
Mobile Robot Learning from Human Demonstrations with
Nonlinear Model Predictive Control

Yingbai Hu1, Guang Chen 1,2∗, Xiangyu Ning2, Jinhu Dong2, Shu Liu3, Alois Knoll1

Abstract— Learning by imitation is a powerful way that
can reduce the complexly in searching space. It could help
the mobile robot to acquire new skills from interaction with
a human-being in natural way. In this paper, the dynamic
movement primitives (DMPs) is utilized to imitate the trajec-
tory from human walking. DMPs is a modified formulation
of virtual spring-dampers (VSD) system that enjoys better
fitting performance in learning. Further, while dealing with
the trajectory tracking problem of mobile robots, a novel
nonlinear model predictive control (MPC) approach is proposed
for motion control. The nonlinear MPC scheme applies a new
neural network named Varying-parameter Lagrangian Neural
Network (VP-LNN) to solve a Quadratic Programming (QP)
problem by iterating over a finite receding horizon. The new
network of VP-LNN can converge to the global optimal solution.
Thus, a new human-robot interaction (HRI) scheme for mobile
robot is proposed, which can reduce the complexity in motion
planning in various applications.

I. INTRODUCTION
If the robot can learn motor skills in a natural way like

human, it will be able to complete tasks with more complex-
ity. Previously, robot learning has attracted the attention of
many researchers. In [1], [3], authors present the dynamic
movement primitives (DMPs) for manipulator learning by
imitation. The DMPs is a special virtual spring-dampers
(VSD) system, which can represent the motion of a robot,
even for the nonlinear movements.

However, most of the robot learning methods are applied
to manipulators. In [4], dual-arm robot based on DMPs
cooperate to cut a vegetable by human demonstrations. In
[5], reinforcement learning fusion with DMPs is employed
to learn the grasping actions with a number of iterations
in external disturbance environment. In this paper, DMPs is
applied to learn the human movement for mobile robot. The
learning scheme is a novel human-robot interaction method
which can imitate the motion from human demonstrations.
Therefore, mobile robot is able to reproduce the demonstra-
tion by DMPs, which leads to the reduction of complexity
for motion planning tasks.

Considering kinematic constraints, nonlinear model pre-
dictive control (MPC) is often used for controlling mobile
robot [12]. MPC is an optimal control algorithm that can
deal with the system which has nonlinear input-output over
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a finite horizon. It ensures the control sequences are always
allowed within physical constraints. In this work, a new
varying-parameter Lagrangian neural network (VP-LNN)
method is proposed to solve optimization problem of MPC.
The neural network method can solve QP problem in real
time with physical constraints and it has good performance
for applications of robot system. The new VP-LNN can
obtain optimal solution for QP problems, while the network
doesn’t include matrix inversion, matrix-matrix multiplica-
tion or high-order nonlinear computation.

In the learning-control tasks, trajectories are demonstrated
by human and recorded by Xsens mti-310. In the repro-
duction phase, DMPs is applied to reproduce the trajectory,
where the nonlinear item of DMPs is obtained by locally
weighted regression (LWR) in [14], and the new trajectory
is generated by DMPs. Subsequently, VP-LNN based MPC
method is employed to control the mobile robot for tracking
the trajectory from reproduction. The framework of learning-
based MPC scheme is shown in Fig. 1. The contributions of
this paper can be summarized as:

1) A novel learning based human-robot interaction
method is proposed for mobile robot, where mobile
robot can learn complex motor skills from human
demonstrations, the reduction of complexity for motion
planning with the learning-control system is signifi-
cant.

2) A new VP-LNN method is presented to solve QP
optimization problem of MPC. It converges quickly
to optimal value with physical constraints.

II. RELATED WORK
Robot learning is a special method that helps to obtain

novel skills from environment or human being. In [6],
Gaussian Mixture Model fusion dynamical system is used
to learn the motions from demonstration. In [7], authors
propose the DMPs based learning framework to learn the
driving motions from human experience. However, most of
the research focus on manipulators learning. We present
a novel human-robot interaction (HRI) method for mobile
robot learning.

Traditional controller do not consider the kinematic con-
straints in [8], [9]. In [10], an adaptive controller is proposed
to track the trajectory in uncertainties of mobile robot. In
[11], the nonlinear slide mode controller is designed for robot
which can ensure the controller system from initial state to
target equilibrium. In this paper, nonlinear MPC method is
proposed to control the mobile robot.

In [15], the traditional numerical optimization method has
high dimension and high computational cost for MPC, so
it is not suitable for fast-changing robot system. In [16],
[17], [18], a neural-dynamic based MPC method is proposed
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Fig. 1. The learning-control framework for mobile robot.

that does not rely on numerical optimization. Compared
with traditional methods, this method can avoid some of
the major pitfalls facing of traditional MPC and has global
convergence, low computational complexity that can deal
with the high online computational burden. Both of these
methods are good to solve the QP problems of MPC. In
this paper, the novel VP-LNN is proposed to optimize the
QP problem of MPC. The novel neural network method
converges to the global optimal solution, and has the simple
structure.

III. IMITATION LEARNING WITH DMPS
Dynamical movement primitives system is a second-order

nonlinear virtual spring dampers. DMPs can encode the
nonlinear movement by learning the nonlinear item F . The
formulation of DMPs is expressed as

ÿt = Kp1 (g − yt)−Kv1ẏt + F (1)

where Kp1, Kp2 are the full stiffness matrix, F is the
interaction forces, yt, ẏt, ÿt and g are the position, velocity,
acceleration and the attractor point respectively. The nonlin-
ear items in (1) are defined as:

F = stft (2)
ṡt = αsst (3)

The system (1) is the transform system that generates the
reference trajectories [yt, ẏt, ÿt], including the position, ve-
locity and acceleration, where g is the goal parameter of the
attractor point. The equation (2) is the nonlinear item that
can model the complex trajectory. The equation (3) is the
canonical system, where αs is time constants, and st(0) = 1
that means st asymptotically decays from initial state to 0.
After multiplication of the canonical system, the nonlinear
item Ft will converge to zero with the time increasing
that means the DMPs system will become the linear spring
damper system. If we get the desired trajectory, we can obtain
the nonlinear item in DMPs from the equations (1)-(3),

Ftarget = ÿd −Kp1 (g − yd)−Kv1ẏd (4)

where [yd, ẏd, ÿd] denotes the desired trajectory, and ft can
be obtained by LWR algorithm.

IV. MODEL PREDICTIVE CONTROL SCHEME
A. Mobile Robot Control System

The two wheels mobile robot and kinematic model are
shown in Fig. 1. According to the relationship between robot
velocity v and two driving wheels velocity (vL, vR), the
robot velocity and angle velocity are expressed as: v =
(vL+vR)/2, ω = (vL−vR)/D, respectively. D denotes the

distance of two wheels. The kinematics model formulation
of mobile robot can be represented as:

Ẋ =

 ẋ
ẏ

θ̇

 =

 v cos θ
v sin θ
ω

 =

 cos θ 0
sin θ 0

0 1

u (5)

where (x, y) is the mobile robot position in Cartesian space,
and θ is the orientation angular; u = (v, ω)T is the control
input, and X is the state vector. From the formulation in (5),
we can obtain kinematics model of the reference trajectory
by state vector Xr = (xr, yr, θr)

T and control input ur =
(vr, ωr)

T , and it is expressed as:

Ẋr =

 ẋr
ẏr
θ̇r

 =

 vr cos θr
vr sin θr
ωr

 =

 cos θr 0
sin θr 0

0 1

ur (6)

Therefore, we can get the robotic kinematic errors,

Xe =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 xr − x
yr − y
θr − θ

 (7)

where Xe = [xe, ye, θe]
T . The derivative of Ẋe can be

obtained from error state in (7),
ẋe = ωye − v + vr cos θe
ẏe = −ωxe + vr sin θe
θ̇e = ωr − ω

(8)

The control input is reformulated as:

ue =

[
u1
u2

]
=

[
vr cos θe − v
ωr − ω

]
(9)

Substituting (9) into (8), the kinematics model of Xe can be
rewritten as

Ẋe =

[
ẋe
ẏe
θ̇e

]
=

[
0 ω 0
−ω 0 0
0 0 0

][
xe
ye
θe

]
+

[
u1

vr sin θe
u2

]
(10)

The formulation in (10) can be reformulated as a following
equation:

˙̄Xe =

 0 ωr 0
−ωr 0 vr

0 0 0

 X̄e +

 1 0
0 0
0 1

ue (11)

Therefore, the motion control problem of mobile robot in (5)
is converted as a stabilization problem of an nonlinear affine
system in (11).

B. Nonlinear MPC Framework
The nonlinear MPC framework can be presented as:

X (k + 1) = f (X(k)) + g (X(k))u(k) (12)

the input and state vector constraints are defined as:

X(k) ∈ RX , k = 1, 2, . . . , N
u(k) ∈ RU , k = 1, 2, ...Nu

where X and u denote state vector and input vector, respec-
tively. In nonlinear affine system (12), f(.) and g(.) denote
the nonlinear continuous functions. The initial conditions
satisfy f(0) = 0, and N ≥ 1 and 1 ≤ N ≤ Nu that denotes
the prediction horizon.

5058

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 10:42:15 UTC from IEEE Xplore.  Restrictions apply. 



In each sampling period, the optimal input vector can be
obtained by a given cost function online optimization, thus
the nonlinear MPC scheme is formulated by iterative solution
of optimal control problems. The cost function S(X,u) can
be defined as a quadratic form as following:

S(k) =

N∑
j=1

‖X (k + j|k)‖2Q+

Nu−1∑
j=0

‖∆u (k + j|k)‖2R (13)

where X(k + j|k) is the predicted the future horizon state;
∆u(k + j|k) = u(k + j|k) − u(k − 1 + j|k) which is the
increment of input vector; the parameters R and Q present
constant design weight matrix; the symbol ‖·‖ represents the
Euclidean norm of the corresponding vector. The equation
(12) can be reformulated as:

Xe (k + 1) = f (Xe(k)) + g (Xe(k))ue(k) (14)

subject to u− ≤ ue(k) ≤ u+ (15)
∆u− ≤ ∆u(k) ≤ ∆u+ (16)
X− ≤ Xe(k) ≤ X+ (17)

f (Xe) =

 x1
x2
x3

+ T

 ωrx2
−ωrx1 + vrx3

0


g (Xe) = T

 1 0
0 0
0 1


where Xe = [x1, x2, x3]

T
= [xe, ye, θe]

T is the state
vector, and T is the sampling period; ue = [u1, u2]

T ,
u1 = vrcos(θe) − v, v2 = ωr − ω is the input vector;
(u−, u+) are the upper and lower limits of input variable, and
(∆u−,∆u+), (x−, x+) are also the upper and lower limits
of input increment variable and state variable, respectively.
The block diagram of MPC based control system is shown
in Fig.1.

To construct the QP problem for online optimization, we
introduce the vectors as:

X̄ = [Xe(k + 1|k), ..., Xe(k +N |k)]
T (18)

ū(k) = [ue(k|k), ..., ue(k +Nu − 1|k)]
T (19)

∆ū(k) = [∆ue(k|k), ...,∆ue(k +Nu − 1|k)]
T (20)

According to (14), and (18)–(20), we can get the predicted
output,

X̄(k) = A∆ū(k) + f̂ + ĝ (21)

A =
g (Xe(k|k − 1)) · · · 0

g (Xe(k + 1|k − 1)) · · · 0
...

. . .
...

g (Xe(k +N − 1|k − 1)) · · · g (Xe(k +N − 1|k − 1))


f̂ =


f (Xe(k|k − 1))

f (Xe(k + 1|k − 1))
...

f (Xe(k +N − 1|k − 1))


ĝ =


g (Xe(k|k − 1)u(k − 1))

g (Xe(k + 1|k − 1)u(k − 1))
...

g (Xe(k +N − 1|k − 1)u(k − 1))



Fig. 2. Block diagram of VP-LNN.

where A ∈ R3N×2Nu , f̂ ∈ R3N , and ĝ ∈ R3N . Then, the
optimization problem in (13) can be rewritten as:

minimum
∥∥∥A∆ū(k) + f̂ + ĝ

∥∥∥2
Q

+ ‖∆u(k)‖2R (22)

subject to ∆ū− ≤ ∆ū(k + 1) ≤ ∆ū+ (23)
ū− ≤ ū(k − 1) ≤ ū+ (24)

ū− ≤ ū(k − 1) +H∆ū(k) ≤ ū+ (25)

X− ≤ f̂ + ĝ +A∆ū(k) ≤ X+ (26)

where H =


I 0 0 0
I I · · · 0
...

...
. . .

...
I I · · · I

 ∈ R2Nu×2Nu

The Optimization problem in (22)-(26) can be reformu-
lated as a QP problem:

minimum 1
2∆ūTM∆ū+ cT∆ū (27)

subject to E∆ū ≤ r (28)
∆ū− ≤ ∆ū ≤ ∆ū+ (29)

and the parameters details are given,

M = 2(ATQA+R) ∈ R2Nu×2Nu

c = −2ATQ(ĝ + f̂) ∈ R2Nu

E =

 −HH−A
A

 ∈ Rn1 , r =


−u− + u(k − 1)
u+ − u(k − 1)

−X− + f̂ + ĝ

X+ − f̂ − ĝ

 ∈ Rn2

where n1 = (4Nu + 6N)× 2Nu, n2 = 4Nu + 6N .

V. VARYING-PARAMETER LAGRANGE NEURAL
NETWORK

Firstly, we rewritten the QP problem as following:

minimum 1
2q
TMq + cT q (30)

subject to Eq ≤ r (31)
q− ≤ q ≤ q+ (32)

where q = ∆ū, q− = ∆ū−, q+ = ∆ū+, and q ∈ [q−, q+].
The Lagrangian of the time-varying quadratic programming
problem subject to equality constraints described in (30) and
(31) is defined as follows:

L (q, λ) =
1

2
qTMq + cT q + λT (Eq − r) (33)
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where λ is an n-dimensional column vector of Lagrangian
multipliers at time t. By setting the partial derivatives of
L (q, λ) to zero, the Lagrange necessary condition gives rise
to the following time-varying algebraic equations:

∂L(q,λ)
∂q = Mq + c+ ETλ = 0

∂L(q,λ)
∂λ = Eq − r = 0

(34)

Combining the above two partial derivatives together in (34),
we have

Wz = ν (35)

where W =

[
−M −ET
E 0

]
, z =

[
q
λ

]
, ν =

[
c
r

]
The varying-parameter Lagrange neural network model is

defined as:
ż = µ · exp(ηt) · (Wz − ν) (36)

where µ > 0 is the positive constant parameter, µ ·exp(ηt) is
used to scaling the convergence rate of VP-LNN. VP-LNN is
globally convergent to the optimal solution. Compared with
other neural network models, the VP-LNN has no matrix in-
version, matrix-matrix multiplication or high-order nonlinear
computation, which has better efficiency for computing and
can be easily implemented in hardware. The block diagram
of VP-LNN is shown in Fig. 2.

VI. SIMULATION
A. Tracking the ’8’-shape trajectory with LNN-MPC

In this section, the VP-LNN based MPC method is applied
to track given trajectories by a two-wheel mobile robot,
and we demonstrate the results as the performance of the
proposed method in simulation.

The parameters of MPC and VP-LNN are set as N = 3,
Nu = 2, Q = 3I , R = 2I , κ = 0.001, µ = 10−3,
respectively. The sampling period ∆t = 0.1s. In this simula-
tion task, the mobile robot tracks an ’8’-shape trajectory for
periodic movement, and the reference trajectory is given as:
x = sin(0.1t); y = 2sin(0.05t). The initial position of the
reference trajectory is Xr(0) = [0; 0; 0.785], and the initial
position of mobile robot is X(0) = [0.3; 0; 0.7].

From Fig. 3(a), we can see that the exploration trajectories
converge quickly to the desired trajectories, even when
robot starts from a randomly chosen initial position. From
Fig. 3(b), the actual values of orientation angular is extremely
close to the desired value. Last, the tacking errors of the
mobile robot quickly converge to zero as shown in Fig. 3(c)-
3(d), indicating that the VP-LPNN based MPC can track the
desired trajectory. It is obvious that the VP-LNN has good
robustness and effectiveness.

B. Learning the trajectory from demonstration with
learning-control Scheme

In this simulation, two tasks are tested, which includes the
following of a simple ’S’-shape and of a more complex ’SS’
shape path from human demonstrations. Moreover, some
obstacles are set for ’S’ and ’SS’ shape tasks, where a human
demonstrate how to pass through the obstacles, and then the
robot passes through obstacles by imitation learning.

The parameters of DMPs are set as: KP1 = diag[50, 50],
Kv1 = diag[10, 10], KP2 = diag[10, 10], Kv2 =

diag[
√

20,
√

20]. The sampling period is set as ∆t = 0.005s.
MPC and VP-OneLPNN parameters are set same as VI-A.

1) Learning the ’S’-shape path: In the first task, the
mobile robot learns the ’S’-shape path from demonstrations.
There are some obstacles randomly placed on the both sides
of the ’S’-Shape path. Firstly, a human demonstrates the
movement from the initial position to the target position in
Cartesian space, where the path is recorded by Xsens mti-
310. Then, the DMPs based learning framework is used to
obtain the learning trajectory. Lastly, the VP-LNN based
model predictive control method is applied to track the
learning trajectory of the mobile robot.

In this task, we track the learning trajectory starting
from X0 = [0, 0, 0]. The learning-control result is shown
in Fig. 4(a), and we can see that the tracking results are
extremely close to the learning results. The position error and
orientation angular error are shown in Fig. 5(a)–5(c), where
the errors are close to zero. This also demonstrates the good
performance of VP-LNN based MPC. The tracking results of
linear velocity, and angular velocity are shown in Fig. 5(e)–
5(f), respectively. For comparison, we randomly choose an
initial position of the mobile robot X0 = [−0.06, 0.15, 0.01],
and the simulations are shown in Fig. 4(b)–5(d). It is obvious
that the robot trajectories coincide with the learning track
after a period of time.

2) Learning the more complex ’SS’ shape path: In the
second task, the mobile robot learns a more complex task
of ’SS’ shape path from human demonstrations. In order to
verify the effectiveness of the proposed method, we designed
a more complex scenario, where the path is added more ’S’-
turn, and also more obstacles are randomly placed on both
sides of the path. In our experiment, a human demonstrates
the movement through obstacles, and then the mobile robot
learns to pass the obstacles in narrow space by imitation.

We also set two different initial position of mobile robot in
this task, which are X0 = [0; 0; 0] and [0.1;−0.1; 0.01]. The
imitation learning results are shown in Fig. 4(c)–4(d). In the
motion control phase, the mobile robot can successfully cross
the path with obstacles by imitation. The tracking errors of
linear velocity and angular velocity are shown in Fig. 6(e),
Fig. 6(f), respectively. The tracking errors are shown in
Fig. 6(a)–6(c). The results also show good performance with
learning-control scheme, even with different initial position
which are shown in Fig. 4(d)–6(d).

C. Discussion
Overall, the above results prove that our method are able

to converge to global optimal solution within small amount
of time. In addition, the tracking errors, despite of minor
turbulence in the initial states, are kept in a small range
and also have a quick convergence towards zero. The mobile
robot is able to successfully cross the path without colliding
the obstacles, even when the tasks are challenging.

It is important to note that, in scenario VI-A, we evaluate
the algorithm running time and the amount of time that an
algorithm requires until the largest error converges to below
0.01. In our setting, the sampling time is 0.1 second and we
calculate the running time for 10000 samples. We compare
the performance of our proposed VP-LNN with PDNN [18]
and RNN [19]. The results are shown in Tab VI-C. The pro-
posed VP-LNN method outperforms RNN in solving the QP
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Fig. 3. Simulation results using nonlinear MPC based on VP-LNN. (a) Tracking results of ’8’-shape trajectory for periodic movement. (b) The results of
orientation angular. (c) Tracking error Xe and Ye. (d) Tracking error θe.

TABLE I
SIMULATION RESULTS COMPARISON

Neural Network Running time (s) Convergence (s) (|error| ≤ 0.01)
VP-LNN 11 113

PDNN [18] 16 95
RNN[19] 70 300

problem of MPC, from the perspective of both computation
time and accuracy. Note that RNN could certainly deal with
the nonlinear second-order optimization problem, for which
VP-LNN and PDNN fail to address. However, we believe
that VP-LNN trade-off minor convergence time for shorter
running time as compared to others, which we consider is
an advantage considering that in terms of implementation on
mobile robots, higher computation efficiency is a key factor.

VII. CONCLUSION AND FUTURE WORK
In this paper, combined with dynamic movement primi-

tives, we present a novel learning based human-interaction
method. Mobile robot learns the motor skills from human
demonstration, where robot can imitate human movement to
complete complex tasks.

The varying-parameter Lagrange neural network is used to
optimize the QP problem of MPC. Compared with previous
work, the novel neural network has no matrix inversion,
matrix-matrix multiplication or high-order nonlinear compu-
tation, which shows better efficiency for computing and can
be easily implemented in hardware. Future work includes
the implementation of the learning-based control system on
our own created real mobile robot. We believe that the
application of imitation learning on mobile robot platform,
for example, on assistive robots, will bring new interactive
experiences for human users.
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Fig. 4. Imitation results of two different initial positions using nonlinear MPC based on VP-LPNN. (The symbol ’♦’ represents the obstacles. The red
and blue ’◦’ denote the initial positions, and the black ’*’ denotes the end attractor). (a) Tracking results of ’S’-shape trajectory. (b) Tracking results of
’S’-shape trajectory with different initial positions. (c) Tracking results of ’SS’-shape trajectory. (d) Tracking results of ’SS’-shape trajectory of different
initial positions.
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Fig. 5. Results of ’S’-shape trajectory tracking. (a) Tracking errors of Xe and Ye. (b) Tracking errors of Xe and Ye of different initial positions. (c)
Tracking errors of θe. (d) Tracking errors of θe of different initial positions. (e) Mobile robot angular velocity ω. (f) Mobile robot linear velocity v.
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Fig. 6. Results of ’SS’-shape trajectory tracking. (a) Tracking errors of Xe and Ye. (b) Tracking errors of Xe and Ye of different initial positions. (c)
Tracking errors of θe. (d) Tracking errors of θe of different initial positions. (e) Mobile robot angular velocity ω. (f) Mobile robot linear velocity v.
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