
Jan Adler

Materialized views in
distributed key-value stores

Fakultät für Informatik

Materialized views in distributed
key-value stores

Jan Adler

Vollständiger Abdruck der von der Fakultät für Informatik der Technische Universität

München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Jan Křetínský

Prüfer der Dissertation: 1. Prof. Dr. Hans-Arno Jacobsen

2. Prof. Dr. Georg Groh

Die Dissertation wurde am 25.05.2020 bei der Technische Universität München eingereicht

und durch die Fakultät für Informatik angenommen, am 01.07.2020

Department of Informatics

Materialized views in distributed
key-value stores

Jan Adler

Complete copy of the dissertation approved by the Department of Informatics of the

Technical University of Munich in partial ful�llment of the requirements for the degree of

Doktors der Naturwissenschaften (Dr. rer. nat.)

Chair: Prof. Dr. Jan Křetínský

Dissertation examiners: 1. Prof. Dr. Hans-Arno Jacobsen

2. Prof. Dr. Georg Groh

The dissertation was submitted to the Technical University of Munich on 25.05.2020 and

accepted by the degree-awarding institution of Department of Informatics on 01.07.2020

Abstract

Distributed key-value stores have become the solution of choice for warehousing large

volumes of data. However, their architecture is not suitable for real-time analytics. To

achieve the required velocity, materialized views can be used to provide summarized data

for faster access. The main challenge, then, is the incremental, consistent maintenance of

views at large scale. Thus, we introduce our View Maintenance System (VMS) to maintain

SQL queries in a data-intensive real-time scenario. VMS can be scaled independently and

provides strong guarantees for consistency, even under high update loads. We evaluate

our full-�edged implementation of VMS on top of Apache’s HBase using TPC-H work-

loads and queries. Exploiting parallel maintenance, VMS manages thousands of views

simultaneously, handles up to 300M base updates per second and provides permanent

access to fresh view data in under 5ms.

iii

iv

Zusammenfassung

Verteilte key-value stores sind ein Typ moderner Datenbanken um große Mengen an

Daten zu speichern und zu verarbeiten. Trotzdem erlaubt ihre Architektur keine analyti-

schen Abfragen in Echtzeit. Eine Lösung, um die nötige Verarbeitungsgeschwindigkeit

zu erreichen und schnellen Zugri� auf berechnete Daten zu erlauben, stellen materia-

lisierte Views dar. Die Herausforderung ist dann, das inkrementelle und konsistente

Aktualisieren der Views. Aus diesem Grund präsentieren wir unser View Maintenance

System (VMS), das datenintensiven SQL Abfragen in Echtzeit aktualisiert. VMS skaliert

unabhängig vom Basissystem und garantiert Konsistenz der berrechneten Ergebnis-

se auch unter hoher Last. Wir evaluieren unsere vollständige Implementierung von

VMS als Erweiterung von Apache’s HBase mit TPC-H Datensätzen und Abfragen. Unter

Ausnutzung von maximaler Nebenläu�keit verwaltet VMS tausende Views gleichzeitig,

berechnet bis zu 300M Basistabellen-Updates pro Sekunde und garantiert permanenten

Zugri� auf aktuelle Viewdaten in unter 5ms.

v

vi

Acknowledgments

This dissertation and the included research was written at the Department of Informatics

at the Technical University of Munich under the supervision of Prof. Dr. Hans-Arno

Jacobsen. I thank Prof. Jacobsen for deep insights into distributed systems, writing

feedback and support, encouragement after bad reviews and having the opportunity to

go on great retreats.

I would also like to thank Prof. Dr. Groh for agreeing to be the second examiner and, in

general, for being a great technical advisor. Further, I want to thank Prof. Dr. Jan Křetín-

ský for accepting to chair the commitee.

Special thanks go to . . .

• my colleagues: Martin Jergler for tutoring and writing support, Christoph Doblan-

der for business plans and companionship, Kaiwen Zhang for great ideas and sup-

port, Victor del Razo, Amir Hesam Shahvarani, Mohammedreza Naja�, Matthias

Kahl for climbing talks and other good stu�, Thomas Kriechbaumer for letting me

screw up the cluster, Anwar UI Haq, Elias Stehle for insane table soccer matches,

Daniel Jorde for ranting with me about the review system, Pezhman Nasirifard,

Ruben Mayer and Alexander Isenko.

• the many students I had the pleasure to supervise for their bachelor or master

thesis.

• my mother Renate Adler, my father Walter Schmitt and his wife Petra Schoch-

Schmitt

• my sister Anna Adler, her husband Jochen Adler and Elena and Robin.

• my wife Angie and my two sons Louis and Raphael for being the most important

persons in my life.

vii

viii

Contents

Abstract iii

Zusammenfassung v

Acknowledgments vii

1 Introduction 3
1.1 Motivation . 3

1.2 Problem statement . 4

1.3 Contributions . 6

1.4 Organisation . 7

2 Background 9
2.1 Large-scale distributed systems . 9

2.2 Materialized views . 10

2.3 Incremental view maintenance . 11

2.4 Base and view table de�nition . 11

2.5 Generalized multi-sets . 13

3 Related work 14
3.1 View Maintenance System . 14

3.2 Multi-view processing . 16

3.3 Consistent hybrid view maintenance . 17

4 View Maintenance System 20
4.1 System overview . 22

ix

CONTENTS

4.1.1 KV-Store model . 22

4.1.2 VMS architecture . 24

4.1.3 VM processing . 27

4.2 View consistency . 34

4.2.1 Consistency model . 35

4.2.2 Theorem for strong consistency 38

4.3 View maintenance concept . 39

4.3.1 Distributed model . 39

4.3.2 Property 1: exactly once . 43

4.3.3 Property 2: atomicity and isolation 45

4.3.4 Property 3: record timeline . 50

4.3.5 Batching . 54

4.4 Supported view types . 55

4.5 Evaluation . 60

5 Multi-view processing 73
5.1 View concepts . 75

5.1.1 Selection and projection . 75

5.1.2 Aggregation . 79

5.1.3 Multi-join . 85

5.1.4 Nested constructions . 89

5.2 Cost model . 90

5.3 Evaluation . 92

6 Consistent hybrid view maintenance 96
6.1 Incremental strategies . 101

6.1.1 Basic incremental . 101

6.1.2 Incremental micro-batched . 102

6.2 Batching strategies . 104

6.2.1 Repeated snapshots . 104

6.2.2 Repeated scans . 105

6.2.3 Incremental snapshots . 106

6.3 Hybrid strategies . 110

6.3.1 Rationale . 110

6.3.2 Hybrid transitions . 111

x

CONTENTS

6.3.3 View states . 121

6.4 Evaluation . 121

7 Conclusions 129
7.1 Summary . 129

7.2 Future work . 130

List of Acronyms 132

List of Figures 135

List of Algorithms 137

Bibliography 138

Appendices 146

A Proof of consistency 147
A.1 Notation . 147

A.2 Convergence . 149

A.3 Weak consistency . 152

A.4 Strong consistency . 153

xi

CONTENTS

xii

CONTENTS

1

CONTENTS

2

Chapter 1

Introduction

In this chapter, we motivate the topic of this thesis. Then, we state the research problems

and explain the challenges that have to be mastered in order solve them. Finally, we

provide our contributions and present the organization of the thesis.

1.1 Motivation

The properties of major Internet players are backed by what has become known as key-
value stores (KVSs). KVSs serve millions of client requests and handle the production of

terabytes of data on a daily basis [1]. Popular examples include Google’s Bigtable [2],

Amazon’s Dynamo [3], Yahoo’s PNUTS [4], Apache HBase [5], and Cassandra [6].

As opposed to earlier generation KVSs, for instance, BerkeleyDB [7], whose primary

intention was to provide a main-memory database to persist application con�gurations,

the KVSs, we consider in this thesis, are highly distributed systems designed for large-

scale data warehousing.

Such KVSs are highly available and provide advanced features like load balancing, fault-

tolerance, and incremental scalability [2, 3, 4, 5, 6]. For example, KVSs scale-out horizon-

3

1.2. PROBLEM STATEMENT

tally by partitioning data and request load across a con�gurable number of nodes. To

achieve these properties at scale, KVSs sacri�ce a relational data model and an expressive

query language and only o�er a simple API, typically comprised of only get, put, and

delete operations on single records (scans can be considered as repeated gets).

In a Big Data infrastructure, processing of the data, warehoused in KVSs is done externally.

The raw data is loaded into a large-scale distributed computing framework, such as

Hadoop or Spark. This approach works to the extent of an o�-line batch analysis, but it

does not provide the velocity required for real-time analytics of incrementally changing

data [8]. To speed up the processing, there is a need to store aggregated data for faster

access by the processing engine.

To this end, point solutions appeared raising the level of abstraction of a KVS by either

partially or fully materializing the desired application-level queries as views through the

underlying store [9, 10, 11]. In this context, secondary indices have been added to KVSs [9,

12], caching of application queries has been introduced [13], and massive processing of

selection views (e.g., for following news feeds) has been enabled [10]. However, these

solutions lack the ability to manage views for a wide variety of SQL query operators for

KVSs, which limit their applicability.

1.2 Problem statement

To address the aforementioned limitations in KVS, and provide results of SQL query

operators over large distributed data sets in real-time, there is a number of problems to

solve which are described in the following.

First, the simple API of KVS has to be extended with a set of additional API functions;

this includes a range of common SQL query operators such as projection, selection,

aggregation, joins but also a set of more speci�c SQL functions (e.g., exists or case/when).

Second, a mechanism has to be developed and integrated with KVS to provide the results

of the additional API functions to clients. Thereby, the focus is not only on delivering

the results in reasonable time but also on updating the existing results e�ciently, such

that fresh view data is always available to clients.

4

CHAPTER 1. INTRODUCTION

The mechanism we choose in this thesis, to achieve our goals, are materialized views
that are updated using incremental view maintenance (see Chapter 2). While materialized

views and incremental view maintenance are well researched topics in centralized envi-

ronments (see Chapter 3), there are many challenges transitioning them to a distributed

context.

In a centralized context, the base table is located on a single machine. The base table

can be loaded in a single run and results of analytical queries can be materialized into

a view, located on that same machine. All updates that occur on a base table can be

directly applied to the materialized view; sequential processing guarantees that updates

are always delivered in correct order.

However, in today’s large-scale KVS, base tables, holding large amounts of data, are

partitioned and distributed over a whole cluster of nodes. Loading a base table requires

a coordinated collective action; analytical queries are computed at many nodes in par-

allel and may require multiple rounds of redistribution. Further, streams of base table

updates occur simultaneously and after being routed to di�erent nodes are applied to the

materialized view in parallel. Thus, in the �rst step of the thesis, we design and develop

a distributed view engine that is capable of performing the additional API functions and

uses KVS as view materialization layer. The main challenge then, is the incremental

maintenance of views at large scale; the view engine must keep the update ordering –

or more generally, sustain consistency – while distributing and applying thousand of

updates in parallel.

The amounts of data stored in base tables grow constantly, so does the demand for

analytical capabilities [1]. Most of the current research on (distributed) view maintenance

is focused on a single base and view table setup [14, 15, 16]. Thus, in a second step, we

identify the need to materialize and maintain ten thousands of views in a KVS in parallel.

Usual measures of horizontal scaling (i.e., add more resources to the system) do not

su�ce to handle the sheer amount of updates that arise in the system due to the write

ampli�cation (number of updates × number of views). For that reason, we must develop

smarter ways to provide more e�cient maintenance techniques. Thereby, the main

challenge is the identi�cation and exploitation of synergies between the maintenance

processes in what we call multi-view optimization.

5

1.3. CONTRIBUTIONS

Many modern frameworks and database systems support methods for combined o�-

and online analysis [17, 18, 19, 20, 21]. Seamless integration of existing data (by batch

analysis) and update streams (by online analysis) is the method of choice to further

reduce latency and guarantee immediate freshness of results. This also seems to be a

perfect �t for the concept of materialized views in KVS. Thus, in a third step, we discuss

hybrid maintenance strategies in the KVS context. The challenge here, is the de�nition of

basic batch and incremental strategies with regard to KVS architecture and the consistent

realization of their hybrid derivatives.

1.3 Contributions

We make the following three main contributions:

1. We introduce the VMS architecture to rapidly materialize and maintain views at

scale. Along with VMS, we propose a novel consistency concept allowing for

strongly consistent views in a highly parallelized maintenance environment (see

Chapter 4).

2. We propose a multi-view concept to optimize the materialization and maintenance

of ten thousands of views in parallel (see Chapter 5).

3. We develop basic and advanced incremental and batching strategies in KVS and

introduce our concept of consistent hybrid maintenance for maintaining views at

scale (see Chapter 6).

6

CHAPTER 1. INTRODUCTION

1.4 Organisation

We provide an explanation of backgrounds in Chapter 2. We discuss the related work of

our three main contributions in Chapter 3.

We discuss our View Maintenance System (VMS) in Chapter 4: we provide an abstract

KVS model and introduce the VMS architecture in Section 4.1, we introduce our consis-

tency model and theorem in Section 4.2, we explain how VMS achieves consistency in

Section 4.3, we present the supported view types of VMS in Section 4.4, we evaluate VMS

in Section 4.5.

We discuss our concept of multi-view optimization in Chapter 5: we introduce the multi-

view concept for each view type in Section 5.1, we present a cost model for optimization

in Section 5.2, we evaluate our multi-view concept in Section 5.3.

We discuss our concept of consistent hybrid view maintenance in Chapter 6: we introduce

basic incremental strategies in Section 6.1, we introduce basic batching strategies in

Section 6.2, we introduce hybrid strategies in Section 6.3, we evaluate our strategies in

Section 6.4.

We provide a conclusion and our outlook on future work in Chapter 7.

7

1.4. ORGANISATION

8

Chapter 2

Background

In this chapter, we provide high-level explanations of the most important aspects of the

thesis. The concrete basics needed (for example, KVS or consistency basics) are explained

in the respective sections along the thesis.

2.1 Large-scale distributed systems

Before the Big-Data era, many of the transactional and analytical tasks were performed by

monolithic systems hosted on single machines. But nowadays requirements, especially

on the amounts of (unstructured) data processed, have made it necessary to distribute

these tasks to a cluster of machines. This gave rise to a wide range of new distributed

system types. Distributed �le systems, distributed lock services, distributed key-value

stores, just to name a few. These systems, many of them either originating at the

big global Internet players (e.g, Google, Facebook, Amazon) or being open sourced by

the Apache Foundation (e.g., Hadoop, Zookeeper, HBase), are equipped with scalable

processing capabilities and autonomous administration and load balancing features.

Exactly like these systems, the view engine we develop, is an inherently distributed

framework. This means, the design of its architecture centers around the following

9

2.2. MATERIALIZED VIEWS

questions: (1) parallelization: how can each step of the computation be shared evenly by

all machines to achieve maximal performance of the total setup, (2) consistency: how can

the distributed logic in the system route and compute millions of updates simultaneously

and the �nal results come out correctly, (3) communication: how can the machines be

synchronized with a minimum of communication overhead to provide global results,

(4) availability: how can results be kept available for clients at all times, and (5) fault-

tolerance: what happens when a machine in the cluster crashes and computation has to

be resumed by another one.

2.2 Materialized views

Views are perspectives on a database. A view provides data of a database to a client and

simultaneously prevents client access to the original database tables. When discussing

views, the database tables are always referred to as the base tables, whereas the views are

always referred to as the view tables. View tables can reproduce the data of a database,

they can provide a speci�c selection of data or they can compute new data out of the

base table contents. Basically any analytical operation that can be derived from base

table data can also be represented in a view table.

A special type of views are materialized views. Materialized usually refers to the fact that

the contents of the view are stored in form of a separate table, in the database system.

Nevertheless, materialized views can be also stored as a �le or a data structure in-memory.

Opposed to that a virtual view would be loaded from the base table in the moment it

is requested. While the on-demand idea behind virtual views is certainly desirable, our

context favors high availability of results and as such views are always materialized.

To provide fast results, our system uses two di�erent types of materialized views. One

type of views are the �nal views that are actually stored into KVS and accessible by the

clients. These view tables are materialized in the original sense because they provide

results as database tables. The other type of views are the intermediate views which

are stored in-memory and which are only used for internal purposes. De�nition wise

intermediate views are also materialized views, as their data is materialized in-memory.

10

CHAPTER 2. BACKGROUND

Arguably, those intermediate views could be also identi�ed as virtual, as their contents

are volatile and (depending on the strategy) loaded on-demand. However, when talking

about materialized views in the context of this thesis, we primarily refer to the �nal

views that are exposed to the clients.

2.3 Incremental view maintenance

In general, the topic of materialized views is tightly coupled with the topic of incremental

view maintenance. In the moment a view gets materialized, it represents the result of an

analytical query that is based on the current state of the base table. As soon as updates

over the base table are performed, the computed results in the materialized view are

out-of-date. As complete reevaluation of the results is a costly task, incremental view

maintenance is performed to update only those parts of the view that are related to the

updated parts in the database.

While incremental view maintenance is a very e�cient method to update a view, it usually

complicates the task of providing correct results. The set of updates which has been

applied to the base table must be consistently applied to the view to guarantee correctness.

Updating records in a base table multiple times leads to multiple di�erent versions

of a base table which should not be confused during view maintenance. Ultimately,

missing only a single update, already renders the overall result in a view invalid. Thus,

materialized views must be carefully maintained, otherwise they are of no use.

2.4 Base and view table de�nition

To describe tables in the thesis, we de�ne relation sets (as done for relational algebra).

Although KVSs support a more �exible (NoSQL) data model, we model base and view

tables as sets of attributes and records, as it is done for established SQL databases. This

model facilitates understanding and provides a clear conceptual de�nition. In general we

model: (a) R = (A1, .., An), as a table consisting of a set of attributes where the primary key

11

2.4. BASE AND VIEW TABLE DEFINITION

(i.e., row-key in KVS) of a table is denoted as attribute Ā; (b) r = R(a1, .., an), a record with

attribute values ai ∈ Ai which can be accessed by r .Ai; (c) put(R(a1, .., an)), a put operation

to table R; (d) del(R(a)), a delete operation and (e) g = get(R(a)), a get operation. We

refer to put and delete as update operations in the following. Still, a put can be either

an insert into the base table or an update (i.e., modi�cation) of an existing record.

In this thesis, when talking about analytical queries, we mean SQL expressions; syntax as

de�ned by the SQL-92 standard. While our system does not implement the full scope of

this comprehensive standard, the complete feature set as de�ned by the TPC-H benchmark

is supported (which largely extends SQL beyond the standard SPJA types). The analytical

query constitutes the view de�nition. It is provided on creation of the view and cannot

be changed afterwards. It determines the results that are provided by the view and also

de�nes the update process that is required in order to refresh the view.

In general, we describe a set of base tables as Rset = {R1, .., Rn} (let each be structured by

attributes as de�ned above) and a view table as V . Then, the relation between both is

expressed as V = V iew(Rset). Function V iew is speci�ed by the elements of relational

algebra (i.e., � ,
 , ⋈) which have been obtained from the view de�nition. It describes the

necessary operations to transform the base tables into the view table and is used by the

view engine to construct a maintenance plan.

Example 2.4.1: A small example illustrates the notation. Let a base table be de�ned as
R = (K̄ , X , Y) with primary attribute K̄ and secondary attributes X and Y . Then, let an
analytical query be provided as:

SELECT sum(Y) FROM R WHERE Y > 5 GROUP BY X

The corresponding view table is de�ned using schema V = (X̄ , sum(Y)); the view function
translates to V =
X,sum(y)(�Y<5(R)). Updating base table R, simultaneously requires an
update of V . The state of the view depends on the state of the base tables.

12

CHAPTER 2. BACKGROUND

2.5 Generalized multi-sets

To illustrate the di�erent view types (starting with Chapter 4.4), we use a bag algebra [22,

23, 24, 25, 26], commonly adopted for SQL operations and for the modeling of incremental

aspects in systems [14, 16, 27]. We describe tables R and update sets (ΔR) in form of

generalized multi-sets (also known as bags) with positive and negative multiplicities.

Thereby, inserts have multiplicity plus one (i.e., u = (r , +1)), deletes have multiplicity

minus one (i.e., u = (r , −1)) and updates are realized as a combination of both (i.e.,

u = {(r ′, −1)(r , +1)}). We capture the change in base tables using the additive union of

these multi-sets (e.g., R ⊎ ΔR). Further, we describe the process of classical incremental

view maintenance as follows:

V iew(R ⊎ ΔR) = V ⊎ V iew(ΔR)

V iew(Rset[R = R ⊎ ΔR]) = V ⊎ V iew(Rset[R = ΔR])
(2.5.1)

Given that a base table is updated, the system does not recompute the view using the

entire base table. Instead it keeps the results materialized in view V = V iew(R). When

updates arrive it computes the delta as V iew(ΔR) and merges it with V . In case that

there are many base tables, the system computes the delta of each base table separately

in relation to all other base tables (i.e., V iew(Rset[R = ΔR])).

13

Chapter 3

Related work

In this chapter, we review the related work starting from the general and more basic

approaches of view maintenance going to the most recent and more speci�c approaches

that can be found in today’s large-scale distributed KVSs. We discuss the related work

for our three contributions, separately, reviewing each in its own section.

3.1 View Maintenance System

Research on incremental view maintenance started in the 80s [27, 28, 29, 30, 31]. Blakeley

et al. [28] developed an algorithm that reduces the number of base table queries during

updates of join views. Colby et al. [27] introduced deferred view maintenance based on

di�erential tables that keeps around a precomputed delta of the view table. All these

approaches originated from the databases at the time of their inception, i.e., storage was

centralized and a fully transactional single-node database served as starting point, which

is greatly di�erent from the highly distributed nature of the KVS we consider in this

thesis.

Zhuge et al. [30] considered view maintenance in multi-source data warehouse scenarios.

An update event causes the warehouse to query a�ected source systems to calculate

14

CHAPTER 3. RELATED WORK

the view relation for the updated record. As base data changes during these queries,

compensation queries are needed. Much attention has been given to preventing update

anomalies when applying incremental view maintenance [29, 32] (cf., ECA Algorithm).

VMS completely avoids the problem by not falling back to base table access (i.e., by not

using base table scans) at all.

Still today, incremental view maintenance is a relevant research topic. Formerly applied

to standalone warehouses, view maintenance is nowadays used in large-scale distributed

(streaming) infrastructures. In [14, 16] approaches for in-memory and batch-wise (incre-

mental) view maintenance are introduced to parallelize and speed-up view maintenance

vastly. However, there is no notion of consistency in these works, materialization is

done as an exclusive in-memory approach. VMS di�erentiates itself from these works by

providing strong consistency and maintaining materialized views in form of persistent

standard KVS tables.

An approach for view maintenance in KVSs together with di�erent consistency models

has been presented in [33]. We leverage these consistency models in the thesis, apply

them to attain consistency for di�erent view types and greatly extend the scope of views

materialized. However in [33], only single view types are materialized (i.e., selection view,

aggregation view). Combined or nested queries with multi-table joins are not possible.

Further, only weak consistency can be achieved for some of the view types (kfk-joins,

min/max views).

Some interesting materialization approaches are presented in [12, 13]. Pequod [13]

serves as front-end application cache that materializes application-level computations.

It supports a write-through policy to propagate updates to the back-end store, while

serving reads from the cached data. Unlike this thesis, the approach does not focus on

global consistency and provides at most the client-centric read-your-writes consistency

model for certain views. SLIK [12] provides strong consistency, however, it is limited to

the materialization of secondary index views in KVSs.

Cui et al. [34] introduced the concept of auxiliary views as an optimization for the

dual purpose of view maintenance and data lineage tracing. However, auxiliary views

are the materialization of an intermediate result that is stored to compute the lineage

of a view record. We de�ned the concept of Pre-Processing Views. In contrast to the

15

3.2. MULTI-VIEW PROCESSING

auxiliary view [34], the Pre-Processing View represents a preliminary step, which serves

to facilitate and speed up the consistent processing of subsequent views. Our Reverse-

join, for example, is not just a materialization of an intermediate result. It ful�lls several

purposes, including the consistent maintenance of a join keys timeline.

In recent years, there has been a rising interest in developing support for the material-

ization of views in a KVS, both in open source projects and products [8, 11, 35, 36] and

in academia [9, 10, 12, 13, 33, 37]. Percolator [8] is a system speci�cally designed to

incrementally update a Web search index as new content is found. Naiad [35] is a system

for incremental processing of source streams over potentially iterative computations ex-

pressed as a data �ow. Both systems are designed for large-scale environments involving

thousands of nodes, but are not addressing the incremental materialization of the kind

of views considered in this thesis.

The Apache Phoenix project [11] develops a relational database layer over HBase, also

supporting the de�nition of views. Few implementation details about the views are

revealed, except for the fact that updatable view de�nitions are limited to selection

views, and view results are generated by periodically scanning the base tables. Also, a

long list of view limitations is revealed by Phoenix [11]. For example, ”A VIEW may be
de�ned over only a single table through a simple SELECT * query. You may not create a
VIEW over multiple, joined tables nor over aggregations.” [11]

3.2 Multi-view processing

In the context of databases, multi-query optimization and view selection have been widely

discussed in the literature [38, 39, 40, 41, 42]. However, in traditional query processing,

incremental updates of base tables and view tables are usually not an issue. Systems

work with pure table workloads, there is no need to capture and manage the state of

records (e.g., of a selection view, see Section 5.1.1).

View selection, a common sub problem in multi-query optimization, consists of �nd-

ing the right subset of view candidates to be materialized [43, 44]. Our approach is

heavily centered around incremental processing (capturing the state of base records).

16

CHAPTER 3. RELATED WORK

In this scenario, the introduced Pre-aggregation and Reverse-join views are materialized

as distributed intermediate tables (in-memory) which speed up computation. Thus, the

question is not which views should be materialized but how intermediate views can be

combined to serve multiple maintenance processes.

The same applies to many modern algorithms for sharing results that are based on the

MapReduce paradigm [45, 46, 47, 48]. While providing a similar data model as our

solution (records are processed in a key-value format), most MapReduce approaches

adopt a strictly batch-oriented processing style. There are some approaches fostering an

incremental processing style but they are not optimized for multi-view optimization.

Recent work in the �eld of view maintenance concentrates on incremental maintenance

strategies [14, 15, 16] and embraces in-memory acceleration. However, most approaches

foster an incremental processing style, which is feasible only when incremental main-

tenance is executed starting from an empty base table (i.e., from zero). Likewise, such

approaches concentrate on speci�c aspects (optimization) of incremental maintenance,

evaluation is exclusively done in a single view setup (on top of a single query).

In [49] optimization with regard to a multi-view setup can be found. However, the paper

relates to a publish-/subscribe context only, in which views are de�ned as subscriptions

evaluating simple selection predicates over XML-tagged data (no nested SQL queries,

including, e.g., multi-table joins). While the experimental evaluation focuses mainly

on rewrite performance of the view de�nitions (100k views), the actual workload to be

maintained is comparably small (200 documents, 10k views).

3.3 Consistent hybrid view maintenance

Hybrid processing modes provide high processing throughput and low latency for SQL-

like constructs. As such the hybrid processing approach can be found in many di�erent

�elds of research. We provide a quick overview of hybrid processing and, �nally, we

explain the (more speci�c) hybrid approaches that are known to the �eld of view main-

tenance

17

3.3. CONSISTENT HYBRID VIEW MAINTENANCE

A number of MapReduce online extensions are available [18, 19, 50]. However, in the

named approaches hybrid is created by either combining MapReduce with a streaming

system or adding streaming support to MapReduce itself [19, 50]. As these approaches

add streaming capabilities to the MapReduce processing style, they can also be used for

hybrid view maintenance. However, all named examples are coupled to the MapReduce

paradigm. While it is possible to load KVS data to MapReduce (and also write it back), it

is still an external solution and not comparable to the in-line view processing provided

by us. As such MapReduce solution cannot make use of KVS internals such as �lters,

observers or write bu�ers.

There are some interesting approaches in which developers capture both, batch and

online processing in an advanced programming paradigm (cf., Map Reduce 2.0) that can

be used by developers to de�ne high-level SQL-like constructs. Summing Bird [17] is

one such a domain-speci�c language that compiles into a mixed architecture consisting

of MapReduce jobs and an Apache Storm topology. While this language allows for a

combined operation mode, the system uses two di�erent databases and the results are

combined o�ine. Our approach combines base table updates already at record level,

merging them into one stream of complete and most recent view updates.

Hybrid transactional and analytical processing (HTAP) concepts [51, 52, 53, 54] are

bene�t-wise relatively similar to materialized views. However, as tightly coupled archi-

tectures, they lack the generality and independence of a view concept, which can be

applied to essentially any system or database.

There are also some well-known frameworks to capture batching and online capabilities.

Apache Spark [55] provides batch processing as well as online processing in form of

Spark streaming. However, Spark is using a data lineage model at the granularity of data

sets (not at record level as our approach). Apache Flink [21] possesses a combined and

integrated runtime to perform batch and stream processing. The Flink model also allows

for materialization of intermediate (and �nal) results and provides certain consistency

guarantees (exactly once). Again, both frameworks represent, from a KVS perspective,

external systems. While they are highly optimized in their environments, data must be

loaded from KVS and KVS internals cannot be used. Additionally, both frameworks work

over streaming windows, whereas our system works over the full stream.

18

CHAPTER 3. RELATED WORK

The work in the �eld of view maintenance mostly concentrates on incremental main-

tenance strategies [14, 15, 56]. Most approaches foster a pure incremental processing

style, which is only feasible when the history of update operations is complete. The

most recent approaches to incremental view maintenance introduce batch optimization

for incremental processing [16, 57]. While the results show improved performance for

incremental maintenance, this approach is, likewise, not feasible for combined o� and

online processing. It batches and computes the entire incremental update load into

separate working sets of con�gurable size, processing style is still incremental. In contrast

to that our approach is much more comprehensive. It provides a full-�edged analysis of

batching, incremental and hybrid strategies in view maintenance.

19

Chapter 4

View Maintenance System

In this chapter, we propose the View Maintenance System (VMS). As opposed to existing

point solutions, our design abstracts from a speci�c KVS architecture and aims to support

a broad spectrum of systems. VMS is based only on a few key features that KVSs

need to support. This concise set of base features facilitates the integration of view

maintenance across di�erent and heterogeneous KVSs. We describe these features in

detail in Section 4.1.1.

Furthermore, we focus on maintaining consistency for materialized views, which is a

challenge when dealing with SQL operators and base data coming from a non-relational

database. VMS provides mechanisms for basic materialization (i.e., the computation of

views over existing base data) and consistent incremental maintenance of views (i.e., the

propagation of base data updates to deriving views), enabling querying for real-time

analytics applications in KVSs.

VMS consumes streams of client updates: in case of basic materialization, streams consist

of base table records; in case of incremental maintenance, streams consist of base table
updates. As a result, VMS produces updates to view data records (see Figure 4.0.1).

Views are, therefore, materialized and maintained within KVS; they are kept as standard

tables and all properties such as concurrent access, scalability, availability, fault-tolerance

o�ered by the KVS, apply to them as well.

20

CHAPTER 4. VIEW MAINTENANCE SYSTEM

KV-Store

Base Table

View Table

Consistency Model

VMS

 (𝑉 𝑜𝑟 ∆𝑉)

 (𝑅 𝑜𝑟 ∆𝑅)

consume base
updates

produce
view updates

Figure 4.0.1: System overview

To the best of our knowledge, our design, VMS is among the �rst systems to provide

SQL-based materialization and consistent, incremental maintenance of views in KVSs.

The closest existing solution, Apache Phoenix, does not consistently and incrementally

maintain SQL query results, but rather generates non-materialized results (for a single

client) by executing base table scans [11]. We argue that VMS provides both: basic

materialization, obtained through full table scans and consistent, incremental updates.

In addition, VMS is more scalable, o�ers faster computation and better read latencies on

the views, as shown in our baseline comparison results (see Section 4.5). Thus, in this

chapter, we make the following contributions:

1. We provide a detailed consistency analysis using a speci�c model for view mainte-

nance. We prove how strong consistency can be achieved in a highly parallelizable

maintenance system and capture our �ndings in a theorem.

2. We propose a novel concept called timeline bu�ering which serves to avoid transi-

tive dependencies in record timelines.

3. We identify the challenging problem of handling multi-row updates for aggrega-

tion/join views, and propose a novel split-state mechanism to e�ciently maintain

atomicity without global locking.

4. We introduce Pre-Processing Views to modularize and speed up the computation of

consistent SQL views.

5. We fully validate VMS by extending HBase. We use a TPC-H benchmark (scale

factor 100x , 500x) to show how VMS materializes and incrementally maintains

SQL expressions over views.

21

4.1. SYSTEM OVERVIEW

4.1 System overview

In this section, we discuss KVS internals that serve us in the remainder of the thesis. We

provide a general model which represents existing distributed KVSs such as [2, 3, 4, 5,

6] (see Section 4.1.1). Our objective is to distill a set of features, our VMS requires from

a KVS. Furthermore, we present the design of our view maintenance system VMS and

describe its components (see Section 4.1.2 and 4.1.3). Additionally, we provide a design

rationale.

4.1.1 KV-Store model

The upper part of Figure 4.1.1 shows a general model of a KVS (the lower part of the

�gure, i.e., VMS, is discussed in Section 4.1.2). Some KVS designs, explicitly designate a

master node, e.g., HBase [5] or Bigtable [2], while others operate without explicit master,

e.g., Dynamo [3], Cassandra [6], where a leader is elected to perform management tasks,

or PNUTS [4], where mastership varies on a per-record basis. In all cases, a KVS node
(KN) represents the unit of scalability: KNs persist the data stored in the system. The

number of KNs can vary to accommodate load change. In contrast to a SQL-based DBMS,

a KN manages only part of the overall data (and load).

KVSs frequently employ a distributed lock-service (not shown in the �gure), such as

Chubby (Bigtable) or ZooKeeper (HBase and Cassandra), for coordination purposes (i.e.,

leader election, centralized con�guration, and root node storage).

A �le system builds the persistence layer of a KN in a KVS. For example, HBase stores

�les in the Hadoop distributed �le system (HDFS). In the �le system, all KVS relevant

data is persisted and replicated.

A table in a KVS does not follow a �xed schema. It stores a set of table records called

rows. A row is uniquely identi�ed by a row-key. A row can hold a variable number of

columns (i.e., a set of column-value pairs). Columns can be further grouped into column

families. Column families provide fast sequential access to a subset of columns. They are

determined on table creation and a�ect the way the KVS organizes table �les.

22

CHAPTER 4. VIEW MAINTENANCE SYSTEM

Clien

t
Clien

t

Clien

t
Clien

t

Clien

t
Clien

t

Clien

t
Clien

t

 VMS

KV-store
API

Client Client Client Client

KN 1

Mem
store

TL

Table-
file

Ob

server

VM 1

Assigner

1

VS

Record
processor

KVS
client

VM 2

Assigner

1

VS

Record
processor

VM n

Assigner

1

VS

Record
processor

KN 2

Mem
store

TL

Table-
file

Ob

server

VM 3

Assigner

1

VS

Record
processor

KN 3

Mem
store

TL

Table-
file

Ob

server

KN n

Mem
store

TL

Table-
file

Ob

server

TL TL TL TL

KVS
client

KVS
client

KVS
client

Master

Master

Figure 4.1.1: KV-Store and VMS

Key ranges split a table into multiple partitions that can be distributed over multiple KNs.

Key ranges are de�ned as an interval with a start and an end row-key. PNUTS refers to

this partitioning mechanisms as tablets, while HBase refers to key ranges as regions. In

general, a KVS can split and move key ranges between KNs to balance system load or to

achieve a uniform distribution of data.

Read/write path – In general, the KVS API supports three client-side update operations:

put, which inserts a record, get, which retrieves a record, and delete, which removes a

record. In the read/write path, when reading or updating a table record, requests pass

through as few KNs as possible to reduce access latency. At the end of each request,

the client ends up at one particular KN that is serving the key range the client wants to

access.

Every KN maintains a transaction log (TL), referred to as write-ahead log (WAL) in HBase

and commit log in Cassandra. When a client update operation is received, it is �rst written

into the TL of the KN (see Figure 4.1.1). From then on, the update operation is durably

persisted. Subsequently, the update operation is inserted into a memstore. Memstores

are volatile, providing low latency access; they organize records into a tree-like structure.

23

4.1. SYSTEM OVERVIEW

Once a memstore exceeds a set capacity, it is �ushed to disk. Continuous �ushes produce

a set of table �les, which are periodically merged by a compaction process.

Modern KVSs (e.g., HBase and Cassandra) provide di�erent types of observers that can be

registered with KNs and intercept local events (e.g., data manipulation, administrative

actions). For example, HBase provides the so-called co-processors. An instance of a co-

processor is deployed at each region server and provides a set of prede�ned methods that

can be overwritten in order to execute desired functionality (similar to stored procedures).

KVSs rely on a set of ACID properties. For example, all single-row writes are atomic with

isolation (e.g., HBase, Cassandra, Bigtable, PNUTS). This guarantees single-row reads to

always return an entire row which is consistent with the write history. KVSs generally

do not support transactional writes across rows of a table or even across tables.

4.1.2 VMS architecture

The lower half of Figure 4.1.1 gives an overview of VMS. The input to VMS is a set of

streams, each generated by KVS clients and emitted by KNs. A stream either consist of

base records (i.e., R) or of base updates (i.e., ΔR).

VMS is comprised of a master and n viewmanagers (VMs). While the master is responsible

for administrative actions only (e.g., load the view de�nitions), theVMs perform the actual

maintenance tasks. Each VM reads one of the streams emitted by the KNs. To (batch)

load base tables records, a VM connects to the observer that runs at its assigned KN to

locally scan base table partitions. To (incrementally) load base table updates, the VM

receives an update stream either via KN observer or via asynchronous read from a TL of

the assigned KN.

At the VM, the streams from KN are, then, fed into the record processor component, where

base updates are transformed into view updates. The transformation is done based on a

set of view de�nitions which are provided in form of SQL statements. Every VM learns

about the view de�nitions at the beginning of the maintenance process.

24

CHAPTER 4. VIEW MAINTENANCE SYSTEM

The virtual store (VS) component closely interacts with the record processor. It stores

partitions of intermediate view tables in-memory to enable fast local access. In this way,

the VS enables fast incremental maintenance and local batchwise computation of base

record or update streams. For example, fast local aggregations or fast local determination

of join records are done with the help of VS.

Exactly like a KN, every VM is equipped with a transaction log (TL). The TL of a VM

can be activated or deactivated, depending on whether fault-tolerance or performance is

favored. When activated all updates that a VM receives are written into TL before they

are processed. In case a VM crashes, the TL can be used to replay the updates and rebuild

the VS.

Simple view de�nitions (e.g., selection, projection) do not require a redistribution of

updates. When a view de�nition requires multiple rounds of computation (i.e., including

redistribution, e.g. for a join), the VM computes its view update and uses the assigner
component to select and propagate the updates to other VMs.

After executing the last operation of a view de�nition, a VM computes and materializes

the �nal outcome into a view table in KVS. Thereby, it uses its KVS client component.

The KVS client maintains a global connection to KVS to either load view de�nitions or

to materialize view records. In contrast to the observer, KVS client can only be used to

execute (global) KVS API functions.

A VM is designed to be lightweight and to scale elastically to accommodate changing

request loads. It could be allocated to a dedicated node. However, to reduce communi-

cation overhead, especially, for complex view de�nitions, we deploy one VM at each KN,

connecting the VM directly to the local observer. In a scenario where many views are

maintained in parallel, it is more bene�cial to deploy KVS and VMS nodes separately.

Our design provides a multitude of bene�ts. Seamless scalability: multiple views may

have to be updated as a consequence of a single base table update. As VMS exceeds its

service levels, additional VMs can be spawned. Operational �exibility: VMs introduce

�exibility to the system architecture. All VMs can be hosted together on the same physical

node or on di�erent nodes. Exchangeability: every VM can perform any task, a VM can

be quickly substituted in case it crashes.

25

4.1. SYSTEM OVERVIEW

Design Rationale – When a client updates a base table (e.g., put, delete) in the KVS,

all derived view tables become stale. Thus, we design VMS to react to all KVS client

updates and change the a�ected view tables accordingly. We determined a number of

KVS-common extension points to stream incoming client updates of a KVS for processing

by VMS (see Figure 4.1.1).

We identify three designs to stream client updates from the KVS to VMS: (1) Using KVS

client to access the store’s API and retrieve the current record version, (2) asynchronously

monitor the TL from the KN, and (3) intercept updates at the KN (via an observer).

Design 1 can lead to inconsistent view states, as base data may change during update

processing. For example, a base data record may change again, just before retrieving

the record via the KVS-API, occurring just after the record was previously updated. In

this case, a base state is missed (the �rst record update that triggered the retrieval) and

won’t be re�ected in the view state sequence. In addition, this method incurs signi�cant

overhead. For example, each update triggers a read and one or more writes to update

derived views. Also this design slows down clients of KVS that are accessing the view

data concurrently.

In Design 2, reading the TL, is asynchronous and decouples processing. It neither

interferes with update processing, i.e., no latency is added into the update path, nor

imposes additional load. Updates in the TL are durably persisted and can be recovered by

VMS. However, reading data from TL can be slow (especially when done over network).

Also, due to its size, the TL is purged by KVS as soon as records have been written to disk.

Performing incremental maintenance requires the KVS to delay purging until data from

TL has been propagated for maintenance.

Design 3 is based on observers, one deployed at each KN; observers o�er functions for

the interception of read and write requests as well as scanning of local key ranges. Thus,

Design 3 can be used for both basic materialization and incremental view maintenance.

The latter can be either executed by propagating and applying each update separately,

or it can be executed delayed by batching update processing. A downside of Design 3 is

that updates, retrieved through an observer, are not durably persisted as in Design 2. As

a KN crashes, views have to be materialized from scratch.

26

CHAPTER 4. VIEW MAINTENANCE SYSTEM

In VMS, we compare Design 2 and Design 3, where observers forward individual base

table updates, o�ering identical strong consistency guarantees; the actual view compu-

tation is also delegated to VMS.

4.1.3 VM processing

In this section, we provide a more detailed explanation of VM processing. In the further

course, we explain how VMs manage in-memory acceleration, asynchronous communi-

cation and internal data serialization.

Figure 4.1.2 shows the internal processing path and the communication interface of a

VM. On the left top of the VM, the bulk loading endpoint is depicted. It is needed when

a VM loads complete base tables or delta sets. The bulk loading endpoint retrieves the

workloads using a dedicated thread per base table partition. On the top right, the VM

provides two communication endpoints (that are both managed by a thread and bu�ered

by a queue): one to receive updates from other VMs and another to receive commands

from the master (e.g., to load a query) of VMS. When connected to a live system, the

receiver is also used to accept single base table updates that occur in the monitored

database.

The record processor is the main thread of the VM. All update operations that a VM

receives (from bulk loading or receiving endpoints) �ow through this component. Inter-

acting closely with the virtual store (VS), the record processor, in general, handles an

update by cycling through the following four steps:

(1) Fetch the old view record (from VS)

(2) Use the update to compute new view record(s)

(3) Store the new view record (into VS)

(4) Pass the update for further processing

27

4.1. SYSTEM OVERVIEW

View manager

Assigner

Virtual store
(VS)

KVS client

Record processor

𝑉𝑀1 𝑉𝑀2

KVS

𝑉𝑀3 𝑉𝑀4 𝑉𝑀𝑛

𝑉𝑀1 𝑉𝑀2 𝑉𝑀3 𝑉𝑀4 𝑉𝑀𝑛

Master

Switching
pipelines

Sending
threads

Receiving
threads

Connected view managers

…

…

Connected view managers

𝑅 𝑜𝑟 ∆𝑅

Transaction Log
(TL)

Bulk
Loading

Materialize

Figure 4.1.2: Internal processing at VM

28

CHAPTER 4. VIEW MAINTENANCE SYSTEM

Receiving an update, the VM fetches the corresponding old view record from VS, de-

serializes it and applies the update (Step 1 and 2). To store the new view record, the

record processor serializes and inserts it into VS (Step 3). Then, depending on the

maintenance plan, the record processor passes the updates either to the assigner, for

the next operations, or to the KVS client, for �nal materialization (Step 4). Receiving the

next update, the records processor jumps back to Step 1 and repeats the cycle.

The assigner component distributes the ready-to-send updates to the sending threads,

which are setup (bottom of Figure 4.1.2) to deliver updates to the remaining VMs of VMS.

Record routing in VMS is done via a hashing scheme. The assigner employs a hash ring

that organizes all VMs by the hash of their (distinct) name. Every view update that is sent

out is hashed by its view row-key and assigned to the next VM in clock-wise direction.

This VM then, becomes the destination and the processor of the next operation (in the

maintenance plan). The hash ring is synchronized over all VMs such that view row-keys

are assigned and sent to the same VMs everywhere.

The KVS client serves two purposes: a) It loads view de�nitions from the KVS (which have

been stored by the master). b) It receives update records from the record processor to be

materialized as the �nal step of a computation (i.e., the last operation in a maintenance

plan). Thereby, the client queues and batches update records that are supposed to be

stored at the same partition in KVS.

In-memory acceleration – VS is built as collection of hash maps, each representing

a local partition of an intermediate view table in a maintenance plan. The row-key of

the intermediate view acts as the identi�er for the hash maps. The row-key can be a

single- or multidimensional construct. For example, when constructing a hash map for

join operations, the row-key is 2-dimensional. The values of the hash maps are byte

arrays that store the serialized version of a view record.

The API of VS is the same as the API of KVS; that is, it provides the same simple set of

methods (i.e., put , delete, get , scan) to manipulate and retrieve data. These functions can

be called using the table name and specifying the corresponding row-key, exactly as is

done for KVS. In this way, the usage is transparent for the VM as there are no di�erences

between storing intermediate results and materializing the �nal record: a �ag decides

whether the storage of a view record is quick and volatile or slow and persistent.

29

4.1. SYSTEM OVERVIEW

Although the usage of VS and KVS is equivalent API-wise, the selection has two impli-

cations for the data being stored: (1) data in VS are stored only locally, whereas data in

KVS are globally accessible from every node; and (2) data in VS are volatile, whereas data

in KVS are fault tolerant.

To address Implication 1, we ensure that view updates are always applied to the node’s

VS where former updates to the same view key have been processed. All updates are

hashed by their next view key to-be-processed. By means of this hash, the updates are

assigned and sent to a VM. Thus, all updates with the same view key are sent to (and

processed at) the same VM. When a view key changes, responsibility is handed from one

VM to the next.

To address Implication 2 and prevent loss of data in volatile VS, the VM optionally writes

a transaction log (either to local disc or to a DFS). All arriving updates are then, inserted

into the append-only log before being processed. When one VM crashes, a new VM can

take control of the transaction log and replay all contained entries to rebuilt the content

of the VS. During recovery the system has to interrupt until the new VM has completely

built up the VS. Then, processing is resumed.

Establishing fast n:m-communication – VMS distributes incremental updates evenly

and allows for high degrees of parallelism, so the distribution performance is dependent

mainly on the ability of VMs to communicate.

Thus, establishing fast n:m-communication is a crucial requirement for the system as a

large number of updates must be received by and sent to (hundreds of) VMs simultane-

ously. Especially when executing incremental maintenance, single updates can be sent

out to a large number of di�erent VMs in arbitrary order. A setup, for example, in which a

new connection is initialized on every request is not feasible in this context. The preferred

choice is the creation of n × (n − 1) pipelines; that is, each VM establishes a pipeline to all

other n − 1 VMs. For maximal performance, these pipelines are unidirectional such that

there are two pipelines per VM pair.

The next measure that we apply to accelerate communication is parallel update sending.

Instead of sending updates sequentially, a VM entertains a de�ned number of sending

threads (each equipped with its own queue, see Figure 4.1.2). The number of sending

30

CHAPTER 4. VIEW MAINTENANCE SYSTEM

threads is independent of the number of VMs and can be varied to achieve the best

trade-o�.

What has been described as the context for sending messages, also applies for receiving

messages. Scaling up the system to hundreds of VMs and views, and at the same time

using synchronous communication or providing one reception thread per pipeline leads

to massive overhead (as the number of threads is n × (n − 1)). Instead, a VM relies on

asynchronous communication, employing a de�ned number of reception threads (in the

�gure, a single thread is shown), where each thread handles a list of pipelines together.

Thereby, a VM cycles through the list of pipelines and receives updates.

While keeping the received bytes in a bu�er, a VM is able to give preference to faster

connections and manage slower connections at a later point. This design allows transfer-

ring update parts or large update streams; communication is executed via asynchronous

sockets (Java NIO API).

Serialization of data – In general, serialization is used at three di�erent points in VMS:

(1) when loading existing data or retrieving noti�cations from a monitored system; (2)

when storing/fetching view records from VS; (3) when sending view records to another

VM. Because VMS performs these three steps continuously for every update that passes

through the system, we identi�ed serialization as one of the actions that are critical to

overall performance.

We found that existing serialization schemes are not su�ciently fast or �exible; thus,

we propose our own serialization scheme (shown in Figure 4.1.3). In the �gure, a put
update of table R1 with row-key k is loaded and serialized. Two hash maps, namely, the

table map and the column map, are used to perform rapid serialization; the serialized

byte stream of the record is shown in the center of the �gure.

The byte stream includes a four-byte identi�er that reserves two bytes to encode the

base (or view) table and another two bytes to store the status of the operation. Out of

the �rst status byte, two bits are used to encode whether the byte stream is a record, a

put or a delete operation. Another four bits are used to encode the number of composite

elements in the row-key. The second status byte encodes the number of column-value

pairs contained in the stream.

31

4.1. SYSTEM OVERVIEW

,

𝑹𝟏 columns

𝑲 1 𝑡𝑦𝑝𝑒1

…

𝒁 n 𝑡𝑦𝑝𝑒𝑛

Tables

𝑹𝟏 1

…

𝑹𝒎 m

Reverse tables

1 𝑅1

…

m 𝑅𝑚

𝑹𝟏 reverse columns

1 𝐾 𝑡𝑦𝑝𝑒1

…

n 𝑍 𝑡𝑦𝑝𝑒𝑛

Tag Table Data
type

Identifier < 𝐾, 𝑘 >

Data
type

Tag Status

deserialize

serialize
Byte stream

Conversion maps

Reconversion maps

 …

< 𝑍, 𝑧 >

𝑝𝑢𝑡(𝑅1(𝑘, 𝑥, 𝑦, 𝑧))

𝑝𝑢𝑡(𝑅1(𝑘, 𝑥, 𝑦, 𝑧))

Row-key

…

Figure 4.1.3: Serializing VMS records

32

CHAPTER 4. VIEW MAINTENANCE SYSTEM

Consecutively, in the byte stream, the row-key and the map of a record’s column-value

pairs are appended. The row-key is a composite element composed out of one or multiple

attribute values. Thus, instead of storing the row-key itself, we store the indices of the

attributes that are given along with the update, so the row-key can be rebuilt from the

set of delivered values.

After the row-key, the column-value pairs of the record are encoded via column map

that translates the column name into a one-byte column tag. Then, depending on the

column’s data type, the value follows. Using the tag bytes, we can dynamically transmit

di�erent sets of attributes without having to include null values.

33

4.2. VIEW CONSISTENCY

4.2 View consistency

In this section, we continue to de�ne the notation used throughout this thesis and give an

explanation of view data consistency models, derived from prior work. We then, propose

a theorem which identi�es three properties required of VMS in order to support strong

consistency.

As updates Δ = ⟨u1, .., un⟩ (where ⟨⟩ de�nes a sequence) are performed on the base

tables, their state changes; we depict the state of the base tables as  and describe a

sequence of consecutive states via indices 0..,i , ..,f , where 0 is the initial state, i

is an intermediate state and f is the �nal state. In a KVS, every put or delete update

causes a single record to be modi�ed and a�ects the state of a base table. A complete

update set takes a base table from initial to �nal state.

0 + Δ = f (4.2.1)

Two states can be compared by the ≤ operator. i ≤ j means that the versions of all

records in j are equal or newer than the versions of records in i (i.e., (∀r ∈ j) → (r ≤
r ′ ∈ i)). If two states can not be compared, which may happen due to the concurrent

execution of operations on di�erent row-keys, their relationship is expressed by the ∥
operator.

We de�ne the incremental view update for a view V as follows. Given as input an update

u on a record in the base table, a view update reads the current state i of the view table,

processes the e�ect of u according to the semantics of the view, and generates the view

state i+1 for the view table. Note that each view update can therefore consist of several

reads and writes or none at all, depending on the operation processed and the current

state of the view. For instance, a view update for a projection view does not require any

read on the view table since each operation completely determines the value to write. In

contrast, a view update for a selection view does not produce any write, if the operation

does not satisfy the selection condition.

34

CHAPTER 4. VIEW MAINTENANCE SYSTEM

4.2.1 Consistency model

A view data consistency model validates the correctness of a view table. Further, the model

evaluates a view table’s ability to follow a sequence of base table states and produces

a corresponding sequence of valid view table states. The model as well as the di�erent

levels of consistency that we establish in the thesis have been widely accepted in view

research [30, 31, 33, 58, 59]. Depending on view types, view maintenance strategies, and

view update programs, either none, or some, or all of the levels are attainable.

Once a base table changes, the view table – or rather the system that maintains the

view – needs to react and incorporate the changes into the view. The accuracy of this

maintenance is de�ned through the following levels:

Convergence: A view table converges, if after the base tables have gone through

states 0, ..,f , and the view table has been updated accordingly, the last view

state f is computed correctly. This means it corresponds to the evaluation of the

view expression over the �nal base state f = V iew(f). View convergence is a

minimal requirement, as an incorrectly calculated view is of no use.

Weak consistency: Weak consistency is given if the view converges and all inter-

mediate view states are valid, meaning that every intermediate view state j can

be derived from a valid base table state 0 ≤ i ≤ f as j = V iew(i). Weak

consistency ensures that no incorrect intermediate states are provided.

Strong consistency: Weak consistency is achieved and the following condition is true.

All pairs of view states j1 and j2 that are in a relation j1 ≤ j2 are derived from

base states i1 and i2 that are also in a relation i1 ≤ i2. Strong consistency

ensures that successive reads on a view never provide stale data.

Complete consistency: Strong consistency is achieved and every base state i of

a valid base state sequence is re�ected in a view state j . Complete consistency

ensures that every change in the base tables is re�ected in the view table as well.

35

4.2. VIEW CONSISTENCY

Example 4.2.1: Consider a base table R = (K̄ , X , Y) and a sum view V =
X,sum(Y)(R). This
view groups records by their value of X and sums the values of Y for each group. The initial
state of base table is 0 = {(k1, x, 15)} and the corresponding state of the view table is
0 = {(x, 15)}. Now, the following client updates are applied to the base table:

(1) u1 = put(R(k1, x, 15 → 20))

(2) u2 = put(R(k2, x, 10))

(3) u3 = del(R(k1, x, 20))

KVSs generally provide a consistent per-record ordering, but not for updates across records.
Thus, updates (1) and (3) generate a timeline for record with row-key k1, update (2) for
record with row-key k2. Propagating and maintaining the three updates (in VMS) can be
possibly done in six di�erent sequences (i.e., all permutations, (1)(2)(3), (1)(3)(2), etc.) which
generates eight di�erent view states.

Figure 4.2.1 shows all sequences and view states. Thereby, the valid view states (which respect
record timelines) are drawn in black and the invalid view states (which do not respect record
timelines) are drawn in red.

To achieve convergence, VMS has to compute the �nal view state as: f = {(x, 10)}, which
corresponds to the �nal base table state f = {(k2, x, 10)}. To achieve weak consistency,
any intermediate view state generated must be valid (e.g., 0,1,4,f). Executing base
updates in the wrong order can violate weak consistency. For example, (3), (1), (2) would
generate the correct end result (and allow for convergence) while intermediate view state
3 = {(x, −5)} would be invalid. Likewise, executing updates not atomically can lead to
invalid intermediate states.

To achieve strong consistency view states must be correctly ordered (e.g., 0,1,4,f).
Redistributing the results of V for downstream maintenance operations (and not respecting
the record timeline of V) can violate strong consistency. For example, propagating 1 and
4 to di�erent VMs could lead to global order 0,4,1,f . To achieve complete consistency,
all base states must be re�ected (e.g., 0,1,4,f). Leaving out intermediate states as it is
done for batching of updates (e.g., 0,4,f) only allows for strong consistency.

36

CHAPTER 4. VIEW MAINTENANCE SYSTEM

(3) (1) KN1:

KN2: (2)

VMS

V0 (x1, 15)

V1 (x1, 20)

V2 (x1, 25)

V4 (x1, 30)

V5 (x1, 0) Vf (x1, 10)

 (1)

 (2)

 (2)

 (1)

 (3) (3)

 (2)

Timeline at KVS:

Valid view states:

V3 (x1, -5)

 (3)
 (1)

V6 (x1, 5)
 (1)

 (2)

 (3)

Invalid view states:

Figure 4.2.1: Possible view states of a given update sequence

37

4.2. VIEW CONSISTENCY

4.2.2 Theorem for strong consistency

In order to maintain strong consistency, we identify three properties which must be

provided by a view maintenance system, as stipulated by Theorem 1. The proof of the

theorem can be found in Appendix A.

Theorem 1: A view maintenance system which provides the following properties, guarantees
that views are maintained strongly consistent.

1. View updates are applied exactly once

2. View updates are processed atomically and in isolation

3. (Base-)record timeline is always preserved

We now provide a brief explanation of Theorem 1. If we employ Property 1 of the theorem,

we ensure that all updates are delivered and applied exactly once. However, Property 1

alone does not guarantee convergence of the view. When using parallel execution, partial

updates or multiple updates (to the same view record) might be applied and a�ect the

view correctness.

Property 2 avoids wrong execution in case of partial updates and concurrent view access.

However, if Property 1 and Property 2 of the theorem are ensured, weak consistency

is still not guaranteed as asynchronous processing and redistribution could lead to

reordering of updates.

Therefore, we also apply Property 3 and enforce the preservation of a record’s timeline.

All three properties together guarantee that convergence, weak, and even strong consis-

tency (correct ordering is established) can be achieved. By complying to the requirements

of the theorem, our approach achieves strong consistency for the views it maintains.

38

CHAPTER 4. VIEW MAINTENANCE SYSTEM

4.3 View maintenance concept

In this section, we �rst describe in more detail the maintenance concept of VMS, par-

ticularly focusing on computation and propagation of updates given a view de�nition.

Then, we show how our design achieves a high degree of concurrency while providing

strong consistency via the three properties of Theorem 1 found in Section 4.2. Finally, we

discuss how VMS optimizes view maintenance by using di�erent methods of batching.

4.3.1 Distributed model

View maintenance as required by the view de�nition is brought out in multiple steps.

Given a general view de�nition V = V iew(Rset) in which function V iew is speci�ed by

relational algebra (see Chapter 2.4). The function can also be described using a directed

acyclic graph (DAG) which in the following is referred to as a maintenace plan. The

maintenance plan is used by VMS to plan and optimize the maintenance process and by

each VM to determine the next maintenance operation (e.g., selection, aggregation, join).

The maintenance plan is formalized as M = (Rset , O, V , E)with base tables Rset as the start

vertices; maintenance operations O as intermediate vertices; view table V as end vertex;

and the connecting edges E.

A maintenance path describes the sequence of maintenance operations that start at base

table R and end at the �nal materialized view V in a maintenance plan (see Figure 4.3.1).

To execute incremental view maintenance, VMS takes updates of R, processes them along

the maintenance path, and �nally materializes the updates into V . For each operation in

the path, VMS materializes an intermediate view. Intermediate views keep intermediate

results ready during the maintenance process. They are stored in-memory (i.e., in VS)

to speed up processing of forthcoming incremental updates. The maintenance path is

formalized asMR→V = ⟨o1, .., on⟩ (with o ∈ O), for each operation, there is an intermediate

view de�ned as {(o1, I1), .., (on, In)}.

To minimize communication, VMS processes operations that work over the same parti-

tioning (i.e., that require the same distribution of updates) together at the same VMs. For

39

4.3. VIEW MAINTENANCE CONCEPT

𝑉 = (𝑌 , 𝑠𝑢𝑚(𝑍))

c

𝑅1 = (𝐾 , 𝑋, 𝑌)

𝑢1 𝑢2 𝑢3

𝑉𝑀1 𝑉𝑀2 𝑉𝑀3

Distribution

rounds

(𝑑0, 𝐴0)

)

(𝑑1, 𝐴1)

(𝑑𝑓 , 𝐴𝑓)

)

𝑉𝑀3

c

𝑉𝑀1

c

𝑉𝑀2 𝑉𝑀1

(𝑜1, 𝐼1)

)

(𝑜2, 𝐼2)

)

(𝑜3, 𝐼3)

)

Intermediate

views

Figure 4.3.1: Processing a maintenance path

40

CHAPTER 4. VIEW MAINTENANCE SYSTEM

that reason, it combines multiple operations into a distribution round if possible. While

distribution rounds aggregate sequences of maintenance operations, update processing

in VMS is not necessarily done in a round-based fashion. VMS supports incremental

maintenance of many (single) updates, as well as batch-wise computation of update

sets. The maintenance path is then, represented as a sequence of distribution rounds

DR→V = ⟨d0, d1, .., df ⟩ (with d ⊆ MR→V). Distribution rounds are formalized along

with their distribution keys as {(d0, A0), (d1, A1),..,(df , Af)}; thereby, the distribution key

Ai is the attribute according to which updates are distributed, and also the attribute

according to which all intermediate views are partitioned (not necessarily indexed) in

the corresponding distribution round.

Example 4.3.1: Consider base tables R1 = (K̄ , X , Y) and R2 = (L̄, X , Z). Now, let a view
be de�ned as V =
Y ,sum(Z)(�P (R1) ⋈ R2). The maintenance path MR1→V , as shown in
Figure 4.3.1, is executed in three distribution rounds d0,d1 and df . Updates are distributed
according to base table row-key A0 = K in the beginning, then get selected, reordered
and joined according to (intermediate) distribution key A1 = X and then aggregated by
distribution key Af = Y . Three updates u1,u2 and u3 originate at R1 and are passed from one
VM to the next. Three operations o1 = � , o2 =⋈ and o3 =
 are used to compute intermediate
views I1 = �P (R1), I2 = I1 ⋈ R2 and I3 =
Y ,sum(Z)(I2). After passing the distribution rounds,
the updates are �nally applied to V .

Updates in a distribution round are processed by multiple VMs in parallel (see Figure 4.3.1).

Despite of the parallelism of execution, in each distribution round, there is a global

processing order. We de�ne the processing order over all VMs in a distribution round di
as execution sequence of updates as:

Δ = ⟨u1, .., un⟩

di(Δ) → i
(4.3.1)

The execution sequence in round di is denoted as i and represents a recombination of

the original update sequence di(Δ) on the base table. Thereby, updates get reordered,

dropped or they can be duplicated. However, in the following, we are particularly

interested in reordering as it threatens the view consistency. The execution sequence f ,

41

4.3. VIEW MAINTENANCE CONCEPT

in the �nal distribution round, denotes the materialization order into the view table.

u1 <i u2 u1 >i u2 u1||iu2 (4.3.2)

Two updates in an execution sequence u1, u2 ∈ i can either one follow the other or they

can be executed simultaneously. We are using notation >i , <i here to indicate that two

updates are following each other in execution sequence of i or notation ||i to indicate

that two updates are processed simultaneously in i . In subsequent execution sequences

(i.e.,i+1, i+2), where updates are processed by di�erent VMs, this relation may change.

From one distribution round to the next, a VM redistributes its updates to the set of

remaining VMs which manage the updates of the next round. Redistribution of updates

is performed using consistent hashing [60]. The assigner (see Section 4.1.2) hashes one

of the update’s attributes and associates the hash value in clockwise direction to one of

the VMs. The VMs are arranged on a hash-ring using the hash values of their VM-IDs.

In this manner, a VM assigns updates uniformly across the remaining VMs. The assign
function (executed by the assigner) can be formalized as follows:

asg(u.A) → VM (4.3.3)

An update u is assigned using one of its attributes u.A as parameter; the outcome of the

function is one of the remaining VMs. In distribution round (di , Ai), a VM evaluates the

assign function on next round’s distribution key (i.e., asg(u.Ai+1) → VM) to determine

the receiving VM. The hash-ring is synchronized across all VMs via a distributed lock

service. Thus, the same VM is picked to handle the same update everywhere in the

system. This is important when regions (of base tables) move from one KN to another.

In the remainder of the section, VMS is designed to provide strong consistency. We argue

that convergence on its own is insu�cient due to the online nature of our system. Since

VMS is designed to incrementally maintain views, the targeted applications must be able

to read correct intermediate states. Further, weak consistency is inadequate since a client

can perform successive reads on the same view. If the view states are not correctly

ordered, the client may enter an inconsistent state (e.g., having to roll-back on a previous

state). On the other hand, complete consistency is too costly and can only be detected if

the clients repeatedly read from the base tables.

42

CHAPTER 4. VIEW MAINTENANCE SYSTEM

𝑉

𝑉𝑀3

𝑅

(d) Time-line (b) Atomicity/Isolation

𝑉𝑀3

𝑉

𝑉𝑀2

𝑉

crash

(a) Exactly once

𝑅

(c) Multi-row updates

𝑉

write
split

𝑅

𝑉𝑀1

𝑢1 𝑢2 𝑢1 𝑢1

𝑉𝑀1 𝑉𝑀2

𝑢2 𝑢3

𝑉𝑀1

𝑅

𝑉𝑀1

replay

𝑉𝑀∗ 𝑉𝑀𝑐

sync sync

𝑉𝑀2 𝑉𝑀3

write
final

confirm

resume

TL

𝑢1

Figure 4.3.2: Achieving consistency implementing Theorem 1

Now, we discuss how the de�ned properties of Theorem 1 can be achieved in VMS.

Figure 4.3.2 shows examples for each property of the theorem: Property 1: (a) Exactly

once, Property 2: (b) Atomicity/Isolation, (c) Multi-row updates and Property 3: (d) record

timeline. In the following we discuss adherence to each property separately and refer to

the examples.

4.3.2 Property 1: exactly once

Property 1 describes the requirement that view updates are applied exactly once to the

view table. This is a critical requirement, as views can be non-idempotent. There are two

possible scenarios that violate Property 1: (1) an update is received and applied more

than once, (2) an update is lost due to a crash (see Figure 4.3.2 (a)). In either case, the

view is incorrect (i.e., does not converge). We now describe both scenarios separately.

Scenario 1 – When sending streams of updates through the distribution rounds and

connecting di�erent VMs, the system establishes reliability between them. Each VM

keeps track of the updates it received and the updates it has sent to other VMs.

L = (VMs, ℕ) (4.3.4)

In the moment an update is processed, the VM tags it with a local update ID (see Equa-

tion 4.3.4) which is set via attribute u.L of the update. A local update ID is a combination

of the VM-ID and a local sequence number. When set in round di the local update ID can

be used in round di+1 to identify whether an update has been already processed.

43

4.3. VIEW MAINTENANCE CONCEPT

To track the maintenance state, each VM uses two map variables Lrec and Lsen and captures

the last local update IDs processed with regard to all other VMs. Variable Lrec[i] captures

the last local update ID, received from VMi; Lsen[i] stores the last local update ID which

has been sent to VMi . If a VMi resends an update u a second time, using the same

sequence number as before (or a lower one), the receiving VM checks against condition

(u.L ≤ Lrec[i]) ; and drops the update if the condition evaluates to true.

Scenario 2 – Under crash failure, when updates are lost, we distinguish between Design 2

and Design 3 (see Section 4.1.2). When realizing Design 2, lost updates can be recovered

from the TL of the KN. Realizing Design 3, under the assumption that purging of TL is not

managed explicitly by VMS, we cannot replay updates that have been already streamed

from a KN. In this case, the only viable solution is deletion of views and a full scan of all

base table partitions to recompute the given view de�nitions.

In Figure 4.3.2 (a) the crash of a VM is depicted. In this case, the system starts a new

instance using the same VM-ID as the crashed VM (∗ in the example). As soon as the new

VM instance comes up, it executes a recovery procedure as shown in Algorithm 4.1. For

the new VM the VS, and the local variables are initialized blankly. To restore the state

of its Lsen variables, the VM sends a request message (mrec) to each VMi (Algorithm 4.1,

Line 1-2). It requests the last update ID that VMi received from the crashed VM (i.e.,

Lrec[∗]) before the crash; by means of the result, the VM restores its Lsen variable.

Algorithm 4.1: Recovery at a new VM
1 for (VMi ∈ {VM1, ..VMn}) do
2 Lsen[i] ← VMi .send(msen); // restore Lsen
3 for u ∈ TL do // replay updates

4 u.L = (VMj , n); // read local ID

5 Lrec [j] ← u.L; // restore Lrec
6 process(V S, u); // reprocess update

7 VMa ← asg(u.A); // reassign to VMa
8 if (u.L > Lsen[j]) then
9 VMa .send(u); // resend update

10 for (VMi ∈ {VM1, ..VMn}) do
11 VMi .send(mres = (Lrec [i])); // resume sending

Then, the new VM takes ownership of the abandoned TL and replays all updates, building

up its VS from the ground (Algorithm 4.1, Line 3-9). During the replay, VM∗ reprocesses

and reassigns the updates and tests whether the results should be resent.

44

CHAPTER 4. VIEW MAINTENANCE SYSTEM

After completing the replay, the new VM sends a resume-sending message (mres =
(Lrec[i])) to each VM (Algorithm 4.1, Line 10-11) such that all VMs know they can resume

sending. However, resuming the sending process is not trivial. The crashed VM could

have also had updates waiting in its queue; which have not been written into its TL
before. For that reason, the new VM puts the last local ID of the update that has been

received (and stored into TL) by VMi into the message mres . Then, each VMi compares

the variable against its own sending variable (i.e., Lrec[i] < Lsen[∗]). If the value is equal,

VMi resumes sending, if it is smaller, VMi resends the missing updates, starting with the

next update after Lrec[i].

4.3.3 Property 2: atomicity and isolation

According to Property 2, every view update has to be executed atomically and in isolation.

First of all, we rely on the semantics that are provided by the KVS to achieve this. We

assume (as it is for example the case for HBase and Cassandra) that at record level (i.e.,

for a single put operation), the execution follows standard ACID guarantees. Thus, we

conclude that a single VM can update a view record atomically and in isolation.

However, during maintenance, updates are distributed to many VMs and processed in

multiple stages. When two base updates (referring to the same view record) are sent to

di�erent VMs, both VMs can update the view record simultaneously (see Figure 4.3.2 (b)).

This possibly leads to a violation of Property 2.

(∃u1, u2 ∈ i)(u1.Ai+1 = u2.Ai+1)

→ asg(u1.Ai) ≠ asg(u2.Ai)
(4.3.5)

If there are two updates in round (di , Ai) which are executed in sequence i and which

are targeting the same distribution key in i+1 (i.e, u.Ai+1) and which have been assigned

to two di�erent VMs, then the VMs can possibly update the same view records simulta-

neously. VMS prevents the case shown in Equation 4.3.5 by design. Distributing updates

according to the hash of the next distribution key completely eliminates the need for

further synchronization mechanisms. Given a set of updates processed in distribution

round di that are consecutively redistributed by distribution key Ai+1. Then, the unique-

45

4.3. VIEW MAINTENANCE CONCEPT

ness of the assign function ensures that updates, targeting the same distribution keys

u.Ai+1 = a, are always forwarded to the same VM, no matter from where they originated.

The according equation can be formulated as follows:

(∀u ∈ i)(u.Ai+1 = a) → asg(a) = VM (4.3.6)

The VM itself operates sequentially and prevents updates to the same view record from

interfering with each other. Thus, we conclude, the execution is isolated. It is also atomic,

as the put of a view record is executed according to ACID, and the get does not modify

data. However, our de�nitions are only based on simple view updates (that modify

single view records). In complex maintenance processes there might be also multi-row
updates in a view table. These types of updates are particularly challenging with regard

to Property 2 as we explain in the following.

Multi-row updates – During maintenance of aggregation or join operations, a base

table update of a single base record can touch many view records (e.g., by changing the

aggregation key or by joining multiple records). For the view table, all updated records

must be altered at the same time (see Figure 4.3.2 (c)).

(∀u = (u.1, .., u.n) ∈ i)

→ (∀k)(k > i)(u.1||k ..||ku.n)
(4.3.7)

To execute maintenance, VMS can simply split the multi-row update into a set of partial
updates (i.e., u = (u.1, .., u.n)) and let them be processed by VMs, just like normal updates.

However, to not violate Property 2, the e�ects of all partial updates must become visible

in a view table simultaneously. Given that a maintenance operation produces a multi-

row update in round di . Then, the partial updates have to be executed in parallel for all

rounds to come (k > i). However, asserting that intermediate views are not exposed to

the clients, we can relax the constraint as follows.

(∀u = (u.1, .., u.n) ∈ i)

→ (u.1||f ..||f u.n)
(4.3.8)

Still this constraint is di�cult to achieve since we assume that partial updates can be

assigned to di�erent VMs in the next distribution round. Also, using a KVS to store view

46

CHAPTER 4. VIEW MAINTENANCE SYSTEM

tables means that view keys of the partial updates can be found in regions of di�erent

KNs. Thus, updating them atomically (see Property 2), requires a cross-table transaction.

For e�ciency reasons, KVSs do not provide this kind of functionality (e.g., HBase o�ers

within-region transactions, only.) VMS demands additional mechanisms to maintain

atomicity when handling these kinds of multi-row updates.

G = (KNs, ℕ) (4.3.9)

Global locking is expensive and error-prone to use, thus, is best avoided in large-scale

distributed systems. We designed VMS in an asynchronous and lock-free manner, which

is also re�ected in our solution for handling timelines and multi-row updates. Let all

updates be tagged by a global update ID G (which can be accessed via attribute u.G). A

global update ID is provided by the KN an update originates from. In contrast to the

local ID, a global ID identi�es an update throughout the whole maintenance process. All

partial updates belonging to the same multi-row update can be identi�ed by the same

global ID as the following equations shows:

(∀u with u = (u.1, .., u.n) ∈ i)

→ u.1.G = .. = u.n.G = g ∈ G
(4.3.10)

In order to support correct execution for multi-row updates, we propose a split-state

mechanism where VMS can write additional meta-data with the view update to safely

change the state of a view record in KVS. In general, the multi-row update is processed

in three steps (see Figure 4.3.3): (1) Synchronization, (2) writing the split-state and (3)

resolving the split-state. We now explain each of the steps separately.

Synchronization – When receiving a partial update, a VM bu�ers it into a hash map

(using g = u.G as key), where it is kept along with the global ID until the complete

multi-row update is ready to be executed. Notably, the update is not applied such that

the targeted view record remains open for modi�cations through regular updates.

In a next step, each VM evaluates the assign function, using g as parameter (i.e., VMc ←
asg(g)). As all partial updates contain the same global ID, each VM resolves the same

view manager VMc which will be the coordinator for the multi-row transaction. By using

our hashing-scheme to determine the coordinator, we achieve two goals, simultaneously:

47

4.3. VIEW MAINTENANCE CONCEPT

 𝑉𝑀1

𝑅 = (𝐾 , 𝑋, 𝑌)

𝑉 = (𝑋 , 𝑠𝑢𝑚(𝑌))

𝑉𝑀2

𝑢.1 = 𝑑𝑒𝑙(𝑅(𝑘1, 𝑥1, 𝑦), 𝑔) 𝑢.2 = 𝑝𝑢𝑡(𝑅(𝑘1, 𝑥2, 𝑦), 𝑔)

𝑉𝑀𝑐

1

2

𝑟1 = 𝑉(𝑥1, 𝑠1|𝑠1
′ , 𝑔)

𝑟2 = 𝑉 𝑥2, 𝑠2
′ , 𝑔

Write

split-state

Resolve

split-state

𝑚𝑟𝑙𝑣

𝑚𝑠𝑦𝑛

𝑚𝑠𝑝𝑙& 𝑚𝑎𝑐𝑘

3

Synchronization

Figure 4.3.3: Execution of a multi-row update

48

CHAPTER 4. VIEW MAINTENANCE SYSTEM

�rst, we allow the coordinator to be determined rapidly at each VM, (simply using the

global ID); second, we guarantee a uniform distribution of coordination tasks. As such,

coordination is decentralized and no single VM is overloaded with the task.

Finally, each VM sends a synchronization request message, formalized as msyn = (g) to

VMc . The synchronization request is a noti�cation for the coordinator that the VM is

ready to process the multi-row transaction.

Writing the split-state – The coordinator waits until all partial updates of the multi-

row update have been requested. Then, it sends a write split-state message mspl = (g)
containing similar information as the sync message to each VM, advising them to write

out their split-states. In doing so, the VMs include the global update ID in the meta data

of the written record. This is required in order to identify di�erent multi-row updates,

potentially occurring simultaneously. Finally, the VMs acknowledge the writing of the

split-state with mack to the coordinator.

Resolving the split-state – When the coordinator has received all acknowledgments,

it starts the third phase and informs all VMs to resolve their split-states using the resolve

command mrlv . When writing out the �nal state (of the transaction) the VMs, again,

include the g as identi�er.

Example 4.3.2: Figure 4.3.3 provides an overview of how a multi-row update u consisting
of two partial updates is carried out. Consider a base table R = (K̄ , X , Y) and a sum view
V =
X,sum(Y)(R). Further consider an update u = put(R(k1, x1 → x2, y)) on R which is split
into two partial updates u.1 = del(R(k1, x1, y), g) and u.2 = put(R(k1, x2, y), g) both being
identi�ed by global ID g. First partial update is sent to VM1, second is sent to VM2. Both
VMs select the same coordinator VMc and send msyn. Then VMc sends mspl and advises both
VMs to write out their split-states (i.e, V (x1, s1|s′1, g) and V (x2, s2|s′2, g)). After receiving the
acknowledgments, VMc sends mrlv and both VMs resolve their split-states to V (x1, s′1, g) and
V (x2, s′2, g).

49

4.3. VIEW MAINTENANCE CONCEPT

Client reads – When a client reads view records and �nds them in a normal state, it

simply fetches the records. In case, the clients �nds view records that are tagged with a

update ID, it groups the view records according to their update ID. Existing split-states

are then, handled on client-side as the following formalization depicts:

Vg = (∀r ∈ V)(r .G = g) (4.3.11)

(∀ri ∈ Vg)(ri .A = (ai |a′i))

→ ri .A =
⎧⎪⎪
⎨⎪⎪⎩

ai if (∀rj ∈ Vg |rj .A = (aj |a′j))

a′i if (∃rj ∈ Vg |rj .A = aj)

(4.3.12)

We de�ne Vg as all records of the view that possess the same global update ID g. If there

are split-states (ai |a′i) among the attributes of a view record in a group Vg , the client

checks the entire group Vg . If there are only split-states, the client takes the old value

ai . There might be more split-states not written yet, such that the new value, together

with the non-existing split-states would produce an inconsistent view state. However,

if there is a single resolved state among the view records, the client decides to take the

new value a′i . The resolved state indicates that all split-states must have been written

and that the new values can be read safely within Vg .

4.3.4 Property 3: record timeline

Property 3 means that sequences of updates on the same base record are not reordered

when processed by VMS. Thereby, we assume the correct order of updates, as determined

by each KN, is provided as input to the attached VM. While reordering of updates within

VMS may be allowed (e.g., due to parallel execution), reordering with regard to the

timeline of a base record (or a view record) has to be respected. The record timeline

constraint can be formulated as follows:

(∀u1, u2 ∈ i)(u1 <i u2)(u1.Ai = u2.Ai)

→ (∀k(k > i))(u1 <k u2)
(4.3.13)

50

CHAPTER 4. VIEW MAINTENANCE SYSTEM

When two updates, applied in round (di , Ai), are using the same distribution key (i.e.,

u1.Ai = u2.Ai) follow each other in a timeline (i.e., <i ,), their order has to be respected

during all following sequences ((∀k)(k > i)).

Since processing at VMs is sequential, a reordering of a timeline can only occur during

redistribution. Redistributing the updates according to the hash of the next distribution

key Ai+1 creates a new record timeline which has the following implications: As long

as Ai+1 does not change the assignment, updates are always forwarded to the same VM.

If there are two updates, modifying the same record and yielding di�erent assignment

results in the next distribution round (e.g., (u1.Ai = u2.Ai)(asg(u1.Ai+1) ≠ asg(u2.Ai+1))
both updates are sent to di�erent VMs. This implies that there is a possible timeline

violation that may break consistency as incorrect intermediate view states could occur.

Also there is the problem of transitive dependencies. When complex queries (e.g., multiple

consecutive joins or aggregations) are processed, the maintenance plan involves multi-

ple stages of redistribution (see Figure 4.3.1) during which updates are reassigned and

partitioned based on di�erent view records. Each of the view keys creates its own new

timeline. While each timeline could be synchronized separately to solve the problem,

dependencies of prior timelines get inherited to the current one which we call a transitive

dependency. These transitive dependencies complicate the task of providing consistency

severely because the number of dependencies in the system increases exponentially.

Example 4.3.3: Continuing Example 4.3.1 (see Figure 4.3.1): Given that the base table is in a
state R1 = {(k1, x1, y1)}. Now the following updates occur: A delete (u1 = del(R1(k1, x1, y1)))
followed by a put of u2 = put(R1(k1, x2, y2)), then u3 = put(R1(k2, x2, y3)). After the �rst
round, updates u1 and u2 are redistributed according to key X ; u1 is passed to VM1 (hash
of x1) whereas u2 is passed to VM2 (hash of x2). In a unfavorable constellation, u2 could be
applied before u1, which brakes consistency as u1 (arriving later) deletes the record belonging
to k1. Then, the record is re�ected in the base table but not in the view table. Further, a
dependency between u3 and u2 which is introduced by the timeline of X can be observed.
Given that u2 is processed at VM2 before u3. Because u2 is dependent on u1, u3 is not only
dependent on u2 but also u1 which is a transitive dependency.

To solve the problem and synchronize modi�cations, we introduce the concept of timeline
bu�ering to achieve strong consistency. The idea behind timeline bu�ering is that always

51

4.3. VIEW MAINTENANCE CONCEPT

only one version of a speci�c (base or view) record is allowed to travel the system at a

time which is called the active update. This rule is enforced over all distribution rounds,

such that transitive dependencies cannot arise.

Let i(t) be the sequence of updates in a distribution round that have been processed up

until point t . Given a sequence of updates in distribution round (di , Ai) and a distribution

key a ∈ Ai . Out of the updates that are not materialized yet (u ∉ f (t)), there is always

only n active updates with the same key a for all subsequent distribution rounds k(t).
What we demand can be expressed as follows:

(∀a ∈ Ai)

(S = {u|(∀k(t)(k > i))(u.Ai = a)(u ∉ f (t))})

→ |S| = n

(4.3.14)

In our approach, we restrict the system to n = 1 updates. However, we can loosen the

constraint to allow n ≥ 1 versions, simultaneously. But then, additional synchronization

measures have to be taken in order to sustain consistency. To implement timeline

bu�ering, each VM is equipped with its own timeline bu�er (TB). Before each update is

processed at a VM it is tested against the TB. The TB remembers the row-keys of all active

updates in the system right now. When, during the time an update is actively processed,

subsequent updates on the same row-key arrive, they are held and queued into TB. The

next subsequent versions are only released when the materialization of the last active

update has been con�rmed. To make timeline bu�ering even more e�cient, subsequent

updates that are queued can be merged together to re�ect the respective latest version

of the timeline.

Algorithm 4.2: Checking updates against a TB
1 for u ∈ VM do
2 a ← u.Ai ;
3 if (Hact [a] ≠ ∅) then // check for active updates

4 Hact [a] ← u; // set active update

5 return u;

6 else
7 Hbuf [a] ← u; // bu�er update

8 return ∅;

The TB employs two hash maps: Hact which contains the row-key (of the current distri-

bution round) and the global update ID of the active updates and Hbuf which stores the

52

CHAPTER 4. VIEW MAINTENANCE SYSTEM

bu�ered updates (see Algorithm 4.2). The row-keys and sequence number of incoming

updates are, �rst, put into Hact (Algorithm 4.2, Line 4). If, in the meantime more updates

over the same row-key arrive, the are bu�ered into Hbuf (Algorithm 4.2, Line 7). If the

bu�er is already full the bu�ered update is overwritten by the newer one. In this way,

the system is protected against skewed workload distributions, where many updates of

the same key are maintained.

If, now and then, the update IDs of the materialized updates arrive, the TB is cleaned

up (see Algorithm 4.3). The VM �rst removes the active update (Algorithm 4.3, Line 3).

Then, if there is a bu�ered update, the VM sets it active and feeds it into the processing

cycle (Algorithm 4.3, Line 5-8). During the process of cleaning TB, view maintenance has

to be halted to prevent inconsistencies. However, cleaning up is a local process, executed

in de�ned intervals. As such impact on overall latency is low.

Algorithm 4.3: Clean up a TB
1 for a ∈ Hact do
2 if (u ∈ f (t)) then // check if materialized

3 Hact [a] ← ∅ // remove active update

4 if Hbuf [a] ≠ ∅ then
5 u ← Hbuf [a];
6 Hact [a] ← u; // activate bu�ered update

7 process(V S, u) // process bu�ered update

8 Hbuf [a] ← ∅ // reset bu�er

Revisiting Example 2: when a TB is employed at VM1, the view manager realizes that u1 and
u2 belong to the same timeline (modifying k1). Thus, VM1 will not send out u2, before the
materialization of u1 has been con�rmed. Likewise, VM2 will consult its TB and hold back
u3 until the materialization of u2 has been con�rmed. The transitive dependency between
u1 and u3 is not existing (as there is no active dependency between u1 and u2).

While still allowing parallelism of maintenance, timeline bu�ering merely restricts the

number of updates processed over a single record. This reduces the amount of updates

sent through VMS dramatically. Likewise, it prevents the creation of transitive dependen-

cies, and thus, allows VMS to achieve strong consistency at manageable cost. Moreover,

with timeline bu�ering, it is certain that always one of the records versions is re�ected in

the view. The downsides are comparably small: synchronization of intermediate record

states is slower or in some cases may be skipped due to the merging process in TB.

53

4.3. VIEW MAINTENANCE CONCEPT

4.3.5 Batching

From a practical perspective, when computing millions of updates, the system may

accumulate a large number of record version as well as multi-row updates and may

be overloaded with synchronization tasks to achieve consistency. As we are only mate-

rializing (and exposing) the last view computation to clients, the system relies heavily

on batching to locally and globally aggregate sets of updates to improve performance.

Knowing that during a batch a �xed number of updates is loaded and processed, we can

perform the following optimizations.

Record timeline – What a timeline bu�er does while bu�ering updates, can be done

to the complete update set before processing the updates. When the VM receives a

batch of update operations from a KN, it condenses the timelines to only re�ect a single

update per base record. The same technique is applied when recursively processing

the maintenance plan in batches. For each aggregation or join processing step, the VM

condenses the timeline of the results, releasing only one put or delete update per view

record. Again, this reduces the amounts of updates processed signi�cantly.

Multi-row updates – Logically, it is not important for the system to synchronize the

results of every multi-row update. For writing out the result after an incremental batch,

the batch itself can be considered as one large multi-row transaction, in which every

VM transitions from a view state that was valid before the batch operation (i.e., V) to a

view state that is valid after the batch operation (i.e., V ′
). As transaction identi�er serves

the batch ID. The batch ID is contained in a token that is sent after the last update of

a batch. During the whole batch, VMs manage a single split state. Thereby, the VMs

keep the old value unchanged and apply all modi�cations to the new value. Then, when

the VMs receive the token, they use the hashing scheme to compute the coordinator

(i.e., asg(batcℎID)). The coordinator advises all VMs to write out their split-states of the

complete batch. When the VMs have acknowledged the operation, the coordinator sends

the resolve command, which concludes the update of the complete view state.

54

CHAPTER 4. VIEW MAINTENANCE SYSTEM

4.4 Supported view types

VMS supports a large spectrum of SQL expressions in de�ning views (e.g., SPJA, exists,

case/when and nested query constructs). Here, we mainly develop techniques supporting

(strongly) consistent view maintenance. We de�ne a set of Pre-Processing View types that

serve to derive standard views without resorting to indirection. To model view mainte-

nance with Pre-Processing View types, we use generalized multi-sets (see Chapter 2.5).

Pre-Processing Views are materialized internally, in a sense that they are neither speci�ed

by clients nor exposed to them. Pre-Processing Views are kept as intermediate view tables

in VS. Their purpose is two-fold. For some query types, Pre-Processing Views are essential

in order to maintain strong consistency. For others (e.g., when used for pre-aggregation),

Pre-Processing Views are used to trade o� storage overhead in favor of read latency [61],

as discussed in Section 4.5. Also, many application-level views can be derived from the

same Pre-Processing View, amortizing its cost. Note that VMS handles Pre-Processing Views

in the same manner as other views, which includes handling failures and lost updates

(see Section 4.3.2). We now describe the three key Pre-Processing View types, we leverage

in VMS.

Delta – A Delta view is a Pre-Processing View that tracks base table changes between

successive updates. In KVS, client updates only contain the update information but they

do not characterize the base record state before or after the operation. For example, a

delete update only contains the row-key to be deleted and not the actual row values. For

view maintenance, this information is vital; hence, we capture it in a Delta view. The Delta

view records base table entry changes, tracking the states between row updates, i.e., the

delta between two successive updates for a given key. Given a base table R ∈ Rset in round

(d0, A0). Then, we de�ne the delta view as intermediate view Idel which is partitioned

and indexed by base key A0.
Idel =Idel ⊎ ΔR (4.4.1)

We keep the records of R materialized in Idel . When a delete is propagated, the system

uses Idel to �nd out the row values of the deleted record. To optimize and reduce the

storage overhead of a delta view, it can be combined with a selection operator.

55

4.4. SUPPORTED VIEW TYPES

Pre-aggregation view – The Pre-aggregation view is a Pre-Processing View that prepares

for aggregation by sorting and grouping base table rows. It serves two purposes: (1)

pre-aggregating aggregation functions locally, such their results can be combined later

(2) storing dis-aggregated records to re-compute a minimum or maximum after deletion.

To materialize these aggregates without Pre-aggregation, VMS would have to send updates

for every base table refresh. In addition, for min- and max-views, the deletion of the

minimum (maximum) in the view would require an expensive base table scan to deter-

mine the new minimum (maximum), introducing consistency issues that result from the

sought after values changing while a scan is in progress.

Sum/Count 1: Let a sum operation be de�ned over a universal view function as follows:

X,sum(A)(V iew(Rset))withX , the grouping attribute and sum(A) the grouping function (on

some regular attribute A). Let the aggregation, in the interest of generality, be computed

on top of a universal view function V iew(Rset). Further, let a maintenance plan be de�ned

by the view function with connecting view I , belonging to distribution round (di , Ai). We

call I the connecting view because, as the last intermediate view of V iew(Rset), it connects

the view function with the sum operator. I can be a base table or an intermediate view,

i.e., I ∈ Rset ∨ I ∈ {I1, ..In}.

To exploit locality, VMS builds and maintains the local pre-aggregate IPre in the same

round di . While IPre is already grouped by X , the table is still partitioned by Ai . To build

the global aggregate, a new distribution round (di+1, Ai+1) is added with attribute Ai+1 = X .

Then, the global aggregate is stored into a view IAgg . Delta equations for both view are

written as follows:

IPre = IPre ⊎
X,sum(A)(ΔI)

IAgg = IAgg ⊎ ΔIPre
(4.4.2)

Min/Max 1: Let a minimum (or maximum) operator over a universal view function be

de�ned as
X,min(A)(V iew(Rset)). Then, the schema of the local pre-aggregation IPre can

be de�ned �exibly such that the pre-aggregate in IPre can be updated with the current

minimum and additionally, with the dis-aggregated value itself �X,A,n(ΔI). Thereby X
represents the grouping key, A the input value and n ∈ ℕ the explicit multiplicity in case

that there are many input values with the same value. The �exibility of the KVS schema

lets us store both record types at the same time.

56

CHAPTER 4. VIEW MAINTENANCE SYSTEM

This way, when a minimum or maximum is deleted, the next one can be determined

quickly by computing get(IRev(r .X , A?)) and evaluating the minimal value of A. This

get operation uses fast row-key access to return all dis-aggregated values with x = r.X .

Thereby, A? is a wild card that returns only the rows of IPre where A is set (and not

min(A)). The delta equations of the view construction are performed as follows:

IPre = IPre ⊎ (
X,min(A)(ΔI) ∪ �X,A,n(ΔI))

IAgg =
X,min(A)(IAgg ⊎ �A=∅(ΔIPre))
(4.4.3)

Again a local pre-aggregation IPre is used, which stores the dis-aggregated and the

aggregate values locally (in VS). It only occupies the storage that is needed to store

the dis-aggregation of the local partition. Then, later only the local aggregate is sent out,

again to be combined globally in view IAgg according to distribution key Ai+1 = X .

Example 4.4.1: Let a base table R = (K̄ , X , Y) and a view V =
X,min(Y)(R) be de�ned as
before. Given three (local) updates that occur at base table R: u1 = put(R(k1, x, 5)), u2 =
put(R(k2, x, 3)) and u3 = del(R(k2, x, 3))which are propagated to VMS for viewmaintenance.
After the �rst two updates, IPre materializes as: IPre={(x, A=5, 1), (x, A=3, 1), (x, Min=3)}.
Update u3 deletes the local minimum and the system queries min(get(IRev(r .X , A?))). The
query delivers {(x, A = 3, 1), (x, A = 5, 1)} and reevaluates the minimum as (x, Min = 5).

Reverse-join view – A Reverse-join view is an intermediate materialized view that

supports the e�cient and correct computation of join views in VMS. A join view is

derived from at least two base tables. For an update to one of these tables, the VM needs

to query the other base table to determine the matching join rows. A matching join row

can only be determined quickly if the join-attribute is the row-key of the queried base

table, or if an index is de�ned on the join-attribute for the table. Otherwise, a scan of the

entire table is required, which requires a disproportional amount of time, slowing down

view maintenance signi�cantly and impacting consistency. However, the use of an index

(like, for example, a hash table referencing one of the base tables) reveals the following

drawbacks: (1) An index has to be updated to remain consistent with the base data. This

adds latency and holds the danger of stale references. (2) While a VM follows a reference

of an index, underlying base tables may change, thus, destroying (strong) consistency

for derived views. To address these issues, we introduce the Reverse-join view.

57

4.4. SUPPORTED VIEW TYPES

Let a join operation be de�ned over two universal functions V iewA(Rset) ⋈ V iewB(Rset),
where IA, IB are the connecting views of both functions and (di , Ai), (dj , Bj) are the respec-

tive distribution rounds. Let the two connecting views be de�ned as IA = (Āi , X , A′1, .., A′m)
(with A′1, .., A′m just being regular attributes) and IB = (B̄j , X , B′1, .., B′n) (with B′1, .., B′n just

being regular attributes) which are being joined over attribute X . Again, we use the

�exible KVS schema to de�ne a view which stores records from both join tables using

(X , Ai ∪ Bj) as row-key to rapidly retrieve matching join rows.

When operations are propagated from both sides, they are redistributed according to X .

For that reason a new distribution round is added with distribution attribute Ai+1 = Bj+1 =
X . Using the join attribute IRev can be accessed from either side of the relation. Given

that either side is updated with ΔIA or ΔIB, the changes are re�ected in IRev as follows:

IRev = IRev ⊎ �X,Ai ,A′1,..,A′m (ΔIA)

IRev = IRev ⊎ �X,Bj ,B′1,..,B′n (ΔIB)
(4.4.4)

This technique enables inner, left-, right-, and full-join as well as semi-join to directly

derive from IRev without the need for base table scans (or additional indices), as we show

below. Further, we can parametrize subsequent joins. Given ΔIA (ΔIB can be de�ned

analogous but is omitted for conciseness), we build the join records as follows:

(IA |><| IB) ∶ (∀r ∈ ΔIA)(S = get(IRev(r .X , Bj?))) ∶

IJ oin = IJ oin ⊎ ({r} × S)
(4.4.5)

(IA ><| IB) ∶ (∀r ∈ ΔIA)(S = get(IRev(r .X , Bj?))) ∶

IJ oin =
⎧⎪⎪
⎨⎪⎪⎩

IJ oin ⊎ {r} if (S ≠ ∅)

IJ oin else

(4.4.6)

(IA d|><| IB) ∶ (∀r ∈ ΔIA)(S = get(IRev(r .X , Bj?))) ∶

IJ oin =
⎧⎪⎪
⎨⎪⎪⎩

IJ oin ⊎ ({r} × S) if (S ≠ ∅)

IJ oin ⊎ {r} else

(4.4.7)

To obtain the join result, the VM uses a get operation S = get(IRev(r .X , Bj?)) to retrieve all

stored records with same join key r .X from join table IB. Thereby, the VM uses wild card

Bj? to only load the rows that originate at IB. Because X is the �rst row-key and Ai ∪ Bj

58

CHAPTER 4. VIEW MAINTENANCE SYSTEM

is the second row-key in IRev , access to fetch S is very fast. Then, the VM computes the

cross-product of the update record r and S to determine the join records. A little example

illustrates the case:

Example 4.4.2: Let two base tables R1 = (K̄ , X , Y) and R2 = (L̄, X , Z) and a view table be
de�ned as V = R1 ⋈ R2. Also, let three updates be applied to the base tables as: u1 =
put(R1(k1, x, 5)), u2 = put(R1(k2, x, 10)) and u3 = put(R2(l1, x, 3)). Applying the �rst two
updates, VMS builds the Reverse-join as IRev={(x, K=k1, Y=5), (x, K=k2, Y=10)}. Now, for
Update 3, the system queries get(IRev(x, K?)) once, and uses the result to build the natural
join IJ oin = {(k1, l1, x, 5, 3), (k2, l1, x, 10, 3)}.

VMS, in general, executes two main strategies (and their combination) to load and

compute a distributed join. Strategy 1, fully partitioned loading; and Strategy 2, partially

partitioned loading. Both strategies are standard concepts in query processing.

Strategy 1 – We load a partition of either base table at every VM. Subsequently, we

execute the strategy in three rounds. During Round 1, VMS redistributes the keys of

both join tables according to the join key and sends them out to VMs. This step involves

substantial n-to-m communication, as it triggers a VM to send many updates to di�erent

VMs. During Round 2, the VMs, in parallel, store the received records into their Reverse-

join view. Ultimately, in Round 3, the join results are obtained.

Strategy 2 – When one of the base tables is su�ciently small, we load it completely at

every node together with a partition of the distributed join table. We need only two

rounds to compute the join: In Round 1, the intermediate join view is built directly,

locally. In Round 2, the VM can build the �nal join and materialize the records if desired.

59

4.5. EVALUATION

4.5 Evaluation

In this section, we report on the results of our extensive experimental evaluation. We

fully implemented VMS in Java and integrated it with Apache HBase.

Experimental setup – Experiments are performed on a virtualized environment (Open-

Stack) of a cluster comprised of 42 physical machines (each equipped with 2x Intel Xeon

(8 cores), 128 GB RAM, 600 GB SSD, 1 TB HDD, inter-connected with a 10 GBit/s network).

The setup employs up to 222 virtual machines (running Ubuntu 14.04). For, HBase, a set

of virtual machines is dedicated to the Apache Hadoop (v2.2.0) installation: one as name

node (HDFS master) and a group of data nodes (HDFS). Co-located with HDFS, HBase

(v0.98.24) is installed on those same virtual machines with one master and a group of

region servers, respectively. The data node/region server machines are properly sized (4

cores, 20 GB RAM, SSDs for fast read/write performance).

TPC-H – The database benchmark contains a record set of typical business data, con-

taining many columns of various data types (addresses, text �elds, �oat values). Our

objective is to use VMS to incrementally maintain views over TPC-H data, for fast access

to summarized data used in online analytics. For evaluation we use scale factors 100x
(~100GB) and 500x (~500GB). Using the TPC-H workload lets us evaluate the approach

under realistic data loads being used in common applications. TPC-H is designed as

an OLAP benchmark: it generates large table sets and also provides update workloads

to orders and lineitem tables. However, generating dynamic OLTP workloads with

di�erent distributions is not possible. For that reason, we extended TPC-H to generate

large transactional workloads on KVS including put and delete operations. During our

evaluation, we use the full range of TPC-H query templates (except 5 and 21) and denote

them with Q1-Q22. These queries capture a wide range of SQL expression, including

speci�c expressions (e.g., case/when, exists, complex joins) and manifold nested queries.

For each query, we load a view de�nition that can be materialized and maintained by

our system.

Bulk loading performance – In this section, we evaluate the sole performance of

VMS when materializing or maintaining single views (de�ned by a single TPC-H query).

Therefore, we allocate most of the cluster resources to VMS and deploy 400 VMs on 200

60

CHAPTER 4. VIEW MAINTENANCE SYSTEM

dedicated nodes. HDFS and HBase are deployed only in a small setup, used for view

materialization only, on 22 nodes (1 master, 1 ZooKeeper, 20 region servers). We push

VMS to its limits, generating workloads with a scale factor of 500 (creating a 500GB
database with ~4.3 billion records).

For the evaluation, we use two di�erent workloads: A and B. Workload A consists of table

records and simulates a scenario where views are materialized from existing base table

sets (i.e., R1, ..Rn). Workload B consists of base table updates (i.e., ΔR1, ..ΔRn) and simulates

a scenario where updates are streamed from a database. However, both workloads are

generated and stored in form of part-�les at each VM. To execute them, a VM must simply

load the �les and read the workload.

The experimental procedure is the following: we con�gure VMS using one of the 22
TPC-H queries and let VMS load the view de�nition to all VMs. Then, either workload

A or workload B is bulk loaded (either from disc or directly from memory). We let

VMS perform the complete maintenance process and measure its execution time. The

execution time is the time taken to load the workloads and to fully materialize the results

into a view table of KVS.

Figure 4.5.1 shows the execution times of the tested TPC-H queries. Figure 4.5.2 shows

the maintenance throughput of the same TPC-H query set. The throughput �gures are

normalized with the number of base table updates being processed. Thus, throughput

is displayed as the overall and average number of base table records (btr) or base table

udpates (btu) that VMS can convert into view updates in a second, expressed as btr/s or

btu/s.

The best performances are achieved by VMS for pure aggregation queries (i.e., Q1, Q6),
queries with small base tables (i.e., Q2, Q16) and queries with high selectivities (i.e.,

Q12, Q14). VMS always uses pre-aggregation to aggregate keys locally at each VM, and

later combines the results. The higher the aggregation ratio is (aggregation functions

without group bys have the highest ratio), the lower the communication overhead and

the materialization cost of KVS. When loaded from memory, query Q6 achieves the best

performance (due to its high selectivity) aggregating ~320GB of data in 13 seconds and

achieving an average throughput of ~235M btu/s (maximum throughput is ~348M btu/s).

61

4.5. EVALUATION

0 s
50 s

100 s
150 s
200 s
250 s
300 s
350 s
400 s
450 s
500 s
550 s
600 s
650 s
700 s
750 s
800 s
850 s
900 s
950 s

1000 s

Q1 Q2 Q3 Q4 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q22

E
xe

cu
ti

o
n

 t
im

e
 [

s]

workload A (disc)
workload A (mem)
workload B (disc)

workload B (mem)

Figure 4.5.1: Bulk loading (execution time)

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240

Q1 Q2 Q3 Q4 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q19 Q20 Q22

M
ill

io
n
 r

e
co

rd
s

p
e
r

se
co

n
d

 [
b

tu
/s

]

workload A (disc)
workload A (mem)
workload B (disc)

workload B (mem)

Figure 4.5.2: Bulk loading (throughput)

62

CHAPTER 4. VIEW MAINTENANCE SYSTEM

The next-best results are achieved by query Q14, representing a two-table join (lineitem,

~3B records; part , ~100M records) followed by an aggregation. When loading from

memory, the execution time is 26 seconds and the average throughput is 119M btu/s
(maximal throughput is 259M btu/s). Query Q12 (joining lineitem, ~3B records; orders,
~750M records) can be processed in 72 seconds at 52M btu/s. VMS is suitable for joining

two large tables: the key-range of both join tables can be partitioned and the resulting

Reverse-join (see Section 5.1.3) can be distributed over the VMs.

The longest execution times are observed for manifold join views involving large base

tables (i.e., Q7, Q8, Q9). Here, VMS is constrained by the number of updates that can be

transported over the network. To accelerate the computation, VMS loads the smaller

tables (i.e., region, nation) completely at every VM (see partially partitioned loading,

Section 5.1.3), whereas the larger tables (i.e., lineitem, orders, customer) are split such

that a VM loads only a partition (see fully partitioned loading, Section 5.1.3). In this

way, some of the joins can be computed locally such that Q7 executes in 236 seconds

when loading from memory. Moreover, an average throughput of 16.2M btu/s can be

maintained (max throughput is 70M btu/s) and the total number of records is ~3.8B.

The reductions (in execution time) we obtain by loading records from memory rather

from disc are highly depending on the query template. Queries with large base tables and

operations that can be applied locally (i.e., selection, pre-aggregation, local join) pro�t

the most. Q6 and Q15 yield a reduction of 74% and 66%, Q1 yields 44% and Q2 Q7 only

yield ~23 (due to their high share of communication overhead). In general, it can be said

that the improvement for memory loading is quite signi�cant and should be particularly

considered when loading queries repeatedly from the same source.

The di�erences between workload A and workload B are signi�cant for some queries

but negligible for other queries. Queries Q1, Q3 and Q4 show a small di�erence between

workload A and workload B (10%-20%), and queriesQ7,Q8 andQ9 show a larger di�erence

(32%-43%). For long-running queries (i.e., the latter queries) workload A presents a

challenge, as it is a pure insert workload. After a while, inserting records �lls the memory,

causing the access time to decline. By contrast, workload B provides a well-balanced

memory condition, as 35% of the records are deleted over time.

63

4.5. EVALUATION

HBase performance – The second set of experiments evaluates VMS in combination

with HBase. Thereby, HBase stores base and view table data. VMS either performs

basic materialization by loading base tables from HBase or incremental maintenance

by monitoring HBase co-processor or TL. In this setup, HBase and VMS share cluster

resources. We use 200 nodes each equipped with a HDFS data node, a HBase region

server, a co-processor and a VM. Four more nodes are used as master and ZooKeeper

nodes.

Basic materialization – In the �rst step, we load data from existing base tables in HBase

and materialize the results into a view table. Prior to each experiment, we create a set

of base tables (chosen from TPC-H). These base tables are, then, �lled with data using a

scale factor of 100.0 (~100GB). To �ll the tables, we use 200 clients, each generating and

loading a part of the overall workload to HBase. We load and execute one of the TPC-H

queries via the VMS console and measure its execution time without, �rst, pre-computing

any Pre-Processing Views. The evaluation time always includes the time to materialize the

view into an HBase table.

Figure 4.5.3 and Figure 4.5.4 show the results of execution time and throughput. Maximal

performance of VMS is achieved for queries with high selectivity and strong aggregations.

For example, queriesQ1 andQ6 are materialized in 42 and 21 seconds fromHBase. Average

throughputs ranging from 14M up to 28M btr/s are achieved (maximum is 122M btr/s).
Also, joining few (large) tables as inQ3, Q10, Q12, Q14, andQ19 can be done with an average

throughput of 12.5M-31M btr/s.

Queries without join operations or with a high selectivity such as Q1, Q6, Q10, Q12, Q14
are bound by loading and processing speed. To speed up scanning, we process selections

(over base table records) already at HBase. Thereby we use HBase �lters and hand the

selection predicates to the scanner such that non-matching records are directly dropped

and not forwarded to VMS. Also, we con�gure the HBase scanner to fetch only columns

that are needed by the query.

Again, the largest operations are found in queries Q7, Q8 and Q9. Here, VMS joins 5, 7 and

6 tables. The number of records involved are 767M , 778M and 852M . While processing

these large joins, VMS is able to maintain a stable average performance of 4M-7M base

records per second. Due to VMS’s stream-oriented processing style, join views over very

64

CHAPTER 4. VIEW MAINTENANCE SYSTEM

0 s

20 s

40 s

60 s

80 s

100 s

120 s

140 s

160 s

180 s

200 s

220 s

240 s

260 s

280 s

300 s

Q1 Q2 Q3 Q4 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q22

E
xe

cu
ti

o
n

 t
im

e
 [

s]

VMS HBase (100 GB)

VMS WAL (100 GB)

VMS coprocessor (100 GB)

Figure 4.5.3: HBase performance (execution time)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

Q1 Q2 Q3 Q4 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q22M
ill

io
n
 r

e
co

rd
s

p
e
r

se
co

n
d

 [
b

tr
/s

]
o
r

[b
tu

/s
]

VMS HBase (100 GB)

VMS WAL (100 GB)

VMS coprocessor (100 GB)

Figure 4.5.4: HBase performance (throughput)

65

4.5. EVALUATION

large base tables are supported. The size is only limited by the size of the materialized

Pre-Processing Views, if for performance reasons, they are kept in-memory.

While loading data from HBase has some performance drawbacks (in comparison to bulk

loading), it is favorable in many use cases considering that the base data is kept in a KVS.

All mechanisms to ensure availability, fault-tolerance and preserve the consistent state

over a record’s lifetime are managed by HBase.

Incremental maintenance – This set of experiments evaluates VMS in incrementally

maintaining a set of materialized views, given base table data changes. We evaluate

the two primary designs introduced in Section 4.1.2 (Design 2 and Design 3). In Design 2,

each VM connects to HDFS and reads the WAL of a (single) region server. Thus, it reads

operations in sequence without using multi-threading. In Design 3, we deploy a co-

processor at each region server to intercept events that occur due to client base table

updates. The events notify the local VM that is deployed along with the co-processor in

the same JVM.

Incremental maintenance is inherently faster than basic materialization because there is

no need to load complete table sets. Additionally, the number of updates, after which the

view table shall be refreshed, can be con�gured, leading to the intended latency (see view

freshness). However, to make a fair performance comparison, we evaluate the execution

time using the same number of incremental updates as base records generated for basic

materialization.

We create a set of base tables (chosen from TPC-H). Then, we prepare VMS for incremental

view maintenance by loading one of the TPC-H queries as views. Finally, we start 200
update clients that apply a mixed update stream to HBase (using scale factor 100 to

generate 100GB of put and delete updates). Then, we let VMS asynchronously processes

the updates.

Figure 4.5.3 and Figure 4.5.4 show the results of execution time and throughput. Co-

processor loading achieves the best execution times of 12s − 14s for Q6, Q14 and Q19.
Thereby average throughput ranges from 44-50 btu/s (maximum is 145M). In contrast to

basic materialization, co-processor loading does not require HBase �lters; queries with

high selectivity are computed rapidly from memory. Also for long running joins Q7-Q9,

66

CHAPTER 4. VIEW MAINTENANCE SYSTEM

co-processor loading excels with 6M-11M btu/s. This might also be related to the high

selectivities. Observing 3-table joins Q3 and Q4, the advantage diminishes (51s and 52s
compared to 61s and 63s for basic materialization).

In general, we measure reading from the WAL as the slowest alternative. The more

updates VMS has to load, the more bottleneck becomes the network. For queries Q2, Q11
and Q16, which join many small tables and do not include the large orders and lineitem
tables, almost no disadvantage can be observed. Execution times are 19 − 33s (compared

to 19 − 26s for co-processor loading). However, for queries Q7, Q8, Q9 and Q17, Q18 which

include orders and lineitem and have low selectivities, execution times raise to 110−228s
(compared to 68 − 151s for co-processor loading). The highest di�erence can then be

observed for large table with high selectivity, for example, Q6, Q12, Q14 and Q19 with

41 − 71s (compared to 12 − 29s with co-processor loading).

Overall, reading the WAL performs slower than co-processor loading with a factor of 1.2-
3x . VMs have to read the WAL over a network connection. Also �lters (for projections

and selections) cannot be applied during the reading process such that update operations

have to be fully retrieved before they can be dropped (or columns can be projected).

However, the advantages of reading the WAL (Design 3) are given through the fault-

tolerance capabilities and the non-interference with HBase. Using many small tables

with low selectivity also the performance aspect disappears.

Comparing raw processing speeds, generally speaking, we found incremental mainte-

nance (via co-processor) to be executed faster (1.3-2.1x depending on query) than basic

materialization (via scan). Even though, basic materialization does not rely on Delta

views (as no before-after state has to be tracked) and maximal batching can be applied, a

scan always takes more time than loading up the queued update operations. While basic

materialization can only be used to process complete base tables, it is still an essential

part of VMS when materializing views on top of existing base data or when de�ning

new queries after a stream of updates has been processed (and update operations are not

available anymore).

Comparison to Apache Phoenix – In Figure 4.5.5, we compare VMS to the perfor-

mance of Apache Phoenix (v4.14.1). To the best of our knowledge, Phoenix is the only

open source framework that supports SQL query processing and view materialization as

67

4.5. EVALUATION

0 s

5 s

10 s

15 s

20 s

25 s

30 s

35 s

40 s

45 s

50 s

55 s

Q1 Q4 Q6 Q11 Q12 Q14 Q16 Q17 Q22

E
xe

cu
ti

o
n
 t

im
e
 [

s]

HB Phoenix (1 GB initial)

HB Phoenix (1 GB multiple exec.)

Figure 4.5.5: Apache Phoenix comparison

0 s

10 s

20 s

30 s

40 s

50 s

60 s

70 s

80 s

90 s

100 s

110 s

120 s

130 s

140 s

150 s

150M:5 150M:1M 150M:15M 600M:5

E
xe

cu
ti

o
n
 t

im
e
 [

s]

Delete (30%)

Insert (100%)

Regular update (30%)

Regular update (60%)

Multi-row update (10%)

Multi-row update (30%)

Multi-row update (60%)

Figure 4.5.6: Multi-row updates

0 s
2 s
4 s
6 s
8 s

10 s
12 s
14 s
16 s
18 s
20 s
22 s
24 s
26 s
28 s
30 s

Q3 Q4 Q6 Q7 Q10 Q14 Q18

E
xe

cu
ti

o
n
 t

im
e
 [

s]

Batch-size 20M

Batch-size 50M

Batch-size 100M

Batch-size 200M

Figure 4.5.7: View freshness

300 s

350 s

400 s

450 s

500 s

550 s

600 s

650 s

700 s

Q3 Q4 Q6 Q7 Q10 Q14 Q18

E
xe

cu
ti

o
n
 t

im
e
 [

s]

Clients only

Clients and VMS

Figure 4.5.8: VMS overhead

a layer on top of HBase. We focus our comparison on VMS basic materialization versus

Phoenix as no strong consistency preserving incremental materialization is supported

in Phoenix (see Chapter 3).

We use a setup of 200 region servers and deploy a Phoenix instance (that is loaded via co-

processors) along with each one of them. We import the TPC-H data, setting the number

of salt buckets of each base table to 200 (such that data is evenly distributed among the

region servers). We modify the HBase con�guration, allowing Phoenix to take 10GB of

memory (at client and) per server. Then, we start the Phoenix console and issue TPC-H

queries against the interface one by one. We measure two execution times, one after

HBase startup (initial) and one after HBase warm up (after multiple executions).

While we �nd pure aggregation performance (i.e., Q1 and Q6) up to par with VMS (also at

scale factors of 100), join performance of Phoenix does not measure up. For that reason,

the �gure depicts TPC-H queries at a scale factor of 1. Join queries with high selectivity

and low result size (Q12, Q14) terminate relatively quickly (2.8s and 5.8s), some of the

larger joins (Q3, Q7, Q10) do not complete (despite of using di�erent join implementations).

68

CHAPTER 4. VIEW MAINTENANCE SYSTEM

10

100

1000

10000

Q1 Q6 Q7

E
xe

cu
ti

o
n
 t

im
e
 [

s]

Regular

Interval 100k

Interval 10k

Interval 1k

Interval 100

Interval 10

Interval 1

Figure 4.5.9: Fault tolerance

0 GB

10 GB

20 GB

30 GB

40 GB

50 GB

60 GB

70 GB

80 GB

Q3 Q4 Q6 Q7 Q10 Q14 Q18

P
re

-p
ro

ce
ss

in
g

 v
ie

w
s

si
ze

 [
G

B
]

Insert (100%)
Delete (30%)
Update (30%)

Figure 4.5.10: Pre-processing views

However, for queries Q16 and Q17, we conclude that performance at scale factor 1 (11.2s
and 43.4s) remains in similar ranges as VMS at scale factor 100 (8s and 58s). While Phoenix

uses a last step to assemble and display results at the client, VMS computation remains

distributed even for the last materialization step. Views are accessible by hundreds of

clients in parallel as HBase tables.

Multi-row updates – Figure 4.5.6 shows the results of applying multi-row updates to

the system. To isolate the e�ect, we run a set of aggregation queries (without selection)

using tables orders and lineitem and di�erent group by columns, establishing di�erent

aggregation ratios. Thereby we vary the share of insert, delete and update operations. We

use a 30% delete, a 100% insert and two regular update workloads (30% and 60%) where

aggregation keys are not changed. Additionally we use multi-row update workloads

(10%, 30% and 60%) where aggregation keys are changed for every update.

Results indicate that multi-row updates have a small impact on overall performance

when the aggregation is strong. In that case also the meta information of many updates

connecting the same aggregation keys can be merged. Aggregating the status column of

the orders table (150M ∶ 5) only causes a neglectable overhead of factor 1.3x . However,

when aggregating only moderately using the clerk column (150M ∶ 1M) or subtle using

the custkey column (150M ∶ 15M) the factor is already at 3.4-5.3x for 10% share and

7.3-13x for 60% share.

Multi-row updates can slow down VMS performance signi�cantly because meta data and

split states have to be managed and cleaned up. With increasing result size, the impact

worsens. Therefore, it is recommended to use multi-row-updates together with strong

69

4.5. EVALUATION

aggregations or in use cases where their share is below the 10% mark.

View freshness – Figure 4.5.7 shows the freshness of results materialized in view tables

managed by VMS. We use the incremental setup of Design 2 (i.e., 200 region servers,

each with a co-processor and 200 VMs). Via clients, we apply a mixed workload and let

the updates be forwarded to the VMs. Depending on the con�gured batch-size, the VMs

process a sub-set of the overall workload and write back results to view tables.

Then, the next incremental batch starts, until the workload is �nished. We use batch

sizes of 20M , 50M , 100M and 200M updates, and measure the time it takes for the 200
VMs to compute a batch and synchronize.

The batch size is a trade-o� between computational e�ort and freshness of results. VMS

can be adjusted according to the use case. When choosing a small batch size (of 20M
records), the staleness of view tables remains below the one second mark for Q6 and Q14,
below the two second mark for Q3, Q4 and Q10, and below the three second mark for Q7.
However, the e�ort of materializing results is small for query Q6 (only a single record),

whereas the e�ort for Q3 and Q10 can be up to 1M and 2M records per incremental batch.

In that case a higher batch size, e.g., 200M records might be reasonable to operate the

system more e�ciently.

VMS overhead – In Figure 4.5.8, we evaluate the overhead of VMS when doing view

maintenance with HBase while serving a client request load at the same time. We

compare the application of a workload to HBase with and without VMS enabled. In

the �rst experiment, we generate a workload for each base table (that is used in the

corresponding TPC-H query) and use 200 clients to insert it into HBase. We apply all

workloads concurrently and measure the overall execution time. These experiments are

labeled "Clients only".

In the second experiment, we use the same setup as before (Design 2 with co-processors),

and we prepare the system as follows: we load a TPC-H query using the VMS console,

and enable incremental tracking of the TPC-H query. The batch size of the maintenance

jobs is set to a �x size of 50M , such that VMS will collect the same number of updates

and process them in one go. These experiments are labeled "Clients and VMS".

70

CHAPTER 4. VIEW MAINTENANCE SYSTEM

The results con�rm that VMS runs independently and interferes little with HBase process-

ing. For queries with high selectivity and little communication (Q6, Q14), the overhead

is 7.5% and 3.4%. Also, for queries Q3, Q4 and Q10, the overhead remains well in the

3-8% range. Only for the compute and communication intensive queries Q7 and Q13, the

system experiences overheads of up to 22%.

Fault tolerance – In Figure 4.5.9, the impact of running VMS as a fault tolerant system

is depicted. Therefore, we compare the basic materialization of queries Q1,Q6 and Q7
using regular execution against execution with transaction logs enabled (at each VM). As

explained, transaction logs are standard �les which are written sequentially and stored

into the underlying distributed �les system (HDFS).

The HDFS clients provides a feature to synchronize the �les in speci�ed sync intervals.
We vary this parameter, using values 100k, 10k, 1k, 100,10 and 1. Thereby, the last value

1 provides the best synchronization as every received update at a VM is safely persisted

into the log. An interval of 100k, on the other hand, bears the risk of losing exact the

amount of updates which, then, have to be requested from other VMs, again.

During evaluation, we �ll the database, load the queries and materialize the results for

each sync interval separately. As results di�er vastly we present them using a log scale

on the y-axis. Depending on the query, writing a transaction logs induces a signi�cant

overhead for query materialization: for Q1 we observe a 3.8x , for Q6 a 1.5x and for Q7
a 4.8x reduction. Further, we assert that small synchronization intervals (i.e., 10 or 1)
increase the execution time, signi�cantly.

Executing Q1 and Q7 with sync interval 1, we observe performance penalties of factors

65 and 67. Thus, full synchronization should be avoided. Also for larger sync intervals,

a plausibility check reveals the following: for Q1, fault-tolerant execution yields 126s,
whereas regular execution yields 33s. We conclude that in a crash scenario a complete

reevaluation of views could be executed faster than a fault-tolerant execution.

Pre-Processing Views overhead – In Figure 4.5.10, we investigate the storage overhead

of intermediate Pre-Processing Views and determine the space that they occupy (in mem-

ory). We let VMS compute the complete workload at once (i.e., without using incremental

batches). When the last client update has been applied (just before VMS �ushes the

71

4.5. EVALUATION

intermediate tables and materializes the results), we stop and determine the size of all

Pre-Processing Views involved in the query. We use three di�erent types of workloads: (A)

pure insert, (B) 30% deletes, (C) 30% updates.

Depending on the TPC-H query, the size of the used Pre-Processing Views can di�er a lot.

Again, queries with strong aggregations or high selectivity occupy almost no space, as

records are either dropped or heavily pre-aggregated. Q6 has a maximum of 0.35GB (due

to Delta view), Q14 a maximum of 2.02GB. For regular join queries, like Q3, Q4 and Q10,
we observe a di�erence.

Workload B occupies the least space (8-14GB) because records that are deleted in the

base table are also deleted in the Delta and Reverse-join views. Workload A comes second

(14-22GB) because the size (of Reverse-join views) is indeed the largest, but Delta views

are not needed. Therefore, the largest intermediate sizes (16-30GB) can be found for

Workload C. The only exception represents Q7 where the number of Reverse-join views

is the highest (due to the number of join tables).

72

Chapter 5

Multi-view processing

While materialized views have been extensively researched in the past [34, 62, 63, 64],

the focus of view maintenance has shifted from standalone data warehouses to large-

scale distributed data storage, including batching and in-memory computation [14, 15,

16, 65]. However, in most approaches, incremental maintenance is a dedicated process

that involves computing a large set of update transactions (identi�ed as a delta set)

and computing the desired outcome. Therefore, existing approaches are limited to the

maintenance of a single large view table derived from a single large (partitioned) base

table, where the latter is updated when the former changes.

Materialized views, which are equipped with large-scale processing capabilities, appear

to be suited not only to store the results of individual computations (for repeated ac-

cess) but also for materialization and live tracking of thousands of analytical queries

simultaneously. Materialized views can be used in distributed databases to maintain

high transactional throughput while providing low-latency access to a large number of

result sets. Thus, materialized views provide constant availability, fast access and fault

tolerance through the distributed storage system.

In this chapter, we focus on how VMS achieves maximum throughput in a multi-view

setup. We exploit techniques from multi-query optimization [38, 39, 40, 41, 42] and

propose new methods to perform multi-view optimization in a distributed context. Then,

73

we explain how VMS uses dedicated intermediate views to combine and share operations

of multiple di�erent maintenance plans. Finally, we evaluate how VMS performs e�-

cient materialization and maintenance of thousands of views in parallel. We make the

following contributions:

1. We propose a novel bit vector schema that enables pre-evaluation of predicates

and allows the merging and combined maintenance of many views in parallel (see

Section 5.1.1).

2. We propose a method called decomposed pre-aggregation to merge and optimize

incremental maintenance of multiple distributed aggregation views in parallel (see

Section 5.1.2).

3. We explain how VMS uses distributed Reverse-join views to accelerate maintenance

of multiple join views built from di�erent types and ranges (see Section 5.1.3).

4. We evaluate VMS in a multi-view setup and show how it scales up to 10k ma-

terialized views while still maintaining large data sets and providing reasonable

execution times of 100 − 500 seconds (see Section 5.3).

74

CHAPTER 5. MULTI-VIEW PROCESSING

5.1 View concepts

VMS supports a broad variety of SQL expressions (e.g., like, exists, case/when) and nested

query constructs. However, to de�ne recursive delta rules for multiple queries, we

apply the typical SPJA pattern (i.e., selection/projection, aggregation, join). For each

operation type, we discuss how VMS performs multi-view optimization and executes the

maintenance plan. To describe multi-view optimization with Pre-Processing View types,

again, we use generalized multi-sets (see Chapter 2.5).

5.1.1 Selection and projection

When VMS performs basic view materialization (i.e., it selects over R) in the maintenance

plan, selection and projection are performed on-the-�y. Thus, VMS simply selects or

drops a record depending on the evaluated predicate: there is no view state to be

captured. By contrast, in the context of incremental maintenance, ΔR tuples, which

represent modi�cations of the base table, are processed. As such, VMS needs to create an

intermediate view ISel which stores the selected records and awaits incremental updates.

Example 5.1.1: Given a base table R = (K̄ , X , Y) and a view de�ned as V = �(Y<5)(R),
consider an update u1 = put(R(k, x, 4)) matching the predicate that could be followed by
an update u2 = put(R(k, x, 7)) unmatching the predicate. First, the system adds R(k, x, 4)
to ISel ; then, processing u2, it queries ISel , retrieves ISel(k, x, 4) and deletes k from the table.
VMS cannot simply drop update u2. It must know about the existence of k in order to update
intermediate view state of ISel .

Consider a set of selection views being de�ned in di�erent maintenance plans over the

same base table. Processing those selections in VMS can be easily done by creating n
intermediate views ISel and querying, respectively updating them for each update on

the source table. However, querying n views for possibly overlapping record sets is

ine�cient. Thus, we introduce a combined intermediate view that captures the state

of all records selected by the union of predicates. Instead of retrieving the state from

n di�erent views (or performing n di�erent intermediate selections), we materialize a

single intermediate selection and evaluate the predicates in a combined e�ort.

75

5.1. VIEW CONCEPTS

𝑅

𝑉1

𝑉2

𝑉3

𝐼𝑠𝑒𝑙

𝜎(𝑃1∨𝑃2∨𝑃3)

1

0

1

Bitvector

Intermediate view

(VS)

Final views

(KVS)

Base table

(KVS)

𝑢 𝜋1

𝜋2

𝜋3

𝜎𝐵[𝑖]

Figure 5.1.1: Selection merge (maintenance plan)

Let a set of n selection views be de�ned over the same universal view function as (∀i ∈
{1, .., n}) ∶ �Pi (V iew(Rset)). Let the result of V iew(Rset) be computed in a maintenance

plan with connecting view I . Then, we de�ne a combined selection view as ISel and write

the incremental equations as follows.

ISel = ISel ⊎ � ⋁
P∈Plist

(ΔI)

(∀i ∈ {1, .., n}) ∶ Vi =∶ Vi ⊎ �Pi (ΔISel)
(5.1.1)

Instead of producing n incremental updates and evaluating each Pi separately, we build a

list of predicates Plist = {P1, .., Pn} and de�ne an operator �⋁P∈Plist
(R). Then, all record states

can be maintained in intermediate view ISel . Final views Vi are only used to materialize

results. However, in case that the n view de�nitions are complex such that each selection

operators is followed by subsequent maintenance operators, the results cannot simply

be materialized after ISel . In such a case a mechanism is required to distinguish between

the di�erent predicates in the further processing of the maintenance plan. Thus, we

introduce the concept of bit vectors in the following.

76

CHAPTER 5. MULTI-VIEW PROCESSING

Bit vectors – The intuition of bit vectors in view maintenance is the following. When a

number of selections (with n di�erent predicates coming from n di�erent view de�nitions)

is applied to a stream of base table updates. Then, what happens is that one base update

can transform into a maximum of n updates in the system (when all predicates evaluate

to true). Especially de�ning n complex view de�nitions, where selections are followed

by aggregation or join views, this process represents enormous overhead. Using bit

vectors, we can merge all selection operators over the same base table R and treat them

as single operator. Thereby, VMS only transmits a single base table update to subsequent

maintenance operators and sends the result of the predicate evaluations along with the

bit vector.

The bit vector has a length of n bits where each position stores the result of a predicate

evaluation over the given base table update ([i] ∈ {0, 1, ∅}). The bit vector is passed

along such that subsequent operators in the maintenance plan remember the amount

of propagated and dropped updates by looking at the corresponding position in the bit

vector. If all positions of a bit vector evaluate to zero (i.e., (∀i ∈ I) ∶ [i] = 0), we

also write  = 0 which usually indicates (if the key is nonexistent in the view) that the

complete base table update can be dropped.

Example 5.1.2: Figure 5.1.1 shows an example of merging three di�erent selection queries
with de�nitions V1 = �(Y=5)(R), V2 = �(Y<5)(R) and V3 = �(Y<=5)(R). Instead of maintaining
plans separately, ISel evaluates predicates Plist={(Y=5), (Y<5), (Y<=5)} in a combined e�ort.
Given an update u = put(R(k, x, 5)) at base table R that is passed to VMS to perform view
maintenance, a get operation �K=k(Isel) = ∅ reveals that there is no existing record. The bit
vector is set to (1, 0, 1) and passed further. When the update are materialized, VMS uses the
bit vector to apply u to V1 and V3, whereas view V2 is omitted.

Splitting bit vectors – As long as subsequent operators (of the n di�erent view de�ni-

tions) in a maintenance plan can be also merged the updates can be passed along with

the bit vector. However, when subsequent operators lead to a separation of maintenance

paths, updates have to be split by the information in the bit vector. When splitting the

updates (ideally, immediately before their �nal materialization), the system does not

reevaluate the predicates. Instead, [i] is used to decide whether to route an update

along the itℎ view path. When the bit at the itℎ position is set to one, the update is copied

and routed further along that path; when the bit is set to zero, the path is omitted. If a

77

5.1. VIEW CONCEPTS

position is not set (i.e., ∅), the system attempts to reevaluate the predicate at the position

of the split. For incremental maintenance, the following equation is realized:

Merging bit vectors – When joining records that are passed along with a bit vectors,

their bit vectors can likewise be merged. This requires the bit vectors to be computed

based on the same list of predicates and, thus, be constructed of the same length. To

merge bit vectors we can perform an operation A ⊕ B as:

∀(i ∈ I) ∶ [i] =

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎩

A[i] ∨ B[i] if A[i],B[i]∈{0, 1}

A[i] if A[i]≠∅,B[i]=∅

B[i] if A[i]=∅,B[i]≠∅

∅ else

(5.1.2)

Using bit vectors, we now reformulate Equation 5.1.1. On top of combining the selection

views into Isel , we substitute the the selection operator in the second equation with a bit

vector. Then, during execution of incremental maintenance on Isel , the bit vector is used

to remember the result of the predicate evaluation of the itℎ selection view.

Isel = Isel ⊎ � ⋁
P∈Plist

(ΔI)

(∀i ∈ {1, .., n}) ∶ Vi =∶ Vi ⊎ �[i](ΔIsel)
(5.1.3)

For selections that are de�ned over the same base table, we can always rewrite predicates

such that they are evaluated together. Even when the result sets of predicates do not

intersect, combined evaluation of predicates makes sense as it reduces the number of

updates in VMS.

78

CHAPTER 5. MULTI-VIEW PROCESSING

5.1.2 Aggregation

When sets of aggregation views are de�ned over the same base table, we can exploit the

fact that they share similarities. First, we merge multiple Pre-aggregation views that are

based on the same set (or subset of) grouping keys such that their aggregated results

can be maintained within the same Pre-aggregation using only a single maintenance step.

Further, we can substitute functions that can be derived from others.

Let a set of aggregations operations be de�ned over a universal view function as (∀i ∈
{1, .., n}) ∶
X,Fi (V iew(Rset)). Let the result of V iew(Rset) be computed in a maintenance

plan with connecting view I . Let all aggregation functions be stored in a list Flist =
{F1, ..Fn}. Functions that are repetitions or that can be derived from others are eliminated.

When redundancy is removed, a list of decomposed functions Fdec serves to store the

aggregated values. It can be used at a later point to reconstruct all the functions of Flist .
The incremental equations are built as follows (see Figure 5.1.2).

IPre = IPre ⊎
X,Fdec (ΔI)

IAgg = IAgg ⊎ ΔIPre
Vi = Vi ⊎ �X,Fdec→Fi∈Flist (ΔIAgg)

(5.1.4)

We merge all (local) pre-aggregates, that use the same set of aggregation keys X into one

operation and intermediate table IPre . Additionally, the �nal aggregate IAgg is built in a

single intermediate view using the functions of Fdec . In the �nal step, when maintenance

is split again, functions Fi are reconstructed from Fdec such that the results can be

materialized for each aggregation, separately.

Example 5.1.3: Let a view be de�ned as
X,Flist (R), where a list of aggregation functions
is given as Flist = {sum(Y) ∗ sum(Z), avg(Y), 5 ∗ count(Y)}. Instead of maintaining
the full list, the system computes pre-aggregation using only using decomposed functions
Fdec = {sum(Y), count(Y), sum(Z)}. For example, avg(Y) is built from combination
sum(Y)/count(Y).

Decomposing Pre-aggregation – It is a well-known use case in applications that queries

with similar structure are executed on di�erent selection ranges. Especially similar

aggregation operators are oftentimes used along with di�erent selection predicates. For

79

5.1. VIEW CONCEPTS

asd

𝑅(1) 𝑅(2)

𝑅(3)

𝑅(𝑛)

𝑅(4)

𝐼𝑃𝑟𝑒

Base table
(KVS)

Pre-aggregates

Aggregates

𝑅

𝐼𝐴𝑔𝑔

(𝑑0, 𝐴0)

)

(𝑑𝑓, 𝐴𝑓)

)

 {𝑉1, . . , 𝑉𝑛}
Final tables

(KVS)
)

Figure 5.1.2: Execution of multiple aggregation views

VMS, as long as the maintenance plan is not adopted, it will simply maintain n di�erent

plans, splitting the maintenance process already at beginning.

Given that the selection predicates of the aggregation queries have already been merged

in a previous step (like described in Section 5.1.1) and their updates are propagated

along with a bit vector which contains the evaluation results. Then VMS can, likewise,

merge all aggregations into a combined operator. This combined operator still computes

aggregates of di�erent selection ranges separately. But it does so using a single update.

And moreover, when two selections overlap, VMS computes (i.e., incrementally updates)

the aggregate of the overlap only once, and later merges it with each aggregate of the

remaining selection ranges.

Decomposing Pre-aggregation is performed using three planning steps prior to the actual

view maintenance process, which are described in the following: (Step 1) decompose

predicates, (Step 2) substitute predicates by tags, and (Step 3) build new aggregation keys.

80

CHAPTER 5. MULTI-VIEW PROCESSING

Step 1 – In the �rst step, VMS computes a decomposition of the predicates of all ag-

gregation queries. For that reason predicates are considered as sets, covering a speci�c

selection space in the complete value space of attributes. The sets of two predicates

selection spaces can be distinct, they can overlap or they can be subsets of each other

(e.g., X < 5 and X < 10). A decomposition describes the minimal number of subsets that

cover the whole selection space de�ned by all predicates.

Let a list of predicates be de�ned as Plist = {P1, .., Pn}. Further, let a function decomp (see

Algorithm 5.1) compute a decomposition where decomp(Plist) = {C1, .., Cm} contains the

minimal list of subsets that cover the full range of predicates such that (C1 ∩ .. ∩ Cm) = ∅
and (C1 ∪ .. ∪ Cm) = (P1 ∪ .. ∪ Pn).

Algorithm 5.1: Decompose predicates decomp(Plist)
1 init: Plist = arg;Cset = ∅;

2 for P ∈ Plist do
3 C′set = Cset ;
4 for C ∈ Cset do
5 if (P ∩ C) ≠ ∅ then
6 C′set = C′set ⧵ {C};

7 C′set = C′set ∪ {(C ⧵ P), (C ∩ P)};

8 P = P ⧵ C ;

9 Cset = C′set ∪ {P};

10 return Cset

Now, we use the function decomp to decompose each attribute individually. Given

that there are attributes A, B, etc.. and n predicates, we compute decomp(Plist(A)) such

that the decomposition is computed with regard to the share of A in P , i.e., Plist(A) =
P1(A), .., Pn(A)). We obtain a decomposition of all predicates with regard to A. Each

decomposed condition receives a tag stemming from the attribute name and its index

in the list (e.g., decomp(Plist(A)) = {A1, A2, ...}). This tag identi�es the decomposition

element and is later used to build the decomposed pre-aggregate. Further, we compute

decomp(Plist(B)) and the decomposition of every contained attribute such that we obtain

a list of decomposed conditions that can be used to represent every predicate.

81

5.1. VIEW CONCEPTS

Step 2 – In the second step, the predicates are substituted such that every predicate

is described by a number of tags, as de�ned before. For that reason, we iterate over

the predicates in Plist , and recursively substitute the conditions of a predicate with the

combination of tags that is required to fully cover the predicates selection space. The

substituted list is denoted as Ptag .

(∀P ∈ Plist) ∶ Ptag = ⋁
{C∈Cset |P∩C≠∅}

C with Cset = decomp(Plist)
(5.1.5)

Step 3 – In the last step, we iterate over the predicates in Ptag and use the tags of our

decomposed elements to build a new list Pdec of (decomposed) keys. These (decomposed)

keys can be combined with the de�ned aggregation key. They subdivide the existing

aggregation keys into the decomposed aggregation keys which can be incrementally

updated, easily. The following formula is used to build Pdec :

(∀P ∈ Ptag) ∶ Pdec = Pdec ∪ eval(P) (5.1.6)

Algorithm 5.2 is used in the equation. It combines the tags provided in a predicate P ∈ Ptag
recursively and returns a list of keys. It treats every conjunction as a concatenation and

every disjunction as a numeration of tags.

Algorithm 5.2: Evaluate decomposed keys eval(P)
1 init: P = arg;

2 if P = PA ∧ PB then
3 return eval(PA) × eval(PB);

4 if P = PA ∨ PB then
5 return {eval(PA), eval(PB)};

6 if P = tag then
7 return {P};

As a result of Equation 5.1.6, Pdec contains the set of (decomposed) predicate keys. Con-

sidering that all (similar) aggregation operators are grouped by attribute X , the new

aggregation key can be built as follows. The grouping attribute is combined with the

predicate keys as (X , Pdec) for the pre-aggregation, as well as the �nal aggregation. As

a result, we can use a single pre-aggregation and a single aggregation table to compute

the result of many di�erent aggregation views.

82

CHAPTER 5. MULTI-VIEW PROCESSING

Example 5.1.4: Let a base table be de�ned as R = (K̄ , X , Y , Z) . Let a set of three equal
aggregation views V1, V2, V3 with predicates P1, P2 and P3 be de�ned as:

select X , sum(Y) from R..

.. where P1 = ((Y < 5) and (Z between 0.1 and 0.3))

.. where P2 = ((Y < 10) or (Z between 0.2 and 0.4))

.. where P3 = (Y < 15)

group by X

In Step 1, we create the selection ranges for the contained attributes Y and Z . We deter-
mine the decomposition function as decomp(Plist(Y))={(Y<5), (5≤Y<10), (10≤Y<15)} for
attribute Y ; then, we determine decomposition decomp(Plist(Z))={(0.1≤Z<0.2), (0.2≤Z≤
0.3), (0.3<Z≤0.4)} of attribute Z . Thus, all overlap has been removed from the predicate
ranges. Likewise, the decomposed elements are tagged as {Y1, Y2, Y3} and {Z1, Z2, Z3}.

In Step 2, we iterate through the predicates and substitute their conditions with the tags of
the decomposed elements which leads to Ptag = {P1 = (Y1∧(Z1∨Z2)), P2 = ((Y1∨Y2)∨(Z2∨Z3)),
P3 = (Y1 ∨ Y2 ∨ Y3)}. P3 is substituted by Y1, Y2 and Y3, as it covers the complete range of the
other predicates of Y .

In Step 3, we derive the decomposed predicates from Ptag as Pdec = {Y1, Y2, Y3, Z2, Z3, (Y1, Z1),
(Y1, Z2)}. When a value falls into the range of the decomposed condition (represented by
the key in the list), the corresponding aggregate is updated. For example, put(R(k, x, 4, 0.1))
updates the aggregates of keys {Y1, (Y1, Z1)}. Notably, an update always updates only a
single tag, but this tag can be bound by multiple di�erent conjunctions. To build the �nal
(pre-)aggregation of a view (e.g., V3), we have to evaluate the tags and use the pre-aggregated
values of the keys de�ned previously (e.g., Y1,Y2 and Y3 for P3).

83

5.1. VIEW CONCEPTS

Now, we write the incremental equations of the aggregation views. Let the set of

aggregations operations be de�ned over a universal view function as (∀i ∈ {1, .., n}) ∶

X,f (Y)(�Pi (V iew(Rset))), with each view de�nition de�ning a di�erent selection predicate.

Let the result of V iew(Rset) be computed in a maintenance plan with connecting view I .
Then, optimization can be performed as follows:

IPre = IPre ⊎
(X ,Pdec),f (Y)(ΔI)

IAgg = IAgg ⊎ ΔIPre
(∀i ∈ {1, .., n}) ∶ Vi = Vi ⊎
(Pdec ,Pi)→X,f (Y)(ΔIAgg)

(5.1.7)

VMS computes both IPre and IAgg as a combined table using the composite key (X , Pdec) as

the grouping key. Notably, an update u cannot be directly applied to IPre as we cannot use

attribute X to address the records in IPre directly. VMS uses the values of the attributes

(that are contained in the predicates) to determine the keys (∈ Pdec) of the values to

be updated in IPre . The update of IPre can, then, be directly applied to update global

aggregation values in IAgg . After this step, VMS recomposes the aggregation values in

IAgg by reconstructing the grouping key X using an on-the-�y regroup function taking

Pdec and Pi as parameters.

This technique results in rapid updating of aggregates (which is particularly favorable for

incremental updates). Given that predicate ranges heavily overlap (and only disjunctions

are used), only a single aggregate has to be updated to update all views. However, the

last step (i.e., Equation 5.1.7), which recomposes the aggregation, is the most expensive

and should be delayed (using IPre) as much as possible. Speci�cally, when a predicate

structure leads to many (decomposed) keys in Pdec , the system has to iterate over all of

them to build the �nal aggregate.

Decomposing Pre-aggregation views is particularly useful, if the predicates of the involved

aggregation queries intersect each other heavily. If not, it is still favorable to derive

aggregations from a single Pre-aggregation view to reduce the number of tables.

84

CHAPTER 5. MULTI-VIEW PROCESSING

5.1.3 Multi-join

As described in Chapter 4.4, VMS can incrementally build all kinds of join types using the

same Reverse-join view. VMS also exploits this fact when maintaining n view de�nitions

of the same base tables that are using di�erent join types. In addition, like done in the

�eld of query optimization, Reverse-join views can also be modularized and used to share

parts of join relations.

Let n join views be de�ned as follows: (∀i ∈ {1, .., n}): J oini(GVi)withGVi ⊆ {(V iew1(Rset),
.., V iewm(Rset))} being a subset of generalized view functions. Let {I1,..,Im} be the connect-

ing views of the generalized view functions {V iew1, .., V iewm}. Let these intermediate

views be always joined over the same attributes. Further let the Function J oini join the

generalized view functions using equi-, semi- or outer-joins in arbitrary order. Then

we build a maximum of (m − 1) Reverse-join views as {IRev(1), .., IRev(m−1)} which serve to

update all materialized views (∀i ∈ {1, .., n}) ∶ Vi = Joini(GVi).

Example 5.1.5: Figure 5.1.3 shows the maintenance plan of multiple combined join views.
Let two base tables be de�nes as R1 = (K̄ , X , Y), R2 = (L̄, X , Z). Further, two join views are
de�ned as V1 = R1 ⋈ R2 and V2 = R1 |>< R2. Let three updates be applied to the base tables
as: u1 = put(R1(k1, x, 5)), u2 = put(R1(k2, x, 10)) and u3 = put(R2(l1, x, 7)). By applying
the �rst two updates, VMS will build the Reverse-join view as IRev(1) = {((x, K = k1, Y =
5), ((x, K = k2, Y = 10)}. For Update 3, the system queries get(IRev(1)(x, K?)) once and uses
the result to incrementally build the natural join {(k1, l1, x, 5, 7), (k2, l1, x, 10, 7)}, as well as
the semi join {(k1, x, 5), (k2, x, 10)}.

Now, given that a third base table is de�ned as R3 = (M̄, Y). Also, a third join view is
de�ned as V3 = (R1 ⋈ R2) ⋈ R3 (see Figure 5.1.3), building on top of the already maintained
Reverse-join view IRev(1). Then the system reuses the Reverse-join view that has been built
for the �rst two join views. It adds a second Reverse-join view deriving it from the �rst one
as IRev(2) = IRev(1) ⋈ R3. In general, when computing join views, VMS uses a cost model to
optimize for the best combination of Reverse-join views.

85

5.1. VIEW CONCEPTS

 𝜎(𝑃1∨𝑃2)

𝑅2

𝑅3

𝑅1 𝑉1

𝑉2

𝑉3

⋈

Intermediate

views (VS)

1

∅

∅

0

Final views

(KVS)

𝑢1

𝑢2

1

0
𝐵1⨁ 𝐵2 =

𝑢3

𝜎(𝑃1∨𝑃2)

𝜎𝐵1[𝑖]⨁𝐵2[𝑖]

⋈

Base tables

(Bulk or KVS)

𝐼𝑅𝑒𝑣(1)

𝐼𝑅𝑒𝑣(2)

Figure 5.1.3: Join merge (maintenance plan)

86

CHAPTER 5. MULTI-VIEW PROCESSING

Pre-evaluating predicates – As in the aggregation case, joins in applications are often-

times executed using di�erent selection ranges. In order to not recompute join relations,

it is vital to unite the input of the join table into combined intermediate selection views.

Building a single join on top of all selection predicates is signi�cantly more e�cient than

building a separate join for each query. Again, we make use of bit vectors to reduce the

number of predicates evaluated and to allow for rapid join construction. We insert a

selection operator directly behind the base tables to evaluate predicates instantly and

write the results into the bit vector. As the predicate may be de�ned over attributes from

multiple di�erent join tables, the outcome may also evaluate to ∅. In this case, we write

a null value into the bit vector. If the bit vector completely evaluates to zero (i.e.,  = 0),
we can drop the update at this early point.

Let n join views be de�ned as follows: (∀i ∈ {1, .., n}): �Pi (V iewA(Rset) ⋈ V iewB(Rset)),
with each view de�nition de�ning a di�erent selection predicate. Let IA and IB be the

connecting intermediate views of both functions. We capture all predicates in a list

Plist = {P1, .., Pn} and we create two selection views ISel(1) and ISel(2) that evaluate all

predicates with regard to the updates of IA and IB and store the results into bit vectors

A and B.

ISel(1) = ISel(1) ⊎ � ⋁
P∈Plist

(ΔIA), ISel(2) = ISel(2) ⊎ � ⋁
P∈Plist

(ΔIB) (5.1.8)

When building the join using IRev , VMS simultaneously merges both bit vectors via ⊕
operator (see Section 5.1.1). In this way, VMS can determine the predicate status of

the join table updates without reevaluating the selection predicates. When computing

 = A ⊕ B, the result determines whether an update is kept or dropped at position i.
In the case that [i] = ∅ (i.e., on both table sides, the predicate could not be evaluated),

the system reevaluates the predicate on top of the computed join rows.

(∀i ∈ {1, .., n}) ∶ Vi =
⎧⎪⎪
⎨⎪⎪⎩

Vi ⊎ �[i](IRev) if ([i] ≠ ∅)

Vi ⊎ �Pi (IRev) else
(5.1.9)

Example 5.1.6: In Figure 5.1.3, two base tables R1 and R2 are depicted (de�ned as before).
Let the view de�nitions of V1 and V2 be rewritten as:

V1 = select * from R1 ⋈ R2 where (R1.X > 5) or (R2.Z = 5)

V2 = select * from R1 ⋈ R2 where (R1.X = 10) and (R2.Z > 15)

87

5.1. VIEW CONCEPTS

Following the view de�nition of V1 and V2 both base table are connected to selection views
ISel(1) and ISel(2) with predicate lists Plist(1) = {(R1.X > 5), (R1.X = 10)} and Plist(2) = {(R2.Z =
5), (R2.Z > 15)} Now, given that there are two updates u1 = put(R1(k, x, 10)) and u2 =
put(R2(l, x, 7)), the bit vector of u1 evaluates to 1 = {1, ∅}, and that of u2 evaluates to
2 = {∅, 0}. When combining both vectors during join construction, we build1⊕2 = (1, 0).
The result indicates that V1 is updated with the join record, whereas V2 is not.

88

CHAPTER 5. MULTI-VIEW PROCESSING

5.1.4 Nested constructions

Thus far, we have rewritten queries of similar SPJA structure to capture common aspects

and avoid unnecessary overhead. These rules can be applied recursively to rewrite any

combination of similar SPJA pattern or nested constructs. Rewriting can be performed

from the bottom of a query to the top until the structure diverges. However, the system

always strives for merging as many intermediate views as possible such that the main-

tenance plan is split at the very last opportunity; thereby, only the �nal materialization

step is processed, separately. Let a number of nested analytical queries be de�ned as:

(∀i ∈ {1, .., n}) ∶ SELECT * FROM R

WHERE X > (Ii = {SELECT sum(Y) FROM R WHERE Pi})

Then, we translate the inner view de�nition to

ISel(1) = ISel(1) ⊎ �Pi (ΔR)

IPre = IPre ⊎
Pdec ,sum(Y)(ΔISel(1))

IAgg = IAgg ⊎ ΔIPre
Ii =
(Pdec ,Pi)→{},sum(Y)(ΔIAgg)

(5.1.10)

whereas the outer query is derived from connecting view Ii . Modi�cation of the inner

query likewise modi�es the predicate for the outer query such that the outer query

inherits the combined processing. A predicate list Pout = {(X > I1), .., (X > In)} is

constructed to capture the di�erent predicates of the outer query. Note that a sub query

within a condition represents a blocking operation. We rewrite the outer query as:

ISel(2) = ISel(2) ⊎ � ⋁
P∈Pout

(ΔR)

Vi = Vi ⊎ �[i](ΔISel(2))
(5.1.11)

We rewrite and split at the last possible point (Vi). As such, we need to keep only a

single intermediate table per operation and can amortize its (storage) cost by computing

thousands of di�erent view tables on top. Ideally, all intermediate materialization is done

in-memory, thereby substantially reducing the overall execution time.

89

5.2. COST MODEL

5.2 Cost model

The full cost of the maintenance plan is de�ned as the sum of the cost of each operation.

Let M = (Rset , O, V , E) be de�ned as the maintenance plan of view de�nition V iew(Rset)
that consists of operation vertices and edges. Further, let Δ = {ΔR1, ΔR2, ..} be de�ned as

the update sets of all involved base relations. We sum the total cost as:

Cost(M, Δ) = ∑
v∈V

Cost(v, Δ)
(5.2.1)

The cost of a selection operation (when not performed on-the-�y) is de�ned over a

materialized view in VS for which access results in cost cget and modi�cation cup (with

up ∈ {put, delete}). The cost model can be further re�ned to distinguish between put

and delete updates.

Cost(�p , ΔI) = |ΔI | ∗ cget + |�p(ΔI)| ∗ cup (5.2.2)

Aggregation views are de�ned by a pre-aggregation IPre and a �nal aggregation IAgg . The

cost of redistributing the pre-aggregated records n times (for n VMs) is incurred, and the

cost of sending a single update is provided through csend . The stronger the aggregation

is, the lower the sending cost.

Cost(
X,f (Y), ΔI) = (|ΔI |⏟⏞⏟⏞⏟
IPre

+ n ∗ |X |
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
IAgg

) ∗ (cget + cup) + (n ∗ |X | ∗ csend)⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
redist

(5.2.3)

Likewise, we determine the cost given by any join pair to compute the cost of any

multitable join. To �nd the best combination of join tables, and the best maintenance

plan for multiple join expression we implement existing greedy heuristics (such as dpccp

[66]) to reduce the amount of join possiblities. On the basis of these models, the cost of

Strategy 1 is determined as:

Cost(IA ⋈ IB,ΔIA, ΔIB) = (|ΔIA| + |ΔIB|) ∗ (csend⏟⏞⏞⏟⏞⏞⏟
redist

+ cup + cmget⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
IRev

)
(5.2.4)

Strategy 1 is "fully partitioned" and includes a full round of redistribution. We use cost

cmget to describe a multi-get to the view (using wild-card (x, K?)). While the operation

90

CHAPTER 5. MULTI-VIEW PROCESSING

retrieves multiple join records it cannot be described asm ∗ cget because access is realized

over a (single) composite key, loading all join partners from a list (nested hash-map) in

one pass. Strategy 2 is "partially partitioned" and runs without redistribution. Because

updates to the fully loaded table are being duplicated n times, the cost of Strategy 2 is:

Cost(IA ⋈ IB,ΔIA, ΔIB) = (n ∗ |ΔIA| + |ΔIB|) ∗ (cup + cmget) (5.2.5)

The cost of projection is dependent on whether the operation is the last one in the

maintenance plan: if it is, no outgoing edges exist, and the cost is determined by KVS

updates; else, the view is intermediate, and the cost is determined by VS updates.

Cost(�, ΔI) =
⎧⎪⎪
⎨⎪⎪⎩

|ΔI | ∗ cup(V S) if out(M, �) ≠ ∅

|ΔI | ∗ cup(KVS) else

(5.2.6)

Finally, we determine the bene�t (or drawback) of multi-view optimization, whereMset de-

�nes the set of maintenance plans derived from multiple view de�nitions and M ′
de�nes

the new merged maintenance plan that has been obtained by multi-view optimization:

∑
M∈Mset

Cost(Δ,M) − Cost(Δ,M ′)
(5.2.7)

91

5.3. EVALUATION

5.3 Evaluation

In this section, we evaluate the performance of VMS when materializing a large number

of views in parallel. For the multi-view evaluation, we use a reduced scale factor of 1 (1

GB, ~8.6M records) because the number of de�ned views also multiplies the number of

updates sent through VMS. Figures 5.3.1 - 5.3.6 materialize views for evaluating TPC-H

query templates (i.e., Q1, Q3, Q4, Q6, Q10 and Q14).

For each query template, we use the TPC-H qgen tool to generate a de�ned number

of query instances (i.e., 10, 100, 200, 500, 1k, 5k and 10k). As speci�ed by TPC-H, each

query instance varies in terms of the key parameters of the query template (e.g., selection

ranges), and the result of every query instance is stored in a separate view table. The

corresponding number of view tables are created in KVS before the experiment (for the

10k case, table creation alone takes > 500 seconds). Then, we setup each experiment for

three strategies: (1) standard, (2) single batch and (3) double batch.

Standard: Describes the naive strategy of simply building and executing a single mainte-

nance plan for each view.

Single batch: Describes the strategy of merging all maintenance plans into a single plan,

and sharing (and distinguishing) all selections, aggregations and joins, until the very last

step, where each view is materialized separately (see Section 5.1). This strategy is called

single batch because in the three-round process of aggregation (see Figure 5.1.2), only

the �rst round (i.e., the pre-aggregation IPre) is a batched operation.

Double batch: As for single batch, all maintenance plans are merged into a single plan.

The strategy is called double batch because in the process of aggregation (see Figure 5.1.2)

Rounds 2 and 3 are both batched. In Round 3, pre-aggregates are collected and stored

(using the composite key (X , Pdec)); only then, is the �nal result released.

Further, for the single and double batch strategies, VMS merges join operations using

the bit vector mechanism described in Section 5.1.3 (see Figure 5.1.3). VMS resolves all

selection predicates prior to the join in a combined e�ort and stores the results in the bit

vector. The bit vector is then passed along with the update and merged via ⊕ operator

92

CHAPTER 5. MULTI-VIEW PROCESSING

0 s

1 s

10 s

100 s

1000 s

10000 s

10 100 200 500 1k 5k 10k

E
xe

cu
ti

o
n
 t

im
e
 [

s]

num views

TPCH-1 (standard)
TPCH-1 opt (single batch)
TPCH-1 opt (double batch)

Figure 5.3.1: Q1 multi-view

1 s

10 s

100 s

1000 s

10000 s

10 100 200 500 1k 5k 10k

E
xe

cu
ti

o
n
 t

im
e
 [

s]

num views

TPCH-3 (standard)
TPCH-3 opt (single batch)
TPCH-3 opt (double batch)

Figure 5.3.2: Q3 multi-view

1 s

10 s

100 s

1000 s

10000 s

10 100 200 500 1k 5k 10k

E
xe

cu
ti

o
n
 t

im
e
 [

s]

num views

TPCH-4 (standard)
TPCH-4 opt (single batch)
TPCH-4 opt (double batch)

Figure 5.3.3: Q4 multi-view

1 s

10 s

100 s

1000 s

10 100 200 500 1k 5k 10k

E
xe

cu
ti

o
n
 t

im
e
 [

s]

num views

TPCH-6 (standard)
TPCH-6 opt (single batch)
TPCH-6 opt (double batch)

Figure 5.3.4: Q6 multi-view

1 s

10 s

100 s

1000 s

10000 s

10 100 200 500 1k 5k 10k

E
xe

cu
ti

o
n
 t

im
e
 [

s]

num views

TPCH-10 (standard)
TPCH-10 opt (single batch)
TPCH-10 opt (double batch)

Figure 5.3.5: Q10 multi-view

1 s

10 s

100 s

1000 s

10000 s

10 100 200 500 1k 5k 10k

E
xe

cu
ti

o
n
 t

im
e
 [

s]

num views

TPCH-14 (standard)
TPCH-14 opt (single batch)
TPCH-14 opt (double batch)

Figure 5.3.6: Q14 multi-view

93

5.3. EVALUATION

during join processing. In this way, VMS keeps the number of internal updates to one

per base table update, but the bit vector can still grow to a large sizes (1250 bytes without

and 2083 with null values at 10k instances).

Figure 5.3.4 shows the results of the three strategies for query template Q6. Note that

the execution time (on the y-axis) is presented on a log scale since the results di�er

substantially. The results of computing 10 views are comparable, single batch achieves

a 1.2x speed up an double batch achieves a 2x speed up. The greater the number of

views computed in parallel is, the larger the gap becomes. When processing 500 views

in parallel, single batch achieves 1.8x and double batch already 8x .

VMS maxes out when materializing 10k views in parallel. With the standard strategy,

the execution time is 912s; with single batch optimization execution time is 265s and

with double batch optimization, it is 107s. For both queries, VMS computes the lineitem
table at scale factor 1x , i.e., 6M updates over 10k views. Because of write ampli�cation,

the standard strategy (i.e., a non-optimized system) processes the equivalent of 6M ×
10k = 60B update operations. The standard strategy only provides somewhat reasonable

execution time for Q6 because of the high selectivity of records (over 95% of records are

dropped).

Comparing to query Q1 which also operates over the lineitem table, we observe the

following: standard strategy executes in 4081s, single batch executes in 3895s relatively

close to the standard strategy. Then, the execution time drops signi�cantly to 78s for the

double batch strategy

For queries Q3 and Q10, the speed up for double batch is also quite signi�cant; both

view de�nitions include aggregations and joins which can be processed as combined

operations. Q10 is a four-table join with consecutive aggregation. Using the standard

strategy execution time is 7210s, for single batch it is 1217s and for double batch, we

can materialize the results within 411 seconds. Q3 is a three-table join with consecutive

aggregation. For Q3, results over 10k views can be materialized in 7843s for the standard

strategy, in 2075 for single batch and in 362 seconds for double batch.

In this case, the speed up of single batch compared to standard computation is 5.6x and

that of double batch is 17.5x . Notably, forQ3 andQ10 VMS processes updates of join tables

94

CHAPTER 5. MULTI-VIEW PROCESSING

lineitem,orders and customer , simultaneously. At scale factor 1x this means a total of

7.65M base records which are processed over 10k views. Again, the standard strategy

(i.e., a non-optimized system) processes the equivalent of 7.65M × 10k = 76.5B update

operations.

Only the described methods of multi-view optimization in combination with the double

batch strategy allow very reasonable execution times of 100 − 500 seconds; only this way

the write ampli�cation can be successfully prevented. The maintenance plan for the 10k
view de�nitions is split at the very last point and, in addition, all update operations are

executed in a single run. All aggregations are evaluated combined; splitting the updates

and materializing the �nal views at the end of the maintenance plan only requires writes;

get operations can be avoided, completely.

95

Chapter 6

Consistent hybrid view maintenance

Increasing volume and velocity have been a driving factor for Big Data analytics. While

an ever growing data stock has to be scanned and evaluated (batch processing), at the

same time, base data is updated (online/incremental processing), rendering the already

computed results obsolete. Following that large-scale processing frameworks mainly

employ two di�erent processing styles to compute and track results upon large tables:

batching computations are executed with bulk processing frameworks (e.g., MapRe-

duce [67]), incremental updates are often times realized with the help of event or stream

processing systems (Apache Storm [68], Apache Flink [21]).

The need to combine the advantages of both processing styles (i.e., high throughput, and

low latency) into a single solution gave rise to a number of hybrid processing frameworks

and paradigms. Hybrid processing strategies have been discussed as extensions to Map-

Reduce, as combinations of di�erent architectures and frameworks (batch processing

and streaming) or domain speci�c languages [17, 18, 19, 20, 21]. Analogous to the

development of Big data infrastructures, the research on (materialized) views has also

centered around two main strategies: batch and incremental maintenance.

Batching strategies [65] in view maintenance related to concepts that read and process

complete data sets as input to build up (or update) a materialized view in one big run.

Batch strategies perform well in analysing large tables, but they lack the ability to track

96

CHAPTER 6. CONSISTENT HYBRID VIEW MAINTENANCE

small changes and provide e�cient real-time updates of results. The staleness of a view

between one view refresh and the next might not be su�cient for clients.

Incremental strategies [14, 16, 56] relate to concepts that receive a stream of update oper-

ations on a data set and incrementally apply updates to a materialized view. Incremental

strategies excel at their ability to track modi�cations in real-time; they are inherently

e�cient and provide low latency to the client of the view. Incremental strategies are

particularly useful for large tables that are updated infrequently. On the downside

incremental strategies cannot be used over existing data (as all the operations needed to

be replayed) and they are susceptible to non-uniform distributions (e.g., Zipf).

Hybrid strategies in view maintenance try to overcome the aforementioned weaknesses by

combining aspects of batching and incremental strategies. But unlike in research on large-

scale infrastructures (where hybrid approaches are well represented), the contribution to

hybrid strategies in the �eld of view maintenance has been relatively small. To this point,

only solutions exist that discuss the use of (micro-)batching for incremental strategies

[16, 57].

However, a comprehensive study, researching the trade-o�s of di�erent hybrid approaches,

and their coexistence with established strategies is still missing. As can be found, not a

single (hybrid) strategy is su�cient to match all given scenarios. Multiple di�erent incre-

mental, batching, hybrid strategies can be used to adapt view maintenance to its context

and, ultimately, to balance the triangle of throughput, cost and latency requirements

(view staleness).

In this chapter, we make the following contributions:

1. We present a novel integrated concept for distributed KVS to support a variety of

di�erent incremental, hybrid and batching view maintenance strategies by only

relying on a set of primitives (i.e., operation streams, scans, snapshots).

2. We provide a comprehensive study of di�erent incremental, batching and hybrid

view maintenance strategies. We provide a classi�cation by their nature, a de�ni-

tion of their application, as well as di�erent suggestions to their realizations (see

Section 6.1, 6.2 and 6.3).

97

3. We propose a concept for hybrid maintenance in KVS that achieves strong consis-

tency (also for mixed insert/update/delete workloads) on the one side and operates

highly parallelized on the other side. Thereby, we propose a novel data structure

(called MK tree) to e�ciently synchronize records and operation streams at process

level (Section 6.3).

4. We conduct an extensive experimental study using an implementation over VMS

and HBase. We o�er a comparison of all de�ned incremental, hybrid and main-

tenance strategies with regard to cost, staleness and performance and provide a

recommendation of which strategy to use in which context (see Section 6.4).

In Figure 6.0.1, an overview of all strategies is depicted. On the very top of the �gure

a sequence of updates, applied to a base table by clients, can be found. The base table

receives a (uniformly distributed) stream of update operations. The point at which a

client inserts or updates a record into the base table is called insertion point. Formally,

we describe the insertion sequence of updates into the base table as Δ. Given that table

is in state 0, in the beginning, applying Δ takes it to state f (see Chapter 4.2).

0 =, Δ = ⟨u1, .., un⟩

f =0 + Δ
(6.0.1)

Below the base table in Figure 6.0.1, the di�erent view maintenance strategies are de-

picted: two incremental, three batching and three hybrid strategies. In the �gure, the

lines on top of the boxes illustrate the time span from retrieval of a record or update to

its execution. Thereby, the start point of the lines marks the retrieval point, the moment

when a record or update is fetched from KVS. Retrieval, in our architecture is done

through KVS observer or TL. To describe the retrieval order for VMS, we formalize an

additional retrieval round (dret , K) which can be triggered through a snapshot, a scan or

an incremental update stream.

ret = dret(Δ) (6.0.2)

The end points of the lines mark the beginning of the maintenance process. The stronger

the slope of the lines the higher the delay of maintenance – and ultimately the staleness of

the view table. We use red lines to indicate that an update is propagated and maintained

98

CHAPTER 6. CONSISTENT HYBRID VIEW MAINTENANCE

Scanning (SC)

Snapshot (SN)

Incremental (IN)

𝑢1 Base table

updates
t

𝑢𝑛

Incremental

micro-batched (IMB)

In
crem

e
n

tal
B

atch
in

g

Incremental

Batching (ISC)

H
yb

rid

𝑡𝑤

𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒

𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛

M
ain

ten
an

ce strategies

𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙

𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛

𝑓𝑢𝑙𝑙 𝑠𝑐𝑎𝑛 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙 𝑠𝑐𝑎𝑛

𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡

Scan-Incremental MB

(SCIMB)

Scan-incremental

standard (SCI)

𝑡𝑤

𝑡𝑤

Snapshot-incremental

standard (SNI)

Figure 6.0.1: Strategies overview

99

by the system. We use blue dashed lines to indicate that a record has been fetched from

the database (e.g., through a scan or a snapshot) and is now processed.

Finally, the blue boxes below the lines represent the execution point, where updates are

applied to the view table. The length of the boxes indicate the length of the actual

maintenance process; which is shorter for incremental and longer for batching strategies.

The execution order of the �rst round, is then formalized as 0 = d0(Δ) as described

in our model before (see Chapter 4.3).

100

CHAPTER 6. CONSISTENT HYBRID VIEW MAINTENANCE

6.1 Incremental strategies

In this section, we describe and formalize the basic incremental strategies that our system

leverages to maintain a set of view tables stored in a KVS.

6.1.1 Basic incremental

For pure incremental maintenance (IN), what is being maintained, is a number of base

update sub-streams, each on emitted by one of the KNs. Despite of that, the sub-streams

produce a global execution sequence (see Equation 6.1.1) which is important for subse-

quent view maintenance. For incremental maintenance, insertion, retrieval and execution

points can be found close together (see Figure 6.0.1), indicating that there is little delay

between insertion and execution (given no updates are queued); the update is propagated

in the moment the client inserts it. Retrieval and view updates follow an instance later

to update the materialized view. Incremental maintenance during the retrieval round is

formalized as follows:

inc = dinc(Δ) (6.1.1)

In round (dinc , K), VMS retrieves the updates which are propagated according to sequence

inc . The distribution key K of the round is also the row-key of the base table and the

distribution key of the �rst distribution round 0.

Since only updates of Δ are propagated during incremental maintenance, the view will

not be complete at the end of the process. If records were existing in the base table before,

which have not been updated, their state is not re�ected in the view.

(∃r ∈ R) → (r.K ∉ Δ.K) (6.1.2)

Still, we can assert that retrieval at a VM is sequential and based on a speci�c partition.

Multiple updates to the same row-key (inducing a record timeline) are always forwarded

to the same VM. Thus, record timeline requirements are not violated during the retrieval

round.

101

6.1. INCREMENTAL STRATEGIES

6.1.2 Incremental micro-batched

Incremental micro-batching (IMB) is an optimization of the standard incremental strategy.

This means, streams of base updates are consumed and sets of base updates (number is

determined by the batch size) are combined and maintained together. There are known

approaches [16, 69] to compute incremental maintenance in batches of di�erent sizes.

This way, sets of update operations are processed together, the result is only materialized

once. Formalization of this strategy can be expressed as follows:

Δ(i, j) =⟨ui , .., uj⟩

inc(x) =dinc(Δ(([x − 1] ∗ b + 1), (x ∗ b)))

IMB =⟨inc(1), ..,inc(n)⟩

(6.1.3)

Input consists of delta stream of updates Δ as before. Let Δ(i, j) ⊆ Δ be the sub-

sequence of of updates from update ui to uj (with i < j). Then, depending on batch

size b, the input stream is cut into chunks of sub-sequences processing b updates per

sub-sequence. After each of these sub-sequences, results are synchronized with the

materialized view table. Micro-batching is independent of time intervals, i.e., VMS fetches

the amount of b updates from the queues, if the queue size, in total, is smaller than b,

VMS simply fetches the entire all updates.

Micro-batching allows for several optimizations. We make use of two di�erent methods

to apply micro-batching to a stream of update operations: (1) combine update operations

that are de�ned over the same row-key (i.e., condense a row-keys timeline); (2) pre-

process results at di�erent stages of a maintenance plan (such as local pre-aggregation

before a global aggregation step) and merge them later on.

Combine operations – Combining operations is a strategy to protect incremental

maintenance against highly skewed key distributions. If many update operations to

a single key (range) are issued, a lot of incremental update steps have to be performed

by the same VM to update the same row-key over and over again. To overcome the

problem, given a set of batched updates, VMS condenses the timeline of row-keys into

single updates.

102

CHAPTER 6. CONSISTENT HYBRID VIEW MAINTENANCE

Example 6.1.1: We consider a base table R = (K̄ , X , Y) and a sequence of four updates
u1 = put(k1, x1, 5), u2 = put(k2, x2, 7), u3 = del(k1) and u4 = put(k2, x2, 15). Given that
all operations are processed in a single batch, the system is able to condense the update
stream from inc(1) = ⟨u1, u2, u3, u4⟩ to inc(1) = ⟨u3, u4⟩. Thereby, u3 overwrites u1 and
u4 overwrites u2 because row-keys are equal and only the respective last update is relevant
to the view (we disregard partial row-updates, here).

Pre-process results – A maintenance system can also bene�t from micro-batching, if

the evaluated view operator is capable of pre-processing steps. This way, during micro-

batching we are able to reduce the number of transmitted updates, signi�cantly.

Example 6.1.2: Consider a base table R = (K̄ , X , Y) as before and a view table de�ned as

X,SUM(Y)(R). Given that operations u1-u4 (as de�ned in the example before) are processed
at a VM, the pre-aggregate can be already build using updates ofinc(1) as Ipre = {(x2, 15)}
condensing the four operations locally. The pre-aggregate is then, in another distribution
round combined to form the global aggregation result.

Pre-processing results is very bene�cial for intermediate aggregation as well as join

operators. Especially strong aggregations or joins with low join key cardinality provoke

bottlenecks as there is a high number of input updates waiting to be processed on the

same view records. Here, pre-processing (as optimization for micro-batching) reduces

the intermediate update load signi�cantly, leading to a higher throughput of the system.

In general, micro-batching can be used to adapt the freshness of views by varying the

batch size. Smaller batch size means higher freshness but also higher materialization

cost. Larger batch size means lower freshness but also lower materialization cost.

Basic incremental strategies are excellent for refreshing view tables on update operations

as they keep the staleness of the refreshed views to a minimum. However, they always

require a full history of update operations to compute the correct state of a view table.

Foremost, this is the case when a base table is empty and the view tables are generated

beforehand. In reality, views are oftentimes de�ned on top of existing data sets, where

the history of update operations is either not known or too large to be recomputed. In

that context a batch-oriented strategy is required.

103

6.2. BATCHING STRATEGIES

6.2 Batching strategies

Naive batching strategies to materialize and update views include the creation of snap-

shots or the scan of a base table in de�ned intervals. In the following, we describe

strategies using both methods as primitives.

6.2.1 Repeated snapshots

View maintenance via repeated snapshots (SN) may be executed in de�ned intervals (see

Figure 6.0.1, tw). After each interval, the view table is recreated and the view data is

recomputed, entirely. A snapshot of the base table, taken previously, serves as a basis.

The data set in the snapshot is, in contrast to the actual base table, not modi�ed during

view maintenance. Exactly like the base table, the snapshot is divided by key ranges.

Each VM connects to one of the KNs to request a (local) snapshot of its key ranges.

A sloped blue dashed line (see Figure 6.0.1, SN), as it is drawn for the snapshot, indicates

that retrieval and execution of base table records deviate. Creating a snapshot means all

records are fetched at a single point in time t , still view maintenance takes some time. A

snapshot represents a consistent state of a data set, drawn from a base table in KVS at a

speci�c point in time. We assume that, having taken the snapshot at a point t , we are

loading the respective latest record versions with regard to t from the base table. For a

snapshot, we demand that our data set is immutable, record versions do not change.

Δ(i) =⟨u1, .., ui⟩

i =0 + Δ(i)

snap(t) =dsnap(i)

(6.2.1)

LetΔ(i) ⊆ Δ be the sub-sequence of updates that have been already applied to the base

table until t . Then, VMS retrieves the records of the base table in state i . The records

are propagated and received in sequence snap(t). Running the snapshot strategy, VMS

retrieves a snapshot, and computes the results; then, waits for interval ti+1 = ti + tw ,

104

CHAPTER 6. CONSISTENT HYBRID VIEW MAINTENANCE

removes the view tables completely and repeats the cycle. The strategy is formalized as:

SN =⟨snap(t1), ..,snap(tn)⟩ (6.2.2)

While providing excellent consistency and conserving the state of the table separately

(which facilitates the work of the maintenance system), snapshot strategies su�er from

the overhead a snapshot produces and defer subsequent maintenance operations (as the

snapshot has to be created and stored).

6.2.2 Repeated scans

Exactly like the snapshot strategy, the repeated scans (SC) works within an interval (see

Figure 6.0.1, tw), after which the view is deleted and recomputed. A scan works over the

active records stored in a table; its computation can also be distributed and parallelized

such that each VM requests a (local) scan from its associated KN to load all partitions

stored there.

The straight blue dashed line (see Figure 6.0.1, SN) indicates that (like for incremental

maintenance) retrieval and application of a record to the view table are close together.

The main di�erence between a scan and a snapshot is the versions of their records. While

a snapshot represents a closed consistent data set, during a scan the base table remains

open for modi�cations by clients. Records that are fetched later in a scan can have

updated versions as they might have undergone multiple changes in the meantime.

i..j = {r|r ∈ i ∨ .. ∨ r ∈ j}

scan(ts , te) = dscan(i..j)
(6.2.3)

The version of a scanned record either corresponds to a version updated before the scan

or it corresponds to a version updated during the scan (with ts and te being the start and

end point of the scan). Let the start and end points of the scan ts and te be associated with

base table states i and j (with i < j). Then we conclude, the scanned record version

can be either found in i , j or in all states the base table accepted in between (i.e.,

computing sequence ui to uj). We express this condition as base table state i..j . Running

the scanning strategy, VMS retrieves a snapshot, and computes the results; then, waits

105

6.2. BATCHING STRATEGIES

for interval tw , removes the view tables and repeats the cycle.

SC =⟨scan(t1, t2), ..,scan(tn−1, tn)⟩ (6.2.4)

A distributed scan is easy to implement and (in comparison to a snapshot) holds no

storage overhead; we are fetching table records directly from the base table. Still, scans

are very problematic with regard to consistency. The version of a record that is scanned

at an earlier point, can di�er a lot from one that is scanned at a later point.

6.2.3 Incremental snapshots

Incremental snapshots (ISN) is a strategy optimizing the repeated snapshot strategy (SN).

As such it avoids repeated snapshots of records that have not changed through the last

and the current batching interval. ISN almost always provides reduced cost in comparison

with repeated snapshots. Figure 6.2.2 shows an ISN strategy. Thereby, a full snapshot is

followed by (many) incremental snapshots which update the view table.

While the ISN strategy might resemble an IMB strategy, the implementation and execution

di�ers considerable. Snapshots work over record versions of the base table and not over

update streams (like IMB). Further, the time interval of execution is con�gurable, whereas

the IMB strategy purely works over batch sizes. We formalize the retrieval round as:

snap(t) =dsnap(i)

j ⧵i ={r|r ∈ j ≠ r ∈ i}

snapΔ(t1, t2) =dsnap(j ⧵i)

(6.2.5)

A regular snapshot, which is used �rst in ISN, is de�ned as before (for SN) and records

are retrieved in sequence snap(t). However, the following snapshot is an incremental

snapshot; it only incorporates the records that have changed in time interval t1 to t2. Let

t1 and t2, again be identi�ed with base table states i and j (with i < j). Then, we de�ne

operator j ⧵ i to load only records of j that are di�erent in i . The incremental

snapshot is retrieved in sequence snapΔ(t1, t2). Concatenating a regular snapshot and an

106

CHAPTER 6. CONSISTENT HYBRID VIEW MAINTENANCE

arbitrary number of incremental snapshots the complete strategy can be formalized as:

ISN =⟨snap(t1),snapΔ(t1, t2), ..,snapΔ(tn−1, tn) (6.2.6)

To catch incremental updates that occur during the snapshots (and between them), we

establish so-called tracking phases. During a tracking phase each VM enables its observer

component such that it is noti�ed about all keys that are updated in the associated KN.

The VM stores the keys of the updated records into a MK tree.

MK tree – The MK tree is a b+-tree that keeps track of maintained keys during incremental

maintenance (see Figure 6.2.1). Once an incremental update (put or delete) arrives, it

is inserted into the tree. The tree can, then, tell whether a speci�c row-key has been

already maintained or not.

The b+-tree is predestined for incremental batching. The VM can rapidly insert keys

(of modi�ed records) into the tree. Additionally, the b+-tree keeps the keys in a sorted

order and allows for fast ordered access of all stored keys via the intermediate pointers

that are interconnecting the leaf nodes. During a tracking phase the b+-tree gets �lled

with modi�ed keys. Then, the VM hands it to an observer which performs a fast scan

on the local partitions. However, a b+-tree still stores each row-key separately. When

maintaining large tables spanning million row-keys and more, the data structure will

occupy large portions of the memory. This is why we introduce the MK tree.

In KVS, row-keys are used to uniquely identify records. They are compared and sorted

lexicographically (see HBase [5]). While this is a necessary property to build and manage

key ranges and balance them over di�erent nodes in the network, we use it to create MK

tree.

Given a compare operator and step width (or a key space), a VM is able to identify if

two keys are adjacent or not. If yes, it will merge the keys into a combined key range.

This way, the MK tree, �rst increases in size, but later – when thousands of incremental

updates are done – shrinks again. Having maintained the complete key range should

�nally lead to a tree only hosting a single element. If however, the step width (or the key

space) of a base table is not known, we cannot determine the neighbors of a key. Then,

we fall back and use the b+-tree like described above.

107

6.2. BATCHING STRATEGIES

𝒌𝟕 𝒌𝟏𝟐

𝒌𝟏 𝒌𝟐 𝒌𝟑

𝒌𝟕 𝒌𝟖 𝒌𝟏𝟎

𝒌𝟏𝟐 𝒌𝟏𝟑 𝒌𝟏𝟓

𝒌𝟏𝟎 𝒌𝟏𝟓

(𝒌𝟏, 𝒌𝟑) (𝒌𝟕, 𝒌𝟖)

(𝒌𝟏𝟎, 𝒌𝟏𝟎) (𝒌𝟏𝟐, 𝒌𝟏𝟑)

(𝒌𝟏𝟓, 𝒌𝟏𝟓)

Regular b+ tree MK tree

Figure 6.2.1: MK tree (d=2)

Figure 6.2.1 depicts an example of an MK tree. On the left side, a b+-tree is shown that

has been built by a sequence of row-keys (emitted during the tracking phase). On the

right side, the same row-keys are shown using the MK tree. We de�ne the MK tree using

a recursive structure:

MKtree = ( ,)

 = {N1, .., Nm} with Ni =
⎧⎪⎪
⎨⎪⎪⎩

(k) if (ℎ(Ni) < ℎmax)

(ks , ke) else

 = {MKtree(1), .., MKtree(n)}

(6.2.7)

An element within the tree structure consists of a list of search row-keys, an element in

the leaf nodes consists of a list of key-ranges.

As explained, we use MK tree to store the record keys of base table updates. To �ll the

MK tree with row-keys of updated records, we establish so-called tracking phases (see

Figure 6.2.2). As shown in the �gure, tracking and maintenance phases are not completely

synchronized with each other. This is due to the fact that snapshots in a KVS are not

globally synchronized and we cannot determine the exact execution point. Thus, to

not miss any updates, we initiate the tracking phase (for the respective next snapshot),

shortly before we take and compute the (actual) snapshot.

Each tracking phase builds up a MK tree, which is then used during the next tracking

phase to perform an incremental snapshot. The �rst snapshot is a full snapshot and, thus,

does not need a tracking phase. Hence, the MK tree of the �rst tracking phase serves

to provide the updated keys to the second (incremental) snapshot. The MK tree of the

second tracking phase serves to provide the keys for the third (incremental) snapshot.

108

CHAPTER 6. CONSISTENT HYBRID VIEW MAINTENANCE

t

𝑡𝑠1 𝑡𝑛

𝑢1(𝑘)

𝑢2(𝑘)

𝑡1

𝑢3(𝑘)

𝑡𝑠2

Tracking 1 Tracking 2

full snapshot incremental snapshot

Figure 6.2.2: Incremental snapshots with tracking phases

Example 6.2.1: In Figure 6.2.2, an update u1 over key k that is applied in the �rst tracking
phase before the snapshot. Given that the full snapshot already incorporates u1; but u1 is also
inserted into MK tree and will during the second snapshot be applied, again. Consistency
wise, this is not a problem. Using snapshots only, u1 cannot overwrite, for example, an
update u2 on the same key. What is being used during the second (incremental) snapshot is
not u1, but only its key k to retrieve the most recent (snapshot) version of the record.

109

6.3. HYBRID STRATEGIES

6.3 Hybrid strategies

In this section, we describe how hybrid strategies can be used to combine batch and

incremental maintenance. We start by given a rationale of our design decisions and go

on explaining transitions of the hybrid processing types.

6.3.1 Rationale

When combining a batch and an incremental based strategy, we always mix a set of

records (representing a certain state) with a stream of updates, each provoking a state

change on one of the records. As a result, we obtain multiple di�erent record versions

of the same record: one version due to the batch job, and, depending on the update

distribution, an arbitrary number of versions due to incremental updates. An incremental

update operation may be older, newer or equal to the record version that has been

obtained during the batch job.

However, depending on our realization, the point at which both strategies are united to

present a consistent result, di�ers. We identi�ed the following realizations as the most

relevant ones.

(1) Compute batching and incremental strategy separately and merge the results

(2) Compute batching and incremental strategy combined, check consistency on exe-

cution of view update

(3) Compute batching and incremental strategy combined, check consistency on re-

trieval of base updates

Realization 1 as it is done in [17, 20] is a solution to let a bulk processing and a stream-

ing framework collaboratively compute results with high throughput and low latency.

Consistency has to be achieved by providing an exact cut between the batch records and

the update stream. While this solution provides a clean separation of concerns, it is not

110

CHAPTER 6. CONSISTENT HYBRID VIEW MAINTENANCE

integrated; it requires multiple architectures/processes to be setup. Also, the additional

merging step at the end has a negative e�ect on the availability of results. Merging

cannot be done locally. If both result sets are large (aggregation with high cardinality),

there is a high cost of transferring the result sets and performing the merge.

Realization 2 combines batch records and incremental operations already during process-

ing. Thereby, consistency is checked in the moment a view update is executed upon

the view table. In this context signatures can be used [33] to establish consistency. The

timestamps of records and updates merge into the view record and update its signature.

Then, the signature is used to identify and drop out-of-date updates. As a downside of

this realization, an update has to be send to the maintenance process and is dropped at

the very last point (i.e., at execution time). Also signatures can grow very large as every

update operation has to be re�ected (e.g., in heavy aggregated records).

Realization 3 sorts out obsolete versions already at retrieval time and produces a stream

of up-to-date records and updates that provide a full and coherent view angle of the

actual base data. It handles consistency already at maintenance process (i.e. VM) level.

Data structures are used to compare and drop duplicates as early as possible which avoids

unnecessary compensation or recomputation.

In the following, we build upon Realization 3 to avoid unnecessary overhead and provide

an integrated solution. The naive data structure to provide consistency is a simple hash

map, storing all keys and their timestamps (i.e. versions) of the maintained records.

However, as a hash map grows with number keys inserted and is likely to exceed memory

of a VM at some point, in the following, we develop more e�cient ways to check for

consistency.

6.3.2 Hybrid transitions

We de�ne hybrid strategies, in general, as a combination of a basic batch and basic

incremental strategy (see Figure 6.0.1). A hybrid strategy de�nes consistent transitions

between the batch and the incremental execution. Figure 6.3.1 shows the transitions of

three hybrid strategies (SNI, SCI and SCIMB). We distinguish between two types:

111

6.3. HYBRID STRATEGIES

𝑢1 Base table

t

𝑢𝑛

SNI

[parallel]

 [sequential]

 [sequential]

 [parallel]

SCI

SCIMB

 [sequential]

 [parallel]

Figure 6.3.1: Hybrid strategy transitions

112

CHAPTER 6. CONSISTENT HYBRID VIEW MAINTENANCE

(1) Sequential: Existing base table data is completely processed. While incremental

maintenance starts afterwards, client modi�cations that are made during batch

processing are caught and bu�ered. Still, incremental maintenance is delayed and

staleness increases.

(2) Parallel: Batch processing is applied and at the same time incremental updates are

incorporated; this is desirable when large base tables are processed that delay the

processing of incremental updates for a longer period.

SNI – The �rst mixed hybrid strategy, we are discussing, is a snapshot that is combined

with incremental maintenance (SNI). We start with sequential transition.

Sequential: The system takes a snapshot at a speci�c point in time. It will completely

compute and materialize the result of the snapshot. Only then, incremental view main-

tenance starts. While we compute results of a snapshot, base tables remain available for

modi�cations. Clients still access the database and insert their records. However, the

VM queues up update operations, the processing of incremental maintenance is delayed,

as it must be halted until the result of the snapshot is fully evaluated. We formalize the

distribution round of the strategy as follows:

SNIseq =⟨snap(t),inc⟩ (6.3.1)

Figure 6.3.2 shows how computation of the snapshot (blue phase) is followed by incre-

mental maintenance (red phase). All incremental updates that are collected during the

tracking phase are released during the red phase such that incremental maintenance can

be executed.

Example 6.3.1: In Figure 6.3.2, let during tracking phase, two updates (i.e., u1 and u2) occur
over the same base table key k. Let ts be the point, where the snapshot is taken. The snapshot
includes the most recent versions (with regard to ts) of all records that have been inserted
or updated in the table. Thus, in the �gure, the version of snapshot record k at point t1
corresponds to the update u1 made before. As u1 is already incorporated in the snapshot
record, and is an incremental update (cf. Example 6.2.1) it should not be maintained.

113

6.3. HYBRID STRATEGIES

t

𝑢1(𝑘)

𝑢2(𝑘)

𝑡𝑠 𝑡2

Tracking

𝑡𝑖 𝑡1

Figure 6.3.2: SNI sequential

Determining the cut-o� point – In order to avoid con�icts between snapshot record

versions and incremental updates, the system needs to �nd a cut-o� point between the

two basic strategies. Also the system has to assure that no base table update is omitted.

Some KVS provide the capability of online snapshots that are locally consistent. While

the snapshot represents a consistent data set (each taken at one of the KNs), a global

point in time can neither be �xed, nor is it de�ned after the snapshot. As a result, we

can also not de�ne a cut-o� point, globally.

Thus, we determine a local instance of ts at each VM. During the blue phase, each

VM computes its partition of the snapshot. Thereby, it evaluates the record with the

highest timestamp, i.e. ts = max({t(r)|r ∈ snap}). We use function t(r) to determine

the timestamp (i.e., the insertion point into the base table) of a record or an update.

Timestamp ts , then, becomes the orientation timestamp; every snapshot record has the

most recent version with regard to that timestamp. When incremental maintenance

starts, all updates that are older than ts are dropped. This selection process is formalized

in the following equation.

(∀u ∈ inc)(t(u) < ts) →inc = inc ⧵ {u} (6.3.2)

The sequential transition bene�ts from the e�ciency and simplicity of its implementation.

As a downside, incremental view maintenance gets delayed – which counter-acts its

original purpose to provide real-time analytics. During computation of the snapshot

114

CHAPTER 6. CONSISTENT HYBRID VIEW MAINTENANCE

t
𝑡𝑠

𝑢1(𝑘)

𝑡1

𝑢2(𝑘)

𝑡2 𝑖1 𝑖2

Tracking

Incremental only

Figure 6.3.3: SNI parallel

the maintenance system experiences a down-time, during which the views remain stale.

After that the systems has to catch up with the insertion rate of clients.

Parallel: When using parallel transition, we are trying to catch updates in real-time.

We are taking the snapshot, loading its records and at the same time, we are letting

the incremental updates stream in. Records and updates are combined, the results are

computed and materialized before (pure) incremental maintenance starts. Figure 6.3.3

shows an example of snapshot maintenance and incremental phases alternating each

other. As can be observed, the retrieval of incremental operations is more in-time, but it

overlaps with the computation of the snapshot. We formalize the problem as follows:

i ∪Δ ={e|e ∈ i ∨ e ∈ Δ}

sni(t) =dsni(i ∪Δ)

SNIpar =sni(t1)

(6.3.3)

Record versions and incremental updates are loaded from KVS simultaneously. Thus, the

input stream i ∪Δ transforms into one single large execution sequence sni(t). As

illustrated in Figure 6.3.3, the parallel transition is a concatenation of smaller transitions

between snapshot and incremental processing (and vice versa). As such, in the following,

we treat processing of updates and records di�erently. Let sni(t) provide the updates

that have been loaded in the maintenance process so far.

115

6.3. HYBRID STRATEGIES

Snapshot maintenance starts with the lowest record key and iterates up to the highest.

We store this information in form of the maintained key range where kl marks the lowest

and kℎ the highest key maintained so far. When the row-key of an incremental update

falls into the maintained key range and its timestamp ≤ ts , we drop the update.

kl =min({r.K |r ∈ sni(t)})

kℎ =max({r.K |r ∈ sni(t)})
(6.3.4)

When alternating between snapshot and incremental maintenance, it is not possible to

evaluate the highest timestamp of the complete snapshot. However, the timestamp can be

evaluated as ts = max({t(r)|r ∈ sni(t)}), the highest timestamp that has been maintained

so far. We process or drop incremental updates based on the following equation:

(∀u ∈ sni) → sni =
⎧⎪⎪
⎨⎪⎪⎩

sni ⧵ {u} if ((t(u) < ts) ∧ (kl ≤ u.K ≤ kℎ))

sni else
(6.3.5)

This way, we make sure that no update overwrites an already maintained record. Still

we need to cover the inverse case, where a record overwrites an already (incrementally)

maintained operation. To prevent this from happening, we use the maintained time

range. This is possible because update streams are in correct (local) time ordering.

tl =min({t(u)|u ∈ sni(t)})

tℎ =max({t(u)|u ∈ sni(t)})
(6.3.6)

When a records timestamp t(r) can be found within the time range, we know its has

been maintained and can be discarded. However, when t(r) is not within the time range

a decision can be ambiguous, as the following example demonstrates:

Example 6.3.2: In Figure 6.3.3, two base updates u1, u2 to a row-key k are depicted. Further,
the timeline shows two possible points t1 and t2 at which the snapshot record, belonging to k,
could be maintained; the record r with row-key k, retrieved by the snapshot corresponds to
an earlier version (with t(r) = t(u1)), which was not captured in the tracking phase. Let the
incremental maintenance of update u2 be executed during phase starting at i2. Now, we can
make di�erent observations based on the di�erent points, the snapshot record is maintained:
t1, incremental maintenance has been executed, but not over key k. The snapshot record shall
be applied; t2, incremental maintenance has been executed, also over key k (representing

116

CHAPTER 6. CONSISTENT HYBRID VIEW MAINTENANCE

version u2). The snapshot record shall be dropped in order to not overwrite the incremental
update. In both cases t(r) < tl .

The system has to remember what row keys have already been maintained incrementally.

Only then, it can make a decision about applying a snapshot record or not. To solve the

problem we make use of MK tree, again. Every snapshot record is tested against MK

tree – which is �lled with all keys that have been incrementally updated before, i.e.,

MK tree = {u.K|u ∈ Δ(t)}. If the key can be found within the tree, the snapshot record

is dropped; if it cannot be found the snapshot record is forwarded.

(∀r ∈ sni) → sni =
⎧⎪⎪
⎨⎪⎪⎩

sni ⧵ {r} if (t1 ≤ t(r) ≤ tℎ) ∨ [(t(r) ≤ tl) ∧ (r .K ∈ MKtree)]
sni else

(6.3.7)

SCI – The next combination, we are discussing is a scan plus consecutive incremental

maintenance (SCI). Again, we start with sequential transition and, then, discuss the

parallel case.

Like stated before, a scan does not provide a consistent set of records. While the snapshot

retrieves all records with regard to a given point in time, the scan also incooperates

changes made during the scanning process. However, it does not incooperate all changes

as it misses those updates on records that have been already scanned. Since scans can

take a very long time, incremental view maintenance should be enabled to not miss any

updates. We denote the time span of a scan as (ts , te). Accordingly, the scanned records

can take either the latest version before ts or any version within the time span.

Sequential – Sequential transition means that the system �rst executes the scan, and

once it is taken, incremental view maintenance starts. As the system always allows for

client updates, incremental updates are still retrieved during the scan; they are queued

until the scan (and its computation) has �nished. We formalize the problem as follows:

SCIseq =⟨scan(ts , te),inc⟩ (6.3.8)

Example 6.3.3: Figure 6.3.4 shows a scan starting at cut-o� time ts and completing at point
te . In the �gure, three incremental operations u1, u2 and u3 on top of row key k occur; The

117

6.3. HYBRID STRATEGIES

𝑢3(𝑘)

t

𝑢1(𝑘)
𝑢2(𝑘)

𝑡𝑠
𝑡2

𝑡4 𝑡1

𝑡𝑒

Tracking

𝑡3

Figure 6.3.4: SCI sequential

timeline shows the following: three points t1, t2 and t3 at which the scanned record, belonging
to k, could be maintained; Scanning at point t1 results in record version t(u1), which means
incremental updates u2 and u3 can perfectly maintained at point t4. However, scanning
record k at point t2 or t3 may result in a scanned record version t(u)2 or t(u3); if we proceed
and compute the incremental update u1 at point t4, it will overwrite the already scanned
version. As already mentioned, overwriting newer with older records is not acceptable.

Again, we need a data structure to identify and drop updates at process level. A scanned

record can possibly represent any update version during scan time. Thus, we need the

keys of the scanned records along with their timestamp (i.e., the version). We consider

a hash-map as simple data structure to test against; during the scan we build up the

hash-map, storing key/timestamp pairs. Then, during incremental maintenance, we can

load a row key’s timestamp and decide whether to drop the incremental operation or

not.

The naive solution, inserting the row-keys of all scanned records into a hash-map along

with their timestamps (Hkey[k] → t}) yields a signi�cant memory overhead and can lead

to crash of a VM. To reduce the size of the hashmap, signi�cantly, we make use of the

MK tree, again. During the tracking phase, we insert the keys of all update operations

into the tree. In contrast to before (see SNI parallel), we use MK tree to store the tracked

keys (and not the incrementally maintained keys), i.e., MK tree = {u.K|u ∈ Δtracked}.

118

CHAPTER 6. CONSISTENT HYBRID VIEW MAINTENANCE

Thereby, we track a key before it is inserted into the base table, such that we can be

certain it is contained in the tree before it becomes visible for a scan.

Then, while scanning, we test whether the key of a scanned record can be found within

the tree. If yes, we know that there have been modi�cations during the scan. Therefore,

we store a key/timestamp pair of the key into the hashmap. The hashmap entry serves

during incremental maintenance phases to identify and drop duplicate versions.

(∀r ∈ scan) →
⎧⎪⎪
⎨⎪⎪⎩

Hkey[r .K] = t(r) if (r .K ∈ MKtree)

∅ else
(6.3.9)

(∀u ∈ scan) ∶
⎧⎪⎪
⎨⎪⎪⎩

scan ⧵ {u} if (t(u) ≤ Hkey[u.K])

scan else
(6.3.10)

Using theMK tree, we make sure that only those scanned keys are stored into the hashmap,

which have undergone changes. Also, we point out that there is an alternative. Instead

of using the hashmap, we could also drop scanned records of keys that we �nd in the

MK tree. We know that the key is maintained during incremental phase and, thus, we

can skip the scanned version. As explained before, losing intermediate view states does

not hurt our consistency criterion.

Parallel – When using parallel strategies, along with a scan, we assume that scan records

and base updates stream in at the same time and can be processed in alternating order.

We formalize the problem as follows:

i..j ∪Δ ={e|e ∈ i..j ∨ e ∈ Δ}

sci(ts , te) =dsci(i..j ∪Δ)

SCIpar =sci(t1, t2)

(6.3.11)

Exactly as for SNI parallel, we have to ensure consistency during a sequence of smaller

batch and incremental maintenance phases. Again, we use a hash map along with an

instance of MK tree to provide consistency for incremental operations. The hash map is

build from the already scanned records as Equation 6.3.12 demonstrates. The selection

of operations can, then, be done equivalent to Equation 6.3.10. To prevent records from

overwriting newer versions, a tree is not needed as the following example demonstrates.

119

6.3. HYBRID STRATEGIES

t
𝑡𝑠

𝑢1(𝑘)

𝑡1

𝑢2(𝑘)

𝑡2 𝑖1 𝑖2

Tracking

𝑡𝑒

Incremental only

Figure 6.3.5: SCI parallel

Example 6.3.4: In Figure 6.3.5, we see a similar setup as in Figure 6.3.3: two points t1 and t2
where a scanned record r could possibly be maintained; above (see SNI parallel), we found
that the critical decision is between those two points as the system is not able to tell (by time
range) whether r has been incrementally maintained or not. Now, processing a scan, we
can be certain that, if the record would have been incrementally maintained, the scanned
version would also incorporate the change.

There are only two possible cases: the scanned version lies within the maintained time

range (de�ned as (tl , tℎ)) and needs to be dropped; the scanned version lies outside the

time range and needs to be maintained. In essence, to make a decision, we only need to

consider the maintained time range. The formalization of the selection process can be

found in Equation 6.3.13.

(∀r ∈ sci) ∶
⎧⎪⎪
⎨⎪⎪⎩

Hkey[r .K] = t(r) if (r .K ∈ MKtree)

∅ else
(6.3.12)

(∀r ∈ sci) ∶
⎧⎪⎪
⎨⎪⎪⎩

sci ⧵ {r} if (t1 ≤ Hkey[r .K] ≤ tℎ)

sci else
(6.3.13)

120

CHAPTER 6. CONSISTENT HYBRID VIEW MAINTENANCE

SCIMB – The maintenance of SCIMB is very similar to that of SCI and can be also

executed as a sequential or a parallel strategy. The only di�erence is the execution of

the incremental part, starting after materialization of the scan results at point te . Here,

SCIMB micro-batches incremental updates and materializes them in one run.

6.3.3 View states

One of our requirement is to keep views dynamically, i.e., they should be added and

removed during maintenance. A view that is created at the beginning of the update

process has a di�erent state than a view that is created later. To keep track of that

we attach a state variable to each view. Views that are created at the same time can

share an instance of the variable. When running a SNIpar strategy, we create a tuple

 = (Vset , (tl , tℎ), (kl , kℎ), MKtree). Vset is the set of views, maintained time range, key

range and the required data structure MKtree . When creating a set of new views, we

create an instance of variable  for all of them. The variable stores the maintenance state

and helps to perform correct maintenance. If another view is created at a later point in

time, a new variable  is instantiated.

6.4 Evaluation

In this section, we report the results of an extensive experimental evaluation of our

approach. We fully implemented our standard and hybrid view maintenance algorithms

on top of VMS in Java and integrated it with Apache HBase.

Static-workload scenario – For the base-line experiments, we evaluate VMS mainte-

nance performance using a static workload. This means, we create the TPC-H base tables

in HBase (i.e., lineitem, orders, customer, part, partsupp, supplier, nation, region). Each base

table is pre-partitioned (by key-range) over the 200 region server. Then, we start 200
clients which use the dbgen tool to �ll base tables with a scale factor of 100x resulting

in a maximum of 600M records being inserted into the lineitem table. For each run,

we con�gure one of the TPC-H queries in VMS. Then, we either choose SC or SN as

121

6.4. EVALUATION

0.0

500.0 k

1.0 M

1.5 M

2.0 M

2.5 M

0 50 100 150 200 250 300 350

th
ro

u
g
h
p
u
t

[u
/s

]

SC (static)
SC (dynamic)

Figure 6.4.1: SC (Q6)

0.0

10.0 M

20.0 M

30.0 M

40.0 M

50.0 M

60.0 M

70.0 M

80.0 M

0 100 200 300 400 500 600 700 800 900 1000

th
ro

u
g
h
p
u
t

[u
/s

]

SC (static)
SC (dynamic)

Figure 6.4.2: SC (Q7)

0.0

5.0 M

10.0 M

15.0 M

20.0 M

25.0 M

30.0 M

0 50 100 150 200 250 300 350 400 450 500

th
ro

u
g
h
p
u
t

[u
/s

]

SC (static)
SC (dynamic)

Figure 6.4.3: SC (Q10)

0.0

200.0 k

400.0 k

600.0 k

800.0 k

1.0 M

1.2 M

1.4 M

1.6 M

0 50 100 150 200 250 300 350 400 450

th
ro

u
g
h
p
u
t

[u
/s

]

SN (static)
SN (dynamic)

Figure 6.4.4: SN (Q6)

0.0

10.0 M

20.0 M

30.0 M

40.0 M

50.0 M

60.0 M

70.0 M

80.0 M

0 100 200 300 400 500 600 700 800 900

th
ro

u
g
h
p
u
t

[u
/s

]

SN (static)
SN (dynamic)

Figure 6.4.5: SN (Q7)

0.0

5.0 M

10.0 M

15.0 M

20.0 M

25.0 M

30.0 M

0 50 100 150 200 250 300 350 400

th
ro

u
g
h
p
u
t

[u
/s

]

SN (static)
SN (dynamic)

Figure 6.4.6: SN (Q10)

0.0

2.0 M

4.0 M

6.0 M

8.0 M

10.0 M

12.0 M

0 50 100 150 200 250 300 350 400 450 500

th
ro

u
g
h
p
u
t

[u
/s

]

ISC (20 sec)
ISC (40 sec)
ISC (80 sec)

Figure 6.4.7: ISC (Q6)

0.0

10.0 M

20.0 M

30.0 M

40.0 M

50.0 M

60.0 M

0 100 200 300 400 500 600 700 800 900 1000

th
ro

u
g
h
p
u
t

[u
/s

]

ISC (20 sec)
ISC (40 sec)
ISC (80 sec)

Figure 6.4.8: ISC (Q7)

0.0

5.0 M

10.0 M

15.0 M

20.0 M

25.0 M

0 50 100 150 200 250 300 350 400 450 500

th
ro

u
g
h
p
u
t

[u
/s

]

ISC (20 sec)
ISC (40 sec)
ISC (80 sec)

Figure 6.4.9: ISC (Q10)

0.0

2.0 M

4.0 M

6.0 M

8.0 M

10.0 M

12.0 M

14.0 M

16.0 M

18.0 M

0 50 100 150 200 250 300 350 400 450 500

th
ro

u
g
h
p
u
t

[u
/s

]

SCIMB (50k)
SCIMB (200k)
SCIMB (400k)

Figure 6.4.10: SCIMB (Q6)

0.0

10.0 M

20.0 M

30.0 M

40.0 M

50.0 M

60.0 M

0 100 200 300 400 500 600 700 800 900 1000

th
ro

u
g
h
p
u
t

[u
/s

]

SCIMB (50k)
SCIMB (200k)
SCIMB (400k)

Figure 6.4.11: SCIMB (Q7)

0.0

5.0 M

10.0 M

15.0 M

20.0 M

25.0 M

0 50 100 150 200 250 300 350 400 450 500

th
ro

u
g
h
p
u
t

[u
/s

]

SCIMB (50k)
SCIMB (200k)
SCIMB (400k)

Figure 6.4.12: SCIMB (Q10)

122

CHAPTER 6. CONSISTENT HYBRID VIEW MAINTENANCE

maintenance strategy because those are the only strategies applicable in a static context

(ISC and SCIMB are only needed when base data is updated). We let VMS execute the

maintenance strategies during a de�ned time interval and measure its throughput in

real-time. The throughput is determined at each VM and, then, aggregated at the master

node. The base-line experiments are depicted as blue graphs in Figure 6.4.1-6.4.3 and

Figure 6.4.4-6.4.6.

Dynamic-workload scenario – For the full comparison, we evaluate VMS maintenance

performance using a dynamic workload. This means, we create a setup as described in

the base-line experiments, �rst. We create the TPC-H entities as base tables in HBase and

start 200 clients to �ll them (again, with scale factor 100x).

Then, we start VMS, con�gure one of the TPC-H queries and choose a the maintenance

strategy: SC, SN, ISC or SCIMB. For strategies SC and SN tw = 0 can be set to zero such

that one scan directly succeeds the next one. A larger tw can be used when latency

bounds are lower than the actual scan time. For strategy ISC, we test con�gurations

tw ∈ {20s, 40s, 80s} because the number of updates that can be accumulated is depending

on tw . A low tw means many executions with few update whereas a high tw means few

executions with many updates. Likewise for SCIMB, we use di�erent con�gurations of

batch sizes with b ∈ {50k, 200k, 400k}. Again, using smaller b lets the system do many

executions with few updates whereas larger b lets the system do few executions with

many updates.

In a next step, we start the 200 clients, again, and let them insert an update workload of

100M records into the base tables consisting of 50% update and 50% delete operations.

While the clients are inserting their updates, we execute one of the maintenance strategies

and let VMS catch up to the current state of the base tables.

SC – Figures 6.4.1-6.4.3 show the maintenance plot of the SC strategy for Q6,Q7 and Q10.
Albeit tw has been set to zero, the SC strategy (also SN) experiences a break of 5 − 30s
between the cycles. This is related to the fact that after a cycle, VMS has to delete all

view tables, reload the maintenance plan and recreate the view tables.

Evaluating Q6, we measure 13 maintenance cycles using the static and 8 maintenance

123

6.4. EVALUATION

cycles using the dynamic workload. For Q7, VMS achieves 3 cycles using the static and 2
cycles using the dynamic workload (in a comparable time frame of 350s). Query Q10 is

at 6 cycles for the static and 5 cycles for the dynamic case.

Despite of having the highest number of maintenance cycles, Q6 achieves the lowest

throughput in VMS (2M updates per second). When running scans on base tables, each

VM requests a local scan from a region server of HBase. In doing so, the VM already

applies selection criteria given along with the query. If there is a high selectivity, like

for query Q6, the throughput of VMS is low as most of the records are already �ltered

at region server side. When measuring the throughput of base table updates per second,

the combined system (HBase plus VMS) is at 200M per second.

Q7 shows a throughput of up to 60M updates per second. The maintenance curve is

steep, at �rst, but then it slowly declines as Q7 involves multiple joins which require

consecutive redistribution of updates. The largest delays in the dynamic setup of Q7 can

be observed during the �rst 400 seconds where congestion due to client request is the

highest. In the moment the client requests decline, the latency immediately returns to

the normal level (which is measured for the static workload).

SN – Figures 6.4.4-6.4.6 show the maintenance plots of the SN strategy. The SN strategy

achieves 6 and 5 (static and dynamic) maintenance cycles for Q6, 1 and 2 cycles for Q7
and 2 and 3 cycles for Q10. For all three queries, we measure longer breaks in between

the maintenance cycles (~60s for Q6, ~120s for Q7 and for Q10). The breaks are related

to query reloading, view recreation (~25%) and snapshot creation (~75%). Thereby, the

impact of snapshot creation on overall execution time is dependent on the query. For Q6
the impact is the highest (up to 2.8x) because the query also executes the fastest. For long

running, multi-table joins, like Q7 the impact of snapshot creation is not as signi�cant

(only 30%).

ISC – Figures 6.4.7-6.4.9 show the results of the ISC strategy. The amount of maintenance

cycles for ISC are determined by the interval tw ∈ {20s, 40s, 80s} that we use during

evaluation. For Q6, we achieve 4,3 and 2 maintenance cycles for the corresponding

parameters in tw . However, the number of cycles for Q10 is identical.

After the initial scan, we observe multiple small/incremental scans. The breaks between

124

CHAPTER 6. CONSISTENT HYBRID VIEW MAINTENANCE

0 s
25 s
50 s
75 s

100 s
125 s
150 s
175 s
200 s
225 s
250 s
275 s
300 s
325 s
350 s
375 s
400 s
425 s
450 s
475 s
500 s

Q1 Q2 Q3 Q4 Q6 Q7 Q8 Q9 Q10

E
xe

cu
ti

o
n
 t

im
e
 [

s]

Scanning(default)

Scanning(load)

Snapshot(default)

Snapshot(load)

ISC(20 sec)

ISC(40 sec)

ISC(80 sec)

SCIMB(50k)

SCIMB(200k)

SCIMB(400k)

Figure 6.4.13: Maintenance strategies overall results (1)

0 s
25 s
50 s
75 s

100 s
125 s
150 s
175 s
200 s
225 s
250 s
275 s
300 s
325 s
350 s
375 s
400 s
425 s
450 s
475 s
500 s

Q11 Q12 Q13 Q14 Q16 Q17 Q18 Q19 Q20 Q22

E
xe

cu
ti

o
n
 t

im
e
 [

s]

Scanning(default)

Scanning(load)

Snapshot(default)

Snapshot(load)

ISC(20 sec)

ISC(40 sec)

ISC(80 sec)

SCIMB(50k)

SCIMB(200k)

SCIMB(400k)

Figure 6.4.14: Maintenance strategies overall results (2)

125

6.4. EVALUATION

the scans are completely determined by tw as there is no time spent to reload the plan

and recreate the view tables. For Q6 the latency of incremental scans converges towards

21s at tw = 20s. For Q7, we observe a signi�cant slow down (up to 320s) of incremental

scans during the peak time which later recovers (to match 92s).

SCIMB – Figures 6.4.10-6.4.12 depict the results of the SCIMB strategy. The amount of

maintenance cycles is determined by the batch size b ∈ {50k, 200k, 400k}. For Q6, VMS

achieves 52, 15 and 7 maintenance cycles, for Q10 VMS achieves 26, 17 and 9 cycles.

After the initial batch job has been executed, we observe very crisp incremental mainte-

nance intervals. Since a recreation of views is not required the latency converges towards

1s for Q6, 21s for Q7 and 12s for Q10. Con�guring the batch size di�erently, also di�erent

throughputs are achieved: forQ6, it is 2M updates per second at 50k, 8M at 200k and 16M
at 400k batch size. In general, the maintenance performance of SCIMB is very constant

and predictable. During peak times, maintenance executes similarly �uent as during idle

times.

Overall comparison – Figures 6.4.13 and 6.4.14 show the aggregated results evaluating

TPC-H queries Q1-Q22. The results of the strategies are presented showing the average

execution time of maintenance, which de�nes the latency of the maintained view tables.

For a fair comparison, the latency of hybrid strategies is de�ned as the combination of

the batch and the incremental maintenance part. However, in reality the latency of a

hybrid strategy converges towards the incremental processing. For the ISC and SCIMB

strategies, we exclude the waiting times from the execution time, as the system is simply

waiting for more updates.

In general, SC provides a much better maintenance performance as SN (only ~46-62%
of SC). While throughputs of both strategies are very comparable, the delays of SN are

mainly caused by snapshot creation. The creation time of snapshots can last from 20s
up to 100s if many large base tables are involved (e.g., Q7). While snapshots are handled

using references in HBase, their creation also occupies additional storage space (example).

We observe that on average 28% latency is added when the SC strategy is performed

using a dynamic workload (in comparison to the static setup). For SN, on average only

18% latency is added using a dynamic workload. We conclude that the SN strategy is

126

CHAPTER 6. CONSISTENT HYBRID VIEW MAINTENANCE

much more robust during peak times of client requests. After the snapshot has been

created, maintenance is performed separately and does not interfere with the actual base

table processing.

Another strength of the SN strategy (that cannot be measured in terms of performance)

lays in the quality of results. SN views are calculated with regard to a single point of

time. The results of SC, while computed correctly, represent a time span of the base table.

Thus, results obtained with the SN strategy are more exact.

If compared to the SC strategy, ISC has a slight advantage (5 − 10% faster), especially

comparing the dynamic setup (of SC). Considering the fact that incremental scans involve

less records, their execution times are not proportional. In contrast to normal scans, VMS

cannot advise HBase to apply �lters at server-side. Thus, MK tree has to be traversed

and records have to be retrieved from HBase subsequently. Especially for long running

queries (i.e., Q7,Q8,Q9,Q17,Q18), we observe a degradation of performance.

However, ISN can be con�gured to use smaller maintenance intervals (e.g., < 5s), which

SC cannot. Also e�ciency-wise ISC is far ahead, as the SC strategy requires the repeated

scan of base records (13x600M for Q6), whereas ISC only needs the initial scan plus

updates (700M for Q6). The ISN strategy (which is based on snapshots) is a very viable

alternative to ISC, as it mitigates the impact on maintenance during peak times.

SCIMB provides by far the best and most predictable latencies for view tables. Like ISC,

SCIMB does not require recreation of views after the initial batch has been carried out.

The average incremental throughput of SCIMB is much higher as for the ISC strategy,

as updates are queued up into memory and upon execution are released and directly

processed by VMs.

The drawbacks of SCIMB can be its e�ciency and its memory consumption. Especially

for highly skewed distributions or small tables with many updates, ISC performs better.

Using ISC, all updates to the same base record will be executed by a single get, as they

are represented by a single row-key in MK tree. By contrast SCIMB, queues up all update

operations into memory, which can overload the VM. Using the combine operations

method (see Section 6.1.2) the e�ect. However, the update operations still have to be

bu�ered into memory before processing.

127

6.4. EVALUATION

SNI and SCI are not depicted as they are conceptually the same as SCIMB (only inferior

in performance). Computing very large data sets, micro-batching is a requirement to

provide reasonable execution times. Also SNIMB is not depicted (similar performance),

still it is a convenient option as the delay for creating a snapshot is only incurred once.

128

Chapter 7

Conclusions

In this chapter, we provide a summary of our �ndings and give an outlook in which areas

we identify potential for future work.

7.1 Summary

In Chapter 4, we presented VMS, a scalable view maintenance system which operates

together with a distributed KVS. VMS provides e�cient, incremental, strongly consistent,

and asynchronous view materialization and maintenance. Pre-Processing Views facili-

tate and speed up maintenance and avoid expensive table scans. Building on the Pre-

Processing Views, VMS can consistently compose and maintain SQL queries. As a proof

of concept, VMS was implemented on top of HBase. Our experimental evaluation with

TPC-H benchmark showed that VMS can handle large amounts of update streams and

provide reasonable execution times at the same time. We demonstrated the system’s

ability to perform real-time processing, and quanti�ed the bene�ts and drawbacks of the

approach.

In Chapter 5, we showed that the maintenance of many views can be scaled massively

(up to 10k views, materialized in < 100 seconds) by applying traditional optimization

129

7.2. FUTURE WORK

techniques like pre-aggregation of aggregates or using fully partitioned or partially

partitioned join loading, depending on the table sizes. Moreover, we developed new

optimization techniques such as pre-evaluating predicates (via bit vectors), decomposed

pre-aggregation or combination via Reverse-join to merge the maintenance plans of

views and use synergies of executed operators (e.g., overlapping selection predicates).

Especially for views, sharing a query template with di�erent parameters, materialization

performance can be improved signi�cantly and write ampli�cation can be prevented

successfully.

In Chapter 6, we presented a concept for hybrid view maintenance in KVSs. We devel-

oped formal techniques and data structures to achieve consistency when maintaining

KVS primitives (scans, snapshots) or streams of KVS update operations (co-processor).

Further, We conducted an extensive study of distributed maintenance strategies including

batch, incremental and hybrid types. We showed how hybrid maintenance strategies

can materialize views from existing data sets and simultaneously perform incremental

maintenance to provide fresh results already from the get-go. Finally, we implemented

our approach in VMS and provided a comprehensive evaluation on top of HBase using a

variety of di�erent maintenance strategies. Thereby, we illustrated the strength of hybrid

maintenance strategies to e�ciently combine o�- and online analysis, to provide low

latency and fresh view data and to outperform their basic counterparts.

7.2 Future work

Protecting against VM overload: To have the maintenance work evenly distributed over

VMs and to achieve the best results possible, we used mainly uniform distributions as a

workload. Skewed distributions, like for example a Zipf distribution in a base table can

be already handled at KVS level using techniques like salting. However, if this is not the

case, single VMs would get overloaded fast. VMS can prevent VM overload relatively good

at planning stage. Low cardinalities of aggregation or join keys (and the resulting big

update loads), can be already countered by using batched Pre-aggregation or Reverse-join

operators in the maintenance plan. However, when VMs get overloaded with updates,

there is no dynamic mechanism to split the work load and redistribute it to another set

130

CHAPTER 7. CONCLUSIONS

of VMs that might be running idle at the same time.

Adapting to partition reassignment: As explained before evaluation has been performed

with uniformly distributed work loads and more or less static partition assignment. In a

real world setup the addition or removal of resources of the KVS or peaks in the client

loads can lead to dynamic reassignment of partitions by KVS. In such a case a partition is

relocated from one KN to another KN. While this does not impact the maintenance plan

and its distribution rounds, the responsibility of the base records is also handed from

one VM to another VM. If there is no clear cut, i.e., both VMs are processing the same

partition simultaneously there is a possible timeline violation.

Predicting load scenarios: When computing large-scale batch or incremental maintenance

plans, VMS provides an excellent overall performance and has shown very reasonable

execution times for combinations of various SQL operators. However, knowing some

of the maintenance parameters in advance, can lead to much better results, as the

maintenance plan can be adapted beforehand. For example, when planning n-table joins,

the order of joining the tables can be oriented on the table size, for batching strategies, and

on the update frequencies for the incremental strategies. Even very approximate values

of these parameters can lead to a much improved maintenance performance, especially

for some of the corner cases.

Trading o� consistency guarantees: Like described in Chapter 4.3.4, we use a very strict

constraint and allow only n = 1 versions of a record keys timeline to achieve strong

consistency. Like suggested in the chapter, this constraint could be relaxed such that

n > 1 versions of the same record key are possible. However, in that case, additional

measures have to be invented such that strong consistency is guaranteed. One possible

approach would be the synchronization of the versions at the end of the maintenance

process, using a coordinator like done for the multi-row updates.

131

7.2. FUTURE WORK

List of Acronyms

VM View Manager

VMS View Maintenance System

KVS Key-Value Store

KN Key-Value Store Node

TL Transaction Log

WAL Write-Ahead Log

VS Virtual Store

TB Timeline Bu�er

IN Incremental

IMB Incremental micro-batched

SC Scanning Strategy

SN Snapshot Strategy

132

CHAPTER 7. CONCLUSIONS

SCI Scanning + Incremental Strategy

SNI Snapshot + Incremental Strategy

ISC Incremental Scanning Strategy

ISN Incremental Snapshot Strategy

SCIMB Scanning + incremental (micro-batched) Strategy

SNIMB Snapshot + incremental (micro-batched) Strategy

TPC-H Transaction Processing Performance Council (Benchmark H)

HDFS Hadoop Distributed Files System

SQL Structured Query Language

SPJA Selection Projection Join and Aggregation

133

7.2. FUTURE WORK

134

List of Figures

4.0.1 System overview . 21

4.1.1 KV-Store and VMS . 23

4.1.2 Internal processing at VM . 28

4.1.3 Serializing VMS records . 32

4.2.1 Possible view states of a given update sequence 37

4.3.1 Processing a maintenance path . 40

4.3.2 Achieving consistency implementing Theorem 1 43

4.3.3 Execution of a multi-row update . 48

4.5.1 Bulk loading (execution time) . 62

4.5.2 Bulk loading (throughput) . 62

4.5.3 HBase performance (execution time) 65

4.5.4 HBase performance (throughput) . 65

4.5.5 Apache Phoenix comparison . 68

4.5.6 Multi-row updates . 68

4.5.7 View freshness . 68

4.5.8 VMS overhead . 68

4.5.9 Fault tolerance . 69

4.5.10 Pre-processing views . 69

5.1.1 Selection merge (maintenance plan) 76

5.1.2 Execution of multiple aggregation views 80

5.1.3 Join merge (maintenance plan) . 86

5.3.1 Q1 multi-view . 93

5.3.2 Q3 multi-view . 93

135

LIST OF FIGURES

5.3.3 Q4 multi-view . 93

5.3.4 Q6 multi-view . 93

5.3.5 Q10 multi-view . 93

5.3.6 Q14 multi-view . 93

6.0.1 Strategies overview . 99

6.2.1 MK tree (d=2) . 108

6.2.2 Incremental snapshots with tracking phases 109

6.3.1 Hybrid strategy transitions . 112

6.3.2 SNI sequential . 114

6.3.3 SNI parallel . 115

6.3.4 SCI sequential . 118

6.3.5 SCI parallel . 120

6.4.1 SC (Q6) . 122

6.4.2 SC (Q7) . 122

6.4.3 SC (Q10) . 122

6.4.4 SN (Q6) . 122

6.4.5 SN (Q7) . 122

6.4.6 SN (Q10) . 122

6.4.7 ISC (Q6) . 122

6.4.8 ISC (Q7) . 122

6.4.9 ISC (Q10) . 122

6.4.10 SCIMB (Q6) . 122

6.4.11 SCIMB (Q7) . 122

6.4.12 SCIMB (Q10) . 122

6.4.13 Maintenance strategies overall results (1) 125

6.4.14 Maintenance strategies overall results (2) 125

136

List of Algorithms

4.1 Recovery at a new VM . 44

4.2 Checking updates against a TB . 52

4.3 Clean up a TB . 53

5.1 Decompose predicates decomp(Plist) . 81

5.2 Evaluate decomposed keys eval(P) . 82

137

Bibliography

[1] J. Parikh. Data Infrastructure at Web Scale. http://www.vldb.org/2013/
keynotes.html. 2013 (accessed February 3, 2020).

[2] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T.

Chandra, A. Fikes, and R. E. Gruber. “Bigtable: A Distributed Storage System for

Structured Data.” In: ACM Trans. Comput. Syst. 26.2 (June 2008). issn: 0734-2071.

[3] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,

S. Sivasubramanian, P. Vosshall, and W. Vogels. “Dynamo: Amazon’s Highly Avail-

able Key-Value Store.” In: Proceedings of Twenty-First ACM SIGOPS Symposium on
Operating Systems Principles. SOSP ’07. Stevenson, Washington, USA: Association

for Computing Machinery, 2007, pp. 205–220. isbn: 9781595935915.

[4] B. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon, H.-A.

Jacobsen, N. Puz, D. Weaver, and R. Yerneni. “PNUTS: Yahoo!’s hosted data serving

platform.” In: PVLDB 1 (Aug. 2008), pp. 1277–1288.

[5] L. George. HBase: The De�nitive Guide. O’Reilly Media, Inc., 2011.

[6] E. Hewitt. Cassandra: The De�nitive Guide. O’Reilly Media, Inc., 2010.

[7] M. A. Olson, K. Bostic, and M. Seltzer. “Berkeley DB.” In: Proceedings of the Annual
Conference on USENIX Annual Technical Conference. ATEC ’99. Monterey, Califor-

nia: USENIX Association, 1999, p. 43.

[8] D. Peng and F. Dabek. “Large-Scale Incremental Processing Using Distributed

Transactions and Noti�cations.” In: Proceedings of the 9th USENIX Conference on
Operating Systems Design and Implementation. OSDI’10. Vancouver, BC, Canada:

USENIX Association, 2010, pp. 251–264.

138

http://www.vldb.org/2013/keynotes.html
http://www.vldb.org/2013/keynotes.html

BIBLIOGRAPHY

[9] P. Agrawal, A. Silberstein, B. F. Cooper, U. Srivastava, and R. Ramakrishnan. “Asyn-

chronous View Maintenance for VLSD Databases.” In: Proceedings of the 2009 ACM
SIGMOD International Conference on Management of Data. SIGMOD ’09. Provi-

dence, Rhode Island, USA: Association for Computing Machinery, 2009, pp. 179–

192. isbn: 9781605585512.

[10] A. Silberstein, J. Terrace, B. F. Cooper, and R. Ramakrishnan. “Feeding Frenzy:

Selectively Materializing Users’ Event Feeds.” In: Proceedings of the 2010 ACM SIG-
MOD International Conference on Management of Data. SIGMOD ’10. Indianapolis,

Indiana, USA: Association for Computing Machinery, 2010, pp. 831–842. isbn:

9781450300322.

[11] S. Akhtar and R. Magham. Pro Apache Phoenix: An SQL Driver for HBase. 1st. USA:

Apress, 2016. isbn: 1484223691.

[12] A. Kejriwal, A. Gopalan, A. Gupta, Z. Jia, S. Yang, and J. Ousterhout. “SLIK: Scalable

Low-Latency Indexes for a Key-Value Store.” In: Proceedings of the 2016 USENIX
Conference on Usenix Annual Technical Conference. USENIX ATC ’16. Denver, CO,

USA: USENIX Association, 2016, pp. 57–70. isbn: 9781931971300.

[13] B. Kate, E. Kohler, M. S. Kester, N. Narula, Y. Mao, and R. Morris. “Easy Fresh-

ness with Pequod Cache Joins.” In: Proceedings of the 11th USENIX Conference
on Networked Systems Design and Implementation. NSDI’14. Seattle, WA: USENIX

Association, 2014, pp. 415–428. isbn: 9781931971096.

[14] Y. Katsis, K. W. Ong, Y. Papakonstantinou, and K. K. Zhao. “Utilizing IDs to Accel-

erate Incremental View Maintenance.” In: Proceedings of the 2015 ACM SIGMOD
International Conference onManagement of Data. SIGMOD ’15. Melbourne, Victoria,

Australia: ACM, 2015, pp. 1985–2000. isbn: 978-1-4503-2758-9.

[15] W. Zhao, F. Rusu, B. Dong, K. Wu, and P. Nugent. “Incremental View Maintenance

over Array Data.” In: Proceedings of the 2017 ACM International Conference on
Management of Data. SIGMOD ’17. Chicago, Illinois, USA: ACM, 2017, pp. 139–154.

isbn: 978-1-4503-4197-4.

[16] M. Nikolic, M. Dashti, and C. Koch. “How to Win a Hot Dog Eating Contest:

Distributed Incremental View Maintenance with Batch Updates.” In: Proceedings
of the 2016 International Conference on Management of Data. SIGMOD ’16. San

Francisco, California, USA: ACM, 2016, pp. 511–526. isbn: 978-1-4503-3531-7.

139

BIBLIOGRAPHY

[17] O. Boykin, S. Ritchie, I. O’Connell, and J. Lin. “Summingbird: A Framework for

Integrating Batch and Online MapReduce Computations.” In: Proc. VLDB Endow.
7.13 (Aug. 2014), pp. 1441–1451. issn: 2150-8097.

[18] V. Kumar, H. Andrade, B. Gedik, and K.-L. Wu. “DEDUCE: At the Intersection

of MapReduce and Stream Processing.” In: Proceedings of the 13th International
Conference on Extending Database Technology. EDBT ’10. Lausanne, Switzerland:

ACM, 2010, pp. 657–662. isbn: 978-1-60558-945-9.

[19] W. Lam, L. Liu, S. Prasad, A. Rajaraman, Z. Vacheri, and A. Doan. “Muppet: MapRed-

style Processing of Fast Data.” In: Proc. VLDB Endow. 5.12 (Aug. 2012), pp. 1814–

1825. issn: 2150-8097.

[20] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi. “Naiad: A

Timely Data�ow System.” In: Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles. SOSP ’13. Farminton, Pennsylvania: ACM, 2013,

pp. 439–455. isbn: 978-1-4503-2388-8.

[21] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K. Tzoumas. Apache
Flink: Stream and Batch Processing in a Single Engine. Tech. rep. TU Delft, 2015.

[22] J. Albert. “Algebraic Properties of Bag Data Types.” In: Proceedings of the 17th
International Conference on Very Large Data Bases. VLDB ’91. San Francisco, CA,

USA: Morgan Kaufmann Publishers Inc., 1991, pp. 211–219. isbn: 1558601503.

[23] J. Albert. “Algebraic Properties of Bag Data Types.” In: Proceedings of the 17th
International Conference on Very Large Data Bases. VLDB ’91. San Francisco, CA,

USA: Morgan Kaufmann Publishers Inc., 1991, pp. 211–219. isbn: 1558601503.

[24] L. Libkin and L. Wong. “Query Languages for Bags and Aggregate Functions.” In:

J. Comput. Syst. Sci. 55.2 (Oct. 1997), pp. 241–272. issn: 0022-0000.

[25] S. Grumbach, L. Libkin, T. Milo, and L. Wong. “Query Languages for Bags: Expres-

sive Power and Complexity.” In: SIGACT News 27.2 (July 1996), pp. 30–44. issn:

0163-5700.

[26] L. Libkin and L. Wong. “Some Properties of Query Languages for Bags.” In: (Oct.

1995).

[27] L. S. Colby, T. Gri�n, L. Libkin, I. S. Mumick, and H. Trickey. “Algorithms for

Deferred View Maintenance.” In: SIGMOD Rec. 25.2 (June 1996), pp. 469–480. issn:

0163-5808.

140

BIBLIOGRAPHY

[28] J. A. Blakeley, P.-A. Larson, and F. W. Tompa. “E�ciently Updating Materialized

Views.” In: SIGMOD Rec. 15.2 (June 1986), pp. 61–71. issn: 0163-5808.

[29] A. Gupta, I. S. Mumick, and V. S. Subrahmanian. “Maintaining Views Incremen-

tally.” In: SIGMOD Rec. 22.2 (June 1993), pp. 157–166. issn: 0163-5808.

[30] Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom. “View Maintenance in a

Warehousing Environment.” In: SIGMOD Rec. 24.2 (May 1995), pp. 316–327. issn:

0163-5808.

[31] H. Wang, M. Orlowska, and W. Liang. “E�cient Refreshment of Materialized Views

with Multiple Sources.” In: Proceedings of the Eighth International Conference on
Information and Knowledge Management. CIKM ’99. Kansas City, Missouri, USA:

Association for Computing Machinery, 1999, pp. 375–382. isbn: 1581131461.

[32] K. Salem, K. Beyer, R. Cochrane, and B. Lindsay. “How To Roll a Join: Asynchronous

Incremental View Maintenance.” In: vol. 29. June 2000, pp. 129–140.

[33] H.-A. Jacobsen, P. Lee, and R. Yerneni. “View Maintenance in Web Data Platforms.”

In: Technical Report, University of Toronto (2009).

[34] Y. Cui, J. Widom, and J. L. Wiener. “Tracing the Lineage of View Data in a Ware-

housing Environment.” In: vol. 25. 2. New York, NY, USA: Association for Com-

puting Machinery, June 2000, pp. 179–227.

[35] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi. “Naiad: A

Timely Data�ow System.” In: Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles. SOSP ’13. Farminton, Pennsylvania: Association

for Computing Machinery, 2013, pp. 439–455. isbn: 9781450323888.

[36] C. Chrysa�s, B. Collins, S. Dugas, J. Dunkelberger, M. Ehsan, S. Gray, A. Grieser, O.

Herrnstadt, K. Lev-Ari, T. Lin, M. McMahon, N. Schiefer, and A. Shraer. “Founda-

tionDB Record Layer: A Multi-Tenant Structured Datastore.” In: Proceedings of the
2019 International Conference on Management of Data. SIGMOD ’19. Amsterdam,

Netherlands: Association for Computing Machinery, 2019, pp. 1787–1802. isbn:

9781450356435.

[37] C. Jin, R. Liu, and K. Salem. “Materialized views for eventually consistent record

stores.” In: 2013 IEEE 29th International Conference on Data Engineering Workshops
(ICDEW). 2013, pp. 250–257.

141

BIBLIOGRAPHY

[38] A. Kementsietsidis, F. Neven, D. Van de Craen, and S. Vansummeren. “Scalable

Multi-query Optimization for Exploratory Queries over Federated Scienti�c DBs.”

In: Proc. VLDB Endow. 1.1 (Aug. 2008), pp. 16–27. issn: 2150-8097.

[39] N. N. Dalvi, S. K. Sanghai, P. Roy, and S. Sudarshan. “Pipelining in Multi-query

Optimization.” In: Proceedings of the Twentieth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems. PODS ’01. Santa Barbara, California,

USA: ACM, 2001, pp. 59–70. isbn: 1-58113-361-8.

[40] A. Assefa and F. Getahun. “Multi-query Optimization for Semantic News Feed

Query.” In: Proceedings of the International Conference on Management of Emergent
Digital EcoSystems. MEDES ’12. Addis Ababa, Ethiopia: ACM, 2012, pp. 150–157.

isbn: 978-1-4503-1755-9.

[41] G. Graefe and W. J. McKenna. “The Volcano Optimizer Generator: Extensibility

and E�cient Search.” In: Proceedings of the Ninth International Conference on Data
Engineering. Washington, DC, USA: IEEE Computer Society, 1993, pp. 209–218.

isbn: 0-8186-3570-3.

[42] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. “E�cient and Extensible Algo-

rithms for Multi Query Optimization.” In: Proceedings of the 2000 ACM SIGMOD
International Conference on Management of Data. SIGMOD ’00. Dallas, Texas, USA:

ACM, 2000, pp. 249–260. isbn: 1-58113-217-4.

[43] H. Mistry, P. Roy, S. Sudarshan, and K. Ramamritham. “Materialized View Selection

and Maintenance Using Multi-query Optimization.” In: Proceedings of the 2001 ACM
SIGMOD International Conference on Management of Data. SIGMOD ’01. Santa

Barbara, California, USA: ACM, 2001, pp. 307–318. isbn: 1-58113-332-4.

[44] D. Theodoratos and W. Xu. “Constructing Search Spaces for Materialized View

Selection.” In: Proceedings of the 7th ACM International Workshop on Data Ware-
housing and OLAP. DOLAP ’04. Washington, DC, USA: ACM, 2004, pp. 112–121.

isbn: 1-58113-977-2.

[45] T. Nykiel, M. Potamias, C. Mishra, G. Kollios, and N. Koudas. “MRShare: Sharing

Across Multiple Queries in MapReduce.” In: Proc. VLDB Endow. 3.1-2 (Sept. 2010),

pp. 494–505. issn: 2150-8097.

142

BIBLIOGRAPHY

[46] S. Vemuri, M. Varshney, K. Puttaswamy, and R. Liu. “Execution Primitives for

Scalable Joins and Aggregations in Map Reduce.” In: Proc. VLDB Endow. 7.13 (Aug.

2014), pp. 1462–1473. issn: 2150-8097.

[47] G. Wang and C.-Y. Chan. “Multi-query Optimization in MapReduce Framework.”

In: Proc. VLDB Endow. 7.3 (Nov. 2013), pp. 145–156. issn: 2150-8097.

[48] F. N. Afrati and J. D. Ullman. “Optimizing Joins in a Map-reduce Environment.” In:

Proceedings of the 13th International Conference on Extending Database Technology.

EDBT ’10. Lausanne, Switzerland: ACM, 2010, pp. 99–110. isbn: 978-1-60558-945.

[49] K. Karanasos, A. Katsifodimos, and I. Manolescu. “Delta: Scalable Data Dissemina-

tion Under Capacity Constraints.” In: Proc. VLDB Endow. 7.4 (Dec. 2013), pp. 217–

228. issn: 2150-8097.

[50] J.-H. Böse, A. Andrzejak, and M. Högqvist. “Beyond Online Aggregation: Parallel

and Incremental Data Mining with Online Map-Reduce.” In: Proceedings of the
2010 Workshop on Massive Data Analytics on the Cloud. MDAC ’10. Raleigh, North

Carolina, USA: ACM, 2010, 3:1–3:6. isbn: 978-1-60558-991-6.

[51] F. Coelho, J. Paulo, R. Vilaça, J. Pereira, and R. Oliveira. “HTAPBench: Hybrid

Transactional and Analytical Processing Benchmark.” In: Proceedings of the 8th
ACM/SPEC on International Conference on Performance Engineering. ICPE ’17. Italy:

ACM, 2017, pp. 293–304. isbn: 978-1-4503-4404-3.

[52] J. Arulraj, A. Pavlo, and P. Menon. “Bridging the Archipelago Between Row-Stores

and Column-Stores for Hybrid Workloads.” In: Proceedings of the 2016 International
Conference on Management of Data. SIGMOD ’16. San Francisco, California, USA:

ACM, 2016, pp. 583–598. isbn: 978-1-4503-3531-7.

[53] F. Özcan, Y. Tian, and P. Tözün. “Hybrid Transactional/Analytical Processing: A

Survey.” In: Proceedings of the 2017 ACM International Conference on Management
of Data. SIGMOD ’17. Chicago, Illinois, USA: ACM, 2017, pp. 1771–1775. isbn:

978-1-4503-4197-4.

[54] D. Makreshanski, J. Giceva, C. Barthels, and G. Alonso. “BatchDB: E�cient Isolated

Execution of Hybrid OLTP+OLAP Workloads for Interactive Applications.” In:

Proceedings of the 2017 ACM International Conference on Management of Data.

SIGMOD ’17. Chicago, Illinois, USA: ACM, 2017, pp. 37–50. isbn: 978-1-4503-

4197-4.

143

BIBLIOGRAPHY

[55] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. “Spark: Cluster

Computing with Working Sets.” In: Proceedings of the 2Nd USENIX Conference on
Hot Topics in Cloud Computing. HotCloud’10. Boston, MA: USENIX Association,

2010, pp. 10–10.

[56] K. Y. Lee, J. H. Son, and M. H. Kim. “E�cient Incremental View Maintenance in Data

Warehouses.” In: Proceedings of the Tenth International Conference on Information
and Knowledge Management. CIKM ’01. Atlanta, Georgia, USA: Association for

Computing Machinery, 2001, pp. 349–356. isbn: 1581134363.

[57] D. Logothetis, C. Olston, B. Reed, K. C. Webb, and K. Yocum. “Stateful Bulk Pro-

cessing for Incremental Analytics.” In: Proceedings of the 1st ACM Symposium on
Cloud Computing. SoCC ’10. Indianapolis, Indiana, USA: ACM, 2010, pp. 51–62.

isbn: 978-1-4503-0036-0.

[58] X. Zhang, L. Ding, and E. A. Rundensteiner. “Parallel Multisource View Mainte-

nance.” In: The VLDB Journal 13.1 (Jan. 2004), pp. 22–48. issn: 1066-8888.

[59] Y. Zhuge, H. Garcia-Molina, and J. L. Wiener. “The Strobe Algorithms for Multi-

Source Warehouse Consistency.” In: Proceedings of the Fourth International Con-
ference on on Parallel and Distributed Information Systems. DIS ’96. Miami Beach,

Florida, USA: IEEE Computer Society, 1996, pp. 146–157. isbn: 081867475X.

[60] D. Karger, A. Sherman, A. Berkheimer, B. Bogstad, R. Dhanidina, K. Iwamoto, B.

Kim, L. Matkins, and Y. Yerushalmi. “Web Caching with Consistent Hashing.” In:

vol. 31. 11–16. USA: Elsevier North-Holland, Inc., May 1999, pp. 1203–1213.

[61] M. Athanassoulis, M. Kester, L. Maas, R. Stoica, S. Idreos, A. Ailamaki, and M.

Callaghan. “Designing Access Methods: The RUM Conjecture.” In: International
Conference on Extending Database Technology (EDBT). Bordeaux, France, 2016.

[62] Y. Cui and J. Widom. “Lineage Tracing for General Data Warehouse Transforma-

tions.” In: The VLDB Journal 12.1 (May 2003), pp. 41–58. issn: 1066-8888.

[63] G. Moro and C. Sartori. “Incremental Maintenance of Multi-source Views.” In:

Proceedings of the 12th Australasian Database Conference. ADC ’01. Gold Coast,

Queensland, Australia: IEEE Computer Society, 2001, pp. 13–20. isbn: 0-7695-

0966-5.

144

BIBLIOGRAPHY

[64] L. Ding, X. Zhang, and E. A. Rundensteiner. “The MRE Wrapper Approach: En-

abling Incremental View Maintenance of Data Warehouses De�ned on Multi-

relation Information Sources.” In: Proceedings of the 2Nd ACM International Work-
shop on Data Warehousing and OLAP. DOLAP ’99. Kansas City, Missouri, USA:

ACM, 1999, pp. 30–35. isbn: 1-58113-220-4.

[65] B. Liu, E. A. Rundensteiner, and D. Finkel. “Restructuring Batch View Maintenance

E�ciently.” In: Proceedings of the Thirteenth ACM International Conference on
Information and Knowledge Management. CIKM ’04. Washington, D.C., USA: ACM,

2004, pp. 228–229. isbn: 1-58113-874-1.

[66] G. Moerkotte and T. Neumann. “Dynamic Programming Strikes Back.” In: Proceed-
ings of the 2008 ACM SIGMOD International Conference on Management of Data.

SIGMOD ’08. Vancouver, Canada: ACM, 2008, pp. 539–552. isbn: 978-1-60558-102.

[67] H.-c. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker. “Map-reduce-merge: Simpli�ed

Relational Data Processing on Large Clusters.” In: Proceedings of the 2007 ACM
SIGMOD International Conference on Management of Data. SIGMOD ’07. Beijing,

China: ACM, 2007, pp. 1029–1040. isbn: 978-1-59593-686-8.

[68] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulkarni, J. Jackson,

K. Gade, M. Fu, J. Donham, N. Bhagat, S. Mittal, and D. Ryaboy. “StormAtTwitter.”

In: Proceedings of the 2014 ACM SIGMOD International Conference on Management
of Data. SIGMOD ’14. Snowbird, Utah, USA: ACM, 2014, pp. 147–156. isbn: 978-

1-4503-2376-5.

[69] C. Olston, G. Chiou, L. Chitnis, F. Liu, Y. Han, M. Larsson, A. Neumann, V. B.

Rao, V. Sankarasubramanian, S. Seth, C. Tian, T. ZiCornell, and X. Wang. “Nova:

Continuous Pig/Hadoop Work�ows.” In: Proceedings of the 2011 ACM SIGMOD
International Conference on Management of Data. SIGMOD ’11. Athens, Greece:

ACM, 2011, pp. 1081–1090. isbn: 978-1-4503-0661-4.

145

Appendices

146

Appendix A

Proof of consistency

As stated in Section 4.3, Theorem 1 states that a view maintenance system ful�lling all

three of the following requirements achieves strong consistency:

P1: View updates are applied exactly once.

P2: View updates are processed atomically and isolated.

P3: Record timeline is preserved.

Our proof is organized in three stages: we start with proving convergence and then

present extensions to also prove weak consistency and �nally strong consistency.

A.1 Notation

First, we de�ne the following notation for keys, operations on keys, and the ordering of

operations. Let kx denote a key of a base table A, where x ∈ X = {1, … ,m}, and X is the

table’s key range. X can be quali�ed with the name of the table when multiple tables

are involved (e.g., XA for table A, XC for table C). Further, let an operation on key kx be

147

A.1. NOTATION

de�ned as t[kx]. A totally ordered sequence of operations S on a single table of length

N is denoted by ⟨t1[kx1], t2[kx2], t3[kx3], … , tN [kxn]⟩, where ∀i ∈ {1, … , n}, xi ∈ X . In other

words, this sequence contains operations over an arbitrary key in the base table, where

it is possible that a key is updated several times or not at all.

The index i in t (i)[kx] is used to express a sequence of operations on a single row-key (i.e.,

the record timeline). For example, a sequence of operations on row-key kx is denoted as

⟨t (1)[kx], t (2)[kx], … , t (!)[kx]⟩.

The last operation on a particular row-key is always denoted with !. Note that each

operation in the timeline also exists in the overall sequence for the table containing the

record: ∀i ∈ {1, … , !}, ∃j ∈ {1, … , n}, t (i)[kx] = tj[kx].

A sequence of operations S = ⟨t1[kx1], … , tN [kxn]⟩ over table A produces a sequence of

base table states ⟨B0, … , B(tN [kxn])⟩. B0 is the initial state of A, and B(tn) is the state of

the table after applying some transaction tn. We also call the �nal state of the table Bf ,
where Bf = B(tN [kxn]). Bf (kx) for x ∈ X denotes the �nal base table state for a speci�c

key kx .

Lemma 1: For any two operation sequences on kx :
S1 = ⟨t (1)[kx], t (2)[kx], … , t (!)[kx]⟩ and
S′ = ⟨t ′(1)[kx], t ′(2)[kx], … , t ′(!)[kx]⟩. Let Bf (kx), B′f (kx) be the �nal state of kx after applying
S or S′, respectively. Then, t (!)[kx] = t ′(!)[kx] ⇔ Bf (kx) = B′f (kx).

Proof. The lemma states that the �nal state of a given key is completely determined by

the last operation on that key. This follows due to the idempotence of the KVS write

operations (put, delete). The operations are repeatable with no consequence and do not

read the previous stored state of the key (stateless).

According to Lemma 1, the state of a key in a base table is only dependent on the last

operation applied on that key. Therefore, the notation B(t[kx]) refers to the state of some

key kx after applying an operation t , irrespective of the sequence of operations preceding

t .

148

APPENDIX A. PROOF OF CONSISTENCY

A.2 Convergence

Using the above notation, the property of convergence is de�ned as follows:

Convergence – Given a �nite sequence of operations ⟨t1, t2, t3, … , tN ⟩ for some base

table A, Bf is the �nal state of A. The �nal state Vf of a view table over A converges if

Vf = V iew(Bf), where V iew(Bf) is the evaluation of the view expression over the �nal

state of A, Bf .

We prove convergence on a case-by-case basis for each type of view expression.

One-to-one mapping – selection, projection views de�ne a one-to-one mapping between

base and view table. We �rst prove the following lemma:

Lemma 2: Given a sequence of operations applied for a view (using selection, projection,
only) on key kx : S = ⟨t (1)[kx], … , t (!)[kx]⟩. Let Vf (kx) be the �nal state of the view on kx
after applying S. Then, V iew(t (!)[kx]) = Vf (kx).

Proof. Since selection and projection are both idempotent stateless operations, the �nal

state of the view maintained on kx is equivalent to applying the view operator on the

�nal operation in the sequence.

We now prove convergence by contradiction. Suppose that Vf ≠ V iew(Bf). Then, ∃x ∈
X , V iew(Bf (kx)) ≠ Vf (kx). According to Lemmas 1 and 2, t (!)[kx] ≠ s(!)[kx], where

s(!)[kx] is the last operation processed by the view for kx and t (!)[kx] is the last operation

processed by the base table for kx . However, according to properties P1 and P3, the

last operation processed by the view and the base table must be the same since both

sequences contain the same operations and in the same order. Therefore, t (!)[kx] =
s(!)[kx], V iew(B(t (!)[kx])) = V (s(!)[kx]), which contradicts V iew(Bf (kx)) ≠ Vf (kx).

We use a similar proof for the Delta operator:

Lemma 3: Given a sequence of operations applied for a view (using DELTA, only) on key
kx : S = ⟨t (1)[kx], … , t (!−1)[kx], t (!)[kx]⟩. Let Vf (kx) be the �nal state of the view on kx after
applying S. Then, V iew(⟨t (!−1)[kx], t (!)[kx]⟩) = Vf (kx).

149

A.2. CONVERGENCE

Proof. DELTA is an operator which computes the di�erence of state between two op-

erations. Therefore, the �nal state of the view depends on the last two operations in S,

which is the same as applying DELTA on a base table key which processes these two

operations.

Suppose that Vf ≠ V iew(Bf) for Delta. Then, ∃x ∈ X , V iew(Bf (kx)) ≠ Vf (kx). According

to Lemma 3, t (!)[kx] ≠ s(!)[kx] ∨ t (!−1)[kx] ≠ s(!−1)[kx], where s(!−1)[kx], s(!)[kx] are the last

two operations processed by the view for kx . According to properties P1 and P3, the last

two operations processed by the view and the base table must be identical and in the

same order. Therefore,

t (!)[kx] = s(!)[kx] ∧ t (!−1)[kx] = s(!−1)[kx],
V iew(B(⟨t (!−1)[kx], t (!)[kx]⟩)) = V (⟨s(!−1)[kx], s(!)[kx]⟩),
which contradicts V iew(Bf (kx)) ≠ Vf (kx).

Many-to-one mapping – Pre-aggregation, aggregation and index views de�ne a many-

to-one mapping between base and view table. The row-key of the view table is the

aggregation key. Multiple row-keys in the base table can relate to a particular aggregation

key. However, a base table row has always only one aggregation key. A correct view

record with aggregation key x is de�ned as the combination of multiple base records

kx1 ..kxj , related to the particular key. We prove the following lemma:

Lemma 4: Given a sequence of operations applied for a view (using Pre-aggregation and
aggregation) on table A. Let Vf be the �nal state of the view after applying the sequence.
Let S be an arbitrary sequence containing only the last operation on each key kx , x ∈ X :
S = ⟨t (!)[k1], … , t (!)[km]⟩. Then, V iew(S) = Vf (kx).

Proof. Pre-aggregation, aggregation and INDEX are stateless operations which depend

only on the last operation of each key involved. Therefore, applying the view expression

on the state of a base table after it has processed the last operation of every key returns

the same state as the �nal view state.

Suppose that Vf ≠ V iew(Bf) for Pre-aggregation, aggregation or index. According to

Lemma 4, ∃x ∈ X , t (!)[kx] ≠ s(!)[kx], where s(!)[kx] is the last operation processed by the

view for kx and t (!)[kx] is the last operation processed by the base table for kx . According

150

APPENDIX A. PROOF OF CONSISTENCY

to properties P1 and P3, the last operation processed by the view and the base table for key

kx must be identical. Therefore, t (!)[kx] = s(!)[kx],
V iew(B(⟨t (!)[k1], … , t (!)[km]⟩)) = V (⟨s(!)[k1], … , s(!)[km]⟩), which contradictsV iew(Bf) ≠
Vf .

Many-to-many mapping: Reverse-join and join views de�ne a many-to-many mapping

between base and view table. The row-key of the view table is a composite key of both

join tables’ row-keys. Multiple records of both base tables form a set of multiple view

records in the view table. Since the joining of tables takes place in the Reverse-join view,

we prove convergence only for this view type. A Reverse-join view has a structure that is

similar to an aggregation view. The row-key of the Reverse-join view is the join key of

both tables. All base table records are grouped according to this join key. But in contrast

to an aggregation view, the Reverse-join view combines two base tables to create one view

table. A correct view record with join key x is de�ned as a combination of operations on

keys k1..kn from join table A and operations on keys l1..lp from join table B. This property

provides the basis for the following lemma:

Lemma 5: Given a sequence S of operations applied for a view (using Reverse-join and join)
on tables A and C . Let Vf be the �nal state of the view after applying S. Let S be an
arbitrary sequence containing only the last operation on each key kx , x ∈ XA = 1,… ,m in
A and each key yx , x ∈ XB = 1,… ,m′ in C : S = ⟨t (!)[k1], … , t (!)[km], t (!)[y1], … , t (!)[y′m]⟩.
Then, V iew(S) = Vf .

Proof. Reverse-join and join are stateless operations which depend only on the last opera-

tion of each key involved (from both tables). Therefore, applying the view expression on

the state of base tables after each has processed the last operation of every key returns

the same state as the �nal view state.

For Reverse-join and join, convergence is achieved if Vf = V iew(Bf , B′f) where Bf , B′f
are the �nal view states for tables A, C involved in the join, respectively. Suppose

that Vf ≠ V iew(Bf , B′f). According to Lemma 5, ∃x ∈ XA ∪ XC , t (!)[kx] ≠ s(!)[kx],
where s(!)[kx] is the last operation processed by the view for kx and t (!)[kx] is the last

operation processed by a base table for kx . According to properties P1 and P3, the last

operation processed by the view and the base table containing key kx must be identical.

151

A.3. WEAK CONSISTENCY

Therefore, t (!)[kx] = s(!)[kx], which contradicts V iew(B(Bf , B′f)) ≠ Vf .

A.3 Weak consistency

Weak consistency has been de�ned as follows: Weak consistency is given if the view

converges and all intermediate view states are valid, meaning there exists a valid sequence

of operations from which they can be derived from the state of one or more base tables

(Vj = V iew(Bi , … , Bk)). As we already proved convergence, we need to show that all the

intermediary view states are correct.

For view expressions which depend on one key in table A (excluding DELTA), sup-

pose that for some intermediate view state Vj , ∀i ∈ 1, … , N , Vj ≠ V iew(Bi). Let T =
⟨t1[kx1], t2[kx2], t3[kx3], … , tN [kxn]⟩ be the sequence of operations applied on A. Let sj be

the operation that produced Vj : V (sj) = Vj . By Lemmas 2, ∀i ∈ 1, … , N , sj ≠ ti . In other

words, the view processed an operation which was never processed by the originating

base table. However, property P1 and P2 ensure that each operation corresponds to a

base table operation and is fully processed. By contradiction, Vj = V iew(Bi).

For Delta on table A, suppose that for some intermediate view state Vj , ∀i ∈ 1, … , N , Vj ≠
V iew(Bi−1, Bi). The proof is similar to the above proof, with the addition that property P3

ensures that each pair of consecutive operations processed by the view must exist and

have been processed as a consecutive pair by the base table A.

For view expressions which depend on multiple keys in table A, suppose that for some

intermediate view state Vj , ∀i ∈ 1, … , N , Vj ≠ V iew(Bi). Let T = ⟨t1[kx1], t2[kx2], t3[kx3], … ,
tN [kxn]⟩ be the sequence of operations applied on A. According to Lemma 4, ;et S be an

arbitrary sequence containing only one operation on each key kx , x ∈ XA = 1,… ,m
such that V (S) = Vj . According to the de�nition of intermediate view states, ∃kx , x ∈
XA, t(kx) ∈ S, t(kx) ∉ T . In other words, there exist at least one operation on some key

in A which was processed by the view, but not by the base table. However, property

P1 and P2 ensure that each operation corresponds to a base table operation and is fully

processed. By contradiction, Vj = V iew(Bi).

152

APPENDIX A. PROOF OF CONSISTENCY

For Reverse-join and join on tables A and C , the argument is similar to selection and

projection. According to Lemma 5, every state Vj is created on a pair of operations of

A and C . Using property P1, it is guaranteed that both operations have been previously

processed in the originating tables.

A.4 Strong consistency

Strong consistency has been de�ned as follows: Weak consistency is achieved and the

following conditions hold true. All pairs of view states Vi and Vj that are in a relation

Vi ≤ Vj are derived from base states Bi and Bj that are also in a relation Bi ≤ Bj . Since

weak consistency is already proven, we only need to prove the statement Vi ≤ Vj ⇒
Bi ≤ Bj . If this statement is false, then only two of the following cases can occur: Either

Vi ≤ Vj ⇒ Bi ∥ Bj or Vi ≤ Vj ⇒ Bi ≥ Bj . Both cases can only be constructed by breaking

the record timeline. To be precise: At least one record has to exists, whose timeline is

broken. Formally, we demand (∃tl ∈ Bi)(∀tk ∈ Bj) ∶ (r(tl) = r(tk)) ∧ (l > k). Because P3

prevents the breaking of timelines, we conclude that both cases are not possible. Thus,

we have proven strong consistency by contradiction.

153

	Abstract
	Zusammenfassung
	Acknowledgments
	Introduction
	Motivation
	Problem statement
	Contributions
	Organisation

	Background
	Large-scale distributed systems
	Materialized views
	Incremental view maintenance
	Base and view table definition
	Generalized multi-sets

	Related work
	View Maintenance System
	Multi-view processing
	Consistent hybrid view maintenance

	View Maintenance System
	System overview
	KV-Store model
	VMS architecture
	VM processing

	View consistency
	Consistency model
	Theorem for strong consistency

	View maintenance concept
	Distributed model
	Property 1: exactly once
	Property 2: atomicity and isolation
	Property 3: record timeline
	Batching

	Supported view types
	Evaluation

	Multi-view processing
	View concepts
	Selection and projection
	Aggregation
	Multi-join
	Nested constructions

	Cost model
	Evaluation

	Consistent hybrid view maintenance
	Incremental strategies
	Basic incremental
	Incremental micro-batched

	Batching strategies
	Repeated snapshots
	Repeated scans
	Incremental snapshots

	Hybrid strategies
	Rationale
	Hybrid transitions
	View states

	Evaluation

	Conclusions
	Summary
	Future work

	List of Acronyms
	List of Figures
	List of Algorithms
	Bibliography
	Appendices
	Proof of consistency
	Notation
	Convergence
	Weak consistency
	Strong consistency

