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Abstract Both collision geometry and event-by-event fluc-
tuations are encoded in the experimentally observed flow har-
monic distribution p(vn) and 2k-particle cumulants cn{2k}.
In the present study, we systematically connect these observ-
ables to each other by employing a Gram–Charlier A series.
We quantify the deviation of p(vn) from Bessel–Gaussianity
in terms of harmonic fine-splitting of the flow. Subsequently,
we show that the corrected Bessel–Gaussian distribution can
fit the simulated data better than the Bessel–Gaussian dis-
tribution in the more peripheral collisions. Inspired by the
Gram–Charlier A series, we introduce a new set of cumulants
qn{2k}, ones that are more natural to use to study near Bessel–
Gaussian distributions. These new cumulants are obtained
from cn{2k} where the collision geometry effect is extracted
from it. By exploiting q2{2k}, we introduce a new set of
estimators for averaged ellipticity v̄2, ones which are more
accurate compared to v2{2k} for k > 1. As another applica-
tion of q2{2k}, we show that we are able to restrict the phase
space of v2{4}, v2{6} and v2{8} by demanding the consis-
tency of v̄2 and v2{2k} with q2{2k} equation. The allowed
phase space is a region such that v2{4} − v2{6} � 0 and
12v2{6} − 11v2{8} − v2{4} � 0, which is compatible with
the experimental observations.

1 Introduction

It is a well-established picture that matter produced in a heavy
ion experiment shows collective behavior. Based on this pic-
ture, the initial energy density manifests itself in the final
particle momentum distribution. Accordingly, as the main
consequence of this collectivity, the final particle momen-
tum distribution has extensively been studied by different
experimental groups in the past years. As a matter of fact,
the experimental groups at Relativistic Heavy Ion Collider
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(RHIC) and Large Hadron Collider (LHC) measure the flow
harmonics vn [1–8], the coefficients of the momentum distri-
bution Fourier expansion in the azimuthal direction [9–11].
All these observations can be explained by several models
based on the collective picture.

Finding the flow harmonics is not straightforward, because
the reaction-plane angle (the angle between the orienta-
tion of the impact parameter and a reference frame) is not
under control experimentally. Additionally, the Fourier coef-
ficients cannot be found reliably due to the low statistic in
a single event. These issues enforce us to use an analysis
more sophisticated than a Fourier analysis. There are several
methods to find the flow harmonics experimentally, namely
the event-plane method [12], multiparticle correlation func-
tions [13,14] and Lee–Yang zeros [15,16]. The most recent
technique to find the flow harmonics is using the distribu-
tion of the flow harmonic p(vn). This distribution has been
obtained experimentally by employing the unfolding tech-
nique [17,18].

It is well known that the initial shape of the energy density
depends on the geometry of the collision and the quantum
fluctuations at the initial state. As a result, the observed flow
harmonics fluctuate event-by-event even if we fix the initial
geometry of the collision. In fact, the event-by-event fluc-
tuations are encoded in p(vn) and experimentally observed
flow harmonics as well. It is worthwhile to mention that the
observed event-by-event fluctuations are a reflection of the
initial state fluctuations entangled with the modifications dur-
ing different stages of the matter evolution, namely collec-
tive expansion and hadronization. For that reason, exploring
the exact interpretation of the flow harmonics is crucial to
understand the contribution of each stage of the evolution
on the fluctuations. Moreover, there has not been found a
well-established picture for the initial state of the heavy ion
collision so far. The interpretations of the observed quantities
contain information about the initial state. This information
can shed light upon the heavy ion initial state models too.
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According to the theoretical studies, the flow harmon-
ics vn{2k} obtained from 2k-particle correlation functions
are different, and their difference is due to non-flow effects
[13,14] and event-by-event fluctuations [19]. We should
point out that experimental observations show that v2{2} is
considerably larger than v2{4}, v2{6} and v2{8}. Addition-
ally, all the ratios v2{6}/v2{4}, v2{8}/v2{4} and v2{8}/v2{6}
are different from unity [20,21]. Alternatively, the distribu-
tion p(vn) is approximated by a Bessel–Gaussian distribution
(corresponding to a Gaussian distribution for vn fluctuations)
as a simple model [10,22]. Based on this model, the differ-
ence between v2{2} and v2{4} is related to the width of the
v2 fluctuations. However, this model cannot explain the dif-
ference between the other v2{2k}.

In the past years, several interesting studies of the non-
Gaussian vn fluctuations have been done [23–28]. Specifi-
cally, it has been shown in Ref. [27] that the skewness of
the v2 fluctuations is related to the difference v2{4} − v2{6}.
Also, the connection between kurtosis of v3 fluctuations and
the ratio v3{4}/v3{2} has been studied in Ref. [28]. It is worth
noting that the deviation of vn fluctuations from a Gaus-
sian distribution immediately leads to the deviation of p(vn)
from a Bessel–Gaussian distribution. In [29], the quantities
vn{4} − vn{6} and vn{6} − vn{8} for a generic narrow distri-
bution are computed.

In the present work, we will introduce a systematic method
to connect vn{2k} to the distribution p(vn). In Sect. 2, we
have an overview of the known concepts of cumulants, flow
harmonic distributions and their relation with the averaged
flow harmonics v̄n . Section 3 is dedicated to the Gram–
Charlier A series in which we find an approximate flow
harmonic distribution in terms of cn{2k}. Specifically for
the second harmonics, we show that the deviation of p(v2)

from Bessel–Gaussianity is quantified by the fine-splitting
v2{2k} − v2{2�} where k, � ≥ 2 and k �= �. These studies
guide us to defining a new set of cumulants qn{2k} where they
depend on the event-by-event fluctuations only. In Sect. 4,
we use the new cumulants to introduce more accurate esti-
mations for the average ellipticity. As another application of
new cumulants, we use q2{2k} to constrain the v2{4}, v2{6}
and v2{8} phase space in Sect. 5. We show that the phase
space is restricted to a domain where v2{4}−v2{6} � 01 and
12v2{6} − 11v2{8} − v2{4} � 0. We present the conclusion
in Sect. 6. The supplementary materials can be found in the
appendices. We would like to emphasize that in Appendix C,
we found a one-dimensional distribution for p(vn) which is
different from that mentioned in Sect. 3. Additionally, an
interesting connection between the expansion of p(vn) in
terms of the cumulants cn{2k} and the relatively new con-

1 In Ref. [27], the constraint v2{4} > v2{6} is deduced from the initial
eccentricity, and the fact that the initial eccentricity is bounded to a unit
circle.

cept of multiple orthogonal polynomials in mathematics is
presented in Appendix D.

2 Flow harmonic distributions and 2k-particle
cumulants

This section is devoted to an overview of already well-known
concepts concerning the cumulant and its application to study
the collectivity in the heavy ion physics. We present this
overview to smoothly move forward to the harmonic distri-
bution of the flow and its deviation from Bessel–Gaussianity.

2.1 Correlation functions vs. distribution

According to the collective picture in the heavy ion experi-
ments, the final particle momentum distribution is a conse-
quence of the initial state after a collective evolution. In order
to study this picture quantitatively, the initial anisotropies and
flow harmonics are used extensively to quantify the initial
energy density and final momentum distribution.

The initial energy (or entropy) density of a single event
can be written in terms of the initial anisotropies, namely the
ellipticity and triangularity. Specifically, ellipticity and tri-
angularity (shown by ε2 and ε3, respectively) are cumulants
of the distribution indicating how much it is deviated from a
two-dimensional rotationally symmetric Gaussian distribu-
tion [30].

The final momentum distribution is studied by its Fourier
expansion in the azimuthal direction,

1

N

dN

dφ
= 1

2π

[
1 +

∞∑
n=1

2vn cos n(φ − ψn)

]
. (1)

In the above, vn and ψn are unknown parameters, which can
be found easily via v̂n ≡ vneinψn = 〈einφ〉. Here, the aver-
aging is obtained by using the distribution 1

N
dN
dφ

in a given
event. The parameter v̂n is called flow harmonic. Instead of
a complex form, we occasionally use the flow harmonics in
Cartesian coordinates,

vn,x = vn cos nψn, vn,y = vn sin nψn . (2)

Low multiplicity in a single event, randomness of the reac-
tion plane angle and non-flow effects are the main challenges
in extracting the experimental values of the flow harmonics.
By defeating these experimental challenges, one would be
able to find the distribution p(vn,x , vn,y) for each centrality
class which is a manifestation of the event-by-event fluctua-
tions. In finding p(vn,x , vn,y), we rotate the system at each
single event such that the reaction-plane angle ΦRP is set to
be zero. In this case, the averaged ellipticity v̄2 ≡ 〈v2,x 〉 is a
manifestation of the geometrical initial ellipticity for events
in a given centrality class irrespective of the fluctuations. In
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general, we are able to define the averaged flow harmonic
v̄n ≡ 〈vn,x 〉 too. In odd harmonics, however, this average
would be zero for spherical ion collisions with the same sizes.

A practical way to study a distribution function p(r)
is using two-dimensional cumulants, where r stands for a
generic two-dimensional random variable. Consider G(k)

as the characteristic function of the probability distribution
p(r). The characteristic function is, in fact, the Fourier trans-
formed p(r),

G(k) ≡ 〈eir·k〉 =
∫

dxdy eir·k p(r). (3)

Consequently, we can define the cumulative function as
C(k) = logG(k). Two-dimensional cumulants are obtained
from

log〈eir·k〉 =
∑
m,n

im+nkmx k
n
yAmn

m!n!

=
∞∑

m=0

∞∑
n=−∞

imkmeinϕk Cm,n

m! ,

(4)

where Amn and Cm,n are the 2D cumulants in Cartesian and
polar coordinates, respectively. The two-dimensional cumu-
lants have already been used to quantify the initial energy
density shape by Teaney and Yan in Ref. [30]. However,
we use the two-dimensional cumulants to study the har-
monic distribution of the flows in the present study2. In the

second line in the above, we used k =
√
k2
x + k2

y, ϕk =
atan2(kx , ky). In Appendix A, we study 2D cumulants in
these two coordinates and their relations in more detail.

The random ΦRP rotates the point (vn,x , vn,y) with a ran-
dom phase in the range [0, 2π) at each event. As a result, the
distribution p(vn,x , vn,y) is replaced by p̃(vn,x , vn,y), which
is a rotationally symmetric distribution.3 We should mention
that the distribution p̃(vn,x , vn,y) is experimentally acces-
sible. In Ref. [18], the unfolding technique has been used
by the ATLAS collaboration to remove the statistical uncer-
tainty (due to the low statistics at each event) and non-flow
effects from a distribution of the “observed” flow harmon-
ics (vobs

n,x , v
obs
n,y). In this case, the only unknown parameter in

finding an accurate p(vn,x , vn,y) is the reaction-plane angle.
Since there is no information in the azimuthal direction of
p̃(vn,x , vn,y), we can simply average out this direction to find
a one-dimensional distribution,4

2 In Ref. [30], Amn has been shown by Wn,ab (n = 1, 2, . . . and a, b ∈
{x, y}). Also Cmn has been found by W0,n , Ws

0,n and Wc
0,n .

3 In general p(vn,x , vn,y) is not rotationally symmetric. For instance
p(v2,x , v2,y) does not have this symmetry in a non-central collision
of spherically symmetric ions, while p(v3,x , v3,y) does, for the same
collisions.
4 We simply use the notation ϕ ≡ nψn .

p(vn) = vn

∫ 2π

0
dϕ p(vn cos ϕ, vn sin ϕ). (5)

Note that we can interchangeably use p̃(vn,x , vn,y) or p(vn,x

, vn,y) in the above because obviously the effect of the ran-
dom reaction-plane angle and the azimuthal averaging are
the same.

In polar coordinates, we have p̃(vn,x , vn,y) ≡ p̃(vn).
As a result, the characteristic function of the distribution
p̃(vn,x , vn,y) in polar coordinates is given by

〈eivnk cos(ϕ−ϕk )〉2D

=
∫ ∞

0

∫ 2π

0
vndvndϕ p̃(vn) eivnk cos(ϕ−ϕk)

=
∫ ∞

0
dvn p(vn)J0(kvn) = 〈J0(kvn)〉1D,

(6)

where we used Eq. (5) in the above. Here, J0(x) is the Bessel
function of the first kind. Also, 〈· · ·〉2D means averaging with
respect to p̃(vn,x , vn,y), while 〈· · ·〉1D specifies the averaging
with respect to p(vn). Equation (6) indicates that we can
study the radial distribution p(vn) instead of p̃(vn,x , vn,y)

if we use G(k) = 〈J0(kvn)〉 as the characteristic function of
p(vn)5.

The cumulants of p(vn) can be found by expanding the
cumulative function log〈J0(kvn)〉 in terms of ik. The coef-
ficients of ik in this expansion (up to some convenient con-
stants) are the desired cumulants,

log〈J0(kvn)〉 =
∑
m=1

(ik)2mcn{2m}
4m(m!)2 . (7)

where cn{2m} are those obtained from 2k-particle correlation
functions [13,14],

cn{2} = 〈v2
n〉, (8a)

cn{4} = 〈v4
n〉 − 2〈v2

n〉2, (8b)

cn{6} = 〈v6
n〉 − 9〈v4

n〉〈v2
n〉 + 12〈v2

n〉3, (8c)

cn{8} = 〈v8
n〉 − 16〈v6

n〉〈v2
n〉 − 18〈v4

n〉2, (8d)

+144〈v4
n〉〈v2

n〉2 − 144〈v2
n〉4.

The cumulants cn{2k} ∝ v2k
n {2k} (see Eq. (12)) are indi-

cating the characteristics of the distribution p(vn) while
the cumulants Amn (or equivalently Cm,n) in Eq. (4) are
shown the characteristics of p(vn,x , vn,y). The intercon-
nection between vn{2k} and Amn have been studied previ-
ously in the literature. We point out that in order to define
p(vn,x , vn,y), we considered ΦRP = 0 for all events. In this
case, the cumulant A30 = 〈(vn,x −〈vn,x 〉)3〉 is related to the
skewness of p(vn,x , vn,y). For the case n = 2, this quan-
tity is found for the first time in Ref. [27], and it is argued
that A30 ∝ v2{4} − v2{6}. In other words, A30 is related to

5 We ignore the subscript 1D or 2D when it is not ambiguous.
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the fine-splitting between v2{4} and v2{6}. In Ref. [28], the
kurtosis of p(v3,x , v3,y) in the radial direction has also been
calculated, and it is shown it is proportional to v4

3{4}6.
One may wonder whether the distribution p(vn) contains

more information than cn{2k} because the odd moments of
p(vn) are absent in the definitions of cn{2k} [29]. However,
it is worth mentioning that the moments can be found by
expanding the characteristic function G(k) in terms of ik,

G(k) = 〈J0(kvn)〉 = 1 + 〈v2
n〉

4
k2 + 〈v4

n〉
64

k4 + · · · , (9)

for the radial distributions like p(vn). Since the above series is
convergent,7 we can find the characteristic function G(k) by
finding the moments 〈v2k

n 〉. Having the characteristic function
in hand, we immediately find p(vn) by inversing the last line
in Eq. (6),8

p(vn) = vn

∫ ∞

0
k dk Jo(kvn)G(k). (10)

It means that by assuming the convergence of the series in
Eq. (9) the distribution p(vn) can be found completely by
using only even moments.

Equivalently, we can use the following argument: for the
distribution p̃(vn,x , vn,y), one simply finds the only non-
vanishing moments are 〈v2k

nx v
2�
ny 〉. It means that in the polar

coordinates only 〈v2(k+�)
n 〉 are present. Additionally, by find-

ing the two-dimensional cumulants of p̃(vn,x , vn,y) in polar
coordinates Cm,n (Eq. (4)), we find that the only non-zero
cumulants are C2k,0 ∝ cn{2k} (see Appendix A).

As a result, in the presence of random reaction-plane
angle, cn{2k}’s are all we can learn from the original
p(vn,x , vn,y), whether we use 2k-particle correlation func-
tions or obtain it from the unfolded distribution p(vn) in
principle. However, we should note that the efficiency of the
two methods in removing single event statistical uncertainty
and non-flow effects could be different, which leads to dif-
ferent results in practice.

Furthermore, the whole information about the fluctu-
ations is not encoded in p(vn,x , vn,y). In fact, the most
general form of the fluctuations are encoded in a dis-
tribution as p(v1,x , v1,y, v2,x , v2,y, . . .). It is worth men-
tioning that the symmetric cumulants, which have been

6 The coefficients of the proportionality in both skewness and radial
kurtosis are also functions of vn{2k}. We should note that the skewness
(radial kurtosis) vanishes if v2{4} − v2{6} (v3{4}) is equal to zero (see
Refs. [27,28] for the details).
7 It is an important question whether is it possible to determine p(vn)
uniquely from its moments [32] (see also Ref. [33])? Answering to this
question is beyond the scope of the present work. Here we assume that
p(vn) is M-determinate which means we can find it from its moments
〈v2q

n 〉 in principle.
8 We use the orthogonality relation

∫ ∞
0 k Jα(kr)Jα(kr ′) dk = δ(r −

r ′)/r .

introduced in Ref. [33] and have been measured by the
ALICE collaboration [34], are non-vanishing. Addition-
ally, the event-plane correlations (which are related to the
moments 〈v̂qm(v̂∗

n)
q m/n〉) have been obtained by the ATLAS

collaboration [35,36]. They are non-zero too. These mea-
surements indicate that p(v1,x , v1,y, v2,x , v2,y, . . .) cannot
be written as

∏
n p(vn,x , vn,y). In the present work, how-

ever, we do not focus on the joint distribution and leave this
topic for studies in the future. Let us point out that mov-
ing forward to find a generic form for the moments of the
harmonic distribution of the flow was already done in Ref.
[37].

2.2 Approximated averaged ellipticity

A question arises now: how much information is encoded
in p(vn) from the original p(vn,x , vn,y)? In order to answer
this question, we first focus on n = 3. Unless there is no net
triangularity for spherical ion collisions, the non-zero trian-
gularity at each event comes from the fluctuations. Hence, we
have v̄3 = 0 for such an experiment. In this case, the event-
by-event randomness of ΦRP is similar to the rotation of the
triangular symmetry plane due to the event-by-event fluctua-
tions. It means that p(v3,x , v3,y) itself is rotationally symmet-
ric, and the main features of p(v3,x , v3,y) and p̃(v3,x , v3,y)

are the same. As a consequence, p(v3) or equivalently c3{2k}
can uniquely reproduce the main features of p(v3,x , v3,y).

However, it is not the case for n = 2 due to the non-
zero averaged ellipticity v̄2. The distribution p(v2,x , v2,y) is
not rotationally symmetric and reshuffling (v2,x , v2,y) leads
to information loss from the original p(v2,x , v2,y). There-
fore, there is at least some information in p(v2,x , v2,y) that
we cannot obtain from p(v2) or c2{2k}. Nevertheless, it is
still possible to find some features of p(v2,x , v2,y) approx-
imately. For instance, we mentioned earlier in this section
that the skewness of this distribution in the v2,x direction is
proportional to v2{4} − v2{6}.

The other important feature of p(v2,x , v2,y) is v̄2, for
which it is not obvious how to find it from c2{2k}. In fact,
we are able to approximately find v̄2 in terms of c2{2k} by
approximating p(v2,x , v2,y). The most trivial approximation
is a two-dimensional Dirac delta function located at (v̄2, 0),

p(v2,x , v2,y) � δ(v2,x − v̄2, v2,y).

This corresponds to the case that there are no fluctuations,
and the only source for ellipticity is coming from an ideally
elliptic initial geometry. Considering Eq. (5), the moments
〈v2q

2 〉 can easily be obtained as follows:

〈v2q
2 〉 =

∫
dv2,xdv2,y(v

2
2,x + v2

2,x )
qδ(v2,x − v̄2, v2,y

= v̄
2q
2 . (11)
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Now by using Eq. (8), we find c2{2} = v̄2
2, c2{4} = −v̄4

2,
c2{6} = 4v̄6

2, etc. It is common in the literature to show the
averaged ellipticity v̄2, which is approximated by c2{2k} as
v2{2k}. Note that the quantity v2{2k} is defined for the case
that the flow harmonic distribution is considered to be a delta
function. Furthermore, we can assume the ideal case: that for
any harmonics the distribution p(vn,x , vn,x ) has a sharp and
clean peak around v̄n . By the assumption mentioned, we have
[14]

v2
n{2} = cn{2},

v4
n{4} = −cn{4},

v6
n{6} = cn{6}/4,

v8
n{8} = −cn{8}/33.

(12)

Nevertheless, we know that v̄n can be non-zero for odd n
when the collided ions are not spherical or have different
sizes.9

The delta function approximation for p(v2,x , v2,y) is not
compatible with the experimental observation. In this case,
we have

v2{2} = v2{4} = · · · = v̄2, (13)

by definition, while different v2{2k} have different values
based on the experimental observation. Specifically, the dif-
ference between v2{2} and other v2{2k} for k > 1 is consid-
erably large [20,21].

We can improve the previous approximation by replacing
the delta function with a Gaussian distribution. In this case,
we model the fluctuations by the width of the Gaussian dis-
tribution. Let us assume that p(v2,x , v2,y) � N (v2,x , v2,y)

where N (v2,x , v2,y) is a two-dimensional Gaussian distribu-
tion located at (v̄2, 0),10

N (v2,x , v2,y) = 1

2πσ 2 e− (v2,x−v̄2)2+v2
2,y

2σ2 . (14)

Using the above and Eq. (5), one can simply find p(v2) =
BG(v2; v̄2) where BG(v2; v̄2) is the well-known Bessel
Gaussian distribution [10,22],

BG(v2; v̄2) =
( v2

σ 2

)
I0

(
v2v̄2

σ 2

)
e− v2

2+v̄2
2

2σ2 . (15)

Here, I0(x) is the modified Bessel function of the first kind.
Now, we are able to find the moments 〈v2q

2 〉 by using this
approximated p(v2). According to the relations in Eq. (8),

9 The assumptions which have been used in Ref. [14] to find Eq. (12)
are exactly equivalent to considering p(vn,x , vn,y) as a delta function.
10 We consider the reasonable assumption that the widths of the Gaus-
sian distribution in the v2,x and v2,y directions are the same.

we find

v2{2} =
√

v̄2
2 + 2σ 2

v2{4} = vn{6} = vn{8} = · · · = v̄2,

(16)

where we used the notation v2{2k} introduced in Eq. (12).
This result explains the large difference between v2{2} and
v2{2k} for k > 1. In fact, the presence of fluctuations is
responsible for it. This description for the difference between
v2{2} and other flow harmonics was argued first in Ref. [22].
It is found that the splitting between v2{2} and other flow
harmonics contains information from the two-dimensional
distribution [22].

The above two examples lead to the following remarks:

– In order to relate v̄n to cn{2k}, one needs to estimate the
shape of p(vn) where v̄n is implemented in this estima-
tion explicitly. We show this estimated distribution by
p(vn; v̄n).

– One can check the accuracy of the estimated distribu-
tion by studying the fine-splitting vn{2k} − vn{2�} and
comparing it with the experimental data.

We should say that the first remark is very strong and we
can estimate v̄n by a weaker condition. Obviously, if we esti-
mate only one moment or cumulant of p(vn) as a function
of v̄n , in principle, we can estimate v̄n by comparing the
estimated moment or cumulant with the experimental data.
But the question is how to introduce such a reasonable esti-
mation practically. In the following sections, we introduce
a method to estimate v̄n from a minimum information of
p(vn). One notes that v̄2 = v2{4} = · · · is true only if we
approximate p(v2) by a Bessel–Gaussian distribution. In the
next section, we find an approximated distribution around
Bessel–Gaussianity.

3 Radial-Gram–Charlier distribution and new
cumulants

In Sect. 2.2, we argued that the quantity v̄n , which is truly
related to the geometric features of the collision, can be
obtained by estimating a function for p(vn,x , vn,y). We
observed that the Dirac delta function choice for p(vn,x , vn,y)

leads to v̄n = vn{2k} for k > 0, while by assuming the dis-
tribution to be a 2D Gaussian located at (v̄n, 0) (the Bessel–
Gaussian in one dimension) we find v̄n = vn{2k} for k > 1.
One notes that in modeling the harmonic distribution of the
flow by a delta function or Gaussian distribution, the param-
eter v̄n is an unfixed parameter, which is eventually related
to the vn{2k}. In any case, the experimental observation indi-
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cates that thevn{2k} are split; therefore, the above two models
are not accurate enough.

Instead of modeling p(vn,x , vn,y), we will try to model
p(vn) with an unfixed parameter v̄n , namely p(vn; v̄n). In
this section, we introduce a series for this distribution such
that the leading term in this expansion is the Bessel–Gaussian
distribution. The expansion coefficients would be a new set
of cumulants that specifies the deviation of the distribution
from Bessel–Gaussianity. In fact, by using these cumulants,
we would be able to model p(vn; v̄n) more systematically.

It is well known that a given distribution can be approxi-
mated by a Gram–Charlier A series which approximates the
distribution in terms of its cumulants (see Appendix B). Here
we use this concept to find an approximation for p(vn; v̄n)

in terms of the cumulants cn{2k}. One of the formal methods
of finding the Gram–Charlier A series is using orthogonal
polynomials. In addition to this well-known method, we will
introduce an alternative method, which is more practical for
finding the series of a one-dimensional p(vn; v̄n) around the
Bessel–Gaussian distribution.

3.1 Gram–Charlier A series: 1D distribution with support R

Before finding the approximated distribution around the
Bessel–Gaussian, let us have practice with the alternative
method of finding Gram–Charlier A series by applying it to a
one-dimensional distribution p(x) with support (−∞,∞).11

This method will be used in the next section to find the radial-
Gram–Charlier distribution for arbitrary harmonics.

The characteristic function for a one-dimensional distri-
bution is 〈eikx 〉, and the cumulants κn of such a distribution
are found from log〈eikx 〉 = ∑

n=1(ik)
nκn/n!. The first few

cumulants are presented in the following:

κ1 = 〈x〉, (17a)

κ2 = 〈x2〉 − 〈x〉2, (17b)

κ3 = 〈x3〉 − 3〈x〉〈x2〉 + 2〈x〉3, (17c)

κ4 = 〈x4〉 − 4〈x〉〈x3〉 − 3〈x2〉2, (17d)

+12〈x〉2〈x2〉 − 6〈x〉4,

where the averages are performed with respect to p(x) in the
right-hand side.

Now, consider an approximation for the original distribu-
tion where its cumulants are coincident with the original p(x)
only for a few first cumulants. We show this approximated
distribution by pq(x) where the cumulants κn for 1 ≤ n ≤ q
are the same as the cumulants of the original p(x).

11 A standard method for finding the Gram–Charlier A series of p(x)
is reviewed in Appendix B.1.

Assume the following ansatz for this approximated distri-
bution:

pq(x) = 1√
2πσ

e− x2

2σ2

q∑
i=0

Ti (x), (18)

where

Ti (x) =
i∑

k=0

ai,k x
k a0,0 = 1. (19)

In the above,ai,k (excepta0,0) are unknown coefficients. Note
that p0(x) is nothing but a Gaussian distribution located at
the origin. One can find the unknown coefficients ai,k by
using the equations in (17) together with the normalization
condition iteratively. In what follows we show how it works:
let us present the moments obtained from pq(x) as 〈xm〉q .
Also, assume that the first moment (which is the first cumu-
lant too) is zero. At the end, we recover the first moment by
applying a simple shift. Now for the first iteration (q = 1)
we have 〈1〉1 = 1 + a1,0 = 1 from the normalization con-
dition and 〈x〉1 = σ 2a1,1 = κ1 = 0 from Eq. (17a). It is a
linear two-dimensional system of equations and the solution
is a1,0 = a1,1 = 0. In the next step (q = 2), we have three
equations [one normalization condition and the two equa-
tions (17a) and (17b)]. By considering κ2 = σ 2, we find
a2,0 = a2,1 = a2,2 = 0. However, the third iteration is
non-trivial. The equations are

〈1〉3 = 1 + a3,0 + σ 2a3,2 = 1,

〈x〉3 = σ 2a3,1 + 3σ 4a3,3 = κ1 = 0,

〈x2〉3 = σ 2 + σ 2a3,0 + 3σ 4a3,2 = σ 2,

〈x3〉3 = 3σ 4a3,1 + 15σ 6a3,3 = κ3.

The above equations can be solved easily, a3,0 = a3,2 =
0 and a3,1 = −3σ 2a3,3 = −κ3/(2σ 4), which leads
to T3(x) = κ3/(6σ 3)He3(x/σ). Here, Hen(x) is the
probabilistic Hermite polynomial defined as Hen(x) =
ex

2/2(−d/dx)ne−x2/2. We are able to continue the iterative
calculations to any order and find

p(x) = 1√
2πσ

e− (x−κ1)2

2σ2
∑
n=0

hn
n! Hen((x − κ1)/κ

1/2
2 ). (20)

In the above, h0 = 1 and h1 = 0 together with

h3 = γ1,

h4 = γ2,

h5 = γ3,

h6 = γ4 + 10γ 2
1 ,

... (21)
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where γn are the standardized cumulants defined as

γn−2 = κn

κ
n/2
2

. (22)

Note that in Eq. (20), we arbitrarily shifted the distribution to
the case that the first moment of p(x) is κ1. In addition, we
assumed that the width of the Gaussian distribution is exactly
equal to κ2. Equation (20) is the well-know Gram–Charlier
A series for the distribution p(x).

One could consider Eq. (20) as an expansion in terms of
Hermite polynomials. Using the fact that Hen(x) are orthog-
onal with respect to the weight w(x) = e−x2/2 /

√
2π ,∫ ∞

−∞
dx w(x)Hem(x)Hen(x) = m! δmn,

we find the coefficients hn in Eq. (21) (see Red. [38]). To
this end, we change the coordinate as x → (x − κ1)/σ . As
a result, we have

hn =
∫ ∞

−∞
dx p(x)Hen((x − κ1)/σ ).

By using the series form of the Hermite polynomial, we find
hn as a function of p(x) moments. Rewriting moments in
terms of cumulants [reverting the equations in (17)], one finds
Eq. (20).

3.2 Radial-Gram–Charlier distribution

Using standard methods, we can extend the one-dimensional
Gram–Charlier A series (20) to two dimensions (see
Appendix B.2),

p(r) = N (r)
∑

m,n=0

hmn

m!n!Hem

(
x − μx

σx

)
Hen

(
y − μy

σy

)
,

(23)

wherehmn are written in terms of two-dimensional cumulants
Amn [see Eqs. (72)–(74)], and N (r) is a two-dimensional
Gaussian distribution similar to Eq. (14) located at (μx , μy)

and σx �= σy .
It is worth noting that the concept of a 2D Gram–Charlier

A series has been employed in heavy ion physics first in Ref.
[30] by Teaney and Yan. They used this series to study the
energy density of a single event.12 However, we use this to
study the harmonic distribution of the flow in the present
work.

Now let us consider a two-dimensional Gram–Charlier
A series for p(vn,x , vn,y). By this consideration, one can
find a corresponding series for p(vn) by averaging out the
azimuthal direction. We should say that the results of this
averaging for the second and third harmonics are different.

12 We explicitly connect Eq. (23) to the results in Ref. [30] in
Appendix B.3.

For n = 3, the distribution p(v3,x , v3,y) is rotationally sym-
metric and, as we already remarked in the previous sec-
tion, the whole information of the distribution is encoded
in c3{2k}. As a result, we are able to rewrite the 2D cumu-
lants Amn in terms of c3{2k}. It has been done in Ref. [28],
and an expansion for p(v3) has been found. On the other
hand, for n = 2 the whole information of p(v2,x , v2,y) is not
in c2{2k}. Therefore, we are not able to rewrite all Amn in
terms of c2{2k} after averaging out the azimuthal direction
of a 2D Gram–Charlier A series.

For completeness, we study the azimuthal averaging of
Eq. (23) in the most general case in Appendix C. In this
appendix, we show that the distribution in Ref. [28] is repro-
duced only by assuming A10 = A01 = 0. Also, we dis-
cuss the information we find from the averaged distribution
compared to the two-dimensional one. However, the method
which we will follow in this section is different from that
pointed out in Appendix C. Consequently, the most general
series we will find here is not coincident with the distribution
obtained in Appendix C.

Before finding a Gram–Charlier A series for arbitrary
harmonic, let us find the series for odd harmonics (men-
tioned in Ref. [28]) by employing orthogonal polynomi-
als. The result will be used to find the series for the most
general case later. Since we have v̄3 = 0 for n = 3, the
Bessel–Gaussian distribution reduces to a radial Gaussian
distribution as (v3/σ

2)e−v2
3/(2σ 2). Moreover, the Laguerre

polynomials Ln(x) are orthogonal with respect to the weight
w(x) = e−x in the range [0,∞),∫ ∞

0
dx e−x Ln(x)Lm(x) = δmn .

By changing the coordinate as x = v2
3/(2σ 2), the measure

w(x)dx changes to (v3/σ
2)e−v2

3/(2σ 2)dv3; the radial Gaus-
sian distribution appears as the weight for orthogonality of
Ln(v

2
3/(2σ 2)). Hence, we can write a general distribution

p(v3) like

p(v3) = v3

σ 2 e− v2
3

2σ2

∞∑
n=0

(−1)n�odd
2n

n! Ln(v
2
3/(2σ 2)), (24)

where the coefficients �odd
2n can be found by13

�odd
2n = n!(−1)n

∫ ∞

0
dv3 p(v3)Ln(v

2
3/(2σ 2)). (25)

Considering the series form of the Laguerre polynomial,

Ln(x) =
n∑

k=0

(
n

k

)
(−1)k

k! xk, (26)

13 In Eq. (24), we chose the coefficient expansion as
(−1)n�odd

2n
n! for con-

venience.
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we immediately find �odd
n in terms of moments 〈v2q

3 〉. Then

one can invert the equations in (8) to write the moments 〈v2q
3 〉

in terms of cumulants c3{2q}. If we do so and by choosing
2σ 2 = 〈v2

3〉 = c3{2},14 we find �odd
0 = 1 and �odd

2 = 0
together with

�odd
4 = Γ odd

2 ,

�odd
6 = Γ odd

4 ,

�odd
8 = Γ odd

6 + 18(Γ odd
2 )2,

�odd
10 = Γ odd

8 + 100(Γ odd
2 )(Γ odd

4 ),

(27)

where in the above we defined the standardized cumulants
Γ odd

2k as

Γ odd
2k−2 = c3{2k}

ck2{2} , (28)

similar to Eq. (22).
The expansion (24) together with Eq. (27) is exactly the

series found in Ref. [28] which is true for any odd n. This
approximated distribution is called the radial-Gram–Charlier
(RGC) distribution in Ref. [28].

It should be noted that it is a series for the case that v̄n =
0. In the following, we will try to find a similar series for
p(vn; v̄n) where v̄n could be non-vanishing.

In order to find the Gram–Charlier A series for the dis-
tribution p(vn, ; v̄n) in the general case, we come back to
the iterative method explained in Sect. 3.1 where we found
the distribution (20) by considering the ansatz (18) and iter-
atively solving the equations in (17).

Here, we assume that pq(vn; v̄n) is an approximation of
p(vn) where only the cumulants cn{2k} with 1 ≤ k ≤ q are
the same as the original distribution. Now suppose an ansatz
that has the following properties:

– Its leading order corresponds to the Bessel–Gaussian dis-
tribution.

– In the limit v̄n → 0, the distribution approaches (24).

Using such an ansatz, we calculate the moments 〈v2k
n 〉 with

some unknown parameters and find them by solving the equa-
tions in (8) iteratively.

We introduce the following form for the ansatz:

pq(vn; v̄n) =
( vn

σ 2

)
e− v2

n+v̄2
n

2σ2

q∑
i=0

Qi (vn; v̄n), (29)

where

Qi (vn; v̄n) =
i∑

k=0

ai,k

(
−vn

v̄n

)k

Ik

(
v2v̄2

σ 2

)
. (30)

14 Refer to the footnote 15 and set A10 = 0.

One simply finds that by choosing a0,0 = 1 the distribution
p0(vn; v̄n) is the Bessel–Gaussian distribution. On the other
hand, the function Qi (vn; v̄n) in the limit v̄n → 0 reduces to

i∑
k=0

ai,k
(−1)k

k!
( vn

2σ 2

)k
. (31)

By comparing the above expansion with Eq. (26), we realize
that if we choose ai,k ∝ (i

k

)
, Qi (vn; v̄n) is proportional to

Ln(v
2
n/(2σ 2)). In order to reproduce Eq. (24), we choose

ai,k = �2i
(−1)i

i !
(
i

k

)
, (32)

where �2i are unknown coefficients.
Similar to Sect. 3.1, we indicate the moments of pq(vn; v̄n)

by 〈v2m
n 〉q . For the first iteration, we have the normalization

condition 〈1〉0 = �0 = 1. For the second iteration, the nor-
malization condition is trivially satisfied, 〈1〉1 = 1, while
from Eq. (8a) we have 〈v2

n〉1 = v̄2
n + 2σ 2(1 + �2) = cn{2}.

At this stage, we choose �2 = 0 to have15

cn{2} = v̄2
n + 2σ 2. (33)

For the next iteration, we find that the normalization con-
dition and Eq. (8a) are automatically satisfied, 〈1〉2 = 1,
〈v2

n〉2 = cn{2}, while Eq. (8b) leads to a non-trivial equation
for �4,

cn{6} = �4(cn{2} − v̄2
n)

2 − v̄4
n . (34)

Using the above equation, we immediately find �4. In a simi-
lar way, we are able to continue this iterative calculation and
find �2q from the only non-trivial algebraic equation at each
step. A summary of the few first results is as follows: �0 = 1
and �2 = 0; moreover,

�4 = cn{4} + v̄4
n

(cn{2} − v̄2)2 ,

�6 = cn{6} + 6cn{4}v̄2
n + 2v̄6

n

(cn{2} − v̄2)3 ,

�8 = cn{8} + 12cn{6}v̄2
n + 18c2

n{4} + 42cn{4}v̄4
n + 9v̄8

n

(cn{2} − v̄2)4 .

(35)

One may wonder if, similar to the two previous cases, we
are able to write all the coefficients �2k in terms of some stan-

15 Obviously, there is no one-to-one correspondence between cn{2k}
and Amn due to the loss of information by averaging. Specifically, one
find cn{2} = A2

10+A2
01+A20+A02 (see Eq. (84a)). Note that by assum-

ing ΦRP = 0 we have A01 = 〈vn,y〉 = 0 and A10 = 〈vn,x 〉 = v̄n . Also,
it is a reasonable assumption that A20 � A02 [see Refs. [27,28]]. By
choosing σ = σx = σy = A20 � A02, one approximates p(vn,x , vn,y)

around a symmetric Gaussian distribution located at (v̄n, 0) where its
width is exactly similar to the distribution p(vn,x , vn,y). In this case,
we find cn{2} = v̄2

n + 2σ 2.
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dardized cumulants. These standardized cumulants should
smoothly approach the contents of Eq. (28). In fact, it moti-
vates us to define a new set of cumulants,

qn{2} = cn{2} − v̄2
n, (36a)

qn{4} = cn{4} + v̄4
n, (36b)

qn{6} = cn{6} + 6cn{4}v̄2
n + 2v̄6

n, (36c)

qn{8} = cn{8} + 12cn{6}v̄2
n + 6cn{4}v̄4

n − 9v̄8
n, (36d)

qn{10} = cn{10} + 20(cn{8} − 12c2
n{4})v̄2

n, (36e)

+30 cn{6}v̄4
n − 480 cn{4}v̄6

n − 156 v̄10
n .

Now, we can define the standardized form of this new set of
cumulants as follows:

Γ2k−2 = qn{2k}
qkn {2} . (37)

Using the above definitions, we can rewrite the coefficients
�2k in the following form:

�4 = Γ2,

�6 = Γ4,

�8 = Γ6 + 18Γ 2
2 ,

�10 = Γ8 + 100Γ2Γ4,

(38)

which are in agreement with the equations in (27) in the limit
v̄n → 0.

Let us to summarize the series in (29) as follows:

p(vn; v̄n) = vn

σ 2 e− v2
n+v̄2

n
2σ2

∞∑
i=0

(−1)i�2i

i ! Q̃i (vn; v̄n), (39)

where Q̃i (vn; v̄n) is similar to Qi (vn; v̄n) in Eq. (30) up to a
numerical factor,

Q̃i (vn; v̄n) = (−1)i�2i

i ! Qi (vn; v̄n)

=
i∑

k=0

(
i

k

) (
−vn

v̄n

)k

Ik

(
vn v̄n

σ 2

)
.

(40)

Recall that the two distributions (20) and (24) could be
found by using the orthogonality of Hen(x) and Ln(x). We
can ask if there is any similar approach to finding Eq. (39).
Surprisingly, Q̃i (vn; v̄n) is related to a generalized class of
orthogonal polynomials which are calledmultiple orthogonal
polynomials (see Ref. [39]). These generalized versions of
the polynomials are orthogonal with respect to more than one
weight. Specifically, the polynomials related to Q̃i (vn; v̄n)

have been introduced in Ref. [40]. In order to avoid relatively
formal mathematical material here, we refer the interested
reader to Appendix D where we briefly review the multiple
orthogonal polynomials and re-derive Eq. (39) by employing
them.

An important point as regards the distribution (39) is the
convergence of its summation. For sure, finding the conver-
gence condition of the infinite sum in Eq. (39) is beyond the
scope of the present paper. However, if we find that at least a
few first terms in Eq. (39) are sufficient to give a reasonable
approximation of p(vn), then there is no concern about the
convergence or divergence of this series practically.16

In order to show in how far the distribution (39) is a good
approximation, we need to have a sample for p(vn) where
its v̄n is known. To this end, we generate heavy ion collision
events by employing a hydrodynamic based event genera-
tor which is called iEBE-VISHNU [41]. The reaction-plane
angle is set to zero in this event generator. Thus, we can
simply find p(vn,xvn,y) and subsequently v̄n . The events are
divided into 16 centrality classes between 0 to 80 percent and
at each centrality class we generate 14000 events. The initial
condition model is set to be MC-Glauber.

Let us recover the notation in Eq. (29) and assume that
pq(vn; v̄n) is the distribution (39) where the summation is
done up to i = q. We first compute the c2{2k} and v̄2 from
iEBE-VISHNU output and plug the results in Eq. (39). After
that we can compare the original simulated distribution p(vn)
with the estimated pq(v2; v̄2). The results are presented in
Fig. 1 for the events in 65–70%, 70–75% and 75–80% cen-
trality classes, in which we expect the distribution is devi-
ated from the Bessel–Gaussian. In this figure, the black curve
corresponds to the Bessel–Gaussian distribution (p0(vn; v̄n))
and the red, green and blue curves correspond to pq(v2; v̄2)

with q = 2, 3 and 4, respectively. Recall that q = 1 has
no contribution because �2 vanishes. As can be seen in the
figure, the black curve shows that the distribution is deviated
from Bessel–Gaussian and the distribution pq(v2; v̄2) with
q �= 0 explains the generated data more accurately.

In order to compare the estimated distributions more quan-
titatively, we plotted χ2/NDF, comparing the estimated dis-
tribution pq(v2; v̄2) with iEBE-VISHNU output. We plotted
the results in Fig. 2 for q = 0, 2, 3, 4, 5, 6 and 7 for the events
in the 65–70%, 70–75% and 75–80% centrality classes. The
value of χ2/NDF associated with the Bessel–Gaussian dis-
tribution is much greater than the others. Therefore, we mul-
tiplied its value by 0.878 to increase the readability of the
figure.

As Fig. 2 demonstrates, the Bessel–Gaussian distribution
has less compatibility with the distribution. In addition, the

16 This is an argument presented in Ref. [45]. In the same reference
the convergence condition of Eq. (20) (which is not our main interest
here) can be found. It is shown that if p(x) is a function of bounded
variation in the range (−∞,∞) and the integral

∫ ∞
−∞ dx e−x2/4 p(x)

is convergent, then the series (20) is convergent. Otherwise it might
diverge.
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Fig. 1 Comparing the harmonic distribution of the flow from iEBE-
VISHNU (shaded region) and the Gram-Charlier A series different
approximations

quantity χ2/NDF becomes closer to 1 by increasing q.17 It is
relatively close to 1 for higher values of q. One may deduce
from the figure that the series converges because χ2/NDF for
q = 6 and q = 7 are very close to each other and very close
to 1. However, we should say that although it is an strong
evidence for the series convergence, there is no guaranty that

17 As an exception, the quantity χ2/NDF increases slightly in moving
from q = 2 to q = 3 for the events in the 65–70% centrality class.
However, the overall trend is decreasing in general.
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Fig. 2 Examining the accuracy of the Gram–Charlier A series with the
actual distribution obtained from simulation by studying χ2/NDF

by adding higher terms the series remain stable. Additionally,
we checked the convergence of the series for the case of
interest in heavy ion physics. This convergence might not
be true for an arbitrary distribution in general. In any case,
what we learn from the above arguments is that at least a
few first terms in the series (39) gives a good approximation
compared to the original harmonic distribution of the flows.

3.3 New cumulants

Let us come back to the cumulants in Eq. (36) and point out
their properties. Considering the new cumulants qn{2k}, we
note the following remarks:

– Referring to Eq. (13), all the cumulants qn{2k} for k ≥ 1
are vanishing for the distribution δ(vn,x − v̄n, vn,y).

– Referring to Eq. (16), the only non-zero qn{2k} for the
Bessel–Gaussian distribution is qn{2} = 2σ 2.

– In the limit v̄n → 0, the cumulants qn{2k} approach
cn{2k}.

The above remarks indicate that qn{2k} contains information
originating from the fluctuations only and the explicit effect
of the collision geometry v̄n is extracted from it.18

It is important to note that although we have found qn{2k}
by RGC distribution inspiration, we think it is completely
independent of that and there must be a more direct way to
find qn{2k} independent of the RGC distribution.

Concerning the difference between cn{2k} and qn{2k} in
terms of the Gram–Charlier expansion, we should mention
that the cumulants cn{2k} appear as the coefficients of the

18 It is important to note that, although we extracted the explicit col-
lision geometry effect but its footprint still exists in the fluctuations
implicitly; e.g. for v̄2 �= 0, the distribution is skewed, while for v̄2 = 0
it is not.
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Fig. 3 The cumulants q2{2k}
obtained from the
iEBE-VISHNU event generator
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expansion when we expand the distribution p(vn) around
a radial-Gaussian distribution [see Eq. (24)] while qn{2k}
are those that appear in the expansion around the Bessel–
Gaussian distribution. Now, if the distribution we study is
more Bessel–Gaussian rather than the radial-Gaussian, we
need infinitely many cn{2k} cumulants to reproduce the cor-
rect distribution. For instance, for the second harmonics all
v2{2k} are non-zero and have approximately close values.
It is because we are approximating a distribution which is
more Bessel–Gaussian rather than radial-Gaussian. On the
other hand for the third harmonics, we expect that the under-
ling distribution is more radial-Gaussian, and practically we
see a larger difference between v3{2} and v3{4} compared to
the second harmonics [8]. Based on the above arguments, we
deduce that the qn{2k} are a more natural choice for the case
that v̄n is non-vanishing.

Nevertheless, the cumulants qn{2k} (unlike cn{2k}) are
not experimentally observable because of the presence of v̄n
in their definition. However, they are useful to systematically
estimate the distribution p(vn) and consequently estimate the
parameter v̄n . This will be the topic of the next section.

4 Averaged ellipticity and harmonic fine-splitting of the
flow

In this section, we would like to exploit the cumulants qn{2k}
to find an estimation for v̄n . Note that if we had prior knowl-
edge about one of the q2{2k} or even any function of them

[for instance g(q2{2}, q2{4}, . . .)], we could find v̄n exactly
by solving the equation g(q2{2}, q2{4}, . . .) = 0 in principle.
Because the cumulants cn{2k} are experimentally accessible,
one would practically solve the equation g(v̄n) = 0. Unfor-
tunately we have no such prior knowledge as regards q2{2k},
but we are still able to estimate v̄n approximately by assum-
ing some properties for p(vn).

Any given distribution can be quantified by qn{2k}. While
p(vn) is approximately Bessel–Gaussian, we can guess that

qn{2} � qn{4} � qn{6} � qn{8} � · · · .

In fact, this is confirmed by the simulation. The cumulants
q2{2k} are obtained from the iEBE-VISHNU output and pre-
sented in Fig. 3. Therefore, as already remarked, we expect
that the few first cumulants qn{2k} are enough to quantify
the main features of a distribution near Bessel–Gaussian.

Let us concentrate on n = 2 from now on. Recall that
q2{4} = q2{6} = · · · = 0 corresponds to a Bessel–Gaussian
distribution. This choice of cumulants is equivalent to a dis-
tribution with v2{4} = v2{6} = · · · , which is not com-
patible with the splitting of v2{2k} observed in the exper-
iment. As we discussed at the beginning of this chapter,
we find v̄2 by estimating any function of cumulants q2{2k}.
Here we use the most simple guess for this function, which
is g(q2{2}, q2{4}, . . .) = q2{2k}. Therefore, the equation
q2{2k} = 0 for each k ≥ 1 corresponds to a specific esti-
mation for p(v2).

For k = 1, we have q2{2} = 0, which means v̄2 = v2{2}.
For this special choice, all the Γ2k−2 in Eq. (37) diverge
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unless we set all other q2{2k} to zero too. As a result, this
choice corresponds to the delta function for p(v2,x , v2,y).

The first non-trivial choice is q2{4} = 0. Referring to
Eq. (36b), we find

v̄2{4} = v2{4}, (41)

where in the above v̄2{4} refers to v̄2, which is estimated
from q2{4} = 0. This is exactly the assumption that has been
made in Ref. [27] to find the skewness experimentally. By
estimating v̄2, we find the other q2{2k}. We present a few
first cumulants in the following:

q2{4} = 0 (42a)

q2{6} = −24 v5
2{6} Δ2{4, 6} + O(Δ3/2) (42b)

q2{8} = −24 v7
2{8} (Δ2{4, 6} − 11Δ2{6, 8})

+O(Δ3/2) (42c)

q2{10} = 240 v9
2{10} (3Δ2{6, 8} − 19Δ2{8, 10})

+O(Δ3/2), (42d)

where we used the notation

Δn{2k, 2�} = vn{2k} − vn{2�} (43)

for the fine-splitting between different vn{2k}’s. Further-
more, in Eq. (42) we expanded q2{2k} in terms of fine-
splitting Δ2{2k, 2�}.

Note that the above q2{2k} are characterizing an estimated
distribution p(v2; v̄2{4}). For such an estimated distribution,
q2{6} is proportional to the skewness introduced in Ref. [27].
Interestingly, q2{8} is proportional to Δ2{4, 6}−11Δ2{6, 8},
which has been considered to be zero in Ref. [27]. However,
here we see that this combination can be non-zero and its
value is related to the cumulant q2{8}. In fact, the same quan-
tity can be computed for a generic narrow distribution [29].
In turns out that this quantity can be non-vanishing in the
small fluctuation limit.

The equations in (42) indicate that by assuming q2{4} = 0
all the other cumulants of p(v2; v̄2{4}) are written in terms
of the fine-splitting Δ2{k, �}. Therefore, the distribution
p(v2; v̄2{4}) satisfies all the fine-splitting structure of v2{2k}
by construction.

One can simply check in how far the estimation v̄2{2k} is
accurate by using a simulation. We exploit again the iEBE-
VISHNU event generator to compare the true value of v̄2

(v̄True
2 ) with v̄2{4} = v2{4}. The result is depicted in Fig. 4

by brown and green curves for v̄True
2 and v̄2{4}, respectively.

As the figure illustrates, v̄2{4} is not compatible with v̄True
2 for

centralities higher than 50% where we expect that a Bessel–
Gaussian distribution does not work well. It should be noted
that all other v2{2k} for k > 2 never are close to the true
value of v̄2 in higher centralities because all of them are very
close to v2{4}.
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v̄2{4}
v̄2{6}
v̄2{8}
v̄2{10}

iEBE-VISHNU

Fig. 4 Using iEBE-VISHNU output, the true value of v̄2 is compared
with the estimators v̄2{2k}

In order to improve the estimation of v̄2, we set q2{6} = 0
in Eq. (36c). This equation has six roots, where only two
of them are real and positive. In addition, as can be seen
from Fig. 4, the true value of v̄2 is always smaller than v2{4}
(= v̄2{4}) in higher centralities. In fact, it is true for all v2{2k}
for k > 2. Based on this observation, we demand the root
to be smaller than v2{4}. In fact, we have checked that the
equation q2{2k} = 0 for k = 3, 4, 5 has only one root which
is real, positive and smaller than v2{2k} for k = 2, 3, 4, 5.

In Fig. 4, v̄2{6} is plotted by a red curve which is obtained
by solving q2{6} = 0 numerically. As can be seen, it is clorse
to the real value of v̄2 rather than v2{4}. In fact, we are able
to find this root analytically too,

v̄2{6} = v2{6} − √
v2{6}Δ2{4, 6} + O(Δ), (44)

which is compatible with the red curve in Fig. 4 with good
accuracy. Using the estimator (44), we find the other q2{2k}
as follows:

q2{4} = −4 v3
2{6} √

v2{6}Δ2{4, 6} + O(Δ), (45a)

q2{6} = 0, (45b)

q2{8} = 264 v7
2{8} (Δ2{6, 8} − Δ2{4, 6})

+O(Δ3/2), (45c)

q2{10} = 240 v9
2{10} (3Δ2{6, 8} − 19Δ2{8, 10})

+O(Δ3/2). (45d)

By comparing Eqs. (42) and (45), we note that q2{2k} (except
q2{10}) are different because the estimated distributions
p(v2; v̄2{4}) and p(v2; v̄2{6}) are different.

We can go further and estimate v̄2 by solving the equation
q2{8} = 0. The result is plotted by a blue curve in Fig. 4.
Also, its analytical value can be found as follows:

v̄2{8} = v2{8} − 1√
10

√
v2{8} (11Δ2{6, 8} − Δ2{4, 6})

+O(Δ). (46)
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Fig. 5 The quantity δ2k for k = 2, 3, 4 and 5 with respect to centrality
class

As Fig. 4 indicates, comparing v̄2{6}, the estimator v̄2{8}
is a worse estimation of v̄2 (except between the range 30% to
50% centralities). We might expect that because q2{8} �
q2{6} (see Fig. 3), the quantity v̄2{8} should be a better
approximation than v̄2{6}. But this argument is not true.
In fact, the cumulants q2{2k} for the true distribution are
small, but they are non-zero at any centralities. Let us rewrite
Eqs. (36b)–(36d) as follows:

v̄4
2 − δ4v

4
2{4} = 0, (47a)

2v̄6
2 − 6v4

2{4}v̄2
2 + 4 δ6 v6

2{6} = 0, (47b)

9v̄8
2 + 6v4

2{4}v̄4
2 − 48v6

2{6}v̄2
2 + 33 δ8 v8

2{8} = 0, (47c)

where

δ2k = 1 − q2{2k}
c2{2k} . (48)

The estimator v̄2{2k} (k = 2, 3, 4) can be found by solv-
ing Eqs. (47)a,b,c) where we set δ2k = 1. Alternatively, by
employing the actual value of δ2k from the simulation we
find v̄True

2 . In fact, the difference between v̄True
2 and v̄2{2k} is

a manifestation of the inaccuracy in the setting δ2k = 1. In
other words, demanding q2{2k} = 0 is not exactly correct.
Looking at the problem from this angle, by referring to Fig. 4,
we realize that δ4 = 1 is the most inaccurate approximation.
Also, δ6 = 1 is more accurate than δ8 = 1.

By using iEBE-VISHNU generated data, we can check
the accuracy of the δ2k = 1 estimation by comparing dif-
ferent values of δ2k (for k = 2, 3, 4, 5) calculated from the
simulation. The result is plotted in Fig. 5. This figure con-
firms the difference between the estimators v̄2{2k} discussed
above. The quantity δ4 has the greatest deviation from unity.
Also, we see that δ8 deviates from unity for centralities above
55% while δ6 (and δ10) is closer to 1 up to 65% centrality.
Moreover, δ6 (δ10) is larger than δ8 for all centralities. This
can be considered as a reason for the fact that v̄2{8} is less
accurate than v̄2{6} (and v̄2{10}).
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pT > 0.5 GeV

Fig. 6 The averaged flow harmonic estimator v̄2{2k} obtained from
the ATLAS experimental data [18]

Furthermore, let us mention that the cumulant q2{6}
changes its sign (see Figs. 3 and 5) for the centralities around
60–65%. It means it is exactly equal to 0 at a specific point in
this range, and we expect that v̄2{6} becomes exactly equal
to v̄True

2 at this point. This can be seen also in Fig. 4 where
the red curve (v̄2{6}) crosses the brown curve (v̄True

2 ).
The situation for q2{10} is very similar to q2{6}. As a

result, it is not surprising that we find the estimator v̄2{10}
to be similar to v̄2{6}. We have found v̄2{10} by solving
q2{10} = 0 numerically. The result is plotted by a black
curve in Fig. 4. As can be seen, the results of v̄2{6} and
v̄2{10} are approximately similar.

Now, we are in a position to estimate the v̄2 of the real
data by using v̄2{2k}. According to the above discussions,
we expect that v̄2{6}, v̄2{8} and v̄2{10} are closer to the real
value of the averaged ellipticity v̄2 compared to v2{4} (or
any other v2{2k} for k > 2). The result is plotted in Fig. 6.
In finding the estimated v̄2, we employed v2{2k} reported by
the ATLAS collaboration in Ref. [18]. The value of v̄2{4} is
exactly equal to v2{4}, which is plotted by the green curve in
the figure. By plugging experimental values of v2{2k} into
Eqs. (36c), (36d) and (36e) and setting them to 0, we have
numerically found v̄2{6} (red curve), v̄2{8} (blue curve) and
v̄2{10} (black curve), respectively.19 The errors of v̄2{10} are
too large for the present experimental data, and a more precise
observation is needed to find a more accurate estimation.
Exactly similar to the iEBE-VISHNU simulation, the value

19 In detail, all the Eqs. (36c)–(36e) were written in terms of the
moments 〈v2k

2 〉. Considering the reported experimental distribution
p(v2) in Ref. [18], we are able to produce the covariance matrix associ-
ated with statistical fluctuations of the moments 〈v2k

2 〉. Using the covari-
ance matrix, we generated 10,000 random numbers by using a multi-
dimensional Gaussian distribution. Employing each random number,
we solved Eqs. (36c)–(36e) numerically and found the estimated v̄2.
We obtained the standard deviation of the final v̄2 distribution as the
statistical error of the v̄2{2k}.
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of v̄2{8} is between v2{4} and v̄2{6}.20 Therefore, we expect
the true value of the averaged ellipticity to be close to the
value of v̄2{6}.21

In this section, we introduced a method to estimate
p(v2, v̄2). By considering the cumulants c2{2k} of the true
distribution p(v2), we estimated v̄2 by assuming that the
cumulant q2{2k} of p(v2, v̄2) is zero for a specific value of k.
These estimations for q2{6} = 0 and q2{8} = 0 are presented
analytically in Eqs. (44) and (46) and also with red and blue
curves in Fig. 4 numerically. We exploited a hydrodynamic
simulation to investigate the accuracy of our estimations. We
found that v̄2{6} is more accurate than v̄2{8}. Finally, we
found the experimental values for v̄2{6}, v̄2{8} and v̄2{10}.

Until now, we considered the cumulants vn{2k} as an input
to find an estimation for v̄n . In the next section, we try to
restrict the phase space of the allowed region of vn{2k} by
using cumulants qn{2k}.

5 Constraints on the flow harmonics phase space

Referring to Eqs. (44) and (46), we see that these estima-
tors lead to real values for v̄2{4} and v̄2{6} only if we have
11Δ2{6, 8} ≥ Δ2{4, 6} ≥ 0. In this section, we would like
to investigate these constraints and their validity range.

We first consider Eq. (47b). The quantities v2{2k} and v̄2

are real valued. Therefore, it is a well-defined and simple
question what the allowed values are of v2{4} and v2{6} such
that Eq. (47b) has at least one real root. The polynomial in
the left-hand side of Eq. (47b) goes to positive infinity for
v̄2 → ±∞. As a result, it has at least one real root if the
polynomial is negative in at least one of its minima. This
condition is satisfied for

δ
1/6
6 v2{6} ≤ v2{4}. (49)

Since δ6 is unknown, there is no bound on v2{4} and v2{6}.
Although we do not know the exact value of δ6, we know that
0.9 � δ

1/6
6 � 1 based on our simulation (see Fig. 5). In this

case, if we take into account v2{6} ≤ v2{4}, we immediately
deduce the inequality in Eq. (49). On the other hand, we

20 We have computed the quantities ε̄2{4}, ε̄2{6} and ε̄2{8} for an
elliptic-power distribution [25] which is a simple analytical model for
the initial state distribution. We have observed exactly the same hier-
archy, and we have seen that ε̄True is closer to ε̄2{6}. This is evidence
that this behavior is generic for the distributions of interest in heavy ion
physics.
21 Comparing Fig. 4 with Fig. 6, one finds that the values of v̄2{2k}
from simulation are relatively smaller than that obtained from the real
data. This deviation is due to the difference in pT range. In Fig. 6, we
used the data from Ref. [18] where pT > 0.5 GeV, while the output of
the iEBE-VISHNU is in the range pT � 4 GeV. For a confirmation of
iEBE-VISHNU output, we refer the reader to Ref. [20,21], where v2{4}
is reported for pT below 3 GeV. The order of magnitude of v̄2{2k} in
our simulation is compatible with that mentioned in Refs. [20,21].

may observe that v2{6} is slightly greater than v2{4}. This
observation means that δ6 is definitely smaller than unity.
Here, we show both cases by an approximate inequality as
v2{4} � v2{6} due to the smallness of δ

1/6
6 .

Alternatively, it is well known that the initial eccentricity
point (ε2,x , ε2,y) is bounded into a unit circle [25], and it
leads to a negative skewness for p(ε2,x , ε2,y) in non-central
collisions. By considering the hydrodynamic linear response,
the skewness in p(ε2,x , ε2,y) is translated into the skewness
of p(v2,x , v2,y) and the condition v2{4} > v2{6} [27]. How-
ever, it is possible that the non-linearity of the hydrodynamic
response changes the order in the inequality to the case that
v2{6} is slightly greater than v2{4}. This is compatible with
the result which we have found from a more general consid-
eration.

Now, we concentrate on Eq. (47c). Due to the compli-
cations in finding the analytical allowed values of v2{2k},
we investigate it numerically. First, we consider the case
that δ6 = δ8 = 1. In this case, we fix a value for v2{4}
and after that randomly generate v2{6} and v2{8} between
0 to 0.15. Putting the above generated and fixed values
into Eq. (47c), we find v̄2 numerically. If the equation has
at least one real solution, we accept (v2{6}, v2{8}), other-
wise we reject it. The result is presented as scatter plots
in Fig. 7. As can be seen from the figure, some region
of the v2{2k} phase space is not allowed. The condition
11Δ2{6, 8} ≥ Δ2{4, 6} (see the square root in (46)) indicates
that the border of this allowed region can be identified with
v2{8} = (12v2{6} − v2{4})/11 up to order Δ2{2k, 2�}. This
is shown by a red line in Fig. 7. Alternatively, the numerically
generated border of the allowed region slightly deviates from
the analytical border line. It happens for the region that v2{4}
is considerably different from v2{6} and v2{8}. The reason is
that Δ2{2k, 2�} is not small in this region, and the condition
11Δ2{6, 8} ≥ Δ2{4, 6} is not accurate anymore.

Let us combine the constraint obtained from Eqs. (47b)
and (47c). For a more realistic study, we use the ATLAS data
for v2{4} as an input. Instead of using a fixed value for v2{4},
we generate it randomly with a Gaussian distribution where
it is centered around the central value of v2{4}, and we have
a width equal to the error of v2{4}. The result for 40–45%
centralities is presented in Fig. 8a. For this case, we expect
that the Bessel–Gaussian distribution works well. As a result,
we assume δ6 � δ8 � 1 (see Fig. 5). From the ATLAS results
[18], we have v2{4} = 0.112±0.002 in 40–45% centralities.
The black star in the figure shows the experimental value of
(v2{6}, v2{8}) (the ellipse shows the one sigma error without
considering the correlations between v2{6} and v2{8}). The
width of the bands is due to the one sigma error of v2{4}. As
the figure shows, the experimental result is compatible with
the allowed region of (v2{6}, v2{8}).

For more peripheral collisions, we expect a non-zero value
for δ2k . In the 65–70% centrality class (the most peripheral
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Fig. 7 The allowed region of
the v2{6}–v2{8} phase space for
the two fixed values of v2{4}
and δ6 = δ8 = 1
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class of events reported by ATLAS in Ref. [18]), we have
v2{4} � 0.093 ± 0.002. According to our simulation in this
centrality class, we expect the values of δ6 and δ8 to be 0.88
and 0.8, respectively. However, here we do not choose fixed
values for δ6 and δ8. Instead, we generate a random number
between 0.8 to 1 and assign the result to both δ6 and δ8.
The result is presented in Fig. 8b. Referring to this figure,
the allowed region is compatible with the experiment similar
to the previous case. For non-zero values of δ6 and δ8, the
allowed region can be identified by v2{6} = δ

−1/6
6 v2{4} and

v2{8} = δ
−1/8
8 (12v2{6} − v2{4})/11. These two constraints

(similar to Fig. 8a) are presented by two bands in Fig. 8b. In
this case, the width of the bands is due to the inaccuracy in
δ6 and δ8 together with v2{4}.

By considering the correlation between v2{6} and v2{8},
the experimental one sigma region of the v2{6}–v2{8} space
would not be a simple domain. Nevertheless, for the present
inaccurate case which is depicted in Fig. 8, we are able
to restrict the one sigma domain by comparing it with the
allowed region showed by the blue dots.

Let us summarize the constraint on the harmonic fine-
splitting of the flow as follows:

Δ2{4, 6} � 0, (50a)

11Δ2{6, 8} − Δ2{4, 6} � 0, (50b)

which correspond to the region filled by the blue dots in Fig. 8.
Note that we used the approximate inequality in Eq. (50b)
because of not only ignoring δ

1/8
8 but also ignoring terms

with order O(Δ2).
Let us point out that the inequalities in Eq. (50) can be

written as

11

12

v2{8}
v2{4} + 1

12
� v2{6}

v2{4} � 1. (51)

In Ref. [18], the ratios v2{6}/v2{4} and v2{8}/v2{4} have
been calculated experimentally. In Fig. 9, we compare the
relations v2{6}/v2{4} with 11v2{6}/12v2{4} + 1/12. As can
be seen, the conditions in Eq. (51) are satisfied in all cen-
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0.115
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v2{4} = 0.112±0.002
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ATLAS
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Fig. 8 Combining the constraints Δ2{4, 6} � 0 and 11Δ2{6, 8} −
Δ2{4, 6} � 0 to find the allowed region of v2{6}-v2{8} phase space.
In this case, δ6, δ6 and v2{4} are not completely fixed. The region is
compatible with the ATLAS data reported in Ref. [18]

tralities. Furthermore, the inequality in the right-hand side
of Eq. (51) is not saturated, while we need a more accurate
experimental observation to decide on the saturation of the
inequality in the left-hand side.
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Fig. 9 Experimental values of ratios v2{6}/v2{4} and
11v2{6}/12v2{4} + 1/12 with respect to the centrality class from
the ATLAS data [18]

Finally, we would like to mention that Eq. (36e) does not
lead to any constraint on v2{2k} for 0.5 � δ10 � 1. The
reason is that v̄2 = 0 is a minimum of the following relation:

156 v̄10
2 − 480 v4

2{4}v̄6
2 − 120 v6

2{6}v̄4
2

+20(12v8
2{4} + 33v8

2{8})v̄2
2 − 456 δ10v

10
2 {10},

and its value in the minimum is −456 δ10v
10
2 {10}. It means

that for δ10 > 0 the equation always has real roots.

6 Conclusion and outlook

In the present work, we have employed the concept of the
Gram–Charlier A series to relate the distribution p(vn) to
cn{2k}. We have found an expansion around the Bessel–
Gaussian distribution where the coefficients of the expan-
sion have been written in terms of a new set of the cumulants
qn{2k}. We have shown that the corrected Bessel–Gaussian
distribution can fit the actual distribution p(vn) much bet-
ter than the Bessel–Gaussian distribution. The new cumu-
lants qn{2k} were written in terms of cn{2k} and the aver-
aged flow harmonic v̄n . Because the only non-vanishing new
cumulants are qn{2} for a Bessel–Gaussian distribution, they
are a more natural choice to study the distributions near the
Bessel–Gaussian case than cn{2k}.

By using the cumulants qn{2k}, we could systematically
introduce different estimations for p(vn) and consequently
relate the averaged ellipticity v̄2 to the flow harmonic fine-
splitting v2{2k} − v2{2�} for k, � ≥ 2 and k �= �. As a
specific example for the v̄2 estimator, we have shown that
v̄2{6} � v2{6} − √

v2{6}(v2{4} − v2{6}). We have used the
iEBE-VISHNU event generator to compare the true value of
the v̄2 to the estimated one; also, we have shown that the
estimator v̄2{6} is more accurate than v2{2k} for k > 1. As
another application of new cumulants, we have constrained
the phase space of the flow harmonics vn{2k} to the region

v2{4} − v2{6} � 0 and 12v2{6} − 11v2{8} − v2{4} � 0.
It is experimentally confirmed that v2{4} − v2{6} > 0. But
we need a more accurate experimental observation for the
quantity 12v2{6} − 11v2{8} − v2{4}.

One should note that we have shown the compatibility of
the allowed phase space of v2{2k} with experimental results
of (high-multiplicity) Pb–Pb collisions. Recently, the flow
harmonics were measured for p–p, p–Pb and low-multiplicity
Pb–Pb collisions by ATLAS [42]. In the light ofq2{2k} cumu-
lants, it would be interesting to study the similarity and dif-
ference between the splitting of v2{2k} in these systems and
examine the compatibility of the results with the allowed
region comes from q2{2k}.

Furthermore, we have only focused on the distribution
p(vn) in the present study. However, based on the observa-
tion of symmetric cumulants and event-plane correlations,
we expect that a similar systematic study for the distribu-
tion p(v1, v2, . . .) can connect this joint distribution to the
observations. Such a study would be helpful to relate the ini-
tial state event-by-event fluctuations to the observation. This
would be a fruitful area for further work.
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A Two-dimensional cumulants in cartesian and polar
coordinates

The Cartesian cumulants Amn can be found in terms of the
moments 〈xk y�〉 by using the first line of the Eq. (4). A few
first cumulants can be found as follows:

A10 = 〈x〉, (52a)

A01 = 〈y〉, (52b)
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A20 = 〈x2〉 − 〈x〉2, (52c)

A11 = 〈xy〉 − 〈x〉〈y〉, (52d)

A02 = 〈y2〉 − 〈y〉2, (52e)

A30 = 〈x3〉 − 3〈x〉〈x2〉 + 2〈x〉3, (52f)

A21 = 〈x2y〉 − 〈x2〉〈y〉 − 2〈x〉〈xy〉 + 2〈x〉2〈y〉, (52g)

A12 = 〈xy2〉 − 〈x〉〈y2〉 − 2〈xy〉〈y〉 + 2〈x〉〈y〉2, (52h)

A03 = 〈y3〉 − 3〈y〉〈y2〉 + 2〈y〉3. (52i)

Note that for a fixed number χ we have Amn → χm+nAmn

by replacing x → χx and y → χy. We call m + n as the
order of Amn . Consequently, there are m + n + 1 number of
cumulants with the order m + n.

In order to find the cumulants Cm,n in polar coordinates
x = r cos ϕ and y = r sin ϕ, we use the second line of
Eq. (4). Considering the Jacobi–Anger identity

eir·k = eirk cos(ϕ−ϕk) =
∞∑

n=−∞
in Jn(kr) ein(ϕ−ϕk ), (53)

we are able to write Eq. (4) as follows:

log

( ∞∑
m=0

∞∑
n=−∞

(ik)2m+ne−inϕk

22m+nm!(m + n)! 〈r
2m+neinϕ〉

)

=
∞∑

m=0

∞∑
n=−∞

Cm,n (ik)meinϕk

m! ,

(54)

where in the left-hand side we have used the series form of
the Bessel function Jn(kr).

In Eq. (54), the combination (ik)2m+ne−inϕk has appeared
in the left-hand side. It means that if we have odd |n|, then
the power of ik is odd, and if we have even |n|, then the
power of ik is even. Therefore, the only non-vanishing Cm,n

are those for which both m and |n| are odd or even. The
other consequence of the combination (ik)2m+ne−inϕk is that
we have Cm,n = 0 for |n| > m. The reason is that in the
right-hand side of the Eq. (54), the combination (ik)m

′
ein

′ϕk

has appeared. Therefore, in order to have a non-vanishing
Cm,n we need to have some terms in the left-hand side such
that 2m + n = m′ and n = −n′. It immediately leads to
m = (m′ + n′)/2 ≥ 0 and m + n = (m′ − n′)/2 ≥ 0. One
should note that the (m + n)! in the denominator of Eq. (54)
diverges if m + n < 0. As a result, we deduce that Cm′,n′ can
be non-vanishing if |n′| ≤ m′. Strictly speaking, for m ≥ 0
only the cumulants

Cm,−m, Cm,−m+2, · · · Cm,m−2, Cm,m, (55)

are non-zero. Also, note that we have Cm,−n = C∗
m,n because

the distribution is a real function.
Based on the above considerations one can find all non-

trivial values of Cm,n in terms of moments 〈rmeinϕ〉 by using

Eq. (54). A few first two-dimensional cumulants in polar
coordinates are presented explicitly in the following:

C1,1 = 1

2
〈re−iϕ〉, (56a)

C2,0 = 1

2

[
〈r2〉 − 〈reiϕ〉〈re−iϕ〉

]
, (56b)

C2,2 = 1

4

[
〈r2 e−2iϕ〉 − 〈r e−iϕ〉2

]
, (56c)

C3,1 = 3

8

[
〈r3e−iϕ〉 + 2〈reiϕ〉〈re−iϕ〉2

−〈reiϕ〉〈r2e−2iϕ〉 − 2〈r2〉〈re−iϕ〉
]
, (56d)

C3,3 = 1

8

[
〈r3 e−3iϕ〉 − 3〈r e−iϕ〉〈r2 e−2iϕ〉 + 2〈r e−iϕ〉3

]
.

(56e)

The first cumulant, C0,0, is equal to zero by considering the
normalization condition of the probability distribution.

By redefinition

W0,n = Cn,0, Wc
n,m = �(Cm,n), Ws

n,m = −�(Cm,n),

we find the cumulants in polar coordinate which has been
obtained in Ref. [30]. In Ref. [30], the translational and rota-
tional invariance have been used to eliminate Wc

1,1, Ws
1,1 and

Ws
2,2. In our notation, it is equivalent to C1,1 = C1,−1 = 0

and C2,2 = C2,−2.
One notes that by replacing r with χr we have Cm,n →

χm Cm,n . In other words, the order of Cm,n is indicated by m
in polar coordinates. Referring to Eq. (55), we find that there
are m + 1 cumulants with order m in polar coordinates. As a
result, we are able to find a one-to-one relation between Cm,n

and Ak� with the same order by equating the two sides of the
equation,

∑
m,n

Amn(ik)m+n cosm ϕk sinn ϕk

m!n!

=
∞∑

m=0

∞∑
n=−∞

Cm,n (ik)meinϕk

m! .

(57)

In the left-hand side of the above equality, we rewrite∑
m,n((ikx )

m(iky)nAmn/(m!n!)) in polar coordinates. A few
first cumulants in polar coordinates can be written in terms
of Amn as follows:

C1,1 = 1

2
[A10 − iA01] , (58a)

C2,0 = 1

2
[A20 + A02] , (58b)

C2,2 = 1

4
[A20 − A02 − 2iA11] , (58c)

C3,1 = 3

8
[A30 + A12 − i(A03 + A21)] , (58d)

C3,3 = 1

8
[A30 − 3A12 + i(A03 − 3A21)] . (58e)
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The cumulants Cm,−n can be obtained easily by using the
reality condition. One can invert the above equations to find
Amn in terms of Cm,n too,

A10 = C1,1 + C1,−1, (59a)

A01 = i(C1,1 − C1,−1), (59b)

A20 = C2,0 + C2,2 + C2,−2, (59c)

A11 = i(C2,2 − C2,−2), (59d)

A02 = C2,0 − C2,2 − C2,−2, (59e)

A30 = C3,3 + C3,1 + C3,−1 + C3,−3, (59f)

A21 = i

3

(
3C3,3 + C3,1 − C3,−1 − 3C3,−3

)
, (59g)

A12 = −1

3

(
3C3,3 − C3,1 − C3,−1 + 3C3,−3

)
, (59h)

A03 = −i
(C3,3 − C3,1 + C3,−1 − C3,−3

)
. (59i)

For rotationally symmetric distributions, only the moments
〈r2m〉 survive in the polar coordinates. In such a case, the
only non-zero polar cumulants are C2k,0. For instance, all the
cumulants in Eq. (58) vanish except C2,0 where it is equal to
〈r2〉/2. A few of the first C2k,0 are given by

C2,0 = 1

2

[
〈r2〉

]
, (60a)

C4,0 = 3

8

[
〈r4〉 − 2〈r2〉2

]
, (60b)

C6,0 = 5

16

[
〈r6〉 − 9〈r4〉〈r2〉 + 12〈r2〉3

]
, (60c)

C8,0 = 35

128

[
〈r8〉 − 16〈r6〉〈r2〉 − 18〈r4〉2

+144〈r4〉〈r2〉2 − 144〈r2〉4
]
. (60d)

By replacing r with vn in Eq. (60) and comparing it with
Eq. (8), we find that cn{2k} ∝ C2k,0.

B Gram–Charlier A series

B.1 Gram–Charlier A series: one dimension

In Sect. 3.1, we have introduced an iterative method to find the
Gram–Charlier A series for a one-dimensional distribution.
Also, we briefly explained the standard method of finding
the series by using the orthogonal polynomials. Here, we
use another standard method of finding the Gram–Charlier
A series.

Let us consider the characteristic function of a given dis-
tribution p(x) as G(t) = ∫

dx ei t x p(x). Then one can find
the cumulants of the distribution by using the cumulative
function,

logG(t) =
∑
n=1

κn(i t)
n/n!. (61)

Now assume that p(x) can be approximated by a known
distribution, namely a Gaussian distribution,

N (x) = 1√
2πσ

e− (x−μ′
1)2

2σ2 .

By setting the mean value μ′ = 0 and the width σ = 1 for
simplicity, the generating function of a Gaussian distribution
can be simply found to be GN (t) = e−t2/2. Referring to
Eq. (61), we have G(t) = e

∑
n=1 κn(i t)n/n!. Additionally, we

consider the fact that the mean value and the variance of the
distribution p(x) are κ1 = μ′ = 0 and κ2 = σ 2 = 1. It means
that we are able to write G(t) for a generic distribution p(x)
as follows:

G(t) = e
∑

n=3 κn(i t)n/n!e−t2/2

= e
∑

n=3 κn(i t)n/n!GN (t).
(62)

Now, we are able to find p(x) by using an inverse Fourier
transformation. By considering the relation

∫
dt (i t)ne−i t x

×e−t2/2 = (−d/dx)n
∫

dte−i t xe−t2/2, we have

p(x) = e
∑

n=3 κn(−d/dx)n/n!
[∫

dte−i t xe−t2/2
]

/2π

= e
∑

n=3 κn(−d/dx)n/n! [e−x2/2/
√

2π
]
.

(63)

By scaling x → x/σ and shifting x → x − μ′, we find22

p(x) = e
∑

n=3 κn(−d/dx)n/n!N (x). (64)

Recall that the probabilistic Hermite polynomial is defined as
Her (x) = ex

2/2(−d/dx)re−x2/2. As a result, one can simply
find(

− d

dx

)n

N (x) = 1

σ n
Hen((x − μ′)/σ )N (x). (65)

It is worth noting that Eq. (64) is exact. We are able to
approximate this exact relation by expanding it in terms of
number of derivatives. The result of such an expansion is
called a Gram–Charlier A series,

p(x) = 1√
2πσ

e− (x−κ1)2

2σ2
∑
n=1

hn
n! Hen((x − κ1)/σ ),

where hn was presented in Eq. (21) (h1 = 1, h2 = 0).

22 Note that after scaling x → x/σ , we have (d/dx) → σ(d/dx).
Additionally, κr scales to κr/σ

r . These two scalings cancel each other
and we find Eq. (64).
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B.2 Gram–Charlier A series: two dimensions

Consider the following two-dimensional Gaussian distribu-
tion:

N (r) = 1

2πσxσy
e
− (x−μ′

x )2

2σ2
x

− (y−μ′
y )2

2σ2
y , (66)

which is more general than Eq. (14). Referring to Eq. (3), we
find the characteristic function of Eq. (66) as follows:

GN (k) = e− 1
2 (kxσx+kyσy). (67)

Now, assume that the mean values 〈x〉 and 〈y〉 (〈· · ·〉 =∫
dxdy · · · p(r)) are exactly equal to μ′

x and μ′
y , respectively,

and alternatively set μ′
x = μ′

y = 0 by a shift. Then the char-
acteristic function of p(r) can be written as follows:

G(k) = exp
∑
m,n

(i kx )m(i ky)nAmn

m!n!

=
[

exp
∑
m,n

(i kx )m(i ky)nA′
mn

m!n!

]
GN (k),

(68)

where in the last line the A′
mn are exactly as Amn except

A′
20 = A20 − σx , A′

20 = A02 − σy . (69)

Note that we could choose A20 = σx and A02 = σy similar
to what we did in one dimension. But here we do not use this
convention for the future purpose.

We can find p(r) by an inverse Fourier transformation,

p(r) =
[

exp
∑
m,n

(−1)m+nA′
mn

m!n!
(

dm+n

dxmdyn

)]
N (r), (70)

where for finding the above we replaced (ikx )m(ikx )n with
(−1)m+n(dm+n/dxmdyn) in Eq. (68).

The Gram–Charlier A series can be found by expanding
the exponential in Eq. (70) in terms of a number of deriva-
tives. By recovering μ′

x and μ′
y by a reverse shift in r, we

find

p(r) = N (r)
∑

m,n=0

hmn

m!n!Hem

(
x − μx

σx

)
Hen

(
y − μy

σy

)
.

(71)

In the above, we have used a trivial extension of Eq. (65)
to two dimensions. The coefficients hmn for m + n ≤ 2 in
Eq. (71) are given as follows (we setA11 = 0 for simplicity):

h00 = 1,

h10 = h01 = 0,

h20 = A20

σ 2
x

− 1, h11 = 0, h02 = A02

σ 2
y

− 1.

(72)

Additionally, we have

hmn = Amn

σm
x σ n

y
, 3 ≤ m + n ≤ 5. (73)

For m + n = 6 we have

h60 = 1

σ 6
x

[
A60 + 10A2

30

]
,

h51 = 1

σ 5
x σy

[A51 + 10A30A21] ,

h42 = 1

σ 4
x σ 2

y

[
A42 + 4A30A12 + 6A2

21

]
,

h33 = 1

σ 3
x σ 3

y
[A33 + A30A03 + 9A12A21] ,

h24 = 1

σ 2
x σ 4

y

[
A24 + 4A03A21 + 6A2

12

]
,

h15 = 1

σxσ 5
y

[A15 + 10A03A12] ,

h06 = 1

σ 6
y

[
A06 + 10A2

03

]
.

(74)

The other hmn can be found accordingly.

B.3 Gram–Charlier A series and energy density expansion

We should mention that the Gram–Charlier A series [Eq. (71)]
is exactly what has been used in Ref. [30] to quantify the ini-
tial energy density deviation from a rotationally symmetric
Gaussian distribution.23

In Ref. [30], the cumulants of the energy density ρ(r) have
been expanded in terms of the moments

ε̂m,n ≡ εm,neinΦm,n = −{rmeinϕ}
{rm} , (75)

where m, n = 0, 1, . . . and

{· · · } =
∫ · · · ρ(r)dxdy∫

ρ(r)dxdy
.

Due to the translational invariance, we can freely choose
the origin of the coordinates such that {re±iϕ} = 0. Using
this and referring to Eq. (56) and Eq. (75), one finds

23 If we had considered A20 = σx and A02 = σy in Eq. (69), we
would have found the energy density distribution around a Gaussian
distribution which is not rotationally symmetric.
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C2,0 = 1

2
{r2},

C2,2 = −1

4
{r2}ε2,2e−2iΦ2,2 ,

C3,1 = −3

8
{r3}ε3,1e−3iΦ3,1 ,

C3,3 = −1

8
{r3}ε3,3e−3iΦ3,3 .

(76)

It is common in the literature to define the initial anisotropies
as ε1 ≡ ε3,1, ε2 ≡ ε2,2 and ε3 ≡ ε3,3. According to Eq. (76),
the initial anisotropies are itself cumulants. In fact, the param-
eter εn quantifies the global features of the initial energy
density. For instance, ε1, ε2 and ε3 quantify the dipole asym-
metry, ellipticity and triangularity of the distribution, respec-
tively. The symmetry planes Φ1 ≡ Φ3,1, Φ2 ≡ Φ2,2 and
Φ3 ≡ Φ3,3 quantify the orientation of the dipole asymme-
try, ellipticity and triangularity with respect to a reference
direction.

Furthermore, one can relate two-dimensional cumulants
in Cartesian coordinates, Amn , to those in polar coordinates,
Cm,n by using Eq. (59). Using them, we find

A20 = 1

2
{r2}(1 − ε2 cos 2Φ2),

A11 = −1

2
{r2}ε2 sin 2Φ2,

A02 = 1

2
{r2}(1 + ε2 cos 2Φ2),

A30 = −1

4
{r3}(3ε1 cos Φ1 + ε3 cos 3Φ3),

A21 = −1

4
{r3}(ε1 sin Φ1 + ε3 sin 3Φ3),

A12 = −1

4
{r3}(ε1 cos Φ1 − ε3 cos 3Φ3),

A03 = −1

4
{r3}(3ε1 sin Φ1 − ε3 sin 3Φ3).

(77)

Now, we use Eq. (71) to find a Gram–Charlier A series
for the energy density. The result is the following:

ρ(r, ϕ) ∝ e
− r2

{r2}

[
1 +

3∑
n=1

an(r)εn cos n(ϕ − Φn)

]
, (78)

where

a1(r) = −r{r3}(r2 − 2{r2})
{r2}3 ,

a2(r) = − r2

{r2} ,

a3(r) = −r3{r3}
3{r2}3 .

(79)

In the above, we assumed that σ 2
x = σ 2

y = {r2}/2. This result
coincides with that presented in Ref. [30]. The cumulants
Cm,n ,m > 3 cannot be written simply in terms of one moment
εm,n , however, it is always possible to find a Gram–Charlier
A series, see Eq. (78), to any order beyond triangularity.

C A radial distribution from 2D Gram–Charlier A
series

The Bessel–Gaussian distribution (15) was obtained by aver-
aging out the azimuthal direction of a two-dimensional Gaus-
sian distribution (14). Alternatively, one can do the same cal-
culation and find a one-dimensional series by averaging out
the azimuthal direction of Eq. (71). We should emphasize
that this calculation has already been done in Ref. [28] for
the case that p(r) is rotationally symmetric around the ori-
gin. However, we will try to find such a radial series for a
more general case.

For simplicity, we assume that μ′
y ≡ A01 = 0 (μ′

x ≡
A10) together with σ ≡ σx = σy = A20 = A02. Also,
we consider the fact that A11 = 0. These considerations are
compatible with p(vn,x , vn,y). For such a case, h20 = h11 =
h02 = 0.

By averaging out the azimuthal direction of Eq. (71), we
will find a distribution which has the following form:

p(r) =
( r

σ 2

)
e− r2+μ′2

x
2σ2

[
I0

(
rμ′

x

σ 2

) ∑
i=1

P1,i (r)

+
(
rμ′

x

2σ 2

)
I1

(
rμ′

x

σ 2

)∑
i=1

P2,i (r)

]
.

(80)

We can find the polynomials P1,i (r) and P2,i (r) by direct
calculations. For i = 1, 2, one simply finds that P1,1(r) = 1
and P2,1(r) = P1,2(r) = P2,2(r) = 0. The polynomials for
i = 3 are given by

P1,3(r) = μ′
x

2σ
h12 + μ′

x

2σ

(
1 − μ′2

x

3σ 2

)
h30

+ 1

6

[
3h12 −

(
3μ′2

x

σ 2 + 1

)
h30

] (
r2

μ′
xσ

)
,

P2,3(r) = −2σ

μ′
x

(
1 + σ 2

μ′2
x

)
h12

+ μ′
x

σ

(
1 + 2σ 4

3μ′4
x

)
h30 + h30

3

(
r2

μ′
xσ

)
.

(81)

Finding P1,4(r) and P2,4(r) is straightforward, but they are
more complicated. For that reason, we decided not to present
them considering the limited space. Note that for each Pa,i (r)
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only cumulants Amn (if there are any) with order m + n = i
are present24.

In Sect. 2.1, we have argued that the one-dimensional dis-
tributions like p(vn) can be characterized by cn{2k}. As a
result, we expect to relate Amn to cn{2k} by considering
Eq. (80) (replace r with vn and μ′

x with v̄n). Considering
Eq. (8) and using Eq. (80) up to i = 4, we find cn{2k} for
k = 1, 2, 3 as follows:

cn{2} = v̄2
n + 2σ 2, (82a)

cn{4} = −v̄4
n + 4v̄n (A12 + A30)

+A40 + 2A22 + A04, (82b)

cn{6} = 4v̄6
n − 8v̄3

n(3A12 + 2A30)

+6v̄2
n(A40 − A04). (82c)

The above result is not surprising. In fact, it is a gen-
eral relation of Amn of the distribution p(vn,x , vn,y) with
cn{2k} of p(vn). Recall the equality 〈eivnk cos(ϕ−ϕk )〉2D =
〈J0(kvn)〉1D in Eq. (6) where the average 〈· · ·〉2D is performed
with respect to the distribution p̃(vn,x , vn,y). For the case that
the average is performed with respect to p(vn,x , vn,y), this
relation should be replaced by

1

2π

∫ 2π

0
dϕk 〈eivnk cos(ϕ−ϕk )〉2D = 〈J0(kvn)〉1D. (83)

Using the above, Eq. (4) and Eq. (7), we find

log
1

2π

∫ 2π

0
dϕk exp

∑
m,n

Amn(ik)m+n

m!n!
(
cosm ϕk sinn ϕk

)

=
∑
m=1

(ik)2mcn{2m}
4m(m!)2 .

By expanding both sides in terms of k and comparing the
coefficients, one finds the relation between cn{2k} and Amn .
The results for cn{2} and cn{4} are as follows:

cn{2} = A2
01 + A2

10 + A02 + A20, (84a)

cn{4} = −A4
01 − 2A2

10A2
01 + 2A02A2

01 − 2A20A2
01 (84b)

+4A03A01 + 8A10A11A01 + 4A21A01

−A4
10 + A2

02 − 2A02A2
10 + 4A2

11 + A2
20 + A04

+4A10A12 + 2A2
10A20 − 2A02A20

+2A22 + 4A10A30 + A40.

The relation for cn{6} is more complicated. Note that by
setting the simplifications we used in finding Eq. (80), the
above relations reduce to Eq. (82a) and Eq. (82b).

In general, cn{2k} is written in terms of a large number
of Apq ; therefore, we are not able to write Apq in terms
of cumulants cn{2k}. However, it is possible to ignore the
cumulants Apq with p + q ≥ 4 in some cases. For n = 2,

24 Note that Amn = σm+nhmn for m + n = 3, 4 based on our assump-
tions in this section.

this truncation leads to a reasonable approximation for c2{4}
and c2{6}, and we are able to find A30 in terms of c2{2},
c2{4} and c2{6}, which has been done in Ref. [27]. In Ref.
[28], however, it has been shown that keeping 2D Cartesian
cumulants up to fourth order does not lead to a reasonable
approximation for c2{8}. Therefore, we are not able to simply
find the fourth order Amn in terms of c2{2k}.

Referring to Eq. (39), we see that the coefficients �2i (as
a function of cn{2k} and v̄n) appear as an overall factors
at each order of approximation. In contrast, the coefficients
hmn in Eq. (80) do not appear in the polynomial Pa,i (r) as
an overall factor. Now, let us compute the limit μ′

x → 0. A
straightforward calculation shows that

I0

(
rμ′

x

σ 2

)
P1,3(r) +

(
rμ′

x

2σ 2

)
I1

(
rμ′

x

σ 2

)
P2,3(r) → 0.

As a result, the bracket in Eq. (80) is equal to 1 up to i = 3.
However, the bracket for i = 4 is non-trivial in the limit

μ′
x → 0,

I0

(
rμ′

x

σ 2

)
P1,4(r) +

(
rμ′

x

2σ 2

)
I1

(
rμ′

x

σ 2

)
P2,4(r)

→ 1

8
(h40 + 2h22 + h04)

(
1 − r2

σ 2 + r4

8σ 4

)
.

The last line in the above can be written as

1

8
(h40 + 2h22 + h04)L2

(
r2

2σ 2

)
. (85)

This result is interesting because it shows that the distribution
(80) has a simpler form only if we assume μ′

x ≡ A10 → 0.
Let us again consider the harmonic distribution of the flow
(r → vn and μ′

x → v̄n). By setting A20 = A02 = σ 2 and
A10 = A01 = A11 = 0, we find from Eq. (84b) that

cn{2} = 2σ 2,

cn{4} = A40 + 2A22 + A04.

Therefore, the explicit form of Eq. (80) up to i = 4 is given
by

p(vn) =
( vn

σ 2

)
e− v2

n
2σ2

[
1 +

(
1

2

cn{4}
c2
n{2}

)
L2

(
v2
n

2σ 2

)]
, (86)

which is compatible with Eq. (24) and with Ref. [28]. We
can check that for A11 �= 0 the above result is true too.25

It is worth noting that we have not assumed the original
distribution to be rotationally symmetric. In fact, the original
distribution can have non-zero A30 or A12 too, but they have
not appeared in cn{2k} or the distribution (86). This is due to
the fact that their information is lost during the averaging.

25 In this case, we have cn{4} = 4A2
11 + A40 + 2A22 + A04.
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One could wonder that, while h12 and h30 are present in
the polynomials P1,3(vn) and P2,3(vn) in Eq. (81), it may be
possible to find all hmn from Eq. (80) by fitting it to an experi-
mental p(vn). We should mention that always a combination
of hmn appears in the polynomials Pa,i (vn). As a result, if
we assume that the series is convergent and we have access
to an accurate experimental distribution, we can only find a
combination of hmn due to the information loss during the
averaging. Specifically, in the simple case of Eq. (86), only
A40 + 2A22 + A04 can be found by fitting.

In any case, the distribution (80) is different from that
mentioned in Eq. (39). These two different series refer to
two different truncations. Note that qn{2k} can be written in
terms of Apq with p+q ≤ 2k. For instance, if we keep Amn

up to fourth order, all the cumulants qn{2k} are non-zero.
Therefore, in principle, the summation (39) goes to infinity
while the summation (80) is truncated up to i = 4.

D RGC distribution from multiple orthogonal
polynomials

In Sect. 3, we have discussed how the orthogonality con-
ditions of Hen(x) and Ln(x) can be used to find Eqs. (20)
and (24), respectively. However, ordinary orthogonal polyno-
mials cannot be employed for the more general distribution
series (39). Recall that in one dimension the polynomials
Pn(x) and Pm(x) are orthogonal with respect to the measure
w(x)dx if

∫ Pn(x)Pm(x)w(x) dx = ζnδnm . This relation
can be equivalently written as

∫
xm Pn(x)w(x)dx = 0 for

0 ≤ m < n [39].
We will show that we can obtain Eq. (39) by employing

a generalization of the orthogonal polynomials. These gen-
eralized orthogonal polynomials are called multiple orthog-
onal polynomials (MOPs) [39]. The MOPs are orthogonal
with respect to more than one weight. Let us define r differ-
ent weights w(x) = (w1(x), . . . , wr (x)) and a multi-index
n = (n1, . . . , nr ) (ni ∈ N0). Then the type I multiple orthog-
onal polynomial is given as Pn = (P1,n, . . . ,Pr,n) where
P j,n is a polynomial with degree at most n j . 26 These poly-
nomials obey the following orthogonality condition:

∫
xmPn • w(x) dx = 0, 0 ≤ m < N + r − 1, (87)

26 Another class of MOPs are called type II multiple orthogonal poly-
nomial. In this class, a multi-indexed monic polynomial Pn satisfies the
following r orthogonality conditions:

∫
xmPnwi (x)dx, 0 ≤ m < ni ,

where 0 ≤ i ≤ r [39]. Type II MOPs are not used here.

where N = ∑r
i=1 ni , and a dot indicates the inner product.

Note that, for r = 1, the above relation returns to the ordinary
orthogonal polynomial.

Here, we restrict ourselves to theweakly complete systems.
In this case, the multi-index n always has the following form
[43,44]:

(n1, . . . , nr ) = (k + 1, . . . k + 1︸ ︷︷ ︸
j times

, k, . . . k︸ ︷︷ ︸
r− j times

), k ∈ N0. (88)

Here 0 ≤ j < r . In this case, we can define a one-to-one
map between a single index i and n as i(n) = rk + j + 1.
Consequently, we are able to define

Yi(n)(x) = Pn • w(x). (89)

As a result, Eq. (87) can be written as∫
dx xmYi (x) = 0, 0 ≤ m < i. (90)

Note that the above relation is not an ordinary orthogonality
condition because Yi is not a single finite degree polynomial
times a weight.

An example of the MOPs can be found in Ref. [40] where
the polynomials are orthogonal with respect to a weight vec-
tor (wν,c(x), wν+1,c(x)). Here,

wν,c(x) = xν/2 Iν(2
√
x)e−cx (91)

is defined for x > 0, ν > −1 and c > 0. In this study, we are
interested in these specific MOPs because they are related to
Q̃i (vn; v̄n) in Eq. (40).

For the present specific case, we have r = 2. As a result,
the index n has the form (k, k) or (k + 1, k) referring to
Eq. (88). The explicit form of a few first polynomials Pn for
ν = 0 is given by

P1,(0,0) = 1,

P2,(0,0) = −c,

P1,(1,1) = 1 + 3

(
1 + 2c

3

)
c2x,

P2,(1,1) = −3c

(
1 + c + 2c2

3

)
− c3x,

(92)

and

P1,(1,0) = 1 + c2x,

P2,(1,0) = −2
(

1 + c

2

)
c,

P1,(2,1) = 1 + 6c2
(

1 + 4c

3
+ c2

)
x + c4x2,

P2,(2,1) = −4c

(
1 + 3c

2
+ 2c2 + 3c3

2

)
− 4c3(1 + c)x .

(93)
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We refer the interested reader to Ref. [40] for the general
form of Pn. In Ref. [40], P1,(n1,n2) and P2,(n1,n2) have been

shown by A(ν,c)
n1,n2 and B(ν,c)

n1,n2 .
The function Yi (x) in Eq. (89) has the following simple

form [40]:

Yν,c
i (x) =

i∑
k=0

(
i

k

)
(−c)k x (ν+k)/2 Iν+k(2

√
x)e−cx . (94)

Now, we can choose

ν = 0, c = 2σ 2

v̄2
n

,

and change the coordinate

x =
(

vn v̄n

2σ 2

)2

.

Referring to Eq. (40), one finds

Y0, 2σ2
d v̄n

i

(
v2
n v̄

2
n

4σ 4

)
= Q̃i (vn; v̄n)e

−(v2
n/2σ 2). (95)

Consequently, the orthogonality condition (90) up to an irrel-
evant numerical factor can be written as

∫ ∞

0
dvn v2m

n Q̃′
i (vn; v̄n) = 0, 0 ≤ m < i, (96)

where

Q̃′
i (vn; v̄n) = vn

σ 2 e− v2
n+v̄2

n
2σ2 Q̃i (vn; v̄n). (97)

As a result, we are able to write p(vn; v̄n) as a series of
Q̃′

i (vn; v̄n),

p(vn; v̄n) =
∞∑
i=0

(−1)i�2i

i ! Q̃′
i (vn; v̄n), (98)

with unknown �2i . Note that Eq. (98) is exactly Eq. (39).
Let us define the following quantity:

m′
ri =

∫
dvn v2r

n Q̃′
i (vn; v̄n). (99)

Due to Eq. (96), we find that m′
ri = 0 for 0 ≤ r < i . As

a result, we are able to write the moments of p(vn; v̄n) as
follows:

〈v2r
n 〉 =

∫ ∞

0
dvnv

2r
n p(vn; v̄n)

=
∞∑
i=0

(−1)i�2i

i !
∫ ∞

0
dvn v2r

n Q̃′
i (vn; v̄n)

=
r∑

i=0

(−1)i�2i

i ! m′
ri .

(100)

Using the above relation, we find the following recurrence
relation for �2r :

�2r = (−1)r r !
[ 〈v2r

n 〉 − ∑r−1
i=0

(−1)i �2i
i ! m′

ri

m′
rr

]
, (101)

where r ≥ 0.
Note that m′

ri in Eq. (99) is completely computable, for
instance m′

0,0 = 1. Consequently, we have �0 = 1/m′
0,0 for

r = 0, which leads to �0 = 1. The next iteration is as follows:

�2 = �0m′
1,0 − 〈v2

n〉
m′

1,1

= 〈v2
n〉 − v̄2

n − 2σ 2

2σ 2 .

By considering Eq. (8a) and Eq. (33), we find �2 = 0. Simi-
larly, we have

�4 = 〈v4
n〉 − 2〈v2

n〉2 − v̄2
n

(〈v2
n〉 − v̄2

n)
2

= cn{4} + v̄2
n

(cn{2} − v̄2
n)

2 , (102)

where in the last line we used Eq. (8a) and Eq. (8b). One
can continue this procedure to find all the values of �2i as
mentioned in Eq. (35).
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