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Abstract

For further increasing the performance and safety characteristics of aircraft, it is neces-
sary to accurately predict the static and dynamic interactions between the structural-
elastic, inertial, and aerodynamically-induced forces. In the context of the associated
aeroelastic investigations, efficient linear potential flow methods have been mainly ap-
plied to model the unsteady aerodynamic loads. However, these methods do not fully
meet today’s accuracy requirements, especially in terms of transonic flow problems that
are governed by nonlinear effects. In contrast, the time-varying aerodynamic forces
can be determined with sufficient precision using computational fluid dynamics (CFD)
approaches. Since the latter methods require extensive computing capacities, their in-
dustrial use for multidisciplinary analyses is still limited.

Motivated by this bottleneck, model-order reduction methods based on recurrent
neuro-fuzzy models are developed in the present thesis in order to efficiently reproduce
the unsteady aerodynamic characteristics. Therefore, the time-domain reduced-order
models (ROMs) exploit modern system identification principles, which allow the pre-
diction of nonlinear flow phenomena. Consequently, the aerodynamic ROM reflects the
essential dynamics of the underlying CFD system in a resource-saving manner and is
capable, inter alia, of modeling the flight behavior across varying freestream conditions,
pronounced shock motions, and structural vibrations. Based on the proposed method-
ology, integral motion-induced forces and moments or, in combination with the proper
orthogonal decomposition, locally-distributed aerodynamic loads can be computed in an
accurate and robust way. Hence, a significant efficiency enhancement of the CFD-based
numerical analysis is achieved, which allows the assessment of the aircraft aeroelastic
behavior at an earlier stage in the development process. The proposed methods are
comprehensively tested and validated by considering four test cases of variable complex-
ity. In this regard, the computational efficiency as well as the fidelity of the ROMs is
assessed relative to the full-order simulation procedure.





Zusammenfassung

Zur Steigerung der Effizienz und Sicherheit von Luftfahrzeugen ist es notwendig, die
statischen und dynamischen Wechselwirkungen zwischen struktur-elastischen Kräften,
Trägheitskräften sowie aerodynamischen Kräften präzise vorherzusagen. Im Kontext
solcher aeroelastischer Untersuchungen wurden zur Modellierung der instationären Aero-
dynamik bisher hauptsächlich lineare Potenzialverfahren eingesetzt, welche jedoch die
heutigen Genauigkeitsanforderungen speziell im transsonischen Strömungsbereich nicht
in vollem Umfang erfüllen. Im Gegensatz dazu lassen sich die Luftkräfte mithilfe von
Computational Fluid Dynamics-Ansätzen (CFD) mit hinreichender Präzision ermitteln.
Allerdings setzen letztere Verfahren enorme Rechenkapazitäten voraus, was deren indus-
triellen Einsatz für multidisziplinäre Analysen stark limitiert.

Motiviert durch diese Problemstellung werden in der vorliegenden Arbeit Modell-
reduktionsverfahren basierend auf rekurrenten Neuro-Fuzzy Modellen entwickelt, welche
die instationären aerodynamischen Zusammenhänge auf effiziente Weise reproduzieren.
Diese adaptiven, im Zeitbereich formulierten Ansätze werden anhand von modernen
Systemidentifikationsverfahren hergeleitet, was die Vorhersage von strömungsmecha-
nisch-nichtlinearen Phänomenen erlaubt. Die auf diese Weise erhaltenen vereinfachten
Aerodynamikmodelle geben die dominante Charakteristik des CFD-Systems ressourcen-
sparend wieder und eignen sich u.a. zur Modellierung des Flugverhaltens bei unter-
schiedlichen Anströmbedingungen, ausgeprägten Stoßwanderungen sowie strukturell-
bedingten Vibrationen. Basierend auf dieser Vorgehensweise können integrale Luftkräfte
bzw. in Kombination mit der Hauptkomponentenanalyse auch lokale strömungsindu-
zierte Lasten auf präzise und robuste Weise ermittelt werden. Dadurch wird eine deut-
liche Effizienzsteigerung des CFD-basierten numerischen Analyseprozesses erzielt, was
eine Beurteilung des aeroelastischen Verhaltens von Luftfahrzeugstrukturen zu einem
früheren Zeitpunkt im Entwicklungsprozess ermöglicht. Die vorgestellten Verfahren
werden anhand von vier Testfällen variierender Komplexität erprobt und umfassend
validiert, wobei sowohl die Rechenzeiten als auch die Genauigkeit relativ zur CFD-
Referenzlösung bewertet werden.
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ε user-defined threshold for RIC criterion
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η step increment (nonlinear LM optimization)

Θ normalized excitation amplitude
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θ pitch angle degree of freedom

λ thermal conductivity
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µ dynamic viscosity
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ν Poisson’s ratio
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σ singular value
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τ shear stress tensor
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b body-fixed coordinate system

def deformed state
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max maximum

min minimum
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Pred one-step prediction
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Sim application/generalization

std standardized quantity
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Trn training

t tangential components

w wall
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Superscripts Denotation

d dimension of the model input vector

L linear influence

N nonlinear influence

1, 2 first, second harmonic

∗ scaling factor for nondimensionalization

> transpose

Modifier Denotation

• dimensionful variable

•◦2 Hadamard power

•̂, •̃ neural-network-based approximation



Abbreviations and Acronyms

AER Chair of Aerodynamics and Fluid Mechanics, TUM

AGARD Advisory Group for Aerospace Research and Development

AIAA American Institute of Aeronautics and Astronautics

ANFIS adaptive-network-based fuzzy inference system

ANN artificial neural network

APRBS amplitude-modulated pseudo-random binary signal

ARMA auto-regressive moving average model

ARX auto-regressive model with exogenous inputs

BC boundary condition

CFD computational fluid dynamics

CGAN conditional generative adversarial network

CNN convolutional neural network

CPU central processing unit

CRM common research model

CT computational test

DPW drag prediction workshop

ERA eigensystem realization algorithm

FEM finite element method

FERMAT flutter reduced-order model assessment

FFT fast Fourier transform

FVM finite volume method

FWGN filtered white Gaussian noise

GAF generalized aerodynamic forces

GRNN general regression neural network

HB harmonic balance

HIRENASD high Reynolds number aero-structural dynamics (test case)

LANN Lockheed-Georgia, Air Force Flight Dynamics Laboratory,
NASA-Langley, NLR (test case)

LCO limit-cycle oscillation

LLM local linear model

LM Levenberg-Marquardt (algorithm)

LOLIMOT local linear model tree (algorithm)

LRZ Leibniz Supercomputing Center (Leibniz Rechenzentrum)

LSTM long short-term memory (neural network)

LTI linear time-invariant

LU-SSOR lower-upper symmetric successive over-relaxation



XXIV Abbreviations and Acronyms

MC Monte-Carlo

MIMO multiple-input multiple-output

MISO multiple-input single-output

MLP multilayer perceptron (neural network)

MTOW maximum take-off weight

MUSCL monotonic upstream-centered schemes for conservation laws

MZFW maximum zero fuel weight

NACA National Advisory Committee for Aeronautics

NARMAX nonlinear auto-regressive moving average model with
exogenous inputs

NARX nonlinear auto-regressive model with exogenous inputs

NASA National Aeronautics and Space Administration

NFM neuro-fuzzy model

NLR Netherlands Aerospace Center (Nationaal Lucht- en
Ruimtevaartlaboratorium)

NN neural network

NOE nonlinear output error model

NSI nonlinear system identification

POD proper orthogonal decomposition

PRBS pseudo-random binary signal

RANS Reynolds-averaged Navier-Stokes

RBF radial basis function

ROM reduced-order model

SA, MA, LA small, medium, large amplitude cases

SAPRBS smoothed amplitude-modulated pseudo-random binary signal

SD small disturbance

SISO single-input single-output

SVD singular value decomposition

TDNN time-delay neural networks

TFI transfinite interpolation

TPS thin-plate spline

TVD total variation diminishing

TUM Technical University of Munich

URANS unsteady Reynolds-averaged Navier-Stokes

VT vertical tail

WBT wing/body/horizontal-tail configuration



1 Introduction

For the design, analysis, and certification of aircraft, the efficient and accurate determina-
tion of the flight envelope boundaries is a task of paramount importance. Therefore, the
interplay of aerodynamic, structural-elastic, and inertial forces and moments acting on
the airframe must be investigated, which is embodied by the discipline of aeroelasticity.
Consequently, a multidisciplinary simulation approach is required in order to predict the
static and dynamic phenomena that are caused by the aeroelastic coupling. Associated
to this challenging task, the analysis of unsteady aerodynamic loads plays a decisive role
for the industrial development of both civil and military aircraft.

This chapter provides the motivation for the conducted research including an intro-
duction to the topic. Subsequently, the established methods as well as the current state
of research is discussed by means of a literature review. Finally, the objectives and the
structure of this thesis are outlined.

1.1 Motivation

Besides aerodynamic- and engine-related restrictions, aeroelastic stability and response
problems typically limit the flight envelope of aircraft. According to Collars’ well-known
triangle of forces, the coupling of aerodynamic, elastic, and inertial forces can lead to of-
ten undesired phenomena [11]. Considering for example static aeroelastic effects, which
arise due to the mutual reaction of the quasi-steady flow-induced forces with the elastic
structure, the divergence of the lift-generating surfaces or the control surface reversal
are interdisciplinary consequences that need to be prevented. However, even moderate
flight-load-induced deformations have a non-negligible impact on the performance and,
therefore, must be taken into account within the design process [40]. Since a reduction of
the structural weight is of particular interest for the overall aircraft design, a compromise
has to be realized between the structural mass and stiffness distribution and the resulting
aeroelastic behavior. Nevertheless, it is also possible to consciously exploit aeroelastic
deformations in order to optimize the properties of highly-flexible aircraft. For example,
the structural deformation can be passively controlled in a beneficial manner by means
of smartly placed fiber composite materials, leading to the so-called aeroelastic tailoring
concept [29].

The focus in this work, however, is laid on unsteady aerodynamic as well as dynamic
aeroelastic effects. Dynamic aeroelastic phenomena can be categorized into stability and
response problems. The stability problem, referred to as flutter, is generally defined as
a self-excited vibration of the wing or tail structure [15]. Due to phase shifts between
the structural motion and the aerodynamic force response, the structure extracts energy
from the flow under certain conditions. Ultimately, severe damage up to an explosive
failure of the affected parts of the aircraft occurs. Thereby, the critical flutter speed
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marks the condition at which any disturbance-induced vibration becomes invariantly
damped. Consequently, the flutter phenomenon places high demands on the design and
construction of aircraft structures. In fact, various manifestations of flutter are addressed
in the literature, e.g., the classical bending-torsion flutter, propeller-whirl flutter, panel
flutter, control surface flutter, and body-freedom flutter [11, 29].

Besides the gust- or maneuver-induced dynamics, aeroelastic response problems are,
inter alia, associated to aerodynamic buffet, control surface buzz, and limit-cycle oscil-
lations [119, 132]. In particular, aeroelastic buffeting is a nonlinear effect that involves
the presence of locally separated flow [197]. In the low speed regime, buffeting is usually
caused by high-lift-related flow separation that occurs for example at the leading edge
of the wing or the canard. The turbulent pressure fluctuations of the wake then interact
with the downstream-located structure, e.g., the vertical tail plane. At transonic condi-
tions, buffet is triggered by shock-boundary-layer interactions leading to self-sustained
shock motions and associated oscillating flow-separations. Another dynamic aeroelastic
phenomenon is the control surface buzz, which can arise at transonic and low supersonic
conditions. Thereby, the flow-inherent nonlinearities lead to high-frequency oscillations
of the control surface, while a single motion degree of freedom is involved [15,160]. Last
but not least, aeroelastic limit-cycle oscillations (LCOs) are characterized by an initially
increasing or decreasing vibration amplitude of the affected structural parts [168]. In
contrast to the stability problem, however, the self-sustained motion of a LCO is limited
at a single or even multiple amplitude levels due to the presence of a nonlinearity [142].
In order to avoid a deterioration in passenger/pilot comfort as well as fatigue issues asso-
ciated to the aforementioned phenomena, the multidisciplinary prediction of aeroelastic
nonlinearities is of crucial importance.

Although the theoretical fundamentals of dynamic aeroelasticity are to a large extent
understood, challenges still exist with respect to the numerically-driven aircraft design
and analysis process and the treatment of off-design conditions [101]. For example, the
aeroelastic behavior of natural laminar flow wings is subject to recent research [166]. The
high-speed stall occurring at transonic conditions, that is caused by three-dimensional
aerodynamic buffet, is another research topic of present interest. In general, nonlin-
ear aeroelastic effects require special attention as they cannot be simulated using the
well-established and efficient linear potential flow methods [30].

Within the scope of this work, aeroelastic nonlinearities refer, on the one hand, to
a nonlinear relationship between the structural deflection and the associated aerody-
namic loads. On the other hand, also a freestream condition variation can result in a
nonlinear behavior regarding the aerodynamic force and, consequently, the aeroelastic
response. For example, it has been shown that the compressibility of the flow affects the
unsteady aerodynamic loads such that the flutter speed in the transonic flight regime is
reduced. This well-known characteristic is commonly referred to as the transonic dip of
the flutter boundary [4]. It is important to emphasize that a nonlinear dependency can
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be introduced into the coupled system by every sub-discipline, i.e., the structure can
also exhibit a nonlinear behavior due to material laws, play, or geometric nonlinearities
resulting from large elastic deflections [41]. In the present work, however, only aerody-
namic nonlinearities are further taken into account.

Focusing on the industrial aircraft development process, the unsteady flow-induced loads
have been mainly modeled using the highly-efficient potential-flow-theory-based meth-
ods [29,101], e.g., the doublet-lattice method [1] or the transonic-small-disturbance equa-
tions [5]. More complex approaches are typically used only for selective investigations
in a later development phase. However, the classical methods are limited in their fi-
delity if aerodynamic nonlinearities such as strong shocks or distinct flow separations
are present [8]. In contrast to the established linear methods, modern computational
fluid dynamics (CFD) solvers are able to reproduce the inviscid and viscous flow-induced
loads with significantly higher accuracy, capturing the aforementioned nonlinear char-
acteristics [13,59]. Nevertheless, it is well-known that the use of CFD-based methods is
accompanied with a drastically increased computational effort. The problem of costly
individual simulations is aggravated by the large parameter space that needs to be in-
vestigated for aircraft aeroelastic applications. Considering exemplarily the effort of a
typical flutter analysis, unsteady aerodynamic computations must be conducted for the
design space spanned by many structural eigenmodes, freestream conditions, excitation
frequencies, control surface positions, etc. in order to determine the flutter boundary [23].
Today, the long turnaround times are still limiting the widespread use of unsteady CFD
methods with respect to the preliminary aircraft design phase [103,107].

As a remedy to the aforementioned CFD-related efficiency bottleneck, various linear and
nonlinear aerodynamic reduced-order modeling (ROM) approaches have been developed
in recent years. The objective of these auxiliary models is the reduction of the full-
order problem to a computationally less costly and simpler system description under the
premise that the essential static and dynamic characteristics of the underlying aerody-
namic system are preserved. According to Lucia et al. [103], a model order reduction can
be interpreted as a projection of the full-order problem characterized by a large number
of degrees of freedom onto a much smaller subspace that encapsulates the fundamental
dynamics. Within the present work, a ROM is considered as a mathematical model that
is conditioned by high-fidelity CFD data in order to fulfill a specified simulation task.
Once the ROM is available, the simulations of interest can be carried out within a frac-
tion of the computational cost compared to the full-order system. A literature review of
the recently-developed unsteady aerodynamic ROM methodologies is given below.
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1.2 State of Research

A priori to a more detailed discussion of the published ROM approaches, the broad
variety of methodologies requires a fundamental classification. First, the aerodynamic
model-order reduction methods can be categorized according to their resulting output,
i.e., whether the approach allows the computation of the entire flow field (or surface
distribution) or the prediction of integral quantities only. Second, a distinction is ad-
visable with regard to the mathematical equations: Based on the specific ansatz, the
reduced-order models might be limited to the treatment of linear problems, whereas more
complex approaches are suited to address nonlinearities as well. Third, the methods can
be grouped into time-domain- and frequency-domain-based formulations. Finally, it
must be distinguished between methodologies that are generally based on a modifica-
tion or approximation of the underlying fluid dynamic equations (e.g., via linearization)
in contrast to system-identification-based methods that are employed virtually as a CFD
post-processing tool. Since a recapitulation of all ROM classes is beyond the scope of
this work, only the context-relevant approaches that inspired the present research are
further taken into account. In particular, the time-domain modeling of motion-induced
aerodynamic loads by means of nonlinear system identification principles is of primary
interest in the following.

The review articles of Lucia et al. [103], Dowell and Hall [31], and Ghoreyshi et al. [45]
provide a comprehensive overview of several ROM concepts, for example, the Volterra
theory, the harmonic balance method, and the proper orthogonal decomposition (POD),
while their application to unsteady aerodynamic as well as aeroelastic test cases is pre-
sented. Volterra-series methods are based on the generalization of the convolutional
integral or indicial response approach in order to allow the identification of nonlinear
systems. In contrast to the indicial method [6], which is applicable to linear dynamics
only, the Volterra theory states that a nonlinear time-invariant system can be described
by an infinite sum of convolutional integrals [148]. Therefore, the so-called kernel serves
as the multidimensional transfer function, while higher-order kernel elements allow the
representation of aerodynamic nonlinearities. For problems with many degrees of free-
dom or a distinctly nonlinear behavior, however, the estimation of the kernel becomes
an exhaustive task that is strongly connected with the fidelity of the resulting ROM.
Nevertheless, Silva [147–149] and Raveh [134] demonstrated the successful application of
Volterra-theory-based ROMs to weakly-nonlinear unsteady aerodynamic problems. The
recent work of de Paula et al. [24] pointed out that a neural network can be employed
for the identification of the higher-order kernel components.

The harmonic balance method has been originally developed within the electrical engi-
neering community to model electrical circuits. As the approach is valid for the treatment
of nonlinear differential equation systems in general, the methodology has been adopted
for fluid dynamic model-order reduction purposes. By assuming periodically unsteady
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flows, the state of each physical quantity in a finite volume cell is therefore approximated
using a Fourier-series-based ansatz. Depending on the order of the considered Fourier
coefficients, nonlinear aerodynamic effects can be generally respected. However, both
the computational effort and the memory requirements become considerably higher with
an increasing order of the Fourier approximation. Initially applied by Hall et al. [53]
for turbomachinery-related simulations, the harmonic balance method has been adapted
to external aerodynamic problems by Thomas et al. [164]. A similar approach is also
followed by the small disturbance or linear frequency domain CFD methods. In contrast
to the harmonic balance methodology, the small disturbance solvers are based on the
assumption that the unsteady flow perturbations about an aerodynamic reference state
can be considered as entirely linear. Based on this hypothesis, the time-linearized Euler
equations have been derived by Hall and Crawley [52] with respect to turbomachinery
applications. A posteriori, the method has been generalized by Kreiselmaier [86] to
external aerodynamic test cases and extended to time-linearized Navier-Stokes formula-
tions by Iatrou [66], Pechloff [127], and Thormann and Widhalm [165].

Furthermore, the proper orthogonal decomposition, which is also known as the princi-
pal component analysis or Karhunen-Loève decomposition, is a popular dimensionality
reduction technique for a variety of engineering disciplines. In the present context, the
basic idea of the POD is the representation of the flow by means of a comparatively
small set of representative modes. In this way, it is possible to significantly reduce the
number of degrees of freedom with respect to the underlying problem, while capturing
the dominant, high-energy structures of the flow. Hence, there is an analogy between the
modal transformation applied within the structural dynamics community and the POD
usage in terms of aerodynamic ROMs. In general, the POD can be used to treat linear as
well as nonlinear problems, which is underpinned by several publications [3,70,103]. For
example, the POD modes obtained from a set of steady-state results can be employed
to span the possible solution space for a range of freestream conditions. Then, the con-
servation equations can be re-formulated by means of the available POD subspace as
suggested by Zimmermann and Görtz [203]. Though, the focus in this work is on the
utilization of the proper orthogonal decomposition as a CFD post-processing tool, which
leads to the so-called snapshot method introduced by Sirovich [154]. For unsteady aero-
dynamic considerations, the flow field or surface distribution must be therefore provided
at several time instants, while the grouped data at a certain time step constitutes a
snapshot. Subsequently, the available snapshots are used to compute the complete set
of potential POD modes. Since the magnitude of the resulting singular values related to
each mode indicates the relative importance of the corresponding POD mode, a reduced
number of modes can be selected that inherits the essential flow characteristics. The
application examples vary from steady to unsteady two- and three-dimensional flow field
decompositions. Without claim to completeness, the POD has been applied by Hall et
al. [54], Lucia et al. [104], Willcox and Peraire [181], Farhat and Amsallem [36], and



6 1 Introduction

Iuliano and Quagliarella [70] for instance. For the modeling of linear dynamic systems,
a frequency domain POD methodology has been proposed by Kim [76] and Kim and
Bussoletti [78].

Concurrently, several unsteady aerodynamic reduced-order models originating from lin-
ear and nonlinear system identification techniques evolved. It is important at this point
to highlight the general difference between system identification and model-order reduc-
tion. Traditionally, the system identification methodologies are used to obtain a model
of an unknown system by means of available input/output data. In the ROM context,
however, a system that has been a priori described by first-order principles such as phys-
ical conservation laws is taken into consideration. Thus, the identification methods are
used to obtain a model from selected full-order solutions with the aim of an efficiency
enhancement. For a more detailed discussion of the system identification terminology,
refer to Chapter 3.

A well-known linear aerodynamic identification approach is based on the eigensystem
realization algorithm (ERA, [74]) that has been employed by Silva and Bartels [152]
to obtain a linear time-invariant state-space model. Thereby, the focus is on the time-
domain prediction of integral aerodynamic loads caused by structural excitations [151].
For a further gain in computational efficiency, this method has been extended by various
researchers in order to allow the excitation of several structural eigenmodes within a sin-
gle unsteady CFD simulation [39, 77, 150]. Moreover, linear aerodynamic input/output
models have been derived from the recurrence framework approach, which is an estab-
lished system identification concept [102]. Examples for this class are the auto-regressive
moving-average (ARMA) model devised by Cowan et al. [22], Raveh [135], and Won et
al. [191] as well as the auto-regressive with exogenous input (ARX) model developed by
Zhang and Ye [201].

The referred linear identification approaches can adequately capture the linear dynamic
characteristics around a fixed aerodynamic reference state. However, the associated
ROMs are exclusively valid for a specific freestream condition and are not suited to de-
scribe nonlinear dynamic effects induced by large shock motions or separated flows. With
respect to the latter modeling tasks, sophisticated approaches based on nonlinear system
identification principles have been developed. Because of their mathematical foundation,
these ROMs can be applied to model the nonlinear aerodynamic response, e.g., caused
by large-amplitude motions in transonic flow. However, the identification of nonlinear
systems is a challenging and often non-robust task [9,121]. As the homogeneity and ad-
ditivity principles do not apply in general, the response becomes amplitude-dependent
which may lead to bifurcations [8], limit-cycle oscillations [28, 169], or even a chaotic
behavior of the system [9]. Furthermore, instability of the identified nonlinear models
is frequently encountered for time-marching simulations due to error accumulations as a
consequence of the model output feedback [102, 121]. For many applications, the ROM
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may be also expected to reproduce both linear and nonlinear system characteristics de-
pending on the operating regime and amplitude range. Hence, a variety of algorithms
and approaches have been developed to cope with those difficulties.

In the context of unsteady aerodynamic modeling, Faller and Schreck [34,35] proposed
the application of a recurrent multilayer perceptron (MLP) neural network [57, 140] for
the identification of experimentally-recorded aerodynamic coefficient time series. Mar-
ques and Anderson [112] used a feedforward multi-layer neural network to predict the
unsteady flow-induced forces acting on the NACA 0012 airfoil. Denegri and Johnson [27]
developed a static MLP neural network for interpolating the flutter and LCO charac-
teristics with respect to varying external store configurations. Pitt and Haudrich [129]
used a non-recurrent artificial neural network of MLP-type to investigate the influence
of distributed non-structural weights on the flutter characteristic of a generic wing.
Consequently, Voitcu and Wong [173] demonstrated the capability of artificial neural
networks for modeling the dynamic behavior of aeroelastic systems. For that purpose, a
two-layer feedforward neural network has been combined with a wavelet decomposition
regarding the input/output signals. Furthermore, Rampurawala et al. [133] employed
a non-recurrent MLP neural network to model the aeroelastic behavior of the Goland
wing. In order to capture dynamic effects using the aforementioned quasi-steady model
framework, temporal derivatives of the excitation signal have been added to the input
vector of the neural network. Subsequently, Mannarino and Mantegazza [109, 110] fur-
ther developed those ideas by using a recurrent MLP neural network to approximate the
lift and pitching moment coefficients of the NACA 64A010 airfoil.

Besides MLP-based identification approaches, the radial basis function (RBF) neural
network [16] is a nonlinear function approximation method that has been utilized in
various publications. For instance, Won et al. [191] employed a RBF neural network
to predict the motion-induced forces related to the AGARD 445.6 wing. Similarly,
Yao and Liou [193] used a RBF approach to model the unsteady aerodynamics of a
generic wing/body configuration. Moreover, Zhang et al. [200] employed a recurrent
RBF neural network to investigate the LCO behavior of the NACA 64A010 airfoil at
transonic flow conditions. For that purpose, randomly-selected centers have been chosen
prior to the linear optimization of the basis function widths. Consequently, Winter and
Breitsamter [182] utilized a recurrent RBF neural network trained by the orthogonal
least-squares algorithm [21] to simulate transient aerodynamic force and moment re-
sponses induced by prescribed motions. A different training approach has been followed
by Zhang et al. [199] who applied the proper orthogonal decomposition for selecting the
RBF centers. With respect to the subsequent basis function width determination, a
particle swarm optimization has been carried out. Recently, Kou and Zhang [82] gener-
alized their RBF neural network formulation to allow the incorporation of asymmetric
wavelet kernels.
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In addition, reduced-order models based on the Kriging interpolation technique [88]
have shown the ability for accurate aerodynamic response prediction purposes. For ex-
ample, Glaz et al. [46,47] formulated a surrogate model for rotorcraft applications using
the external dynamic filter approach linked with a Kriging-based interpolator. Liu et
al. [100] simulated the dynamic stall behavior of wind turbine airfoils using a Kriging
approximation of the nonlinear response surface. Furthermore, a nonlinear state-space
identification methodology has been suggested by Mannarino and Dowell [108] to model
unsteady aerodynamic responses. Therefore, the matrices related to the linear part of
the state-space model are initially determined by a subspace projection method, while
the nonlinear parameters are a posteriori computed using a nonlinear output error op-
timization.

Another class of ROMs is based on the fuzzy logic theory, which has been originally
inspired by neuro-biological processes and human thought patterns. The core element
of the fuzzy logic theory, from a mathematical point of view, is the existence of fuzzy
sets. In contrast to the well-known binary logic, fuzzy sets allow the assignment of
intermediate states of validity/membership, i.e., states between true and false. In this
regard, Huang et al. [63] proposed the use of a fuzzified eigensystem realization algorithm
to identify the steady aerodynamic characteristics of a small unmanned aerial vehicle.
The fuzzified ERA can be considered as a nonlinear generalization of the methodology
suggested in Reference [74]. A further application of fuzzy-logic-based decision rules is
shown in the work of Kouba et al. [85], who modeled the F/A-18 overall aircraft charac-
teristics from flight test data using a Sugeno approach [14]. Similarly, Wang et al. [177]
predicted aerodynamic coefficients for the F-16XL configuration using a Takagi-Sugeno
fuzzy model [161] trained by forced-oscillation test data.

In contrast to the methodologies introduced beforehand, only a few approaches have
been published that account for variable flow conditions using a monolithic reduced-
order model. Though, a single aerodynamic model that is valid across a broad range
of freestream conditions or even the entire flight envelope is highly desirable for effi-
cient simulation and control purposes. In 2005, Lind et al. [94] proposed a Volterra-
theory-based approach to model the aerodynamics of a generic pitch-plunge system. In
particular, the authors employed a first-order parameter-varying approximation with re-
spect to the Volterra model to account for different freestream velocities. Subsequently,
Prazenica et al. [131] computed first- and second-order Volterra kernels as a function
of a user-defined freestream parameter to obtain results for non-trained flight condi-
tions. An extension of the aforementioned method has been proposed by Omran and
Newman [123], who applied a nonlinear parameter-varying approach with respect to the
locally-estimated Volterra models. In this way, the approach can deal with a larger range
of freestream conditions comprising stronger nonlinear characteristics compared to the
linear parameter-varying ansatz. Furthermore, a surrogate-based recurrence framework
has been devised by Glaz et al. [47] to model the unsteady aerodynamic forces acting on
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rotor blades. For capturing the prevailing physical effects, harmonic Mach number vari-
ations have been taken into consideration, while a Kriging algorithm is employed to train
the nonlinear characteristics. Similarly, Liu et al. [99] utilized a Kriging surrogate model
for the prediction of the unsteady aerodynamics of the NACA 64A010 airfoil undergoing
a combined pitch and plunge motion, while the freestream condition has been treated
as an additional model input. Moreover, Skujins and Cesnik [155] developed a method
that unites a linear convolutional method with a nonlinear correction factor approach
and the so-called method-of-segments to model the aerodynamics of the AGARD 445.6
wing across multiple Mach regimes. Recently, Kou and Zhang [83] applied a recurrent
RBF-neural-network-based ROM to predict integral aerodynamic responses for variable
freestream conditions. To challenge the model, they considered the NACA 64A010 air-
foil test case undergoing harmonic excitations at transonic flow conditions.

In the previous paragraphs, the POD-based model-order reduction approaches have been
discussed independently from the respective linear and nonlinear system identification
methodologies. Nevertheless, some combinations of these methods have been proposed
for the efficient treatment of aerodynamic and aeroelastic problems. For instance, Park
et al. [126] linked a set of POD modes with a single-layer neural network in order to
construct static flow fields for efficient wing design optimization purposes. Furthermore,
a successful combination of a non-recurrent RBF-based nonlinear system identification
approach with the proper orthogonal decomposition has been suggested by Lindhorst et
al. [96–98] to study the aeroelastic behavior of the HIRENASD wing-fuselage configura-
tion [136]. By taking many previous input states into account, unsteady problems can
be modeled as long as no strong dynamic nonlinearities are present. Consequently, this
methodology allows the computation of time-varying surface pressure distributions in a
time-efficient manner.

The nonlinear models that are based for example on MLP or RBF neural networks
show generally promising results for unsteady aerodynamic model-order reduction ap-
plications. The aforementioned approaches exhibit a high precision with respect to the
one-step prediction task; see Section 3.3.2 for a detailed discussion. However, multi-step
ahead predictions, which characterize the relevant modus operandi for time-marching
simulations, often become unstable due to the feedback of the model outputs [9, 84].
Another drawback, from a practical point of view, is the limited capability of the ROMs
if both linear and nonlinear dynamics need to be captured with a monolithic model.
In order to address these issues, block-oriented models such as Wiener and Hammer-
stein models or their respective permutations have been widely employed by numerous
authors in the system and control theory community [9]. These models are charac-
terized by a linear dynamic block that is followed or preceded by a nonlinear static
function approximation block. In the present context, Kou et al. [84] suggested the
use of Wiener-type models to obtain an aerodynamic ROM that is valid for small and
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large amplitude motions. Therefore, the ARX model is utilized to form the linear dy-
namic block, whereas the static nonlinearities are represented by a RBF neural network.
Kou and Zhang [81] further developed this idea by implementing a layered ROM. In
this regard, the linear ARX model is independently constructed by exploiting a small-
amplitude, linear-dynamic training dataset, while the RBF neural network is conditioned
by large-amplitude-motion-based data covering the nonlinear system behavior. Finally,
the results provided by the two parallel models are superimposed in order to yield the
overall model prediction. Nevertheless, despite the diversity of approaches, some draw-
backs are still maintained. Either the state-of-the-art methods are limited to linear
dynamic effects by means of a restricted model structure, or the models are non-robust
for practical purposes.

1.3 Objectives and Thesis Outline

In order to address the efficiency bottleneck of modern aircraft aeroelastic investigations,
a novel unsteady aerodynamic model-order reduction framework based on recurrent lo-
cal linear neuro-fuzzy models is proposed in this thesis. The focus is on the cost-efficient
simulation of aerodynamic loads subject to structural or rigid body excitations. Thus,
the main objective is the development of a reliable and accurate system-identification-
based methodology capable of predicting nonlinear aerodynamic effects due to freestream
parameter variations, arbitrary deflection amplitude signals, and pronounced shock mo-
tions. Conditioned by selected full-order CFD solutions, the time-domain ROMs reflect
the essential dynamics of the underlying physical equations. Consequently, a significant
acceleration of CFD-based multidisciplinary investigations is envisioned, which may al-
low the assessment of the aircraft aeroelastic behavior at an earlier stage in the develop-
ment process. Specifically, the following technical problems are approached within the
scope of this work:

• Prediction of motion-induced aerodynamic forces and moments across varying
freestream conditions using a monolithic model

• Efficient simulation of unsteady surface pressure fluctuations caused by prescribed
excitations

• Reduced-order modeling for aerodynamic systems involving both linear and
strongly-nonlinear characteristics

For demonstration and validation purposes, several well-established test cases are consid-
ered, ranging from a basic two-dimensional airfoil case to a full-scale transport-aircraft-
type configuration. Due to the prevailing nonlinear physics, transonic flow conditions
are of primary interest in this work, although the methods are applicable to the sub-
sonic and supersonic flight regimes as well. Particular attention is paid to a transparent
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model training procedure, input/output interface formulation, and error quantification.
For a comprehensive assessment of the derived models, the computational efficiency as
well as the fidelity of the ROMs is evaluated relative to the full-order CFD simulation
procedure.

The present thesis is organized as follows: Chapter 2 discusses the fundamental rela-
tionships of the fluid mechanical modeling. In particular, the in-house CFD methods as
well as the calculation of aerodynamic forces and moments are dealt with. Moreover,
the context-relevant aeroelastic modeling concepts and approaches are introduced. In
Chapter 3, the theoretical background of the utilized nonlinear system identification
approaches is recapitulated. The focus is laid on the presentation of the recurrence
framework followed by a detailed discussion of the neuro-fuzzy-model-based approxi-
mation of nonlinear functions. Moreover, application-oriented remarks regarding the
reproducibility of the results, error quantification, and training signal design are pro-
vided. Subsequently, the unsteady aerodynamic ROM approaches, which have been
developed within the scope of this work, are outlined in Chapter 4. Specifically, the ap-
proach valid across variable freestream conditions, the surrogate modeling procedure for
simulating motion-induced unsteady surface pressure fluctuations, and the methodology
for the prediction of strongly-nonlinear aerodynamic characteristics are discussed. In
Chapter 5, the neuro-fuzzy-model-based ROM is applied for the modeling of generalized
aerodynamic forces induced by structural eigenmode-based excitations. Considering the
AGARD 445.6 wing test case, a monolithic model is trained to simulate the motion-
induced aerodynamics across subsonic, transonic, and supersonic freestream conditions,
while the results are additionally exploited to compute the flutter boundary. Conse-
quently, Chapter 6 demonstrates the application of the proposed surrogate model with
respect to the efficient prediction of unsteady pressure distributions. The approach,
which is based on a combination of the recurrent neuro-fuzzy model with the proper or-
thogonal decomposition, is evaluated for the LANN wing undergoing a pitching motion.
Furthermore, the performance of the suggested connected neural network approach for
modeling strongly nonlinear excitation/response relationships is addressed in Chapter 7.
In this regard, small and large amplitude pitch and plunge motions of the NLR 7301
airfoil are investigated using the novel ROM approach. It is shown that the combined
model consisting of the recurrent local linear neuro-fuzzy model and the MLP neural
network reproduces the essential linear and nonlinear aerodynamic characteristics with
high accuracy. In order to evaluate the robustness and validity of the methods in terms
of realistic aircraft configurations, the ROMs are further applied in Chapter 8 to the
common research model, which is featured by an increased level of complexity relative
to the previously studied basic test cases. In this way, the potential of the neuro-fuzzy
modeling approach for industrial purposes is indicated. Finally, a summary of the results
and findings is given, which is concluded by an outlook on future ROM developments.





2 Aerodynamic and Aeroelastic
Simulation Methodology

In this chapter, the unsteady aerodynamic and aeroelastic modeling fundamentals, that
are particularly relevant for the research presented in this work, are highlighted. There-
fore, the equations of fluid motion, namely the Euler and Navier-Stokes equations, are
recapitulated since they form the basis for the conducted flow simulations. Concerning
the utilized computational fluid dynamics (CFD) solver framework, the numerical dis-
cretization and solution concepts as well as the boundary condition treatment are briefly
discussed. In addition, the calculation of flow-induced force and moment coefficients is
approached.

Besides the discussion of the aerodynamic computation methodology, the finite ele-
ment method (FEM) is roughly outlined with respect to the structural dynamic mod-
eling. In this regard, the focus is particularly on the modal reduction of an already
available finite-element model. Furthermore, to establish the link between the aerody-
namic and the structural modeling frameworks, the concept of generalized aerodynamic
forces is introduced. Finally, the application of aeroelastically-coupled models to the
simulation of aircraft stability problems is discussed. The present chapter is essen-
tially based on the previous dissertations of Kreiselmaier [86], Iatrou [66], Fleischer [38],
Förster [41], and Pechloff [127], all of whom paved the way for the in-house aeroelastic
modeling tool chain.

2.1 Computational Fluid Dynamics Framework

For aircraft aeroelastic investigations, the unsteady flow-induced forces and moments
acting on the airframe must be determined. Focusing on transonic freestream conditions
in particular, the Navier-Stokes equations describe the governing physical relations with
respect to the occurrence of both shock-induced nonlinearities as well as viscosity- and
flow-separation-related effects. For practical applications, however, the consideration of
viscous effects is often omitted to facilitate a first approximation [172,192]. If the viscous
fluxes are not taken into account, the Euler equations are obtained as a special case of
the Navier-Stokes equations.

Within the scope of this work, the Euler-equations-based solver AER-Eu and the
Reynolds-averaged Navier-Stokes solver AER-NS, which have been developed at the
Chair of Aerodynamics and Fluid Mechanics of the Technical University of Munich, are
used to provide the reduced-order models with training, validation, and test data for the
steady and unsteady aerodynamic loads. Moreover, the aforementioned CFD solvers are
employed for intermethod comparisons in order to assess the accuracy and fidelity of the
proposed reduced-order modeling approaches.
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2.1.1 Navier-Stokes and Euler Equations

The Navier-Stokes equations form a nonlinear coupled system of second-order partial
differential equations. According to Hoffmann and Chiang [60–62] and Hirsch [59], the
mass, momentum, and energy conservation equations can be written for a discrete fluid
element without acting volume forces as:

∂q

∂t
+
∂f

∂x
+
∂g

∂y
+
∂h

∂z
=
∂fv
∂x

+
∂gv
∂y

+
∂hv

∂z
(2.1)

In Equation (2.1), the solution vector is denoted by q, whereas the respective convective
fluxes (f , g, h) and viscous fluxes (fv, gv, hv) are given as:

q = [ρ, ρu, ρv, ρw, ρe]> (2.2)

f = [ρu, ρu2 + p, ρuv, ρuw, u(ρe+ p)]>

g = [ρv, ρuv, ρv2 + p, ρvw, v(ρe+ p)]> (2.3)

h = [ρw, ρuw, ρvw, ρw2 + p, w(ρe+ p)]>

fv = [0, τxx, τxy, τxz, uτxx + vτxy + wτxz − qx]>

gv = [0, τyx, τyy, τyz, uτyx + vτyy + wτyz − qy]> (2.4)

hv = [0, τzx, τzy, τzz, uτzx + vτzy + wτzz − qz]>

In Equations (2.2)-(2.4), ρ and p denote the fluid’s density and pressure, while u, v, w
refer to the velocities in x, y, and z direction, respectively. By introducing the heat
capacity at constant volume cv and the temperature T , the specific energy can be gen-
eralized to:

e = cv · T +
u2 + v2 + w2

2
(2.5)

Originating from Stokes’ hypothesis for a Newtonian fluid, the viscous shear stress tensor
elements can be computed based on the formulas presented in Equation (2.6).

τxx = µ

(
2
∂u

∂x
− 2

3

[
∂u

∂x
+
∂v

∂y
+
∂w

∂z

])
, τxy = τyx = µ

(
∂u

∂y
+
∂v

∂x

)

τyy = µ

(
2
∂v

∂y
− 2

3

[
∂u

∂x
+
∂v

∂y
+
∂w

∂z

])
, τxz = τzx = µ

(
∂u

∂z
+
∂w

∂x

)
(2.6)

τzz = µ

(
2
∂w

∂z
− 2

3

[
∂u

∂x
+
∂v

∂y
+
∂w

∂z

])
, τyz = τzy = µ

(
∂v

∂z
+
∂w

∂y

)
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Within the present work, air is exclusively considered as the fluid medium. Therefore,
the dynamic viscosity µ occurring in Equation (2.6) can be evaluated by employing
Sutherlands’s law [159]:

µ = µref

(
T

Tref

) 3
2 Tref + 110 K

T + 110 K
with µref = 1.716 ·10−5 kg

m · s, Tref = 273.15 K (2.7)

Moreover, the thermal fluxes are summarized in Equation (2.8). In this regard, the ther-
mal conductivity k is calculated using a Prandtl number of Pr = 0.72, a heat capacity
ratio of γ = cp/cv = 1.4, and a specific gas constant of R = cp − cv = 287.06 J/(kg ·K).

qx = −k · ∂T
∂x

, qy = −k · ∂T
∂y

, qz = −k · ∂T
∂z

with k =
µ

Pr
· γR

γ − 1
(2.8)

Additionally, the equation of state for ideal gases is employed in order to close the system
of equations. Based on p = ρRT , the following relation can be derived for the pressure:

p = (γ − 1)

[
ρe− 1

2ρ

(
(ρu)2 + (ρv)2 + (ρw)2

)]
(2.9)

The Euler equations form a special case of the Navier-Stokes equations. Specifically, the
viscous fluxes fv, gv, hv are omitted from Equation (2.1) resulting in a purely hyperbolic
partial differential equation system:

∂q

∂t
+
∂f

∂x
+
∂g

∂y
+
∂h

∂z
= 0 (2.10)

2.1.2 Nondimensionalization of the Flow Variables

In the context of the employed CFD solvers AER-Eu and AER-NS, the equations in-
troduced in the previous section are formulated and solved in nondimensional form
[66, 86, 127]. The nondimensionalization offers advantages for the comparison of differ-
ent flow problems and also leads to a reduction of the number of problem-describing
variables. Below, the transformation between dimensionful and nondimensional flow
quantities is briefly recapitulated.

Following the notation of Reference [86], a dimensionful variable is marked with an
overbar, whereas the scaling factor between the nondimensional and the dimensionful
quantity is indicated by an asterisk. For an arbitrary variable φ, the nondimensional
value is therefore obtained by:

φ =
φ̄

φ∗
(2.11)
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As it has been defined in References [66, 86], the scaling factors φ∗ are expressed exclu-
sively by means of the grid reference length l̄ref , the freestream density ρ̄∞, the freestream
temperature T̄∞, and the freestream pressure p̄∞:

l∗ = l̄ref ⇒ x =
x̄

l∗
, y =

ȳ

l∗
, z =

z̄

l∗
(2.12)

ρ∗ = ρ̄∞ ⇒ ρ =
ρ̄

ρ∗
(2.13)

T ∗ = T̄∞ ⇒ T =
T̄

T ∗
(2.14)

p∗ = p̄∞ ⇒ p =
p̄

p∗
(2.15)

Based on the four scaling factors shown in Equations (2.12)-(2.15), the reference values
for the time t, the dynamic viscosity µ, and the velocity components u, v, w are exem-
plarily given in Equation (2.16). Analogously, the remaining physical quantities can be
transformed into their nondimensional counterpart using the basic definitions for l∗, ρ∗,
T ∗, and p∗.

t∗ = l̄ref

√
ρ̄∞
p̄∞

⇒ t =
t̄

t∗
(2.16)

µ∗ = l̄ref ρ̄∞

√
p̄∞
ρ̄∞

⇒ µ =
µ̄

µ∗
(2.17)

u∗ =

√
p̄∞
ρ̄∞

⇒ u =
ū

u∗
, v =

v̄

u∗
, w =

w̄

u∗
(2.18)

For steady aerodynamic investigations, it is sufficient in most cases to fulfill the geo-
metrical similarity laws along with the Mach number and Reynolds number similarity.
Consequently, the wind tunnel test conditions or the CFD simulation set-up must fea-
ture the same Mach and Reynolds numbers compared to the respective flight conditions.
The freestream Mach number Ma∞ is given in Equation (2.19), whereas the Reynolds
number Re∞ is defined in Equation (2.20).

Ma∞ =
Ū∞
ā∞

=
Ū∞√
γ
·
√
ρ̄∞
p̄∞

(2.19)

Re∞ =
ρ̄∞ · Ū∞ · c̄Re

µ̄∞
(2.20)

In Equation (2.20), c̄Re denotes the geometric reference length for the evaluation of the
Reynolds number, which is typically chosen as the mean aerodynamic chord of the wing
or the root chord. However, for the investigation of unsteady aerodynamic phenomena,
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additional similarity parameters must be respected, namely the problem-related nondi-
mensional time τs and the reduced frequency kred [15]. The aforementioned parameters
are introduced in Equations (2.21)-(2.22), while c̄ref represents the dimensionful refer-
ence length for the calculation of the reduced frequency.

τs =
Ū∞
l̄ref
· t̄ =

Ma∞
√
γ

l̄ref
·
√
p̄∞
ρ̄∞
· t̄ (2.21)

kred =
l̄ref
Ū∞
· c̄ref
l̄ref
· ω̄ =

l̄ref
Ma∞

√
γ
·
√
ρ̄∞
p̄∞
· c̄ref
l̄ref
· 2πf̄ (2.22)

If the nondimensional quantities are substituted into the Euler and Navier-Stokes equa-
tions, the dimensionless equations can be derived. For further information, refer to
References [66, 86,127,179].

2.1.3 Equations in Curvilinear Coordinates

In order to allow a CFD-based analysis of arbitrarily shaped geometries based on body-
fitted structured grids, the nondimensionalized Euler and Navier-Stokes equations are
further transformed into curvilinear coordinates. In this way, the formulation of the
boundary conditions is considerably simplified [59]. Prior to the numerical discretiza-
tion, Equations (2.1) and (2.11) are therefore transformed from the physical space (x,y,z)
into curvilinear, body-fitted coordinates. The respective temporal and spacial coordi-
nates of the auxiliary computational space are τ = t and ξ(x,y,z,t), η(x,y,z,t), ζ(x,y,z,t).
Based on References [66,127], the fluid dynamic equations in curvilinear coordinates can
be written as:

Navier-Stokes:
∂Q

∂τ
+
∂F

∂ξ
+
∂G

∂η
+
∂H

∂ζ
=
∂Fv

∂ξ
+
∂Gv

∂η
+
∂Hv

∂ζ
(2.23)

Euler:
∂Q

∂τ
+
∂F

∂ξ
+
∂G

∂η
+
∂H

∂ζ
= 0 (2.24)

In Equations (2.23)-(2.24), the transformed solution vector is denoted by Q, whereas
the respective convective fluxes (F, G, H) and viscous fluxes (Fv, Gv, Hv) formulated
in ξ-, η-, and ζ-direction can be expressed as:

Q = Jq (2.25)
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F = Jξtq + Jξxf + Jξyg + Jξzh

G = Jηtq + Jηxf + Jηyg + Jηzh (2.26)

H = Jζtq + Jζxf + Jζyg + Jζzh

Fv = Jξxfv + Jξygv + Jξzhv

Gv = Jηxfv + Jηygv + Jηzhv (2.27)

Hv = Jζxfv + Jζygv + Jζzhv

The Jacobian determinant of the coordinate transformation J , which is explained in
Equation (2.28), can be interpreted as the cell volume in physical space. Moreover, the
terms Jψx, Jψy, Jψz (ψ ∈ [ξ, η, ζ]) refer to the the cell face areas, whereas the expres-
sions Jξt, Jηt, Jζt correspond to the velocities of the cell faces in the case of present grid
motions.

J = det
[
∂(x,y,z,t)

∂(ξ,η,ζ,τ)

]
, ψx =

∂ψ

∂x
, ψy =

∂ψ

∂y
, ψz =

∂ψ

∂z
with ψ ∈ [ξ, η, ζ] (2.28)

Further details regarding the computation of the metric terms shown in Equation (2.28)
as well as the derivation of the curvilinear equations are provided in References [86,146].

2.1.4 Turbulence Modeling

Due to the circumstance that the direct numerical simulation of the Navier-Stokes equa-
tions is practically not feasible for aircraft aerodynamic applications using the currently
available computing resources [37], additional simplifications and assumptions have been
incorporated within the AER-NS solver. Specifically, the flow variables are split into
their temporal mean and their turbulent fluctuation part as it has been suggested by
Reynolds. By inserting the two splitted parts for each quantity into Equation (2.23) and
performing an ensemble averaging operation for the entire equation system, this basic
idea leads to the so-called Reynolds-averaged Navier Stokes (RANS) equations [127,143].
Consequently, any flow-inherent turbulent unsteadiness is suppressed, whereas other
time-variant flow phenomena are still captured. Nevertheless, due to the nonlinear
nature of the Navier-Stokes equations, terms representing turbulent fluctuations still
appear in the RANS equations. For these terms – referred to as Reynolds stresses –
an additional turbulence modeling is required in order to close the RANS equations.
Within the AER-NS solver, the Reynolds stress tensor is approximated by applying the
Boussinesq hypothesis, whereas the Spalart-Allmaras turbulence model is employed to
model the turbulent eddy viscosity [158]. As the Spalart-Allmaras turbulence model is
a one-equation model, an additional transport equation for the eddy viscosity must be
solved. Besides, it should be noted that the AER-NS code does not explicitly treat or
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predict the laminar-turbulent transition. Consequently, the entire flow field including
the boundary layer is assumed to be fully-turbulent within the scope of this work if the
AER-NS solver is utilized.

2.1.5 Discretization and Numerical Solution

Based on the previously discussed fundamentals, this subsection addresses the discretiza-
tion and numerical solution methodologies with respect to the Euler and Navier-Stokes
equations. In this regard, the focus here is exclusively on the employed CFD solvers,
namely AER-Eu and AER-NS.

For the discretization of Equations (2.23)-(2.27), the cell-centered finite volume method
(FVM) is applied. Since the FVM exploits the conservation form of the fluid dynamic
equations, discontinuous solutions such as shocks are already part of the solution and do
not have to be artificially enforced [167]. Due to the aforementioned property, the under-
lying density-based CFD solvers are especially suited to simulate transonic, compressible
flows.

Within the scope of the discretization, the considered flow domain must be divided
by means of small hexahedral finite-volume cells, which in total form the computational
grid. The CFD solvers AER-Eu and AER-NS support exclusively structured multi-
block grids. As the steady or unsteady solution strongly depends on the quality of
the underlying grid, the mesh generation is of particular importance for the aerody-
namic modeling. On the one hand, the use of structured computational grids leads to
an increased manual meshing effort and thus higher overall costs. On the other hand,
body-fitted structured grids usually exhibit better grid quality properties compared to
unstructured grids, which positively affects the CFD solution fidelity [41, 59]. Since the
fluxes are evaluated for each of the six cell faces, the following spatial discretization is
obtained for a specific finite volume:

∂Qi,j,k

τ
+

Fi+ 1
2
,j,k − Fi− 1

2
,j,k

∆ξ
+

Gi,j+ 1
2
,k −Gi,j− 1

2
,k

∆η
+

Hi,j,k+ 1
2
−Hi,j,k− 1

2

∆ζ
= (2.29)

Fvi+ 1
2
,j,k − Fvi− 1

2
,j,k

∆ξ
+

Gvi,j+ 1
2
,k −Gvi,j− 1

2
,k

∆η
+

Hvi,j,k+ 1
2
−Hvi,j,k− 1

2

∆ζ

The discretization of the convective fluxes is based on the upwind flux-difference-splitting
procedure developed by Roe [138]. In this regard, a Riemann problem is approximately
solved at each cell face to respect the wave propagation characteristics of the solution.
Moreover, the second-order spatial discretization accuracy is retained by applying the
so-called MUSCL (monotonic upstream-centered schemes for conservation laws) extrap-
olation [13]. In order to guarantee the total variation diminishing (TVD) property,
suitable flux limiters have been implemented [127]. In this way, unphysical oscillations
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in the vicinity of discontinuities are prevented. With respect to the discretization of
the viscous fluxes, the method proposed by Chakravarthy [18] is employed within the
AER-NS solver [66].

The second-order accurate temporal integration is performed with the implicit dual-
time stepping scheme [13], whereas the embedded pseudo-time solution is computed
using the lower-upper symmetric successive over-relaxation (LU-SSOR), [12, 72]. For
steady-state simulations, the solution is advanced exclusively by means of the pseudo-
time-stepping procedure. Furthermore, a deforming mesh approach is available within
the AER-Eu/NS CFD framework. Therefore, predefined and user-defined time laws can
be applied to perform a linear interpolation between the reference grid and one or var-
ious amplitude grids [38]. The deformed grids are created on the basis of the reference
grid by using the methods implemented in the work of Förster [41]. In this context,
arbitrary deflections can be interpolated onto the CFD surface grid using the thin-plate
spline (TPS) method [32]. A posteriori, the transfinite interpolation (TFI) is used to
update the block-internal grid points [49]. Consequently, the unsteady aerodynamic re-
sponse due to user-defined rigid body or structural-eigenmode-based deflections can be
simulated.

2.1.6 Boundary Conditions and Initial Value Problem

With respect to the solution of the Euler and Reynolds-averaged Navier Stokes equa-
tions, an adequate boundary treatment is required to formulate a well-posed problem of
engineering interest. The following boundary conditions (BCs) are of particular impor-
tance for the present work:

• Wall BC: According to Hirsch [59], the conservative variables are linearly extrap-
olated to the boundary, whereas the resulting velocities are corrected with the
kinematic boundary condition. The kinematic boundary condition enforces that
the wall-normal velocity of the flow is identical with the surface normal velocity for
impermeable bodies. In terms of the AER-NS solver, the applied no-slip condition
additionally leads to zero tangential flow velocities relative to the wall. Conse-
quently, all velocity components at the wall are zero for the viscous modeling if no
grid motion is taken into account. Besides the no-slip condition, the temperature
or the heat flux at the wall must be set for the RANS-based modeling. Within the
scope of this work, an adiabatic wall is assumed for all investigations.

• Farfield BC: At the farfield boundary, the inflow conditions characterized for exam-
ple by the freestreamMach number and the angle of attack are specified. According
to Whitfield and Janus [180], the characteristic variables are therefore prescribed
under the assumption of a one-dimensional flow propagation according to the char-
acteristic propagation direction. The non-reflecting boundary condition is used in
both the AER-Eu and the AER-NS solver. In order to simulate the conditions
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of an undisturbed external flow, the farfield is placed sufficiently distant from the
body to be investigated.

• Symmetry BC: Along the symmetry boundary, the fictitious states of the ghost
cells are adapted such that the velocity component normal to the plane of symme-
try vanishes.

• Block-cut BC: The block-cut boundary condition ensures the information exchange
between adjacent blocks of a structured multi-block grid.

Besides the treatment of the domain boundaries, the flow quantities must be initialized.
For steady-state simulations, on the one hand, the solution vector Q of each finite-volume
cell center is set to the corresponding farfield values. On the other hand, an a priori
computed steady solution is commonly imported as the starting point for unsteady CFD
simulations.

2.1.7 Aerodynamic Force and Moment Calculation

In this subsection, the computation of the aerodynamic force and moment coefficients
is outlined based on Reference [38]. The flow-induced loads acting on the aircraft result
mainly from the static pressure distribution. Besides, also the shear stresses have an
impact on the aerodynamic loads, especially on the drag component. However, care
must be taken that the wall shear stresses are considered exclusively in the case of a
viscous CFD simulation.

In the following, the pressure coefficient and the skin friction coefficient are introduced
in order to incorporate both effects. For clarity, Equation (2.30) defines the pressure
coefficient by employing the nondimensionalized variables discussed in Section 2.1.2.

Cp =
p̄− p̄∞
ρ̄∞
2
· Ū2
∞

=
2

γ ·Ma2
∞

(p− 1) (2.30)

As a prerequisite for defining the skin friction coefficient, the wall shear stress vector
is given in Equation (2.31), while a Newtonian fluid is implicitly assumed. For the
computation of τw, the gradient of the tangential components of the velocity vector
ut = [ut, vt, wt]

> is determined with respect to the wall-normal direction. The index w
denotes that the gradient is evaluated at the wall.

τw = µ

(
∂ut
∂s

)
w

(2.31)

Using the definition of the wall shear stress, the skin friction coefficient vector can be
computed according to Equation (2.32):

Cf =
τw

ρ̄∞
2
· Ū2
∞

=
2τw

γ ·Ma2
∞

(2.32)
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With the respective surface element vector components in x, y, z direction, namely
dSx,i, dSy,i, dSz,i, the pressure-induced force coefficient on surface element i is calcu-
lated as follows:

Ci,p =

Cx,i,pCy,i,p

Cz,i,p

 = Cp,i · dSi = Cp,i ·

dSx,idSy,i

dSz,i

 (2.33)

Analogously, the shear-stress-induced force coefficient acting on surface element i can
be written as:

Ci,f =

Cx,i,fCy,i,f

Cz,i,f

 =
2µ

γMa2
∞
·
√
dS2

x,i + dS2
y,i + dS2

z,i ·


(
∂ut
∂s

)
w(

∂vt
∂s

)
w(

∂wt
∂s

)
w

 (2.34)

By adding the previously shown pressure- and friction-based force components, the re-
spective aerodynamic force and moment coefficient vectors acting at surface element i
are given in body-fixed coordinates as:

Ci =

Cx,iCy,i

Cz,i

 =

Cx,i,p + Cx,i,f

Cy,i,p + Cy,i,f

Cz,i,p + Cz,i,f

 (Forces) (2.35)

Cm,i =

Cmx,iCmy,i

Cmz,i

 =

(xi − xref ) · Cx,i
(yi − yref ) · Cy,i
(zi − zref ) · Cz,i

 (Moments) (2.36)

In Equation (2.36), xref = (xref , yref , zref )
> characterizes the user-defined moment refer-

ence point. Under consideration of the reference area Sref , the lateral reference length s,
and the longitudinal reference length lµ, the aerodynamic force and moment coefficients
in body-fixed coordinates (index b) are obtained via numerical integration over all NSE

surface elements:

CX,b =
1

Sref

NSE∑
i= 1

Cx,i (2.37)

CY,b =
1

Sref

NSE∑
i= 1

Cy,i (2.38)

CZ,b =
1

Sref

NSE∑
i= 1

Cz,i (2.39)

CMx,b =
1

Sref · s

NSE∑
i= 1

Cmx,i (2.40)

CMy ,b =
1

Sref · lµ

NSE∑
i= 1

Cmy,i (2.41)

CMz ,b =
1

Sref · s

NSE∑
i= 1

Cmz,i (2.42)
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Finally, a coordinate transformation is necessary to obtain the force and moment coef-
ficients in the aerodynamic coordinate system. The transformation from the body-fixed
to the aerodynamic reference system for a given angle of attack α and sideslip angle β
reads:

 CD

CY

CL

 =

 cos β − sin β 0

sin β cos β 0

0 0 1


 cosα 0 sinα

0 1 0

− sinα 0 cosα


 CX,b

CY,b

CZ,b

 (2.43)

 CMx

CMy

CMz

 =

 cos β − sin β 0

sin β cos β 0

0 0 1


 cosα 0 sinα

0 1 0

− sinα 0 cosα


 CMx,b

CMy ,b

CMz ,b

 (2.44)

In Equations (2.43)-(2.44), CD, CY , and CL denote the respective drag, side-force, and
lift coefficients, whereas CMx , CMy , and CMz symbolize the moment coefficients with
respect to the x, y, and z axes of the aerodynamic coordinate system [105].

2.2 Structural Dynamic and Aeroelastic Modeling

In this section, the modeling of the structural dynamics is outlined with respect to the
conducted aeroelastic investigations. For structural analysis, solvers based on the finite
element method (FEM) are mainly used today. The FEM is a discretization method-
ology for the approximate solution of partial differential equations and has long since
become the standard for structural dynamic computations, but also for thermal and
electrodynamic simulations [176]. The content of this section is roughly based on the
structural dynamics review given in Reference [38].

In the present context, the basic idea of the FEM is to discretize the structure with
finite elements that are interconnected by means of their nodes. However, in contrast
to the finite volume method discussed in Section 2.1, also one- and two-dimensional el-
ements such as shells, plates, and beams can be used for modeling purposes besides 3D
elements. Across each element, the displacement of the nodes is expressed by a linear
combination of so-called shape functions. If the formulation for the displacement is com-
bined with known mechanical relationships and material properties, the elasto-dynamic
characteristics can be approximated [44]. Finally, by combining various elements and
applying problem-specific boundary conditions, a thin-banded system of algebraic equa-
tions is obtained, which can be solved using established numerical methods. Within
the scope of this work, already existing structural models or results derived therefrom
have been utilized. For this reason, only an introductory overview is given to this topic.
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Further information related to the finite-element method and the structural dynamics
theoretical background can be found in References [25, 41,125].

2.2.1 Equations of Motion

Based on Hamilton’s principle applied to a mass-spring oscillator, the fundamental
structural dynamics equations can be derived [192]. With the displacement vector
x(t) ∈ RNDOF , the external forces vector f(x,t) ∈ RNDOF , and the mass, damping, and
stiffness matrices, respectively, M, C, K ∈ RNDOF×NDOF , the equations of motion for a
NDOF degree-of-freedom system can be written as:

Mẍ(t) + Cẋ(t) + Kx(t) = f(x,t) (2.45)

A FEM-based structural analysis provides the mass and stiffness matrices, whereas the
damping matrix is typically constructed by semi-empirical approaches such as Rayleigh’s
proportional damping method [192].

The displacement vector x(t) incorporates up to six degrees of freedom per node,
depending on the employed element type and the specific element formulation [125]. In
this regard, the three spatial coordinates and, optionally, the three rotational degrees
of freedom are represented for each node of the FEM model. In the following, however,
it is defined for simplicity that the displacement vector contains only the node’s spatial
coordinates. Consequently, the number of nodes of the FE model can be expressed as
NNodes = NDOF/3. For all considerations presented in this work, it is further assumed
that the structure is affected by external aerodynamic forces only. Based on this as-
sumption in combination with the aerodynamic force definitions given in Section 2.1.7,
the external forces vector acting at node i of the discrete structure can be expressed in
the following way:

fi = q̄∞ ·Ci =
ρ̄∞
2
Ū2
∞ ·Ci, fi ∈ RNNodes (2.46)

For the sake of a clear presentation, Equation (2.46) is based on two implicit assump-
tions: First, it is presupposed that the centers of the CFD surface elements coincide with
the nodes of the FE model. Second, it is assumed that both the aerodynamic and the
structural modeling are based on the same body-fixed coordinate system. For practical
purposes, however, an interpolation between the aerodynamic and the structural grids
is generally required [41, 42]. The overall external forces vector f(x,t) is obtained by
assemblying the nodal forces given in Equation (2.46) across all nodes.

Keeping in mind that the aerodynamic forces are affected by static and dynamic struc-
tural deflections, i.e., f = f(x(t)), Equation (2.45) describes an aeroelastically coupled
system. Thereby, the structural system properties are represented by the left hand side
of Equation (2.45), whereas the aerodynamic modeling enters the equation by means of
the external forces on the right hand side.
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2.2.2 Modal Analysis and Transformation to Modal Coordinates

Since complex aerospace structures involve a large number of elements, the FE model in
physical space, which is expressed by means of Equation (2.45), is commonly transferred
into generalized coordinates in order to reduce the computational effort. Therefore,
a modal analysis must be carried out to obtain the structural eigenmodes as well as
the natural frequencies. For that purpose, a harmonic motion ansatz is chosen for the
displacement vector [192]:

x(t) = x0 · eiωt (2.47)

By substituting Equation (2.47) into the homogeneous part of Equation (2.45) and ne-
glecting the damping term, the following equations can be derived:

[
−ω2M + K

]
x0 = 0

λ := ω2

−−−−→ [−λM + K] x0 = 0 ⇒ det [−λM + K]
!

= 0 (2.48)

Equation (2.48) denotes a classical eigenvalue problem, which can be solved for the
eigenvalues λi by established methods such as the Lanczos algorithm [65]. Once the
eigenvalues are known, the natural frequencies fi can be calculated as:

fi =
ωi
2π

=

√
λi

2π
(2.49)

Linked to the respective eigenvalues λi, the computed eigenvectors φi ∈ RNDOF (with
i = 1, . . . , NDOF ) form the complete set of possible structural modes for the given
problem. Nonetheless, if the expected structural deflections can be considered as geo-
metrically linear and if also a linear elastic material behavior is prevailing, the first NM

low-frequency eigenmodes determine the structural dynamic characteristic of the under-
lying system, whereas higher-order modes can be disregarded [192]. Consequently, the
eigenmodes φi can be arranged in form of the so-called modal matrix Φ ∈ RNDOF×NM ,
which is illustrated by means of Equation 2.50.

Φ = [φ1,φ2, . . . ,φNM ] with λ1 ≤ λ2 ≤ . . . ≤ λNM (2.50)

Since the eigenvectors are scalable by an arbitrary factor, it has become common prac-
tice in the structural dynamics community to normalize the modal matrix such that
the generalized mass matrix Mgen becomes the identity matrix; see Equation (2.51).
Originating from the aforementioned scaling of Φ, the generalized stiffness matrix Kgen

can be expressed exclusively by means of the eigenvalues:

Mgen = Φ>MΦ
!

= I ∈ RNM×NM ⇒ Kgen = Φ>KΦ = diag(λi) ∈ RNM×NM

(2.51)
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For a given set of structural eigenmodes, the Rayleigh-Ritz approach [192] can be used
to express the displacement vector by means of the modal matrix and the generalized
coordinate vector q(t) ∈ RNM :

x(t) = Φ · q(t) (2.52)

Thus, the displacement is approximated by the superposition of NM structural eigen-
modes, whereas the generalized coordinate qi serves as the scaling factor corresponding
to the ith mode. By inserting Equation (2.52) into Equation (2.45) and performing
a subsequent left-hand multiplication with Φ>, the basic structural dynamic equation
system in modal/generalized form is obtained:

Φ>MΦ︸ ︷︷ ︸
Mgen

q̈(t) + Φ>CΦ︸ ︷︷ ︸
Cgen

q̇(t) + Φ>KΦ︸ ︷︷ ︸
Kgen

q(t) = Φ>f(q,t)︸ ︷︷ ︸
f̆gen

(2.53)

In Equation (2.53), the respective generalized mass, damping, and stiffness matrices,
Mgen , Cgen , Kgen , are mathematically connected with the generalized coordinates q(t)

as well as the generalized (aerodynamic) forces f̆gen ∈ RNM . Although Equation (2.53)
describes the basic aeroelastic relations in the time domain for both motion- and gust-
induced aerodynamic forces, the focus in this work is exclusively laid on the consideration
of motion-induced unsteady aerodynamic loads. In the latter context, Equation (2.53)
is also referred to as the time-domain flutter equation.

2.2.3 Computation of Generalized Aerodynamic Forces

In the following, the computation of the time-domain generalized aerodynamic forces
(GAFs) is discussed. Within the scope of the present work, the GAFs represent the link
between the CFD-based aerodynamic and the structural dynamic modeling.

Starting from the generalized external forces vector f̆gen = Φ>f according to Equa-
tion (2.53) and inserting the knowledge about the flow-induced forces as it is shown in
Equation (2.46), the mth generalized aerodynamic force vector element f̆gen,m,i acting
at surface element i can be written as:

f̆gen,m,i(t) = q̄∞ ·Ci(t) · φm,i with m = 1, . . . , NM (2.54)

In Equation (2.54), Ci(t) denotes the nondimensional aerodynamic force vector intro-
duced in Section 2.1.7, whereas q̄∞ refers to the dimensionful dynamic pressure. If
inviscid flow-induced loads are investigated, the corresponding GAF formula is obtained
by replacing Ci(t) with Ci,p(t) in Equation (2.54). Based on the assumption that only
the translational degrees of freedom of the FE nodes are taken into account, φm,i ∈ R3

denotes a subset of the eigenmode vector φ that represents the x-, y-, and z-components
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of the modal deflection of surface element i. In terms of the employed CFD solvers
AER-Eu and AER-NS, NM additional deformed grids representing the mode shapes φm
are imported prior to the simulation run in order to carry out the GAF computation
within each time step. Analogously to the aerodynamic coefficient computation method-
ology, a summation is performed to obtain the mth element of the integral generalized
aerodynamic forces vector:

f̆gen,m(t) = q̄∞ ·
NSE∑
i= 1

Ci(t) · φm,i (2.55)

For consistency reasons with respect to the nondimensional flow solver framework, the
generalized aerodynamic forces are shown in this work in nondimensional form unless
otherwise specified. According to Reference [38], the nondimensional time-domain GAF
fgen(t) is given as:

fgen(t) =
f̆gen(t)

q̄∞ ·
(
l̄ref
)3 (2.56)

Here, the employed computational grids are always scaled such that a grid-internal length
of 1 represents 1 m in physical space. Hence, the reference length is given as l̄ref ≡ 1 m

according to Equation (2.12).

2.2.4 Time-Domain Aeroelastic Solution

In order to solve the generalized equations of motion represented by Equation (2.53),
the different models and methods described beforehand must be coupled in an interdis-
ciplinary way.

For illustration purposes, it is initially assumed that the inhomogeneous part of
Equation (2.53), i.e., the generalized aerodynamic forces vector, is a known input to
the structural solver. Therefore, based on available generalized mass, damping, and
stiffness matrices as well as eigenmodes, a temporal integration of the second-order dif-
ferential equation system can be performed. Starting from given initial conditions, the
Newmark-β approach is commonly employed to iteratively obtain the time-marching
structural solution [41]. Alternatively, Equation (2.53) can be transferred into the state-
space representation. The resulting first-order differential equation system can be inte-
grated by the Runge-Kutta method or a multi-step approach such as the Adams-Moulten
predictor-corrector scheme [33, 198]. The output of the structural solver framework is
the generalized coordinates vector, which is caused by the present aerodynamic, inertial,
and elastic forces. Additionally, the generalized coordinates can be directly translated
to the prevailing structural displacements using the a priori known eigenmodes.
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Taking the aerodynamic solver into account, the deformation of the aircraft’s external
surfaces is required as an input to the CFD method in order to compute the aerody-
namic loads for the altered structural state. Since different computational grids are
generally used for the structural dynamic and the aerodynamic modeling, grid and load
interpolation methods are employed to ensure that the corresponding model inputs and
outputs are compatible. In this regard, it is of particular importance that the total en-
ergy is maintained in the coupled system. Otherwise energy is introduced or artificially
extracted across the interfaces by means of numerical errors, which can falsify the overall
stability properties of the aeroelastic system [118]. Besides the spatial coupling of the
solvers, the temporal coupling also affects the quality and stability of the solution. In the
literature, a basic distinction is made between so-called loosely-coupled and strongly-
coupled approaches, which differ in the way in which information is exchanged between
the two solvers [41,192]. As a result of the aerodynamic modeling, the flow solver yields
the generalized aerodynamic forces for the provided deformation state. After the GAFs
have been transferred to the structural solver, the fluid-structure interaction cycle is
repeated until a user-defined termination criterion is fulfilled.

As it has been already indicated in the introduction of this work, the investigated multi-
disciplinary computations are computationally very demanding. In particular, the CFD
solver is by far the largest cost driver for the addressed applications. The situation
is further aggravated by the fact that a large parameter space must be considered in
terms of the aircraft analysis process. Inter alia, simulations for various flight altitudes,
freestream Mach numbers, and angles of attack must be undertaken. Consequently,
the number of cases is unmanageable even without considering configurational changes.
For this reason, an aeroelastic analysis in the time domain, as described for example in
Reference [41], can be conducted in an acedemic environment or for selected simulation
cases. However, today’s computing resources are still limited to allow comprehensive
fully-coupled aeroelastic simulations in an industrial context.

As a remedy to the aforementioned computational cost restrictions, the developed
reduced-order models that are discussed in Chapter 4 can be utilized to considerably
reduce the simulation effort for aeroelastic and multidisciplinary investigations. For
this purpose, the ROM must be conditioned to receive the generalized coordinates as
the model input, whereas the generalized aerodynamic forces correspond to the output
of the model; see Chapter 5 for instance. In this way, the trained ROM can be used
to replace the CFD solver within the coupled solution process, leading to a significant
simulation acceleration.

2.2.5 Frequency-Domain Flutter Problem

For the investigation of the aeroelastic stability behavior, also referred to as the flut-
ter problem, small structural perturbations around a given reference state are assumed.
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According to Bisplinghoff et al. [11], the aforementioned restriction leads to a linear re-
lation between the structural deflection and the motion-induced unsteady aerodynamic
loads if sufficiently small amplitudes are considered. Hence, the time-domain generalized
aerodynamic forces vector f̆gen(t) can be expressed by the convolutional integral involv-
ing the generalized-coordinate-based excitation q(t) and the impulse response transfer
function of the aerodynamic system [204]:

f̆gen(t) = q∞ ·
∫ t

0

Q(t− τ) · q(τ)dτ (2.57)

In Equation (2.57), Q symbolizes the generalized aerodynamic forces transfer matrix
in the time domain, containing the GAF responses due to impulsive deflections with
respect to the structural mode shapes. The relationship shown in Equation (2.57) can
be exploited to transform the generalized equations of motion into the frequency-domain
since the evaluation of the convolutional integral is simplified in the Laplace domain to a
basic multiplication. By combining Equations (2.53) and (2.57), the system of equations
can be expressed in the Laplace domain as:

[
Mgen s

2 + Cgen s+ Kgen − q∞ ·Q(s)
]
q0 = 0 (2.58)

Based on Equation (2.58) formulated for the Laplace operator s, the frequency-domain
flutter equation can be derived according to Irwin and Guyett [68] and Hassig [56];
see Equation (2.59). The frequency-domain flutter representation is a well-accepted
means for studying the stability characteristics of the aeroelastically-coupled system
[11,192,204].

[
Ū2
∞

c̄2
ref

Mgen p
2 +

Ū∞
c̄ref

Cgen p+ Kgen − q̄∞ ·GAF(kred ,Ma∞)

]
q0 = 0 (2.59)

with p =
c̄ref · s
Ū∞

= g + i · kred , kred =
c̄ref · ω
Ū∞

In Equation (2.59), p denotes the nondimensional Laplace parameter, kred is the re-
duced frequency analog to the nondimensional quantity introduced in Section 2.1.2, and
GAF(kred ,Ma∞) ∈ CNM×NM symbolizes the complex-valued generalized aerodynamic
forces transfer matrix in the frequency domain. The complex matrix element GAF ij

represents the contribution of the ith generalized aerodynamic force due to a harmonic
motion in eigenmode j. As it is indicated in Equation (2.59), the aerodynamic transfer
function depends on the reduced frequency as well as the freestream Mach number. In
this work, the GAF matrix is computed, on the one hand, using the dynamically fully-
nonlinear CFD solver and, on the other hand, by means of the developed time-domain
ROM approaches. For this purpose, each structural degree of freedom is harmonically



30 2 Aerodynamic and Aeroelastic Simulation Methodology

excited for a selected set of reduced frequencies at given freestream conditions. Sub-
sequently, a Fourier analysis is conducted with respect to the time series of the GAF
response leading to the frequency-domain transfer function [38]. Within the scope of
this work, the GAF matrix is used for comparison and verification purposes, i.e., the
ROM-based matrix elements are juxtaposed to the respective CFD-based results.

Additionally, a stability analysis is carried out based on Equation 2.59 using the well-
established p-k method [56,68] for linear frequency-domain flutter investigations. Start-
ing from a set of tabulated GAF matrices for several kred -Ma∞-combinations, Equa-
tion (2.59) describes a quadratic eigenvalue problem with respect to the nondimensional
Laplace parameter p. For a given dynamic pressure and user-defined discrete velocities,
the p-k method is used to solve the eigenvalue problem by iteratively matching the re-
duced frequency kred with the imaginary part of p for every structural eigenmode [204].
The velocity at which the damping of the entire system (structural and aerodynamic
damping) is zero is referred to as the flutter speed Vf .



3 System Identification and
Neuro-Fuzzy Approaches

In this chapter, the fundamentals of the employed nonlinear system identification ap-
proaches are introduced. The focus is laid on the presentation of the recurrence frame-
work, the clarification of prediction versus simulation operation, as well as a detailed dis-
cussion of the neuro-fuzzy modeling approach. The chapter is concluded by application-
oriented remarks regarding the reproducibility of the results, error quantification, and
training signal design. To some extent, the underlying theory has been already discussed
in pre-publications of the author; see References [184,185,187,189,190].

3.1 Properties of Linear and Nonlinear Systems

Prior to the selection of a suitable identification algorithm, it is of paramount impor-
tance to understand and characterize the main properties of the system under inves-
tigation. The term system describes any process that produces an output signal y(t)

in response to an input signal u(t), [156]. By definition, a general dynamic system G

shown in Figure 3.1 maps the inputs u(t) = [u1(t), u2(t), . . . , unu(t)]> to the outputs
y(t) = [y1(t), y2(t), . . . , yny(t)]

>. In this regard, nu denotes the dimension of the input
vector, whereas ny refers to the output vector dimension. Introducing the symbol “◦” to
describe the dynamic connection between the input vector u(t) and the output vector
y(t) via the system operator G, the relation can be generalized to [71,106]:

y(t) = G ◦ u(t) (3.1)

Based on Smith [156], a linear system is governed by two mathematical principles:

• Homogeneity: Once the system’s response y(t) for a certain input signal u(t) is
known, the output caused by a linearly scaled input is given as:

G ◦
(
k · u(t)

)
= k ·

(
G ◦ u(t)

)
(3.2)

System
G

u1
u2
⋮
un

y1
y2
⋮
ynu y

Figure 3.1: General representation of a dynamic system with nu system inputs and ny
system outputs.
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• Additivity: The result obtained by a superposition of arbitrary input signals and
their corresponding responses also represents a valid solution to the system. As-
suming the two inputs u1(t) and u2(t), this relation can be stated algebraically
as:

G ◦
(
u1(t) + u2(t)

)
= G ◦ u1(t) + G ◦ u2(t) (3.3)

If it is shown that the system conforms with the homogeneity and the additivity prop-
erty, the investigated dynamic problem is proven to behave in a linear way [156]. On the
contrary, the system is nonlinear if at least one of the aforementioned principles is vio-
lated. In the latter case, nonlinear dynamic phenomena such as bifurcations, limit-cycle
oscillations, or even a chaotic behavior of the system could be encountered [90], making
the modeling task generally more cumbersome. Hence, it is mandatory to perform a
linearity test [51] if the mathematical nature of the problem is unclear.

Within the scope of this work, unsteady aerodynamic and aeroelastic test cases are
investigated, while the focus is on modeling motion-induced forces and loads. For that
purpose, the system is represented by the CFD solver or, from a physical point of view,
the discretized Euler and Reynolds-averaged Navier-Stokes equations. As it has been
discussed in Section 2.1.1, both of the aforementioned equation systems are nonlinear.
Consequently, it can be expected that the system also responds in a nonlinear manner.
Indeed, the input/output characteristics of a CFD solver are generally nonlinear except
from special cases.

Considering aeroelastic applications in particular, the system inputs are the modal
displacements and/or rigid-body deflections, whereas the system response is represented
by the corresponding pressure distribution, generalized aerodynamic forces, or aero-
dynamic coefficients. Chapter 4 gives an approach-dependent definition for the men-
tioned problems. Provided that the reference state given for example by the freestream
conditions can be considered constant, small elastic or rigid-body disturbances lead to
a linear variation in the pressure distribution and, consequently, the forces and mo-
ments [15, 86, 192]. The linear system characteristics have been shown to be valid for
the subsonic, supersonic, and transonic flow regimes, although the steady reference state
might be governed by discontinuities such as shocks. Nonetheless, the maximum ampli-
tude to retain the linear relation between the perturbation and the aerodynamic loads
is highly case-dependent and must be verified prior to further investigations.

For larger excitation amplitudes, the aerodynamic response becomes no longer lin-
early related to the displacement amplitude, especially, if transonic flow conditions with
distinct shock motion or separation effects occur [8, 174]. Hence, only a nonlinear mod-
eling approach is suited to adequately capture the system behavior for large amplitude
motions. Furthermore, the special case of linearity due to small disturbances does not
apply across various reference states, e.g., variable freestream Mach numbers. If a single
model is intended to be applied for a range of flow conditions, a nonlinear approach
must be employed as well [185]. In conclusion, the selection of the model architecture
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is strongly connected with the specific problem and the question, whether the system
outputs depend linearly or nonlinearly on the respective inputs.

3.2 System Identification - General Methodology

System identification approaches are used to obtain a model by means of experimentally
or computationally gathered input/output datasets, which characterize the investigated
process. In contrast to a white-box modeling procedure, where the model is built by
exploiting first principles, i.e., via the numerical discretization of physically-motivated
conservation laws, system identification methods require no knowledge about the inter-
nal system dynamics [121]. Consequently, the term black-box modeling is often used
in this context; see Figure 3.2. However, prior knowledge is always advantageous and
can be exploited in various ways, leading to so-called grey-box models. For instance, if
the dynamic order, the presence of time delays, or the existence of a linear operating
regime is already known, suitable methods and identification parameters can be selected
a priori [9]. By decreasing the model complexity, the computational effort for parameter
identification is reduced. Concurrently, a more robust model might be obtained since
undesired model characteristics are excluded.

SystemInput Output?

Figure 3.2: Black-box modeling using system identification methods. Known input/out-
put relations are exploited to construct the model.

The general methodology of data-driven model construction has been originally devel-
oped within the system and control theory communities. According to Billings [9],
system identification can be seen as the complement of the simulation task. Nowa-
days, identification approaches are widely applied, e.g., for industrial processes, control
systems, economic/financial systems, medical systems, and social systems [9]. As the
models built via identification are often compact and efficient to simulate, black-box
or grey-box system identification can be also applied to realize a model-order reduc-
tion [31, 103, 130]. In the literature, many different identification techniques exist with
respect to linear as well as nonlinear processes for both the time and the frequency
domain. Due to the large variety of different approaches, the recapitulation and classifi-
cation of available system identification methods is beyond the scope of this work. How-
ever, comprehensive overviews of the most popular approaches are given in Ljung [102],
Nelles [121], Tangirala [163], Bishop [10], and Billings [9]. In the remainder of this chap-
ter, the focus lies on the presentation of the theoretical fundamentals which form the
basis for the author’s investigations.
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In the last decades, linear systems as well as their identification have been extensively
studied and can be considered as well understood [102]. Thereby, it is important to
highlight that the use of linear identification does not always imply that the underlying
process is intrinsically linear [196]. For practical purposes, the system dynamics can
be often considered linear in the vicinity of a specific operating point. For unsteady
aerodynamic applications, this property has been exploited by several authors for fixed
freestream conditions and small excitation amplitudes, for which a linear model is ade-
quate in most instances [87, 134,152].

In contrast, the analysis and identification of nonlinear dynamic systems still re-
mains a challenging task [9,10]. It is important to highlight that nonlinear identification
approaches should be only applied if the underlying system is in fact governed by non-
linearities. Otherwise, the use of linear identification techniques is more robust and
accurate. Moreover, if no detailed knowledge about the system is available, linear ap-
proaches should be initially considered. Beyond the question whether the method must
cover linear or nonlinear dynamics (see Section 3.1), further aspects have to be taken
into account before and during an identification process [121]:

• Definition of the relevant system inputs and outputs

• Design of training excitation signals and training data acquisition

• Selection of the identification approach

• Choice of the dynamic model order

• Definition of the number of terms/submodels (complexity)

• Estimation of unknown model parameters

• Validation and error quantification

Prior to the discussion of the identification fundamentals, the difference between the sys-
tem/process input and the respective model input is emphasized in the following. For
example, a system may be characterized by nu inputs and a single output. In contrast,
the model input corresponding to this process commonly involves more than nu input
quantities to capture memory effects such as time lags or phase shifts; see Section 3.3
for further information. Hence, dynamic models usually possess a larger input space
compared to the corresponding process. Accordingly, three model architectures exist,
which are shown in Figure 3.3: First, a single-input single-output (SISO) model defines
the basic case where only one degree of freedom influences the scalar model output.
Second, a multiple-input single-output (MISO) model maps several inputs to a scalar
output quantity. Finally, using a multiple-input multiple-output (MIMO) model, every
element of the model input vector is internally coupled with all output vector elements.
Consequently, a variation in a single input may affect all model responses. For general
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applications, the MIMO model architecture is the most frequently encountered case.
Nevertheless, many parallel MISO models can be employed for practical purposes to
realize a MIMO model.

SISOu1 y1 MISO

u1
u2
⋮
un

y1 MIMO

u1
u2
⋮
un

y1
y2
⋮
yn

a) b) c)

𝑢 𝑢 𝑦

Figure 3.3: Schematic presentation of a single-input single-output (SISO) model (a),
multiple-input single-output (MISO) model (b), and multiple-input multiple-
output (MIMO) model (c).

Regardless of the model architecture being employed, care must be taken that all in-
puts, which have a significant influence on the process response, are taken into account.
Otherwise, changes in the output quantities can not be traced back to a specific external
excitation during the identification. As a consequence, the performance of the resulting
model deteriorates drastically.

3.3 Recurrence Framework

The recurrence framework or external dynamics approach is a widely applied concept
for nonlinear identification. The basic idea is to compose the nonlinear dynamic model
out of two parts [102,121]:

• External dynamic filter

• Nonlinear multivariate static function

Therefore, the model input vector comprises not only the system inputs, but also previ-
ous, time-delayed input and/or output quantities to account for time-dependencies and
dynamic effects. A posteriori, the nonlinear function maps the model input vector to the
model responses. It is important to emphasize that the nonlinear approximator becomes
a static function due to the input/output formulation of the external dynamic model.

3.3.1 External Dynamic Filtering

Based upon the time-discrete recurrence framework approach, which has been originally
developed for linear identification and control purposes [9,102], the response of a general
dynamic system can be approximated as a nonlinear function N (·) of the instantaneous
system inputs in combination with a finite series of previous/time-delayed system in-
puts and previous outputs. The aforementioned principle is well-known as the nonlinear
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auto-regressive with exogenous input (NARX) modeling architecture. In the following,
the system inputs are denoted by u ∈ Rnu , whereas the system outputs are character-
ized by y ∈ Rny . In contrast to the system response, the approximated model output
is denoted as ŷ. Defining k as the currently considered discrete time increment, i.e.,
tk+1 = tk + ∆t, ∆t = const., the one-step prediction problem for a NARX-based model
can be generalized to:

ŷ(k) = N
[
Ξ>, u>(k), u>(k − 1), . . . , u>(k −m), (3.4)

y>(k − 1), y>(k − 2), . . . , y>(k − n)
]

ŷ(k) = N
[
xPred

]
, xPred ∈ Rd

In Equation (3.4), m ∈ N and n ∈ N+ characterize the respective maximum dynamic
delay-orders for the input and output quantities, which have to be chosen by the user
or, alternatively, via a data-based approach as discussed in Section 3.3.3. Moreover, Ξ

defines a non-delayed parameter vector. The latter quantity can be used to incorporate
different static equilibrium conditions or operating points such as varying freestream
conditions [185], which are not considered as a function of time. Moreover, the consid-
eration of the element u>(k) in Equation (3.4) is optional, because an input might not
lead to an instantaneous response. In the present work, the relations expressed by the
right hand side of Equation (3.4) are exploited during the training process. Thus, the
system response y known from the training dataset is used for estimating N (·).
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Figure 3.4: Schematic of the recurrence framework methodology. For application pur-
poses, the previously computed, time-delayed model output enters the model
input vector (feedback).
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However, if the system-identification-based model is applied in recurrent mode for per-
forming a simulation, the recently obtained model outputs have to be fed back iteratively
by means of the model input vector as it is shown in Figure 3.4. Hence, y on the right
hand side of Equation (3.4) has to be substituted by ŷ to describe the relationship for
the application process of the recurrent model:

ŷ(k) = N
[
Ξ>, u>(k), u>(k − 1), . . . , u>(k −m), (3.5)

ŷ>(k − 1), ŷ>(k − 2), . . . , ŷ>(k − n)
]

ŷ(k) = N
[
xSim

]
, xSim ∈ Rd

If the nonlinear function N (·), however, is trained according to the relations given by
Equation (3.5), the resulting model is referred to as a nonlinear output error (NOE)
model. Since the training of a NOE model becomes computationally quite demand-
ing as ŷ changes with the function N (·) itself, this modeling framework is not further
considered in this work.

Keeping in mind that N (·) is an approximated function, it becomes evident that the
model output ŷ is not equal to the system response y. Hence, an error measure e can
be defined in the following way:

e(k) = y(k)− ŷ(k) (3.6)

Presupposing that the error given by Equation (3.6) can be modeled or computed, an-
other recurrence framework becomes promising, namely the nonlinear auto-regressive
moving average model with exogenous inputs (NARMAX) architecture [9]. Thereby,
information about e is utilized to increase the prediction quality of the resulting model.
Mathematically, a NARMAX model can be written as:

ŷ(k) = N
[
Ξ>, u>(k), u>(k − 1), . . . , u>(k −m), (3.7)

y>(k − 1), y>(k − 2), . . . , y>(k − n),

e>(k − 1), e>(k − 2), . . . , e>(k − n)
]

In Equation (3.7), it is assumed for convenience that the maximum delay-order of the
error term is identical with the maximum output delay-order. In general, a different
delay-order can be prescribed for each input, output, and error vector element. The
methodology of combining a recurrent with a static neural network, which is outlined in
Section 4.3, can be considered to belong to the NARMAX model class.

As the function N (·) occurring in Equations (3.4), (3.5), and (3.7) is typically un-
known, a static multi-dimensional input/output mapping has to be realized based on
given training data. For that purpose, any nonlinear function approximation approach
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can be applied. Within the scope of this work, a neuro-fuzzy model as well as a neural
network is employed for this task; see Section 3.4 for further information. Methodolo-
gies which combine a recurrence framework with a neural network are referred to as
time-delay neural networks (TDNN) in the literature [145]. Before introducing the non-
linear function approximation techniques, the difference between the prediction and the
simulation modus operandi is clarified.

3.3.2 Prediction Versus Simulation

Given the NARX framework expressed by Equation (3.4), the nonlinear function N (·)
is calibrated during the training process such that the one-step prediction error is mini-
mized in a user-defined sense using the available training samples. Thus, based on the
known values for the current and previous system inputs as well as the previous system
responses, N (·) is trained to yield an optimal prediction of the current system output.
Thereby, no model output can be found on the right hand side of Equation (3.4). Con-
sequently, the prediction can be only applied if the system response is known. Defining
a time series with k = 1, . . . , NS samples, it becomes evident from Equation (3.4) that
for the initial samples, i.e., k = 1, . . . , max(m,n), the prediction cannot be evaluated
since the delayed-values of the previous inputs and/or outputs needed for the NARX
approximation are not completely defined. In contrast, the one-step ahead prediction
can be computed for the remaining samples (k = max[m,n] + 1, . . . , NS) assuming that
N (·) is already known. The predicted output does not exactly coincide with the system
response due to the approximative character of N (·) as well as numerical round-off er-
rors. Nonetheless, the prediction can be a valuable indicator for the model performance
since a poor prediction quality with respect to the training data usually implies a poor
simulation capability as well [10]. If the prediction of the training case does not yield
an adequate agreement with the training data, either relevant inputs are missing in the
model input vector xPred or the chosen model structure and parameters, which are im-
plicitly contained in N (·), cause a mismatch of the predicted model response and the
system output.

For the intended use of the identified model as a reduced-order model, the simulation
mode (also known as the recurrent feedback operation) depicted in Figure 3.4 is of
primary interest in this work. Therefore, multiple consecutively-executed one-step pre-
dictions must be carried out in order to realize a time-marching simulation. Contrary
to the prediction operation, the model output itself enters the model input vector xSim

as it is shown in Equation (3.5). Hence, the model input vector cannot be directly de-
termined prior to the model application and must be adapted within each discrete time
step. Thereby, the previously obtained model outputs are iteratively fed back to the
model input vector. In this way, the model can be employed for cases where the input
excitation is known but the system response is unknown.
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Since the one-step prediction produces an error compared to the response of the original
process, the output feedback in terms of a multi-step ahead time series prediction can
lead to an accumulation of these errors. At worst, instability of the identified models is
encountered [84,102], which must be avoided for practical purposes. Analog to the pre-
diction mode, the initial values k = 1, . . . , max[m,n] are also not available with respect
to the simulation mode. Moreover, neither the system nor the model response is known.
Hence, an adequate simulation initialization regarding the inputs and outputs must be
defined, which is typically problem-dependent; see Chapter 4 for a detailed discussion.

3.3.3 Input/Output Delay-Order Optimization

In previous research related to system-identification-based models for aerodynamic and
aeroelastic applications, the dynamic delay-orders m and n arising for example in Equa-
tion (3.4) are commonly defined by the user; see [96,135,201] for instance. Hence, those
model parameters are in general not optimally fitted to the underlying problem unless
extensive and time-consuming trial and error attempts are undertaken. As suggested
by He and Asada [58], the model orders can be alternatively identified by exploiting
the training data itself. The application of their methodology towards unsteady aero-
dynamic reduced-order modeling has been demonstrated in a prior publication of the
author [184]. Considering for example the ith output vector element yi, the Lipschitz
quotients for a d-dimensional model input vector xi ∈ Rd can be evaluated based on NS

training samples according to Equation (3.8), whereas xi is defined in Equation (3.9).
The input vector may contain the current and time-delayed inputs as well as previous
system outputs according to the NARX approach. However, xi has to be considered
as an unknown since the aim of this method is to find the optimal composition and
dimension of the model input vector. After computing the Lipschitz quotients based on
Equation (3.8), the so-called Lipschitz index qdi can be determined by applying Equa-
tion (3.10); see also Reference [58].

qdjk,i =
|yi(j)− yi(k)|√

d∑
l = 1

(
xl,i(j)− xl,i(k)

)2


j = max(m,n) + 1, . . . , NS

k = max(m,n) + 1, . . . , NS

j 6= k

(3.8)

xi =
[
u>(k), u>(k − 1), . . . , u>(k −m),Ξ>, (3.9)

yi(k − 1), yi(k − 2), . . . , yi(k − n)
]>

qdi =

(
oh∏
l = 1

√
d · qdi (l)

)1/oh

with oh = dNS/100e (3.10)
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With respect to Equation (3.8), xl,i(k) represents the lth element of the model input
vector xi evaluated at time step k. Moreover, qdi (l) denotes the lth largest Lipschitz
quotient qdjk,i.

For practical purposes, the determination of m and n based on the Lipschitz index
starts with a maximum input delay of m = 0, whereas no time-delayed outputs are
considered [184]. Based on this information, the initial model input vector can be con-
structed, which yields xi = [u>(k), Ξ>]>. With each further iteration, the maximum
input delay-order m is increased by one. If the Lipschitz index qdi evaluated with the
adapted input vector xi is not further decreased for more input vector dimensions d,
the maximum input delay order has been selected adequately. Subsequent to the input
delay optimization, the same procedure is repeated in order to specify the output delay
order. Thereby, the previously obtained input delay m is retained and the initial output
delay-order is set to n = 1. Analogously, n is increased by one within each iteration
until the termination criterion is satisfied. Here, the iteration process for both the input
and output delays is stopped if the relative change of the Lipschitz index qdi over one
iteration reaches a value below the defined threshold of 1% [184].

3.4 Nonlinear Function Approximation

In the following, the employed neural network and neuro-fuzzy-model approaches are
outlined, which serve for the data-driven approximation of the nonlinear function N (·).
Therefore, the fundamental ideas of neural networks, fuzzy logic, and neuro-fuzzy model-
ing are briefly discussed. Besides, the training procedure as well as the model’s strengths
and weaknesses are highlighted.

3.4.1 Introduction to Neural Networks and Fuzzy Logic

As an example of bionics, the research on artificial neural networks (ANNs) was origi-
nally motivated by the natural structures and capabilities of the human brain. According
to the biological counterpart, neural networks were found to be well-suited and effec-
tive for complex tasks such as information linking and processing, perception, pattern
recognition, learning, and adaption [57, 121]. During the past decades, investigations
were initiated to apply the observed functionalities and principles for the solution of
engineering problems. Starting with the rediscovery of the back-propagation algorithm
in 1986, the development and application of neural networks received increased atten-
tion [140, 145]. Moreover, due to the recent advances in computer architectures, high-
performance computing capabilities, and programming languages, the success of neural
networks still continues. Historically, the application of ANNs such as the MLP neu-
ral network or the radial basis function neural network for identification, control, and
time series prediction problems was proposed in the 1990s by Chen et al. [19, 20] and
Narendra and Parthasarathy [120]. Subsequently, also neuro-fuzzy approaches [17, 121]
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and a variety of other neural network methodologies have been developed and applied
to engineering problems [9].

For convenience, the term neural network (NN) is used as a synonym for ANN in the
following because no biological issues are considered within the scope of this work. In
fact, many research efforts in the field of artificial neural networks are no longer related
to the biological example, but require a broad knowledge with respect to mathematics,
statistics, signal processing, optimization, and computer science [121]. Hence, the meth-
ods are developed for specific purposes and do not necessarily mimic the neural networks
occurring in nature. Nowadays, neural-network-based approaches are widely applied for
classification, function fitting, nonlinear identification, time-series forecasting, and con-
trol purposes [9].

Neural networks can be generally characterized by a large number of simple process-
ing units, called neurons, which are strongly interconnected with each other. Hence, a
NN is robust against the failure of single neurons and able to adapt its parameters and
structural composition by exploiting a set of training data [121].

Following the terminology accepted in the neural network community, the network
depicted in Figure 3.5 can be subdivided into three layers [10, 57, 182]: Initially, the
input layer distributes all input vector elements to the first hidden layer. Within the
hidden layer, linear or nonlinear computations are carried out depending on the net-
work architecture and the user-defined activation function. The resulting information is
weighted and passed to the next hidden layer in the case of a deep neural network or,
alternatively, the output layer. Finally, each output layer neuron receives the weighted
signals of the previous layer and commonly performs a linear operation in order to yield
the output quantity. Although a single neuron enables only simple algebraic operations,
the synergistic interaction of many neurons makes the neural network powerful for the
aforementioned purposes [121].

Input
Layer

Hidden
Layer

Output
Layer

x1

x2

x3

y1

y2

Figure 3.5: Schematic of a neural network with a single hidden layer connecting three
input quantities with a two-dimensional output vector.
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According to Schröder [145], many neural network approaches have become established
for research and industrial applications. For example, the radial basis function (RBF)
neural network and the general regression neural network (GRNN) achieve their ap-
proximation capability by the weighted superposition of basis functions. Other network
architectures, such as the popular multilayer-perceptron (MLP) neural network, use the
ridge construction mechanism in order to approximate the target function.

Given a multilayer feedforward neural network, i.e., a neural network with one or
more hidden layers such as the MLP neural network discussed in Section 3.4.3, the
input signals are propagated and processed layer by layer to obtain the network’s re-
sponse [9]. In contrast to a feedforward NN, where the information is only transferred
unidirectionally, a recurrent network is characterized by the feedback of the NN’s out-
put to the hidden layer neurons or the input layer. Applying the relations introduced in
Section 3.3, most of the models considered in this investigation belong by definition to
the class of recurrent neural networks.

Since the focus in this work is laid on system identification and nonlinear function
approximation, the so-called supervised training methodology is always applied here1.
Hence, the network structure and the unknown parameters are calibrated according to
a known dataset via an approach-dependent learning strategy. During the training pro-
cedure, the weights defining the connection strength between different neurons are mod-
ified in order to represent the training data optimal in a user-defined statistical sense [9].

Parallel to the advances in the artificial neural network community, identification ap-
proaches based on fuzzy logic have been devised. In general, fuzzy logic can be considered
as an extension of the classical Boolean logic, in which only the integers 0 (false) and 1
(true) are permitted to characterize a variable’s state. Originally proposed by Zadeh in
the 1960s, a fuzzy set can contain any real value in the closed interval of [0, 1] to describe
a quantity’s degree of truth [195]. This development has been motivated by the fact that
humans often communicate and think in an uncertain or imprecise manner [121].

By employing methods based on fuzzy logic theory, vague statements or observations
are treated in order to interpret their validity in an algebraic manner. Consequently,
models can be derived which allow the application of reasoning mechanisms in form
of rules using fuzzy inputs and outputs [121]. For practical purposes, the well-known
linguistic, singleton, Mamdani, and Takagi-Sugeno fuzzy systems are of particular im-
portance [113]. The first step, referred to as fuzzification, is the definition of so-called
membership or validity functions. Validity functions realize the translation process from
uncertain information towards data that is assessable by computers. As a consequence,
all uncertain interrelations are described via membership functions, which are mathe-
matically defined for the entire input or output space. For example, an input A may
be either low or high, whereas an output B can be assigned with the three fuzzy states

1 Unsupervised training methods are typically applied for data classification.
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slow, medium, and fast. The fuzzification process connects these fuzzy states with value
ranges, for example, with respect to the altitude or the speed. After the considered
inputs and outputs have been fuzzyfied, rules can be applied to logically connect the
fuzzy inputs to the respective output functions. The rules reflect the vaguely formu-
lated dependencies and can be defined, along with the membership functions, either by
expert knowledge or, alternatively, via a data-driven learning algorithm. For instance,
a possible rule could be as follows: if input A is high or input B is fast then output O
is poor. The operator for the logical connection, i.e., the or in the previous example, is
realized by algebraic functions or min/max operators. Finally, the fuzzy outputs must
be defuzzified to obtain the overall model outputs of interest. Based on this roughly
depicted methodology, models can be constructed to facilitate decisions or approximate
nonlinear multivariate functions. The reader is advised to References [14,89,113,121,195]
for further information about the fundamentals of fuzzy logic.

As already indicated, fuzzy models can be partly or even completely constructed via
a training procedure in combination with a given set of training data. This leads to so-
called neuro-fuzzy networks (NFMs), while the terminology indicates the link between
fuzzy modeling and the training techniques known from the neural network commu-
nity. Nonetheless, the learning procedures for neuro-fuzzy models must not necessarily
be adapted from classical neural networks. Representative approaches for the class of
NFMs are the adaptive-network-based fuzzy inference system (ANFIS) of Jang [73] and
the local linear neuro-fuzzy model. The latter nonlinear function approximation tech-
nique is discussed in more detail below.

3.4.2 Local Linear Neuro-Fuzzy Models

Neuro-fuzzy models consolidate fundamental ideas from the research areas of neural
networks and fuzzy logic [121, 145]. Concerning the local linear NFM in particular, the
basic idea is to piecewisely approximate a nonlinear multivariate function via the super-
position of several linear submodels. Thereby, each local linear model (LLM) is valid
only within certain bounds of the model input space. The assignment of the LLM’s
activation region is implemented by means of fuzzy membership functions, i.e., the local
linear model is always linked with a corresponding validity function. Consequently, the
overall model output becomes a blended superposition of the individual LLM responses.

Analog to the general network schematic discussed in Section 3.4.1, the local linear
neuro-fuzzy model can be composed of three layers as it is shown in Figure 3.6: The
input layer distributes the input vector information x to the M neurons contained in
the hidden layer. Within each neuron, the received data are processed in order to yield,
on the one hand, the output of the local linear model. On the other hand, the corre-
sponding degree of validity is computed based on the current input. Subsequently, both
information, namely the LLM output and the activation level, are consolidated to obtain
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the output of the neuron. Finally, the data gathered from all neurons contained in the
hidden layer are linearly combined to produce the overall model output.

x1

x2

…

xp

LLM1

x

Ψ1

LLM2

x

Ψ2

x

ΨM

…

In
p
u
t 

V
ec

to
r
x

Input Layer Hidden Layer Output Layer

ŷ
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Figure 3.6: Schematic representation of the local linear neuro-fuzzy model according to
Reference [121].

Concerning the training of the local linear NFM based on given input/output samples,
the local linear model tree (LOLIMOT) algorithm has been selected in this work. Using
this training strategy, both the structure of the model as well as the unknown param-
eters are optimized. For the given local linear NFM, the structural optimization refers
to the specific placement of the local linear models in the parameter space as well as
the determination of the number of neurons. The LOLIMOT procedure published by
Nelles in 1999 has been utilized by various authors for modeling and identification pur-
poses [121]. For instance, it has been employed for pH control [141], the identification of
a Diesel engine turbocharger [121], flight control [55], and the modeling of self-excited
thermo-acoustic oscillations [71]. Here, the NFM is used to approximate the unknown
nonlinear function N (·) introduced in Equation (3.4) in order to model unsteady aero-
dynamic characteristics. Below, the mathematical basics of the model as well as the
training procedure are discussed.
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3.4.2.1 Basis Function Formulation

A local linear neuro-fuzzy model with M local linear sub-models can be written as:

ŷ =
M∑
j = 1

[
wj0 + w>j · (x− cj)

]
·Ψj(x, cj,Σj) (3.11)

=
M∑
j = 1

[
wj0 + wj1 · (x1 − cj1) + . . .+ wjp · (xp − cjp)

]
·Ψj(x, cj,Σj)

In Equation (3.11), x ∈ Rp characterizes the NFM input vector that is related to the
scalar output quantity ŷ by means of the local linear neuro-fuzzy model. The respective
weights wj0 and wj ∈ Rp refer to the offset/bias and the linear model parameters of the
jth LLM. Each local linear model spans a hyperplane in the p-dimensional input space
defined by x. Moreover, Ψj denotes the fuzzy membership function that is linked with
the jth local linear model. It is composed of Gaussians evaluated with the Euclidean dis-
tance from the input vector to the center cj of the jth neuron. As the validity functions
are normalized similar to the procedure known from normalized radial basis function
(NRBF) neural networks, the sum of all membership functions evaluated at any point
of the model input space is one. This property, referred to as the partition of unity, can
be mathematically written as

∑M
j = 1 Ψj(x, cj,Σj) = 1. This characteristic is ensured by

the following equation:

Ψj(x, cj,Σj) =
µj(x, cj,Σj)∑M
k = 1 µk(x, cj,Σj)

, Σj =


1
σ2
j1

0 0 0

0 1
σ2
j2

0 0

...
... . . . ...

0 0 0 1
σ2
jp

 ∈ Rp×p (3.12)

In this context, the employed validity functions evaluated with the respective centers
cj ∈ Rp and basis function widths Σj are described by Equation (3.13).

µj(x, cj,Σj) = exp

[
−1

2

(
(x− cj)

>Σj(x− cj)
)]

(3.13)

= exp

[
−1

2

(
(x1 − cj1)2

σ2
j1

+ . . .+
(xp − cjp)2

σ2
jp

)]
Equations (3.11)-(3.13) define the general structure of the NFM. Keeping in mind that
only a set of associated input and output information is available for the identifica-
tion purpose, many unknowns must be determined to obtain the desired model. Those
unknowns are the weights wj0 and wj, the centers cj, and the basis function widths
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σj ∈ Rp contained in Σj (j = 1, . . . , M). Besides, also the model complexity M is
typically not known a priori and, therefore, must be adapted to the problem as well.
Given the aforementioned tasks, the LOLIMOT algorithm is a well-suited procedure to
train the neuro-fuzzy model. Since the underlying methodology is of particular interest
for this work, the essential training steps are further highlighted in the following.

3.4.2.2 Training Procedure: LOLIMOT Algorithm

The local linear model tree algorithm constitutes an iterative training strategy starting
with the estimation of a global linear model. Subsequently, the model is continuously
refined via axis-orthogonal splits with regard to the p input dimensions. Thus, local
linear model partitions are added to regions with predominant nonlinearities such that
the model complexity is gradually increased within each iteration. As a consequence, an
incrementally expanding tree structure is obtained as it can be seen in Figure 3.7. Due
to these properties, some inputs may linearly influence the model output while others
contribute nonlinearly to the overall response.
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Figure 3.7: Structure selection mechanism based on the LOLIMOT algorithm. An ex-
ample case with two input dimensions is shown for the first three iterations.
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Considering a MISO model, the LOLIMOT training strategy can be recapitulated by
the following steps [121,185,189]:

1) Initialization: As the starting point, a global linear model (Ψ1 = 1, M = 1) is com-
puted by estimating the weights wj0 and wj for j = 1 using linear least-squares
optimization. Since the model output depends linearly on the aforementioned
parameters, a linear method is sufficient to calculate the weighting factors. For
estimating the weights within the LOLIMOT procedure, the training dataset con-
taining i = 1, . . . , NT samples is employed. The training dataset is a subset of the
available process data. A detailed discussion regarding the important distinction
between training, validation, and test data is provided in Section 3.5. Defining the
center of the global linear model as shown in Equation (3.14), the linear parameters
can be estimated according to Equations (3.15) and (3.16).

c1i =
max1≤ k ≤NT

(
xi(k)

)
−min1≤ k ≤NT

(
xi(k)

)
2

for i = 1, 2, . . . , p (3.14)

X =


1

(
x1(1)− c11

) (
x2(1)− c11

)
· · ·

(
xp(1)− c11

)
1

(
x1(2)− c12

) (
x2(2)− c12

)
· · ·

(
xp(2)− c12

)
...

...
... . . . ...

1
(
x1(NT )− c1p

) (
x2(NT )− c1p

)
· · ·

(
xp(NT )− c1p

)

 (3.15)

[
w10

w1

]
=
(
X>X

)−1
X>y (3.16)

In Equation (3.16), y ∈ RNT denotes the scalar outputs assembled in a vector for
all training samples (k = 1, 2, . . . , NT ):

y = [y(1), y(2), . . . , y(NT )]> (3.17)

2) Local error estimation: The next step consists in finding the worst performing
local linear model. Therefore, a locally-defined loss function is evaluated for all
existing LLMs (j = 1, 2, . . . , M):

Ij =

NT∑
i= 1

Ψj

(
x(i), cj,Σj

)
·
(
y(i)− ŷ(i)

)2

(3.18)

The local linear model which exhibits the highest error Ij is selected for the split-
ting procedure discussed in the third step. If only the global linear model initialized
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within the first step is present, it is automatically chosen. In Figure 3.7, bluish-
colored models refer to the LLMs that yield the highest local error within the
corresponding iteration.

3) Model refinement: The previously detected, worst-performing LLM is split in each
input dimension with a ratio of 1:1 resulting in p temporary models. As a con-
sequence of this partitioning process, the centers, widths, and linear weights have
to be updated with respect to the p potential models and their local linear sub-
models. Therefore, the following substeps need to be performed: On the one hand,
the unknowns cj are determined as the geometric center of the corresponding jth
hyperrectangle; see Figure 3.7 for a two-dimensional visualization. On the other
hand, the basis function widths σj are given as the input space extensions of the
respective local linear sub-model scaled by the user-defined constant kσ. According
to the schematic depicted in Figure 3.7, the width can be written as σjl = kσ ·∆jl.
Thereby, ∆jl denotes the extension in dimension l related to the jth LLM. For all
considerations in this work, the scaling factor is chosen to kσ = 1/3 as suggested
in Reference [121]. Since the nonlinearly-acting parameters are known once the
centers and widths are determined for the given model structure, the weights can
be computed by linear methods again. Therefore, the local weighted least-squares
technique is carried out according to Equations (3.19), (3.20), and (3.21) in order
to calculate the weights wj0 and wj. It is important to emphasize that a weighted
least-squares technique must be employed to correctly consider the influence of the
validity functions.

Xj =


1

(
x1(1)− cj1

) (
x2(1)− cj1

)
· · ·

(
xp(1)− cj1

)
1

(
x1(2)− cj2

) (
x2(2)− cj2

)
· · ·

(
xp(2)− cj2

)
...

...
... . . . ...

1
(
x1(NT )− cjp

) (
x2(NT )− cjp

)
· · ·

(
xp(NT )− cjp

)

 (3.19)

Qj =


Ψj

(
x(1), cj,Σj

)
0 · · · 0

0 Ψj

(
x(2), cj,Σj

)
· · · 0

...
... . . . ...

0 0 · · · Ψj

(
x(NT ), cj,Σj

)

 (3.20)

= diag
[
Ψj

(
x(1), cj,Σj

)
, . . . ,Ψj

(
x(NT ), cj,Σj

)]
[
wj0

wj

]
= arg min {Ij} =

(
X>j QjXj

)−1
X>j Qjy for j = 1, 2, . . . , M (3.21)
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The matrices in Equations (3.19) and (3.20) have the respective dimensions Xj ∈
RNT×(p+1) and Qj ∈ RNT×NT . Analog to the model initialization, the definition of
y is given in Equation (3.17).

4) Error evaluation: The squared error e expressed by Equation (3.22) is evaluated for
the previously generated p temporary models in order to detect the best splitting
configuration. For this purpose, the validation dataset is employed, which contains
NV data samples that have not been used for the aforementioned weighting factor
estimation. Hence, the p models are evaluated yielding a set of outputs ŷ that can
be compared to the reference outputs y by means of Equation (3.22).

e =

NV∑
i= 1

(
y(i)− ŷ(i)

)2

(3.22)

Based on this error measure, the partition-setup with the minimum squared error
e is selected for further processing.

5) Termination criterion: Steps two, three, and four are repeated until the relative
change of the optimal e (compared to the previous iteration) becomes smaller
than a user-defined threshold. Within this work, an error threshold of 1% is cho-
sen. Alternatively, the model complexity can be limited by prescribing a maximum
number of LLMs (Mmax ).

Besides, it is beneficial to include a validation check criterion such that the split-
ting process is continued although the squared error described by Equation (3.22)
is not always reduced compared to the previous iteration. Practical experience
showed that the algorithm can further decrease the squared error for many cases.
Hence, a criterion has been implemented that the iterative process is aborted once
the error is not decreased within four consecutive iterations. Finally, the least
complex model with the optimal squared error is selected.

Below, the properties of the local linear neuro-fuzzy model trained by the LOLIMOT
algorithm are discussed. This discussion also illustrates the motivation why this method
has been chosen in this work.

3.4.2.3 LOLIMOT Properties

Besides the excellent numerical efficiency due to the extensive use of linear optimization
techniques, local linear neuro-fuzzy models trained by the LOLIMOT algorithm offer
several advantages for nonlinear function approximation, especially, in the context of
nonlinear identification. Without claiming completeness, the following properties are of
particular importance within the scope of this work:
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1. The model complexity must not be constrained a priori. By means of the LOLIMOT
training procedure, the number of unknowns is gradually increased within each it-
eration. The algorithm performs the structural refinement starting from a linear
model. In the further course, only input regimes with a distinct nonlinear char-
acteristic are refined. Consequently, the complexity of the finally obtained model
is kept as low as possible under the given constraints, reducing the likelihood of
dynamic instabilities which are often encountered during multiple one-step-ahead
predictions [102]. In contrast, many methods such as the conventional MLP neural
network approach described in Section 3.4.3 require the specification of the model
structure in advance. Since no information with respect to the necessary number of
parameters is available for general applications, the model structure is commonly
not optimally fitted to the underlying problem. For the aforementioned case, re-
alizing an adequate structure selection is a computationally demanding task. As
the optimization of the model structure is already performed by the LOLIMOT
algorithm, no further processing is needed to choose the degree of complexity of
the final model.

2. The user can incorporate prior knowledge about the investigated problem in order
to control the model refinement. For example, if the system is known to depend
linear from most of the inputs with the exception of a single input parameter,
the splitting procedure can be restricted to that input which is anticipated to
have a nonlinear impact on the overall model response. Thus, the user can assure
whether specified inputs act with a linear or a nonlinear characteristic. Moreover,
the training speed can be significantly increased since the dimensionality of the
problem is virtually decreased. Besides, the local linear neuro-fuzzy model can
be employed to realize a linearization around several operating points. Thereby,
inputs defining the operating point or the environmental conditions may have a
nonlinear effect whereas the remaining parameters are linearly connected with the
model response. This property is of particular interest for the ROM approach
discussed in Section 4.1.

3. The computational effort of the LOLIMOT training procedure is of the order
O (2Mp4) [121]. Hence, the training cost increases only linearly with the number of
incorporated LLMs. As a consequence, the algorithm is well-suited for construct-
ing complex models incorporating high-dimensional mappings. This property is
crucial for the identification of nonlinear dynamic systems since the model input
vector dimension p is commonly very high; see Equation (3.4). Additionally, the
number of linear weights to be optimized for a given model structure is M(p+ 1).
This circumstance in combination with the use of deterministic linear optimization
approaches yields a highly-efficient parameter determination.
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4. The extrapolation behavior of the local linear neuro-fuzzy model is favorable for
many regression applications. As the validity functions in conjunction with the
partition of unity property lead to a superposition of the constructed local lin-
ear models, a certain linear model or a blending between adjacent LLMs becomes
active also outside of the trained input regime. Hence, a generally linear extrapo-
lation is ascertained, which is beneficial for identification purposes in contrast to
a constant or polynomial extrapolation characteristic [9, 57].

Due to these advantages, the local linear neuro-fuzzy model architecture trained by the
LOLIMOT algorithm has been implemented in this work in order to identify nonlin-
ear aerodynamic systems. Nonetheless, the chosen NFM also exhibits some drawbacks.
For example, the axis-orthogonal splitting is not always optimal with respect to the
underlying function to be estimated. This leads to an increased model complexity com-
pared to a NFM architecture with axis-oblique partitions such as the hinging hyper-
plane model [121]. Furthermore, if strong nonlinear dependencies must be captured, the
selected modeling approach is adversarial since the nonlinearity can be approximated
solely by overlaying many linear models. However, the increased efficiency and the over-
all robust model employment were decisive for the local linear neuro-fuzzy model. It is
therefore always used as the baseline model in this work.

3.4.3 Multilayer Perceptron (MLP) Neural Networks

Besides the local linear neuro-fuzzy model, another approach belonging to the class of
neural networks, namely the multilayer perceptron feedforward neural network, is em-
ployed in this work. In Section 4.3, the combination of both the NFM and the MLP
neural network is further motivated. The multilayer perceptron neural network, which
is often regarded as the classical artificial neural network approach in the literature,
is characterized by its favorable approximation capabilities regarding highly nonlinear
functions [10, 57]. Referring to the introductory part in Section 3.4.1, each processing
unit of the MLP feedforward neural network collects the weighted signals distributed by
preceding input or hidden layer neurons. Subsequently, a typically nonlinear activation
function is applied to translate the received scalar input into the output of the neuron.
Finally, the response of each unit is passed to the output layer or consequent hidden layer
neurons. Mathematically, the relationship between the overall model output ŷ ∈ Rny

and the input vector v ∈ Rq+1 is shown in Equation (3.23) for a MLP neural network
with a single hidden layer [114,121]:

ŷi =

MMLP∑
j = 0

GL
ij · Φj

(
q∑

k = 0

GN
jkvk

)
, v0 = 1, i = 1, . . . , ny (3.23)

Φj(κ) =

{
tanh(κ) = 1− exp(−2κ)

1 + exp(−2κ)
for j > 0

1 for j = 0
(3.24)
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For clarification, MMLP introduced in Equation (3.23) denotes the number of neurons
contained in the hidden layer, whereas vk symbolizes the kth element of the input vector
v. The hyperbolic tangent has been chosen as the activation function Φj that is applied
to the scalar κ; see Equation (3.24). The latter auxiliary variable is obtained via ridge
construction, i.e., by summing up the weights GN

jk multiplied by the respective vk for all
input vector dimensions k = 0, . . . , q. The case j = 0 in combination with the input
vector element v0 introduces an offset to the neural network, which was shown to im-
prove the model’s function fitting performance [121]. In the neural network community,
this offset is often termed as bias value [57, 114]. Due to the nonlinear nature of the
selected activation function for j 6= 0, the corresponding weights as well as the input
vector elements contained in the parenthesis of Equation (3.23) are in general nonlinearly
connected to the output of the MLP neural network. It is important to emphasize that
the weighting factors GN

jk are, therefore, denominated as nonlinear weights in contrast
to the linearly acting weights GL

ij.
Using a set of training data composed of the linked input/output information with

regard to the function to be approximated, the respective linear and nonlinear weights
of the MLP, namely GL ∈ Rny×(MMLP+1) and GN ∈ R(MMLP+1)×(q+1), are computed. For
this purpose, the error back-propagation methodology in combination with the nonlin-
ear Levenberg-Marquardt (LM) optimization [57,111] is employed. Consequently, a cost
function is minimized in order to achieve a high model performance for nonlinear static
approximations. Here, the cost function is defined as the mean squared error between
the MLP output and the reference training output. In the course of this investigation,
the algorithms implemented within MATLAB’s Neural Network Toolbox [114] have been
used in order to train the MLP feed-forward neural network. The fundamentals of the
back-propagation procedure as well as the LM algorithm are addressed in the following.

3.4.3.1 Weight Initialization

Prior to the iterative training process, a suitable initialization of the weights must
be provided as a starting point for the nonlinear optimization. Therefore, the well-
established Nguyen-Widrow algorithm is used to achieve advantageous convergence prop-
erties [122]. According to Reference [114], the aforementioned algorithm determines the
initial weights and offsets such that the neuron’s active regions are uniformly distributed
over the input space. However, it is important to emphasize that almost all initializa-
tion strategies including the Nguyen-Widrow algorithm incorporate random processes
and are, therefore, non-deterministic. Consequently, a different neural network is ob-
tained for every training process, even if the same training data composition is provided.
A more detailed discussion about the challenges and consequences of non-deterministic
learning procedures is given in Section 3.6.
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3.4.3.2 Error Back-Propagation Procedure

In the following, the basic idea of the back-propagation procedure is illustrated, which
has been proposed by Rumelhart et al. [140] in the 1980s.

It is well known that nonlinear optimization tasks can be performed either globally or
locally. Due to the usually faster convergence of nonlinear local optimization techniques,
they are commonly used for MLP neural network training, although the finally obtained
parameters represent at best a good local optimum but not a global optimum. Since the
local optimization starts from an initially chosen point and proceeds by searching in the
neighborhood of the current point, further information about the variation of the ob-
jective function with respect to the parameter vector is needed. Hence, first-order and,
depending on the specific approach, also second-order derivatives of the objective func-
tion must be provided. In the present context, the derivatives of the ith model output
ŷi with respect to the linear and nonlinear weights are required within the optimization
process. At this point, the choice of the activation function defined by Equation (3.24)
becomes particularly important. Considering the single hidden layer model described by
Equation (3.23), the derivative according to the linear weight ∂ŷi/∂GL

ij can be written
as:

∂ŷi
∂GL

ij

= Φj(κ) (3.25)

The activation function given in Equation (3.24) has the special property that its gra-
dient can be expressed by the function itself:

∂Φj(κ)

∂κ
= 1− Φ2

j(κ) for j > 0 (3.26)

By exploiting this knowledge, the derivative of the model output with respect to the non-
linearly acting hidden layer weights is obtained for j > 0 as shown in Equation (3.27).

∂ŷi
∂GN

jk

= GL
ij

∂Φj(κ)

∂κ
vk = GL

ij

(
1− Φ2

j

)
vk (3.27)

Consequently, the derivatives can be efficiently evaluated by utilizing already computed
quantities. Moreover, due to the analytical gradient calculation, both the accuracy
and the training speed are increased. As the output error of the model can be traced
back layer by layer starting from the output layer, this principle is referred to as error
back-propagation. The extension of the aforementioned principles towards MLP neural
networks with two or more hidden layers is straightforward [57].

3.4.3.3 Nonlinear Parameter Optimization

Given the relationship between the MLP output and the parameter vector as described in
Section 3.4.3.2, a nonlinear optimization algorithm is utilized to determine the weights.
Here, the widely employed Levenberg-Marquardt approach for nonlinear least-squares
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optimization is used to minimize the mean squared error performance function depicted
in Equation (3.28).

e(θ) =
1

NT

NT∑
i= 1

(
y(i)− ŷ(i,θ)

)2

(3.28)

θ = vec(GL,GN) (3.29)

In Equation (3.29), vec(·) denotes the operator that reorders a matrix into a column
vector. It is important to note that the system output y is not dependent on the neural
network parameters contained in θ. Following the aforementioned argumentation, the
error e(θ) and its gradient according to the neural network weights can be expressed
using Equations (3.25) and (3.27).

Within the framework of the Levenberg-Marquardt optimization, the Hessian ma-
trix is approximated to achieve nearly second-order training speed [114]. Defining
J(θ) = ∂e(θ)/∂θ as the Jacobian containing the first-order derivatives of the model er-
rors with respect to the parameter vector θ, the Hessian can be approximated as H(θ) =

J>(θ)J(θ). Furthermore, the gradient g(θ) can be calculated via g(θ) = J>(θ)e(θ).
Given the Hessian and the gradient at iteration k − 1, the LM procedure performs the
following update for the parameter vector θk containing all linear and nonlinear MLP
weights [111,114]:

θk = θk−1 − ηk−1

[
H(θk−1) + µI

]
g(θk−1) (3.30)

In Equation (3.30), I and η denote the identity matrix and a step increment, respec-
tively, whereas µ is a scalar which blends between the Gauss-Newton method for small
µ and the steepest descent method for large values of µ. For further remarks on the
Levenberg-Marquardt algorithm, the reader is referred to References [111,114].

3.4.3.4 MLP Neural Network Properties

In comparison to the local linear neuro-fuzzy model introduced in Section 3.4.2 the mul-
tilayer perceptron neural network offers some advantages but also distinct drawbacks,
which are highlighted in the following according to the discussion in Reference [121]:

• The MLP neural network can generally achieve a very high accuracy in terms of
nonlinear multivariate approximations. Due to the ridge construction mechanism
in combination with the nonlinear parameter optimization, the aforementioned
neural network is a powerful universal function approximator. Since no linear sub-
models are incorporated within the multilayer perceptron formulation compared
to the local linear NFM, the attainable one-step prediction accuracy is higher for
the MLP neural network. This is particularly evident in the case of highly non-
linear problems. The MLP neural network also requires fewer processing units
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as well as model parameters in contrast to RBF neural networks or local linear
neuro-fuzzy models to yield a comparable approximation quality. Consequently,
the multilayer perceptron neural network can be considered to offer a high data
reduction performance.

• The smoothness of the function approximated by the MLP neural network is typ-
ically very high. The reason for this property is the neural networks monotonic
interpolation tendency which is driven by the hyperbolic tangent activation func-
tion.

• The extrapolation behavior of the MLP neural network is essentially constant if
the considered input vector exhibits a sufficiently large distance from the trained
input regime. Nonetheless, the shape of the hyperbolic tangent leads to a differing
extrapolation characteristic in the short range. This is a major disadvantage of
the MLP neural network, especially, related to the recurrent modus operandi of
the model.

• As the parameter determination is realized via nonlinear optimization methodolo-
gies, the training process is computationally demanding. Moreover, an adequate
structure selection, namely the determination of the number of neurons MMLP or
the number of layers (and neurons per layer), is challenging and requires many
trial and error attempts or sophisticated pruning and growing algorithms. The
aforementioned options need user-interaction or extensive computing resources.
Therefore, the structure selection concerning MLP neural networks is a complex
and expensive task. Although this training cost might be almost negligible within
the scope of this work as the CFD simulations yielding the training data are com-
putationally much more expensive, this is still a significant disadvantage of the
MLP neural network in comparison to the local linear neuro-fuzzy model trained
by the LOLIMOT algorithm. The latter already provides a structure selection
strategy combined with the very fast parameter estimation procedure outlined in
Section 3.4.2.2.

• Numerical experiments and practical experience showed that the MLP neural net-
work is more susceptible to simulation instabilities. This holds especially true if
the multi-step ahead prediction performance is directly compared to the simulation
result of the local linear NFM. As a consequence, the MLP neural network will
not be employed in recurrent operation, i.e., with output feedback, in this work to
avoid numerically unstable solutions.

The intended use of the multilayer perceptron neural network as a nonlinear static,
non-recurrent function approximator is explained in more detail in Section 4.3. Below,
the splitting of the available process data into training, validation, and test data is
motivated.
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3.5 Data Preprocessing – Concept of Training,
Validation, and Test Data

As already indicated in previous sections, not the entire system-representing data are
used for calibrating the unknown parameters of the MLP neural network or the NFM.
It is important to keep in mind that the main goal of the identified models is to achieve
a good generalization ability [145]. A model with a favorable generalization behavior
provides meaningful output values for unknown, non-trained inputs. However, the lat-
ter property cannot be verified with the training data since the model has been already
conditioned with this information. Therefore, further data samples must be provided to
ensure a desired generalization behavior. Besides, overfitting and underfitting must be
prevented [10]. Consequently, three datasets are typically employed for model construc-
tion [10,80,121]:

1. Training data: In the present work, the weights, centers, and widths of the local
linear neuro-fuzzy model as well as the linear and nonlinear weights of the multi-
layer perceptron neural network are determined based on the training dataset by
means of supervised learning methodologies. If the model is a posteriori applied
to predict the output of the training case, the model should be able to reproduce
the trained information. Otherwise, the model structure offers too few parameters
and is, therefore, not complex enough to adequately describe the problem. This
effect is referred to as underfitting. However, the training dataset should not be
used to optimize the model’s structural complexity, as this would increase the risk
of overfitting.

2. Validation data: Based on the validation dataset, the problem-dependent optimal
model complexity is determined, i.e., the number of local linear models or the
number of hidden layer neurons. Concurrently, the validation data are also used
to avoid overfitting. Given only the training data, the introduced training strate-
gies lead to an almost arbitrary reduction of the selected error criterion with an
increased number of training steps [48]. Hence, the definition of a termination con-
dition would be difficult and the model often becomes over-adapted to the training
data (overfitting). In contrast, if the mean squared error as an exemplary error
measure is also evaluated for the validation data during the training process, the
model quality does not necessarily improve with more training iterations. Hence,
the model with the minimum validation error is commonly selected and the train-
ing process is terminated. However, in this way the validation data is indirectly
included in the model. Consequently, it should be avoided to utilize the validation
data for assessing the model’s generalization capability.

3. Test data: The test dataset contains information of the underlying system that
was neither used for model structure determination nor for parameter calibration.
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Thus, this dataset allows a non-biased evaluation of the generalization behavior as
well as the overall model performance.

Full
Dataset

Training
Data

Validation
Data

Test
Data

Model
Parameters

Quality/Accuracy
Assessment

Figure 3.8: Schematic of the data splitting procedure to obtain training, validation, and
test samples.

Nevertheless, it must be ensured that the three introduced datasets are representative
for the investigated system. If some operating regimes are not covered by the training
data, the identified model cannot be expected to provide reasonable outputs under these
conditions.

Within the scope of this work, the full dataset stemming from the CFD solver is
divided into training, validation, and test datasets according to Figure 3.8. Nonetheless,
prior to this segmentation procedure, the input and output signals are preprocessed. It
was shown by Sola and Sevilla [157] that not only the training speed but also the numeri-
cal robustness and the prediction performance of the resulting model can be significantly
improved by normalizing the inputs and outputs. In this regard, the standardization,
also referred to as the standard score transformation, is applied for all input and output
features unless otherwise specified. The standard score normalization is a widely em-
ployed technique in the neural network and machine learning community [50] leading to
signals that are statistically characterized by a zero mean and unit variance [117]. With
the mathematical operators of the Hadamard power A◦2 = A2

ij and the Hadamard divi-
sion A�B = Aij/Bij, the standardization of the inputs and outputs can be generalized
to:

ū =
1

NS

NS∑
k = 1

u(k), σu =

√√√√ 1

NS − 1

NS∑
k = 1

(
u(k)− ū

)◦2
(3.31)

ȳ =
1

NS

NS∑
k = 1

y(k), σy =

√√√√ 1

NS − 1

NS∑
k = 1

(
y(k)− ȳ

)◦2
(3.32)

ustd(k) =
(
u(k)− ū

)
� σu (3.33)



58 3 System Identification and Neuro-Fuzzy Approaches

ystd(k) =
(
y(k)− ȳ

)
� σy (3.34)

In Equations (3.31) and (3.32), ū and ȳ denote the respective mean of the system in-
put and output vector. Moreover, the standard deviations of the input and output
vectors are, respectively, σu and σy. Using the previously introduced quantities, the
resulting standardized input vector at time increment k is symbolized by ustd(k) accord-
ing to Equation 3.33. Correspondingly, ystd(k) refers to the standardized system output.

Subsequent to the standardization, the normalized dataset ustd(k) → ystd(k), k =

1, . . . , NS is arranged according to the external dynamic filtering approach discussed in
Section 3.3.1. As the final preprocessing step, the data is then partitioned into separate
datasets as it is shown in Figure 3.8. Thereby, random sampling (without replacement)
is employed to select, on the one hand, 70% of the available samples for the training
dataset. On the other hand, the remaining data samples are equally divided into vali-
dation and test datasets. Care must be taken that the same random order is applied to
both the input and the output vector in order to ensure the correct linkage of these data.
It is worth to note that the random sampling strategy leads to a loss of the temporal
sequence between the succeeding model input vectors [x(i− 1),x(i),x(i+ 1)]. However,
due to the external-dynamics-based re-ordering the relevant information about the tem-
poral connection is still preserved within each model input vector x(i). On the contrary,
the random sample order offers some advantages for the training algorithms by avoid-
ing ill-conditioned matrices [48,114]. Thus, after conducting the discussed preprocessing
procedure, the multilayer perceptron neural network, the local linear neuro-fuzzy model,
or any other function approximator can be employed to map the preprocessed inputs to
the preprocessed outputs.

Owing to the standardization, it should be noted for completeness that the final
model output must be re-normalized in order to obtain consistent output values. With
the definition of the Hadamard product A ◦ B = Aij · Bij, the non-normalized output
can be computed according to Equation (3.35).

y(k) = ȳ + ystd(k) ◦ σy (3.35)

3.6 Monte-Carlo-Based Training and Application
Framework

The quality of models that have been obtained by system identification techniques is
very sensitive to the training data as well as the parameter initialization prior to the
learning process [9]. Specifically, the training excitation signal discussed in Section 3.7,
the random data composition described beforehand, and the optimization starting point
can have a crucial influence on the finally obtained model. If varying training signals are
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excluded from the following considerations, the modeling is still subject to uncertainties
due to the randomly sorted training data as well as the random parameter initialization
in the case of MLP neural networks. Consequently, it is unclear whether the response
of the model is reproducible with high probability or only an outlier in comparison to
the output of many trained models. Exemplarily, two scenarios can be considered con-
cerning this issue [187]: On the one hand, a good performance might be ascertained for
a specific model, whereas models trained by other data compositions or initial settings
yield a comparatively poor agreement with the reference data. On the other hand, it
is possible that a given model performs not satisfactorily, although all representative
and necessary information about the underlying system have been provided within the
training dataset. Both cases are undesired since they hide the true potential of the
identification approach.

In order to make the previously explained model uncertainties measurable, a Monte-
Carlo-based training and application strategy is employed. Within the scope of unsteady
aerodynamic and aeroelastic reduced-order modeling, the Monte-Carlo framework has
been first introduced by the author in References [187] and [189]. By estimating sta-
tistical deviations due to the model construction process, it can be ensured that the
results of the identified models become both reproducible and comparable. Since the
Monte-Carlo framework is independent from the specific identification algorithm, the
methodology also leads to an increased transparency between results that have been
obtained by different identification-driven reduced-order modeling techniques.
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Figure 3.9: Monte-Carlo training (left) and application procedure (right) for
identification-based modeling.

Generally, Monte-Carlo approaches are characterized by repeated numerical simulations
that are initialized by random processes [116]. Here, NMC independent models are
trained in parallel, while all identification settings are kept constant. A schematic show-
ing the general method is presented in Figure 3.9. Due to the random data segmentation
process, which is performed autonomously for each of the NMC models, the finally ob-
tained models differ from each other. Consequently, they will not produce the same
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response for a given input signal. However, it is important to emphasize that the under-
lying full dataset containing the training, validation, and test data is the same across all
training instances.

After the NMC models have been trained, they can be employed for the intended
purpose to simulate the response caused by unknown inputs. According to Figure 3.9,
the same user-defined input signals are fed into each model resulting in NMC different
output vector time series. Given those responses, statistical methods can be applied
to analyze the data. In the present work, the mean of the response µ as well as the
standard deviation σ is computed for comparison and classification purposes. Defining
yj(k) as the output vector at time step k produced by model j, the following equations
are evaluated:

µ(k) =
1

NMC

NMC∑
j = 1

ŷj(k) (3.36)

σ(k) =

√√√√ 1

NMC − 1

NMC∑
j = 1

(
ŷj(k)− µ(k)

)◦2
(3.37)

As the CFD simulation yielding the training data is the main computational cost
driver for system-identification-based unsteady aerodynamic reduced-order modeling,
the slightly increased numerical effort of the suggested Monte-Carlo procedure is justi-
fied by the additional insights about the models.

3.7 Excitation Signal Design

A decisive, highly problem-dependent task within the reduced-order modeling process is
the design of suitable excitation signals in order to obtain training datasets that are rep-
resentative for the investigated system. This step is even more important for nonlinear
systems than for the linear counterpart [10]. Referring to the discussion in Section 3.1,
the homogeneity and additivity principles are not valid for nonlinear systems. Hence, the
data exploited by nonlinear identification techniques must contain considerably more in-
formation compared to the respective linear case. Regardless of the chosen identification
strategy and the specific approximation approach, the quality and information content
of the excitation signal in combination with the respective system response determines
an upper limit for the achievable accuracy of the model. In summary, the following
questions must be addressed for the design of adequate excitation signals:

• What is the purpose of the model?

• Is the system behavior linear or nonlinear?

• What amplitude range of each input parameter should the model cover?
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• Are there different operating points in which a dynamically linear behavior is en-
countered?

• Which frequency range should be described by the model?

• How many samples are needed?

• Which discrete time step is adequate for the underlying problem?

• Does an equilibrium or static offset exist with respect to the input parameters?

• Is it possible to feed the user-defined signal(s) into the system to obtain its re-
sponse?

Taking the aforementioned aspects into account, it becomes obvious that prior knowl-
edge about the investigated system is highly beneficial for excitation signal generation.
In the context of this work, a deep understanding of the unsteady aerodynamic and
aeroelastic phenomena is therefore necessary to create a problem-tailored excitation sig-
nal [124].

Regarding linear systems, the response induced by an impulsive deflection [38, 106]
or step excitation [69] contains sufficient information to identify a precise and stable
model [102]. Besides the static or equilibrium amplitude, the respective signal types
depicted in Figures 3.10a and 3.10b are represented by a single amplitude level for each
degree of freedom, while the induced output incorporates all frequencies limited only
by the resolution of the discrete temporal sampling. Moreover, the pseudo-random bi-
nary signal (PRBS) shown in Figure 3.10c is often employed for linear identification
purposes [9]. If multiple inputs are present, the Walsh functions can be employed as it
was shown in the work of Silva [150] and Fleischer [38]. Nonetheless, in order to avoid
large gradients and abrupt changes within the training signal, e.g., due to limitations of
the numerical method, further signals have been developed. Exemplarily, the so-called
pulse excitation signal introduced by Kaiser et al. [75] can be employed for linear system
identification. The pulse signal visualized in Figure 3.10d can be regarded as an asym-
metrically smoothed step function. Although it does not excite the resolved frequency
bandwidth equally well, it can be designed such that the frequencies of interest are ad-
equately captured.

Considering the application of unsteady aerodynamic reduced-order models across vary-
ing freestream conditions (refer to Section 4.1 for a thorough discussion), the aerody-
namic system for a given operating point can be regarded to respond in a linear way as
long as the excitation amplitudes are small [185]. Although the overall system exhibits a
nonlinear behavior due to the influence of the operating condition, the dynamic linearity
for fixed freestream parameters allows the use of excitation signals known from linear
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identification theory. Therefore, the signals shown exemplarily in Figure 3.10 have to
be applied independently for each operating point. Finally, the data originating from
the considered training freestream conditions are merged to a single dataset in order to
train the nonlinear model. With respect to the modeling presented in Chapter 5, the
pulse signal has been utilized for the robust and efficient training data generation.
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Figure 3.10: Selected excitation signals for linear system identification.

If the system, however, cannot be thought of to be dynamically linear, further infor-
mation about the underlying system is required to train the reduced-order model. In
case of the approaches presented in Sections 4.2 and 4.3, the signal(s) must excite the
relevant amplitude and frequency characteristics of the nonlinear aerodynamic system.
In fact, the definition of adequate excitation signals is strongly correlated with the kind
of system under investigation as well as the intended usage of the model. As the su-
perposition principle does not apply, it is not sufficient to prescribe the amplitude in
the way that only a maximum, a minimum, and a static level is reached. In contrast,
numerous intermediate values between the maximum and minimum amplitudes must be
considered for each input parameter. Concurrently, the effort associated to the training
data generation must be limited in order to retain the computational advantages of the
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reduced-order modeling approaches. Moreover, to capture possible nonlinear interac-
tions and interference effects between the excitation of multiple degrees of freedom, the
system must be simultaneously excited with respect to all considered input dimensions.

One possible solution is the use of a random signal [69] shown in Figure 3.11a for the
excitation of the nonlinear system. Mannarino [107] showed that random-like signals
yield reasonable identification results of the unsteady aerodynamics with inherent non-
linear characteristics. Nonetheless, the use of random signals results in computationally
demanding CFD simulations since each considerable jump within the excitation signal
incorporates more iterations of the fluid solver to reach the specified density residuum
convergence limit. Furthermore, the filtered white Gaussian noise (FWGN) signal de-
picted in Figure 3.11b, which is employed for example by Kou and Zhang [80], yields
promising nonlinear-identification-based models in the context of transonic aerodynam-
ics and aeroelasticity.

Nevertheless, the signal type, which is mainly applied in this work, is the amplitude-
modulated pseudo-random binary signal (APRBS, [121]). This signal can be generated
from the well-known PRBS (see Figure 3.10c) by assigning random amplitudes to each
plateau. In this way, a square-wave signal with pseudo-randomly varying duty cycle and
amplitude is obtained as it can be seen in Figure 3.11c. The main advantage of the
APRBS compared to other well-known signals such as dc-chirps or multisine Schroeder
sweeps [124] is the high information content per signal length in combination with the
large spectrum of excited frequencies and amplitudes. The former aspect is especially
important with respect to computational cost limitations. For practical purposes, the
user can define the maximum and minimum amplitudes as well as the equilibrium ampli-
tude, which must not be equidistant to the amplitude extrema. Moreover, the minimum
hold time of the signal can be varied by the user in order to shape the frequency charac-
teristics of the signal. Extensive simulation campaigns with a fixed number of excitation
signal samples pointed out that the APRBS-based CFD computation converges faster
compared to simulations employing the random signal. The reason for the cost reduction
is the presence of regimes in which the APRBS does not undergo any change. Hence,
fewer iterations of the CFD solver are required within each time step on average to reach
a user-defined residuum. The utilization of the APRBS for nonlinear aerodynamic identi-
fication was first suggested by the author in Reference [182]. Moreover, to mitigate large
gradients occurring in the original APRBS, a smoothed variant of this signal, referred
to as the smoothed amplitude-modulated pseudo-random binary signal (SAPRBS) has
been developed within the scope of this work [188]; see also Figure 3.11d. For the exci-
tation of more than a single degree of freedom, several APRBS can be simultaneously
applied for each input channel.
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Figure 3.11: Excitation signals for nonlinear identification purposes.

In the next chapter, the introduced fundamental approaches are consolidated in order to
yield powerful methods for unsteady aerodynamic and aeroelastic reduced-order model-
ing.



4 Developed Aerodynamic
Reduced-Order Models

This chapter presents the unsteady aerodynamic reduced-order modeling approaches,
which have been developed within the scope of this work. The content is structured
as follows: First, Section 4.1 deals with the model-order reduction methodology for
computing generalized aerodynamic forces with respect to multiple inflow conditions.
In contrast to established approaches, a monolithic reduced-order model is trained to
capture the motion-induced unsteady aerodynamic forces for different freestream Mach
numbers or incidence angles. Subsequently, Section 4.2 discusses an approach which
allows the efficient modeling of entire flow fields or surface distributions of specified
physical quantities. Based on the interconnection of the local linear neuro-fuzzy model
and the proper orthogonal decomposition (POD), it becomes feasible to predict the
time-varying aerodynamic load distribution. Finally, in Section 4.3 a combination of
the neuro-fuzzy model and the multilayer perceptron neural network is presented in or-
der to model strongly nonlinear characteristics. Consequently, the aerodynamics due
to large structural deflections or rigid body excitations can be accurately reproduced
with the developed method. This chapter includes key findings that have already been
documented in pre-publications of the author; see References [183–185,188,189].

4.1 Variation of Freestream Parameters

As it has been discussed in the introduction, only a few unsteady aerodynamic ROM
approaches can be found in the literature that account for variable freestream condi-
tions. Though, an efficient and reliable aerodynamic model that is valid across a range
of inflow conditions or even for the entire flight envelope is highly desirable for numer-
ous industrial applications. Hence, an unsteady aerodynamic reduced-order modeling
methodology is developed that can be applied across freestream parameter variations;
see also Reference [185]. Based on the recurrent local linear neuro-fuzzy model, it is
possible to predict the motion-induced integral aerodynamic loads (forces, moments,
generalized aerodynamic forces) across a range of freestream conditions.

Supported by Figure 4.1, the methods and theories described in Chapters 2 and 3 are
consolidated to obtain the overall model-order reduction procedure. Since the approach
is based on the nonlinear identification principles explained in Section 3.2, the model
parameters must first be trained before a ROM-based simulation can be carried out.
For this purpose, sets of training, validation, and test data representing the underlying
system are required. Here, the investigated system is constituted by the unsteady CFD
solver, which allows a user-defined deformation of the surface geometry and delivers the
resulting aerodynamic forces and moments within each physical time step due to the
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prescribed motion. It is important to highlight that the workflow shown in Figure 4.1
involves white-box methods, e.g., the CFD solver derived from the Euler or Navier-
Stokes equations, as well as black-box methods. By generating the training data using a
white-box method, the physical relationships of the aerodynamic system are implicitly
embedded in this dataset. Thus, the physics and in particular the characteristic dy-
namic relations between the inputs and outputs can be reproduced by the ROM within
the limits defined by the training data. However, only the range of deflection ampli-
tudes and frequencies which has been excited during the training CFD simulation(s)
can be reproduced adequately by the ROM; see the discussion in Section 3.7. The same
applies to the freestream condition range. As a consequence, the more nonlinear the
inter-dependencies between the model output and the inflow parameters are, the more
training inflow conditions must be provided to yield reliable results. For example, if the
surface pressure distribution is nonlinearly related to the variation in the Mach number,
additional training conditions must be considered compared to a case where a linear
characteristic predominates. However, this strongly depends on the investigated config-
uration and flight regime. Although a ROM-based extrapolation aside from the trained
system behavior is possible from a methodological point of view, it should be avoided
since the accuracy of the model output becomes questionable.
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Figure 4.1: Schematic showing the developed unsteady aerodynamic ROM approach that
can be employed across varying freestream conditions.

Considering the step-by-step overview provided by Figure 4.1, training freestream condi-
tions must be initially chosen by the user (1), keeping in mind the previously discussed
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constraints. In this regard, a set of training freestream Mach numbers MaTrn , train-
ing incidence angles αTrn , or any other parameter, which enters the CFD solver in a
time-invariant manner, is defined. Besides, it is also feasible to vary more than a single
freestream parameter within the ROM procedure. Consequently, corresponding sets for
all flow condition variables must be defined prior to the training process. Nonetheless, the
overall computational effort increases drastically with an increased number of different
freestream parameters as the entire input space must be adequately resolved. For conve-
nience, the following discussion is based on the assumption that only a single freestream
parameter is varied. Hence, the parameter vector introduced in Equation (3.4) essen-
tially becomes a scalar (Ξ→ Ξ).

Related to the number of chosen training freestream conditions defined as NFC , steady-
state flow solutions have to be computed in step (2) using the CFD solver. Before
performing the unsteady simulations, the excitation signal(s) for the structural and/or
rigid body degrees of freedom must be defined (3). Depending on the amplitudes and fre-
quencies of interest as well as the expected dynamic characteristics, i.e., a linear dynamic
behavior due to small disturbances, the excitation signals must be generated according
to the training signal design guidelines discussed in Section 3.7. Consequently, a unique
excitation signal is assigned to each structural and/or rigid body mode to realize pre-
scribed motions of the aerodynamic shapes within the CFD framework. At each time
increment, the instantaneous geometry is formed by the undeflected reference shape in
combination with a superposition of all considered mode shapes (see Section 2.2) scaled
by their respective excitation signal value. Depending on the specific training signal
design, the degrees of freedom can be excited either simultaneously or independently
from each other.

Subsequently, the unsteady CFD simulations are carried out for the selected NFC train-
ing freestream conditions as it is depicted in Figure 4.1 by means of step (4). As a result,
time-series of the aerodynamic coefficients or generalized aerodynamic forces induced by
the forced excitation are obtained. As all structural/rigid body degrees of freedom can be
excited within a single CFD computation, the numerical effort is approximately propor-
tional to the number of training freestream conditions NFC . Depending on the purpose
of the model, the definition of the model output is undertaken at this point. If, on the
one hand, the model is intended to provide the overall force and moment characteris-
tics, the output can be defined by the integral aerodynamic coefficients of interest, e.g.,
y(t) ≡ [CL(t), CMy(t)]

> considering the lift and pitching moment coefficients. On the
other hand, if the model is intended to be used for aeroelastic investigations, the gener-
alized aerodynamic forces may serve as the model output y(t) ≡ fgen(t). Generally, all
data from the unsteady CFD runs such as local pressures or velocities can be extracted
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from the simulations in order to be modeled by the ROM, making this framework uni-
versally applicable.

By linking the excitation inputs u(t) with the CFD-based outputs y(t) for all available
training freestream conditions, the merged dataset can be employed to calibrate the
neuro-fuzzy-model-based ROM. Nevertheless, some data preprocessing is required prior
to the execution of the LOLIMOT training algorithm. In this regard, the maximum
input/output delays introduced in Equation (3.4) must be determined in step (5) ac-
cording to the explanations given in Section 3.3. Additionally, the data is normalized
with respect to the mean and standard deviation in order to improve the numerical
robustness of the training procedure. Finally, the random distribution of the available
data into training, validation, and test data is conducted (see Section 3.5). After the
preprocessing step (6) is completed, the data can be utilized to train the unknown pa-
rameters of the local linear neuro-fuzzy model using the LOLIMOT algorithm (7); see
Section 3.4.2.2 for a detailed discussion. In order to make the approach-inherent uncer-
tainties assessable, the Monte-Carlo-based training strategy can be optionally employed
according to Section 3.6.

Once the model error evaluation with respect to the test dataset yields acceptable results,
the calibrated ROM can be used for the intended unsteady aerodynamic simulations.
Generally, arbitrary excitation signals and application freestream conditions can be de-
fined by the user as it is depicted in step (8) of Figure 4.1. However, the quality of
the model output deteriorates if the signal’s amplitudes and frequencies are not covered
by the training signal(s). Analogously, the application freestream conditions should be
in the range of the chosen NFC training conditions. As the ROM framework is based
on the discrete time formulation shown in Equation (3.4), the (nondimensional) time
step size embedded in the training data has become a fixed model-inherent constant.
Consequently, the application signals must be always sampled with the same time step
size.

A posteriori to the preprocessing of the application data, the ROM can be used for
the efficient simulation of the aerodynamic system’s response (9). For this purpose,
multiple one-step-ahead prediction operations are carried out, while the model output is
fed back iteratively by means of the model input vector following the discussion in Sec-
tion 3.3.1. Since initial input and output states are required for starting a ROM-based
simulation (see Section 3.3.2), the model outputs can be initialized by their correspond-
ing steady-state values, whereas the excitation can be defined as non-existent. If no
steady-state information is available for the unknown freestream parameters, this data
can be generated by interpolating between the known CFD results. Practical experience
has shown that a precise initialization of the outputs is not crucial for the quality of the
ROM results.
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In case the Monte-Carlo procedure is employed, the ROM simulation is performed for
each of the trained NMC neuro-fuzzy models. Subsequently, a statistical analysis of the
NMC ROM outputs yields the final results as it is indicated in Section 3.6. In this way,
the aerodynamic response ŷ due to user-defined structural and/or rigid body excitations
can be obtained for various freestream conditions.

4.2 Prediction of Unsteady Surface Pressure
Distributions

In this section, a surrogate modeling framework for the prediction of motion-induced
surface pressure fluctuations is presented; see also Reference [184]. The motivation for
this approach is that aircraft design and analysis applications often require detailed
knowledge about the flow-induced load distribution in addition to integral aerodynamic
coefficients. Hence, the method proposed in this section aims at the efficient prediction
of aerodynamic load distributions. Similar to the procedure described in Section 4.1,
the model construction is based on forced-motion unsteady CFD simulations. However,
before applying methods from the nonlinear system identification domain the result is
processed via the proper orthogonal decomposition (POD) in order to reduce the dimen-
sionality of the problem. In this way, the predominant modes are obtained with respect
to the flow field or surface distribution of user-defined physical quantities. Subsequently,
the identification task is performed using the recurrent neuro-fuzzy model approach. In
this regard, the model is conditioned to output the scaling coefficients corresponding to
the computed POD modes. After a reconstruction step, entire field or surface data can
be efficiently computed by means of this methodology. As soon as the surrogate model
is trained, it can substitute the flow solver within unsteady aerodynamic or aeroelastic
simulation frameworks.

Before the unsteady aerodynamic reduced-order modeling procedure is discussed in
further detail, the proper orthogonal decomposition known from the literature is reca-
pitulated.

4.2.1 Proper Orthogonal Decomposition (POD)

According to Iuliano and Quagliarella [70], the POD is a mathematical procedure that
can be employed to decompose a large multi-dimensional dataset into a comparatively
small number of representative modes. In this way, a condensed system description with
a considerably reduced number of degrees of freedom is obtained. In the present con-
text, the so-called POD snapshot method introduced by Sirovich [154] is applied for this
purpose.

Therefore, the user must initially define the physical quantity of interest in order to
apply the snapshot POD. Moreover, it is important to specify whether 3D field data,
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e.g., from finite volume cells, or data from surface elements shall be considered within
the modeling process. In this regard, a unique mapping between the field or surface
information and the so-called snapshot vector Wi must be defined. Consequently, it
becomes feasible to transform surface or field data into snapshot vectors and vice versa
without loosing information.

Anticipating the application of the POD presented in Chapter 6, the local pressure
coefficient Cp can be exemplarily selected as the investigated aerodynamic quantity if
the pressure-induced loads acting on the body are of primary interest. Hence, the Cp
values of all CFD surface elements are arranged as a vector by means of a prescribed
mapping yielding the snapshot vector Wi. Thereby, the index i refers to the time instant
of the snapshot. Assuming that an available unsteady training dataset consists of NS

samples, the full-order snapshot matrix Y can be written as

Y =
[
Ŵ1, Ŵ2, . . . , ŴNS

]
∈ RNSE×NS , Ŵi = Wi −A, A =

1

NS

NS∑
i = 1

Wi (4.1)

In Equation (4.1), NSE denotes the number of considered finite volume cells or surface
elements, whereas Ŵi symbolizes the ith centered snapshot vector. Moreover, A ∈ RNSE

represents the mean snapshot vector that has been averaged over the available NS time
steps. Given the snapshot matrix Y, the aim of the proper orthogonal decomposition
is to find MPOD � NS orthogonal basis vectors under the premise that these modes
approximate Y optimally in the least-squares sense. For this purpose, the singular value
decomposition (SVD) is computed with respect to the snapshot matrix [70], leading to

Y = UΣV> = U


σ1 · · · 0
... . . . ...
0 · · · σNS
0 · · · 0

V> (4.2)

Considering Equation (4.2), the SVD provides, inter alia, the unitary matrix U ∈
RNSE×NSE and the rectangular diagonal matrix Σ ∈ RNSE×NS . It is important to empha-
size that the first NS column vectors of U correspond to the full set of possible POD
modes. Hence, using the basis vectors contained in U, the snapshot matrix Y can be
exactly reconstructed apart from round-off errors. However, since the singular values σi
are ordered such that σ1 ≥ σ2 ≥ . . . ≥ σNS ≥ 0, the singular values with larger subscripts
become comparatively small for practical applications [70]. As the singular value is a
measure of the mode’s relative significance, the basis modes corresponding to singular
values with higher subscripts (σMPOD+1, . . . , σNS) can be neglected in order to reduce
the number of degrees of freedom. Nonetheless, the dominant system characteristics
are maintained by considering the first MPOD modes. In Equation (4.2), it is implicitly
assumed that the number of volume cells or surface panels is larger than the number of
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samples, i.e., NSE > NS. In the opposite, less-frequent case, the highest occurring index
related to the singular values changes to NSE .

Based on the matrices U and Σ obtained via the SVD, the number of relevant modes
MPOD is still not uniquely determined. For this task, the relative information content
(RIC ) criterion can be evaluated [70,96]:

RIC =

∑MPOD

i = 1 σ2
i∑NS

j = 1 σ
2
j

≥ ε (4.3)

In Equation (4.3), ε is a user-defined threshold which should be set to 0.99 in order to
preserve 99% of the information contained in the original dataset [70]. By continuously
increasing the value of MPOD , it can be ensured that the RIC criterion is satisfied. As
the SVD has to be computed only once, the selection of the number of POD modes is
numerically not expensive. The resulting POD modes ϕ ∈ RNSE×MPOD are determined
as a subset of matrix U in terms of the first MPOD column vectors. Consequently, the
full-order snapshot vector at time step k can be approximated by the relation

W(k) ∼= A +

MPOD∑
i = 1

bi(k) ϕi (4.4)

considering the MPOD dominant basis vectors. In order to construct a reduced-order
model, the time-dependent POD coefficients bi(k) have to be determined based on the
training dataset for all modes i = 1, . . . ,MPOD and time steps k = 1, . . . , NS. For
this purpose, a least-squares optimization is performed in this work with respect to the
snapshot matrix Y and the POD modes ϕ. Alternatively, the POD coefficients can be
computed by further exploiting the matrix V> resulting from the SVD. In this way, the
matrix of POD coefficients B = [b(t1), b(t2), . . . , b(tNS)] is obtained.

Following the aforementioned POD snapshot procedure, the existing training dataset
(Y ∈ RNSE×NS) can be considerably compressed by means of the basis vectors (ϕ ∈
RNSE×MPOD ) and the corresponding time-dependent coefficients (B ∈ RMPOD×NS). Since
the POD modes can be regarded as time-invariant [3], the modeling task is shifted to
the treatment of the POD coefficients b(k).

4.2.2 POD-Based Aerodynamic Reduced-Order Model

Based on the combination of the proper orthogonal decomposition with the recurrent
neuro-fuzzy approach that has been discussed in Chapter 3, a surrogate model is de-
vised for the prediction of motion-induced unsteady aerodynamic field, slice, or surface
quantities. In particular, the POD leads to a dimensionality reduction in the first step,
whereas the nonlinear system identification methodology is applied as a second step
to allow efficient aerodynamic computations. This basic strategy is similar to the ap-
proach proposed by Lindhorst et al. [96]. In contrast to previous research, however, the
methodology presented here employs a recurrent neural network which incorporates the
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feedback of the network outputs to realize a highly-efficient, low-dimensional reduced-
order model. Considering the exemplary applications of the POD-ROM presented in
Chapters 6 and 8, the focus is laid on the modeling of surface pressure fluctuations that
are caused by structural and/or rigid body excitations. Besides applications in the con-
text of aeroelasticity or loads estimation, however, the method is generally applicable to
any user-defined physical quantity as well as arbitrary two- and three-dimensional data
distributions. The only prerequisite is that a unique mapping between the data from the
CFD domain and the snapshot vector introduced in Equation (4.1) exists. Thus, also 3D
field information or unsteady variations within defined slices through the domain can be
taken into account with the model. Supported by the schematic presented in Figure 4.2,
an application-oriented overview of the training procedure as well as the POD-ROM
utilization is given in the following.

CFD

Preprocessing:
Data Normalization
External Dynamics

Steady-State Solution

Excitation (Training)

Excitation (Application)

Input

Unsteady Result:
Surface/Field 
Time Series

Time-Averaged
Snapshot Vector

Training POD 
Coefficients B

Output

Training

Application

Training, Validation
& Test Data

Application Data

ReconstructionAerodynamic Coefficients, 
Generalized Forces

Dynamic Delays: m, n
ROM

Application POD 
Coefficients

POD Modes

Preprocessing:
Data Normalization
External Dynamics

CFD POD

u1(t)
unu(t)

u1(t)
unu(t)

u(t)

1

2

3 4

5

6

7

8
9

1011

Figure 4.2: Process chart of the surrogate modeling approach based on the proper or-
thogonal decomposition and recurrent neuro-fuzzy models.

In contrast to the process chain discussed in Section 4.1, the POD-ROM procedure does
not involve the feature to capture various freestream conditions. An extension of the
present methodology towards freestream parameter variations should be feasible, but re-
quires future research. Hence, step (1) depicted in Figure 4.2 refers to the conduction of
a steady-state CFD simulation for a user-defined freestream condition and given config-
uration. As the POD-ROM approach is also based on nonlinear identification principles,
an adequate input/output dataset characterizing the underlying CFD system must be
generated. Note that the CFD solver can be either an Euler or a RANS solver, without
changing the general ROM procedure. However, the user must be aware that depending
on the employed CFD set-up (set of equations, turbulence model, boundary conditions,
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grid, etc.), the degree of dynamic nonlinearity between the CFD-based inputs and out-
puts can vary substantially. Hence, the identification task of the system can become
more or less challenging.

Step (2) shown in Figure 4.2 comprises the definition of the excitation signal(s) for the
considered structural and/or rigid body degrees of freedom. According to the discussion
in Chapter 3, only those excitation amplitudes and frequencies, which have been excited
during the training CFD simulation, can be reproduced subsequently by the ROM. Fur-
thermore, the type of the excitation signal(s) depends on the expected system dynamics;
see the remarks in Section 3.7. In the context of unsteady aerodynamic investigations,
the magnitude of the deflection is typically the main driver with regard to a linear or a
nonlinear input/output characteristic.

For each structural or rigid body degree of freedom taken into account, a specific
excitation signal is generated and assigned. Thus, the aerodynamic body is formed by
the reference shape and the superposition of the investigated mode shapes multiplied
by their excitation signal values corresponding to the currently considered time step.
In this way, all degrees of freedom can be excited simultaneously, i.e., within a single
CFD computation. Based on the steady simulation and the defined excitation signal(s),
the unsteady forced-motion CFD computation is performed in step (3). The output of
the CFD solver is a time-series of the field or surface distribution of the aerodynamic
quantities, e.g., the pressure coefficient or the local velocity. Since nonlinear aerody-
namic phenomena are taken into account using Euler- or RANS-based CFD solvers, the
nonlinearity is incorporated in the field or surface distribution that forms the basis for
the ROM calibration. Consequently, nonlinear effects can be generally reproduced by
the surrogate model.

Once the unsteady CFD result is available, the mapping between the field or surface
distribution and the snapshot vector must be defined in order to construct the snap-
shot matrix Y. For example, the pressure coefficients Cp across all surface elements
can be arranged in a structured manner to form the snapshot vector. Following the
POD procedure (4) discussed in Section 4.2.1, the singular value decomposition in com-
bination with a subsequent least-squares optimization provides the relevant POD modes
ϕi (i = 1, . . . , MPOD) and the corresponding POD coefficient matrix B related to the
training dataset. In this way, the high-dimensional training dataset governed by the
number of volume or surface elements has been drastically compressed by means of the
POD modes. As a consequence, it is sufficient to identify the influence of the structural
excitation on the POD coefficients since the volume or surface information can be finally
reconstructed using the available POD modes.

Combining the user-defined excitation signals with the time-series of the POD coeffi-
cients, the merged dataset can be used to calibrate the recurrent local linear neuro-fuzzy
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model. Analog to the explanations given in Section 3.3, the maximum dynamic delays
(m,n) must be determined in step (5) to allow a reordering of the data with respect
to the recurrence framework methodology. Moreover, various preprocessing steps such
as data normalization and random data partitioning have to be carried out in step (6)
prior to the actual training procedure. Subsequently, the unknown parameters and the
structure of the local linear neuro-fuzzy model are optimized by applying the LOLIMOT
algorithm (7); cf. Section 3.4.2.2. Optionally, the model training can be performed ac-
cording to the Monte-Carlo methodology introduced in Section 3.6, resulting in NMC

neuro-fuzzy models for the prediction of the POD coefficients.
If the model error evaluation based on the test dataset (see Section 3.5) provides

reasonable results, the POD-ROM can be used for time-marching aerodynamic simula-
tions. By performing multiple one-step-ahead predictions including a feedback of the
model outputs, the recurrent neuro-fuzzy model is applied to deliver the POD coeffi-
cients due to prescribed structural or rigid body excitations. In this regard, arbitrary
excitation signals (8), that should be generally covered by the training data range with
respect to the amplitude and frequency spectrum, are preprocessed and fed into the
neuro-fuzzy model as it is depicted in Figure 4.2. Since initial conditions are required
for starting a ROM-based simulation, the POD coefficients corresponding to the steady-
state can be used, on the one hand, for the output initialization. For the inputs, on
the other hand, it can be defined that no excitation is initially present. In contrast to
the training process, the model outputs, i.e., the estimated POD coefficients, have to be
fed back to the neural network input vector within each iteration; see Equation (3.5).
As it has been already indicated in Section 4.1, the discrete time step size embedded in
the training dataset is also fixed for the POD-ROM approach and, therefore, has to be
utilized for all intended simulations.

Resulting from the application of the neuro-fuzzy model, the POD coefficients induced
by the user-defined excitation become available (9). By applying Equation (4.4) using
the known POD modes, the time-averaged snapshot vector, and the NFM-based time-
series of the POD coefficients, the snapshot matrix can be reconstructed with respect to
the application case (10). Furthermore, using the predefined mapping between the snap-
shot vector and the investigated surface or field distribution, the quantities of interest
such as the surface pressure distribution can be computed. If not only the distribution is
sought-after but also integral quantities, arbitrary calculations can be performed based
on the reconstructed information (11). For example, based on available surface pressures
the aerodynamic coefficients or generalized aerodynamic forces can be computed. Due
to these properties, the constructed ROM can be easily coupled with a structural and/or
flight mechanics solver in order to realize a highly-efficient multi-physics framework.
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4.3 Modeling of Strongly-Nonlinear Aerodynamic
Characteristics

The third unsteady aerodynamic model-order reduction strategy developed in this work
addresses the prediction of distinctly-nonlinear system dynamics. A more pronounced
nonlinear aerodynamic behavior occurs, inter alia, when increasing deflection ampli-
tudes are considered [8]. For example, in contrast to the analysis of the flutter onset,
the investigation of limit-cycle oscillations requires the simulation of larger excitation
amplitudes that can lead to an aerodynamically-driven nonlinear behavior. Besides, also
certain freestream conditions, especially within the transonic flight regime, can cause no-
ticeable nonlinear dependencies of the flow-induced response, e.g., if transonic buffet or
flow-separation occurs [7, 43, 67]. The methodologies discussed in Sections 4.1 and 4.2
are based on a neuro-fuzzy model, which has been shown to be well-suited for captur-
ing weak aerodynamic nonlinearities as well as small perturbation flow characteristics
across nonlinearly-acting freestream parameters [184, 185]. The beneficial properties in
this context can be attributed to the use of local linear sub-models making the NFM
less prone to simulation instabilities compared to MLP or RBF neural networks [121].
However, as the degree of nonlinearity increases, it becomes more difficult to identify the
unknown input/output relation exclusively by means of the superposition of linear shape
functions. Furthermore, the state-of-the-art ROM methods have their limits if they are
applied for the modeling of both linear and nonlinear system characteristics [84]. In par-
ticular, established methods fail to accurately predict aerodynamic responses for small
excitation amplitudes if they are trained for large amplitude cases.

4.3.1 Connected Neural Network Approach

As a remedy to the previously outlined issues, a novel identification strategy is suggested
for aerodynamic reduced-order modeling; see also Reference [189]. The approach is based
on a series connection of the recurrent local linear neuro-fuzzy model and the multilayer
perceptron neural network. Specifically, the neuro-fuzzy model is used for multi-step
ahead predictions, whereas the MLP neural network is a posteriori employed to perform
a nonlinear correction of the NFM’s time-series response. It is important to highlight
that the MLP does not feature a direct feedback. Thus, an overall robust model char-
acteristic is retained unless the NFM becomes unstable. In the following, the nonlinear
identification procedure is explained based on the theoretical foundations of recurrent
NFMs and MLP neural networks; cf. Chapter 3. According to the schematic depicted
in Figure 4.3, the identification strategy involves three sequential training steps [189]:
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Figure 4.3: Schematic showing the sequential three-stage training procedure (top) and
the application of the connected neural network approach (bottom). For con-
venience, the time-independent parameter vector Ξ has been omitted within
the model input vectors.

1) Initially, the neuro-fuzzy model is trained by means of the LOLIMOT algorithm
according to the explanations given in Section 3.4.2.2. For this purpose, the NFM
input vector consists of the (time-delayed) system input and system output quan-
tities. Presuming the notation introduced in Section 3.3.1, the following function
approximation problem is addressed by means of the NFM:

[
Ξ>, u>(k), . . . , u>(k −m), y>(k − 1), . . . , y>(k − n)

]> N1?−→ y(k) (4.5)

In Equation (4.5), N1 refers to the unknown functional that will be constituted
by the neuro-fuzzy model. It is important to emphasize that the system outputs
y(k) known from the provided training dataset are used to calibrate the unknown
parameters as well as the structure of the NFM. Thus, no iterative feedback is con-
sidered during the training of the neuro-fuzzy model. Detailed information related
to the first identification step can be found in Section 3.4.2.

2) After the neuro-fuzzy model has been obtained, the second stage of the training
procedure is carried out. According to Figure 4.3, a simulation must be performed
with the NFM for the given training data. Related to this step, the outputs of the
neuro-fuzzy model ỹ are fed back by means of the NFM input vector. Hence, the
NFM is applied within each discrete time step to generate the subsequent model
response:
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[
Ξ>, u>(k), . . . , u>(k −m), ỹ>(k − 1), . . . , ỹ>(k − n)

]> N1−→ ỹ(k) (4.6)

Since local linear neuro-fuzzy models are comparatively robust regarding multi-step
ahead predictions, they are well-suited for the simulations in the present context.
Henceforth, two output time-series are available for the training dataset, namely
the original training response y(k) and the result generated by the recurrent NFM
ỹ(k).

3) Beyond the previously outlined procedure for a LOLIMOT-based nonlinear identi-
fication, the MLP neural network discussed in Section 3.4.3 is a posteriori employed
to considerably improve the fidelity of the resulting coupled model. For this third
step, the MLP input vector comprises the (time-delayed) system inputs and the
recently obtained (time-delayed) NFM outputs ỹ(k) as it is indicated in Equa-
tion (4.7). Thereby, the functional mapping denoted by N2 is realized using the
MLP neural network.

[
Ξ>, u>(k), . . . , u>(k −m), ỹ>(k), . . . , ỹ>(k − n)

]> N2?−→ y(k) (4.7)

Since the complete NFM-based output time-series is already available, also the cur-
rent discrete time step information ỹ(k) can be considered within the MLP input
vector. Thus, the MLP input vector shown on the left hand side of Equation (4.7)
comprises only known quantities. In the case that the model is generalized to new
datasets (application process), the aforementioned property also applies. Nonethe-
less, the MLP neural network is still trained to minimize the mean squared error
with respect to the training information y(k) using the Levenberg-Marquardt op-
timization algorithm. Once the MLP neural network has been trained, the overall
model output ŷ can be obtained via

[
Ξ>, u>(k), . . . , u>(k −m), ỹ>(k), . . . , ỹ>(k − n)

]> N2−→ ŷ(k) (4.8)

In Equation (4.8), it is assumed that the LOLIMOT simulation result (ỹ) has been
computed a priori.

Because of the serial model structure shown in Figure 4.4, the MLP neural network
cannot produce a dynamically unstable response since it is not operated in a recurrent
modus operandi. For clarity, the outputs of the overall model are fed back neither to
the MLP nor to the NFM input vector. In fact, the MLP neural network can be con-
sidered to perform a nonlinear quasi-static correction of the neuro-fuzzy model outputs.
As the error of the NFM is further processed by means of the MLP neural network,
the overall model structure can be considered to belong to the nonlinear auto-regressive
moving-average with exogenous inputs (NARMAX) class [9] according to Equation (3.7).
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Figure 4.4: Visualization of the connected neural network approach including the re-
current local linear neuro-fuzzy model as well as the multilayer perceptron
neural network.

Another interesting feature of the novel aerodynamic reduced-order modeling strategy
is revealed if the NFM’s number of local linear models is artificially restricted to M = 1.
Then, the neuro-fuzzy model becomes a dynamically linear model and, from a global
point of view, a nonlinear Wiener-type model (dynamic linear model in series with a
static nonlinear model) is obtained as a special case. Hence, the user can incorporate
prior knowledge to select a problem-fitted model structure depending on the intended
application. For example, the overall model complexity can be adapted ranging from
a global linear model to a dynamically nonlinear model with a nonlinear static correc-
tion. Besides its robustness and flexibility, the resulting identification framework yields
a high simulation accuracy as well as generalization capability, which is demonstrated
in Chapter 7.

As it has been already noted in Section 3.3, initial conditions must be prescribed for the
input and output quantities due to the existence of delayed elements within the model
input vectors. The number of time steps that must be defined a priori is equal to the
maximum delay-order, i.e., max(m,n). Commonly, the initial values are set to zero or to
values representing the system’s static equilibrium. This procedure may lead to initial
conditions which are not strictly consistent with the physics of the underlying system.
However, practical experience showed that initialization errors are not crucial unless the
transient response at the simulation start is of primary interest. With increasing simula-
tion time, the error due to inaccurate starting conditions usually vanishes. Nevertheless,
if the system is governed by bifurcations or chaotic characteristics, initialization errors
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may be not tolerable. In the following, the application of the NFM-MLP-based nonlinear
identification strategy for efficient unsteady aerodynamic modeling is outlined.

4.3.2 NFM-MLP Network for Aerodynamic Modeling

Since the aerodynamic reduced-order modeling procedure based on the NFM-MLP ap-
proach is generally similar to the workflow discussed in Section 4.1, only the highlights
and noteworthy differences within the training and application process are explained in
the following.

In contrast to the ROM procedure depicted in Figure 4.1, the methodology for simulating
strongly-nonlinear aerodynamic characteristics does not necessarily involve freestream
parameter variations. Considering both motion- and freestream-parameter-caused non-
linearities at the same time places high demands on the training data information content
and, therefore, may drastically increase the ROM construction effort. Besides, the in-
creased input/output model complexity leads to additional challenges with respect to
the nonlinear identification task. However, according to the set of equations provided in
Section 4.3, it is feasible to incorporate static model input parameters as well. Conse-
quently, the workflow given by Figure 4.1 can be analogously applied such that variable
freestream conditions are taken into account. The only difference is that the neuro-fuzzy
model has to be substituted by the coupled NFM-MLP model during the system identi-
fication process. Thus, the steps and remarks given in Section 4.3.1 must be considered
in order to train and apply the connected network. Furthermore, the NFM-MLP neural
network can also replace the neuro-fuzzy model in the context of the POD-ROM proce-
dure discussed in Section 4.2 if a more dominant nonlinear behavior is encountered for
the POD coefficients.

For the following discussion of Figure 4.5, it is presumed for convenience that aerody-
namic force or moment coefficients, which depend distinctly nonlinear on the investigated
structural excitation, are intended to be modeled. Hence, the use of the NFM-MLP
model should be preferred for improved simulation fidelity compared to the use of the
neuro-fuzzy model only. For practical applications, however, it is recommended to verify
first whether the system is governed by a linear or a nonlinear behavior keeping in mind
the aims of the model as well as the application regimes of interest; see the remarks in
Section 3.1.

Based on Figure 4.5, a training dataset containing the representative system features is
needed for ROM calibration similar to the procedures discussed in Sections 4.1 and 4.2.
Therefore, user-defined excitation signals must be generated for all considered structural
or rigid body degrees of freedom; cf. Section 3.7. Subsequently, an unsteady forced-
motion CFD simulation is computed with respect to a chosen freestream condition. The
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Figure 4.5: Reduced-order modeling procedure for predicting strongly-nonlinear,
motion-induced aerodynamic characteristics using the NFM-MLP approach.
Variable freestream conditions are excluded in the chart to limit the prob-
lem’s complexity.

output of the CFD solver is a time-series of the forces and moments acting on the in-
vestigated aerodynamic body. Provided that the employed solver reproduces nonlinear
phenomena such as shock motions or flow separation, a nonlinear relation between the
degrees of freedom of the prescribed motion and the aerodynamic response is obtained
for sufficiently large deflections.

Once the input/output training database characterizing the underlying system has be-
come available, the procedure explained in Section 4.3 can be followed. Thus, the con-
nected network consisting of the recurrent local linear neuro-fuzzy model and the multi-
layer perceptron neural network is trained. It should be noted for completeness that the
methodology is also compatible with the Monte-Carlo strategy presented in Section 3.6;
see also [189]. Thus, several NFM-MLP models can be independently trained and ap-
plied to estimate the influence of random initialization and data composition on the
ROM solution quality. After the connected neural network yields satisfying simulation
results based on the test dataset, the resulting reduced-order model can be applied for
simulating the aerodynamic response due to user-defined structural motions analogously
to the description given in Section 4.1. In this way, the conduction of computationally-
demanding unsteady CFD simulations can be transferred to ROM, leading to a signifi-
cant acceleration of the associated aerodynamic investigations.



5 Analysis of Freestream Parameter
Variations

In this chapter, the neuro-fuzzy-model-based ROM approach discussed in Section 4.1
is applied for the prediction of generalized aerodynamic forces induced by structural
eigenmode-based excitations to demonstrate the efficiency and accuracy of the free-
stream-parameter-adaptive methodology. The content is largely based on the author’s
pre-publication, Reference [185]. However, in contrast to the previous outcomes where
the Euler equations solver AER-Eu had been employed, the results presented herein
originate from the Reynolds-averaged Navier-Stokes solver AER-NS. In this way, it is
shown that the method is generally applicable to different CFD solvers and degrees of
fluid-dynamic modeling.

In order to illustrate the application of the ROM procedure for aeroelastic investigations,
the AGARD 445.6 test case has been selected. The aeroelastic test case along with the
aerodynamic and structural modeling is presented in detail in Section 5.1. Concern-
ing the ROM training, steady and unsteady CFD solutions at six training freestream
Mach numbers are computed and utilized for the NFM calibration. Subsequently, the
trained ROM is employed to obtain motion-induced aerodynamic responses at various
freestreamMach numbers, which are not contained explicitly in the training dataset. The
aforementioned model generalization towards new freestream conditions is explained in
Section 5.3. It is important to highlight that the ROM results are always juxtaposed
to results of the respective reference system, which is the AER-NS solver in the present
chapter.

Due to the fact that the first harmonic of the aerodynamic loads is of particular
importance for linear flutter analysis, a further comparison of the frequency domain
GAF matrix elements is conducted. In Section 5.4, the ROM and CFD responses due
to harmonic excitations in each generalized coordinate are therefore transformed into
the frequency domain via Fourier analysis, whereas higher-order terms are neglected.
Additionally, a frequency-domain flutter analysis is carried out in Section 5.5 using the
p-k method [56, 68] to evaluate the ROM performance by means of the flutter speed
index and the frequency ratio.

5.1 Test Case: AGARD 445.6 Wing

In the present study, the AGARD 445.6 wing has been selected for applying the neuro-
fuzzy model approach. This test case is well-suited for the verification of unsteady
aerodynamic models, especially, if the focus is on predicting a wide range of freestream
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conditions including subsonic, transonic, and supersonic flows. The aeroelastic charac-
teristics of this wing have been thoroughly investigated. In this regard, it is worth to
emphasize that the AGARD 445.6 wing has been studied experimentally in the 1960s
by means of wind tunnel flutter tests at the NASA Langley Transonic Dynamics Tun-
nel [194] using air and Freon-12. The aim of these experiments was, on the one hand, to
provide a validation database for numerical simulation tools and, on the other hand, to
contribute to a better understanding of flutter and transonic aeroelastic effects includ-
ing the transonic dip [194]. The experimental flutter results are available in terms of
flutter speed indices (FSI ) and frequency ratios (FR) for the freestream Mach numbers
Ma∞ = [0.499, 0.678, 0.901, 0.954, 1.072, 1.141]; see also Section 5.5 for the definition
of FSI and FR. The corresponding angle of attack has been fixed to α = 0◦ in or-
der to avoid static aeroelastic deformations. Besides, the AGARD 445.6 wing has been
extensively used for numerical investigations including CFD solver validation, ROM test-
ing, and aeroelastic studies; see Lee-Rausch and Batina [92, 93], Silva et al. [153], and
Förster [41] for exemplary computational results. In the following, only the so-called
weakened model 3 configuration in combination with air as the fluid medium is taken
into account to evaluate the neuro-fuzzy-model-based reduced-order model.

5.1.1 Aerodynamic and Structural Modeling

The AGARD 445.6 configuration is geometrically represented by a swept semi-span wing
with low aspect ratio as it is shown in Figure 5.1a. The weakened model 3 exhibits a
quarter-chord sweep angle of ϕ0.25 = 45◦, a taper ratio of λ = 0.66, and a semi-span of
s = 0.762 m. The wing’s cross-section is further characterized by the NACA 65A004
airfoil exhibiting a relative thickness of t/c = 4%.

Y

X

Z

(a) Planform of the AGARD 445.6 wing (b) Computational grid

Figure 5.1: Planform and reference CFD grid of the AGARD 445.6 weakened model
3. The wing is marked red, whereas the blue and black faces illustrate the
farfield and symmetry boundary conditions, respectively.
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Moreover, the root chord of the AGARD 445.6 wing is given as cr = 0.558 m. With
respect to the experiments summarized in Yates [194], the semi-span model was attached
directly to the wind tunnel wall, i.e., no peniche had been utilized to mimic a fuselage.
The important geometric properties, that are needed to define the aerodynamic shape,
are recapitulated in Table 5.1.

Table 5.1: Geometric properties of the AGARD 445.6 wing [194].

Quantity Symbol Value

Root chord cr 0.558 m

Reference area Sref 0.353 m2

Semi-span s 0.762 m (2.5 ft)

Aspect ratio AR 1.65

Taper ratio λ 0.66

Sweep angle ϕ0.25 45◦

Reference length (kred) cref 0.558 m

As a prerequisite for conducting steady and unsteady CFD computations, the fluid do-
main has been discretized by a two-block C-H-topology. The structured computational
grid was generated in the work of Fleischer [38] using ANSYS ICEMCFD [2]. Thereby,
the grid dimensions have been scaled such that the grid reference length for the nondi-
mensional flow solver equals one. The Spalart-Allmaras turbulence model is used for all
(U)RANS computations within this chapter. Thus, it is assumed for all simulations that
the flow can be considered as fully turbulent, although the transition was not fixed within
the original experiments [194]. Using the Spalart-Allmaras turbulence model [158], it
is recommended that the dimensionless wall distance satisfies y+ < 5. In this way, at
least one wall-attached cell is located in the viscous sub-layer of the turbulent boundary
layer. In order to achieve the aforementioned resolution of the boundary layer, the grid
was refined towards the wall by an off-body distance of 5 · 10−5 cr with respect to the
first cell height. A further preprocessing of the grid with the in-house Poisson-equation
mesh smoother [26] led to grid lines that are virtually orthogonal to the block bound-
aries. A grid sensitivity study was conducted in the work of Fleischer [38] to ensure
independence of the solution from the grid resolution. In Figure 5.1b, the employed
non-deformed reference grid containing 450,560 cells is shown, while the wing itself is
represented by 6,912 surface elements.

The weakened model 3 used for the wind tunnel flutter experiments is made of laminated
mahogany wood. In order to reduce the stiffness of the wing and, thereby, its flutter
velocity, circular holes were drilled into the wood. Subsequently the holes were closed
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Figure 5.2: Exaggerated deflections (factor 200) normal to the wing midplane regard-
ing the first five eigenmodes of the AGARD 445.6 weakened model 3. The
natural frequencies and mode shapes are taken from Yates [194].

with a filler to restore the wing surface. The name weakened model 3 can be derived
from this procedure. According to Yates [194], the AGARD 445.6 wing is structurally
characterized by an E-modulus of E = 3.245 GPa, a shear modulus of G = 0.412 GPa,
a Poisson’s ratio of ν = 0.31, and a total mass of m = 1.86 kg. On the basis of a FEM
analysis, the first five structural eigenmode shapes and natural frequencies are provided
by Yates’ technical report [194]. Thus, the modes visualized in Figure 5.2 are considered
for the structural dynamic modeling of the wing.

5.1.2 Deformed Grids and Modal Scaling

The eigenmode-based deformations have been scaled to small maximum amplitudes in
order to take only nonlinear dependencies due to varying freestream conditions into ac-
count, whereas the motion-induced aerodynamics is governed by a linear characteristic.
In this regard, a deflection amplitude study has been carried out to ensure dynamic
linearity with respect to the structural perturbations. The resulting scaling factors for
the considered eigenmodes are summarized in Table 5.2. Although a nonlinear influ-
ence of the structural inputs can be modeled with the presented approach as well, the
ROM process for both sources of nonlinearity, namely changing freestream conditions
and large amplitude motions, is still challenging.
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Table 5.2: Scaling factors for the first five mode shapes to ensure |∆zmax | = 0.1% s.

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Scaling factor SF [10−3] 1.767 1.025 1.569 0.614 0.922

The interpolation of the scaled modal deflections onto the CFD surface grid has been
realized by means of the thin-plate spline (TPS) method [32] using the non-deformed
CFD and CSD grids as well as the FEM-based mode shape grids. Subsequently, the arc-
length-based transfinite interpolation (TFI) is applied to update the block-internal grid
points within the CFD domain [49]. As a consequence of the mode scaling procedure,
the generalized aerodynamic forces provided by the CFD solver must be rescaled prior
to an aeroelastic analysis to represent the correct relationship between the structural
model and the flow-induced forces.

5.1.3 Steady Results and Flow Characterization

Prior to discussing the ROM training and application procedure, selected steady-state
CFD results of the AGARD 445.6 wing are presented in order to verify the simulation
set-up. To allow a comparison of the AER-NS results with reference data from the
literature, the freestream Mach numbers Ma∞ = 0.96 and Ma∞ = 1.141 have been
chosen, whereas the corresponding angle of attack is always defined to α = 0◦. The
aforementioned freestream conditions were investigated during the original wind tun-
nel tests. For clarity, the relevant flow parameters and experimental data extracted
from Reference [194] are recapitulated in Table 5.3. Considering the Ma∞ = 0.96 and
Ma∞ = 1.141 cases, the numerical results presented by Lee-Rausch and Batina [91] can
be used for comparative purposes. It should be noted that the freestream temperatures
and Reynolds numbers presented in Table 5.3 are only implicitly given in Yates’ techni-
cal report. Specifically, T∞ has been computed based on the freestream Mach number
and the flutter velocity via T∞ = V 2

f /(Ma2
∞ ·γR). Moreover, the Reynolds numbers have

been determined by applying Sutherland’s law with respect to the dynamic viscosity.

On the basis of several RANS solutions with a fixed Reynolds number of Recr = 106 for
the AGARD 445.6 wing at zero angle of attack, the flow regime is categorized as subsonic
up to Ma∞ ≈ 0.93. A further increase in the freestream Mach number leads to transonic
flow conditions characterized by the coexistence of subsonic and supersonic regions in
the vicinity of the investigated body. Thereby, a shock is formed near the wing inboard
section. With a further increase of Ma∞, the shock propagates towards the wing tip.
This change in the flow topology affects the pressure distribution and, as a consequence,
the forces and moments. Although the flow across the AGARD 445.6 wing is not gov-
erned by strong transonic effects according to Silva et al. [153], neither the steady nor
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Table 5.3: Selected test conditions and experimental results sorted by the freestream
Mach number on the basis of Yates’ technical report [194].

Freestream Mach number Ma∞ 0.499 0.678 0.901 0.954 0.960 1.072 1.141

Freestream density ρ∞[ kgm3 ] 0.428 0.208 0.100 0.063 0.063 0.055 0.078

Freestream temperature T∞[K] 297.3 289.8 269.9 258.3 257.8 257.4 253.7

Reynolds number Recr [106] 2.245 1.495 0.968 0.662 0.655 0.648 0.984

Flutter velocity Vf [ms ] 172.46 231.37 296.69 307.36 309.01 344.73 364.33

Flutter frequency ff [Hz ] 20.39 17.98 16.09 14.50 13.89 13.80 17.49

the unsteady aerodynamic loads depend linearly on the freestream Mach number due to
the influence of compressibility. For freestream Mach numbers of Ma∞ > 1.07, the flow
can be regarded as entirely supersonic.

−0.2 −0.1 0 0.1 0.2 0.3

Cp

Figure 5.3: Steady-state pressure coefficient distribution for Ma∞ = 0.96 computed with
AER-NS. The results are shown for the sections y/s = 0.25 and y/s = 0.75.
AGARD 445.6 configuration, α = 0◦, Recr = 0.655 · 106, T∞ = 257.8 K.

In Figure 5.3, the chordwise steady-state pressure coefficient distribution is shown for
the Ma∞ = 0.96 test case at two spanwise sections (y/s = 0.25 and y/s = 0.75), while
both the AER-NS solution and the reference result from Lee-Rausch and Batina [91]
are depicted. Since the NACA 65A004 airfoil is symmetric with respect to the chord,
the Cp distribution is identical for the upper and lower wing surface. Therefore, only
the upper surface is shown for convenience. The critical pressure coefficient C∗p = −0.07

computed by Equation (5.1) has been added to Figure 5.3 for classification purposes.
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When the pressure coefficient falls below C∗p , the local Mach number becomes greater
than one. As this is the case for the Ma∞ = 0.96 case, local subsonic and supersonic re-
gions coexist on the wing surface. Comparing the AER-NS result with the data provided
by Lee-Rausch and Batina [91], the trend of the pressure distribution is very similar.
However, the suction amplitude is slightly overpredicted by the AER-NS solver, leading
to an offset between the diagrammed Cp curves between 0.3 ≤ x/c ≤ 0.7 . Nonetheless,
an equivalent deviation has been also noted by Zhao et al. [202].

C∗p = − 2

γMa2
∞

(
1−

(
2

γ + 1
+
γ − 1

γ + 1
Ma2

∞

) γ
γ−1

)
(5.1)
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Figure 5.4: Steady-state pressure coefficient distribution for Ma∞ = 1.141 computed
with AER-NS. The results are shown for the sections y/s = 0.25 and
y/s = 0.75. AGARD 445.6 configuration, α = 0◦, Recr = 0.984 · 106,
T∞ = 253.7 K.

Furthermore, Figure 5.4, shows the chordwise steady Cp distribution for the Ma∞ =

1.141 case; see Table 5.3 for an overview of the experimental test conditions. In contrast
to the transonic case depicted in Figure 5.3, the flow at Ma∞ = 1.141 can be character-
ized as supersonic. As it can be seen, the AER-NS solution agrees very well with the
result obtained by Lee-Rausch and Batina [91]. Given the steady-state CFD solutions in
Figures 5.3 and 5.4, it is concluded that the aerodynamic modeling of the AGARD 445.6
configuration is sufficiently accurate with respect to the subsequent ROM analyses.

5.2 Training Data Acquisition and ROM Construction

Based on the ROM procedure depicted in Figure 4.1, six training freestream conditions
have been defined ranging from the subsonic to the supersonic flow regime in order
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to construct the reduced-order model. In particular, the freestream Mach numbers
Ma∞,Trn = [0.5, 0.7, 0.9, 1.0, 1.1, 1.2] have been selected for training the ROM, whereas
the remaining freestream parameters are kept constant at α = 0◦, Recr = 106, and
T∞ = 270 K throughout the following considerations. The selected NFC = 6 freestream
Mach numbers reflect the experimental test condition range outlined in Table 5.3. For an
impression how the flight regime affects the flow on the wing, the steady-state pressure
coefficient distribution for selected subsonic, transonic, and supersonic training condi-
tions is shown in Figure 5.5.

a) Ma∞ = 0.5 b) Ma∞ = 0.9 c) Ma∞ = 1.0 d) Ma∞ = 1.2

−0.2 −0.1 0 0.1 0.2 0.3

Cp

Figure 5.5: Steady-state pressure coefficient distribution of the AGARD 445.6 weak-
ened model 3 configuration for selected training Mach numbers at α = 0◦,
T∞ = 270 K, and Recr = 106 (AER-NS).

As the variation of multiple freestream parameters at the same time leads to a drastically
increased training data acquisition effort, fixed values have been assigned to the angle of
attack, the Reynolds number, and the freestream temperature within the scope of this
work. With respect to the zero angle of attack, the chosen state is in accordance with
the experimental test conditions [194]. For the Reynolds number and the freestream
temperature, however, an intermediate value within the respective variables’ range has
been chosen. Thus, the considered set-up is not strictly consistent with the test cases
summarized in Table 5.3, as the Reynolds number and the freestream temperature de-
pend on Ma∞ in the original experiments. This fact must be taken into account when
comparing the present results with experimental data. Nonetheless, the CFD-based ref-
erence data for evaluating the ROM performance have been generated with the same
set-up (Recr = 106 and T∞ = 270 K), which legitimizes the subsequent comparisons.

It is worth to emphasize that the CFD simulations as well as the ROM training and
application presented in this chapter have been computed on the Linux cluster of the
Leibniz Supercomputing Center (LRZ) which is equipped with Intel Xeon E5-2697 v3
2.6 GHz CPUs. In order to ensure comparability regarding the efficiency considerations
discussed in Section 5.6, the computation jobs have been processed in serial operation
(serial/parallel farming). Moreover, the steady and unsteady AER-NS simulations have
been terminated if the Euclidean norm applied for the density normalized with the
respective value after the first iteration falls below 1.0× 10−5.
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Following the discussion of the ROM procedure in Section 4.1, problem-dependent in-
puts and outputs must be defined prior to the training data generation step. Due to the
fact that the AGARD 445.6 configuration is commonly investigated in terms of aeroe-
lastic flutter investigations, the ROM is also conditioned here to provide the generalized
aerodynamic forces induced by structural, eigenmode-based excitations. Thus, the sys-
tem inputs and outputs as well as the time-independent parameter vector introduced in
Section 3.3 can be defined to:

u(t) =


q1(t)

q2(t)
...

qnq(t)

 ∈ Rnq , y(t) =


fgen,1(t)

fgen,2(t)
...

fgen,nf (t)

 ∈ Rnf , Ξ = (Ma∞) ∈ R (5.2)

In Equation (5.2), the ith modal coordinate is denoted by qi, whereas the time-domain
generalized aerodynamic forces vector element j is symbolized by fgen,j; see Section 2.2
for a discussion of the variables. Referring to Section 5.1, five modes are considered for
the AGARD 445.6 wing. Thus, the dimension of the vectors u and y is nq = nf = 5.

Starting from the steady-state solutions exemplarily shown in Figure 5.5, the aerody-
namic responses induced by forced structural deflections have been computed using
the AER-NS solver to obtain the training data for the freestream-condition-adaptive
neuro-fuzzy model. Since small structural disturbances are considered in the context of
the flutter modeling, which is in accordance with the modal scaling procedure shown
in Section 5.1.2, the deformation influences the aerodynamic response in a linear way.
Consequently, a signal for linear identification purposes is sufficient to excite the motion
degrees of freedom. In this regard, the excitation signals are chosen to be of pulse type;
see Figure 3.10d. The length of the pulse has been specified to 150 discrete time steps,
whereas the maximum deflection amplitudes for the five considered mode shapes coincide
with the corresponding scaling factors SF presented in Table 5.2. The aforementioned
factors have been obtained by scaling the FEM-based mode shapes under the constraint
that the deformation normal to the wing midplane must not exceed |∆zmax | = 0.1% s,
fulfilling the requirement of small perturbations. Hence, an excitation of the first mode
by the generalized coordinate q1 = 1.767×10−3 results in a maximum deflection of 0.1% s.

In order to clearly distinguish the influence of each generalized coordinate on the aerody-
namic response and, at the same time, incorporate all modal degrees of freedom within a
single CFD computation, the five mode shapes are consecutively excited by their corre-
sponding pulse signal. Therefore, the pulse of the subsequently excited mode is applied
if 1,000 time steps have elapsed since the end of the previous pulse excitation. The pulse
signals depicted in Figure 5.6 are used for the NFC = 6 time-marching simulations, while
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Figure 5.6: Discrete-time pulse signals for the forced-motion excitation of the first five
modal degrees of freedom (AGARD 445.6 configuration, ∆τ=0.025).

the freestream Mach number is kept constant within each unsteady CFD run. Since a
nondimensional time step size of ∆τ = 0.025 has been defined, the nondimensional time
interval from 0 to 148.725 is taken into account. Thus, 5,950×NMa input-output train-
ing samples are provided by the URANS-equation-based computations.
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Figure 5.7: Frequency spectrum of the pulse excitation signal. FFT denotes the fast
Fourier transform.

Additionally, the frequency spectrum of the applied pulse signal is depicted in Figure 5.7.
As the reduced frequency (kred = cref ·ω/U∞ with cref = cr = 0.558 m) does not depend
on the Mach number owing to the nondimensional time formulation of the AER-NS code,
the frequency spectrum of the signal is also notMa∞-dependent. Nevertheless, Figure 5.7
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demonstrates that the pulse signal introduces sufficient energy over a broad range of fre-
quencies including the experimental flutter frequencies (0.140 ≤ kred ≤ 0.414). Besides,
the Nyquist frequency can be determined as kred ,Nyq = 70.1. Hence, also the sampling
frequency does not represent a limitation for the intended simulations up to a reduced
frequency of kred = 1.0.
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Figure 5.8: The CFD-based time-domain generalized aerodynamic forces response in-
duced by the pulse excitation is shown for three freestream Mach numbers
(AGARD 445.6 configuration, α = 0◦, T∞ = 270 K, Recr = 106, AER-NS).

During the URANS computations for the six training freestream conditions, the in-
stantaneous pressure- and viscosity-based forces are integrated over the surface of the
investigated body and weighted with the considered mode shapes to obtain the time-
discrete generalized aerodynamic force (GAF) coefficients; see Equations (2.54)-(2.56).
For reasons of consistency with respect to the structural dynamics model, each vector el-
ement of fgen has to be multiplied by the inverse of the respective scaling factor depicted
in Table 5.2. This re-scaling procedure is justified by the assumed dynamic linearity
due to the small-amplitude deflections. The first GAF vector element fgen,1 caused by
the prescribed pulse excitation is visualized exemplarily in Figure 5.8 for three training
Mach numbers as a function of the nondimensional time τ . The nonlinear influence of
Ma∞ on the aerodynamic response is clearly visible in Figure 5.8b.

After the CFD-based input-output relationship concerning the structural excitations
and the GAF responses has been obtained for the chosen training freestream condi-
tions, the available dataset can be used for the nonlinear system identification process
discussed in Chapter 3. With respect to the recurrence framework, the maximum dy-
namic delay-orders have been optimized yielding m = 8 and n = 8 for the inputs and
outputs, respectively. Subsequently, the Monte-Carlo training methodology is applied
according to Section 3.6. Therefore, NMC = 25 neuro-fuzzy models have been trained



92 5 Analysis of Freestream Parameter Variations

in parallel, while the data samples have been randomly distributed for each NFM into
training, validation, and test data maintaining the proportion of 70%, 15%, and 15%,
respectively. The training of the local linear neuro-fuzzy models is realized by means
of the LOLIMOT algorithm. In this regard, the termination criterion described in Sec-
tion 3.4.2.2 is utilized. It is worth to emphasize that the neuro-fuzzy model constitutes
a MISO model. As a consequence, for each of the nf = 5 outputs an individual model
must be trained.

For one of the 25 Monte-Carlo-based ROMs, Figure 5.9 illustrates the evolution of the
one-step prediction error ei over the number of iterations M for the first three GAF
vector elements. It is interesting to note that the LOLIMOT structure selection only
split the input dimension that corresponds to the freestream Mach number. In this way,
two of the previously made assumptions are validated: On the one hand, the dynamic
linearity for small perturbations is confirmed. On the other hand, it is demonstrated
that the freestream condition exhibits a nonlinear influence on the overall system be-
havior, which is not captured by an ARX model or the local linear neuro-fuzzy model
with M = 1. This insight may also allow the user to influence the local linear model
partitioning process via the specification of constraints to include some prior knowledge
about the underlying system.

Henceforth, the NMC ROMs are considered as given and inalterable. Therefore, they
can be employed for efficiently performing the simulations of interest.
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Figure 5.9: Development of the normalized one-step prediction error ei with respect to
the number of local linear modelsM for the first three GAF vector elements.
The circle marks the further considered optimum model complexity for the
given neuro-fuzzy model.
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5.3 Unsteady Results - Time Domain

The trained reduced-order model is employed in this section to simulate the time-domain
response induced by harmonic excitations in each of the generalized coordinates qi. For
this task, 20 freestream conditions are taken into account in order to demonstrate the
capabilities of the parameter-adaptive neuro-fuzzy model. For clarification, not only the
six freestream Mach numbers known from the training process but also 14 additional
Ma∞, which are not contained explicitly in the training dataset, are considered. In
Table 5.4, the complete list of simulated Mach numbers Ma∞,Sim is presented.

Table 5.4: Overview of the freestream Mach numbers which have been computed with
the ROM and AER-NS. The cases incorporated within the training dataset
are underlined.

Ma∞,Sim
0.499 0.500 0.550 0.600 0.650 0.678 0.700 0.750 0.800 0.850

0.900 0.901 0.954 1.000 1.050 1.072 1.100 1.141 1.150 1.200

The modus operandi for each unsteady simulation is as follows: A single structural mode
is excited based on a sinusoidal signal with defined reduced frequency and amplitude,
whereas the inputs referring to the other modes are assigned to zero. The maximum
amplitude for the excitation in mode i is chosen to be identical with the corresponding
scaling factor SF i given in Table 5.2. Hence, the time-varying excitation amplitude can
be described by the following relation, taking the nondimensional formulation of the
CFD framework into account:

qi(τ) = SF i ·Θ(ω,τ) = SF i · sin (ω · τ) = SF i · sin
(
kred · lref ·Ma∞ · √γ

cref
· τ
)

(5.3)

In Equation (5.3), Θ(ω,τ) denotes the nondimensional excitation amplitude, ω is the
circular frequency, and lref refers to the grid reference length for the nondimensional
flow solver formulation. Furthermore, γ is the ratio of specific heats, which has the
value γ = 1.4 for air as the fluid medium. For the present computational grid, lref = 1

applies. Moreover, the reference length for evaluating the reduced frequency has been
defined to cref = cr = 0.558 m.

In order to achieve periodicity with respect to the aerodynamic response, three oscilla-
tion cycles have been computed using both the ROM and the AER-NS solver. Consider-
ing the CFD reference solution, each cycle is resolved with Nτ = 100 discrete time steps.
Hence, the nondimensional time step size ∆τ corresponding to the considered freestream
Mach number and reduced frequency is case-dependent and can be calculated by means
of Equation 5.4.
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∆τ =
2π · cref

(Nτ − 1) · kred · lref ·Ma∞ · √γ
(5.4)

In contrast, the ROM is always applied with the identical time step size resulting from
the training dataset (here: ∆τ = 0.025). As a consequence, a different cycle discretiza-
tion is obtained for each combination of Ma∞ and kred .
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Figure 5.10: Time-domain response and Lissajous figure showing fgen,1 caused by three
harmonic excitation cycles of q1 with kred = 0.20. AGARD 445.6, Ma∞ =
0.499, α = 0◦, T∞ = 270 K, Recr = 106.

Concerning the eigenmode-based harmonic deflections, various reduced frequencies have
been simulated to evaluate the effect of the excitation frequency on the ROM perfor-
mance. An overview of the considered reduced frequencies is provided in Table 5.5.
Taking into account the 20 freestream conditions, 12 reduced frequencies, and 5 struc-
tural modes, in total 1,200 unsteady cases have been simulated for the AGARD 445.6
wing with the neuro-fuzzy-based ROM and AER-NS.

Table 5.5: Overview of the reduced frequencies which have been computed with the ROM
and the AER-NS solver.

kred 0.01 0.02 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 1.00

In Figures 5.10-5.12, the time-domain response of the AGARD 445.6 wing is shown
exemplarily for three freestream conditions in terms of the first GAF vector element
fgen,1(τ) excited by a sinusoidal deflection of the first mode shape. Therefore, represen-
tative freestream Mach numbers have been selected from the subsonic, transonic, and
supersonic flight regime. According to Section 5.2, NMC = 25 independent models have
been obtained based on the Monte-Carlo training strategy. Hence, all available models
can be applied to each simulation case resulting in 25 responses that can be statistically
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processed. Owing to this fact, all diagrams in the following display the mean response
as the main line, whereas the standard deviation σ of the response is visualized by a
shaded area around the main curve unless otherwise specified. Furthermore, the respec-
tive Lissajous figures are plotted on the right hand side of Figures 5.10-5.12 showing the
ROM and the CFD solver output time-series as a function of the normalized amplitude
Θ. For the Lissajous plots, the standard deviation of the ROM output is omitted for
the sake of a clear representation.
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Figure 5.11: Time-domain response and Lissajous figure showing fgen,1 caused by three
harmonic excitation cycles of q1 with kred = [0.20, 1.00]. AGARD 445.6,
Ma∞ = 0.954, α = 0◦, T∞ = 270 K, Recr = 106.

The Ma∞ = 0.499 case depicted in Figure 5.10 indicates a very good correlation be-
tween the mean ROM result and the AER-NS reference solution since this condition
corresponds almost to Ma∞,Trn = 0.5 incorporated within the training freestream Mach
number set. Hence, it is verified that the ROM is capable of reproducing the trained
system behavior with sufficient accuracy. Nonetheless, the standard deviation exhibits a
larger magnitude near the extrema of the fgen,1 response. Consequently, individual mod-
els may not always provide the correct amplitude characteristic of the motion-induced
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generalized aerodynamic force for this case. This is one of the reasons why the use of
the Monte-Carlo-based reduced-order modeling strategy is recommended.
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Figure 5.12: Time-domain response and Lissajous figure showing fgen,1 caused by three
harmonic excitation cycles of q1 with kred = [0.20, 1.00]. AGARD 445.6,
Ma∞ = 1.141, α = 0◦, T∞ = 270 K, Recr = 106.

The cases in Figures 5.11 and 5.12 can be considered as an interpolation with respect
to the trained freestream Mach number range. For Ma∞ = 0.954, the ROM results
deviate slightly from the reference in terms of the phase and amplitude of the response.
Nonetheless, the general characteristics are reflected well for the considered examples,
which is underpinned by the results at Ma∞ = 1.141. The standard deviations observed
in Figures 5.11 and 5.12 are comparatively small which indicates the good reproducibility
of the ROM solution.

However, larger discrepancies are discovered for certain excitation mode – GAF vec-
tor element combinations. For example, Figure 5.13 shows the fgen,1 time-series due to
an excitation of the second structural mode as well as the fgen,2 response induced by a
harmonic excitation of mode 1 for Ma∞ = 0.954. While the phase of the response is
well represented, there is a noticeable amplitude offset for the q1 → fgen,2 case.
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A similar deviation between the mean ROM solution and the AER-NS reference result
is ascertained for the q2 → fgen,2 case at a freestream Mach number of Ma∞ = 1.072

shown in Figure 5.14. It is worth to note that the CFD reference is not within the range
spanned by the standard deviation of the ROM result. Therefore, it must be followed
that training data are missing for this case to better resolve the amplitude characteristic
of the aerodynamic system. At this point, the question arises why some combinations fit
better than others. The answer is that some transfer functions between the excitation
mode and the GAF response element are more nonlinear than others. This is illustrated
in the following section.
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Figure 5.13: Left: Time-domain response of fgen,1 caused by three harmonic excitation
cycles of q2 with kred = 0.50. Right: Time-domain response of fgen,2 caused
by three harmonic excitation cycles of q1 with kred = 0.50. AGARD 445.6,
Ma∞ = 0.954, α = 0◦, T∞ = 270 K, Recr = 106.
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Figure 5.14: Left: Time-domain response of fgen,1 caused by three harmonic excitation
cycles of q2 with kred = 0.01. Right: Time-domain response of fgen,2 caused
by three harmonic excitation cycles of q2 with kred = 0.60. AGARD 445.6,
Ma∞ = 1.072, α = 0◦, T∞ = 270 K, Recr = 106.
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5.4 Unsteady Results - Frequency Domain

For a more compact representation, the computed time-domain results discussed in Sec-
tion 5.3 can be transformed into the frequency domain via Fourier analysis. Therefore,
only the third oscillation cycle is taken into account. Details regarding the aforemen-
tioned transformation are discussed, for instance, in the work of Fleischer [38].

As a further motivation for the frequency-domain consideration, the resulting transfer
function, namely the GAF matrix, can be utilized to conduct a numerical flutter analy-
sis, which is outlined in Section 5.5. Because of the assumed dynamic linearity around a
chosen reference state, i.e., for fixed freestream conditions, the real and imaginary parts
of the first harmonic load are sufficient to describe the aerodynamic response [128,192].
Thus, the GAF matrix is computed for each combination of kred and Ma∞ using the
ROM as well as the AER-NS solver. The complex-valued matrix element GAF ij(kred)

can be interpreted as the first harmonic of the ith generalized aerodynamic force re-
sponse that is caused by an excitation of the jth generalized coordinate with frequency
kred and unit amplitude.
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Figure 5.15: Real and imaginary parts of the frequency-domain GAF matrix elements
plotted as a function of the reduced frequency forMa∞ = 0.499. The shaded
area is spanned between the respective minimum and maximum values re-
sulting from the NMC = 25 models. AGARD 445.6, α = 0◦, T∞ = 270 K,
Recr = 106.
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Figure 5.16: Real and imaginary parts of the frequency-domain GAF matrix elements
plotted as a function of the reduced frequency forMa∞ = 0.954. The shaded
area is spanned between the respective minimum and maximum values re-
sulting from the NMC = 25 models. AGARD 445.6, α = 0◦, T∞ = 270 K,
Recr = 106.

For further insights regarding the variation of the model outputs, the NMC = 25 ROMs
(see Section 5.2) have been applied for computing the GAF matrix with respect to all
cases described by Tables 5.4 and 5.5. In contrast to the standard deviation that has
been considered beforehand, the minimum and maximum of the occurring GAF values
are shown in the following figures by means of the shaded area. In this way, the repro-
ducibility and significance of the results is made assessable.

In Figures 5.15-5.17, the frequency domain GAF matrix elements are shown as a func-
tion of the reduced frequency for the first three eigenmodes and three selected freestream
Mach numbers. Thereby, the real part of the complex value is marked with Re, while
the imaginary part is denoted with Im. Similar to the observations for the time domain
responses, very good agreement is ascertained for the subsonic case at Ma∞ = 0.499.
This is not surprising as this freestream condition is almost exactly included within the
training data. Only for higher excitation frequencies, some deviations are detectable.
The reason for this frequency-dependent error behavior is the fixed time step size of
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the discrete model that results in a coarser cycle discretization for higher kred . For this
reason, reduced frequencies of kred > 1.0 have not been considered in this chapter.

The frequency domain transfer function for Ma∞ = 0.954 depicted in Figure 5.16
can be considered as the most critical benchmark case for two reasons: First, this
freestream Mach number exhibits the most dominant transonic aerodynamic effects from
all considered flight conditions (Ma∞,Sim). Second, the adjacent training Mach numbers
Ma∞,Trn = [0.9, 1.0] have been chosen in a comparatively coarse way, despite the dom-
inant nonlinearities in this challenging flow regime. Nevertheless, satisfying to good
conformity between the ROM result and the CFD reference can be observed depending
on the matrix element. Most important, the general characteristics of the aerodynamic
system are captured by the neuro-fuzzy model. Keeping in mind that the approach
is employed for unsteady aerodynamic computations across subsonic, transonic, and
supersonic flow regimes, the overall solution quality is remarkable.

Moreover, also the cases with supersonic inflow conditions show a good agreement
of the ROM results with the corresponding AER-NS solution. Here, the Ma∞ = 1.141

case is exemplary shown in Figure 5.17 to underpin this statement.
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Figure 5.17: Real and imaginary parts of the frequency-domain GAF matrix elements
plotted as a function of the reduced frequency forMa∞ = 1.141. The shaded
area is spanned between the respective minimum and maximum values re-
sulting from the NMC = 25 models. AGARD 445.6, α = 0◦, T∞ = 270 K,
Recr = 106.
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Comparing individual matrix elements for different freestream conditions, it becomes ev-
ident that some GAFij are more difficult to predict than others. Especially, the matrix
elements GAF 31 and GAF 23 seem to be challenging for the ROM. This can be traced
back to their distinct nonlinear dependence on the freestream Mach number.

In order to visualize this characteristic, the GAF matrix elements have been plotted
in Figures 5.18 and 5.19 for fixed reduced frequencies as a function of selected freestream
Mach numbers. For a clear presentation, only the first three modes are illustrated. Con-
sidering the matrix entries with observable discrepancies between the ROM and the
reference solution, a comparatively large variation in the model output is encountered in
most instances. Hence, for a more accurate resolution of the aerodynamics, further train-
ing data in terms of additional freestream parameters are required. If the kred = 0.20

case shown in Figure 5.18 is juxtaposed to the kred = 1.00 case depicted in Figure 5.19, it
can be stated that the deviations between the ROM and the CFD solver do not exhibit
a pronounced frequency-dependent behavior. Nevertheless, the unsteady aerodynamic
characteristics are strongly affected by the change of the excitation frequency.
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Figure 5.18: Real and imaginary parts of the frequency-domain GAF matrix elements
plotted as a function of the freestream Mach number for kred = 0.20. The
shaded area is spanned between the respective minimum and maximum
values resulting from the NMC = 25 models. AGARD 445.6, α = 0◦,
T∞ = 270 K, Recr = 106.
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Figure 5.19: Real and imaginary parts of the frequency-domain GAF matrix elements
plotted as a function of the freestream Mach number for kred = 1.00. The
shaded area is spanned between the respective minimum and maximum
values resulting from the NMC = 25 models. AGARD 445.6, α = 0◦,
T∞ = 270 K, Recr = 106.

Finally, an overview of the frequency-domain datasets is presented for all computed
Ma∞-kred combinations. In Figures 5.20 and 5.21, the respective real and imaginary
parts of the GAF matrix are shown for the first two modal degrees of freedom. Thereby,
the mean ROM output is denoted by the colored surface, whereas the AER-NS result is
depicted with the mesh in combination with the inked points. This representation is well
suited to highlight the nonlinearity caused by the freestream Mach number variation.
From the 3D plots it becomes evident that the general characteristics are reproduced
well by the presented ROM approach. Noticeable deviations of the ROM solution rela-
tive to the URANS result can be observed at Ma∞ = 0.954 due to the limited training
data within this flight regime. Between the trained conditions at Ma∞,Trn = 0.9 and
Ma∞,Trn = 1.0, a shock evolves from the inboard region of the AGARD 445.6 wing, which
has an influence on the global aerodynamic characteristics. The latter effect is not fully
captured by the training data and, therefore, can not be predicted accurately by the
ROM. Besides, there are some discrepancies at the edges and corners of the considered
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kred -Ma∞ space, e.g., for large Mach numbers and low reduced frequencies. In conclu-
sion, however, it can be stated that the NFM-based ROM reproduces the nonlinearities
with respect to the AGARD 445.6 wing unsteady aerodynamics.
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Figure 5.20: Real part of the frequency-domain GAF matrix as a function of reduced
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5.5 Numerical Flutter Analysis

Additionally, a linear stability analysis has been conducted using both the ROM- and
the CFD-based unsteady aerodynamic forces. Since the associated procedure involves
also structural modeling aspects as well as the interaction between the inertial, elastic,
and aerodynamic forces, the findings of this section should not be considered as a model
verification but as a general feasibility demonstration.

The flutter analysis has been performed by means of the pk-method [56, 68] under
consideration of the first five structural eigenmodes. Therefore, the frequency-domain
GAF matrices discussed in the previous section have been utilized. In Table 5.5, the
respective reduced frequencies are listed, whereas the following freestream Mach num-
bers are taken into account: Ma∞ = [0.499, 0.678, 0.901, 0.954, 1.072, 1.141]. For
verification purposes, the GAF matrices resulting from the ROM procedure as well as
the CFD methodology are considered for the studies presented below.

Besides the aerodynamic and structural modeling discussed in Section 5.1.1, further
inputs are required for the investigation of aeroelastic stability. In particular, the gen-
eralized mass matrix Mgen is defined by an identity matrix (mass normalized form),
whereas all elements of the generalized damping matrix Cgen have been set to zero.
Furthermore, the diagonal of the generalized stiffness matrix Kgen is composed of the
squared angular frequencies: Kgen,ii = (2π · fi)2. The corresponding natural frequencies
fi can be extracted from Figure 5.2.

Hereinafter, only normalized quantities are considered as the output of the pk-method-
based flutter simulation. The nondimensional indicators for comparative purposes are
the flutter speed index FSI and the frequency ratio FR. According to Yates [194], they
are defined as:

FSI =
2Vf

cref · ωα ·
√
µ
, µ =

m

ρ∞ · V
with V =

s · π
3

(
c2
r

4
+
cr · ct

4
+
c2
t

4

)
(5.5)

FR =
ωf
ωα

(5.6)

Based on Equation (5.5), the FSI relates the flutter speed Vf to the freestream density
ρ∞, which is included within the mass ratio µ. Moreover, ct refers to the tip chord,
whereas s and cr denote the semi-span and the root chord, respectively. With the mass
of the wing of m = 1.86 kg, the mass ratio can be calculated for each freestream con-
dition using the freestream densities provided by Table 5.3. The resulting values for µ
are given in Table 5.6 as a function of Ma∞. Furthermore, the angular frequency of the
first uncoupled torsion mode is regarded with ωα = 239.3 rad/s.

Originating from the previously outlined modeling framework, the computed FSI

and FR values are plotted across the freestream Mach number in Figure 5.22 for both
the ROM- and the CFD-based aerodynamics. Besides the URANS results (AER-NS),
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Table 5.6: Mass ratio for the considered freestream Mach number range [194].

Freestream Mach number Ma∞ 0.499 0.678 0.901 0.954 1.072 1.141

Mass ratio µ 33.465 68.753 143.92 225.82 259.59 182.74

Euler-equation-based flutter speed indices and frequency ratios extracted from Refer-
ence [185] are shown (AER-Eu). At this point, it is worth mentioning again that the
freestream conditions investigated by the ROM and the AER-NS solver are not strictly
consistent with the experiment; see the discussion about the fixed Reynolds number and
freestream temperature in Section 5.2. Hence, the only reference solution for the ROM is
the AER-NS result. The other data sources have been added for classification purposes
only.

Concerning the ROM result, the GAF matrices obtained by the NMC = 25 mod-
els have been independently utilized in terms of the pk-method flutter analyses. The
plots in Figure 5.22 therefore show the mean of the ROM-generated FSI and FR data,
whereas the shaded area is spanned between the encountered minimum and maximum
values. An overview of the flutter speed indices and frequency ratios is also given in
Table 5.7.

Table 5.7: Flutter speed indices and frequency ratios obtained by the ROM (averaged)
and the AER-NS solver at six freestream conditions. For classification pur-
poses, Euler-CFD and experimental results are also included. AGARD 445.6,
α = 0◦, T∞ = 270 K, Recr = 106.

Ma∞ 0.499 0.678 0.901 0.954 1.072 1.141

FSI (ROM) 0.4390 0.4225 0.3692 0.3415 0.4817 0.5102

FSI (AER-NS) 0.4311 0.4169 0.3430 0.2724 0.4067 0.5635

FSI (AER-Eu) 0.4197 0.4044 0.3270 0.2201 0.1785 0.1517

FSI (Yates [194]) 0.4459 0.4174 0.3700 0.3059 0.3201 0.4031

FR (ROM) 0.6044 0.5470 0.4416 0.4086 0.7683 0.9210

FR (AER-NS) 0.5593 0.5235 0.4070 0.3422 0.4656 0.6576

FR (AER-Eu) 0.5449 0.5052 0.3940 0.3092 1.2880 1.2841

FR (Yates [194]) 0.5350 0.4722 0.4220 0.3810 0.3620 0.4593

Based on Figure 5.22, it can be observed that the ROM results correlate generally with
the trend of the reference CFD approach (AER-NS). Starting with the subsonic flight
conditions (Ma∞ ≤ 0.93), a good agreement between the ROM and the AER-NS so-
lutions is obtained. The neuro-fuzzy approach slightly overpredicts the FSI as well as
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Figure 5.22: Flutter speed indices and frequency ratios obtained with the ROM- and the
AER-NS-based aerodynamics as a function of the freestream Mach number
(AGARD 445.6, α = 0◦, T∞ = 270 K, Recr = 106). The ROM result rep-
resents the mean solution of the NMC = 25 computations. In contrast, the
shaded area is spanned between the encountered minimum and maximum
FSI and FR values. For classification purposes, the AER-Eu solution as
well as the experimental result has been added to the diagrams.
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the FR, while the fluctuation range due to different model training processes is com-
paratively small for both quantities. Hence, the uncertainties regarding the prediction
of the flutter speed and flutter frequency are small for the considered subsonic condi-
tions. Besides, the results also agree well with the experimental findings and the inviscid
aerodynamic modeling.

Although no training data have been provided between 0.9 < Ma∞ < 1.0, the tran-
sonic dip in the flutter boundary, that is mainly caused by the compressibility of the flow,
can be predicted to some extent by the freestream-parameter-adaptive ROM methodol-
ogy. However, as a result of the discrepancies in the frequency-domain GAF matrices
explained in Section 5.4, a larger deviation between the ROM- and AER-NS-generated
FSI and FR can be detected at Ma∞ = 0.954. This error can be traced back directly
to the limited training data for transonic conditions. Moreover, the range between the
minimum and the maximum of the model-predicted FSI and FR values increases slightly
in comparison to the subsonic flight regime. As the AER-NS solution at Ma∞ = 0.954

is not covered within the fluctuation range of the NMC = 25 ROMs, also individual
neuro-fuzzy models have not been able to correctly predict the reference values. This
confirms again that relevant information is missing in the training data from which the
ROM has been constructed. Nevertheless, the difference between the mean ROM result
and the AER-NS result is of the same order of magnitude compared with the deviation
due to the Euler- and URANS-based aerodynamic modeling.

If the inflow becomes supersonic (Ma∞ ≥ 1.07), the flutter speed index and the
frequency ratio increase with larger freestream Mach numbers. While the deviations
between the ROM and the AER-NS solution with respect to the FSI remain as large
as for transonic inflow conditions, the range of variation for different neuro-fuzzy model
simulations increases considerably. Hence, the ROM prediction becomes less trustworthy
for Ma∞ = [1.072, 1.141]. Furthermore, the frequency ratio is discernibly overpredicted
by the mean ROM solution in contrast to the URANS result. However, it should be
noted that the correct flutter mechanism is captured for the ROM-based aerodynam-
ics in contrast to the inviscid AER-Eu solution. As it has been described by Silva et
al. [153], the generalized aerodynamic forces computed by an Euler-equation solver lead
to instabilities in the third mode, which are observed neither in the experiment nor with
URANS methods. As a consequence, the FSI and FR stemming from the AER-Eu solu-
tion deviate strongly from all other results. The discrepancy between the ROM results
and the AER-NS reference can be explained on the basis of the GAF matrix shown
in Figure 5.17. Although the mean ROM-based generalized aerodynamic forces show
a good agreement with the CFD result, the fluctuation of the model-based responses
in some of the matrix entries is very pronounced. In particular the off-diagonal matrix
elements can have a crucial influence on the flutter characteristic. Accordingly, strongly
varying flutter speeds and flutter frequencies are ascertained. By adding more training
information, the model-based uncertainties can be reduced.
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Despite the satisfactory performance of the ROM for the supersonic inflow conditions,
the general characteristic of the flutter envelope is reproduced by the ROM. It should
be pointed out again that for academic reasons very few freestream Mach numbers have
been selected with respect to the training dataset. If more training states are chosen for
practical applications, the reasonable application of the proposed neuro-fuzzy model for
aeroelastic problems is out of question.

5.6 Efficiency Considerations

In this section, the efficiency of the freestream-parameter-adaptive neuro-fuzzy modeling
framework is examined. To ensure comparability, all computations have been performed
on the Linux cluster of the Leibniz Supercomputing Center (LRZ) utilizing multiple
Intel Xeon E5-2697 v3 2.6 GHz processors in serial operation (serial/parallel farming).
As the initial steady-state simulations are the basis for the ROM as well as the full-order
unsteady CFD computations, they contribute in the same way to the numerical costs.
Hence, they are neglected for the following comparison.

First, the costs for the ROM procedure are analyzed: Generating the CFD-based train-
ing dataset has required about 23.29 CPU days for the NFC = 6 forced-motion URANS
simulations. Therefore, adding another freestream Mach number to the training dataset
would cost in average 3.88 CPU days. Remarkable is the fact that the fastest simulation
has taken 1.93 CPU days (Ma∞,Trn = 0.5), whereas the slowest needed 5.29 CPU days
to converge (Ma∞,Trn = 1.0). The LOLIMOT-based training of the NMC = 25 ROMs
has been performed in merely 0.14 CPU days. In this way, the training of an individual
ROM requires less than 0.01 CPU days. Moreover, the application of all 25 models to the
prediction of the generalized aerodynamic force responses required 0.09 CPU days. The
aforementioned cost evaluation incorporates the computation of three oscillation cycles
with respect to the five considered structural modes for 12 reduced frequencies and 20
freestream Mach numbers. Hence, in total 1,200 simulation cases have been treated by
the 25 individually trained ROMs. Consequently, the average computation cost for a
single model is approximately 0.26 CPU seconds per case, whereas the total numerical
effort for obtaining the ROM results is about 23.52 CPU days. It becomes evident that
almost only the training CFD simulations have a noteworthy contribution to the overall
reduced-order modeling cost, whereas the training and application of the neuro-fuzzy
model requires less than 1% of the total effort.

Second, the computational cost for obtaining the reference CFD results is investi-
gated: With respect to the 1,200 unsteady simulation cases (20 Mach numbers, 12 re-
duced frequencies, and 5 eigenmodes), the simulation of three oscillation cycles needed
2950.97 CPU days using the AER-NS solver. Consequently, the average simulation time
is about 2.46 CPU days per simulation case.
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Regarding the full-order CFD runs, the minimum time for simulating a case is 1.15 CPU
days (Ma∞ = 1.0, kred = 1.0, excitation of mode 1), whereas a maximum of 5.21 CPU
days is observed (Ma∞ = 1.1, kred = 0.01, excitation of mode 2).

Comparing the aforementioned computational efforts of the unsteady aerodynamic sim-
ulations, an acceleration by the factor of 125.5 is realized by the ROM in contrast to the
full-order CFD solver. Keeping in mind that the ROM can be further used for efficient
predictions at other freestream Mach numbers and different excitation signals, the com-
putational advantage increases supplementary. Once the ROM is available, the resulting
speed-up factor for each individual simulation is of the order of five magnitudes.

5.7 Summary

In this chapter, it was shown that the reduced-order modeling procedure discussed in
Section 4.1 can be successfully applied for the prediction of motion-induced (general-
ized) aerodynamic forces under variable freestream conditions. Therefore, the AGARD
445.6 wing subject to subsonic, transonic, and supersonic inflow conditions was investi-
gated, while structural mode-shape-based deflections have been prescribed. By means of
the aforementioned test case, the training procedure of the neuro-fuzzy model based on
nonlinear system identification methods was demonstrated. Subsequently, time-domain
aerodynamic responses were computed for structural oscillations with varying frequencies
at different freestream Mach numbers to assess the accuracy and numerical efficiency of
the approach in comparison to the full-order CFD result. Since the time and frequency-
domain results indicated a good agreement with the reference solution for most of the
considered cases, it was pointed out that the method can adequately predict aerody-
namic forces induced by structural excitations. Additionally, a classical linear flutter
analysis based on the obtained frequency-domain aerodynamic transfer functions was
carried out. It was indicated that the methodology could predict the flutter boundary
with reasonable accuracy. In addition, the importance of adequate training data was
emphasized. A detailed analysis of the computational costs revealed that the overall
effort was substantially reduced in comparison to the fully CFD-based aeroelastic anal-
ysis process. For the studied test cases, the necessary CPU time was decreased by a
factor of 125.5. Moreover, once the ROM is available, a speed-up of about five orders of
magnitude relative to the CFD solver can be achieved.



6 Modeling of Unsteady Surface
Pressure Distributions

In this chapter, the surrogate modeling approach presented in Section 4.2, which is
based on the combination of recurrent neuro-fuzzy models and the proper orthogo-
nal decomposition dimensionality reduction procedure, is applied to efficiently simulate
motion-induced unsteady surface pressure fluctuations. For this purpose, the LANN
wing configuration undergoing a pitching motion is investigated at high subsonic and
transonic flow conditions. The main objective is to evaluate the accuracy and efficiency
of the ROM methodology rather than undertaking detailed flow-physical analyses for
the test case under consideration. Therefore, the outputs of the POD-ROM simula-
tions are always compared with corresponding steady and unsteady CFD results. The
following content is mainly derived from a pre-publication of the author, Reference [184].

For demonstration of the ROM fidelity, the chapter is structured as follows: First, the
LANN wing configuration is introduced in Section 6.1, whereas selected steady-state
CFD results are presented in Section 6.2. Concerning the training of the surrogate
model, the acquisition of the CFD-based dataset containing the flow response due to
forced pitching motions is outlined in Section 6.3. Given the aforementioned unsteady
aerodynamic data, the POD is applied to extract the dominant modes of the flow. Subse-
quently, the recurrent neuro-fuzzy model is used to train the dynamic mapping between
the rigid body excitation and the corresponding POD coefficients. In Section 6.5, the
application of the previously obtained POD-ROM to the simulation of harmonically ex-
cited pitching oscillations is shown. In this regard, the quality of the ROM results is
compared against corresponding time-accurate CFD solutions, which are provided by
the AER-Eu solver in the present context. Additionally, the obtained responses are
analyzed in the frequency domain in Section 6.6 to highlight further potentials of the
approach concerning fluid-structure interaction and loads computations. A comparison
related to the integral aerodynamic coefficients, which are derived from the ROM-based
surface pressure data, is given in Section 6.7. Finally, the numerical efficiency of the
methodology is inspected in Section 6.8, while the ROM training and application effort
is juxtaposed to the respective CFD costs.

6.1 Test Case: LANN Wing

Within the unsteady aerodynamics community, the LANN wing is a well-known test
configuration of a transport-type wing equipped with a supercritical airfoil. According
to the technical report of Zwaan [205], the name of the configuration is deduced from the
partners of a cooperative programme consisting of Lockheed-Georgia, Air Force Flight
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Figure 6.1: Planform of the LANN wing configuration along with cross-sections showing
the supercritical airfoil. The CFD surface grid is shown in red.

Dynamics Laboratory, NASA-Langley, and NLR. The aim of the conducted experiments
was to provide a database in order to validate steady and unsteady aerodynamic solvers
at transonic flow conditions. Since the LANN wing is governed by a λ-shock system
on the suction side of the wing at a freestream Mach number of Ma∞ = 0.82 and an
angle of incidence of α = 0.6◦, this challenging test case is predestined for testing the
POD-ROM approach.

Table 6.1: Geometric properties of the LANN wing [205].

Quantity Symbol Value

Root chord cr 0.361 m

Reference area Sref 0.253 m2

Semi-span s 1.0 m

Aspect ratio AR 7.92

Taper ratio λ 0.4

Leading edge sweep angle ϕLE 27.49◦

Trailing edge sweep angle ϕTE 16.91◦

Reference length (kred) cref 0.361 m

The LANN configuration shown in Figure 6.1 is geometrically represented by a swept and
tapered semi-span wing. The model exhibits a leading-edge sweep angle of ϕLE = 27.49◦,
a trailing-edge sweep angle of ϕTE = 16.91◦, a taper ratio of λ = 0.4, and a semi-span
of s = 1.0 m. The wing’s cross-section is characterized by a supercritical airfoil with a
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relative thickness of t/c = 12%. Detailed coordinates of the airfoil as well as the twist
distribution can be taken from Reference [205]. Moreover, the root chord of the LANN
wing is given as cr = 0.361 m, whereas the pitching axis for the considered rigid body
motion is placed at 62.1% of the root chord. Within the experiments, the semi-span
model was attached directly to the wind tunnel wall, while forced sinusoidal pitching
excitations were applied by means of a hydraulic actuation. Since static aeroelastic de-
formations have not been measured during the wind tunnel tests, they are also neglected
within the scope of this work. The relevant geometric properties are further summarized
in Table 6.1.

Y

X

Z

(a) Computational grid (b) Wing discretization

Figure 6.2: Grid topology and discretization of the structured reference CFD grid for
the LANN wing. The wing is shown in green, whereas the blue and black
faces mark the farfield and symmetry boundary conditions, respectively.

Regarding the steady and unsteady CFD computations, a structured two-block C-H
topology grid with 368,640 cells is employed, which has been generated on the basis of
a grid provided by Kreiselmaier and Laschka [87] using ANSYS ICEM CFD [2]. In Fig-
ure 6.2, the CFD grid topology is visualized along with a detail cutout showing the mesh
refinement in the vicinity of the wing. Each of the upper and the lower wing surfaces is
discretized by 72 × 35 cells. Consequently, NSE = 5,040 surface elements are available
for the POD-based modeling. With respect to the forced-motion unsteady aerodynamic
simulations, the deformed grid representing the pitching deflection has been generated
via a rigid body rotation of the grid points around the defined pitching axis.

6.2 Steady Results and Flow Topology

Within the scope of this chapter, two freestream conditions are considered: On the one
hand, the steady-state conditions of the AGARD CT1 test case [205] are taken into
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account, which are characterized by a freestream Mach number of Ma∞ = 0.62 and an
angle of attack of α = 0.6◦. Although the maximum occurring Mach number in the
flow domain is Ma = 0.91 based on the steady inviscid CFD simulation, the pressure
coefficient falls below its critical value of C∗p = −1.17 in terms of the intended unsteady
simulations. However, the aerodynamic characteristics are dominated by subsonic flow,
since no strong transonic effects are encountered. Therefore, this case is referred to as
the high subsonic case.

On the other hand, the freestream Mach number and the incidence angle associated
to the AGARD CT4/CT5 tests [205] have been selected for further investigations. The
corresponding freestream parameters are Ma∞ = 0.82 and α = 0.6◦. Related to the
distinct λ-shock system on the suction side of the wing, strong nonlinear effects can be
observed, especially, if the wing is undergoing a pitching motion. Consequently, this
case is termed the transonic test condition.

X

Y

Z X

Y

Z

AGARD CT1, Ma∞ = 0.62, α = 0.6◦ AGARD CT4/5, Ma∞ = 0.82, α = 0.6◦

Figure 6.3: Steady-state pressure coefficient contours depicted for the upper and lower
LANN wing surface at two selected freestream conditions (AER-Eu).

In Figure 6.3, the steady-state pressure coefficient distribution with respect to the upper
and lower wing surface is shown for the aforementioned freestream conditions related
to the AGARD CT1 and CT4/CT5 test cases. Considering the Cp surface contours,
the AGARD CT1-related flow condition yields a pressure distribution which is repre-
sentative for subsonic flight. In contrast, the AGARD CT4/CT5-deduced freestream
condition leads to a clearly transonic Cp distribution. Focusing on the λ-shock system
on the upper wing surface, two shocks emanate from the inboard wing. Near the geomet-
ric center of the wing, the aforementioned separate shocks unite such that the outboard
wing is dominated by a single shock. In Figure 6.3 and also throughout this chapter,
the flow is modeled as inviscid by employing the AER-Eu solver. As the main objective
is the demonstration of the ROM methodology rather than performing detailed flow-
physical analyses, the Euler-equations-based solver has been chosen for the sake of a
significantly increased efficiency compared to the AER-NS counterpart. Nonetheless, it
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is well-known that the viscosity of the flow exhibits a non-negligible impact on the aero-
dynamic characteristics of the LANN wing. This can be proven by Figure 6.4 showing
the AER-Eu result in contrast to the RANS-CFD solution (AER-NS) and the experi-
mental data taken from Reference [205]. It becomes apparent that both the intensity
of the shock and its chordwise position are overestimated by AER-Eu relative to the
experimental result. The RANS solver captures the relevant flow physics considerably
better, especially, for the η = 65% section. However, also the Euler solution contains
the characteristic pressure trend and incorporates the dominant nonlinear mechanisms
for the underlying test case. Therefore, the AER-Eu solver is used for the CFD compu-
tations presented in this chapter. Due to the lack of comparability between the inviscid
and viscous aerodynamic modeling approaches, the experimental results are omitted for
clarity with the exception of Figure 6.4. Nevertheless, it should be emphasized again
that the employed CFD solver is always decisive for the ROM method and represents
the only legitimate reference result.
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Figure 6.4: Steady-state Cp distribution of the LANN wing for Ma∞ = 0.82 and
α = 0.6◦. The results from the AER-Eu and the AER-NS solver as well as the
experimental test data are shown for two sections. Concerning the AER-NS
solution, the Reynolds number is set to Re lµ = 5.43 ·106 (with lµ = 0.268 m),
whereas the freestream temperature is chosen as T∞ = 299.15 K in accor-
dance with the experimental conditions.

6.3 Surface Data Processing via the POD and ROM
Training

Based on the POD-ROM procedure explained in Section 4.2, unsteady forced-motion
CFD simulations have been computed for both freestream conditions (high subsonic
and transonic case) in order to obtain the training data for the reduced-order model. In
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this regard, pitching oscillations around the fixed angle of attack of α = 0.6◦ are con-
sidered. The maximum pitch amplitude θ1 = max θ(t) = 0.25◦ investigated in terms of
the AGARD CT1, CT4, and CT5 test cases, however, has been increased to θ1 = 2◦ in
order to obtain a stronger nonlinear characteristic due to the intensified shock motion.
Nevertheless, the nonlinear ROM trained with a higher excitation amplitude can be also
generalized to smaller amplitudes, which will be demonstrated in Section 6.7. Hence,
the considered setup is well-suited to assess the robustness of the POD-based surrogate
model against multiple excitation amplitudes.

According to the system identification approach outlined in Chapter 3, problem-
dependent inputs and outputs must be initially defined. Considering the LANN wing
undergoing a pitching motion, only a single degree of freedom is excited. Hence, the
pitch angle θ can be considered as the system input. The system output, however, is
formed by the POD coefficients that can be computed once the unsteady CFD solution
is available. As a consequence, the system inputs and outputs are defined as:

u(t) = θ(t) ∈ R, y(t) =


b1(t)

b2(t)
...

bMPOD
(t)

 ∈ RMPOD , Ξ ∈ ∅ (6.1)

In Equation (6.1), MPOD denotes the number of POD modes, whereas bi refers to the
POD coefficient corresponding to POD mode i. Moreover, the empty time-independent
parameter vector Ξ is shown in Equation (6.1) for completeness, since no static param-
eter changes are taken into account by the model.

Due to the nonlinear nature of the investigated problem, an APRBS has been generated
for the excitation of the pitch angle in the range of −2◦ ≤ θ ≤ 2◦. Thereby, a minimum
hold time of 30 time steps has been specified to achieve a reasonable compromise between
computing time, CFD simulation stability, and training data quality. Using the APRBS,
a quasi-random pitch angle variation is enforced as it can be seen in Figure 6.5. As a
consequence of the 3,401 signal samples in combination with the defined nondimensional
time step size of ∆τ = 0.3, a nondimensional time interval from 0 to 1,020 is considered
for the training CFD simulations.

In addition, the frequency spectrum of the APRBS-based excitation law is presented
in Figure 6.6. Since the reduced frequency does not depend on the freestream Mach
number due to the nondimensional time formulation of the utilized AER-Eu code, the
frequency spectrum is freestream-condition-invariant. Here, the root chord serves as
the reference length for calculating the reduced frequency: kred = cref · ω/U∞ with
cref = cr = 0.361 m. Based on Figure 6.6, it is demonstrated that the generated APRBS
introduces energy at a broad frequency range. In particular, the signal excites the re-
duced frequencies of interest with respect the considered test cases, i.e., kred = 0.133 for
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Figure 6.5: APRBS-based excitation amplitude concerning the pitch angle θ. The shown
signal is used for the simulations at Ma∞ = 0.62 and Ma∞ = 0.82.
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Figure 6.6: The fast Fourier transform (FFT) amplitude of the APRBS is shown as a
function of the reduced frequency.
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the AGARD CT1 test and kred = [0.051, 0.102] for the respective CT4 and CT5 tests.
Furthermore, the Nyquist frequency of kred ,Nyq = 5.23 does not represent a limitation
for the intended POD-ROM simulations.

Based on the time-varying surface pressure distributions provided by the unsteady CFD
computations for Ma∞ = 0.62 and Ma∞ = 0.82, the POD procedure discussed in Sec-
tion 4.2.1 has been carried out yielding the POD modes as well as the corresponding
POD coefficients. To achieve a RIC value larger than 99% throughout the following
comparisons, MPOD = 40 modes are considered for the high subsonic case, whereas
MPOD = 363 modes are necessary under the same RIC constraint for the transonic case.
The aforementioned observation indicates that the flow at Ma∞ = 0.82 is governed by
more complex flow structures with respect to the pressure fluctuations. In Figure 6.7,
the first five out of the 363 POD modes are visualized for the transonic case. Comparing
the mean surface pressure distribution, which is also shown in Figure 6.7 along with the
POD modes, it becomes evident that the dominant structures arising within the POD

Figure 6.7: Time-averaged pressure coefficient distribution along with the first five POD
modes computed from the unsteady CFD result. The upper surface of the
LANN wing is shown for the Ma∞ = 0.82 case (α = 0.6◦, AER-Eu).
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modes can be traced back to the discontinuities of the λ-shock system. In addition, the
POD coefficient time series for the Ma∞ = 0.82 case are shown exemplarily in Figure 6.8
for the first three POD modes, i.e., b1(τ), b2(τ), b3(τ).
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Figure 6.8: POD coefficient response due to the APRBS-based pitching excitation. The
coefficients corresponding to the first three POD modes are shown. LANN
wing, Ma∞ = 0.82, α = 0.6◦, AER-Eu.

Provided by the unsteady AER-Eu simulations and the subsequent POD-based post-
processing, the respective 40× 3401 and 363× 3401 POD coefficient response matrices
B become available for the high subsonic and the transonic test case. Thus, the APRBS
input can be linked to the POD coefficient matrix to form the input/output relationship
of the underlying aerodynamic system.

In accordance with the procedure discussed in Section 4.2, the aforementioned in-
put/output datasets must be pre-processed prior to the neuro-fuzzy model training pro-
cess. Associated to this step, also the dynamic delay-orders for the external dynamics
approach have to be determined. In this regard, the optimization procedure discussed
in Section 3.3.3 has been applied resulting in the maximum dynamic delay-orders of
m = 3, n = 6 (Ma∞ = 0.62) and m = 0, n = 11 (Ma∞ = 0.82) for the respective
inputs and outputs. After concluding the preprocessing steps, the local linear neuro-
fuzzy model has been trained using the LOLIMOT algorithm. Thereby, the learning
procedure has been terminated if the one-step prediction error improvement was less
than 3%; see Section 3.4.2.2. For a clearer discussion of the results, the Monte-Carlo
methodology outlined in Section 3.6 has not been employed within the scope of this
chapter. Consequently, the results of a single model are presented below. Once the
data acquisition and neuro-fuzzy model training process is completed, the POD-ROMs
for both freestream conditions are available and, therefore, can be used for performing
quasi-steady and unsteady aerodynamic computations.
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6.4 Quasi-Steady ROM Application

In the following, the trained surrogate model is used to simulate quasi-steady and un-
steady aerodynamic responses induced by user-defined excitations. For performance and
accuracy classification, the ROM result is therefore compared to the respective full-order
CFD solution generated by AER-Eu. It should be emphasized that the POD-ROM can
be only applied in a reasonable way if the system under investigation can be consid-
ered identical to the system that has been used to provide the training data. Thus,
the configuration, freestream Mach number, and nondimensional time step size cannot
be changed for the present set-up. Consequently, the POD-ROM trained for the high
subsonic case cannot be used for the transonic case and vice versa.

ROM, LANN Wing, Ma∞ = 0.82

α = −1.4◦ α = −0.4◦ α = 0.6◦ α = 1.6◦ α = 2.6◦

CFD (AER-Eu), LANN Wing, Ma∞ = 0.82

α = −1.4◦ α = −0.4◦ α = 0.6◦ α = 1.6◦ α = 2.6◦

Figure 6.9: Steady-state Cp distribution of the upper LANN wing surface provided by the
POD-ROM and the CFD reference (AER-Eu) for various incidence angles.

Firstly, the surrogate model is applied to compute the steady surface pressure distri-
bution for different incidence angles α = [−1.4◦, −0.4◦, 0.6◦, 1.6◦, 2.6◦] at Ma∞ = 0.82.
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Although no varying angles of attack have been trained, a change in α can be mimicked
by considering different static pitch angles. Thus, the flow at the aforementioned inci-
dence angles is obtained for θ = [−2◦,−1◦, 0◦, 1◦, 2◦] keeping in mind the initial angle of
attack of α = 0.6◦. However, since the surrogate model is formulated for time-varying
quantities, a ramp function must be deployed to increase or decrease the pitch angle θ
continuously to the target value. For this reason, the present investigation is termed
quasi-steady to characterize this simulation modus operandi. The resulting steady pres-
sure coefficient distributions are depicted in Figure 6.9 for the upper LANN wing surface,
while the POD-ROM outputs are presented above of the corresponding AER-Eu refer-
ence solutions. Although the direct comparison of the ROM and CFD contour plots
exhibits some minor discrepancies, the general Cp distribution is reproduced well by the
surrogate model. The same applies to the high subsonic case, which is not displayed here
for briefness. Furthermore, it can be seen that the POD-ROM is capable of modeling
the development and regeneration of the complex shock system with respect to static
analyses.

The generally good agreement between the ROM and the CFD results is underlined
by the lift (CL) and pitching moment (CMy) coefficient polars visualized in Figure 6.10.
With respect to the calculation of CMy , the reference point has been defined as the
quarter-chord of the wing root. In contrast to the direct modeling of integral quantities
(see for example Chapters 5 and 7), the lift and pitching moment coefficients of the ROM
shown in Figure 6.9 are computed on the basis of the reconstructed POD-based surface
pressure distribution. In conclusion, the prediction quality concerning static analyses
can be considered as sufficient for rapid aerodynamic assessments.
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Figure 6.10: Lift and pitching moment coefficient polars computed from the POD-ROM-
and CFD-based surface pressure distributions. LANN wing, Ma∞ = 0.82,
α = [−1.4◦,−0.4◦, 0.6◦, 1.6◦, 2.6◦].
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6.5 Unsteady Results - Time Domain

Henceforth, analog to the experimental investigations summarized in Reference [205],
the unsteady aerodynamic loads due to harmonic pitching oscillations are analyzed
for demonstration and validation purposes. In accordance with the trained system
characteristics, the surrogate model is applied to compute the time-domain response
due to sinusoidal excitations with a maximum pitching amplitude of θ1 = 2◦. The
limited excitation range regarded in the AGARD CT1, CT4, and CT5 experiments
(−0.25◦ ≤ θ ≤ 0.25◦) is not further considered in this section in order to focus on the
distinctly nonlinear aerodynamic cases. However, the cases with θ1 = 0.25◦ are taken
into account in Section 6.7. For all unsteady simulations presented in this chapter, three
oscillation cycles have been computed using both the POD-ROM as well as the AER-Eu
solver in order to achieve load periodicity. As it has been discussed in further detail
in Section 5.3, the ROM must be applied using the constant nondimensional time step
size embedded within the training dataset, resulting in a frequency-dependent cycle dis-
cretization. In contrast, for generating the AER-Eu reference solution, each excitation
period is resolved with 100 time steps.

The motion-induced unsteady aerodynamics for the high subsonic case, i.e., for Ma∞ =

0.62, is presented for the single reduced frequency of kred = cr · 2πf/U∞ = 0.133. Con-
cerning the transonic case, the two reduced frequencies kred = [0.051, 0.102] are taken
into account for the excitation of the pitching motion. In this way, the frequency-
dependent performance of the methodology can be assessed. Based on the POD-ROM
application procedure shown in Figure 4.2, the sinusoidal time laws related to the pitch-
ing angle θ are fed into the neuro-fuzzy model, leading to the corresponding time-discrete
POD coefficients b̃(τ). Thereby, the tilde denotes a quantity that has been generated
by means of the neuro-fuzzy model. In Figures 6.11 and 6.12, the output of the ROM is
shown for the harmonic excitation with kred = 0.133 at Ma∞ = 0.62 and kred = 0.051 at
Ma∞ = 0.82, respectively. It is apparent that for the second and third POD coefficient,
a nonlinear dependency with respect to the input is ascertained, justifying the use of
the employed neuro-fuzzy model approach. Nonetheless, whereas the high subsonic case
exhibits only weak nonlinearities concerning the higher-order POD coefficients, for the
transonic case most of the b̃ coefficients depend nonlinearly on the pitch amplitude as
it can be seen from the corresponding Lissajous figures.

On the basis of the stored POD modes in combination with the previously discussed
POD coefficients produced by the neuro-fuzzy model, the unknown pressure coefficient
distribution can be computed via weighted superposition according to Equation (4.4).
Introducing T as the nondimensional period length with respect to the third excitation
cycle, the POD-ROM outputs can be compared to the corresponding full-order CFD
results. In Figure 6.13, the Cp distribution originating from the surrogate modeling ap-
proach is visualized in contrast to the AER-Eu solution forMa∞ = 0.62 and kred = 0.133.
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Figure 6.11: First three NFM-based POD coefficients caused by a harmonic excitation
with kred = 0.133 (LANN wing, Ma∞ = 0.62, α = 0.6◦).
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Figure 6.12: First three NFM-based POD coefficients caused by a harmonic excitation
with kred = 0.051 (LANN wing, Ma∞ = 0.82, α = 0.6◦). The Lissajous
figure underpins the nonlinear behavior of the second and third POD coef-
ficient.
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Comparing the results at the two time steps t2 = 0.25 T and t4 = 0.75 T , a very good
agreement can be identified. The high conformity between the POD-ROM and the CFD
solution for the Ma∞ = 0.62 case also applies to other time steps that are not shown for
briefness.

Analogously, the pressure coefficient distribution induced by a harmonic excitation
with kred = 0.102 is shown at four discrete time steps in Figure 6.14 for Ma∞ = 0.82.
The associated contour plots illustrate a generally good correlation between the POD-
ROM and the reference results, although the discontinuity caused by the shock is not
predicted as sharp by the ROM as with the AER-Eu solver. Moreover, some minor
superposition artifacts exist within the surface distribution. Nonetheless, the overall
POD-ROM-based solution quality regarding the motion-induced aerodynamic loads is
good for both the high subsonic and the transonic freestream conditions.
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(a) t2 = 0.25 T , θ(t2) = 2◦ (b) t4 = 0.75 T , θ(t4) = −2◦

Figure 6.13: ROM- and CFD-based pressure coefficient distribution due to a harmonic
pitching motion with kred = 0.133. The upper LANN wing surface is shown
for two time steps within the third excitation cycle. The CFD reference
solution is provided by the AER-Eu solver. Ma∞ = 0.62, α = 0.6◦, θ1 = 2◦.

Besides considering the pressure distribution on the upper LANN wing surface, a further
comparative analysis is conducted to focus on the local accuracy of the ROM approach.
For that purpose, the streamwise cross-sections at 32.5% and 65% of the semi-span mea-
sured from the wing root are investigated in detail; see Figure 6.3 for a visualization of
the respective cross-sections. Figures 6.15-6.17 show the chordwise Cp characteristics
that result from harmonic pitching excitations, while four time steps associated to the
third excitation cycle are plotted. As it can be seen from the figures, a good concordance
between the ROM and the full-order CFD solution is observed in general. In particu-
lar, an almost perfect agreement can be noticed with respect to the high subsonic case.
Moreover, the distribution of the pressure coefficient on the lower wing surface is pre-
dicted with high accuracy using the POD-ROM, which applies to both the high subsonic
and the transonic freestream conditions. In contrast, the precise unsteady aerodynamic
modeling regarding the upper surface, which is dominated by the formation of the λ-
shock topology for the LANN wing at Ma∞ = 0.82, is challenging for the POD-ROM as
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Figure 6.14: ROM- and CFD-based pressure coefficient distribution due to a harmonic
pitching motion with kred = 0.102. The upper LANN wing surface is shown
for four time steps within the third excitation cycle. The CFD reference
solution is provided by the AER-Eu solver. Ma∞ = 0.82, α = 0.6◦, θ1 = 2◦.

it can be inferred from Figures 6.16 and 6.17. Specifically, the chordwise position of the
shock(s) as well as the pressure gradient is not always captured accurately. Thus, the
local accuracy is slightly deteriorated due to the discrepancies with respect to the shock
resolution. The aforementioned phenomenon, that pronounced discontinuities are not
well resolved using the POD’s linear superposition principle, was also noted by other re-
searchers concerning POD-based static approximation problems [70,104]. Nevertheless,
the transient development and regeneration of the complex shock system is principally
reproduced by the reduced-order model.
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Figure 6.15: Evolution of the chordwise Cp distribution at η = y/s = 32.5% caused by
a harmonic pitching motion with kred = 0.133. LANN wing, Ma∞ = 0.62,
α = 0.6◦, θ1 = 2◦, POD-ROM and AER-Eu results are shown.
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Figure 6.16: Evolution of the chordwise Cp distribution at η = y/s = 32.5% caused by
a harmonic pitching motion with kred = 0.102. LANN wing, Ma∞ = 0.82,
α = 0.6◦, θ1 = 2◦, POD-ROM and AER-Eu results are shown.
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Figure 6.17: Evolution of the chordwise Cp distribution at η = y/s = 65% caused by a
harmonic pitching motion with kred = 0.102. LANN wing, Ma∞ = 0.82,
α = 0.6◦, θ1 = 2◦, POD-ROM and AER-Eu results are shown.

6.6 Unsteady Results - Frequency Domain

For aeroelastic applications, the frequency-domain formulation of the unsteady aerody-
namic loads is of paramount importance [192]. In this regard, complex-valued force and
load amplitudes are considered that represent the magnitude and phase of the response.
Due to the high practical significance of those considerations, the time-domain results
presented in Section 6.5 are transformed into the frequency domain via Fourier analysis
to gather further insights. For comparative purposes, not only the POD-ROM-based
Cp distribution but also the respective AER-Eu result is transformed and taken into
account within the following discussions.

Figure 6.18 presents the real and imaginary parts of the first harmonics with respect
to the surface pressure coefficient amplitude that is caused by a pitching motion with
kred = 0.133 at Ma∞ = 0.62. As it can be expected from the time-domain results shown
in the previous section, also in the frequency domain a very good agreement between
the ROM and the CFD result can be stated for the high subsonic case. Furthermore,
Figures 6.19 and 6.20 depict the complex-valued first and second harmonics related to
the Cp distribution that is induced by pitching motions with the respective reduced
frequencies of kred = 0.051 and kred = 0.102 for the transonic freestream condition case.
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Figure 6.18: Real and imaginary part regarding the first harmonics of the Cp response
shown for the upper LANN wing surface. The frequency-domain unsteady
aerodynamic result shown for the POD-ROM and the AER-Eu solver is
caused by a harmonic pitching motion with kred = 0.133. Ma∞ = 0.62,
α = 0.6◦, θ1 = 2◦.

Figure 6.19: Real and imaginary part regarding the first and second harmonics of the
Cp response shown for the upper LANN wing surface. The frequency-
domain unsteady aerodynamic result shown for the POD-ROM and the
AER-Eu solver is caused by a harmonic pitching motion with kred = 0.051.
Ma∞ = 0.82, α = 0.6◦, θ1 = 2◦.

As it can be seen from Figures 6.19 and 6.20, the surrogate model is generally able to
capture the second harmonics of the aerodynamic response constituted by Re C2

p and
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Im C2
p . The same holds true for higher harmonics of the response amplitude not dis-

played in this work. This property underlines the nonlinear nature of the investigated
problem as well as the capability of the POD-ROM approach to reproduce nonlinear
aerodynamic effects. At this point it is worth to note that a linear aerodynamic model
would only provide the first harmonics of the response.

Figure 6.20: Real and imaginary part regarding the first and second harmonics of the
Cp response shown for the upper LANN wing surface. The frequency-
domain unsteady aerodynamic result shown for the POD-ROM and the
AER-Eu solver is caused by a harmonic pitching motion with kred = 0.102.
Ma∞ = 0.82, α = 0.6◦, θ1 = 2◦.

Considering Figures 6.19 and 6.20, the real part of the first harmonics with respect to
the Cp distribution, which is referred to as Re C1

p , correlates well with the reference for
both considered excitation frequencies. In contrast, the imaginary part of the first har-
monic load denoted by Im C1

p as well as the higher harmonics of the Cp amplitude show a
satisfying agreement with the AER-Eu reference solution. The present deviations can be
traced back to the limited prediction quality regarding the shock system. Nonetheless,
the characteristic patterns in terms of the frequency-domain pressure distribution are
qualitatively reproduced by the POD-ROM approach.

In order to allow a more detailed interpretation of the results, three additional plots are
introduced showing the local distribution of the complex-valued Cp response amplitude.
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In this regard, the Figures 6.21-6.23 provide the chordwise Re C1
p and Im C1

p character-
istics at the two cross-sections defined by 32.5% and 65% of the semi-span. The high
subsonic test case (Ma∞ = 0.62, kred = 0.133) is shown in Figure 6.21, whereas the tran-
sonic freestream condition specified by Ma∞ = 0.82 is plotted for kred = [0.051, 0.102] in
Figures 6.22 and 6.23, respectively. Analog to the results analyzed beforehand, the chord-
wise pressure distribution for the high subsonic case exhibits an almost exact agreement.

Related to the Ma∞ = 0.82 test cases, the POD-ROM-based chordwise Re C1
p and Im C1

p

distributions shown in Figures 6.22 and 6.23 exhibit certain deviations with respect to
the full-order CFD solution. In contrast to the time-domain considerations shown in
Figures 6.16 and 6.17, the discrepancies in the frequency domain are not strictly limited
to the direct neighborhood of the discontinuity. Nevertheless, the characteristic trends
of the reference CFD result are also captured by the ROM. Unless a highly accurate
result is needed, the POD-ROM procedure can yield satisfying results within a fraction
of the time compared to the underlying CFD system; see the discussion in Section 6.8.
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Figure 6.21: Real and imaginary part of the first harmonics with respect to the chord-
wise Cp distribution plotted at η = 32.5% and η = 65%. The response is
enforced by a harmonic pitching motion with kred = 0.133. Ma∞ = 0.62,
α = 0.6◦, θ1 = 2◦, POD-ROM and AER-Eu results are shown.
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Figure 6.22: Real and imaginary part of the first harmonics with respect to the chord-
wise Cp distribution plotted at η = 32.5% and η = 65%. The response is
enforced by a harmonic pitching motion with kred = 0.051. Ma∞ = 0.82,
α = 0.6◦, θ1 = 2◦, POD-ROM and AER-Eu results are shown.
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Figure 6.23: Real and imaginary part of the first harmonics with respect to the chord-
wise Cp distribution plotted at η = 32.5% and η = 65%. The response is
enforced by a harmonic pitching motion with kred = 0.102. Ma∞ = 0.82,
α = 0.6◦, θ1 = 2◦, POD-ROM and AER-Eu results are shown.
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6.7 Integral Quantities

Analog to the quasi-steady investigation outlined in Section 6.4, the lift and pitching
moment coefficients have been calculated from the unsteady surface pressure distribu-
tions in order to analyze the solution quality concerning the integral quantities. With
respect to the lift coefficient CL, the results are depicted in Figure 6.24 for all con-
sidered test cases. Thereby, not only the two freestream conditions in combination
with the variable excitation frequencies are considered (Ma∞ = 0.62, kred = 0.133 and
Ma∞ = 0.82, kred = [0.051, 0.102]), but also the two different pitching angle amplitudes
of θ1 = [0.25◦, 2◦]. The sinusoidal pitching excitation with θ1 = 0.25◦ has been chosen in
accordance with the wind tunnel experiments [205]. It is important to emphasize that
the same POD-ROM trained by the APRBS shown in Figure 6.5 is employed to predict
the small amplitude cases with θ1 = 0.25◦. In this way, the robustness of the model
in terms of predicting small and large amplitudes is tested. Using the same reduced-
order model, virtually no additional computational effort is necessary to produce the
surrogate-model-based output for θ1 = 0.25◦. However, further AER-Eu simulations are
required for providing the respective comparative data.

Considering Figure 6.24, it can be asserted that the lift coefficient is predicted with high
accuracy. Specifically, the high subsonic case shows an excellent agreement, whereas
marginal amplitude and phase shifts can be determined for the transonic cases. More-
over, the ROM is able to simulate the CL response induced by the significantly smaller
excitation amplitude given by θ1 = 0.25◦. Although the relative deviations are larger
for the small amplitude cases compared to the θ1 = 2◦ results, the POD-ROM-based lift
coefficients correlate well with the CFD reference. Interestingly, the integral response
of the aerodynamic system is linear for both excitation amplitudes, although the local
pressure distribution is governed by nonlinearities under certain conditions, e.g., the
transonic cases with a pitching amplitude of θ1 = 2◦. Nevertheless, the aforementioned
characteristic is well reproduced by the POD-ROM methodology.

The pitching moment, which is related to the quarter-chord point of the wing root
(undeflected state), is shown in Figure 6.25 for the same set of cases. Although some de-
viations exist between the ROM solution and the CFD reference, the diagrams indicate
a good agreement for the prediction of CMy . Nonetheless, it becomes evident that the
local deviations discussed in Section 6.5 contribute stronger to the moment coefficients
due to the spatial weighting. Hence, the error between the POD-ROM and the AER-Eu
result is typically larger for the pitching moment coefficient in contrast to CL. Even
though the discrepancies are slightly more pronounced for the θ1 = 0.25◦ cases than for
the large amplitude simulations, the prediction quality is sufficient for fast preliminary
investigations. Thus, the ROM procedure described in Section 4.2 can be also employed
to deduce integral aerodynamic coefficients with reasonable accuracy on the basis of the
POD-based datasets.
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Figure 6.24: Unsteady lift coefficient time-series evaluated by means of the POD-ROM-
and the CFD-based surface pressure distributions. The results are shown
for all considered combinations of freestream Mach number, excitation fre-
quency, and maximum pitch amplitude. LANN wing, α = 0.6◦.
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Figure 6.25: Unsteady pitching moment coefficient time-series evaluated by means of the
POD-ROM- and the CFD-based surface pressure distributions. The results
are shown for all considered combinations of freestream Mach number, ex-
citation frequency, and maximum pitch amplitude. LANN wing, α = 0.6◦.
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6.8 Efficiency Analysis

Finally, the computational efficiency of the POD-based reduced-order modeling frame-
work is investigated. For classification of the simulation costs, all POD-ROM and CFD
simulations presented in this chapter have been performed on a workstation equipped
with an Intel Xeon 2.3 GHz processor. Thereby, a single CPU core has been utilized to
ensure comparability. Analog to the considerations presented in Section 5.6, the steady
computations are neglected within the total cost evaluation since they contribute to the
full-order model in the same way as to the ROM construction.

Taking the numerical effort of the POD-ROM into account, the training data genera-
tion, i.e., the APRBS-based pitching-motion CFD simulation, has required 18.9 CPU
hours for the high subsonic case (Ma∞ = 0.62) and 37.6 CPU hours for the transonic
case (Ma∞ = 0.82). Moreover, the computation of the POD modes and coefficients
needed about 0.01 CPU hours for each case, whereas the neuro-fuzzy model training
by means of the LOLIMOT algorithm has taken 0.02 CPU hours and 0.18 CPU hours
for Ma∞ = 0.62 and Ma∞ = 0.82, respectively. For a total cost estimation related to
the ROM, the aforementioned training data acquisition, POD application, and model
training must be respected. Thus, the creation of the POD-ROM for the high subsonic
case required merely 18.93 CPU hours, whereas the respective model for the transonic
case has been obtained in approximately 37.79 CPU hours. From the breakdown of the
ROM generation costs it becomes clear that the forced-motion CFD simulation has the
most severe impact on the total effort. Once the CFD-based input/output dataset is
available, the remaining ROM construction effort is typically less than 1%.

Considering the application of the two POD-ROMs to the six cases that are listed for
example in Figure 6.24, the computational cost for these simulations has been less than
six CPU seconds. Hence, each simulation needed in average about one CPU second,
including the neuro-fuzzy model application and the surface reconstruction using the
POD modes. In comparison to the ROM construction effort, the application costs are
virtually negligible.

In contrast, the computational costs for obtaining the reference CFD results can be sum-
marized as follows: The AER-Eu simulations for the high subsonic freestream condition
have required about 5.5 CPU hours with respect to the two harmonic excitation cases
(kred = 0.133 and θ1 = [0.25◦, 2◦]). Concerning the transonic case incorporating four
simulation runs (kred = [0.051, 0.102] in combination with θ1 = [0.25◦, 2◦]), 18.9 CPU
hours have been spend to compute the reference results. In average, the simulation of
three pitching excitation periods at Ma∞ = 0.62 needed about 2.3 CPU hours using the
AER-Eu solver, whereas the numerical effort per case has been approximately 4.7 CPU
hours for Ma∞ = 0.82.
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Consolidating the previously discussed computational cost analysis, it can be concluded
that the ROM generation effort is about 8.2 times larger for the high subsonic case
than the computation of a typical unsteady CFD run at the same freestream condition.
For the transonic case, a corresponding factor of approximately 8.0 is obtained for the
underlying test cases. Consequently, if more than about eight unsteady simulations are
intended to be computed, the aerodynamic loads are calculated faster using the the sur-
rogate model in comparison to the respective full-order CFD solver. Keeping in mind
that an already available ROM can be employed for highly efficient simulations regarding
other excitation amplitudes and frequencies within the scope of the underlying train-
ing data, the computational advantage is increased with added computation cases. By
disregarding the POD-ROM generation effort, the speed-up factor for each individual
simulation is of the order of four magnitudes based on the presented examples.

6.9 Summary

In the present chapter, the POD-based unsteady aerodynamic surrogate modeling ap-
proach outlined in Section 4.2 was employed to predict the surface pressure fluctua-
tions of the LANN wing subject to pitching motions. The examples at high subsonic
and transonic flow conditions demonstrated the training/application process concerning
the reduced-order modeling framework and indicated the potential and fidelity of the
methodology. At this point, it is worth to emphasize again that the general approach
can be applied to any two- or three-dimensionally distributed, time-varying quantity
under the precondition that suitable training data are provided.

Starting from the quasi-steady application example, it was shown that the proposed
POD-ROM can predict the dominant unsteady aerodynamic characteristics that have
been induced by multiple excitation frequencies and pitching amplitudes. In this re-
gard, the time and frequency domain results indicated a sufficient accuracy between the
ROM and the CFD reference. Nonetheless, it was also noted that the precise prediction
of discontinuities such as moving shocks is still challenging. This circumstance can be
interpreted as a limitation of the linear dimensionality reduction method, namely the
POD, which forwards the nonlinear dynamics to the subsequently employed neuro-fuzzy
model. However, taking into account the savings in computing time, the surrogate model
can be easily coupled with solvers from other disciplines in terms of the model inputs and
outputs. The speed-up of four orders of magnitude can be particularly interesting for
computationally intensive multidisciplinary analyses such as fluid-structure-interaction
problems, numerical optimization tasks, and load estimation.



7 Investigation of Strongly-Nonlinear
Aerodynamic Characteristics

In this chapter, the performance of the connected neural network approach introduced
in Section 4.3 is evaluated. For this purpose, the aerodynamic forces and moments
acting on the NLR 7301 airfoil are investigated, while forced pitching and plunging
motions are simultaneously applied. It is shown how the combined model consisting
of the recurrent local linear neuro-fuzzy model and the multilayer perceptron neural
network can be trained using CFD-based datasets. Moreover, the application of the
novel identification-based reduced-order modeling approach is highlighted with respect
to distinctly-nonlinear unsteady aerodynamic simulations. The content of this chapter
is based on the author’s pre-publication, Reference [189].

To test the NFM-MLP-based reduced-order model, the content of this chapter is struc-
tured in the following way: First, the NLR 7301 test case description and background
information related to the associated aerodynamic modeling are given in Sections 7.1
and 7.2. Subsequently, the CFD-based training data acquisition as well as the three-
stage model training process is undertaken. The main part of this chapter is formed
by the model application. In this regard, the ROM is used in Section 7.5 to simulate
the unsteady aerodynamic forces and moments due to harmonic motions with different
frequencies and excitation amplitudes. By examining the NFM-MLP-based results in
comparison to established ROM methods it is indicated that the novel approach leads
to an enhanced simulation performance. In Section 7.6, the ROM fidelity is verified for
a generically-defined vibration excitation. Thereby, also a variation of the static equi-
librium is considered to evaluate the generalization capabilities and robustness of the
model. By comparing the ROM results with the full-order CFD reference solution, it is
shown that the essential linear and nonlinear aerodynamic characteristics can be accu-
rately reproduced by the novel methodology. Finally, the analysis of the computational
effort indicates the method’s potential for reducing the simulation costs in the context
of unsteady aerodynamic investigations.

7.1 Test Case: NLR 7301 Airfoil

For demonstrating the nonlinear ROM approach discussed in Section 4.3, the NLR 7301
airfoil has been chosen. The associated unsteady aerodynamic test cases in the transonic
flight regime are well-known in the community for their strongly nonlinear characteris-
tics [28, 162, 206]. In Figure 7.1, the CFD grid of the supercritical airfoil geometry is
depicted. According to Zwaan [206], a chord length of cref = 0.3 m is specified, whereas
the axis for the considered pitching motion has been defined at 40% of the chord.
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In this chapter, the NLR 7301 airfoil is investigated at a freestream Mach number of
Ma∞ = 0.753 and an angle of attack of α = 0.6◦. According to the experimental tests
described in Reference [206], the aforementioned flow condition leads to a pronounced
shock on the airfoil’s suction side. As it is shown in the further course of this study,
the intensity and position variation of the shock becomes nonlinearly related to the dis-
placement amplitude if the airfoil undergoes a sufficiently large pitching and plunging
motion. Consequently, also the flow-induced forces and moments are affected in a non-
linear way. Due to this strongly-nonlinear relationship between the inputs and outputs
of the aerodynamic system, the NLR 7301 test case has been selected to challenge the
NFM-MLP-based reduced-order model.

Y X

Z

Figure 7.1: Geometry of the NLR 7301 supercritical airfoil embedded within the block-
structured computational grid for the CFD-based simulations.

Consolidating the identification theory presented in Chapter 3 with the test-case-specific
boundary conditions, the system input consists of the pitch and plunge excitation am-
plitudes, whereas the output of the system is composed of the lift and pitching moment
coefficients. With h(t) being the time-dependent plunge amplitude, the system inputs
and outputs can be defined as:

u(t) =

(
θ(t)

h(t)

)
∈ R2, y(t) =

(
CL(t)

CMy(t)

)
∈ R2, Ξ ∈ ∅ (7.1)

In Equation (7.1), the empty parameter vector Ξ has been added for completeness, as
no static parameter changes are taken into account by the model in contrast to the
investigations presented in Chapter 5. Furthermore, the fixed reference point for the
calculation of CMy is specified as the quarter-chord point of the undeflected airfoil.
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7.2 Computational Set-up and Steady-State Flow

In the present investigation, the fluid dynamic modeling of the NLR 7301 test case is
realized by solving the Euler equations using AER-Eu. According to the discussion in
Chapter 2, the influence of the viscosity of the flow is excluded in this way. Consequently,
neither shock-boundary-layer interaction effects nor flow-separation-induced phenomena
are captured by the CFD solver. For a comparison with experimental data, the viscous
effects must be taken into account for the present case [178]. However, the focus here is
on an intermethod comparison between various ROM architectures and the CFD refer-
ence result. Since strongly nonlinear effects are encountered, the Euler-based view does
not restrict the validity of the presented results.

With respect to the inviscid CFD simulations, a structured 2.5-dimensional multi-block
grid has been generated using ANSYS ICEM CFD [2]. The computational grid shown
in Figure 7.1 is composed of 14,396 finite volumes, while the airfoil surface is resolved
with 156 cells. To obtain a body-fitted grid, the respective cells are arranged in a four-
block C-type topology. Moreover, the grid is refined towards the airfoil by adjusting
the off-body distance of the first cell height to 1 · 10−3 cref . Finally, the grid has been
postprocessed with the in-house Poisson-equation-based mesh smoother [26].
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Figure 7.2: Steady-state results of the grid refinement study by example of the aerody-
namic lift (CL) and pitching moment (CMy) coefficients. NLR 7301, AER-Eu.

In order to guarantee the independence of the solution from the spatial resolution, a
mesh sensitivity study has been conducted. For this purpose, a coarse, a medium and
a fine grid have been created. The coarse and the fine grid are characterized by the
respective halved and doubled number of edge nodes relative to the medium grid level.
In Figure 7.2, the steady-state lift and pitching moment coefficients are depicted for the
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aforementioned grid levels. Based on the grid sensitivity plot, it becomes clear that the
coarse grid leads to considerably different results compared to the other two grids. For
this reason, the coarse grid is not further considered in this work. Comparing the results
originating from the medium and the fine grid, the relative error is given as 1.1% with
respect to CL and 3.6% for CMy . Besides the steady-state grid sensitivity investigation
displayed in Figure 7.2, an additional unsteady test campaign indicated the same trends
for the three grid levels. Hence, the medium grid realizes a good compromise between
the solution quality and the computational costs. It is therefore considered to be ade-
quate for the following simulations.

In the course of this investigation, a fixed transonic flight condition characterized by a
freestream Mach number of Ma∞ = 0.753 and an angle of attack of α = 0.6◦ is con-
sidered. The only exception is the generalization study provided in Section 7.6, which
also includes results at α = 2◦ for the same freestream Mach number. Concerning the
steady and unsteady CFD results presented in this chapter, the simulations have been
terminated once the Euclidean norm with respect to the density normalized with the
corresponding value after the first iteration reached a value below 10−5. In Figure 7.3,
the steady-state AER-Eu simulation result is shown by means of the pressure coefficient
contours for the selected medium grid level. As a result of the transonic freestream con-
dition, a crisp shock is formed on the suction side of the supercritical airfoil. Referring
to the ROM procedure outlined in Section 4.3.2, the steady solution forms the basis for
the subsequently discussed unsteady aerodynamic analyses.

Y X

Z

Figure 7.3: CFD-based steady-state pressure coefficient contours around the NLR 7301
airfoil at Ma∞ = 0.753 and α = 0.6◦ (AER-Eu).
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7.3 CFD-Based Training Data Generation

According to the training procedure discussed in Section 4.3, the aerodynamic response
due to forced motions must be computed using the CFD solver to provide the train-
ing data for the reduced-order model. Here, the output of the aerodynamic system is
recorded in terms of the lift and pitching moment coefficients, while the pitch and plunge
deflection degrees of freedom of the NLR 7301 airfoil are taken into account. Conse-
quently, deformed computational grids are required by the AER-Eu solver in order to
conduct the intended unsteady simulations. Within the scope of this chapter, the de-
formed CFD grids have been generated by means of rigid body rotations/translations of
the grid nodes to model the respective pitch and plunge motions.

Table 7.1: Overview of the generically defined amplitude scenarios for the ROM-based
investigations.

Amplitude level Pitch angle range Plunge displacement range

Training −5.5◦ < θ < 5.5◦ −11% cref < h < 11% cref

Application:
Small (SA) −0.1◦ < θ < 0.1◦ −0.5% cref < h < 0.5% cref

Medium (MA) −3◦ < θ < 3◦ −4% cref < h < 4% cref

Large (LA) −5◦ < θ < 5◦ −10% cref < h < 10% cref

In order to assess the model performance for different input amplitude levels, three
excitation scenarios have been defined for ROM application. In Table 7.1, the small,
medium, and large amplitude cases are specified by means of intervals for the pitch
and plunge amplitude. With respect to the underlying aerodynamic system, the large
excitation amplitudes are expected to provoke the most pronounced nonlinear charac-
teristics. This can be proven by the unsteady AER-Eu solutions depicted in Figure 7.4.
The diagram shows the (normalized) lift coefficient due to a harmonic pitching motion
with a reduced frequency of kred = ω · cref /U∞ = 0.01 for the small, medium, and large
amplitude scenarios. While the CL time-series for the maximum pitching amplitude of
θmax = 5◦ is nonlinearly related to the sinusoidal airfoil motion, the small perturbation
(SA) case can be regarded as entirely linear. Furthermore, it should be noted that the
pitching moment typically responds in a more nonlinear manner than the lift coefficient.
As it has been discussed for instance by Kou et al. [84], it is more difficult to capture
both linear and nonlinear dynamic effects with a single ROM in comparison to exclu-
sively treating linear or nonlinear system characteristics. Hence, it is concluded based
on Figure 7.4 that the defined amplitude range leads to a significant level of nonlinearity.
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Figure 7.4: The lift coefficient normalized with the pitching amplitude is shown for three
harmonic pitching cycles with kred = 0.01. The result clearly indicates the
nonlinear amplitude-dependent characteristics for the considered test case.
NLR 7301, Ma∞ = 0.753, α = 0.6◦, AER-Eu.

In contrast to the application-related cases summarized in Table 7.1, an excitation range
of −5.5◦ < θ < 5.5◦ and −11% cref < h < 11% cref has been chosen for the training
pitch and plunge deflections. In this way, the specified amplitudes for the ROM appli-
cation are covered within the trained input characteristics. On the basis of the afore-
mentioned training amplitudes, smoothed amplitude-modulated pseudo-random binary
signals (SAPRBS, see Section 3.7) have been generated for the pitch and the plunge
motion as it is shown in Figure 7.5. Concerning the associated two training excitation
signals, an overlap of 20% has been set to capture possible nonlinear interactions caused
by the simultaneous deflection of both degrees of freedom. An a priori conducted time
step sensitivity study for the present CFD set-up revealed that a nondimensional time
step size of ∆τ = 0.01 must be chosen to obtain converged results. In combination with
the nondimensional time interval from 0 to 820 depicted in Figure 7.5, the unsteady
CFD simulation yielding the ROM training data is characterized by 82,000 time steps.
Due to the anticipated strongly-nonlinear behavior of the aerodynamic system, the time
interval has been chosen sufficiently large in order to ensure an adequate information
content of the training data. With respect to the temporal resolution, however, the
small time step size needed for the AER-Eu simulation can be increased concerning the
nonlinear ROM-based prediction tasks. Hence, every 10th sample of the CFD input/out-
put dataset is used for calibrating the model. In this way, the training and application
process can be accelerated, without affecting the quality of the ROM results. Following
the previous discussion, 8,200 training samples have been exploited for the present test
case, while the effective discrete time step size for the identified reduced-order models
becomes ∆τ = 0.1.
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Figure 7.5: Smoothed amplitude-modulated pseudo-random binary signals for the pre-
scribed excitation of the pitch and plunge degrees of freedom (NLR 7301,
∆τ = 0.01).

Furthermore, the SAPRBS-related plateaus have been designed such that reduced fre-
quencies ranging from 0 < kred < 0.5 can be investigated by means of the ROM. In
Figure 7.6 it is demonstrated that the generated training signals introduce sufficient
energy at the aforementioned frequency interval. As a consequence, the training sig-
nals, which are simultaneously applied for both rigid body motions, are considered to
be compatible with the underlying problem and the intended unsteady aerodynamic
simulations.
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Figure 7.6: The frequency spectrum of the SAPRBS-based pitch and plunge training
inputs is shown as a function of the reduced frequency kred .
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Proceeding from the steady-state simulation at Ma∞ = 0.753 and α = 0.6◦, the un-
steady aerodynamic response induced by the prescribed pitch and plunge motions has
been obtained by a single AER-Eu simulation. In particular, the CFD output of interest
is shown in Figure 7.7 by example of the CL and CMy time-series. At this point, it is
important to highlight that the data contained in Figures 7.5 and 7.7 constitute the full
training dataset. All identification-based ROMs presented below are trained exclusively
by means of the displayed information.
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Figure 7.7: Lift and pitching moment coefficient response caused by the prescribed
SAPRBS excitation of the pitch and plunge rigid body modes. NLR 7301,
Ma∞ = 0.753, α = 0.6◦, ∆τ = 0.01, AER-Eu.

7.4 Training of the Reduced-Order Models

Given the training data representing the aerodynamic behavior of the NLR 7301 airfoil,
the identification-based ROM training has been performed. In this regard, the maximum
dynamic delay-orders for the recurrence framework methodology have been specified to
m = n = 8 for all presented models. Besides applying the developed NFM-MLP training
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procedure discussed in Section 4.3, three additional ROMs have been constructed within
the scope of this chapter for comparative purposes:

1) ROM/ARX: First, an auto-regressive with exogenous input (ARX) model has been
generated, serving as the least-sophisticated ROM for the considered problem.
This globally linear model is obtained via the LOLIMOT algorithm by restricting
the maximum number of local linear models to one (M = 1).

2) ROM/NFM: Second, the local linear neuro-fuzzy model described in Section 3.4.2
is trained by means of the LOLIMOT algorithm. In contrast to the aforemen-
tioned ROM/ARX, the number of local linear models is data-dependent and not
limited to M = 1. Due to the nonlinear nature of the underlying test case, several
partitions of the model input space are necessary to reasonably approximate the
training data.

3) ROM/MLP: Third, the classical multilayer perceptron neural network outlined in
Section 3.4.3 has been trained from the available unsteady aerodynamic dataset.
For the intended application-related simulations, the MLP neural network must be
applied in the recurrent modus operandi, i.e., exhibiting a feedback of the neural
network outputs. The number of neurons for the model with two hidden layers has
been specified to MMLP = [5, 2] for the respective first and second hidden layer.
Due to the frequently encountered model instabilities concerning the ROM/MLP
response, the respective results are not visualized except from a single diagram for
the sake of a clear presentation.

4) ROM/NFM-MLP: Finally, the novel approach incorporating the recurrent NFM
coupled with the MLP neural network is employed. Thereby, the same settings are
applied compared to the individual ROM/MLP and ROM/NFM models to ensure
comparability.

For each of the four ROM types, NMC = 25 separate models have been trained according
to the Monte-Carlo procedure discussed in Section 3.6. Hence, in total 100 models are
available for conducting unsteady aerodynamic simulations, allowing conclusive com-
parisons for the different model architectures. As a consequence, all diagrams in this
chapter display the mean of the NMC = 25 responses as the main line, while a shaded
area marks the corresponding standard deviation unless otherwise specified. Based on
the statistical information about a particular ROM output, the following conclusions
can be derived: If the standard deviation spans a comparatively small range around the
main line, the likelihood is high that also individual ROMs provide the mean response.
Furthermore, small standard deviations σ can be an indicator that sufficient training
data are available in the associated amplitude and frequency regimes to capture the pre-
vailing effects. A small σ value, however, does not guarantee a certain level of accuracy.
In contrast, large standard deviations are typically connected with a lack of training
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data or, alternatively, possible model instabilities. Thus, inaccurate model outputs are
indicated by high σ values. These general remarks are further refined in the following.
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Figure 7.8: CL and CMy response induced by the SAPRBS excitation shown in Fig-
ure 7.5. The simulation results of three ROM approaches are juxtaposed
to the respective training solution provided by the CFD solver. NLR 7301,
Ma∞ = 0.753, α = 0.6◦.

Prior to the application studies presented in Sections 7.5 and 7.6, the ROM performance
is evaluated based on the training data itself. Therefore, multi-step ahead predictions
are computed using the considered ROM approaches to gain a basic impression of the
fidelity of the methods. If a certain model is not able to reproduce the training data
sufficiently well, a deteriorated accuracy can be expected also for the application cases.
In Figure 7.8, the ROM outputs are shown along with the AER-Eu reference data, from
which the models have been trained. In order to provide a quantitative measure of
the ROM-related errors, the fit factor Q is introduced in Equation (7.2) according to
Ljung [102]:
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Q = 100% ·

1−

√∑NS
s= 1

(
y(s)− ŷ(s)

)2

√∑NS
s= 1

(
y(s)− y

)2

 (7.2)

y =
1

NS

NS∑
s= 1

y(s) (7.3)

The fit factor for a specific case is computed by inserting the mean ROM response as the
model output ŷ. Moreover, the CFD-based reference result enters Equations (7.2)-(7.3)
by means of y(s), whereas NS denotes the number of signal samples. As a fit factor of
100% indicates an exact agreement, the criterion can be employed to assess the quality
of the model outputs. Concerning the results depicted in Figure 7.8, the fit factors are
summarized in Table 7.2.

Table 7.2: Fit factors evaluated for the training dataset.

Fit factor Q CL CMy

ROM/ARX 80.88% 85.06%

ROM/NFM 95.40% 91.32%

ROM/MLP 85.69% 32.74%

ROM/NFM-MLP 96.53% 94.43%

By analyzing Table 7.2 and Figure 7.8, it is apparent that the ROM/ARX solution fairly
approximates the global trend of the training data. Nevertheless, a more detailed con-
sideration illustrates the shortcomings of the linear model, especially, in contrast to the
results of the ROM/NFM and ROM/NFM-MLP approaches. The MLP neural network
result, which is not displayed in Figure 7.8, becomes unstable with respect to the pitch-
ing moment. Consequently, a poor fit factor Q arises for the ROM/MLP regarding CMy .
In contrast, the methods that are based on the neuro-fuzzy model, namely ROM/NFM
and ROM/NFM-MLP, reproduce the training data in an accurate manner. The novel
NFM-MLP approach yields the highest fit factors, which can be underlined by the fre-
quency spectrum of the lift coefficient shown in Figure 7.9. The high precision exhibited
by the ROM/NFM-MLP result, however, is not surprising for the training case since
the a posteriori employed MLP neural network statically reduces the error between the
CFD output and the NFM solution.
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Figure 7.9: Fast Fourier transform amplitude regarding the lift coefficient response for
the training dataset plotted as a function of the reduced frequency. NLR
7301, Ma∞ = 0.753, α = 0.6◦.

7.5 Unsteady Results: Sinusoidal Excitation

Henceforth, the ROM approaches are used to compute the aerodynamic responses for a
priori unknown excitation patterns. The first test consists of the simulation of sinusoidal
excitations due to their paramount importance for unsteady aerodynamic and aeroelas-
tic applications. In this regard, a single degree of freedom of the NLR 7301 airfoil, e.g.,
either the pitch angle or the plunge displacement, is harmonically varied, whereas the
other input is held constant at its respective static equilibrium position. Within the scope
of this study, the excitation reduced frequencies of kred = [0.01, 0.05, 0.1, 0.2, 0.3, 0.4] are
taken into account to evaluate the performance of the reduced-order models. Besides
the frequency variation, also the different amplitude scenarios introduced in Table 7.1
are considered. For example, the pitch angle θ undergoes a sinusoidal motion in the
range of −0.1◦ < θ < 0.1◦ if the small amplitude (SA) case is investigated.

Analogously to the application tests outlined in Chapters 5 and 6, three oscillation cy-
cles have been simulated to eliminate the influence of initial transients. On the one
hand, each cycle computed by the AER-Eu solver is discretized with 500 time steps
to obtain the reference data for comparative purposes. On the other hand, the ROMs
are applied using the constant time step size of ∆τ = 0.1 from the underlying resam-
pled training dataset. Consequently, a frequency-dependent cycle resolution must be
respected for ROM utilization. Nevertheless, on the basis of a sensitivity study it has
been ensured that the temporal discretization is adequate for the ROM- as well as the
CFD-based modeling. Given the NMC = 25 models for each of the four considered
ROM approaches, the Monte-Carlo-based application strategy discussed in Section 3.6
has been followed to obtain the statistically-processed results presented below.
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Figure 7.10: Pitching moment coefficient response induced by pitching oscillations at
selected reduced frequencies (LA case). The response is shown for the
third excitation cycle, while T denotes the period length. NLR 7301,
Ma∞ = 0.753, α = 0.6◦.

In Figures 7.10-7.13, the response of the aerodynamic system due to harmonic pitch
and plunge deflections is presented for exemplary cases. In particular, the results
generated by the ROM/ARX, ROM/NFM, and ROM/NFM-MLP models are plotted
along with the AER-Eu reference. Therefore, both the time-domain response (Fig-
ures 7.10 and 7.13) and the Lissajous figure representation are utilized to enable a
suitable illustration of the results. Concerning the Lissajous plots shown in Figures 7.11
and 7.12, the normalized excitation amplitude Θ is utilized, which covers the range of
values between −1 ≤ Θ ≤ 1.

As it can be stated from Figures 7.10-7.13, the linear ROM/ARX is generally able to
predict the trend of the input/output relationship for the large amplitude (LA) cases.
This can be confirmed especially for the lower excitation frequencies, i.e., kred < 0.1.
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Figure 7.11: Lissajous figures of the lift coefficient response due to pitching oscillations at
selected reduced frequencies (LA case). For clarity, the standard deviation
is not shown in this figure. NLR 7301, Ma∞ = 0.753, α = 0.6◦.

Nevertheless, it is self-explanatory that a linear model cannot predict any nonlinear de-
pendencies. For this reason, the Lissajous figures associated to the ROM/ARX response
become elliptic. Hence, a linear ROM approach is an inappropriate choice regarding the
given test case set-up.

Comparing the stand-alone ROM/NFM-based results with the CFD reference, a good
correlation is ascertained for the LA cases. Moreover, the novel system identification
technique (ROM/NFM-MLP) is shown to be well-suited for describing the nonlinear
aerodynamics of the NLR 7301 test case as it can be seen from Figures 7.10-7.12. In
particular, larger excitation frequencies and stronger nonlinear characteristics are more
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accurately resolved by the ROM/NFM-MLP methodology in comparison to the compet-
ing methods. Summarizing the results for the large amplitude case, it becomes apparent
that the amplitude range of the aerodynamic response as well as the associated phase
lag is well captured by the nonlinear-identification-based models, which is particularly
valid for the ROM/NFM-MLP method.
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Figure 7.12: Lissajous figures of the pitching moment coefficient response caused by
pitch and plunge oscillations at selected reduced frequencies (LA case).
For clarity, the standard deviation is not shown in this figure. NLR 7301,
Ma∞ = 0.753, α = 0.6◦.

The aforementioned observation of a generally good conformity between the nonlinear-
ROM-based results cannot be extrapolated to the small amplitude (SA) case. As it
can be seen in Figure 7.13, severe discrepancies are encountered for small excitation
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amplitudes. Based on the depicted results, neither the ROM/ARX nor the ROM/NFM
are suited to simulate the aerodynamic response due to the small excitation amplitudes
regarded in terms of the SA cases. Thus, the established methods presented herein fail
to generalize towards small amplitude motions associated with an essentially linear sys-
tem behavior. In contrast, the novel model not only outperforms the conventional ROM
approaches in terms of predicting strongly-nonlinear characteristics but also reproduces
the regimes that are governed by a linear behavior in a precise manner. Except from the
initial errors that can be traced back to the simulation initialization (see Section 3.3), the
ROM/NFM-MLP results exhibit a very good agreement with the respective AER-Eu ref-
erence solutions, while also the range of fluctuation between different models (expressed
by the standard deviation) is comparatively small. It should be emphasized again that
all ROMs have been trained by the same dataset. Hence, it is shown for the conducted
tests that the novel approach clearly outperforms the established modeling techniques.
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Figure 7.13: Lift coefficient response induced by pitch and plunge oscillations at selected
reduced frequencies (SA case). NLR 7301, Ma∞ = 0.753, α = 0.6◦.
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7.6 Unsteady Results: Generic Vibration Excitation

Besides the consideration of purely sinusoidal motions discussed in Section 7.5, a set of
amplified, frequency-modulated vibration signals has been generated for ROM demon-
stration purposes. In Figure 7.14, two signals associated to the simultaneously enforced
pitch and plunge motion are shown for the large amplitude case introduced in Table 7.1.
The frequency spectrum that is excited by the generically constructed signals is also
depicted in Figure 7.14. The defined test scenario, which is referred to as the generic
vibration case in the following, offers an increased challenge for the reduced-order models
compared to the harmonic excitation study due to the necessity of predicting multiple
amplitude and frequency regimes within a single simulation.
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Figure 7.14: The generic vibration signals for the pitch and plunge excitation (top) are
shown along with the corresponding frequency spectrum (bottom). Exem-
plarily, the large amplitude (LA) case is depicted.
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Similar to the procedure followed in Section 7.5, the four ROM approaches (ARX, NFM,
MLP, NFM-MLP) have been employed to simulate the aerodynamic responses caused
by the prescribed generic vibration inputs for the SA, MA, and LA cases. In this regard,
also the Monte-Carlo application methodology has been carried out yielding the mean
and the standard deviation of the respective ROM outputs. Additionally, the aerody-
namic force and moment coefficients have been computed with the AER-Eu solver for
the same excitation inputs to provide the reference results.

Figure 7.15 depicts the aerodynamic response in terms of the lift coefficient due to
the large-amplitude generic vibration excitation, while the results originating from the
ROM/ARX, ROM/NFM, and ROM/NFM-MLP approaches are juxtaposed to the re-
spective CFD-based reference solution. Aside from the time-domain response, also the
frequency spectrum with respect to CL is presented in Figure 7.15. For the same case,
Figure 7.16 displays the pitching moment coefficient response. Based on these graphs
it becomes evident that the global linear model (ROM/ARX) features the largest dis-
crepancies relative to the CFD reference. While the aerodynamic response computed
by the ROM/NFM approach deviates slightly from the AER-NS solution, the mean
ROM/NFM-MLP output matches the reference almost perfectly. The visually obtained
impressions can be underpinned by the fit factors Q which are listed in Table 7.3 for the
LA generic vibration case.

Table 7.3: Fit factors evaluated for the large-amplitude generic vibration test.

Fit factor Q CL CMy

ROM/ARX 85.74% 81.17%

ROM/NFM 95.80% 88.04%

ROM/MLP 80.05% 30.56%

ROM/NFM-MLP 96.13% 92.81%

In contrast to the three ROM approaches shown in Figures 7.15 and 7.16, the recurrent
MLP neural network leads to an unstable model behavior concerning CMy . The insta-
bility, which is indicated by means of Figure 7.17 for the large amplitude case, manifests
itself by an abruptly increased standard deviation. Aggravating is the fact that the
higher output variance also deteriorates the accuracy of the mean response as it can
be seen in Figure 7.17. Hence, the reliability and precision of individual ROM/MLP
models is low for the present case. This characteristic cannot be improved by a Monte-
Carlo-based averaging over several model outputs. Nevertheless, the fit factors for the
medium-amplitude generic vibration case given in Table 7.4 indicate that a good agree-
ment might be obtained by the ROM/MLP for certain cases.
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Figure 7.15: The lift coefficient response (top) and the associated fast Fourier transform
amplitude of CL (bottom) is shown for the large-amplitude generic vibration
excitation. NLR 7301, Ma∞ = 0.753, α = 0.6◦.

Considering the ROM-based CL responses for the small-amplitude generic vibration
case presented in Figure 7.18, equivalent conclusions can be drawn relative to the small-
amplitude harmonic excitation tests examined in Section 7.5. Based on the SA case
results, it is clearly shown that the proposed ROM/NFM-MLP methodology provides a
significantly better solution quality in contrast to the established reduced-order models.
This statement can be substantiated by the fit factors for the small-amplitude generic vi-
bration test given in Table 7.5. Besides the superior accuracy of the mean ROM results,
the responses predicted by the ROM/NFM-MLP models are characterized by a consid-
erably smaller variance in contrast to the outputs computed by the ROM/NFM models.
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Figure 7.16: The pitching moment coefficient response is presented for the large-
amplitude generic vibration excitation. NLR 7301, Ma∞ = 0.753, α = 0.6◦.
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Figure 7.17: Exemplary results of unstable ROM/MLP models by means of the CMy

response induced by the large-amplitude generic vibration test. NLR 7301,
Ma∞ = 0.753, α = 0.6◦.

From the discussed observations, it can be stated that the robustness and reliability is
drastically increased by the novel connected neural network approach.

In order to conclude these investigations, the effect of a static equilibrium variation
is taken into account. In this regard, the initial angle of attack, which has been fixed to
α = 0.6◦ for all previous considerations, is increased to α = 2◦ for demonstrative pur-
poses. This can be geometrically realized by adding a constant offset of ∆θ = 1.4◦ to the
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Table 7.4: Fit factors evaluated for the medium-amplitude generic vibration test.

Fit factor Q CL CMy

ROM/ARX 88.82% 79.88%

ROM/NFM 95.99% 91.21%

ROM/MLP 88.71% 93.95%

ROM/NFM-MLP 96.08% 93.86%
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Figure 7.18: The lift coefficient response is plotted for the small-amplitude generic vi-
bration excitation. NLR 7301, Ma∞ = 0.753, α = 0.6◦.

pitch excitation signals. Consequently, the extrapolation behavior of the reduced-order
models can be assessed since the involved maximum pitch amplitude (θmax = 6.4◦) clearly
exceeds the input range defined by the training data (−5.5◦ ≤ θ ≤ 5.5◦). Nonetheless,
it is worth to highlight that the already available ROMs described by Section 7.4 are
used for this additional study. Hence, no further model training effort is necessary for
investigating the changed static equilibrium. In contrast, additional AER-Eu reference
computations have been undertaken to provide the respective verification results.

In Figure 7.19, the lift coefficient response induced by the medium-amplitude generic
vibration excitation is shown for the angle of attack of α = 2◦. For all ROM simula-
tions presented in this chapter, the starting values needed for the recurrence framework
initialization have been taken from the known steady-state at α = 0.6◦. Thus, the lift co-
efficient has been initialized with CL = 0.22, whereas the pitching moment has been set
to CMy = −0.053. As a consequence, the ROM results at α = 2◦ exhibit an initialization
error. Nevertheless, as it can be seen by the graphs in Figure 7.19, the initial error does
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Table 7.5: Fit factors evaluated for the small-amplitude generic vibration test.

Fit factor Q CL CMy

ROM/ARX N/A 15.55%

ROM/NFM N/A 21.72%

ROM/MLP 82.78% 23.67%

ROM/NFM-MLP 84.82% 48.11%
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Figure 7.19: The lift coefficient response is presented for the medium-amplitude generic
vibration excitation. The initial angle of attack is increased to α = 2◦

to investigate the generalization capabilities of the ROMs. NLR 7301,
Ma∞ = 0.753, α = 2◦.

not affect the long-term simulation quality. Whereas the ROM/MLP (not represented
in Figure 7.19) yields an unstable response for the MA generic vibration case at α = 2◦,
the respective ROM/ARX and ROM/NFM results exhibit a satisfying and good ac-
cordance with the CFD solution. Except from the discrepancies due to the inconsistent
simulation start, the ROM-NFM-MLP result agrees very well with the AER-Eu solution.

Finally, focusing on the large amplitude generic vibration case at α = 2◦, the afore-
mentioned trend can be confirmed by means of the fit factors that are summarized in
Table 7.6. Although the occurring maximum pitch angle of θmax = 6.4◦ is well beyond
the trained pitch angle regime, the ROMs show a remarkably well performance as it can
be proven by Figure 7.20. Apart from the justified initialization errors and an increased
standard deviation related to the generalization operation, the responses provided by
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Figure 7.20: The pitching moment coefficient response is shown for the large-amplitude
generic vibration excitation. The initial angle of attack is increased to
α = 2◦ to investigate the extrapolation capabilities of the ROMs. NLR
7301, Ma∞ = 0.753, α = 2◦.

the ROM/NFM-MLP method reflect the behavior of the underlying aerodynamic sys-
tem very well. By performing a cumulative analysis incorporating all conducted tests and
ROM approaches, the superior agreement of the ROM/NFM-MLP results with the CFD
reference is clearly confirmed. By means of the given examples, it has been shown that
the new identification strategy leads to a significantly increased simulation fidelity and
reliability concerning the prediction of strongly nonlinear aerodynamic characteristics.

Table 7.6: Fit factors evaluated for the large-amplitude generic vibration test with mod-
ified static equilibrium conditions (α = 2◦).

Fit factor Q CL CMy

ROM/ARX 70.00% 76.18%

ROM/NFM 86.90% 85.60%

ROM/MLP 73.70% 55.26%

ROM/NFM-MLP 94.16% 88.73%
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7.7 Efficiency Evaluation

Last but not least, the computational advantage of the connected-neural-network-based
reduced-order modeling approach is analyzed. To ensure comparability, the ROM train-
ing and application procedures as well as the AER-Eu computations presented in this
chapter have been carried out on a workstation equipped with an Intel Xeon 2.3 GHz
processor using a single CPU core.

First, the numerical effort related to the ROM methodologies is outlined. In this regard,
the CFD-based training data generation has required 26.6 CPU hours for the compu-
tation of the SAPRBS-forced pitch and plunge motions. Keeping in mind the 82,000
time steps of the signals depicted in Figure 7.5, an average cost of 1.17 CPU seconds
per physical time step is determined.

Furthermore, the training effort for the different ROM architectures is summarized
below. On the one hand, the training-related computation times for all NMC = 25

models are given in Table 7.7. On the other hand, the averaged training time for each
individual model is additionally shown due to its practical significance.

Table 7.7: Breakdown of the training costs for the considered reduced-order models.

Training effort Total time (NMC = 25 models) Average time per model

[CPU seconds] [CPU seconds]

ROM/ARX 1.52 0.06

ROM/NFM 3,260.92 130.44

ROM/MLP 385.33 15.41

ROM/NFM-MLP 3,753.75 150.15

A graphical representation of the ROM generation costs is provided by Figure 7.21. It
should be emphasized that the ordinate in Figure 7.21 is logarithmically plotted to cover
the different time scales arising for the CFD simulation and the ROM training proce-
dures. Similar to the conclusions that have been drawn in the previous chapters, the
CFD-based training simulation constitutes the main cost driver in terms of the overall
ROM generation effort.

Besides the ROM-related training computations, the costs for applying the models to-
wards the simulation of the harmonic oscillation and generic vibration cases must be
respected as well. For the sinusoidal pitch and plunge motions, in total 36 simulation
cases have been computed. The aforementioned number of simulations is based on two
excitation degrees of freedom in combination with three amplitude levels (SA, MA, LA)
as well as six reduced frequencies. Additionally, the generic vibration test comprises
six simulations due to the consideration of three amplitude scenarios at two different
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incidence angles. Taking the NMC = 25 models for each ROM type into account, the
averaged application effort for a single reduced-order model is presented in Table 7.8:

Table 7.8: Averaged computational resources for applying the ROM and CFD approaches
to the investigated unsteady aerodynamic test cases.

Application case Approach Computation time Effort per time step

[CPU seconds] [CPU seconds]

Harmonic excitations ROM/ARX 0.30 1.12 · 10−53 amplitude scenarios
2 degrees of freedom
6 reduced frequencies

 ROM/NFM 0.99 3.64 · 10−5

ROM/MLP 0.96 3.60 · 10−5

ROM/NFM-MLP 1.20 4.48 · 10−5

CFD (AER-Eu) 1.90 · 105 3.53

ROM/ARX 0.17 1.12 · 10−5

Generic vibrations ROM/NFM 0.55 3.64 · 10−5(
3 amplitude scenarios
2 angles of attack

)
ROM/MLP 0.54 3.60 · 10−5

ROM/NFM-MLP 0.67 4.48 · 10−5

CFD (AER-Eu) 1.77 · 105 1.18

For a particular ROM approach, Table 7.8 indicates that the respective computational
effort per time step is identical regardless of the considered example. Consequently, the
CPU seconds per time step are a suitable measure to assess and compare the ROM
performance. For this reason, the application effort per time step has been plotted in
Figure 7.22 for the four ROM approaches relative to the ROM/NFM costs. As it can
be seen, the ROM/ARX needs about 31% of the computational resources compared
to the ROM/NFM model. Although it is more efficient, the ROM/ARX accuracy is
only satisfactory for the present nonlinear test cases according to the discussions in Sec-
tions 7.5 and 7.6. In comparison to the ROM/NFM approach, the ROM/NFM-MLP
model requires only 23% more computation time, while the fidelity and robustness is
significantly increased. Since the ROM application is performed within a few seconds
for typical application cases, the slightly increased ROM effort per time step does not
represent a veritable restriction for the connected neural network methodology.

In contrast to the ROM costs discussed beforehand, the numerical effort for comput-
ing the CFD reference results is also depicted in Table 7.8 with respect to the identical
test cases. It becomes evident that the AER-Eu solver requires approximately 105 times
more CPU resources compared to the available reduced-order models. Consequently,
once the ROMs are already trained, they can clearly demonstrate their efficiency advan-
tage.
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Figure 7.21: Overview of the required computational effort to obtain, on the one hand,
the CFD-based training dataset and, on the other hand, the reduced-order
models based on given training data. The ROM training effort is shown as
the averaged training time for a single model.

Based on the presented efficiency data, the following conclusions can be derived: Taking
the total ROM generation and application costs into account, i.e., the CFD training sim-
ulation, the model training, and the model application, the following speed-up relative
to the underlying CFD solver is achieved for the exemplarily shown cases:

Table 7.9: ROM-based speed-up for the studied unsteady aerodynamic test cases. The
Monte-Carlo training and application costs are included. For the single model
performance, the application-only speed-up must be multiplied by NMC = 25.

Speed-up (total effort) Speed-up (application only)

ROM/ARX 3.84 3.13 · 104

ROM/NFM 3.71 0.96 · 104

ROM/MLP 3.83 0.98 · 104

ROM/NFM-MLP 3.70 0.79 · 104

Keeping in mind that an existing ROM can be used for additional simulations regarding
different excitation amplitudes and frequencies, the computational advantage is further
increased with each added computation case. In summary, it can be stated that the very
high prediction quality and generalization capability of the ROM/NFM-MLP approach
in combination with the achieved simulation speed-ups demonstrates the enormous po-
tential of the methodology for accelerating CFD-based aerodynamic analyses.
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Figure 7.22: Comparison of the computational costs for the application of different
reduced-order modeling approaches. The numerical effort is given in per-
cent relative to the ROM/NFM cost. The training data acquisition and
ROM calibration is not included in this consideration.

7.8 Summary

For validation purposes, the ROM framework introduced in Section 4.3, which has been
developed to model strongly-nonlinear system characteristics, was applied in this chapter
to simulate the pitch and plunge induced aerodynamic responses of the NLR 7301 airfoil.
The methodology was based on the series connection of a recurrent local linear NFM and
a MLP neural network in order to achieve advantageous simulation and generalization
properties. Based on test cases at transonic flight conditions, it was pointed out that the
forces and moments caused by prescribed motions can be accurately predicted by the
ROM/NFM-MLP. Moreover, it was shown that the connected neural network is well-
suited for reflecting both linear and nonlinear system dynamics using a single model,
which is a known challenge for established reduced-order models. Finally, by considering
model inputs beyond the regime from which the ROM has been trained, the results in-
dicated the improved generalization capabilities related to multi-step ahead time series
predictions. A comparison with other ROMs clearly underpinned the superior agreement
of the ROM/NFM-MLP solutions with respect to the CFD reference. Besides the overall
very good prediction quality, the developed methodology was demonstrated to achieve
significant numerical cost savings as well. Consequently, an overall robust and accurate
unsteady aerodynamic modeling framework is available for multidisciplinary operation
and computationally demanding applications.





8 ROM Application Towards Realistic
Aircraft Configurations

In the preceding chapters, the developed reduced-order modeling approaches have been
applied to exemplary test cases to verify the function and effectiveness of the neuro-
fuzzy-model-based methodologies. The test cases, however, have been chosen to exhibit
a simple to moderate level of complexity in order to allow a clear and focused investi-
gation of the ROM capabilities. Nonetheless, the application of the ROM procedures to
problems with a considerably increased number of degrees of freedom cannot a priori be
considered as straightforward without further verification. The proposed techniques are
therefore applied in this chapter to a complex aircraft configuration test case to indi-
cate their potential for industrial purposes. In particular, the neuro-fuzzy-model-based
ROM approach applicable to freestream parameter variations discussed in Section 4.1
and the POD-ROM procedure outlined in Section 4.2 are employed to simulate the
unsteady aerodynamics of the common research model (CRM) configuration. At this
point it should be emphasized that the following results represent a feasibility study
with regard to future practical applications of the developed ROM procedures. For
this reason, the considered number of structural and aerodynamic degrees of freedom is
significantly increased, whereas the degree of nonlinearity is concurrently decreased by
taking small perturbation amplitudes into account. The latter measure has been taken
in order to limit the overall computational effort. Hence, this chapter is intended to
provide an outlook to what extent the neuro-fuzzy model-based ROMs can be general-
ized to aerospace-industry-relevant scales. The content presented below is based on the
pre-publication of the author, Reference [186].

With respect to the presentation of the test case, the numerical set-up, and the re-
sults, the chapter is organized as follows: Initially, the common research model con-
figuration is introduced in Section 8.1, while both the aerodynamic and the structural
modeling strategies are highlighted. Subsequently, Section 8.2 discusses selected steady-
state CFD results at the investigated transonic freestream conditions. The application
of the freestream-parameter-adaptive neuro-fuzzy model is undertaken in Section 8.3,
while aerodynamic responses due to small-amplitude structural motions are predicted
across a variable angle of attack. Furthermore, the POD-ROM approach is employed
in Section 8.4 to simulate unsteady surface pressure variations due to eigenmode-based
structural excitations. For classification of the ROM accuracy, a comparison with the
full-order CFD solution is conducted. Finally, the chapter is concluded by an assessment
of the computational efficiency.
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8.1 Test Case: Common Research Model (CRM)
Configuration

In this section, NASA’s common research model configuration is introduced in terms of
a description of the main geometric properties as well as the aerodynamic and structural
modeling set-up. The CRM configuration, which represents a modern commercial trans-
port aircraft, fulfills the requirement of a considerably increased geometrical complexity
compared to the test cases presented in Chapters 5-7. The research model developed
by NASA’s subsonic fixed wing aerodynamics technical working group in collaboration
with the drag prediction workshop (DPW) organizing committee [137, 170, 171] was
designed for a transonic cruise condition at Ma∞ = 0.85 in combination with a tar-
get lift coefficient of CL = 0.5. The CRM variant investigated in this chapter is the
wing/body/horizontal-tail (WBT0) configuration with supercritical wing design that
has been in the focus during the fourth AIAA CFD drag prediction workshop [171]. In
particular, the horizontal tail with an installation angle of 0◦ is considered, which leads
to the designation WBT0. The important geometrical and reference properties of the
CRM configuration are summarized in Table 8.1.

The geometry of the CRM configuration is visualized in Figure 8.1 by means of an
isometric view as well as a three-side view. In contrast to the fourth AIAA CFD drag
prediction workshop set-up, which focuses on the half model of the configuration, the
full-span geometry is investigated in this work to allow time-marching aerodynamic sim-
ulations of both symmetric and antisymmetric deflections; see also Section 8.1.2.

Quantity Symbol Value

Reference area Sref 383.69 m2

Wing span b 58.763 m

Wing reference chord cref 7.0053 m

Aspect ratio AR 9.0

Quarter chord sweep angle ϕ0.25 35◦

Taper ratio λ 0.275

Reference point xref 33.68 m

yref 0 m

zref 4.52 m

Table 8.1: Geometric properties of the CRM configuration according to Vassberg et
al. [170].
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a) Isometric view b) Top view

c) Front view d) Side view

Figure 8.1: Geometry of the common research model (WBT0 configuration). In contrast
to the DPW4 set-up, a full-span model is investigated in this work to take
both symmetric and antisymmetric mode shapes into account.

8.1.1 Aerodynamic Modeling and Grid Sensitivity Analysis

As a prerequisite for the CFD computations, a structured multi-block grid has been gen-
erated using the commercial meshing software ANSYS ICEMCFD [2]. For simulating
free-flight flow conditions, the aircraft has been embedded within a spherical domain
with a radius of twenty semi-spans to prevent non-physical interactions between the
farfield boundary and the nearfield flow around the aircraft. For the reasoning of a
manageable computing effort, the Euler-equations-based AER-Eu solver is used in this
chapter. Associated to the inviscid modeling, the grid has been refined towards the wall
with an off-body distance of the first cell height of 5 ·10−4 cref . Moreover, a grid sensitiv-
ity study has been conducted to guarantee the solutions’ independence from the spatial
resolution. For this purpose, however, not the full-span aircraft but the half-model of
the CRM configuration is taken into account since no lateral motion sensitivities are
analyzed within the grid study. Starting from a baseline/medium grid level containing
2,932,376 finite volume cells, the number of cells has been reduced and increased by a
factor of 2 yielding the respective coarse and fine grid refinement levels. In Figure 8.2, the
coarse and the fine half-model grids are represented by the CRM surface and symmetry
plane mesh.

In Figure 8.3, the lift and pitching moment coefficients obtained by steady AER-Eu
simulations are depicted for the coarse, medium, and fine grid refinement levels. In this
regard, a freestream condition characterized by Ma∞ = 0.85 and α = 1◦ is taken into



168 8 ROM Application Towards Realistic Aircraft Configurations

a) Coarse grid (1,425,880 cells) b) Fine grid (5,834,046 cells)

Figure 8.2: Structured surface discretization visualizing the coarse and fine grid refine-
ment levels of the semi-span CRM configuration (WBT0).

account, which leads to a lift coefficient close to the design CL using the inviscid CFD
solver. Relative to the medium grid level, the CFD result obtained from the coarse grid
yields a difference in the lift coefficient of -2.9%, whereas a discrepancy of +10.3% is
ascertained for CMy . In contrast, the deviation of CL between the fine grid and the
medium grid is merely +0.8%, while the pitching moment deviates by -3.3%. On the
basis of the mesh sensitivity analysis, it is concluded that the medium grid realizes an ad-
equate compromise between the quality of the aerodynamic solution and the anticipated
computational costs.

The aforementioned medium-level semi-span grid of the CRM configuration (2,932,376
finite-volume cells) has been used, on the one hand, by Rozov et al. [139] in order to
validate the novel antisymmetric boundary condition for small disturbance CFD solvers.
On the other hand, the semi-span grid has been mirrored around the aircraft’s symmetry
plane (y = 0) to obtain the full-span grid for the present investigations.
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Figure 8.3: The steady-state lift (CL) and pitching moment (CMy) coefficients are shown
as a function of the computational grid resolution for the CRM semi-span
model. Ma∞ = 0.85, α = 1◦, AER-Eu.



8.1 Test Case: CRM Configuration 169

The full-span reference grid of the CRM configuration, which is employed for all further
CFD simulations discussed in this chapter, is shown in Figure 8.4 by means of the sur-
face mesh as well as the blocking concept. The grid contains a total of 5,864,752 finite
volume cells, whereas the aircraft’s surface is resolved by NSE = 67,856 elements.

Figure 8.4: The block-structured grid of the full-span CRM configuration involves
5,864,752 cells, while the surface is resolved by 67,856 surface elements.

8.1.2 FERMAT Structural Model

For the structural modeling, the FERMAT configuration introduced by Klimmek [79]
is utilized. The associated parametric finite element model was developed to obtain an
academic test case on the basis of the CRM geometry for performing static and dynamic
aeroelastic investigations. With respect to unsteady aerodynamic and aeroelastic tool
chain validation purposes, the generic CRM-FERMAT test case was already suggested
by Voss and Thormann [175]. The FERMAT model was configured for two mass set-ups,
namely the C1 case representing the maximum zero fuel weight (MZFW) configuration
as well as the C2 case typifying the maximum take-off weight (MTOW) with 100% fuel.
Within the scope of this work, only the C2 mass configuration is taken into account.

The condensed finite element model of the FERMAT configuration is visualized in
Figure 8.5a. However, by confronting the structural model with the aerodynamic model
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XY

Z

a) FERMAT finite-element model [79] b) FE nodes for surface interpolation

Figure 8.5: Condensed structural model of the FERMAT configuration. The C2 mass
case is considered in this work.

discussed in the previous section, it becomes evident that the FE model includes nodes
for the vertical tail (VT), pylons, and engines, whereas these components are not present
within the CFD mesh. Consequently, the finite element model nodes associated to the
VT, pylons, and engines are not considered for the surface interpolation between the
structural grid and the aerodynamic surface grid; see Figure 8.5b for clarification.

In the course of this chapter, neither static aeroelastic deformations nor trimming is
taken into account. Although the consideration of the aforementioned effects leads to
a more realistic modeling of the overall aircraft and is necessary within an industrial
context, they are not important for the anticipated ROM validity studies. In this way,
a generic ROM test case is obtained, whereas the modeling strategy is kept as simple as
possible. For clarification, the aim followed here is not the comparison between different
CFD solvers, aeroelastic modeling approaches, or a fit evaluation exploiting experimen-
tal data but to provide a clean reduced-order model testing framework. Therefore,
many challenging aspects have been incorporated within this generic test case, e.g., the
presence of realistic structural eigenmodes, the necessity to model a wide range of ex-
citation frequencies, the consideration of both symmetric and antisymmetric motions,
and the occurrence of aerodynamic nonlinearities in terms of pronounced shocks along
the wingspan.

Given the baseline CFD grid of the CRM configuration shown in Figure 8.4 as well
as the FERMAT database including the non-deformed structural model and the elastic
mode shapes, the interpolation of the modal deflections onto the surface grid has been
achieved via the TPS method. Moreover, the arc-length-based TFI has been applied to
adapt the block-internal grid points to the updated surface geometry [41]. Regarding
the FERMAT C2 configuration, in total 56 modes have been provided including six rigid
body and 50 elastic eigenmodes [79]. For ROM demonstration purposes, however, a sub-
set of the entire dataset is defined consisting of six elastic modes. Thereby, the focus has
been put on the consideration of dominant symmetric and antisymmetric wing and/or
horizontal tail modes as well as fuselage modes, whereas mode shapes with dominant
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VT or nacelle deflections have been excluded. In Figure 8.6, the six considered mode
shapes are shown by means of TPS-deformed surfaces.

Elastic mode 1, f = 1.057 Hz,
Symmetric wing bending

Elastic mode 2, f = 1.455 Hz,
Antisymmetric wing bending

Elastic mode 11, f = 3.603 Hz,
Symmetric wing/htp bending

Elastic mode 13, f = 4.930 Hz,
Antisymmetric wing fore/aft

Elastic mode 19, f = 7.342 Hz,
Antisymmetric wing/htp bending

Elastic mode 24, f = 10.602 Hz,
Symmetric wing torsion

Figure 8.6: The selected structural-eigenmode-based surface deformations of the
FERMAT-C2 configuration (red) are presented relative to the non-deformed
aircraft geometry (grey). For a clearer presentation, exaggerated deflections
are shown.

In contrast to the exaggerated deflections visualized in Figure 8.6, the actual defor-
mations have been scaled to small perturbation amplitudes for the intended numeri-
cal computations. With the definition of ∆x = xdef − xref , ∆y = ydef − yref , and
∆z = zdef − zref between the deformed grid and the reference grid coordinates, the re-
quirement max(

√
∆x2 + ∆y2 + ∆z2)x,y,z = 0.1% cref has been verified for the present

case to yield a dynamically linear behavior between the deflections and the aerodynamic
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response in the context of the unsteady CFD modeling. The restriction to small dis-
turbances has been necessary, on the one hand, to limit the computational costs of the
time-marching CFD simulations and, on the other hand, to demonstrate the applica-
tion of both the freestream-adaptive ROM and the POD-ROM using the same modeling
set-up. Analogously to the discussion in Section 5.1.2, the amplitude scaling of the
mode-shape-related deflections requires the consideration of scaling factors SF to en-
sure consistency between the structural and the aerodynamic model. In Table 8.2, the
resulting scaling factors are summarized.

Table 8.2: Scaling factors for the elastic mode shapes of the FERMAT configuration to
ensure max(

√
∆x2 + ∆y2 + ∆z2)x,y,z = 0.1% cref .

Mode 1 Mode 2 Mode 11 Mode 13 Mode 19 Mode 24

Scaling factor SF [10−3] 6.616 6.386 6.104 15.736 5.030 2.995

8.2 Steady CFD Results: Basis for ROM Training

According to the parameter-adaptive reduced-order modeling procedure outlined in Sec-
tion 4.1, steady CFD simulations have been carried out with respect to the training
freestream conditions. In the context of this chapter, it is defined that the unsteady
aerodynamic loads are to be determined for the design lift coefficient of CL = 0.5 at
Ma∞ = 0.85. Therefore, the training dataset incorporates the generalized aerodynamic
forces time-series for various angles of attack, whereas the freestream Mach number is
kept constant. Thus, not Ma∞ but the angle of attack is the variable freestream param-
eter within the present investigation in contrast to the studies discussed in Chapter 5.
Specifically, the following angles of attack are taken into account for the training dataset:
αTrn = [0.5◦, 1.0◦, 1.5◦, 2.0◦]. For completeness, it should be noted that no sideslip angle
has been considered, i.e., β = 0◦.

A priori conducted numerical investigations using the Euler-based aerodynamic mod-
eling showed that an angle of attack of αSim = 1.13◦ yields the target lift for the WBT0
configuration. Hence, the angle of attack designated for ROM application is covered by
the training conditions spanned by αTrn . In Figure 8.7, the AER-Eu-based steady-state
surface pressure coefficient distributions are shown for the NFC = 4 training freestream
conditions in terms of the upper side of the CRM configuration. Figure 8.7 highlights the
increased shock intensity with enlarged angles of attack. Moreover, the transonic nature
of the flow at the given freestream conditions is clearly indicated by the Cp distribution.
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a) α = 0.5◦ b) α = 1.0◦ c) α = 1.5◦ d) α = 2.0◦

−0.9 −0.58 −0.27 0.05 0.37 0.68 1

Cp

Figure 8.7: The steady-state pressure coefficient contours are depicted for αTrn . For
reasons of symmetry, only the starboard side is shown, although the CFD
computations have been carried out using the full-span model. CRM config-
uration (top view), Ma∞ = 0.85, AER-Eu.

Figure 8.8: Left: Structured surface grid of the CRM-WBT0 configuration. Right:
Steady-state Cp distribution at Ma∞ = 0.85 and CL = 0.5 (AER-Eu).
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Concerning the application of the POD-ROM methodology at the design freestream
condition of the CRM configuration (Ma∞ = 0.85, CL = 0.5), a further AER-Eu simu-
lation at α = 1.13◦ is required to provide the steady reference state. Figure 8.8 shows
the aerodynamic surface grid along with the pressure coefficient distribution for the
aforementioned freestream condition. The steady result depicted in Figure 8.8 is the
starting point for the unsteady training simulations related to the POD-ROM calibra-
tion. Furthermore, the steady AER-Eu solution forms the basis for the comparative
CFD simulations, which are needed to assess the accuracy and efficiency of the ROM
approaches.

In the subsequent section, the training and application of the freestream-parameter-
adaptive neuro-fuzzy model is outlined. The respective discussion related to the POD-
ROM procedure is given in Section 8.4.

8.3 Unsteady Results: ROM Valid Across Freestream
Parameter Variations

In order to obtain the training data for calibrating the α-adaptive neuro-fuzzy model,
forced-motion CFD computations have been carried out for each of the NFC = 4 training
angles of attack to provide the aerodynamic responses induced by structural-eigenmode-
based deflections. For that purpose, the steady AER-Eu simulations presented in the
previous section as well as the mode shapes from the FERMAT configuration, which
are visualized in Figure 8.6, are adopted. The problem-dependent system inputs and
outputs for the underlying test case can be summarized as:

u(t) =



q1(t)

q2(t)

q11(t)

q13(t)

q19(t)

q24(t)


∈ Rnq , y(t) =



fgen,1(t)

fgen,2(t)

fgen,11(t)

fgen,13(t)

fgen,19(t)

fgen,24(t)


∈ Rnf , Ξ = (α) ∈ R (8.1)

In Equation (8.1), qi symbolizes the ith modal coordinate, whereas fgen,j denotes the
time-domain GAF vector element j; see Section 2.2 for further details regarding the
structural dynamic and aeroelastic modeling. Based on the discussion in Section 8.1.2,
six elastic mode shapes have been exemplarily selected in order to model the structural
behavior of the CRM configuration. As a consequence, the dimension of the vectors u

and y is nq = nf = 6. Besides, the angle of attack serves as the scalar, time-invariant
parameter Ξ.
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Concerning the excitation of each mode shape, the smoothed amplitude-modulated
pseudo-random binary signal (SAPRBS) depicted in Figure 8.9 has been chosen as the
training signal; see Section 3.7 for an overview of several excitation signal types. Al-
though a signal for linear identification purposes would be sufficient for the given small
excitation amplitudes, the SAPRBS has been selected in order to facilitate a general
demonstration of the methodology. The SAPRBS displayed in Figure 8.9 has been
normalized within the range of [−1, 1]. However, similar to the approach outlined in
Chapter 5, the maximum deflection amplitude for each modal coordinate coincides with
the respective scaling factor SF presented in Table 8.2.
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Figure 8.9: SAPRBS containing 1,200 samples for the forced-motion excitation of the
structural degrees of freedom of the CRM-FERMAT configuration. The
shown signal is normalized in the interval [−1, 1], whereas a nondimensional
time step size of ∆τ = 0.05 is prescribed.

Due to encountered random-access memory overflows in terms of the POD-based post-
processing, each mode shape has been excited within a separate AER-Eu simulation in
order to limit the amount of data prior to the singular value decomposition. This modus
operandi is also followed here for convenience, although the generalized aerodynamic
forces are not processed by the POD.

Within the 24 unsteady CFD simulations1, the instantaneous pressure-based forces are
integrated over the aircraft’s surface and weighted with the considered mode shapes to
obtain the time-discrete generalized aerodynamic force coefficients. Nevertheless, for
consistency reasons, each vector element of fgen is further multiplied by the inverse of
the corresponding scaling factor SF ; cf. Table 8.2. Due to the consideration of small-
amplitude deflections, this re-scaling procedure is mathematically justified. Originating
from the discrete time step size of ∆τ = 0.05 for the signal shown in Figure 8.9, 1,200
training samples are obtained for each combination of αTrn and qi.
1 The total number of AER-Eu training simulations results from the six structural degrees of freedom
in combination with the four training freestream conditions.
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Following the nonlinear identification procedure discussed in Chapter 3, the local linear
model tree algorithm has been executed to calibrate the freestream-condition-adaptive
ROM on the basis of the available training data. Prior to this step, the dynamic delay-
orders have been optimized yielding m = 8 and n = 3 for the respective generalized
coordinate inputs and GAF outputs. For the sake of a simplified presentation, the
Monte-Carlo procedure is not applied within the scope of this chapter.

Finally, the neuro-fuzzy model trained for αTrn = [0.5◦, 1.0◦, 1.5◦, 2.0◦] is employed to
simulate the motion-induced aerodynamic responses at αSim = 1.13◦. In Reference [185],
for instance, it has been shown that the GAF matrix known from the classical frequency-
domain flutter equation can be constructed by applying harmonic excitations in each
generalized coordinate. Exemplarily, this application scenario is adopted here, although
the focus in this chapter is exclusively on the unsteady aerodynamics.

It should be noted that the angle of attack associated to the design lift coefficient of
the CRM configuration is not explicitly included in the training dataset. Therefore, the
adaption capabilities of the neuro-fuzzy model to predict “unknown” freestream param-
eters can be evaluated. Due to the enormous computational effort that is required for
further CFD validation simulations, however, the investigations are limited to a single
freestream condition. Nevertheless, the ROM is deemed valid for providing unsteady
aerodynamic responses at any angle of attack within the training data range.

Table 8.3: Overview of the reduced frequencies that have been considered with the ROM
and the CFD solver for simulating the harmonic responses of the CRM con-
figuration (FERMAT structural model).

kred (ROM/NFM) 0.5 1.0 2.0 3.0 4.0 5.0

kred (AER-Eu) 0.5 1.0 2.0 5.0

In order to demonstrate the ROM’s ability to capture a broad range of excitation fre-
quencies, the reduced frequencies listed in Table 8.3 have been taken into consideration
for the sinusoidal excitation of the the mode-shape-based deflections. As it is indicated
in Table 8.3, six kred have been simulated by the neuro-fuzzy model, whereas a subset
of four reduced frequencies has been additionally computed with the AER-Eu solver for
validation purposes. To eliminate the influence of the initial transient response on the
final aerodynamic solution, three oscillation cycles have been simulated with the ROM
as well as the AER-Eu solver. Subsequently, the computed responses have been analyzed
exclusively on the basis of the last excitation period.



8.3 Unsteady Results: ROM Valid Across Freestream Parameter Variations 177

For allowing a compressed overview of the numerous unsteady results, i.e., the 36 ROM
as well as the 24 CFD solutions, the GAF matrix representation is chosen here. There-
fore, the time-domain generalized aerodynamic force responses have been transferred
into the frequency domain by means of a Fourier analysis yielding the complex-valued
coefficients GAF ij. For clarification, the matrix element GAF ij symbolizes the first
harmonic of the ith generalized aerodynamic force response that is induced by an exci-
tation of the jth modal coordinate. In the following, the real part of the GAF matrix
is denoted by Re, whereas the respective imaginary part is indicated with Im.

In Figure 8.10, the complex-valued GAF matrix resulting from the discussed model-
ing approach is visualized for the investigated excitation and generalization degrees of
freedom as a function of the reduced frequency. As it can be seen from Figure 8.10,
a generally good agreement between the ROM-based solution and the AER-Eu refer-
ence is ascertained. The trend of the GAFs across the different excitation frequencies
is captured correctly for all mode shapes. In this regard, it is worth to emphasize that
the unsteady aerodynamic characteristics caused by the symmetric and antisymmetric
deflections as well as bending and torsion mode shapes are adequately reproduced. The
good accordance of the responses’ magnitude and phase applies, especially, to the diag-
onal of the GAF matrix. Except from some discrepancies at low excitation frequencies,
which can be observed for the real and imaginary parts of GAF 24,11 and GAF 24,19 for in-
stance, the neuro-fuzzy model achieves a high accuracy for the underlying aerodynamic
simulations. It is important to keep in mind that the Ma∞-α combination, for which
the GAF matrix depicted in Figure 8.10 has been evaluated, is not explicitly included
in the training data. Subject to this circumstance, the quality of the ROM/NFM results
is highly satisfactory.

At this point, it must be recapitulated that the investigations conducted within the
scope of Chapter 8 represent a feasibility study aiming at the demonstration of the de-
veloped nonlinear ROM approaches towards complex, industry-relevant aerospace prob-
lems. For a comprehensive analysis of the underlying test case, however, further train-
ing signal variations, additional mode shapes, and other freestream conditions should
be taken into account. Moreover, from the limited validation data, neither the degree
of nonlinearity nor the detailed influence of α variations on the unsteady aerodynamics
is further identified. Despite the aforementioned remarks, the angle-of-attack-adaptive
neuro-fuzzy model results indicate that the methodology outlined in Section 4.1 can
yield very promising results even for full-size aircraft configurations involving realistic
structural eigenmodes and an increased geometrical complexity.
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Figure 8.10: The real and imaginary parts of the frequency-domain GAF matrix are
presented for the ROM- and the AER-Eu-based modeling. Ma∞ = 0.85,
αSim = 1.13◦, CRM-WBT0 configuration, FERMAT structural model.
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8.4 Unsteady Results: POD-ROM for Surface
Pressure Distribution Modeling

In contrast to the parameter-adaptive ROM procedure applied in the previous section,
the freestream condition specified by Ma∞ = 0.85 and α = 1.13◦ is not only taken into
account for the application of the POD-ROM approach but also during the training
process. In this regard, additional unsteady forced-motion CFD simulations have been
performed at α = 1.13◦ for each considered excitation degree of freedom qi utilizing
the same SAPRBS that has been employed to construct the α-adaptive neuro-fuzzy
model. Consequently, also the POD-ROM is based on a nondimensional time step size
of ∆τ = 0.05 according to the excitation signal shown in Figure 8.9.

Once the nq = 6 unsteady forced-motion CFD results are available for α = 1.13◦,
the resulting surface pressure distributions can be exploited by means of the proper or-
thogonal decomposition to provide the POD modes as well as the corresponding POD
coefficients. For a specific excitation mode qi, the POD snapshot matrix Yi ∈ RNSE×NS

comprises the pressure coefficients related to NSE = 67,856 surface elements in com-
bination with NS = 1,200 temporal samples. Under the constraint that a relative in-
formation content criterion of RIC > 0.95 is fulfilled, the number of POD modes has
been identified in the range between MPOD ,i = 34 and MPOD ,i = 42, depending on the
considered excitation mode. In Figure 8.11, selected POD modes originating from the
unsteady Cp surface solutions are shown. After the POD modes and POD coefficients
have been obtained, the LOLIMOT-algorithm-based identification has been carried out.
The system inputs and outputs for the underlying identification problem have been for-
mulated according to Equation (8.2) with respect to the excitation degree of freedom qi,
i ∈ [1, 2, 11, 13, 19, 24]:

ui(t) = qi(t) ∈ R, yi(t) =


b1,i(t)

b2,i(t)
...

bMPOD ,i(t)

 ∈ RMPOD,i , Ξi ∈ ∅ (8.2)

In Equation (8.2), bj,i denotes the time-variant POD coefficient that is linked to the jth
time-invariant POD mode ϕj,i. Regarding the recurrence framework of the neuro-fuzzy
model, the dynamic delay orders have been optimized to m = 25 and n = 10 using the
mapping u1(t)→ y1(t); see Section 3.3.3 for further details.

After finishing the POD-ROM training process, the obtained model can be employed
to conduct the unsteady aerodynamic simulations of interest. In the course of this in-
vestigation, again harmonic motions are prescribed with respect to the excitation of the
modal coordinates, while several reduced frequencies (kred ,ROM = [0.5, 1.0, 2.0, 5.0]) are
taken into account for each degree of freedom. Therefore, three oscillation cycles have
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POD mode 1 (excitation of elastic mode 1) POD mode 4 (excitation of elastic mode 1)

POD mode 1 (excitation of elastic mode 2) POD mode 4 (excitation of elastic mode 2)

POD mode 1 (excitation of elastic mode 24) POD mode 4 (excitation of elastic mode 24)
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Figure 8.11: Visualization of selected POD modes that have been extracted from forced-
motion unsteady CFD simulations. The excitation degree of freedom
leading to the POD mode is specified within the parenthesis. AER-Eu,
Ma∞ = 0.85, α = 1.13◦, CRM configuration, FERMAT structural model.
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been computed with the POD-based ROM, whereas the CFD reference solutions are
already available on the basis of the investigations outlined in Section 8.3. For a more
compact representation of the results, a Fourier analysis of the time-domain information
has been performed yielding the real and imaginary parts of the first harmonic surface
Cp distribution; see also Section 6.6.

In Figures 8.12-8.16, the surface pressure coefficient response caused by the excitation
of representative symmetric eigenmodes is visualized for selected reduced frequencies.
Due to the symmetry of the elastic mode shapes with respect to the y = 0 plane for
the generalized coordinates q1, q11, and q24, the POD-ROM solutions are shown for the
starboard side, whereas the respective AER-Eu results are depicted for the port side.
The top view contour plots indicate a generally good agreement between the POD-ROM
and the AER-Eu reference. However, as it has been already noted for the LANN wing
in Chapter 6, regions with a dominant shock influence are not accurately reproduced
by the ROM. The associated discrepancies become visible for example at the wing root.
Further deviations between the POD-ROM and the reference solutions emerge at the
horizontal tail. The reason for the latter errors is not a flow nonlinearity but the order of
magnitude of the pressure variations in the tail region. As a consequence of the proper
orthogonal decomposition, greater importance is attributed to globally-occurring, high-
energy structures compared to locally pronounced effects of smaller magnitude. This
effect is amplified by the a posteriori employed neural network, which also minimizes
globally-defined cost functions. Nonetheless, besides the local, small-scale mismatches
in the pressure distribution the overall pressure patterns are in good accordance.

Real part (elastic mode 1, kred = 0.5) Imaginary part (elastic mode 1, kred = 0.5)

Figure 8.12: First harmonic of the Cp response induced by a sinusoidal excitation of
elastic mode 1 with kred = 0.5. Due to the y = 0 symmetry of the mode
shape, the ROM result is shown for the upper surface of the starboard side,
whereas the AER-Eu result is depicted for the port side. Ma∞ = 0.85,
α = 1.13◦, CRM configuration, FERMAT structural model.
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Real part (elastic mode 1, kred = 2.0) Imaginary part (elastic mode 1, kred = 2.0)

Figure 8.13: First harmonic of the Cp response induced by a sinusoidal excitation of
elastic mode 1 with kred = 2.0. Due to the y = 0 symmetry of the mode
shape, the ROM result is shown for the upper surface of the starboard side,
whereas the AER-Eu result is depicted for the port side. Ma∞ = 0.85,
α = 1.13◦, CRM configuration, FERMAT structural model.

Real part (elastic mode 11, kred = 1.0) Imaginary part (elastic mode 11, kred = 1.0)

Figure 8.14: First harmonic of the Cp response induced by a sinusoidal excitation of
elastic mode 11 with kred = 1.0. Due to the y = 0 symmetry of the mode
shape, the ROM result is shown for the upper surface of the starboard side,
whereas the AER-Eu result is depicted for the port side. Ma∞ = 0.85,
α = 1.13◦, CRM configuration, FERMAT structural model.



8.4 Unsteady Results: POD-ROM for Surface Pressure Distribution Modeling 183

Real part (elastic mode 24, kred = 0.5) Imaginary part (elastic mode 24, kred = 0.5)

Figure 8.15: First harmonic of the Cp response induced by a sinusoidal excitation of
elastic mode 24 with kred = 0.5. Due to the y = 0 symmetry of the mode
shape, the ROM result is shown for the upper surface of the starboard side,
whereas the AER-Eu result is depicted for the port side. Ma∞ = 0.85,
α = 1.13◦, CRM configuration, FERMAT structural model.

Real part (elastic mode 24, kred = 5.0) Imaginary part (elastic mode 24, kred = 5.0)

Figure 8.16: First harmonic of the Cp response induced by a sinusoidal excitation of
elastic mode 24 with kred = 5.0. Due to the y = 0 symmetry of the mode
shape, the ROM result is shown for the upper surface of the starboard side,
whereas the AER-Eu result is depicted for the port side. Ma∞ = 0.85,
α = 1.13◦, CRM configuration, FERMAT structural model.
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Furthermore, also unsteady aerodynamic responses that are induced by the excitation of
antisymmetric mode shapes can be adequately reproduced by the POD-ROM as it can
be seen from Figures 8.17-8.18. Based on the depicted results, it can be concluded that
the ROM approach can be equivalently applied to realistic aircraft configurations com-
pared to the less-complex case investigated in Chapter 6. However, due to the increased
number of degrees of freedom, the data handling as well as the data input/output can
be cumbersome and may exceed the memory/computing limits. In order to avoid lo-
cally manifested deviations, e.g. the mismatches at the horizontal tail, the POD-ROM
procedure can be applied to local components of the aircraft rather than the entire con-
figuration. Thus, the applicability of the methodology is generally not restricted by the
complexity of the test case.

Real part (elastic mode 2, kred = 5.0) Imaginary part (elastic mode 2, kred = 5.0)

Figure 8.17: First harmonic of the Cp response induced by a sinusoidal excitation of
elastic mode 2 with kred = 5.0. Due to the antisymmetric characteristic of
the eigenmode, the full-span configuration is displayed. The ROM result is
presented at the top, whereas the AER-Eu result is shown at the bottom.
Ma∞ = 0.85, α = 1.13◦, CRM configuration, FERMAT structural model.
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Real part (elastic mode 19, kred = 2.0) Imaginary part (elastic mode 19, kred = 2.0)

Figure 8.18: First harmonic of the Cp response induced by a sinusoidal excitation of
elastic mode 19 with kred = 2.0. Due to the antisymmetric characteristic of
the eigenmode, the full-span configuration is displayed. The ROM result is
presented at the top, whereas the AER-Eu result is shown at the bottom.
Ma∞ = 0.85, α = 1.13◦, CRM configuration, FERMAT structural model.

8.5 Efficiency Considerations and Résumé

Finally, the computational speed-up is investigated for the freestream-parameter-adap-
tive neuro-fuzzy model as well as the POD-ROM approach. The training and application
of the two reduced-order models as well as the Euler-equations-based CFD simulations
presented in this chapter have been carried out on the Linux cluster of the Leibniz Super-
computing Center (LRZ). For comparability, all computation jobs have been processed
in serial operation (serial/parallel farming) using a single core of the Intel Xeon E5-2697
v3 2.6 GHz CPU. As a consequence, the CPU times presented below can be interpreted
as wall clock times for each individual simulation.

Considering first the efficiency of the freestream-parameter-adaptive ROM, the AER-Eu
simulations related to the NFC = 4 training angles of attack and six excitation degrees
of freedom have required in total 27,132 CPU hours. Thus, a computational cost of 47.1
CPU days has been necessary in average for each forced-motion training simulation. In
contrast, the subsequent neuro-fuzzy model calibration has taken only 0.63 CPU hours,
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whereas the application of the model to the generalized aerodynamic forces computation
at αSim = 1.13◦ has been performed in 15.1 CPU seconds (0.42 CPU seconds per simu-
lation case). For comparison, the total computational cost for generating the harmonic
motion reference results has been 9,953 CPU hours incorporating four reduced frequen-
cies and six mode shapes. Thus, the average validation CFD run has required about 17.3
CPU days. Regarding the investigations presented in Section 8.3, the ROM speed-up
relative to the AER-Eu solver for an already trained model is therefore about five orders
of magnitude. However, the effective speed-up, which must respect the effort due to
the training CFD simulations, strongly depends on the number of intended simulations
and cannot be specified in a reasonable manner for this generically constructed example.

Second, the computational costs of the POD-ROM methodology are analyzed: In terms
of the POD-ROM training, unsteady CFD simulations related to six modal degrees of
freedom have been computed in about 6,702 CPU hours, leading to an average effort
of 1,117 CPU hours for each individual AER-Eu simulation. Furthermore, the com-
putation of the POD modes and POD coefficients has required about 4.9 CPU hours,
while the neuro-fuzzy model training has been carried out in merely 1.7 CPU hours. In
terms of a total cost estimation, the training data acquisition, POD application, and
LOLIMOT-based model calibration must be taken into account. Thus, the total POD-
ROM construction effort has been about 6,709 CPU hours. In contrast, the application of
the POD-ROM to the 24 simulation cases has required approximately 37.3 CPU seconds.
The aforementioned application cost already includes the neuro-fuzzy-model-based sim-
ulation, which provides the POD coefficients, as well as the reconstruction of the surface
Cp distribution. Hence, each simulation has needed about 1.6 CPU seconds in average.
Although the POD-ROM has been applied for the simulation of four reduced-frequencies
only, the total computational effort of 6,709 CPU hours is already lower than the com-
parable cost required by the reference system for the present cases (9,953 CPU hours).
It should be emphasized again that the efficiency advantage becomes higher with added
computation cases. In the limit for an infinite number of application runs, the training
effort can be neglected yielding a speed-up factor for each individual simulation of the
order of five magnitudes.

In this chapter, the freestream-parameter-adaptive ROM and the POD-ROM methodol-
ogy were applied to the CRM configuration in combination with the FERMAT structural
model in order to assess their performance and efficiency related to unsteady aerody-
namic problems with a considerably increased number of degrees of freedom. For this
purpose, the neuro-fuzzy model ROM was employed to compute harmonic aerodynamic



8.5 Efficiency Considerations and Résumé 187

responses due to different elastic-mode-shape-related excitations, while the angle of at-
tack served as an additional input parameter to the model. Moreover, unsteady surface
pressure fluctuations induced by modal deformations were predicted by the POD-based
ROM approach. The results obtained from both approaches demonstrated that the
developed ROM methodologies are generally applicable to complex, industry-relevant
problems. Due to the fact that the CFD simulations become more involved for test
cases of increased complexity, the computational cost saving potential due to the use of
reduced-order models is also increased.
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Related to aircraft aeroelastic investigations, the aim of this work was the efficient
modeling of unsteady aerodynamic forces and moments as well as load distributions that
are caused by structural excitations or rigid body motions. In particular, the focus was
laid on the prediction of prevailing nonlinearities in the transonic flow regime induced by
distinct shock motions, large deflection amplitudes, and pronounced freestream param-
eter variations. Since the aforementioned effects cannot be reproduced accurately using
linear aerodynamic methods, the herein developed model-order reduction approaches
were based on the full-order Euler and Reynolds-averaged Navier-Stokes CFD solvers.
To achieve a tradeoff between the quality of the results and the associated computa-
tional costs, the neuro-fuzzy-model-based reduced-order models were trained on the ba-
sis of selected time-domain CFD solutions by exploiting nonlinear system identification
methodologies. The proposed ROM procedures encompassed the entire modeling pro-
cess chain, starting from the required CFD solver interfaces, the excitation signal design,
the model structure determination and parameter optimization, up to the realization of
efficient and accurate simulations. Compared to established aerodynamic reduced-order
modeling concepts, significant progress was made regarding the prediction accuracy of
nonlinear characteristics and the robustness of the training and application process.
Validated by selected application examples, the models were capable of representing the
essential linear and nonlinear dynamics of the underlying flow problems. Consequently,
the ROM approaches devised in this thesis led to a considerable acceleration of numer-
ical unsteady aerodynamic analyses, which may allow the assessment of the aeroelastic
behavior at an earlier stage in the aircraft development process.

With respect to a comprehensive evaluation of the approaches, four unsteady aero-
dynamic validation cases were thoroughly taken into account. First, it was highlighted
that the developed reduced-order modeling procedure can be applied for the prediction of
motion-induced integral aerodynamic loads across variable freestream conditions. Specif-
ically, structural deflections were prescribed on the AGARD 445.6 wing at subsonic,
transonic, and supersonic inflow conditions, while a monolithic neuro-fuzzy model was
used to compute the respective aerodynamic responses. The ROM-based time-domain
results as well as the derived frequency domain solutions showed a good agreement with
the CFD reference simulations. Besides, the suggested Monte-Carlo training and ap-
plication process ensured that initialization influences have a negligible impact on the
ROM result. Nevertheless, it was also indicated that the quality of the training data
has a decisive influence on the attainable model fidelity. Additionally, a linear flutter
analysis was performed for both the ROM- and the CFD-based generalized aerodynamic
forces dataset. It was pointed out that the accuracy of the neuro-fuzzy model is sufficient
enough for preliminary aeroelastic considerations. A detailed analysis of the computa-
tional costs showed that the overall effort was considerably reduced in comparison to a
thorough CFD-based aeroelastic analysis.
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Furthermore, the POD-ROM methodology, which combines the recurrent neuro-fuzzy
model and the proper orthogonal decomposition technique, was tested to simulate un-
steady surface pressure distributions. The example of the LANN wing undergoing a
pitching motion showed that the dominant steady and unsteady aerodynamic load char-
acteristic caused by multiple excitation frequencies and amplitudes could be reproduced.
Nevertheless, it was identified that the precise prediction of discontinuities such as crisp
shocks is associated to notable superposition errors. However, taking into account the
achieved cost savings of about four orders of magnitude once the surrogate model is
available, the POD-ROM can be particularly interesting for computationally demand-
ing multidisciplinary analyses such as fluid-structure-interaction problems and numerical
optimizations.

Subsequently, the connected neural network methodology, involving the recurrent lo-
cal linear neuro-fuzzy model and the MLP neural network, was applied to predict the
pitch and plunge induced aerodynamic responses of the NLR 7301 airfoil. Based on
validation cases at transonic inflow conditions, it was outlined that both the linear and
the nonlinear system dynamics were modeled very accurate by the novel method. More-
over, by considering model inputs beyond the regime from which the ROM has been
trained, the results underpinned the improved generalization capabilities. A compari-
son between different model-order reduction techniques and the CFD reference clearly
showed the superior simulation quality of the NFM-MLP approach. Despite the high
fidelity, the developed modeling procedure still achieved a significant computational cost
reduction.

Finally, the freestream-parameter-adaptive ROM and the POD-ROM methodology
were applied to the CRM configuration in combination with the FERMAT structural
model in order to assess their performance and efficiency related to a significantly more
complex test case. The results indicated that the novel class of neuro-fuzzy-model-based
model-order reduction techniques is applicable to industry-scale problems.

On the basis of the previously outlined results, the key achievements and findings of this
thesis can be summarized as follows:

• In the present work, a novel neuro-fuzzy-model-based unsteady aerodynamic ROM
framework has been developed. The proposed system identification methodology
encloses the entire process chain, starting from the required CFD solver interfaces,
the excitation signal definition, the model structure optimization and parameter
training, up to the realization of efficient and accurate aerodynamic simulations.

• Due to the underlying local linear sub-models, the neuro-fuzzy approach is able to
reproduce an exclusively linear dynamic system behavior at given operating points
while being able to capture nonlinearities across variable freestream conditions.
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• With respect to the excitation of the degrees of freedom of the aerodynamic sys-
tem, (smoothed) amplitude-modulated pseudo-random binary signals have been
suggested for applications with distinct nonlinearities. As a consequence, the train-
ing data is characterized by a large spectrum of excited amplitudes and frequencies
in combination with a high information content per signal length.

• Despite the active output feedback that allows the precise modeling of memory
effects and dynamic nonlinearities, the recurrent neuro-fuzzy ROM has proven to
be robust.

• For enhancing the generalization capabilities of the model, the CFD-generated
dataset has been randomly split into training, validation, and test data prior to
the ROM calibration. In this way, aerodynamic responses can be computed for
unknown excitation signals in an accurate and reliable manner.

• In order to avoid random-initialization-related influences on the final ROM solu-
tion, the Monte-Carlo training and application procedure has been implemented
to enable statistical analyses with respect to the model outputs. Hence, the repro-
ducibility and fidelity of different ROM approaches or training settings becomes
comparable.

• Two powerful extensions of the basic neuro-fuzzy model framework have been de-
veloped and applied: First, by combining the neuro-fuzzy model with the POD,
motion-induced unsteady load distributions can be efficiently predicted. Second,
the combined NFM-MLP network allows the consideration of strongly-nonlinear
aerodynamic characteristics.

• The application to a test case of significantly increased complexity demonstrated
the potential of the developed approaches for industry-scale problems.

• A detailed analysis regarding the efficiency of the ROM approaches relative to
the full-order CFD procedure has shown that accelerations of two to five orders
of magnitude can be achieved. However, it has been also highlighted that the
speed-up factor is strongly case-dependent. Once the training expenses have been
amortized, which is the case for a sufficiently large number of intended simula-
tions or if the ROM is acting as a surrogate model that is directly coupled within
a multidisciplinary environment, the usage of the neuro-fuzzy methods becomes
profitable.

• Finally, it has to be emphasized that the methodologies can be generalized to ad-
ditional problem classes by means of an adapted formulation of the input/output
interfaces. Thus, the modular model-order reduction framework can be univer-
sally applied to substitute the CFD solver with respect to computationally costly
interdisciplinary simulations.
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During the research activities leading to this thesis, further potentially-promising ROM
approaches have been revealed in addition to the presented work. The associated insights
are briefly highlighted in the following outlook.

Driven by the enormous progress in high-performance and cloud computing capabili-
ties as well as artificial intelligence algorithms, groundbreaking developments have taken
place over the last years, which have led to a multitude of new machine learning and
deep learning concepts. An increasingly popular approach from this branch is the long
short-term memory (LSTM) neural network. The LSTM approach could be especially in-
teresting for describing nonlinear aerodynamic phenomena such as buffet or buzz, which
are characterized by a strong feedback mechanism. Since both shock-boundary-layer in-
teractions and flow separations already cause a time-varying load response without the
presence of any structural excitation, the ROMmust be capable of providing an unsteady
response for fixed system inputs. According to the literature, this is a key strength of the
LSTM neural network. Furthermore, the coupling of the derived aerodynamic ROMs
with structural dynamics and/or flight mechanics models represents an extension of the
existing process that allows the simulation of aeroelastic and aeroservoelastic character-
istics beyond the flutter problem. However, this step drastically increases the validation
effort due to the required computationally-intensive multidisciplinary simulations.

Besides, the interaction between the excitation signal design and the CFD-based
training data generation offers potential for reducing the total computational cost and,
at the same time, improving the quality of the ROM results. However, this idea re-
quires either modifications in the employed CFD solver or many simulation restarts,
since parts of the identification process must be already carried out at runtime of the
flow solver. For example, the algorithm must detect whether a certain amplitude, fre-
quency, or operating regime is sufficiently resolved or not. Depending on the outcome
of this analysis, the excitation signal can be directly adapted for the subsequent time
steps. Consequently, this measure can further increase the information density of the
training data and decrease the training data acquisition effort.

Finally, an improvement of the POD-ROM method for predicting surface or field
distributions could be achieved by using recently devised machine learning approaches.
Exemplarily, the convolutional neural network (CNN), the auto-encoder network, or
the conditional generative adversarial network (CGAN) are promising approaches in or-
der to enhance the nonlinear mapping with respect to unsteady surface or field solutions.

Last but not least, the relevance of keeping an eye on the developments of other disci-
plines and fostering out-of-the-box thinking cannot be overemphasized. Many modern
innovations are the result of smartly linking already existing concepts and approaches
to different research fields. It is therefore of particular importance to understand the
procedures and problems of various disciplines in order to generalize and combine them
towards novel applications.
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