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Abstract— Flexible manufacturing and automation require
robots that can adapt to changing tasks. We propose to use
modular robots that are customized from given modules for a
specific task. This work presents an algorithm for proposing
a module composition that is optimal with respect to per-
formance metrics such as cycle time and energy efficiency,
while considering kinematic, dynamic, and obstacle constraints.
Tasks are defined as trajectories in Cartesian space, as a list
of poses for the robot to reach as fast as possible, or as
dexterity in a desired workspace. In a simulative comparison
with commercially available industrial robots, we demonstrate
the superiority of our approach in randomly generated tasks
with respect to the chosen performance metrics. We use our
modular robot proModular.1 for the comparison.

I. INTRODUCTION

Increasing demand for mass-customization requires robots
that can adapt to frequently changing tasks. However, be-
cause standard industrial robots cannot change their kinemat-
ics, it may occur that new positions are unreachable, or new
trajectories can only be followed in a suboptimal manner.
Modular robots — robots which are composed from a certain
number of reconfigurable hardware modules — are a potential
solution [1]. Conceptual advantages of modular robots are
imminent: flexible reconfiguration allows the robot to adapt
to changing tasks; broken robots can be easily repaired
by exchanging affected modules; and, by mass-producing
standard modules, the costs of robots can be reduced.

Nowadays, a robot is typically selected for a specific
application according to the required performance [2], e.g.,
weight-carrying capacity, working envelope, repeatability,
and speed. Due to increasing efforts of reducing carbon
footprints, the energy consumption of robots is also be-
coming a relevant factor [3]. Further performance metrics
of manipulators have been surveyed in [4]. In this work,
we propose a computationally-feasible automatic module
selection process that optimizes these performance metrics.
We compare the performance for several manufacturing
applications categorized by their predominant path type (see
Tab. [I): 1) fully specified trajectories, e.g., dispensing a fluid
on a fixed part at a steady speed; 2) a list of poses for the
robot to reach as fast as possible, e.g., handling a part; 3)
optimizing the designated working area of the robot using
workspace performance metrics (see Tab. if the path is
not known. In all cases, the composed modular robot shall
be capable of reaching the desired poses, holding its own
weight, exerting the required external forces, and avoiding
collisions with itself and surrounding objects. We do not
regard repeatability in this work, because it depends largely
on the mechanical structure and the controller, which are not
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Fig. 1. proModular.1 is a set of modules (left) that can be composed into

an industrial robot (right).

TABLE 1
TYPICAL APPLICATIONS OF ROBOTS MANIPULATORS IN
MANUFACTURING (FROM [2])

Application  Predominant path type  Forces
Welding  trajectory in cart. space low
Dispensing  trajectory in cart. space low
Processing  trajectory in cart. space high
Handling  list of poses mixed
Machine tooling  list of poses mixed
Assembly  list of poses mixed

part our evaluation.

To evaluate performance gains of modular robots, we have
designed proModular.1, a set of 52 reconfigurable modules
for industrial use (see Fig. [[). These modules are capable of
automatically generating the composed kinematic, dynamic,
and geometric model given the information stored inside
each module. The joint modules can exert torques at a range
from 25 to 226 Nm. We evaluate performance gains by these
modules for industrial tasks by comparing them to three
commercially available industrial robots for 2700 randomly
generated tasks, for which we each find an optimal module
composition.

Previous works on task-based optimization of module
compositions can be found in [1], [5]-[13]. These have
dealt with large search-spaces in different manners: 1) using
incidence matrices for efficient enumeration [6], [7], 2)
using Genetic Algorithms for finding the optimal module
sequence [10]-[13], and 3) choosing a hierarchical elem-
ination approach [1], [9], [10]. The authors of [5], [13],
[14] also addressed optimizing modular robots for fault
tolerance. Most of previous authors only consider optimizing
the kinematics, or module masses [8], [10].

In our work we choose a practical approach, which



TABLE I
A SELECTION OF MANIPULATOR PERFORMANCE METRICS (FROM [4])

Requires  Performance metrics
. Manipulability, minimum singular value,
Jacobian . . . .
condition number, isotropy, velocity ratio
. ' R o . .
Kinematics f?achal_alhty, Dexterity, operating volume,
orientation angle workspace
Dynamics  Dynamic manipulability, dynamic isotropy

only enumerates compositions resembling common industrial
robot kinematics [15], combined with a hierarchical elimi-
nation to exclude infeasible module sequences. In contrast
to previous work, we consider the full dynamics of the
modular robots. In addition to [1], we also consider collision
avoiding trajectories using Rapidly-exploring random trees
(RRT) [16] connected with time-optimal trapezoidals [17]
to plan around complex obstacles and prevent self-collision.
We have been able to decrease the computation time for
optimizing a single task from multiple hours [14] to around
30 minutes, despite considering more possible compositions,
and heavier-to-compute dynamics and collision constraints.
Therefore, for the first time, we are able to demonstrate the
performance gains of modular robots versus commercially
available industrial arms in a comprehensive comparison.
In Sec. [lI] we formulate the optimization problems for
the three previously-mentioned cases in manufacturing. The
module selection process is then explained in Sec. We
evaluate the performance gains in Sec. and conclude the

paper in Sec. [V]

II. PROBLEM FORMULATION

We aim to find the optimal composition of modules given
task specifications in Cartesian space and an obstacle map.
Although we chose to only consider energy, cycle time, and
dexterity, most of the performance metrics of Tab. [l and
[4] can be included without much additional computational
burden, because our module selection process already re-
quires simulating the Jacobian, as well as the kinematics and
dynamics of the composed robot. Subsequently, we denote
the set of possible compositions as C = {C,Cs,...,Cn},
where C; is the i" composition and N is the number of
considered compositions. We perform the evaluation for the
following three cases.

Case 1: Desired trajectory

In applications such as in welding, dispensing, and
processing, a desired trajectory of the end-effector
is typically specified by the time-dependent functions
p(t), p(t), p(t), R(t),w(t),w(t), F(t), which are the desired
three-dimensional position, velocity, acceleration, the 3 x 3
rotation matrix, the three-dimensional rotational velocity,
acceleration, and the six-dimensional Cartesian force profile,
respectively. These functions are used to compute the motor
torque vector u;(t) and the joint velocity vector ¢;(t), which
are different for each composition C;. We minimize the

energy consumption F:
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where A;(q;(t)) returns the occupancy of the robot (no self-

collision allowed) in Cartesian space and O is the set of
obstacles.

(solution within joint limits)  (3)

(torque limits)  (4)

(no collisions)  (5)

Case 2: List of desired poses

For applications such as handling, machine tooling, and
assembly, the exact trajectory is not important, rather than a
fast transition between poses which are given as a list of pairs
(p, R), and forces F' (e.g., a payload to transport) to minimize
cycle time. We therefore search for the fastest collision-free
trajectory between each pose for every composition C;. The
optimization problem now depends on a weighted sum of
the time ¢y, and energy consumption F; to reach the final
pose, using weighting factors wy, we:

mnin, Wity + weks, (6)
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0

subject to the same constraints of @)—().

Case 3: Desired workspace

If no path has been specified, then workspace optimization
can optimize the robot performance within a designated area,
instead. As an example, we maximize the mean dexterity
index [4] integrated over M uniformly sampled points of a
three-dimensional desired workspace:
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where Aaq; j, AB; j, A ; are the range of possible yaw,
pitch and roll angles about each of the sampled points,
evaluated via the existance of an inverse kinematics solution.

III. OPTIMAL MODULE COMPOSITION

Evaluating the costs introduced in the previous section for
all possible module compositions is computationally expen-
sive. Since the number of possible compositions increases
exponentially with the length of the module sequence, cal-
culation may become infeasible. In the following, we intro-
duce our contributions towards a computationally feasible
optimization: enumeration of common industrial kinematics,
their hierarchical elimination, and the generation of collision
models of modular robots.
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Fig. 2. A: Common kinematics of industrial robots [15], which can be
built from B: eight generic module types: Joint (J), Link (L/,L2,L3), Wrist
(W1,W2,W3), and Endeffector (E).

TABLE III
COMMON INDUSTRIAL ROBOT KINEMATICS WITH ROTARY JOINTS

Robot  Modules # of compositions
PUMA-1  J-L2-J-LI-J-L3-J-L2-WI-E 61440
PUMA-2  J-L2-J-LI-J-L3-W2-E 8192
Elbow  J-L2-J-LI-J-LI-W3-E 8192
DLR  J-L2-J-L3-J-L2-J-L3-W2-E 81920
ETL  J-LI-J-L2-J-L3-W2-E 8192

A. Enumeration of common industrial robot kinematics

We restrict ourselves to common kinematics of industrial
robots with rotary joints, which are the PUMA, Elbow, and
ETL kinematics with six degrees-of-freedom (DOF), and
the DLR kinematics with seven DOF, as shown in Fig.
A [15], [18]. As Tab. [III] shows, these kinematics can be
composed out of the eight generic module types shown
in Fig. @B. Module type J (joint) has one DOF, module
types W1, W2 W3 (wrist) have two, three, and three DOF,
respectively. In Fig. 3] we show how we categorize the
modules of proModular.1 into these module types. For each
robot kinematics, given the total number of modules Ny
and the number of variants of each module type IV,,, where
p € [J,L1,..] and the length of the module sequence n
the amount of considered compositions reduces drastically
from N = Nj, to N = [[}_; N,,, because N, <
Niot. For our 52 modules, the total number of considered
compositions reduces from 52" to N = 38486016, if we only
consider common industrial robot kinematics. Furthermore,
our modules have two different interface sizes, which should
match, when connected to each other, so that the total number
further reduces to N = 167936.

B. Hierarchical elimination of infeasible compositions

After enumerating the compositions, we eliminate infea-
sible ones by checking the constraints hierarchically. The

presented approach is similar to our previous work [9], but
additionally considers full robot dynamics and collisions with
complex objects.

The hierarchy order is determined by the amount of
computation needed and consists of five steps. To quickly
eliminate robots with insufficient size and dynamics we
initially perform the following feasibility checks for select
poses of the tasks (here: via-points): step 1) the existance
of an inverse kinematics solution (3), then step 2) whether
the gravity torques computed via the Newton-Euler (NE)
Algorithm [18] can be held by the motors (@), and then step
3) whether collisions (B) are present by evaluating (3)). In
step 4), the previous checks are performed again, but for the
complete path by using:

o Case 1: the inverse kinematics trajectory [18],

o Case 2: the interpolated path between all desired poses

and the gravity torques via the NE-Algorithm, and

e Case 3: the inverse kinematics solution of the entire

workspace.

If, for case 2, there is a collision, then the shortest collision-
free path is computed. In this work, we use RRT-connect [16]
to generate paths in joint space, while the collision checks
are done in Cartesian space. A time-optimal trapezoidal
trajectory [17] is then generated following the previously
computed path. In step 5) the trajectory is then used to
compute the robot dynamics and the NE-Algorithm to check
(@) again, while considering external forces. At last, the cost
functions of Sec. [lI] can be evaluated using the quantities
computed in this section. For case 3, we refer to [19] for
efficiently evaluating the dexterity index. The elimination
algorithm is also shown in Fig. ] In the next subsection
we detail the generation of models, which are needed for
our approach.

C. Automatic robot modelling

Kinematic, dynamic, and geometric modeling of modular
robots is required to evaluate the cost functions of Sec.
For kinematic and dynamic modeling we refer to previous
work in [20], while in this subsection, we describe the novel
geometric modeling for collision checking. We make use
of the extended Denavit-Hartenberg (DH) formulation [20],
which defines a frame of reference DH,,; ; for each link ¢
of the composed robot.

The geometry of a robot link ¢ consists of the the distal
part of a joint module J; (axis ), a link module L, and the
proximal part of joint module J;y; (axis ¢ 4 1). The kine-
matics of each module can be defined using the following
4 x 4 transformation matrices (see Fig. [5):

o Joint modules: 7'y, ; is the transformation between the
input frame ¢n and the auxiliary frame a before the
joint (see [20]), and Ty, » between the second auxiliary
frame b after the joint and the output frame out.

o Link modules: 77, is the transformation between in and
out.

Subsequently, we use superscripts to indicate the reference
frame. To define the non-convex geometry of a module, we
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Fig. 3. The proModular.1 modules are categorized into joints (J), links (L), wrists (W) and end effectors (E) according to Fig. QS The number of modules
is shown in brackets. Not displayed are module variants with different interface sizes and/or varying motor sizes for wrist modules.

considered composition i

A. Compute inverse kinematics (IK)
solutions at select poses

[ 1. Check existance of IK solution and joint limits (see (3)) ]
v

[2. Check whether gravity forces are within torque limits (see (4)) ]
v

[3. Check for collisions at these poses (see (5)) ]

B. Compute full trajectory q(t), q(t),|q(t) or workspace IK

Case 2:

Interpolate path
in joint space

Case 3. 1

Compute IK-solutions
for entire workspace

Case 1: 1

Compute IK-trajectory

| | i
[4‘ check (3), (4) only for gravity forces, and (5) for path/workspace]
¥

If collision, compute
collision-free path
(RRT-connect) [16]

¥

Compute time- ogtimal
trajectory [17]

i

5. Compute torques u(t) of the full dynamics
and check %

Compute cost function (1)/(6)/(8)

Fig. 4. Hierarchical elimination algorithm with five feasibility checks. The
computation for one composition is aborted, if any constraint is not satisfied.
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Fig. 5. Illustration of kinematics for synthesizing the geometry of robot link
4. Two modules are connected via attaching the output of a module (dark
gray) to the input of the next module (light gray), such that the output frame
and input frame overlap, e.g., at frame 7o.

use meshes. A mesh consists of a set of vertices V' € R3*™
and a set of faces, i.e., triangles defined by the vertices:

 Joint modules: V;; are vertices relative to auxiliary
frame a for the proximal part, and Vo relative to the
output frame for the distal part,

o Link modules: Vi, are vertices relative to the output
frame.

The geometry of robot link ¢ relative to frame DHcyy s
is therefore represented by the set of vertices V =
V5 2 Vi, Vi 1}, where

V7.
v 1" =Re)TS, . [ 1
Vi 1]T = R(¢:) [Viina l]T

where for computing angle ¢; we refer to [20]. Standard
forward kinematics algorithms can be then used to transform
the vertices of each robot link into Cartesian space, where
collision checks are performed. Simpler geometries, such as
boxes or spheres, can also be used with this approach, but
lead to more conservative collision checks.

]_le _ R(¢z) o 1 out [VJ ) 1]T
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IV. EVALUATION STUDY

In a simulative evaluation study, we compare the per-
formances of optimized modular robots to commercially
available industrial manipulators for randomly generated
tasks. Data and videos showing the randomly generated tasks
for this study have been made available to the public El
Collision-free paths and collision checks are implemented
using the Open Motion Planning (OMPLﬂ and the Fast
Collision Checking Library (FCL) [21].

For our comparison, we use a Schunk LWA-4P 6-DOF
lightweight robot (Industrial robot 1), a KUKA LWR 4+ 7-
DOF lightweight robot (Industrial robot 2), and a Staubli
TX90 robot (Industrial robot 3). These robots have been
particularly chosen for the availability of their models [22]-
[24]. The base coordinate system of all robots is set to the
origin (0,0,0) without loss of generality, except for ETL-
class robots, which are hanging from above, for which we
set the base at (0,0,1). For opimization, we consider the
kinetic and potential of the robots. For case 1 and 2, a random
payload between 0...50NV represents the external force. In the

Ihttps://git.io/JeYdE
Zhttp://ompl.kavrakilab.org
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TABLE IV
CASE 1: ENERGY SAVINGS OF MODULAR ROBOTS AND ROBOT MASSES
(100 EXPERIMENTS FOR EACH SITUATION)

Energy savings in % mass in kg of

# poses 2 3 4 Ind.R. Mod.R.
T O
N B T
I

following, we describe the experiments and their results for
each case.

A. Case I: Desired trajectory

For case 1 we generate trapezoidal trajectories at random
constant speeds in Cartesian space connecting, two, three,
and four poses for each industrial robot, which results in
nine different settings, each with 100 experiments resulting
in 900 experiments in total. To make sure these poses can
be reached by the respective industrial robot, the poses
are randomly generated in their joint spaces instead of the
Cartesian space. As a simplification, but without loss of
generality, the trajectories do not alter the orientation of the
end-effector, and we do not consider external obstacles. The
optimal module composition is chosen according to Sec.
M An example of the experiments is seen in Fig. [§] for
comparing industrial robot 1 with the optimal modular robot
for a trajectory with 4 poses, where the improvement is also
displayed.

In Tab. [[V]we show the mean and variance of the improve-
ment in percent of the energy for each setting. We observe
that the energy savings become less when the trajectory
is longer. We can see in the comparison with industrial
robot 1 that due to clever optimization, energy savings of
proModular. I are possible despite having a higher robot mass
to a large extent due to the customized kinematics. We also
see that the energy savings are bigger compared to industrial
robot 3, because the average modular robot in these cases
have much lower masses.

B. Case 2: Desired poses

Similar to case 1, we automatically sample two, three
and four poses in Cartesian space for each industrial robot.
Additionally, we consider these scenarios: 1) a scenario
without obstacles in the environment, and 2) a pick and
place task, where the robot gripper goes in and out of a
milling machine. The optimal module composition selects
the fastest and energy efficient robots for this task with
[we, we] = [1,0.2], Gmas = 1722, and Gas = 17%%. The
results are shown in Tab. [V| and an example is shown in
Fig. 0]

Similar to case 1, time and energy savings are less, when
the trajectory length increases. A further decrease in cost
savings is visible when considering obstacles. This might be
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Fig. 6. Case 1 and 2: Appearance frequency of each kinematics as a result
of the optimization.
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Fig. 7. Case 3: Three desired cubical workspaces, for which we optimize
the dexterity. The lower bounds of the workspaces are all at z = 0. The
robot base is placed at [0, 0, 0].

an indication that a higher number of task constraints lead
to less room for better performance in a direct comparison.
However, what has been neglected in these experiments is
that through optimization and adaptation, a modular robot is
limitless when it comes to performing tasks, that would be
infeasible for fixed-shape industrial robots.

Another interesting outcome is shown in Fig. [6 which
presents the frequency a kinematics has been chosen in all
experiments of case 1 and 2. The DLR kinematics has been
chosen by far the most for case 1, which supports the fact
that kinematic redundancy leaves more room for trajectory
optimization in inverse kinematics control. For case 2, the
PUMA kinematics is chosen the most. Elbow robots have
almost never been selected.

C. Case 3: Desired workspace

In this experiment we showcase the results of optimizing
the dexterity index of workspaces. The three investigated
workspaces are shown in Fig. []] We consider poses that
lead to self-collisions as not reachable. The results for the
optimal modular robot, as well as the three industrial robots
are shown in Tab. It displays clearly that a dexterity
> (.7 can always be achieved (maximum is 1), while such
is not the case for industrial robots.

V. CONCLUSIONS

In this work we show a computationally feasible approach
for the task-based optimization of modular robots based
on the enumeration of common industrial robot kinematics
and on hierarchical elimination, that involves feasibility
checks of the kinematics, dynamics, and collision checking
of the composed robot. In an evaluation we show that our



TABLE V
CASE 2: ENERGY AND TIME SAVINGS OF MODULAR ROBOTS — WITH AND WITHOUT OBSTACLES (100 EXPERIMENTS PER SITUATION)

no obstacles
Time savings in %

Energy savings in %

with obstacle (machine tooling example)
Time savings in % Energy savings in %

number of poses 2 3 4 3 2 3 4 3
Industrial robot 1 w331 222 100 46.4  26.3  6.52 278 173 8.70 38.9 4.61 —5.18
Var. 4.13 3.04 3.06 10.6 9.57 128 4.12 6.00 4.33 11.9 9.87 18.5
Industrial robot 2 w370 283 218 69.0 63.8 517 372 327 183 63.1 59.6 47.4
Var. 390 259 1.89 2.06 264 261 1.95 3.79 3.23 2,77 5.25 3.42
Industrial robot 3 w434  30.1 216 88.0 83.5 80.9 274 304 46.3 86.1 81.8 89.7
Var. 4.80 189 3.22 1.09 1.09 0.46 7.65 0.82 0.57 0.45 0.27 0.03
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Fig. 8. Case 1: exemplary comparison of industrial robot 1 with the optimal module composition (ETL) for a trajectory with four points
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Fig. 9. Case 2: exemplary comparison of industrial robot 2 with the optimal module composition (PUMA) for a list of four desired poses and an obstacle

TABLE VI
CASE 3: OPTIMIZED WORKSPACE DEXTERITY INDICES COMPARED WITH
INDUSTRIAL ROBOTS

Work-  Optimal Industrial robot
space  Mod.rob. 1 2 3
1 0.859 0.496 0.298 0.323
2 0.782 0.723 0.254 0.354
3 0.730 0.794 0.186 0.363

proModular.] robot often achieves better performance for
standard tasks in manufacturing than three commercially
available industrial robots. This work provides a path to-
wards a broader deployment of modular robots in industrial

automation. Future works shall introduce translational joints
for considering more kinematics (e.g., SCARA) and applying
optimization methods to further reduce computational load.
Furthermore, we aim at methods to evaluate the repeatability
of modular robots.
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