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Abstract

We are interested in grouping data into a given amount of k£ clusters under constraints
that fix the aggregated values of data features for each cluster. A typical type of
constraints is fixing the weights of clusters. We furthermore assume the data space
to be equipped with a meaningful similarity measure that allows to judge the quality
of a clustering. Exemplary applications are districting problems such as trade area
planning or electoral district design.

Voronoi diagrams and their generalizations have been a powerful tool in various
streams of research in data analysis and optimization. We define a general notion
of Voronoi diagrams in arbitrary spaces and discuss several particular types in our
context. A direct correspondence between generalized Voronoi diagrams and constrained
clusterings is recalled and generalized. Clusters of certain optimality w.r.t. the space’s
similarity measure can be embedded into the cells of generalized Voronoi diagrams and
thus to some extent inherit their geometric properties. Further, we recall some theory
of (semi) infinite linear programming and transfer the established correspondence from
the finite setting to arbitrary compact Hausdorff spaces. Also, we recall and extend the
existing theory for balanced-k-means clustering from both a theoretical and algorithmic
point of view.

As prime application, we consider the problem of electoral district design. We
demonstrate our proposed methodology using three different types of Voronoi diagrams
for the data of the federal elections in Germany.
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Zusammenfassung

Wir beschiftigen uns mit der Gruppierung von Daten in eine gegebene Anzahl
von k Gruppen (Cluster), so dass Nebenbedingungen beziiglich aggregierter Daten-
merkmale fiir jeden Cluster eingehalten werden. Das Festsetzen von Clustergewichten
ist hier ein typisches Beispiel. Dariiber hinaus nehmen wir an, dass im Datenraum
ein aussagekriftiges Ahnlichkeitsmaf vorliegt, welches eine Beurteilung der Qualitét
eines Clusterings zuldsst. Anwendungsbeispiele liefern Aufteilungsprobleme, etwa fiir
Handelsgebiete oder Wahlkreise.

Voronoi Diagramme und deren Verallgemeinerungen sind ein méchtiges Werkzeug,
das in verschiedenen Forschungsgebieten der Datenanalyse und Optimierung eingesetzt
wird. Wir definieren einen allgemeinen Voronoi Diagramm Begriff in beliebigen Rdumen
und diskutieren einige wichtige Spezialfidlle im Hinblick auf unsere Methodik. Wir
wiederholen und verallgemeinern eine direkte Beziehung zwischen verallgemeinerten
Voronoi Diagrammen und Clusterings unter Nebenbedingungen. Cluster, die beziiglich
des gegebenen Ahnlichkeitsmafles in gewissem Sinne optimal sind, koénnen in die
Zellen eines verallgemeinerten Voronoi Diagramms eingebettet werden und erben so
einige ihrer geometrischen Eigenschaften. Dariiber hinaus wiederholen wir einige
Theorie von (semi) unendlich-dimensionalen linearen Programmen und ibertragen die
beschriebene Beziehung fiir endliche Probleme auf beliebige kompakte Hausdorffraume.
Auflerdem besprechen und erweitern wir Ergebnisse fiir k-means Clustering unter
Gewichtsnebenbedingungen, sowohl in theoretischer als auch algorithmischer Hinsicht.

Als Vorzeigebeispiel betrachten wir das Problem der Wahlkreiseinteilung. Wir demon-
strieren unseren Ansatz anhand drei verschiedener Typen von Voronoi Diagrammen
fiir Daten zur Bundestagswahl in Deutschland.
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Chapter 1

Introduction



Chapter 1 Introduction

1.1 Scope

Clustering describes the task of grouping data in a meaningful way (see [GMWO0T7],
[DHS00, Chapter 10] for comprehensive introductions). As we are living in the age of
information, or — more likely — at the very beginning of it, clustering self-evidently
plays an important role in the day-to-day handling of the accompanying data amounts.

In the context of “big data” and “artificial intelligence”, clustering is also considered
as a unsupervised learning process that assigns labels to unlabeled data ([DHS00;
HTFO09]). Data elements with identical labels then form the clusters of a given data set.
Thus, one may also consider clustering to belong to the huge field of machine learning.
The theory of clustering algorithms and cluster analysis is, of course, wide-spread and
ongoing (cf. the surveys in [JMF99; Sax+17]).

In order to decide on the meaningfulness of a clustering, similarities of the elements
in between a cluster or dissimilarities between the clusters can be evaluated ([GMWO07,
Section 6]). For the context of this thesis, we assume data to be given in a meaningful
geometric space that allows to inherit those measures of similarity or dissimilarity.

Let us explain this by means of the famous k-MEANS clustering algorithm ([Bis06,
Section 9.1]). Here, one aims to group points to clusters such that the sum of squared
errors, i. e., the sum of squared distances of points in a cluster to the cluster’s centroid, is
minimized. It is then easy to see that in any optimum, points are assigned to the cluster
which yields the closest centroid. This reveals an important underlying geometric
structure. If we assign each point in Fuclidean space to the closest among a finite set of
reference points, we obtain a tessellation of the space whose structure is well-known as
a Voronoi diagram (JAKL13]). As one major characteristic, Voronoi diagrams consist
of convex cells. This already implies a lot of information on the clusters obtained from
the k-MEANS algorithm and hence provides a meaningful understanding of their basic
geometric properties.

In this thesis, we generally aim at clusterings that allow this kind of structural
knowledge, i.e., that are induced by diagrams. In order to be more flexible, however,
we consider generalized versions of Voronoi diagrams. In their essence, Voronoi diagrams
assign points to clusters that minimize a certain dissimilarity measure. Here, classical
Voronoi diagrams consider the Euclidean norm and distances to reference points. By
allowing basically any kind of dissimilarity — for example, by using different metrics or
transformations of distances — one obtains new classes of generalized Voronoi diagrams.
As long as the chosen distance measures are meaningful, one can hope to obtain a
meaningful understanding of the tessellation that results from a diagram and hence of
the induced clustering.

Next, we are interested in finding special clusterings that are further constrained.
There are several ways how to constrain a clustering. An overview is given by Basu,
Davidson, and Wagstaff [BDWO08]. Here, the classical type of constraints are on an
instance level, i.e., they constrain a relation between pairs of data elements. This
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includes must-link or cannot-link constraints that enforce or disallow to group certain
elements in the data into the same cluster, for example. Other types of constraints deal
with properties of clusters as a whole. An important example are balancing constraints
that define eligible sizes for the clusters. In this work, we are interested in a similar
class of constraints. For each data element, we assume a vector of numerical features
to be known. Such a feature can be a weight or coordinates of an element. We then
assume that the feature values aggregated over each cluster are known a priori, and
only allow clusterings that fulfill those aggregated values. Thus, our class of allowed
constraints in particular implies balancing constraints.

Districting problems yield a well-suited class of applications in this setting ([Kall5],
[Ri020]). Here, areas have to be subdivided into smaller districts. Typically, those
districts should be created with respect to certain side conditions that result in
constraints or optimization criteria. Examples are police districts ([Mit72]), trade areas
([BS97]), farmland consolidation ([BGO04]), or electoral districts ([RSS13]), to name
just a few. We will use the latter as a prime example to demonstrate the proposed
theory. Here, a state area has to be divided into electoral districts that each elect their
own democratic representatives. A major constraint is that those districts are equally
balanced in order to obey the one-man-one-vote principle. However, the decision
what a “good” or even “admissible” electoral district plan is, can be tricky. Electoral
districts in general should be “compact” in order to allow a good representation of their
citizens and in order to prevent oddly-shaped districts that root from a partisanship-
driven district design - more famously known as gerrymandering. Another important
constraint is contiguity of electoral districts. However, this as well can be ambiguous
in case that districts are separated by water or natural reserves, for example. Also,
electoral districts have to be re-designed regularly due to census developments. In
order to be politically acceptable, this redistricting should be as continuous as possible.
Thus, this application reveals a wide range of constraints and optimality criteria.

Here, the usage of Voronoi diagrams and their generalizations will help us to cope
with this variety of demands. Depending on the focus of optimality and feasibility
criteria, we may choose a diagram type that in general yields a dissection of the plane
into cells of desirable geometric properties that come along with this focus.

This work is intended to present a general framework for constrained clustering
problems of the proposed type. Generalizations of Voronoi diagrams will yield the
basic structure that embeds the resulting clusterings. As it turns out, there is a direct
correspondence between those diagrams and clusterings that appear as optimizers of
certain linear programs. In particular, the data that is to be clustered is not restricted
to consist of a finite number of points in Euclidean spaces. Instead, both the concept
of generalized Voronoi diagrams as well as the proposed correspondence to optimal
clusterings carries over to very general settings.
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1.2 Qutline and Contributions

This work aims to provide a self-contained description of a methodological usage of
generalized Voronoi diagrams for constrained clustering problems as motivated above.

A major starting point has been the results on the relation between power diagrams
and least-squares weight-balanced clusterings, which in particular have been successfully
applied to the problem of farmland consolidation ([Borl10; BBG11; BBG14; BGO04;
BG12]). As one major contribution, Chapters 2 to 5 generalize both the setting as well
as the results of this theory in manifold ways.

Chapter 2 will define the notion of constrained clusterings. Sets of clusterings
that obey a suitable type of constraints yield constrained clustering polytopes. Here,
the special case of weight-balanced clusterings yield transportation polytopes which
are well-understood and whose properties have been successfully exploited in the
aforementioned balanced clustering problems. A particular important result is the
limitation of the number of (strictly) fractional assignments of data points to several
clusters. Those appear as we (temporarily) have to allow for fractional assignments
to clusters in order to exploit a linear programming duality in the following. While
any vertex of a weight-balanced clustering polytope yields at most £ — 1 many such
fractional assignments, a very similar result can be shown for our general clustering
polytopes as introduced in this chapter. Besides, this chapter will introduce clustering
graphs as a helpful tool for dealing with clusterings and as well recall the existing
results for weight-balanced clusterings which to some extent can be generalized, too.

Chapter 3 then introduces the concept of generalized Voronoi diagrams. Of course,
Voronoi diagrams and their generalizations are subject to a lot of research on their
own. We will give a concise introduction, provide an abstract definition of generalized
Voronoi diagrams for our context, and discuss some basic properties. We then discuss
some basic types that generalize the concept of classical Voronoi diagrams in Euclidean
space as well as so-called shortest-path diagrams over graphs. As of certain importance
for the applications in our mind, we particularly discuss different parametrizations
of power and anisotropic power diagrams. In particular, we provide results on the
invariances of those parametrizations.

In Chapter 4, we then generalize the aforementioned correspondence between weight-
balanced clusterings and power diagrams to our setting. We recall the existing findings
in the literature. We then successively follow the steps of generalizations as existing in
the literature in order to finally derive our — to the best of our knowledge — further
generalized correspondence. This relates the constrained clusterings of Chapter 2 to the
concept of generalized Voronoi diagrams from Chapter 3. By exploiting standard linear-
programming duality theory, we show that specific faces of a constrained clustering
polytope yield exactly those clusterings that may be derived from generalized Voronoi
diagrams. More practically, we may consider an assignment of data points to clusters
that is optimal w.r.t. the aggregated costs that result from distance functions associated
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with each cluster. The corresponding dual solution then yields the linear factors for
combining the constraint-defining feature maps. The latter yield correction terms for
the cluster-associated distance measures such that the resulting generalized Voronoi
diagram then induces the optimal clustering.

The results of Chapter 4 are based on basic linear programming theory. This
particularly implies a setting of a finite amount of data points to be clustered. However,
it is natural to ask to which extent this can be extended to a continuous setting. For
example, instead of clustering a finite number of points in the plane one may way want
to find a clustering of the plane itself. Instead of having weighted points one may have
a continuous probability distribution over the plane. Chapter 5 is intended to break
down the correspondence as established in the preceding chapter to its very core by
considering a way more general setting. Here, we will assume any compact Hausdorff
space equipped with some regular Borel measure to yield the dataset to be clustered.
In order to keep this thesis self-contained, this chapter first recalls some necessary
definitions from topological and functional analysis, and then gives an introduction
to linear programming in locally convex spaces. We then carry our terminology and
problem over to this more general setting. As the finite case for balanced clusterings
results in transportation problems, we may then generalize our duality results from the
previous section similar to existing findings on semi-infinite transportation problems.
However, we will see that the correspondence between generalized Voronoi diagrams
and optimal clusterings as proven for the finite case in Chapter 4 does not hold in
general in this new setting. Still, we can show that by allowing an arbitrary small error
in the cluster constraints, the correspondence can be re-established.

An important and already well-researched special case of our setting are least-squares
balanced clusterings. As this yields the weight-constrained version of the famous k-
MEANS clustering problem, we refer to it as BALANCED k-MEANS clustering. Chapter 6
intends to provide a cohesive algorithmic treatment of this problem. We define two
variants of the BALANCED k-MEANS problem and provide several complexity results. We
then outline an algorithmic approach to it. First, the BALANCED k-MEANS-algorithm
from the literature yields the constrained counterpart of the famous k-MEANS algorithm.
Next, we recall and adapt existing theory on so-called gravity polytopes that allows
to interpret the BALANCED k-MEANS problem as an ellipsoidal norm-maximization
problem. We then present a revised version of the BALANCED k-MEANS-algorithm
that guarantees convergence to a local optimum. Also, using our adapted theoretical
results we are able to slightly improve its guaranteed running time.

Chapter 7 presents our prime application of the electoral district design problem
by means of a case study for the federal elections in Germany. First, we shortly
introduce and discuss the problem of electoral district design. We then formulate a
general methodological framework that allows to apply several types of generalized
Voronoi diagrams. By means of a toy example, we then discuss the applicability of
power diagrams, shortest-path diagrams and anisotropic power diagrams. Here, the
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choice of the diagram type can be made w.r.t. the desired focus of optimization. The
shortest-path diagram approach is the only one that guarantees contiguous districts
a priori. Finally, anisotropic power diagrams can be exploited in order to aim at a
district design that is similar to an existing (but maybe infeasible) district design. We
present detailed computational results. Those demonstrate that all approaches are
capable of providing pleasant district designs. Also, they underline how the choice of
the diagram type sets the focus w.r.t. the various optimization criteria.

1.3 Prerequisites and Notations

Besides a general mathematical background, this thesis assumes the reader to be
familiar with some fundamental concepts related to the field of discrete optimization.
This concerns basic terms from convex geometry such as polytopes, halfspaces and
cones (see [Roc70]). Also, a fundamental knowledge of the theory of linear programming
(cf. [Sch98; Van08]), discrete mathematics (such as graphs, see [Diel7]) as well as
combinatorial optimization (including basics of complexity theory, see, for example,
[KV12; Pap82]) is assumed. Whenever ambiguous or beyond this expected scope, this
thesis strives to provide the necessary definitions and terminology in order to yield a
self-contained work.

Let us clarify some general notation used in this thesis. In addition, an overview
at page 251 is to provide a look-up possibility of the most important notations and
objects as used throughout this thesis.

The set IN denotes the set of all non-negative integers including 0, while INs¢
denotes the set of all strictly positive integer numbers. For an integer k € IN, the set
[k] := {1,...,k} denotes the set of the first k integers, with the convention [0] := ().
For a finite set S, we denote by (i) the set of all subsets of S of cardinality k. The
sets of all, all non-negative, and all strictly positive reals are denoted by R, R>¢, and
R, respectively.

Let d € N denote some dimension. The set SO(d) denotes the special orthogonal
group of all orthogonal matrices of determinant 1 in R4*?. The matrix Idg € R*¢
yields the identity matrix and for a vector v € R? the diagonal matrix with the
components of v on its diagonal is denoted by diag(v). The vector u) will denote
the ith standard unit vector (with the dimension d being clear by context). We
write 1(4) .= (1,...,1)T € R? for the vector with all components equal to 1 and
0@ = 0,...,0)T € R? for the vector with all components equal to 0 (we omit the
dimension d if clear by context).

For a matrix A € R™*™, we denote by A;. its ith row, and by A. ; its jth column.
For some S C [d], the vector A. g € Rl denotes the submatrix of A obtained by
restricting A to the columns with index in S (with the analogous notation used for
restricting rows). Labeled vectors in R? will be indexed by super indices such as (@
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in order to prevent ambiguities with component references.
For a set S C RY, the sets conv(S), lin(S), and aff(S) denote the smallest convex set,
linear subspace, and affine subspace that contain S, respectively. For some a € R% and

B € R, the set Hé ) = {x eR?:z2Ta < B} denotes a closed halfspace. Analogously

we define the closed or open halfspaces H. (Za ) H é 8)’ H (2 5)r a8 well as the hyperplane
Hgp :=H (@,8)" A polyhedron is the intersection of a finite amount of closed halfspaces
and called polytope if its furthermore bounded. We assume the reader for be familiar
with the notion of faces of convex sets. For a convex set C', we denote by ext(C') the

set of all extremal points, i.e., O-faces of C' (that we call vertices if C' is a polyhedron).
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Chapter 2 Constrained Clustering

In this chapter, we define the terminology of constrained clusterings for the scope of
this thesis.

In order to so, Section 2.1 defines constrained clustering polytopes. Some elementary
properties of those are then discussed in Section 2.2. Section 2.3 then introduces the
notion of clustering graphs which will serve as a useful tool to work with clusterings
later on.

2.1 Definition

The clustering problems we are interested in deal with the task of partitioning a set
into a fixed number of k subsets. Those subsets — called clusters in our context —
obey certain constraints. These constraints may, for example, be of the form of fixed
weights of the resulting clusters w.r.t. a given weighting of the elements in our set of
interest. Another example might be fixing the clusters’ centroids if we are to partition
points in R%. In general, we consider constraints that can be expressed as a fixed
average or sum over the clusters. Also, we do allow elements to be fractionally assigned
to several clusters. This gives rise to the following very broad definition.

Definition 2.1 (Constrained Fractional Clustering)
Let n,k € N-o. Furthermore, let for every i € [k] a number m; € IN, a matrix
A; € R™*" and a vector b € R™i be given.

We set
=T <(Ai)i€[k]a (b(i) ze[k]) = {f fz,J iclk], S RkX" :
J€(n]
ek = g (2.0a)
Al = 0D Vie ] (2.0b)
§ij > 0 Vie[k],jen]} (2.0¢)

Then we call £ € T a ((Ai)ie; (b(i))ie[k])—constmined (fractional) clustering. If
£ € TNZF", we call the clustering integer-

For each i € [k] we set C; := (&1,...,&n)T € R™ and call it (the ith) cluster. Next,
for each cluster C'; we denote by

supp(Ci) :={j € [n] : & j # 0} (2.1)

the support of the ith cluster.

We will call the case A1 = ... = A =: A € R™*"™ homogeneously constrained. Then
we write T :=T (A, (b(i))ie[k}) and call € € T a (A, (b(i))ie[k])—constrained clustering.

10
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The case m = 1 will be referred to as single-constrained. For the sake of a uniform
notation, we define

Tinestrom =T ((0<”>)T, (O)iem) = {g e RF™m . ¢T1®) — 1 ¢ > 0}. (2.2)

This is the n-fold product of (n — 1)-simplices, and we will refer to £ € Tynestr. k,n aS
an unconstrained clustering.

Definition 2.1 defines a clustering { = (&;;);; as a matrix in RF*". Using the
Frobenius inner product the latter is a Hilbert space that can be identified with the
Euclidean space R*™. Hence, for the sake of simpler denotation we will occasionally
identify a clustering & with a vector in R¥" (whenever this is clear from the context).
In particular, we identify the set T from Definition 2.1 with a polytope in R¥™ and
call it (constrained) clustering polytope.

Example 2.2. 0 1
Consider the set of points X = {x(l),...,x(6)} with () .= <2>, £ = <3>,

2 /2 3 3/2 .
(3) .— 4) .— (5) .— 6) .—
HASZA <2>, AN ( 9 ), z\%) <1>, and z\® : <1/2>. Furthermore, the points

shall have weights w1 :=1, wo :=2, w3 :=1, wy := 1, ws := 1, and wg := 1.

(2

3| S

Figure 2.1: Exemplary constrained fractional clustering from Example 2.2.

Let us assume we are interested in finding a clustering of X into k := 3 clusters of
prescribed weights k1 := 2, ko := 2, and k3 := 3.

As all clusters have to obey the same type of constraint, we are in the homoge-
neously single-constrained case. Thus, we set A := (wl w6) and b = g;

for every i € [3] and obtain with 7' := T (A, (b(i))ie[k]) as defined in Definition 2.1

11



Chapter 2 Constrained Clustering

the polytope of all (A, (b(i)))—constrained clusterings. Fig. 2.1 depicts the clustering
1 00 0O

E=10 1 0 0 0] €T with colors blue/orange/green for clusters 1/2/3, re-
00 0111

spectively. In particular, this clustering is not integer as z(? is split to equal parts

between cluster 1 and 2. Here, we have supp(C1) = {1,2}, supp(C2) = {2,3}, and

supp(C3) = {3,4,5}.

D[ 0| =

If it is clear from the context, we will refer to a cluster C; simply by its index i. Also,
we will refer to the elements that are to be clustered as units. Units can be points
(such as in Example 2.2), the set of numbers [n] or any other set of objects. Again, we
will refer to the unit of index j simply as unit j, if the reference is clear.

Example 2.2 introduces a very important special class of homogeneously-constrained
clustering polytopes that fall into the class of transportation polytopes. Those received
major interest as description of the feasible region of the Hitchcock Transportation Prob-
lem or Hitchcock-Koopmans Problem in the 40s of the last century (cf. [Hit41],[Koo49],
[KW68], [YKK84, Chapter 6]). Here, one searches for the optimal transport of a homo-
geneous good from sources with supply amounts (a;);e[n) to destinations of demands
(b:i)ic[k), With costs linear in the transportation amount between each source-terminal
pair. This may also be understood as a network flow problem in a complete bipartite
graph between source and terminal nodes ([Van08, Chapter 15]). In a more general
setting, the Monge-Kantorovich transportation problem seeks for an optimal probability
measure for the product space of two measurable spaces with prescribed marginal
distributions (see [Mon81] and [Kan60] for original publications as cited in [Kol+17];
see [Vil09] for a thorough treatment of optimal transport theory; further, application-
oriented introductions can be found in [Kol+17] and [PC19]). The special case of
both measurable spaces being finite then yields the previously described transportation
problem.

Besides for classical transportation problems, transportation polytopes are also of
interest in the field of statistics. Here, contingency tables describe the possible outcome
from sampling multivariate discrete random variables with fixed marginal sums. In
this context, transportation polytopes are, for example, researched w.r.t. the question
of how much information may be drawn about individuals when knowing cumulated
numbers (see, for example, [CCE85], [Cho+99], [BFHO07], and the references therein).
Consequently, transportation polytopes have been extensively studied and are still
matter of current research (see [KW68], [Bol72], [YKK84, Chapters 6 - 8], [Bru06,
Chapter 8|, [DK14] for collections of the most relevant results).

In our setting in the homogeneously single-constrained case with only positive
parameters, i.e., m = 1 and A = (ay,...,a,) € ]R1>T)” and b(") € Ry for all i € [k], we

obtain a classical transportation polytope by rescaling T := T (A, (b(i))ie[k]) as follows.

12



2.2 Properties of Clustering Polytopes

Let D : ]kan — kan be the scaling (fi,j)i,j — (aijfiyj)iyj’ then

1 ) N
D.-T= { <a,j£l7j> S RFX™ . Z &J =1Vje [n] A Z aj&,j = b( )VZ € [k‘]}

i.J i€[k] Jj€[n]

= {(éi’j)i,j € ]kan : Z éi’j = a; Vj € [TL] A\ Z éi,j = b(l)VZ (S []C]}

ic[k] J€[n|

is a transportation polytope in the classical definition. Consequently, many of the
following results are obtained using basic facts about transportation polytopes or
contain them as special cases.

2.2 Properties of Clustering Polytopes

Let us discuss some basic properties of constrained clustering polytopes.

2.2.1 Feasibility

First, we will investigate the conditions under which a clustering polytope T is non-
empty. We will restrict this to the homogeneously constrained case and consider some

homogeneously constrained clustering polytope T' =T (A, (b(i))ie[k]) in this section. We
will furthermore denote A = (a(l) a(”)) e R™*™and b := ((b(l))T, cee (b(k))T)T €
RFEm™,

For the case of transportation polytopes, i.e., m = 1, it is well-known that
T (A, (b(i))ie[k]) is non-empty if and only if 37 cp, al¥) = Ziem b, However, this is
not sufficient anymore as soon as the non-negativity of the a() and b is dropped.
For example, setting A := (—1,1) and (b)), () := (—2,2) obviously leads to T being
empty.

While the general homogeneous case for m = 1 may be determined easily, we can

only provide some necessary conditions on the choice of A and (b(i))z‘e[k} in higher
dimensions.

Proposition 2.3
In the setting as above, the following holds:

a) In the case m = 1 it holds that T # () if and only if

Z a¥) < Z b and Z p() — Z ad).
JE[n]: ’LEUC] i€[k] JjE€[n]
a<0 (<0

13



Chapter 2 Constrained Clustering

b) In general, if T # 0, then for all u € R™ it follows that

Z uTal?) = Z T and Z uTa? < Z uTh®

J€ln] i€ (k] Sk i€k]:
uTal@<0 uTb(® <0

Proof. For part a, let It := {z e [k]: b > O}, I~ = {z e [k]: b < 0}7 JT =
{j €[n]:a > O}, and J~ = {j €[n]: a9 < O}. We may w.l.o.g. assume that
al?) #£ 0 for all j € [n] (as those columns of A obviously do not affect feasibility)
and hence J~ U J* = [n]. Next, we denote b := Y ,crs b9, b= = 3, b,
at = 2jegt a9, and a= = djet- al9). Our assumption hence translates into

a”<b” and b 4+bT=a +a. (2.3)

Now if Eq. (2.3) holds, we first set r := a™ — bt = b~ —a~ > 0. Then, we define
£ € RF¥" as

_b(z) + r/k

—a—

Tk
Sij = Viel ,jel, 5“::2 Vielt,jeJ

WO o B
‘Si,j ::T VZ€I+,]€J+, {l,‘] Z:aj Viel ,]EJ—"_.
Note that this is well-defined as a~ (a™) being zero implies that J~ (J1) is empty. We
can now easily verify that for each j € J~ it holds that

—b® + T/k e —bT+k-§
ij = — = — =1
zez[i] ! zg: —a Z; —a —a

and for every i € I~ that
. . _|_r k . k z. i
S alg, = 3 ) /L S al). a/+ = 50 i = b0
JjE€n] jeJ— jeJt

The analogous check for j € J* and i € I, respectively, together with the observation
that & > 0 then yields that indeed & € T holds.
For the other implication, let £ € T. Then we get

S0 =3 Y aeg =3 a3 )=

i€[k] i€[k] j€[n] Jj€n] i€[k] j€(n]

14



2.2 Properties of Clustering Polytopes

as well as

2D SLLED 3D P LLTED b 3P LY

iel— €I~ j€[n] el— jeJ—
=Y (T ez Y a=a,
JEJ ™ el jeJ—
~—~
<0 <1

and so Eq. (2.3) holds.
For part b, note that for every u € R™ it follows that

T (A, (b(i))ie[k]) cT (uTA, (uTb(i))ie[k]) :

Hence, this follows from part a. O

In order to get a more general understanding, let us rewrite the set of all feasible
right-hand sides b. If there exists £ € T, it follows that

pL) Ag
(2.0b) i
b Ad],
. (4) 0 0
a
gua(J) ((2.0a) 0 o)

:Z : Zconv N N VI ERRRE

i€l \ g a0 jeln] ; 5 0

Vice versa, we get that the coefficients of any convex combination in each of the convex
hulls in the Minkowski sum above yield a feasible clustering £ € T by definition. Hence,
the set of right-hand sides b such that T is non-empty is given by

ald) 0 0
0 a) :
B := conv Z ol o | 0 . (2.4)
=t : 20

Let S¢—1) .= {a: eRF1:z2>0A (]l(k_l))T:U < 1} denote the standard simplex in
R5~! and T[(k=1)m)] * RF™ — R*=D" the projection of RF™ onto the first (k—1)-m
coordinates. Identifying R*~D ™ with RF=D*™ we see that

Tie-1ym) (B) = Y S*V(a

J€M]

15



Chapter 2 Constrained Clustering

Since S*~1 is full-dimensional, it follows that dim (1)) (B)) = (k — 1) - rank(A).
Furthermore, for b € B and € € T we have that b*) = = A, = = A1™ — Dicle—1) i ) =

Zje[n] ald) — Zie[k—l} b0,
Consequently, it holds that dim(B) = (k — 1) rank(A) and

aff(B) = {5 e RF™ . Z b = Z a(j)}.

i€[k] j€n]

Of course, B is invariant under a permutation of the &k blocks of dimension m (or
the rows in each matrix in B, when we again identify R*™ with R¥*™). Furthermore,
with 7(;_1)4[m) denoting the projection of R*™ to the ith m-dimensional block, it
holds that

Tl ymam)(B) = Y [0,1]aY).

J€[n]

This is, 7(;—1)m+[m)(B) is the zonotope of the columns of A (cf. Fig. 2.2).

Figure 2.2: Exemplary zonotope m(;_1)pm+[m](B). The dashed zonotopes illustrate the feasible
choices for b9 for i € [k — 1] after b, . .., b(~1) have been fixed.

2.2.2 Results on Fractionality

Of course, allowing a fractional assignment of units to clusters only yields a relaxation
in case that the model on hand actually requires binary assignments. However, using
the structure of a clustering polytope T' one can show that for extremal solutions the
number of units that are non-integrally assigned can be reasonably bounded. For the
single-homogeneously-constrained case, i.e., m =1and T'=T (A, (b(i))ie[k]), it is well
known that clusterings that are vertices of T" may not assign more than k — 1 units
non-integrally (see [BG12; GLW97; Hoj96; KNS05; Mar81; SW77; ZS83]).
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2.2 Properties of Clustering Polytopes

In order to show the direct generalization of this result to our setting, we first require
the following technical lemma that yields the rank of the matrix of equality constraints
in the definition of clustering polytopes.

Lemma 2.4

Consider the setting of Definition 2.1, i.e., let A; € R™>*"™ and b € R™: for i € [k]
be given and consider T :=T ((Ai)z‘e[k}> (b(i))ie[k]). Furthermore, let rank(A;) = m;
hold for all i € [k].

Let A denote matriz that defines the left-hand sides of Equations (2.0a) and (2.0b).
Then

k k
rank(A) =n+ Y _ m; —dim <ﬂ lin(A})) :

i=1 i=1
Here, lin(A]) denotes the linear space spanned by the rows of A;.

Proof. Considering T to be a subset of R¥" as described earlier, the left-hand side’s
matrix of the linear equality system given by the equations (2.0a) and (2.0b) can be
written as

Id, Id, ... Id,

We can now perform elementary row operations on A. For this purpose, we set
L; == lin(A]) for i € [k] and w.l.o.g. assume that for i > 2 there exist (possibly

+
)7 lin((A;)T) = lin(A]) N £i-;, and

A

lin((A4;)7) = lin(A]) N L;—1 = L; (otherwise, we perform elementary row operations

(2

A
empty) matrices A, A7 such that A; = (

17



Chapter 2 Constrained Clustering

on A;). Gaussian elimination then yields

d, 1d, Id, .. Id,
Id, Td, .. Td, ldp Iy oo Ido \ Jin((AS)T)C —AL—Ar e A
A O b =) Cn(an) 42
Az ~ Az =V 0 —A; .. —A;
. . As
Ag Ap
Ay
d, Id, Td, .. TId,
Sy R—
A7
A7 - A
N S A3
Tt
Ak
0

As all A; have full (row) rank, it follows that

k k k
rank(A Z —rank(4;) =n+ Y m; —dim <ﬂ hn(AD) :

i=1 i=1 i=1 o

In the particular case of homogeneously single-constrained clusterings, Lemma 2.4
states that the rank of the equality system defining T" is n 4+ k — 1, which is, of course,
in consistency with the according results for transportation polytopes. For the latter,
the relative interior consists of points with strictly positive components and thus their
dimension is n - k — rank(A) = (n — 1)(k — 1) ([YKK84, Chapter 6, Proposition 1.1]).
Note that — as we do not make any further assumptions on a clustering polytope’s
parameters — this may not be true in our setting, as the following short example
shows.

Example 2.5
Let n =k =2, A= (50,6®) := (=1,1). Then T := T (4, (5?);epy) = {Ids} and
thus dim(7) =0< 1= (n—1)(k —1).

However, as rank(A) yields the size of any basis of a vertex of T, we make the
following definition analogously to transportation polytopes:

Definition 2.6
Let T=T ((Ai)ie[k}7 (b(i))ie[k]) be a clustering polytope as in Definition 2.1 and £ be
a vertex of T

Then ¢ is called non-degenerate if and only if Y% supp(Ci) = n + 3K m; —
dim (ﬂizl hn(AI)).

Otherwise, ¢ is called degenerate.

18



2.2 Properties of Clustering Polytopes

Using Lemma 2.4 we may now bound the number of units that are non-integrally
assigned by a constrained clustering.

Theorem 2.7
Consider the setting of Definition 2.1, i.e., let A; € R™>*"™ and b € R™ for i € [k]
be given, and consider T =T ((Ai)ie[k]7 (b(i))ie[k]) )

Furthermore, let rank(A;) = m; hold for all i € [k].

Then every vertex of T yields at most

k k
Zmi — dim (ﬂ 1in(AiT)>
i=1 i=1
non-integral assignments.

Proof. With A as defined by Eq. (2.5), Lemma 2.4 yields

k k
rank(A4) = n + Zml — dim <ﬂ lin(A})) :
i=1 i=1

Every vertex of T has (at most) rank(A)-many non-zero components. As for every
J € [n] the column &. ; requires at least one positive entry due to Definition 2.1, at most

Zle m; — dim (ﬂle lin(AiT)) of that columns may contain more than one non-zero
entry, which yields the claim. O

Note that assuming A; to have full rank for every ¢ € [k] is, of course, nothing else
than demanding to drop (obviously) redundant constraints. Otherwise, we would have
to replace m; by rank(A;) in the statement of Theorem 2.7.

In the homogeneously-constrained case the claim of Theorem 2.7 simplifies to the
following corollary. In particular, this implies the well-known case for m = 1.

Corollary 2.8
Consider T' =T (A, (b(i))ie[k]) as defined in Definition 2.1 in the homogeneously-
constrained case and assume rank(A) = m.

Then every vertex of T yields at most

m(k —1)

non-integral assignments.

k
Proof. This follows immediately from Theorem 2.7 as here dim (ﬂ hn(AI)) =
i=1

dim (lin(AT)) =m. O
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Chapter 2 Constrained Clustering

Besides in the number of fractionally assigned units, we are furthermore interested
in how those fractionally assigned units may be distributed among the clusters. The
next result limits the number of units that are shared by two clusters in case that all
constraints are of the same type.

Lemma 2.9
Consider T =T (A, (b(i))ie[k]) as defined in Definition 2.1 in the homogeneously-
constrained case. Furthermore, assume rank(A) = m.

Let £ = (C1,...,Ck)T be a vertex of T. Then for every i,l € k], i # 1, we have

|supp(C;) Nsupp(Cy)| < m.

Proof. Let S := supp(C;) Nsupp(C;) and assume |S| > m.

Then the |S| columns of A indexed by S are obviously linearly dependent, i.e., there
exists ¢ € R™ \ {0} such that (j,)\ s = 0 and A¢ = 0. Furthermore, we may assume ||(]|
to be sufficiently small such that 0 < C; (< laswellas0 < (C;+( < 1.

We define ¢+ := ¢ + (u(i)CT — u(l)CT) (with u” € R* denoting the rth standard
unit vector for r € [k]).

Then it holds that

(€51 =¢T1 + (u(i)CT _ u(l)CT)T 1=1=+¢ ((u(i))T]l _ (u(l))T]l) 1.

Altogether, this gives £+ € T, a contradiction to ¢ being extremal. O

2.3 Clustering Graphs

A natural and helpful tool for the analysis of (fractional) clusterings and relations
between different clusters are graph representations.

We consider the complete bipartite graph with clusters and units as nodes. A
fractional clustering £ € T induces a subgraph by taking only the edges between a
cluster node ¢ and a unit node j whenever j lies in supp(C;). Here, we will identify
the node that is associated with a cluster C; with the cluster itself. However, as a
cluster C; has been identified with the ith row of the clustering £, from a strictly
formal perspective this causes issues in case of identical rows in £. In order to avoid the
introduction of yet another notation and as this will not actually lead to ambiguities,
we will ignore this issue.

Definition 2.10 (Clustering Graph)
Let £ = (Cq,...,Cp)T € R¥*™ and set C := {C1,...,C)}. Then we call

G (&)= (CUn], E)
with E:= {{Cy,j} i€ [k],j €[n] N &  # 0} the clustering graph (of &).
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In our context, we are particularly interested in a more careful analysis of clusters
that share a fractionally assigned unit and thus are linked to each other in a certain
sense. For this reason, we define the following multigraph (using the notation as, for
example, introduced in [Diel7, Chapter 1]) with nodes corresponding to clusters and
edges for all shared units:

Definition 2.11 (Contracted Clustering Graph)
Let £ = (Cq,...,0)T € R¥*™ and G (€) := (CU[n], E) be the corresponding clustering
graph. Then we call

Ge (§) := (C, Ec,v)

with
Ee = {({Ci,Cl},j) € <§> X [n]:i#1 N {Ci,j} € E N {C1,j} € E} and
vikeos (3). (€0 - 1000

the contracted clustering graph (of €).

:

© ® o @ ({d

(a) Clustering graph G (£). (b) Contracted clustering graph Ge (€).

Figure 2.3: Clustering graphs of Example 2.2.

Example 2.2 (continuing from p.11).
For our running example and the clustering £ as introduced before, we obtain

Ge (5) = ({017 027 C3}7 {({017 02}7 2)}7 V)

with v(({C1,C2},2)) = {C1,C32}. Both the clustering graph as well as the contracted
clustering graph are depicted in Fig. 2.3.
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Chapter 2 Constrained Clustering

Note that we may not only consider clustering graphs for clusterings from a clustering
polytope T, but allow arbitrary matrices £ € R¥*". In particular, we will consider the
clustering graphs that result from differences £ — ¢ of clusterings ¢, ¢@) e T
Those are then used to describe and understand the transition from one clustering ¢
to another clustering 3.

For transportation polytopes it is known that for every extremal point the corre-
sponding subgraph in the bipartite graph that connects sources and sinks is cycle-free
(cf. [KW68, Theorem 4]). Also, there is a one-to-one correspondence between trees
and bases of the transportation polytope ([YKKS84, Chapter 8, Theorem 2.2]). In our
setting, this translates into the following theorem:

Theorem 2.12
Consider T' =T (A, (b(i))ie[ko as defined in Definition 2.1 in the homogeneously-
constrained case for m = 1 and assume that A € (R\ {0})1*".

Then & € T is a vertex of T if and only if G (§) is acyclic.

Moreover, £ € T is a non-degenerate vertex of T if and only if G (§) is a tree.

Before the proof of Theorem 2.12, let us consider our more general setting — at least
for the homogeneously constrained case.

Here, being acyclic translates into a more general kind of connectivity property. A
(multi)graph is said to be l-edge-connected if it stays connected under the removal of any
[ edges (cf. [Diel7, Chapter 1]). The following result now yields that extremal points
of the homogeneously-constrained clustering polytope T requires a certain connectivity
of the corresponding contracted clustering graph.

Theorem 2.13
Consider T ' =T (A, (b(i))ie[k]) as defined in Definition 2.1 in the homogeneously-
constrained case.

Assume rank(A) = m and let £ be a non-degenerate vertex of T

Then Ge (§) is m-edge-connected.

Proof. Assume G¢ (&) is not m-edge-connected. Then there exists a cut (S,C\ 5)
of size at most m — 1, i.e. [{e€ E:enS#0Aen(C\S)#0} <m—1. W.lo.g.
assume S = {Cq,...,C;} for some 1 <[ < k.

From the proof of Lemma 2.4 we know that the matrix A, that yields the left-hand
side of the equality system defining 7', has rank n+ (k — 1)m. More precisely, we notice
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that the last m rows are redundant so that the matrix

d, Id, ... Id, Id,

A = A c R(n+(kfl)m)><k-n

A 0

yields the left-hand side of an irredundant representation of T

Let B C [k] x [n] be a basis of £&. This means |B| = n+ (k — 1)m, det(A. g) # 0, and
we can express £ via ég = (A.g) ! ((1(”))T, S5 LI (b(’l“l))T)T and (k) x[n))\B = 0-
Furthermore, as § is non-degenerate, it must moreover hold that &; ; > 0 if and only if
(1,7) € B.

Now the cut on hand naturally partitions B = B1UB; via By := BN [l] x [n] and
By := B\ By = BN ([k]\[I]) x [n].

Furthermore, we may partition [n] = NyUNyUN3 via

Ny:={jen]:Fiell]l:(ij) € BiA Aie[k]\[l]: (i,7) € Ba},
No:={jen]:Fielll:(i,j) e BiAnFie[k]\][]:(ij) € B2},

and N3 := [n] \ (N1 U N3). In other words, N; yields the indices of units that are
assigned only to clusters in S. Furthermore, Ny yields the indices of units each assigned
to at least one cluster in both S and C \ S. Again, we may w.l.o.g. assume that
Ni = [n1] and Ny = [ng] \ [n1] (and thus N3 = [n] \ [ng]) for some 0 < n; < ng < n.
(Note that for the special case ny = 0 we assume N1 = ().

The indices in Ny are exactly those corresponding to edges in the (S,C \ S)-cut of
Ge (§). Thus, we have

\Ng\zng—nlgm—l.

By definition of By, Ny, and Nj, we have that By C [I] X [ng]. Thus, we conclude
that A. g, is a submatrix of

1 2 l
Id,, Idp, ... Idn,
0 0 0
1 A-,[ng]
2 A.,[m]
l A-,[ng]
0 0 0
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and thus rank(A. ,) < ny + (I — 1) - m (by the same argumentation as for 4 in the
proof of Lemma 2.4; this may be interpreted as considering the clustering instance
reduced to units in [ny] and clusters in [I]).

Similarly, A B, is a submatrix of

I+1 I+2 k—1 k
0 0 . 0 0
Iy,  Idp—p, ... Idp_p, Idyon,
0 0 . 0 0
I+1 Aw[n]\[nl]
142 A.’[n]\[m]
k—1 A~,[n]\[n1] 0

and so rank(A. p,) <n—ny+ (k—1—1)-m.
Together, this gives

rank(A. g) = rank(A. p,) + rank(A. z,)
<ng+(l—=1)-m+n—m+k—-1-1)-m
=n+k—-2)m+n—n <n+(k—2m+m-—1
=n+(k-1)-m-1,

which is a contradiction to det(A.B) # 0. |

Theorem 2.13 yields a minimal connectivity of clusterings that are extremal w.r.t.
T. Of course, we also would like to approach the reverse implication.

Theorem 2.14
Consider T =T (A, (b(i))ie[ko as defined in Definition 2.1 in the homogeneously-
constrained case.

Assume rank(A. g) = m for every S € ([”m]) and let £ € T.

If G (&) does not contain a (m + 1)-edge-connected subgraph, then & is a vertex.

Proof. Assume ¢ is not a vertex of T. Then there exists ¢ € RF¥*™\ {0} such that
€4 ¢ € T. The latter is equivalent to £ + ¢ > 0, (T1#) =0 and AT = 0.

In particular, we can observe that G¢ ({) C G¢ (€), as for all i € [k], j € [n] we must
have that 0 < gi,j + Ci,j <1 and thus Ci,j # 0 implies §i7j > 0.

By constraint (2.0a) in the definition of T, it follows that ¢(T1*) = 0 and so for
every i € [k],j € [n] with ¢; j # 0 there must exist a [ € [k] \ {i} with (;; # 0. Hence,
together with ¢ # 0 this means G¢ (¢) is not empty.
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We may further assume ¢ to be chosen such that there is no subset of rows R C [k]
such that for 5 = diag(]lgif))c — i.e., the matrix in R**™ that equals ¢ in the rows
with index in R and is 0 otherwise — it holds that ¢ # 0 and (T1*) = 0. Otherwise,
as then £ = ¢ € T holds as obviously & + ¢ > 0 as well as ACT = 0, we could proceed
with ¢ instead of ¢.

From our assumption it follows that we can find a partition S1USs = C such that
S1 and Sy yield a cut of Ge¢ (€) of size at most m but greater than 0. (For doing so,
consider a non-trivial connected component of G¢ (§) and use that it is not (m + 1)-
edge-connected.)

Let U:={j€[n]:3C; € 51,C1 € S2:(j #0AN(,; # 0}, i.e., the indices of those
units that correspond to edges in this cut. Thus, we get 1 < |U| < m. By definition of
the cut, we may further obtain a partition of the remaining edges and thus unit indices
such that

[n] = MlL'JUL'JMg,
J €M = Ci,j =0VC; € 52, and
jEM2=>CZ‘7j=0VCi651

hold. In other words, we may assume the following block-structure of (:
M1 U M
~ S1 * % 0
C B So < 0 * ES )

From ¢T1%*) = 0 we conclude

M, 0
WG )T=u [ u == > ()
C;eS1 Mo 0 C;e82

for some u € RIY!. By our assumption on the choice of ¢, we can further conclude
u # 0. From A{T = 0 it follows that

0= > (AM.i=A( Y (G)7) = (A

C;e51 C;eS1

However, this contradicts the at most m columns of A. ;7 that are linearly independent.O

Note that Lemma 2.9 is actually also a corollary of Theorem 2.14.
The restriction in Theorem 2.14 to constraint matrices A that only have linearly
independent columns may be understood as the units that are represented by the
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Chapter 2 Constrained Clustering

columns in A being in a general position. In particular, equal columns may be
understood as equivalent units that can be arbitrarily interchanged.

We can observe by the following example that, in general, the reverse of Theorem 2.14
is not true.

Example 2.15

For n := 6 we consider points (/) € R defined by zU) := j for j € [6]. Furthermore,
we give each point 29 the weight 1. We would like to (fractionally) cluster those
points into k := 4 clusters such that each cluster has a total weight 3/2 and such that
clusters 1, 2, and 3 have their centroid in 3, i.e., % E?Zl & jxj =3 for ¢ € [3], and the
4th cluster has the centroid 5.

2D 2@ L L@ L6) 46

— 0D e O —

0 1 2 3 4 ) 6 7

Figure 2.4: [lustration of Example 2.15.

Thus, we are in a homogeneously-constrained case with m = 2 and set A :=
111111 - 3/2 ) 3/2
(1) .— 4) .—
(1 5 5 4 5 6>’b : <92> for i € [3], and b'¥ : (15/2>.
Figure 2.4 illustrates this situation and the fractional clustering

2 1/2 0 0 0 12
« Y2 0 12 0 12 0
&= 0 12 12 12 0 0
0 0 0 12 12 1)2

Indeed, £* €T (A, (b(i))ie[4]) holds. Moreover, from Lemma 2.4 we can conclude that

rank(A) = 6+4-2—2 = 12 with A as defined by Eq. (2.5). Hence, a basis of any vertex
of T has cardinality 4 - 6 — 12 = 12. We observe that £* is indeed a non-degenerate
vertex of T' with according basis B = {(1,1),(1,3),(1,5),(2,1),(2,2),(2,6),(3,2),
(3,3),(3,4),(4,4),(4,5),(4,6)}. However, the resulting clustering graph is complete
(as simple graph), i.e., G¢ (§*) = K4, and thus 3-edge-connected (cf. Fig. 2.5).

Still, for the case of homogeneously single-constrained clusterings, Theorem 2.12
states that the reverse of Theorem 2.14 indeed holds.

Here, the resulting transportation polytopes are very well-understood. In particular,
let us recall that edges of those polytopes can be identified with cycles in the clustering
graph G (§). In the setting of Theorem 2.12, consider a clustering £ € T and let
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2.3 Clustering Graphs

Figure 2.5: Contracted clustering graph of Example 2.15.

Ciis gty s Jjr=1,Cr, jr, Ci, .y = Cyy be a cycle in G (£). Then, we define the cyclic
exchange ¢ € RF*™ via

Cil,jl = _(Asz)_l and Cil+17jl = (Al,jl)_l (2'6)

for Il =1,...,r and 0 in all remaining components. Note that~by construction it holds
that ¢T1() = 0" as well as AT = 0%). Vice versa, for any { € R**"\ {0} such that

G (f) is the same cycle and ¢T1(#) = 0 as well as AT = 0) hold, we can deduce

that  equals the corresponding cyclic exchange defined by Eq. (2.6) up to scaling.
Let us now briefly supplement the proof of Theorem 2.12.

Proof (Theorem 2.12). From Theorem 2.14 we get that if G (&) is acyclic and
therefore is G¢ (), then ¢ is extremal.

For the reverse implication, assume that there exists a cycle in G (§) and let ¢ be
the corresponding cyclic exchange. Then there exists € > 0 such that £ £ e¢( > 0 and
hence by construction of ( it follows that & & €( € T, so £ is not extremal.

The second claim then is a direct consequence of Theorem 2.13. a

With Theorem 2.12, we may now rephrase the following well-known characterization
of edges of transportation polytopes in our context.

Lemma 2.16
In the setting of Theorem 2.12, let €V # £2) € T be two vertices.

Then €1, €@ are neighbors if and only if G (f(l)) uG (5(2)> contains exactly one
cycle, namely G (5(2) — 5(1)>.

Proof. Let us first make an observation. Consider any ¢ € RF*™ with ¢T1(*) = o™
and CAT = 0%). Those two equalities imply deg(yG (¢)(j) # 1 for every j € [n] and
deg(yG (¢)(C;) # 1 for every i € [k], respectively. Consequently, G (¢) is a union of

(maybe not edge-disjoint) cycles. In particular, G (§ @) ¢ (1)) is a union of cycles.
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Chapter 2 Constrained Clustering

Set & := %(5(1) + £®@)). Observe that by construction
e -%) co( =a () ua ().

By Theorem 2.12, G (5) contains a cycle. Let ¢ be the corresponding cyclic exchange.

Now first assume that G (5) contains another cycle in addition to G (¢). Let ¢ be the

corresponding cyclic exchange. Then there exists € > 0 such that £+el € T. As ¢ and ¢
are linearly independent (due to their different support), this implies that the dimension

of the face of ¢ is at least 2, so £ and £ are not neighbors. As G (5(2) — 6(1)) is a
union of cycles and not empty, it follows that G (f @ ¢ <1)> =G (().

Next, assume that G (5(1)> UG (5(2)> only contains the cycle G (¢). As G (5(2) - f(l))
is a union of cycles, it follows that G ({) = G (5(2) — 5(1)). Now consider any ¢ # 0
such that € + ¢ € T. Tt follows that G (f) is a union of cycles contained in G (f) and
hence G (g) =G (5(2> - §<1>). This implies ¢ = \ (§<2> - 5<1>) for some A € R\ {0}.
Thus the dimension of the face of € is 1 and €M) and ¢®3) are neighbors . O

A useful corollary is that cyclic exchanges suffice to traverse between any two points
in a homogeneously single-constrained clustering polytope:

Corollary 2.17
In the setting of Theorem 2.12, let € ¢@) e T

Then there exist r € IN, cyclic exchanges ¢V, ... ¢ e Rk (as defined by
Eq. (2.6)), and \; € R for i € [r] such that

e _ @ = Z i@

i€[r]

Moreover, the cyclic exchanges can be chosen such that G (C(i)) cG (5(2) — 5(1)) for
every i € [r].

Proof. The first statement follows directly from Lemma 2.16 which yields that every
edge direction of T is collinear to a cyclic exchange. For the second statement, note
that it is sufficient to consider edge directions of the face of %(5(1) +£@), As all
extremal clusterings of that face assign units to clusters equally if £ and £€@ do, it
follows that any of those cyclic exchanges can only use edges in G (5 @ —¢ (1)>. a
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2.4 Summary & Conclusion

2.4 Summary & Conclusion

This chapter mainly defined the notion of constrained (fractional) clusterings. In
particular, we allow constraints that determine the cluster aggregates of numerical
values associated with the points to be clustered. Here, a typical example is a weighted
point set and constraints that determine the resulting cluster weights.

We then discussed some basic properties of the underlying clustering polytopes in
Section 2.2. Most important for our scope, we can bound the number of units that
are assigned to multiple clusters by a vertex, which generalizes a well-known result
for transportation polytopes. This is of major interest for applications in which the
possibility of fractional clusterings is a relaxation of binary constraints. Here, the
achieved bound can be exploited to bound the resulting relaxation error. Of course,
many issues regarding clustering polytopes remain open. For example, an improvement
of Proposition 2.3 that yields sufficient conditions for the general feasibility of a
clustering polytope might be of interest.

Finally, Section 2.3 introduced and discussed two types of clustering graphs that will
yield a useful tool in the following chapters when dealing with the relations between
clusters that share commonly assigned units.
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Generalized Voronoi Diagrams
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Chapter 3 Generalized Voronoi Diagrams

3.1 Motivation

Voronoi diagrams are a simple and yet powerful tool that has been applied successfully
in various fields — both of theoretical and practical nature. The supposedly earliest
known literature, in which they appear explicitly, is the work of René Descartes in
the 17th century. He used a Voronoi diagram-like structure to decompose the solar
system. Their name roots back to Georgy Feodoseevich Voronoy, who in 1908 gave a
formal treatment of their concept (apparently, this is only one of the many English
translations of his Russian name that can be found in the literature). Even before
Voronoy, in the middle of the 19th century, Carl Friedrich Gaufl and Gustav Lejeune
Dirichlet formalized this kind of diagram when studying quadratic forms (we refer to
[Oka+00] and [AKL13] for the claimed dates and the original references).

Since then, Voronoi diagrams and strongly related concepts have been appearing in
various domains of science, such as biology, chemistry, computer science, crystallography,
geography, physics — to list just a few of the more than twenty fields mentioned in
the introduction of [Oka+00]. As a particular milestone in computational geometry,
Shamos and Hoey [SHT75] presented an efficient construction algorithm for Voronoi
diagrams. They used this in order to design superior algorithms for classical geometric
problems such as the Euclidean minimum spanning tree or finding a smallest enclosing
circle. This might be considered a starting signal for the widely spread usage of Voronoi
diagrams in the field of computational geometry and computer science ([Oka+00,
Chapter 1.2]).

One drawback of this scattered field of applications is that many concepts have been
developed independently. This results in different denotations for identical objects
such as cells or regions, sites or generators. Voronoi diagrams themselves have been
known under many different names, such as Dirichlet Tessellations, Wirkungsbereiche
[domain of actions], Thiessen polygons or Wigner-Seitz regions, to list just a few (cf.
[Now33], [Aur91]). Also, identical terms are used with different notions. For example,
the term Voronoi diagram itself might — among others — refer to a (polyhedral) cell
complex of its faces ([Aur87al), the union of its edges ([AKL13]), or to the collection of
its (closed) cells (as we are going to do in Section 3.2).

Aurenhammer, Klein, and Lee [AKL13] provide a comprehensive treatment of Voronoi
diagrams and their generalizations. They present a thorough study of the structural
properties of the various kinds of Voronoi diagrams, computational concepts for their
construction, and geometric applications. Another important book of reference is
provided by Okabe et al. [Oka+00]. They as well give a comprehensive treatment of
the several generalizations of Voronoi diagrams from an application-driven perspective.
Furthermore, they provide some historical background. For further, less extensive
surveys on Voronoi diagrams we refer to [Aur91], [For95], [AKO00], and [For04].

There are several reasons to consider Voronoi diagrams and their generalizations
when clustering data. Here, let us discuss two main perspectives in the following.
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sty s 2

2 Az

Figure 3.1: Extract of a map by Karl Haag
from 1928 illustrating linguistic boundaries in

a south German region, taken from [Haa29, p.

3]. Regions result from unions of cells from the
Voronoi diagram with municipal sites. Red
lines depict political borders (with multiplicity
indicating political changes over time). Black
lines indicate phonetic changes in the local
dialect, with the thickness of lines indicating
the intensity of the linguistic differences.

From an Application’s Point of View

Figure 3.2: Extract of a photograph showing
the breeding territories of African mouthbreed-
ing cichlid fish, taken from [Bar74, Plate XIV,
Fig. 1]. Males dig pits into sandy ground that
mark their territories. In this experimental
setting, Barlow [Bar74] succeeded in providing
empirical evidence for the theory of regular
hexagonal animal territories in homogeneous
areas. This, of course, results in the Voronoi
diagram resulting from a densest sphere pack-
ing in the plane.

First, their simple structure does not only seem natural, but can indeed be observed in
nature itself. Let us provide a few examples (many more may be found in [Oka+00,
Chapter 7)).

Voronoi diagrams play an important role in the field of crystallography. Here, denoted
by domains of actions, Voronoi diagrams w.r.t. sites arranged on lattices have been
researched in order to characterize regular crystalline structures (see, for example,
[Nig27], [NowT76]).

In biology, Voronoi diagrams explain the regular patterns of skin cells of mammals
as the result of their regeneration process ([Sai82]). In an experiment researching
breeding territories of the African mouthbreeding cichlid fish, Barlow [Bar74] was
able to confirm the theory that animal territories in an ideal uniform setting should
result in a regular hexagonal tiling (see Fig. 3.2). In the areas of geography and social
sciences, the central place theory tries to explain frequency, sizes, and locations of urban
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Chapter 3 Generalized Voronoi Diagrams

settlements in rural areas (cf. the review in [Kin84]). Here, a basic model assumes
differences in consumption costs to only result from different transportation costs. This
immediately results in Voronoi regions as trade areas of urban centers. Other models
try to measure the influence of each urban center by indexes obtained, for example,
from their respective number of telephone connections, shops, or population sizes. This
results in trade areas that are weighted generalizations of Voronoi diagrams.

Another example stems from the rather surprising field of linguistics. In 1898, the
German linguist Karl Haag started to publish maps of linguistic boundaries that
depict the changes of dialect in some German regions (cf. [Haa98], [Haa29], and the
review in [HW82]). By depicting “Grenzen zwischen Nachbargemeinden [..| durch
die Mittellote auf der Distanz” [boundaries between neighboring municipalities as
the middle perpendiculars of their distance] ([Haa98, p. 7]), he as well discovered
the structure of Voronoi diagrams on his own. Furthermore, Haag depicted both the
political as well as the phonetic boundaries in this way. He justified this as follows:
“Die politischen Gebiete nach dem thatsidchlichen Umfang der Gemeindemarkungen
[...] abzugrenzen hat hier keinen Sinn, da die Zusammengehorigkeit und die Entfernung
allein in Betracht kommt” [To demarcate the political regions by their actual municipal
extent is not reasonable here, as only affiliation and distance are of interest.] ([Haa98,
p. 7]). Figure 3.1 yields an extract of one of Haag’s maps. In conclusion, not only is the
simple structure of Voronoi diagrams sufficiently rich in order to contain all required
information — they may sometimes even be superior, as in this example of transitions
of dialect, where their resulting territorial structure is allegedly more accurate than
any politically drawn boundaries.

From an Optimization Point of View

A second reason for us to be interested in Voronoi diagrams is the fact that they (and
their generalizations) naturally appear as an underlying structure for optimal solutions
in various optimization problems.

As already mentioned, Shamos and Hoey [SH75] pointed out that geometric problems
such as the nearest neighbor problem, finding an Euclidean minimum spanning tree, or
finding the smallest circle enclosing a set of points, can be efficiently solved by computing
the Voronoi diagram that reveals their solutions. In the context of clusterings, the
quality of clusters is often measured by a function that depends only on the distances
of points in a cluster to each other or to some cluster representative (cf. [JMF99],
[AKL13, Section 8.4]). In many of those cases, an optimal clustering will be induced
by a Voronoi diagram (when using the Euclidean distance) or a generalization. Let us
provide some examples (without any claim of completion, of course).

The method of k-means clustering as introduced by MacQueen [Mac67] aims to find
an (unconstrained) clustering that minimizes the within-cluster sum of squares (or
average of cluster variances, also referred to as squared error or moment of inertia).
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3.1 Motivation

More precisely, for a set of points X := {x(1)7 . ,33(”)} C R? and a weight function
w: X — Rsg, one wants to find a partition X = Uie[k]Xi such that

> 3 wla) o=,

i€[k] z€X;

with ¢(®) = dozeX; % -z and w(X;) =X e x, w(x) for i € [k] is minimized. One can
easily verify that any optimal partition must result from the Voronoi diagram obtained
by the optimal partition’s centroids as sites. In fact, the famous k-means algorithm as
introduced in [L1o82] (thus also referred to as Lloyd’s method) iteratively assigns each
point to the cluster that corresponds to the cell of the Voronoi diagram given by the
last iteration’s centroid that contains it. The k-means objective might be the “most
intuitive and frequently used criterion function in partitional clustering” ([JMF99, p.
278]). Whenever data can be embedded into the Euclidean space in a meaningful way,
the variance of each cluster yields a natural criterion of how well it can be represented
by a single point or, more precisely, its mean. Due to its outlier-sensitivity, this criterion
is also well-suited in order to measure the consolidation (or informal “compactness”) of
clusters.
Similarly, in the case of k-median clustering one wants to minimize

> 3wl e =50,

i€[k] z€X;

over the space of all clusterings X1,..., X and sites s ..., s®) ¢ RY Here, any
optimizer will always be induced by the Voronoi diagram defined by the clusters’
geometric medians (or Fermat-Weber points, cf. [Bri95]).

Inaba, Katoh, and Imai [IKI94] furthermore show that any clustering minimizing
the all-pairs sum of squared errors, i.e., 3 ;e Xayex, |z — yHg, results from a gen-
eralized Voronoi diagram which we will denote as an anisotropic power diagram (see
Section 3.3.3).

Capoyleas, Rote, and Woeginger [CRW91] show that for any objective
F(r(X1),...,7(Xg)) with F: R¥ — R being a monotone increasing function (such as
the sum or the maximum, for example) and r(X;) being the Euclidean radius of the
cluster X, there exists an optimal clustering that is induced by a power diagram (cf.
Section 3.3.2). In case of F' = max, this yields the k-center problem. In this special
case, it can be easily seen that the clustering induced by the Voronoi diagram obtained
from the k optimal centers will be optimal.

Beyond that, the geometric properties of Voronoi diagrams and their generalizations
themselves can be of particular interest in applications. This is the case in our prime
example of electoral district design that we will treat in Chapter 7. Here, consolidation
of districts is a major optimization criterion. Furthermore, electoral law typically
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requires (some sort of) contiguity of districts. We will see that optimally consolidated
districts will be embedded into the cells of certain Voronoi diagram types. To some
extent, this will then imply the required contiguity a priori, without formalizing it as
an explicit constraint in the model.

3.2 Definition

As already pointed out in the previous section, many different generalizations of
Voronoi diagrams have been defined in the literature, sometimes multiple times but
independently of each other, sometimes with different names or deviations in the
precise notions. In this work, we will use a very broad definition similar to the one by
Edelsbrunner and Seidel [ES86]. Their intent was to provide a definition that answers
the question “What constitutes a VoD [Voronoi Diagram] in its most general form?”
([ES86, p. 26]). For our purposes, a Voronoi diagram is to yield a dissection of some
arbitrary space X into a predefined finite number of (not necessarily disjoint) cells.
For each cell, we assume a dissimilarity measure in form of an arbitrary real-valued
function to be given. While a classical Voronoi diagram in Euclidean space assigns each
point to the closest among the cells’ sites, we assign each point to its least dissimilar
cell as determined by the cells’ individual dissimilarity measures.

Definition 3.1
Let X be a set, k € IN and functions f; : X — R for ¢ € [k] be given. We set

P:={zx e X: fi(x) < fi(x) VI € [k]} (3.1)
and call it (the ith) Voronoi cell and the tuple
P = (P,...,P)

generalized Voronoi diagram (w.r.t. (fi)icix)-

For any ¢ # [ € [k], we furthermore call B;; := {x € X : fi(z) = fi(x)} the bisector
of the cells 4 and [, and H;; := {z € X' : fi(x) < fi(x)} the dominance region of i over
[, so that P; = ﬂle[k] H;;.

Note that this definition differs from the one provided in [ES86]. There, for each
I C [k] the corresponding Voronoi cell is a set of points for which the functions f;
for all i € I yield the minimum value among all functions f; for ¢ € [k]. Thus, they
obtain an actual partition of the underlying space X. In particular, if all differences
of functions f; — f; for ¢,1 € [k] are affine (which is the case for the classical Voronoi
diagram), this partition yields a polyhedral cell complex (cf. [Aur87b]). However, for
our purposes, the less granular variant of Definition 3.1 suffices.
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3.2 Definition

Figure 3.3: Voronoi surface in R? of a two-dimensional generalized Voronoi diagram. The
meshed surfaces depict the graphs of the Voronoi functions f; (here: paraboloids,
cf. Section 3.3.3).

Also, not surprisingly, even this definition does not cover every type of Voronoi
diagram. Another, quite common, generalization of Voronoi diagrams are diagrams
of higher order. Here, a point is assigned to the p closest (or least dissimilar) cells
for some fixed p < k — 1 (cf. [ES86], [AKL13, Section 6.5], [Oka+00, Section 3.2]).
Further, dynamic Voronoi diagrams with the cells’ dissimilarity measures changing
over time have been considered (cf. [Oka+00, Section 3.9]). Although not regarded
any further in this thesis, a natural question that arises is how those could be utilized
in our context of constrained clusterings.

A helpful understanding of Definition 3.1 is to interpret a generalized Voronoi diagram
as a projection of the lower envelope or minimization diagram of the graphs of its
defining functions, i.e.,

{(:c,y) EXxR:y= minfi(x)}.

1€[k]

Consequently, Huttenlocher, Kedem, and Sharir [HKS93] call this graph the Voronoi
surface (and describe how the combination of several Voronoi surfaces can be used to
compute the Hausdorff distance under translation of two finite sets). Figure 3.3 depicts
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such a surface for the case of the functions f; being quadratic polynomials (which
we will investigate further in Section 3.3.3). The complexity of lower envelopes has
been studied in several settings, which immediately yields bounds on the complexity
of generalized Voronoi diagrams. Here, by complexity we mean the number of all
connected components of cells of all dimensions, with a cell defined in accordance
with [ES86] as mentioned above. For the case of X = R? and the functions f; being
polynomials of fixed degree, it is shown in [Sha94] that the complexity of the resulting

diagram is O (kd+5> for any fixed € > 0 (assuming also the dimension to be fixed; this

is based on the according result for d = 2 in [HS94]). Moreover, Agarwal, Aronov,
and Sharir [AAS97] provide a randomized algorithm with an expected running time
in O (kd+€> for any fixed € > 0 that computes all vertices, edges and two-dimensional
cells in this setting. They also present an extended version that yields the full incidence
structure for d = 3. The important special case of all f; being affine linear, i. e., the case
that the graphs of the functions f; are (non-vertical) hyperplanes, is well-understood
and will lead us to power diagrams in Section 3.3.2. Lower envelopes mostly appear
in the context of arrangements that are the decompositions of R into connected
cells obtained from a collection of hypersurfaces or surface patches. In particular,
arrangements are useful when considering generalized Voronoi diagrams of higher order
(cf. Edelsbrunner and Seidel [ES86]). A survey on general arrangements including
lower envelopes is provided by Agarwal and Sharir [AS00].

It is clear from Definition 3.1 that the functions that define a generalized Voronoi
diagram are anything but unique. For a given diagram P, any functions ( fi)z‘e[k]
which preserve in each point z € X the indices of its minimizing functions, i.e.,
argmin{ f;(x) : i € [k]} = {i € [k] : € P;}, are valid. In particular, given a diagram
w.T.t. functions ( fi)ie[k:]v any transformation of those functions that strictly preserves
their point-wise order will yield the same diagram. Let us store a simple but useful
consequence of this observation in the following lemma.

Lemma 3.2

Let P be a generalized Voronoi diagram w.r.t. functions (fi)z‘e[k} as defined in
Definition 3.1, and let a : X — Rsg and b: X — R be two further functions. Then with
P being the generalized Voronoi diagram w. . t. (a- fi + b)z‘e[kp it holds that P = P.

As a consequence, we could, for example, without loss of generality demand f; =0
in Definition 3.1.

However, either way Definition 3.1 does not provide any meaningful diagram as long
as the class of functions (f;);c[x) is not suitably restricted. In fact, any collection of
sets P, C X for i € [k] with Uicpr £ = & yields a generalized Voronoi diagram as
defined in Definition 3.1. For example, it suffices to set f; := —1p, to be the negative
respective indicator function for every i € [k].
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For our applications, we will typically restrict the functions f; to be of the form
fi(x) == h(di(z, sD)) + i (3.2)

for z € X. Here, d; is supposed to be a (possibly asymmetric or pseudo-) metric that
may depend on i. For each i € [k], st e x yields a cell’s reference point, which is
referred to as site. Next, h : R — R shall be a common transformation function and
p; € R some further additive weight for every i € [k].

In many applications of our interest, geometric characteristics such as the connectivity
of cells are of major importance. The following lemma ensures a strongly related
property in general metric spaces if the class of allowed diagrams as proposed by
Eq. (3.2) is restricted further.

Lemma 3.3
Let d be a (possibly non-symmetric) metric on X. Let P be a generalized Voronoi
diagram w. r. t. functions (fi)z‘e[k] with

filz) = d(z, s9) + i (3.3)

with s%) € X, pu; € R for all x € X,i € [k]. Then for every fived i € [k] and x € P; it
holds that

{yex ds") =d(y,s?) +dzy)} P (3.4)

Proof. Let y € X with d(x,s®) = d(y,s") + d(x,y) and | € [k]. Then

zeP; 0 A-inequ. 0
< —d(zyy) +d(@, )+ < dy,sY) 4w = fily),

and hence y € P,. O

We will refer to property (3.4) as site-star-shaped. For example, if X' is a (possibly
asymmetric) Minkowski space and d its norm-induced metric, then for any generalized
Voronoi diagram w.r.t. functions of the form (3.3), the cells are star-shaped in the
sense that for any = € P;, it follows that [s(), z] C P;.

A similar result can be found in [AKL13]. The authors consider the connectivity
of cells w.r.t. functions f;(z) = d(z,s®). Here, d is a so-called nice metric in the
plane with some favorable properties concerning its relation to the Euclidean topology
and the resulting bisector curves (cf. [AKL13, Lemma 7.4]). We may adapt some of
their ideas that use a fundamental result by Menger [Men28] to the setting of Eq. (3.3).
Menger calls a set X equipped with a metric d a convex metric space if

Va#be X 3ce X\ {a,b}:d(a,b) =d(a,c)+d(c,b). (3.5)
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In a convex metric space X', we call a set A C X connected, if for any two points a,b € A
there exists a continuous curve 7y : [0, 1] — A with (0) = a and (1) = b. If furthermore
X is complete (w.r.t. the d-induced convergence of Cauchy sequences), then for all
points a,b € X there exists a geodesic path from a to ¢, i.e., a continuous curve = as
above such that for all A\;, A2 € [0,1] it holds that d(y(A\1),v(A2)) = |A\1 — A2|d(a, c) (cf.
[Men28, p. 89]). As points along such a path by definition satisfy Eq. (3.5), we can set
a:= s and ¢ := z in Lemma 3.3 and deduce the following:

Corollary 3.4
Consider the setting of Lemma 3.8. Assume furthermore X to be a complete metric
space that satisfies Eq. (3.5). Then for every i € [k] the Voronoi cell P; is connected.

Furthermore, Lemma 3.3 implies that non-empty cells always contain their respective
sites:

Corollary 3.5
Consider the same setting as in Lemma 3.3. Then for every i € [k] it holds that

P #0=s%ep,.

From an application point of view, the bisectors B; ; of a generalized Voronoi diagram
often imply an unpleasant uncertainty, as elements in bisectors cannot be unambiguously
mapped to a cell. For generalized Voronoi diagrams in R? with defining functions of
the form of (3.2), the following lemma guarantees that bisectors do not intersect the
interior of cells if the metrics d; are induced by strictly convex norms. Note that this
result and its proof have been published in [BGK17, Lemma 6] and have only been
slightly adapted to the notation of this thesis.

Lemma 3.6 ([BGK17, Lemma 6])

Let X = R? and functions f; for i € [k] in the form of Eq. (3.2) be given with the
further assumptions that every metric d; is induced by a strictly convexr norm, the
function h is continuous and injective, and the sites are pairwise distinct, i. e., 5@ #+ s
fori#1 € [k].

Then for the generalized Voronoi diagram P = (Py, ..., Pg) w.r. t. (fi)ie[k] it holds
that int(P;) Nint(P) = 0 for every i #1 € [k].

Proof. Let U;,Us C R™ be the unit balls of the norms that induce d; and ds, re-
spectively. Furthermore, denote by |[|-[|;., i = 1,2, the corresponding norms, i.e.,
di(0,z) = [|z|y;, = min{p > 0: = € pU;} for z € R% i=1,2.

Suppose that there exists z© € R% and 6 > 0 such that (9 + 6By C B 2 where Bs
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is the Euclidean unit ball. This means that

h(H:c — 3(1)’ ) — h(H:J; - 8(2)HU2) = fi2 — 1 (3.6)

holds for all z € 2(9 + §B,. We may w.l.o.g. assume that s, s and (9 are affinely
independent.
Next, let a € R?\ {0} such that

Hiaw(o) ={zeR:aTz <a'z("}
is a halfspace that supports s(!) + H 0 — s(l)’ U Uy in 2.
1
If Ha 120 does not support 5(2)+H —s® Ug in (9 it follows that there exists

2 € 20 + 6By with Hz—s

L e e I R

As h is injective, this implies that Eq. (3.6) does not hold for z, a contradiction. Hence,
0)

< 2 0 .
10y MUSt support s 4 Hx( ) — " Uy in 2

Furthermore, by continuity there exist A > 1 and v € R such that for z(!) :=
s 4 A2 — sW) and 22 = 5@ 4 p(2) — 5?)) it holds that = € int(z(®) + 6By)
and H o Hx@) — 5(1)‘ U . Furthermore, due to the affine independence of

1 1
s 5(2) and z(©) we have that z(1) £ 22,

AsH am (0) Supports s +H — () o,

=~

: 1 0
Uy Uy in s( )—{—4”x(0)_5(1)HU1 (:L‘

Uy in 29 it follows that Hag,am(l) supports

1y H — W) =z Analogously, H

qu(2>

Us in (2. By the same argumentation as before, we see

supports s(2) + H 2) _ 3(2)’ ;

2

that H (2 Must also support s(!) + H — s

" U, = s 4 qu) _

U U1 in
1
) (as 0therw1se we ﬁnd a point that contradicts Eq. (3.6)).

Hence, s —i—H 1) — 4 U1 is supported in () and 2(? by the halfspaces H

Tm(l)

and H 22 respectively. ThlS contradicts the strict convexity of Uj. a

Many of the generalizations considered in the literature match the form of Eq. (3.2).
Since Shamos and Hoey [SH75] presented an efficient construction algorithm for planar
Voronoi Diagrams (i.e., the case X = R?, h = id, p; = 0 and d; being the Euclidean
metric for every i € [k]), many similar construction algorithms for generalized Voronoi
diagrams in the plane have followed. Hwang [HwaT79] as well as Lee and Wong [LW80]
consider the case of d; being the L or Lo metric. Lee and Drysdale, III [LD81] use line
segments as sites. (Those can be brought to the form of Eq. (3.2) by choosing s() as the
line segments middle points. Further, choose the metric d; to be induced by the norm
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Chapter 3 Generalized Voronoi Diagrams

of the unit ball obtained as the Minkowski sum of the line segment and the Euclidean
unit ball.) Chew and Dyrsdale [CD85] then study the construction of Voronoi diagrams
in planar (possibly asymmetric) Minkowski spaces, i.e., for X = R%, h = id, u; = 0,
and with d; being induced by a (cell-independent, possibly asymmetric) Minkowski
norm. Ash and Bolker [ABS86] as well consider the planar case X = R? and provide
characterizations of diagrams for d(z,y) := ||z — y|, and h(-) = (-)? or h = id as well
as di(z,y) = «a; ||z — y||, for a; > 0, h =id and p; = 0. Icking et al. [Ick+01] research
the bisectors, and in particular their number of connected components, for generalized
Voronoi diagrams in the plane for h = id and d; := Ha: — 5

= with ||-|| 5, being a
(possibly asymmetric) norm defined by some convex (not necessérily symmetric) unit
ball B; for each i € [k].

This, of course, only yields a glimpse of the many variants of Voronoi diagrams
researched in the literature. Still, it underlines that the class of functions of type
(3.2) seems accurate in order to produce a useful theory. We will stick to the very
general form of Definition 3.1 in order to define the major relations between constrained
clusterings and generalized Voronoi diagrams. For all applications, however, we will
consider diagrams of type (3.2).

3.3 Basic Types

Let us introduce some classes of generalized Voronoi diagrams that are important in our
context and discuss the properties that are most relevant to us. For more comprehensive
surveys of generalizations we refer to [AK00, Chapters 6 — 7] and [Oka+00, Chapter 3].

3.3.1 Additively Weighted Voronoi Diagrams

A first generalization of classical Voronoi diagrams is achieved by the introduction of
additive weights for each cell. In the schema of Eq. (3.2), this means that we consider
diagrams with X := RY, h := id, and d; being the Euclidean metric for every i € [k].
Thus, we obtain defining functions of the form

o) = o - 50

, T H (3.7)

for sites s € R? and additive weights u; € R for i € [k]. We will call a generalized
Voronoi diagram of the form (3.7) an additively weighted Voronoi diagram.
Additively weighted Voronoi diagrams have occurred in the literature multiple times.
In particular, in the context of mineralogy they are known as Johnson-Mehl-Model
([JM39]). Here, the diagram is considered to be the result of a growth process. Seeds
of cells are generated at different points in time and then start growing radially at
constant rate. The value f;(x) hence yields the point in time at which the ith cell,
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Figure 3.4: Voronoi surface of an additively weighted Voronoi diagram.

which started growing in s at time Wi, reaches point z. The growing process in a
certain direction stops whenever another cell collides. As an example, Johnson and
Mehl [JM39] describe the process of freezing metal in which frozen nuclei are formed
in a stochastic manner and then — in an ideal isothermal setting — grow radially.

Ash and Bolker [AB86], who called them hyperbolic tessellations, state necessary
and sufficient conditions to decide whether a given tessellation in the plane is an
additively weighted Voronoi diagram. Several algorithms for constructing additively
weighted Voronoi diagrams in the plane have been proposed resulting in a complexity
of O (klog(k)) ([LD81] , [Sha85], and [For87]). It has been shown that single cells
of additively weighted Voronoi diagrams are combinatorically equivalent to the in-
tersection of power diagrams (see Section 3.3.2) and the unit sphere, which yields
a construction algorithm for a whole additively weighted Voronoi diagram in R? of
complexity O (k2 log(k) + k/Z11) ([BD05; BK03)).

Let us clarify some characteristics of the cells of an additively weighted Voronoi
diagram. Due to Lemma 3.2 we may w.l.o.g. assume that pu; < 0 for every i € [k]
(as we may otherwise add a sufficiently negative constant b to every function f;
without changing the diagram). This allows us to associate every cell of the resulting
diagram with an Euclidean sphere with center s and radius o; := —p;. The distance
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Chapter 3 Generalized Voronoi Diagrams

measure associated with the ith cell is hence the signed Euclidean distance to the cell’s
associated sphere, where “signed” means that points contained in the corresponding
ball are assigned the negative distance.

For each ¢ € [k], the graph of the function f; is hence

7
(3( )> +10,00) - a3+ (8471 x {1}) C R,
—0;
i.e., the conical (hyper)surface with apex ((s())T, —g;)T through the cell’s associated
sphere embedded into the hyperplane x4,1 = 0. Consequently, a bisector between two
cells is obtained as the projection of the intersection of the two associated cones, which
yields a sheet of a hyperboloid in R?. Figure 3.4 depicts this for an example of k = 3
sites in R?. The resulting diagram is drawn by its embedding into the z123-plane, i.e.,
{z € R?: 23 =0}.

Let us obtain a better understanding of how the choice of the sites and sphere
radii influences the bisectors and hence the shape of the diagram cells. For this
purpose, let two sites s(!) and s in R? as well as radii 01,00 € Rso be given.
We may w.l.o.g. assume that o1 > o9, otherwise we relabel. We may furthermore
w.lo.g. assume that s() 4+ 53 = 0 and that s — s = HS(Q) . s(l)qu(l), other-

wise we apply a translation and rotation. Next, we assume s #* s? as other-
wise either P, = () or P, = P; holds (depending on o1 > 09 or 01 = 02). The
case g1 = o9 yields the bisector of a classical Voronoi diagram, i.e., the hyperplane

2 2
{x e RY: :cT(s(Q) — s(l)) = % <Hs(2)H2 — Hs(l)Hz) } Thus, we finally assume o1 > os.
Figure 3.5 depicts such a situation in the plane.
The bisector By o is given by all points z € R? that satisfy fi(z) = fa(2), i.e.,
_sWll 5=l @) —
==+l = o1 == 5], < (33
@Hx—s(l)Hg — Hm—s(2)H2 =0 — 09. (3.9)
Equation (3.9) immediately reads as the set of all points that have a constant
difference of distances to s and s, respectively, namely o1 — o2. Thus, the sites s

and s are the foci of the desired hyperboloid (if existent). For the sake of simplicity,
let us introduce the two abbreviations

As = Hs(l) — 5(2)H2 >0 and Ao :=o01 —09 > 0.

We now rewrite Eq. (3.8) further using our assumptions s = —s(2) = —%As cu®

44



3.3 Basic Types

0=,
2) -1

01—02

Figure 3.5: Determination of the bisector, i.e., a hyperbola, between two cells of an additively
weighted Voronoi diagram in the plane for two sites s() and s(?) with sphere radii
o1 > 032.

as well as Ao > 0:

-0, = 5], 20 o

& 427s? — Ao = 2A0 Hx — 3(2)H2 ‘()2

S 0=zaTr— 4(1150(22))2 - iAO’ + Hs@)Hz A zTs? > iAa2

& (1 - 222) 2 + Z;:U? = i(AOj —AsY) A x> ;AAZQ (3.10)

We may distinguish now three final cases. First, assume Ao = As. Then Eq. (3.10)
becomes

1
> ai=0 A 1> A0 (3.11)
: 2
i>2

In this (degenerated) case, the bisector is the half-ray s + [0,00) - u(Y). From a
more geometric perspective, in this case the sphere belonging to the second cluster is
contained in the (convex hull of) the first one, with a touching point in s + gu(V.
Consequently, the only points having equal distance to both spheres are given by the
corresponding cone of outer normals translated into s, which yields the calculated
half-ray. Figure 3.6 depicts this case.
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Chapter 3 Generalized Voronoi Diagrams

Figure 3.6: Situation of Fig. 3.5 for the degenerated case o1 — 0y = Hs(l) — 3(2)”2. The
resulting bisector is given by the black-drawn half-ray.

If Ao # As, we may simplify Eq. (3.10) further to

4 2 4 2
(Aﬁ)lerA(f?—As?Zm":l N2 5RS (3.12)

Let us briefly discuss the second case Ao > As. Geometrically, this means that
the interior of the (convex hull of the) first sphere contains the second one, i.e.,
5@ + 09B¢ C int (s(l) + 01 Bg). From this perspective, it is immediately clear that
the signed distance of any point to the first sphere will always be strictly less than
the signed distance to the second sphere. Thus, the second cell and in particular the
bisector of interest are empty. In view of Eq. (3.12), the equality yields an ellipsoid
with axes aligned to the coordinate system and a first elliptic radius of %As < %As : %.
Thus, any point on that ellipsoid violates the inequality in (3.12).

Finally, let us consider the case Ao < As. This holds whenever the spheres are not
contained in (the convex hulls of) one another. Then, for d > 3 the bisector is one
sheet of the hyperboloid obtained as the (hyper)surface of revolution when rotating a
hyperbola around the z;-axis in all remaining dimensions (i. e., every intersection of
this hypersurface with a hyperplane perpendicular to the xi-axis is either empty or a
dilatation of S9=2). For d = 2 there is no dimension for rotation left, so the bisector is
just the according branch of the hyperbola. The main characteristics of this hyperbola
are readily given by Eq. (3.12). In particular, we obtain the vertex % ™ and an
asymptotic slope % = (%)2 1 (cf. Fig. 3.5). For As > Ao, i.e., when
the two spheres are very distant, this slope tends to infinity and thus the bisector tends
to the bisector of the classical Voronoi diagram in form of a hyperplane as discussed for
the case Ag = 0. For As — Ao the bisector tends to the degenerated case of Fig. 3.6.

With this understanding of bisectors we may state some basic facts about the
geometric characteristics of cells of additively weighted Voronoi diagrams. Those can
also be found in this or very similar forms in [AB86; Sha85].
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Proposition 3.7

Let P = (P, ..., Py) be an additively Voronoi diagram in R w. r. t. functions (fi)iek
given by fi(x) = Ha: — 5 , i for i € [k] with s%) € RY, o; € Rsg and such that
fi # fi for alli #1 € [k]. Fixz some i € [k]. Then the following holds:

i) Aek]: s+ 08¢ Cint (50 + 01B) = P =0
i) P, #0 = s" ¢ P,
iii) P; is star-shaped w.r.t. sO, i.e., x € P;= [s¥ z] c P;
iv) (50 + B3\ (s + 0iBg) # 0 i € [k]\ {i} & s € int(P) # 0
Proof. First note that the assumptions of the f; being pairwise unequal is equivalent

to the assumption of the corresponding spheres being pairwise distinct. This is a very
mild assumption as cells of identical functions would coincide, of course.

The prerequisite of part i is the case if and only if Hs(l) — s ) < 07 — 0y, so this
immediately follows from the observations above. Parts ii and iii are directly provided
by Corollary 3.5 and Lemma 3.3, respectively.

For part iv, it is sufficient to show that for any [ € [k] \ {¢} we have
(s(i) + UiBg) \ (s(l) + alBg) 40 < s9eint(H;,) < int(Hy) #90.

Here, the latter equivalence immediately follows from our observations above. However,
we have seen that int(H, ;) = () holds if and only if either we are in the degenerated case of
s +5;B¢ touching s) +0;B¢ from the inside in a single point (as s) +0;B¢ # s() +¢,B¢
by assumption) or s + ;B¢ C int(s®) + o;Bf). This is the case if and only if
(s(i) + JiBg) \ (s(l) + UlBg) = () holds. O

3.3.2 Power Diagrams

The next generalization we want to consider are power diagrams. Due to their favorable
geometric properties, power diagrams are of particular importance in our context of
constrained clustering (cf. Chapter 6). From a rather theoretical point of view, they
are also of importance as many types of generalized Voronoi diagrams correspond
to transformations of power diagrams (cf. [BD05; BK03; BWY06; Wor08]; see also
Section 3.3.3).

Besides that, they have several applications such as the illumination of balls, organic
compounds, or muscle fibres (to name just a few; see [Aur87a] and [Oka+00, Section
3.1.6] for a more detailed list and references). Aurenhammer [Aur87a] provides a
comprehensive treatment of power diagrams, further details and references can also be
found in [AKL13, Section 6.2] and [Oka+00, Section 3.1.4].
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Figure 3.7: Voronoi surface of a power diagram.

Definition and Basic Properties

We again consider diagrams in d-dimensional Euclidean space, but this time with
squared distances. This means, we set h = (-)? in the schema of Eq. (3.2). Thus, we
consider functions

fi(z) = Hx —s® z + (3.13)

for sites s¢) € R? and additive weights y; € R for i € [k], and call the resulting
generalized Voronoi diagram P w.r.t. ( fi)ie[k] a power diagram. We will denote

Pom((40), ., ).

While the term “power diagram” is in coherence with most of the literature known to
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us, they are also known as sectional Dirichlet tessellation (|[AB86]), or Voronoi diagram
in the Laguerre geometry ([IIM85]).

Again, we can w.l.o.g. assume that p; < 0 for every 7 € [k]. Under this assumption,
we can again associate each cell for i € [k] with a sphere centered in s(*) of radius
0; = y/—p;. For a point outside this sphere, the value f;(z) is then the squared
distance of the point x and the intersection point of a tangent of that sphere through
z. Functions of the type (3.13) are also referred to as power functions (cf. [Aur87a]).

2
) + p; is then called the power of x w.r.t.

For any point z € R? the value Hx — 5@
the ith sphere.

The graph of a function f; is consequently a circular paraboloid with apex in (s(i), /M)
that intersects the hyperplane z441 = 0 in the embedded sphere associated with 1, i.e.,
s() 4+ ;891 Figure 3.7 depicts the graphs of a power diagram of 3 cells in the plane
and the resulting Voronoi surface.

For i # [ € [k] the bisector B;; is given by

R Y S

ezl — 2075 4 [sO7 + g = a3 — 2070 + |50 + g

& — 2750 4 Hs(i) z + i = —227s0 4 Hs(l)Hz + (3.14)

<l (28(” - 28(i)) + Hs(i) z + i — Hs(l)Hz - =0 (3.15)

Thus, the bisector B; is the hyperplane with outer normal s — s() that lies midway

between s and s shifted by W towards s, cf. Fig. 3.8.
2

Figure 3.8: Bisector B 2 of a power diagram with two spheres centered in s and s and
radii o7 and o9, respectively. The bisector is the midway perpendicular hyperplane

between s!) and s(?) shifted by 6 = 9179 towards s2.
2[s_s@

From this observation it already follows that every cell of a power diagram is a
polyhedron. However, the following parametrization of power diagrams might yield a
more straightforward view on the structure of power diagrams.
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Affine Parametrization

We reconsider Eq. (3.14) and define a transformation function

RYx R RYx R
> - { A X ) (3.16)
(s,1) = @(s,p) == (=25, ||s]l5 + p).
We set (a;, ;) := @ (s(i), ui) and
filz) == aiTx + oy (3.17)

for every i € [k]. From comparison with Eq. (3.14) we see that the generalized Voronoi
diagram P w.r.t. (fi)ie[k]
Obviously, @ is a bijection with

is equal to the one w.r.t. the functions given by Eq. (3.13).

o (a,0) = (—;a, o % Haug) (3.18)
for (a,a) € R? x R. Hence, both parametrizations are equivalent (this is also observed
in [Wor08] and [Bor15]). Alternatively, Lemma 3.2 with the term b(x) := x? being
added to f; or subtracted from f; for every i € [k], respectively, yields this observation,
too.

We will refer to the parametrization (3.17) as affine and denote it

P PDur ()

The first parametrization as given by Eq. (3.13) will be called spherical.

The affine representation of power diagrams simplifies some insights into their basic
properties. In particular, it establishes the following correspondence between power
diagrams in R¢ and polyhedra in R4, Figure 3.9 depicts the Voronoi surface of the
same diagram as in Fig. 3.7 but in affine parametrization. This is a lower envelope
obtained from hyperplanes in R4, We define the polyhedron

D . & d+1 . ; _ <
P = cR C T <aTz+ao;Vielk]y = H> . . 3.19
(i) emet 9} = 0 0y 0

Then the Voronoi surface is the union of all facets of P and every non-empty cell P; is the

—a;
1

this implies that a power diagram yields a cell complex that is up to projection identical
to the boundary complex of P (as defined in [Grii03], for example). Vice versa, from

Eq. (3.19) we see that for any polyhedron in R*+!, its upper surface, i.e., the union of

orthogonal projection of the facet of P with outer normal onto R¢. Moreover,
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Figure 3.9: Voronoi surface of the power diagram in Fig. 3.7 but w.r.t. the affine representa-
tion of Eq. (3.17). The surface has been vertically shifted and scaled for the sake
of a better visualization.

all facets with outer normals with positive (d + 1)st coordinate, can be identified with
a power diagram in R%.

As a byproduct, one obtains an algorithm to construct power diagrams in general
dimension by constructing the corresponding upper surfaces of P using polarity as
proposed by Aurenhammer [Aur87b]. Let us briefly describe its outline. In order to
obtain an irredundant representation of P, we can consider the cone

T
K = Tag+1 | € R —a;TT + T4 — g <0 Vi € [k] p.
Ld+2

This means, P x {1} = K N {x4,2 = 1}. With

-

<

it follows that K = ﬂ(g) en H (a™,1,0)7,0)° Basic arguments from convex geometry then
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x

yield that H((glg) 5 N D is a facet of D if and only if | 8 | is a vertex of K N{z442 = 1}
’ 1

and thus if and only if ; is a vertex of P. Hence, computing a power diagram, i.e.

the full associate cell complex, can be done by computing the incidence structure of
D and then only considering facets that have an outer normal pointing upwards, i.e.,
with positive (d + 1)st component.

Due to this correspondence, one furthermore obtains sharp bounds on the complexity
of the cell complex associated with power diagrams. Applying the upper bound theorem
by McMullen [McM70] on the maximum number of j-faces of a (d + 1)-polytope with
a given number of vertices to D, one obtains sharp upper bounds for the number of
j-faces of (the cell complex of) a power diagram, which for 0 < j <d—11is O (n(%w)
(see [Aur87a, Theorem 1}).

Note, however, that not every d-dimensional cell complex can be derived as the
projection of a (d+1)-polyhedron and hence not every generalized Voronoi diagram with

polyhedral cells is a power diagram (see [Aur87b] for a counterexample in dimension
d=2).

Invariances of Parametrizations

Due to Lemma 3.2 it is obvious that the choice of parameters for a power diagram in
neither spherical (Eq. (3.13)) nor affine (Eq. (3.17)) parametrization is unique. For
the affine parametrization of (3.17), it follows that the power diagram is invariant to a
dilatation and translation of the parameters (a;, ai)ie[k]:

Theorem 3.8
Letd > 2 and P = (P1,. .., P;) with k > d+1 be a power diagram such that every cell P;
has a vertex (i.e., every cell is non-empty and line-free), and every vertez is contained

in ezactly d+1 cells. Let ((ai,));cpy € (R? x R)* such that P = PDag ((ai, O‘i)z‘e[k})'

Then for ((bi, 8i))icp € (R? x R)* it holds that P = PD,g ((bi, 5z‘)ie[k]) if and only
if there exist A > 0, Aa € R? and Aa € R such that

<Zi> =A- <ZZ> + (ii) for every i € [k]. (3.20)

Proof. The second implication immediately follows from Lemma 3.2.
Now, let ((ai,));epy and ((bi; 8i));epy) Poth be generators for P. W.lo.g. assume
that the cells with indices in [d + 1] intersect in a vertex v € R
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Consider the corresponding Voronoi surface in R, Then ( is a regular

v
a1Tv+ o
vertex of the polyhedron P defined in Eq. (3.19). Thus, the outer normals <—1a 1) for

i € [d+ 1] are linearly independent.

Also, w.l.o.g. assume that a; = 0 and a; = 0. Otherwise, first consider ((di, &)
defined via d; := a; — a1 and &; := «; — a1, which results in the same diagram
due to Lemma 3.2. Then obtain A\, Ad, Ad&, and set A\ := X\ and (Aa, Aa) =

(Aa, Aa) — Aa1, 1), which yields the desired result.

With a; = 0 and fﬁ) for i € [d+ 1] being linearly independent, it follows that

as,...,aq+1 are linearly independent (in R%), too.

Also, as v is a regular vertex, for every i,1 € [d+ 1], i # [, it follows that P, N P; is a
(d — 1)-dimensional facet of both P; and P;. That facet is contained in the hyperplane
H4;—a;,—ai+a,)- As this must hold for the second set of generators, too, we can conclude

< < . .
that He ooy = Hi—b—pits) for every i,1 € [d+ 1],i # L.

Thus, we can conclude that there exist \; > 0 for i € [d 4 1] such that
bi—b; oy a;—a; . b -b o a —a
(gt ) =x( G vield A (gl ) = dan (Se) - 321
Thus, we get

0= (bi —bit1) + bag1 —br = > Ai(a; — ait1) + Aar1(age1 — a1)

ield] i€[d]
a1::0 Z ()\z — )\z;l)ai.
ie[d+1]\{1}
Due to the linear independence of ag,...,a4y11, We can conclude A\; = A; for all

i,1 € [d + 1]. Therefore, we define

A= Ap, and (3.22)

Aa bl aq
()= (5) 5 (2). a9

Together with Eq. (3.21) this inductively gives
b; bi—1 bi —bi—1 a1 Aa a; — a1
= + = + + A
(51‘) (51‘1) (ﬁi — Bz’l) (%‘1) (Aa) (Oéi - Oéz‘1>
a; Aa
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for every i € [d + 1] \ {1}.

We may do so for every vertex of the diagram. If two vertices are contained in a
common bisector, it follows from Egs. (3.21) and (3.22) that the resulting value for
the scaling factor A obtained for each of the two vertices must be identical. Due to

Eq. (3.23), the same holds for the resulting translation . Now by assumption,

Aa
A«
every cell of the diagram has a vertex. The graph with a node for every cell and an
edge between cells i # [ € [k] whenever P; N P, # () is connected (note that we can

identify this graph with the 1-skeleton of the polar of P). Therefore, Eq. (3.20) holds.O

We can easily translate Theorem 3.8 into the spherical parametrization. Here, we
still have the freedom of a dilatation and a translation, but obtain further correction
terms for the additive weights.

Corollary 3.9
Letd >2 and P = (Py,...,Py) with k > d+ 1 be a power diagram such that every cell
P; has a vertex and every vertex is contained in exactly d + 1 cells for every i € [k].

Let ((s(i), Mz)) <] € (R x R)* such that P = PD ((s(i),ui)
Then for (37, i) e € (R4 x R)* it holds that P = PD (((g@, i) ,Em) if and

only if there exist A > 0, As € R? and Ap € R such that for every i € [k] it holds that

iclk] )

80 = X 4 As (3.24)
and

i =M\ + Ap + )\Hs(i)

2 as® + as”. (3.25)
2 2

Proof. With ® as defined by Eq. (3.16) it holds that

PD <((S(i)’“i))ie[k]) =PD <((§(i)’ﬂi))i€[k])
if and only if PD.g ((ai, ai)ie[k]) =PD.g ((bi7 51‘)@'6[14) with

(ai, i) := B(sW, i) and (by, ;) = D(3W, ;)

for every i € [k]. By Theorem 3.8 this is equivalent to the existence of A > 0, Aa € RY
and Aa € R such that b; = Aa; + Aa and 3; = Ao; + A« for every i. Now fix ¢ € [k].
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(§(i), [LZ) = ! (Aa; + Aa, Aa; + Aa)
(3.16) g1 ((A(—QS@) + Aa), (A([}s

(318) (w - %Aa, A5

z + i) + Aa))

2 )+ Aa— Sl -2xs® 4 Ad||”
)+ Ao = 726+ Al ).
With As := —%Aa and Ap := A« this yields the claim. O

Let us briefly discuss the necessity of the regularity assumptions in Theorem 3.8 and
Corollary 3.9.

First, by a simple continuity argument it is clear that any empty cell must be excluded.
Assume a power diagram given in affine representation, i.e., P = PD,g ((ai, a;) ie[k})'
If the ¢th cell is empty, this implies that its corresponding hyperplane H ((~85) 00 in

R can be strongly separated from the polyhedron P as defined in Eq. (3.19). Thus,
any sufficiently small disturbance of (a;, ;) will not change P and hence the power
diagram.

Let us consider two small examples explaining the necessity of a dimension greater
than one, line-free cells and the regularity of vertices. For the sake of a better illustration,
we consider those in the non-affine parametrization by spheres.

Figure 3.10: Ilustration of Example 3.10.

Example 3.10
We consider a two-dimensional power diagram P of k = 3 cells and two parametrizations

P =PD <(s(i),m>i€[k]) =PD ((é(i), ﬂi)ie[k]) with sites

9
M .= s .— (V) (@ .. (2 @ . () & .— (2
s\ =8 (O)’S =59 <O>,ands : <0>,s : <O>’
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and radii o; (recall that y; = —o?)
3

o1:=061:=1, 09:=69:=1,and o3 =1,63 := —.

2
Figure 3.10 depicts the resulting diagram together with both generating sets of spheres.

As all sites are contained in the zi-axis, it is clear that all bisectors are parallels of
the xo-axis and hence the diagram consists of vertical stripes. Also, from Fig. 3.10
one directly sees that B1o = {z € R? : 21 = 1} and By 3 = {x € R? : 71 = 3}, as the
corresponding pairs of spheres touch each other in (1,0)T and (3,0)7, respectively. This
yields that the corresponding power functions have value 0 in those points.

Now s = 51 and 52 = 5 in Eq. (3.24) gives A = 1 and As = 0. As s # 36),
however, we see that the claim of Corollary 3.9 does not hold.

As all sites are collinear, this example implies the one-dimensional case by considering
the intersection of the diagram with the xi-axis. Although in this case the cells are
obviously line-free, the proof of Theorem 3.8 fails as vertices are not connected by the
pairwise intersection of cells.

Second, we consider a similarly simple example that reveals the necessity of the
non-degeneracy assumption for vertices.

Figure 3.11: Ilustration of Example 3.11.

Example 3.11
We consider a power diagram P in the plane with & = 4 cells given by two parametriza-
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tions P = PD ((S(i)’ui>ie[k]> —PD ((3@, 'ai)z‘e[k]) with sites

and radii
01 := 09 := 03 := 04 := \/5, and 61 := 09 = \/Q, 03 := G4 := 2V/2.

Figure 3.11 illustrates the resulting diagram. Again, correctness of both parametriza-
tions can be deferred from the intersection points of the spheres, that must be contained
in the corresponding bisectors. In particular, (0,0)7 is a vertex of all four cells and
hence degenerated.

Once more, s = 31 and s2) = 5 would yield A = 1 and As = 0 in Eq. (3.24).
Hence, as s(3) # 30) we again see that Eq. (3.24) does not hold for this degenerated
case.

From the proof of Theorem 3.8 it is clear, however, that this assumption could be
relaxed by only requiring that the graph that consists of all reqular vertices and edges
for incident (d — 1)-faces of cells is connected.

3.3.3 Anisotropic Power Diagrams

Our next step in generalizing Voronoi diagrams is the introduction of individual norms
for each of the cells. There are several practical motivations for doing so. One may be
that the Euclidean distance does not adequately model the distances of a real world
application and hence should be locally adjusted. In another situation, one might want
to enforce a certain orientation of the cells and hence evaluate distances individually.
In the following, we will assume for each i € [k] the distance measure d; to be the
distance induced by an ellipsoidal norm. As a consequence, the distance of a point
from a site depends on the direction, hence we are talking about anisotropic diagrams.
We set X := R and define f; : X — R via

filz) = (x — sNT(z — s9) + p4 (3.26)

for symmetric matrices 3; € R4, sites s € RY, and additive weights p; € R, for

Sym

every i € [k]. We call the resulting generalized Voronoi diagram P w.r.t. ( fi)ie[k]
anisotropic power diagram and denote it P = APD ((Ei, s(i),,ui) ‘e[k})' Figure 3.12
7

depicts the Voronoi surface for an exemplary diagram of 3 cells in the plane.
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Chapter 3 Generalized Voronoi Diagrams

Figure 3.12: Voronoi surface of an anisotropic power diagram.

If 3; is positive definite and p; < 0, we may again set o; := y/—pu; and obtain

2 2
—o;. (3.27)

7

filx) == Hx —s®

Here |- ||, denotes the norm with the ellipsoidal unit ball

1
By, = {z € R : 2Tz <1} = 5,2 - B,. (3.28)

We may then associate the ellipsoid

1
;280! (3.29)

E;, := s 4 {ac eR%: T = 01-2} =0 4 )

with the ith cell. We will see shortly that the additional assumptions of positive definite
matrices and negative additive weights are not restrictive.

We call a point v € R? a vertex of the anisotropic power diagram if there exists an
open set U C R? and cell indices I C [k] such that {v} = ;c; ;N U. We say that a
vertex is regular if it is the intersection of exactly d 4+ 1 cells (i.e., |I| =d+ 1 and I is
uniquely determined).

For () # I C [k], we call F := ;g P; a n-face of the diagram, if 7\ U;cju.rgp, Pi
is a (possibly disconnected) n-manifold (in R?). Note that in our definition faces do
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3.3 Basic Types

not need to be connected. In particular, a 0-face may consist of several vertices, see
Fig. 3.13 for an example.

We call the diagram vertex-connected if every cell contains at least one vertex and
the graph with the diagram’s vertices as nodes and with edges connecting nodes whose
vertices belong to at least two common cells is connected.

Pl Pl

P1 Pl

Figure 3.13: Examples of faces of an anisotropic power diagram. The red bold lines yield the
1-face P> N P3. The points marked by crosses yield the O-face P; N P, N P35 which
consists of four vertices.

Anisotropic power diagrams have appeared in the literature in various settings. La-
belle and Shewchuk [LS03] introduced anisotropic Voronoi Diagrams, i. e., anisotropic
power diagrams without additive weights, motivated by the application of mesh gener-
ation. Here, the anisotropy is used in order to compensate for stretched or elongated
areas that suggest the usage of meshes with accordingly asymmetric triangles. In par-
ticular, they describe sufficient conditions for the positioning of sites in the plane such
that the resulting cells are star-shaped. In the same context, Canas and Gortler [CG11]
describe sufficient conditions w.r.t. the distance of sites such that anisotropic power
diagrams provide connected cells. In [Alp+15] they are introduced as generalized power
diagrams for the purpose of grain reconstruction. Boissonnat, Wormser, and Yvinec
[BWY06] and Wormser [Wor08| discuss curved Voronoi diagrams and in particular
describe the relation of power diagrams and anisotropic power diagrams (which will
be discussed shortly) as well as different possible parametrizations. A special case of
anisotropic power diagrams that we do not discuss in more detail are Mdbius diagrams
([BK03; BWY06]). Those are obtained for the case that all ellipsoidal unit balls are in
fact scaled Euclidean balls.
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Chapter 3 Generalized Voronoi Diagrams

Quadratic Parametrization

Similar to power diagrams, it will be useful to introduce a second parametrization
of anisotropic power diagrams. This time, we define the parameter transformation
function

sym Sy (3.30)

. R&xd x REx R — R4 x RYx R
(s = B(5, 5, ) i= (5, —2%s, sTEs + ).

For every i € [k] we set (A;, a;, ;) := P (Ei, s(i),,ui), and with
fi(z) == 2T A + alz + o (3.31)

it trivially holds that f; = f; (with f; as defined by Eq. (3.26)). So, the resulting
generalized Voronoi diagrams are clearly identical.

Obviously, ® is only a bijection when restricted to regular matrices in its first ar-

dxd
sym

gument. However, given P = APDyaq ((Ai, a;, ai)ie[k]> we can always find E € R,
such that A; + F is regular for every ¢ € [k]. However, then once more Lemma 3.2
yields that APDgyad ((AZ- 1+ E,a, ai)ie[k]) = APDguaq ((Ai, ai, 0
ated functions differ by a term zTFEz. Hence, we can conclude that the class of all
generalized Voronoi diagrams defined by functions of type (3.31) is identical to the
class of anisotropic power diagrams (as also noted in [BWY06]).

We will refer to the parametrization (3.31) as quadratic and denote the resulting

k]) as the associ-

anisotropic power diagram P = APDguaq ((Ai,ai,ai)ie[k]) If not clear from the
context, we will refer to the parametrization (3.27) as ellipsoidal.

Bisectors

In order to understand the characteristics of anisotropic power diagrams, let us consider
a bisector B;; for ¢ # | € [k]. It holds that « € B;; if and only if

(2 — sNTSi(x — sD) 4+ py = (2 — )8y (2 — sV +

rT(8; — Bz — 2(8is® — s Tz + (s0) T80 4y — (sO)T8s® -y = 0.
(3.32)

The latter equation yields a polynomial of degree at most 2 and so B;; is a (possibly
degenerate) quadric hypersurface (see, for example, [Aud03, Chapter 6] for a general
introduction).

From an application point of view, the ellipsoidal parametrization (3.27) might give
a better understanding for the interdependency of the diagram cells. Hence, let us
discuss how the relations of the norm-associated ellipsoids affect the characteristics of
the cells.
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In order to do so, we can normalize Eq. (3.32) in a common way. As 3; —%; € Rg;rg,
there exists an orthonormal matrix @ = (QR QN> € SO(d) with R C [d] and
|R| = rank(X; — %;), N = [d]\ R, and ¢, € R\ {0} for » € R such that with
Dp := diag(1,. .., 6)) € RIFXIEL it holds that ¥; — ¥ = QrDrQ%. We then obtain

the pseudo inverse of ¥; — ¥; as (X; — ¥))" = QRDEIQE. With

¢i= (T = ) (Sis?) — 5ys1), (3.33)
by = —2Q% (s — 25W), and (3.34)
v = (s 4 s — (s —
— (235 — DsNT(Z; — 2 (2is — 2p50) (3.35)
we can define normalized coordinates via
YR Qk(z —0)
= = 336
o= ()= (7 .
and get that Eq. (3.32) is equivalent to
> 6y +bhyn +7 =0. (3.37)
reR

From Eq. (3.32) we already see that the corresponding quadratic form and hence the
characterization of the quadric is determined by the difference of the norm-defining
matrices Y; — ;. From a rather geometric perspective, this means that a bisector’s
main characteristic can be deferred from the unit balls of the corresponding ellipsoidal
norms. Let us collect some basic facts on that dependency in the following proposition.

Proposition 3.12
Consider the setting above. Then:

i) Forr € R and ¢") := Q.r, it holds that Hq(r) = 0.

o =l

it) It holds that 6, > 0 for all v € R if and only By, C By,,. Furthermore, it holds
that 6, > 0 for all v € R and R = [d] if and only if By, C int(By,).

2
b}

iii) Let U :=1in({Q.,:t € N}). Then x € U\ {0} if and only if By, and By, touch
in (|zllg,) " e = (lz]lg,) '

iv) It holds that N = [d] if and only if By, = By,.

Proof. Part i follows directly from the definition of Qg as (X; — £,)¢(") = 6,¢(") and
= (¢NT8¢") — () T8q") = 6,.(¢)T¢") =6,

hence [g;|f%, — ¢

2
b}
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Now the first statement of part ii is a direct consequence of part i, as By, C By, is
equivalent to [|z([y, > [|lz[y, for all z € R? and a symmetric matrix is positive semi-
definite if and only if all eigenvalues are non-negative. As By, C By, but By, ¢ int(By;)
implies that there exists a point z with ||z, = [[z|ly;, and thus that ¥; — ¥ is not
positive-definite, the second statement of part ii follows as well.

By definition, By, and By, touch in some point # € R? if and only if 1 = 2]y, =
[|2]ly;, and ¥;2 = ;2. The latter is equivalent to & € ker(3; — %) and ||2[|y,, = 1. This
yields part iii and immediately implies part iv. O

Note that if N = [d] holds for all pairs of cells, i.e., if all ellipsoidal norms are
identical, the diagram is in fact a power diagram.

Exemplary Cases in the Plane

Let us illustrate the observations above for the simple case of k = 2 cells in the plane.
In particular, we aim to get an understanding of how the choice of parameters in the
ellipsoidal parametrization determines the cells’ characteristics.

First, we consider the case that neither of the two ellipsoidal unit balls are contained
in one another. An example is illustrated in Fig. 3.14. This case implies R = {1, 2}
and 0; - 62 < 0. Consequently, we see from Eq. (3.37) that the bisector By 2 is a pair
of hyperbolas if v # 0 and a pair of crossing lines otherwise. Up to translation, the
asymptotes of the hyperbolas are solely determined by the choices of > and 3s. For
the diagram in Fig. 3.14b, this results in the cell P; (blue) to consist of two connected
components. In order to grasp the impact of changing sites, assume all parameters to
be fixed except the site s2). The bisector is point symmetric w.r.t. ¢ which is affine in
s(2). We observe that + in dependency of the site s(2) is yet another quadratic function.
In Fig. 3.14, the red-dashed line depicts one of the pair of hyperbolas that yields the
choices of s such that v = 0. In particular, when s(2) crosses this line, the cells swap
their connectivity property (Figs. 3.14c and 3.14d). Finally, as v changes linearly in
the additive parameters p1 and pg, they determine the connectivity of the cells, too.

Next, we consider the case that one ellipsoidal unit ball is strictly contained in the
other, i.e., we assume By, C int(By,). This means we are in the setting of part ii
of Proposition 3.12. Consequently, the bisector Bj o is either an ellipse or empty,
depending on the sign of 7. Figure 3.15 illustrates this situation. Again, the choice
of ¥1 and ¥, already determines both orientation and ratio of the axes of this ellipse.
The choice of the sites then again determines its center ¢ as given by Eq. (3.33). Again,
we may interpret v as a quadratic function in s(2). This time, the set of sites such that
v = 0 yields yet another ellipse! (or may be empty). This is again drawn as red dashed
line in Fig. 3.15b. Any choice of s(?) inside this ellipse leads to an empty cell Py. Due

In order to see this, note that by elementary linear algebra it holds that ¥; > 0, 2 > 0 and
$1 — B = 0 imply Zo — 3a(B1 — Ta) '8 = 0.
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(a) Ellipsoidal unit balls Bs, (blue) and Bs,
(orange).

e

(C) Degenerated case of crossing lines. (d) Diagram with connected cell P;.

Figure 3.14: Anisotropic power diagram of two cells in the plane, with no ellipsoidal unit ball
contained in the other. The dotted ellipses in Figs. 3.14b to 3.14d yield the associated ellipsoids
E; and E; (Eq. (3.29)). The red dashed line illustrates the set v = 0 when interpreting ~ as a
function in s(2).

to the linear term ps — p1 in the definition of v, we can conclude that for p; — us large,
the ellipse Bj 2 and thus the cell P, are scaled by an asymptotic factor of \/p1 — pa.

As final case, we assume that By, C By, but By, N By, # 0, i.e., the two unit
balls touch, as depicted in Fig. 3.16a. This means rank(¥; — X9) = 1. In particular,
Fig. 3.16a furthermore depicts the null space U as used in part iii of Proposition 3.12.
Consequently, the resulting normalized form of Eq. (3.37) contains a linear term yy.
Again, assume all parameters to be fixed except s(). This time, the red dashed lines
in Figs. 3.16b to 3.16d mark the choices of s?) that result in by = 0. As

by = —2Q% (215 — £psP) = 2QT (21 — T9) sV — 2QL, By (s — 5@,

=0

this yields a line through s("). Which side of this line s?) is placed then determines
the orientation of the parabola that is Bi2. In the degenerated case that 52 lies
on this line, the bisector consists of two parallel lines and the cell P; is disconnected
(cf. Figs. 3.16b to 3.16d). With respect to the additive parameters, the term pu; — po
determines the vertical position along the Qg = (q1) direction in the non-degenerated
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(a) Ellipsoidal unit balls By, (blue) and By, (or- (b) Resulting anisotropic power diagram with
ange). ellipsoidal bisector. The dotted ellipses mark

E;, i =1,2 (Eq. (3.29)). The red-dashed line

marks the choices of s? resulting in v = 0.

Figure 3.15: Anisotropic power diagram of two cells in the plane, with one ellipsoidal unit
ball strictly contained in the other, i.e., By, C int(By,).

case. In the degenerated case, it determines the distance of the two parallel lines (which
might be smaller than 0 causing P» to be empty).

Parametrization Invariances

As we have already seen for the exemplary cases in the plane, the choice of parameters
for an anisotropic power diagram is not unique. By stating a few lemmas, we prepare
a theorem that will narrow down the invariances in the parametrization of anisotropic
power diagrams. First, regular vertices guarantee the affine independence of the
parameters of the associated cells.

Lemma 3.13

Let P = (Pi,...,P;) = APDguad ((Ai,ai,ai)ie[k]) be an anisotropic power diagram
and v € R? be a regular vertez. Let I C [k] such that {v} = N;e; P;. Then (A, a;, ;)
fori € I are affinely independent (when interpreted as vectors in Rd2+d+1).

Proof. Aswv is regular, we may w.l.o.g. assume I = [d+ 1]. Next, we may furthermore
w.l.o.g. assume (Agy1,a4+1,a4+1) = 0 (otherwise we set (Ai,&i,dZ-) = (4;,a4,05) —
(Ad+1,&d+1, o?d+1> for i € [d+ 1] and obtain the same diagram due to Lemma 3.2,

which, of course, does not affect affine independence). Thus, we need to show the linear
independence of the first d vectors. Assume this is not the case and once more w.l.o.g.
that there are A; € R for i € [d — 1] such that (Ag, aq, aq) = Xicja—1 Ni (Ai, ai, ).
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a ipsoidal unit balls Bs; ue) and By, (or- iagram with a parabola as bisector.
Ellipsoidal unit balls By, (bl d By, b) Di ith bol bi
ange). The gray dashed line marks the subspace

U as defined in part iii of Proposition 3.12.

(c) Diagram with the bisector consisting of two (d) Diagram with a parabola as bisector.
parallel lines.

Figure 3.16: Anisotropic power diagram of two cells in the plane, with the two distinct
ellipsoidal unit balls touching each other. Dotted ellipses mark E; (blue) and E5 (orange) as
defined by Eq. (3.29). The red dashed line marks the choices for s such that by = 0 (cf.
Eq. (3.34)).

Then

() Bian = {56 ER:2TAx+alo+oa; =0Vie[d— 1]}
i€ld—1]

clzeR?: :cT( Z )\ZAZ).T + Z Aia;Tx + Z Nia; =0 = Bd,d+1
i€[d—1] i€[d—1] i€[d—1]

This immediately gives ﬂie[d—l] P;N Py41 C Bgd+1 N Pggy1. Now observe that By g1 N
Pyji1 = PyN Pyyq. (D7 is clear by definition. Then note that x € Bg g1 N Pay1
implies fq(z) = fa41(2) = min;epy fi(x) and hence z € Py ).

Thus, we get Nicjg—1) P N Pay1 C Py N Pypq and hence Nicigy1 £ = MNicag—1 B ﬂ
Pyy1 = {v}, which contradicts the regularity of v.
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Furthermore, in order to determine the degrees of freedom in the parametrization
of anisotropic power diagrams, we require a few technical results on real quadrics. In
particular, we need a little terminology from algebraic geometry concerning quadrics
or — more generally — affine varieties. Here, we follow the terminology of [CLO15]. For
polynomials p1,...,p, € R[z1,...,z4] the set

V(piy..-ypn) = {m e RY ipi(x) =0Vie [n]}

is called an affine variety.

We will have to exclude degenerated cases of anisotropic power diagrams that yield
bisectors which are (locally) contained in hyperplanes. We will call a set A C RY
locally flat if there exists an open set U C R? and a hyperplane H C R? such that
ANU=HNU # 0.

The next two lemmas are of fundamental nature and could be established using
Hilbert’s Nullstellensatz ([CLO15, Chapter 4, Theorem 2]) over an algebraically closed
field. However, as we only consider the non-algebraically closed field R and do not
intend to make use of deeper theoretical algebraic geometry in our context, we provide
fundamental proofs on our own.

By the first lemma, we will ensure that whenever bisectors are not locally flat, the
corresponding polynomials are not reducible.

Lemma 3.1/
Let p € Rlzy,...,z4] be a polynomial with deg(()p) = 2. Then p is reducible if and
only if V(p) is locally flat.

Proof. If p is reducible, it is the product of two affine functions. Thus, V(p) is the
union of two hyperplanes, which is locally flat.

If p is locally flat, there exists a hyperplane H C R? and an open set U C R? such that
0 #V(p)NU = HNU. We can w.l.o.g. assume that H = {a: eR?: 2y = 0} (otherwise,
we transform coordinates). Let g € Rlz1,...,24] and h € Rlzy,...,24-1] such that
p(x) = z19(z) + h(T) for x =: (21,77)T € R% As p|y~py = 0, it follows that h is zero on
the projection of HNU onto the first d — 1 coordinates U := 74—y )(HNU) = 7jq_1)(U).
Since this is an open set in R?"!, it follows that A = 0. Thus, p is reducible. O

The next lemma states that the quadratic polynomial that is given by the bisector
equation (3.32) is already uniquely determined up to scaling as soon as some small
excerpt of the resulting bisector is known and the bisector is non-degenerated, i.e., not
the union of two hyperplanes. We mention that a version of the following statement
for general complex varieties can be found in [Ken77, Theorem 2.11].
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Lemma 3.15
Let d > 2, p,p € R[z1,...,z4], p irreducible with deg(()p) = 2, deg(()p) < 2, and
U C R? open such that V(p) N U is (d — 1)-manifold in R and

Vip)nU =V({p)NnU.

Then there exists A # 0 such that p = Ap.

Proof. We may w.l.o.g. assume that p is in normal form (otherwise we may consider
an affine transformation of RY). This means, that for a suitable € [d] we set R := [r]
and N := [d] \ R and there are 6; € R\ {0} for i € R, ay € RN and a € R such that

p(z) = > &z} +alan + o
i€r]

Here, we denote » = (z,z},)T € R%. Similarly, we will denote z = (z1,7")T with
TeRL

As we are only interested in the equality of p and p up to scaling, we may w.l.o.g.
assume 7 = —1 (otherwise consider —ip) and define ¢ € Rz, ..., z4] via ¢(T) :=
ZQS’L'ST 5@1’12 + a]TVxN + «.

For all z € V(p) NU it then holds that
2t = q(2).

AsV(p)NU is (d—1)-manifold and p is irreducible, we can conclude from Lemma 3.14
that U N V(p) is full-dimensional. Hence, there exists z(*) € U N V(p) such that

(2(9)); # 0. Furthermore, we may assume that sign(z;) = sign(acgo)) as well as ¢(Z) > 0
for all z = (21,2T)T € U.
Consider the projection

U:= W[d]\{l}(U NV(p)) := {T e R4 Jzy € R:(x,2T)T € UN V(p)} c R*L

Then
UnV(p) = {(sign(:):(lo)) “1/q(T), xT>T 1T € U}.

In particular, we can assume that U is open (in R9!) as map\{1}(U) must contain a
neighborhood of () in which (Sign(xgo)) . q(f),fT)T el.
Now, let A € R and g,h € R[x1,...,x4-1] with deg(()g) < 1, deg(()h) < 2 such that

pla) = Azf + 19(T) + h(T)
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for all € R
AsUNV(p) =UnNV(p) it follows for all Z € U that

0 = Aq(z) +sign(zt”) - \/q(z) - 9(T) + h(z)
—4()9(T)* = (A(T) + h(@))>.

As U is open and a polynomial is uniquely defined by its restriction to any open set,
this implies

q-9> = (A\g+h)

If ¢ # 0, then the latter implies g|(Af + h) and thus with ¢ := (A\¢ + h)/g €
R[z1,...,24_1] it holds that ¢ = t2. However, then p(z) = t(7)? — 2 = (¢(7) —
x1)(t(T) 4+ 1), so p is reducible, a contradiction. Hence, we obtain g = 0 and thus

Ag = —h.

If A = 0, it follows that h = 0 and hence p = 0, a contradiction to UNV(p) = UNV(p) #
U as p # 0. We conclude ¢ = —%h and so for any x € R?

B(z) = Azt + h(@) = —A(-af - %h(f)) = —A(=2f +¢(T)) = —Ap(). o

By the help of Lemma 3.15 we can now state and prove the analogue of Theorem 3.8
for the quadratic parametrization of anisotropic power diagrams.

Theorem 3.16
Letd>2 and P = (P,...,Py) with k > d+ 1 be an anisotropic power diagram, and

let A; € R a; € RY, oy € R for i € [k] such that P = APDguad ((Ai,ai,ozi)ie[k]).

Sym

Let furthermore B; € REX4, b; € R, B; € R for i € [k].

Sym s

If there exist XA > 0 and AA € R¥*% Aa € R, Aa € R such that

Sym
(BZ‘, bi, ,Bl) =\ (AZ, a;, Oéi) + (AA, Aa, AO()
for every i € [k], then APDgyaq ((Ai, a;, O‘i)z‘e[k]) = APDguad ((BZ-, bivﬁi)z‘e[k]>'
If for any i # 1 € [k] with P, N P, # 0 it holds that P; N P, is a non locally flat

(d —1)-face, every vertex is reqular and the diagram vertez-connected, then the reverse
s also true.

Proof. Once more, the first implication immediately follows from Lemma 3.2 by
setting a(z) := A and b(z) := 2TAAz + AaTz + Aa for z € R%
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Now assume P = APDgyaq ((Ai, a;, O‘i)z‘e[k}) = APDquad ((BZ-, bivﬁi)ie[k]) and that
int(P;) # 0 for every i € [k] and P; N P, is not locally flat for any i # [ € [k] with

Due to the first implication, we can w.l.o.g. assume that (A, a1, 1) = 0.

Define the polynomials p;, ¢; € R[z1,...,z4] for i € [k] via p;(z) == 2TA;x+a;Tx +
and q;(z) := "Bz + b;Tz + ;.

By assumption, P; contains a vertex v. Due to regularity, we may assume that
{v} = Nield+1) £ N Uy for some open set Uy, C R?. Also by regularity, it holds that
v ¢ P; for any i € [k] \ [d + 1] and hence we may choose U, sufficiently small such that
Uv N Uiepp\ja41] £ = 0.

Let i # 1 € [d + 1]. By assumption, P, N P, is a (d — 1)-face of the given diagram.
Furthermore, we claim that there is no r € [d + 1] such that NP NU, C P.. If
that was the case, then {v} = Nicjg11) £ N Uv D Niciatap\{r} % N Uy, which would
contradict the regularity of v. Hence, the definition of a (d — 1)-face implies that
(PN PN Uy) \ Urepp gy r is @ (d — 1)-manifold and in particular non-empty. Hence,
there exists © € ;N P\ Uyepp (s, - Thus, we can find an open neighborhood U, of
x such that LN P NU, =By NU, =V(pi —p1) NUz = V(g —q) NU,. As PN P is
furthermore non-flat, Lemma 3.14 implies that p; — p; is irreducible. Then Lemma 3.15
states that there exists a A;; # 0 such that

i — i = Nig(a — q). (3.38)

Next, we claim that A\;; > 0. If A;; < 0, then p;(z) —p;(z) < 0 implies g;(x) —g;(z) > 0,
which implies an empty symmetric difference of the cells, i.e., AP, = (). However,
this means P; = P;, which again contradicts the regularity of v.

As Eq. (3.38) holds for arbitrary i # [ € [d + 1], we can proceed as in the proof of
Theorem 3.8 and consider the sum

d d
0="> (i — Pis1) + Pa+1 — p1) =D Nii+1(aG — Gi+1) + Aas1,1(qa1 — q1)
i—1 i1
d+1
= (M2 —Ad+1,1)0 + Z()\i,iJrl — X1, + (Adr11 — Add+1)d+1-
=2

Due to the regularity of v, Lemma 3.13 states that the coefficient vectors of the
polynomials ¢; for i € [d + 1] are affinely independent. Observe that the coefficients of
the polynomials in the last equation sum up to zero, hence affine independence implies

)\172 = )\2’3 = ...= )‘d+1,1 =: A\
As we may reorder cells, this gives A = \;; for all i # [ € [d + 1]. We then define
(AA, ACL, Aa) = (Bl, bl, ,61) - A (Al, ay, Ozl)
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and can (analogously to the proof of Theorem 3.8) verify that Eq. (3.38) then yields
(BZ‘, b;, ,Bl) = (AZ, a;, Oéi) + (AA, Aa, AO() (339)

for all i € [d + 1]. As the diagram is vertex-connected and each pair of connected
vertices shares two common cells, we can conclude that Eq. (3.39) holds for all i € [k].O

As we did for power diagrams, we obtain the invariances for the parametrization of
anisotropic power diagrams by ellipsoids as a corollary.

Corollary 3.17
Letd>2 and P = (P,...,Py) with k > d+ 1 be an anisotropic power diagram, and

let ;e R s e R, p; € R fori € [k] such that P = APD <<Ei7 S(i),ﬂz) ‘e[k})'

sym,>07
Let furthermore 3; € Rg;nigo, 50 e RY, fi; € R fori € [K].
If there exist A > 0 and AY € ngxnﬁl, As € R4, and Ap € R, such that
=AY + A (3.40)
$O = X%+ AR) T (0 4 271 As) (3.41)

[ = Mt + A (s(i)Tzis(i) . (Zis(i) + As)TA(AD; + AE)_l (Eis(i) + As)) + Ap
(3.42)

for every i € k], then APD <(ZZ~, 5(’),m)i€[k]) = APD <(Zi, S(z)”ui)ie[k])

If for any i # 1 € [k] with P, N\ P, # 0 it holds that P; N\ P, is a non locally flat
(d — 1)-face, every vertex is reqular and the diagram vertex-connected, then the reverse
is also true.

Proof. With the parameter transformation function ® as defined in Eq. (3.30) we get
(5, s, ) = (Ez‘, —2%;s0, s T50) 4 Mi) :

For the first implication, let 3,3, fi; for i € [k] be given as in Eqs. (3.40) to (3.42).
We can reformulate Egs. (3.41) and (3.42) as

30 = X872 + As) and
fi = A (Mz‘ + (s(i))TEis(i)) — (518,50 4 Ap.
With (AA, Aa, Aa) := (AX, —2)\As, Ap) we then get for all 7 € [k] that
o(%;, 89, ;) = (2@ —2%;30, (8)78;50) 4 ﬂz’)
= (A + AD, <2X(% + As), A (s + (585D + Ap)
= AD(2y, s 1) + (AA, Aa, Aay) .
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Hence, we obtain from Theorem 3.16 that
@), — @),
APD ( (%150 ) ) = APDquaa (#5050, 10) )

— APDguad ((@(gi,§<i>,m))idk]> — APD ((Ai,g(o,m)ie[k])

holds.
For the reverse implication, assume that the further assumptions as well as

APD ((Ei’ S(i)”ui)ie[k]) = APD <(2“ §(i)’ﬂi)ie[k])

hold. Consequently, we have that
APD g (2(Si5%5) ) = APDguaa ((0(E050, ) _, )

Thus, Theorem 3.16 yields the existence of A > 0, AA € ngxrg, Aa € R and Aa € R
such that ®(3;, s, ;) = A®(S;, 80, 1;) + (AA, Aa, Aa) holds for all i € [k]. With
(AX, As, Ap) = (AA, g—/\lAa, Aa) and using that (I)‘]ngxnil,>oX]RdXR is invertible, we

then get the desired result from the calculations above. O

Comparing the prerequisites for the reverse implications of Theorem 3.8 and The-
orem 3.16, we notice anisotropic power diagrams to be slightly more demanding. In
both cases, however, we require the existence and regularity of vertices.

Regarding the additional requirements, let us first briefly discuss the restriction to
non-flat bisectors. If this is not the case, then the polynomial that defines a bisector
B, either has degree one or must be reducible into the product of two polynomials
of degree one. Consequently, the bisector consists of a single or the union of two
hyperplanes. Thus, the “known” subset P; N P} C B;; might miss the information of
one of those hyperplanes.

The following example is to demonstrate the necessity of the vertex-connectivity as
required in Theorem 3.16.

Example 3.18

We consider the anisotropic power diagram APD ((Zi, 5@, ui) 'G[k]> for k = 5 cells
K3

as depicted in Fig. 3.17. The figure illustrates the ellipsoidal parametrization of the
diagram. Here, the norm associated with the first cell is simply the Euclidean norm,
while the remaining 4 cells are all equipped with the same norm whose unit ball is a

shrunk Euclidean ball. Thus, we obtain the spheres E; = {x e R%: H:c — 5@ . = ai}

(with o; = \/—p;) drawn as dotted lines. This qualitative description suffices for the
scope of this example.
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The resulting diagram consists of 5 connected cells and has in total 4 non-degenerate
vertices. However, it holds that (P, U P3) N (P, U Ps) = (). Hence, the vertices in
PN PN P3and Py N PyN Ps, respectively, are not connected.

We are now interested in alternative parameters that yield this diagram. In order to
do so, let us temporarily consider the two diagrams that only consist of the cells with
indices in either {1,2,3} or {1,4,5}, respectively. Those diagrams would each meet
the prerequisites of Corollary 3.17. Hence, we can conclude that for any alternative
parametrization of the full diagram, there must exist respective scaling and shift
parameters as stated in the corollary for each of those two reduced diagrams individually.
However, as this example shows, those are not necessarily equal.

In order to see this, we choose an arbitrary A > 0. We then set AY := ;
As = 32550 Ap o= (1= M) — (s)7815W), and define ( 0] ﬂ)
Egs. (3.40) to (3.42) for i € [3]. For i = 4,5 we set (f]z, §(i),ﬂi) : (Zl,s(Z )

1

Now observe that by construction (21, HON ﬂl) = (21, s, Ml) holds. Consequently,
we have found an alternative parametrization for the whole diagram that is not of
the form presented in Corollary 3.17. Figure 3.17 also depicts the resulting adapted
spheres E, and Ej for some \ > 1.

Figure 3.17: Anisotropic power diagram that is not vertex-connected. The solid colored circles
depict the unit balls of the respective norms, the dotted circles the associated

ellipsoids E; = {x € R?: ||x - S(i)Hzi = O'i}, cf. Example 3.18.
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Number of Connected Components

A cell of an anisotropic power diagram may consist of several connected components.
In order to give a bound on the number of those, we need the following simple fact
about quadratic inequalities.

Lemma 3.19
Let PUNUZ = [d], 6; > 0 fori € PUN, by € Rl and v € R. Set

C:= {y eRe: Zézyf — Zéiyf+b}yz+v > O}.
i€P 1EN

If v < 0, either Z = 0 or by = 0, and |P| = 1, then C consists of exactly two

connected components that are strongly separated by the hyperplane {y € R¢: Yp = O}

with {p} := P. Otherwise, C' has a single connected component.

Proof. Let y, 9 € C.
As first case, we consider bz # 0 (and in particular Z # ). For 7 € [0, 1] we set

y(r) == (yn (1), yp(7),yz(1)) == V1 =7 yn, V1 —T yp,(1 = T)yz — TbTZf);ZbZ).

Then
D 0wi(m)? = 0iwi(1)? +bhyz(r) +y = (1 —=71)(Q_ biyi — > biyi +blyz +7) =0
ieP €N ieP 1EN

and hence y(7) € C holds for all 7 € [0,1]. We define g(7) analogously and have
y(1) =y(1) = (0,0, —ﬁbz), so y and g are connected in C.
zZ
Next, we consider the case by = 0 or Z = (). In both situations we can disregard the
components in Z. Thus, we w.l.o.g. assume Z = ().

For v > 0, we may again define y(7) := (v/1 —t yn,v/1 —t yp) and get
D owi(m)? =D Gwi(r) +y =1 —1)Q_ i — > iyl +7)+ 772> 0,

i€EP 1€EN i€EP 1EN

which yields connectivity. Now assume v < 0. We set

) 22
y(1) = (V1 —Tyn, /1 — TZ’L&ZJ;?JP)
>icp 0iy;

for 7 € [0,1] (which is well-defined as > ;cp 047 > —7 + S ien 02 > S ien 0iy2 > 0).
Then

Y 0iwi(r)? =Y Swi(r) = Y bwi(r)? =T biyi —(1—7) > Siyi+7>0

ieP 1EN 1eP 1EN 1€EN
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1— ZzeN 61y

and y(1) = ( Wyp, 0) hold. Thus, we can w.l.o.g. assume yy = 0 as well as

gn = 0 right away (otherwise we first “traverse” to y(1) and (1), respectively). With
the ellipsoid E := — - (diag ((5; 2 )sep)BS € RIP! it holds that Sep 8122 + 4 > 0 for
all zp € RIPI\ int(E). We conclude y,§ € RIPI x {0} \ (int(E) x {0}) C C. If |P| > 2
holds, this yields connectivity.

As final case, we assume |P| =1,y < 0,and Z =0 (or bz = 0). W.lo.g. let P = {1}.
Then for all y € C it follows that dy? — ZleN S;yi(17)? +~ > 0 and thus |y;| > \/7

We conclude that C ¢ R?\ {y cR?: —/ 5L <y </ 5 5 } which yields the desired

separation. Furthermore, +(,/ 5—3, 0,0)eC holds, so it follows that C has exactly two
connected components. O

We can now formulate the following sharp bound on the number of connected
components of a single cell in an anisotropic power diagram.

Theorem 3.20
Let P be an anisotropic power diagram. Then a cell of the diagram consists of at most

Ed: (k ; 1) (3.43)

1=0

connected components. This bound is sharp.

Proof. We show that there can be as many connected components of a cell as there
are d-faces of a hyperplane arrangement in R¢.

Consider the cell P; of P. For every i € [k] \ {1} the dominance region of 1 over
i is given by a quadratic inequality which can be brought to the form of Eq. (3.37)
by means of a translation ¢t € R? and a rotation Q € R, From Lemma 3.19 it
then follows that the dominance region of 1 over i consists of at most 2 connected
components, which are separated by the hyperplane H; := {x : (u(p))TQx = (u(p))TQt}
for a suitable p € [d].

Now consider the d-cells of the hyperplane arrangement from the at most k — 1
hyperplanes obtained this way for ¢ = 2,..., k. Consequently, each of those cells can
contain at most a single connected component of P;. As is well-known (see, for example,
[EOS86, Lemma 2.5]), an arrangement of n hyperplanes in R¢ has at most Y%, (")
many d-cells. This bound is tight whenever the hyperplanes are in general position,
i.e., any intersection of [ of those hyperplanes is a (d — [)-dimensional affine subspace.

With n := k — 1 this already yields the desired upper bound. In order to show that
this bound is tight, let H; := H(b<i),ﬁi) for i = 2,...,k be some k£ — 1 hyperplanes in
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general position. For ¢ = 2,...,k, w.l.o.g. assume Hb(i) , = 1 and let Q; € R™? be an

orthonormal matrix with b as the first column. Furthermore, let €, > 0 and define
the diagonal matrix D := diag(1, —¢, ..., —¢) € R%

We define an anisotropic power diagram APDgyaq ((Ai,ai,ai)ie[ko in quadratic
representation via Ay := 0, a1 =0, oy = 0 and A; := Q;DQ], a; := —26;(b%))7Q; DQ],
;= (BibNTQ;DQI (Bp)) —§ = g7 — 6, for i = 2,.. ., k.

Then the dominance region of 1 over i for i € [k] \ {1} is given by all x € R that
satisfy

(z — B:bD)Q;:DQ] (z — B;p™) > &
(@@ — 8;) > 6+ e(||z|3 — (0)Tz)?).

For € — 0 this set converges (pointwise) to the set of all points of distance at least v/d
from H;. Letting furthermore § — 0, this means that P; converges to the d-cells of the
hyperplane arrangement given by Ho, ..., H. O

Figure 3.18 illustrates the final construction of the proof of Theorem 3.20 in the
plane for £k = 4. Note that we could, of course, have set ¢ = 0 right away. However,
the construction shows that no degeneracy is necessary in order to achieve the bound
given by Theorem 3.20.

Relation to Power Diagrams

As a final thought on anisotropic power diagrams, let us describe a further relevant
relation to power diagrams. As also pointed out in [Wor08], anisotropic power diagrams
can be constructed as certain projections of power diagrams in higher dimensional
space.

Let an anisotropic power diagram P := (Py,..., P;) := APDquaq ((Ai, a;, O‘Z')ie[k])
in quadratic representation be given. We define the mapping

d(d+1)
JJRT S RTTTE (3.44)
z = o@) = (T1,. .., T, T3, X170, . ., Tg_1T g, T)

We then consider the power diagram P := (P,...,P;) := PD.g ((Ei,ai)ie[k]) in

dd+1)
R ~=2 with

a; = (a], (Ai)1,1,2(A)12, -, 2(Ai)a—1.d, (Ai)aa)"

for i € [k]. Let (fi)icir) and (fi)iep denote the defining functions of P and 7P,
respectively. Then by definition (cf. Eqgs. (3.17) and (3.31)) it holds that f;(x) =

75



Chapter 3 Generalized Voronoi Diagrams

Figure 3.18: Anisotropic power diagram cell in the plane with a maximum number of connected
components, as described in the proof of Theorem 3.20. The dashed lines depict
the hyperplanes that separate the regions of dominance of the cell that is depicted
in blue over each other cell in the diagram. The gray area depicts the union of
the three remaining cells. Thus, k& = 4 and Eq. (3.43) yields a maximum number
of 7 connected components. This is the case for the cell depicted in blue.

filw(x)) for all x € RY and i € [k]. Consequently, we obtain the cells of the anisotropic
power diagram P as the projection of the cells of the power diagram P intersected
with the image of ¢, i.e., for every i € [k] it holds that

P, = 7iq)(P; N o(RY).

3.3.4 Shortest-Path Diagrams

So far, all considered diagram types have lived in X = R%. However, Definition 3.1 is
not restricted to this setting. In particular, we can apply the concept of generalized
Voronoi diagrams to a discrete or even finite setting. This may be given in form of a
graph structure.

Variants of Voronoi diagrams on graphs are also discussed in [AKL13, Section
9.4.1] and [Oka+-00, Section 3.8]. According to [AKL13], Voronoi diagrams on graphs
are explicitly introduced for the first time by Mehlhorn [Meh88|, who presents an
approximation algorithm for the minimal Steiner tree problem that exploits the Voronoi
diagram with the terminal nodes as sites. Most similar to our setting, Okabe et al.
[Oka-+08] consider “generalized network diagrams”. They present several variants of
diagrams on graphs, including (additively) weighted network Voronoi diagrams that
coincide with our definition below.
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Figure 3.19: Exemplary shortest-path diagram.

Let us now assume X to be a finite set and G = (X, E, ¢) to be a connected, edge-
weighted graph with E C ()2() and ¢ : E — R>¢. Note that while we restrict ourselves to
undirected graphs for the sake of simplicity, all results naturally carry over to directed
ones, too. Let dg denote the metric over X' induced by G, i.e., dg(v,w) denotes the
length (w.r.t. ¢) of a shortest v-w-path in G for v,w € X.

For sites sV, ..., s®) € X and weights p1, ..., ur € R we then set

fi(z) :=da (s, x) + i (3.45)

for x € X and i € [k]. Note that this is in accordance with our proposed framework
for diagram functions given by Eq. (3.2) for h = id (we will review this choice also
later in Section 7.3.2). We then call the diagram P w.r.t. the functions (fi);cpy a
shortest-path diagram.

Figure 3.19 depicts an exemplary shortest-path diagram. It shows a graph that
consists of 19 nodes and 35 edges whose weights are determined by the Euclidean
distance of the nodes embedded in the plane as depicted. Nodes are colored according
to the diagram cells they are contained in. As always, the sites are marked by squares.
The colored edges illustrate the shortest paths of nodes to their assigned sites.

From Lemma 3.3 we immediately get that the cells of a shortest-path diagram are
site-star-shaped (which is also observed in [Oka+-00, Section 3.8]). In particular, this
implies that subgraphs induced by the diagram cells, i.e., G[P,], i € [k], are connected.

Let us consider the structure of the diagram cells and in particular the resulting
bisectors a little bit closer. For any site s, we can consider the tree T} that consists
of all nodes X but only edges in F that are contained on a shortest path from s to
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one of the edge’s nodes. Whenever shortest paths are ambiguous, we could use some
arbitrary tie-breaker rule so that T; actually is a tree. However, in order to avoid
technicalities, we will rather assume shortest paths to be unique (which is reasonable
for the applications that we have in mind). We can furthermore root T; in s@ in order
to obtain a partial order on X'. We define this order as v =7, w for v, w € X whenever
w lies on the shortest s()-v-path in G.

From Eq. (3.4) in Lemma 3.3 we see that the subgraph of the trees 7T; that is induced
by the respective cell P;, i.e., T;[P;], is still connected. In Fig. 3.19, the colored edges
depict those subtrees. The diagram cells are hence “spanned” by the shortest-path
trees, which gives rise to the diagram name.

Concerning bisectors, we can deduce that whenever a node v lies in a bisector B;,
this must be the case for all common successors of v in T; and T;:

Lemma 3.21
Let G be a graph as introduced above. Assume the shortest path between any pair of
nodes in G (w.r.t. c¢) to be unique. Let P = (P1,...,Py;) be a shortest-path diagram
over G and v € P; N P, for some 4,1 € [k].

Then {w € P;:w =7, v} ={w e P : w1, v}.

Proof. Let w € P; such that w is a direct successor in T; of v, i.e., dg(s(i),w) =
A (39, 0) + e({v, w}).

As v € P;N Py it holds that f;(v) + p; = fi(v) + w and hence dg(s®,v) 4 p; =
dg(s(l),v) + Uk

In particular, fi(v)+ = da(sW, w)+pu < dg(sW,v) +c({v,w}) +w = da(s®, v) +
c({v,w}) + p; = fi(w) + pi. As w € P;, the latter must hold with equality and in
particular implies w € P; and that w must be a direct successor of v in T}, too (as
shortest paths are unique).

As this argument can be successively applied to all successors of v w.r.t. T;, the
claim follows. O

Consequently, we conclude that cells of shortest-path diagrams intersect in subtrees
of the underlying shortest-path trees.

3.4 Summary & Conclusion

Generalized Voronoi diagrams yield a simple yet powerful tool that we are going to
exploit in the remainder of this thesis.
In this chapter, Section 3.1 first gave a self-containing short introduction that was
to demonstrate the versatility and capability of the concept of Voronoi diagrams.
Section 3.2 then formally introduced the terminology of generalized Voronoi diagrams
for the scope of this thesis and stated some fundamental characteristics. In particular,
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we will focus on diagrams defined w.r.t. functions in the form of Eq. (3.2) in order to
derive meaningful diagram types.

Starting from classical Voronoi diagrams, Section 3.3 then introduced some basic
types in increasing degree of generalization. Besides discussing some basic properties,
we focused on the impact of the choice of parameters to the geometric properties of the
resulting diagrams. Here, we believe that a proper understanding of those dependencies
is of major benefit for any practical application. In particular, we have seen different
parametrizations for both power and anisotropic power diagrams. While the one
parametrization might give a simpler understanding of the impact of a parameter
choice, the other one can be simpler to be handled in order to obtain theoretical claims.
Also, invariances of those parametrizations were discussed. Of course, those are of
interest as soon as the question how to determine the parameters that yield a “suitable”
diagram will appear later on. We closed by the introduction of shortest-path diagrams,
which due to their discrete nature might stick out. However, the possibility of working
not only in Euclidean or related spaces but also on more general structures such as
graphs once more demonstrates the broadness of the concept of generalized Voronoi
diagrams.
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In Chapter 2 we defined the notion of constrained clusterings and in Chapter 3
generalized Voronoi diagrams were introduced. For our applications of interest, we
aim to find constrained clusterings that furthermore have some desirable geometric
or topological properties. In this chapter, we see that this can be achieved due to a
strong correspondence between certain constrained clusterings and generalized Voronoi
diagrams of prescribed type. More precisely, we will see that certain faces of the
underlying clustering polytopes contain exactly those constrained clusterings that are
induced by certain generalized Voronoi diagrams.

We will provide the definitions that yield the terminology of the relations between
diagrams and clusterings in Section 4.1. Section 4.2 then gives an overview of the
existing results on that relations. In the hope of providing a best-possible understanding,
the remaining sections will then successively develop the desired correspondence with
increasing generality. Section 4.3 will do so for power diagrams and least-squares
clusterings with size constraints. Section 4.4 will then consider weight constraints
and general diagram types. Finally, Section 4.5 will establish the correspondence for
arbitrarily constrained clusterings as defined in Chapter 2.

4.1 Definition

First, let us properly define what is meant by a generalized Voronoi diagram to
“induce” a clustering. The following definition is strongly oriented at the terminology
as introduced in [BG12; BGK17].

Definition 4.1
Let X be a set and P = (P,..., P;) be a generalized Voronoi diagram over X. Let

X = {m(l),...,x(”)} C X be a finite set of n distinct elements in X, and T =

T ((Ai)ie[k]> (b(i)>ie[k]> C R**™ a clustering polytope. Let & € T.
We say P is feasible for £, if and only if

(65> 0= 2V € B foralli € [K],j € [n]. (4.1)
Moreover, P supports &, if and only if

(65 >0 2 € B foralli € [K],j € [n]. (4.2)
As an alternative to the notation above, observe that P is feasible for ¢ if and only

if {:c(j) 1] € supp(Ci)} C P; and P supports £ if and only if {x(j) RS supp(C'i)} =
X NP, for all i € [k].
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Example 4.2

Let us briefly illustrate the terminology introduced by Definition 4.1 with the help of
the example depicted in Fig. 4.1. Here, a fractional clustering of n = 6 points into
k = 3 clusters is illustrated. The color of each of the points drawn as circles shall
indicate their assignment. All points are integrally assigned to a single cluster with
the exception of the point (1,2)T that is fractionally assigned to both the blue and the
green cluster. Both Figs. 4.1a and 4.1b depict the same clustering.

(a) Feasible diagram, not supporting. (b) Supporting diagram.

Figure 4.1: Examples for feasible and supporting diagrams.

Furthermore, each of the two figures depict (different) power diagrams whose regions
are indicated by the colored fillings and are bounded by the bold black lines.

Both diagrams are feasible for the given clustering as every point is contained in
every region it is assigned to. However, only the diagram of Fig. 4.1b supports the
clustering, as here no region contains any point that is not assigned to it by at least
some positive fraction. By contrast, the diagram in Fig. 4.1a does not support the
clustering. Here, the point (3,2)T lies in the intersection of the orange and green region
but is fully assigned to the orange cluster.

One reason for the distinction between feasible and supporting diagrams is to avoid
situations of ambiguity. While a feasible diagram only constraints the supports of
clusters to be contained in the respective regions, a supporting diagram provides full
information on them. Hence, if one is only provided the information that a diagram is
feasible, the number of clusterings — even when being further restricted with respect
to size or other constraints — that can be considered to be “induced” by that diagram
may be large. Thus, we would like to avoid situations in which points may accidentally
lie in a region without being assigned to it.

Example 4.3
Let us illustrate this by means of a second example. Figure 4.2 depicts the generalized

Voronoi diagram w.r.t. functions f;(z) := Ha: — 50 . for i = 1,2 and sites s(1) =
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(19/8,19/8)T and s(2) = (21/3,21/8)T (depicted as white squares).

I T L T T
1

F==t---=--r- A |
(| e e
2 @® @ ©® ©
11 ® @ 10 ©
| | ! l | |
1 2 3 4
Figure 4.2: Diagram w.r.t. functions f;(z) = ||z — s(i)Hl and a supported clustering (see

Example 4.3).

The sets Py \ P> and P, \ P; are filled by the respective colors blue and orange, while
the intersection P; N P» is indicated by the blue-orange checkered pattern.

In addition, we consider the unit set X = {(x,y)T : 2 € [4],y € [4]}. Now for any
clustering that assigns the four points in each the bottom left and top right quarter to
the blue and orange cluster, respectively, and arbitrarily assigns the other 8 remaining
points, the given diagram is feasible. On the other side, in order for the diagram to
support a clustering, it must assign each point in the top left and bottom right quarter
with some positive fraction to each of the two clusters. The latter case is depicted in
Fig. 4.2.

As indicated by Example 4.3, the distinction between feasible and supporting dia-
grams becomes particularly crucial whenever we are considering diagrams with region
intersections that may possibly contain a significant fraction of the data points to be
clustered.

4.2 A Short Literature Review

In the following sections we establish a correspondence between constrained clusterings
as defined in Chapter 2 and generalized Voronoi diagrams as defined in Chapter 3.
Various variants and flavors of this relation have been presented in the literature. Let
us give an informal overview of the ones most relevant to our approach.

Barnes, Hoffman, and Rothblum [BHR92] considered the partitioning of (unweighted)
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point sets in RY. They introduce bounded-shape partition polytopes which consist
of the vectors obtained by summing over all points for each cluster while the sizes of
clusters are restricted. Here, they particularly observe that vertices of this polytope
correspond to clusterings with disjoint convex hulls, which implies the existence of
power diagrams that contain the clusters in the cell interiors.

Aurenhammer, Hoffmann, and Aronov [AHA98] then established that a clustering
is optimal w.r.t. a least-square assignment to given sites under weight constraints
if and only if there exists a power diagram that is feasible for it. In contrast to our
approach, they prove this relation using mainly geometric arguments instead of an
(explicit) optimization duality relation.

By similar arguments, Aronov, Carmi, and Katz [ACK09] established the analogue
relation for additively weighted Voronoi diagrams and weight-constrained clusterings
minimizing average Euclidean distances.

The relation of power diagrams and least-square assignments was then also established
by Brieden and Gritzmann [BG12]| by means of a linear programming duality that we
consider, too. Here, in contrast to Aurenhammer, Hoffmann, and Aronov [AHA98]
and our setting, also ranges of cluster weights are allowed. In particular, they also
distinguish between feasible and supporting diagrams. Furthermore, they research
gravity polytopes which are related to the bounded-shape partition polytopes and
will be discussed in more detail in Chapter 6. The relation of power diagrams and
weight-constrained least-squares clusterings will be treated in Section 4.3.

Geif} et al. [Gei+14] then established the more general correspondence between weight-
constrained clusterings and generalized Voronoi diagrams with additive correction
terms as we will see in Section 4.4. Note that they consider continuous clusterings
of a bounded region in R? such that clusters yield a partition into sets of prescribed
Lebesgue measures. Similar to [AHA98], their proof relies only on geometric arguments.
Quite the same result but using the same linear programming duality as we are going
to do in the following was then established by Carlsson, Carlsson, and Devulapalli
[CCD16] (cf. also [Ri020, Section 4]). They discretize their continuous setting in order
to use classical linear programming theory in their proof.

Also, it is worth mentioning that Schréder [Sch01] observed that clusters occurring in
a Lagrangian-relaxation approach to an integer, weight-constrained clustering problem
are contained in sets that from our point of view are the cells of generalized Voronoi
diagrams with additive correction terms (cf. [Sch01, Chapter 7]; see also Section 7.3.2).
In particular, he concludes those cells to be convex polygons for the case of squared
Euclidean distances, i. e., power diagrams ([Sch01, Proposition 7.16]).

To the best of our knowledge, the relation of generally constrained clusterings and
generalized Voronoi diagrams as presented in Section 4.5 has not occurred in the
literature. While this is an admittedly straightforward generalization w.r.t. the proof,
it significantly widens the theoretical understanding and the practical possibilities
(as demonstrated by the example of moment-constrained clusterings in Section 4.5.3).
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Also, the careful distinction between feasible and supporting diagrams (as in [BG12]
for power diagrams) will be of practical relevance for us (for example, for the usage of
shortest-path diagrams in Section 7.3.2).

4.3 Power Diagrams and Size-Constrained Clusterings

Eventually, we will establish the correspondence between generalized Voronoi diagrams
and constrained clusterings as a linear programming duality result. However, before
we state the general result, let us derive it in a more natural way.

In order to do so, let n distinct points X = {a:(l), . ,a;(")} C R% in some dimension
d be given. Assume we are interested in finding a (fractional) clustering into k
clusters of these points such that each cluster is of prescribed size x; € IN-o for
i € [k]. More precisely, this means we accept all clusterings in the clustering polytope
T =T (A 0Dy for A= (1 ... 1) € R" and b = ; for i € [K].

We wonder whether there exists a clustering £ € T' together with some power diagram
P =PD ((s(i), Mi)ie[k]) for suitably chosen sites s € R and parameters j; € R,

i € [k], such that this diagram P is feasible or, better yet, supports £. Next, we follow
the argumentation in [BGK17].

Due to Eq. (4.1) in Definition 4.1, a diagram P is feasible for £ whenever &; ; > 0
implies that () € P for every i € [k] and j € [n]. By definition of a cell P; in
Definition 3.1, we may rephrase Eq. (4.1) as

& >0= HCL‘( (l)

le[k]

, T Hi= min (Hx(j) - s(l)Hz + Nl)] Vie [kl,jen]. (4.3)

Now for any 5 € T and s@) € R y; € R for i € [k], it holds that & ; > 0 and

trivially Hx( ; > minge g (‘ () — s(l)Hi + ,ul>. Hence,
€ (ch(") _ 0 z i~ min (H S<z>Hz +m>> >0Vielkl,jen] (4.4)

holds independently of the feasibility of P for &.
Using Eq. (4.4) we can further reformulate Eq. (4.3) as

s (H =@+ mi— }g[llg ([}2 - s+ m)> =0 € [K],j € [n]
(:)Z Z i (H — 500 + i — }glﬁ <H - s(l)HZ + ,ul>> = 0. (4.5)
i€[k] j€n]
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In particular, due to Eq. (4.4) we see that Eq. (4.5) holds with “>” for any choice
of £ € T and diagram parameters (s, ti)ielk)- Thus, the task of finding a clustering
and corresponding feasible diagram is equivalent to minimizing the left-hand side of
Eq. (4.5) over all clusterings and diagram parameters. Then, whenever the optimal
value 0 can be achieved, a clustering with corresponding feasible diagram exists and is
provided by an optimizer.

At first glance it is not clear whether the left-hand side of Eq. (4.4), which is a
non-convex function in &, (s(i))ie[k] and (f4:)ie[k), can be minimized easily. However, we
can simplify Eq. (4.4) in two steps.

First, as £ € T, we know that for all j € [n] it holds that

Y &i=1 (4.6)
1€[k]

as well as for all 7 € [k] it holds that

D &y = ki (4.7)

J€[n]

We may now use Eq. (4.6) to simplify

Z Z &j - min (Hx(j) — s(l)Hz + ul) = Z min (Hm(j) — s(l)Hz + Mz) (4.8)
VE

(el €] le[k] | le[k]
and Eq. (4.7) to simplify

SN Gigri =) Kt (4.9)

i€lk] je[n] i€[k]

Second, after plugging Egs. (4.8) and (4.9) into Eq. (4.5), we may rearrange terms in
order to separate all the terms containing £ from the terms that contain components
of (1i)ielx)- Doing so, we get that Eq. (4.5) is equivalent to

% g H 0 _ g z> = min <H ) mHz +m) — " kipi. (4.10)
J€ln

i€[k] j€m] | LElk] iclk]

Let us now consider both sides of Eq. (4.10) independently. Recall that due to
Eq. (4.4) it holds that Eq. (4.5) and hence in particular Eq. (4.10) hold with “>” for
any clustering and diagram. Thus, we obtain a minimization problem for the left-hand
side and a maximization problem for the right-hand side.

Moreover, as those problems are coupled by the power diagram parameters (s(i))ie[k],
let us for a moment assume those to be fixed to some arbitrary values.
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Consequently, minimization of the left-hand side over £ € T' immediately yields the
following linear program:

i O g 411
&a&?%}\! s, -6 (4.11)
sty &Gy o= 1 Vi € [n] (4.11a)

i€[k]

Yo Gy = ki Vi € [k] (4.11b)

Jj€ln]

& =20 (4.11c)

Maximization over (j;);c[r of the right-hand side as stated by Eq. (4.10) yields
an unconstrained maximization problem with a piecewise linear, concave objective.
(The latter can be easily verified, as the pointwise minimum over a set of affine linear
functions yields a concave, piecewise linear function.) By consideration of the epigraphs

. 2
that correspond to the convex terms — minje (me — s(l)H2 + ,tu) we can easily

rewrite this as a linear program as well. In order to do so, we introduce for every
J € [n] an auxiliary variable n; such that

=gy ()
=3 —n; < Hx(j) - S(l)Hz + Vi € [K].

Thus, the problem of maximizing the right-hand side of (4.10) is equivalent to the
linear program

max — Z n; — Z Kibi (4.12)

pid

< Vj € [n],i € [k]. (4.12a)

st —mj—pi < Hx(j) — 5@ z

However, we may now recognize that the linear programs (4.11) and (4.12) are in
fact dual to each other. Here, (—7;);¢[n yields the dual variables corresponding to
constraints (4.11a) and (—u;);e[x) yields the dual variables corresponding to constraints
(4.11Db).

Under the assumption of T' # (), the program (4.11) is feasible and bounded. As a
consequence, linear programming duality implies that, indeed, both programs share
the same optimal objective value. This means, however, that any optimal primal-dual
pair (&, (ii)iek]> (M))jem)) fulfills Eq. (4.5), so the resulting diagram is feasible.

In particular, this does not depend on the choice of the sites (s(i))iem. Consequently,
we conclude that for any choice of sites and cluster weights (k; );e(x) such that 3=;cp ki =
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4.3 Power Diagrams and Size-Constrained Clusterings

n (which implies T # (), cf. Proposition 2.3), we can always find a clustering £ € T
and additive weights (ui)ie[k], such that the resulting power diagram is feasible for &.
By construction, in any optimum of the program (4.12)

=— }2{1}3 (H - s(l)Hz + ,ul>Vj € [n]. (4.13)

holds. With this, Eq. (4.5) reads as

3 gy ([ - o

i€[k] jen]

 + nj> = 0. (4.14)

Hence, we can recognize Eq. (4.5) to be nothing else than the complementary slackness
condition of the dual programs (4.11) and (4.12).

Next, one may ask whether this is still possible if we do not only head for a feasible
but a supporting power diagram. In total analogy to Eq. (4.3), we may rephrase the
definition of P supporting £ as

&',j >0« Hx(j) — s

’ + p; = min (H —s® H —I—,ul> Vi€ [k],j € [n]. (4.15)
2 le[k]

Now it follows that Eq. (4.15) is equivalent to Eq. (4.5) with the additional requirement
that for each addend exactly one of the two factors equals zero. With the interpretation
of Eq. (4.5) as a complementary slackness condition, this additional requirement directly
translates into strict complementary slackness. From a more geometric point of view,
this means that any primal dual pair of the programs (4.11) and (4.12) such that
each solution lies in the respective relative interior of the optimal faces, results in a
clustering together with a supporting power diagram.

Finally, another canonical question is whether all pairs of clusterings and correspond-
ing feasible or supporting power diagrams can be derived this way. Let a clustering
¢ € T and a power diagram with parameters ((s(i))ie[k], (14i)ieik)) be given. Now define
the auxiliary variables (7;);¢[, via Eq. (4.13) and thus obtain a pair of primal and
dual feasible solutions. By definition, the diagram is feasible for the clustering ¢ if and
only if Eq. (4.5) holds. By choice of (7;);¢[n), the latter is equivalent to Eq. (4.14),
which is the complementarity condition for the two dual programs. Analogously, a
supporting diagram yields a primal-dual pair with strict complementarity.

Let us summarize those observations in the following proposition:

Proposition 4.4
Let 29 e R for j € [n], s) € R, p; € R, and k; € R>o for i € [k] such
that 3 e ki = n. Furthermore, let § € T ((]l(”))T,(/{i)ie[k]). Define (1;)jcn) via

Eq. (4.13), so that ((Hi)ie[k]v (Uj)je[n]) is feasible for the linear program (4.12).
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Then the power diagram PD ((s(i),ui) k]) is feasible for & if and only if

(f, ((Ni)ie[k}a (Uj)je[n]» is a primal-dual optimizer of the programs (4.11) and (4.12).

€]

Furthermore, the power diagram w. r. t. ((s(i))ie[k], (ti)iep)) supports & if and only
if (5, ((Mi)ie[k]a(nj)je[n])) satisfies the complementary slackness conditions of the
programs (4.11) and (4.12) strictly.

The main claim of Proposition 4.4, which sets power diagrams in correspondence
to optimizers of the program (4.11), was (to best of our knowledge) first observed in
[AHA98]. The formulation as a primal-dual relation was then established in [BG12].

From Proposition 4.4 we can conclude that the class of power diagrams is sufficiently
large so that for any size constraints, there exists a diagram together with a feasible
clustering. More precisely, it yields a one-to-one correspondence between feasible
diagrams and certain faces of the underlying constrained clustering polytope T. A
choice of sites (s(i))ie[k] determines the face of T' that is the optimizer w.r.t. the

. 12
direction (Hx(j) — s The dual variables that belong to the cluster

2) i€kl jeln]
constraints (4.11b) then yie[ljija[n}additive correction term pu; for each of the power
diagram’s functions.

With this understanding in mind, we may now generalize this relation by reducing
the argumentation above to its very core. As a very first step, we may recognize that

2
, Was exhausted. In fact, let any
2

no particular characteristic of the term Hx(j ) — s

functions f; : R — R for i € [k] be given. If we now substitute the terms Hx(j) — 50 )

by fi(29)) in the previous section’s argumentation, we immediately get that there exist
additive weights (ui),-e[k] and a clustering £ € T such that the generalized Voronoi
diagram w.r.t. functions f; := f; + s, i € [k], is feasible for .

For another perspective, consider any face of the size-constrained clustering polytope
T, 1i.e., a set of optimizers for a direction (7i j)ic[k] je[n] € R¥*™. Then for any functions

fi : R4 = R, i € [k], such that f;(2\9)) = —, ;, there exist weights (#i)ie) such that
the generalized Voronoi Diagram w.r.t. fAl := fi + w; is feasible for any clustering in
that face, and even supporting if the clustering is taken from the relative interior.

4.4 Weight-Constrained Clusterings and Generalized Voronoi
Diagrams

A next natural adaption is to introduce weights for each data point. Again, let n distinct
points X = {x(l), e ,x(”)} C R for some dimension d and functions f; : R — R
for i € [k] be given. Those may be thought of as individual distance measures for
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each cluster. In order to equip the points with weights, let w; € R~ for each j € [n]
be given. Finally, let target cluster weights k; € R~ for i € [k] be given such that
Diclk] Ki = 2 je[n] Wi

Again, we want to find a homogeneously single-constrained clustering, but this time
in the polytope

Thw:=T ((wl wn) ,(m)ie[k]) . (4.16)

If all weights are integers, this can be — ignoring any computational complexity
issues — easily reduced to the unweighted case by simply introducing w; unweighted
copies of each data point z(7). As a result of the previous section, by solving the
program (4.11) we obtain a clustering (of the copied points) together with weights
(#i)ielx)> such that the generalized Voronoi diagram w.r. t. fii=fi+ p; fori € [k] is
feasible or even supporting if our solution obeys strict complementarity. By recombining
the copies of each point we may then obtain a clustering in T" so that each point z(?)
is fractionally assigned to the ith cluster by the sum of fractional assignments of its
copies divided by w;. Obviously, the originally obtained diagram is then still feasible
or supporting for this clustering.

As we will work with weighted point sets throughout the remainder of this thesis,
let us introduce some simplifying notation. Interpreting (w;) jeln) @s a measure on X,
we will write

w(B) = Z wj
zeX
for any B C X. For a clustering £ = (C1,...,Cy)" € Ty, we denote by
()= Y Gy (4.17)
j€(n]

the weight of the ith cluster for i € [k].

As can be seen by just reproducing each step in the previous section, instead of
splitting each point up to smaller fractions in order to recompose it afterwards, we
could have just added a weighting factor to each of its occurrences in the derivation of
the desired diagram.

Hence, we adapt the program (4.11) to

min Z Z w]fZ(IE(J)) . gi,j (418)

SERMT i) jeln)
st > & = 1 Vje[n (4.18a)
1€[k]
ij'f@j = K VZE[k] (4.18b)
J€ln]
& > 0. (4.18¢)
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In analogy to Proposition 4.4, we can state the correspondence between optimizers of
(4.18) and additively weighted generalized Voronoi diagrams by means of the following
proposition. Here, the correspondence between weight-constrained clusterings and
generalized Voronoi diagrams with additive correction terms was stated similarly in
both [Gei+14] and [CCD16], with the latter exploiting the same linear programming
duality.

Proposition 4.5
Let V) € R? for j € [n]. For each i € [k] let k; € R>g and a function f; : R* — R be
given. For each j € [n] let wj € Rso such that 3= e, wj = Y iep ki holds.

Let £ € T .

Then & is an optimizer (in the relative interior of the optimal face) of the program
(4.18), if and only if there exist p; € R for i € [k] such that the generalized Voronoi
diagram w. r.t. (fi + p1i)icpy is feasible for (and supports) §.

Let us illustrate the results of Section 4.3 and Section 4.4 by means of a small
example.

Example 4.6

Figure 4.3 depicts a Voronoi diagram in the plane w.r.t. k = 4 sites (s(i))ie[k] drawn as
white squares with colored frame. There are n = 25 points drawn as disks. Each point
2U) has an associated weight w; € {1,2,3}. The weights are indicated by the disks’
radii. As there are no points in the intersections of diagram cells, it uniquely induces
the clustering as indicated by the points’ colors. The resulting cluster weights are

blue red
8 13 12 14 '
Now, let us assume new desired cluster weights
blue red
10 10 4 23

to be given. From Proposition 4.5 we know that there must exist a power diagram and
a clustering £* € Ty, (see Eq. (4.16)) such that the diagram supports £*. (Note that
Ty # 0 as by construction Y- cp ki = X jefn) Wi-)

12
Indeed, solving (4.18) with f;(z) := Hx — 5@ ) for i € [k] yields a unique optimizer £*

2
2+Mz'

and a corresponding power diagram with generating functions fz(x) = Hx — 5

with weights (p1;);e(x) (rounded to 4 decimal digits) given as

Hblue Hred
0.0000 2.9239 4.3111 -9.8454 |°
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S = NW ke oty 3

Figure 4.3: Clustering induced by the Voronoi diagram in Example 4.6.

Figure 4.4 depicts £* together with the resulting supporting power diagram. In
accordance with Corollary 2.8, there are in total 3 points that are non-integrally
assigned, which are split among the 4 clusters as follows:

) ] (6.6,22)T (5.2,5.2)T (1.7,4.9)

blue 0 0 2/3
0 2/3 1/3

2/3 0 0

red 1/3 1/3 0

4.5 General Correspondence

So far it has been shown that in order to fulfill size constraints of clusters, any choice
of distance functions for the clusters may be adapted by additive shifts in order to
obtain a clustering with a corresponding feasible or even supporting diagram. In the
following, we will generalize this result for clusterings from any constrained clustering
polytope as in Definition 2.1.

4.5.1 Constrained Clusterings

In this general setting, we assume that points z() for j € [n] in some arbitrary space
X shall be clustered into k clusters. Note that in the following neither the data points
2U) nor their containing space X are of any theoretical interest themselves, as only
their mappings by arbitrary distance measures or feature maps will be regarded.

Once more, we assume functions f; : X — R for ¢ € [k] to be given. Again, we may
think of each f; as a kind of distance measure for the ith cluster.
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6 ;

o
5 |
4 ;
3 .j
9 |
1 |
0 1112

Figure 4.4: Power diagram resulting from enforcing cluster weights in Example 4.6.

Each cluster may be constrained w.r.t. the sums of quantitative features that are
presumably derived from the data points z(9). In order to do so, we assume feature
maps ®; : X — R™ and target aggregates b() € R™ for each cluster i € [k] to be

given. We set A4; := <<I>i(x(1)) . @i(x(”))) € R™i*™ for each i € [k] and define the
clustering polytope T :=T ((Ai)ie[k:}, (b(i))z’e[kO-

In analogy to Sections 4.3 and 4.4, we now consider the linear program that minimizes
the aggregated assignment costs in terms of the distance measures ( fi)ie[k] over T":

min Y Y fi(zY) & (4.19)

SR ik jeln)
s.t. Y&y = 1  Vjen] (4.19a)
i€[k]
S @iaV)g; = b9 Vie ()] (4.19b)

J€[n|

v
o

3 (4.19¢)

In order to derive a corresponding dual program, we denote the dual variables
that correspond to the constraints (4.19a) by (1;)jcn) € R™ and the (vectors of)
dual variables that correspond to the constraints in (4.19b) by y® € R™: for each
i € [k]. For the sake of readability later on, let us furthermore switch the signs of the
(sign-unrestricted) dual variables y(. We hence obtain the following dual of (4.19a):
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D SO MO (020
yWER* iclk] oy i€[k]
T]jE]R,,je[n]

st 1 — (@)Y D < £i(2V0)) Vi€ n], i€ [k (4.20a)

The complementary slackness condition for (4.19) and (4.20) then reads as

S G (@) + @201y — ) =0, (421)

i€lk] j€[n]

As we did in Section 4.3, we will now find that for every optimal pair of (4.19) and
(4.20) there is a generalized Voronoi diagram that is feasible or even supports the
optimum of (4.19).

The following is a key theorem that exactly expresses this correspondence between
primal-dual solution pairs of (4.19) and (4.20) with pairs of clusterings and corre-
sponding feasible or supporting diagrams. More informally, while the primal feasible
region of (4.19) by definition yields all clusterings obeying the given constraints, the
feasible region of the dual program (4.20) projected to the (y(i))ie[k] components may
be identified with the set of different generalized Voronoi diagrams that are obtained by
adapting the distance functions f; with linear combinations of the cluster constraints’
feature mappings ®;. Here, the dual values (y(i))ie[k] yield the coefficients of those
linear combinations. A diagram obtained from such adapted functions is then feasible
(and supporting) for a clustering from the constrained clustering polytope, if and only
if (strict) complementary slackness holds.

Theorem 4.7
Let n € N, X be some arbitrary space and z9) € X for j € [n]. Let k € N and for
every i € [k| let functions f; : X — R and ®; : X — R™ for m; € N as well as
b € R™ be given.

Define the constrained clustering polytope

T::T(((CI)i(x(l)) @i(mm))))i%,(b“))iew) (4.22)

and assume £ € T'.

Finally, let y@ € R™ fori e [k] and P be the generalized Voronoi diagram w. . t.
(fl + (y(i))T@) el For every j € [n], set

;= min (fia®) + (4)" @:(2)). (4.23)

en Nicimls (Y )iern ) is feasible for (4. and the following equivalences hold:
Then (1) ey (YD )iciy) is feasible for (4.20) and the foll I hold
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P is feasible for & & € and ((Uj)je[n]v (y(i))ie[k}) satisfy the
complementary slackness condition (4.21)

P supports & < € and ((nj)je[n]7 (y(i))ie[ko satisfy (4.21) with strict
complementarity

Proof. First, feasibility of ((nj)je[n]a (y(i))ie[k:]) for (4.20) follows immediately from
the definition of (1;) ¢ in Eq. (4.23).

In analogy to Section 4.3 we achieve the first equivalence quite immediately from
the definition of the regions of P:

P is feasible for £

@ [&,j >0= 29 ¢ PZ} Vi€ [kl,j € [nl
Dleis > 0= 1)+ 40)2,0)
= min (i) + O @) Vielk],je )
Elk]
(4.19¢),
-2 D (£:@D) + ()@ (@) = ;) =0
i€lk],j€n]

Next, Eq. (4.21) is satisfied with strict complementarity, if and only if
(65> 06 £i(@9) + D)0 D) =gy =0  Vie[K,je ]
As this is (by the same argumentation as ahead) equivalent to
6 >0 en]  VielH,jen],

we obtain the second equivalence. O

The next two corollaries yield an interpretation of Theorem 4.7 as follows: Consider
the constrained clustering polytope T obtained via feature maps ®; as in Eq. (4.22)
and distance functions f; for each cluster. Then the clusterings that allow a feasible (or
supporting) generalized Voronoi diagram obtained from feature-map-adjusted distance
functions are exactly those that lie in the (relative interior of the) optimal face of T
w.r.t. the objective of the program (4.19). Also, whenever we are given a generalized
Voronoi diagram that is feasible (or supports) a clustering from any clustering polytope,
we know that this clustering must lie in the (relative interior of the) face with its outer
normal determined by the diagram’s defining functions.
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Corollary 4.8
Let X be some arbitrary space and 29 € X for j € [n]. Fori € [k], let functions

fi : X >R and ®; : X — R™ for m; € N, as well as b)) € R™ be given. Let T be
the clustering polytope as defined by Eq. (4.22) and £ € T.

Finally, let F' and D denote the optimal faces of the linear programs (4.19) and
(4.20), respectively. Let (n;);ein) be given by Eq. (4.23).

Then F # 0, D # () and there exists S C [Licj R™ such that D = {(nj)je[n]} xS,
Furthermore, the following holds:

i) EEF & For all (y(i))ie[k] € S, the generalized Voronoi diagram w. r. t.
(fi + (y(i))T@i) " is feasible for .

1€

ii) £ € relint(F) < For all (y(i))ie[k] € relint(S), the generalized Voronoi diagram

w. 1. t. (fl + (y(i))Téiqu] supports €.

Proof. As T # () by assumption and bounded by definition, we immediately get
F,D # (. From the constraints (4.20a) together with the objective of the linear
program (4.20), it follows immediately that Eq. (4.23) must hold in any optimum of
(4.20). Hence, the set S as described must exist.

By Theorem 4.7, it follows that P is feasible for £ if and only if £ and ((nj)je[n]7 (O)ie[k]>
obey the complementary slackness condition (4.21). As this is a primal and dual feasible
pair by construction, this is equivalent to both being optimal. This implies i).

Next, strict complementarity for any feasible pair of solutions for a pair of primal-dual
linear programs holds if and only if both solutions lie in the relative interior of the
respective optimal faces (cf. [Van08, Section 5] or [Ro092, Corollary 2.1]). Thus, we
may further conclude from Theorem 4.7 that P supporting £ is equivalent to both &

and ((nj)je[n]v (O)ie[k]) lying in the relative interior of the primal and dual optimal
face, respectively. Thus, we can also conclude ii). O

Corollary 4.9
Let X be some arbitrary space and z9) € X for j € [n] pairwise distinct.

Let T = T((Ai)ie[k],(b(i))ie[k]) C RF¥*™ be a clustering polytope, £ € T some
clustering and P be a generalized Voronoi diagram w.r.t. functions f; : X — R,

i € [K].
Let F' be the optimal face of the linear program
; (2N
rgg%l' Z fi(@)&; 5. (4.24)
i€lk],j€[n]

Then the following holds:
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i) P is feasible for & = &€ F

it) P supports £* = &* € relint(F)
Proof. For every i € [k] we may write A; =: (a(i’l), ey a(i’”)> € R™*™ and define a
function ®; : X — R™ via ®;(z1)) := a(®™ for all j € [n] and an arbitrary extension

on X. The ®; are well-defined as we require the () to be pairwise distinct.

Then the programs (4.24) and (4.19) are in fact identical. We set y(®) := 0 € R™
for i € [k] and define (1;);¢[, as in Eq. (4.23).

Hence, by Theorem 4.7 it follows that P is feasible for £* if and only if £* and
((nj) jen]s (O)Z-e[k]) obey the complementary slackness condition (4.21). Thus, feasibility
of P implies optimality of £*. If P is furthermore supporting, Theorem 4.7 yields strict
complementarity which furthermore implies £* € relint(F). O

4.5.2 Constrained Clusterings with Point Weights

In Section 4.4 we have already treated clusterings of weighted point sets. Weight-
constraints are typical for the sort of clustering applications we are interested in.
However, the notation in the previous Section 4.5.1 might not immediately reveal
how additional weights of the data points 29) could be considered and which type of
constraints easily allow the combination with weight-constraints.

Hence, let us consider the same setting as in Section 4.5.1, but furthermore assume
point weights w; € R for j € [n] to be given. Now instead of constraints that sum
up the feature vectors ®;, we consider constraints that sum up the weighted feature
vectors, i.e., we consider the clustering polytope

T;_T(((wl-@(x(l)) wn-fbi(x("))))ie[k],(b(i))ie[k]>. (4.25)

In the same manner, we adapt the objective of the linear program (4.19) by a
weighted version and thus obtain the adapted program

min Z Zw] fi(xV) - & (4.26)

EEREX 1€k]]€[n]
s.t. &y = 1 Vjeln] (4.26a)
ie[k]
S wp@i(aW) g5 = b Vi€ K] (4.26b)
JEM]

Y
o

13 (4.26¢)
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as well as its dual

max Z nj — Z )Ty (4.27)

DeRF iclk]
ynjeme[n] j€ln] i€lk]
st 1 — (B (N TyD<w; - fi(zD) V) e [n],i e [k]. (4.27a)

We may now state a point-weighted version of Corollary 4.8. Note that the only
difference is the replacement of both the clustering polytope of interest as well as the
underlying linear program by their weighted versions.

Corollary 4.10
Let X be some arbitrary space, z9) € X for j e [n] pairwise distinct, and weights
w; € Rxo for j € [n] be given. Let k € IN and for every i € [k], let functions f; : X — R
and ®; : X — R™ for m; € N, as well as b € R™ be given. Let T be the clustering
polytope given by Eq. (4.25) and £ € T'.
Finally, let F and D denote the optimal faces of the linear programs (4.26) and (4.27),
respectively. Set n; := w(z)) - min, ey (fi(a:(j)) + (y(i))T @i(x(j))) for all j € [n].
Then F # 0, D # 0 and there exists S C iy R™ such that D = {(n;);} x S.
Furthermore, the following holds:

i) E€F & For all (Z/(i))i € S, the generalized Voronoi diagram w.r.t.
(fi + (y(i))Tq)i) - is feasible for €.

i) € € relint(F) <  For all (y"); € relint(S), the generalized Voronoi diagram
w. 7. t. (f + (YN TP, ) el supports &.

Proof. This is analogous to Corollary 4.8. Let w : X — Rsg with w(zl)) = w;
for 7 € [n] be some arbitrary extension of the given weights to X. For i € [k],
define f} = w - f; as well as $; := w- ®; and inject those into Corollary 4.8. Now
equivalence follows by the simple observation that a generalized Voronoi diagram
w.r.t. functions (fz ()T <I>> - is equal to the diagram w.r.t. the functions

( (fi+ ()T, )) el by Lemma 3.2. O

4.5.3 Moment-Constrained Clusterings

Let us now demonstrate the practical relevance of this general relation by means of the
class of generalized Voronoi diagrams obtained from polynomials of bounded degree.
As in Section 4.5.2, we assume a set of n distinct points X = {x(l), ey x(”)} c R¢
and weights w; € R~q for j € [n] to be given.
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Furthermore, assume g € N+ to be given. As the common feature map ¢ =: ®; for
all clusters i € [k], we map = € R to all monomials of degree at most ¢, i.e.,

d (qud)
%
D . R Rad . (4.28)
z = (@ )aE]Nd:|a\§q
Here, we use the multi-index notation 2@ = [[¢; 23 for a = (ay,...,a4)T € N? with

ol = Y0, .

Now consider the homogeneously constrained clustering polytope T as defined by
Eq. (4.25) for given right-hand sides b € ]R(qzd), i € [k].

We may interpret T as follows: For a clustering ¢ = (C1,...,Ck)" € T, a cluster C;
can be identified with the probability distribution on X that maps z() — %fm
for j € [n]. As & € T, the (statistical) moments up to degree g of this distribution
are determined by the according right-hand side b® by definition. More formally, if
the d-variate random variable X is distributed according to such a distribution, this
fixes E{YO‘} for any index vector a € IN? with |a| < ¢. In particular, this implies the
mean (i.e., centroid) and, if ¢ > 2, the covariance of clusters. In other words, this
determines the first ¢ coefficients of the moment-generating function’s Taylor series for
this distribution (cf. [DS12, Section 4.4]).

We can now formulate Corollary 4.8 for this setting. Basically, this yields that fixing
moments up to degree ¢ results in correction terms in form of polynomials of degree at
most q.

Corollary 4.11

Let ¢ € N, 29 € R? and w; € Rxg for j € [n] be given. Further, let k € W,
functions f; : R* — R, and vectors b e R(qzd) fori € [k] be given. With ® as given
by Eq. (4.28), define the homogeneously-constrained clustering polytope

T:zT((wlfb(:c(l)) o wn®(a™)), (b(i))ie[kJ (4.29)

and let £ € T.

Then & is an optimizer (in the relative interior of the optimal face) of the according
linear program (4.26) if and only if there exist polynomials p; € Rlxy,...,x4] with
deg(()pi) < q fori € [k] such that the generalized Voronoi diagram w.r.t. (fi+ pi)ic
is feasible for (and supports) .

Proof. This follows immediately from Corollary 4.8 as the definition of ® yields that
the resulting correction terms (y(i))“I) are polynomials of degree less than or equal to
q. d
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Implicitly, this result inherits a certain invariance w.r.t. the choice of the functions
(fi)ie[k]' For the current setting, Corollary 4.11 implies that there is invariance w.r.t.
the space of polynomials up to degree gq:

Corollary 4.12

In the same setting as in Corollary 4.11, let £ € T be an optimizer of the program

(4.19) and let polynomials p; € Rlxy,...,xq) with deg(()p;) < q for i € [k] be given.
Then & is also an optimizer of the program (4.26) when replacing the functions f; by

fi +pi forie [k].

Proof. By Corollary 4.11, there exist polynomials p; for i € [k] such that the diagram
w.r.t. (fi+Pi)iep is feasible for . With p; := p;—p; for i € [k], this means the diagram
w.r.t. (fi + i + Pi)icjy) is feasible for £ and so the claim follows by Corollary 4.11,
too. O

Let us break this down onto a practical level. Theoretically, Corollary 4.11 states
that the class of diagrams that result from the polynomials up to degree ¢ is rich
enough in order to fix the first ¢ moments of clusters. However, from Corollary 4.12
we learn that we are at the same time invariant to shifts by polynomials of degree ¢. If
we choose each function f; as a polynomial of degree ¢, the resulting clustering is the
same as setting f; = 0 for every i € [k]. This yields the degenerated case of every point
lying in any diagram cell and thus a fully fractional clustering (in a supporting case).

However, we may patch this drawback by adding another degree: We choose as
class of diagram functions polynomials of degree ¢ + 1. If we furthermore assume that
pairwise differences f; — f; for i # [ € [k] are polynomials of (exact) degree ¢ + 1 as
well, we can conclude that we will end up with a non-degenerate diagram that supports
the resulting clustering.

We have already seen examples for this in the previous sections. Power diagrams as
introduced in Section 3.3.2 have been shown to allow any weight-constrained clusterings
in Section 4.3. This is in accordance with the observations above, as we know that power
diagrams (in affine parametrization) are in fact generated by polynomials of degree
1 and hence allow fixing the Oth moment. Note that for power diagrams in spherical
parametrization the differences of the resulting functions are in fact affine. Similarly,
anisotropic power diagrams have been shown to be parametrized by polynomials of
degree 2 (cf. Section 3.3.3). Here, if the quadratic terms do not vanish in the differences
fi — fi, i.e., if the local norms are chosen pairwise distinct, we see that anisotropic
power diagrams allow constraining both the weight as well as the first moments, i.e.,
the centroids, of clusters.

Furthermore, we see that due to Corollary 4.12 the initial choice of the additive
parameters u; for both power and anisotropic power diagrams is irrelevant if weights
of clusters are constrained. If furthermore the centroids are constrained in the case of
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anisotropic power diagrams, also the choice of sites will be dominated by the resulting
correction terms.

Let us close this chapter with an example that demonstrates the fixation of centroids
by using anisotropic power diagrams, as well as how the distinction between feasible
and supporting diagrams in Corollary 4.9 comes into play here.

6 - -
-
5F O 1
------- 2@ i
4t O |
O
6 o 2®
3| ¥eo) |
2 i @ \\\\ |
1) \ |
PO
0 1 1 1 1 1 "\ 1

Figure 4.5: Basic setting in Example 4.13.

Example 4.13
Consider the setting as depicted in Fig. 4.5. Let the set of 6 points X = {x(l), el x(6)}

in R? be given as drawn in the figure. Furthermore, we assume two ellipsoidal norms
with unit balls as depicted by the blue and orange ellipses to be given. The gray-dashed
line in Fig. 4.5 depicts the bisector of the anisotropic power diagram w.r.t. those
norms, sites as given by the blue and orange framed squares in the figure, and no
additive weights (i.e., u3 = p2 = 0).

Assume all points to have the same unit weight, i.e., w; =1 for j € [n]. We would
now like to obtain a clustering into k = 2 clusters that is constrained to cluster weights
k1 = % and ko = 3 as well as centroids M = (3,3)T and ¢® = (3,9/2)T, respectively.

In order to do so, we define ® as in Eq. (4.28), functions f; according to Eq. (3.26),
and solve the resulting linear program (4.26). We then obtain a clustering and an
anisotropic power diagram according to Corollary 4.11.

The obtained clustering is

‘ 2D 2@ 2B L@ L) 4(6)
c="C [ 1 1k 1 10
o 12 12 0 0 1
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(a) Extremal clustering. (b) Clustering in the relative interior of the
optimal face.

Figure 4.6: Setting in Example 4.13 with non-unique optimal clustering.

For the corresponding anisotropic power diagram we get the sites and additive weights
(up to some numerical precision)

s = (g) , 1 =0, and s(2) = <5'4124> , e = 2.2190.

Here, 59 as well as p; for i € [2] are readily obtained from the dual solution (y(i))l-ep]
of the dual program (4.27) using the transformation from quadratic to ellipsoidal
parametrization for anisotropic power diagrams (cf. Section 3.3.3). Figure 4.6a
illustrates this result. Here, the jagged points mark the centroids of the clusters ¢ (C1)
(blue) and ¢ (Cg) (orange).

As the diagram is obviously feasible for £, Corollary 4.10 ensures us that (&, (y(i))ie[k])
is indeed an optimal primal dual pair for the programs (4.26) and (4.27).

We can deduce that both the primal and the dual solutions are extremal. From
Theorem 2.14 we immediately can conclude this for £&: The corresponding clustering
graph connects the two clusters by exactly 3 edges and thus does not contain a 4-
connected subgraph. Here, the rank condition of Theorem 2.14 is obeyed as each subset
of 3 points in X is affinely independent (i.e., no three points lie on a line). For the
dual, we may fix y(!) =0 (as constraints associated with one cluster are redundant
in a homogeneously constrained clustering polytope; cf. also Lemma 2.4). Then the
fractionally assigned points (), 22 23 uniquely determine y® (again due to affine
independence).

However, due to () € P; N Py, the diagram does not support £&. We already argued
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that the dual solution (with 3! fixed) is unique, so it must be contained in the relative
interior of the respective optimal face. Thus, Corollary 4.9 yields that this cannot be
the case for the primal solution.

Indeed, as the four points on the diagram’s bisector are (minimally) affinely dependent,
this means that the constraint matrix A. 4 has a null space of dimension one. Adding
this null space direction to C7 with appropriate sign (w.r.t. the component referring
to x(4)) and subtracting it from Cs, we can move along the one-dimensional optimal
face of the clustering polytope 1. Doing so, we obtain the second vertex of this
face as £ = (C’l’ C’g’)T with Cy/ = (% 0 1 g 1 O)T and Cy = 16 — ¢y’
Consequently, (£ +¢') is a clustering in the relative interior of the optimal face and
hence must be supported by the diagram P. This is depicted in Fig. 4.6b.

Let us slightly adapt the example in order to make the optimal dual solution
non-unique. We consider a third clustering

(20 2@ 2@ W 26 O

=0/ Y2 1 1 1 1 0
2 12 0 0 0 1

This results in cluster weights ! = 4, k4 = 2 and centroids ¢(C1") = (25/8,3)T,
c(C9") = (11/4,39/3)T. Figure 4.7a depicts this situation. As the diagram P is still
feasible for £”, we can once more deduce optimality in the program (4.26) for an
underlying adapted clustering polytope T”. Again, the diagram is obviously not
supporting, but this time due to 3 as well as 2®. By the same argumentation as
before, £” is an extremal point of 7”. This time, however, it is the unique optimizer of
the program (4.26). We could verify this by checking that the only direction in the
kernel of A. 4 has different signs in the components corresponding to 3 and ().
However, this also becomes evident from the optimal dual solutions. Here, we find

that the kernel of A_T[2] yields a direction d € R?\ {0} such that dT (A.,{374,5}> < 0 and

dT (A,’{G}) > 0. Thus, y@ + X\d, X € R>, yields an extreme ray that is the optimal

dual face (assuming y1) = 0 to be fixed as before). Figure 4.7b depicts some of the
resulting diagrams for increasing A (drawn as dashed lines with the color fading out as
A grows) and corresponding sites (also fading out with increasing A\). We may interpret
this as follows: The clustering £ is supported by the power diagram with the bisector
given as the affine hull of () and z(®. As the blue ball is fully contained in the
orange ellipse, we know from Section 3.3.3 that the anisotropic power diagram resulting
from any choice of sites and additive weights will always result in the blue cell being
an ellipse and the orange cell its surrounding. As the site s is pushed away along
s@ 4. b Yd with pe adapted accordingly, this ellipse grows such that the resulting
diagram converges to a power diagram (pointwise everywhere except for the middle
point between z(!) and z(?)).
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(a) Clustering ¢’ and the diagram obtained (b) Diagrams obtained from the relative in-
from the extremal dual solution. terior of the dual optimal face and corre-

sponding sites.

Figure 4.7: Setting in Example 4.13 with non-unique diagram.

4.6 Summary & Conclusion

In this chapter we established the main correspondence between constrained clusterings
and generalized Voronoi diagrams. This correspondence yields the main tool in our
approach to constrained clustering.

We started by a precise definition of the desired relation between fractional clusterings
and generalized Voronoi diagrams in Section 4.1. Here, the feasibility of a diagram yields
that a unit assigned to a cluster also must lie in the respective cell. The supporting
property then strengthens this relation by also demanding the reverse implication.
Note that this distinction will be of practical impact in the remaining chapters.

This relation is not fundamentally new. A short review on the existing results was
given in Section 4.2. In particular, the correspondence between power diagrams and
weight-balanced clusterings is well-researched and will also play a major role in the
remainder of this thesis.

The core relation can be understood as a linear programming duality as expressed
in our core Theorem 4.7. In particular, the feasibility of a diagram can be formalized
as a complementarity condition for the underlying dual pair of linear programs. The
supporting property then furthermore requires this complementarity to be strict. As
this can be traced back to the facets and their relative interior of the clustering polytope,
it implies a geometric understanding of the proposed correspondence.

In order to provide a more plausible approach to the essence of this dual relation,
we developed it step by step in Sections 4.3 to 4.5 (basically following the historical
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order from Section 4.2). For the final correspondence, we assume feature maps of
points to be given that determine the aggregation constraints of the clusters. To the
best of our knowledge, the correspondence in this generality has not been stated yet.
In order to stress the practical impact of this general version, we closed this chapter
by the discussion of moment-constrained clusterings in Section 4.5.3. Here, we saw
that the constraining of moments of clusters results in polynomial correction terms of
according degree. In particular, this reveals the increased capabilities of anisotropic
power diagrams compared to power diagrams. While the latter “only” allow weight
constraints, the former may further be exploited to constrain centroids of clusters.
However, this comes at the price of the more complex nature of anisotropic power
diagrams as we had seen before in Chapter 3. Of course, there are many other kinds of
constraints of practical relevance. In fact, any integral evaluations of functions over
clusters are possible. This includes, for example, the Fourier coefficients of functions
with support restricted to the clusters. As long as the resulting correction terms are
conform with the chosen diagram class, this can offer a very broad scope of applications.

In the next chapter we will continue to generalize the established correspondence
w.r.t. the space that is to be clustered. While this might be more of theoretical
rather than practical interest, it will stress the simple yet powerful nature of this
correspondence.
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We would like to extend our results to constrained clusterings of more general —
in particular non-discrete — spaces. However, so far we have considered the finite
case in which n units have to be (fractionally) assigned to k clusters. In particular, if
we are interested in partitioning some subset of RY, we aim at a clustering of not n
but infinitely many points that might furthermore be weighted by some continuous
measure.

With the results of Chapter 4 in mind, a natural approach is to consider a series
of refining discretizations and thus obtain continuous versions of the results for the
discrete setting. For weight-constrained clusterings as considered in Section 4.4, such
an approach is presented in [CCD16].

We will attempt a more general approach in this chapter. This leads us from an opti-
mization problem over a constrained clustering polytope in R¥*™ to problems described
in infinite-dimensional spaces that, for example, yield probability distributions over the
plane. For weight-constrained clusterings, we end up with a semi-infinite transportation
problem. Several authors have considered the problem of obtaining an optimal partition
of a subset of R? into sets of prescribed Lebesgue measures. Aurenhammer, Hoffmann,
and Aronov [AHA98] showed the correspondence between least-square partitions and
power diagrams as depicted in Section 4.3 for such a continuous setting by geometric
arguments. Similarly, Geifl et al. [Gei+14] obtained a correspondence between gener-
alized Voronoi diagrams and weight-constrained clusterings as treated in Section 4.4.
Alternatively, a duality theory for the underlying semi-infinite transportation problem
has been developed that implies the same results ([CR72a; CR72b; HK93; KY82; LH76;
Tod78]). Linear programs in general topological vector spaces were taken into consider-
ation very soon after the classical theory of linear programming had been developed (cf.
[Duf56], [Hurl4]). A very comprehensive introduction to linear programs in general
topological vector spaces as well as a duality theory for semi-infinite transportation
problems can be found in [AN87]. We will mainly follow this approach in order to
convey our results of Section 4.5 into this very general setting.

However, this requires various aspects from topological vector spaces, functional
analysis and measure theory. In order to provide a self-containing treatment and
to prevent ambiguous terminology, the following Section 5.1 will state the necessary
definitions and results. We will then formulate the constrained clustering problem
in this more general setting in Section 5.2. Section 5.3 then argues to what extent
the presented problems are solvable and strong duality can be re-established. While
the desired correspondence between constrained clusterings and generalized Voronoi
diagrams can not be fully established in general, Section 5.4 then shows how this can
still be derived in an approximate manner.
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5.1 Preliminaries

5.1 Preliminaries

5.1.1 Definitions

Let us first recall and clarify some basic definitions from topology and functional
analysis. Here, we mainly follow the terminology of [Kan60, Section III.3].

Topological Vector Spaces

A vector space equipped with some topology will be called topological vector space
whenever both addition and scalar multiplication are continuous w.r.t. that topology.
In particular, this implies that both translations and scalings of open sets are again
open. To be more precise, let us state an equivalent definition via a basis of 0-
neighborhoods as provided in [Kan60, Theorem 1]. We call a set V' a neighborhood of
x (or z-neighborhood) whenever V' contains an open set that contains x.

Definition 5.1 (Topological Vector Space, cf. [Kan60])

Let X be a R-vector space equipped with some topology. We say X is a topological
vector space if there exists a basis of 0-neighborhoods B C 2% (i.e., such that a subset
U of X is open if and only for every x € U there exists V € B with x +V C U) with
the following properties:

e For any V7, Vs € B there exists V3 € B such that V3 C V4 N Va.
o Every V € B is balanced, i.e., for all x € V it follows that [—z,x] C V.

e Every V € B is absorbent, i.e., for all x € X there exists A > 0 such that
[—Az, \z] C V.

e For every V € B there exists U € B such that U +U C V.

Furthermore, we will require the considered topological vector spaces to be locally
convex, in particular, as this will allow for separation theorems.

Definition 5.2 (Locally Convex Space, cf. [Kan60])
Let X be a R-vector space equipped with some topology. We say X is a locally convex
space, if

e X is a topological vector space,

o X is Hausdorff (or separated), i.e., for z,y € X, x # y, there exist disjoint
neighborhoods V, and V}, of z and y, respectively, and

e X has a basis of convex 0-neighborhoods.
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For any vector space X, we write X+ for its algebraic dual. If X is a vector space,
equipped with a topology T, we write (X, T)* for its (topological) dual, or X* whenever
T is clear from the context.

The theory of linear programming in finite dimensions, of course, crucially relies on
the separability of convex sets. Fortunately, locally convex spaces provide us with this
tool, too. For any f € X* we call H(yg) := {x € X : f(x) = B} a closed hyperplane

and H(gfﬁ) ={zreX: f(zr) <p}and H(<fﬁ) ={z € X : f(x) < B} a closed and open
halfspace, respectively. Two non-empty sets A, B C X are now (strictly) separable if

there exists a hyperplane Hy 3 such that A C H(Sf 5 (A C H(<f ﬁ)) and B C H(Zf 5

(B C H(>f 5))> respectively, hold.
The geometrical form of the famous Hahn-Banach theorem now yields separability

of convex sets in this very general setting (cf. [SW99, Chapter II, Section 9]).

Theorem 5.3 ([SW99, Chapter II, Section 9, Second Separation Theorem])
Let X be a locally convexr space and A, B C X two non-empty, disjoint conver sets
such that A is closed and B is compact. Then A and B are strictly separable.

As singletons are compact, we obtain the classical characterization of closed convex
sets as a corollary:

Corollary 5.4 ([SW99, Chapter II, Section 9.2, Corollary 2])
Let X be a locally convexr space and C C X,C # 0, be convex and closed. Let
H = {H(Sf e CC H(Sf a)} be the set of all closed halfspaces containing C'. Then

c= H(Sf,a).

<
Hp o)€M

Dual Pairings of Spaces

Next, in order to establish a duality theory, we require the notion of dual parings of
spaces. Here, we follow [AN87, Section 3.2], [SW99, Chapter IV] and [Osb14, Section
3.6].

Let X be a vector space over R. A subset Y of X is total on X, if for all z € X \ {0}
there is a f € Y such that f(x) # 0.

If Y is a total linear subspace of X+, then (X,Y) is a dual pairing. In particular, this
implies that (Y, X) is a dual pairing, too, by embedding X into Y via the evaluation
map that maps = +— g, with g,(f) := f(z) for all f € Y. In case of a topological vector
space, (X, X™*) is such a pairing. A topology T on X is called compatible with the dual
pairing (X,Y), whenever (X,7)* =Y.

For any A C X, the polar of Ais A°:={f €Y :|f(z)] <1Vz € A}. In this context,
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the concept of polarity allows the definitions of several useful topologies (cf. [Osb14,
Section 3.6]).

The weak topology, denoted o(X,Y'), can be obtained via the basis of 0-neighborhoods
given by the polars of all finite sets in Y, i.e., {A°: A C Y, |A| < oo}. In particular X
equipped with the topology o(X,Y) is a locally convex vector space. For any topology
that is compatible with (X,Y) and any f € Y it must hold that {f}° = f~1([-1,1])
is a 0-neighborhood. Thus, it can be followed that o(X,Y) is the coarsest topology
that is compatible with (X,Y") ([Osb14, p. 71]).

As a consequence of the Mackey-Arens theorem, there also exists a finest topol-
ogy, called the Mackey topology and denoted by 7(X,Y), that is compatible with
(X,Y) (cf. [SW99, Section 3.2]). It can be obtained via the basis of 0-neighborhoods
{A°: ACY,Ais o(Y, X)-compact and absolutely convex}. (Here, a set C' is abso-
lutely convex if for any z1, 22 € C and A, A2 € R with |[A1] + |A2| = 1 it follows that
A1x1 + Aoz € C.) Again, this makes (X, 7(X,Y)) a locally convex space.

As a consequence of Corollary 5.4, we obtain the following standard result:

Corollary 5.5
Let (X,Y) be a dual pairing, T a locally convex, compatible topology , and C' C X be
convex. Then the T -closure of C is identical to the o(X,Y)-closure of C.

Proof. This follows immediately from Corollary 5.4 as by compatibility the set of closed
halfspaces that contain C' (and thus its closure) are the same for both topologies. O

Corollary 5.5 will turn out to be very useful in the context of Slater-like duality
conditions, as we will consider (o(X,Y')-)closures of sets that have an empty o(X,Y),
but non-empty 7(X,Y)-interior. In particular, a locally convex space X such that its
topology is the Mackey topology 7(X, X™*) is called a Mackey space. Important for us,
metrizable and thus in particular normed spaces are Mackey spaces ([SW99, Section
3.4)).

The following theorem of Alaoglu-Bourbaki will help us to state solvability of our
optimization problems, as it provides a connection of compactness to the boundedness
of sets in the dual of normed spaces.

Theorem 5.6 (Theorem of Alaoglu-Bourbaksi,

[Kan60, Chapter III, Section 3, Theorem 7])

If X is a locally convex space, then the polar U° of each neighborhood of zero U C X
is o(X*, X)-compact.

For normed spaces, this yields following corollary:
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Corollary 5.7
Let X be a normed space, then X™* is a normed space w. r.t. the operator norm and
the unit ball B* = {f € X* : |f(x)| < ||z|| Yz € X} is o(X*, X)-compact.

Proof. As every linear functional on X is continuous (w.r.t. the norm-induced
topology) if and only if it is bounded ([KA82, Section V.1, Theorem 1]), X* together
with the operator norm is indeed a normed space. Now observe that B* = B° with B
being the unit ball in X. So the second claim follows immediately from Theorem 5.6.0

5.1.2 Linear Programming in Paired Spaces

We are now able to establish a basic linear programming theory in paired spaces. We
follow the notation and definitions of [AN87, Section 3.2].

In order to do so, let (X,Y’) and (Z, W) be two dual pairings of spaces. Furthermore,
let ceY,be Z and A: X — Z be a continuous linear mapping (continuous w.r. t.
the weak topologies o(X,Y) and o(Z, W)).

While X will function as the primal (variable) space, the space Z will be referred to
as the constraint space in the following.

Partial Order

Next, we equip our primal space with a partial order. In order to do so, we assume
P C X to be a convex cone. This defines a partial order “>” on X via

a>b:sa—-beP

for all a,b € X. In particular, P = {x € X : > 0} holds by that definition. P also
yields a partial order on the dual space Y via its dual

P*:=—-P°={yeY:(x,y >0Vxe P}

However, in order to stress the role of P, we will continue to write x € P instead of
x > 0 in the following (as well as y € P* instead of y > 0).

Linear Program and its Dual

We define a linear program in the given setting as

;IEIéI)I(1<C, x) (5.1)
st. Az = b (5.1a)
x € P (5.1b)
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The adjoint of A, i.e., A* : W — Y, maps w € W to the linear functional in Y,
denoted A*w, that is given by z — (x, A*w) := (Az, w) (well defined as A is continuous
w.r.t. the weak topology, cf. [SW99, Chapter IV, Section 2]).

We define the program

glea%@u, b) (5.2)
st. ¢c—A*w € P* (5.2a)

and call it the dual of (5.1).
In accordance with [AN87] we call the problem (5.1) consistent, whenever there exists

a feasible solution, i.e., there exists z € P with Az = b. The value of the program
(5.1) is defined as

value((5.1)) := inf{(x,c) : * € P, Ax = b}. (5.3)

In particular, the program (5.1) is consistent if and only if value((5.1)) < oco. We call
the program (5.1) solvable, if there exists x € P with Az = b and (z, ¢) = value((5.1)).

Note that the program (5.2) can be easily brought to the form of the program
(5.1). In order to do so, we introduce slack variables z € Y, replace the maximization
expression by the equivalent —min,cw, .cy (w, —b), and rewrite (5.2a) as A*w + z =
¢, (w,z) € W x P*. In particular, this implies that all terminology for programs in
the form of (5.1) translates to programs in the form of (5.2) in a canonical way. In
particular,

value((5.2)) = sup{(w, b) : w € W,c — A*w € P*}. (5.4)

As a first observation, note that whenever P is closed, i.e., P = (P*)*, then the
program (5.1) is the dual program of (5.2), too. In this case, (W x P*)* = {0} x P as
well as A** = A hold (both as W is total), so the latter follows from some standard
reformulations.

Duality

In general, there is no strong duality between the programs (5.1) and (5.2). However,
based on Theorem 5.3, the following generalized version of the Farkas-Minkowski
Lemma establishes a slightly weaker relation. To the best of our knowledge, this was
first established in similar versions in [Duf56], [Hurl4] and [Kre61].

Theorem 5.8 (Farkas-Minkowski)

Let (X,Y),(Z, W) be dual pairings and A : X — Z a o(X,Y)-0(Z,W)-continuous
linear mapping and b € Z.
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Set

Zpy={beZ:IJxrec X : Az =b,x € P} and
Va={be Z:YweW:Aw € P* = (b,w) > 0}.

Then
Va = clyzw)(Za).

Proof. We first show Z4 C V4: Let b € Z4 and w € W with A*w € P*. Then there
exists x € P with Az = b and thus

A*weP* xeP
(b,w) = (Az,w) = (z, A"w) > 0,

so b € Vy follows.
Next, we show that Vy is o(Z,W)-closed. This follows immediately as V4 =

Nwew:a*wep+ H. (Zw 0) and thus Vj is an intersection of weakly closed halfspaces. This

implies cl,(zw)(Za) C Va.

For the final inclusion, assume there exists by € Va\cly(zw)(Za). As {bo} is compact,
Theorem 5.3 yields that there exists wy € W that separates {bp} and clU(ZW)(Z A)
strictly, i. e., there exists o € R such that (b, wo) < a and cly(z ) (Za) C HZ As

(w0704).
cly(z,w)(Za) is a cone, it must hold that a = 0 and so (b, wo) < 0. However, for any
AzeZ
x € P it follows that (x, A*wo) = (Az,wy) > *o. Hence, A*wg € P* and so by € V4
implies (by, wp) > 0, a contradiction. O

Note that Theorem 5.8 implies the classical Farkas-Minkowski Lemma: For n,m €
IN'\ {0}, consider X =Y =R", Z =W = R™ and a linear mapping identified with
the matrix A € R™*™. Then Theorem 5.8 states that b € R™ lies in the positive hull
of the columns of A (which is closed as finitely generated) if and only if for all w € R™
with ATw > 0 it follows that bTw > 0.

Let us compare Theorem 5.8 to its classical counterpart which can be applied in
order to prove strong linear programming duality in finite dimensions. Thus, we define

Zpe:= {(l;,a) €ZxR:3x e X :(x,c) Sa,Ax:lN),xeP} (5.5)

to be the cone of feasible right-hand sides and attainable objective values. This
particularly implies

value((5.1)) = inf{la € R: (b,a) € Z4 . }. (5.6)

With the classical proof of linear programming duality in mind, Theorem 5.8 motivates
the idea that strong duality between the programs (5.1) and (5.2) will hold if Z4 . is
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closed. As this is not the case in general, this motivates to define the subvalue of the
program (5.1) as

subvalue((5.1)) :=inf{a e R: (b,a) € cl(Za,)}- (5.7)

Here, the closure is taken w.r.t. the product of the o(Z, W) topology and the standard
topology in R. We call the program (5.1) subconsistent whenever subvalue((5.1)) < oo
holds.

The generalized Farkas-Minkowski-Lemma may now be used to prove the following
theorem, which firstly states the weak duality between the programs (5.1) and (5.2)
and secondly yields a strong duality result between the subvalue of (5.1) and the value
of (5.2) (cf. [AN87, Theorem 3.5, Theorem 3.3]).

Theorem 5.9
It holds that

value((5.1)) > subvalue((5.1)) > value((5.2)) (5.8)
and if not both subvalue((5.1)) = oo and value((5.2)) = —oo it holds that

subvalue((5.1)) = value((5.2)). (5.9)

Proof. In order to apply Theorem 5.8, we set

Vae ={(bya) e ZxR:Ywe W, € Rsp: A'w+cf € P* = (bw) +af > 0}.
(5.10)

We may write Z4 . = {(b,oz)GZXIR:EIxGX,ﬁE]R:/NI(x,ﬂ):B,xGP,ﬁZO}

Az
as (P X ]R.ZO)* = P* x ]R,Z(].
Therefore, Theorem 5.8 yields V4. = cl(Z4,).
Then we get

with A(z, ) := (@, c) + ﬁ) and b := (2) and obtain A*(w,3) = A*w + ¢f as well

value((5.2)) =sup{a e R: Jw e W: —A*w+ce€ P*',a = (b,w)}
=inf{aceR:YweW: : A*w+ce P*= (byw) +a >0}
—Bp
<inf{faeR:YweW,>0: A"w+ fc € P* = (byw) +af >0}
—:Bp
=inf{a e R: (b,a) € Vol =inf{la € R: (b,a) € cl(Za)}
= subvalue((5.1)).
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Here, note that the first equality is particularly true for the case that the problem
(5.24) is inconsistent as sup(f)) = —oo holds by convention. The inequality follows as
the choice § =1 in the definition of Bp yields all constraints on « in the definition of
Bp.

The first inequality in Eq. (5.8) is clear by the definitions of value and subvalue, so
Eq. (5.8) is shown.

Now assume inf(Bp) < inf(Bp). Then there exist ag € Bp \ Bp and consequently
wo € W, Bo > 0 such that A*wgy + ¢fBy € P* and <b, w0> + apfpy < 0.

If Bop > 0 we get A*(%wo) +c € P* and (b, %w@ + ap < 0, a contradiction to
ag € Bp.

If By = 0, this means A*wy € P* and (b,wp) < 0. As this particularly implies
(b,wp) + Poar < 0 for all & € R, it follows that Bp = () and thus subvalue((5.1)) =
oo. Then by assumption value((5.2)) > —oo holds, i.e., the program (5.2) must
be consistent. Thus, there exists wq; € W with —A*w; + ¢ € P* and therefore
—A* (w1 — Awg) + ¢ € P* holds for all A > 0. However, from (b, w; — Awg) — oo (for
A — 00), we get value((5.2)) = oo, a contradiction to value((5.2)) = inf(Bp) < inf(Bp).
This completes the proof. O

Most importantly, Theorem 5.9 implies that whenever Z4 . = cl(Z4 ), strong duality
between (5.1) and (5.2) follows, as then value((5.1)) = subvalue((5.1)) holds.
For the dual program (5.2) we may set

Yap ={(60) €Y xR:JweW: (bw)>6,é— A"we P} (5.11)
and obtain
subvalue((5.2)) = sup{d : (¢,6) € cl(Ya-p)}. (5.12)

In the case of P being closed, i.e., when the program (5.1) is the dual of (5.2),
Theorem 5.9 immediately yields the following corollary.

Corollary 5.10
If P is closed, it holds that

value((5.2)) < subvalue((5.2)) < value((5.1))

and if furthermore not both subvalue((5.2)) = —oo and value((5.1)) = oo it holds that

value((5.2)) < subvalue((5.2)) = value((5.1)).

If Za. is not closed, the value and subvalue of the program (5.1) are not equal
in general (see [AN87] for examples) and strong duality does not hold. However,
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several conditions have been found which yield closure of Z4 . (cf., for example,[Kre61],
[Fan65], [Yam68|, [NY79], [AN87]). The following Slater-like condition was established
in [Kre61] (however, with an incomplete proof that is corrected in [Yam68]). We provide
the statement in our setting and a proof that combines ideas from [Kre61] and [AN87].

Theorem 5.11
Let P be closed and let wg € W such that ¢ — A*wq lies in the 7(Y, X )-interior of P*.
Then Za, is closed.

Proof. Let (by,ap) € Va, = cl(Za,) as defined by Eq. (5.10) and assume (bg, ap) ¢
Z 4. Here, note that it does not matter whether we take the closure w.r.t. the Mackey
topology or the weak topology due to Corollary 5.5. Hence, in the following we will
always assume to work in the Mackey topology.

We define the auxiliary cone

V:={Ed)eYxR:IweW,8>0:¢+ A*w+ fce P*,6 — (by,w) — Bag = 0}.

With the mapping A: W xY x R — Y x R given by

A(wa y)ﬁ) = (y - A'w — /867 <b07w> + /Baﬂ)

and the cone P := W x P* x Ry, it then holds that

A

V={@E0 ey xR:3(wy,p) e P:Aw,y,p) = ()}

Furthermore, with P* = {0} x P x R>o (using that W is total as well as P is closed
and hence P** = P) we get

A

V.= {(6,5)GYXIR:V(x,v)EXXR:A*(:L’,W)6]5*:><a:,é>+7520}

={(deYxR:VY(r,7y) e X xR:
—Ax+4bp=0Ax € PA—(x,¢) +ya0 > 0 = (x,¢) + 76 > 0}

={(0)eYxR:Vze P,ye R: Ax = vby A (x,¢) < vyag = (x,¢) + 0 > 0}.

A

Now, Theorem 5.8 yields cl(Y) = V.

Assume there exist x € P and v > 0 with Az = by and (x,c¢) < yag. Then we
set 7 := %I € P and obtain AZ = by and (%, c) < g, and thus (by, ag) € Z4 ¢, which
contradicts the assumption. Consequently, we get

A

V={(Ed)eYxR:VreP~y<0:Azx =~by, (z,c) < yag = (x,¢) + v > 0}.

In particular, we can easily check that (0,—1) € V = cl(Y).
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By assumption there exist wy € W and a 0-neighborhood U C Y such that ¢c— A*wy+
U C P*. As Z is a topological vector space, we have that %U is a 0-neighborhood for
every n > 1. We may furthermore w.l.o.g. assume that U is balanced (otherwise, we
replace it by an element of a fundamental 0-neighborhood that is contained in U).

As (0, 1) € cl(Y), for every n > 1 there exist w™ € W, y™ €V and ™ € Rxg
such that

e Ly 0 4 At 4 g0 e pr (m)y 4 g(m) gt gt
Y EnU, y\" + A%\ + g\"We e P* and  (bg,w'\™) + M ag € (—1 s 1+n).

We will now achieve a contradiction by slightly moving the elements (w("), ﬂ(”))
towards (—wp, 1) and thus obtain a feasible constraint in the definition of V4. in
Eq. (5.10). Hence, we set for every n > 1

1
n+1

N L S ) T )
W = +n—|—1( wg) and [V n—i—lﬁ +

This yields

n

{bo, @) + BWag =

1 n—ao
(B, ) + 8™ ag) +—— ({bo, ~wo) +a0) "=F 1.

——1 (n—o00)
Furthermore, it holds that

n

*(n) 4 gn) . — #n(n) 4 3(n) _A*
A o\ + e n+1(Aw + 5 c>+n+1(c A*wp)
n A 1
— * 5 (1) (n) (n) — A*wn — ny™ *
n+1<Aw + B8M"We+y )+n+1(c A*wy — ny )EP.
ep* cc—A*wo—UCP*
Here, we used U = —U as U is balanced by assumption.
However, as (by,a) € Vi, this implies (bo,w(”)> + apB™ > 0 for every n, a
contradiction to the limit above. O

We mention that Anderson and Nash [AN87] provide a similar statement showing
that value((5.2)) = subvalue((5.2)) (without implying closure of either Z4 . or Y4« )
under the same conditions except the requirement of P being closed ([AN87, Theorem
3.11, Theorem 3.13]).

5.1.3 Duality of Measures and Continuous Functions

As a final ingredient, we need to prepare the choice of topological spaces that we will
eventually use to bring the program (4.26) into a program in the style of (5.1).
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In the discrete setting, each cluster of a fractional clusterings can be understood
as a conditional discrete probability distribution on the points to be clustered. In a
more general setting, a cluster will thus be a measure on some given space. In order to
prepare for this, let us recall a version of the famous Riesz Representation theorem
that allows to identify the set of continuous functions on a compact Hausdorff space
with the dual of the space of signed measures.

For the remainder of this section, let X be a compact Hausdorff space (which the
reader may think of as the space containing the points to be clustered). As several
formulations of the Riesz Representation theorem exist, we will make precise the one
we will refer to. In particular, definitions vary slightly in the literature (e.g., [RF10]
requires a Borel measure of a compact set to be finite while [Coh13] does not), so we
will state the definitions that are crucial for our context.

Definition 5.12 (Signed Regular Borel Measure, cf. [Cohl3, Section 7.2],
[RF10, Section 21.3] )
Let X be a Hausdorff space and B(X) be the Borel o-algebra.

A measure w on (X, B(X)) with w(K) < oo for every compact set K C X is called
Borel measure.

A Borel measure w is regular if for all A € A it holds that

w(A) =inf{w(U) : A C U,U open}
and for each open subset U C X it holds that
w(U) =sup{w(K) : K C U, K compact}.

A regular Borel measure is also called Radon measure.

If X is compact, we say that w is a signed regular Borel measure (signed Radon
measure) if there are regular Borel measures w™,w™ on X, and X, X~ € B(X) with
XtNX =0, X=X"UX",such that ot (X7 )=0,w (X")=0and w =w™ —w™.

Note that the restriction to compact spaces for a signed measure will be sufficient for
our context and avoids dealing with a more general definition of signed measures on
non-compact spaces.

We will denote

M, (X) :={w: w is a signed regular Borel measure on X }.
Then M, (X) is a vector space, and equipped with the norm of total variation
= w (X) +w (X)

||w||var N
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with w™ and w™ as in Definition 5.12 (uniquely determined by the Jordan Decomposition
theorem, cf. [RF10, Section 17]), this is a normed vector space (and thus in particular
a locally convex space w.r.t. the norm-induced topology).

The second space we consider is that of real-valued continuous functions over X, i.e.,

C(X):= {f eRX:f continuous}.
Equipped with maximum-norm
1 linax == max | f(2)]

it is a normed vector space, too.
Note that every continuous function is Borel-measurable and in particular

()= [ f@yde@)
is well-defined.

Theorem 5.13 (Riesz Representation Theorem for the Dual of C(X)
([RF10, Section 21.5]) )
Let X be a compact Hausdorff space.

Then the mapping ¥ : M.(X) — C(X)* that maps w to the linear functional
U, (+) =< -,w > is a linear isometric isomorphism of M.(X) onto C(X)*.

Here, C'(X)* is a normed space using the operator norm (cf. Corollary 5.5). In other
words, we may identify the dual space of C(X) with M,(X). In particular, as the
described isomorphism is isometric for any w € M, (X) it holds that

[ s@yi(a)|.

[l var = sup
FEOCX):|f | ax <1

Also, this implies that (M, (X),C(X)) is a dual pairing.
Later on, we will define clusters as non-negative measures. Thus, let

Pi={we My(X):w(A) >0VA e B(X)} (5.13)

be the cone of all non-negative signed regular Borel measures.
Then the dual cone of P is given by all non-negative continuous functions:

Lemma 5.1/
With P as defined by Eq. (5.13) it holds that P* = {f € C(X) : f(z) > 0 Vx € X}.
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Proof. The inclusion “D” is clear from the definition of P*. The other inclusion
follows as for every f € P* and ¢ € X, the Dirac measure 6, is a regular Borel measure

and [y f(2)d.(Z) = f(z). O

Furthermore, it holds that P is closed (and hence in particular P** = P). In order
to provide a proof for this, we use the following result:

Theorem 5.15 (Lusin’s Theorem [Cohl13, Theorem 7.4.3])
Let X be a locally compact Hausdorff space, w a reqular Borel measure and f : X — R
measurable.

For A € B(X) \ {0} with w(A) < oo and € > 0 there exists a compact subset K C A
such that w(A\ K) < € and such that f|, is continuous.

Furthermore, there exists a compactly supported continuous function g : X — R such
that gl = fli and sup{|g(z)| : v € X} <sup{|f(z)|:z € X}.

We conclude the closure of P:

Corollary 5.16
Let X be a compact Hausdorff space and P as given by Eq. (5.13).

Then P is closed (w.r.t. the o(M,(X),C(X)) topology).

Proof. Let w € M,.(X)\ P. Then there are regular Borel-measures w*,w™ of disjoint
support such that w = w™ —w™.

By assumption there exists a measurable set A such that w™(A) > 0 and w™(A) = 0.
We approximate the indicator function 1 4. Using Lusin’s Theorem (Theorem 5.15)
applied to the regular Borel measure w' 4+ w™, we can find a compact set K C A
such that w (X \ K) + wtH (X \ K) < %(A) and a continuous function g such that
9lg = (La)|x and ||g||, < 1. Now we may define g(x) := max{g(x),0}, so g € P* (as
given by Lemma 5.14), i.e., § is a non-negative continuous function. Then

(g w) = (Ix\k§,w) + (Ixgw) Sw (X \ K) +w™ (X \ K) + (I, w)
<WwH(X\K)+w (X \K)—w (4)

< gw*(A) —w (A) <0.

Consequently, § separates w strictly from the cone
P ={0 e M.(X):(f,0) >0Vf e P}

Hence, P C P and so P** = P. In particular, this implies that P is closed. O
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5.2 Constrained Clusterings in General Space

We can now transfer our previous theory into this more general setting. For the
remainder of this chapter, we assume X to be a compact Hausdorff space. This is the
space we assume to be clustered. Furthermore, we assume wy € M, (X) to be a regular
Borel measure on X.

As pointed out in [AN87] for semi-infinite transportation problems, this setting is
crucial. Depending on that choice, consistency, solvability and the relation of the
resulting linear programs are affected. In particular, as (M, (X),C(X)) is a dual
pairing, this dictates the type of cluster constraints in the following.

5.2.1 Definitions

First, let us transfer the definitions and notations of Chapter 2 into this (more general)
setting. Here, a clustering is now given as a tuple of regular Borel measures that adds
up to wg. We then constrain clusterings w.r.t. the integral values of continuous feature
maps.

Definition 5.17 (Fractional Clustering (in a compact Hausdorff space))
Let X be a compact Hausdorff space and wgy a regular Borel measure on X. Let
k € IN\ {0} and for every i € [k] let m; € IN and functions ®;; € C(X) for [ € [m;] as
well as b € R™ be given.
We set

T:=T (wo, (@i icpmy e, (0)ie) (5.13a)
= {(&icy € Mr(X)* :

Y& = wo (5.13b)
]

i€lk
(Gin&) = b Vielk),lem)). (5.13¢)

Then we call (§;)ici) € T a (wo, (Pi1)icm.) iclk]> (b(i))ie[k})—constmined (fractional)
clustering.

For each i € [k] we call the measure & (the ith) cluster. For each cluster §; its
support is given (in the usual way) by

supp(&) = X\ U U. (5.14)
Uopen, &;(U)=0

If the measures §; are mutually singular, i.e., there exist pairwise disjoint measurable
sets X1, ..., Xk, such that &(X;) = &(X) for all i € [k], we call the clustering integer.
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Next, the terminology of feasible and supporting generalized Voronoi Diagrams may
be transferred with almost no adaption.

Definition 5.18
Let X be a compact Hausdorff space, P = (P,..., Px) be a generalized Voronoi Dia-

gram in X, and a set of constrained clusterings T' =T (wg, (Pi,0)1efma ik (b(i))ie[k]>
be given. Let £ € T.
We say P is feasible for £, if and only if

supp(&;) C P; Vi € [K] (5.15)
and P supports &, if and only if

supp(&;) = P Nsupp(wo) Vi € [k]. (5.16)

5.2.2 Program Formulations

We can now transfer the program (4.26) and its dual to this setting. In order to do so,
let T =T (wo, (®i0)1€m,) iclk)> (b(i))ie[k]) as in Definition 5.17 be given. Furthermore,
let functions f; € C'(X) for i € [k] be given.

We obtain the following primal problem:

k
o, in ;%, &) (5.17)
s.t. Zﬁi = wo (5.17a)
i€[k]
(&) = b Vie[k]lemi] (5.17b)
& > 0 Vi € [k] (5.17¢)

Let us provide some sanity checks: Our primal solution space is M, (X)*. Note that
we can identify its dual space by the linear functionals given as sum of functionals from
the dual of M, (X), i.e., C(X) (cf. [SW99, Chapter I, Section 2]).

The left-hand sides of the constraints (5.17a) (which yield mappings M, (X)* —
M, (X)) are indeed linear and continuous (w.r.t. the box topology obtained from
o(M,(X),C(X))), as (M,(X),o(M.(X),C(X))) is a topological vector space. The
constraints (5.17b) are linear and continuous (w.r.t. the weak topology), too, as we
assume ¢;; € C(X) for every i € [k],l € [m;]. Note that constraint (5.17c) implies that
the associated positive cone is given by (P)* with P as given by Eq. (5.13).

We conclude that the program (5.17) is indeed of the form (5.1).

Next, we formulate the dual of (5.17).
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Chapter 5 Correspondence between Diagrams and Clusterings: General Space

The constraint space (i.e., the possible right hand sides) is M, (X)xR™ x...xR™*.
Consequently, the variable space of the dual of (5.17) is C'(X) x R™ x ... x R"*.
Hence, we obtain the dual program

k
Dy 1p@)
1ok + 5.18
WGC(X),y(i)é{Rmi,ie[k];(y ) (n, wo) ( )
st. 4+ @NTe < fi Vie[k] (5.18a)

Here, ¢; := (¢i,l)l€[mi] is to denote a vector of functions. This yields a continuous
function X — R for every i € [k]. Recall that from Theorem 5.13 we know that
C(X)* can be identified with M, (X). Furthermore, from Corollary 5.16 we know that
P is closed, or — equivalently — P** = P. In particular, this implies that the program
(5.17) is the dual program of (5.18).

5.3 Solvability and Duality

Next, let us discuss solvability as well as the duality properties of the programs (5.17)
and (5.18).
We apply several results of Section 5.1 in order to obtain the following theorem:

Theorem 5.19
Assume problem (5.17) to be consistent. Then the following holds:

i) The program (5.17) is solvable.
it) The program (5.18) is consistent with finite value.
iti) There is no duality gap, i. e., value((5.17)) = value((5.18)).

Proof. This proof partially follows [AN87, Section 5.5].
For part i, let (&;);c(x) be feasible for the program (5.17). Then for any i € [k] it
follows that

su

p = €illyar = &i(X) < wo(X) < c0.
FeC(X)Iflla<1

| t@ygi(a)

By Corollary 5.7, this implies that all feasible clusters &; are contained in a
o(M,(X),C(X))-compact set. As the objective is (by choice) o(M,(X),C(X))-
continuous, this implies solvability.

For part ii, a feasible solution is obtained by setting y(® := 0 for i € [k] and 7 to be
constant with

n = ie[I]ﬁljneX fi(z) —1 (5.19)
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(which is well-defined as we assume X to be compact and f; € C(X) for every i € [k]).
By weak duality and as we assume the program (5.17) to be consistent, the optimal
value of the program (5.18) must be finite.

For part iii, recall that the cone of regular Borel measures on X is o(M,(X), C(X))-
closed by Corollary 5.16. Thus, it is sufficient to show value((5.18)) = subvalue((5.18))
due to Corollary 5.10.

As C(X) is a normed space, it is a Mackey space with the Mackey topology being the
norm induced topology. With y® = 0 for i € [k] and 7 defined by Eq. (5.19), we get
that f;(z) — n(z) — (y)T¢;(z) > 1 for all z € X. Hence, we can apply Theorem 5.11
which yields the claim. O

A crucial missing point in Theorem 5.19 is the solvability of the program (5.18).
However, as the following example shows, this cannot be guaranteed in general for our
current setting.

Example 5.20
Let X =[0,1] C R and k = 2. Let fi, fo € C([0,1]) be constant functions with f; =0
and fo = 1.

Furthermore, let m; 1= mg := 1, set ¢11 1= ¢21 := ¢ :=id, i.e., ¢(x) = x for all
x €[0,1], and b := 0, b := 1/2,

Finally, denote by Ajg ;) the Lebesgue measure on the interval [0, 1]. We set wp :=
o).

[Wlith oy [1dé1(z) = 0 and [ 31 f2d€2(x) = €2([0, 1]), problem (5.17) simplifies to

517523}7{1([0,1]) &([0,1]) (5.20)

o Gt+& = Aoy (5.20a)

/[ ]xd&(”’) =0 (5.20b)

/ v i) = 3 (5.20¢)
0.1 2

§,6 = 0 : (5.20d)

From constraint (5.20b) it follows that no feasible £; can have a non-zero absolutely
continuous part. Thus, we can deduce from constraint (5.20a) that & = 0 and §3 = Ajg ]
is the only possible solution, which is consistent with the (redundant) constraint (5.20c).
So, the program (5.20) is solvable with value 1.

However, we can easily see that for no y™), y(? € R, the generalized Voronoi diagram
w.r.t. the functions f; = f; —y(i)gbi’l will be feasible for (£1,&2). As depicted in Fig. 5.1,
only in the limit, i.e., either for y) — —oo or ¥ — oo, the resulting diagrams
become feasible.
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fi(z)
1ro. - file) = —yWa
1 P 1 X
@y . )
falw) =1 —yPz
Figure 5.1: Exemplary generalized Voronoi diagram functions in Example 5.20 for y(*) = —1
and y = 2.

This also becomes clear when considering the dual. For any n € C([0,1]) it holds
that [;5 yn(z)dwo(x) = fol n(x)dA(z). Hence, for this instance problem (5.18) becomes

1 1
CTAN / dA 5.21

st. n@) +yPz < 0 vzelo1] (5.21a)
nx)+yPz < 1 Vzelo1]. (5.21b)

We may assume that any feasible point of the program (5.21) fulfills for every
z € [0,1]

B

n(@) = min{ Va1 —y@a) =gz yO g0 > 1nw <l
1-y®z y® —yO > 100> ol
(5.22)

This is feasible as it is continuous and obeys constraints (5.21a) and (5.21b) for any
choice of (y(i))ie[k}. Consequently, the objective of the program (5.21) reduces to

s(® —y) oy -y <1

1 1
5y(2) _|_/O n(z)d\(z) = { Ly — gy >

1
L= spm—ymy

Thus, (5.21) has the optimal value 1 which, for example, is the limit objective value
of the (feasible) points y?) = n,y() = 0 and 7 given by Eq. (5.22) for n — co. However,
the program (5.21) is obviously not solvable.
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5.4 Approximability

The conclusion of Example 5.20 is rather disappointing as, of course, we would like
to obtain a result in analogy to the finite case. Namely, that the dual problem (5.18)
would yield us the parameters for a generalized Voronoi diagram that would be feasible
or even support the clustering obtained from the program (5.17). However, this is not
possible in general as Example 5.20 has demonstrated.

Still, Example 5.20 does offer some further insights. In this example, the greater we
choose the dual y(?), the closer our resulting Voronoi diagram fits the optimal clustering.
Also, we know that if the projection of the feasible region of (5.18) to the space of
the y variables was bounded, then the program (5.18) would be solvable by the same
argumentation as for the program (5.17) and using that 7 can be determined explicitly

via (4)icp-

For some fixed 7 > 0, we consider the following adapted version of the program
(5.17):

(&')ieMr?(m ,pGR;Z fir&i) (5.23)

>t 2 & = w (5.23a)
i€ (k]

Gur&d o = 4" Vie [kl €mi (5.230)

(Gias&) —p < b7 Vie k1€ mi (5.23¢)

& = 0 Vi € [K] (5.23d)

pz0 (5.23¢)

Here, an error variable p has been added which yields the maximum error from the
former equality constraint (5.17b). Penalizing this maximum error by a factor 7 in
the objective of (5.23) then leads to a limitation (in the dual) ¢;-norm in the resulting
dual problem. Here, we skip the introduction of dual variables yl(Z’Jr) and yl(l’f) for
the constraints (5.23b) and (5.23c), respectively. Instead, we directly replace them by

(Z) (i,+) (3,-) (iHr)_,_yl(iﬁ)

=y -y and recognize y; = ‘yl(l)‘ This yields the following

Varlant of the dual of the program (5.23):
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k

max S (5O + (0, wo) (5.24)
neC(X),yMeR™i iclk] ;=4

st. 4 yNTe < %fi Vi € [K] (5.24a)

k .
3 Hy(z)
=1

In this relaxed setting, we can formulate a stronger version of Theorem 5.19.

= (5.24b)

Theorem 5.21
It holds that:

i) The program (5.23) is solvable.
it) The program (5.24) is solvable.

iti) There is no duality gap, i. e., value((5.23)) = value((5.24)).

Proof. Concerning part i, we first note that the program (5.23) is consistent. For
b = (65, 6)]-
We may then follow the exactly same argumentation as in Theorem 5.19 part i and
conclude solvability, too.

For part ii, we once more may w.l.o.g. assume due to wg > 0 that for any solution
of the program (5.24) it holds that n(z) = min;e Lfi(z) - (y N Tgp;(x) for all z € X.
Thus, we can reformulate the program (5.24) as follows:

this, we set § 1= wp, & := 0 for i = 2,... k, and p := maX;ep]ic[m,]

k
, , 1 ,
()70 n(=f — (v'NTeh,
max + (min i i), W 5.25
y(i)eﬁmi7ie[k]i§:1(y ) (min(fi = (W)76:), wo) (5.25)
k
(@)
s.t. EIHy <1 (5.25a)

This is a finite-dimensional optimization problem over the ¢1-unit ball in ]RZiGW e
with a continuous objective function. The latter follows, for example, via bounded
convergence: The functions f; and ¢; are continuous and hence bounded over the
compact set X. Therefore, L f;(z) — (y)T¢(z) can be uniformly bounded in z and y®
for every i € [k]. Hence, the program (5.25) is solvable and therefore is the program
(5.24), too.

Finally, part iii follows almost exactly as part iii of Theorem 5.21. We set 3! := 0
for all 7 € [k] and 7 := min;e zex %fz(i) — 1. By doing so, we obtain a point in the
(Mackey) interior of the dual positive cone and can again apply Theorem 5.11. O
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Theorem 5.21 states a strong duality between the programs (5.23) and (5.24). Thus,
we may again defer the feasibility of a generalized Voronoi Diagram as the complemen-
tarity property of the optimal primal and dual solution. However, as Example 5.20
showed that this may not be possible for solutions that meet the clustering constraints
exactly, we have to allow an arbitrarily small error.

Theorem 5.22

Let X be a compact Hausdorff space and wy a regular Borel measure on X. Let
k € IN\ {0} and for every i € [k] let m; € N and functions f; € C(X) and ®;; € C(X),
I € [mi], as well as b € R™ be given. Next, set

o :nm{peﬁmzﬂé%mmkmﬂeRmemmﬂm<@
- (5.26)
T (wo, (P )iepmi ief) (6 + e(z))ie[k]> 7 @}-

m;

Then for every € > 0, there exist (egi))ie[k],le[mi] € R2-icli
clustering § € T (wﬂa (®i0)iema e (0D + e(i))ie[k})7 and (yl(i))ie[k},le[mi] € Rt ™

with |le| < p*+¢€, a

such that the generalized Voronot Diagram w.r.t. functions (fi + (y(’))T@i> - 18
feasible for &.

Proof. First note that p* is actually well-defined. This follows once more due to the
compactness of the space of positive regular Borel measures bounded by wg, or by
applying Theorem 5.21 part i to the program (5.23) with f; = 0 for every i € [k].

Now, for any 7 > 0, let {7, p” be an optimizer of the resulting program (5.23) and
(-, (y(i’T))ie[k}) be an optimizer of (5.24). As for every i € [k] it holds that 0 < &7 < wo,
we get that

D] < 7 [l danta) 50 (o),
T TJX

By definition of p* it holds that p” > p* and that there exists

el (w07 ((I)i,l)le[mi},ie[k]v (b(i) + e(i))ie[k])

with |e]|, = p*. In particular, (£*, p*) is feasible for (5.23). In total, it holds that

1&E 1&E 1 &
;Z(fnfDJFP*S;Z(fufDJFPTS;Z<fu§§k>+ﬂ*

=1 1=1 =1

and so it follows that p™ — p* for 7 — oo.
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For the remainder of this proof, assume 7 to be sufficiently large such that p < pf+te.
Again, due to optimality we may w.l.o.g. assume 7. (z) = min;c ) L fi(z) - (y )T, ().
As strong duality by Theorem 5.21 part iii holds, we get

72 flaéz ‘f‘P = 777-,(.«)0 +Z (4,7) Tb 1)

i€[k]
(L7 ,
= g{;}/ —fi(z) d&i(xz) + p" = ;[k]/ lHel[llg( —(y )Tq)l(x)> déi(z)
7 2 J ) Z O Sy (ifl@) - <y“’”>T<I>z<x>) 4 (2)

i€[k]

=:®

+om = > (" (b(l /<I> ) deT (x ) 0.

i€[k]

=:®®
As & > 0 for every i € [k] it holds that ® > 0 and as

2 (10 fmao) = 3 e o0

ie[k] i€[k]

I

i€k]

- [ @) dgT

T < T

we get ®® > 0, too. In particular, this implies ® = 0 and thus

~h@) = @51 (e) — pin (S () ~ 1)) A€ (@) = 0
for every i € [k].

For any z € supp(§]), this implies that i € argminc (%fl(xo) — (y(l’T))Tél(xo)):
Otherwise, by continuity there exist a § > 0 and a neighborhood V,, of xg such that
Lfi(z) — ()T (2) — minze[k]< filx) = ()T (x )) > 6 for all x € Vo, As
xo € supp(&]), it must hold that & (V,,) > 0. However, then it holds that

o2 [ L) 00 - min (L) - 00T 0)) 2 6 (V) > 0

o i€k

a contradiction.
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For every i € [k], we now set y(?) := —7 - 47 and thus have supp(&) C P; with

(Pi,...,Py) being the generalized Voronoi Diagram w.r.t. the functions
(T

(f ! ( )T ) elk]’ .

Example 5.20 (continuing from p.125).
We may revisit our previous Example 5.20 in this approximate setting. For any 7 > 0,
we obtain a new primal program

. T + 5.27
517£2EM7"([0 1])p7'§2([ 1)+ ( )
> SG+& = Aoy (5.27a)

-’ S/ vda(z) < o (5.27b)
0.1]

1 1
2 P = / vda(r) < S+p (5.27¢)

2 0.1] 2
&, &,p 2 0 (5.27d)

and a corresponding dual program
1 1

g / dA 5.28
recoii eg 2?1, M@dM@) (5.28)
st n(z )+y Mg < 0 vz € [0,1] (5.28a)

n(x) + < 1 waep (5.28b)

T
[y ]+\y(2)\ < L (5.28¢)

Let us again first consider a solution (7, y(l),y(z)) of the dual program (5.28). Here,
we can assume for any x € [0, 1] that

(1 2 _ 1) <1 1
. 1 yvr 'Y yo < Vo ST @ D
n(x) = mm{—y(l)IB, - 9(2)1‘} = @ @ 1)< 1 & ! )
T L=yPe oy =y 2 2 A e 2 e oymy
holds and obtain a corresponding objective value
1,2 1 2 1 1
”ffﬂ@ﬁ@ﬁ=?@)_%» Yo Y1
0 T amgEom) YT TV 2

By constraint (5.28¢), it must hold that 3(?) —y(1) < 1. We see that — independently
of the choice of 7 — an optimizer must fulfill y® — 41 = 1. Thus, we obtain for an
optimal solution (n*, 31, y(2%)) a resulting objective value of

;wﬁ+4%wwxm={

T<1

—ﬁ TZl.

3 = Do
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Figure 5.2: Optimal solution and corresponding diagram of program (5.27) in Example 5.20
for y(1*) = —1 and y3*) = 0.

Let now P = (P, Py) be ‘the generalized Voronoi Diagram w.r.t. the functions
fi(z) = -7y .z and fo(z) :=1—7-y>* .z for z € [0,1]. Then
P = {m el0,1]: —7 -y <1— 7.y x}

1 1
= {x €10,1] : z(y®* —y(1¥)) < T} = {O,min {7_, 1}]

and, analogously, P, = [min{2,1},1]. From Theorem 5.21 we know that P must be
feasible for any optimizer of (5.27). Thus, we deduce that the unique optimizer £* of
the program (5.27) is given by

= ({2} i = ([an 2}

min{ L
This yields p* = max{fo =1 z dz, % — flin{l,1} T dm} = min{#, %} (Note that

m
taking the maximum of the two constraint violations is actually not necessary as the
constraints (5.27a) and (5.27b) imply the constraint (5.27¢).) We may now verify our
calculations by computing the resulting objective value of (5.27). This is

1 1 1 1 1 i 0<7<1
_gx O 1 *:7 ]_*ll‘ - ]. IIl‘ N 99 ~ == 2 ’ B )
7'52([ A +p 7‘< m{T’ }) 1n{2T2 2} {71_—271_2 ,T>1

which, of course, is consistent with our obtained dual objective value. Figure 5.2 depicts
this situation (for 7 > 1).

5.5 Summary & Conclusion

This chapter considered the correspondence between constrained clusterings and gen-
eralized Voronoi diagrams as established in Chapter 4 for clusterings over (almost)

132



5.5 Summary & Conclusion

arbitrary Hausdorff spaces. In particular, this accounts for clusterings of a whole subset
of R? (instead of a finite point set). Although the results in this chapter are of mainly
theoretical interest, they reveal the core essence of the proposed correspondence.

As this, of course, required a lot prior knowledge w.r.t. algebraic spaces, topology
and measure theory, an introduction to a linear programming theory over general
Hausdorff spaces was given in Section 5.1. Here, we mainly followed the theory of
[ANS87], but focused particularly on duality as it yields the essence of the relation
between clusterings and diagrams. Section 5.2 then transferred our previous terminology
to this more general setting and in particular defined clusterings as tuples of measures.

Having established the preliminaries, the desired relation could once more be estab-
lished rather easily. However, we failed to do so in Section 5.3 as solvability of the
dual program and hence the existence of suitable parameters for a feasible diagram
cannot be guaranteed in general. Section 5.4 demonstrated how this can be fixed by
allowing an arbitrarily small error w.r.t. the cluster constraints. Note that this result
in particular carries over to our existing theory of the previous chapter in case that a
clustering polytope is empty.

We restricted the established correspondence in Theorem 5.22 to the feasibility
of a diagram for the scope of this thesis. Of course, the questions in which cases a
supporting property can be established and how this again translates into a kind of
strict complementarity arise. As mentioned in the beginning of this chapter, at least
for clusterings over R? and using a Lebesgue measure as wp, one may also obtain
similar results using refining discretizations (as sketched by [CCD16]). Both [CCD16]
as well as [Gei+14] establish the correspondence between weight-constrained clusterings
and additively weighted generalized Voronoi diagrams for this setting. However, both
require that the bisectors of the diagrams are null sets. Under that assumption,
feasibility and the supporting property of a diagram collapse (up to sets of measure
Z€ero).
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Chapter 6 Balanced k-Means Clustering

Power diagrams have an exposed position in the context of geometric clustering
as they come along with some favorable properties, are well-understood and have
been successfully applied in various areas ([Aur87a], [BG12]; cf. also Section 3.3.2).
In Section 4.3 they have been our prime example for the correspondence between
constrained clusterings and generalized Voronoi diagrams.

In unconstrained clustering, classical Voronoi diagrams yield least-squares assign-
ments. Finding the best choice of sites then is the well-known k-MEANS problem.
Analogously, power diagrams lead to least-squares assignments under weight-constraints.
The problem of which sites to choose then states the BALANCED k-MEANS problem
([BBG17]).

In our prime application of electoral district design in Chapter 7, we will as well
make extensive use of this rich theory. Therefore, this chapter is to collect, combine
and extend the existing results on the BALANCED k-MEANS problem. Section 6.1 will
discuss the BALANCED k-MEANS problem itself, while Section 6.2 will then discuss
algorithmic approaches to it.

6.1 The Balanced k-Means Problem

In this section, we will see that constrained clustering via power diagrams can be
understood as the weight-constrained version of the famous k-MEANS clustering, which
will be called the BALANCED k-MEANS problem.

For the remainder of this section, we consider the same setting as in Section 4.4. This
means, we assume a set X = {x(l), e ,m(”)} of n distinct points in R? with weights
w; € Ryg for j € [n] to be given. Furthermore, we assume cluster weights x; € Rxg
for i € [k] with > iclk] i = 2jen) wj to be given. We are then interested in clusterings
from the resulting clustering polytope § € T}, as defined by Eq. (4.16).

The k-MEANS problem is to find an (unconstrained) clustering that minimizes the
total squared error when each cluster is represented by a single point (cf. [JMF99;
Wul2]). Of course, each representative of a cluster then must coincide with the centroid
in an optimum. In our context, the total squared error is also referred to as moment of
inertia ([LGC13]). More formally, for a clustering § € Ty, ,,, we denote by

c(Cy) ::Z Y ) (6.1)
jery “(C9)

the centroid of the ith cluster. Then the moment of inertia of the clustering £ is given
by
2

S gwi|lp? — e ()

i€[k] jeln]

- (6.2)
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6.1 The Balanced k-Means Problem

6.1.1 Squared Error Analysis

As k-MEANS clustering plays an important role in the field of data analysis, its objective
may be interpreted from a statistical point of view (cf. [DHS00, Section 10.2], for
example). First of all, this shall give a better understanding of the objects that we will
deal with in the following. Second, it prepares some formal dependencies that we can
utilize later on.

Let X and C be random vectors supposed to yield a sampled unit and cluster,
respectively. The units’ weights now naturally define a probability distribution of X
via

P(Y = :c(j)) =

w(X)’
Similarly, the cluster weights provide a distribution for C' by
P = ; = —
(C=0i) = - s

for i € [k]. A (fixed) clustering & = (C1,...,Ck)" € Tuncstr. k,n then defines for each
cluster the conditional probabilities

Let ¢(X) := Y
c (6) denote the random variable that yields the centroid of the random cluster C,
i.e, c (6) =E {Y|U} In particular, this implies

Elc(C)] = g{;} P(C=ci)E[X|C=Ci] =E[X].

j€ln] %x(j) = E{Y} denote the centroid of all units. Similarly, let

The overall variance in the data is then

var (y) _ Z p(y _ x(y‘)) Hx(j) _ C(X)Hz (6.3)
Jj€n]

X R(E-0) T (X a0 - ) [ )
i€ k] J€ln]

=Y P(@ = CZ») (Z P(Y: V|0 = Ci) H:L'(j) —c(Cy) z + e (Cs) — c(X)H%)
ic[k] J€[n]

= E {V&I‘ (Y|C>} + var (C (€)>

_ w(l) 5 Zu 69 — e (o) + w(lX) S w(C)lle(C)—c (X (64)
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Chapter 6 Balanced k-Means Clustering

In other words, the total variance of the data splits into the expected inner-cluster
variance E [var (7\6)} and the centroid variance var (c (@)) The k-MEANS clustering

problem asks to find an (unconstrained) clustering that minimizes the expected inner-
cluster variance. Due to Eq. (6.4), this is equivalent to maximizing the centroid variance.
The latter is then the variance that is explained by the model, while the former remains
as the unexplained, undesirable distortion. In our setting, the minimization of the
moment of inertia means to maximize the explained cluster variance under the constraint
of balanced clusterings.

There is also a very helpful geometrical interpretation of the centroid variance.
However, in order to derive this later on, let us remain in the given stochastic model for
one further step. Here, we may exploit the basic fact that for any two identically and
independently distributed random vectors A, B with existing first and second moment
it holds that

~@-<[F HE L3 A ] - )

First, this yields that the expected inner-cluster variance can be rewritten as

E[Var (Y‘é)} = Zez[i] Jg[;l &ijwj ||z H z
L 2
- 2w(X) iez“;] (C ) %ﬂ} &i,aWaSi pWh H ’ )’ (6.5)

which can be read as the expected pairwise squared distances of all units that are
assigned to the same cluster.
Analogously, the centroid variance can be read as

wr (¢(0)) = 32 A o€ - el = 32 R e - elcul.

ick] (X) i<l€[k]

(6.6)

So, in order to minimize the moment of inertia, we want to find a clustering such that
the resulting cluster centroids are pairwise “pushed away from each other” as far as
possible. At the same time, we note that

war (c () = e (O)[;] - €[ @)][; = €[l @)I] - I1£[=]];
_ w(lX) > w(@ le@l? - [e[X]|; (6.7)

€[]
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holds. As HE{ } H does not depend on the underlying clustering, the maximization of

the cluster variance is equivalent to the maximization of the weighted sum of squared
centroid norms.

6.1.2 Problem Definition and Complexity

In analogy to the famous k-MEANS problem, let us formally define the BALANCED
k-MEANS problem.

Problem BALANCED k-MEANS:

Input: Wi, wn € Nog, 2M, 0 2™ e Q4 Ky, ..., 5 € Nog
Question: Determine

mlnz Z{ljw]H @) _ g

i€|k] j€[n]

5 € Tn,w
()

In the definition of BALANCED k-MEANS we do allow to choose the sites (s(i)> -
7
independently of the clustering. However, we see that

Z §i,jwj H D — 5@ = Z (Z §i jwj || H Ci) JF Ki Hs(i) —c(C) 2)
JE€n]

ic[k] j€[n] i€[k]
(6.8)

holds, which easily follows by reformulations in analogy to the previous section. Thus,
for any optimum (of the optimization variant) of BALANCED k-MEANS, the sites are
identical to the cluster centroids (and hence the objective value equal to the moment
of inertia as defined in Eq. (6.2)).

Let us analyze the complexity of BALANCED k-MEANS. The famous k-MEANS
problem has been shown to be APX-hard ([Awa+15], [LSW17]). Furthermore, it
is known that k-MEANS remains AP-hard even in the plane ([MNV09]). (For a
clarification on the used terms for approximation complexity we refer to [KV12,
Chapters 15-16] and [Aus+99].) We may start our analysis by the observation that
the decision variant of BALANCED k-MEANS is N'P-complete. While this will follow
as well from later results, an independent proof by a reduction of a variant of EXACT
COVER BY 3-SETS is provided in Appendix A.
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Proposition 6.1
The decision variant of BALANCED k-MEANS is N'P-complete.

Proof. Containment in NP follows as we can restrict the sites to the centroids that
result from a clustering. The latter on the other hand can be chosen extremal w.r. t.
T, hence we obtain a rational certificate. Hardness will follow from Theorems 6.3
and 6.4. O

Unfortunately, we have not been able to transfer the inapproximability results of
k-MEANS from the literature to BALANCED k-MEANS. However, following Eq. (6.4)
we can formulate an alternative variant:

Problem BALANCED MAX CENTROID VARIANCE:

Input: Wi,y wp € Nog, 20, . 2™ e Q¥ ki, ...,k € N
Question: Determine

max Y killc(Ci) —c(X)|l5 st €T
1€[k]

In other words, while we do not know about the approximability of the expected
inner-cluster-variance, we will show inapproximability for the centroid variance that
is optimized by BALANCED MAX CENTROID VARIANCE. We will shortly follow the
established theory in [BG12] for a practical approach to the usage of power diagrams
in our setting. This will reduce the BALANCED k-MEANS problem via the BALANCED
MAaX CENTROID VARIANCE formulation to a certain norm maximization problem. For
now, we can already exploit this connection in order to deduce inapproximability.

In order to do so, we will exploit a hardness result on Euclidean norm maximization
over full-dimensional parallelotopes.

Problem [—1, 1]-PARMAX:
Input: oW v@ e Q7 linearly independent

Question: Determine

max [|v]l5:ve Y [-1,1]p®
i€[d]

Brieden, Gritzmann, and Klee [BGK00] showed the following inapproximability result
on [—1,1]-PARMAX. In the following statement, the ratio of an approximation algorithm
for a minimization problem refers to the quotient of the algorithm’s output value and
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6.1 The Balanced k-Means Problem

the actual optimal value in the worst-case (so that by definition this is a value greater
or equal than 1).

Theorem 6.2 ( [BGKO00, Theorem 2.1] )

The problem [—1,1]-PARMAX is APX-complete and there exists a polynomial-time
approximation algorithm with ratio 7/3. Unless P = NP, there does not erist a
polynomial-time approzimation algorithm of ratio 1.090.

With this result we are able to show the following:

Theorem 6.3
The problem BALANCED MAX CENTROID VARIANCE is APX-hard, even when reduced

to the case k =2, w =1 and k1 = ko = 5.

Proof. Let v, ... v € Q¢ define an instance of [—1,1]-PARMAX and set P :=
>icig =1 1Jv®. We define an auxiliary polytope in Q¢ via

(@)

5o 2d . 5. v ) . O,
P .= {:c eQC: == Zze[d} A ( 0 ) + Zze[d] Ad+i (U(Z)> ) (6.9)
A E ng, AT1 =0
We will first show
2 1 -2
ma ]} = 5 max||3. (6.10)

For any A € [0,1]? and z := Yicld) Aiv() we can define A := (AT, —=AT)T. Thus, A € B%¢,
AT1 = 0, and

() ez (2)

1€[d] i€[d]

2
2
= 2|3

2

2 2
= +
2

3 Anld

i€[d]

Z S\d—i—iv @

1€[d]

2

hold. Vice versa, let A € ngl with AT1 = 0 and obtain the corresponding T € P
according to Eq. (6.9). With  =: ((z)T, (z®)T)T it follows that (), z(2) € P as

2 2
well as maX{Hx(l)H , Hx(2)H } > 1 [EES
2 2
We now obtain an instance of BALANCED MAX CENTROID VARIANCE in dimension

) J )
2d via k := 2, n:=2d, k1 := Ky := §, w; := 1 for j € [n] and V) = UO , zldtd) =

(v?j)> for all j € [d]. Let T := T((wl,...,wn),(m)ie[ko be the corresponding
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clustering polytope. We claim that

2
n 2 ~112
= C)—c(C = ) 6.11
4 l?ea%(uc( =@l lgzng”x“z (6.1

For any £ € T, we can set A := &;. — &.. Then both A € ng apd )\T]l = Zje[n} §1,j —
€25 =5 — 5 = 0 hold. For the corresponding & := 3~ ;c(oq) Ajz() € P (as in Eq. (6.9))
it follows that

2
n?
= Z||C(Cl)_c(c2)”§' (6.12)
2

Z 51,j$(j) _ Z Ez,jfﬁ(j)

je[2d] jel2d)

~ 112
121z =

On the other hand, for any A € B2/ with ATl = 0 we can define & := %(]l(”) +A)
as well as & = 1(]1(") A). We obtain € >0, &+ &, = 1 as well as §,L»T7.]1(”) =
SN TLM £ AT1()) = 2 = ; for i € [2], so € € T holds. With
1

S gy = N g = Y 5(1—Aj)gc<j>— Z S(1+X) = > A2l

Jj€[2d] jE€[2d] j€[2d] j€[2d] Jj€[2d]

we see that (6.12) holds and so (6.11) follows. From Egs. (6.6), (6.10) and (6.11), we
get that
2 n

n 2
max a3 = - max e (C1) — e(Ca)l; = § max 2 le(€) =0l

and so this reduction in fact preserves any approximation ratio. Hence, we can conclude
both claims from Theorem 6.2. O

Of course, from Theorem 6.3 we can deduce Proposition 6.1. However, we are particu-
larly interested in the planar case for our applications of interest. In order to show
hardness for this case, we can indeed apply the proof of Mahajan, Nimbhorkar, and
Varadarajan [MNV09] for showing hardness of the planar k-MEANS problem.

Theorem 6.4
BALANCED k-MEANS is N'P-complete even when restricted to the plane, i.e., d = 2.

Proof. Let us roughly describe the basic idea of the proof in [MNV09] and how this
fits our setting. Here, hardness is shown by a reduction from PLANAR-3SAT. This
variant of 3SAT only considers instances that yield a planar graph with variables and
clauses as nodes. The edges of this graph form a cycle of all variable nodes as well as
connect all variables to clauses containing an associated literal.
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Using this planar embedding the authors then construct another graph with an
embedding in the plane. This graph then consists of disjoint even cycles for each
variable and is embedded in the plane such that the nodes lie on a grid. Furthermore,
the node placement, the grid distance, as well as the choice of the parameter k are
made such that an optimal k-MEANS clustering will produce a matching of nodes along
those cycles. Which of the two possible matchings is chosen corresponds to the variable
assignment for 3SAT. Finally, the cycles are arranged such that for each clause another
point can be placed in a particular way. For each literal in a clause, this point then
lies close to a pair of variable nodes such that a clustering of this pair fits the type of
the literal. An optimal k-MEANS clustering will then still partition the variable node
cycles into pairs of neighbors, while each of the clause points will be assigned to one of
those pairs. Only if the 3SAT instance is a YES-instance, every clause will possess at
least one close pair of variable nodes that is contained in one cluster.

Important for our setting, the sizes of the clusters in an optimal clustering are known
a priori. Here, note that in order to enforce optimal clusterings that produce valid
variable assignments, the variable points are weighted by a factor M, while the clause
points have weight 1. (More precisely, the authors in [MNV09] consider an unweighted
setting and thus create M copies of each of those points.) With si,...,s, € 2IN5
denoting the number of nodes on each of those cycles and m being the number of
clauses, we get a total number of clusters k = % > ic[r] Si- We furthermore know that
any optimal k-MEANS clustering will have k — m clusters of size 2M and m clusters
of size 2M + 1, so we can equivalently consider the according instance of BALANCED
k-MEANS, which then yields the claim. O

Unfortunately, crucial for our applications is the equally balanced case in the plane.
While the construction in the reduction in Theorem 6.4 de facto leads to asymptotically
equally balanced clusters (of sizes 2M and 2M + 1, where M can be chosen arbitrarily
large), the proof from [MNV09] does not seem to be easily adaptable to us. Thus, this
remains an open question.

6.2 Algorithmic Approaches

Despite the inapproximability results of the previous section, the BALANCED k-MEANS
problem turns out to be practically manageable for many applications of our interest.
This section is to summarize and adapt the existing algorithmic approaches (here, we
mainly focus on [BBG17; BG04; BG10; BG12)).

6.2.1 A Balanced-k-Means Algorithm

A first natural approach is to adapt the famous k-MEANS algorithm (also known as
Lloyd’s method as first introduced in [Llo82]). This has been done by Borgwardst,
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Brieden, and Gritzmann [BBG17], who defined and analyzed the (weight-)balanced
k-means algorithm. Note that in [BBG17] the authors consider a more general setting
as their variant allows lower and upper bounds for the weights of the resulting clusters.
The BALANCED k-MEANS-algorithm is given by Algorithm 1.

Algorithm 1: BALANCED k-MEANS Algorithm
Input: =M, ... 2™ ¢ R4,

Wi, ... wn € Rag, K1, ..., kK € Rag, s(P, ..., s®) e R?
1 Repeat
2 Obtain an optimal solution { = (C'1,...,Ck)" of (4.18) w.r.t.
12
fi(z) = Hx — 5@ . 1=1,...,k, and according to the remaining input.

if ¢(C;) =s" Vic [k] then

return &, s sk

5 | forallic [k] do s() « ¢(Cy)

In order to analyze the algorithm, the terminology for the relation of power diagrams
and clusterings can be extended as follows: Given a clustering &, a unit set X, and

2
, T H for i € [k], the diagram

a power diagram P w.r.t. functions f;(z) = HJ: — s

is called centroidal if ¢ (C;) = s holds for every i € [k]. We have already concluded
from Eq. (6.8) that in every optimum of BALANCED k-MEANS the sites must coincide
with the cluster centroids. Hence, in any optimum the corresponding feasible power
diagram must in fact be centroidal.

Consequently, if this is not the case, the update step of Algorithm 1 (line 5) adjusts
the sites by the current cluster centroids. From Eq. (6.8) we immediately see that
this yields a sequence of (fractional) clusterings that is strictly decreasing w.r.t.
the BALANCED k-MEANS objective. By exploiting the relation to power diagrams,
Borgwardt, Brieden, and Gritzmann [BBG17] furthermore show that the algorithm
will terminate in n©(@) iterations. As is the case for the classical k-MEANS algorithm,
Algorithm 1 does in general not lead to a global optimum of BALANCED k-MEANS and
in particular strongly depends on the choice of the start sites provided by the input.
We will consider its convergence properties more closely later on.

6.2.2 Norm Maximization over Gravity Polytopes

While in Section 6.1 we saw that the search for a global optimum is indeed a hard
problem, it has been demonstrated both theoretically ([BG10; BG12]) and practically
by means of the problem of farmland consolidation ([BBG14; BG04]) that it can still be
reasonably tackled in an approximate manner. Here, we will focus on the BALANCED

144



6.2 Algorithmic Approaches

Max CENTROID VARIANCE variant. Following Eq. (6.6), we see that the objective of
BALANCED MAX CENTROID VARIANCE can be rewritten as

> kille(Cy) = e(X)|3 = % 7 kiklle(Ci) = (O3 (6.13)
i€[k] w( ) i<le[k]

Informally speaking, this may be read as the optimal clustering pushing the cluster
centroids as much apart as possible. Brieden and Gritzmann [BG10] provide a thorough

k(k—1)
investigation of clustering bodies. In general, given norms |- ||, and |- ||, in R™ 2 :
and R?, respectively, those describe the level sets

Ci={(c, s )T €R™ t|[(lles — eall, e = sl llew1 = ell, ), < 1.
In [BG10], clustering bodies for various choices of |-||, and | ||, are studied, in

particular with regard to their approximability by polyhedra. Observe that the level
sets of the objective (6.13) are up to taking the square root identical to the clustering

body with || - ||, := ||-||; being the Euclidean norm and || - ||, being the ellipsoidal norm
k(k—1)
with the ellipsoid diag <( ff?) B, * as unit ball.
) i<lelk)
For the fully Euclidean case, i.e., [|-[|, =[]l and [[- ||, = [|-|l;, it follows that C'" has

the lineality space L = {(ci)ie[k] c R¥* :¢; = ¢ Vil € [k]} Furthermore, they obtain
C = ﬁng N Lt + L (cf. [BG10, Lemma 2.3, Theorem 4.3]). Thus, a polyhedral
approximation of the d(k — 1)-dimensional Euclidean ball (embedded in the subspace
L+ = {(Ci)ie[k] € R . Dic[k] G = 0}) will suffice in order to approximate the clustering
body.

There is another way to recognize BALANCED MAX CENTROID VARIANCE as a norm
maximization problem, as is also described in [BG12]. Note that for the purpose of
solving BALANCED MAX CENTROID VARIANCE (or BALANCED k-MEANS) we can
assume the units to be centralized, i.e., Zje[n] wjzv(j) = 0 or, equivalently, ¢ (X) = 0.
Otherwise, we could commonly translate all unit points (and thus all cluster centroids)
without consequence for the considered problems. Also, note that a common translation
of all units results in a translation of the cluster centroids along the gravity body’s
lineality space L. For the objective of BALANCED MAX CENTROID VARIANCE this
assumption yields

> rille(@) — e (X = X mille(@)] (6.14)

ic[k] i€[k]

Note that this is also, of course, in accordance with Eq. (6.7), as here we are assuming
E[X]| =0
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As is clear from Eq. (6.14), our objective is only sensitive to changes of the cluster
centroids. Thus, following [BG12] we define the gravity polytope

G = {(c (COT,.o,c(C)NTERM 3¢ = (Cy,...,Cp)T € T,W} =A-T,,, (6.15)

where A : RF*™ — R* is the linear function that maps each cluster C; to its resulting
centroid ¢ (Ci) = 3¢ i :—zx(j). Note that in [BG12] more general gravity bodies are
considered as the authors include the possibility for cluster weights x; not to be fixed
but to range in certain bounds. In particular, this breaks the linear relationship between
the polytope of feasible clusterings and the set of resulting centroids. Also related to
that, Hwang, Onn, and Rothblum [HOR98| define single shaped partition polytopes
which result from the vector sums of size-constrained clusters of (unweighted) points
and hence yield dilatations of the gravity polytopes as defined in (6.15). More closely,
mean partition polytopes as defined in [CHRO6] are identical to gravity polytopes as
defined here but for unweighted points. Gravity polytopes for unweighted points are
also researched by Borgwardt [Bor10] with the focus on the strict separation properties
of their vertices as well as their edge-structure.
We observe that the gravity polytope lives in a (k — 1)d dimensional space:

Lemma 6.5
Assume dim(X) = d. For the gravity polytope G as defined by Eq. (6.15) it holds that

dim(G) = d(k — 1) and aff(G) = {(c(i))ie[k] € R% . > ic[k] ricl) = > icin] wj:v(j)}.

Proof. Set Lg := {(c(i))ie[k] € R . Zie[k} el = Zje[n] wja:(j)}. It is clear by def-
inition that G C L as well as dim(L¢g) = d(k — 1) hold, so we only need to show
dim(G) > d(k —1).

Define the clustering ¢ € T}, via fl-(g-) = w&) for i € [k],j € [n]. It is easy
to check that £€©) e Ty and, as £€© > 0, in particular £©) ¢ relint(7y ). Thus,
with ¢© = A¢© it follows that ¢© = (¢(X),...,c(X)) € relint(G). Now, let
(v(i))ie[k,l] € RU—1) | set vk) = —é Diclk—1] k@, and v = (0@, ... v®). Thus,
¢ + v e Le holds.

As dim(X) = d, we may w.l.o.g. assume dim({az(l), . ,x(d“)}) =d.

As €0 > 0, it holds that the clustering graph G (5 0 ) is complete (as a bipartite

graph between the cluster and unit nodes). This enables us to construct cyclic exchanges
that yield the desired perturbation of the cluster centroids. For this purpose, let ¢ (%9
for i € [k — 1] and j € [d] denote the cyclic exchange associated with the cycle
Ck,J,Ci,d+1,C} (as defined by Eq. (2.6)).

Fix some i € [k — 1]. By construction, we get (AC()); = H% (:c(j) —x(d+1)),

(AU, = L (;p<d+1> - g;<a‘>), and (AC(9)),. =0 for all [ € [k — 1]\ {i}.

146



6.2 Algorithmic Approaches

y) € R for j €
[d], such that ;v = jeld )\y)(x(j) — 2D This yields A(Xjelq /\gi)did)) =

(0, ...,0,0%9.0,...,0, —%U(i)>. So, in total

Next, due to the assumed affine independence, we can choose A

(Z) 1,7 _ 1 2 k—1 1 G _

A ( > A a>> _ (M 0@, o), L5 W()> .
i€lk—1] jeld] i€ hat]

Hence, for € > 0 sufficiently small, we have £©) + € ielho1] 2 jeld Ag'i)C(i’j) € Ty, and

hence ¢ + ev = A + € ielk—1) 2jeld) /\g'i)c(i’j)) € G, which shows the claim. O

Under the assumption of ¢ (X) = 0, we can deduce from Eq. (6.14) that BALANCED
MAx CENTROID VARIANCE reduces to a norm maximization problem over the gravity
polytope, i.e.,

2

max Z K Hcm

| (6.16)
e=(c) ek €G i€ (k]

2

Together with Lemma 6.5, this means that problem (6.16) asks to maximize an
ellipsoidal norm in the d(k — 1)-dimensional subspace aff(G) = lin(G) (as ¢(X) = 0)
1 1
with the ellipsoid diag (Hl Ry 2) B4? N 1in(G) as its unit ball.
Now let us merge the observations above and our previous theory of the correspon-
dence between power diagrams and weight-balanced clusterings. As a first step towards

an algorithmic approach for the problem (6.16), we may first consider the faces of G.
We denote a face of G w.r.t. an outer normal d € R% by

F(G,d):={ceG:dc>d¢Vee G} (6.17)

and faces of T ., accordingly. Note that due to G = AT, ,,, we can obtain any face of G
as the image of the face of T} ., with outer-normal A7d, i.e., F' (G,d) = AF (Ty,, ATd).
Observe that for any vector d = (d(i))iem € R it holds that

Tg = [ ¥ ()T 40 kxn
ATd = <Ri(1: 7)€ RYT
jeln]
Now let (a17,...,a;T)T € R%. For reasons to become clear shortly, we are interested
in the face F (G, (—k1a17,...,—krarT)T). We obtain this as the image
_ T _ TT) — s Tp()
F (G, (=k1a17,..., —Kkrai")7) = AF (T,@w,( wja; Tz )ie[k]7je[n]). (6.18)
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The latter face is the set of optimizers of

min Z Z & jwj - a;Tz). (6.19)

§ET ek sl

We observe that the linear program (6.19) is just of the form (4.18) but w.r.t. linear
functions f;(x) := a;Tx. Following Proposition 4.5, this means that for optimal solutions
of (6.19), there are feasible (or even supporting) generalized Voronoi diagrams w.r. t.
affine functions f;(z) := a;Tx + p;. This, of course, yields a power diagram in affine
representation as introduced in Section 3.3.2. An alternative way to observe this is to
take any § € T, and rewrite the BALANCED k-MEANS objective as

T 5 90w T T 2000 4

1€[k] j€[n] i€ k]je[n

=) wj H @) H + Z H 0| )T SN & wi —25(0)T5 (), (6.20)
J€E[n] i€[k] j€[n]

Hence, the considered optimal face of the program (4.18) equals that of (6.19) for
a; = —2s for i € [k], which is in accordance with Section 3.3.2.

In other words, every face of the gravity polytope corresponds to exactly those
clusterings that allow a feasible power diagram whose sites are determined from the
corresponding outer normal. The following theorem precises this relation between
the faces of G and power diagrams. In particular, it shows that there is a one-to-one
correspondence between vertices of the gravity polytope and vertices of the clustering
polytope that allow a supporting power diagram. The latter statement which is part iii
of the following theorem combines [BG12, Theorem 2.1] and [BG12, Theorem 4.7]. The
uniqueness of clusterings that have a centroid vector which is extremal may also be
deduced from the according result for single shaped partition polytopes in [HOR98,
Theorem 3.1] and has also been shown in [Borl0, Lemma 2.12].

Theorem 6.6
Let a; € R? fori € [k].
The following holds:

i) Let § € Tyw. Then there exists (1i);epy € RF such that the power diagram
PD.g ((ai,ui)ie[k]) is feasible for & if and only if A € F (G, (—k1a17, ..., —Kkrag")T).

it) Let ¢ = (c(i)> - € G. Then there exists a clustering { € Ty, with c = A and

(Ni)z'e[k} € R* such that the power diagram PD g ((ai,ui)ie[kﬁ supports & if and
only if ¢ € relint (F (G, (—k1a17, ..., —kKgapT)T)).
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iii) The vector c is a vertex of G if and only if there exists a unique clustering § € Ty,
such that ¢ = A, & is a vertex of Ti..,, and there exists a power diagram that
supports &.

Proof. Part i immediately follows from Proposition 4.5 as the problem (6.19) fits the
form of (4.18) (cf. the discussion above).

Part ii follows almost analogously. Let d := (—r1a17,..., —rra")T. From Eq. (6.18)
it particularly follows that

relint(F (G,d)) = A - relint(F (1), , ATd)) . (6.21)

Here, we use that taking the relative interior and applying a linear transformation
commutes for convex sets in general (see, for example, [HL93, Chapter 3, Proposi-
tion 2.1.12]). Consequently, for every ¢ € relint(F (G, d)), there exists a clustering
€ € relint(F (T, ATd) which then yields the desired claim in connection with Propo-
sition 4.5.

For part iii, first assume that c is a vertex of G. Let d € R% such that F (G, d) = {c}
(i.e., d is in the interior of the normal cone of G in ¢).

Now let €1 ¢ ¢ T\ such that AEM = A¢® = ¢ Furthermore, set &* :=
%(g(ﬂ +¢®@)). From Corollary 2.17 we know that £2) — ¢(1) is a linear combination of
cyclic exchanges whose corresponding cycles are all contained in G (5 @ —¢ (1)) C G(&).
Let ¢ be such a cyclic exchange. As G ({) C G (&%), there exists € > 0 such that
& +eC € Ty, . Consequently, ¢ +eA( = A({* £ €() € G. As c is extremal, it follows
that AC = 0. Let j*,C;,j~ be a subsequent tuple of a unit, cluster, and unit node
along the cycle G (¢). By construction, (A¢);. = 20" — 2G7). Thus, 20" = z07),
which contradicts our assumption of unit points being pairwise distinct. Consequently,
there does not exist such a cyclic exchange and hence £ = ¢* = £€®) is the unique
clustering with centroid vector c.

Now for any & € F (T}, ATd) it holds by definition that dTA¢ > dTAE* = dTe. Thus,
A¢ € F(G,d) = {c}. As £ is unique, this means F' (T}, ATd) = {{*}, so {* is a
vertex of T}, ,. The existence of a supporting power diagram then follows from part ii.

For the reverse implication of part iii, let £ be a vertex of T}, and the power diagram

PD.g ((ai,ui)ie[k]) supporting . Then Proposition 4.5 in connection with (6.19)

yields £ € relint(F (T, ATd)) with d := (—k1a17, ..., —KraiT)T. As € is a vertex, this
implies F' (T ., ATd) = {£}. Then Eq. (6.21) yields that relint(F (G,d)) = {A¢}, and
so A is a vertex of G. O

Note that Theorem 6.6 also applies to the gravity polytope itself as a non-proper
face. Our definition of power diagrams does not exclude the parameters that are all
0. This yields a (degenerated) power diagram whose cells all coincide. The diagram
indeed supports all clusterings that assign each point to every cluster and whose
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resulting centroid vectors give the relative interior of the gravity polytope (according
to Theorem 6.6 part ii).

Also note that in [BHR92] it was shown that extremal points of single shaped
partition polytopes (and hence scaled gravity polytopes for unweighted points) lead to
clusters with disjoint convex hulls. This is, of course, in accordance with the findings
here, as the unweighted case leads to integer extremal clusterings. Thus, a supporting
power diagram must contain the clusters’ points in the interior of the corresponding
cells which implies that the convex hulls are indeed disjoint. This was also demonstrated
in [Borl0, Theorem 2.52].

The relation of faces of the gravity polytope G to power diagrams furthermore allows
us to bound their number. In order to do so, we exploit a result from [BBG17]. Here,
the authors bound the number of iterations of the BALANCED k-MEANS-algorithm as
they consider the set of all power patterns given as

PP(X) = {(X N P)icyy : Vi € [K]3s@ € RY, iy € R :
(Pt .., Pe) = PD (s, pi)icppy) }-

In [BBG17], the cardinality of PP(X) is bounded. Let us briefly describe the key idea
to do so. Consider some power diagram (P,..., P;) = PD.g ((ai, al-)ie[k,]). Then in

(6.22)

order to decide for a unit (/) € X whether it is contained in the dominance region
H;, for i <l € [k], one has to evaluate the sign of a;Tz9D + o; — ;729 + . This
is linear in the power diagram parameters (a;, Oéi)ie[k}- In total, there are n(g) such
linear expressions. A sign-pattern of those linear expressions is now given by the signs
in {—1,0,1} of their evaluations for some parameter vector. A result from [War68],
that allows to bound the number of occurring sign patterns for any set of polynomial

expressions, is then adapted. This yields the following theorem':

Theorem 6.7 ( [BBG17, Theorem 2])
It holds that

de - (k . 1)n> (d+1)k—1

PPOO)| < (H

In [BBG17], the power patterns are then set into relation to certain vertices of Ty, .
Using a similar argumentation, we can relate power patterns to those faces of T} ., that
yield the faces of G and hence bound their number.

d+1)k—
!Note that in the original theorem in [BBG17] the bound is given as (w (@ g Here, a

factor of 2 in the inner expression results from the fact that in [BBG17] the spherical representation of
power diagrams is considered and hence a quadratic (instead of linear) expression is obtained. However,
it can be easily checked that this does not require any further adaption of the proof.
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Theorem 6.8
It holds that

’{F(G,d):de]deH§< y

Proof. We show the claim by arguing that every face of G can be associated with a
distinct power pattern, so the claim follows from Theorem 6.7.

Let d = ((dM)T,...,(d®)T)T € R%. By definition of T}, as the intersection of an
affine subspace with the non-negative orthant, it is clear that all £ € relint(F (Tx ., ATd))
have the same support vector (supp(C’i))ie[k], as well as that the relative interiors
of distinct faces of T}, ., have distinct support vectors. Further, there exists a power
diagram P = (P,...,Py) that supports &, which by definition yields P, N X =
{:E(j) eX:je supp(Ci)} for all i € [k]. Thus, every face F' (T, ATd) can be associ-
ated with a distinct power pattern. As every face of the gravity polytope G is obtained
as F'(G,d) = AF (T4, ATd), the claim follows. O

Next, we are interested in (local) optima of the problem (6.16). As we are maximizing
a strictly convex function over a polytope, we know that every local optimum will be
a vertex of G, which according to Theorem 6.6 corresponds to a vertex of T, ,,. The
following theorem concludes that a local optimizer is achieved for any clustering that
is extremal w.r.t. T, ., and that allows a supporting centroidal diagram. Note that
this result coincides with [BG12, Theorem 2.4] (up to minimal changes as we do allow
degenerate diagrams).

Theorem 6.9
Let ¢ = (c(i)) €eq.
1€[k]

Then the following holds:

i) The vector c is a local optimizer of (6.16) if and only if F (G, (ﬁic(i))ie[k]) = {c}.

it) The vector ¢ is a local optimizer of (6.16) if and only if there exists a vertex
€ € Ty with ¢ = A§ and a power diagram that supports & and is centroidal (w. 1. t.

§).

Proof. As problem (6.16) asks for maximizing a strictly convex smooth function over
a polytope, we know that ¢ € G is a local maximum of (6.16) if and only if the gradient
of this function at ¢ lies in the interior of the normal cone in ¢. With g : R%* — R,

12 :
g(cM .. Ry = 2iclk] Hc(l)‘ ;o we have that Vg(c®, ..., c®) = (2mic("))i€[k] holds.
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Thus, ¢ = (c(i)) ] is a local maximum of (6.16) if and only if Vg(c) € int(Ng(c))

and hence F (G, (ke ..., /{kc(k’))> = {c}.
Part ii now follows from part i in combination with parts ii and iii of Theo-
rem 6.6. Assume F (G, (kic);c k}) = {c}. Then by part ii of Theorem 6.6, as

[
c € relint (F (G, (2%10(1), el 2/%0(’“)))), there is a clustering with centroids ¢ and a

i€
affine and spherical representations of power di[a}grams (see Section 3.3.2), we find
f; € R for i € [k] such that PD,g ((—QC(i),pi)ie[k]) = PD ((C(i)’ﬂi)ie[k})' Hence,
this power diagram is in fact centroidal. From Theorem 6.6 part iii we get that the
clustering must be a vertex of 7}, .

Vice versa, if there exists a vertex { € T, with corresponding centroid vector ¢
and a centroidal power diagram that supports £, Theorem 6.6 part iii yields that
¢ is a vertex, and Theorem 6.6 part ii (using the same relation as above) that ¢ €
relint(F (G, ("%C(l))ze[kz]) So F (G, (Hzc(l))ze[k]) = {C} O

supporting power diagram PD,g ((—20(“, ,uz-) N ) Recalling the relation between

Concerning our original BALANCED k-MEANS problem, we get the analogous result:

Theorem 6.10
Let sites (s(i))ie[k] € R% and a clustering ¢ = (C1,...,Cy)" € T be given. Then the
following statements are equivalent:

i) The pair ((s(i))ie[k},f) is a local optimum of BALANCED k-MEANS.

i) The clustering & is the unique optimum of (6.19) for a; :== —c(C;) = —s® for
i€ [kl

iii) The clustering & is a vertex of Ty, ., and there exists a power diagram with sites
(s(z))ie[k] that supports & and is centroidal.

Proof. First, it is clear that all three statements imply s = ¢ (C;) for every i € [k]
(in particular recall Eq. (6.8)).
Second, let us reassure that we may also w.l.o.g. assume that

Wi ,
c(X)= Z w(;()a:(]) =0
J€ln]

(or otherwise shift all points uniformly by —c(X)). As we assume s = ¢(C;) for
i € [k], the objective of BALANCED k-MEANS is invariant to uniform shifts of the units
(and hence the cluster centroids). Concerning the second statement and problem (6.19),
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we can observe that with e := ((e)7 ... (e@)T)T for any e® € R? and ¢ € T}, it
holds that

eTAE = Z Z & jw; (e Tzl = (£0)T( Z wzW)

ic[k] je[n] Jj€ln]

and so for any d € R4 it follows that F' (T}, ATd) = F (T, AT(d + ¢)). This implies
that the program (6.19) is invariant w.r.t. common shifts of the vectors a;. Hence,
a common shift of the centroids does not affect the second statement, too. For the
third statement, this holds true, too, as the cells of any centroidal power diagram shift
uniformly if the sites do.

Next, following the preceding section we know that ((c (Ci))ie[k},f) for
£ = (C1,...,Ck)"T € Ty, is a local optimum of BALANCED k-MEANS if and only
if £ is a local optimum of BALANCED MAX CENTROID VARIANCE. Under the made
assumption the latter is equivalent to ¢ := (¢ (C'i));e[r) being a local optimum of (6.16).

According to Theorem 6.9 part i this is equivalent to

{c} = F (G, (kic(Ci)iep) - (6.23)

If Eq. (6.23) holds, then c is a vertex of G. Thus, Eq. (6.18) together with Theorem 6.6
part iii yield that Eq. (6.23) holds if and only if F (T,W, (~wje(Co)Ta)

{&}, which is exactly part ii.
Finally, part iii readily follows from Theorem 6.9 part ii. O

ie[k},je[n]>

The following examples stress that both the supporting property as well as the claim
for an extremal solution in part ii of Theorem 6.9 are necessary. Note that those
translate into the uniqueness requirement for clusterings in Theorem 6.10.

The first example shows the possibility of a clustering whose centroid vector is a
vertex of G but not a local optimum of the problem (6.16), although there exists a
feasible centroidal power diagram.

Example 6.11
We consider the setting as illustrated in Fig. 6.1. Here, we set

o (1Y @ _ (1) . _(1 @w._(!
0 () o (1) = (1) = 1),

wj = 1for j € [4], and K1 := ko := 2.
Let £ be the clustering as depicted in Fig. 6.1a, i.e., assigning units () and 2®)
to cluster 1 and z(?) and z* to cluster 2. Then £(©) is extremal (as it is integer) with
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-1} @ 1 -1 @ 4 -1
|

-1 0 1 -1 0 1
(a) Centroidal and extremal, (b) Improving movement of (c) Global optimum.
but no local optimum. cluster centroids.

Figure 6.1: Illustrations for Example 6.11. Squares depict the sites of the power diagrams,
while the jagged points mark the resulting cluster centroids. The gray-shaped
area illustrates the projection of the gravity polytope to the first d coordinates.

¢(C1) = (_?/2> L e(Cy) = (9) ,

and the power diagram PD ((c (C’l(o)) ,0) , (c (CQ(O)) ,O)) is feasible for £ and
centroidal.

However, ¢(0) := (c (Cl(o)) ,C (02(0))> is not a local optimum of the problem (6.16):
Consider the cyclic exchange ¢ resulting form the cycle C1,3,C3,2,C; (as defined by
Eq. (2.6)). Then for 0 < e < 1 the clustering £() := £ + ¢ has centroids

c <Cl(€)) — (_:Z) and ¢ (CQ(E)) = (1;2> ;

as illustrated in Fig. 6.1b. Then ¢(©) := (c (Cl(e)) ,C (CQ(€)>) results in an objective
value 1 + 4€? for problem (6.16), which for € = 1 results in the global optimum (cf.
Fig. 6.1c). Thus, £ is not a local optimizer. Crucial here, it can be easily verified that
F (G, (ﬁic(i))iem) = conv ({c(o), c(l)})) is an edge of G. Figure 6.1 also depicts in gray
the projection of G onto the first two coordinates (i. e., one of the two centroids), which
preserves the faces of G (note that dim(G) = 2). In particular, ¢(9) is indeed a vertex of
G. A (non-centroidal) power diagram that supports & in accordance with Theorem 6.6

1 1
part iii is, for example, given by PD (((_{Z) ,0) , <<+1§2> ,O>> (which simply

results in a counter-clockwise rotation of the bisector of the power diagram in Fig. 6.1a).

centroids
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Similarly, we can easily find an example in which there exists a centroidal power
diagram that is even supporting, but the corresponding centroids do not yield a local
optimum of (6.16) as the face F' <G, (nic(i))ie[k]) is not a vertex.

Example 6.12
We consider the situation as depicted by Fig. 6.2 which is similar to that of Example 6.11.

T T

1 O . 1h O .
L [ | L [ |
0—&——&— o @ O -
| D | I D |
—1l . | -1l . |

T 0 1 10 1

(a) Centroidal but not ex- (b) Optimal clustering.

tremal.

Figure 6.2: Tllustration for Example 6.12, depictions as in Fig. 6.1.

This time, we have

W._ (0 @ _ (-1 (1) @._(0
e () e () (1) 0 1)

while still w; :=1 for j € [4], and k1 := kg := 2.
Figure 6.2a depicts the clustering £ that integrally assigns units (") and z* to
clusters 1 and 2, respectively, while units (2 and z(® are split equally. Thus, the

centroids are
c(Ch) = (_(1)/2> and ¢ (Cq) = <1?2> .

The power diagram PD ((c (Cl(o)) ,0), (e (CQ(O)>), 0)) both supports £(©) and is cen-
troidal.
However, as indicated by Fig. 6.2a, we can see that

F (G, (kie)jeqy) = conv ({ ((:1?2) ) (1?2)) 7 <<_1{j2> ) <_1;£2>> }) '

So following Theorem 6.9, this cannot be a local optimum. In fact, any vertex of G is
a global optimum in this example (cf. Fig. 6.2b).
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Examples 6.11 and 6.12 also point out an issue with the BALANCED k-MEANS-
algorithm as stated by Algorithm 1: In the given form, degenerate cases such as given
in the examples might prevent the algorithm from convergence to a local optimum.

However, from Theorem 6.10 we know that this can be prevented as long as we
require the solutions of the problem (4.18) to be unique and supported by a centroidal
power diagram. By its definition, the BALANCED k-MEANS-algorithm does not stop
before a centroidal power diagram has been found. We know further that if we always
take a solution from the relative interior of the optimal face of (4.18), we enforce the
supporting property. Now the following lemma implies that if we have obtained a
supporting and centroidal power diagram but the clustering is not unique, we can
improve in any direction on the current face of the gravity polytope. Note that this
situation appears in Example 6.12.

Lemma 6.13
Letc = (c(i))ie[k] € Gand& € Ty, suchthatc = A and {c} C F :=F (G, (K,Z'C(i))ie[k}).

Then for any centroid vector ¢ € F \ {c} and clustering é € Ty with ¢ = Aé, it
holds that

Z Z S H v _C(l Z Z &JWJH _cl)

i€|k] j€[n] i€lk] j€[n]

Proof. As c,¢ € F it follows by Eqgs. (6.18) and (6.20) that

5 5 g o = 5 5 g 0 0

i€lk] j€[n] i€[k] j€[n]

From Eq. (6.8) we get
2

) qung -2 Z@MH W el Z 2>0,
i€[k] jeln] i€[k] jeln] ic(k]
which in conclusion yields the claim. O

6.2.3 A revised Balanced k-Means Algorithm

We may now use the latter findings in order to obtain a revised version of the BALANCED
k-MEANS-algorithm in form of Algorithm 2.

For the revised BALANCED k-MEANS-algorithm as stated by Algorithm 2 we obtain
the following convergence result. This extends the analogous result in [BBG17] as Algo-
rithm 2 guarantees convergence to a local optimum. Of course, due to the degenerate
nature of the examples in which Algorithm 1 may not reach a local optimum, this is
more of theoretical than of practical interest. Also, we can slightly improve the bound
<4Oe;lk2n)(d+1)k Lo (4e~(kd—1)n)(d+1)k 1'

for the maximum number of iterations from
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Algorithm 2: BALANCED k-MEANS Algorithm (Revised)

Input: zU, ... 2" € R? pairwise distinct,
Wi, ... wn € Rag, k1, ...,k € Rag, s, ..., s®) e R?
1 Repeat
2 Obtain an optimal solution £ = (C1,...,Ck)T from the relative interior of

NP
the optimal face of (4.18) w.r.t. fi(x) = Hac — 50 » i € [k], and according

to the remaining input.
if ¢(C;)=s% Vic[k] then

if & is the unique solution of (4.18) then
L return &, s sk
else
Determine a cycle in G (§) and let ¢ be the corresponding cyclic
exchange.
A min{wjfi,j NS [k],] € [n] with Ci,j #* 0}
£+ AC

10 | foralli€ [k] do s« ¢(C;)

Theorem 6.1/
Algorithm 2 terminates in a local optimum of BALANCED k-MEANS after at most

N (d+1)k—1
(W) iterations.

Proof. We first assure that Algorithm 2 yields a strictly decreasing sequence w.r.t.
the objective of BALANCED k-MEANS.

Let ¢ € Ty, be the solution obtained in line 2 and set d := (k1(s™))T,. .., kp(s®)T)T.
By updating the clustering this way but keeping the sites, we get a solution that is as
least as good as the previous iteration’s one.

Now assume that the centroidal property check in line 3 returns true but the solution
is not returned as it is not unique. As we choose ¢ from the relative interior of the
optimal face, this is equivalent to the clustering { not being a vertex of T}, .,. According
to Theorem 2.12, this means that the clustering graph G (§) does indeed contain a
cycle, so the cyclic exchange ( is well-defined. Furthermore, due to G (¢) C G (§) we
obtain A > 0 in line 8. As by definition ¢;; € {0, 4} for all i € [k] and j € [n], it
follows that & + A( > 0 and in particular § + A\( € T . In particular, once more as
G (¢) C G(§) and as £ € relint(F (Tyw, ATd)), we get £+ A € F (T, ., ATd). However,
as noticed before, the assumption of pairwise distinct points implies that the cyclic
exchange must result in a shift of centroids, i.e., A( # 0. Thus, the updated clustering
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obtained in line 9 is still an optimizer of (4.18) but with centroids that are not identical
to the current sites.

Hence, whenever line 10 is reached, the update of the sites will strictly improve the
objective value of BALANCED k-MEANS according to Eq. (6.8).

Recall that the objective value of BALANCED k-MEANS only depends on the resulting
centroids (cf. Eq. (6.4) and the derivation of BALANCED MAX CENTROID VARIANCE).
This implies that no centroid vector ¢ = (c¢(C}));epn = A€ for a clustering £ € T,
can appear in more than one iteration. From Eq. (6.20) we know that the set of
optimal solutions of problem (4.18) is F (T}, ATd) with d = (ks ())z’e[k}- Thus,
line 2 may select any clustering £ € relint(F (T}, ATd)) and thus a centroid vector
A€ e relint(F (G, d)) = A -relint(F (T, ., ATd)) (cf. Eq. (6.21)). As no centroid vector
may appear twice, this implies that the gravity polytope’s face F' (G, d) of the centroid
vector must be distinct for each iteration, too. So, Theorem 6.8 implies that there can
(46.(k71)n)(d+1)k—1

d

be at most iterations.

At termination, it holds that ¢ is the unique optimizer of (4.18) for s = ¢ (C;) fo
i € [k] and thus the unique optimizer of problem (6.19) for a; = —c (C; ), i€ [k (
(6.20)). Hence, Theorem 6.10 states that £ is a local optimum. O

The revised BALANCED k-MEANS-algorithm offers a very practical possibility to
obtain a local optimum. We have seen in Section 6.1.2 that BALANCED k-MEANS is in
fact a hard problem and its counterpart BALANCED MAX CENTROID VARIANCE even
APX-hard. However, the latter takes the form of a norm maximization problem over
the gravity polytope as stated by Eq. (6.16).

We are given an implicit representation of the gravity polytope G as a linear
transformation of the clustering polytope T} .. In this view, the linear program (6.19)
can be understood as a (strong) optimization oracle for G. This means, given any
vector d € R% we can solve (6.19) in order to either decide that G = () or to find ¢* € G
such that ¢* maximizes d'c over G. As sufficient for this scope which shall only provide
a brief review of existing results, we disregard the issue of numerical errors and assume
an infinite-precision arithmetic for the following complexity statements. We refer
to [GLS93] and [Pap94, Section 14.3] for a comprehensive treatment of oracle-based
algorithms and their running time analysis.

The polynomial-time approximability of radii maximization, including the Euclidean
norm, over convex and compact sets (short: bodies) that are represented by an oracle
has been thoroughly researched ([Bri+98], [Bri+01]). Here, a polynomial-time, or
oracle-polynomial-time, algorithm can be understood as a polynomial-time algorithm
(in the classical sense of a Turing machine model) that can further call the provided
oracle at only the computational cost of writing and reading its corresponding in-
and output, respectively (cf. [GLS93, Section 1.2]). Brieden et al. [Bri+01] consider
both deterministic and randomized approximation algorithms. They show that for
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both deterministic as well as randomized? algorithms, any oracle-polynomial time
algorithm that maximizes the Euclidean norm over an oracle-represented body must

have an accuracy in (y/ %) with d being the dimension ([Bri+98, Theorem 3.2,
Theorem 4.2]). Here, an algorithm approximates the Euclidean maximum norm with
an accuracy r € [0, 1] if for the algorithm result ¢ 4(K) for a body K it holds that
r-maxgek |2lly < 04(K) < maxger ||z||,. At the same time, they provide both
deterministic and randomized algorithms that do solve the problem with an accuracy

in O ( Log(d )> ([Bri+01, Theorem 3.2.1, Theorem 2.3]). However, it is pointed out

in [Bri+01] that although randomization does not help to increase the asymptotic
accuracy, their proposed randomized algorithm is superior w.r.t. the estimated running
time bounds.

The randomized algorithm now obtains a polyhedral approximation of the Euclidean
unit ball from a uniform sample of extreme points of its polar, i.e., the unit sphere.
Let us briefly explain the key idea and sketch its complexity analysis. Here, one crucial
figure is the s-cap ratio, 7 (d, s).

For s € (0,1), a s-cap is given as the intersection of the sphere with a half-space at
distance s from the origin, i.e., C(s,a) := SN Has) for a € S*1. For any dimension
d, 7 (d, s) then denotes the ratio of surface volumes of an s-cap to the whole sphere,
ie, 7(d,s):= vola—1(C(s:a) g, any a € S%"!. Observe that for all a € C(s ,ﬁ), it

volg_ 1(Sd 1
holds by definition that aTx = ||z||, aT IxH
and independently distributed samples frorn the unit sphere. Let further z* € K
be a norm-maximizer of K. Then it can be shown that if |S| > 2[7(d,s)], with
probability greater than 6/7 it holds that C(s, FEIA :v*H ) NS # () and thus an accuracy

of s is obtained ([Bri+98, Theorem 4.2]). Furthermore for s > 2 it holds that
25v/d(1 — s?) < 7(d,s) < 10sv/d(1 — s ) 7 ([Bri+98, Lemma 5.1]).
then yields 7 <d o/ log ) = O(y/log(d d 2 ) for any a > 0 (which is O (d) for any

a < v/2). Note that it can also be shown that this bound is best-possible, i.e., any
randomized algorithm of accuracy s must make Q(7 (d, s)) oracle calls in the worst
case ([Bri+98, Theorem 4.2]).

In conclusion, calling the optimization oracle for K for O ( log(d)d) many uni-

> s||z||,- Now let S be a set of uniformly

%\

Basm calculus

~

form samples from S?~! yields the desired approximation (with an arbitrarily high
probability).

We may now apply this directly to the problem (6.16). Of course, maximizing
an ellipsoidal norm is equivalent to the maximization of the Euclidean norm in an

2A randomized algorithm must solve the problem (within the given accuracy) with a strictly
positive probability p € (0,1] . This probability can then be boosted to reach an arbitrary probability

p* by simply repeating the algorithm 1?(?;(111;);)) many times (cf. [Pap94, Chapter 11]).
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accordingly transformed space. Also, due to Lemma 6.5 and using the assumption
¢(X) = 0, the gravity polytope lives in the k(d — 1)-dimensional linear subspace

L:= {(c(i))ie[k] e R¥* . Z kicl) = 0}.

i€[k]

With the diagonal matrix D := diag(k11dg, ..., krldg) € R** Jet U € R¥*AE-1) he
a matrix whose columns are an orthonormal basis of D3 L. Finally, set

1 _
cm ] g [tosld(k — 1))
d(k—1)
for some constant o > 0 and let S be a set of uniform samples from S*—1 sufficiently

large to obtain an accuracy of (1 — €) with the desired probability as depicted before.
Then

max VcTDe =  max alez = | max ) alx = | max a'UTx
c€G 2eD? G aesdh—1 2€D3 G,aeS—1nD3 [, 2€D? G,aeSd(k—1)-1
= | max alz > (1—¢) max aw
2€UTD2G,aeSd(k—1)~1 z€UTD2G,acS
=(1-¢) max  a'Dc= (1—€) max Z Z & jwj - a;Tal).
c€G.aeD tUS €Tmer etk jem]

(ai)icy €D 2US

The final expression can be computed by solving (6.19) for each (a;);c[y) in D 3US.
Doing so, we obtain a randomized é-approximation algorithm for BALANCED Max
CENTROID VARIANCE for € := 2¢ — ¢2 (as our objective takes the square of the
norm). For our original BALANCED k-MEANS problem and without the assumption of
centralized units, this suggests to sample sites (s(i))ie[k} uniformly from the ellipsoid

c(X)+ D3USIk=1) ¢ aff(G) (recall that the transformation from affine to spherical
power diagram parameters implies a; = —2s( for i € [k]). We may then solve the
program (4.18) for every sample of sites. Of course, this can then be combined with the
BALANCED k-MEANS-algorithm for every sample in order to reach a local optimum.

As stressed in [BG12], while the actual approximation bound is, of course, a rather
limiting result, norm maximization over the gravity polytope still comes with the
advantage of a rather low-dimensional space of dimension (k — 1)d. In particular, this
is independent of the number of units n. Furthermore, for many of the applications
of our interest the dimension d is in {2,3}. For our main application example of
electoral district design this indeed will turn out to be a very manageable problem (cf.
Section 7.3.1).
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6.3 Summary & Conclusion

This chapter treated the BALANCED k-MEANS problem as a constrained version of the
famous k-MEANS problem. Here, we recalled and summarized results from the rich
existing theory of the application of power diagrams in our context.

Section 6.1 formally introduced the BALANCED k-MEANS problem, discussed its
objective and formulated the alternative BALANCED MAX CENTROID VARIANCE
problem. In particular, we contributed some complexity results by showing that
BALANCED k-MEANS is N'P-complete even in the plane and that BALANCED MAX
CENTROID VARIANCE is even APX-hard.

Section 6.2 then discussed algorithmic approaches to the BALANCED k-MEANS
problem. First, we recalled the natural adaption of the famous k-MEANS problem.
We then recalled and slightly extended results on gravity polytopes. We saw that the
BALANCED MAX CENTROID VARIANCE problem yields a norm maximization problem
over the latter. In particular, local optima can be characterized by extremal clusterings
that allow a supporting centroidal power diagram (as was originally shown in [BG12]).
We then used those results in order to obtain a revised version of the BALANCED
k-MEANSs-algorithm which guarantees convergence to a local optimum. Finally, we
recalled some results on the approximation of Euclidean norm maximization which in
combination with the BALANCED k-MEANS-algorithm yields the algorithmic approach
to power diagram clustering that (among others) will be exploited in the following
chapter.
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Chapter 7 Electoral District Design

In this chapter, we want to demonstrate the power and versatility of our geometric
clustering approach by means of the problem of electoral district design. Here, muni-
cipalities of a state have to be grouped to electoral districts. One of the dominating
constraints is to achieve balanced districts, i. e., districts that contain more or less the
same amount of eligible voters. However, other requirements w.r.t. shape or other
characteristics of the districts yield further yet more elusive constraints. We will see
that using different classes of generalized Voronoi diagrams depending on the individual
emphasis of those requirements can result in very pleasing results. Note that parts of
this chapter have been developed and published in [BGK17] in collaboration with Prof.
Dr. Andreas Brieden and Prof. Dr. Peter Gritzmann.

Section 7.1 will introduce the problem of electoral district design. Section 7.2 will then
outline the general methodology which will be used to apply our theory of geometric
clustering by generalized Voronoi diagrams to this problem. Next, Section 7.3 describes
how this applies to selected classes of diagrams. Finally, Section 7.4 describes the
implementation and results of those approaches for the example of federal elections in
Germany.

7.1 The Problem of Electoral District Design

7.1.1 Problem Description

Let us first describe the problem of electoral district design from the application point
of view before providing a formalization in Section 7.1.4.

Typically, representative democratic systems require the subdivision of the state
area into electoral districts. Depending on the democratic system, this subdivision may
have crucial impact on the political outcome of an election. As a well-known example,
the expression gerrymandering has been established to describe the intentional shaping
of electoral districts in order to influence an election outcome. Its name roots back to
the U.S. state governor Elbridge Gerry, who in 1812 made heavily use of this practice
and as a side effect created a district in salamander shape ([Wika]). This, of course,
mainly affects plurality voting systems. For the example of Germany, the so-called
“overhang seats” (Uberhangmandate) used to open the possibility of gerrymandering
until an electoral law reformation in 2013 ([SeiBPB|, [DeBu]). Indeed, there had been
allegations that certain districts in the eastern part of Germany had been designed to
disfavor a particular party ([Eis+01], [EG02]). However, even without intentionally
“gerrymandered” districts, a proper district design is indispensable both due to the
juridical requirements defined by electoral law as well as to cope with the intention of
districts to reflect a fair representation of their citizens.

Here, a first crucial aspect is to ensure a balancing w.r.t. the district sizes in order
to obey the “one man, one vote” principle. However, this implies that the natural
demographic changes over time result in the need for a regular review and possible
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7.1 The Problem of Electoral District Design

adaption of a state’s electoral districts.

For the example of Germany, the federal electoral law ([BWG]) states that the
deviation of district sizes from the average should not exceed 15%. Furthermore, a
deviation exceeding 25% enforces a redistricting. In comparison, the United States
Supreme Court ruled in 1964 that congressional districts must be equal in size “as
nearly as is practical” ([USS64] as cited in [Lev08, p. 44]). For U.S. state legislative
districts a deviation of 10% is acceptable ([Lev08]).

Prior to the question about the range of feasible balancing deviations is the question
how to actually compute those. How to determine the actual size of a district depends,
for example, on whether you only count eligible voters or imply people without a voting
right (such as children). Also, the choice of the data sources such as statistical census
data or official electoral registers is obviously crucial. For the example of Germany,
the Federal Constitutional Court clarified in 2012 that only eligible voters are to be
considered ([Bunl2]).

rrook

race Fresh
Meadow

Figure 7.1: The 4th congressional district of Illinois (since 2013, [Wikb]). The northern
and southern parts are only connected in the west by the Interstate 294. The
underlying image is an extract from [Wik14].

A next common restriction on electoral districts is contiguity. For the example of
Germany, this is explicitly demanded by the federal election law ([BWG, §3 (1)]).
However, this again can be ambiguous. For example, one has to decide whether water
or unincorporated areas such as natural reserves can separate a district. Another
arguable example is given by the 4th U.S. congressional district of Illinois. This district
consists of a northern and southern part that are only connected by an interstate
highway (cf. [Ing]), see Fig. 7.1.

Another typical requirement for electoral districts is “compactness”. This criterion
seems reasonable as an electoral district forms a geographic unit with a common
democratic representation and thus should be consolidated in some sense. Furthermore,
a common hope of advocates of this criterion is the prevention of artificial district
shapes that root from political partisanship (cf., e. g., [Alt98]). Horn, Hampton, and
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Vandenberg [HHV93, p. 103] consider the “standard [to require compactness| as an
essential preventive to gerrymandering”. However, “beyond that I-know-it-when-I-see-it
definition, there is little agreement about when a district is compact” [Lev08, p. 51].

Many authors have discussed how to mathematically model the juridical claim for
compactness of districts. The surveys in [You88], [Nie+90] and [HHV93] categorize and
compare manifold approaches to this problem. The proposed measures for compactness
consider a district’s area, perimeter, length and/or width (in various directions), or
the degree of convexity (e.g., by comparison to its convex hull), to name just a few.
Another class of measures relate to the moment of inertia (e.g. [Hes+65], [Kai66]) that
measures a squared error to the center of gravity of a district (cf. Section 6.1).

For each of the measures proposed therein, [You88| provides an example for which
it seems to fail to caption the juridical understanding of “compactness”. Thus, the
authors conclude that a “reliance on formulas has the semblance, but not the substance,
of justice” [You88, p. 113]. To overcome that, both [Nie4+90] and [HHV93] conclude
that multiple measures should be used simultaneously.

Due to those manifold, sometimes ambiguous, and often even arguable criteria
for the evaluation of an electoral district design, it is clearly not feasible to provide
a single algorithmic approach to the problem that yields satisfactory results w.r.t.
all requirements for any general setting. However, we will show how the geometric
clustering methods proposed in the earlier chapters yield a powerful and flexible toolbox
that indeed can be adjusted and applied in order to provide satisfying results.

7.1.2 Literature

The problem of electoral district design has been approached in manifold ways and
is, of course, very similar to various districting-like problems. For a more complete
overview, we refer to the surveys by [Tasll], [RSS13], [Kall5] and [Rio20] (the latter
two treating districting problems in general).

In the following, we list some of the approaches most related to ours in order to point
out the overlaps and differences. Indeed, some of the proposed approaches turn out
to be special cases of our approach using generalized Voronoi diagrams, e. g., as they
implicitly or explicitly use a fixed diagram type. However, to the best of our knowledge,
the general framework of intentionally applying generalized Voronoi diagrams and
exploration of the resulting flexibility has first been proposed in [BGK17].

Many approach strategies with no or only very little methodological relation to ours
have been proposed, too. Those include the use of enumerative techniques (e. g., [GN70],
[Nyg88]), multi-kernel growth (e.g., [Bod73]), successive dichotomies ([KNS05]), meta-
heuristics (e. g., [Alt98], [BLPO05], [RS08], [RF09]), or column generation ([MJN98]), to
name just a few.

Hess et al. [Hes+65] are considered the first (according to [RSS13]) to provide an
optimization model for electoral district design. They already model the problem as
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a transportation problem with binary variables and use squared Euclidean distances
to some fixed sites as costs. They furthermore describe an improving procedure very
similar to the BALANCED k-MEANS procedure as proposed in Chapter 6 that we will
exploit in Section 7.3.1. Hence, they aim to minimize the moment of inertia. However,
they neither provide any claims about the characteristics of the resulting districts, nor
a convergence result for their proposed algorithm.

While focusing rather on the design of service territories than electoral districts, Segal
and Weinberger [SW77] use shortest-path distances defined via a contiguity graph in
order to solve a minimum cost flow problem to generate their districts. However, they
aim at basic solutions which lead to possibly non-contiguous districts, as we will discuss
in Section 7.3.2. Zoltners and Sinha [ZS83] follow a similar approach by also using
shortest-path distances in a binary model. They furthermore introduce precedence
constraints in order to ensure contiguity. They solve their model by a Lagrangian
procedure which is, naturally, similar to our linear programming duality approach (see
also Section 7.3.2).

Li and Wang [LWO07] describe a non-convex quadratic programming model that uses
shortest-path distances over the contiguity graph and aims to minimize the sum of
intra-cluster distances in districts. However, beyond showing practical results for the
example of congressional districts for the State of New York, they do not discuss their
model any further.

Marlin [Mar81] considers districting problems in a more general sense and formulates
several transportation problems with varying objectives including squared Euclidean
distances (as in [Hes+65]) but with no further theoretical results on the characteristics
of the resulting districts.

Hojati [Hoj96| extends the approach of [Hes+65] by replacing the balanced k-means
procedure for improving the choice of sites with a Lagrangian relaxation approach.
He furthermore states the split resolution problem in order to optimally round the
fractionally assigned units, which he proves to be NP-hard.

Schroder [Sch01] revises the Lagrangian approach from [ZS83]. Here, he furthermore
observes that the usage of squared Euclidean distances leads to convex cells that
contain the districts. Furthermore, as in [ZS83], he considers shortest-path distances
and discusses the resulting contiguity of clusters (see also Section 7.3.2). In the major
part of his work, however, he states different variants of the split resolution problem
and discusses their complexity (which we will discuss in more detail in Section 7.2.2).

George, Lamar, and Wallace [GLW97] solve a maximum flow problem that also
resembles the transportation problem from [Hes+65]. They implement various kinds of
distance functions and imply the districts’ balancing constraints by means of penalty
terms.

Not surprisingly, Voronoi diagrams or generalizations have also explicitly appeared in
the context of electoral district design. In her master’s thesis, Miller [Mil07] describes
a heuristic approach that aims to create centroidal Voronoi diagrams that yield the
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electoral district design. However, she does not consider any balancing constraints.
Fryer and Holden [FH11] already exploit centroidal power diagrams for electoral
districting. They recognize those to be optimal w.r.t. the moment of inertia and use a
gradient descent procedure based on the results of [AHA98]. This procedure is then
combined with an iterative search for sites similar to the balanced k-means approach.
As outlined in Chapter 6, centroidal power diagrams have also been successfully applied
to the problem of farmland consolidation (see [BG04], [BBG11], [BBG14], [BG12]).
Here, the problem is to redistribute farmland among farmers in order to obtain more
consolidated and hence more efficiently farmable areas. Of course, this redistribution
has to be done in a balanced way, so the task is very similar to the electoral districting
problem. We already outlined the underlying theory in Chapter 6 and will apply it in
Section 7.3.1.

Ricca, Scozzari, and Simeone [RSS08] use multiplicatively weighted Voronoi diagrams
over a contiguity graph and describe a heuristic that iteratively adapts the multiplicative
weights in order to obtain balanced districts. They claim that their procedure produces
contiguous districts as well as provide theoretical convergence results for their procedure.
However, they report a “lack of population equality” ([RSS08, p.1476 ]) in their results.

Our practical results consider the example of Germany. This has also been treated
by Goderbauer [God16] (see also [God14]). He describes a heuristic divide and conquer
approach that yields refining partitions along three administrative levels of Germany.

Our general framework now demonstrates a relation between many of the listed
approaches. While many authors (explicitly or implicitly) model the electoral district
design problem as a transportation problem, we are not aware of the explicit exploit of
its strong relation to diagrams. By reconsidering some of the mentioned approaches in
the context of our methodology, we are able to provide useful insights on the algorithmic
approach and resulting solutions. On the other hand, we naturally rediscover some
independent results. One example is the limited number of fractionally assigned
components in any transportation-based approach (cf. Section 2.2.2). For the electoral
districting problem or related applications, this has been mentioned in [SW77], [Mar81],
[ZS83], [Hoj96], [GLWIT7], [KNS05], and [BG12] (without claiming completeness).

7.1.3 A Toy Example

Before we provide a formal problem description, let us prepare a toy example that will
be useful to illustrate some difficulties in formally stating and solving the electoral
district design problem.

Consider Fig. 7.2a that depicts a fictive state that is subdivided into a total of
42 municipal areas. These have to be grouped to form a given amount of, let’s say,
k = 4 electoral districts. For the sake of simplicity, let us assume that each of the
municipalities is inhabited by a single voter. Consequently, every district should contain
(approximately) 101/2 voters.
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It seems fairly accurate to consider a state territory to be a subset of the (flat)
Euclidean plane. However, as Fig. 7.2a illustrates, this subset may not be convex and
may even contain holes (caused by lakes or city states, for example).

(a) Exemplary state territory with municipal ar-  (b) Resulting unit points (as centroids of the ar-
eas that shall be grouped into districts. eas) and the contiguity graph obtained from
municipalities with common border.

Figure 7.2: Toy example that will be used to discuss the different diagram approaches in the
context of electoral district design.

As is the case for basically all geometrically driven approaches from the literature
listed in Section 7.1.2, we will reduce each municipality to a single point in the plane
(for example, given by its territory’s centroid). This, of course, implies that we
lose some information, in particular about the neighborhood of the corresponding
municipality that defines contiguity. However, as pointed out in Section 7.1.1, even
without this reduction, the definition of contiguity can be ambiguous. For example,
municipalities that are separated by water and hence do not share a common boundary
may be connected via a ferry service and thus should be considered contiguous from
the application point of view. Consequently, in order to be able to decide on the
contiguity of a district plan, we can assume to be provided with a contiguity graph that
encodes this information. Figure 7.2b depicts the resulting instance for our toy example.
Each area is reduced to its centroid, and edges between the resulting centroids state
contiguity of the corresponding municipalities.

As we intend to apply the methodology of generalized Voronoi diagrams to the
electoral district design problem, we have to decide on suitable distance functions that
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define the class of resulting diagrams and their geometric characteristics. The usage of
Euclidean distances seems accurate as many distance-oriented compactness measures
(cf. Section 7.1.1) are in fact Euclidean. However, the usage of the Euclidean metric
may fail when it comes to holes or non-convex notches in the underlying territory. In
those cases, replacing the Euclidean by geodesic distances can be a solution. Also other
distances, such as traveling times between the municipality centers, yield plausible and
interpretable measures.

7.1.4 Problem Formulation

Now, let us provide the missing formal problem description. We assume to be given
a set of n units that represent the administrative entities (such as municipalities)
that have to be grouped to districts. As argued in the preceding section, we assume
those units to be given by pairwise distinct points in the plane, so we denote by
X = {x(l), ey :L‘(")} C R? the set units. Each unit () is associated with a weight
w; € IN. Furthermore, we assume a contiguity graph G = (X, F, ¢) to be given. Here,
we assume that {x(“),m(b)} € E for a # b € [n] if and only if the units 2(*) are 2() are

considered to be neighbors (i. e., the union of the two associated administrative entities
yields a contiguous area). Furthermore, the edge weight function ¢ : E — R>( shall
represent distances between units (as used in a shortest-path diagram approach).

The n units are to be partitioned into a given number of k districts. Thus, we
may encode a (possibly infeasible) electoral district plan as an integer unconstrained
clustering £ € (C1,...,Ck)" € Tunestr.kn N {0, 1}kXn (cf. Section 2.1). Recall that for
i € [k] we denote by w(C;) = 3 ¢ &ijwj the weight of cluster i (see Section 4.4).

Now every district should be of approximately equal population. Here, we denote
the targeted average district weight as

We assume to be given a relative error tolerance § € [0, 1] that defines the maximum
absolute relative deviation of a district’s total weight from the average such that a
district can still be considered legally feasible.

In order to formulate the electoral district design problem as an optimization problem,
let g : Tuncstr..k,n — R be a function such that g(&) evaluates the quality of a district
plan £. However, as pointed out in Section 7.1.1, the evaluation of an electoral district
plan strongly depends on the democratic system and legal boundaries. Even given a
particular instance, this can be highly discussed and may not result in a single-criterion
optimization problem (cf. [You88], [Nie+90]). This thesis does not aim at answering
the question about which optimization criterion might or might not be superior to
others. Instead, we focus on how our methodology of generalized Voronoi diagrams
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can be applied to the electoral district design problem in general and how the choice
of the diagram classes can be utilized in order to stress certain optimization criteria.
Thus, let us for a moment assume some objective function g to be given but not further
characterized.

We may then formulate the ELECTORAL DISTRICT DESIGN problem (EDD) as
follows:

7.1
(ax, 9(8) (

)

s.t. 5 S Tuncstr.,k,n ( )
¢ e {0,1}Fxn (7.1b)

w(C;) € [1-9r,(1+00)F] Vielk] (7.1c)
G[supp(C;)] connected Vi € [K] (7.1d)

Complexity

Due to its general structure it is not surprising that the EDD states a hard problem,
even when we drop the unspecified objective g and only focus on the remaining feasibility
problem. Indeed, several well-known problems can be reduced to sub-problems of the
EDD that result from restricted classes of instances. As just stated, we may only
consider the corresponding feasibility problem (e.g., by setting g = 0). We may drop
the balancing constraints (7.1c) if we only allow instances with a § that is sufficiently
large. Next, we may drop the contiguity constraints (7.1d) by demanding that the
graph G is complete. Furthermore, we might incorporate those relaxed constraints in
the objective g instead.

Altman [Alt97] provides N P-hardness results for several such sub-problems. Let us
briefly describe those and some others of interest in our context (cf. [Alt97, Table 3],
see also [RSS08] and [God16] for further variants).

It is straightforward to check that already the feasibility problem associated with
the EDD is N'P-hard. For k = 2, 6 = 0, and relaxed contiguity constraints, i.e., for G
complete, it coincides with the well-known PARTITION problem ([GJ79, p. 47]).

The incorporation of the contiguity constraints (7.1d) introduces some further
complexity. For any fixed k > 3, 6 = 0 and w; = 1 for all j € [n], the problem reduces
to finding a balanced partition of the nodes of G such that each resulting subgraph
is connected. This is shown to be NP-hard even if G is bipartite by Dyer and Frieze
[DF85, Theorem 2.2]. De Simone et al. [De +90] show that (the decision variant of)
finding a partition of a node-weighted graph into k connected subgraphs, such that the
sum of deviations from the average partition size is minimized, is NP-hard, even if
the graph is restricted to be a tree with at most one node of degree greater or equal
than 3. Chataigner, Salgado, and Wakabayashi [CSW07] furthermore show that for
any fixed k£ > 2 the same task under maximizing the weight of the smallest partition

171



Chapter 7 Electoral District Design

for a k-connected graph is N'P-hard even in the strong sense.

If we accept the moment of inertia as measure for compactness (cf. Section 6.1) and
relax all constraints, we have the classical k-MEANS problem which is hard even in the
plane ([MNV09]). Similarly, other compactness measures under relaxed constraints lead
to classical hard problems, such as k-CENTER ([MS84]) when minimizing the maximum
circumradius of districts, or k-MEDIAN when minimizing the sum of distances to a
district center ([KH79], [MS84]).

For a slightly different problem setting, Puppe and Tasnddi [PT09] show that the
problem of gerrymandering is NP-hard. They are given a set system of the voters
whose voting decision is assumed to be known and search for a subsystem that yields
a partition of all voters. They then want to maximize the number of districts that a
favored party wins and show hardness by a reduction of SET PACKING ([GJ79, SP3, p.
221]).

7.2 Districting by Generalized Voronoi Diagrams

In the following, we outline how the theory of Chapter 4 shall be exploited for the
EDD and depict the general methodology in Section 7.2.1. Here, the split resolution
problem occurs as a subproblem and is discussed in more detail in Section 7.2.2.

7.2.1 General Methodology

Figure 7.3 is to illustrate the basic schema that we will adapt for the particular
approaches.

Choice of Diagram Class and Parameters

For any approach, we consider a particular class of generalized Voronoi diagrams.
Recall from Section 3.2 that we typically consider generator functions in the form of
Eq. (3.2), i.e., given by a transformed and additively shifted (local) distance measure
to some reference site. We have seen in Section 3.3 how the choice of the underlying
metrics and transformation results in different classes of generalized Voronoi diagrams.

For such a class, we may choose a parametrization F : § — (]RX )k that maps
each choice of parameters S € S to functions f; : X — R for i € [k]. Here, the
parameter set S typically consists of the choice of the sites (s(i))ie[k] that serve as
cluster representatives. However, it may, for example, as well include the choice of the
parameters that determine the local metrics (d;);ex)-

With a diagram class fixed, we have to choose parameters S that determine a
generalized Voronoi diagram. Those may not yet lead to a feasible districting plan,
but can be considered to determine the eventual clustering’s main structure. In which
way, by what intention and how well this can be done, strongly depends on the chosen
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Choose the diagram class
k
F:S— (RX ) .

\

Determine structural diagram parameters

<
Ses.
Solve the linear program (4.18) for (fi);cpy = F(5).
Obtain

" (potentially) s

o additive weights M e iterate -

e a fractional clustering £ and

\
!

such that the generalized Voronoi diagram P w.r.t.
F(S) + M supports £ according to Proposition 4.5.

\

Apply a rounding procedure to £ to obtain an integer
clustering while preserving the feasibility of P.

(. J

Figure 7.3: General methodological schema applied in the different approaches.

diagram class. We will describe different possibilities in our proposed approaches in
Section 7.3.

Constrained Clustering Subroutine

As a subroutine, we then solve the linear program (4.18). Here, we inject the functions
(fi)iep) = F(5) into the objective, use the instance’s unit weights (w;);e[n) as such,
and set cluster weights x; := % for i € [k]. Doing so, we obtain an optimal fractional
clustering &. Following Proposition 4.5, the corresponding dual solution then yields
weights such that the generalized Voronoi diagram w.r.t. functions F(S) disturbed
by those weights is feasible for £ (or even supporting, if £ is chosen from the relative
interior of the optimal face of (4.18)). To be more precise, let M = (1;);c[ be the
part of an optimal dual solution that corresponds to the balancing constraints (4.18b).
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Then the functions F(S) + M = (fi + 1), yield the desired diagram.

Rounding Procedure

Assume that we have solved the program (4.18) and hence obtained a clustering
&= (Cq,...,Ck)" together with a feasible (or even supporting) generalized Voronoi
diagram P = (Py, ..., P;). Of course, solving (4.18) implies that we have relaxed the
integrality constraints (7.1b) as we allow fractional clusterings. Consequently, we have
to apply some rounding procedure in order to get an actual solution for the districting
problem.

Of course, we would like to do so without losing the diagram’s feasibility. Re-
call that the feasibility of a diagram is equivalent to the inclusions supp(C;) C

{ jen]:z0 e B} for all i € [k] and that the diagram is supporting if and only

if equality holds. Hence, we would like to choose an integer clustering é from
R(€) = {£ € (0,11 1M = 1™ A supp(Cy) C supp(Cy) Vi € [k}, (72)

By definition, the diagram P will be feasible for any é € R(&). However, we will surely
lose its potential supporting property if é = £, as any formerly fractionally assigned
unit must lie in all cells that correspond to its assigned clusters.

Note that for the case w; = 1 for all j € [n] and k|n, every extremal solution of
the transportation problem (4.18) is in fact integral (cf. [KW68, Corollary 1]). As
mentioned in Section 7.1.2, the general case still yields that any extremal solution
provides a fractional clustering with at most k£ — 1 non-integrally assigned units. Again,
this is due to the nature of the underlying transportation polytope (cf. [KW68,
Corollary 3]). In our context, this is also provided by Corollary 2.8 as we are in the
homogeneously single-constrained case. Furthermore, Theorem 2.12 tells us that the
clustering graph (see Section 2.3) corresponding to any extremal solution of (4.18) is
acyclic and furthermore a tree in the non-degenerated case. The tree structure can now
be exploited in a rounding procedure that minimizes the resulting maximum absolute
deviation of rounded cluster weights from the desired average value K, while not losing
the feasibility of the diagram P. Assuming that we are given an extremal solution of
(4.18), we have to decide for “only” up to k — 1 fractionally assigned units which cluster
they should be assigned to. This issue has been given the name SPLIT RESOLUTION
problem in the literature ([Kall5]). We will discuss this in more detail in Section 7.2.2.

However, we will also see that we are not always in the comfortable situation in
which the optimum of (4.18) is unique and hence an extremal solution of (4.18) is in
the relative interior of the optimal face. The following continuation of Example 4.3
will illustrate such a situation. This example also stresses the necessity to generate
a supporting diagram in the second step of our methodology. For a diagram type
as given in the example, the ambiguity of the optimum of (4.18) leads to a situation
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7.2 Districting by Generalized Voronoi Diagrams

in which the diagram is still feasible for any rounded solution from R({). However,
pairwise cell intersections P; N P, (and thus supp(C;) Nsupp(C})) can contain multiple
units. Therefore, no geometric claims about how those units are clustered in a rounded
solution can be made. In particular, this can harm the contiguity of the resulting
clusters. In such a case, a more careful rounding procedure is required. We will face
this issue for shortest-path diagrams in Section 7.3.2.

Example 4.3 (continuing from p. 83).
Let us reconsider Example 4.3 from Section 4.1. Here, we considered a generalized

Voronoi diagram w.r.t. functions f;(z) := Haj — 5 . for i = 1,2. This diagram
supported a fractional clustering of sixteen points, see Fig. 4.2. We may easily interpret
this example as an EDD instance. First, let us assume that each point has a weight
w; = 1 for j € [16]. Thus, each cluster is to be assigned a weight of & = 8. For the
depicted clustering of Fig. 4.2 — let us denote it £ — we may furthermore assume
that each of the four points in the top right and bottom left corner, respectively, are
integrally assigned to their respective clusters, as depicted. The remaining 8 points
shall each be equally assigned to both clusters by the same fraction %

Hence, the clustering £ is not only feasible for the resulting problem (4.18), but due
to Proposition 4.5 even optimal. For the corresponding dual weights, we can thus
conclude M = 0. Even more, as the diagram supports £, it must be contained in the
relative interior of the optimal face of (4.18).

However, by construction we are in fact in the totally unimodular case, i.e., all
extremal solutions of the program (4.18) will be integral. More precisely, we can
conclude that R(§) equals the set of all optimal extremal solutions.

As the considered functions f; are of the form (3.3), Lemma 3.3 yields that every
cell of the diagram is site-star-shaped, i.e., the line from any point of a cell to the
corresponding site is contained in the respective cell. From a practical point of view,
this more or less guarantees contiguity (cf. the issues discussed in Section 7.1.3), but
only in case that the diagram supports the clustering. However, we lose the supporting
property when choosing a é € R(§). Figure 7.4 depicts two possible choices for é € R(§).
While the diagram is feasible for both choices (and non-supporting for either one),
Fig. 7.4a clearly fails w.r.t. contiguity, in contrast to Fig. 7.4b.

For an extremal solution, on the other hand, Lemma 2.9 guarantees that | supp(C;)N
supp(C})| < 1 holds for any two clusters C; # C, so this effect does not appear even
after rounding.

The following theorem shows that for a wide class of generalized Voronoi diagrams,
we can fairly assume the solution of (4.18) to be unique. Note that this can be regarded
as a generalization of [BG12, Lemma 4.1] and has been published with almost identical
form and proof in [BGK17].
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(a) Losing contiguity. (b) Preserving contiguity.

Figure 7.4: Rounded solutions in Example 4.3.

Theorem 7.1 ([BGK17, Theorem 7])
Consider the linear program (4.18) for w; > 0 for j € [n], k; € R>o for i € [K]
such that 3 e ki = e Wi» and functions f; : R? = R fori € [k] in the form of
Eq. (3.2). Assume further that every metric d; in (3.2) is induced by a strictly convex
norm, the function h is continuous and injective, and that the sites are pairwise distinct,
i.e., O £ s fori#£1elk].
Then for every € > 0 there exists (.§(i))i€[k] € (RH* with Z§:1 Hs(i) — 30

< €
() 2(9) dxk . ,
and 6 > 0 such that for all (8 )ie[k] € (s )ie[k] + 0B5™", it holds that with

filz) = h(d;(z, §9)) + p; for i € [k], the linear program (4.18) with objective
>ick] 2jeln] wjfi(x(j)) -&.j has a unique optimizer.

Proof. Suppose that the solution of (4.18) with objective > ick] 2jeln] wjfi(az(j)) & j
is not unique. Let T' = T} ., be the clustering polytope that is the feasible region of
(4.18) as given by Eq. (4.16).
Let £ € T be an optimal solution in the relative interior of the optimal face of (4.18).
By Theorem 2.12, the corresponding clustering graph G () contains a cycle with
corresponding cyclic exchange ¢ as defined in Eq. (2.6). W.l.o.g. let this cycle be
C1,1,Cq,...,Cp,r,C1. By optimality of &, it follows that

0=">" 3% Gjuwifitz?) = - (V) + z”: (fl(ﬂﬁ(l_l)) - fl(x(l))) + fi(z)
=2

i€[k] j€ln]
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and thus
AE®) = A@E") =3 AETD) - AiE@Y) =

After inserting the definition of f; from Eq. (3.2) this reads as
h(dy (s, 2M)) — h(dy (s, 2)) = . (7.3)

Note that « as defined above in particular does not depend on s™). We can thus interpret
the set of all sites s(') € R that obey Eq. (7.3) as the bisector of the generalized
Voronoi diagram w.r.t. functions fi(z) := h(di (™), z) and fo(x) := h(d; (2", z). By
Lemma 3.6, this bisector has an empty interior. Also, due to the given assumptions,
the left hand side of Eq. (7.3) is continuous in s(!). Hence, we can choose §() ¢ R?
with strictly positive distance to this bisector but sufficiently close to s(!). As we can
do so for any cycle and there are only finitely many (in the complete bipartite graph of
clusters and units), the claim follows. O

In other words, Theorem 7.1 states that for distance measures that are obtained
from strictly convex norms and reasonable transformation functions, an arbitrarily
small perturbation of the sites suffices in order to obtain sites in the interior of the set
of sites with a unique optimum.

Iterating

After rounding, i.e., having obtained some integer clustering, we may then iterate this
process. Here, the (re-)selection of the structural parameters in general can be made
w.r.t. several criteria. First of all, we may not have obtained a feasible solution for the
EDD yet. For the balancing constraints (7.1c), we will see in Section 7.2.2 that we may
efficiently perform the rounding w.r.t. the resulting maximum deviation. However,
the best guarantee to be given here will be for a relative error of % In case of
fairly heavily weighted units, we may hence violate the constraints (7.1¢) and so we
must consider this in an adaption of the structural parameters S.

The contiguity constraints (7.1d) are only considered indirectly. Here, we assume
the class of generalized Voronoi diagrams F to be chosen such that feasibility of the
obtained diagram will yield contiguity of the resulting districts. However, in particular
for approaches based on Euclidean distances, this can occasionally fail due to the
non-euclidean underlying data (cf. Section 7.1.3).

Finally, both the choice of the diagram class F and the selection of structural
parameters S should incorporate the (yet unspecified) objective of the EDD.
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7.2.2 The Split Resolution Problem

As our methodology aims at exploiting the LP-duality based correspondence between
generalized Voronoi diagrams and balanced clusterings, this comes at the price of
intermediate non-integral solutions. As already stated, this issue can be reasonably
controlled, provided an extremal solution of (4.18) is given. We will assume £ to be
such an extremal solution for the remainder of this section.

In order to preserve feasibility, we have to find an integer clustering £* € R(£). While
we assume that the feasibility of the diagram suffices to obey the contiguity constraints
(7.1d), the rounding must consider the balancing constraints (7.1c). This suggests
to minimize the resulting maximum deviation after rounding. However, depending
on the actual instance, other types of objective functions can be suitable, too. In
accordance with the literature ([KNS05; Sch01]), we define the following variants of
the SPLIT RESOLUTION problem. First, one may minimize a p-norm of the vector of
resulting deviations. This yields the p—SPLIT RESOLUTION problem:

Problem p-SPLIT RESOLUTION:

Input: 0€Q,wi,...,w, €N, £ €ext (T ((wl, cee W), (E)ie[k]))
Question: Does there exist £ = (C’l, ol C’k> € R(&) such that
_ AP
Z ’nfw(C'Z) <6 7?
1€[k]

Another interesting variant has been formulated in [Hoj96]. Here, given individual
maximum deviation bounds for each cluster, the goal is to find a clustering that
minimizes the number of fractional assignments that is necessary to obey those bounds:

Problem min-fract-SPLIT RESOLUTION:

Input: méeN, d1,...,0 € N, wy,...,w, €N,
geext (T (@i, wn), (Ric) )
Question: Does there exist f = (é’l, cey C’k>T € Tuncstr. k,n such that

A

supp(Cy) C supp(C;) Vi € [k] ,
" —w(Cy)| <6 Vielk],and

> deg(G (€)(G) ~n<m?

J€ln|
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Here, the expression Y ..1.1 deg(yG é j) —n counts the number of fractional assign-
J€ln] )

ments (with deg(yG (é) (j) being the degree of node j in the clustering graph G (f))
There is a certain practical relevance to min-fract-SPLIT RESOLUTION. If the admin-
istrative units that shall form a state’s electoral districts are individually too big in
order to obtain a sufficiently balanced districting plan, there might be no other choice
than to split some of those (for example, this can be the case for greater cities). In
this case, min-fract-SPLIT RESOLUTION answers the question how many of those splits

have to be made.
4 .
Cs . "
n
7

1
C -
n+1 Cl
dipi =F— Y Gasgwy G=F-Gwi=%
jen]
1
~ 9 D Wi
S

Figure 7.5: Construction for the reduction of PARTITION to the variants of SPLIT RESOLUTION
(oriented at [Hoj96] and [Sch01]).

The problems min-fract-SPLIT RESOLUTION as well as p-SPLIT RESOLUTION for
1 < p < oo have been shown to be N'P-hard by [Hoj96] and [Sch01], respectively (cf.
also [KNS05]). In both cases, a very similar reduction of PARTITION has been applied.
Let us shortly discuss this reduction. We assume an instance of partition to be given
by weights w1, ...,ws € Nsg. We now construct an instance of EDD with k=n+1
districts and n = 27 units. For j € [], we give the jth unit a weight w; and the
(j + n)th unit a weight of % Zre[ﬁ}\j wy. In particular, this yields an average cluster
weight of & = %Zje[ﬁ] wj. Then, an extremal feasible clustering is constructed by
assigning each unit j € [] equally to the jth and (72 + 1)st cluster, as well as every unit
j € [2n] \ [n] with full extent to the (j — n)th cluster. This results in the contracted
clustering graph as depicted in Fig. 7.5. Each cluster j € [n1] hence has a “demand” of
d; = %wj w.r.t. the fractionally assigned units, while for the (72 4 1)st cluster all units
have been fractionally assigned, so its demand is % Zje[ﬁ] wj.

Following [Hoj96], we obtain an instance of min-fract-SPLIT RESOLUTION by setting
0; = [%wﬂ for every j € [n] and 0741 := 0. This way, the first 2 clusters actually do not
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constrain us. Thus, we set m = 0 and have that this is a YES-instance of min-fract-SPLIT
RESOLUTION if and only if the given PARTITION instance is a YES-instance.

Following [Sch01], we obtain an instance of p-SPLIT RESOLUTION by setting § :=
e $wj)P . Here, the first 7 clusters will always create an error of Zje[ﬁ](%wj)p =9
by construction. The (72 + 1)st cluster, however, will contribute 0 if and only if the
given PARTITION instance is a YES-instance.

Of course, the formulation of min-fract-SPLIT RESOLUTION suffers from the possibility
of individual error bounds ¢; (which is highly made use of in the reduction). To the
best of our knowledge, the complexity of this problem when restricted to 01 = ... = dg
is not known.

On the other hand, Schroder [Sch01] shows that the case p = oo, i.e., to minimize
the maximum occurring deviation, is polynomially solvable. In his work, he considers
several variants of more general balanced tree decomposition problems and deduces
the polynomial solvability of co—SPLIT RESOLUTION as a special case (cf. [Sch01,
Algorithmus 5.6, Korollar 7.10]). He also provides an adapted version that allows
an improved running time (cf. [Sch01, Algorithmus 7.2, Satz 7.15]). He is able to
do so by considering subproblems in form of approximate subset sum problems with
precedence constraints. Those subproblems are solved by an adaption of classical
dynamic programming schemes whose general pseudo-polynomial running time can be
resolved as the chosen instances reveal to be sufficiently small. The final algorithm
then proceeds by successively contracting parts of its input graph that yield a validly
balanced partial decomposition within a prescribed maximum deviation. Finally, he
applies a bisection procedure in order to determine the actual optimal value.

Due to its generality (even of the adapted version), Schroder [Sch01] does not provide
a comprehensive version of his algorithm. In the following, we will present our own
adaption of the algorithm in [Sch01]. Besides a self-containing formulation of the
algorithm for our problem, this allows us to alter it slightly and obtain a different
complexity result. The resulting complexity of the algorithm presented in [Sch01] is
O (52]@2 log (maxje[n} wj + 5X\Jf|)) ([SchO01, Satz 7.15]). Here, d¢ and dx denote the
maximal degrees of cluster and unit nodes in G (&), respectively, and Jy C [n] the set
of all units that are fractionally assigned. By contrast, we can provide a bound of
@) (k;3 log (maxje[n] wj> + kn) for our algorithm. This will be achieved by a careful
running time analysis as well as by exploiting a different complexity result for the
following subproblem.

An approximate variant of SUBSET SuUM will appear as a basic subproblem in our
algorithm. While we use the notation of [Sch01], note that we consider a less general
form by enforcing non-negative weights as well as a symmetric error.
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Problem WEAK SUBSET SUM:

Input: 0 € Nug, k€4, wi,...,w, €N
Question: Does there exist J C [n] such that ’ZjeJ wj — n‘ <47

Typically, problems in the style of WEAK SUBSET SUM can be solved in a pseudo-
polynomial time using dynamic programming. Kellerer, Pferschy, and Speranza [KPS97]
provide a FPTAS for the SUBSET SUM problem. While at its core this implements
classical dynamical programming approaches, they provide a rather sophisticated
method that solves a knapsack-like problem and can be applied to WEAK SUBSET SUM
in order to obtain the following running time.

Theorem 7.2
For an instance (0;k;w1,...,wy) of WEAK SUBSET SUM, we can compute a valid
index set J C [n] that solves the instance or the conclude that such a set does not exist

in O (min{n B on+ (%)2 log(%)}).

Proof. The algorithm proposed in [KPS97] solves the knapsack problem

max ij 2 J C [n],ij <c
jeJ jeJ

for the same input values as in our setting as well as ¢ € IN with accuracy € in

@) (min Lon+ (1) log(%)}). After excluding the trivial case £ < § we can set ¢ := K+0

and € := 52—4‘_56 to obtain the statement (cf. also [KPS97, Theorem 7, Theorem 8]). O

Note that Schroder [Sch01] points out that the procedure from [KPS97] is unsuitable
as it may not be adapted to his (more general) context which comes with certain
precedence constraints (cf. [Sch01, Section 5.1.1.2]). Instead, he proposes a self-
developed dynamic programming procedure which does not preserve the running time
bounds of [KPS97]. However, in our situation we can exploit the simple structure of
extremal clustering graphs and thus are indeed able to apply the results from [KPS97].

Description of the Algorithm

We will now outline our version of the algorithm by Schréder [Sch01].

For the sake of convenience, we cut the algorithm into three parts: Algorithm 3 splits
the problem into the connected components of the contracted clustering graph Ge ().
Algorithm 4 describes a forward-recursion for each component. Finally, Algorithm 5
describes how an optimal rounding is determined locally. Note that all algorithms as
presented here only yield the objective value but not an optimal solution. However, it
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should be clear from the description that a solution can be obtained by storing and
combining the solutions of the appearing subproblems in a straightforward way without
any harm to the running time. In particular, due to its recursive nature, the procedure
computes optimal solution values for certain subgraphs of G¢ (£). As this requires the
introduction of quite a lot of notation, Fig. 7.6 is meant to illustrate those and their
referenced parts of G¢ (€).

(C:)

Figure 7.6: Ilustration of the components of G¢ () referenced by the definitions in Sec-
tion 7.2.2.

We assume to be given an extremal solution & € ext(T' ((wl, Ce W), (E>ie[k}))- The
algorithm exploits the tree and tree-like structures of the clustering graphs G (§) =
(CU|[n], E) and G¢ (§) = (C, E¢,v) (cf. Definitions 2.10 and 2.11). From Theorem 2.12
we know that G (§) is a forest. Together with the definition of the contracted clustering
graph G¢ (§), this implies that the only cycles in G¢ (§) appear in the case that a unit
is fractionally assigned to more than two clusters. In this case, the clusters sharing
this unit form a clique. If we contracted those cliques, we would again obtain a forest.
As a consequence, shortest paths between any two nodes in any connected component
of Ge (§) are unique. Thus, for any connected component of G¢ (§) we can choose any
contained node C,. and root this component in C,. As for trees in Section 3.3.4, we
obtain a partial order on this component via

Ci~ag. (~c.) C1 & C lies on the shortest C;, Cp-path (and C; # Cy)

for every pair of nodes C';, C; € C that are contained in it. Due to the uniqueness of
shortest paths, every node C; except the root node has a unique predecessor pre (C;)
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with distg,e) (Cr, pre (C;)) = distg, ) (Cr, C;) — 1 and a set of successors
succ(Cy) = {Cl € C : distg,(¢) (Cr, C1) = distg, () (Cr, Ci) + 1}.

Clearly, for any node C;, the induced subgraph Ge (§)[{C; € C: C; =¢, C;}] is again
rooted in C'; preserving the same order.

Algorithm 3: Solver for co-SPLIT RESOLUTION

Input: Extremal clustering & € ext(T ((wl, cee Wn)s (E)Z-e[k])), ke NN,
(wj)jepm) € NZg
1 Compute G¢ (§) and root the connected components (in arbitrary root nodes).
2 R < % Z]G[n] Wy
3 foreach C; : C; is the root of a connected component of G¢ (§) do
4 t 0; + Algorithm 4 (5; Ge (€); (W) jem) Cis R E)

5 return max{J; : C; is the root of a connected component of G¢ (£)}

The proposed algorithm now first roots G¢ (§) by choosing an arbitrary root for any
connected component and then solves the co—SPLIT RESOLUTION for each component
independently. This framework is given by Algorithm 3.

Next, Algorithm 4 performs a forward-recursion. It starts from the root node of a con-
nected component of G¢ (§) and recursively solves a variant of the co—SPLIT RESOLUTION
for each subgraph Ge (€)[{C) : C; =¢, C;}] for an input node C;. As a further input,
it receives a target weight K. Let

_ {j such that ({C,pre (Cy)},7) € E , if C is not a root node (7.4)
Ji = .

-1 , otherwise

be the unit index associated with the edge to the (unique) predecessor of a cluster C
if it is not a designated root. Algorithm 4 now computes the minimal maximum weight
deviation of the clusters “below” C; when rounding the fractional assignments. Here,
every cluster except C; should ideally be assigned a weight of . The target weight
for the cluster C; is given by %r and we assume the j;th unit (if it exists) not to be
assigned to C;. We can formalize this value by

¢i(RR) := min { max{‘

)CzPG C; ' |FR _w(éi) } :
¢ e (7.5)

E=(Cr,. i Ch) € RO A i ¢ supp@i)}.
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Algorithm 4: Solver for co-SPLIT RESOLUTION on connected subgraphs

Input: Extremal clustering & € ext(T ((wl, Cee Wn)s (E)ie[k])), rooted
contracted clustering graph Ge (§) = (C, Ec,v) , (W) el € N,
CieC,REreQ

foreach () € succ(C;) do

=

2 | ji 4 j € [n]such that({i,l}, ) € E¢c

3 ¢, < Algorithm 4 (5; Ge (&) 5 (w))jem) Cui F; E)

4 ¢ + Algorithm 4 (5; Ge (&) ; (W) e CiiF K — wjl)
5 J<«{jen]:({CiCi},j) € Ec,C € suce(Cy)}

foreach j € J do
6; « max{c, : ({C;,Ci},j) € Ec, Cy € suce(C;)}

N o

8 (5;-r < min { max {cl‘*'} U {c; :({Ci,Cr},9) € Ee, Cy € suce(C)) \ {CZ}} :

({Ci,Cl},j) € bEe,C € SUCC(CZ')}

return Algorithm 5 (ER = Yjier =1wii I3 (wh)jess (05 )jers ((5‘;_)jej)

©

Note that, in particular, for every root node C, the value ¢,(g) is the optimal value of
00o—SPLIT RESOLUTION when reduced to the connected component of C,.

For each cluster C; that is not a root node, we are interested in two particular values
for Kg: First for the assumption that we will not, and second for the assumption that
we will assign the unit j; to C;. Let us define those values as

¢; =c¢(R) = min{ €= (él)le[k] € R(&) A é@h = 0} (7.6)

(E - w(@))cltccci

o
and
of = ci(f-w;) = mm{\ (F-w(@), | :&=Chep e RO N = 1},
- C 7 o)
(7.7)
respectively.

We will show that lines 1 to 4 of Algorithm 4 compute these values for any successor
of a cluster C;. This allows us to compute ¢;(Fr). First, we determine for any unit that
is fractionally assigned to C; and one of its successors, the minimum deviation that we
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obtain from rounding the fractional assignments “strictly below” C; — depending on
whether we do or do not assign this unit to C;. We denote the set of available units by
J (cf. line 5). For every unit j € J let

Sj = {Ct eC:3C, e SUCC(CZ‘) o EGC Cr A ({Ci,Cl},j) S Ec} (7.8)

be the set of all clusters that succeed cluster C'; via an edge labeled by the unit j. Then

6 = min{‘ (E - w(é’l))

Cies, = (é’1,...,é’k>T e R A é,j = 1} (7.9)

and

A~

= (él,...,ék)T € R(E) A & —0} (7.10)

o

+ . :
5j = mln{

(7 - w(Cy)

)CZESJ'

formalize the described minimum deviation values. We will show that lines 6 to 8 of
Algorithm 4 correctly compute those values for every j € J.

Next, we pass these values to Algorithm 5, which then computes ¢;(Kg) via a bisection
procedure. Here, from each available unit 5 € J we know that we cannot do any better
then min{é{, 5;}, as we either will or will not assign j to one of the successors of Cj.
This gives the lower bound 7, as defined in line 3. On the other hand, we will see that
the error will not exceed the maximum error computed so far as well as the maximum
weight of the available units. We denote this bound by d;; (line 4). Now assume some
fixed value 0 € IN with d;, < § < dy to be given for which we want to check whether

¢i(Rr) < 6. Only for units j € J such that 6 > max{éj_, (5?} we can actually decide
whether or not to assign them to C; if we want to obey the bound §. We denote those
by Js (cf. line 7). By the definitions of ¢; and 5;7, any unit j € J with § < 4; must
be assigned to one of the successors of C; and any unit j € J with § < 5; must be
assigned to C;. We thus obtain a remaining weight demand ks by subtracting the
weights of the latter units from the provided demand weight # (cf. line 9). If Js is not
empty, we solve the resulting WEAK SUBSET SUM instance, otherwise, we just have to
check whether k5 < §. We may then update the lower or upper bounds accordingly.

Algorithm Analysis

First, let us prove the correctness and running time of Algorithm 5. Here, similar to
[Sch01] we particularly exploit that the occurring instances of WEAK SUBSET SUM
are sufficiently small in order to be solvable in polynomial time. As a byproduct, we
obtain a valid upper bound for co—SPLIT RESOLUTION. Schréder [Sch01] obtains the
same bound in a similar manner ([Sch01, Satz 7.13]), while another independent (and
simpler) constructive proof can be found in [BGK17, Theorem 5].
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Algorithm 5: Optimal subgraph rounding

Input: A€ Q, J C[n], wj € Ny, 6;26; eNforjeJ
1 if J = () then
2 L return |&|

3 4r, %max{min{é*r 57} 1j € J}

3%

4 oy emaXUjEJ{wj,dj,éj_}

5 repeat

6 5(—{%(5[/—1—5(]”

7| s {ied o> max{sf,0; )}
8 Jg’<—{jeJ:6<6;“}

9 ng(—/%—zjejgrwj

10 if Js# (0 then

11 if WEAK SUBSET SUM (§; ks; (wj)jeJs) @5 a YES-instance then
12 ‘ oy < 0

13 else

14 L 0, <0
15 else

16 if |ks| <9 then

17 | Sy« 0

18 else

19 L 5; 6

20 until 5L > 5U —1
21 return 0y

Lemma 7.3
Assume a valid input of Algorithm 8 to be given.

R,k—w;itif3;, >0
Let i € [k], Rr € (R R = wji) i i 2
{r} , otherwise

J={j¢€n]:{il},j) € E,C; €succ(C;)}, and let 5;,5; for j € J as defined by
Egs. (7.9) and (7.10).

Then Algorithm 5 (ER = 2 =1 Wi I (W))jer, (67 )jers (5;?)]-6]) correctly com-
putes ¢;(Rr) as defined by Eq. (7.5) in O (k2 log(max jefy, wj)).
In particular, ¢;(Fr) < max;e, wj-

(with j; as defined by Eq. (7.4)),

Proof. First, assume that C; is maximal w.r.t. “>¢,” (i.e., C; is a leaf in G¢ (§)).
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7.2 Districting by Generalized Voronoi Diagrams

Then it follows that a single unit, namely j;, has been fractionally assigned to C'; by & and
thus J = ). Thus, the resulting error is either [R—32;... _jwj|or [F—3 ¢ —jwj—wj,,
depending on whether the unit j; is or is not assigned to C;, respectively. This is
correctly returned in line 2. Furthermore, & = 3., j=1wi+ &i,j;wi; holds, so it follows
that Ci(ER) < wj;.

For the case J # (), we can inductively assume that max{éj_, 5;} < maxjep, wj. As

argued before, it holds that ¢;(Fr) > min{éj_, 5J+} for all j € J by definition. Next, we

conclude ¢;(Fr) < max UjeJ{Wj7 6;, (5]_} < maxje[, wj (the latter by induction). This

follows as we can set J* := {j* €J: Y jempe =1 Wi T Xjerj<ir Wi < E} and obtain
a rounded clustering by assigning all units in J* to C; and all units in J \ J* to one of
the successors of C; to which the respective unit has been fractionally assigned. For

all clusters C; with C; =g, C}, this yields an error of at most max J,¢ J{é;-r, 5;} by
definition of 6;-r and 5;, as well as an error of at most max e, w; for cluster C; by
definition of J*. Consequently, we have that ¢;(Kgr) < dy as defined in line 4, so this is
a valid upper bound.

We already argued that only for units in Js as defined in line 7 we can actually
decide whether or not to assign them to C;, as well as that all units in J; as given in
line 8 must be assigned to C;. Thus, lines 10 to 19 correctly detect whether ¢;(Kg) >
or ¢;(Rr) < ¢ and update the bounds accordingly. Hence, this bisection procedure
correctly computes ¢;(RR).

It remains to show the running time. As dy — d;, < max;cp, w; holds, the bisection

procedure in form of the repeat block requires O (10g(maxj€[n] wj)) iterations. Lines

6 to 9 can be performed in O (k) as |Js| < k (as there are at most k — 1 fractionally
assigned units).

For the decision on WEAK SUBSET SUM we can assume that 0 < k5 < >7.c - w;
holds. This can be checked in O (k) (as otherwise WEAK SUBSET SUM can be trivially
decided). Now let j € Js. In particular, this implies § > 5;. Furthermore, let
C; € succ(C};) such that j is fractionally assigned to C;. It follows that ¢;(F —wj) <6
and ¢;(®) < d. This means that there are two rounded assignments for the clusters C;
with Cy =g, C; — one excluding and one including unit j — that both result in a
maximal error of at most d. In the latter case, an additional weight of w; has to be
distributed among the clusters, each of which can additionally take a weight of at most
246 in order to stay feasible. Thus, by the pigeonhole principle it follows that

Wy S |{Ct : Ct EGC CZH - 20.
Thus, we can conclude

K5 2jels Wi _ > cresuce(cy) {Cr 1 Cr =g Ci}| - 20 -

5 5 5 2k.
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Together with |J5| < k, Theorem 7.2 then yields that we can solve the resulting instance
of WEAK SUBSET SUM in O (k?).

Altogether, this gives the claimed running time in O (k2 log(max e[y, wj)). O

Theorem 7.4
Algorithm 8 correctly computes the optimal value of co—SPLIT RESOLUTION in

@] (nk: + k3 log(max e[, wj)>.

Proof. In order to show correctness, it suffices to show that Algorithm 4 correctly
returns ¢;(Kg). Then Algorithm 3 correctly computes the maximal error ¢;(%) for each
connected component of G¢ (£) independently and returns the maximum. Correctness
of Algorithm 4 follows almost immediately from Lemma 7.3. If the input cluster C;
in Algorithm 4 is a leaf, J = ) follows and hence the call of Algorithm 5 correctly
returns ¢;(Kg). If C; is not a leaf, we may inductively assume that the recursive call
of Algorithm 4 correctly returns ¢ and ¢; as defined by Egs. (7.6) and (7.7) for any
C) € succ(C}) in lines 3 and 4.

Thus, we only have to check that the values 6; and 5} for j € J as computed in
lines 7 and 8 are consistent with Egs. (7.9) and (7.10). By definition, ¢, is to yield the
weight deviation of clusters C; ~¢,. C; in case j is assigned to C;. For any successor C},
the value ¢; yields the weight deviation among clusters C; ¢, C; if j is not assigned
to '}, so the maximum among those values yields 5]7. Similarly, 5j+ is defined to be the
weight deviation if j is assigned to some successor C;. For each (', the resulting value
is the maximum of ¢; and the values ¢; for all other successors C; € succ(C;) \ {Cy}.
Taking the minimum over all clusters C; then yields (5}, as is done in line 8.

Concerning the running time, we can clearly compute and root G¢ (§) in the given
bounds. Now for each designated root node of a connected component of G¢ (&)
Algorithm 4 is called once, and for each other node exactly twice in lines 3 and 4 of
Algorithm 4. Hence, there are O (k) many calls to Algorithm 4. With respect to lines
5 to 8, note that the sets J are disjoint for each C; in the input of Algorithm 4 and
in union yield the set of all fractionally assigned units, of which there are at most
k — 1 many. Every iteration of the for-loop in lines 6 to 8 can be done in O (k?),
so overall lines 5 to 8 run in O (k®). Finally, the sum in the input for Algorithm 5
in line 9 of Algorithm 4 will take O (n) flops. Lemma 7.3 yields a running time of

(@] (k2 log(max e[, wj)) for Algorithm 5. Hence, in total the calls to Algorithm 4 can
be done in O (nk + k? log(max ey wj)). O

We may now incorporate these results on co—SPLIT RESOLUTION into our schema
for the EDD and obtain the following result.
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Corollary 7.5
Let an instance of EDD and functions f; : X — R for i € [k] be given.

Furthermore, assume all input values to be rational, i.e., X = {93(1), e x(”)} cQ?
and f;(X) C Q for alli € [k]. Then we can in polynomial time compute an integer
clustering§ = (C1,...,Ck)" € Tunestr. e.n M0, 1}kX" such that |w(C;)—F| < max;ep, w;
as well as M = ()i € RF, such that the generalized Voronoi diagram w.r.t.
(fi + m)ie[k] is feasible for €.

Proof. Following the schema of Fig. 7.3 this can be deduced by combining Proposi-
tion 4.5 with Theorem 7.4 and Lemma 7.3. O

Obviously, Corollary 7.5 is too weak in order to provide a solution that satisfies the
balancing constraint (7.1c) for any relative error § < % Yet we will see that
for our real-world instances and used approaches, the schematic of Fig. 7.3 will result
in very pleasant results w.r.t. the resulting balancing errors (cf. Section 7.4).

7.3 Approaches

This section outlines how we apply the general methodology from Section 7.2 for
particular choices of generalized Voronoi diagrams. As pointed out in Section 7.1.1,
the search for a suitable methodology that finds an optimal electoral district design is
particularly tricky as it is preceded by the issue of how to actually define the notion of
optimality of a district design. Hence, we apply different exemplary classes in order
to demonstrate how the choice of a diagram type can be utilized in order to take the
individual needs and optimization criteria into consideration. In particular, this choice
determines the geometric characteristics of the resulting diagrams.

We will consider power diagrams in Section 7.3.1, shortest-path diagrams in Sec-
tion 7.3.2 and anisotropic power diagrams in Section 7.3.3.

7.3.1 Power Diagrams

The first class we want to consider are power diagrams as introduced in Section 3.3.2.
As described in Section 7.1.2, power diagrams already occurred in some attempts to the
EDD (in particular in [FH11], [Sch01]), as well as in related applications. In particular,
we will apply the theory as recalled in Chapter 6.

We also note that in some existing approaches for electoral district design, power
diagrams even occurred without being explicitly recognized. Basically, all approaches
that eventually solve a transportation problem in the form of the program (4.18) with
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Figure 7.7: Clustering of our toy example that is supported by a power diagram.

objective

2
, (7.11)

S 3 gy o) — 5O

i€[k] j€[n]

for sites s € R2,i € [k], yield a feasible power diagram for every optimal solution (as,
for example, done in [Hes+65] or [Kai66]). As the moment of inertia is a respected
measure for the consolidation degree of districts, this is not a coincidence, of course.

In Chapter 6 the problem of minimizing the moment of inertia was introduced
as the BALANCED k-MEANS problem. We have seen a one-to-one relation between
faces of the gravity polytope and clusterings that allow a supporting power diagram
and characterized the local optima of the BALANCED k-MEANS problem by extremal
clusterings supported by centroidal power diagrams.

Suitability of Power Diagrams for the EDD

If one accepts the moment of inertia as a measure for the compactness of a district plan,
power diagrams yield the most compact districts due to the correspondence depicted
in Chapter 6.

With respect to the weight-balancing constraints (7.1c), we can reasonably assume
the solutions of the underlying linear programs to be unique following Theorem 7.1.
Hence, we know from Section 7.2.2 that we can efficiently solve the resulting rounding
problem. However, we obtain no better a priori guarantee for the resulting relative
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error ¢ than max ¢y, % from Lemma 7.3. For our considered data set, this bound does
not provide a sufficient guarantee a priori, as large municipalities do occur. However,
we will also see that this problem can be treated very well.

Next, let us discuss the contiguity constraints (7.1d). As we know from Section 3.3.2,
power diagrams are the only generalized Voronoi diagrams with linear bisectors and
thus the only diagrams that yield convex cells. However, here we are facing two issues.

Figure 7.8: Non-contiguous clusters as a consequence of the point-representation of units.

First of all, we have assumed for our data that each municipality is represented
by a point in the plane, e.g., determined by its territory’s center of gravity. On the
other hand, contiguity is determined by the contiguity graph which, for example, may
be derived by testing the municipalities’ areas for common borders. Thus, even if a
feasible power diagram guarantees the convex hull of the representatives of a district
to be contained in its corresponding cell, this may not imply contiguity. Figure 7.8
highlights this effect in our toy example. Here, the green unit separates the two red
ones. However, as we will also see for our real-life data, this may be regarded as an
artifact due to rather oddly-shaped units.

(a) Blue unit isolated due to a hole. (b) An indentation of the area’s boundary splits
the orange cluster.

Figure 7.9: Examples for the non-convexity of the units’ underlying region leading to non-
contiguous clusters.

Second, the non-convexity of the underlying state may be the cause for non-contiguous
clusters, too. Figure 7.9 depicts such effects in our toy example. As a power diagram
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is blind for both holes (as in Fig. 7.9a) as well as indentations in the state’s border
(Fig. 7.9b), those can lead to non-contiguity. We will see that those kind of artifacts do
appear in our real-world application, although rather rarely. Still, in order to enforce
contiguous districts, a manual post-processing is necessary.

Handling of Non-Contiguous Districts

Power diagrams rely on Euclidean distances while the effects described above root
from information that is intrinsic to the shapes of the municipalities’ and the state’s
areas. In order to incorporate this information, we might add further constraints to
the underlying linear program (4.18). Of course, this will have a malicious impact on
our desired primal-dual relation of optimal clusterings and power diagrams, which we
shall briefly discuss next.

First, we observe that representing each municipality by its center of gravity is in
fact the natural choice w.r.t. power diagrams. A canonical idea how to incorporate the
shape information of municipality areas into the model is to represent each municipality
not by one but multiple points. Those are then linked via must-link constraints. Let 2()
be some unit with weight w; and let us further assume that A; C R? is its associated
territory. We may further assume w to be a measure on R? (i.e., the population
distribution) such that w; = w(A;) holds for j € [n]. In order to pay regard to the
shape of the municipality, we may partition the municipality area A; = Ure[t] Aj, such

that w(4;) =3¢ w(A;.). We may then replace each unit 1) in our model by units
201 20t ¢ R? that represent the respective splits and have weights j, = w(Aj,)
for r € [t]. Let & denote the assignment variables of the program (4.18) after this
adaption. As we (eventually) must assign the municipalities to districts as a whole,
this suggests to add the must-link constraints

i = iy Vi € [K],a,b € [t]. (7.12)

Now recall a basic fact from the theory of linear programming: Whenever columns in
a primal problem are set equal, this causes the corresponding constraints in the dual
to be replaced by their sum®. This means that for a fixed i € [k], the dual constraints
(4.27a) corresponding to the cluster index i and the unit indices ji, ..., j; are replaced

!Consider a linear program ming , ¢z + d"y s.t. Az + By = b, z,y > 0 with corresponding dual
maxy b'u s.t. ATu < ¢, BTu < d (with parameters A, B, ¢, d, b from appropriate spaces). Adding the
constraint x —y = 0 to the primal alters the dual to max,,, bTu s.t. ATu+v < ¢, BTu — v < d which
can be simplified to max, bTu s.t. ATu+ BTu < ¢+ d (as we may set v =c — ATu).
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by
Sy, = Y @< Y @ fia9) (7.13)
relt] reft] re(t]
=w; @
=w; =w;j Zré[t] %j_rfi(;f;m)

Now let us consider the case of power diagrams in affine representation, i.e., f;(x) =
a;"x + o, for i € [k] and suitable parameters (cf. Section 3.3.2). Furthermore, we can
substitute 7; := 3, 7j, in the dual program (4.27). Then Eq. (7.13) becomes

N5 — Witk < Wi (aiT (Z c:jri’(h)) + Oéi) . (7.14)
reft] Y

Wiy j(]r) as

This is exactly the dual constraint we obtain when choosing z() = Zre[t] ufj

the representative for A; right away. Thus, we conclude that the usage of must-link
constraints in combination with power diagrams is equivalent to replacing the linked
points by their convex combination according to their weights. In particular, if we
consider arbitrarily small partitions of A; and assume #Ur) € A; for r € [t], this yields
2\ = w% fAj zw(dx), i.e., the municipality’s centroid, in the limit.

The other canonical way of further constraining the clustering is to exclude or to
enforce the assignment of units to clusters. Assume we exclude the assignment of the
jth unit to the ith cluster, i.e., we introduce the constraint

&j=0. (7.15)

In other words, we drop the associated column in the program (4.26) and hence the
associated constraint (4.27a) in the program (4.27). Assume the clustering £* and the
diagram P = (P,..., P;) w.r.t. functions (f;),cy to be obtained from a primal-dual
pair of (4.26) and (4.27) as proposed in (the proof of) Corollary 4.10. Also, assume
that the jth unit is assigned to the rth cluster by some positive fraction, i.e., £ ; > 0.
It is easy to verify that the remaining complementarity conditions now only imply
2@ € Py U P,. More precisely, if we drop the ith cell and consider the diagram

P = w.r.t. functions (f;) le[k\ (i} then complementarity still guarantees

(Pf>le[k]\{i}
2z € P, ¢ P, U P;. This means that we might lose feasibility of the diagram, however,
only w.r.t. the cluster from which the unit has been excluded.

Note that this argument is repeatable. So if we introduce constraints (7.15) for some
j € [n] and all ¢ € 7 for some Z C [k], the desired relation is weakened further to
z\) S UiEI P,UP,.

Alternatively, we may enforce the assignment of the jth unit to the ith cluster by
setting

ij=1. (7.16)
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Of course, due to constraint (4.26a), this is equivalent to the introduction of constraints
of type (7.15) for all cluster indices r € [k] \ {i}. So, according to the previous
observations, we simply lose any guaranteed relation between the resulting diagram
and the unit ). This, of course, becomes also clear as instead of constraint (7.16)
we can just solve the program (4.26) for the reduced unit set X \ {x(j)} and with a
target weight k; := & — w; for the ith cluster.

(a) Marked units are excluded (b) Result after adding one fur- (c) Result after adding two fur-

from the clusters that they ther constraints in compar-
were assigned to in Fig. 7.7.
The gray dashed lines indi-
cate the bisectors that re-
sult from dropping the or-
ange cluster.

ther constraints in compari-
son to Fig. 7.10a. Also, the
constraint for the unit that
is now correctly contained
in the green cluster can be
dropped.

ison to Fig. 7.10b. The
unit that was fractionally as-
signed to both the green and
the red cluster is now further
excluded from the former, as

well as another red unit from
the orange cluster.

Figure 7.10: Power diagram clustering of the toy example with additional exclusion constraints
of type (7.15). Units that are affected by such constraints are marked by a black
hatching.

Despite the conclusion that adding constraints of type (7.15) or (7.16) practically
undermines the desired relation between diagrams and clusterings, this seems still
practically feasible as long as only a few boundary units of clusters are concerned. In
particular, the constraints of type (7.15) can be considered “less harmful” to our theory.
Hence, we will apply a manual post-processing in which we successively add constraints
for boundary units that are disconnected from their assigned cluster. Figure 7.10
depicts this post-processing for our toy example. Here, multiple iterations may be
necessary in order to establish contiguity (up to the issue of fractionally assigned units).
However, we will see that for our real-word data the necessary efforts for this kind of
post-processing are within very reasonable bounds.
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Resulting Method

Let us now fit the theory of Chapter 6 together with the preceding thoughts into our
general methodology of Section 7.2.1 as depicted in Fig. 7.3.

For a fixed number N of iterations we sample sites from a uniform distribution over
Sdk—1n {c = (c(i))ie[k] c R . > iclk] ) = > i) %x(]’)}. Our experiments on our
given data suggest that reasonable numbers (such as N = 1000) can be assumed to
suffice (cf. Section 7.4.3).

For each of those sites, we then perform the (revised) BALANCED k-MEANS-algorithm
(Algorithm 2) as proposed in Chapter 6. Let a clustering & € T, and the sites s() =
c(C;) for i € [k] be the output of such a run. The additive weights (14;);c(x) (obtained

from the dual solution corresponding to constraints (4.18b), cf. Proposition 4.5) then
yield the power diagram PD <(s(i), ,ul-) 'e[k]) which supports the clustering £. Recall
(2

that from Theorem 6.10 we know that & is a vertex of T ,,. Thus, we may apply the
split resolution algorithm (Algorithm 3) from Section 7.2.2. If a better solution w.r.t.
the BALANCED k-MEANS objective has been found, we update the stored best known
solution.

At this point, we may furthermore reject solutions that disqualify for other reasons.
In particular, we may reject solutions that yield too large balancing errors after an
integral solution has been obtained. We will see in Section 7.4.3 to which degree this
impacts the achieved objective value.

For the best found solution, we apply the post-processing in order to establish full
contiguity w.r.t. the contiguity graph G as described before. Thus, we successively
introduce constraints of types (7.15) and (7.16) to the problem (4.18) (using the sites
of the best known solution). Note that this has to be done in a manual manner.

7.3.2 Shortest-Path Diagrams

Contiguity of districts is a natural constraint of electoral district design. However, we
have already described situations in which a district’s contiguity may be ambiguous
even when the geometry of the unit areas is fully taken into consideration. Moreover, we
have also seen for power diagrams that a diagram type, that relies on the representation
of units by points in the Euclidean plane, may fail to produce contiguous districts.
Clearly, unless the information that is encoded in the contiguity graph G is incorporated
into the diagram-defining functions, contiguity cannot be guaranteed a priori in general.

For many instances, the necessity of a manageable manual post-processing as we have
seen for the example of power diagrams might be well-acceptable. However, in particular
in situations when transparency and independence of the district design process is
of greatest importance, a human-controlled post-processing can be unacceptable. In
particular, in a situation as in the United States, where there are cases in which
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Figure 7.11: Exemplary shortest path diagram for our toy example.

the district design process is allegedly driven by political intentions, the desire for a
fully-automated process arises (cf. [PP91], [Alt97]).

The canonical way to include the inherent information of the contiguity graph G into
our context of generalized Voronoi diagrams is to use diagram-defining functions that
are deduced from G. Consequently, we apply shortest-path diagrams as introduced in
Section 3.3.4 over the contiguity graph G. We know that a shortest-path diagram is
site-star-shaped. In particular, we have seen that the cells are in fact subtrees of the
shortest-path trees w.r.t. the sites. Consequently, any clustering that is supported by
a shortest-path diagram will yield star-shaped and hence contiguous clusters.

Related to our approach, shortest-path distances have also been considered by
Zoltners and Sinha [ZS83] for the application of sales territory alignment. They propose
a Lagrangian dual approach. From our point of view, their model optimizes shortest-
path distances over a single-constrained clustering polytope while including binary
constraints. This may be identified as an integer version of the program (4.18). They
then relax constraints (4.18b) and perform a sub-gradient procedure to optimize the
Lagrange multipliers (i.e., the additive terms p; in our context). Here, they observe
that in each iteration units are assigned to the clusters with smallest adjusted objective,
which, of course, is the clustering induced by the generalized Voronoi diagram resulting
from the current Lagrangian multipliers. In particular, they conclude contiguity of the
resulting clusters. However, they do not discuss the case of those assignment being
ambiguous (i. e., the case of non-empty cell-intersections). Schroder [Sch01] also recalls
the approach of [ZS83] in his work and in particular points out this issue (cf. [Sch01,
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Chapters 7-8]). We will see shortly that for shortest-path diagrams the non-uniqueness
of optimal solutions is indeed a crucial issue. Here, our LP-duality based relation of
diagrams and clusterings will help to get a more precise understanding.

Choice of Structural Parameters - Sites

In the following, we will walk through the different steps of applying the schematic of
Fig. 7.3 to shortest-path diagrams and summarize the resulting procedure afterwards.

The only structural parameters to choose are the sites. However, we may note at
this point that — depending on the considered application — further parametrizations
are possible. For example, one might further consider a tweak of edge weights in order
to control the resulting shortest-path trees. An artificial increase of edge weights could
be utilized in order to pay regard to further barriers such as borders of administrative
levels that should be regarded in the optimization process.

In contrast to power diagrams, the choice of sites is limited to the unit set X. In the
unconstrained case, this is also referred to as k-medoid clustering (cf. [KR05, Chapter
2]). A classical algorithm to approach this is the “partitioning around medoids” —
short PAM — algorithm. In its originally proposed form in [KR87], the algorithm
works by selecting k random sites (or medoids) and assigning all remaining points to
their respective closest site. Then, all single swaps of sites and non-sites are tested for
improving the overall costs. As long as improving swaps can be found, the best one is
performed and the procedure iterates. As we have seen for the BALANCED k-MEANS-
algorithm in comparison with the (unconstrained) k-MEANS algorithm, this concept
canonically carries over to our constrained setting. Several variants and improvements
on the PAM algorithm have been proposed (see, for example, [PJ09; ZCO05]). However,
as sufficient for our purposes, we will use a very simple adaption of it that solves
program (4.18) as a subroutine and is conform with our schema of Fig. 7.3. As we
will see that rounding errors become more problematic with shortest-path diagrams,
we will search for swaps that improve on the resulting balancing error instead of the
resulting assignment costs given by the objective of (4.18).

Significance of the Supporting Property

We have seen in Section 3.3.4 that bisectors of shortest-path diagrams consist of subtrees
of the intersections of the shortest-path trees associated with the cells. More precisely,
whenever a unit lies in the intersection of two cells, all successors of the unit that are
common to both associated shortest-path trees are contained in the corresponding
bisector, too.

It is important to notice that the feasibility of a shortest-path diagram is insufficient
in order to guarantee the contiguity of the resulting clusters. Assume that a unit that
is contained in the intersection of two cells is integrally assigned to one of those. The
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Figure 7.12: Extremal fractional clustering in our toy example for the case of shortest-path
diagrams.

common successors of that unit along the associated shortest-path trees might then also
be feasibly assigned to either of the two clusters without being necessarily connected
to their assigned sites.

As an example, Fig. 7.12 depicts a clustering for our toy example that is an extremal
solution of the program (4.18) using shortest-path distances. While the diagram
(depicted in form of the trees T; as introduced in Section 3.3.4) is indeed feasible, it is
not supporting and the clustering is non-contiguous.

Recall that for the case of power diagrams, we know that the BALANCED k-MEANS-
algorithm will terminate in an extremal solution that is the unique optimum w.r.t.
the final sites. Also, by Lemma 3.6, we know that for power diagrams in general we
can reasonably assume the optimum to be unique and thus supported by the resulting
diagrams. However, this does not hold true for shortest-path diagrams. Whenever
shortest-path trees overlap in the described way, the additive correction terms that root
from the balancing constraints can force the whole overlapping subtree to be contained
in the intersection of the corresponding shortest-path diagram cells (cf., for example,
the orange and green colored trees in Fig. 7.12). Any fractional assignment of points in
such an overlap that results in the same overall weight apportionment as any optimal
solution is hence optimal, too. Figure 7.11 depicts a solution in the relative interior of
the optimal face of the same instance of (4.18) together with the same diagram as in
Fig. 7.12. Here, however, the diagram is supporting.

So, two issues arise as depicted in the following.
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Precedence Constraints

First, we should ensure that our underlying algorithm that solves the program (4.18)
selects a solution that is actually lying in the relative interior of the optimal face in
order to obtain a supporting diagram that guarantees contiguity. However, for our
purposes, we can even slightly relax this. As our main intention is the contiguity of
clusters, we can explicitly incorporate the star-shaped property of clusters as additional
constraints in the program as follows:

Assume a clustering to be given that is supported by a shortest-path diagram. Recall
the definition of the shortest-path trees T; in Section 3.3.4. Now for every i € [k], we
know that the subgraph of G induced by the ith cell, i.e., G[P,], is a subtree of T;.
Thus, for any unit assigned to the cluster C; that is not a site, its predecessor in the
rooted tree T; must be assigned to this cluster, too. Let

prer, (j) := 7 € [n] such that (), 29)) e Ty

denote the predecessor (index) of 2() in the rooted tree T; for every j € [n] with
2() £ s We can now introduce precedence constraints

Eiprop () = &ij Vi € [n] 1 2\ # 5O Wi € [R]. (7.17)

Let us formally state the feasibility of those constraints in our context. Here, in order
to apply Lemma 3.21, we will assume that shortest paths in the contiguity graph G are
unique. For the real-word instances we have in mind, the edge weights are typically
determined by some sort of distance measure such as Euclidean distances or traveling
times. As those can be naturally assumed to imply unique shortest paths, this is a
fairly mild assumption.

Theorem 7.6

Consider the program (4.18) w.r.t. functions (f;)icx) as given by Eq. (3.45). Further-

more, assume shortest paths between nodes in the contiguity graph G to be unique.
Then there exists a solution in the relative interior of the optimal face that fulfills

the constraints (7.17).

Proof. We will show this by induction over the number of units n.

For n =1 there is nothing to show.

Now for any n > 2, let £* be any optimal solution in the relative interior of the
optimal face of (4.18). Let P = (P,..., P;) be a corresponding supporting shortest-
path diagram w.r.t. functions (f;)ie[-

For any node 29, we denote by

I(z9)) = {Z € k]2 e PZ}
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the set of all cluster indices such that z) lies in the respective cells. Note that the
supporting property states £; > 0 if and only if ¢ € I (z0)).

Now we select a unit 219) € X such that 2U) is a leaf of T;[P;] for every i € I(z()).
In fact, any leaf of T;[FP;] for any i € [k]| has this property due to Lemma 3.21, hence
this is well-defined. W.lLo.g. let (™ be such a unit.

Figure 7.13: Exemplary illustration of the situation in the proof of Theorem 7.6
(here for the case that no sites coincide with (™| i.e., S(z(™) = 0).

We set
P(z™) = {x(preTi ™) e I(a™) A 2™ £ S(i)} (7.18)
to be the set of all predecessor nodes of (™) in the trees T;[P;] for i € I(z(™). Also, let
S(a™) = {ie 1(@™): ol =50} (7.19)

be the set of cluster indices such that (™ coincides with the corresponding sites. The
choice of (™ implies P; = {x(")} for all i € S(x(™), so the set S(z(™) describes the

set of clusters that only consist of (™). Figure 7.13 illustrates the given situation (with
S(z(™) = for the sake of presentability).

We claim that the set of clusters that contain (™) can be partitioned into the clusters
containing each of its predecessor nodes P(:p(")) and those consisting only of z(", i.e.,

I(z™) = U.orep (I(n))l(:c(j)) U S(z™). (7.20)
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Here, “C” follows directly from the definitions (7.18) and (7.19), while “2” follows
again from Lemma 3.21 (and the definition of S(z(™) in (7.19)). Also from Lemma 3.21
we see that the sets I(2\9)) for 29) € P(x(™) are disjoint: For any i € I(2\9)), there

exists some [ € I(x()) such that z(9) = 2(P°7 (™) 1y definition. Lemma 3.21 then
implies 2(/) =T, 2™ and so 2(9) must be the unique predecessor of z(™) in Tj.
Now, we adapt the given instance by removing () dropping the clusters in S (a:("))

and increasing the weights of predecessor units in P(:U(")). W.lo.g. assume that
S(x™) = [k] \ [k] holds for some k € [k]. For all () € P(z(™), set

A . ES
Wj = wj + Z §i’nwn
i€l (z(9)

and @; := w; for all remaining j € {j en—1]:209 ¢ P(a:(”))}. We then set

* *
i Wi T & pwn
Wy

§ij =

for all j such that zU) € P(z(™) and i € I(z1)) as well as fi,j i= & ; for all remaining
pairs of ¢ € [k] and j € [n — 1].

It is now easy to verify that & € Ti o (as defined by Eq. (4.16) for cluster weights
(’ii)ie[l%] and unit weights (&;);en—1]) holds. Moreover, it holds that the diagram
(P1 \ {x(")}, P\ {x(")}) obtained from (fi‘X\{z(”)})iE[fﬂ] supports ¢, so it must

hold that é lies in the relative interior of the optimal face of (4.18) w.r.t. the adapted
instance. Thus, by induction we can w.l.o.g. assume £ to obey (7.17). (Otherwise,

A~

select an according §. Note that this would not change the supports of &.)
We can now reverse our previous adaption. We define £** € R¥*™ via

ij = gi,preTi (n) " Z é-l)’:n

ler(z e ()

for all i € I(z(™)\ S(z(™). For all i € S(z™) = [k] \ [k] we set &7, =&, and for all
i€ [k]\ I(z™) we set ¢y, =0 . Finally, for all i € [k],j € [n — 1] we set

o {&'J if 1 € [];3]

i * . .
J 0 otherwise
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Let us check feasibility, i.e., £ € T, ,,. We get

> &= X R D DI 3

i€[k] iel(z(MN\S(z(M) ieS(z(m)
= > e | 2. G|t X Ea
i€l (@M)\S(z(M) 1e1(z®eT: (M) i€S(z(m)

(7.18),
2y éi,j-( 3 5zn)+ S oen

x(eP(z()icl(2(9)) lel(z(@) i€S(z(m)
. (7.20)
= D Gt X Ga = ) Eat X Ea=lL
@D ep(z(™), ieS(z(m) iel(z(M)\S(z(™) ieS(z(m)
lel(x(9)

We conclude that the assignment constraints (2.0a) in the definition of T}, are fulfilled
(as for the remaining j € [n— 1] this is inherited from ¢ ). Now let us check the balancing
constraints (2.0b). For i € S(z(™) those are fulfilled directly by construction. Let
i€ [k]\ S(z™). We claim that the weight of the units in P(2(™) U {x(")} assigned

by &* to the ith cluster is the same as the adapted weight of units in P(z(™) assigned
to the ¢th cluster by é . As other unit assignments are “untouched” by construction,
this then shows that constraint (2.0b) is obeyed. If i ¢ I(z(™), no weight of those
units is assigned (due to (7.20) and as both clusterings have the same unit supports
by construction). It holds (once more by (7.20)) that there exists a unique unit
z0) € P(z™) with j € supp(C;*). In particular, z(9) = prer, (™) must hold and we
get

Tiwi T Enwn = &ijws + & j ( > fz*,n) wp = & j0;-

lel(z(9)

We conclude £** € T}, .

As by construction for all ) € P(z(™) it holds that &5 = &in the constraints
(7.17) are fulfilled. Also by construction, £** has the same cluster supports as the
clustering £*. So we deduce that it lies in the relative interior of the optimal face of

(4.18). O

Note that the precedence constraints (7.17) are not sufficient for the solution to lie
in the optimal face of the clustering polytope T} .. An example is provided in Fig. 7.14.
However, they obviously do guarantee the contiguity of clusters which in the context
of our application might be thought of as “sufficiently supporting”.
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/’{1:2||

O

Figure 7.14: Clustering that obeys constraints (7.17), but that is not supported by an optimal
shortest-path diagram. Edges depict the trees T;[P;] that span the diagram’s
cells. All units are assumed to have weight 1. Both fractionally assigned units
are equally assigned to the indicated clusters. Thus, the clustering does obey
constraints (7.17). However, it is not supported by the diagram.

Zoltners and Sinha [ZS83] also introduce precedence constraints similar to (7.17).
They conclude those to be already implied by any assignment occurring in their
Lagrangian-relaxation, which is a clustering induced by a shortest-path diagram.
However, this is clearly not the case for non-trivial intersections of diagram cells
(as, for example, in Fig. 7.12). The statement is corrected by Schroder [Sch01, Satz
8.1], who demands uniqueness of the solution. This can be translated into empty
cell-intersections in our context. Theorem 7.6 and the succeeding observations can be
viewed as a clarification of this issue.

Iterative Rounding Procedure

The second problem that arises from the described nature of the bisectors of shortest-
path diagrams is the consequence of greater balancing errors. As we cannot reasonably
assume that our clustering solutions are extremal, we are likely to obtain more than the
desired k£ — 1 fractionally assigned units. Also, as described in Section 7.2.1, in general
we lose the supporting property of a diagram when rounding a fractional clustering.
However, if we want to preserve the star-shapedness of the clusters, the subtrees that
constitute the diagram’s bisectors will have to be assigned uniformly to a single one of
their fractionally assigned clusters.

For our application, we tackle this issue in two ways. First, we apply an iterative
rounding procedure that does not enforce the assignment of bisector subtrees as a whole.
Of course, star-shapedness of clusters is not necessary in order to achieve contiguity of
clusters. Assume a fractional clustering that is supported by a shortest-path diagram
to be given. For a unit that is fractionally assigned to several clusters, there may exist
several paths in the contiguity graph G from this unit to units in the integrally assigned
parts of those clusters.

For our toy example solution of Fig. 7.11, we see that indeed there is no necessity to
assign all units that are fractionally assigned to the orange, green, or red cluster as a
whole to one of them. In fact, most units share an edge with a unit that is integrally
assigned to the green cluster.
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Algorithm 6: Iterative assignment procedure for shortest path trees.

Input: Shortest-path clustering instance (X, k,w, G), sites sV, ... s € X,
clustering £ = (C'1,...,C%)T that is optimal for (4.18) with additional
constraints (7.17).

Output: Adapted clustering €.

repeat

2 Xf {x(j) :3ie [k] : &y € (0, 1)} \ {3(1), . ,s(k)}
3 for i € [k] do S; + {s(i)} U {:U(j) €eX:&,= 1}
4 Xe{s(l),...,s(k)}u)ff = {x(jl),...,x(jﬁ)}

,if zUr) S Xf
,lf aj(]r) — 3(1)

[umy

5 | forre[n] dody, « {“’jr
z(es; Wi

6 | E<En(y) u{{s0b} iek],aes,beXs {ob}eE}

U {{s(i),s(l)} ci#£lelk],a € Si,be S, {a,b} € E}

7 | for {a, b} € Edo

c({a,b}) Jif {a,b} C Xy

8 ¢({a,b}) < (min{c({c,b}): c € S;} Jif a=s9,b € X; for i € [k]

min{c({c,d}): ¢ € S;,d € S;},if a=s, b=s0) for i #1 € [k]

9 | G+« (X,E,é)

10 ¢ < Optimizer of (4.18) for (X, k,&, G) with

o0 , otherwise.

for i € [k], 2Ur) € X and with adapted precedence constraints
éhpreﬁ Gr) = éi,r Vr e [n]: 2Ur) ¢ supp(C}) \ {s(i)} Vie k], (7.21)

where 7} denotes the shortest-path tree rooted in s in G[supp(C;)].
Eijny if 2U) € Xp with j = j,,7 € [A)]
Eijny if 20) € S; with s0) = 20r) 1 ¢ [A]
12 until \X| has not changed from the previous iteration.

13 return &

11 foric [k],j €[n]do & ; {
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In order to pay regard to this observation in our rounding procedure, we proceed
as follows. Consider an optimal solution & of the program (4.18) that fulfills the
precedence constraints (7.17). Recall that we aim to construct some ¢ € R(€) as
defined by Eq. (7.2). We now iteratively construct sequences of adapted shortest-path
clustering instances. The procedure is formally given by Algorithm 6. In every iteration,
we contract all currently integrally assigned nodes of a cluster to a single one (cf. line
3). In particular, every contracted node must contain the respective cluster’s site.
Thus, sites serve as representatives for contracted nodes. All remaining nodes are
collected in the unit set X r, which together with the sites forms the adapted unit
set (line 4). In the contracted graph, two nodes share an edge whenever any nodes
from the respective contracted node sets share an edge in G (line 6). We weight those
edges by the minimum weight (i. e., distance) among their corresponding contracted
edges (line 8). We then re-solve the problem on this adapted instance. However, in
order to ensure that we obtain a new solution in R(§), we restrict the shortest-path
distances to the cluster support-induced subtrees (line 10). The assignment costs of
initially fractionally assigned units are now determined by their shortest-path distances
to the contracted site nodes. In particular, this impacts the overlapping of the clusters’
shortest-path trees. Thus, one can reasonably hope for less fractionally assigned units.
This is now iterated until the clustering does not change after re-solving the problem.

Let us formally state and prove correctness of Algorithm 6.

Theorem 7.7

Given a valid input, Algorithm 6 terminates after at most n iterations with a clustering
& that is optimal for the program (4.18) (for the original instance) and such that
G[supp(C;)] is connected for every i € [k].

Proof. First, let us ensure that the program (4.18) as stated in line 10 is feasible with
a finite objective value. The current clustering £ canonically defines a solution for the
adapted instances by assigning all units of a contracted node to the corresponding
cluster. Furthermore, this solution must be feasible and of finite objective value as
distances as well as precedence constraints are determined along shortest paths in the
cluster supports.

Vice versa, every clustering obtained in line 11 is feasible for the original version
of (4.18) (without precedence constraints). Furthermore, by construction the cluster
supports of the final solution are subsets of the respective cluster supports of the input
clustering, hence the final clustering must be an optimizer of (4.18).

Contiguity of the resulting clusters is immediately implied by the (adapted) prece-
dence constraints (7.21) and the definition of the contracted graph G.

Once a unit is integrally assigned to a cluster, it will be contracted with all further
integrally assigned nodes of that cluster in line 3. Due to the choice of the functions f;
in line 10, such a node cannot be assigned to a different cluster any more. Thus, the set
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of integrally assigned units must increase in every iteration, otherwise the algorithm

will terminate. This is the case after at most n iterations. O
O
o
() &0
o

Figure 7.15: Clustering after the first iteration of Algorithm 6.

Let us illustrate Algorithm 6 by means of our toy example. Figure 7.11 depicts
a clustering that is optimal for the program (4.18) and that obeys the precedence
constraints (7.17) (and that moreover lies in the relative interior of the optimal face as
the diagram is supporting). The integrally-assigned units are now contracted and new
distances according to Algorithm 6 line 8 are determined. The problem is now re-solved
as stated in line 10. Figure 7.15 depicts the resulting solution. This is then repeated a
second time, however, without leading to any further integral assignments and hence
the algorithm terminates (cf. Fig. 7.16). Doing so, the number of fractional assignments
has been reduced from 6 to 4 while all resulting clusters are indeed contiguous.

For the final solution, a rounding procedure is then applied that minimizes the
maximum balancing error while obeying the precedence constraints (w.r.t. the final
graph in Algorithm 6). As for our application the number of remaining fractional
assignments is fairly small, we do so by means of the following simple integer linear
program (7.22). Let £* be an optimal shortest-path clustering obtained after applying
Algorithm 6. Only for the sake of notation simplicity, we assume here £* to be identical
to the initial optimal clustering that is the input for Algorithm 6 (i.e., no contractions
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Figure 7.16: Clustering after the second Figure 7.17: Rounded clustering after apply-
(and final) iteration of Algo- ing the ILP (7.22).
rithm 6.

have been performed).

min 1 (7'22)
SER,ECREXn
s.t. § > |ri— Y &jw Vi€ [k] (7.22a)
JEn]
Y&y =1 Vje[n] (7.22b)
i€k]
gi,preTi(j) > & Vjen]: a9 £ vielk] (7.22)
§ij = 0 Vielkl,je[n]:&,; =0 (7.22d)
&; € {0,1} Vielkl,jen] (7.220)

Note that constraint (7.22a) can, of course, be linearized in the usual way. Also,
presumably most columns can be dropped due to (7.22d), as only units that have been
fractionally assigned must be re-assigned.

In our toy example, Fig. 7.17 depicts the final clustering after solving the ILP (7.22).
Here, a maximum absolute balancing error of 0.5 is obtained, which in fact is best
possible (as we are assuming a unit weight on every of the 42 units).

Application of the GVD Schema

Finally, let us summarize how the general schema as depicted in Section 7.2.1 applies
to shortest-path diagrams.
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As we have seen for our toy example, the iterative procedure in form of Algorithm 6
can help in order to decrease fractionality. However, the resulting number of fractionally
assigned units may still be arbitrarily large. For example, consider an instance of two
sites that are connected to all remaining units via a single bottleneck unit. Thus, we
decided to optimize our choice of sites w.r.t. the resulting balancing error. Of course,
other objectives or mixed forms could be thought of, too. Here, we use a simple local
search procedure that can be interpreted as a PAM-like method (as described before).

We start with any choice of sites. For example, those can be generated at random.
In our application, we will use sites that are closest to the final sites of our power
diagram approach.

In every iteration, each of the sites is then exchanged by any non-site unit. For
practical reasons, here we reduce the set of exchange candidates to a certain number of
closest units of that site w.r.t. G. If there are any improving exchanges w.r.t. our
objective criterion, i.e., the resulting rounding error, we choose the best-performing
exchange and continue. Algorithm 7 depicts this procedure which yields the proposed
realization of the schema in Fig. 7.3 for shortest-path diagrams.

Algorithm 7: Overall shortest-path diagram procedure as applied to the elec-
toral districting design problem.

Input: Shortest-path instance (X, k,w, G), start sites S = {3(1), e s(k)} C X,
parameter N € N5

Output: Integral clustering &*

Repeat

2 0 < Optimal value of ILP (7.22) after solving (4.18) with functions as given

by (3.45) for sites S as well as precedence constraints (7.17) and then

applying Algorithm 6.

[uny

for i € [k] do
4 foreach 5 from the N closest neighbors of s in G do
; 55\ [0} {50}
6 6 + Optimal value of ILP (7.22) after solving (4.18) with functions as

given by (3.45) for sites S as well as precedence constraints (7.17)
and then applying Algorithm 6.

7 if 4 <6 then

)
9 | S« S for S that yielded 4.
10 else

11 L return Clustering obtained in the ILP (7.22) that yielded 6.
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GO RN C B N ) SR )

Figure 7.18: Example in proof of Theorem 7.8.

On the Theoretical Limitations of Shortest-Path Diagrams

While shortest-path diagrams come with the great benefit of a-priori-guaranteed
contiguity, this comes at the price of less consolidated clusters. In particular, this is the
case as the underlying optimization problem is less outlier-sensitive (as, for example,
the squared distances in the case of power diagrams).

One natural approach here is to use modified functions f; in the form of Eq. (3.2)
that still rely on the metric induced by the contiguity graph.

However, the following result states that this is — at least in the context of generalized
Voronoi diagrams — not feasible. To be more precise, for any transformation function
h in Eq. (3.2) that is not affine, clusters may be disconnected despite being supported
by the resulting generalized Voronoi diagram. The following result and its proof have
been adapted from [BGK17, Theorem 11].

Theorem 7.8 (Variant of [BGK17, Theorem 11])
Let (X, dg) be the metric space induced by G and let P = (P4, ..., Py) be the generalized
Voronoi diagram w. r. t. functions (f;) as given by Eq. (3.2) for the metric dg, a function
h:R—R, and u; € R, i € [k].

If h(z) = a-x + B for some a € R>o, 8 € R then P is site-star-shaped.

If h is any continuous function but not of the above type, this is not true in general.

Proof. If a > 0, then the first claim follows directly from Lemma 3.3 together with
Lemma 3.2, as a - dg again yields a metric on X. The degenerate case a = 0 yields
cells that are either empty or equal to X. Hence, the first claim follows.

For the second claim, let some continuous function A : R>g —+ R be given. Con-
sider a graph G as illustrated in Fig. 7.18 with X = {2 2 20) 1} edges
E = {{m(l),x@)}, (2@ ()} {x(Z),x(4)}}} and edge weights c({x(l),x@)}) = a,

c({x(z),x(?’)})) = b and c({x(z),x(‘l)}) = ¢ for some a, b, c € Rxo.

We set g1 := 0 and po = h(dg(s™),z®)) — h(dg(s?,23))). Thus, z®) € P N
P, holds by construction. If the diagram P is site-star-shaped, this implies @ e
Py N Py and hence h(dg(s™M,2?)) = h(dg(s®,2?)) + ps. Together, this gives
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h(dg (s, 23)) — h(dg(s®,23)) = h(dg(sW,2?))) — h(dg(s?,2?)). In terms of
a, b, and ¢ and using the shortest-path distances this yields

h(a+b) — h(b+ c) = h(a) — h(c).
Set h := h — h(0). By taking the limit ¢ — 0 and using the continuity of h we get
h(a + b) = h(a) + h(b).

Since a,b € Rs are arbitrary and & is continuous, it readily follows that 7 is linear
on R>p and thus & is affine. Finally, let us ensure that o > 0 is required in general.
Consider the example X = {2, 2@}, s = 2 for i = 1,2 and a single edge
{:E(l),:z:@)} of arbitrary positive length. Set p; := po := 0. Then for a < 0 we get

P = {x@)} and P, = {x(l)}, so P is not site-star-shaped. O

At first glance, Theorem 7.8 suggests that using outlier-sensitive transformations
(such as squaring distances) is unsuitable if star-shapedness (as a warrant for contiguity)
should be guaranteed. However, this only affects the “strict” usage of shortest-path-
diagrams. For example, one could still attempt a hybrid approach of power diagrams
and shortest-path diagrams which uses squared Euclidean distances as proximity
measure while enforcing continuity by means of precedence constraints (7.17). While
this would not yield clusterings that are supported by a generalized Voronoi diagram,
this could help to overcome some of the drawbacks of shortest-path-diagrams w.r. t.
consolidation.

7.3.3 Anisotropic Power Diagrams

As a third approach, we apply anisotropic power diagrams to the electoral district
design problem.

While our previous approaches show very promising techniques in order to produce
well-suited district plans, they disregard a maybe unwritten but rather natural require-
ment: continuity. Redistricting has to be applied regularly due to census changes.
However, it is plausible to demand this adaption to be done with preferably as little
changes to the existing districts as necessary. Thus, one might want to pay regard to
the “difference” between the newly generated and the currently existing district plan
in an optimization procedure.

In order to do so in our context, we make use of anisotropic power diagrams. As
mentioned before, those have been used successfully in the context of grain reconstruc-
tion ([Alp+15]). Here, the core idea is to resemble a tiling of a certain area into grains
by means of an anisotropic power diagram. We can adapt the same methodology to
our application.
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Choice of Local Norms

Let & O eT uncstr.,k,n D€ an existing clustering obtained from a current district design.

As in [Alp+15], we now want to determine a local norm for every district that inherits
some information on its shape. If a district is elongated in a certain direction, the local
norm should be chosen such that distances in that elongated direction are relatively
decreased compared to other directions. From the point of view of a single district,
we would like to change our normed space such that the original district is uniformly
spread into all directions. A typical tool in order to perform such a data transformation
is, of course, principal component analysis (PCA). Let cgo) =c (C’Z(-O)) € R? denote the

centroid of the ith cluster of £ for i € [k].
For every i € [k], the covariance matrix of the ith cluster is given by

@)= TS (0 0) (-0
jE€[n] W(C )

)

We then set
5 = cov(C\V) ! (7.24)
for i € [k].
For every district i € [k], we can now consider the Minkowski space (R%, %, %Bg)

_1
equipped with the ellipsoid ¥, ? Bg as the unit ball. Let us provide a quick sanity check
why this choice of a space could be useful in our context. We can map this space into

1
the standard Euclidean space via x — 2 := X?x. By construction, the covariance of
the district under this mapping is

Z gl(g) wio) (i‘(j) _ 6(0)) (i'(j) _ 62(0)>T

7

jE€[n] w(Cz )

_ 0 Wi w5 () O\ () LONT 3

= Z & IR CA V) — ¢ ¥} =1dg. (7.25)
PO ( ) ( )

So indeed, the district may be considered as equally spread in all directions in this
space.

Consequently, we choose the centroids as sites, i.e., s®) = ¢ (CEO)) for i € [k|,
and the inverted covariance ¥; for ¢ € [k] as norm-defining matrices for an ellip-
soidal parametrization of the desired anisotropic power diagram. Thus, the pair

<(Ei),~e[k], (C(O))ie[k]> yields the structural parameter S in the context of our method-

7

ological schema from Section 7.2.1. For every cluster i € [k], we thus set

filx) == (9: - cz(-o))T Y (x - C§O)> = Hx - CEO)‘ ’

. (7.26)
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as distance functions for the problem (4.18).
Note that by construction, for every ¢ € [k] we get

= e = 3 6 o) (o) O el

Jj€n] i€

This means, the local norms have been chosen such that the original clustering yields
normalized costs of d - w(X).

Post-Processing

Similar to the case of power diagrams in Section 7.3.1, there is no guarantee of contiguity
of districts. Even worse, for the case of anisotropic power diagrams we know that the
diagram cells in the plane might be non-contiguous themselves (cf. Section 3.3.3).

Thus, in order to ensure contiguity, we apply the same post-processing steps as we
did with power diagrams by the introduction of constraints of type (7.15) and (7.16)
and resolving the problem (4.18) (see Section 7.3.1).

Again, we will see that this turns out to be very manageable for our real-world
application.

Overall Workflow

Let us shortly summarize our proposed overall workflow for the usage of anisotropic
power diagrams for the electoral district design problem.

Given district plan — or clustering — we define the functions (f;);c[ via a principal
component analysis as given by Eqs. (7.24) and (7.26). We then solve the program
(4.18) and obtain a fractional clustering together with additive weights M = (u;);e[x]
such that the anisotropic power diagram w.r.t. functions (f; + Hi)z‘e[k] supports the
clustering. If there are non-contiguous districts, we perform a post-processing as we
do for the case of power diagrams (see Section 7.3.1). Recall that this preserves the
feasibility of the diagram. Finally, we apply a rounding procedure. Due to Theorem 7.1,
we can reasonably assume that the optimum of the problem (4.18) is unique and hence
we can solve a co—SPLIT RESOLUTION as described in Section 7.2.2.

Figure 7.19 depicts some (more or less) arbitrary clustering for our toy example.
Figure 7.20 then shows the resulting clustering and supporting anisotropic power
diagram obtained from the program (4.18). In particular, it depicts the ellipses that
are the unit balls of the respective local norms.

Comparison of District Plans

In order to evaluate and compare the different approaches in regard of our main
intention for using anisotropic power diagrams, we need a suitable measure. For our
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Figure 7.19: Assumed initial districts for the anisotropic power diagram approach.

purposes, we want to consider two district plans to be similar if pairs of voters who are
assigned to a common district in one plan are not separated in the other. With £(©)

still being our reference clustering, let £* € {0, l}kxn denote a newly generated one

w(CEO)
2

that we assume to be integer. In total, there are 3 ;cr ( )) pairs of voters that

are assigned to the same district by £€©). Let

A(ED %) = {{j, r} e (@) cJie (k] : fi(g-) = 51-(,‘1) =1 AVielkl:&;-&, = O}

denote the index set of all pairs of units that are assigned to a common cluster by £©
but to different clusters by £*. Then

N 1
> ie[k] (%) tirreaE®.e)

gives the ratio of voter pairs that clustering £* separates in comparison to £(©).

7.4 Results

We demonstrate the proposed methodology by the example of the federal elections
in Germany. Sections 7.4.1 and 7.4.2 will describe the dataset and test environment,
Sections 7.4.3 to 7.4.5 describe the implementations of the different used diagram types.
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Figure 7.20: Anisotropic power diagram clustering of the toy example. The colored ellipses
depict the respective cluster norms’ unit balls that result from the principal
component analysis of the clusters in Fig. 7.19.

Results and figures are then provided and compared in Section 7.4.6. More detailed
result tables can be found in Appendix B.

7.4.1 Dataset

The German electoral law ([BWG]) states that 299 electoral districts are to be appor-
tioned to the 16 federal states. This apportionment is done following the Sainte-Lagué
method ([Wikc]). Electoral districts have to obey the federal state borders and must
be contiguous. As far as possible, administrative borders (“Kreise”, “Gemeinden”)
shall be obeyed. Thus, in our context each federal state yields an electoral district
design instance on its own. By law, each district’s size should not deviate from the
federal average by more than 15%; a deviation exceeding 25% enforces a redesign of
districts. According to a ruling by the Federal Constitutional Court, the district’s size
is determined by its number of eligible voters ([Bunl2]).

We mention that in particular the number of electoral districts is currently politically
discussed in Germany ([SpOn19; Zeil9]). However, neither the number nor the way
of apportionment of districts to states is part of this work. Also, we do not consider
the administrative levels above municipalities, i. e., counties (“Kreise”), as their total
number of 489 for the whole of Germany ([SABL19]) is, of course, way too narrowing
in order to build 299 districts. Also, the (political) evaluation of which county may or
may not be split is beyond the demonstrative purpose of this work.
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We use the data from the federal German elections held on September 24th 2017.
Note that analogous results on the database of the federal elections of September 22nd
2013 have been published in [BGK17].

The data of the electoral districts of 2017 has been taken from [Bwll6], municipality
sizes, i.e., number of eligible voters, root from [SABL19, Table 14111-01-03-5]. The
geographical data has been taken from [BKG19, Dataset VG250-EW, 1.1.2019]%.
Geographic shapes are mapped to the plane by the EPSG 25832 spatial reference
system ([Wikd]).

Overall, there are 11091 municipalities with an average amount of 5556 eligible
voters per municipality. There are a total of 61 688 482 eligible voters, so that the 299
districts yield a desired size of 206 316 voters per district. However, as the 16 federal
states are to be treated independently, the average district sizes of each state actually
ranges between 194 316 (Saarland) and 237076 (Bremen).

Next, several larger municipalities formed several districts on their own in the 2017
election. For example, the city of Munich is split into 4 districts. As this results in
large units that a priori yield districts on their own, we did not include them in our
dataset. More precisely, we excluded all municipalities that are at least 5% greater
than the desired district size. Also, the cities Berlin, Bremen and Hamburg, that are
federal states on their own, were excluded for the same reason.

Overall, this reduces our data set to a total of 13 instances that in summary have
266 remaining districts. Table B.1 in the appendix lists more detailed information on
the original districts of 2017, while Table B.2 yields the key figures for our resulting 13
clustering instances.

Figure 7.21 depicts the districts of the 2017 election. Here and in all further
illustrations of district plans, we use a total of 6 colors to color the districts. Colors are
chosen such that neighboring districts are colored differently. Furthermore, by mapping
the districts of each of the generated clusterings to the original districts of 2017 and
coloring mapped districts identically, the illustrations are sought to be comparable more
easily. Municipalities that are excluded for the reasons described above are depicted
by a gray-shaded filling.

For each municipality, the centroid of its territory was determined as a representative
in the unit set X. A contiguity graph G was derived by connecting units whose
territories share a common border. Some additional edges were introduced in order
to connect island units to the mainland by considering ferry connections. Euclidean
distances of the unit points were then used as edge lengths. Figure 7.22 depicts the
resulting graphs for all 13 instances.

2Both data from [SABL19] as well as [BKG19] are licensed under the license “Data licence Germany
— attribution — version 2.07, see [GovD]. All geographical material in this section is ©GeoBasis-DE /
BKG (2019).
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Figure 7.21: Districts of the 2017 federal  Figure 7.22: Unit centroids and contiguity
elections in Germany. graphs of the 13 instances.

7.4.2 Testing Environment and Implementation Notes

The runs were performed in Linux environments with slightly varying specification.
However, our application is not sensitive to running times, so we did not perform any
exact measurements w.r.t. those. From our observations, all approaches should be
executable on a reasonably modern desktop computer at reasonable running times
(i.e., at most a few hours per instance and approach).

The main algorithms were implemented in Java ([Orac]). For solving the underlying
linear and integer linear programs, the solvers FICO Xpress ([FICO]) as well as Gurobi
([Guro]) were used.

The open-source software QGIS ([QGIS]) was used for graphics generation as well
as for the interactive post-processing with power diagrams and anisotropic power
diagrams. Here, we used the QGIS Python interface in order to inject our own Python
([Pyth]) code that performs the computations of further graphics such as diagram
lines, interacts with the Java backend and enables a semi-automated generation of
figures. Data storage and exchange between the several application levels was done in
a PostgreSQL database ([PSQL]) equipped with the PostGIS extension ([PGIS]) for
handling geographic data.
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7.4.3 Power Diagrams

Let us discuss the results for power diagrams following the methodology of Section 7.3.1.
Figure 7.23 depicts the result for the state of Bavaria.

Figure 7.23: Power diagram clustering result for the state of Bavaria.
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Necessary Number of Iterations

First, we discuss what number N of samples of start sites for the BALANCED k-MEANS-
algorithm may be reasonable w.r.t. our data.

In order to do so, an assumably large number of 50000 samples of sites for each of
the 13 state instances was generated and used as start sites for a BALANCED k-MEANS
run.

For each run, we then considered an estimated approximation ratio by taking the
ratio of the resulting BALANCED k-MEANS objective value and the best solution found
over all samples. As it turns out, the final objective values after running the BALANCED
k-MEANs-algorithm are mostly in close range to the best found solution for all instances
in our dataset.

@ Saarland
@ Brandenburg
1.4
® Saxony-Anhalt
o A
33 ® Thuringia
jav] @ Saxony
—~
13 — ® Mecklenburg-Vorpommern
. . ® Lower Saxony
@ Schleswig-Holstein North Rhine—VVestphalia.
esse
® Rhineland-Palatinate
1.2
@ Baden-Wiirttemberg
@ Bavaria

10 20 30 40 50 60
number of clusters k

Figure 7.24: For each problem instance, the ratio between the worst and the best obtained
objective values of 50000 BALANCED k-MEANS runs in relation to the number
of clusters.

Figure 7.24 depicts for each of the thirteen instances the ratio of the worst and best
found solution over all 50 000 samples. Here, we observe that for our given data this
ratio is at worst 1.52 for the state of Saarland. The latter is also the smallest among all
considered states, while the ratio of all states with at most 20 districts never exceeds
1.3. Going more into detail, we are interested in the resulting empirical distributions
of the ratio between each and the best found objective value. Figure 7.25 shows the
histograms of this ratio for the five largest states, while Fig. 7.26 yields the histograms
for the remaining eight states.

Here, the histograms for smaller states reveal a less continuous behavior compared
with the greater states. This is also in accordance with the observation that for smaller
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Figure 7.25: Histograms of the ratios between the individual and the best found objective
values over the 50000 BALANCED k-MEANS runs. Here, for the five largest
federal states.

states less distinct solutions were found. While for the greatest state of North Rhine-
Westphalia no solution in our test run was obtained twice, for the “medium”-sized
state of Saxony 4665, and for the smallest state of Saarland only 51 distinct solutions
occurred.

Most important for our approach, for all instances a significant amount of samples
lies very close to the best found solution. In order to quantify this, let & > 1 and
consider S to be a random sample of structural parameters, i.e., sites, as input for
the BALANCED k-MEANSs-algorithm. Let ¢ denote the resulting clustering and for
€ € T let g(§) denote the resulting BALANCED k-MEANS objective value (i.e., the
moment of inertia, cf. Section 6.1.2). With £* being the optimal clustering, we would

like to know the probability
. 9(&°)
pi=P <a 7.28
(9(5*) (7:28)

of the random sample yielding an objective value within a ratio of « to the optimal
solution. Of course, we do not know £*. Hence, we replace it by é* to be defined as
the best solution found in our empirical runs. However, our observations, in particular
of Figs. 7.25 and 7.26, suggest that we can reasonably assume g(&*) ~ g(é*) We can
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Figure 7.26: Histograms of the objective ratios as in Fig. 7.25 for the remaining states. Here,
a few outliers (at most 0.32% per state) exceeding a ratio of 1.25 have been
dropped for the sake of presentability (cf. also the worst-case values in Fig. 7.24).

then obtain a confidence-interval for P(Z (és)) < a) (i.e., for the success probability
of a Bernoulli distribution). Following [DCBO01] we use the Agresti-—Coull interval as
estimator. We then consider the lower bound of this interval in order to compute the

number of samples necessary to achieve a ratio of a at some boosted target probability.

For our setting, we choose « := 1.01 and estimate the success probability at a 99.9%
confidence level. We then compute the number of runs that are necessary to have a
99.9% likelihood (at this level of confidence) of obtaining a 1.01-approximation (of the
best solution found among all samples). Figure 7.27 depicts the resulting estimates for
the required numbers of runs compared to the instance’s number of clusters. Here, we
see that for all except one instance, less than N = 524 runs (obtained for the state
of Lower Saxony) suffice. An outlier is given by the state of North Rhine-Westphalia
with 14 856 runs. However, note that even for this state, 1000 iterations would suffice
for a ratio of a = 1.02 with the same probability and confidence. On average, the
BALANCED k-MEANs-algorithm took 20.6 iterations (with the averages of the individual
instances weighted by their number of clusters). Thus, for our given instances, a value
of N = 1000 results in solving roughly 2 - 10* transportation problems of the form
(4.18), which is not an actual computational challenge on a modern machine.

Of course, our data is too limited in order to allow a generalization. Still, it indicates
that a very reasonable number of iterations may suffice in order to obtain a satisfying
approximation. In particular this holds true for the greater instances in our data, maybe
excluding North Rhine-Westphalia. Note that the latter instance also considerably
differs from the other instances w.r.t. the number of units per cluster as it is the
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Figure 7.27: Estimated number of runs necessary to obtain a 1.01-approximation ratio (w.r.t.
the best solution found) with a probability of 99.9% at a 99.9% confidence level.

densest-populated state in our dataset (cf. Table B.2).

Let us furthermore attempt to illustrate the practical meaning of accepting an
approximation ratio of & = 1.01. Here, let us assume that the optimal clustering £* is
integral and for each j € [n] let i(j) be the unique cluster index that the jth unit is
assigned to. Observe that if we replaced each unit representative z(9) by a translation
20 + (Va—1) (x(j) — il ))) while keeping the clustering £* as well as the centroids
(by construction) fixed, the BALANCED k-MEANS objective value would increase by a
factor of a. In our data, this translation is on average of length 68.8m. By comparison,
the average maximum distance of a representative 2\ to the respective unit’s border
measures 8.25km.

Balancing Behavior

Using the procedure as described so far we obtained an average relative balancing error
after applying the rounding procedure of 5.2%. Moreover, the maximum error for the
individual instances ranged between 7.3% and 45.7% due to some greater cities being
fractionally assigned. However, in the preceding section we observed that a considerably
great ratio of solutions obtained from running the BALANCED k-MEANS-algorithm for
a set of randomly sampled sites yields satisfying values w.r.t. the moment of inertia.
Thus, we decided to tweak the procedure by rejecting any result whose maximum
balancing error after applying the rounding procedure exceeded a predefined threshold.

For all but three states in our dataset we set this threshold to 5%. However, for the
states of Saxony, Saxony-Anhalt and North Rhine-Westphalia, we had to increase this
threshold to 8%, 12.5%, and 15%, respectively, as in fact no feasible solution within
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the threshold of 5% could be found for those instances.

This, of course, weakened the results w.r.t. the BALANCED k-MEANS objective.
Here, we observed an average relative increase of the BALANCED k-MEANS objective by
2.5%. For the state of Saxony-Anhalt, a particularly high increase by 23.6% occurred
(while all remaining states yielded increases of less than 5%).

Post-Processing

Next, we applied the post-processing in order to ensure contiguity of districts. Here,
we were successful in establishing contiguity for all our instances. Overall, 19 (out of
266) clusters were not contiguous and we injected 30 constraints of type (7.15) as well
as 8 constraints of type (7.16). This affected 36 units, i.e., 0.3% of all units.

S

Figure 7.28: Non-contiguous districts (col-  Figure 7.29: Units affected by the power dia-
ored) before post-processing. gram post-processing (colored,
Over all instances, 19 districts 36 in total).
were non-contiguous.

Figure 7.28 depicts the non-contiguous clusters after the initial run, while Fig. 7.29
depicts all units that were affected by the additionally introduced constraints. By using
the powerful open-source software QGIS ([QGIS]) that beyond the image-processing of
geographic maps offers the capability of injecting individual source code, this process
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turned out to be fairly convenient.

Figure 7.30: Non-contiguous district around  Figure 7.31: Non-contiguous district around

the city of Munich. The gray- the city of Peenemiinde, that
shaded areas depict the ex- belongs to the northern part of
cluded districts that belong to the island Usedom.

Munich.

Figure 7.32: Non-contiguous district result- Figure 7.33: Non-contiguous district in

ing from an indentation in the Bavaria which is caused by the

eastern border of Rhineland- representation of unit areas by

Palatinate. their centroids (depicted as
circles).

Still, artifacts as described in Section 7.3.1 do occur in our real-world data. Fig-
ures 7.30 and 7.31 depict examples of “holes” separating a district in analogy to
Fig. 7.9a. Here, Fig. 7.30 is due to four excluded districts of the city of Munich, while in
Fig. 7.31 the town of Peenemiinde, that belongs to the most northern part of the island
Usedom, is separated from the western mainland. Artifacts in analogy to Fig. 7.9b can
be observed, too. An example is depicted in Fig. 7.32, where an indentation in the
eastern border of the state of Rhineland-Palatinate results in a non-contiguous district.
Also, non-contiguity due to the representation of units by single points as we illustrated
in Fig. 7.8 can be observed. An example is gi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>