (0.046) PLVL (0.041) vlat (0.022) m (0.014)
RV (0.046) PLVR (0.033) alat (0.015) alat (0.010)
don (0.041) don (0.018) lID (0.009) vlat (0.006)

48

3.4 Evaluation

that forming derivatives through a complex LSTM cell - as opposed to through
a CNN - is hard, among others due to the complex internal structure, as well as
the temporal component of the problem. We note, that Train-k and attention
are useful methods for explaining made decisions, however, only attention can be
applied online, particularly while driving on the road. Thus, our proposed attention
mechanism is a valuable contribution in this field.

Table 3.12 shows results of a different scenario, namely Right-Blocked. In this
scenario, Train-k deems PFVR as most important feature. This seems very plausible,
as the existence of such vehicle strongly suggests against predicting a lane change to
the right. However, for attention, results are less conclusive: Although not “wrong”
or totally counterintuitive - e.g. h and alat are useful features - these features differ
from ones picked as most relevant by humans. This shows, that attention does not
yield “satisfying” results in all situations, and we would like to improve on that

Table 3.11: Feature importances for the NGSIM dataset in scenario L1 (only
showing top-8 features). Number of frames in this scenario: 107370.

Train-k d-LSTM LSTM-A E-LSTM-A

m (0.131) vlong (0.129) lID (0.220) alat (0.233)
lID (0.116) m (0.105) PLVR (0.165) lID (0.193)
RV (0.103) alat (0.096) vlong (0.135) PFVL (0.186)
h (0.101) vlat (0.093) m (0.095) doff (0.143)
doff (0.090) PFV L (0.082) PFVL (0.093) h (0.057)
don (0.088) PV (0.070) don (0.093) m (0.046)
PV (0.078) RV (0.063) PV (0.071) vlong (0.045)

PFVR (0.068) lID (0.062) h (0.057) RV (0.040)

Table 3.12: Feature Importances for the NGSIM dataset in scenario Right-
Blocked (only showing top-8 features). Number of frames in this scenario:
202560.

Train-k d-LSTM LSTM-A E-LSTM-A

PFVR (0.120) vlong (0.129) PLVL (0.170) alat (0.171)
lID (0.111) m (0.105) h (0.169) RV (0.168)
don (0.102) alat (0.095) vlong (0.160) h (0.161)
h (0.100) vlat (0.092) PV (0.085) PLVL (0.131)

PLVL (0.095) PFVL (0.079) don (0.083) doff (0.084)
vlat (0.091) PV (0.071) PLVR (0.071) vlong (0.080)
doff (0.063) lID (0.063) PFVL (0.061) m (0.049)
RV (0.061) RV (0.063) lID (0.056) lID (0.044)

49

3 Manoeuvre Prediction

Figure 3.9: Depiction of a lane change to the left on the NGSIM dataset. The target
vehicle is drawn in green, neighbouring vehicles in orange and other vehicles
in blue. The direction of travel is to the right. Below, predicted probabilities
of a lane change from the models RF, LSTM and E-LSTM-A are plotted over
time (image from [2]).

Figure 3.10: Depiction of a lane change to the right on the highD dataset. The target
vehicle is drawn in green, neighbouring vehicles in orange, other vehicles in
blue. Note that on the highD dataset, vehicles are going in both directions,
respective lanes are separated by a grass strip in the middle: Vehicles in the
upper half drive towards the left, vehicles in the lower one towards the right.
Below, the predicted probabilities of a lane change to the right, as predicted
by the models RF, LSTM and E-LSTM-A, are plotted over time (image from
[2]).

in the future. Note however, that there is no “right” or wrong: Our experiments
factually return attention weights. Clever models might learn correlations not visible
to humans, or noise from training data (this way, giving developers a tool for early
detection). Further, in the next section we show that attention models indeed react
intuitively to such situations in a qualitative way.

3.4.3.4 Qualitative Results

In this section we show qualitative results of different prediction algorithms. Figures
3.9 and 3.10 show sample lane changes on the NGSIM and highD dataset. Both
figures contain 6 scene visualizations of the lane change at equidistant timesteps,
ranging from 3s before the manoeuvre until the point of crossing lane boundaries.
Below, the predicted probabilities of a lane change to the respective side for the
models RF, LSTM and E-LSTM-A are depicted.

Figure 3.9 shows a lane change to the left on the NGSIM dataset. In accordance
with the tabular results from the previous section, RF predicts first. Note the close
distances to neighbouring vehicles though, which could be accounted for by the more
complex LSTM models.

50

3.4 Evaluation

(a) Target vehicle rapidly approaches PV , and
a human could anticipate a forthcoming lane
change. So does our model E-LSTM-A, and
accordingly assigns a high weight to category
Same.

(b) In comparison to scene a, in absence of PV
the prediction of a lane change is later and less
confident, additionally the weight of Same is
less.

Figure 3.11: Two scenes of a lane change to the left on the highD dataset are shown.
The target vehicle is drawn in green, neighbouring vehicles in orange, other
vehicles in blue. Note that on the highD dataset, vehicles are going in both
directions, respective lanes are separated by a grass strip in middle: Vehicles
in the upper half drive towards the left, vehicles in the lower one towards the
right. Scene a and b stem from the same lane change, but b) is an artificially
modified version of a): We increased the distance to PV . For both scenes,
the left image shows a frame early in the lane change, while the right shows
a frame close before the point of crossing lane boundaries (image from [2]).

Figure 3.10 depicts a lane change to the right on the highD dataset. In this, the
trailing vehicle is approaching target rapidly, which, by German law, is required to
give way to the right. This interaction seems to be understood well by E-LSTM-A,
which predicts a lane change even before any lateral movement can be observed.
LSTM follows, while RF predicts last, nearly one second later than E-LSTM-A.

Figures 3.11 and 3.12 depict outputs of our proposed attention scheme. Next to
the scene visualization, the predicted manoeuvre probabilities of E-LSTM-A and the
calculated attention weights γ are shown. For a better overview, we group features
into the feature groups GZt , GEt and GMt , but split GEt into the three lanes. Thus, we
obtain the groups Target (GZt), Map (GMt) and Left / Same / Right (features of GEt
regarding left / current / right driving lane). Figure 3.11a depicts a lane change
to the left on the highD dataset. The scene is represented with by two images,
one early in the lane change (left) and one shortly before crossing lane boundaries
(right). Target is given high weight, which is plausible, as the corresponding features
naturally are good lane change indicators. We observe, that Same is given more
weight the more target approaches PV. Figure 3.11b shows the same scene, except
we artificially increased PVdt. Now, a lane change prediction occurs later and less
confidently, and additionally the weight of Same is less. This coincides with our
human understanding of the problem.

The left image of Figure 3.12 visualizes a frame of a lane change to the right on the
NGSIM dataset. The right image visualizes the same frame in a similar situation,
except we artificially reduced distances to preceding and following vehicles on the
right lane, effectively blocking it. Due to the exhibited strong lateral movement to
the right, this constitutes a sample of scenario Right-Blocked. We mentioned this
particular scenario in Section 3.4.3.3, as an example where attention does not yield

51

3 Manoeuvre Prediction

Figure 3.12: Two frames showing a lane change to the right on the NGSIM dataset are
shown, both recorded at similar timesteps and from identical scenes. Again
though, in the scene corresponding to the right image distances to neighbour-
ing vehicles on the target lane were reduced artificially. The target vehicle is
drawn in green, neighbouring vehicles in orange and other vehicles in blue.
The direction of travel is to the right. E-LSTM-A predicts a lane change to
the right when corresponding gaps are large enough, and Follow when these
are too small. In unison with that, Right is given a higher weight, indicat-
ing that the model correctly considers these features in its decision-making
process (image from [2]).

expected results. However, using this visualization we see, that although Right is not
ranked most important feature, still it reacts appropriately to the change in scenes:
When the right lane is blocked, Right is given a much higher weight, additionally,
our model predicts Follow instead of lane change.

3.5 Conclusion

We proposed LSTM models to tackle the problem of predicting lane changes, which
perform better than existing methods. We extended these via attention mechanisms,
further improving performance. In particular, we observed larger performance gaps
between our recurrent models and classical prediction methods, such as Random
Forests, and between attention models and their corresponding baseline LSTMs,
when more data is available. This shows the power and capacity of such models,
and that they should be regarded state-of-the art.

Additionally, we introduced metrics to better assess felt driving comfort. These
allow a better understanding of what drivers feel inside autonomous vehicles, and
how changes in prediction performance affect actual driving behaviour. Further-
more, we proposed much more fine-grained evaluation settings, introducing different
scenarios motivated by common driving situations occurring in the wild.

Also, we ranked input features used for predicting lane changes by importance,
using different methods, such as differentiating through the network and attention
mechanisms. Such results are useful for understanding internal functioning of neural
networks, which are traditionally viewed as black-box models. Attention proved to

52

3.5 Conclusion

be a valuable tool for reaching these insights, although not yielding expected results
in all cases. Improving on this and obtaining even better explainable models is a
future goal of ours.

Recent works in different fields replace recurrent neural networks by feed-forward
networks and attention mechanisms [17, 18], which mitigates some downsides of
RNNs: Training and inference is costly and slow, due to the sequential nature of
calculation steps, which cannot be parallelized. Different techniques, such as (di-
lated) 1D-convolutions, prove to be capable of processing time-series data, and with
increasing step size are also able to capture long-term dependencies, all that while
allowing parallel computations. We note that parallelism during run-time actu-
ally is irrelevant for problems in the field of autonomous driving, as data anyways
is measured and processed sequentially. Still, experimenting with successful feed-
forward architectures, especially combining 1D-convolutions and attention mecha-
nisms, seems like a worthy field of study, and we would like to test the effectiveness
of such for predicting lane changes. Additionally, predicting full scenes in one step,
i.e. predicting all future driving manoeuvres of all agents jointly, as well as com-
bining manoeuvre and trajectory prediction, could and should be addressed in the
future.

53

4
Considering Ambiguity

In the previous section we saw a first successful prediction model, which predicts the
most likely manoeuvre in every timestep. In many situations though, multiple out-
comes are likely, especially in the field of autonomous driving: It is hard to predict
future driving manoeuvres of irrationally behaving drivers; at intersections, multi-
ple future trajectories are possible and likely. Scope of this section is introducing
methods for dealing with such ambiguity and uncertainty.

Many works in this field focus on static, non-dynamic problems, such as Rup-
precht et al. [8]. Here, we extend their proposed Multiple Hypothesis Prediction
Framework (MHP) to recurrent models, showing its extension to different state-of-
the-art recurrent architecture types. We address the previously introduced problem
of predicting lane changes, but also dive into the field of prediction more generally,
discussing trajectory forecasting models and sequence generation tasks.

In particular, our contributions are:

• We extend the MHP framework to recurrent models, showing its extension for
three successful recurrent architectures, namely sequence-to-sequence predic-
tion, encoder-decoder models and sequence generation tasks.

• We analyze applications to several real-word problems in detail, such as ma-
noeuvre prediction, trajectory forecasting and generation as well as text gen-
eration.

• We introduce novel metrics to better capture and describe ambiguity and un-
certainty in problems. Core idea is the re-labelling of data points, to account
for multiple possible labels.

4.1 Introduction

Ambiguity and uncertainty are present in many tasks of static and sequential nature:
In image classification, often we might not be sure, what kind of specific breed of dog

55

4 Considering Ambiguity

is depicted in a picture, but we can definitely discard the possibility of the object
being a human. Sequential problems inherently exhibit multiple possible futures:
Vehicles approaching intersections might choose any of the possible path and turns,
in text generation, used e.g. for auto-completion on mobile phones, multiple words
are equally likely.

To model such relations, a multitude of techniques are available: Techniques from
Variational Bayesian Inference (VI) and generative models both approximate full
posterior and joint probability distributions. Commonly applied methods are Nor-
malizing Flows [57, 18, 58], Variational Autoencoders and Generative Adversarial
Networks. Multimodal discriminative methods exist, as well, often an ensemble of
different expert predictors is employed, like in Multiple Choice Learning. Rupprecht
et al. introduce a similar framework for predicting multiple hypotheses, which ac-
tually offers mathematical insights into why MCL models work, and uses a Voronoi
tesselation of the label space [8].

Here, we put special emphasis on recurrent models, as autonomous driving es-
sentially is a temporal problem, and extend Rupprecht’s model to sequential archi-
tectures. In particular, we examine three recurrent model architectures, which we
consider state-of-the art for many problems: We begin with a sequence-to-sequence
prediction model, which processes inputs at every timestep and generates a predic-
tion for each. One example application is the previously introduced prediction of
driving manoeuvres, which we consider. Next, we examine encoder-decoder models.
These excel in many tasks, such as machine translation and trajectory prediction.
We focus on trajectory prediction. Lastly, we consider sequence generation models.
Using these, we generate trajectories as well as text. For all these different architec-
tures, we showcase how to extend them to MHP models, allowing the prediction of
multiple hypotheses.

Additionally, we introduce a novel metric, specifically designed for multimodal
problems. Many previous works consider some form of oracle metric, which only
considers best predictions during evaluation. Although theoretically sound, this
has drawbacks, as it could be easily fooled by guessing solutions and always prefers
diverse predictions. Our metric consists of different steps, one of which is re-labelling
data points, possibly assigning multiple labels, and then requiring predictions to
match all of these.

4.2 Related Work

Over the last years, deep learning methods, especially CNNs, have emerged as pow-
erful, general function approximators, outperforming traditional methods in many
fields, and even rivalling or surpassing human performance [59, 60]. However, most
works treat problems as learning a one-to-one mapping from input to output, yield-
ing one result per input. For many problems, this is neither desired nor correct.
In addition, it has been shown, that especially CNNs are often overconfident, valu-
ing the most likely hypothesis overproportionally - diminishing their capabilities

56

4.2 Related Work

of creating multimodal outputs. Further, this provides one reason why they are
susceptible to adversarial attacks.

Rupprecht et al. introduce a general framework for predicting multiple hypothe-
ses, dubbed Multiple Hypothesis Prediction framework, which is based on a Voronoi
tessellation of the label space [8]. Since their focus is on feed-forward architectures
and static problems, we here extend this framework to sequential problems and
models. In this section we introduce related, relevant works. We begin with a brief
overview over the full field, before listing specific works.

Variational Bayesian Inference (VI) Although more being a general technique
and optimization method, we still would like to mention VI here, as it provides
ways of generating probability distributions, from which we can sample to generate
diverse outputs. VI methods in general can be applied for finding intractable inte-
grals, which often occur in posterior distributions p(z|x) = p(z,x)∫

z p(z,x)
. While Monte

Carlo sampling methods, consider e.g. Gibbs sampling, yield numerical approxima-
tions, VI methods calculate exact solutions of approximate distributions. Different
approaches exist, such as minimizing the Kullback-Leibler divergence between an
approximate distribution q and p(z|x), and then using the Evidence Lower Bound
(ELBO) to estimate the intractable integral. VAEs make use of a similar reformu-
lation. Another technique are Normalizing Flows, which make use of the Change
of Variable Theorem to iteratively approximate complex distributions [57, 18, 58].
However, our framework is more similar to common deep learning architectures and
machine learning models (than to concepts from probability estimation), thus we
focus more on these. One distinguishes generative and discriminative models.

Generative Models Generative models aim at estimating full joint probability dis-
tributions p(x, y), s.t. one can can sample from these to generate diverse outputs.
(C)VAEs learn data-conditional latent distributions, employing an encoder and de-
coder to project into the latent space and reconstruct samples [61]. Via reformu-
lating the ELBO one arrives at the loss term E[log p(x|z)]−KL(q(z|x)||p(z)). The
first part describes the reconstruction loss of the decoder, prompting usable and
accurate reconstructions. The second contains the KL divergence between our cho-
sen approximation q of the true posterior, and a prior over z, which typically is
a Normal distribution. Gregor et al. introduce sequential VAEs [62], Jain et al.
apply a similar principle to generate questions from images [63]. GANs are another
common and powerful generative model [14], yielding fascinating results in many
areas, such as image generation [64]. A generator tries to generate data, starting
from a random noise vector, while a discriminator tries to distinguish this from real
data. The better both players get, the more realistic-looking the created data is.
Usually, they are hard to train though, due to the involved min-max game between
generator and discriminator. Further, for many problems data is concentrated on
a lower dimensional manifold. As often output of the generator describes such a
manifold as well, in the standard loss formulation this causes problems when these

57

4 Considering Ambiguity

do not intersect: It can be shown, that the original GAN formulation describes the
Jensen-Shannon divergence between actual data distribution and generated samples,
which is non-continuous and non-differentiable in these cases. Using the Wasserstein
distance mitigates the latter problem [65].

Discriminative Models With discriminative models we instead seek to find the
decision boundary p(y|x). In this setting, MCL offers multiple predictions [21],
by creating an ensemble of predictors and only backpropagating gradients to the
best error predictors. Whereas early versions required costly retraining [20], Lee et
al. improve on this so to enable usage of standard Stochastic Gradient Descent by
backpropagating gradients only to the lowest error predictors for each example [21].
Consequently, their loss formulation is very similar to those of Rupprecht et al. and
thus ours. Indeed, the MHP framework offers mathematical insights into why such
a backpropagation scheme works. Rupprecht further generalize the framework to
also allow regression problems, reduce parameters and allow information exchange
between predictors by sharing weights, instead of using M separate models [8]. In
their work, Lee et al. also examine sequential problems in the form of image caption
generation, for which they use LSTMs [21]. MDNs replace a standard regression
output with parameters of a Mixture-of-Gaussian distribution [19]. For M Gaus-
sians, the neural network predicts M weighting coefficients, variances and means,
thus modelling said distribution. This way, instead of only predicting the desired
regression target, we arrive at a posterior distribution p(y|x), which includes infor-
mation about uncertainty and ambiguity. Rupprecht et al. show that MDNs can be
hard to train in high-dimensional spaces due to numerical instabilities [8].

We now take a look at some specified works, handling ambiguity and uncertainty
for concrete applications, grouped by area of application:

Image Classification Image classification is a big motivator for multimodal pre-
diction, as often many objects are present in images and multiple labels possible
[66]. Wang et al. e.g. combine CNNs with RNNs for outputting multiple labels [67].
Rupprecht et al. also consider image classification problems [8].

Sequential Problems Ambiguity in sequential problems has been addressed less
frequently in research. Most works propose problem-specific solutions, relying on
GANs, VAEs, RL or other kinds of sequential modelling techniques [68] for pro-
ducing ambiguous outputs. Lee et al. combine RNNs and GANs for predicting
VRU trajectories [41], Gupta et al. GANs with a special diversity loss for the same
problem [42]. Shi et al. employ Inverse RL to avoid mode collapse when generating
text [69], while Shao et al. apply stochastic beam search with sequence-to-sequence
models [70]. Bazzani et al. introduce Recurrent MDNs for obtaining a saliency map
of visual attention in videos [71].

58

4.3 Multiple Hypothesis Prediction Framework

Ambiguous Labelling Several works have address the topic of dealing with multiple
labels. Kalyan et al. incorporate multiple labels for dealing with sparse annotations
[72]. They jointly learn model and an embedding function which defines similar-
ity, i.e. the concept of neighbourhood in the input space. This allows modifying
the loss function in order to take labels of neighbouring data points into account.
On the one hand, this resembles our minimum formulation, although Kalyan et al.
explicitly calculate distances in the label space and re-label data points, whereas
our approach implicitly learns the underlying ambiguity, thereby addressing am-
biguous predictions rather than ambiguous annotations. On the other hand, this
mirrors motivation for our newly proposed metric, clustering points in label space
and reassigning labels. While their mapping to new labels is learned in combination
with the model, ours is fixed and deterministic, intended to be used as a problem-
and model-independent metric. Likewise, other papers dealing with multiple labels
within model formulations [73, 74] do not propose any general-purpose metric to
handle ambiguity.

Rhinehart et al. employ two entropy terms in their loss formulation for predicting
trajectories, which encourage predictions to be precise while still simultaneously
encouraging diversity [75]. Again, this is very similar in motivation, but also is no
metric, and we introduce ours in a more general way: For example, we also discuss
classification problems and show how arbitrary metrics, such as Precision and Recall,
can be extended to multimodal settings.

4.3 Multiple Hypothesis Prediction Framework

In this section we describe our proposed extensions to common recurrent archi-
tectures. We begin by introducing the original MHP framework though, defining
needed notation and preliminaries. We then describe our contributions, and even-
tually introduce the novel multimodal metric.

4.3.1 Prerequisites

Let X and Y be vector spaces of input and output variables (also called labels)
of an examined machine learning problem, and let N be the number of available
data points. Further, let p(x, y) denote the joint probability distribution over those
spaces. In a classical supervised setting, in which samples (xi, yi) are drawn from
p(x, y), we are interested in training a predictor fθ : X → Y, which minimizes the
empirical error (empirical risk)

1

N

N∑
i=1

L(fθ(xi), yi), (4.1)

where L is an arbitrary loss function and the predictor is characterized by its param-
eters θ. Equation (4.1) is an approximation of the continuous formulation (actual

59

4 Considering Ambiguity

risk) ∫
X

∫
Y
L(fθ(x), y)p(x, y) dy dx. (4.2)

which is minimized by the conditional average

fθ(x) =

∫
Y
y · p(y|x) dy. (4.3)

The MHP framework [8] now extends such a one-to-one prediction function f to
output M predictions, or hypotheses:

f(x) = (f1(x), . . . , fM (x)). (4.4)

In the calculation of the loss L, only the best among the M predictions is considered,
extending Equation 4.2 to:∫

X

M∑
j=1

∫
Yj(x)

L(f j(x), y)p(x, y) dy dx. (4.5)

In this, Y = ∪Mi=1Yi is the resulting Voronoi tesselation of the label space, when
using M generators gj(x) and the loss L as distance function:

Yj(x) = {y ∈ Y : L(gj(x), y) < L(gk(x), y) ∀k 6= j}. (4.6)

[8] proves, that in order for Equation 4.5 to be minimal, the generators have to equal
the M predictors, and that these have to equal the conditional means of the Voronoi
cells they define. A full minimization scheme is given in [8], however such procedure
can be drastically simplified and implemented efficiently by introducing a meta-loss
on top of any existing loss function L:

M(f(xi), yi) =

M∑
j=1

δ̂(yi ∈ Yj(xi))L(f j(xi), yi). (4.7)

The Kronecker delta δ returns 1, if its enclosed condition is true, otherwise 0, and
is used to select the best hypothesis. In practise we have to relax this condition, as
all predictors could be initialized so far from the target, that all hypotheses lie in
a single Voronoi cell, making this the only one to be updated. Thus, a relaxation
using a weight ε (0 < ε < 1) is used:

δ̂(a) =

{
1− ε, if a is true,
ε

M−1 , otherwise.
(4.8)

Note that M is a hyperparameter, which needs to be set manually, but that many
multimodal prediction methods require such parameter [21, 19].

60

4.3 Multiple Hypothesis Prediction Framework

Figure 4.1: Depiction of the proposed sequence-to-sequence architecture. M fully
connected layers process the hidden state of the LSTM cell to generate M
predictions (image from [5]).

4.3.2 Sequence-to-Sequence Prediction

Our first proposed MHP extension concerns a classical sequence-to-sequence pre-
diction architecture. In this, an input is processed at each timestep, as well as
an output generated. Exemplary applications are prediction of driving manoeuvres
[39], as well as, in case all frames have to be classified, human activity recognition
[76]. To obtain an MHP model, we replace the last fully connected layer used for
classification with M copies of it, which do not share weights (see Figure 4.1):

y1
t = softmax(W1ht + b1)

. . .

yMt = softmax(WMht + bM)

(4.9)

Thus, our loss function needs to be applicable to sequential data. In our analyzed
problems we use sequential cross-entropy loss: Let ỹji,t be the predicted class proba-
bilities at time t, then for a single sample sequence (xi, yi) the (binary) cross-entropy
loss accounts to −log(ỹji,t), hence:

L(f j(xi), yi) =
1

n

n∑
t=1

−log(ỹji,t) (4.10)

4.3.3 Encoder-Decoder Architecture

Encoder-decoder models yield promising results for many tasks, such as trajectory
generation [42, 41] and machine translation [51]. They consist of two parts, an en-
coder and a decoder: The encoder processes the input sequence xi = (xi,1, . . . , xi,n)
(such as a sentence in the source language), and generates a compressed representa-
tion of it (enc, e.g. the last hidden state of the LSTM cell). This is fed to a decoder
(often, the last hidden state of the encoder is set as beginning state of the decoder),
which then generates an output sequence yi = (yi,1, . . . , yi,m) (such as the translation
of the source sentence in the target language). We extend this to an MHP model by

61

4 Considering Ambiguity

Figure 4.2: Visualization of the proposed encoder-decoder model. M linear layers
process enc, generating M different starting symbols. With these, the same
decoder is run M times (image from [5]).

introducing M fully connected layers in between encoder and decoder, transforming
enc into M different tokens, and running the decoder M times with these as starting
input. Thus, the M fully connected layers have independent weights, while there is
only one set of decoder weights. See Figure 4.2 for a visualization:

enc = Encoder(xi)

y1
i = Decoder(W1enc + b1)

. . .

yMi = Decoder(WMenc + bM)

(4.11)

For the loss, again any suitable loss function for sequential problems may be used.
In our experiments, we use the L2-loss L(f j(xi), yi) = 1

m

∑m
t=1(y

j
i,t − yi,t)2.

4.3.4 Sequence Generation

Although for the problem of generating sequences samples still are sequence pairs
(xi, yi), focus of this task is learning conditional probabilities P (xi,t|xi,t−1, . . . , xi,t−m).
This way, after training the model, it can be run closed-loop, iteratively generating
new data points and sequences of arbitrary length. One can imagine the wide variety
of possible application scenarios, such as [77]. We use a similar model as proposed
in Section 4.3.2, and train it in identical fashion.

During inference though, we would like to generate sequences of arbitrary length:
When now naively predicting M predictions in each step, we generate a tree of
possible sequences, in which the number of hypotheses grows exponentially in each
step. This is not feasible. Therefore, we introduce several functions, deciding when
to merge predictions into one, and when to split into M . This way, we generate M
sequences of arbitrary length: As long as predictions are close together, these se-
quences are identical. Only when predictions differ significantly, we split hypotheses,
and from that point in time on follow these independently, merging predictions for

62

4.3 Multiple Hypothesis Prediction Framework

each. Note that these functions can be chosen arbitrarily and in a problem-specific
way, and especially do not need to be differentiable, as they are only used during
inference. We could, however, also learn them jointly with our network. Although
not generating ambiguous outputs, the problem of exploding hypotheses for sequen-
tial problems has been known before, thus we would like to refer to this work for
comparison [78].

Inference starts with a single hypothesis H, which can be empty, or contain any
number of starting symbols. In each step, d future timesteps are inferred. Due to
the prediction of M hypotheses in each timestep, a tree of depth d and branching
factor M is generated. When points in this tree are, in some problem-specific un-
derstanding, close together, the first layer of the tree is merged into one prediction,
which is then appended to H. Such merging is done by a function Merge, while
checking the tree’s diversity is by CheckSplit. When this function regards the tree
diverse enough, function ChooseTreePaths identifies M paths h1, . . . , hM of length
d through the tree, representing distinct hypotheses. H is subsequently split into
M hypotheses, and each extended with one of h1, . . . , hM . From now on, these M
paths are followed independently, repeating the first steps of our algorithm: The
inference tree is formed for each hypotheses, but, as splitting was already done, in
every step predictions are merged via Merge, and results appended to the respective
sequences. Concrete implementations of the black-box functions mentioned here are
given in Section 4.4.1. Algorithm 1 contains pseudocode of our describe scheme:

4.3.5 Multimodal Metric

Most works in the field of multimodal prediction use some form of oracle metric,
considering only the best hypothesis for evaluating the metric. Formally, if a model
returns a prediction set Xi, the oracle version of a standard metric l is given by
loracle = (Xi, yi) = minx∈Xi l(x, yi), when yi is the corresponding ground truth label.
Although this metric is minimized by the “correct” prediction and encourages diverse
results, better scores could simply be achieved by guessing or predicting a multitude
of hypotheses. In terms of information-retrieval terms, oracle metrics reward models
for high Recall, while disregarding Precision. Further, in real-world applications
sometimes multiple hypotheses are equally likely and correct, and we would like
models to predict all of these. When averaging hypotheses or ground truth labels,
this often also is no good indicator: An advantage of predicting multiple hypotheses
cannot be measured, as the loss often is minimized by predicting the (incorrect)
mean. Consider the following sample: There are n trajectories of cars traversing
a 2-way intersection, half of which take a left turn and the other a right turn.
Before the turn initiation such direction is not yet known and a correct prediction
should contain both these cases. A standard single hypotheses model will only
predict one, and achieve an accuracy of 50% (when formulating this as a classification
problem). An ambiguous model predicting both would also score an accuracy of
0.5 · (0.5 · 1 + 0.5 · 0) + 0.5 · (0.5 · 0 + 0.5 · 1) = 0.5 (both hypotheses are correct for
50% of all samples and wrong for the other).

63

4 Considering Ambiguity

Algorithm 1 Inference for MHP Sequence Generation, starting with start and
inferring for a total of l steps. BuildTree expects the starting element as well as
the desired tree depth as input.

procedure Infer(start, d, l)
DoneSplit = False;
Predictions = start;
for i in 1 .. l do

if not DoneSplit then
p = last item of Predictions
tree = BuildTree(p, d);
if CheckSplit(tree) then

[(p11, . . . , p
1
d), . . . , (p

M
1 , . . . , p

M
d)] = ChooseTreePaths(tree):

Append ([p11, . . . , p
M
1], . . . , [p1d, . . . , p

M
d]) to Predictions;

DoneSplit = true;
else

[p1, . . . , pM] = First layer of tree;
p = Merge([p1, . . . , pM]);
Append p to Predictions;

else
[p1, . . . , pM] = last item of Prediction;
for m in 1 .. M do

p = BuildTree(pm, 1);
pm = Merge(p);

Append [p1, . . . , pM] to Predictions;

return Predictions

64

4.3 Multiple Hypothesis Prediction Framework

Thus we propose a novel, multimodal metric (M2) for ambiguous problems. Core
idea is re-labelling data points, possibly assigning multiple labels to points, and
requiring predictions to match all of them. Formally, we extend classical, point-
based metrics l(xi, yi) to set-based formulations lM2(Xi, Yi). Our extension can be
applied to most existing metrics, regarding sequential and non-sequential problems.
We distinguish our derivation for discrete and continuous labels.

4.3.5.1 Discrete Labels

First step towards our new metric is re-labelling data points. For this, we define
a polytope P (c) in the input space, containing all points with label c (denoted by
λ(x) = c). Then, for each point x we define its new label set by Yi = {yi} ∪ {c | c ∈
C, xi ∈ P (c)}, where C is the set of all possible labels. The polytope P could for
example be the convex hull. However, this does not scale well to many dimensions,
and the size of the polytope is not reducible. Outliers, in particular, inflate the
convex hull, which is not desired here. Therefore, we use P (c) = {x | λ(x) =
c, minτ ≤ x ≤ maxτ}, and x, minτ and maxτ are vectors of the d-dimensional
input space. Via the threshold τ we can control the size of the polytope, a value of τ
indicating that a fraction of (approximately) τ points labelled c lie in the polytope.
To achieve this, set mindτ and maxdτ equal to the ([1 − τ

2] · 100)th and (τ2 · 100)th
percentile, respectively, in each dimension d. The threshold τ thus is freely choosable,
and is best set in a problem-specific way, s.t. the resulting labelling resembles our
human understanding of ambiguity in the problem. Nevertheless, given a specific
threshold results obviously are comparable.

This procedure is applicable to arbitrary high-dimensional spaces (consider e.g.
treating MNIST images as 784-dimensional vectors). However, in some cases it can
be beneficial to work with lower-dimensional latent spaces, e.g. using autoencoders
or intermediate layers of CNNs, and re-labelling according to these spaces (similar
to [72]). In Section 4.4.1 we show resulting polytopes of different problems.

Most metrics can be extended using these principles. Here, we exemplarily show
this using the widely-used metrics Precision (Pr) and Recall (Re). The extension
to multimodal problems is motivated by the same principles behind these metrics
in non-ambiguous situations: All predicted hypotheses should be contained in the
new label set for a Precision of 1. Analogously, a Recall of 1 should indicate, that
all labels of the new label set were predicted. Thus we postulate

pr(f(xi), Yi) =
|f(xi) ∩ Yi|
|f(xi)|

(4.12)

and

re(f(xi), Yi) =
|f(xi) ∩ Yi|
|Yi|

(4.13)

for single samples i and ambiguous prediction f(xi), and overall PrM2 = 1
N

∑N
i=1 pr(f(xi), Yi),

ReM2 = 1
N

∑N
i=1 re(f(xi), Yi).

65

4 Considering Ambiguity

Figure 4.3: Visualization of the used toy intersection. Vehicles approach the inter-
section from the bottom, and consequently follow of one three possible paths
over the intersection (image from [5]).

4.3.5.2 Continuous Labels

For continuous labels, our proposed extension still is motivated by a set-based inter-
pretation of predictions and labels: Each prediction needs to be close to at least one
ground truth label, and for every possible label there needs to be at least one predic-
tion nearby. However, as opposed to the discrete case, we cannot define the polytope
P immediately: Instead, we first conduct clustering in the label space to obtain dis-
crete classes, and then analogously define P (c) and Yi = {µ(c) | c ∈ C, xi ∈ P (c)}.
Here, µ(c) denotes the center of cluster c (see Section 4.4.2 for a visualization of this
process). Define the extension of a metric l(xi, yi) by

lM2(xi, Yi) =

∑
x∈f(xi)miny∈Yi l(x, y)

|f(xi)|+ |Yi|

+

∑
y∈Yi minx∈f(xi)l(x, y)

|f(xi)|+ |Yi|

(4.14)

4.4 Evaluation

We begin this section by introducing examined problems and used datasets, and
then describe our findings of applying the proposed MHP extensions to these.

4.4.1 Problems and Datasets

4.4.1.1 Toy Intersection

To motivate usage of multiple hypotheses and proposed M2 metric, we begin with
a simulated traffic intersection, which offers clear and structured data. We synthet-
ically simulate vehicles crossing the intersection, choosing one of the possible three
ways (see Figure 4.3 for a visualization). Trajectories are fully described by a list of
2D-coordinates: t = ([c11, c

1
2], . . . , [c

n
1 , c

n
2])

66

4.4 Evaluation

Toy Classification Goal of the classification task is to predict the vehicle’s desti-
nation (left, straight or right) in every timestep. For this, we apply the sequence-
to-sequence model from Section 4.3.2. Denoting with li the correct label of sample
i, we obtain xi = ([c11, c

1
2], . . . , [c

n
1 , c

n
2]) and yi = (l1i , . . . , l

n
i). In particular, we al-

ready expect models to predict the correct vehicle’s intention before it moves in a
certain direction, thus introducing an ambiguous space in the input domain, and a
non-ambiguous one later on.

Toy Prediction Aim of this task is predicting future vehicle trajectories, condi-
tioned on past ones. We apply the encoder-decoder as well as sequence genera-
tion model from Section 4.3.3 and 4.3.4. For both, an initial part of a trajectory,
xi = ([c11, c

1
2], . . . , [c

m
1 , c

m
2]), m < n, serves as input, while the desired output is the

continuation of that trajectory, yi = ([cm+1
1 , cm+1

2], . . . , [cn1 , c
n
2]). In the encoder-

decoder model, xi is used as input to the encoder, and yi the expected output of the
decoder.

The sequence generation model is trained with full trajectories, in hopes of training
it to correctly output further points conditioned on past ones. During inference,
we initialize it with all points in xi, and then run it closed-loop for n − m steps,
expecting a trajectory similar to yi as output. In each step, a tree of depth 8 is
created. Function CheckSplit calculates the maximal distance between any two
points in the last layer of the tree, and outputs a split decision, when this exceeds a
certain threshold. Merge simply returns the mean of M points. ChooseTreePaths

sorts points in the last layer of the tree by angle, and then returns M equidistant
points in the angle space.

4.4.1.2 Lane Change Prediction

We showcase the application of MHP models to the problem of predicting lane
changes, discussed extensively in Chapter 3. For this, we use the sequence-to-
sequence prediction model from Section 4.3.2. This essentially is a direct multi-
modal extension of model LSTM from Section 3.3.2, but for simplicity, here we only
consider input feature group GZ . For evaluation we use the NGSIM dataset.

4.4.1.3 Trajectory Prediction

Goal of this task is predicting trajectories of VRUs in different scenes. For this, we
employ the encoder-decoder model from Section 4.3.3, and apply it to the Stanford
Drone Dataset (SDD) [79]. This, very similarly to the previously used NGSIM and
highD datasets, contains birds-eye recordings of different scenes, in which, among
others, pedestrians, cyclists and skateboarders walk and ride. In addition to the
raw video data, agent positions for every timestep are available. We convert these
2D-coordinates into relative distances, expressing a trajectory by its absolute start-
ing position, and then via successive x- and y-offsets to the previous position. In
addition, we generate simple semantic maps of the environment: In these, black

67

4 Considering Ambiguity

(a) Actual scene image. (b) Semantic map.

Figure 4.4: Comparison of semantic map and captured drone image.

pixels denote obstacles, for example buildings and trees, while white pixels denote
free space, such as roads and parks. In every timestep, for each agent we feed a
small crop of said map, centered at the agent’s location, through a small CNN, and
pass the output to our recurrent model. Additionally, the relative 2D-coordinates
are used as input. Figure 4.4 shows a sample scene from the SDD dataset along
with its corresponding semantic map.

4.4.1.4 Text Generation

To evaluate the performance of text generation models we use the Penn Tree Bank
Dataset (PTB) [80], which is a collection of headlines from the Wall Street Journal.
Admittedly, this does not allow for as well-sounding results as one would get by, e.g.,
training on Shakespeare’s works, due to the brevity of sentences and abundance of
context. However, it is a commonly used and standardized dataset. A vocabulary
of the 10000 most frequent words in the corpus is build up, other words are replaced
by an unknown token. We generate sequences by using the generation model from
Section 4.3.4. For the ambiguous model simple functions are used: The tree is built
for one step ahead, Merge returns the most frequent prediction of the M leaves.
CheckSplit returns true if all M are different and ChooseTreePaths returns the M
leaves of the tree.

4.4.2 Results

In this section we describe findings of our experiments and compare proposed MHP
extensions to their SHP counterparts and state-of-the art baselines.

To point out advantages and necessity of predicting multiple hypotheses, we com-
pare MHP models against non-ambiguous ones (SHP). The SHP baseline models
are identical to the ones introduced in Sections 4.3.2 to 4.3.4, except missing the
multimodal part, e.g. only exhibiting one fully connected output layer instead of
M . Still, for a fairer comparison, we use multiple predictions from these models, if

68

4.4 Evaluation

possible - consider e.g. taking the n-most likely classes in classification problems.
Further, we competitively compare our models against other well-working models
for predicting multiple hypotheses. Related, successful models are MDNs, MCL and
VAEs. Due to the focus of MDNs on regression, and their difficulty of integration
into encoder-decoder models, we do not consider them here. However, Rupprecht
et al. conduct experiments comparing MDNs with MHP models, concluding that
MHP models compare favourably [8]. Thus, we compare against MCL methods and
VAEs. For both of these, we try using identical structures as for the MHP models,
i.e. only differing in how ambiguity is handled, but being similar otherwise (e.g.
using identical input features and having identical hidden size). Implementation
details about each of these models are given in the respective sections.

For analyzing running times and comparing resource consumption, we report wall
clock times needed for training (tt) and inference (ti) per mini-batch in ms. All
experiments are done using a standard laptop containing an NVIDIA Quadro M2000
GPU. Adam optimizer is used throughout with a learning rate of 0.001. Data is split
into training, validation and test set with a 3:1:1 ratio, and models trained on the
training set, employing early stopping based on the validation set. In the following,
all results are reported on the test set.

4.4.2.1 Classification

For classification problems we introduce a simple extension of a standard SHP model,
dubbed SHP ∗, to output multiple predictions: For this, all hypotheses, whose pre-
dicted probabilities exceed a certain threshold γ, are returned. We test γ = 0 as
well as a problem-specific γ, which yields best results. To evaluate models, we use
the common metrics Precision (Pr) and Recall (Re) as well as the corresponding F1
score (F1 = 2 · Pr·RePr+Re), once using an oracle interpretation (PrO and ReO), and
once our multimodal interpretation from Section 4.3.5.

We further implement an MCL model by using M separate copies of the SHP
model. During training we only backpropagate gradients to the best predictor (thus
resembling our training scheme with ε = 0). For classification problems we do not
see any meaningful VAE extensions.

Toy Classification For all models an LSTM cell with hidden size 512 is used,
training is done with a mini-batch size of 32. Due to the simplistic nature of the
data, the M2 metric parameter τ is set to 1, the MHP relaxation parameter ε to
0.15. The used synthetic dataset is made up of 10000 trajectories, each consisting
of 75 data points.

Table 4.1 shows quantitative results. The SHP models predict a random hypoth-
esis when initially all three are equally likely, but later on converges to the correct
one. This shows through oracle Precision and Recall scores of roughly 2/3. The
MHP model performs better, achieving scores of nearly 1, as it correctly predicts
all three hypotheses in the beginning. Examining SHP ∗ with γ = 0 shows a first
downside of using oracle metrics: Now, the model always outputs three predictions,

69

4 Considering Ambiguity

(a) Results of the SHP model. (b) Results of the MHP model.

Figure 4.5: The correctness of predictions w.r.t. to the M2 metric is visualized: If
the set of predictions is identical to the set of labels obtained through the M2
procedure, the point is drawn in green, otherwise in red (image from [5]).

(a) The three resulting polytopes defin-
ing new labels are depicted for the clas-
sification task (meaning labels are dis-
crete) on the toy intersection.

(b) Also using the toy intersection, this
image visualizes results for the continu-
ous trajectory prediction task: The clus-
tering results are shown, the cluster cen-
ters are drawn in yellow.

Figure 4.6: Visualization of the re-labelling step conducted for the M2 metric (image
from [5]).

which is correct in the ambiguous part of the problem, but wrong later on. Neverthe-
less, as oracle metrics only consider the best hypothesis, PrO and ReO are 1. Such
behaviour is penalized, as expected, by the M2 metric, PrM2 is lower. Conversely,
the standard SHP model achieves near perfect M2 Precision, as the single predicted
hypothesis nearly always is correct, but a lower Recall. Figure 4.5 visualizes these
observations. As discussed, the SHP model is wrong in areas with ambiguous out-
comes, the MHP model only in a small area around the center of the intersection.

Table 4.1: Results of the toy classification task (γ repoted in brackets).

Name PrO ReO PrM2 ReM2 F1M2 tt ti
SHP 0.683 0.683 0.999 0.649 0.787 205 105

SHP∗ (0) 1.0 1.0 0.676 1.0 0.807 205 105
SHP∗ (0.01) 0.903 0.903 0.750 0.893 0.815 205 105

MCL 1.0 1.0 0.677 1.0 0.807 535 237
MHP 0.999 0.999 0.980 0.984 0.982 210 113

70

4.4 Evaluation

This could be due to the fact, that these samples are the hardest to classify, but also
stemming from artifacts caused by the rectangular shape of the polytopes used in
the M2 metric. Figure 4.6a shows the polytope being used in the re-labelling step.

Similar to SHP ∗ with γ = 0, the MCL model always outputs three distinct
predictions, achieving similar results - perfect oracle scores, but deductions in the
M2 metric. This is due to the fact, that no penalty for too diverse predictions exists
(ε = 0).

As the MCL model consists of M full models, the number of parameters as well
as time needed for training and inference grows. Compared to that, our MHP
model only exhibits minimal parameter overhead, and clocks similar times as the
simple SHP model. Although in some categories other models rank better, overall
our proposed MHP model does show the best understanding of ambiguity for this
problem, clearly identifying ambiguous and non-ambiguous situations, and yields
best results overall.

Lane Change Prediction As mentioned in Section 4.3.5, parameter τ should be
chosen such that the resulting labeling resembles our human understanding of am-
biguity in the problem. We find τ = 0.85 to be well suited for this. Figure 4.7 shows
two samples and their respective new labels, which coincide with human labeling.
From the NGSIM dataset we use the subsets US 101 and I80, which contain about
1.200.000 single frames. Table 4.2 shows the number of samples of each possible class
before and after the re-labelling. All models use a hidden size of 128, a mini-batch
size of 256 and ε = 0.15. Table 4.3 lists results. Overall, results are very similar to
the toy prediction task, with our MHP model performing best.

Table 4.2: Number of samples, ordered by label class. Originally, each frame is given
one of the labels L, F or R. After re-labelling, similar to the toy classification
task, multiple combinations of labels are possible.

Label # Samples

L / F / R (original) 13241 / 1179384 / 3636

LFR 1403
LF / RF / LR 94358 / 179085 / 178

L / F / R 12590 / 906532 / 3447

Table 4.3: Results on the NGSIM dataset (γ listed in brackets).

Name PrO ReO PrM2 ReM2 F1M2 tt ti
SHP 0.766 0.766 0.797 0.747 0.771 388 263

SHP∗ (0) 0.952 0.952 0.352 0.952 0.514 388 263
SHP∗ (0.55) 0.799 0.799 0.572 0.779 0.660 388 263

MCL 0.952 0.952 0.364 0.952 0.527 1005 637
MHP 0.905 0.905 0.732 0.906 0.810 658 506

71

4 Considering Ambiguity

(a) A lane change to the left is exe-
cuted smoothly, the sample is labeled
solely with L.

(b) This sample is labeled with LF,
also a human might be unsure about
the driver’s intentions.

Figure 4.7: Depiction of the new labels generated by the M2 metric.

4.4.2.2 Regression

In this section the results of encoder-decoder models are shown, applied to a toy
and a real problem. Standard SHP encoder-decoders cannot easily be modified to
generate multiple outputs, thus in this section we do not consider extensions re-
garding multiple predictions. We implement MCL and VAE models though: Again,
the MCL model consists of M full copies of the SHP encoder-decoder model. In
the VAE model, the encoder learns a mapping into a 20-dimensional latent space,
modelled by a variable z, from which we sample M times and generate M trajec-
tories via the decoder. Internally, the latent distribution is modelled via calculating
mean and variance, and sampling is done via the common reparametrization trick.
As loss the average error over all hypotheses is used, combined with the Kullback-
Leibler divergence between z’s distribution and a Normal distribution, similar to
[41]. To assess model performances, we use the two metrics Average Displacement
Error (ADE) and Final Displacement Error (FDE), which measure metric distances
between trajectories, averaging them over all time steps or only considering the last
one, respectively. To cluster trajectories, as is required for the M2 extension of
metrics, we convert trajectories of n timesteps to a 2n dimensional space, and here
apply mean-shift clustering.

Toy Prediction We again use the toy intersection introduced in Section 4.4.1.1 to
obtain first results of the prediction task and for motivating the need for multi-
modality. The used dataset consists of 10000 simulated trajectories containing 60
data points each. The first 30 are used as input to the encoder (x), while the re-
maining 30 are to be generated by the decoder (y). Encoder and decoder LSTMs
consist of 64 hidden units, we use ε = 0.15, τ = 1 and a mini-batch size of 256. The
bandwidth used for mean-shift clustering is left to be determined automatically by
the algorithm.

Predictions for one sample are depicted in Figure 4.8. In this, the simulated
vehicle takes a right turn, while the SHP model predicts a random trajectory. The
MHP model nicely generates all 3 possible and equally likely outcomes, also matching
the actual ground truth trajectory nearly perfectly. Quantitative results are listed in

72

4.4 Evaluation

(a) Prediction of the SHP model. (b) Prediction of the MHP model.

Figure 4.8: Resulting prediction for a sample trajectory, in which the corresponding
vehicle is making a right turn. The decoder’s input is depicted in blue, the
ground truth in green, and the predictions in yellow (image from [5]).

Table 4.4. Since the SHP model only outputs a single, random (averaged) prediction,
this mostly is distant from the actual ground truth, resulting in bad metrical scores
overall. Similar behavior is observed for the VAE model: Inputs are close together,
resulting in averaged, low-variance distributions of the latent variables. The MHP
and MCL models perform much better: both are able to generate diverse predictions
covering all possible trajectories. However, again the resource consumption of the
MCL model is higher. Figure 4.6b shows the resulting clusters used in the M2
metric.

Trajectory Prediction In this section we describe our findings of predicting tra-
jectories using the SDD. In particular, to better compare against state-of-the art
models, we use the SDD part of the TrajNet dataset [81]. Here, trajectories of the
SDD have been filtered (overly linear trajectories are filtered out) and preprocessed
to a standard format: 8 time steps (3.2s) are to be used for initializing the encoder,
12 time steps (4.8s) need to be predicted. Labels for the test set are not public (yet),
as there are ongoing challenges to find best-performing trajectory prediction mod-
els and so far, only submissions predicting single hypotheses are supported. Thus
we created our own test set by splitting the publicly available training part, which
might explain the slightly different (better) results of our re-implementations. We
experiment with 3 and 5 hypotheses, and use an LSTM size of 256. Further, we use

Table 4.4: Results of the toy prediction task.

Name FDEO ADEO FDEM2 ADEM2 tt ti
SHP 2.82 4.60 2.29 3.64 112 49
MCL 0.15 0.16 0.53 0.53 320 147
CVAE 2.76 4.53 1.99 2.95 218 83
MHP 0.26 0.22 0.51 0.53 210 88

73

4 Considering Ambiguity

(a) Prediction using 5
hypotheses.

(b) Prediction using 3
hypotheses.

(c) Prediction of the
SHP model.

Figure 4.9: Comparing predictions of different models in an ambiguous scene of the
SDD (image from [5]).

(a) Prediction using 5
hypotheses.

(b) Prediction using 3
hypotheses.

(c) Prediction of the
SHP model.

Figure 4.10: Resulting predictions in a non-ambiguous scene of the SDD.

ε = 0.15, τ = 1, a mini-batch size of 256 and a bandwidth of 250 for the mean-shift
clustering.

Figures 4.9 pictures results of a sample scene, which exhibits large amounts of
ambiguity and uncertainty: The agent in question traverses a round-about, and has
multiple possible ways of continuing its path. The SHP model simply predicts a lin-

Table 4.5: Results on the SDD.

Name FDEO ADEO FDEM2 ADEM2 tt ti
SHP 35.94 17.76 49.14 40.36 238 143

MCL 3 27.52 14.46 45.02 41.89 338 187
MCL 5 25.31 13.58 43.81 42.52 450 227
VAE 3 35.07 17.16 44.06 38.86 311 166
VAE 5 34.06 16.62 41.86 38.23 377 193
MHP 3 27.20 14.36 42.66 39.03 312 175
MHP 5 24.89 13.48 41.96 39.11 355 187

DESIRE 34.05 19.25 - - - -
SoPhie 29.38 16.27 - - - -

74

4.4 Evaluation

ear follow-up trajectory, while the MHP models generate diverse outputs, accurately
matching predictions to possible targets in the environment. More predictions yield
more fine-grained hypotheses. In Figure 4.10 more linear motions are considered,
the agents mostly follow the existing sidewalk. All predictions thus lie in a narrow
space, predicting a straight trajectory. Note though, that when employing 5 hy-
potheses, there is one which ends nearly immediately. This could represent a rare
but plausible outcome of a person stopping, e.g. to chat.

In Table 4.5 quantitative results are shown, overall proving that proposed MHP
models perform better than their SHP counterpart, yielding better results for all
metrics. Compared to the toy task, the VAE models seem to improve, generating
more diverse outputs. Still, their predictions lack the diversity of our MHP mod-
els, as indicated among others by higher oracle scores. The MCL models perform
comparably to our MHP extensions, still yielding slightly worse results. In terms
of running times, similar findings from previous experiments repeat: MCL models
clock slowest times, while MHP and VAE models are close together, with MHP
models scaling slightly better with growing M . Further, we compare against more
complex models we consider state-of-the art for VRU trajectory prediction, namely
SoPhie GAN [43] and the DESIRE framework [41] (results for this obtained from
the interpolation in [43]). As no source code or full implementation details for these
models are made public, we simply report numbers from the corresponding papers.
The results are relatively similar to the ones obtained in our experiments, although
our models fare slightly better. We would like to point out again, that we used a
different test set due to our need for multimodal evaluation, but argue, that overall
the findings confirm capacity of our MHP extension to accurately capture and model
uncertainty and ambiguity, also for highly complex datasets.

4.4.2.3 Sequence Generation

In this section we demonstrate our MHP extensions for sequence generating prob-
lems, namely predicting trajectories on the toy intersection and text generation. For
the former we again use the metrics FDE and ADE, for the latter a measurement
from information theory, i.e. Perplexity.

Toy Prediction Extending common models to generate multiple sequences, while
simultaneously controlling the exponentially growing number of hypotheses, requires
different changes in the examined models. Thus we here only test our proposed MHP
extension as sole representative of ambiguous models, and compare this against a
standard SHP model. The synthetic dataset involving the toy intersection contains
10000 simulated trajectories with 25 points each. Both LSTMs used have a hidden
size of 256, we use a mini-batch size of 256, as well as ε = 0.15 and τ = 1. After
training, we initialize the models with 5 sample points, and infer for 20 more. In
Figure 4.12 two trees created at different timepoints, one early in the scene and one
right at the intersection, are shown. In the first case, the resulting tree is very narrow,
as there is no ambiguity in the predictions. In the second case the tree correctly

75

4 Considering Ambiguity

(a) Resulting prediction of the SHP model. (b) Resulting predictions of the MHP model.

Figure 4.11: Comparison of generated trajectories using the SHP and MHP models.
The ground truth is depicted in green, the predictions in yellow (image from
[5]).

(a) Tree at step 1. (b) Tree at the beginning of the intersection.

Figure 4.12: Visualization of the created tree at different timesteps. Points of the tree
are drawn in orange, the resulting hypotheses produced by ChooseTreePaths,
in case CheckSplit returns true, in yellow.

covers the full possible label space of the intersection, and the function CheckSplit

returns true. Figure 4.11 shows the resulting predictions for one sample. Again we
observe, that the SHP model (expectedly) generates an averaged trajectory, while
our MHP extension is able to correctly infer all three possible directions. Table 4.6
shows quantitative results. Again, the MHP model outperforms the SHP model. As
training schemes for both models are identical, so are their clocked times for training.
During inference though, while SHP models only need to follow a single hypothesis,
MHP models generate hypotheses trees in each step, significantly increasing inference
time.

Table 4.6: Results on the toy sequence generation task.

Name FDEO ADEO FDEM2 ADEM2 tt ti
SHP 18.26 5.07 14.07 4.13 59 188
MHP 5.45 1.99 5.48 2.06 67 24433

76

4.4 Evaluation

Text Generation A widely used metric for evaluating generated sequences is Per-
plexity [82], which describes how well the predicted distribution matches the target
distribution and is defined by 2H(p), where H(p) is the entropy. To assess the per-
formance of a model, this is often evaluated on the test corpus. However, since we
want to show how to employ MHP models for practical uses and assess upon multi-
ple hypotheses, we directly measure the Perplexity of the generated samples. This
can be done using n-grams (patterns of n consecutive words): the n-gram Perplexity

is given by pn = N

√∏N
i

1
P (wi|wi−1,...,wi−n

). Here, P (wi|wi−1, . . .) denotes the proba-

bility of word wi following the words (wi−1, . . .). A lower perplexity is better, i.e.
describing a model outputting more realistic sequences. Motivated by the BLEU
score [83], we use the Perplexity measure P = p2 · p3 · p4. Since now we have a tool
to immediately measure the quality of created hypotheses, there is no need to use
oracle or M2 variants of the metric.

To better understand the extent of ambiguity in this problem, we propose different
evaluation schemes. For each, we start with a random starting word and produce
words until the end of sentence token is generated or a fixed maximum length is
reached. We repeat each experiment 10000 times, using the same starting words for
the SHP and MHP model:

1. Generate one sentence from each starting word. Use the top prediction from
the SHP model in each step, and a random one from the MHP model.

2. Generate a tree containing all possible predictions of length 8, inserting the
M predictions from the MHP model as children in each step. For the SHP
model, the M -most probable predictions are used.

3. Generate M full sentences, by using the problem specific split and merge

functions. For the SHP model again the M -most probable predictions are
used.

Two LSTM layers with hidden size 128 are used and ε = 0.05. The results are shown
in Table 4.7: for each method the mean perplexity is reported. For all evaluation
scenarios, the MHP model outperforms the SHP one, even for evaluation scheme
1. This is somewhat surprising, as the SHP model uses its best prediction in each
step whilst the MHP model a random out of M possible ones. This indicates the
ambiguous nature of this problem and that a sequence generation model should not
be trained by maximizing likelihood using only a single hypothesis. For scheme 2,
the average Perplexity returned by the MHP model is again lower, but the variance
higher: This shows, that overall the MHP model is able to explore a wider space of
possible sentences. In scheme 3 mean and variance of the MHP model are lower, the
MHP model seems to be better suited for understanding when to split into different
paths and when to merge, due to its better understanding of the prediction space.
Figure 4.13 shows some generated sample sentences.

77

4 Considering Ambiguity

Figure 4.13: Sample sentences created with scheme 3 (top: MHP model, bottom:
SHP model). The MHP model creates more coherent and less repetitive
results.

4.5 Conclusion

Ambiguity and uncertainty are present in many machine problems, especially in
the area of autonomous driving: Pedestrians as well as other vehicles might follow
different, sometimes unexpected trajectories, in many situations multiple driving
manoeuvres are equally likely. Still, many works focus on learning a one-to-one
mapping between inputs and outputs and predicting the best hypothesis in every
situation. Thus, we set out to introduce and model ambiguity in this field, extending
the previously introduced prediction model from Chapter 3 as well as analyzed a
multitude of different problems to show general applicability of our approach.

In particular, we extended the MHP framework [8], which was originally intro-
duced for feed-forward networks, to recurrent architectures. Main theme of said
framework is partitioning the label space using a Voronoi tesselation, and only
backpropagating gradients inside Voronoi cells. In particular, we showed how to
extend such principle to sequence-to-sequence prediction problems, encoder-decoder
architectures and sequence generation models. We addressed a diverse set of prob-
lems, such as predicting lane changes (Chapter 3), trajectories and even generating
text. In several experiments we compared proposed MHP models against other well-
performing methods for predicting multiple hypotheses, such as VAEs and MCL, and
state-of-the art methods for specific problems. Overall, results regarding our MHP
models are promising, showing good performance and an accurate understanding of
ambiguity. To better assess and compare models, we further introduced a novel mul-
timodal metric, core of which is re-labelling data points, possibly assigning multiple
labels and requiring predictions to match all of them.

Table 4.7: Means (and variances) of the Perplexity scores of the different evaluation
schemes on PTB (lower Perplexity is better).

Name Scheme 1 Scheme 2 Scheme 3

SHP 7.02 6.87 (3.40) 7.33 (1.94)
MHP 6.02 5.79 (4.58) 5.37 (0.58)

78

4.5 Conclusion

In the future, we would like to extend experiments, comparing different archi-
tectures for predicting and generating diverse outputs, such as GANs and methods
from VI, on standardized datasets. Demasking the current black-box understand-
ing of many deep learning models, building up knowledge regarding how and why
they work, and particularly in which situations they excel and fail for ambiguous
situations, seems like a worthy goal.

79

Part III

Planning

81

5
Assessing Situations

A traditional stack-based architecture for autonomous agents consists of the lay-
ers perception, fusion, prediction, planning and control. After having covered the
prediction part in the previous chapter, we now turn our focus towards planning.
Possible data-driven methods for solving this problem are RL and IL, in which mod-
els learn by themselves via trial and error or by trying to mimic designated experts’
behaviour. While both have their merits and led to promising results in recent times
[27, 36], also downsides are known: RL depends on the existence of a realistic simula-
tor and still suffers from domain shift when transferring to the real world, as well as
discards the large amounts of driving data available. IL is known to overfit specific
expert’s behaviour and suffers from compounding errors. Therefore, most compa-
nies still rely on conventional methods for planning and control, such as rule-based
planners and mathematical optimization methods to calculate ideal trajectories. In
addition, such “simpler”, hand-crafted methods are better interpretable and thus
verifiable, which is a strong requirement for safety-critical applications.

Thus, here we take a step back, and position ourselves between the prediction
and planning layer: Goal is the introduction of a novel layer for understanding
complex scenes, which consists of a deep learning architecture, thus making use of
this powerful field. This then serves as supporting layer to other functions, such as
planners, effectively offering the benefits of deep learning and combining it with any
other potential algorithm, such as a safe, rule-based planner. Particularly, we revisit
the already previously examined lane changes: Goal is training a model for answering
the question, whether such a manoeuvre is safe and feasible at the moment. Such
principle can easily be extended to other manoeuvres and tasks though, final goal
is providing a complex layer, that can serve as “brain” of the car, preparing and
yielding information and recommendations to a multitude of functions.

For this, we train an LSTM network in supervised fashion on actual driving data,
and further extend it to a bidirectional model by incorporating the Intelligent Driver
Model (IDM) [38] for explicit future state prediction. Summarized, our contributions
are:

83

5 Assessing Situations

• We propose a bidirectional RNN, making use of the IDM for future state
prediction, for understanding complex traffic scenes, analyzing situations w.r.t.
their suitability for lane changes.

• We propose a novel labelling scheme for such problem and compare it to ex-
isting ones.

5.1 Introduction

Decision making is a crucial part in any autonomous system - in fact, it is the distinct
factor providing such systems with the ability to move autonomously. Possible data-
driven methods are RL and IL. While they show first promising results in the field
of autonomous driving [27, 36] and excel in many other fields [60, 84], companies
are not ready to rely on such mainly black-box models yet. In particular, downsides
like the need for realistic driving simulators in RL and compounding errors in IL,
make a practical application in the near future doubtful. We instead propose a new
supporting layer, reformulating the problem as a binary classification problem. Such
problems have been addressed before, e.g. using DBNs and SVMs [85, 86], mostly
using only shallow, frame-based approaches though.

Here, we again exploit the sequential nature of such problem and driving scenarios
in general, introducing an LSTM network for classifying dynamic driving situations
into the categories suited and not suited for lane changes. Considering the sequen-
tial aspect of the problem should greatly help understanding of complex situations.
We further extend our method with help of the IDM: In each timestep, we use this
for predicting future scene configurations, and use this information in a bidirec-
tional LSTM. This way, we incorporate prior knowledge about rational drivers, and
help models by providing explicit assumptions about the future. The fact that this
helps improving model performance can indeed be viewed with some curiosity, as
all information is available to the unidirectional LSTM already, and it could learn
to implicitly anticipate. However, breaking down complex models into well-defined
parts with specific purposes is a general well-working optimization technique, and
so is adding any prior knowledge. In fact, our method can be compared somewhat
with self-knowledge distillation [87], in which models learn to optimize predictions
by using their own outputs as feedback.

As in the previous sections, we use intermediate feature representations to model
and describe the examined problem. Most works follow this principle, although some
also use raw camera data as inputs [88].

Finding appropriate labels for such problems turns out to be a crucial task. Most
works apply a principle we name “action-based labelling”, observing executed lane
change manoeuvres and deriving labels based on this behaviour. While this results
in strong positive labels, negative situations are problematic to define, as it is hard
to distinguish between situations in which drivers do not want to lane changes and
in which they want to but cannot. Therefore, we propose an alternate “automatic”
labelling scheme, considering safety distances and deriving labels from these.

84

5.2 Related Work

5.2 Related Work

Full data-driven methods for planning tasks employed in autonomous agents often
make use of either IL or RL. Such techniques can be distinguished in terms of
which features and abstraction layers are used (using raw sensory inputs [37] or
intermediate representations [89, 27]), and can be applied for full end-to-end systems
[36, 37] or “only” for the planing layer itself in a stack-based architecture [89].
Interesting candidates for true end-to-end driving are [27] and [37]. In [27], the
authors define a custom RNN network, which is given fused sensory information
and learns to output future trajectories of the ego vehicle, trained on actual driving
behaviour. Different sensor inputs are fused into high-level representations of the
environment in birds-eye view: Important information such as lane boundaries and
other agents are plotted in different schematic images. Such representation has
the advantage of being easily transferable to different domains, and that synthetic
data can be generated easily. In addition to losses penalizing deviations of produced
driving behaviour from the ground truth data, several auxiliary losses are introduced,
e.g. prompting models to predict future positions of other agents. Such joint learning
of different tasks is shown to help improve performance and robustness. Zeng et al.
work on raw LiDAR inputs, also combining prediction and planning tasks [37]. From
those inputs, future trajectories of agents are predicted, and simultaneously a cost
volume is generated by sampling from actual and random trajectories. Eventually,
a cost-optimal trajectory is sampled based on this volume.

As mentioned in the introduction, despite their impressive results such data-driven
methods also have their weaknesses. Thus, we here follow a stack-based architecture
and introduce an intermediate supporting layer to the planning layer. This way, we
exploit the power of deep learning and circumvent any issues arising from using
learned planners. Thus, most related to our work are classification models analyz-
ing situations w.r.t. their suitability for lane changes. To put this into context, in
existing works lane changes are often categorized into three classes: Mandatory, dis-
cretionary and anticipatory lane changes. Mandatory lane changes are forced upon
the driver due to environmental conditions, such as terminating lanes, while discre-
tionary lane changes are conducted to improve driving conditions, e.g. merging into
faster lanes. Anticipatory lane changes are closely related, but done in anticipa-
tion, i.e. to improve future driving conditions (such as avoiding congestion on one
lane). Further, execution of a lane change is often partitioned into multiple phases,
beginning with the decision to change lanes and ending with the acceptance of a
suitable gap to merge into. Our model effectively is such a gap acceptance model,
but monitors complete scenes and also extends to more dynamic situations.

Nie et al. apply SVMs for such gap acceptance problem, using them to classify
gaps as suited or not suited for lane changes [86]. Balal et al. address a similar
problem, employing fuzzy logic rules for solving it [90], with aims of supporting
drivers in their decision making. Jeong et al. also aim at classifying gaps, but
by using raw image data and employing CNNs for the task [88]. Ulbrich et al.

85

5 Assessing Situations

apply DBNs for classifying situations, also analyzing whether those are suited and
beneficial for lane changes [85].

5.3 Recurrent Models for Assessing Situations

First, we formally introduce inspected problem and used labelling schemes, and then
explain models used for solving it.

5.3.1 Problem Definition

Goal of this task is deciding, whether the ego vehicle can safely change lanes. We
formulate this as a supervised classification problem: At each timestep, our algo-
rithm processes the current driving scene, and generates a binary output, indicating
whether a lane change to the respective side is possible or not. Used input features
are features from group GE (compare Section 3.3.1), i.e. distances to neighbouring
vehicles. We execute our algorithms twice, once for each side: In particular, when
examining possible lane changes to the right, only features dtPV , dtRV , dtPLVR
and dtPFVR are considered. This is hidden from the algorithms though by select-
ing appropriate features and labels beforehand during training and inference. For
obtaining ground truth labels, we propose two labelling schemes:

Action-based Labelling Many existing works employ a principle we call “action-
based labelling” [86, 90, 91]: Lane changes conducted by human drivers serve as
positive examples, marking situations suitable for lane changes. Unsuited situations
unfortunately are harder to find. We improve upon this in Chapter 6. In particular,
a lane change is considered started once a vehicle moves with a lateral velocity of
more than 0.213 m/s towards a lane boundary without oscillations, and ends, once
it crosses this lane boundary. We call this period TP and label all contained frames
with Y (Yes), indicating suitability for lane changes. To obtain negative labels, it
is assumed that drivers assess situations, looking for suitable gaps, before executing
a lane change. Thus every TP is preceded by a time period TN , in which drivers
want to lane changes but cannot yet. We choose a duration of 5s for TN , labelling
each contained frame with N (No). In addition, to give models time to adjust
and not force hard boundaries, we introduce a time period of duration 1s (TI) in
between, which is given label I (Ignore). To further avoid false negative labels, we
try to formally quantify suitability for lane changes by evaluating temporal distances:
Intuitively, we only would like to consider situations in our training set, in which a
significant situational change can be detected from TN to TP . If such change is not
observable, our assumption is likely to be wrong. Conversely, a strong change might
indicate changes in traffic swaying drivers’ decision from keep lane to change lane.

86

5.3 Recurrent Models for Assessing Situations

Figure 5.1: Depiction of two sample lane changes, one is considered in our training
set, while the other is not. In both scenes, the lane change of the target car
(drawn in green) happens in the second frame. In scene a), frames during TN
and TP are nearly identical, thus this sample is removed from the training set.
In scene b) however, we observe a significant change in situations, increasing
the chance of this example having meaningful label (image from [3]).

We formalize this by defining for any driving scenario:

ad = dPV + γ ∗ dPLV + dRV + γ ∗ dPFV
+ β ∗ (|vPV |+ γ ∗ |vPLV |+ |vRV |+ γ ∗ |vPFV |)

sd = vPV + γ ∗ vPLV − vRV − γ ∗ vPFV − ad
(5.1)

d denotes spatial distances from the corresponding vehicles to the ego vehicle and
v relative velocities (target’s velocity subtracted from ego velocity). ad is a crude
approximation for the scene’s general state, high values indicate among others large
safety gaps. sd further approximates a scene’s suitability for lane changes: sd is
negative, when ego is slower than preceding vehicles and faster than trailing vehicles,
and when distances overall are large. Thus, scenes with small sd are more likely to
be suitable for lane changes than scenes with high sd. In particular, motivated
by observed driving behaviour and to weigh the importance of current and desired
driving lane, we use γ = 2 and β = 1.8 and only include the pair (TN , TP) in our

training set if
|adtn0

−adtp0 |
adtn0

≥ 0.35 (1) and sdtn0
≥ sdtp0 (2) (index 0 denoting that

first frames of each period are considered). (1) forces a minimal change in situations,
while (2) guarantees the better suitability of frames in TP . Figure 5.1 visualizes this
principle.

To prevent LSTM networks from memorizing the fixed structure (TN , TI , TP), we
introduce augmentations in our training set, clipping sequences to random intervals.

Automatic Labelling As alternative to such behaviour-oriented labelling, we pro-
pose an automatic labelling scheme, which considers future safety distances on the
target lane to identify safe manoeuvres. When labelling a frame t, distances to

87

5 Assessing Situations

preceding and following vehicle on the respective target lane (dtPLVL / dtPFVL and
dtPLVR / dtPFVR) are considered: If these do not fall short of 1s over the course of the
next 3s, the label is set to Y , otherwise N . This follows the assumption, that a lane
change can be executed safely, if all involved participants continue driving in their
intended manner, i.e. no strong acceleration or breaking is necessary. In particular,
if such safety gaps of 1s are adhered to given the actual, future driving behaviour, it
is possible to merge into the respective target lane without influencing other agents
much.

Advantages of such automatic labelling are the number of labelled data frames, as
well as avoiding falsely labelling frames negatively. Using this scheme, all frames of
the dataset are labelled, while using the action-based scheme, only frames adjacent
to lane change manoeuvres are labelled, and the rest ignored. The minimal required
safety gaps can be modified to model more passive or aggressive driving behaviour.
However, in practise, especially in dense traffic, such strict gaps might not be realistic
nor applicable: Often, collaboration between agents is necessary, humans tend to
anticipate and negotiate future driving manoeuvres. Such behavior could be learned
by demonstration, and we consider this in Chapter 6.

5.3.2 Models

In this section we first introduce a standard LSTM network for addressing the dis-
cussed problem of analyzing situations. Then, we extend this to a bidirectional
LSTM. This effectively combines two LSTM networks traversing information in dif-
ferent temporal directions. Since during inference, future information is not avail-
able, we propose including a prediction component, namely the IDM.

5.3.2.1 LSTM Network

As inputs to our LSTM model serve distances to preceding and following vehicles on
current and desired driving lane in discretized fashion: We convert each continuous
distance to a one-hot vector, summarizing 100m with a resolution of 10m. An
embedding is used to project into a higher-dimensional space, which is then passed to
the LSTM network. Finally, a fully connected layer followed by a softmax function
outputs the classification result. Note, that strictly speaking we do not use the
feature set GE as input, but a slight deviation from this (using actual distances
d instead of temporal distances dt). The model is visualized in Figure 5.2, and
described formally as follows:

et = emb(Wemb,bemb, [g
pv
t ; grvt ; gpfvt ; gplvt])

(ht, ct) = LSTM(et,ht−1, ct−1)

ot = softmax(Woht + bo)

(5.2)

In this, gxt denotes the one-hot vector for vehicle x as given by the discretization of
dxt described above, and emb(W,b, [x1, x2, . . .]) = [Wx1 + b; Wx2 + b; . . .].

88

5.3 Recurrent Models for Assessing Situations

Figure 5.2: Visualization of the used LSTM networks. The distances to neighbouring
vehicles on current and desired driving lane are used as inputs and encoded as
one-hot vectors. These are embedded and passed on the LSTM network, a final
fully connected layer and softmax function generates the resulting prediction.
For the standard LSTM network, only the LSTM cell colored in red is used. In
the bidirectional LSTM, also the orange colored LSTM is used, which processes
the information in reversed temporal fashion (image from [3]).

5.3.2.2 Bidirectional LSTM Extension

A bidirectional LSTM network is composed of two separate LSTM networks, the
extra one processing data backwards. In each step, the output of both networks
is combined and used for prediction. Thus, in each timestep past as well as future
information can be used for generating an output.

For our application, during training real future trajectories are used, while during
inference they are generated with help of the IDM. This can be seen as introducing
prior knowledge, e.g. regarding physical movement constraints as well as behavioural
characteristics of rational drivers, into the model, and employing an inductive bias
towards expected predictions. Consider a situation involving a breaking vehicle fol-
lowing the ego vehicle on the target lane: Initially, a lane change looks unfeasible,
but due to the braking manoeuvre will become possible. Such calculations could
be done implicitly by the unidirectional LSTM model from Section 5.3.2.1. Often
though, inducing inductive bias, using prior knowledge and carefully choosing net-
work architectures is beneficial for performance. Our bidirectional model queries a
separate, specialized prediction component, explicitly making use of the prediction
of future states, and, assuming such prediction is reliable, reducing complexity of
the remaining problem for the LSTM network.

Intelligent Driver Model To obtain an online usable bidirectional LSTM network,
a prediction component is required. Many possibilities for this exist, such as learned
prediction algorithms. For simplicity and due to good experimental results we use
the IDM though, which essentially is a set of equations describing a rational driver

89

5 Assessing Situations

in car-following scenarios. Core behavioural assumptions are the desire to keep safe
distances to preceding vehicles, but otherwise accelerating to a certain, desired target
velocity if such distances allow it. Let X be the vehicle being described by the IDM,
and Y its preceding vehicle. x and s denote velocities, sX = xY − xX − lY and
vX = v′X − v′Y . Then, the behaviour of X according to the IDM is fully described
by the following differential equations:

˙xX =
dxX
dt

= v′X

v̇′X =
dv′X
dt

= a(1− (
v′X
v0

)δ − (
s∗(v′X , vX)

sX
)2)

s∗(v′X , vX) = s0 + v′XT +
v′XvX

2
√
ab

(5.3)

An agent’s behavior is further controlled by the following freely choosable parame-
ters:

• v0: desired velocity

• s0: minimal distance between two vehicles

• T : desired temporal distance

• a: maximal acceleration

• b: comfortable braking behaviour

• δ: factor to control magnitude of used exponentiation.

We then employ the IDM to predict future positions and velocities for the vehicles
of interest (PV , RV , PFVL/R and PLVL/R, as well as ego), in order to feed such
assumptions about future traffic scenes into the bidirectional LSTM network. For
the ego vehicle as well as vehicles RV and PFVL/R prediction over multiple steps
actually becomes an autoregressive problem, as their preceding vehicles are also
being predicted by the IDM. In general, this can be beneficial due to more accurate
predictions, or the opposite due to compounding errors. For the remaining vehicles,
preceding vehicles are only included in the initial step and then modelled as constant-
velocity objects. Modern Radar and LiDAR sensors are able to capture surrounding
vehicles as well as potentially their trailing or preceding vehicles, in case these are
close enough - thus giving us all the needed information (if vehicles are out of our
sensor range, their influence in the IDM’s prediction is negligible anyways).

The bidirectional LSTM model is also depicted in Figure 5.2, and expressed math-
ematically as:

et = emb(Wemb, bemb, [g
pv
t ; grvt ; gpfvt ; gplvt])

(hFt , c
F
t) = LSTM(et,ht−1, ct−1)

(hBt , c
B
t) = LSTM(et,ht+1, ct+1)

ot = softmax(Wo[h
F
t ; hBt] + bo)

(5.4)

90

5.4 Evaluation

Notation is identical to the one used for the unidrectional LSTM, gt describes the
one-hot encoding of vehicle positions. During training, we reset the internal state of
the backward LSTM every TB steps. During inference, in each timestep t sequences
of length TB are processed: Input data gt′ with t′ ≤ t are derived from observed
vehicle positions, steps gt′′ with t′′ > t from predictions given by the IDM. We
use TB = 10s. Selection of TB potentially has a high influence on the algorithm’s
performance. We recommend setting TB to as large values as possible, for which a
reliable prediction can be expected.

5.4 Evaluation

For evaluation we use the previously introduced NGSIM dataset (compare Section
3.3.2).

SVM Baselines For a competitive comparison we consider the SVM model from
Nie et al. [86] (SVM). The only difference in application is the used dataset, which is
bigger and not as restricted in our case. For the action-based dataset we analogously
to Nie et al. pick one negative sample from TN as well as one positive sample from
TP for each occurring lane change. In order to not sample nearly identical data
frames once as positive and once as negative, we require a minimum time gap of 1s
between each such two samples (which corresponds to the Ignore time period for the
LSTM models). For the automatic dataset we split the available data into tracks,
with one track containing all data frames involving a specific car. Then we sample a
certain number of positive and negative samples from each track. As input features
for the SVM model dPV , dRV , dPFV , dPLV , vPV , vRV , vPFV and vPLV are used, i.e.
distances and relative velocities to the respective vehicles. To analyze the effect of
a predictive component, we extend the conventional SVM with such a method. In
particular, we concatenate each input frame with frames 5 respectively 10s in the
future. These are obtained using real future trajectories, serving as an upper bound
of reachable performance (SVM*). A Gaussian radial basis function is used in both
SVM models, best hyperparameters are found by grid-search.

LSTM Models We compare the unidirectional LSTM model (LSTM) and the bidi-
rectional LSTM variant (Bi-LSTM). To again analyze the influence of the prediction
component and compare against theoretically reachable performance, we further de-
ploy Bi-LSTM*, for which the IDM prediction component is replaced by real future
trajectories. A single layer of size 128 is used, and weight regularization with weight-
ing factor 0.001 employed.

To obtain a non-deep-learning baseline, we further analyze the application of solely
the IDM model for automatically labelled samples: The IDM is used for predicting
future vehicle positions for the next three seconds, and a situation deemed suitable

91

5 Assessing Situations

when these do not fall below 1s, analogously to how automatic labels are defined
(IDM).

Table 5.1 lists results of these experiments. We observe, that already the unidi-
rectional LSTM variant outperforms both SVM variants for both labelling schemes.
This proves, that LSTMs are better suited for understanding temporal problems
as encountered here, and also that SVMs struggle to find temporal correlations
when corresponding inputs are given (SVM*). We further observe an improve in
performance when employing the bidirectional LSTM variant with real future data
(Bi-LSTM*). When replacing real future trajectories with predicted ones, a small
deterioration in performance is detected. This is to be expected, as prediction
models, in particular our used IDM, are not perfect models of the future. An inter-
esting course for future experiments would be to use the IDM also during training,
to condition our models on expected errors. Ultimately, we decided against it, as
this increases training time significantly. Using action-based labels, Bi-LSTM per-
forms comparably to LSTM. On automatically labelled data though, performance
increases, indicating the usefulness of bidirectional LSTMs, even in online applica-
tions. Possible reasons for this outcome are the length of available labelled data
tracks when using an automatic labelling scheme, as well as the absence of question-
able labels, as arising in the action-based scheme. IDM by itself performs worst,
showing that indeed we need learned, data-driven approaches to solve this complex
problem, and that it is the combination of deep learning models and prediction
component that generate the good results of Bi-LSTM, and not the IDM alone.

Figure 5.3 visualizes three scenarios and their resulting predictions and ground
truth labels when using the automatic labelling scheme. Scenario a) depicts a situa-
tion in which a large gap is present in the target lane. This is correctly predicted by
all three algorithms, which all predict suitability of a lane change. In scenario b), a
vehicle is approaching quickly from behind in the target lane, making a lane change
unsafe. Models LSTM and Bi-LSTM correctly recognize this evolution, while SVM
fails to do so, classifying the situation as suited for a lane change. In scenario c),
also LSTM fails. While at t = 0 the situation looks suited for a lane change at
first glance, 2 seconds later the ego vehicle will have reached its preceding vehicle
on the target lane, and having done a lane change would most likely have resulted
in a crash. The IDM very accurately predicts this happening, as shown in Figure
5.4, and seemingly this strong knowledge helps Bi-LSTM in outputting the right
prediction.

Table 5.1: Results of all analyzed algorithms for both labelling schemes.

IDM SVM SVM∗ LSTM Bi-LSTM∗ Bi-LSTM

Action-Based - 77.24% 78.62% 88.76% 92.59% 88.19%

Automatic 61.10% 80.70% 57.90% 83.08% 88.49% 87.03%

92

5.4 Evaluation

Figure 5.3: Visualizations of three different scenarios when using the automatic la-
belling scheme. The ego vehicle is drawn in green, the relevant neighbouring
vehicles in white, thus marking the target lane. The prediction at timestep
t = 0 is reported on the right: The ground truth label and the predicted labels
from SVM, LSTM and Bi-LSTM are shown in this order. “1” describes a situ-
ation suited for a lane change, a “0“ the opposite. For a better understanding,
the resulting scene after 2 seconds is depicted in the right image (figure from
[3]).

Figure 5.4: A closer analysis of situation c) from Fig. 5.3 to examine the prediction
quality of the IDM: The predicted and actual scene is depicted 2 and 4 seconds
after the initial image. One can observe a rather accurate prediction from
the IDM. Note that the ego vehicle will have overtaken different vehicles, thus
resulting in different neighbouring vehicles (white) - the “old” neighbouring
vehicles being predicted are depicted in yellow (figure from [3]).

Figure 5.5 shows the temporal development of an exemplary scene, along with the
corresponding predictions of SVM and Bi-LSTM. The scene begins with a rather
congested traffic situation, and is unsuited for a lane change to the left. This is

93

5 Assessing Situations

Figure 5.5: Visualization of the temporal development of a scene. Each image is
recorded 1 second apart. The diagram below shows the correct label of each
frame as well as prediction (probability for ot = 1) from SVM and Bi-LSTM
(figure from [3]).

correctly predicted by Bi-LSTM, but SVM wrongly outputs suitability. As the cars
move on, a suitable gap for a lane change forms, which is anticipated by Bi-LSTM,
although somewhat early. Eventually, a vehicle is approaching quickly from behind,
closing the gap. This is first recognized by Bi-LSTM, and around 1s later by SVM.

5.5 Conclusion

The ability to plan one’s future actions is what defines an autonomous, intelligent
agent. Data-driven approaches, such as RL and IL, show great promise but exhibit
problematic characteristics for practical applications, such as difficulties to verify
their behaviour. Still, deep learning most likely will be needed to solve the complex
problem of fully autonomous driving. We therefore introduced a supporting deep
learning layer to analyze traffic situations and support other planning algorithms in
their decision-making.

In particular, we aimed at analyzing situations w.r.t. their suitability for lane
changes, outputting binary decisions to indicate possible suitability. Therefor we
employed an LSTM network, which is trained in supervised fashion on actual driv-
ing data as well as automatically labelled samples. We further extended this to
a bidirectional LSTM, querying the IDM for explicit future state predictions, thus
allowing the usage of bidirectional networks. Results indicate a good performance
and an accurate scene classification.

In the future we would like to experiment with different prediction components as
alternatives to the IDM. Good results should also be achieved by using learned ap-
proaches, such as training another LSTM network on predicting future developments
of traffic scenes. This is an interesting direction of research for itself. Additionally,
it would be helpful to improve the quality of assigned labels. Currently, labels are
either derived from actual driving behaviour or obtained automatically by analyzing

94

5.5 Conclusion

future safety distances. When using actual driving behaviour, we use executed lane
changes as positive samples. Negative samples are harder to find though. Using
automatically generated labels yields large labelled datasets with good quality in
many situations, but might be too passive and non-interactive compared to human
behaviour. We examine possible improvements upon this in the next chapter.

95

6
Combining Prediction and Planning

In the previous chapters we addressed the tasks prediction and planning, particularly
regarding lane change manoeuvres, separately. However, these are highly correlated:
When predicting future lane changes of other traffic participants, this implicitly
contains reasoning about drivers’ intentions and feasibility of such manoeuvres -
two topics, which are also essential when planning lane change manoeuvres for the
ego vehicle.

In this chapter we thus study combinations of both tasks and our proposed models,
showing interesting connections and improve model performances in some use cases.
In particular, our contributions are:

• We combine our proposed lane change prediction approach from Chapter 3
and our situation assessment model from Chapter 5 via joint components, and
train both tasks jointly on the same dataset.

• We aim at extracting intention and feasibility information from the lane change
prediction model, and use this knowledge to improve labelling quality of pro-
posed labelling methods for the situation assessment task from Chapter 5.

6.1 Introduction

Predicting and planning manoeuvres are inherently correlated: When predicting
future driving manoeuvres of other traffic participants, good prediction algorithms
should consider intentions of drivers (deciding whether there exist incentives for
executing such manoeuvre) as well as practical limitations (is executing such a ma-
noeuvre safe and feasible). These exact same steps also need to be considered when
planning such manoeuvres for the ego vehicle. Further, incorporating assumptions
and predictions of future driving states greatly helps planning algorithms, as plan-
ning is not a static problem, but needs to account for and react to dynamically
changing situations in the future. Therefore, many well-working planning algo-
rithms implicitly or explicitly consider prediction subtasks, and learn both tasks

97

6 Combining Prediction and Planning

Figure 6.1: Visualization of the connection between the tasks planning and pre-
dicting lane changes. In green, outputs of the model assessing situations are
shown: A lane change to the left is deemed feasible for the ego car with high
probability, as the target gap in that lane is sufficient. A lane change to the
right is rejected, due to other vehicles blocking this lane. Conversely, we can
treat the green vehicle as target car in a lane change prediction task: The
red arrows indicate predicted probabilities of the three manoeuvre classes Left,
Follow and Right. One can observe the similarities between these tasks, which
mostly differ in input structure and expected output. In particular, a good
prediction model should consider surrounding vehicles as well, and not predict
lane changes in unsuited situations (to the left in this example) (image from
[2]).

jointly [37, 27]. Such joint learning of different, but related tasks, has proven to be
good practise in general, and is done frequently to improve performance (consider
e.g. jointly learning semantic segmentation and depth estimation [92]). When train-
ing one model for different tasks, this has several advantages: A shared backbone
architecture is formed, which potentially better learns to capture and understand
patterns in the data - since the model is forced to reason jointly about different tasks
- before separate specialization layers output final results for all tasks. Addition-
ally, with each task the number of labels (ideally) grows: Each label of every task
constitutes a possibility for the model to learn from ground truth.

Here, we first propose a model to jointly predict lane changes and assess situations
w.r.t. their suitability for lane changes. For this, we combine the prediction model
from Chapter 3 with the situation assessment model from Chapter 5 over a joint
component, which is responsible for analyzing and evaluating gap distances. Figure
6.1 visualizes the connections between these two tasks.

Next, we aim at improving the labelling quality for the situation assessment task
from Chapter 5. Our lane change prediction model first is used to predict driving
intent to avoid false negative labels generated by the automatic labelling scheme.
Then, we employ the prediction model for analyzing feasible safety distances in order
to avoid false negative labels in the automatic labelling scheme.

98

6.2 Combined Approaches for Predicting Lane Changes and Assessing Situations

Figure 6.2: Depiction of the modified situation assessment model: Instead of em-
bedding actual distances, temporal distances are used, i.e. feature group GE .
Features for both target lanes are processed by a single LSTM cell, and two in-
dependent fully connected layers (FC) followed by a softmax function return
resulting predictions for both lanes simultaneously (image from [2]).

6.2 Combined Approaches for Predicting Lane Changes and
Assessing Situations

We first describe the proposed joint model and then address the issue of labelling
quality.

6.2.1 Joint Training

Goal of this section is combining our lane change prediction model from Chapter 3
and our situation assessment model for lane changes from Chapter 5. To better be
able to use the latter, we use a slightly modified model, which is depicted in Figure
6.2 and expressed formally as follows:

(ht, c̃t) = LSTM(GEt ,ht−1, c̃t−1)

yLt = softmax(WLht + bL)

yRt = softmax(WRht + bR)

(6.1)

We remove the dependency of the model’s input and prediction to the target lane.
Now, all neighbouring vehicles (PV , RV , PFVL, PFVR, PLVL, PLVR) are used
as input, and a prediction formed for both possible target lanes simultaneously,
i.e. yielding two outputs indicating whether a lane change to the left and right is
possible. In addition, we remove the one-hot encoding and subsequent embedding of
vehicle distances, and simply use temporal distances dtX to describe available gaps.
Thus, input to this model exactly is feature group GEt (compare Section 3.3.1).

The lane change prediction model LSTM-E from Section 3.3.2 consists of three
LSTM cells to process the feature groups GZt , GEt and GMt . Purpose of the cell
responsible for GEt is analyzing distances to surrounding vehicles and evaluating
suitability of a lane change. It is thus nearby to combine models via this cell: We
treat both tasks as a single, multi-task problem using a joint model, namely a com-
bination of our lane change prediction model and the adapted situation assessment
model, and joining these by using the same LSTM cell to process GEt . When using

99

6 Combining Prediction and Planning

Figure 6.3: Visualization of our proposed architecture for jointly solving the tasks
assessing situations and predicting lane changes: The architecture consists of
the same models used for the single tasks, except cell LSTME is now shared
between both (figure from [2]).

the automatic labelling scheme for the situation assessment task, all frames of the
dataset are labelled for both tasks, and we are able to train them jointly and simulta-
neously, reweighing loss functions to give both tasks similar importance. Figure 6.2
shows the resulting model. As stated before, such multi-task learning often improves
performance when considering related tasks [37, 27, 26, 93].

6.2.2 Label Pruning

Defining labels is a crucial task for any supervised machine learning problem, and
this is no different for the introduced situation assessment problem. However, defin-
ing proper labels here is challenging in some situations. Thus, in this section we set
out to improve the labelling quality of this task by using our lane change prediction
model.

Positive samples in the action-based labelling scheme are given by executed lane
change manoeuvres, and are thus near optimal. Finding negative labels is a harder
task: We follow existing works and label a fixed time period before a lane change
as not suited for lane changes, following the assumption that before the execution
of a manoeuvre drivers want to change lanes, but cannot. We further improve this
approach by filtering out situations with no observable change from such assumed
waiting periods to execution periods. Still, it is hard to decide whether drivers
really do want to change lanes and cannot, or simply have no intention of doing so
yet. We thus propose to further filter resulting labels by making use of our lane
change prediction model: Part of its decision process includes determining drivers’
intentions, making it a suitable candidate for intended task. Specifically, we compare
predictions outputted from this model with labels generated from the action-based
labelling scheme, removing negative labels if the corresponding prediction is Follow.

Conversely, labels generated by the automatic labelling scheme might be too
“strict” and “passive”: Core of such labelling scheme is the evaluation of future

100

6.3 Evaluation

safety distances, labelling situations as unsuited for lane changes when these fall be-
low fixed thresholds. While this is useful in ruling out definitely unsuited situations,
in the real world drivers often interact with each other to negotiate for gaps and ex-
hibit a much more dynamic decision-making. We could try improving this behaviour
by using our same proposed situation assessment model, possibly trained on action-
based labels. However, we would like to avoid such recurrence, and instead again
resort to our lane change prediction model: Good lane change prediction models
need to consider intent as well as feasibility of a lane change, and thus should only
predict a lane change in feasible situations. Therefore, negative labels are changed
to positive ones, when prediction for a lane change exceeds a certain threshold for
the corresponding frame.

6.3 Evaluation

6.3.1 Joint Training

In this section we describe our findings about jointly training the prediction and
situation assessment task. Table 6.1 compares performance of the joint LSTM to
that of a single-task lane change prediction model. For a fair comparison we compare
against E-LSTM, as this is the model used in the joint architecture. Note though
that such a joint model could, e.g., easily be extended by attention, as well. On a
first glance, results of both models are comparable. However, Joint-LSTM solves
two tasks simultaneously, using fewer parameters than two specialized models and
exhibiting a faster inference time. Further, we observe a lower Frequency for Joint-
LSTM, indicating, that incorporating knowledge and learned structures from the
situation assessment task does indeed help in analyzing suitable lane change gaps,
preventing false predictions when neighbouring lanes are blocked. This is confirmed
in Table 6.2, Joint-LSTM performs better than E-LSTM in both scenarios Left-/
Right-Blocked (for an introduction of these scenarios compare Section 3.4.3.2).

Table 6.3 compares results of the joint architecture as well as single-task archi-
tecture for the situation assessment task. First note that a slightly higher accuracy
is reported here for the standard LSTM model compared to Chapter 5. This is
due to model differences stated in Section 6.2. For this task, joint training does
not result in performance increase, but in fact we observe a worsening. Note again,
that now two tasks are solved simultaneously with a combined model: The fact,
that performance is still acceptable, proves the close relationship of tasks and the

Table 6.1: Comparison of single- and multi-task models for predicting lane changes
on the NGSIM dataset.

Algorithm Acc LC Acc F Miss LC De LC Ov LC Pr LC Re LC Fr F Pr F Re F Rank
E-LSTM 0.689 0.975 0.006 0.731 0.596 0.074 0.696 3.38 0.958 0.93 14

Joint-LSTM 0.684 0.979 0.008 0.721 0.582 0.084 0.692 3.047 0.95 0.93 16

101

6 Combining Prediction and Planning

Table 6.2: Summarized comparison of single- and multi-task models for predicting
lane changes on the NGSIM dataset, split by scenario (L-/R-PV and L-/R-B
denote the scenarios Left-/Right-PV and Left-/Right-Blocked. For each model,
Rank is listed for each scenario.

Algorithm Left Follow Right L-PV R-PV L-B R-B L1

E-LSTM 11 7 6 9 6 7 7 7
Joint-LSTM 6 4 11 7 10 5 5 4

Table 6.3: Summarized comparison of single- and multi-task models for analyzing
situations on the NGSIM dataset. For each, mean accuracy is specified.

Automatic Labelling

LSTM 0.894
Joint-LSM 0.791

existence of common substructures. However, the decrease in performance indicates
a hierarchical relationship between the two examined tasks: Assessing situations
w.r.t. their suitability for lane changes is a helping subtask. Analyzing gaps and
safety distances helps understanding when lane changes are feasible and when such
manoeuvres are likely. Conversely, feedback from the more general prediction task
is not applicable much in assessing situations.

6.3.2 Label Pruning

In this section we aim at improving labelling quality. As stated before, action-based
labelling offers good labels during execution of lane change manoeuvres (positive
labels), but struggles to define negative labels. Automatic labelling is able to filter
out definitely unsuited situations, but struggles with finding positive labels due to
static safety distances. Thus, these properties are somewhat contrary. As labelling
quality is hard to define and measure, here we report the overlap of both labelling
schemes and try enlarging this: When such overlap grows, both labelling schemes
improve upon their weaknesses, and we believe this leads to a better generalization
overall. In particular, we measure the fraction of matching labels and list these sep-
arately for positive and negative labels (w.r.t. the action-based labelling scheme).
Column “Original” of Table 6.4 shows the initial overlap: Nearly 70% of negative
labels match, while less than 30% of positive ones do. This means, that only 30% of
frames labelled positively in the action-based labelling scheme are labelled accord-
ingly in the automatic labelling scheme, indicating the passivity of this scheme, as
well as unwillingness of humans to adhere to static safety distances.

102

6.3 Evaluation

Table 6.4: Resulting label correspondence of action-based and automatic labelling
scheme on the NGSIM dataset, listed in %.

Label Original t1 = 0.9 t1 = 0.95 t1 = 0.99

Positive 28.8 89.5 87.9 80.1
Negative 67.3 55.0 58.0 62.7

Figure 6.4: Depiction of the mentioned re-labelling procedures: The upper two
blocks indicate original resulting labels of the action-based and automatic la-
belling scheme for a lane change sequence. In row 3, the predicted probability
of such manoeuvre is depicted, and the thresholds t1 and 1− t2 marked. When
the predicted probability of a lane change exceeds t1, automatic labels are
changed to Yes. Conversely, when the predicted probability of Follow exceeds
t2 (which equals that the predicted probability for a lane change is less than
1− t2), action-based labels are changed from No to Ignore. On the right, the
fraction of frames with matching label, w.r.t. the action-based labelling, is
depicted (figure from [2]).

To improve labelling quality, we employ model LSTM from Chapter 3, using it
“as-is”. Labelling lane changes earlier as such to improve anticipation qualities did
not yield any feasible results. We then

• change negative automatic labels to positive, when the predicted probability
of a lane change exceeds t1

• change negative action-based labels to Ignore, when the predicted probability
of Follow exceeds t2 (or, expressed differently, the probability of a lane change
falls below 1− t2).

Figure 6.4 depicts the resulting changes stemming from these actions.

As is to be expected, decreasing t1 increases the number of frames labelled as
positive in the automatic labelling scheme, increasing the percentage of matching
positive frames. However, simultaneously the number of negative frames decreases,
decreasing the corresponding percentage. Still, the increase of positive frames out-
weighs the decrease in negative ones. Table 6.4 shows the effects of different t1.

103

6 Combining Prediction and Planning

Consider t1 = 0.99: We observe a decrease of around 7%, but an increase of roughly
180%. Still, one has to prioritize such tradeoff regarding potential applications and
importances. Nevertheless, we find our proposed method to be useful in improving
the quality of labels, in particular for generating more realistic, dynamic labels using
the automatic labelling scheme.

Experiments with changing t2 were not successful though: Changing t2 yields
identical values or slight decreases in matching negative labels. Possible explanations
are difficulties of recognizing drivers’ intents of following lanes, as our prediction
model more is conditioned on detecting the opposite, as well as good performance
of our filtering mechanisms: We already filter out implausibly looking labels by
comparing differences between negative and positive frames, which solves a similar
task as intended by this step.

6.4 Conclusion

Planning and prediction are inherently related tasks, and analyzing and exploiting
this connection is an interesting research direction. In this chapter we specifically
examined correlations between predicting lane changes and analyzing situations re-
garding their suitability for lane changes. These tasks were separately introduced in
Chapter 3 and 5, respectively.

One line of research we followed in this chapter was introduction of a joint model:
We combined previously proposed models for predicting lane changes and analyzing
situations via a joint component responsible for measuring distances to neighbouring
vehicles. This effectively combines both tasks into a multi-task problem, which is
trained jointly. We show advantages of such reformulation of the problem, specif-
ically a better understanding of for lane changes unsuited situations, as shown by
better prediction performances. Further, we point out the hierarchical relation of
the two tasks, resulting in a performance gain only for the prediction task, but not
for the situation assessment one. Additionally we examined possible techniques for
improving the labelling quality of the situation assessment task. We tried employing
our lane change prediction model for filtering out false negative automatic labels as
well as false negative action-based labels. Approach one was successful, the other
was not.

In the future, we would like to deepen research and understanding about the
connections of planning and prediction. Good planning algorithms should always
account for future situations by either implicit or explicit prediction. Further, one
could think about improving prediction algorithms by incorporating planning for
all agents in a scene. Furthermore, employing prediction models for improving
labelling quality of the situation assessment task seems like a fruitful area of further
study. In particular, one could think of explicitly conditioning models on learning
intentions, specifically for Follow manoeuvres, as they are most relevant in the
second, unsuccessful re-labeling approach.

104

Part IV

Transfer Learning

105

7
Knowledge Transfer

Transfer learning describes the process of transferring knowledge and trained models
from one domain to another - a skill mastered exceptionally well by humans: When
faced with new environments or tasks, humans use their innate and learned under-
standing of the world to quickly master new challenges, often by just adhering to
rudimentary explanations or few demonstrations. As of today, machines mainly lack
such capabilities: Most machine learning models are trained for a specific task and
domain, and by successful training reduce the model’s bias on that task and domain,
but increase it on most others. Finding ways of transferring knowledge without hav-
ing to completely train models from scratch every time thus is an interesting line of
research. This holds especially for the problem of autonomous driving. Here, many
domains are possible: Sensor setups and software versions might change, vehicles
need to navigate safely through all weather conditions, and autonomous vehicles
should be available all over the world, ranging from rural areas to densely populated
cities. Especially in the field of autonomous driving, safety and verifiability also play
a crucial role: When transferring knowledge and models, ideally we would like to
transfer safety guarantees, as well.

Therefore, we here propose a general framework to address shifting domains. As
first step a transformation matrix to convert between samples from different domains
is learned, and the model then fine-tuned on the new domain. Calculation of such
an explicit transformation matrix here is beneficial, as this yields interpretable and
verifiable transformations, and allows the induction of prior domain knowledge.

In particular, our contributions are as follows:

• We propose a general framework for domain adaptation, making use of a novel
correspondence loss for learning inter-domain transformations.

• We apply our framework to a diverse set of problems, such as image classifi-
cation and lane change prediction (Chapter 3), and compare against several
other baseline methods.

107

7 Knowledge Transfer

Figure 7.1: Side-by-side comparison of two lane changes in different domains. While
the blue car executes its lane change smoothly, the red one exhibits a noisy
driving style, most likely causing many false predictions in models not exposed
to this (image from [6]).

7.1 Introduction

Particularly in the field of autonomous driving, vehicles and models need to be able
to function in multiple domains and be able to adjust to possible changes. Such
domain shifts could e.g. be induced by changes in sensor setups or software ver-
sions: A LiDAR sensor might be replaced by one of a different manufacturer, or
a combination of Radar and camera sensors might be deemed sufficient even. In
any case, layers above the perception layer should not be influenced by such de-
sign choice, a reliable and accurate detection of objects obviously still is required.
Another reason for variety in domains arises from environmental conditions: Au-
tonomous vehicles need to navigate safely through all weather conditions, such as
sunny weather, rain and snow. Yet another difference stems from geographical prop-
erties and country-specific driving styles: Rural areas and cities all over the world
look different, further traffic rules differ as well as driving styles (see Figure 7.1 for
a visualization). Training and storing full models for each possible domain hardly
seems feasible. In addition, this discards many similarities between domains and
possibly worsens performance. Ideally, we would like to only learn domain-specific
differences - and possibly even transfer proven safety guarantees for existing algo-
rithms. Furthermore, often a skewed data distribution will be present, as automobile
manufacturers predominantly test close to their offices. This completely discards the
possibility of training full deep models for each domain, as data is not sufficient.

Many works in the field of domain adaptation and transfer learning focus on im-
age tasks, using e.g. generative models to fantasize samples from different domains
[64]. Although these yield fascinating results, such methods are non-interpretable
and non-ideal for data different to images. Here, we propose a general framework
for domain adaptation, specifically suited for numerical, high-level features, and de-
signed to yield interpretable transformations. A Converter is prepended before the
actual neural network, aim of which is calculating a transformation matrix, with
which features are transformed to more resemble the original domain. This com-
ponent can be pre-trained with existing domain knowledge (we could, for example,
know to which new position a camera was shifted), and then further be refined by
using corresponding samples from both domains (consider the problem of predicting
lane changes: we can easily identify lane changes in two domains, and overlap these

108

7.2 Related Work

to get corresponding pairs usable for training). Eventually, the resulting model is
fine-tuned in the new domain to further improve performance.

General goal of this chapter is developing ways for transferring previously estab-
lished models, particularly our lane change prediction model from Chapter 3, into
new domains. For this, we analyze a transfer of lane changes from the fleet dataset
to the NGSIM dataset, as introduced in Section 3.4.1. Nevertheless, to show gen-
eral applicability of our proposed framework, we also examine the problem of image
classification using the MNIST dataset [94].

7.2 Related Work

We begin this section with a brief overview over related techniques, and then turn
our focus towards methods more related to ours. In existing literature, the terms
“transfer learning” and “domain adaptation” are sometimes used interchangeably
and inconsistently. Here, we follow the notation of [22], denoting with transfer
learning the complex pool of methods for transferring knowledge between domains
and tasks, and with domain adaptation a subbranch: Domain adaptation denotes the
subfield concerned with modifying probability distributions of data between domains
to make them more similar. As our methods make use of a learned transformation,
it can be mostly counted in this field.

One of the simplest but nevertheless successful transfer learning methods is fine-
tuning of existing networks. This method can be applied when aiming to deploy
models in different domains or for different tasks than they were trained for. For
this, most layers of the pre-trained network are frozen, while only layers close to the
output are re-trained on the new domain or task. This often outperforms training
the full model from scratch, due to the encoding of useful prior knowledge in the
network’s weights and restricting the space of free parameters, lessening the need
for data, even for different tasks [95, 96]. Re-using internally stored knowledge is
a fundamental principle of knowledge distillation [97], particularly self-knowledge
distillation [87]. In this, outputs of the softmax layer are used as soft targets dur-
ing training, thereby providing the model with more information, such as relations
and similarities between classes. Generative models, such as GANs, are another
commonly used method for addressing transfer learning problems. Using these data
resembling the desired distribution can be generated, which can for example be used
for the creation of synthetic training samples in new domains and modifying input
properties, such as style, to better resemble another domain. These methods are ap-
plied frequently and with great success in fields concerning image inputs [98, 99, 100].
Other interesting methods, which can be counted towards the field of transfer learn-
ing, are the concepts of zero-, one- and few-shot learning. These aim at recognizing
and classifying new inputs based on few examples, and thus effectively need to deal
with arising domain shift and few annotated samples [25, 101]. Multi-task learning
specializes on solving different tasks jointly, often using a common base architecture,
and thus enabling information exchange between tasks [102].

109

7 Knowledge Transfer

The previously mentioned concept of knowledge distillation was extended to trans-
fer learning applications, as well, and serves as baseline in Section 7.4.3. It was orig-
inally introduced by Hinton et al., fundamental idea is using a (possibly) smaller
student network which is trained on the output of a teacher network [97]. Yim et
al. extend this concept with a possible focus on transfer learning, particularly con-
sidering applications for network compression [103]. Their contribution consists of
matching feature activations over different layers and domains, which is commonly
used in other works, as well [104, 105]. They compare their approach to fine-tuning
the last layers of the full model, nearly achieving similar performance. As fine-tuning
also is one of our baselines and we compare favourably, a relative comparison can
be deduced.

Domain adaptation is commonly employed in the area of image processing, with
sample applications being style transfer and creating synthetic training samples in
new domains [99, 100]. Zhu et al. make use of two separate GANs for translat-
ing images from domain A to domain B and back, achieving fascinating results
without requiring corresponding samples [64]. Generator 1 learns a mapping from
domain A to B, while generator 2 learns a mapping from domain B to A. The cor-
responding discriminators are trained to distinguish generated samples from actual
samples of that domain. By concatenating these networks both ways and employing
a cycle consistency loss between reconstructed sample in the original domain and
original sample, the model implicitly learns to generate corresponding images, and
to only transfer styles and similar, but keep structure and content. In the field
of autonomous driving, we often have (loosely) coupled training samples, such as
lane changes recorded in different domains. Thus, our method makes use of this,
and we calculate an explicit transformation matrix T. Using such explicit trans-
formation simplifies understanding and interpretability of our model, and further is
closer aligned to the general goal, namely transforming samples between domains
instead of hallucinating plausible ones: When, e.g., converting a lane change from
domain A to B, we do not just want any lane change of domain B as output, but
the “exact” correspondence in the opposite domain. Additionally, as T nearly al-
ways is invertible, we obtain the cyclic conversion without additional parameters or
inverse networks. Isola et al. use similar principles as [64], but only employ a single
GAN, training it with exact correspondence pairs (x, y) to learn a mapping from
domain A to B [106]. Somewhat similar to us, Li et al. apply linear transformation
matrices for transferring image styles [107]. In comparison, we use a different loss:
Whereas they calculate style losses at different layers in the network, we introduce
a correspondence loss in the actual domains. This, again, simplifies understanding
and verification of learned transformations, and allows usage independent of the
number of layers, for example in RNNs. Further, their work is only focused on
style transfer, while we develop a transfer learning framework. Although CNNs are
undisputed state-of-the-art methods for basically all image-related tasks, surpris-
ingly, they show little understanding of spatial information, and can e.g. be fooled
to wrongly detect objects in shuffled images, or fail to recognize transformed images.
Problem one arises from the commonly used max-pooling layers: These guarantee

110

7.3 A Framework for Domain Adaptation

desired spatial invariance (it is irrelevant where in the image we detect an object),
but simultaneously discard all information of spatial structures. Due to this, a CNN
still recognizes a shuffled collection of, e.g., two eyes, a nose and a mouth as a face,
although the image merely contains all characteristic features of a face, but not the
desired object itself. To combat this, Sabour et al. introduce capsule networks,
which encode spatial information through different capsules and requiring images
to be consistent with these [108]. On the other hand, performance of CNNs can
suffer when images are transformed geometrically, e.g. rotated or distorted. There-
fore, Jaderberg et al. introduce Spatial Transformer Networks (STNs). These are
prepended before other layers, with the purpose of normalizing inputs. In particular,
STNs calculate geometric transformations with which they transform corresponding
inputs, s.t. e.g. relevant objects are always resized to a particular size and rotated
to a certain angle. Thus, their goal is improving classification performance and not
transferring models to new domains; further, they lack the correspondence loss used
by us and instead only use a classification loss. Still, their idea is similar, and one
can think of our method as a way of extending STNs to numerical data. We show
the benefits of our loss in Section 7.4.3, and extend the concept to time series data.

Transformation matrices are also calculated by Duan et al. and used to project
data of different domains into a common subspace, which is subsequently processed
by SVMs [109]. Paaßen et al. also combine a common optimization method with
explicit transformation matrices H, although their approach can be generalized to
other models [110]. In comparison to their global transformation matrix H, we
calculate a point-wise transformation Tx, which allows greater flexibility. Addition-
ally, similar to [111] such transformation is only considered implicitly by analyzing
influences to existing loss functions. We compare against this method in Section
7.4.3 and refer to this for more details. Aswolinskyi et al. extend this concept to
unsupervised applications [112]. A predictive model to generate artificial data for
domain B is learned, and with this a transformation between domains learned in
unsupervised fashion. Sun et al. introduce, in their own words, a “frustratingly sim-
ple domain adaptation” method, dubbed CORAL [23]. This extends the common
standardization preprocessing step to include calculations of second-order statistics,
in order to minimize differences in data distributions between domains.

7.3 A Framework for Domain Adaptation

We begin this section by introducing our definition of sample “correspondence” and
then describe our proposed domain adaptation framework.

7.3.1 Corresponding Samples

For calculating transformation matrices between domains, we require - to a certain
degree - corresponding samples of different domains. In the work of Zhu et al.,
no aligned samples of both domains are needed, cyclic conversions are learned by
training discriminators to distinguish real from generated samples, and randomly

111

7 Knowledge Transfer

drawn samples are used for training [64]. Long et al. fine-tune classification models
for the task of semantic segmentation [113]. One can now interpret domain A as the
original image space, and domain B as corresponding semantic maps. This describes
another extreme of correspondence, in contrast to the previously mentioned principle
of no correspondence: Here, a (nearly) perfect (depending on the labelling quality)
mapping f between every image x and corresponding semantic map x′ exists, s.t.
f(x) = x′.

For our use cases, we do not have nor require such an exact mapping, but instead
relax this to f(x) ≈ x′: Instead, for each sample x in the original domain we assume
the existence of n approximately corresponding samples x′ in the new domain, and
thus obtain n pairs (x, x′1), . . . , (x, x

′
n). By training our model with such pairs,

we expect it to learn an average mapping, in hopes that this provides a good fit.
Consider the example of mapping images to semantic maps: Our relaxation equals
pairing images not with semantic maps of exactly those images, but instead with
n semantic maps of slightly different scenes, e.g. differing in the number of parked
cars on the street.

Here, we conduct experiments on image data (i.e. the MNIST dataset) and se-
quential data (i.e. predicting lane changes). We compare our three introduced
degrees of correspondences (no correspondence, approximate correspondence, exact
correspondence) using these examples, and further explain our used approximate
correspondence mappings: For the image classification task, domain A consists of
original MNIST images, while domain B consists of images rotated by R. For train-
ing the proposed model in [64], random, independent samples from domain A and
B are drawn, and with help of the cycle consistency loss a mapping between do-
mains is learned. In an exact correspondence setting, training pairs would consist
of original image x and its exact correspondence x′ in domain B, i.e. the result of
applying R to x. In our setting requiring approximate correspondences, this relaxes
to pairing an image from domain A with a rotated image from domain B s.t. their
labels match - i.e, the images still show the same number, but otherwise can differ
in appearance. For aligning lane changes of different domains, we also conduct such
alignment based on label. In particular, sequences containing only Follow frames
are paired with sequences of identical label. Sequences containing lane changes are
aligned s.t. the exact moment of lane change matches as closely as possible. Further
extensions are possible, considering also other factors, such as searching for equally
crowded scenes. Based on experience regarding good performance as well as avail-
able data in the wild, for all experiments we use n = 5, i.e. five correspondence
pairs.

We would like to point out another interesting relation of our proposed definition
of correspondence, namely to triplet loss [114]. Triplet loss is e.g. employed in
few-shot learning: The general idea is not to directly learn classification boundaries,
but instead embeddings of input samples into latent spaces, with aims of placing
related samples nearby in such space. This way, new classes can still be classified
by comparing to a single base representation of such class, or existing objects and
classes re-identified accurately. Triplet loss is one method of training such networks.

112

7.3 A Framework for Domain Adaptation

Figure 7.2: Comparison of our used correspondence mapping f to triplet loss.
When using triplet loss, an anchor point A is paired with a positive sample P
and a negative one (N). In our interpretation, f , and thus the resulting model,
is a generative way of converting A to another domain, ideally resulting in the
mean of given correspondence points (image from [6]).

Formally, for each point a (also called anchor point) a positive sample p and negative
sample n are used to define the loss L = max(0, d(a, p)− d(a, n) +m), in which m
is a choosable minimal desired margin. This forces latent distances to be small
for a and p, while it penalizes distances smaller than m for a and n. Our used
correspondence pairs (x, x′1), . . . , (x, x

′
n) can be understood as pairs of anchor point

and positive samples, while no negative points are given. With this interpretation,
models trained with triplet loss can be seen as discriminative models for identifying
related data samples, while our framework offers a generative method for generating
such positive samples. This connection is depicted in Figure 7.2.

7.3.2 Model

Our proposed framework is suited for application in the following application sce-
nario: There exists a source domain A and target domain B, and we intend to solve
the same task on both domains. Data for A is sufficient, and we have trained a
(complex) model M on A for the desired task. Data for domain B is rare: We do
have labelled examples, but less than for domain A. In this setting, as previously
mentioned, it is nor desired nor effective to train full, complex models on domain B:
The amount of available data is too little compared to the number of tunable model
parameters, resulting in bad generalization performance (as also observed by [103]),
and it is not feasible to train and store full models for each possible domain B.
Instead, it is desirable to leverage as much prior and stored knowledge from domain
A as possible. Therefore, we here assume existence of a trained model on domain A,
and explore ways of adapting this to a new domain. To simulate the sparsity of data
and further analyze relation of transfer performance and amount of data available,
we artificially limit domain B to contain at most b samples for varying b.

Core of proposed framework is usage of a network we name Converter (C). When
applying M in domain B, C is prepended before M with aims of transforming input
data to appear more similar to data from A, thus making the task of M easier. C can
be pre-trained with prior knowledge of domain differences, and then is further refined

113

7 Knowledge Transfer

by making use of the established correspondence fairs. Eventually, the combination
of C and M is fine-tuned on domain B to further improve performance.

Let us introduce this formally: Assume samples of domains A and B have di-
mensionality n. Let x ∈ Rd, d ∈ N, be a sample of domain B, and let x be its

homogeneous representation, i.e. x =
(
x 1

)>
. Then we define C to be the map-

ping:
C : B → R(d+1)×(d+1), x 7→ Tx (7.1)

s.t.
Txx = x′ (7.2)

Here, x′ denotes a corresponding point of x in domain A (i.e. (x, x′) is one of the
established corresponding samples). Thus, goal of C is transforming samples of
domain B into corresponding samples of domain A. Denote with L the last l layers
of M w.r.t. to the output. In total, training of our proposed framework consists
of three steps, each of which is optional (i.e., pre-training could be left out or no
corresponding samples used):

1. Pre-training: Induce prior knowledge into the model by pre-training C with
expected transformation matrices T̃x. For this, we train C with samples x ∈ B
while minimizing the element-wise L2 loss LP (x) between generated transfor-
mation matrix and expected one:

LP (x) = |C(x)− T̃x|F (7.3)

The element-wise L2 loss between two matrices equals the Frobenius norm in
matrix space.

2. Correspondence training: Train C with established correspondence pairs
(x, x′1), . . . (x, x

′
n) for x ∈ B. As loss function we are free to use any loss func-

tions applicable in the domain spaces, such as the L2-loss between converted
and actual samples:

LC(x) =
1

n

n∑
i=1

|C(x)x− x′i|2 (7.4)

Here, x′i again is the homogeneous version of x′i.

3. Fine-tuning: Fine-tune the combined model on domain B. For this, we
introduce two train modes: In mode 0, we only retrain L based on the original
loss used for the respective task (e.g. cross-entropy for classification). In mode
1, we retrain L and C by accumulating task loss and correspondence loss LC .

Step 1 enables incorporation of existing domain knowledge into the calculation of
T. Consider e.g. the scenarios of changing from Radar to LiDAR sensors or using
cameras whose position on the vehicle was modified. For both, we could devise
transformations to map from one domain to another (e.g. estimate a transforma-
tion matrix from original to new camera positions). When such information is not

114

7.3 A Framework for Domain Adaptation

Figure 7.3: Visualization of our proposed framework, showing a sample application
of adapting a model trained on standard MNIST images to rotated images.
Steps 1 and 2 concern training the Converter C: First, we pre-train it with
an (expected) rotation, i.e. requiring the outputted transformation matrix T
to equal a rotation matrix. Then, C is trained using correspondence pairs for
each sample (here, n = 2). In Step 3, L is fine-tuned on the new dataset, i.e.
weights of the last layers of M are adjusted while the complex part drawn in
red is frozen (image from [6]).

available, either because it is unknown or too complex to calculate manually, it is
recommend to use T̃ = Id+1 (i.e. an appropriately dimensioned identity matrix),
similar to [111]. This way, performance of M combined with C is at least as good
as that of M alone, with the potential of improvement by choosing suitable trans-
formations. In step 2, we make use of the loose correspondences between domains
to improve and learn such a mapping in data-driven fashion. Each pair provides the
model with information of possible transformations. However, these are, as men-
tioned, no perfect correspondences, but by providing n correspondence points for
each point from B the model learns to approximate a good, average mapping. By
now, hopefully the resulting sample after this step x′, i.e. Txx, resembles data from
domain A, and M already exhibits good performance. Still, calculated transforma-
tions will be noisy and not perfect. Therefore, in step 3 we fine-tune the resulting
model on the new domain to further improve performance and allow it to learn
responses to domain shift. An overview over the model is displayed in Figure 7.3.

In general, C and obviously L posses less parameters than the full model M.
This is important, as now training C and L is feasible with limited data, and so is
storing individual components for each domain (while M only needs to be trained
and stored once). Introduction of C makes the formulation of the domain adaptation

115

7 Knowledge Transfer

task explicit and independent of the model itself, a technique often yielding good
results empirically.

7.3.3 Simplifying Assumptions

T represents a general transformation matrix in the domain space, and thus can
model arbitrary transformations expressible in homogeneous coordinates. However,
it is possible to restrict the space of possible transformations, thus making the
model less expressive, but allowing easier learning. This is especially recommended
if one knows possible transformations, e.g. can restrict possible transformations to
rotations. In line with this, in the following we describe constituted assumptions
and simplifications when dealing with images and sequential data. Note that our
framework can be applied without them, working in the full vector spaces of images
and sequences, respectively, but that these assumptions help in reducing complexity
and improve ease of training. In addition, further restricting the space of possible
transformations - as described before - is of course possible, as well.

7.3.3.1 Image Data

Let x be an image of width w and height h, thus x ∈ Rw×h. As image transformations
are often of geometric nature (e.g. rotations, rectifying projections, ...), we employ
such global image transformations instead of transforming pixels individually. Thus,
instead of operating in the full image space Rw×h, we restrict examined transforma-
tions to the space R3×3, and using this represent homogeneous 2D-transformations
which are applied to all points. For calculating and applying such transformations,
we utilize the module introduced in STNs.

7.3.3.2 Sequential Data

In a similar manner, we reduce transformations of full sequences to frame-based
transformations. Assume, used sequences are of length l and feature size f , thus x ∈
Rf×l. Instead of considering transformations in this space, we transform each frame
individually, s.t. T ∈ R(f+1)×(f+1). To still model and acknowledge the temporal
context, C is an LSTM network. This network processes full input sequences, and
outputs a sequence of transformation matrices. Using our standard notation for
LSTM cells and denoting with ht the respective hidden state at timestep t, the
calculation of the corresponding transformation matrix T is given by

Tt
x = softmax(W · ht + b). (7.5)

7.4 Evaluation

In this section we introduce used datasets, baseline methods and results of experi-
ments comparing these against our proposed framework.

116

7.4 Evaluation

7.4.1 Datasets

As stated, we showcase usage of our framework on image and sequential data. For
the latter, goal is enabling model transfer between domains for our lane change
prediction models from Chapter 3. We introduce and motivate this by first analyzing
simulated lane changes.

MNIST MNIST is a collection of hand-written digits between 0 and 9, stored as
black and white images of size 28×28 [94]. This original dataset constitutes domain
A. Domain B consists of images rotated by 180◦. As mentioned in Section 7.3.1,
corresponding pairs of samples from domain A and B are formed according to labels,
i.e. images of A are aligned with random images of B with equal label.

Toy Sequences We believe, that simple, simulated datasets offer a good first in-
sight into the mode of operation of models and clear visualizations of how these
perform. Thus, before addressing the intended problem of predicting “real” lane
changes, we propose examination of a toy dataset: This consists of synthetically
generated lane changes, only represented by the vehicle’s distance to the lane’s left
lane boundary (0 denoting a position at the left boundary, 1 a position at the right
boundary). Domain A consists of such lane changes in “clean” fashion, meaning
drivers smoothly and without oscillations execute lane change manoeuvres and oth-
erwise follow their intended lanes. Domain B contains perturbations of these tra-
jectories in the form of added noise to the lateral positions. Such domain differences
model a real application scenario we are interested in, namely changing domains
from a dataset consisting of smooth trajectories to more noisy ones (one can think
of different country-, driver- and road-specific driving styles). The objective of this
problem is identical to the lane change prediction problem described in the next
section: Each frame is given one of the labels Left, Follow or Right, which needs
to be predicted by the applied models. A time period of 3s before a lane change is
labelled with the corresponding label, while all other frames are labelled Follow.

We expect more false predictions when applying a model trained on domain A
to domain B, due to the higher amount of noise and oscillations in trajectories.
Indeed, this is the case, as Section 7.4.3 proves. Note that domain gaps are larger
when working with raw sensor data, e.g. in original image or point cloud spaces.
Still, our results indicate a significant drop in performance when changing domains
using this abstract feature representation - indicating that transfer learning is of
need also in these scenarios.

Lane Change Prediction For the problem of predicting lane changes we closely
follow our work from Chapter 3. Domain A is the fleet dataset, while domain B
is the NGSIM dataset - both are introduced in Section 3.4.1. We observe several
differences between these datasets, starting with the location of recording: BMW’s
fleet dataset was predominantly recorded in Germany, while NGSIM is recorded in
the United States. Further, used sensor setups to capture scenes are different: While

117

7 Knowledge Transfer

static cameras record traffic and detect vehicles on fixed highway segments, the fleet
dataset was recorded from moving vehicles using a combination of different sensors.
Although these differences are, as mentioned, diminished due to the used high-level
representation, still domain-specific characteristics arise. Additionally, data in the
NGSIM dataset was mainly recorded during rush-hour and in segments with on- and
off-ramps, resulting in different driving behaviour than observed in the fleet dataset,
which was recorded over different times and highway segments. This again leads to
the assumption, that models trained on A react too sensitively to data from B.

7.4.2 Metrics

For the experiments on the MNIST dataset, we use prediction accuracy as metric.

For evaluating (simulated) lane changes, we rely on the metrics introduced in
Section 3.4.2, and for simplicity and a better overview restrict our focus to Frequency,
Miss and Delay. In our opinion these describe most relevant properties of lane change
prediction models. We further accumulate these to allow quick comparisons between
models: Model M trained on domain A and tested on B serves as baseline. For all
analyzed models, we measure and average percental differences regarding these three
metrics compared to the baseline. While doing so, we weigh metric Frequency by
the percental amount of frames labelled Follow, and Miss and Delay by the amount
of lane change frames, accordingly. This score calculation acknowledges the amount
of time drivers experience the respective manoeuvres for, and additionally notes the
high importance of Frequency on felt driving comfort.

7.4.3 Results

We first introduce implemented baseline methods against which we compare our
framework, before showing results of all experiments. While showing results for
problems separately, we additionally mention custom modifications of the introduced
baseline methods, and particularly explain the used base model M, which is to be
adopted to domain B.

7.4.3.1 Baseline Methods

• Fine-tuning : We employ model M, which was trained on A, and fine-tune
layers L on B. As [103] also compare against this and fare slightly worse, a
relative comparison can be deduced.

• CORAL [23]: We follow the methodology of the CORAL framework, stan-
dardize data and additionally also minimize covariance distances between data
from domains A and B. This input data is again fed to model M, and we also
fine-tune layers L.

• pix2pix [106]: We use the pix2pix framework as representative of an implicit
domain adaption method, in contrast to our explicit one: A GAN is used to

118

7.4 Evaluation

transform data from domain A to B, which directly outputs data samples from
domain B, instead of outputting transformation matrices.

• Imp: To further analyze the influences and differences of explicit vs. implicit
domain adaptation models, this baseline equals our proposed framework but
directly generates samples in the corresponding domain, instead of making
use of a transformation matrix. In particular, outputs of C are now directly
samples in domain B, instead of transformation matrices. Thus, training step
1 of our framework is not possible and consequently left out.

• Mode 2 : We further compare against [110] and STNs [111], and would like to
point out how these models can be represented by means of our framework:
Both make use of a transformation matrix ([110] originally use a global one,
we extend this to allowing sample-specific ones), and also fine-tune pre-trained
models by modifying C and L. Differences to our method are the abundance
of training steps 1 and 2 (pre-training and further refining the Converter),
and the lack of correspondence loss in general. Otherwise, they are similar to
our framework with train mode 1, except for training only the original task
(classification) loss is considered. We modify our framework accordingly, and
denote the resulting method with Mode 2. In addition, we add step 1 with
identical pre-training targets for a fairer comparison.

• Mode 0 : To further investigate the usefulness of our proposed correspondence
loss, we introduce baseline Mode 0 : This is our framework without train-
ing step 2, trained with train mode 0, thus totally excluding corresponding
samples and the correspondence loss. Such correspondence loss is one of our
contributions and one essential difference to [110] and [111]. Both baselines
Mode 0 and Mode 2, employing no such loss, thus help answer the question,
whether such a loss is beneficial, or similar results can be achieved by training
/ fine-tuning a model equipped with a converter and training it in usual ways.

For further clarification, we repeat / rephrase essential differences between our full
proposed framework and baselines Mode 0 and 2 : Our full framework consists of
the three steps pre-training, correspondence training and fine-tuning. During fine-
tuning, we distinguish between train mode 0 and 1: With train mode 0, only L is
retrained, employing solely the original task loss. When using train mode 1, weights
of both L and C are modified, making use of original task and correspondence loss.
The introduced baselines Mode 0 and 2 lack the correspondence training step - for
the respective applications, no existence or usage of any correspondence pairs is
assumed. Mode 2 further differs from our proposed framework by only considering
the original task loss, albeit retraining L and C. This method thus exactly mirrors
training of e.g. STNs. Mode 0, is similar, but just L is retrained.

119

7 Knowledge Transfer

7.4.3.2 Rotated MNIST

Used base model M for this task is a simple CNN consisting of 3 convolution and
max-pooling layers, followed by a fully connected layer for classification. Layer
L equals this last layer. C consists of 2 convolution layers followed by one fully
connected layer.

Table 7.1 shows quantitative results on the dataset, ordered by b, the maximal
amount of available data in B. Naturally, with growing b performance of all models
increases. As general baselines, the performance of testing model M, which was
trained on A, on B is reported (A on B), as well as training all of M on the
full training set of domain B (to give an understanding of theoretically achievable
performance - B on B). The drastic drop in performance when applying a model
trained on A to B points out the need for transfer learning techniques. T1 and T2
denote the application of our framework with pre-training T to equal an identity
matrix and 180◦ rotation matrix, respectively.

We use train mode 0, train mode 1 does not yield any improvements. This is
due to the fact, that aligning images via pixel-losses is difficult, which in turn also
implies that here training step 2, and the correspondence loss in general, is of not
much use. We thus omit results for Mode 0 and 2, as these analyze the influences

Table 7.1: Results on the MNIST dataset.

b Model Accuracy

100 (0.14) Fine-tune 0.738
CORAL 0.5
pix2pix 0.375

Imp 0.313
Ours - T1 0.766
Ours - T2 0.912

1000 (1.43) Fine-tune 0.908
CORAL 0.852
pix2pix 0.898

Imp 0.711
Ours - T1 0.901
Ours - T2 0.947

2000 (2.86) Fine-tune 0.972
CORAL 0.935
pix2pix 0.859

Imp 0.846
Ours - T1 0.966
Ours - T2 0.969

70000 (100) A on B 0.153
B on B 0.980

120

7.4 Evaluation

of said loss. Note again the similarity between STNs and our proposed framework,
particularly for images, as the same transformation component is used, but also for
general applications, when train mode 1 is used. As train mode 1 here does not
yield any improvements in performance, this shows that also STNs in this scenario
do not perform better.

Still, our proposed variant T1 performs very comparably to fine-tuning. On top of
that, employing prior knowledge, as done in T2, significantly helps improve perfor-
mance. In particular for small b, very high classification accuracies are reached. The
original pix2pix framework is used as another baseline: Although it excels in apply-
ing local transformations, such as converting styles and changing pixel intensities,
results indicate an inability to understand and model global transformations, such
as rotating the full image. Same can be observed for the likewise implicit domain
adaptation method Imp. This shows the need for frameworks like STNs or ours, and
why using explicit transformation matrices can be beneficial: Such transformations
can be initialized with meaningful values (or the identity, at last, to not worsen
performance), and yield clear results, instead of hallucinating samples, which might
be, e.g., blurry and decrease performance. As all methods, CORAL becomes better
with growing b, but also does not reach performance of fine-tuning or our models.

7.4.3.3 Toy Sequence

For predicting lane changes on synthetic data, model M is a single LSTM cell of size
32 followed by a fully connected layer for classification, which equals layer L. Solely
used input feature is distance to the lane’s center line. C is an LSTM network of
size 16, and we use train mode 1. As this problem mainly serves as preparation for
lane change prediction on real data, we only compare our models against fine-tuning,
and additionally list similar baselines as before (A on B and B on B). Quantitative
results are shown in Table 7.2. We find a previously stated assumption confirmed:
When switching from “clean“ domain A to “noisy” domain B, Frequency nearly
doubles. As before, T1 denotes our framework with using an identity matrix as pre-

training target in step 1. In T2, during lane following periods

(
0 0

0.5 1

)
serves as

target matrix, and an identity matrix during lane change manoeuvres. This forces
a smoothing and projection towards the lane’s center, when the model’s belief is
lane-following, but still allows accurate predictions during lane changes. In fact,
such encoding of prior knowledge drastically reduces the number of false positive
predictions (Frequency). The reported Frequency is even lower than for the full
model trained on B - which we will discuss in the next section. Depending on b,
fine-tuning and T1 are close together: The used dataset is too small and simplistic to
learn meaningful transformations without guided supervision - for different outcomes
we again refer to the next section. Figure 7.4 depicts a sample lane change, plotting
also the Converter’s output and the resulting prediction. One can nicely observe the
smoothing effect of T2 and check the quality of transformed trajectories visually, as
well as examine the resulting smoother prediction.

121

7 Knowledge Transfer

Figure 7.4: Depiction of a simulated lane change to the right. The distance to the
lane’s left lane boundary is plotted on the y-axis, time in seconds on the x-axis.
The “noisy” lane change from domain B is shown in red, and a corresponding
one from domain A in blue (for sake of simplicity, just one of the n correspond-
ing ones is shown). The transformed sample after application of the Converter
(i.e., the lane change from domain B multiplied by the generated transforma-
tion matrix T) is drawn in green (with T2), yielding a very plausible converted
lane change (image from [6]).

7.4.3.4 Lane Change Prediction

Our used base model M for predicting lane changes is the model LSTM introduced
in Section 3.3.2. L consists of the last fully connected layer for classification. C
is modelled by another LSTM with hidden size 32. However, we modify the set of
used input features for solving this problem, and in particular only consider the two
features m and v, distance to the lane’s center line and lateral velocity. Employing
more features in general improves performance of models in their original domains
(compare Chapter 3), but complicates knowledge transfer, as more features allow
for greater differences in domains - fine-tuning is particularly effected by this. Other
transfer techniques perform worse initially, but better eventually - after retraining,
the additional information is helpful. The used pre-training targets of step 1 are

Table 7.2: Results of the toy sequence problem. Smaller values for Frequency, Delay
and Miss are better, larger ones for Score.

b Model Frequency Delay Miss Score

100 Fine-tune 3.196 0.945 0.121 0.186
(1) T1 2.849 0.897 0.112 0.275

T2 2.724 1.077 0.153 0.262

500 Fine-tune 3.456 0.888 0.113 0.137
(5) T1 3.156 0.878 0.117 0.203

T2 1.410 1.140 0.140 0.565

2000 Fine-tune 2.940 0.903 0.106 0.257
(20) T1 3.871 0.931 0.120 0.034

T2 1.300 0.992 0.104 0.625

10000 A on B 4.085 0.851 0.108 -
(100) B on B 2.129 0.542 0.062 -

122

7.4 Evaluation

Table 7.3: Results of the lane change prediction problem. Smaller values for Fre-
quency, Delay and Miss are better, larger ones for Score.

b Model Frequency Delay Miss Score

100 Fine-tune 7.344 0.612 0.008 0.352
CORAL 7.996 0.601 0.011 0.291
pix2pix 5.399 0.837 0.039 0.439

Imp 4.363 0.837 0.006 0.592
(1.8) Mode 0 - T1 7.48 0.637 0.008 0.339

Mode 0 - T2 5.477 0.738 0.008 0.502
Mode 2 - T1 5.835 0.699 0.005 0.48
Mode 2 - T2 5.243 0.833 0.011 0.51

Ours - T1 4.573 0.797 0.006 0.578
Ours - T2 3.373 0.956 0.005 0.672

500 Fine-tune 7.744 0.544 0.01 0.319
CORAL 8.336 0.547 0.011 0.265
pix2pix 6.003 0.842 0.071 0.321

Imp 4.476 0.835 0.010 0.576
(9.1) Mode 0 - T1 7.93 0.559 0.01 0.302

Mode 0 - T2 5.138 0.704 0.006 0.536
Mode 2 - T1 5.635 0.668 0.003 0.502
Mode 2 - T2 5.535 0.658 0.003 0.511

Ours - T1 4.848 0.759 0.002 0.565
Ours - T2 3.524 0.887 0.002 0.669

1000 Fine-tune 6.551 0.620 0.005 0.424
CORAL 6.933 0.608 0.010 0.383
pix2pix 2.339 1.157 0.144 0.460

Imp 3.803 0.800 0.006 0.641
(18.2) Mode 0 - T1 6.629 0.617 0.005 0.418

Mode 0 - T2 5.223 0.706 0.005 0.531
Mode 2 - T1 5.058 0.686 0.002 0.552
Mode 2 - T2 4.976 0.702 0.003 0.556

Ours - T1 3.594 0.901 0.01 0.646
Ours - T2 3.241 0.888 0.003 0.691

5500 A on B 11.672 0.347 0.010 -
(100) B on B 4.732 0.698 0.005 -

similar to the ones used in the previous section, m and v are transformed to 0.5 and
0 respectively, i.e. neutral positions during Follow periods.

Table 7.3 shows quantitative results for all analyzed methods. For this problem,
both our proposed method in both variants T1 and T2 outperforms all others (using
train mode 1), both in terms of Frequency and total score. Similar to results in the
previous section, Frequency of the resulting transferred model is even lower than

123

7 Knowledge Transfer

that of the original model trained purely on B. We explain this by the fact, that we
train the original model using cross-entropy, which yields a well-rounded solution
(and possibly a local optimum, although this is independent of using cross-entropy
or not), not focusing on particular higher-level metrics. Inducing prior knowledge in
the form of forcing a smoothing of trajectories then favours the metric Frequency.
This highlights another exciting application of our method: Using it, in a subsequent
training step we can adapt models to exhibit certain desired characteristics, such as
reducing the number of false positives or rewarding early predictions, depending on
the application.

We here yield a full comparison of all models, e.g. also examining Mode 0 and 2
with variants T1 and T2. For variant T1, we observe a larger performance difference
between our full framework and the other ablation studies (Mode 0 and 2). This
makes sense, as all models profit from given domain knowledge (T2), and with less
information available using the selected correspondence pairs and the connected
correspondence loss becomes more valuable.

The CORAL framework yields acceptable results, but performs slightly worse than
fine-tuning alone. Possible reasons are the relatively small size of the covariance
matrix, and that interactions in complex sequences are non-linear and parametrized
by more than second-order statistics. Our implicit model Imp yields better results.
This essentially consists of just the generator of pix2pix, and uses a loss in the actual
output space instead of an adversarial loss as training target. This, for once, shows,
that such domain adaptation can be done implicitly, as well, but also, that we do
not loose expressiveness by using a model-based approach employing transformation
matrices. In addition, we would like to remind the reader of the advantages of such
a scheme as described in the introduction, and the possibility of pre-training T with
domain knowledge: This (T2), especially for smaller b, yields best results by far.

Figure 7.5 plots two aligned lane changes of both domains, showing m and v, as
well as corresponding predictions and ground truth. For a comparison, prediction
results of fine-tuning are depicted, as well.

7.5 Conclusion

Transfer learning is becoming more and more important: Nowadays, we can train
complex, powerful models for many different tasks, often outperforming humans.
Still, these models mostly lack an innate ability available to humans: They are
trained only for specific purposes, and are not “intelligent” enough to react to chang-
ing domains and tasks, needing to be completely re-modelled or re-trained for these.
To decrease the effort of doing so, improve performance in new domains or tasks,
and also slowly move towards the concept of artificial general intelligence (AGI),
transfer learning is a valuable tool and important direction of further research.

In this chapter we proposed a general framework for transfer learning, or domain
adaptation, to be precise. For this, we employed a novel correspondence loss, align-
ing samples from both analyzed domains to learn an explicit transformation matrix.

124

7.5 Conclusion

In addition to allowing insights into what models are calculating and verification of
such transformations, we can also pre-train this mapping making use of prior knowl-
edge. We applied our proposed framework to image data and sequential problems,
considering digit classification on the MNIST dataset and predicting lane changes.
We observed superior performance of our model, especially when prior knowledge is
incorporated and when considering sequential problems such as lane changes. While
predicting lane changes, application of our framework leads to a a visible smooth-
ing of trajectories, significantly reducing the number of false positive predictions
(Frequency).

In the future, we would like to see our framework applied for various other tasks,
such as image classification on harder, larger datasets, or speech-to-text problems.
It would also be interesting to further analyze adversarial approaches for generating
trajectories, and in particular apply such models to adapt domains containing of
numerical, non-image data.

125

7 Knowledge Transfer

Figure 7.5: Depiction of a lane change to the left. In both plots, time in seconds is
plotted on the x-axis. In the top plot, m, once in raw form from domain B
(red), and once after being processed by the Converter (green). Similar values
are plotted for v, which are drawn using dashed lines. In the bottom plot,
corresponding ground truth labels are drawn in yellow, the predictions of fine-
tuning in red and the output of our model (T2) in green. Here, 1 / -1 denote
lane changes to the left / right, 0 Follow and -2 Ignore labels. As described
in Chapter 3, the latter are inserted between Follow and lane change labels,
and after execution of such manoeuvres, to give models time to reset. Results
of applying the Converter are strongly visible, smoothing out fluctuations and
scaling down extreme values of the input features, especially during Follow
periods. Our proposed model outperforms fine-tuning, exhibiting much less
false positive predictions and yielding near identical lane change predictions
(figure from [6]).

126

Part V

Conclusion and Outlook

127

8
Conclusion

In this section we summarize our work, highlight its advantages and limitations, and
finally point out interesting directions for future research.

8.1 Summary

A commonly envisioned software architecture for autonomous vehicles consists of
the five basic layers perception, fusion, prediction, planning and control. In this
work we addressed the building blocks prediction and planning, mostly employing
LSTM networks to exploit the sequential nature of examined problems.

Building on existing perception and fusion methods, which generate an environ-
mental understanding based on different sensors, such as cameras, Radar and Li-
DAR, we started in the field of prediction: The output of such perception / fusion
layers commonly is a static representation of a traffic scene, which is not sufficient
for the problem of autonomous driving. Virtually all scenes exhibit dynamic prop-
erties, such as moving agents and probabilistic events, which need to be modelled
in order to allow planning of safe paths for the ego vehicle. In particular, we at-
tended the problem of predicting discrete manoeuvres, namely lane change events.
For this, we proposed a series of LSTM networks, among others combining different
LSTM cells for different modalities of the problem and attention mechanisms to
improve performance and equip models with ways of explaining their decisions. The
latter point is especially crucial for safety-critical applications, such as autonomous
driving. Our proposed models yield good results, performing better than existing
methods. Previously, more classical, frame-based methods, such as Random Forests
were applied for this kind of problem [44]. These neglect the temporal component of
such problem, in which our RNNs excel. We could, particularly, reduce the number
of false positive predictions - which have a great negative influence on felt driving
comfort - due to the recurrent nature of our proposed models, which implicitly can
be understood as variants of low-pass filters. Additionally, we proposed novel eval-
uation metrics to directly measure what drivers and passengers experience inside

129

8 Conclusion

vehicles, which is an improvement over traditionally used metrics from information
retrieval, such as Precision and Recall.

For general machine learning problems, but particularly in the field of autonomous
driving, ambiguity and uncertainty is often present, as e.g. vehicles have multiple
possibilities of continuing through a scene and intention prediction inherently is
ambiguous. Therefore, we extended the MHP framework [8] to different recurrent
models, allowing the prediction of multiple hypotheses simultaneously. Our contri-
bution is a generally applicable framework, which can easily be applied for existing
models and problems, yielding good results regarding the understanding and cap-
turing of ambiguity. In particular, we examined the application to the previously
mentioned problem of predicting lane changes, but also to more general tasks, such
as predicting trajectories or text generation.

Equipped with this functionality, we moved towards the area of planning: As full,
data-driven driven planning methods exhibit several downsides (such as compound-
ing errors when using Behavioral Cloning), we mitigated this issue by introducing
a novel supporting layer, which can be trained in classical supervised fashion, and
allows the inclusion of deep learning models into any existing planner, by providing
an interface for query answering. In particular, this layer is able to answer whether
lane change manoeuvres in the current situation are feasible and safe. We again
employed LSTM networks for this, which perform better than existing methods,
such as SVMs [86]. Furthermore, we showcased the usage of bidirectional LSTM
networks by integrating a planning component, further improving performance.

We then analyzed other interesting connections between the tasks prediction and
planning: We combined the aforementioned situation assessment model with our
lane change prediction models, training them jointly, proving the connections be-
tween these tasks and improving performance for one. Vice versa, we employed
prediction models to improve labelling quality of the analyzed planning task.

In recent years, transfer learning has received more research attention and has
become more and more important: It is concerned with making models robust to
domain shift and re-using existing knowledge for new domains and tasks. This is
especially important for the problem of autonomous driving, as here we are faced
with a multitude of possible domains: one can think of varying sensor setups, envi-
ronmental conditions as well as country-specific driving styles and rules. Therefore,
we proposed a framework for domain adaptation, which is a subfield of transfer
learning concerned with transforming samples between domains. To allow better
understandability and verifiability of models, as well as allow inclusion of existing
prior domain knowledge, our model contains a component responsible for gener-
ating explicit transformation matrices, with which we transform samples between
domains. This method yields better results than existing ones for our applications,
particularly predicting lane changes and analysis of non-image, sequential data.

130

8.2 Limitations and Future Work

8.2 Limitations and Future Work

While we successfully introduced various LSTM networks for core problems needed
for solving the problem of fully autonomous driving, future research needs to put
more effort into optimizing them for efficient inference in the car. Hardware in
vehicles, especially one which is needed for the inference of deep neural networks, is
costly and occupied by many tasks already. Next to optimizing networks w.r.t. size
and inference times, other interesting and promising fields of research exist, such
as network compression and the development of specialized, customized hardware
platforms.

Throughout our work, we employed RNNs due to their excellent understanding of
complex, temporal dependencies, as present in many fields of autonomous driving.
However, addressing the issue of resource consumption, exploring alternative meth-
ods is a worthwhile field of future research: Avoiding recurrent connections, but still
allowing learning of long-term dependencies, applying 1D-(dilated) convolutions or
feed-forward models combined with attention mechanisms yields promising results
in different fields.

We already explored interesting connections between different tasks, such as pre-
dicting and planning for lane changes. We encourage further studies in this field,
moving away from solving tasks separately to complex, joint architectures, making
use of all available data and similarities between tasks. More traditional stack-based
architectures and full end-to-end learning models certainly both exhibit their own
distinct characteristics as well as advantages and disadvantages, and it will be in-
teresting to see which method prevails in the end. We might see a stronger blurring
between fields as the levels of automation progress, and would like to see our research
grow with it, combining more and more tasks and replacing more components with
data-driven models.

Safety and verification obviously is a central part of any autonomous system. With
proposed metrics and models (i.e. using attention mechanisms), we made promising
contributions to this field. Still, it needs to be further discussed and analyzed, what
“safe” in this context means, and especially how we can guarantee and verify such
behaviour.

8.3 Epilogue

Although this incredibly exciting journey of finishing a dissertation now comes to an
end, there is still a long way to go until fully autonomous vehicles will be a common
sight on our streets. We believe our research contributed fruitful ideas to this field,
paving the way for future work, especially using data-driven methods and exploiting
the sequential nature of many problems. It will be (as always) exciting to see what
the future holds, and which methods and techniques eventually will enable us to
develop fully autonomous vehicles.

131

Bibliography

[1] C. Olah. Understanding lstm networks. https://colah.github.io/posts/

2015-08-Understanding-LSTMs/. Accessed: 2020-05-06.

[2] O. Scheel, N. S. Nagaraja, L. Schwarz, N. Navab, and F. Tombari. Recurrent
models for planning and predicting lane changes. 2020.

[3] O. Scheel, L. Schwarz, N. Navab, and F. Tombari. Situation assessment for
planning lane changes: Combining recurrent models and prediction. Int. Conf.
on Robotics and Automation (ICRA), 2018.

[4] O. Scheel, N. S. Nagaraja, L. Schwarz, N. Navab, and F. Tombari. Attention-
based lane change prediction. Int. Conf. on Robotics and Automation (ICRA),
2019.

[5] A. Berlati, O. Scheel, L. D. Stefano, and F. Tombari. Ambiguity in sequen-
tial data: Predicting uncertain futures with recurrent models. Robotics and
Automation Letters (RA-L), 2020.

[6] O. Scheel, L. Schwarz, N. Navab, and F. Tombari. Explicit domain adaptation
with loosely coupled samples. arXiv preprint arXiv:2004.11995, 2020.

[7] A short history of mercedes-benz autonomous driv-
ing technology. https://www.autoevolution.com/news/

a-short-history-of-mercedes-benz-autonomous-driving-technology-68148.

html. Accessed: 2020-02-10.

[8] C. Rupprecht, I. Laina, R. DiPietro, M. Baust, F. Tombari, N. Navab, and
G. D Hager. Learning in an uncertain world: Representing ambiguity through
multiple hypotheses. Int. Conf. on Computer Vision (ICCV), 2017.

133

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://www.autoevolution.com/news/a-short-history-of-mercedes-benz-autonomous-driving-technology-68148.html
https://www.autoevolution.com/news/a-short-history-of-mercedes-benz-autonomous-driving-technology-68148.html
https://www.autoevolution.com/news/a-short-history-of-mercedes-benz-autonomous-driving-technology-68148.html

BIBLIOGRAPHY

[9] F. Rosenblatt. The perceptron, a perceiving and recognizing automaton
project para. 1957.

[10] M. Minsky and S. A Papert. Perceptrons: An introduction to computational
geometry. 1969.

[11] A. Krizhevsky, I. Sutskever, and G. E Hinton. Imagenet classification with
deep convolutional neural networks. Int. Conf. on Neural Information Pro-
cessing Systems (NeurIPS), 2012.

[12] Y. LeCun, P. Haffner, L. Bottou, and Y. Bengio. Object recognition with
gradient-based learning. Shape, Contour and Grouping in Computer Vision,
1999.

[13] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal repre-
sentations by error propagation. Parallel Distributed Processing: Explorations
in the Microstructure of Cognition, Vol. 1: Foundations, 1986.

[14] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial nets. Advances in Neural
Information Processing Systems 27, 2014.

[15] F. A Gers, J. Schmidhuber, and F. Cummins. Learning to forget: Continual
prediction with lstm. Neural Computation, 1999.

[16] K. Cho, B. van Merriënboer, C. Gulcehre, F. Bougares, H. Schwenk, and
Y. Bengio. Learning phrase representations using rnn encoder-decoder for
statistical machine translation. 2014.

[17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N Gomez,
 L. Kaiser, and I. Polosukhin. Attention is all you need. Int. Conf. on Neural
Information Processing Systems (NeurIPS), 2017.

[18] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,
N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. Wavenet: A generative
model for raw audio. arXiv preprint arXiv:1609.03499, 2016.

[19] C. M. Bishop. Mixture density networks. 1994.

[20] A. Guzmán-Rivera, D. Batra, and P. Kohli. Multiple choice learning: Learning
to produce multiple structured outputs. Int. Conf. on Neural Information
Processing Systems (NeurIPS), 2012.

[21] S. Lee, S. Purushwalkam, M. Cogswell, V. Ranjan, D. J. Crandall, and D. Ba-
tra. Stochastic multiple choice learning for training diverse deep ensembles.
Int. Conf. on Neural Information Processing Systems (NeurIPS), 2016.

[22] S. J. Pan and Q. Yang. A survey on transfer learning. Transactions on
Knowledge and Data Engineering, 2010.

134

BIBLIOGRAPHY

[23] B. Sun, J. Feng, and K. Saenko. Return of frustratingly easy domain adapta-
tion. AAAI Conference on Artificial Intelligence, 2016.

[24] J. Hoffman, E. Tzeng, T. Park, J. Zhu, P. Isola, K. Saenko, A. A Efros, and
T. Darrell. Cycada: Cycle-consistent adversarial domain adaptation. arXiv
preprint arXiv:1711.03213, 2017.

[25] G. Koch, R. Zemel, and R. Salakhutdinov. Siamese neural networks for one-
shot image recognition. ICML deep learning workshop, 2015.

[26] A. R Zamir, A. Sax, W. Shen, L. J Guibas, J. Malik, and S. Savarese. Taskon-
omy: Disentangling task transfer learning. Int. Conf. on Computer Vision and
Pattern Recognition (CVPR), 2018.

[27] M. Bansal, A. Krizhevsky, and A. Ogale. Chauffeurnet: Learning to
drive by imitating the best and synthesizing the worst. arXiv preprint
arXiv:1812.03079, 2018.

[28] World Health Organization (WHO). Global status report on road safety 2018.
december 2018. https://www.who.int/violence_injury_prevention/

road_safety_status/2018/en/. Accessed: 2020-02-10.

[29] D. A Pomerleau. Alvinn: An autonomous land vehicle in a neural network.
Int. Conf. on Neural Information Processing Systems (NeurIPS), 1989.

[30] 2getthere. Operations contract of driverless parkshuttle extended with 2 years.
https://www.2getthere.eu/driverless-parkshuttle/. Accessed: 2020-
05-05.

[31] AARP The Magazine. The driverless car is (almost) here. https:

//www.aarp.org/home-family/personal-technology/info-2014/

google-self-driving-car.html. Accessed: 2020-05-05.

[32] M. Ardelt, C. Coester, and N. Kaempchen. Highly automated driving on free-
ways in real traffic using a probabilistic framework. Transactions on Intelligent
Transportation Systems, 2012.

[33] K. Wiggers. Waymo’s autonomous cars have driven 20 million
miles on public roads. https://venturebeat.com/2020/01/06/

waymos-autonomous-cars-have-driven-20-million-miles-on-public-roads/.
Accessed: 2020-05-05.

[34] S. Crowe. Researchers back tesla’s non-lidar approach
to self-driving cars. https://www.therobotreport.com/

researchers-back-teslas-non-lidar-approach-to-self-driving-cars/,
2019.

135

https://www.who.int/violence_injury_prevention/road_safety_status/2018/en/
https://www.who.int/violence_injury_prevention/road_safety_status/2018/en/
https://www.2getthere.eu/driverless-parkshuttle/
https://www.aarp.org/home-family/personal-technology/info-2014/google-self-driving-car.html
https://www.aarp.org/home-family/personal-technology/info-2014/google-self-driving-car.html
https://www.aarp.org/home-family/personal-technology/info-2014/google-self-driving-car.html
https://venturebeat.com/2020/01/06/waymos-autonomous-cars-have-driven-20-million-miles-on-public-roads/
https://venturebeat.com/2020/01/06/waymos-autonomous-cars-have-driven-20-million-miles-on-public-roads/
https://www.therobotreport.com/researchers-back-teslas-non-lidar-approach-to-self-driving-cars/
https://www.therobotreport.com/researchers-back-teslas-non-lidar-approach-to-self-driving-cars/

BIBLIOGRAPHY

[35] M. Bojarski, D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal,
L. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba.
End to end learning for self-driving cars. arXiv preprint arXiv:1604.07316,
2016.

[36] A. Kendall, J. Hawke, D. Janz, P. Mazur, D. Reda, J. Allen, V. Lam, A. Be-
wley, and A. Shah. Learning to drive in a day. Int. Conf. on Robotics and
Automation (ICRA), 2019.

[37] W. Zeng, W. Luo, S. Suo, A. Sadat, B. Yang, S. Casas, and R. Urtasun. End-
to-end interpretable neural motion planner. Int. Conf. on Computer Vision
and Pattern Recognition (CVPR), 2019.

[38] M. Treiber, A. Hennecke, and D. Helbing. Congested traffic states in empirical
observations and microscopic simulations. Phys. Rev. E, 2000.

[39] A. Jain, A. Singh, H. S. Koppula, S. Soh, and A. Saxena. Brain4cars: Car
that knows before you do via sensory-fusion deep learning architecture. Int.
Conf. on Robotics and Automation (ICRA), 2016.

[40] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and S. Savarese.
Social lstm: Human trajectory prediction in crowded spaces. Int. Conf. on
Computer Vision and Pattern Recognition (CVPR), 2016.

[41] N. Lee, W. Choi, P. Vernaza, C. Choy, P. Torr, and M. Chandraker. Desire:
Distant future prediction in dynamic scenes with interacting agents. Int. Conf.
on Computer Vision and Pattern Recognition (CVPR), 2017.

[42] A. Gupta, J. Johnson, F. Li, S. Savarese, and A. Alahi. Social gan: Socially
acceptable trajectories with generative adversarial networks. Int. Conf. on
Computer Vision and Pattern Recognition (CVPR), 2018.

[43] A. Sadeghian, V. Kosaraju, A. Sadeghian, N. Hirose, and S. Savarese. Sophie:
An attentive GAN for predicting paths compliant to social and physical con-
straints. Int. Conf. on Computer Vision and Pattern Recognition (CVPR),
2019.

[44] J. Schlechtriemen, F. Wirthmueller, A. Wedel, G. Breuel, and K. Kuhnert.
When will it change the lane? a probabilistic regression approach for rarely
occurring events. Intelligent Vehicles Symposium (IV), 2015.

[45] H. Woo, Y. Ji, H. Kono, Y. Tamura, Y. Kuroda, T. Sugano, Y. Yamamoto,
A. Yamashita, and H. Asama. Dynamic potential-model-based feature for lane
change prediction. Int. Conf. on Systems, Man, and Cybernetics (SMC), 2016.

[46] G. Weidl, A. L Madsen, V. Tereshchenko, W. Zhang, S. Wang, and D. Kasper.
Situation awareness and early recognition of traffic maneuvers. EUROSIM
Congress on Modelling and Simulation, 2016.

136

BIBLIOGRAPHY

[47] J. Schlechtriemen, A. Wedel, J. Hillenbrand, G. Breuel, and K. Kuhnert. A
lane change detection approach using feature ranking with maximized predic-
tive power. Intelligent Vehicles Symposium (IV), 2014.

[48] D. Frossard, E. Kee, and R. Urtasun. Deepsignals: Predicting intent of drivers
through visual signals. Int. Conf. on Robotics and Automation (ICRA), 2019.

[49] S. Patel, B. Griffin, K. Kusano, and J. J. Corso. Predicting future lane changes
of other highway vehicles using rnn-based deep models. Int. Conf. on Intelli-
gent Robots and Systems (IROS), 2018.

[50] J. Zeisler, F. Schönert, M. Johne, and V. Haltakov. Vision based lane change
detection using true flow features. Int. Conf. on Intelligent Transportation
Systems (ITSC), 2017.

[51] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly
learning to align and translate. Int. Conf. on Learning Representations
(ICLR), 2015.

[52] V. Mnih, N. Heess, A. Graves, and K. Kavukcuoglu. Recurrent models of visual
attention. Int. Conf. on Neural Information Processing Systems (NeurIPS),
2014.

[53] T. Luong, H. Pham, and C. D. Manning. Effective approaches to attention-
based neural machine translation. Empirical Methods in Natural Language
Processing (EMNLP), 2015.

[54] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional net-
works: Visualising image classification models and saliency maps. arXiv
preprint arXiv:1312.6034, 2013.

[55] Ngsim project. https://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm.

[56] R. Krajewski, J. Bock, L. Kloeker, and L. Eckstein. The highd dataset: A
drone dataset of naturalistic vehicle trajectories on german highways for vali-
dation of highly automated driving systems. Int. Conf. on Intelligent Trans-
portation Systems (ITSC), 2018.

[57] D. Rezende and S. Mohamed. Variational inference with normalizing flows.
arXiv preprint arXiv:1505.05770, 2015.

[58] A. Van den Oord, N. Kalchbrenner, L. Espeholt, O. Vinyals, A. Graves, et al.
Conditional image generation with pixelcnn decoders. Int. Conf. on Neural
Information Processing Systems (NeurIPS), 2016.

[59] C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov, D. Er-
han, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. Int.
Conf. on Computer Vision and Pattern Recognition (CVPR), 2015.

137

BIBLIOGRAPHY

[60] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman,
D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach,
K. Kavukcuoglu, T. Graepel, and D. Hassabis. Mastering the game of Go
with deep neural networks and tree search. Nature, 2016.

[61] D. P. Kingma and M. Welling. Auto-encoding variational bayes. Int. Conf.
on Learning Representations (ICLR), 2014.

[62] K. Gregor, I. Danihelka, A. Graves, D. Rezende, and D. Wierstra. Draw: A
recurrent neural network for image generation. Inf. Conf. on Machine Learning
(ICML), 2015.

[63] U. Jain, Z. Zhang, and A. Schwing. Creativity: Generating diverse questions
using variational autoencoders. Int. Conf. on Computer Vision and Pattern
Recognition (CVPR), 2017.

[64] J. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. Int. Conf. on Computer Vision
(ICCV), 2017.

[65] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein gan. 2017.

[66] Y. Gong, Y. Jia, T. Leung, A. Toshev, and S. Ioffe. Deep convolutional rank-
ing for multilabel image annotation. Int. Conf. on Learning Representations
(ICLR), 2014.

[67] J. Wang, Y. Yang, J. Mao, Z. Huang, C. Huang, and W. Xu. Cnn-rnn: A
unified framework for multi-label image classification. Int. Conf. on Computer
Vision and Pattern Recognition (CVPR), 2016.

[68] Y. Liu, R. Yu, S. Zheng, E. Zhan, and Y. Yue. NAOMI: non-autoregressive
multiresolution sequence imputation. Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2019.

[69] Z. Shi, X. Chen, X. Qiu, and X. Huang. Towards diverse text generation with
inverse reinforcement learning. arXiv preprint arXiv:1804.11258, 2018.

[70] Y. Shao, S. Gouws, D. Britz, A. Goldie, B. Strope, and R. Kurzweil. Gen-
erating high-quality and informative conversation responses with sequence-to-
sequence models. arXiv preprint arXiv:1701.03185, 2017.

[71] L. Bazzani, H. Larochelle, and L. Torresani. Recurrent mixture density net-
work for spatiotemporal visual attention. arXiv preprint arXiv:1603.08199,
2016.

[72] A. Kalyan, S. Lee, A. Kannan, and D. Batra. Learn from your neighbor:
Learning multi-modal mappings from sparse annotations. Int. Conf. on Ma-
chine Learning (ICML), 2018.

138

BIBLIOGRAPHY

[73] B. Gao, C. Xing, C. Xie, J. Wu, and X. Geng. Deep label distribution learning
with label ambiguity. IEEE Transactions on Image Processing, 2017.

[74] X. Geng and Y. Xia. Head pose estimation based on multivariate label dis-
tribution. Int. Conf. on Computer Vision and Pattern Recognition (CVPR),
2014.

[75] N. Rhinehart, K. Kitani, and P. Vernaza. R2p2: A reparameterized pushfor-
ward policy for diverse, precise generative path forecasting. European Confer-
ence on Computer Vision (ECCV), 2018.

[76] A. Shahroudy, J. Liu, T. Ng, and G. Wang. Ntu rgb+d: A large scale dataset
for 3d human activity analysis. Int. Conf. on Computer Vision and Pattern
Recognition (CVPR), 2016.

[77] A. Graves. Generating sequences with recurrent neural networks. arXiv
preprint arXiv:1308.0850, 2013.

[78] P. Schydlo, M. Raković, , and J. Santos-Victor. Anticipation in human-robot
cooperation: A recurrent neural network approach for multiple action se-
quences prediction. Int. Conf. on Robotics and Automation (ICRA), 2018.

[79] A. Robicquet, A. Sadeghian, A. Alahi, and S. Savarese. Learning social eti-
quette: Human trajectory understanding in crowded scenes. European Conf.
on Computer Vision (ECCV), 2016.

[80] M. Marcus, G. Kim, M. Marcinkiewicz, R. MacIntyre, A. Bies, M. Ferguson,
K. Katz, and B. Schasberger. The penn treebank: Annotating predicate argu-
ment structure. Proceedings of the Workshop on Human Language Technology,
1994.

[81] A. Sadeghian, V. Kosaraju, A. Gupta, S. Savarese, and A. Alahi. Trajnet:
Towards a benchmark for human trajectory prediction. arXiv preprint, 2018.

[82] P. Brown, V. Pietra, R. Mercer, S. Pietra, and J. Lai. An estimate of an upper
bound for the entropy of english. Computational Linguistics, 1992.

[83] K. Papineni, S. Roukos, T. Ward, and W. Zhu. Bleu: a method for automatic
evaluation of machine translation. Proceedings of the 40th Annual Meeting on
Association for Computational Linguistics, 2002.

[84] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,
and M. Riedmiller. Playing atari with deep reinforcement learning. arXiv
preprint arXiv:1312.5602, 2013.

[85] S. Ulbrich and M. Maurer. Situation assessment in tactical lane change behav-
ior planning for automated vehicles. Int. Conf. on Intelligent Transportation
Systems (ITSC), 2015.

139

BIBLIOGRAPHY

[86] J. Nie, J. Zhang, X. Wan, W. Ding, and . Ran. Modeling of decision-making
behavior for discretionary lane-changing execution. Int. Conf. on Intelligent
Transportation Systems (ITSC), 2016.

[87] S. Hahn and H. Choi. Self-knowledge distillation in natural language process-
ing. Int. Conf. on Recent Advances in Natural Language Processing (RANLP
2019), 2019.

[88] S. G. Jeong, J. Kim, S. Kim, and J. Min. End-to-end learning of image based
lane-change decision. Intelligent Vehicles Symposium (IV), 2017.

[89] D. Isele, R. Rahimi, A. Cosgun, K. Subramanian, and K. Fujimura. Navigat-
ing occluded intersections with autonomous vehicles using deep reinforcement
learning. Int. Conf. on Robotics and Automation (ICRA), 2018.

[90] E. Balal, R. Cheu, and T. Sarkodie-Gyan. A binary decision model for discre-
tionary lane changing move based on fuzzy inference system. Transportation
Research Part C: Emerging Technologies, 2016.

[91] Y. Dou, F. Yan, and D. Feng. Lane changing prediction at highway lane drops
using support vector machine and artificial neural network classifiers. Int.
Conf. on Advanced Intelligent Mechatronics (AIM), 2016.

[92] A. Mousavian, H. Pirsiavash, and J. Košecká. Joint semantic segmentation and
depth estimation with deep convolutional networks. 2016 Fourth International
Conference on 3D Vision (3DV), 2016.

[93] S. Ruder. An overview of multi-task learning in deep neural networks. arXiv
preprint arXiv:1706.05098, 2017.

[94] Y. LeCun and C. Cortes. MNIST handwritten digit database. 2010.

[95] H. Noh, P. H. Seo, and B. Han. Image question answering using convolutional
neural network with dynamic parameter prediction. Int. Conf. on Computer
Vision and Pattern Recognition (CVPR), 2016.

[96] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C Lawrence Zitnick, and
D. Parikh. Vqa: Visual question answering. Int. Conf. on Computer Vision
(ICCV), 2015.

[97] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural
network. Advances in Neural Information Processing Systems (NIPS), 2014.

[98] M. Liu and O. Tuzel. Coupled generative adversarial networks. Advances in
Neural Information Processing Systems (NIPS), 2016.

[99] K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and D. Krishnan. Unsu-
pervised pixel-level domain adaptation with generative adversarial networks.
Int. Conf. on Computer Vision and Pattern Recognition (CVPR), 2017.

140

BIBLIOGRAPHY

[100] X. Ouyang, Y. Cheng, Y. Jiang, C. Li, and P. Zhou. Pedestrian-synthesis-
gan: Generating pedestrian data in real scene and beyond. arXiv preprint
arXiv:1804.02047, 2018.

[101] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast
adaptation of deep networks. Int. Conf. on Machine Learning (ICML), 2017.

[102] M. Long and J. Wang. Learning multiple tasks with deep relationship net-
works. arXiv preprint arXiv:1506.02117, 2015.

[103] J. Yim, D. Joo, J. Bae, and J. Kim. A gift from knowledge distillation:
Fast optimization, network minimization and transfer learning. Int. Conf. on
Computer Vision and Pattern Recognition (CVPR), 2017.

[104] Z. Luo, Y. Zou, J. Hoffman, and L. Fei-Fei. Label efficient learning of trans-
ferable representations across domains and tasks. Int. Conf. on Neural Infor-
mation Processing Systems (NIPS), 2017.

[105] A. Rozantsev, M. Salzmann, and P. Fua. Beyond sharing weights for deep do-
main adaptation. Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 2016.

[106] P. Isola, J. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation with
conditional adversarial networks. Int. Conf. on Computer Vision and Pattern
Recognition (CVPR), 2017.

[107] X. Li, S. Liu, J. Kautz, and M. Yang. Learning linear transformations for fast
arbitrary style transfer. arXiv preprint arXiv:1808.04537, 2018.

[108] S. Sabour, N. Frosst, and G. E. Hinton. Dynamic routing between capsules.
Int. Conf. on Neural Information Processing Systems (NeurIPS), 2017.

[109] L. Duan, D. Xu, and I. W. Tsang. Learning with augmented features for
heterogeneous domain adaptation. Int. Conf. on Machine Learning (ICML),
2012.

[110] B. Paaßen, A. med. Schulz, and B. Hammer. Linear supervised transfer learn-
ing for generalized matrix lvq. Workshop New Challenges in Neural Compu-
tation, 2016.

[111] M. Jaderberg, K. Simonyan, A. Zisserman, et al. Spatial transformer networks.
Advances in neural information processing systems (NIPS), 2015.

[112] W. Aswolinskiy and B. Hammer. Unsupervised transfer learning for time
series via self-predictive modelling-first results. Workshop on New Challenges
in Neural Computation (NC2), 2017.

141

BIBLIOGRAPHY

[113] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for se-
mantic segmentation. Int. Conf. on Computer Vision and Pattern Recognition
(CVPR), 2015.

[114] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding for
face recognition and clustering. Int. Conf. on Computer Vision and Pattern
Recognition (CVPR), 2015.

142

	Contents
	List of Figures
	List of Tables
	Abbreviations
	I Introduction and Fundamentals
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Contributions
	1.4 Outline

	2 Fundamentals
	2.1 Machine Learning Basics
	2.2 Recurrent Neural Networks
	2.2.1 Long Short-term Memory Networks
	2.2.2 Drawbacks of Recurrent Neural Networks

	2.3 Predicting Multiple Hypotheses
	2.4 Transfer Learning
	2.5 Autonomous Driving
	2.5.1 Prediction
	2.5.2 Planning

	II Prediction
	3 Manoeuvre Prediction
	3.1 Introduction
	3.2 Related Work
	3.3 Recurrent Models for Predicting Lane Changes
	3.3.1 Scene Representation
	3.3.2 Models
	3.3.2.1 Baseline Models
	3.3.2.2 Attention Mechanism

	3.4 Evaluation
	3.4.1 Datasets
	3.4.2 Metrics
	3.4.3 Results
	3.4.3.1 Comparison of Models on Full Datasets
	3.4.3.2 Scenario-Based Evaluation
	3.4.3.3 Determining Feature Importances
	3.4.3.4 Qualitative Results

	3.5 Conclusion

	4 Considering Ambiguity
	4.1 Introduction
	4.2 Related Work
	4.3 Multiple Hypothesis Prediction Framework
	4.3.1 Prerequisites
	4.3.2 Sequence-to-Sequence Prediction
	4.3.3 Encoder-Decoder Architecture
	4.3.4 Sequence Generation
	4.3.5 Multimodal Metric
	4.3.5.1 Discrete Labels
	4.3.5.2 Continuous Labels

	4.4 Evaluation
	4.4.1 Problems and Datasets
	4.4.1.1 Toy Intersection
	4.4.1.2 Lane Change Prediction
	4.4.1.3 Trajectory Prediction
	4.4.1.4 Text Generation

	4.4.2 Results
	4.4.2.1 Classification
	4.4.2.2 Regression
	4.4.2.3 Sequence Generation

	4.5 Conclusion

	III Planning
	5 Assessing Situations
	5.1 Introduction
	5.2 Related Work
	5.3 Recurrent Models for Assessing Situations
	5.3.1 Problem Definition
	5.3.2 Models
	5.3.2.1 LSTM Network
	5.3.2.2 Bidirectional LSTM Extension

	5.4 Evaluation
	5.5 Conclusion

	6 Combining Prediction and Planning
	6.1 Introduction
	6.2 Combined Approaches for Predicting Lane Changes and Assessing Situations
	6.2.1 Joint Training
	6.2.2 Label Pruning

	6.3 Evaluation
	6.3.1 Joint Training
	6.3.2 Label Pruning

	6.4 Conclusion

	IV Transfer Learning
	7 Knowledge Transfer
	7.1 Introduction
	7.2 Related Work
	7.3 A Framework for Domain Adaptation
	7.3.1 Corresponding Samples
	7.3.2 Model
	7.3.3 Simplifying Assumptions
	7.3.3.1 Image Data
	7.3.3.2 Sequential Data

	7.4 Evaluation
	7.4.1 Datasets
	7.4.2 Metrics
	7.4.3 Results
	7.4.3.1 Baseline Methods
	7.4.3.2 Rotated MNIST
	7.4.3.3 Toy Sequence
	7.4.3.4 Lane Change Prediction

	7.5 Conclusion

	V Conclusion and Outlook
	8 Conclusion
	8.1 Summary
	8.2 Limitations and Future Work
	8.3 Epilogue

	Bibliography

