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Metabolite identification is a crucial step in nontargeted metabolomics, but also

represents one of its current bottlenecks. Accurate identifications are required for

correct biological interpretation. To date, annotation and identification are usually

based on the use of accurate mass search or tandem mass spectrometry analysis, but

neglect orthogonal information such as retention times obtained by chromatographic

separation. While several tools are available for the analysis and prediction of tandem

mass spectrometry data, prediction of retention times for metabolite identification

are not widespread. Here, we review the current state of retention time prediction

in liquid chromatography–mass spectrometry-based metabolomics, with a focus on

publications published after 2010.
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1 INTRODUCTION

Metabolomics, the systematic study of metabolites in a
biological system, has been called “the apogee of the omics
trilogy” [1]. The metabolome is the entirety of all metabolites
in a biological system; it constitutes a snapshot of the cell’s
or organism’s physiology under particular physiological con-
ditions. In contrast to transcripts and proteins, metabolites are
(with few exceptions) not directly encoded in an organism’s
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genome but are rather determined by the metabolic potential
of the encoded enzymes. Furthermore, metabolites and
metabolite levels are highly dependent on the surrounding
environment, making it hard to estimate the exact number of
metabolites present in an organism. In addition to metabolites
produced by an organism itself, we may find xenometabolites,
food-derived metabolites, drugs, and others. Metabolomics
is used in many areas of life science, spanning from funda-
mental research to translational and personalized medicine.
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Metabolites from different origins such as body fluids,
bacterial or cell cultures, tissues, microbiomes, or even ocean
water [2–4] are measured on a routine basis. In clinical
metabolomics, urine and plasma are commonly employed
body fluids and, among others, are used for diabetes or
nutrition research. Further topics of interest include toxi-
cological studies, biomarker and target discovery, as well
as clinical trials and studies. It is understood that the above
list is incomplete, and that many more application areas of
metabolomics exist.

Different analytical methods can be used to measure the
metabolome, of which MS and NMR spectroscopy are by far
the two most widely used. MS is usually combined with prior
separation by chromatography, such as GC, LC or, less fre-
quently, CE. Separation by GC has been used in metabolomics
since the 1970s; it is usually coupled to low resolution MS
with electron ionization, and often used to investigate pri-
mary metabolites. However, combination of GC with high
resolution MS such as Orbitrap or Time of Flight (ToF)
instruments is recently gaining interest in metabolomics [5,6].
Despite its widespread use, GC–MS is only applicable to
volatile molecules and molecules that can be made volatile
by derivatization. LC–MS allows to separate a diverse set
of compounds including non-volatile compounds, secondary
metabolites, drugs, drug metabolism products, food com-
pounds, and others. Here, MS with different mass resolv-
ing power is in frequent use: this includes triple quadrupole
(QqQ) MS for targeted, and ToF and Orbitrap MS for non-
targeted metabolomic investigations. The latter two tech-
niques produce so-called “high-resolution” MS data: high
mass resolution allows us to differentiate between ions of
almost identical mass; this and the high mass accuracy of the
instruments enable non-targeted investigations without prior
selection of subsets of metabolites. This facilitates the col-
lection of a comprehensive snapshot of the metabolic state of
an organism, cell, or ecosystem and includes the detection of
known and unknown metabolites.

2 METABOLITE IDENTIFICATION

Identification of metabolites constitutes an important, and
arguably the currently most pressing bottleneck of LC–MS-
based metabolomics: Even for high-resolution mass spectro-
metric data, da Silva et al. [7] reported that “only 1.8% of
spectra in an untargeted metabolomics experiment can be
annotated.” Despite ongoing discussion on how many features
detected in an LC–MS run actually correspond to metabo-
lites [8,9] and how many features are detected for a single
metabolite (e.g., different adducts and in-source fragments),
it is undisputed that a large fraction of metabolites in the
data remain unidentified and make up the “dark matter of

metabolomics” [7]. Yet, downstream bioinformatic and bio-
chemical analysis requires accurately identified metabolites
for the correct interpretation of results.

Whereas in targeted analysis, information on metabolites of
interest is established based on chemical reference standards,
untargeted analysis uses MS2 data to establish (putative) iden-
tities of metabolites. Here, metabolite annotation and identifi-
cation can be performed at different levels, e.g., accurate mass
search, formula calculation from accurate mass and isotope
pattern, and analysis of tandem MS data [10,11]. It is under-
stood that the accurate mass of a small molecule is insufficient
for its structural elucidation: Searching ChemSpider [12] with
mass 378.1678 Da and 10 ppm mass accuracy returns more
than 9500 structures; but even searching the exact molecular
formula C20H26O7 results in 300 structures. Hence, the accu-
rate mass of a small molecule cannot provide information
beyond its molecular formula, and trying to identify a small
molecule based on its mass will result in a long list containing
the putatively correct identity along with numerous false iden-
tifications. To this end, tandem MS is usually employed for
(partial) structural elucidation. Until recently, identifications
were restricted to compounds for which a reference spectrum
from a chemical referenced standard was contained in some
(commercial, open, or in-house) spectral library, such as
METLIN [13], Mass Bank of North America [14], MassBank
[15], mzCloud [16], or the Human Metabolome Database
(HMDB) [17]. Ideally, analytical conditions between the
measurement and spectral libraries are highly similar;
this will substantially improve results. The use of spectral
libraries for identification represents the current practice,
whereas the gold standard for MS-based identification is
the comparison of tandem MS and RT data for a chemical
standard and biological sample under identical experimental
conditions. However, the number of compounds in spectral
libraries and for which chemical standards are available
is small, compared to the number of detected metabolites.
Recently, the coverage of different MS2 spectral libraries in
different genome scale metabolic models (GSMs) has been
evaluated: on average, <40% of metabolites in the models
have one or several reference spectra from authentic chemical
standards [18]. This is despite the fact that GSMs only
contain reactions and metabolites belonging to the endoge-
nous metabolism; coverage is clearly even worse if we go
beyond that.

Recently, in silico approaches have been developed that
allow to search in molecular structure databases such as Pub-
Chem [19] and ChemSpider [12]; these in silico approaches
are increasingly used by the metabolomics community.
MetFrag [22,23] is the oldest, best known, and also most
widely used tool for this task; other tools include MAGMa
[24], CFM-ID [25], MassFrontier, and, finally, CSI:FingerID
[26] which is currently best-in-class. Employed structure
databases are many orders of magnitude larger than any
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F I G U R E 1 Retention time information is augmenting MS data. (A) Extracted ion chromatograms of m/z 287.0546 corresponding to an

in-source fragment of Kaempferol-7-glucoside (I), Kaempferol (II), and Luteolin (III), and m/z 449.1071 corresponding to Kaempferol-7-glucoside.

The three isomeric structures show distinct chromatographic retention times. (B) DDA MS2 spectra of the respective chromatographic peaks (I-III).

Numbers on the right indicate the cosine score (dot product) between the different spectra based on m/z range 100–280 (ignoring the intense

precursor m/z). The in-source fragment of Kaemperol-7-glucoside and Kaempferol show the highest similarity (0.85)

spectral library and, hence, have a much wider coverage of
molecular structures. PubChem contains numerous structures
not of biological interest but can serve as a proxy of a
very large molecular structure database with more than
100 million entries. Databases of comparable size can be
generated using, say, in silico metabolism prediction, such as
Metabolite In Silico Network Extensions (MINEs) [20] and
BioTransformerDB [21].

Machine learning approaches such as CFM-ID or
CSI:FingerID are of particular help to identify substances,
but often rely on the input of training data. Performing
structural elucidation of novel metabolites by MS/MS with
structures not similar to known substances or training data
remains an extremely challenging if not impossible task, and
typically requires purification of sufficient amount of the
substance and 2D NMR measurements.

We noted above that different levels of metabolite identi-
fication have been defined, based on the available evidence
[10,11]. But even identification by comparing MS/MS to
reference data, constituting the second-highest identification
level of the Metabolomics Standard Initiative, will result in
numerous spurious identifications: Different metabolites can
show similar or almost identical fragmentation patterns or
RTs. To improve identification quality, combination of inde-
pendent parameters such as mass, fragmentation pattern, and
RT of a chemical reference standard have to be measured

under identical analytical conditions and compared to those
of the query molecule.

Figure 1 shows a typical example. The extracted ion chro-
matogram (EIC) for m/z 287.0632 shows three distinct chro-
matographic peaks. For each of the peaks, MS/MS data were
collected via data-dependent analysis (DDA). All three com-
pounds fragment very similarly, only the spectrum of the
peak at 3.7 min shows different abundances of fragment ions,
whereas spectra of the peaks at 3.2 and 4.0 min are almost
identical with a cosine score of 0.85. Hence, analyzing the
MS/MS data by library matching and/or in silico tools may
yield identical search results for peaks at 3.2 and 4.0 min.
However, chromatographic behavior clearly differentiates the
three substances, whereas the peaks at 3.7 and 4.0 min rep-
resent Luteolin and Kaempferol, respectively, the peak at 3.2
min is not a real metabolite signal but an in-source fragment
of kaempferol-7-glucoside.

The example shows how the incorporation of the RT
dimension can be used to reduce false positive identifications.
However, experimental protocols employed in metabolomics
are not standardized, and whereas the mass of a metabolite is
a molecular property and is consistent across different experi-
ments and laboratories, RTs arise from the combination of the
metabolite and the employed chromatographic system. Dif-
ferent column chemistries and solvents lead to different RTs
of the same metabolites; unfortunately, this remains true if
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F I G U R E 2 Overview on chromatographic separation methods

used in studies submitted to Metabolights [29]. Description of

chromatographic methods were searched for columns, which were

classified into RP, HILIC, or other methods (e.g. pentafluoro phenyl,

PFP). In total 435 method descriptions were used

the chromatographic setup is nominally identical but realized
on different instruments. RT is often employed at a late stage
of metabolite identification, typically when comparing with a
chemical reference standard. However, it is not possible for a
single laboratory to purchase and host standards of all possi-
ble standards for all putative annotations.

3 SEPARATION TECHNIQUES IN
METABOLOMICS

Different separation techniques are used in metabolomics,
including CE, GC, LC, SFC, and ion mobility separation
(IMS). While each technique has its unique strengths and
areas of application, LC is the most widely employed method
in non-targeted metabolomics. It can be combined with IMS
for a 2D separation prior to mass spectrometric detection.
Likewise, both GC and LC can be also used in 2D approaches
in which the eluent from the first dimension is transferred
to a second dimension with an orthogonal separation chem-
istry. This increases the peak capacity dramatically and allows
for the detection of more substances. Although methods like
GC×GC [27] and LC×LC [28] are gaining more attention,
they are mostly used by specialist laboratories. While the use
of RT in GC has been standardized, e.g., by the use of the
Kovats index; in contrast, LC–MS shows much higher varia-
tion. In this review, we focus on LC–MS-based nontargeted
metabolomics and the use of RT prediction for metabolite
identification.

Since metabolites cover a wide range of polarity, no single
analytical method can cover the entire metabolome of a given
sample or organism. Reversed-phase separation (RP) is used
for the separation of hydrophobic substances. Two separation
methods are commonly used, the first one uses a gradient
from water to organic solvents such as acetonitrile (ACN)
or methanol (MeOH) for the chromatographic separation

of mid-hydrophobic metabolites, whereas the second uses
gradients from water/ACN to 2-propanol (iPrOH) and is
typically employed for the separation of lipids.

The main driver for metabolite separation in RP is the
partitioning between the hydrophobic stationary phase, e.g.,
octadecyl modified silica particles, and the hydrophilic
mobile phase. Gradient elution toward solvents with higher
elution strength (hydrophobicity, e.g., MeOH, ACN, or
iPrOH) allows to also elute nonpolar metabolites. Selectiv-
ity of separation can be fine-tuned by the addition of different
functional groups or other ligands (e.g., phenyl-hexyl).

Analysis of hydrophilic metabolites can be performed
using HILIC. In contrast to RP, the separation mechanism
of HILIC is not completely understood. While the main
driver is also the partitioning between two phases, the water-
enriched hydrophilic stationary phase and the hydrophobic
mobile phase, several secondary interactions also play impor-
tant roles. These include ionic interaction, hydrogen bonds,
and others. Therefore, the exact separation mechanism in
HILIC is less well-defined and relies on the employed column
and solvent. Metabolomics does not allow for a “one-size-fits-
all” experimental protocol; hence, a diverse set of separation
conditions are used in different laboratories. In order to get an
overview on the employed separation methods, we reviewed
studies submitted to Metabolights [29] that were performed
with HPLC–MS or UHPLC–MS, and collected columns and
solvents used, irrespective of the method being targeted or
nontargeted. From 435 descriptions of chromatographic sepa-
rations using LC–MS, 330 were classified as RP, 92 as HILIC,
and 13 as other (e.g. pentafluoro phenyl, PFP) separations
(Figure 2).

4 RETENTION TIME PREDICTION
IN LC–MS-BASED METABOLOMICS

Prediction of RTs can be a promising venue to further filter
annotation results toward a reasonable number of candi-
dates. RT prediction is performed by Quantitative Structure
Retention Relationship (QSRR) modeling, which aims to
relate physicochemical properties of metabolites with their
RTs under specific chromatographic conditions. Typically,
models are trained on a selection of several tens to hundreds
of measured standards and allow the prediction of RTs for
chemically closely related structures.

Numerous publications have used different modeling
methods for the prediction of RTs under different ana-
lytical conditions [30]. Similar to the general trend in
metabolomics mostly using RP-based separation, only few
papers describe the use of QSRR for HILIC-based non-
targeted metabolomics. In this review, we discuss a few
selected examples of RT prediction approaches as summa-
rized in Table 1, focusing on publications published after
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T A B L E 1 Overview on the selected papers employing retention time prediction for metabolomics reviewed here

Publication Chromatography No. of metabolites Data available?
Creek et al. (2011) HILIC 120 Yes

Domingo-Almenara et al. (2019) RP 80038 Yes

Eugster et al. (2014) RP 260 Yes

Cao et al. (2014) HILIC 93 Yes

Randazzo et al. (2016) RP 91 Yes

Broeckling et al. (2016) RP 904 Yes

Bruderer et al. (2016) RP 532 Yes

Bach et al. (2019) RP 5 datasets Yes

Wolfer et al. (2015) RP 442 No

Aicheler et al. (2015) RP 201 Yes

Samaraweera et al. (2018) RP — No

2010. A direct comparison of the individual approaches and
performance of the used RT predictions is impossible due to
different reporting of errors and performance metrics.

4.1 Modeling of HILIC-based separations
Creek et al. [31] applied RT prediction for a HILIC-based
non-targeted metabolomics workflow. Based on 120 authentic
standards and multilinear regression (MLR), they obtained a
model that predicts RTs with a cross-validated R2 of 0.82 and
a mean squared error (MSE) of 0.14. Modeling was based on
selection of optimal descriptors from a set of 11 physicochem-
ical properties. The final model included six physicochemi-
cal properties, where logD was the most predictive parameter.
Using a similar setup, Cao et al. [32] performed modeling of
93 substances using MLR and random forest (RF) regression.
Similar to Creek et al., logP was found to be one of the main
features driving the QSRR models. Furthermore, the authors
found that RF outperforms the MLR. However, it is known
that RF is prone to overfitting, especially when small training
sets are used.

4.2 Modeling of reversed-phase-based
separations
Bruderer et al. [33] used RT prediction for support of data
independent acquisition (DIA) of MS2 data. They measured
532 metabolites on two different C18 columns using either
pH 3.0 or 8.0. In full, 12 molecular descriptors were pre-
dicted using software from ACD/Labs (Advanced Chemistry
Development, Toronto, Canada). Out of these 12 features, five
were selected for further modeling using multilinear regres-
sion. Using a minimal set of 16 compounds, the authors were
able to predict retention times with 4 min root-mean-square
error (RMSE). Riboflavin detected in urine was used as a val-
idation example. Two chromatographic peaks fitting to the
theoretical m/z of riboflavin in positive ionization mode were

detected, but only one was fitting the predicted retention time
using the minimal model with 16 compounds.

RT prediction for an RP-based separation was also per-
formed by Wolferer et al. [34]. Based on 442 standards, using
the Volsurf+ molecular descriptors as features and support
vector regression (SVR) as the machine learning model, the
authors were able to predict RTs for their experimental setup
with errors of 13% of the RT. Furthermore, an applicability
domain approach was used to filter out molecules showing
only low similarity to the training set, as these would have
high prediction errors. Using their RT prediction, 95% of cor-
rect identifications in the validation were among the top three
results.

Selection of the correct applicability domain is an impor-
tant factor, especially if training datasets are small. Eugster
et al. [35] restrained their model to only CHO-containing nat-
ural products, using a training set of 260 compounds and dif-
ferent models based on partial least square regression (PLS)
and artificial neural networks (ANN). They trained sub-class
specific models for eight individual compound classes. An
additional model was trained on the complete dataset. In their
validation experiment, they showed that combining different
prediction models improves the identification power.

Aicheler et al. [36] trained a QSRR model using SVR for
lipid identifications. Predictions of RTs are particularly valu-
able for compound classes such as lipids where many isomeric
structures exist. Based on 201 lipids identified from mouse fat
tissue, they trained a model that was able to remove more than
50% of potential identifications using accurate mass search,
which retaining 95% of the correct identifications.

Randazzo et al. [37,38] focused on steroids and employed
RT prediction based on linear solvent strength (LSS) theory
[39] and QSRR models based on 91 steroids. They also used
the VolSurf+ descriptors as descriptors. These descriptors
take into account the 3D structure of molecules; this is par-
ticularly important for steroids, since these molecules often
differ only in the stereochemistry of single groups. This can
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lead to different conformation of the rings, which can have
a huge influence on the chromatographic behavior. Addi-
tionally, gonane topological weighted fingerprints (GTWF)
specific for steroids and their gonane-based structure were
used. Based on experimental RTs under two different gra-
dients, the LSS parameters Log kw and S were determined.
QSRR modeling using the VolSurf+ descriptors and the
GTWFs predicted the LSS parameters, which in turn are used
to predict RTs. This approach was integrated into a dynamic
RT database and was used for the identification of steroids
[40].

A common factor to all of the studies is the small size of
available training data. Recently, the METLIN small molecule
RT dataset was released. This dataset covers 80 038 small
molecules, all measured with a single reversed phase method.
The dataset is particularly noteworthy because it is one to
two orders of magnitude larger than any dataset previously
used for RT prediction. Domingo-Almenara et al. [41] used
this dataset for RT prediction using Deep Neural Networks
(DNN). Validation showed that in 70% of the cases, the cor-
rect molecule was among the top three candidates.

4.3 Evaluation of different machine learning
approaches
In most cases of published QSRR approaches for
metabolomics, only one or two machine learning approaches
are used for prediction. In contrast, Bouwmeester et al. [42]
evaluated 36 different metabolomics datasets against seven
different machine learning approaches (Bayesian Ridge
Regression [BRR]; Least Absolute Shrinkage and Selection
Operator Regression [LASSO]; Artificial Neural Networks
[ANN]; Adaptive Boosting [AB]; Gradient Boosting [GB];
Random Forest [RF]; linear Support Vector Regression
[LSVR], and nonlinear SVR using a Radial Basis Function
(RBF) kernel). Two sets of molecular descriptors were
used, constituting either 151 features or a minimal set of
11 features. Their analysis showed that no single approach
outperforms all other for all evaluated datasets, although
GB performed best in most cases. Furthermore, the authors
evaluated ensemble learning integrating different algorithms
by simply averaging predicted RTs.

4.4 Integration of multiple separation systems
Common to all modeling approaches is that they only inves-
tigate a single chromatographic setup at a time; this is true
even for Bouwmeester et al. [42]. Unfortunately, this means
that predictions are of no use for anybody using a different
experimental setup; and in view of our above remarks, even
the transferability to a setup that nominally uses exactly the
same experimental protocol, will be rather limited. This may
explain the huge number of papers that have been written on

RT prediction, not only for use in metabolomics, over the
last decades; see the review by Héberger [30]. So far, only
few studies focused on the aspect of transferability, despite its
obvious importance.

Zisi et al. [43] performed QSRR for 94 metabolite stan-
dards and their results indicated that the inclusion of RTs from
a different chromatographic column as an additional descrip-
tor improves prediction accuracy.

Bach et al. [44] performed prediction of retention order
instead of RTs. This is based on the observation that the reten-
tion order of two molecules (which molecule eludes first) is
more similar for different chromatographic setups than RT
of the two molecules itself. Using a ranking support vector
machine (RankSVM), they evaluated five different chromato-
graphic systems, all based on RP separation. For training of
the respective models, either single chromatographic systems
or multiple systems were used. Their results show that the
RankSVM trained on multiple systems outperforms direct RT
prediction SVR, with or without training on multiple systems.

Stanstrup et al. [45] developed a system called PredRet,
which enable the projection of RTs of measured substances
between different chromatographic systems of similar sepa-
ration chemistry. Commonly detected metabolites are used to
define a function for mapping between the different systems
and RTs of metabolites detected in one, but not the other sys-
tem can be projected.

5 CURRENT LIMITATIONS

An interesting challenge for future work will be the differ-
entiation between stereoisomers. MS and MS/MS data of
two stereoisomers are often highly similar or even indis-
tinguishable; therefore, chromatographic separation can
deliver valuable additional information. However, to allow
us to distinguish between stereoisomers, 3D descriptors are
required; but such descriptors are rarely used in current RT
prediction approaches. First steps in this direction have been
undertaken by using the VolSurf+ 3D descriptors [34,37,38].

Eugester et al. [35] briefly mention this problem:
the metabolites isoquercitrin (quercetin-3-O-glucoside) and
hyperoside (quercetin-3-O-galactoside) have different experi-
mental RTs, while their predicted RT is identical.

Most of the RT predictions have been evaluated by filtering
annotations based on exact mass matching or formula look
up in databases, using only MS1 information. However,
MS1 plus RT is not considered sufficient for compound
identification or annotation; if a compound is to be annotated,
we may assume that MS2 spectra have been measured for this
compound. The important question in this context is: Can
RT prediction methods facilitate the annotation of substances
beyond the information already available through comparison
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of MS2 spectra with library spectra or the use of in silico
methods for MS2 analysis? Integration of RT prediction with
MS2 analysis tools is not common yet. Samaraweera et al. [46]
evaluated the prediction of an ANN-based retention index
model with different in silico tools: CFM-ID, CSI:FingerID,
Mass Frontier, and MetFrag. In case of CFM-ID, MetFrag
and Mass Frontier, a significant improvement could be
achieved when searching in PubChem. Using the smaller
HMDB as a proxy of a biological database, no substantial
improvements were observed. CSI:FingerID consistently
reached the best annotation results, but showed only modest
and non-significant improvements through the integration
of RT predictions even when searching PubChem. These
results were obtained using 78 compounds as “unknowns”.
To this end, it remains elusive how exact RT prediction can
be integrated with MS2 annotation workflows, and whether
it can improve annotations of best-in-class methods.

At present, a new model based on ideally several hun-
dred reference standards must be trained individually for each
new separation system. Integrative approaches such as the
one of Bach et al. are of huge importance for untargeted
metabolomics, since they potentially allow us to transfer the
trained models to new separation systems.

Lastly, prediction of RTs often relies on molecular descrip-
tors such as logP, logD, and others, which in turn are also
predicted using chemoinformatic models. But these predic-
tions already introduce errors. Furthermore, most of these
descriptors are on fully aqueous media, whereas chromato-
graphic separation is performed with hydro-organic solvent
mixtures. This might introduce further errors and hinder more
precise QSRR modeling. Also, most compounds analyzed in
metabolomics are charged under the employed analytical con-
ditions, which are of great importance particularly for HILIC-
based separations: molecular fingerprints such as (counting)
fingerprints or the fingerprints used by Domingo-Almenara
et al. [41] may be valuable alternatives once sufficient train-
ing data becomes available.

6 CONCLUSION

RT prediction is increasingly getting attention in non-targeted
metabolomics, since it supplies information orthogonal to
(tandem) MS data for metabolite identification. Different
approaches have been used for the prediction of RTs, using
QSRR models based on different molecular descriptors and
different machine learning models. Utilized approaches show
as much variability as the separation methods used in LC–
MS-based metabolomics.

RT prediction in HILIC is assumedly more complicated,
since several types of HILIC columns with different sur-
face chemistries are available. Different RP columns are not
exactly identical, but they share more common characteris-

tics than different HILIC columns. Furthermore, different pH
values are used in HILIC for the separation, causing a strong
effect on analyte retention. However, HILIC is getting more
attention as a method for the analysis of the polar metabolome.
Although initially believed to be not reproducible, an increas-
ing number of studies focusing on the use of HILIC show that
there is a major interest: if used properly and with appropriate
experimental conditions, the performance of HILIC columns
appears to be reproducible.

With more and more data becoming publicly available
through metabolomic data repositories such as Metabolights
[29], Metabolomics Workbench [47], or Global Natural Prod-
ucts Social Molecular Networking (GNPS) [48], the amount
of available training data for RT prediction also increases.
Therefore, we argue that the future of RT prediction and inte-
gration into metabolite identification workflows is bright; we
believe that new approaches will be developed in the near
future that will make RT and RT prediction a highly valuable
asset in untargeted metabolomics.
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