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Abstract

This dissertation is motivated by the challenges arising in the analysis and synthesis
of large-scale cyber-physical systems (CPSs). In the past decades, CPSs have received
considerable attention as an important modeling framework describing many engineer-
ing systems and play major roles in many real-life applications including transporta-
tion systems, traffic networks, power systems, and so on. Automated verification and
control synthesis for this type of complex systems with the aim to achieve high-level
specifications is quite challenging. It is known that providing automated synthesis of
correct-by-design controllers for CPSs is definitely crucial in several safety-critical ap-
plications such as autonomous driving. As a promising technique, symbolic models are
introduced to cope with the computational complexity arising in the analysis of large-
scale CPSs. More specifically, one method to deal with encountered complications is
to first construct symbolic models for the concrete systems, then design controllers for
the symbolic models. Finally one can refine the controllers back to the original systems
based on some behavioral relation between original systems and their symbolic models
such as approximate alternating simulation relations [PT09] or feedback refinement re-
lations [RWR17]. Since the mismatch between the output of the concrete system and
that of its symbolic model is formally quantified, one can guarantee that the original
systems also satisfy the same specifications as the symbolic ones with guaranteed error
bounds on their output trajectories.

Unfortunately, construction of symbolic models for large-scale CPSs in a monolithic
fashion suffers acutely from the so-called curse of dimensionality. Specifically, the com-
putational complexity of the construction of symbolic models grows exponentially with
respect to the dimension of the state and input sets. Consequently, such a construc-
tion will become computationally intractable when dealing with large-scale systems. To
resolve this issue, one promising technique is to consider the large-scale CPS as a net-
work composed of many systems, and provide a compositional scheme for synthesizing
a symbolic model for the given network using symbolic models of its local systems. This
dissertation provides novel compositional methodologies to design symbolic models for
large-scale CPSs in a constructive and formal manner.

The compositional methodologies in the dissertation are based on two approaches.

• The first approach utilizes some dissipativity type conditions which may enjoy spe-
cific interconnection topologies and provide scale-free compositional construction
for symbolic models of the concrete networks. We show that if some dissipativity
type conditions hold, one can construct symbolic models of a network composed
of finitely many systems using symbolic models of those systems.

vii



Abstract

• The second approach leverages general small-gain type conditions to provide a
compositional framework for constructing symbolic models for either infinite or
finite concrete networks. We show that the proposed max type small-gain approach
is more general than the classic one in the literature since it does not require
linear growth on the gains of systems which is the case in the classic small-gain
approach. We also show that the overall approximation error is proportional to the
maximum of the approximation errors of symbolic models of systems. In our small-
gain framework, the overall approximation error is determined independently of the
number of systems that constitute the concrete network. Therefore, the results here
can potentially provide symbolic models for a large network contains an in(finite)
number of systems with much smaller approximation error in comparison with
those proposed based on the classic small-gain and dissipativity approaches.

In addition, we provide a procedure for constructing symbolic models for a class of
discrete-time control systems that are incrementally passive or incrementally input-to-
state stable. Moreover, we extend the results from discrete-time control systems to
switched ones by imposing those stability properties on each mode of the switched sys-
tems.
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Zusammenfassung
Diese Dissertation ist motiviert durch die Herausforderungen, die sich bei der Anal-
yse und Synthese hochdimensionaler cyberphysischer Systeme (CPS) stellen. In den
vergangenen Jahrzehnten haben CPS erhebliche Beachtung erfahren als wichtiger Mod-
ellierungsrahmen zur Beschreibung vieler Engineeringsysteme. Zudem spielen CPS eine
große Rolle in vielen realen Anwendungen wie zum Beispiel Transportsystemen, Verkehrs-
netzwerken usw. Automatische Verifikation und Reglersynthese für diesen Typ von
komplexen Systemen mit dem Ziel gewisse High-LevelSpezifikationen zu erfüllen ist sehr
anspruchsvoll. Insbesondere ist es in verschiedenen sicherheitskritischen Anwendungen
wie z.B. beim autonomen Fahren entscheidend, eine automatische Synthese von a pri-
ori korrekten Reglern bereit zu stellen. Für diese Aufgabe werden symbolische Modelle
eingeführt als eine vielversprechende Methode um mit der rechnerischen Komplexität
fertig zu werden, die sich in der Analyse von hochdimensionalen CPS ergibt. Spezi-
fischer ist es eine vielversprechende Methode um mit den auftretenden Komplikationen
umzugehen zuerst symbolische Modelle für die konkreten Systeme zu konstruieren, dann
Regler für die symbolischen Modelle zu entwerfen und schließlich die Regler zur Anwen-
dung auf die ursprünglichen Modelle zu verfeinern basierend auf behavioral relations
zwischen den Originalsystemen und ihren symbolischen Modellen wie etwa approxima-
tiven alternierenden Simulationsrelationen [PT09] oder FeedbackRefinement-Relationen
[RWR17]. Da der Unterschied zwischen dem Ausgang des konkreten Systems und der
seines symbolischen Modells formal quantifiziert ist, kann man garantieren, dass die
Originalsysteme dieselben Spezifikationen wie die symbolischen Systeme erfüllen mit
garantierten Fehlerschranken für ihre Ausgangstrajektorien.

Unglücklicherweise leidet die Konstruktion von symbolischen Modellen für hochdi-
mensionale CPS auf monolithische Art stark am sogenannten Fluch der Dimensional-
ität: die rechnerische Komplexität der Konstruktion von symbolischen Modellen wächst
exponentiell mit der Dimension der Zustands- und Eingangsmengen; daher wird eine
solche Konstruktion für hochdimensionale Systeme rechnerisch unlösbar. Ein vielver-
sprechender Ansatz um dieses Problem zu lösen ist es, das hochdimensionale CPS als
ein Netzwerk von vielen Systemen zu betrachten und eine kompositionelle Strategie zur
Synthese von symbolischen Modellen für das gegebene Netzwerk bereit zu stellen, die
symbolische Modelle von dessen lokalen Systemen verwendet. Diese Dissertation liefert
neue kompositionelle Methoden um symbolische Modelle für hochdimensionale CPS auf
konstruktive und formale Art zu konstruieren.

Die kompositionellen Methoden in dieser Dissertation basieren auf zwei Ansätzen.
• Der erste Ansatz verwendet gewisse Dissipativitätsbedingungen, die unter Umstän-

den spezifische Netzwerktopologien genießen und eine skalierungsfreie komposi-
tionelle Konstruktion für symbolische Modelle der konkreten Netzwerke liefern.
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Zusammenfassung

Wir zeigen, dass falls gewisse Dissipativitätsbedingungen erfüllt sind, symbolis-
che Modelle eines Netzwerks konstruiert werden können, das aus abzählbar vielen
Systemen zusammengesetzt ist, wobei wir symbolische Modelle dieser Systeme ver-
wenden.

• Der zweite Ansatz verwendet hinreichend allgemeine SmallGain-artige Bedingun-
gen, um ein kompositionelles Framework zur Konstruktion symbolischer Modelle
für unendliche oder endliche konkrete Netzwerke bereit zu stellen. Wir zeigen, dass
der vorgestellte Max-Small-Gain Ansatz allgemeiner ist als der klassische in der
Literatur, da er kein lineares Wachstum der Gains des Systems fordert, was bei
klassischem Small-Gain der Fall ist. Wir zeigen auch, dass der gesamte Approxi-
mationsfehler proportional zum Maximum der Approximationsfehler symbolischer
Modelle von Systemen ist. Daher können diese Resultate potentiell symbolische
Modelle für ein großes Netzwerk mit (un)endlicher Zahl an Systemen liefern mit
viel kleinerem Approximationsfehler im Vergleich zu denen, die auf klassischer
Small-Gain-Analyse und Dissipativitätsansätzen basieren

Zusätzlich liefern wir ein Verfahren zur Konstruktion symbolischer Modelle für eine
Klasse zeitdiskreter Kontrollsysteme, die inkrementell passiv oder inkrementell Input-
to-State stabil sind. Darüber hinaus erweitern wir die Resultate von zeitdiskreten zu
geschalteten Systemen, indem wir diese Stabilitätseigenschaften für jeden Modus des
geschalteten Systems fordern.
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1 Introduction

1.1 Motivation and Contributions
Cyber-physical systems (CPSs) are complex interconnected models combining both cy-
ber (computation and communication) and physical components, which tightly interact
with each other in a feedback loop [LS16]. In the past decades, CPSs have received con-
siderable attention as an important modeling framework describing many engineering
systems and play major roles in many real-life applications including transportation sys-
tems, traffic networks, and so on Figure 1.1. Most CPSs are of hybrid nature: discrete
dynamics model computation units including hardware and software, and continuous dy-
namics model physical components. The complexity raised by the interaction between
computation units and physical components often makes it difficult to obtain analytical
results for this type of complex systems. For instance, automated verification and con-
trol synthesis for CPSs to achieve some high-level specifications, e.g., those expressed
as linear temporal logic (LTL) formulae [Pnu77], is quite challenging [DLS12, KK12].
In addition, many CPSs are safety critical or mission critical; hence, the satisfaction of
safety or some desired specifications must be guaranteed.

Cyber Space

Smart Grids

Transportation Systems

Industrial IoT Systems

Healthcare Systems

Information  Flow

Physical Sensing

Figure 1.1: Application scenarios of CPSs.

Formal methods are known to provide fundamental tools for the synthesis of CPSs,
as they give theoretical or rigorous mathematical frameworks which ensure that the
system meets the desired specification [CW96, Win90, Ses15]. Although formal methods
have been originally developed in software engineering as a framework to find bugs or
security vulnerabilities in software, they have been recently identified to be useful in
many other applications, including control design of CPSs. In particular, one of the
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1 Introduction

most successful approaches that interface formal methods and control synthesis of CPSs
is the so-called symbolic control [Tab09]. In this approach, symbolic models (a.k.a. finite
abstractions) are commonly used to replace the concrete systems in the analysis and
controller synthesis process. Symbolic models are abstract descriptions of the continuous-
space control systems in which each discrete state and input correspond to an aggregate
of continuous states and inputs of the original system, respectively. In general, there
exist two types of symbolic models: sound ones whose behaviors (approximately) contain
those of the concrete systems and complete ones whose behaviors are (approximately)
equivalent to those of the concrete systems [Tab09]. Remark that existence of a complete
symbolic model results in a sufficient and necessary guarantee in the sense that there
exists a controller enforcing the desired specifications on the symbolic model if and only if
there exists a controller enforcing the same specifications on the original control system.
On the other hand, a sound symbolic model provides only a sufficient guarantee in the
sense that failing to find a controller for the desired specifications on the symbolic model
does not prevent the existence of a controller for the original control system. Since
symbolic models are finite, controller synthesis problems can be algorithmically solved
over them by resorting to automata-theoretic approaches [MPS95, Tho95, BJP+12].
Then one can refine the synthesized controllers back to the original systems based on
some behavioral relation between original systems and their symbolic models such as
approximate alternating simulation relations [PT09] or feedback refinement relations
[RWR17]. Figure 1.2 schematically describes the symbolic control scheme.

Original System Symbolic Model

Discrete ControllersHybrid Controllers

Refinement

Discrete

Synthesis

Figure 1.2: Symbolic control flowchart.

Large numbers of studies have been conducted on the computation of symbolic mod-
els for various classes of systems. In [TP06, TP03b, TP03a], complete symbolic models
were constructed for controllable linear systems. In [BH06], a feedback control over facet
was utilized to design complete symbolic models for nonlinear control affine systems, in
[ADLB14] complete abstractions were constructed for switched linear systems using poly-
hedral sublevel sets of Lyapunov function, and in [AHLP00] equivalent discrete abstrac-
tions of different classes of hybrid systems were introduced. Approximately complete
symbolic models were synthesized for different classes of systems, among many others, in
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1.1 Motivation and Contributions

the following papers: nonlinear systems [PGT08, PT09], switched systems [GPT10], sin-
gularly perturbed hybrid affine systems [KG19], time-delay systems [PPB10, PPB15], in-
finite dimensional systems [Gir14, JZ20], networked control systems [BPB19, ZMKA18],
and stochastic systems [MA14, ZEM+14]. There are other results in which symbolic
models were constructed for concrete systems. A finite abstractions for continuous sys-
tems was proposed in [RO98] as a nondeterministic automaton. The notion of a strongest
l-complete approximation was introduced in [MR99, MRO02] as a discrete abstraction
for time invariant behavioral systems, and the applicability of this notion was enlarged
in [SR14] using the notion of so called asynchronous l-complete approximations. Sym-
bolic models for piecewise-affine hybrid system were introduced in [HCv06]. Results
for stabilizable and incrementally forward complete nonlinear systems were established
in [Tab08, ZPMT12, LLO15]. In [MGW19, CA17], symbolic models were designed for
monotone and mixed monotone systems, and in [LTOM12] for differentially flat systems.
Markov chain abstractions have been introduced and leveraged to safety verification and
reachable sets computation in the framework of traffic networks and autonomous ve-
hicles in [ASB07b, ASB07a, ASB08, ASB09b, ASB09a]. We refer interested reader to
[Tab09, BYG17, GP11, PB19] for more details on some of the results mentioned above.

However, the computational complexity of constructing symbolic models often scales
exponentially with the dimension of the state and input spaces. Several approaches have
been proposed in the literature to overcome this scalability problem. Adaptive multi-
resolution and multi-scale state-space discretization approaches have been proposed in
[TI09, GGM16, HMMS18b] to compute symbolic models. A state-space discretization
free approach was introduced in [CGG13, ZAG15, Gir14] where symbolic states are
given by input sequences. In [WRR17], the size of symbolic models were minimized
using optimal discretization parameters. In [GKA17], symbolic models were constructed
by exploiting sparse interconnection structure of the dynamical systems. In [HMMS18a,
HMMS18a], a lazy versions of multi-layered abstractions for nonlinear systems against
safety and reachability specifications have been proposed. The authors in [CGG11,
GGM16] introduced lazy safety synthesis for incrementally stable switched systems using
multiscale symbolic models.

Unfortunately, all the aforementioned monolithic approaches for synthesizing symbolic
models will become computationally intractable while dealing with large-scale systems.
A convenient method to cope with this challenge is to provide a compositional frame-
work for constructing symbolic models for networks of concrete systems. To do so, one
should first i) partition the overall concrete network into a number of concrete systems
and construct symbolic models of them individually; ii) then establish a compositional
scheme that allows us to construct a symbolic model of the overall network using those
individual ones. This divide-and-conquer scheme is illustrated in Figure 1.3.

The compositional framework for designing symbolic models based on a divide-and-
conquer scheme [Kea11] is not new. Several results have already introduced compo-
sitional techniques for constructing symbolic models of networks of control systems.
The results in [TI08, PPB16, MSSM19] provide techniques to approximate networks of
control systems by networks of complete symbolic models by assuming some stability
property of the concrete systems. Other compositional approaches provide techniques
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Figure 1.3: A divide and conquer strategy scheme.

to design sound symbolic models of concrete networks without requiring any stability
property or condition on the gains of systems [MGW17, HAT17, KAZ18]. In addition,
compositional approaches for constructing finite abstractions (a.k.a. finite Markov deci-
sion processes) for stochastic systems have been widely investigated in the recent years;
see [LSZ20b, LSZ20a] and references therein.

Unfortunately, as we are concerned here with complete symbolic models for determin-
istic systems, all the results in [TI08, PPB16, MSSM19] have three main drawbacks: i)
they deal only with networks composed of finite number of systems and can not be ap-
plied to networks consisting of infinite numbers of components. ii) those compositional
results are not concerned with switched systems, and they do not provide any com-
positional framework for the construction of symbolic models for networks of switched
systems. iii) they use conservative small-gain type conditions which implicitly require
concrete systems to have a (nearly) linear behavior. Motivated by the above limitation,
this dissertation aims at proposing a compositional framework for constructing symbolic
models for (in)finite networks of concrete systems by considering more relaxed composi-
tional conditions and also providing compositionality results for networks consisting of
infinitely many finite-dimensional systems.

In this dissertation, we first propose compositional techniques based on dissipativity
theory. The utilized dissipativity conditions may enjoy specific interconnection topolo-
gies and provide scale-free compositional construction for symbolic models of the net-
works of discrete-time control systems. Under the satisfaction of those conditions, we
construct a symbolic model of a network composed of finitely many discrete-time control
systems using their symbolic models. In particular, we use a notion of so-called sum-type
simulation function between systems and their symbolic models to compositionally con-
struct a so-called alternating simulation function as a relation between the network of
symbolic models and that of control systems. The existence of such an alternating simu-
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lation function ensures that the output behavior of the network of discrete-time control
systems is quantitatively approximated by the that one of their symbolic models.

We also leverage general small-gain type conditions to provide a compositional scheme
for designing symbolic models for either infinite or finite networks of discrete-time con-
trol systems. We show that the proposed small-gain approach is more general than the
classic one in the literature since it does not require linear growth on the gains of sys-
tems which is the case in the classic one. We also show that the overall approximation
error is proportional to the maximum of the approximation errors of symbolic models
of systems. In our small-gain framework, the overall approximation error is determined
independently of the number of discrete-time control systems in the concrete network.
Therefore, the proposed results can potentially provide symbolic models for a network
composed of a large number of discrete-time control systems with much smaller approx-
imation error in comparison with those proposed based on the classic small-gain and
dissipativity approaches. Additionally, we introduce a compositional scheme based on
robust small-gain conditions to construct symbolic models for networks consisting of
infinitely many finite-dimensional discrete-time control systems.

Furthermore, using the same dissipativity and max small-gain conditions, we extend
our compositionality results from finite networks of discrete-time control systems to
the ones of switched systems whose switching signals satisfy a dwell-time condition.
In addition, we provide a procedure for constructing symbolic models of local systems
(discrete-time control and switched systems) that are incrementally passive or incremen-
tally input-to-state stable. We also provide some linear matrix inequalities replacing
those stability properties for some classes of concrete systems. We provide case studies
illustrating efficiency of all proposed techniques.

1.2 Outline of the Thesis
This dissertation is divided into 5 chapters, the first of which is the current introduction.
The rest is structured as follows:

Chapter 2 presents some mathematical notations and preliminaries, and also some
systems definitions, propositions, lemmas that will be frequently used throughout the
dissertation.

Chapter 3 studies compositional construction of symbolic models for infinite and
finite networks of discrete-time control systems based on two different compositionality
approaches, i.e., dissipativity and small-gain approaches. The results of this chapter are
respectively presented based on [SGZ18, SZ19b, SNZ20].

Chapter 4 discusses compositional construction of symbolic models for finite networks
of discrete-time switched systems with the same compositional techniques as the previous
chapter. The results of this chapter are respectively presented based on [SZ19c, SZ19a].

Chapter 5 summarizes the results of this dissertation and outlines potential directions
for the future research.

For more clarity of exposition, Chapters 3 and 4 follow a common structure. They
start with an introduction including a description of the problem addressed, a brief
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1 Introduction

literature review, and a statement of the contributions made. The developed techniques
are detailed in subsequent sections, followed by a section illustrating their efficiency on
different case studies. The chapters are concluded with a summary section.
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2 Notations and Preliminaries Results

2.1 Notations
We denote by R, N0, and N the sets of real numbers, non-negative integers, and positive
integers, respectively. We denote the closed, open, and half-open intervals in R by [a, b],
(a, b), [a, b), and (a, b], respectively. For a, b ∈ N0 and a ≤ b, we use [a; b], (a; b), [a; b),
and (a; b] to denote the corresponding intervals in N0. Given any a ∈ R, |a| denotes the
absolute value of a. Given any ν = [ν1; · · · ; νn] ∈ Rn, the infinity norm of ν is defined by
|ν| = max1≤i≤n |νi|. Elements of Rn are by default regarded as column vectors and we
write ν⊤ for the transpose of a vector ν ∈ Rn. Given a symmetric matrix A, λmax(A), and
λmin(A) denote the maximum and minimum eigenvalues of A, respectively. By ℓ∞ we
denote the Banach space of all infinite uniformly bounded sequences s := (si)i∈N ∈ ℓ∞,
where si denotes the ith position of a sequence s ∈ ℓ∞. Moreover, ℓ∞+ denotes the
positive cone in ℓ∞ consisting of all vectors s ∈ ℓ∞ with si ≥ 0, i ∈ N. For all s, s′ ∈ ℓ∞

we say that s ≤ s′ if si ≤ s′i for all i ∈ N, and that s ̸≥ s if there is i ∈ N such
that si < s′i. The standard unit vectors in ℓ∞ are denoted by ei, i ∈ N; i.e., ei is the
sequence of zeros with exception of position i, where the entry is 1. Given an operator
Γ : ℓ∞+ → ℓ∞+ , k ≥ 1 ∈ N, we define Γk(·) := Γk−1 ◦ Γ(·), where Γ0 is the identity
operator on ℓ∞. We denote by card(A) the cardinality of a set A and by ∅ the empty
set. For any set S ⊆ Rn which is a finite union of boxes, e.g., S =

⋃M
j=1 Sj for some finite

number M ∈ N, where Sj =
∏n
i=1[c

j
i , d

j
i ] ⊆ Rn with cji < dji , and a positive constant

η ≤ span(S), where span(S) = minj=1,...,M ηSj and ηSj = min{|dj1 − cj1|, . . . , |d
j
n − cjn|},

we define [S]η = {a ∈S | ai=kiη, ki ∈ N, i=1, . . . , n}. The set [S]η will be used as a
finite approximation of S with precision η. Note that [S]η ̸= ∅ for any η ≤ span(S).
We use the notations K and K∞ to denote different classes of comparison functions,
as follows: K = {α : R≥0 → R≥0| α is continuous, strictly increasing, and α(0) = 0};
K∞ = {α ∈ K| lim

r→∞
α(r) = ∞}. For α, γ∈K∞ we write α ≤ γ if α(r)≤γ(r), and, with

abuse of the notation, α= c if α(r) = cr for all r ≥ 0 and a given c ≥ 0. Finally, we
denote by id the identity function over R≥0, that is id(r) = r,∀r ∈ R≥0.

2.2 Transition Systems
In this section, we consider a general form of transition systems which allows us to model
concrete systems and their symbolic models in a common framework.

Definition 2.2.1. A transition system is a tuple T = (X,X0,W,U,F , Y 1, Y 2, H1,H2),
consisting of:
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• a set of states X;

• a set of initial states X0 ⊆ X;

• a set of external inputs U ;

• a set of internal inputs W ;

• transition function F : X ×W × U ⇒ X;

• an external output set Y 1;

• an internal output set Y 2;

• an external output map H1 : X → Y 1;

• an internal output map H2 : X → Y 2.

The transition x+ ∈ F(x,w, u) means that the system can evolve from state x to state
x+ under the inputs w and u. Thus, the transition function defines the dynamics of
the transition system. Sets X,W,U , and Y are assumed to be subsets of normed vector
spaces with appropriate finite dimensions.

If for all x ∈ X,w ∈ W,u ∈ U , card(F(x,w, u)) ≤ 1 we say that T is deterministic,
and non-deterministic otherwise. Additionally, T is called finite if X,W,U are finite sets
and infinite otherwise. Furthermore, if for all x ∈ X there exists w ∈W and u ∈ U such
that card(F(x,w, u)) ̸= 0 we say that T is non-blocking. In this work, we only deal with
non-blocking transition systems.

2.2.1 Networks of Transition Systems
Let N be either infinite or finite set, i.e.,N := N, or N := [1;N ] for a finite number
N ∈ N. As we consider Ti to be a part of a network, we define the following sets defining
the neighbors of Ti. For each i ∈ N let Ni and Mi be finite subsets of N . Here,
the index sets Ni and Mi enumerate the neighbors of Ti, i.e., those systems Tj , j ∈ Ni,
Tj′ , j

′ ∈ Mi that affect or are affected by Ti, respectively. By definition, we require that
i /∈ Ni ∪Mi, ∀i ∈ N . Since Ni and Mi are finite subsets of N , each Ti can have only
a finite number of neighbors.

Now, we provide a formal definition of the network of transition systems based on two
different compositional approaches, i.e., the dissipativity and small-gain approaches.

2.2.1.1 Dissipativity Approach Formulation

Definition 2.2.2. Consider transition systems Ti = (Xi, X0i ,Wi, Ui,Fi, Y 1
i , Y

2
i ,H1

i ,
H2
i ), i ∈ N := [1;N ], N ∈ N. Let M be a static matrix of an appropriate dimen-

sion defining the coupling of these systems such that M
∏
i∈N

Y 2
i ⊆

∏
i∈N

Wi. The network

of transition systems is a tuple T = (X,X0, U,F , Y,H), denoted by T = IM (Ti)i∈N ,
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where X =
∏
i∈N

Xi, X0 =
∏
i∈N

X0i, U =
∏
i∈N

Ui, Y =
∏
i∈N

Y 1
i . Moreover, F and H are

defined as

F(x, u) = {(x+i )i∈N |x+i ∈ Fi(xi, wi, ui)}, H(x) = (H1
i (xi))i∈N ,

where x = (xi)i∈N , u = (ui)i∈N , and with the internal variables constrained by
(wi)i∈N =M(h2i (xi))i∈N .

Note that condition M
∏
i∈N

Y 2
i ⊆

∏
i∈N

Wi is required to have a well-defined inter-

connection. The interconnection scheme of network T based on dissipativity approach
formulation is illustrated in Figure 2.1.

T1

TN

. . .

(wi)i2[1;N ]=M(h2
i (xi))i2[1;N ]

yu

T :=

M

Figure 2.1: The interconnection scheme for network T composed of N systems based on the
dissipativity approach formulation.

2.2.1.2 Small-Gain Approach Formulation

Definition 2.2.3. Consider transition systems Ti = (Xi, X0i ,Wi, Ui,Fi, Y 1
i , Y

2
i ,H1

i ,
H2
i ), i ∈ N . The network of transition systems is a tuple T = (X,X0, U,F , Y,H), de-

noted by T = I(Ti)i∈N , where X = {x = (xi)i∈N : xi ∈ Xi, ∥x∥ := supi∈N {|xi|} <∞},
X0 = {x = (xi)i∈N : xi ∈ X0i}, U = {u = (ui)i∈N : ui ∈ Ui, ∥u∥ := supi∈N {|ui|} <
∞}, Y =

∏
i∈N Y 1

i , F(x, u) = {(x+i )i∈N |x+i ∈ Fi(xi, wi, ui)}, H(x) = (H1
i (xi))i∈N , and

with the internal variables constrained by wi = (y2j )j∈Ni = (h2j (xj))j∈Ni,
∏
j∈Ni

Y 2
j ⊆ Wi,

∀j ∈ Ni,∀i ∈ N .

The interconnection scheme of network T based on small-gain formulation is illustrated
in Figure 2.2.

Remark 2.2.4. If N := [1;N ], N ∈ N, sets X,X0, and U in Definition 2.2.3 can be
also written as those in Definition 2.2.2. ⋄
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T1

TN

. . .

wi = (yj)j2Ni
= (h2

j(xj))j2Ni
;

yu

T :=

i 2 [1;N ]

Figure 2.2: The interconnection scheme for network T composed of N systems based on the
small-gain approach formulation.

2.2.2 Alternating Simulation Functions
Next we introduce a notion of so-called alternating simulation functions, inspired by
[GP09, Definition 1], which quantitatively relates two network of transition systems as
in Subsection 2.2.1.

Definition 2.2.5. Let T = (X,X0, U,F , Y,H) and T̂ = (X̂, X̂0, Û , F̂ , Ŷ , Ĥ) be networks
of transition systems with Ŷ ⊆ Y . A function S̃ : X × X̂ → R≥0 is called an alternating
simulation function from T̂ to T if there exist α̃, σ̃ ∈ K∞, with σ̃ ≤ id, ρ̃u ∈ K∞ ∪ {0},
and some ε̃ ∈ R≥0 so that the following hold:

• For every x ∈ X, x̂ ∈ X̂, one has

α̃(∥H(x)− Ĥ(x̂)∥)≤S̃(x, x̂). (2.2.1)

• For every x ∈ X, x̂ ∈ X̂, û ∈ Û , there exists u ∈ U such that for every x+ ∈ F(x, u)
there exists x̂+ ∈ F̂(x̂, û) so that

S̃(x+, x̂+) ≤ max{σ̃(S̃(x, x̂)), ρ̃u(∥û∥), ε̃}. (2.2.2)

We say that T̂ is an abstraction of T and write T̂ ≼S̃ T if there exists an alternating
simulation function from T̂ to T . In addition, if T̂ is finite (X̂ and Û are finite sets), we
say that T̂ is a symbolic model of T . Moreover, note that when T is a finite network,
we have ∥ · ∥ = | · |. Hence, from now on, we use | · | instead of ∥ · ∥ in the conditions
2.2.1 and 2.2.2 if the network is finite.

Let us point out some differences between our notion of alternating simulation func-
tion and the one in Definition 1 in [GP09]. The notion of simulation function in [GP09,
Definition 1] is defined between two continuous-time control systems, whereas in Defini-
tion 2.2.5, we define the alternating simulation function between two transition systems
which can be used to represent several classes of systems including continuous-time
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control systems. Additionally, on the right-hand-side of (2.2.2), we introduce constant
ε̃ ∈ R≥0 to allow the relation to be defined between two systems defined over either infi-
nite or finite state and input sets. The role of this constant will become clear later when
we introduce symbolic models. Such a constant does not appear in [GP09, Definition 1]
which makes it only suitable for systems defined over infinite sets. Furthermore, we for-
mulate the decay condition (2.2.2) in a max-form, while in [GP09] the decay condition
is formulated in an implication-form.

The following technical lemmas are used to prove some of the results in this chapter
and the following ones.

Lemma 2.2.6. For any a, b ∈ R>0, the following holds

a+ b ≤ max{(id+ λ)(a), (id+ λ−1)(b)}, (2.2.3)

for any λ ∈ K∞.

Proof. Define c = λ−1(b). Now, one has

a+ b =

{
a+ λ(c) ≤ c+ λ(c) = (id+ λ−1)(b) if a ≤ c,
a+ λ(c) < a+ λ(a) = (id+ λ)(a) if a > c,

which implies (2.2.3).

The next lemmas are borrowed from [Kel14].

Lemma 2.2.7. Consider α ∈ K and χ ∈ K∞, where (χ − id) ∈ K∞. Then for any
a, b ∈ R≥0

α(a+ b) ≤ α ◦ χ(a) + α ◦ χ ◦ (χ− id)−1(b).

Lemma 2.2.8. For any function σ̄ ∈ K∞, there exists a function σ̂ < id ∈ K∞ satisfying
σ̂ ≤ σ̃.

The next theorem shows that the decay condition (2.2.2) of the alternating simulation
function in Definition 2.2.5 can be also formulated in a sum-form.

Theorem 2.2.9. Consider systems T and T̂ and function S̃ : X × X̂ → R≥0 as in
Definition 2.2.5. Assume that there exist functions ᾱ, σ̄ ∈ K∞, with σ̄ < id, ρ̄u ∈
K∞∪{0}, and some ε̄ ∈ R≥0 such that for every x ∈ X, x̂ ∈ X̂, û ∈ Û , there exists u ∈ U
such that for every x+ ∈ F(x, u) there exists x̂+ ∈ F̂(x̂, û) so that

S̃(x+, x̂+) ≤ σ̄(S̃(x, x̂)) + ρ̄u(∥û∥) + ε̄. (2.2.4)

Then there exist α̃, σ̃ ∈ K∞, with σ̃ < id, ρ̃u ∈ K∞ ∪ {0}, and some ε̃ ∈ R≥0 such that
S̃ satisfies (2.2.2).
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Proof. Since σ̄ < id, define σ̂ = id− σ̄ ∈ K∞. Let ψ be a K∞ function with ψ < id, and
define c = σ̂−1 ◦ψ−1(ρ̄u(∥û∥)+ ε̄). Let D = {(x, x̂) ∈ X× X̂|S̃(x, x̂) ≤ c}. First, assume
(x, x̂) ∈ D. Then S̃(x, x̂) ≤ c, that is, ψ ◦ σ̂(S̃(x, x̂)) ≤ ρ̄u(∥û∥) + ε̄. Since σ̂ < id, and
ψ ◦ σ̂(c) = ρ̄u(∥û∥) + ε̄, and by using (2.2.4), one obtains

S̃(x+, x̂+) ≤ σ̄(S̃(x, x̂)) + ρ̄u(∥û∥) + ε̄

≤ (id− σ̂)(S̃(x, x̂)) + ρ̄u(∥û∥) + ε̄ ≤ (id− σ̂)(c) + ψ ◦ σ̂(c)
≤ c− σ̂(c) + ψ ◦ σ̂(c) ≤ −(id− ψ)(σ̂(c)) + c ≤ c,

Using the definition of c and by utilizing Lemmas 2.2.6 and 2.2.7, we have the following
inequality

S̃(x+, x̂+) ≤ σ̂−1 ◦ ψ−1(ρ̄u(∥û∥) + ε̄) ≤ max{ρ̃u(∥û∥), ε̃}, (2.2.5)

where ρ̃u = (id+λ) ◦ σ̂−1 ◦ψ−1 ◦χ ◦ ρ̄u, and ε̃ = (id+λ−1) ◦ σ̂−1 ◦ψ−1 ◦χ ◦ (χ− id)−1(ε̄),
for some arbitrarily chosen λ, χ ∈ K∞ with χ > id.

Now assume (x, x̂) /∈ D. Then ψ ◦ σ̂(S̃(x, x̂)) > ρ̄u(∥û∥) + ε̄, and one has

S̃(x+, x̂+) ≤ S̃(x, x̂)− σ̂(S̃(x, x̂)) + ψ ◦ σ̂(S̃(x, x̂)) ≤ S̃(x, x̂)− (id− ψ)(σ̂(S̃(x, x̂)))
≤ −ψ̃(S̃(x, x̂)) + S̃(x, x̂) ≤ (id− ψ̃)(S̃(x, x̂)), (2.2.6)

for all x+ ∈ f(x, u) and some x̂+ ∈ f̂(x̂, û), where ψ̃(s) := (id − ψ) ◦ σ̂. Observe that
(id− ψ̃) is a K∞ function since id− ψ and σ̂ are K∞ functions and (id− ψ̃) < id. From
(2.2.6) and by defining σ̃ := (id− ψ̃), one gets

S̃(x+, x̂+) ≤ σ̃(S̃(x, x̂)). (2.2.7)

Combining (2.2.5) and (2.2.7), one gets

S̃(x+, x̂+) ≤ max{σ̃(S̃(x, x̂)), ρ̃u(∥û∥), ε̃},

which completes the proof.

Before showing the next result, let us recall the definition of an alternating simulation
relation introduced in [PT09].

Definition 2.2.10. Let T = (X,X0, U,F , Y,H) and T̂ = (X̂, X̂0, Û , F̂ , Ŷ , Ĥ) be net-
works of transition systems with Ŷ ⊆ Y . A relation R ⊆ X×X̂ is called an ε̂-approximate
alternating simulation relation from T̂ to T if for any (x, x̂) ∈ R

(i) ∥H(x)− Ĥ(x̂)∥ ≤ ε̂;

(ii) For any û ∈ Û , there exists u ∈ U such that for all x+ ∈ F(x, u) there exists
x̂+ ∈ F̂(x̂, û) satisfying (x+, x̂+) ∈ R.

In addition, if (ii) still holds when reversing the role of T and T̂ , the relation R is in
fact an ε̂-approximate alternating bisimulation relation between T and T̂ [PT09].

The next result shows that the existence of an alternating simulation function for
networks of transition systems implies the existence of an approximate alternating sim-
ulation relation between them as defined above.

12
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Proposition 2.2.11. Let T = (X,X0, U,F , Y,H) and T̂ = (X̂, X̂0, Û , F̂ , Ŷ , Ĥ) be net-
works of transition systems with Ŷ ⊆ Y . Assume S̃ is an alternating simulation function
from T̂ to T as in Definition 2.2.5 and that there exists r ∈ R>0 such that ∥û∥ ≤ r for
all û ∈ Û . Then, relation R⊆X×X̂ defined by

R=
{
(x, x̂)∈X×X̂|S̃(x, x̂)≤ max {ρ̃u(r), ε̃}

}
,

is an ε̂-approximate alternating simulation relation from T̂ to T with

ε̂ = α̃−1(max{ρ̃u(r), ε̃}). (2.2.8)

Proof. Item (i) in Definition 2.2.10 is a simple consequence of the definition of R and
condition (2.2.1) (i.e. α̃(∥H(x) − Ĥ(x̂)∥) ≤ S̃(x, x̂) ≤ max{ρ̃u(r), ε̃}), which results
in ∥H(x) − Ĥ(x̂)∥ ≤ α̃−1(max{ρ̃u(r), ε̃}) = ε̂. Item (ii) in Definition 2.2.10 follows
immediately from the definition of R, condition (2.2.2), and the fact that σ̃ ≤ id. In
particular, we have S̃(x+, x̂+) ≤ max{ρ̃u(r), ε̃} which implies (x+, x̂+) ∈ R.

The approximate alternating simulation relation guarantees that for each output be-
havior of T there exists one of T̂ such that the distance between these output behaviors
is uniformly bounded by ε̂.

Remark 2.2.12. Since the input set in all practical applications is bounded, requiring
the control inputs to be bounded is not restrictive at all. Moreover, under certain stability
properties of concrete systems, one can choose function ρ̃u in (2.2.8) to be identically
zero which cancels the dependency on the size of control inputs in Proposition 2.2.11. ⋄

2.3 Discrete-Time Control Systems
The discrete-time control systems considered here are defined below.

Definition 2.3.1. A discrete-time control system Σ is defined by the tuple

Σ = (X,W,U, f,Y1,Y2, h1, h2), (2.3.1)

where

• X ⊆ Rn,U ⊆ Rm,W ⊆ Rr,Y1 ⊆ Rq1 , and Y2 ⊆ Rq2 are the state set, external input
set, internal input set, external output set, and internal output set, respectively;

• f : X× U×W → X is the transition function;

• h1 : X → Y1 is the external output map;

• h2 : X → Y2 is the internal output map.

13
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The discrete-time control system Σ is described by difference equations of the form

Σ :


x(k + 1) = f(x(k), ω(k), ν(k)),

y1(k) = h1(x(k)),
y2(k) = h2(x(k)),

(2.3.2)

where x : N → X, ω : N → W, ν : N → U, y1 : N → Y1, and y2 : N → Y2 are the state
signal, internal input signal, external input signal, external output signal, and internal
output signal, respectively.

If Σ is linear, (2.3.2) reduces to

Σ :


x(k + 1) = Ax(k) +Dω(k) +Bν(k),

y1(k) = C1x(k),
y2(k) = C2x(k),

(2.3.3)

where A ∈ Rn×n, B ∈ Rn×m, C1 ∈ Rq1×n, C2 ∈ Rq2×n, and D ∈ Rn×r. We use the
tuple Σ = (A,B,C1, C2, D) to refer to the class of control systems of the form (2.3.3).

2.3.1 Discrete-Time Control Systems as Transition Systems
Here, we represent discrete-time control systems as transition systems. Such a represen-
tation allows us to write discrete-time control systems and their symbolic models in a
unified way.

Definition 2.3.2. Given a discrete-time control system Σ = (X,W,U, f,Y1,Y2, h1, h2)
we define the associated transition system T (Σ) = (X,X0,W,U,F , Y 1, Y 2, H1,H2),
where: X = X, X0 = X, W = W, U = U, Y 1 = Y1, Y 2 = Y2, H1 = h1, H2 = h2, and
x+ ∈ F(x,w, u) if and only if x+ = f(x,w, u).

2.4 Discrete-Time Switched Systems
In this section, we consider discrete-time switched systems as defined below.

Definition 2.4.1. A discrete-time switched system Σ is defined by the tuple

Σ = (X,W, P, F,Y1,Y2, h1, h2), (2.4.1)

where

• X ⊆ Rn,W ⊆ Rr,Y1 ⊆ Rq1 , and Y2 ⊆ Rq2 are the state set, internal input set,
external output set, and internal output set, respectively;

• P = {1, . . . ,m} is a finite set of modes;

• F = {f1, . . . , fm} is a collection of transition maps fp : X×W → X for all p ∈ P ;

• h1 : X → Y1 is the external output map;

14
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• h2 : X → Y2 is the internal output map.

The discrete-time switched system Σ is described by difference equations of the form

Σ :


x(k + 1) = fp(k)(x(k), ω(k)),

y1(k) = h1(x(k)),
y2(k) = h2(x(k)),

(2.4.2)

where x : N → X, ω : N → W, p : N → P, y1 : N → Y1, and y2 : N → Y2 are the
state signal, internal input signal, switching signal, external output signal, and internal
output signal, respectively. We denote by Σp the system (2.4.2) with constant switching
signal p(k) = p ∈ P ∀k ∈ N≥1. Let ϕk, k ∈ N≥1, denote the time when the k-th switching
instant occurs and define Φ := {ϕk : k ∈ N≥1} as the set of switching instants. We
assume that signal p satisfies a dwell-time condition [Mor96] (i.e. there exists kd ∈ N≥1,
called the dwell-time, such that for all consecutive switching time instants ϕk, ϕk+1 ∈ Φ,
ϕk+1 − ϕk ≥ kd).

If Σ is an affine switched system, (2.4.2) reduces to

Σ :


x(k + 1) = Ap(k)x(k) +Dp(k)ω(k) +Bp(k),

y1(k) = C1x(k),
y2(k) = C2x(k),

(2.4.3)

where Ap ∈ Rn×n, Bp ∈ Rn, C1 ∈ Rq1×n, C2 ∈ Rq2×n, and Dp ∈ Rn×r, for all p ∈ P .
We use the tuple Σ = (A,B,C1, C2, D) to refer to the class of control systems of the
form (2.4.3), where A = {A1, . . . , Am}, B = {B1, · · · , Bm}, D = {D1, . . . , Dm}.

2.4.1 Discrete-Time Switched Systems as Transition Systems
Similar to Subsection 2.3.1, we also define discrete-time switched systems as transition
systems.

Definition 2.4.2. Given a discrete-time switched system Σ = (X,W, P, F,Y1,Y2, h1, h2)
we define the associated transition system T (Σ) = (X,X0,W,U,F , Y 1, Y 2, H1,H2),
where:

• X = X× P × {0, · · · , kd − 1} is the state set;

• X0 = X× P × {0} is the initial state set;

• U = P is the external input set;

• W = W is the internal input set;

• (x+, p+, l+) ∈ F((x, p, l), u, w) if and only if x+ = fp(x,w), u = p and the following
scenarios hold:

– l < kd − 1, p+ = p and l+ = l + 1: switching is not allowed because the time
elapsed since the latest switch is strictly smaller than the dwell time;
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– l = kd−1, p+ = p and l+ = kd−1: switching is allowed but no switch occurs;
– l = kd − 1, p+ ̸= p and l+ = 0: switching is allowed and a switch occurs;

• Y 1 = Y1;

• Y 2 = Y2;

• H1 : X → Y 1 is the external output map defined as H1(x, p, l) = h1(x);

• H2 : X → Y 2 is the external output map defined as H2(x, p, l) = h2(x).

2.5 General Remark
1. We assume that there exists a unique solution to (2.3.2) and (2.4.2) describing the

evolution of the discrete-time control and switched systems in (2.3.1) and (2.4.1),
respectively.

2. The external and internal output map hj , j ∈ [1; 2], for systems in (2.3.1) and
(2.4.1), satisfy the following general Lipschitz assumption: there exist ℓj ∈ K∞
such that |hj(x)− hj(x′)| ≤ ℓj(|x−x′|) for all x, x′ ∈ X and for all j ∈ [1; 2]. Note
that this assumption on hj , j ∈ [1; 2] is not restrictive at all provided that one is
interested to work on a compact subset of X.

3. The network of the discrete-time control and switched systems in (2.3.1) and (2.4.1)
based on the Dissipativity and small-gain approaches can be similarly defined to the
network of transition systems in Definitions 2.2.1.1 and 2.2.1.2. Those definition
will be formally given in the following chapters.

4. The use of transition systems as an alternative description for discrete-time control
and switched systems allows one to define infinite and finite systems in a common
framework. Moreover, it allows us to directly apply the compositional frameworks,
which will be introduced in the following chapters.
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3 Symbolic Models for (In)finite Networks
of Discrete-Time Control Systems

3.1 Introduction
Large-scale networks appear in a wide variety of modern applications, including traffic
networks [Ker19], transportation systems [Cas01], and power systems [Qua77]. More-
over, in many applications, a system is considered as a finite but very large network with
possibly unknown number of systems; see [JB05, BPD02, Li11] and references therein.
Hence, it is reasonable to over-approximate such a system by an infinite network which
is seen as an interconnection of infinitely many finite-dimensional systems. In general,
designing controllers enforcing sophisticated properties on those large networks is a chal-
lenging problem. Construction of symbolic models was introduced in recent years as a
promising method to address these issues. Unfortunately, the construction of symbolic
models for large-scale systems is itself computationally a complex and challenging task.
An appropriate technique to overcome this challenge is to first construct symbolic models
of the concrete systems individually and then establish a compositional framework using
which one can construct a symbolic model of the overall network using those individual
symbolic models. Motivated by the above limitation, this chapter is concerned with
providing compositional approaches for designing symbolic models for (in)finite network
of discrete-time systems. We propose a compositional technique for the construction of
a notion of so-called alternating simulation function as a relation between a network of
symbolic models and that of discrete-time systems. The alternating simulation function
provides a formal upper bound for the mismatch between the output behaviors of the
concrete and the abstract network.

3.1.1 Related Work
3.1.1.1 Finite Network

In the past few years, there have been several results on the compositional construc-
tion of symbolic models of networks of control systems. The framework introduced
by [TI08] based on the notion of interconnection-compatible approximate bisimulation
relation provides networks of symbolic models approximating networks of stabilizable
linear control systems. This work was extended by [PPB16] to networks of incrementally
input-to-state stable nonlinear control systems using the notion of approximate bisimu-
lation relation. The recent result by [MSSM19] introduces a new system relation, called
(approximate) disturbance bisimulation relation, as the basis for the compositional con-
struction of symbolic models. The proposed results by [TI08], [PPB16], and [MSSM19]

17
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use the small-gain type conditions and provide complete symbolic models of intercon-
nected systems compositionally. Unfortunately, those small-gain type conditions are
conservative, in the sense that they are all formulated in terms of “almost” linear gains,
which means the considered systems should have a (nearly) linear behavior. Those con-
ditions may not hold in general for systems with nonlinear gain functions. Additionally,
those small-gain type conditions depend essentially on the size of the network graph
and can be violated as the number of systems in the network increases [DK04]. More-
over, all compositional techniques for the construction of symbolic models introduced
in [TI08, PPB16, MSSM19] are tailored to networks composed of finitely many systems
and can not be directly applied to networks consisting of an infinitely many components.

3.1.1.2 Infinite Network

Construction of symbolic models for infinite dimensional systems is already proposed in
[PPB10, Gir14, PPB15, JZ20]. In [PPB10], symbolic models are constructed for non-
linear continuous time-delay systems with known and constant delays. This work was
extended in [PPB15] to the same class of systems with unknown and time-varying de-
lays. The results in [Gir14] provide a generic state-space discretization-free approach
for computing symbolic models of finite or infinite dimensional systems which are in-
crementally stable. A state-space discretization-free approach was also introduced in
[JZ20] for designing symbolic models for infinite dimensional stochastic systems, partic-
ularly, retarded jump-diffusion systems. While the results in [PPB10, PPB15, JZ20] deal
with time-delay systems evolving over finite-dimensional state spaces, here we deal with
an interconnection of infinitely many finite-dimensional systems evolving over infinite-
dimensional state spaces. The result in [Gir14] deals with a single incrementally stable
infinite-dimensional system with finite-dimensional input space and the finite abstrac-
tion is based on input sequences which is not the case in this work. Here both state
and input spaces of the concrete network is infinite-dimensional and the construction of
symbolic models is based on the discretization of both state and input spaces. Moreover,
all the proposed results in [PPB10, Gir14, PPB15, JZ20] take a monolithic view of the
systems while constructing symbolic models. However, our result provides a composi-
tional approach on the construction of a symbolic model of the network using those of
local systems.

3.1.2 Contributions

In the first part of this chapter, we introduce a compositional approach for the construc-
tion of symbolic models of finite networks of discrete-time control systems by leveraging
techniques from dissipativity theory [AMP16]. First, we introduce a notion of so-called
sum-type simulation function inspired by the one introduced in [ZA17] and use it to
quantify the joint dissipativity-type properties of local discrete-time control systems and
their symbolic models. Given a sum-type simulation function between systems and their
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symbolic models, we drive compositional conditions under which one can construct a so-
called alternating simulation function as a relation between the network of symbolic
models and that of control systems. The existence of such an alternating simulation
function ensures that the output behavior of the concrete network is quantitatively ap-
proximated by that of its symbolic model. In addition, we provide a procedure for the
construction of symbolic models together with their corresponding sum-type simulation
functions for a class of discrete-time control systems satisfying some incremental passiv-
ity property. We also show that for a network of linear discrete-time control systems,
the aforementioned incremental passivity property can be readily verified by checking a
matrix inequality. Finally, we apply the proposed results to the temperature regulation
in a circular building and construct compositionally a symbolic model of a network con-
taining 1200 rooms. Moreover, we show the effectiveness of the proposed results in the
case of fully connected network as well.

In the second part of the chapter, we introduce a compositional approach for the con-
struction of symbolic models for network of discrete-time control systems using more
general small-gain type conditions. First, we introduce a notion of so-called max-type
simulation functions inspired by [GP09, Definition 1] as a system relation. Given max-
type simulation functions between local systems and their symbolic models, we derive
some small-gain type conditions to construct an overall alternating simulation function
as a relation between the interconnected abstractions and the concrete network. Those
general small-gain type compositional conditions are formulated in a general nonlinear
form which can be applied to both linear and nonlinear gain functions without making
any pre-assumptions on them. We show that our proposed small-gain type condition
is much more general than the ones proposed in [PPB16, MSSM19]. Moreover, we in-
troduce a compositional methodology for constructing symbolic models for a network
composed of infinitely many finite-dimensional systems. Based on the recently developed
small-gain theorem [DMSW19], we show that an alternating simulation function can be
constructed by composing max-type simulation functions relating each finite-dimensional
system and its symbolic model. In addition, we provide a framework for the construction
of symbolic models together with their corresponding max-type simulation functions for
discrete-time control systems satisfying an incremental input-to-state stability property
[TRK16]. Finally, we illustrate results based on the small-gain approach in three case
studies by compositionally constructing symbolic models of three networks of (linear and
nonlinear) discrete-time control systems and their corresponding alternating simulation
functions. The first and second case studies particularly elucidate the effectiveness of the
proposed results in comparison with the compositionality result using dissipativity-type
conditions in the first part of this chapter. The third case study shows the effectiveness
of our proposed technique by applying it to a model of a road traffic network containing
infinitely many cells (systems). We construct symbolic models for the original systems
and compositionally construct an alternating simulation function from the interconnec-
tion of infinitely many symbolic models to the interconnection of the concrete systems.
We also design controllers compositionally maintaining the density of traffic between 10
and 25 vehicles per cell.
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3.2 Dissipativity Approach (DA)

3.2.1 Finite Networks of Discrete-Time Control Systems: DA Formulation

Definition 3.2.1. Consider discrete-time control systems Σi = (Xi,Wi,Ui, fi,Y1
i ,Y2

i ,
h1i , h

2
i ), i ∈ N := [1;N ], N ∈ N. Let M be a static matrix of an appropriate dimension

defining the coupling of these system such that M
∏
i∈N

Y2
i ⊆

∏
i∈N

Wi. The network of

discrete-time control system is a tuple Σ = (X,U, f,Y, h), denoted by Σ = IM (Σi)i∈N ,
where X =

∏
i∈N

Xi, U =
∏
i∈N

Ui, Y =
∏
i∈N

Y1
i . Moreover, f and h are defined as

f(x, u) = (fi(xi, wi, ui))i∈N , h(x) = (h1i (xi))i∈N ,

where x = (xi)i∈N , u = (ui)i∈N , and with the internal variables constrained by
(wi)i∈N =M(h2i (xi))i∈N . The network is described by the difference equations

Σ :

{
x(k + 1) = f(x(k), ν(k)),

y(k) = h(x(k)),
(3.2.1)

where x : N → X, ν : N → U, and y : N → Y.

Note that condition M
∏
i∈N

Y2
i ⊆

∏
i∈N

Wi is required to have a well-defined intercon-

nection.

3.2.2 Sum-Type Simulation Functions

Consider a network of discrete-time control systems Σ = IM (Σi)i∈N , or their equivalent
network of transition systems T (Σ) = IM (Ti(Σi))i∈N , where each Ti(Σi) given as in
Definition 2.3.2. Assume that each system Ti(Σi) = (Xi, X0i ,Wi, Ui,Fi, Y 1

i , Y
2
i , H1

i ,H2
i )

and T̂i(Σi) = (X̂i, X̂0i , Ŵi, Ûi, F̂i, Ŷ 1
i , Ŷ

2
i , Ĥ1

i , Ĥ2
i ) admit a sum-type simulation function

as defined next.

Definition 3.2.2. Consider systems Ti(Σi) = (Xi, X0i ,Wi, Ui,Fi, Y 1
i , Y

2
i , H1

i ,H2
i ) and

T̂i(Σi) = (X̂i, X̂0i , Ŵi, Ûi, F̂i, Ŷ 1
i , Ŷ

2
i , Ĥ1

i , Ĥ2
i ) where Ŷ 1

i ⊆ Y 1
i . A function Si : Xi ×

X̂i → R≥0 is called a sum-type simulation function from T̂i(Σi) to Ti(Σi) if there exist
αi, σi ∈ K∞, ρui ∈ K∞ ∪ {0}, a symmetric matrix Ri of appropriate dimension with
conformal block partitions Ri

′j′

i , i′, j′ ∈ [1; 2], and some εi ∈ R≥0 so that the following
hold:

• For every xi ∈ Xi, x̂i ∈ X̂i, one has

αi(|H1
i (xi)− Ĥ1

i (x̂i)|)≤Si(xi, x̂i). (3.2.2)
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• For every xi ∈ Xi, x̂i ∈ X̂i, ûi ∈ Ûi, there exists ui ∈ Ui such that for every
wi ∈Wi, ŵi ∈ Ŵi, x

+
i ∈ Fi(xi, wi, ui) there exists x̂+i ∈ F̂i(x̂i, ŵi, ûi) so that

Si(x+i , x̂
+
i )− Si(xi, x̂i) ≤− σi(Si(xi, x̂i)) + ρui(|ûi|) + εi (3.2.3)

+

[
wi − ŵi

H2
i (xi)− Ĥ2

i (x̂i)

]⊤

Ri:=︷ ︸︸ ︷[
R11
i R12

i

R21
i R22

i

] [
wi − ŵi

H2
i (xi)− Ĥ2

i (x̂i)

]
.

System T̂i(Σi) is called an abstraction of Ti(Σi), denoted by T̂i(Σi) ≼Ss
i
Ti(Σi), if there

exists a sum-type simulation function from T̂i(Σi) to Ti(Σi). Moreover, if T̂i(Σi) is finite,
it is called a symbolic model of Ti(Σi).

3.2.3 Compositional Abstractions for Finite Networks of Discrete-Time
Control Systems: DA

We assume that we are given Σi = (Xi,Wi,Ui, fi,Y1
i ,Y2

i , h
1
i , h

2
i ), or equivalently Ti(Σi) =

(Xi, X0i ,Wi, Ui,Fi, Y 1
i , Y

2
i ,H1

i ,H2
i ) as in Definition 2.3.2, together with their abstrac-

tions T̂i(Σi) = (X̂i, X̂0i , Ŵi, Ûi, F̂i, Ŷ 1
i , Ŷ

2
i , Ĥ1

i , Ĥ2
i ), i ∈ N , and sum-type simulation

functions Si from T̂i(Σi) to Ti(Σi) as in Definition 3.2.2.
The next theorem provides a compositional approach on the construction of abstrac-

tions of the networks of transition systems T (Σ) = IM (Ti(Σi))i∈N associated to network
of discrete-time control systems Σ = IM (Σi)i∈N and that of the corresponding alter-
nating simulation function.

Theorem 3.2.3. Consider the network T (Σ) = IM (Ti(Σi))i∈N associated to the network
of discrete-time control systems Σ = IM (Σi)i∈N . Suppose each transition system Ti(Σi)
admits an abstraction T̂i(Σi) with the corresponding sum-type simulation function Si. If
there exist µi > 0, i ∈ N such that the matrix inequality and inclusion[

M
Iq

]⊤

R̃

[
M
Iq

]
≼ 0, (3.2.4)

M
∏N
i=1 Ŷ

2
i ⊆

∏N
i=1 Ŵi, (3.2.5)

are satisfied, where

R̃ :=



µ1R
11
1 µ1R

12
1

. . . . . .
µNR

11
N µNR

12
N

µ1R
21
1 µ1R

22
1

. . . . . .
µNR

21
N µNR

22
N


, (3.2.6)
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and q is the number of rows in M , then

S̃(x, x̂) :=
∑
i∈N

µiSi(xi, x̂i), (3.2.7)

is an alternating simulation function, as in Definition 2.2.5, from T̂ (Σ) = IM (T̂i(Σi))i∈N

to T (Σ) = IM (Ti(Σi))i∈N .

Proof. First we show that inequality (2.2.1) holds. Consider any x ∈ X and x̂ ∈ X̂, one
gets:

|H(x)− Ĥ(x̂)| = |(H1
i (xi)− Ĥ1

i (x̂i))i∈N |

≤
N∑
i=1

|H1
i (xi)− Ĥ1

i (x̂i)| ≤
N∑
i=1

α−1
i (Si(xi, x̂i)) ≤ α̂

(
S̃(x, x̂)

)
,

where α̂ is a K∞ function defined as

α̂(s) = max
ŝ≥0

{∑N
i=1 α

−1
i (si)|µ⊤ŝ = s

}
,

where ŝ = (si)i∈N ∈ RN≥0 and µ = (µi)i∈N . By defining the K∞ function α̃ = α̂−1, one
obtains

α̃(|H(x)− Ĥ(x̂)|) ≤ S̃(x, x̂),

satisfying inequality (2.2.1). Now we show that inequality (2.2.2) holds as well. Define

σ̄(s) := min
ŝ≥0

{
N∑
i=1

µiσi(si)|µ⊤ŝ = s

}
, (3.2.8)

ρ̄u(s) := max
ŝ≥0

{
N∑
i=1

µiρui(|si|) | |ŝ| = s

}
, ε̄ :=

N∑
i=1

µiεi,

where σ̄ ∈ K∞ and ρ̄u ∈ K∞ ∪ {0}. Moreover, consider condition (3.2.4), and the
definition of matrix R̃ in (3.2.6). Then, one gets the chain of inequalities in (3.2.9).
Now, without loss of generality, we can consider σ̄ < id and write

S̃(x+, x̂+) ≤ σ(S̃ (x, x̂)) + ρ̄u(|û|) + ε̄,

where σ = id − σ̄. Otherwise, we can define σ = id − σ̂, where σ̂ is given as in Lemma
2.2.8 for function σ̄ appearing in (3.2.8). By using the result of Theorem 2.2.9, one
obtains

S̃(x+, x̂+) ≤ max{σ̃(S̃ (x, x̂)), ρ̃u(|û|), ε̃},

satisfying (2.2.2) with σ̃ := (id−(id−ψ)◦(id−σ)), ρ̃u = (id+λ)◦(id−σ)−1 ◦ψ−1 ◦χ◦ ρ̄u,
and ε̃ = (id + λ−1) ◦ (id − σ)−1 ◦ ψ−1 ◦ χ ◦ (χ − id)−1(ε̄), for some arbitrarily chosen
λ, ψ, χ ∈ K∞ with ψ < id and χ > id. Hence, S̃ is an alternating simulation function
from T̂ (Σ) = IM (T̂i(Σi))i∈N to T (Σ) = IM (Ti(Σi))i∈N .
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S̃(x+, x̂+)− S̃(x, x̂) =
N∑
i=1

µi
(
Si(x+i , x̂

+
i )− Si(xi, x̂i)

)

≤
N∑
i=1

µi

(
− σi(Si(xi, x̂i))+ρui(|ûi|)+εi+

[
wi−ŵi

H2
i (xi)−Ĥ2

i (x̂i)

]⊤

Ri:=︷ ︸︸ ︷[
R11
i R12

i

R21
i R22

i

] [
wi−ŵi

H2
i (xi)−Ĥ2

i (x̂i)

])

=
N∑
i=1

−µi
(
σi(Si(xi, x̂i))+ρui(|ûi|)+εi

)
+

[
(wi−ŵi)i∈N

(H2
i (xi)−Ĥ2

i (x̂i))i∈N

]⊤

R̃

[
(wi−ŵi)i∈N

(H2
i (xi)−Ĥ2

i (x̂i))i∈N

]

≤
N∑
i=1

−µi
(
σi(Si(xi, x̂i))

)
+

N∑
i=1

µiρui(|ûi|) +
N∑
i=1

µiεi

+
[
(H2

i (xi)− Ĥ2
i (x̂i))i∈N

]⊤ [
M
Iq

]⊤

R̃

[
M
Iq

] [
(H2

i (xi)− Ĥ2
i (x̂i))i∈N

]
≤

N∑
i=1

−µi
(
σi(Si(xi, x̂i))

)
+

N∑
i=1

µiρui(|ûi|) +
N∑
i=1

µiεi

=− σ̄(S̃ (x, x̂)) + ρ̄u(|û|) + ε̄. (3.2.9)

Figure 3.1 schematically shows the results of Theorem 3.2.3.

Remark 3.2.4. Condition (3.2.4) is a linear matrix inequality which can be verified by
some semi-definite programming tools (e.g. YALMIP [Lof04] or SeDuMi [Stu98]). Note
that condition (3.2.5) is required to have a well-defined interconnection of abstractions
and is automatically fulfilled if one constructs the internal input sets of each abstractions
T̂i(Σ̂i) such that the equality M

∏N
i=1 Ŷ2i =

∏N
i=1 Ŵi holds. ⋄

3.2.4 Construction of Symbolic Models

In the following, we introduce some stability properties for Σ = (X,W,U, f,Y1,Y2,
h1, h2) based on which one can construct its symbolic model along with the corresponding
sum-type simulation functions between Σ and its symbolic model.

3.2.4.1 Incremental Passivity

Definition 3.2.5. System Σ is called incrementally passive (δ-P) if there exist functions
S : X × X → R≥0, φx, φs, φu ∈ K∞, with φs < id, and a symmetric matrix Q of
appropriate dimension, such that for all x, x′ ∈ X, u, u′ ∈ U, and for all w,w′ ∈ W

φx(|x− x′|) ≤ S(x, x′), (3.2.10)
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T̂i(Σi)

ŷ1i

ŷ2i

ûi

Ti(Σi)

y1i

y2i

ui

�Ss
i

. . .

(wi)i∈[1;N ]=M(h2
i (xi))i∈[1;N ]

yu

M

. . .

(wi)i∈[1;N ]=M(h2
i (xi))i∈[1;N ]

ŷû

M

T̂1(Σ1)

T̂N(ΣN) TN(ΣN)

T1(Σ1)

�
S̃

ŵi wi

Figure 3.1: Compositionality results for constructing network of abstractions provided that
condition (3.2.4) and (3.2.5) are satisfied.

S(f(x,w, u), f(x′, w′, u′)) ≤ φs(S(x, x
′)) + φu(|u− u′|) (3.2.11)

+

[
w − w′

h2(x)− h2(x′)

]⊤

Q:=︷ ︸︸ ︷[
Q11 Q12

Q21 Q22

] [
w − w′

h2(x)− h2(x′)

]
.

We say that S and Q are δ-P storage function and supply rate, respectively, for system
Σ if they satisfy (3.2.10) and (3.2.11).

3.2.4.2 Symbolic Models

In the following lines, we show how to construct a symbolic model T̂ (Σ) of transition
system T (Σ) associated to a δ-P discrete-time control system Σ.

Definition 3.2.6. Consider a transition system T (Σ) = (X,X0,W,U,F , Y 1, Y 2,H1,H2),
associated to a δ-P discrete-time control system Σ = (X,W,U, f,Y1,Y2, h1, h2). Suppose
X,W,U are finite unions of boxes (see Chapter 2, Section 2.1). Then one can construct
a symbolic model T̂ (Σ)=(X̂, X̂0, Ŵ , Û , F̂ , Ŷ 1, Ŷ 2, Ĥ1, Ĥ2) where:

• X̂ = [X]ηx, where 0 < ηx ≤ span(X) is the state set quantization parameter;

• X̂0 = [X0]ηx;

• Ŵ = [W ]ηw , where 0 < ηw ≤ span(W ) is the internal input set quantization
parameter;
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η
x

f(x̂; ŵ; û)

x̂

x̂+x̂+

x̂+x̂+

Figure 3.2: An illustration of the computation of the transitions of T̂ (Σ) for particular x̂, û, ŵ.

• Û = [U ]ηu, where 0 < ηu ≤ span(U) is the external input set set quantization
parameter;

• x̂+ ∈ F̂(x̂, ŵ, û) if and only if |x̂+ − f(x̂, ŵ, û)| ≤ ηx;

• Ŷ 1 = {H1(x̂)|x̂ ∈ X̂};

• Ŷ 2 = {H2(x̂)|x̂ ∈ X̂};

• Ĥ1 = H1;

• Ĥ2 = H2.

An illustration of the computation of the transitions of T̂ (Σ) is shown in Figure 3.2.

Remark 3.2.7. In the context of networks of systems in which we consider T̂i(Σi) =
(X̂i, X̂0i , Ŵi, Ûi, F̂i, Ŷ 1

i , Ŷ
2
i , Ĥ1

i , Ĥ2
i ) as a component of T̂ (Σ) = IM (T̂i(Σi))i∈[1;N ], the

quantization parameter ηwi of the set Wi should be chosen in such a way that the network
T̂ (Σ) is well-defined. Alternatively, if we directly choose Ŵi such that M

∏N
i=1 Ŷ

2
i =∏N

i=1 Ŵi, condition (3.2.5) holds and T̂ (Σ) is well-defined (cf. Remark 3.2.4).

In the next subsection, we show the existence of sum-type simulation functions between
T (Σ) associated to δ-P discrete-time control systems Σ and their symbolic models T̂ (Σ)
constructed as in Definition 3.2.6.

3.2.4.3 Construction of Sum-Type Simulation Functions

Given a δ-P discrete-time control system Σ, we show that the δ-P storage function S in
Definition 3.2.5 is a sum-type simulation function from T̂ (Σ) to T (Σ) and from T (Σ) to
T̂ (Σ).
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Theorem 3.2.8. Consider a transition system T (Σ), associated to a δ-P discrete-time
control system Σ. Let T̂ (Σ) be a symbolic model constructed as in Definition 3.2.6.
Assume that there exists a K∞ function γ such that for any x, y, z ∈ X

S(x, y) ≤ S(x, z) + γ(|y − z|), (3.2.12)

for S in Definition 3.2.5. Then S is a sum-type simulation function from T̂ (Σ) to T (Σ)
and from T (Σ) to T̂ (Σ).

Proof. Given the Lipschitz assumption on h1 and since system Σ is incrementally passive,
from (3.2.10), for any x ∈ X and any x̂ ∈ X̂, we have

|H1(x)− Ĥ1(x̂)| = |h1(x)− h1(x̂)| ≤ ℓ1(|x− x̂|) ≤ ℓ1 ◦ φ−1
x (S(x, x̂)).

By defining α = (ℓ1 ◦ φ−1
x )−1, one obtains

α(|H1(x)− Ĥ1(x̂)|) ≤ S(x, x̂),

satisfying (3.2.2).
Now consider any û ∈ Û and choose u = û. Then, using (3.2.12), for any x ∈ X, x̂ ∈ X̂,

any û ∈ Û , and any w ∈W, ŵ ∈ Ŵ , we have

S(f(x, û, w), x̂+) ≤ S(f(x, û, w), f(x̂, û, ŵ)) + γ(|x̂+ − f(x̂, û, ŵ)|),

for any x̂+ ∈ F̂(x̂, û, ŵ). Now, from Definition 3.2.6, the above inequality reduces to

S(f(x, û, w), x̂+) ≤ S(f(x, û, w), f(x̂, û, ŵ)) + γ(ηx).

Note that by (3.2.11), we get

S(f(x, û, w), f(x̂, û, ŵ))≤φs(S(x, x̂)) +
[

w − ŵ

H2(x)− Ĥ2(x̂)

]⊤

Q:=︷ ︸︸ ︷[
Q11 Q12

Q21 Q22

] [
w − ŵ

H2 − Ĥ2(x̂)

]
.

It follows that for any x ∈ X, x̂ ∈ X̂, any û ∈ Û , and any w ∈W, ŵ ∈ Ŵ , one obtains

S(f(x, û, w), x̂+)≤φs(S(x, x̂))+
[

w−ŵ
H2(x)−Ĥ2(x̂)

]⊤

Q:=︷ ︸︸ ︷[
Q11 Q12

Q21 Q22

] [
w−ŵ

H2(x)−Ĥ2(x̂)

]
+γ(ηx),

for any x̂+ ∈ F̂(x̂, û, ŵ), satisfying (3.2.3) with ε = γ(ηx), σ = id − φs, ρu = 0, and
R = Q. Hence, S is a sum-type simulation function from T̂ (Σ) to T (Σ). The rest of the
proof follows similar argument. In particular, by the definition of Û , for any u ∈ U there
always exists û ∈ Û such that φu(|u− û|) ≤ φu(η

u) which results in ε = φu(η
u)+ γ(ηx).

Other terms in the sum-type simulation function S are the same as the first part of the
proof.
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Remark 3.2.9. Note that if system Σ is not δ-P, one can assume that Σ is incrementally
passivable. That is there exists feedback controller G :X→U such that (3.2.11) is satisfied
with the left-hand side of (3.2.11) given as S(f(x,w,G(x)+u), f(x′, w′,G(x′)+u′)). ⋄

Remark 3.2.10. Remark that condition (3.2.12) is not restrictive at all provided that
one is interested to work on a compact subset of X. We refer the interested readers to the
explanation provided after equation (V.2) in [ZEM+14] on how to compute such function
γ. ⋄

Now we provide similar results as in Theorem 3.2.8 but tailored to linear control
systems as in (2.3.3) which are computationally more efficient. In particular, the in-
cremental passivity assumption in Definition 3.2.5 boils down in the linear case to the
following assumption.
Assumption 3.2.11. Consider linear control systems Σ = (A,B,C1, C2, D). Assume
that there exists matrix Z ≻ 0, a symmetric matrix G of appropriate dimension with
conformal block partitions Gij, i, j ∈ [1; 2] of appropriate dimensions such that the matrix
inequality[

(1 + θ)A⊤ZA A⊤ZD
D⊤AZ (1 + θ)D⊤ZD

]
≼

[
φcZ + C2⊤G22C2 C2⊤G21

G12C2 G11

]
, (3.2.13)

holds for some constants 0 < φc < 1, and θ ∈ R>0.
Theorem 3.2.12. Consider a transition system T (Σ), associated to linear control sys-
tems Σ for which Assumption 3.2.11 holds. Let T̂ (Σ) be a symbolic model constructed
as in Definition 3.2.6. Then function S defined as

S(x, x̂) = (x− x̂)⊤Z(x− x̂), (3.2.14)

is a sum-type simulation function from T̂ (Σ) to T (Σ) and from T (Σ) to T̂ (Σ).
Proof. First, we show that condition (3.2.2) holds. Since C1 = Ĉ1, we have

|C1x− Ĉ1x̂|2 ≤ nλmax(C
1⊤C1)|x− x̂|2,

and similarly

λmin(Z)|x− x̂|2 ≤ (x− x̂)⊤Z(x− x̂).

It can be verified that (3.2.2) holds for S defined in (3.2.14) with α(s) = λmin(Z)

nλmax(C1⊤C1)
s2

for any s ∈ R≥0. We continue to show that (3.2.3) holds as well. Let û be given
and choose u = û. Consider any x+ = Ax + Dw + Bû and let x̂+ be defined as in
Definition 3.2.6. Define ∆ := Ax̂ + Dŵ + Bû − x̂+, and observe that |∆| ≤ ηx by
Definition 3.2.6. Now, one obtains the chain of inequalities in (3.2.15) satisfying (3.2.3)
with ε = (2+nθ)λmax(Z)(ηx)2

θ , σ = 1 − φc, ρu = 0, and R = G. Hence, S is a sum-type
simulation function from T̂ (Σ) to T (Σ). The rest of the proof follows similar argument.
In particular, by the definition of Û , for any u ∈ U there always exists û ∈ Û such that
φu(|u − û|) ≤ φu(η

u) which results in ε = (2+nθ)λmax(Z)(|B|ηu+ηx)2
θ . Other terms are the

same as before.
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S(x+, x̂+)

=(Ax+Dw +Bû− (Ax̂+Dŵ +Bû) + (Ax̂+Dŵ +Bû)− x̂+)⊤Z

(Ax+Dw +Bû− (Ax̂+Dŵ +Bû) + (Ax̂+Dŵ +Bû)− x̂+)

=(Ax+Dw +Bû− (Ax̂+Dŵ +Bû) + ∆)⊤Z

(Ax+Dw +Bû− (Ax̂+Dŵ +Bû) + ∆)

≤(A(x− x̂) +D(w − ŵ) + ∆)⊤Z(A(x− x̂) +D(w − ŵ) + ∆)

≤(x− x̂)⊤A⊤ZA(x− x̂) + 2(x− x̂)⊤A⊤ZD(w − ŵ) + 2(x− x̂)⊤A⊤Z∆

(w − ŵ)⊤D⊤ZD(w − ŵ) + 2(w − ŵ)⊤D⊤Zηx +∆⊤Z∆

≤(x−x̂)⊤A⊤ZA(x−x̂)+2(x− x̂)⊤A⊤ZD(w−ŵ)+2|(x−x̂)⊤A⊤
√
Z|2|

√
Z∆|2

(w − ŵ)⊤D⊤ZD(w − ŵ) + 2|(w − ŵ)⊤D⊤
√
Z|2|

√
Z∆|2 + nλmax(Z)(η

x)2

≤(x−x̂)⊤A⊤ZA(x−x̂)+2(x−x̂)⊤A⊤ZD(w−ŵ)+θ|(x−x̂)⊤A⊤
√
Z|22+

|
√
Z∆|22
θ

(w − ŵ)⊤D⊤ZD(w − ŵ) + θ|(w − ŵ)⊤D⊤
√
Z|22 +

|
√
Z∆|22
θ

+ nλmax(Z)(η
x)2

≤(1 + θ)(x− x̂)⊤A⊤ZA(x− x̂) + 2(x− x̂)⊤A⊤ZD(w − ŵ)

+ (1 + θ)(w − ŵ)⊤D⊤ZD(w − ŵ) +
(2 + nθ)λmax(Z)(η

x)2

θ

=

[
x− x̂
w − ŵ

]⊤ [
(1 + θ)A⊤ZA A⊤ZD

D⊤AZ (1 + θ)D⊤ZD

] [
x− x̂
w − ŵ

]
+

(2 + nθ)λmax(Z)(η
x)2

θ

≤
[
x− x̂
w − ŵ

]⊤ [
φcZ + C2⊤G22C2 C2⊤G21

G12C2 G11

] [
x− x̂
w − ŵ

]
+

(2 + nθ)λmax(Z)(η
x)2

θ

≤φcS(x, x̂) +
[

w − ŵ

C2x− Ĉ2x̂

]⊤

G:=︷ ︸︸ ︷[
G11 G12

G21 G22

] [
w − ŵ

C2x− Ĉ2x̂

]
+

(2 + nθ)λmax(Z)(η
x)2

θ

(3.2.15)

Remark 3.2.13. Note that if condition (3.2.13) can not be satisfied, one can still have
the result in Theorem 3.2.12 by assuming that there exists matrices Z ≻ 0, G, and K of
appropriate dimensions such that the matrix inequality

[
(1 + θ)(A+BK)⊤ZA (A+BK)⊤ZD

D⊤(A+BK)Z (1 + θ)D⊤ZD

]
≼

[
φcZ + C2⊤G22C2 C2⊤G21

G12C2 G11

]
, (3.2.16)

holds for some constants 0 < φc < 1, and θ ∈ R>0. Here, K is a state feedback controller
gain. ⋄
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3.2.5 Case Studies
In this section we provide two case studies to illustrate the results of this section. First,
we apply our results to the temperature regulation in a circular building of n ≥ 3 rooms
by constructing compositionally a symbolic model of the network. Then, we apply the
proposed techniques to a fully connected network to show its applicability to strongly
connected networks as well. The construction of symbolic models and controllers are
performed using SCOTS [RZ16] on a PC with Intel i7@3.4GHz CPU and 16 GB of
RAM.

3.2.5.1 Room Temperature Control

Here, we apply our results to the temperature regulation in a circular building of n ≥ 3
rooms, each equipped with a heater. The dynamics of the temperature x for all rooms
are described by the interconnected discrete-time model:

Σ :

{
x(k + 1) = Ax(k) + β̂TE + β̄Thν(k),

y(k) = x(k),
(3.2.17)

adapted from [MGW17], where A ∈ Rn×n is a matrix with elements {A}i,i = (1 −
2β − β̂ − β̄νi(k)), {A}i,i+1 = {A}i+1,i = {A}1,n = {A}n,1 = β, ∀i ∈ [1;n − 1], and all
other elements are identically zero, x(k) = [x1(k); . . . ;xn(k)], ν(k) = [ν1(k); . . . ; νn(k)],
TE = [Te1; . . . ;Ten], where νi(k), ∀i ∈ [1;n], are taking values in [0, 0.5]. The other
parameters are as follow: ∀i ∈ [1;n], Tei = −1 ◦C is the outside temperature, Th=50 ◦C
is the heater temperature, and the conduction factors are given by β = 0.45, β̂ = 0.045,
and β̄ = 0.09.
Now, by introducing Σi described by

Σi :


xi(k + 1) = (1− 2β − β̂ − β̄νi(k))xi(k) + ωi(k) + β̂Tei + β̄Thνi(k),

y1
i (k) = xi(k),

y2
i (k) = xi(k),

one can readily verify that Σ = IM (Σi)i∈[1,n] where the elements of coupling matrix M
are {M}i,i+1 = {M}i+1,i = {M}1,n = {M}n,1 = β, i ∈ [1;n− 1], and all other elements
are identically zero.

Note that for any i ∈ [1;n], condition (3.2.13) is satisfied with Zi = 1, φci = 0.95,
θi = 0.02, and

Gi =

[
G11
i G12

i

G21
i G22

i

]
=

[
(1 + θi) λi
λi πi

]
, (3.2.18)

where λi = (1 − 2β − β̂ − β̄νi(k)), and π = (1 + θi)λ
2
i + θi − φci . Hence, Si(xi, x̂i) =

(xi − x̂i)
⊤Zi(xi − x̂i), is a sum-type simulation function from T̂i(Σi) to Ti(Σi), satisfying

(3.2.2) and (3.2.3) with αi(s) = s2 ∀s ∈ R≥0, σi = 1 − φci , ρui = 0, Ri = Gi, and
ϵi =

(2+θi)λmax(Zi)((η
x
i )

2/4)
θi

.
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By choosing µi = 1 for all i ∈ [1, n], matrix R̃ in (3.2.6) reduces to

R̃ =

[
(1 + θ)In λIn
λIn πIn

]
,

where λ = λi and θ = θi for all i ∈ [1, n]. Consequently, condition (3.2.4) reduces to[
M
In

]⊤

R̃

[
M
In

]
= (1 + θ)M⊤M + 2λM − πIn ≼ 0,

which, by Gershgorin circle theorem[Bel65], always holds without any restrictions on
the number of the systems. Moreover, by choosing finite internal input sets Ŵi of T̂ (Σi)
in such a way that

∏N
i=1 Ŵi = M

∏N
i=1 X̂i, condition (3.2.5) is satisfied. Now, one

can verify that S̃(x, x̂) =
∑n

i=1(xi − x̂i)
2 is an alternating simulation function from

T̂ (Σ) = IM (T̂i(Σi))i∈[1,n] to T (Σ) = IM (Ti(Σi))i∈[1,n] satisfying conditions (2.2.1) and
(2.2.2) by σ̃ = (id − (id − ψ) ◦ σi, ρ̃u = 0, and ε̃ = σ−1

i ◦ ψ−1(
∑n

i=1
(2+θi)((η

x
i )

2/4)
θi

), for
some arbitrarily chosen ψ ∈ K∞ with ψ < id.

Now, we synthesize a controller for Σ via abstractions T̂i(Σi) such that the temperature
of each room is maintained in the comfort zone S = [19, 20]. The procedure is as the
following: First, local controllers for abstractions T̂i(Σi) are synthesized while assuming
that the other systems meet their specifications. Then, those local controllers are refined
to concrete systems Ti(Σi). This approach is called assume-guarantee reasoning [HSR98],
and it allows for the compositional synthesis of controllers. The computation times for
constructing symbolic models and synthesizing controllers for Ti(Σi) are 0.6s and 0.005s
∀i ∈ [1, n]. Figure 3.3 shows the maximum and minimum of the state trajectories of the
closed-loop network Σ, consisting of 1200 rooms with the state quantization parameters
ηxi = 0.01 ∀i ∈ [1; 1200].

3.2.5.2 Fully Connected Network

In order to show the applicability of our approach to strongly connected networks, we
consider a nonlinear control network Σ described by

Σ :

{
x(k + 1) = Ax(k) + φ(x(k)) + ν(k),

y(k) = x(k),

where A = In − τL for some Laplacian matrix L ∈ Rn×n of an undirected graph
[GR01], and constant 0 < τ < 1/∆, where ∆ is the maximum degree of the graph
[GR01]. Moreover x(k) = [x1(k); . . . ;xn(k)], ν(k) = [ν1(k); . . . ; νn(k)], and φ(x(k)) =
[φ1(x1(k)); . . . ;φn(xn(k))], where φi(xi) = 0.1sin(xi), ∀i ∈ [1;n]. Assume L is the
Laplacian matrix of a complete graph:

L =


n− 1 −1 · · · · · · −1
−1 n− 1 −1 · · · −1
−1 −1 n− 1 · · · −1
... . . . . . . ...
−1 · · · · · · −1 n− 1

 .
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Figure 3.3: Bounds inside which state trajectories of the closed-loop network Σ consisting of
1200 rooms are evolving.

Now, by introducing Σi described by

Σi :


xi(k + 1) = xi(k) + φi(xi(k)) + ωi(k) + νi(k),

y1
i (k) = xi(k),

y2
i (k) = xi(k),

(3.2.19)

one can readily verify that Σ = IM (Σi)i∈[1,n] where the coupling matrix M is given by
M = −τL. Note that, for any i ∈ [1;n], conditions (3.2.10) and (3.2.11) are satisfied
with Si(xi, x̂i) = (xi − x̂i)

⊤(xi − x̂i), αi(s) = s2, φfi = 0.5, ρui = 0, ∀r ∈ R≥0, where we
have used function G in Remark 3.2.9 with Gi(xi) = −0.5xi, ∀i ∈ [1;n], and

Gi =

[
1.1 0.5
0.5 0

]
. (3.2.20)

Hence, Si(xi, x̂i) = (xi − x̂i)
⊤(xi − x̂i) is a sum-type simulation function from T̂i(Σi) to

Ti(Σi) associated to Σi.
By choosing µi = 1 for all i ∈ [1, n], matrix R̃ in (3.2.6) reduces to

R̃ =

[
1.1In 0.5In
0.5In 0n×n

]
.

Consequently, condition (3.2.4) reduces to[
−τL
In

]⊤

X

[
−τL
In

]
= τL (1.1τL− In) ≼ 0,

which always holds without any restrictions on the number of the systems with τ = 0.5
n−1 .

In order to show the above inequality, we used L⊤ = L ≽ 0, and employing Gershgorin
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circle theorem [Bel65] to show that 1.1τL−In ≼ 0. Moreover, by choosing finite internal
input sets Ŵi of T̂ (Σi) in such a way that

∏N
i=1 Ŵi = M

∏N
i=1 X̂i, condition (3.2.5) is

satisfied.
Now, one can verify that S̃(x, x̂) =

∑n
i=1(xi−x̂i)2 is an alternating simulation function

from T̂ (Σ) = IM (T̂i(Σi))i∈[1,n] to T (Σ) = IM (Ti(Σi))i∈[1,n] satisfying conditions (2.2.1)
and (2.2.2) by σ̃ = 0.95, ρ̃u = 0, and ε̃ = 2

∑n
i=1 γi(η

x
i ), where ηxi is the state set

quantization parameter of abstraction T̂i(Σi) and γi is the K∞ function satisfying (3.2.12)
for Si.

3.3 Small-Gain Approach (SGA)
3.3.1 (In)finite Networks of Discrete-Time Control Systems: SGA

Formulation
Definition 3.3.1. Let N := N, or N := [1;N ], N ∈ N. Consider discrete-time control
systems Σi = (Xi,Wi,Ui, fi,Y1

i ,Y2
i , h

1
i , h

2
i ), i ∈ N . The (in)finite network of discrete-

time control system is a tuple Σ = (X,U, f,Y, h), denoted by Σ = I(Σi)i∈N , where
X = {x = (xi)i∈N : xi ∈ Xi, ∥x∥ := supi∈N {|xi|} < ∞}, U = {u = (ui)i∈N : ui ∈
Ui, ∥u∥ := supi∈N {|ui|} <∞}, and Y =

∏
i∈N

Y1
i . Moreover, f and h are defined as

f(x, u) = (fi(xi, wi, ui))i∈N , h(x) = (h1i (xi))i∈N ,

and with the internal variables constrained by wi = (y2j )j∈Ni = (h2j (xj))j∈Ni,
∏
j∈Ni

Y2
j ⊆

Wi, ∀j ∈ Ni,∀i ∈ N , where Ni is a finite subset of N enumerating the neighbors of
Σi, i.e., those systems Σj , j ∈ Ni that affect Σi with i /∈ Ni. The network is described
by the difference equations

Σ :

{
x(k + 1) = f(x(k), ν(k)),

y(k) = h(x(k)),
(3.3.1)

where x : N → X, ν : N → U, and y : N → Y.

We also assume that f(x, u) ∈ X for all pairs (x, u) ∈ X × U to ensure the network
Σ = (X,U, f,Y, h) is well-defined which is automatically satisfied if N = [1;N ]. Note
that if N := [1;N ], N ∈ N, sets X,U, and Y in Definition 3.3.1 can also be defined in
the same way as those in Definition 3.2.1.

3.3.2 Max-Type Simulation Functions
Consider networks of discrete-time control systems Σ = I(Σi)i∈N , or their equivalent
networks of transition systems T (Σ) = I(Ti(Σi))i∈N , where each Ti(Σi) given as in
Definition 2.3.2. Assume that each systems Ti(Σi) = (Xi, X0i ,Wi, Ui,Fi, Y 1

i , Y
2
i ,H1

i ,H2
i )

and T̂i(Σi) = (X̂i, X̂0i , Ŵi, Ûi, F̂i, Ŷ 1
i , Ŷ

2
i , Ĥ1

i , Ĥ2
i ) admit a max-type simulation functions

as defined next.
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3.3 Small-Gain Approach (SGA)

Definition 3.3.2. Consider systems Ti(Σi) = (Xi, X0i ,Wi, Ui,Fi, Y 1
i , Y

2
i , H1

i ,H2
i ) and

T̂i(Σi) = (X̂i, X̂0i , Ŵi, Ûi, F̂i, Ŷ 1
i , Ŷ

2
i , Ĥ1

i , Ĥ2
i ) where Ŷ j

i ⊆ Y j
i , j ∈ [1; 2], Ŵi ⊆ Wi. A

function Si : Xi × X̂i → R≥0 is called a max-type simulation function from T̂i(Σi) to
Ti(Σi) if there exist αi, αi, σi, ρwi ∈ K∞, ρui ∈ K∞ ∪ {0}, and some εi ∈ R≥0 so that the
following hold:

• For every xi ∈ Xi, x̂i ∈ X̂i, j ∈ [1; 2], one has

αi(|H
j
i (xi)− Ĥj

i (x̂i)|) ≤ Si(xi, x̂i) ≤ αi(|xi − x̂i|) (3.3.2)

• For every xi ∈ Xi, x̂i ∈ X̂i, ûi ∈ Ûi, there exists ui ∈ Ui such that for every
wi ∈Wi, ŵi ∈ Ŵi, x

+
i ∈ Fi(xi, wi, ui) there exists x̂+i ∈ F̂i(x̂i, ŵi, ûi) so that

Si(x+i , x̂
+
i ) ≤ max{σi(Si(xi, x̂i)), ρwi(|wi − ŵi|), ρui(|ûi|), εi}. (3.3.3)

Here, T̂i(Σi) is called an abstraction of Ti(Σi), denoted by T̂i(Σi) ≼Sm
i
Ti(Σi), if there

exists a max-type simulation function from T̂i(Σi) to Ti(Σi). Moreover, if T̂i(Σi) is finite,
it is called a symbolic model of Ti(Σi).

Remark 3.3.3. The upper bound αi(|xi − x̂i|) in inequality (3.3.2) will be used later to
ensure that the alternating simulation function composed of max-type simulation func-
tions is well defined when N = N. However, if N = [1;N ], such an upper bound can
be omitted. ⋄

For functions σi, αi, and ρwi associated with Si, ∀ i ∈ N , given in Definition 3.3.2,
we define ∀i, j ∈ N

γij :=


σi if i = j,

ρwi ◦ α−1
j if j ∈ Ni,

0 if i ̸= j, j ̸∈ Ni.

(3.3.4)

Moreover, in the case we consider an infinite network, i.e., N = N, we additionally
define an operator Γ : ℓ∞+ → ℓ∞+ by

Γ(s) =
(
sup
j∈N

{γij(sj)}
)
i∈N, s ∈ ℓ∞+ . (3.3.5)

Additionally, we assume that there exist σ̂, ρ̂w, α̂ ∈ K∞ such that σi ≤ σ̂, ρwi ≤ ρ̂w, αi ≥
α̂ for all i ∈ N , whenever N = N. This assumption guarantees that Γ is well-defined.

3.3.3 Compositional Abstractions for Finite Networks of Discrete-Time
Control Systems: SGA

Let N := [1;N ], N ∈ N. Assume that we are given Σi = (Xi,Wi,Ui, fi,Y1
i ,Y2

i , h
1
i , h

2
i ),

or equivalently Ti(Σi) = (Xi, X0i ,Wi, Ui,Fi, Y 1
i , Y

2
i ,H1

i ,H2
i ) as in Definition 2.3.2, to-

gether with their abstractions T̂i(Σi) = (X̂i, X̂0i , Ŵi, Ûi, F̂i, Ŷ 1
i , Ŷ

2
i , Ĥ1

i , Ĥ2
i ), i ∈ N , and

max-type simulation functions Si from T̂i(Σi) to Ti(Σi) as in Definition 3.3.2.
In order to establish the compositionality results for the finite network, we make the

following small-gain type assumption.
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3 Symbolic Models for (In)finite Networks of Discrete-Time Control Systems

Assumption 3.3.4. Assume that functions γij defined in (3.3.4) satisfy

γi1i2 ◦ γi2i3 ◦ · · · ◦ γir−1ir ◦ γiri1 < id, (3.3.6)

∀(i1, . . . , ir) ∈ {1, . . . , N}r, where r ∈ {1, . . . , N}.

Note that by Theorem 5.2 in [DRW10], the small-gain condition (3.3.6) implies the
existence of ψi ∈ K∞ ∀i ∈ [1;N ], satisfying

max
j∈N

{ψ−1
i ◦ γij ◦ ψj} < id. (3.3.7)

The next theorem provides a compositional approach to construct an alternating simu-
lation function from the finite network of abstractions T̂ (Σ) = I(T̂i(Σi))i∈N to T (Σ) =
I(Ti(Σi))i∈N , associated to the network of discrete-time control system Σ = I(Σi)i∈N ,
via a max-type simulation function from T̂i(Σi) to Ti(Σi).

Theorem 3.3.5. Consider a finite network of transition systems T (Σ) = I(Ti(Σi))i∈N ,
associated to the network of discrete-time control system Σ = I(Σi)i∈N . Suppose each
transition system Ti(Σi) admits an abstraction T̂i(Σi) with the corresponding max-type
simulation function Si. Suppose Assumption 3.3.4 holds. Then, function S̃ : X × X̂ →
R≥0 defined as

S̃(x, x̂) := max
i∈N

{ψ−1
i (Si(xi, x̂i))}, (3.3.8)

is an alternating simulation function from T̂ (Σ) = I(T̂i(Σi))i∈N to T (Σ) = I(Ti(Σi))i∈N .

Proof. First, we show that (2.2.1) holds for some K∞ function α̃. Define α̃ := (max
i

{α−1
i ◦

ψi})−1, and consider any x ∈ X, x̂ ∈ X̂. Then, one gets

|H(x)− Ĥ(x̂)| = max
i∈N

{|H1
i (xi)− Ĥ1

i (x̂i)|} ≤ max
i∈N

{α−1
i (Si(xi, x̂i))}

≤ max
i∈N

{α−1
i ◦ ψi} ◦max

i∈N
{ψ−1

i (Si(xi, x̂i))}.

Hence, one obtains α̃(|H(x)− Ĥ(x̂)|) ≤ S̃(x, x̂), satisfying (2.2.1).
Now, we show that (2.2.2) holds. Let σ̃ = max

i,j∈N
{ψ−1

i ◦ γij ◦ ψj}. It follows from

(3.3.7) that σ̃ < id. By defining ρ̃u and ε̃ as ρ̃u := max
i∈N

{ψ−1
i } ◦ max

i∈N
{ρui} and ε̃ :=

max
i∈N

{ψ−1
i (εi)}, one gets the chain of inequalities in (3.3.9) which satisfies (2.2.2), and

implies that S̃ is indeed an alternating simulation function from T̂ (Σ) = I(T̂i(Σi))i∈N

to T (Σ) = I(Ti(Σi))i∈N .

Figure 3.4 schematically shows the results of Theorem 3.3.5. Note that, similar tech-
nique was proposed in [RZ18] using nonlinear small-gain type condition to construct
compositionally an approximate infinite abstraction of an interconnected continuous-
time control system. Since in [RZ18, Definition 2] a simulation function between each
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3.3 Small-Gain Approach (SGA)

S̃(x+, x̂+) =max
i∈N

{ψ−1
i ◦ Si(x+i , x̂

+
i )}

≤max
i∈N

{
ψ−1
i

(
max{σi(Si(xi, x̂i)), ρwi(|wi − ŵi|), ρui(|ûi|), εi}

)}
=max

i∈N

{
ψ−1
i

(
max{σi(Si(xi, x̂i)), ρwi(|(y2j )j∈Ni − (ŷ2j )j∈Ni |), ρui(|ûi|), εi}

)}
=max

i∈N

{
ψ−1
i

(
max{σi(Si(xi, x̂i)), ρwi(max

j∈Ni

{|y2j − ŷ2j |}), ρui(|ûi|), εi}
)}

≤max
i∈N

{
ψ−1
i

(
max{σi(Si(xi, x̂i)), ρwi(max

j∈Ni

{|H2
j (xj)− Ĥ2

j (x̂j)|}), ρui(|ûi|), εi}
)}

≤max
i∈N

{
ψ−1
i

(
max{σi(Si(xi, x̂i)), ρwi(max

j∈Ni

{α−1
j (Sj(xj , x̂j))}), ρui(|ûi|), εi}

)}
≤ max
i,j∈N

{
ψ−1
i

(
max{γij(Sj(xj , x̂j)), ρui(|ûi|), εi}

)}
= max
i,j∈N

{
ψ−1
i

(
max{γij ◦ ψj ◦ ψ−1

j (Sj(xj , x̂j)), ρui(|ûi|), εi}
)}

≤ max
i,j,l∈N

{
ψ−1
i

(
max{γij ◦ ψj ◦ ψ−1

l (Sl(xl, x̂l)), ρui(|ûi|), εi}
)}

= max
i,j∈N

{
ψ−1
i

(
max{γij ◦ ψj(S̃(x, x̂)), ρui(|ûi|), εi}

)}
=max

{
σ̃(S̃(x, x̂)),max

i∈N

{
ψ−1
i ◦ ρui(|ûi|),max

i∈N

{
ψ−1
i (εi)

}}
≤max

{
σ̃(S̃(x, x̂)),max

i∈N

{
ψ−1
i ◦max

i∈N
{ρui(|ûi|)},max

i

{
ψ−1
i (εi)

}}
≤max

{
σ̃(S̃(x, x̂)),max

i∈N

{
ψ−1
i ◦max

i∈N
{ρui(max

i∈N
{|ûi|})},max

i∈N

{
ψ−1
i (εi)

}}
=max

{
σ̃(S̃(x, x̂)), ρ̃u(|û|), ε̃

}
, (3.3.9)

system and its abstraction is formulated in a dissipative-form [NGG+18], an extra op-
erator (the operator D in [RZ18, equation (12)]) is required to formulate the small-gain
condition and to construct what is called an Ω-path [DRW10, Definition 5.1], which is
exactly the K∞ functions ψi, i ∈ N , that satisfy condition (3.3.7). However, the def-
inition of the alternating simulation function in our work is formulated in a max-form
[NGG+18] which results in not only simpler formulation of the small-gain condition but
also the Ω-path construction can be achieved without the need of the extra operator; see
[DRW10, Section 8.4].

Remark 3.3.6. Here, we provide a general guideline on the computation of K∞ functions
ψi, i ∈ [1;N ] as the following: (i) In a general case of having N ≥ 1 systems, functions
ψi, i ∈ [1;N ], can be constructed numerically using the algorithm proposed in [Eav72]
and the technique provided in [DRW10, Proposition 8.8], see [Ruf07, Chapter 4]; (ii)
Simple construction techniques are provided in [JMW96] and [DRW10, Section 9] for the
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ŵi = (ŷ2j )j∈Ni
= (ĥ2
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Figure 3.4: Compositionality results for constructing networks of abstractions provided that
condition (3.3.6) is satisfied.

case of two and three systems, respectively; (iii) the K∞ functions ψi, i ∈ [1;N ], can be
always chosen as identity functions provided that γij < id, ∀ i, j ∈ [1;N ], for functions
γij appeared in (3.3.4). ⋄

Remark 3.3.7. We emphasize that the proposed small-gain type condition in (3.3.6) is
much more general than the one proposed in [PPB16]. To be more specific, consider de-
terministic transition system T (Σ) = I(T1(Σ1), T2(Σ2)), in which the transition function
for each system is given as the following:

x+1 = F1(x1, x2, u1) = a1x1(k) + b1
√

|x2(k)|+ u1,

x+2 = F2(x2, x1, u2) = a2x2(k) + b2g(x1(k)) + u2,

where 0 < a1 < 1, 0 < a2 < 1, and function g satisfies the following quadratic Lipschitz
assumption: there exists an L ∈ R>0 such that: |g(x) − g(x′)| ≤ L|x − x′|2 for all
x, x′ ∈ R. One can easily verify that functions S1(x1, x̂1) = |x1 − x̂1| and S2(x2, x̂2) =
|x2 − x̂2| are max-type simulation functions from x1-system to itself and x2-system to
itself, respectively. Here, one can not come up with gain functions satisfying Assumption
(A2) in [PPB16] globally. In particular, those assumptions require existence of K∞
functions being upper bounded by linear ones and lower bounded by quadratic ones which
is impossible. On the other hand, the proposed small-gain condition (3.3.6) is still
applicable here showing that S̃(x, x̂) := max{ψ−1

1 ◦ S1(x1, x̂1), ψ
−1
2 ◦ S2(x2, x̂2)} is an

alternating simulation function from T (Σ) to itself, for some appropriate ψ1, ψ2 ∈ K∞
satisfying (3.3.7) which is guaranteed to exist if |b1|

√
|b2|L < 1 and |b2|(b1L)2 < 1. ⋄
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3.3.4 Compositional Abstractions for Infinite Networks of Discrete-Time
Control Systems

Let N := N. Assume that we are given Σi = (Xi,Wi,Ui, fi,Y1
i ,Y2

i , h
1
i , h

2
i ), or equiva-

lently Ti(Σi) = (Xi, X0i ,Wi, Ui,Fi, Y 1
i , Y

2
i ,H1

i ,H2
i ) as in Definition 2.3.2, together with

their abstractions T̂i(Σi) = (X̂i, X̂0i , Ŵi, Ûi, F̂i, Ŷ 1
i , Ŷ

2
i , Ĥ1

i , Ĥ2
i ), i ∈ N , and max-type

simulation functions Si from T̂i(Σi) to Ti(Σi) as in Definition 3.3.2. The compositionality
result of the infinite network is based on the following robust small-gain type assumption,
inspired by [DMSW19].

Assumption 3.3.8. Consider operator Γ defined in (3.3.5). Assume that supj∈N{γij(sj)}
> 0,∀sj > 0,∀i, j ∈ N, Γ is continuous on ℓ∞+ , lim

k→∞
Γk(s) = 0, ∀s ∈ ℓ∞+ , and there

exist positive constants c1 and c2 such that for all i, j ∈ N the operator Γi,j(s) :=
Γ(s) + c1sjei, s ∈ ℓ∞+ satisfies

Γi,j(s) ̸≥ (1− c2)s, s ∈ ℓ∞+ \{0}. (3.3.10)

Remark 3.3.9. If for any b ≥ 0 the set of all functions {γij , i, j ∈ N} is uniformly
equicontinuous in [0, b], the operator Γ defined in (3.3.5) is continuous. That is, for any
β1 > 0 there exists β2 > 0 such that for any r1, r2 ∈ [0, b] with |r1 − r2| < β2 it follows
that |γij(r1)− γij(r2)| < β1,∀i, j ∈ N. We refer the interested readers to [DMSW19] for
more details on regularity properties of the operator Γ. ⋄

Note that by using Lemma 4.5 in [DMSW19], the small-gain condition (3.3.10) implies
that there exist a function ψ := (ψi)i∈N : R≥0 → ℓ∞+ with ψi ∈ K∞, i ∈ N, and ϵ ∈ (0, 1)
such that

Γ(ψ(r)) ≤ (1− ϵ)ψ(r), r ∈ R≥0. (3.3.11)

It follows from (3.3.11) that ∀i ∈ N and ∀r ∈ R≥0,

sup
j∈N

{γij ◦ ψj(r)} ≤ (1− ϵ)ψi(r) ≤ ψi(r).

Applying ψ−1
i to both sides, one has

ψ−1
i (sup

j∈N
{γij ◦ ψj(r)}) = sup

j∈N
{ψ−1

i ◦ γij ◦ ψj(r)} ≤ r. (3.3.12)

Since (3.3.12) holds for all i ∈ N, one has

sup
i,j∈N

{ψ−1
i ◦ γij ◦ ψj} ≤ id. (3.3.13)

Now we have all the ingredients to formulate the main result of this section. The
next theorem provides a compositional approach to construct an alternating simulation
function from the infinite network of abstractions T̂ (Σ) = I(T̂i(Σi))i∈N to T (Σ) =
I(Ti(Σi))i∈N , associated to the network of discrete-time control system Σ = I(Σi)i∈N ,
via a max-type simulation function from T̂i(Σi) to Ti(Σi).
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Theorem 3.3.10. Consider the infinite network T (Σ) = I(Ti(Σi))i∈N associated to
Σ = I(Σi)i∈N . Assume that each Ti(Σi) and its abstraction T̂i(Σi) admit a max-type
simulation function Si as in Definition 3.3.2. Suppose Assumption 3.3.8 holds and there
exist K∞ functions ψ,ψ, α̂, ρu, and constant ε ∈ R≥0 such that ψ ≤ ψi ≤ ψ, αi ≤ α̂,
ρui ≤ ρu, εi ≤ ε, ∀i ∈ N. Then, function S̃ : X × X̂ → R≥0 defined as

S̃(x, x̂) := sup
i∈N

{ψ−1
i (Si(xi, x̂i))}, (3.3.14)

is well-defined and it is also an alternating simulation function from T̂ (Σ) = I(T̂i(Σi))i∈N

to T (Σ) = I(Ti(Σi))i∈N .

Proof. First we show that function S̃ given by (3.3.14) is well-defined. Note that ∀x ∈ X
and ∀x̂ ∈ X̂ we have

S̃(x, x̂) := sup
i∈N

{ψ−1
i (Si(xi, x̂i))} ≤ sup

i∈N
{ψ−1

i ◦ αi(|xi − x̂i|)} ≤ sup
i∈N

{ψ−1
i ◦ αi(|xi|+ |x̂i|)}

≤ sup
i∈N

{ψ−1 ◦ α̂(|xi|+|x̂i|)}≤ ψ−1 ◦ α̂(sup
i∈N

{|xi|+|x̂i|}) ≤ ψ−1 ◦ α̂(sup
i∈N

{|xi|}+ sup
i∈N

{|x̂i|})

≤ ψ−1 ◦ α̂(∥x∥+ ∥x̂∥) <∞.

Next, we show that (2.2.1) holds for some K∞ function α̃. Consider any x ∈ X, x̂ ∈ X̂.
One gets

∥h(x)−ĥ(x̂)∥≤sup
i∈N

{|h1i(xi)−ĥ1i(x̂i)|}≤sup
i∈N

{α−1
i (Si(xi, x̂i))}=sup

i∈N
{α−1

i ◦ψi◦ψ−1
i (Si(xi, x̂i))}

≤ α̂−1 ◦ ψ(sup
i∈N

{ψ−1
i (Si(xi, x̂i))}) = α̂−1 ◦ ψ(S̃(x, x̂)).

Hence, inequality (2.2.1) holds with α̃ := (α̂−1 ◦ ψ)−1.
Finally, we show that (2.2.2) holds. Let σ := sup

i,j∈N
{ψ−1

i ◦γij ◦ψj}, ρu := ψ−1
i

◦ρu, and

ε := sup
i∈N

{ψ−1
i (εi)}. Observe that, by (3.3.13), σ ≤ id. Moreover, ε is well-defined since

ε ≤ ψ−1(sup
i∈N

{εi}) ≤ ψ−1(ε) < ∞. Then, one gets the chain of inequalities in (3.3.15)

which satisfies (2.2.2), and implies that S̃ in (3.3.14) is indeed an alternating simulation
function from T̂ (Σ) = I(T̂i(Σi))i∈N to T (Σ) = I(Ti(Σi))i∈N .

Remark 3.3.11. If γij ≤ id for any i, j ∈ N , inequality (3.3.13) holds with ψi = id
for all i ∈ N , and inequality (3.3.14) reduces to S̃(x, x̂) := supi∈N {Si(xi, x̂i)}, and,
consequently, the small-gain condition (3.3.10) is satisfied automatically. ⋄

Remark 3.3.12. Note that computing the symbolic models of infinite networks using
those of their subsystems is not possible practically since it consumes infinite memory to
store. However, our proposed compositional framework is still required even if controller
synthesis problems can be solved compositionally using symbolic models of subsystems.
In particular, if decentralized (or distributed) controllers exist for some types of spec-
ifications, one still needs to establish the compositional relation as in Theorem 3.3.10
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S̃(x+, x̂+) = sup
i∈N

{ψ−1
i ◦ Si(x+i , x̂

+
i )}

≤ sup
i∈N

{
ψ−1
i

(
max{σi(Si(xi, x̂i)), ρwi(|wi − ŵi|), ρui(|ûi|), εi}

)}
= sup

i∈N

{
ψ−1
i

(
max{σi(Si(xi, x̂i)), ρwi(|(y2j )j∈Ni − (ŷ2j )j∈Ni |), ρui(|ûi|), εi}

)}
= sup

i∈N

{
ψ−1
i

(
max{σiSi(xi, x̂i), ρwi(max

j∈Ni

{|y2j − ŷ2j |}), ρui(|ûi|), εi}
)}

= sup
i∈N

{
ψ−1
i

(
max{σi(Si(xi, x̂i)), ρwi(max

j∈Ni

{|H2
j (xj)− Ĥ2

j (x̂j)|}), ρui(|ûi|), εi}
)}

≤ sup
i∈N

{
ψ−1
i

(
max{σi(Si(xi, x̂i)), ρwi(max

j∈Ni

{α−1
j (Sj(xj , x̂j))}), ρui(|ûi|), εi}

)}
≤ sup

i,j∈N

{
ψ−1
i

(
max{γij(Vj(xj , x̂j)), ρui(|ûi|), εi}

)}
= sup

i,j∈N

{
ψ−1
i

(
max{γij ◦ ψj ◦ ψ−1

j (Sj(xj , x̂j)), ρui(|ûi|), εi}
)}

≤ sup
i,j,l∈N

{
ψ−1
i

(
max{γij ◦ ψj ◦ ψ−1

l (Sl(xl, x̂l)), ρui(|ûi|), εi}
)}

= sup
i,j∈N

{
ψ−1
i

(
max{γij ◦ ψj(V (x, x̂)), ρui(|ûi|), εi}

)}
≤ max

{
sup
i,j∈N

{ψ−1
i ◦ γij ◦ ψj(S̃(x, x̂))}, sup

i∈N
{ψ−1

i ◦ ρui(|ûi|)}, sup
i∈N

{ψ−1
i (εi)}

}
≤ max

{
σ(S̃(x, x̂)), ψ−1 ◦ ρu(sup

i∈N
{|ûi|}), sup

i∈N

{
ψ−1
i (εi)

}}
= max

{
σ(S̃(x, x̂)), ρu(∥û∥), ε

}
, (3.3.15)

to formally reason about the preservation and satisfaction of properties across related
infinite networks. ⋄

Remark 3.3.13. In the context of stability analysis of infinite networks, condition
(3.3.10) is used to show different stability properties (e.g., uniform global asymptotic
stability or input-to-state stability) for the entire network by investigating stability criteria
for subsystems. Moreover, condition (3.3.10) is also been shown to be tight and cannot be
weakened in the context of stability verification of infinite networks. We refer interested
readers to [DMSW19] for more details on the tightness analysis of small-gain condition
(3.3.10). ⋄
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3.3.5 Construction of Symbolic Models
In the following, we introduce some stability properties for Σ = (X,W,U, f,Y1

i ,Y2
i ,

h1, h2) based on which one can construct a symbolic model for Σ along with the corre-
sponding max-type simulation functions between Σ and its symbolic model.

3.3.5.1 Incremental Input-to-State Stability

Definition 3.3.14. System Σ is incrementally input-to-state stable (δ-ISS) if there exist
functions V : X × X → R≥0, φx, φx, φv, φw, φu ∈ K∞, with φv < id such that for all
x, x′ ∈ X, u, u′ ∈ U, and for all w,w′ ∈ W

φ
x
(|x− x′|) ≤ V (x, x′) ≤ φx(|x− x′|), (3.3.16)

V (f(x,w, u), f(x′, w′, u′)) ≤ φv(V (x, x̂)) + φw(|w − w′|) + φu(|u− u′|). (3.3.17)

We say that V is a δ-ISS Lyapunov function for system Σ if it satisfies (3.3.16) and
(3.3.17). Observe that, any δ-ISS control system as in Definition 3.3.14 with φw(r) = cr2,
for some c ∈ R>0 and any r ∈ R≥0, is also δ-P as in Definition 3.2.5. We refer interested
readers to [TRK16] for detailed information on incremental stability of discrete-time
control systems.

3.3.5.2 Symbolic Models

The symbolic model of T (Σ) associated to δ-ISS discrete-time control system Σ can
be constructed similarly to the one in Definition 3.2.6. In particular when we consider
a network of symbolic models, the symbolic model of T (Σ) is the system T̂i(Σi) =
(X̂i, X̂0i , Ŵi, Ûi, F̂i, Ŷ 1

i , Ŷ
2
i , Ĥ1

i , Ĥ2
i ) given by Definition 3.2.6 in which Ŵi should be

constructed in such a way that the network T̂ (Σ) = I(T̂i(Σi))i∈N is well-defined. For
example, choose Ŵi such that Ŵi =

∏
j∈Ni

Ŷ 2
j , ∀j ∈ Ni, ∀i ∈ N , where Ni is given as in

Definition 3.3.1.

3.3.5.3 Construction of Max-Type Simulation Functions

In this subsection, we show how to construct a max-type simulation function between
T (Σ) associated to the δ-ISS discrete-time control systems Σ and its symbolic model
T̂ (Σ) constructed as in Definition 3.2.6.

Theorem 3.3.15. Consider a transition system T (Σ), associated to the δ-ISS discrete-
time control system Σ. Let T̂ (Σ) be a symbolic model constructed as in Definition 3.2.6.
Suppose Assumption 3.2.12 holds for function V given in Definition 3.3.14. Then V is
a max-type simulation function from T̂ (Σ) to T (Σ) and from T (Σ) to T̂ (Σ).

Proof. Recall that Ĥj = Hj = hj , j ∈ [1; 2], by Definition 2.3.1 and 3.2.6. Hence, Ĥj and
Hj satisfy the Lipschitz assumption given on hj , j ∈ [1; 2] in the General Remark 2.5.
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Consequently, and since system Σ is incrementally input-to-state stable, from (3.3.16),
for any x ∈ X and any x̂ ∈ X̂, we have

|Hj(x)− Ĥj(x̂)| ≤ ℓj(|x− x̂|) ≤ ℓj ◦ φ−1
x

(V (x, x̂)).

By defining α = ( max
j∈[1;2]

{ℓj} ◦ φ−1
x

)−1, one obtains α(|H1(x) − Ĥ1(x̂)|) ≤ V (x, x̂). Fur-

thermore, define α := φx. Hence, (3.3.2) is satisfied.
Now consider any û ∈ Û and choose u = û. Then, using (3.2.12), for any x ∈ X, x̂ ∈ X̂,

any û ∈ Û , and any w ∈W, ŵ ∈ Ŵ , we have

V (f(x, û, w), x̂+) ≤ V (f(x, û, w), f(x̂, û, ŵ)) + γ(|x̂+ − f(x̂, û, ŵ)|),

for any x̂+ ∈ F̂(x̂, û, ŵ). Now, from Definition 3.2.6, the above inequality reduces to

V (f(x, û, w), x̂+) ≤ V (f(x, û, w), f(x̂, û, ŵ)) + γ(ηx).

Note that by (3.3.17), we get

V (f(x, û, w), f(x̂, û, ŵ))≤φv(V (x, x̂)) + φw(|w − ŵ|).

It follows that for any x ∈ X, x̂ ∈ X̂, any û ∈ Û , and any w ∈W, ŵ ∈ Ŵ , one obtains

V (f(x, û, w), x̂+) ≤ φv(V (x, x̂)) + φw(|w − ŵ|) + γ(ηx),

for any x̂+ ∈ F̂(x̂, û, ŵ). By using the result of Theorem 2.2.9, one obtains

V (f(x, û, w), x̂+) ≤ max{φ̃v(V (x, x̂)), φ̃w(|w − ŵ|), γ̃(ηx)},

where φ̃v := (id − (id − ψ) ◦ (id − φv)), φ̃w = (id + λ) ◦ (id − φv)
−1 ◦ ψ−1 ◦ χ ◦ φw,

and γ̃ = (id + λ−1) ◦ (id − φv)
−1 ◦ ψ−1 ◦ χ ◦ (χ − id)−1 ◦ γ, for some arbitrarily chosen

λ, ψ, χ ∈ K∞ with ψ < id and χ > id. Thus, inequality (3.3.3) is satisfied with σ = φ̃v,
ρw = φ̃w, ρu = φ̃u, and ε = γ̃(ηx). Hence, V is a max-type simulation function from
T̂ (Σ) to T (Σ). The rest of the proof follows similar argument. In particular, by the
definition of Û , for any u ∈ U there always exists û ∈ Û such that φu(|u− û|) ≤ φu(η

u)
which results in ε = (id+λ−1)◦ (id−φv)−1 ◦ψ−1 ◦χ◦ (χ− id)−1 ◦γ(φu(ηu)+γ(ηx)).

Remark 3.3.16. Observe that if φw and γ are linear functions in the previous theorem,
φ̃w and γ̃ reduce to φ̃w = (id + λ) ◦ (id − φv)

−1 ◦ ψ−1 ◦ φw and γ̃ = (id + λ−1) ◦ (id −
φv)

−1 ◦ ψ−1 ◦ γ, respectively. ⋄

Remark 3.3.17. Although the choices of K∞ functions λ, χ, and ψ in the previous
theorem mainly depend on the dynamic of the given control systems, we provide a general
guideline on choosing those functions as follows: (i) In order to reduce the undesirable
effect of the inverse of id−φv and ψ in satisfying the small-gain condition in (3.3.6), or
in computing the value of the overall approximation error in (2.2.8), one should choose
those ψ to behave very close to the identity function, and φv as small as possible; (ii)
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Regarding λ and χ, one should choose those functions such that the small gain condition
in (3.3.6) is possibly satisfied, and then compute the overall approximation error in
(2.2.8). If the computed error is acceptable by the user, no further action is required;
otherwise one should start slightly modifying those functions until a smaller error is
achieved while ensuring that the small gain condition is not violated. For example, one
can scale the K∞ function λ by a linear function β(s) = cs ∈ K∞ , ∀s ∈ R≥0, c > 1,
and then, using β ◦λ instead of λ, start increasing the value of c until a smaller error is
obtained. Same procedure can be simultaneously applied to the K∞ function χ. It may
be the case that the desired error is not achievable with the chosen λ and χ, then one
should start over and choose different λ and χ and go through a similar procedure again.
⋄

Remark 3.3.18. Note that if system Σ is not δ-ISS, one may assume that Σ is in-
crementally input-to-state stabilizable. That is there exists feedback controller G :
X → U such that (3.3.17) is satisfied with the left-hand side of (3.3.17) given as
V (f(x,w,G(x) + u), f(x′, w′,G(x′) + u′)). ⋄

If we consider linear control systems as in (2.3.3), similar results as in Theorem 3.3.15
can be provided in more computationally efficient way. In particular, the incremental
input-to-state stability assumption in Definition 3.3.14 boils down in the linear case to
the following assumption.

Assumption 3.3.19. Consider linear control systems Σ = (A,B,C1, C2, D). Assume
that there exists matrix Z ≻ 0 of appropriate dimensions such that the matrix inequality

(1 + 2θ)A⊤ZA ≼ φcZ, (3.3.18)

holds for some constants 0 < φc < 1, and θ ∈ R>0.

Note that condition (3.3.18) is nothing more than asking matrix A being stable
[AM07].

Theorem 3.3.20. Consider a transition system T (Σ), associated to the linear control
systems Σ for which Assumption 3.3.19 holds. Let T̂ (Σ) be a symbolic model constructed
as in Definition 3.2.6. Then function V defined as

V (x, x̂) =
√

(x− x̂)⊤Z(x− x̂), (3.3.19)

is a max-type simulation function from T̂ (Σ) to T (Σ) and from T (Σ) to T̂ (Σ).

Proof. First, we show that condition (3.3.2) holds. Since C = Ĉ, we have

|Cx− Ĉx̂| ≤
√
nλmax(C⊤C)|x− x̂|,

and similarity √
λmin(Z)|x− x̂| ≤

√
(x− x̂)⊤Z(x− x̂).
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It can be readily verified that (3.3.2) holds for V defined in (3.3.19) with α(s) =√
λmin(Z)

nλmax(C⊤C)
s for any s ∈ R≥0. We continue to show that (3.3.3) holds as well. Let x,

x̂, û, and ŵ be given, and choose u as u := û. Let x+ = Ax + Bu + Dw, and x̂+ be
defined as in Definition 3.2.6. Define ∆ := Ax̂+ Bû+Dŵ − x̂+. Now, one obtains the
chain of inequalities in (3.3.20). By following a similar argument as the one in the proof

V (x+, x̂+)

= ((Ax+Bu+Dw − (Ax̂+Bû+Dŵ) + (Ax̂+Bû+Dŵ)− x̂+)⊤Z

(Ax+Bu+Dw − (Ax̂+Bû+Dŵ) + (Ax̂+Bû+Dŵ)− x̂+))
1
2

=
(
(x− x̂)⊤A⊤ZA(x− x̂) + (w − ŵ)⊤D⊤ZD(w − ŵ) + 2(w − ŵ)⊤D⊤Z∆

+ 2(x− x̂)⊤A⊤ZD(w − ŵ) + 2(x− x̂)⊤A⊤Z∆+∆⊤Z∆
) 1

2

≤
(
(x− x̂)⊤A⊤ZA(x− x̂) + (w − ŵ)⊤D⊤ZD(w − ŵ) + 2|(w − ŵ)⊤D⊤

√
Z|2|

√
Z∆|2

+ 2|(x− x̂)⊤A⊤
√
Z|2|

√
Z∆|2 + 2|(x− x̂)⊤A⊤

√
Z|2|

√
ZD(w − ŵ)|2

+ nλmax(Z)η
2
) 1

2

≤
(
(x− x̂)⊤A⊤ZA(x− x̂) + 2θ|(x− x̂)⊤A⊤

√
Z|22 + (w − ŵ)⊤D⊤ZD(w − ŵ)

+
|(w − ŵ)⊤D⊤

√
Z|22

θ
+ 2

|
√
Z∆|22
θ

+ θ|(w − ŵ)⊤D⊤
√
Z|22 + nλmax(Z)η

2
) 1

2

≤
(
(1 + 2θ)(x− x̂)⊤A⊤ZA(x− x̂) +

(1 + θ + θ2)(w − ŵ)⊤D⊤ZD(w − ŵ)

θ

+
n(2 + θ)λmax(Z)η

2

θ

) 1
2

≤ √
φcV (x, x̂) +

√
1 + θ + θ2

θ
|
√
ZD|2|w − ŵ|2 +

√
n(2 + θ)λmax(Z)

θ
η

≤ √
φcV (x, x̂) +

√
p
1 + θ + θ2

θ
|
√
ZD|2|w − ŵ|+

√
n(2 + θ)λmax(Z)

θ
η. (3.3.20)

of Theorem 2.2.9, one gets

V (x+, x̂+) ≤ max

{
φ̃c

(
(x− x̂)⊤Z(x− x̂)

) 1
2 ,

(1 + ψc)

(1−√
φc)ψc

√
p
(1 + θ+θ2)

θ
|
√
ZD|2|w − ŵ|,

(1 + 1/ψc)

(1−√
φc)ψc

√
n(2 + θ)λmax(Z)

θ
η

}
,

where φ̃c = (1 − (1 − √
φc)(1 − ψc)), satisfying (3.3.3) with σ = φ̃c, ρu = 0, ρw(s) =

(1+λc)
(1−√

φc)ψc

√
p (1+θ+θ

2)
θ |

√
ZD|2, ε = (1+1/λc)

(1−√
φc)ψc

√
n(2+θ)λmax(Z)

θ η, where ψc and λc can be
chosen arbitrarily such that 0 < ψc < 1 and λc > 0. Hence, the proposed V in (3.3.19) is
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a max-type simulation function from T̂ (Σ) to T (Σ). The rest of the proof follows similar
argument. In particular, by the definition of Û , for any u ∈ U there always exists û ∈ Û

such that |B||u− û| ≤ |B|ηu which results in ε = (1+1/λc)
(1−√

φc)ψc

√
n(2+θ)λmax(Z)

θ (|B|ηu + ηx).
Other terms are the same as before.

Remark 3.3.21. Note that if condition (3.3.18) can not be satisfied, one can assume
that Σ = (A,B,C1, C2, D) is stabilizable and still have the result in Theorem 3.3.20.
That is there exists matrices Z ≻ 0 and state feedback gain K of appropriate dimensions
such that the matrix inequality

(1 + 2θ)(A+BK)⊤Z(A+BK) ≼ φcZ, (3.3.21)

holds for some constants 0 < φc < 1, and θ ∈ R>0. ⋄

Remark 3.3.22. Given constants φc and θ, one can easily see that inequality (3.3.21)
is not jointly convex on decision variables Z and K and, hence, not amenable to existing
semidefinite tools for linear matrix inequalities (LMI). However, using Schur comple-
ment, one can easily transform inequality (3.3.21) to the following LMI over decision
variables E1 and E2: [

−φcE1 E1A
⊤ + E⊤

2 B
⊤

AE1 +BE2 −(1 + 2θ)E1

]
≼ 0, E1 ≻ 0,

where E1 = Z−1 and E2 = KE1. ⋄

3.3.6 Case Studies
In this section we provide two case studies to illustrate the results of Section 3.3 and
compare them with the results of Section 3.2. We first apply our results to the tempera-
ture regulation in a circular building by constructing compositionally a symbolic model
of a finite network containing n ≥ 3 rooms, each equipped with a heater. Then we apply
the proposed techniques to a fully connected finite network to show its applicability to
strongly connected networks as well. Moreover, we verify the effectiveness of proposed
technique in Subsection 3.3.4 by applying it to a model of a road traffic network con-
taining infinitely many cells (systems). We construct symbolic models for the original
systems and compositionally construct an alternating simulation function from the infi-
nite network containing infinitely many symbolic models to the infinite network of the
concrete subsystems. We also design controllers compositionally maintaining the density
of traffic between 10 and 25 vehicles per cell. The construction of symbolic models and
controllers are performed using tool SCOTS [RZ16] on a PC with Intel i7@3.4GHz CPU
and 16 GB of RAM.

3.3.6.1 Room Temperature Control

In this subsection, we apply our results to the temperature regulation in a circular
building of n ≥ 3 rooms, each equipped with a heater. The dynamic of the network Σ
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is described by (3.2.17). By introducing

Σi :


xi(k + 1) = (1− 2β − β̂ − β̄νi(k))xi(k) + [β;β]⊤ωi(k) + β̂Tei + β̄Thνi(k),

y1
i (k) = xi(k),

y2
i (k) = xi(k),

one can readily verify that Σ = I(Σi)i∈[1,n], where ωi(k) = [y2
i−1(k);y

2
i+1(k)] with y2

0 =
y2
n and y2

n+1 = y2
1. Note that for any i ∈ [1;n], conditions (3.3.16) and (3.3.16) are

satisfied with Vi(xi, x̂i) = |xi − x̂i|, φxi = φxi = id, φfi = 1 − 2β − β̂, φwi = β, and
φui = 0, when u = u′. Furthermore, (3.2.12) is satisfied with γ = id. Consequently,
Vi(xi, x̂i) = |xi − x̂i| is a max-type simulation function from T̂i(Σi), constructed as in
Definition 3.2.6, to Ti(Σi) associated to Σi.

Since we have γij(s) < id, ∀i, j ∈ [1;n], i ̸= j and for any n ≥ 3, the small-gain
condition (3.3.6) is satisfied without any restriction on the number of rooms. Using
the results in Theorem 3.3.5 with ψ−1

i = id, ∀i ∈ [1;n], one can verify that S̃(x, x̂) =

maxi{|xi − x̂i|} is an alternating simulation function from T̂ (Σ) = I(T̂i(Σi))i∈[1,n] to
T (Σ) = I(Ti(Σi))i∈[1,n] associated to Σ, satisfying conditions (2.2.1) and (2.2.2) with
σ̃ = max

{
(1− (1− 2β + β̂)10−2), 2.02β

1−(1−2β−β̂)

}
, α̃ = id, ρ̃u = 0, ε̃ = maxi

{
2.02ηxi

1−(1−2β−β̂)

}
,

∀i ∈ [1;N ], where ηxi is the state set quantization parameter of abstraction T̂i(Σi).
For the comparison, we compute error ε̂ in the ε̂-approximate alternating simulation

relation as in (2.2.8) based on the dissipativity approach introduced in Section 3.2 and
the small-gain approach introduced in Section 3.3. This error represents the mismatch
between the output behavior of the concrete network Σ and that of its finite abstraction
T̂ (Σ). We evaluate ε̂ for different numbers of systems n and different values of the state
set quantization parameters ηxi for abstractions T̂i(Σi) ∀i ∈ [1;n] as in Figure 3.5. As
shown, the small-gain approach results in less mismatch errors than those obtained using
the dissipativity based approach proposed in Section 3.2. The reason is that the error in
(2.2.8) is computed based on the maximum of the errors between concrete systems and
their symbolic models instead of being a linear combination of them which is the case
in Section 3.2. Hence, by increasing the number of systems, the error computed based
on the small-gain approach introduced in Section 3.3 does not change here whereas the
error computed by the dissipativity based approach proposed in Section 3.2 will increase
as shown in Figure 3.5.

Now, we synthesize a controller for Σ via abstractions T̂i(Σi) such that the temperature
of each room is maintained in the comfort zone S =[19, 21]. The idea here is to design
local controllers for abstractions Σ̂i, and then refine them to concrete systems Σi. To
do so, the local controllers are synthesized while assuming that the other systems meet
their own specifications. The computation times for constructing symbolic models and
synthesizing controllers for Σi are 0.048s and 0.001s, respectively. Figure 3.6 shows the
maximum and minimum of the state trajectories of the closed-loop network Σ, consisting
of 1000 rooms, under control inputs ui with the state and input quantization parameters
ηxi = 0.01 and ηui = 0.01, ∀i ∈ [1; 1000], respectively.
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Figure 3.5: Temperature control: Comparison of errors in (2.2.8) resulted from the approach
based on small-gain condition with those based on dissipativity-type condition for
different values of n ≥ 3 and η = ηx1 = · · · = ηxn.

3.3.6.2 Fully Connected Network

In order to show the applicability of the small-gain approach to strongly connected
networks, we consider a nonlinear network Σ described by

Σ :

{
x(k + 1) = Ax(k) + ϕ(x) + ν(k),

y(k) = x(k),

where A = In − τL for some Laplacian matrix L ∈ Rn×n of an undirected graph
[GR01], and constant 0 < τ < 1/∆, where ∆ is the maximum degree of the graph
[GR01]. Moreover x(k) = [x1(k); . . . ;xn(k)], ν(k) = [ν1(k); . . . ; νn(k)], and ϕ(x) =
[ϕ1(x1); . . . ;ϕn(xn)], where ϕi(xi) = sin(xi), ∀i ∈ [1;n]. Assume L is the Laplacian
matrix of a complete graph:

L =


n− 1 −1 · · · · · · −1
−1 n− 1 −1 · · · −1
−1 −1 n− 1 · · · −1
... . . . . . . ...
−1 · · · · · · −1 n− 1

 .

Now, by introducing Σi described by

Σi :


xi(k + 1) = aixi(k) + φi(xi) + diωi(k) + νi(k),

y1
i (k) = xi(k),

y2
i (k) = xi(k),
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Figure 3.6: Bounds inside which state trajectories of the closed-loop network Σ consisting of
1000 rooms are evolving.

where ai={A}i,i, ωi(k) = (y2
j )j∈([1;n]\i), di = [{A}i,1; . . . ; {A}i,i−1; {A}i,i+1; . . . ; {A}i,n]⊤,

one can readily verify that Σ = I(Σi)i∈[1,n]. Clearly, for any i ∈ [1;n], conditions
(3.3.16) and (3.3.16) are satisfied with Vi(xi, x̂i) = |xi − x̂i|, Gi(xi) = −cixi, where
ai+1
2 < ci < ai + 1, φ

xi
= φxi = id, φfi = (1 + ai − ci), φwi = |di|, and φui = 0. Note

that we utilized feedback controller G as in Remark 3.3.18 to make systems Σi δ-ISS.
Moreover, (3.2.12) is satisfied with γ = id. Consequently, Vi(xi, x̂i) = |xi − x̂i| is a
max-type simulation function from T̂i(Σi), constructed as in Definition 3.2.6, to Ti(Σi)
associated to Σi.

Fix τ = 0.1
∆ = 0.1

n−1 . Since we have γij(s) < id, ∀i, j ∈ [1;n], i ̸= j, the small-gain
condition (3.3.6) is satisfied without any restriction on the number of systems. Using
the results in Theorem 3.3.5 with ψ−1

i = id, ∀i ∈ [1;n], one can verify that S̃(x, x̂) =

maxi{|xi − x̂i|} is an alternating simulation function from T̂ (Σ) = I(T̂i(Σi))i∈[1,n] to
T (Σ) = I(Ti(Σi))i∈[1,n] associated to Σ satisfying conditions (2.2.1) and (2.2.2) with

α̃ = id, ρ̃u = 0, ε̃ = maxi

{
2.02ηxi

1−(1+ai−ci)

}
, σ̃(s) = max

{
max
i

{(
1− (1−(1+ai−ci))

102

)
s
}
,

max
i

{
2.02|di|

1−(1+ai−ci)s
}}

, where ηxi is the state set quantization parameter of abstraction

T̂i(Σi).
Similar to the previous case study, we compare the small-gain technique in Section

3.3 to the one proposed in Section 3.2. A comparison of the error ε̂ in (2.2.8) resulted
from the dissipativity approach proposed in Section 3.2 and the small-gain technique in
Section 3.3 is shown in Figure 3.7. We compute ε̂ for different n and different values
of ηxi for abstractions T̂i(Σi) ∀i ∈ [1;n]. Clearly, the small-gain approach results in
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Figure 3.7: Fully connected network: Comparison of errors in (2.2.8) resulted from the approach
based on small-gain condition with those based on dissipativity-type condition for
different values of n ≥ 1 and η = ηx1 = · · · = ηxn.

less mismatch errors than those obtained using the dissipativity based approach . The
computation time for constructing abstractions for Σi is 0.9s after fixing n = 1000,
ηxi = 0.01, µi = 0.01, xi ∈ [0, 10], νi ∈ [0, 1], ∀i ∈ [1;n].

3.3.6.3 Infinite Road Traffic Model

In this case study, we apply the approach in Subsection 3.3.4 to a variant of the road
traffic model from [dWOK12]. We consider a traffic network divided into infinitely
many cells, indexed by i ∈ N. Each cell i represents a one-dimensional subsystem
Σi = (Xi,W i, U i, f i, Xi) described by a difference equation of the following form

Σi :

{
xi(k + 1)= (1− τv

l −e)xi(k)+diωi(k)+bνi(k),
yji (k) = xi(k), j ∈ [1; 2],

(3.3.22)

with the following structure

− di = (1−e2 )( τvl ,
τv
l )

⊤, ωi = [y2
i+1,y

2
i+2] if i ∈ J1 := {1 + 2c : c ∈ N0};

− di = (1− e) τvl , ωi = y2
i+1 if i ∈ J2 := {2};

− di = (1−e2 )( τvl ,
τv
l )

⊤, ωi = [y2
i−2;y

2
i−1] if i ∈ J3 := {4 + 2c : c ∈ N0}.

In (3.3.22), τ is the sampling time interval in hours, l is the length of a cell in kilometers
(km), and v is the flow speed of the vehicles in kilometers per hour (km/h). The state
of each subsystem Σi, i.e. xi, is the density of traffic, given in vehicles per cell, for each
cell i of the network. The scalar b represents the number of vehicles that can enter the
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Figure 3.8: Model of a road traffic network composed of infinitely many systems.

cells through entries which are controlled by νi(·). In particular, νi(·) = 1 means green
light and νi(·) = 0 means red light. Moreover, the constant e ∈ (0, 1) represents the
percentage of vehicles that leave the cells using available exits. The infinite network and
its cells are illustrated in Figure 3.8.

Let us first show that Σ = I(Σi)i∈N is well-defined by showing that ∥f(x, u)∥ < ∞,
where f(x, u) is constructed as in Definition 3.3.1. Define C1 = |1 − τv

l − e|, C2 =
|(1− e) τvl |, C3 = |b|, C = max1≤i≤3{Ci}, then one has

∥f(x, u)∥= sup
i∈N

{|fi(xi, wi, ui)|} = sup
i∈N

{|(1− τv

l
−e)xi+diwi+bui|}

≤C1 sup
i∈N

{|xi|}+C2 sup
i∈N

{|xi|}+C3 sup
i∈N

{|ui|}≤C(sup
i∈N

{|xi|}+sup
i∈N

{|xi|}+sup
i∈N

{|ui|})

= C(∥x∥+ ∥x∥+ ∥u∥}) <∞

Hence, Σ = I(Σi)i∈N is well-defined.
Fix τ = 10

60×60 , v = 60, l = 0.5, and e = 0.1, then for any i ∈ N, system Σi is
δ-ISS, where conditions (3.3.16) and (3.3.17) are satisfied with Vi(xi, x̂i) = |xi − x̂i|,
φ
xi

= φxi = id, φfi = (1 − ( τvl + e)), φwi = |(1 − e) τvl |, and φui = 0 with ui = ûi.
Furthermore, (3.2.12) is satisfied with γi = id. Consequently, Vi(xi, x̂i) = |xi − x̂i| is a
max-type simulation function from T̂i(Σi), constructed as in Definition 3.2.6, to Ti(Σi)
associated to Σi. Note that for the construction of symbolic models T̂i(Σi), we have
chosen the finite set Ŵi = X̂i+1 × X̂i+2 for all i ∈ J1, Ŵi = X̂i+1 for all i ∈ J2, and
Ŵi = X̂i−2 × X̂i−1 for all i ∈ J3. Moreover, it can be readily verified that γij < id.
Therefore, by remark 3.3.11, S̃(x, x̂) := supi∈N{|xi − x̂i|} is an alternating simulation
function from T̂ (Σ) = I(T̂i(Σi))i∈N to T (Σ) = I(Ti(Σi))i∈N associated to Σ satisfying
conditions (2.2.1) and (2.2.2) with α̃ = id, σ̃ = 0.97, ρ̃u = 0, and ε̃ = 17 supi∈N{ηxi }.
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In order to guarantee that ε is well-defined, one should choose ηxi such that there exists
ηx ∈ R>0 so that ηxi ≤ ηx,∀i ∈ N.

Now we show how to use the constructed symbolic models T̂i(Σi) to design a controller
for Σ such that the density of traffic is maintained between 10 and 25 vehicles per
cell (systems Σi). Based on assume-guarantee reasoning, we compositionally synthesize
controllers for symbolic models, and then refine them to the ones for concrete systems.
In particular, we design local controllers ûi for T̂i(Σi) while assuming that the other
systems T̂i(Σj), j ̸= i, meet their specifications, and then refine ûi to ui using ui = ûi.
We leverage software tool SCOTS [RZ16] for constructing symbolic models and controllers
for Σi compositionally with b = 5, state quantization parameter ηxi = 0.1 and the
computation times are amounted to 0.016s and 9 × 10−4s, respectively. Figure 3.9
shows trajectories of sample system Σi starting from different initial conditions under
input ui. Finally, one can compute the mismatch between the output behavior of T (Σ) =
I(Ti(Σi))i∈N and that of its symbolic model T̂ (Σ) = I(T̂i(Σi))i∈N by utilizing Proposition
2.2.11. In particular, using (2.2.8) and since α̃ = id, ρu = 0, we have ε̂ = α̃−1(ε̃) =
supi∈N{ε̃i} = 1.7.
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Figure 3.9: Trajectories of sample subsystem Σi starting from different initial conditions with
(up-left) i ∈ J1, (up-right) i ∈ J2, and (down-middle) i ∈ J3.

3.4 General Remark
Given that function S in Theorem 3.2.12, similarly in Theorem 3.2.8, is a sum-type
simulation function from T̂ (Σ) to T (Σ) and from T (Σ) to T̂ (Σ), it can be readily ver-
ified that function S̃ defined in (3.2.7) is also an alternating simulation function from
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3.5 Summary

T (Σ) = IM (Ti(Σi))i∈N to T̂ (Σ) = IM (T̂i(Σi))i∈N . Note that the same argument is valid
for function V in Theorem 3.3.15, similarly in Theorem 3.3.20. Thus, function S̃ defined
in (3.3.8) or in (3.3.14) is an alternating simulation function from T (Σ) = I(Ti(Σi))i∈N

to T̂ (Σ) = I(T̂i(Σi))i∈N . Hence, T̂ (Σ) is a complete symbolic model [Tab09] for the
concrete network T (Σ). In other words, there exists a controller enforcing the desired
specifications on the abstract network T̂ (Σ) if and only if there exists a controller en-
forcing the same specifications on the original network T (Σ).

3.5 Summary
In the first part of this chapter, we proposed a compositional framework based on
dissipativity-type conditions for the construction of symbolic models for finite network
of discrete-time control systems. First, we used a notion of so-called sum-type simu-
lation functions in order to construct compositionally a notion of so-called alternating
simulation functions that is used to quantify the error between the output behavior of
the overall concrete network and that its symbolic model. Furthermore, we provided
an approach to construct symbolic models together with their corresponding sum-type
simulation functions for a class of discrete-time control systems under some incremental
passivity property. We apply our results to the temperature regulation in a circular
building by constructing compositionally a symbolic model of a finite network contain-
ing 1200 rooms. We use the constructed symbolic models as substitutes to synthesize
controllers compositionally maintaining room temperatures in a comfort zone.

In the second part of the chapter, we proposed a compositional framework using two
different nonlinear small-gain conditions for the construction of symbolic models for
(in)finite network of discrete-time control systems. First, we used a notion of so-called
max-type simulation functions in order to construct compositionally an alternating sim-
ulation function that is used to quantify the error between the output behavior of the
overall concrete network and that of its symbolic model. Furthermore, we provided
a technique to construct symbolic models together with their corresponding max-type
simulation functions for discrete-time control systems under incremental input-to-state
stability property. Finally, we illustrated the proposed results by constructing symbolic
models for three networks of (linear and nonlinear) discrete-time control systems and
their corresponding alternating simulation functions in a compositional fashion. The
first two case studies elucidated the effectiveness of our compositionality results in com-
parison with the ones using dissipativity-type reasoning. The third case study shows the
effectiveness of our compositionality technique when dealing with infinite networks.
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4 Symbolic Models for Finite Networks of
Discrete-Time Switched Systems

4.1 Introduction
Switched systems serve as an important modeling framework describing several engineer-
ing systems in which physical processes have various operation modes [Lib03]. Despite
considerable number of studies that have been conducted regarding stability of switched
systems (see for example [LHM11, YL15]), the fast grow in computational technology
requires us to make same progresses with respect to more sophisticated objectives such
as those expressed as linear temporal logic (LTL) formulae [BK08]. One particular tech-
nique to address complex objectives is based on the construction of symbolic models of
switched systems. However, as the complexity of constructing symbolic models grows
exponentially in the number of state variables in the switched system, the approaches
proposed for constructing symbolic models for switched system so far in the literature are
limiting the applications of symbolic models to only low-dimensional switched systems.
This chapter proposes a compositional framework based on dissipativity and small-gain
reasoning for synthesizing symbolic models for finite networks of switched systems.

4.1.1 Related Work
In recent years, there have been several results on the construction of symbolic models of
switched systems. The work by [GPT10] provides a symbolic model that is related by an
approximate bisimulation relation to the original incrementally stable switched system.
In [CGG13, ZAG15], an approximate bisimulation relation was established between a
symbolic model and incrementally stable switched system in which the symbolic states
are sequences of modes of a given length. Recently, the result in [GPT10] has been ex-
tended to the case of multi-rate symbolic models in [SG17], multi-scale symbolic models
computed using non-uniform adaptive space discretization in [GGM16], and to switched
systems with aperiodic time sampling in [KGS18]. Note that all the proposed results in
[GPT10, CGG13, ZAG15, GGM16, SG17, KGS18] take a monolithic view of switched
systems when abstracting the entire system. Hence, the construction of symbolic mod-
els for large-scale networks of switched systems is very complex from a computational
point of view. Although the result in [CGG13] provides a state-space discretization-free
approach for computing symbolic models of incrementally stable switched systems, this
approach is still monolithic and reduces the computational complexity only for switched
systems with small number modes, see [CGG13, Section IV(D)].
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4.1.2 Contributions
In the first part of this chapter, we provide a compositional methodology for the construc-
tion of symbolic models of finite networks of discrete-time switched systems based on
dissipativity theory [AMP16]. We first define a notion of so-called sum-type augmented
simulation functions to relate switched systems and their symbolic models. Then, by
leveraging dissipativity-type compositional conditions, we construct a notion of so-called
alternating simulation function as a relation between the finite network of switched sys-
tems and that of their symbolic models. This alternating simulation function allows one
to determine quantitatively the mismatch between the output behavior of the network of
switched systems and that of their symbolic models. Moreover, we provide an approach
to construct symbolic models together with their corresponding sum-type augmented
simulation functions for discrete-time switched systems under some assumptions ensur-
ing incremental passivity of each mode of switched systems. Finally, we apply these
results to a model of road traffic by constructing compositionally a symbolic model of
a network containing 50 cells of 1000 meters each. We use the constructed symbolic
models as substitutes to design controllers compositionally maintaining the density of
traffic lower than 30 vehicles per cell. Additionally, we apply those results to a finite
network of switched systems admitting multiple incremental passive storage functions.

In the second part of the chapter, we introduce a compositional methodology based
on small-gain type reasoning for the construction of symbolic models of networks of
switched systems. The proposed approach leverages sufficient small-gain type condi-
tions to establish the compositionality results which rely on the existence of max-type
augmented simulation functions as relations between switched systems and their sym-
bolic models. In particular, based on some small-gain type conditions, we use those
max-type augmented simulation functions to construct compositionally an alternating
simulation function as a relation between a finite network of symbolic models and that
of original switched systems. Furthermore, under standard assumptions ensuring in-
cremental input-to-state stability of a switched system (i.e., existence of a common
incremental input-to-state Lyapunov function, or multiple incremental input-to-state
Lyapunov functions with dwell-time), we show that one can construct symbolic models
of switched systems in general nonlinear settings. Moreover, we show that the incre-
mental input-to-state stability assumption boils down to a linear matrix inequality for a
specific class of nonlinear switched systems. We also use the result based on small-gain
type reasoning to construct symbolic models and design controllers for the model of road
traffic introduced in the first part of this chapter. Moreover, we apply those results to
a network of switched systems admitting multiple incremental input-to-state Lyapunov
funtions.

4.2 Dissipativity Approach (DA)
4.2.1 Networks of Discrete-Time Switched Systems: DA Formulation
Definition 4.2.1. Consider discrete-time switched systems Σi = (Xi, Pi,Wi, Fi,Y1

i ,Y2
i ,

h1i , h
2
i ), i ∈ N := [1;N ], N ∈ N, and a static matrix M of an appropriate dimension
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defining the coupling of these systems, where M
∏
i∈N

Y2
i ⊆

∏
i∈N

Wi. The network of

discrete-time switched system Σ = (X, P, F,Y, h), denoted by Σ = IM (Σi)i∈N , is defined
by X =

∏
i∈N

Xi, P =
∏
i∈N

Pi, F =
∏
i∈N

Fi, Y =
∏
i∈N

Y1
i , h(x) = (h1i (xi))i∈N , where

x = (xi)i∈N , with the internal inputs constrained according to (wi)i∈N =M(h2i (xi))i∈N .
The network of discrete-time switched systems is defined by the difference equations

Σ :

{
x(k + 1) = fp(k)(x(k)),

y(k) = h(x(k)),
(4.2.1)

where x : N → X, p : N → P, y : N → Y, and fp(k) = (fpi(k)(xi(k), ωi(k)))i∈N with
p(k) = (pi(k))i∈N .

4.2.2 Sum-Type Augmented Simulation Functions

Consider a network of discrete-time switched systems Σ = IM (Σi)i∈N , or the equiv-
alent network of transition systems T (Σ) = IM (Ti(Σi))i∈N , where each Ti(Σi) given
as in Definition 2.4.2. Assume that each systems Ti(Σi) = (Xi, X0i ,Wi, Ui,Fi, Y 1

i , Y
2
i ,

H1
i ,H2

i ) and T̂i(Σi) = (X̂i, X̂0i , Ŵi, Ûi, F̂i, Ŷ 1
i , Ŷ

2
i , Ĥ1

i , Ĥ2
i ) admit a sum-type augmented

simulation function as defined next.

Definition 4.2.2. Consider systems Ti(Σi) = (Xi, X0i ,Wi, Ui,Fi, Y 1
i , Y

2
i , H1

i ,H2
i ) and

T̂i(Σi) = (X̂i, X̂0i , Ŵi, Ûi, F̂i, Ŷ 1
i , Ŷ

2
i , Ĥ1

i , Ĥ2
i ) where Ŷ 1

i ⊆ Y 1
i . A function Si : Xi×X̂i →

R≥0 is called a sum-type augmented simulation function from T̂i(Σi) to Ti(Σi) if there
exist αi ∈ K∞, 0 < σi < 1, a symmetric matrix Ri of appropriate dimension with
conformal block partitions Rjj

′

i , j, j′ ∈ [1; 2], and some εi ∈ R≥0 so that the following
hold:

• For every (xi, pi, li) ∈ Xi, (x̂i, pi, li) ∈ X̂i, one has

αi(|H1
i (xi, pi, li)− Ĥ1

i (x̂i, pi, li)|)≤Si((xi, pi, li), (x̂i, pi, li)). (4.2.2)

• For every (xi, pi, li) ∈ Xi, (x̂i, pi, li) ∈ X̂i, ûi ∈ Ûi,wi ∈ Wi, ŵi ∈ Ŵi, (x
+
i , p

+
i , l

+
i ) ∈

Fi(xi, wi, ui), there exists (x̂+i , p
+
i , l

+
i ) ∈ F̂i(x̂i, ŵi, ûi) so that

Si((x+i , p
+
i , l

+
i ), (x̂

+
i , p

+
i , l

+
i )) ≤ σiSi((xi, pi, li), (x̂i, pi, li)) + εi (4.2.3)

+

[
wi − ŵi

H2
i (xi, pi, li)− Ĥ2

i (x̂i, pi, li)

]⊤

Ri:=︷ ︸︸ ︷[
R11
i R12

i

R21
i R22

i

] [
wi − ŵi

H2
i (xi, pi, li)− Ĥ2

i (x̂i, pi, li)

]
.

Here, T̂i(Σi) is called an abstraction of Ti(Σi) if there exists a sum-type augmented
simulation function from T̂i(Σi) to Ti(Σi). Moreover, if T̂i(Σi) is finite, it is called a
symbolic model of Ti(Σi).
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4.2.3 Compositional Abstractions for Networks of Discrete-Time Switched
Systems: DA

We assume that we are given Σi = (Xi, Pi,Wi, Fi,Y1
i ,Y2

i , h
1
i , h

2
i ), or equivalently Ti(Σi) =

(Xi, X0i ,Wi, Ui,Fi, Y 1
i , Y

2
i ,H1

i ,H2
i ) as in Definition 2.3.2, together with their abstrac-

tions T̂i(Σi) = (X̂i, X̂0i , Ŵi, Ûi, F̂i, Ŷ 1
i , Ŷ

2
i , Ĥ1

i , Ĥ2
i ), i ∈ N , and sum-type augmented

simulation functions Si from T̂i(Σi) to Ti(Σi) as in Definition 4.2.2.
The next theorem provides a compositional approach on the construction of abstrac-

tions of the networks of transition systems T (Σ) = IM (Ti(Σi))i∈N associated to network
of discrete-time switched system Σ = IM (Σi)i∈N and that of the corresponding alter-
nating simulation functions.

Theorem 4.2.3. Consider the network T (Σ) = IM (Ti(Σi))i∈N associated to the network
of discrete-time switched system Σ = IM (Σi)i∈N . Suppose each transition system Ti(Σi)
admits an abstraction T̂i(Σi) with the corresponding sum-type augmented simulation
function Si. If there exist µi > 0, i ∈ N , such that the matrix inequality and inclusion[

M
Iq

]⊤

R̃

[
M
Iq

]
≼ 0, (4.2.4)

M
∏N
i=1 Ŷ

2
i ⊆

∏N
i=1 Ŵi, (4.2.5)

are satisfied, where

R̃ :=



µ1R
11
1 µ1R

12
1

. . . . . .
µNR

11
N µNR

12
N

µ1R
21
1 µ1R

22
1

. . . . . .
µNR

21
N µNR

22
N


, (4.2.6)

and q is the number of rows in M , then

S̃((x, p, l), (x̂, p, l)) :=
∑
i∈N

µiSi((xi, pi, li), (x̂i, pi, li)), (4.2.7)

is an alternating simulation function, as in Definition 2.2.5, from T̂ (Σ) = IM (T̂i(Σi))i∈N

to T (Σ) = IM (Ti(Σi))i∈N .

Proof. First, define z = (zi)i∈N , ẑ = (ẑi)i∈N , z+ = (z+i )i∈N , and ẑ+ = (ẑ+i )i∈N , where
zi = (xi, pi, li), ẑi = (x̂i, pi, li) z

+
i = (x+i , p

+
i , l

+
i ), and ẑ+i = (x̂+i , p

+
i , l

+
i ), ∀i ∈ N . Now

we show that inequality (2.2.1) holds. Consider any z ∈ X and ẑ ∈ X̂, one gets:

|H(z)−Ĥ(ẑ)|= |(H1
i (zi)−Ĥ1

i (ẑi))i∈N |≤
∑
i∈N

|H1
i (zi)−Ĥ1

i (ẑi)|≤
∑
i∈N

α−1
i (Si(zi, ẑi))≤ α̂

(
S̃(z, ẑ)

)
,
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where α̂ is a K∞ function defined as α̂(s) = max
ŝ≥0

{∑N
i=1 α

−1
i (si)|µ⊤ŝ = s

}
, where

ŝ = (si)i∈N and µ = (µi)i∈N . By defining the K∞ function α̃ = α̂−1, one obtains

α̃(|H(z)− Ĥ(ẑ)|) ≤ S̃(z, ẑ),

satisfying inequality (2.2.1). Now we show that inequality (2.2.2) holds as well. Define
σ̄ := max

i∈[1,N ]
{σi}, ε̄ :=

∑
i∈N µiεi, and consider condition (4.2.4), and the definition of

matrix R̃ in (4.2.6). Then, one gets the chain of inequalities in (4.2.8). Now by using

S̃(z+, ẑ+) =
∑
i∈N

µi
(
Si(z+i , ẑ

+
i )

)
≤

∑
i∈N

µi

(
σiSi(zi, ẑi) + εi +

[
wi − ŵi

H2
i (zi)− Ĥ2

i (ẑi)

]⊤ [
R11
i R12

i

R21
i R22

i

] [
wi − ŵi

H2
i (zi)− Ĥ2

i (ẑi)

])

=
∑
i∈N

µi
(
σiSi(zi, ẑi) + εi

)
+

[
(wi − ŵi)i∈N

(H2
i (zi)− Ĥ2

i (ẑi))i∈N

]⊤

R̃

[
(wi − ŵi)i∈N

(H2
i (zi)− Ĥ2

i (ẑi))i∈N

]

≤
∑
i∈N

µi
(
σiSi(zi, ẑi)+εi

)
+
[
(H2

i (zi)−Ĥ2
i (ẑi))i∈N

]⊤ [
M
Iq

]⊤

R̃

[
M
Iq

] [
(H2

i (zi)−Ĥ2
i (ẑi))i∈N

]
≤

∑
i∈N

µi
(
σiSi(zi, ẑi)

)
+

∑
i∈N

µiεi = σ̄S̃ (z, ẑ) + ε̄. (4.2.8)

the result of Theorem 2.2.9, one obtains

S̃(z+, ẑ+) ≤ max{σ̃S̃ (z, ẑ) , ε̃}.

Thus, S̃ satisfies (2.2.2) with σ̃ := (1−(1−ψ)(1− σ̄)), and ε̃ = (1− σ̄)−1ψ−1(ε̄), for some
arbitrarily chosen positive constant ψ with ψ < 1. Hence, S̃ is an alternating simulation
function from T̂ (Σ) = IM (T̂i(Σi))i∈N to T (Σ) = IM (Ti(Σi))i∈N .

4.2.4 Construction of Symbolic Models
In the following, we introduce some stability properties for the subsystems (mode) Σp, p ∈
P , described in Definition 2.4.2, based on which one can construct a symbolic model for
Σ along with the corresponding sum-type augmented simulation functions between Σ
and its symbolic model.

4.2.4.1 Incremental Passivity

Definition 4.2.4. Subsystem (mode) Σp is δ-P if there exist functions Sp : X×X → R≥0,
φ
xp

∈ K∞, a symmetric matrix Qp of appropriate dimension, and constant 0 < φcp < 1,
such that for all x, x′ ∈ X, and for all w,w′ ∈ W

φxp(|x− x′|) ≤ Sp(x, x
′), (4.2.9)
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Sp(fp(x,w), fp(x
′, w′))≤φcpSp(x, x′) +

[
w − w′

h2(x)− h2(x′)

]⊤

Qp:=︷ ︸︸ ︷[
Q11
p Q12

p

Q21
p Q22

p

] [
w − w′

h2(x)− h2(x′)

]
.

(4.2.10)

We say that Sp and Qp, ∀p ∈ P , are multiple δ-P storage functions and supply rates,
respectively, for system Σ if they satisfy (4.2.9) and (4.2.10). Moreover, if Sp = Sp′ and
Qp = Qp′ , ∀p, p′ ∈ P , we omit the index p in (4.2.9), (4.2.10), and say that S and Q are
common δ-P storage function and supply rate for system Σ.

4.2.4.2 Symbolic Models

In the following, we show how to construct a symbolic model T̂ (Σ) of transition system
T (Σ) associated to switched system Σ in which its modes Σp are δ-P.

Definition 4.2.5. Consider a transition system T (Σ) = (X,X0,W,U,F , Y 1, Y 2,H1,H2),
associated to the switched system Σ = (X, P,W, F,Y1,Y2, h1, h2), where X,W are as-
sumed to be finite unions of boxes. Let the modes Σp, for all p ∈ P of Σ be δ-P as in Defi-
nition 4.2.4. Then one can construct a symbolic model T̂ (Σ) = (X̂, X̂0, Û , Ŵ , F̂ , Ŷ 1, Ŷ 2,
Ĥ1, Ĥ2), where:

• X̂ = X̂× P × {0, · · · , kd − 1}, where X̂ = [X]ηx and 0 < ηx ≤ span(X) is the state
set quantization parameter;

• X̂0 = X̂× P × {0};

• Û = U = P is the external input set;

• Ŵ = [W]ηw , where 0 ≤ ηw ≤ span(W) is the internal input set quantization
parameter.

• (x̂+, p+, l+) ∈ F̂((x̂, p, l), û, ŵ) if and only if |fp(x̂, ŵ) − x̂+| ≤ ηx, û = p and the
following scenarios hold:

– l < kd − 1, p+ = p and l+ = l + 1;
– l = kd − 1, p+ = p and l+ = kd − 1;
– l = kd − 1, p+ ̸= p and l+ = 0;

• Ŷ 1 = {H1(x̂, p, l)|(x̂, p, l) ∈ X̂};

• Ŷ 2 = {H2(x̂, p, l)|(x̂, p, l) ∈ X̂};

• Ĥ1 : X̂ → Ŷ 1 is the external output map defined as Ĥ1(x̂, p, l) = H1(x̂, p, l) =
h1(x̂);

• Ĥ2 : X̂ → Ŷ 2 is the internal output map defined as Ĥ2(x̂, p, l) = H2(x̂, p, l) =
h2(x̂);
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η
x

fp(x̂; ŵ)

x̂

x̂+x̂+

x̂+x̂+

Figure 4.1: An illustration of the computation of the transitions of T̂ (Σ) for particular x̂, p, ŵ.

Note that the finite set Ŵ should be constructed in a similar way as discussed in
Remark 3.2.7. An illustration of the computation of the transitions of T̂ (Σ) is shown in
Figure 4.1.

Let us point out some differences between the symbolic model in Definition 4.2.5 and
the one proposed in [GPT10]. There is no distinction between internal and external
inputs and outputs in the symbolic model defined in [GPT10], whereas their distinctions
in our work play a major role in defining the networks of switched systems and providing
the compositionality results of this chapter.

4.2.4.3 Construction of Sum-Type Augmented Simulation Functions

In this subsection, we show how to construct a sum-type augmented simulation function
between a symbolic model T̂ (Σ) of transition system T (Σ) associated to the switched
system Σ where Σp is δ-P. In the following, we impose assumptions on function Sp in
Definition 4.2.4 which are used to prove some of the main results later.

Assumption 4.2.6. There exists µ̂ ≥ 1 such that

∀x, y ∈ X, ∀p, p′ ∈ P, Sp(x, y) ≤ µ̂Sp′(x, y). (4.2.11)

Assumption 4.2.6 is an incremental version of a similar assumption that is used to prove
input-to-state stability of switched systems under constrained switching assumptions
[VCL07].

Assumption 4.2.7. Assume that ∀p ∈ P , ∃γp ∈ K∞ such that

∀x, y, z ∈ X, Sp(x, y) ≤ Sp(x, z) + γp(|y − z|). (4.2.12)

Now, we establish the relation between T (Σ) and T̂ (Σ), introduced above, via the
notion of sum-type augmented simulation function as in Definition 4.2.2.
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Theorem 4.2.8. Consider a switched system Σ = (X, P,W, F,Y1,Y2, h1, h2) with its
equivalent transition system T (Σ) = (X,U,W,F , Y 1, Y 2,H1,H2). Let, ∀p ∈ P , Σp be δ-
P as in Definition 4.2.4. Consider a symbolic model T̂ (Σ) = (X̂, Û , Ŵ , F̂ , Ŷ 1, Ŷ 2, Ĥ1, Ĥ2)
constructed as in Definition 4.2.5. Suppose that Assumptions 4.2.6 and 4.2.7 hold. Let
ϵ > 1 and define φc = maxp∈P

{
φcp

}
. If, kd ≥ ϵ ln(µ̂)

ln( 1
φc

)
+ 1, and there exists a symmetric

matrix Q̃ such that ∀q ∈ {1, . . . , kd − 1}, Q̃− φ
−q
ϵ
c

∑m
p=1Qp ≽ 0, then function V defined

as

V((x, p, l), (x̂, p, l)) := φ
−l
ϵ
c

m∑
p=1

Sp(x, x̂), (4.2.13)

is a sum-type augmented simulation function from T̂ (Σ) to T (Σ).

Proof. Given the Lipschitz assumption on h1 and since, ∀p ∈ P , Σp is δ-P , from (4.2.9),
∀(x, p, l) ∈ X and ∀(x̂, p, l) ∈ X̂, we have

|H1(x, p, l)− Ĥ1(x̂, p, l)| = |h1(x)− h1(x̂)| ≤ ℓ(|x− x̂|) ≤ ℓ ◦ φ−1
xp (Sp(x, x̂))

≤ ℓ ◦ φ−1
xp

( m∑
p=1

Sp(x, x̂)
)
= ℓ ◦ φ−1

xp

(
φ

l
ϵ
c V((x, p, l), (x̂, p, l))

)
≤ ℓ ◦ φ−1

xp (V((x, p, l), (x̂, p, l))) ≤ α̂ (V((x, p, l), (x̂, p, l))) ,

where α̂ = max
p∈P

{ℓ ◦ φ−1
xp }. Hence (4.2.2) is satisfied with α = α̂−1.

Now from (4.2.12) and Definition 4.2.5, ∀x ∈ X, ∀x̂ ∈ X̂, ∀w ∈ W, ∀ŵ ∈ Ŵ, we have

Sp(fp(x,w), x̂
+) ≤ Sp(fp(x,w), fp(x̂, ŵ)) + γp(|x̂+ − fp(x̂, ŵ)|)

≤ Sp(fp(x,w), fp(x̂, ŵ)) + γp(η
x),

for any x̂+ such that (x̂+, p+, l+) ∈ F̂((x̂, p, l), û, ŵ). Let T (w, x, ŵ, x̂, Qp) := [w −
ŵ;h2(x)− h2(x̂)]⊤Qp[w − ŵ;h2(x)− h2(x̂)] and note that by (4.2.10), one gets

Sp(fp(x,w), fp(x̂, ŵ)) ≤ φcpSp(x, x̂) + T (w, x, ŵ, x̂, Qp).

Hence, ∀x ∈ X, ∀x̂ ∈ X̂, and ∀w ∈ W, ∀ŵ ∈ Ŵ, one obtains

Sp(fp(x,w), x̂
+) ≤ φcpSp(x, x̂) + T (w, x, ŵ, x̂, Qp) + γp(η

x), (4.2.14)

for any x̂+ such that (x̂+, p+, l+) ∈ F̂((x̂, p, l), û, ŵ). Now, in order to show function V
defined in (4.2.13) satisfies (4.2.3), we consider the different scenarios in Definition 4.2.5
as follows.
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• l < kd − 1, p+ = p and l+ = l + 1, using (4.2.14), we have

V((x+, p+, l+), (x̂+, p+, l+)) =
∑m

p+=1 Sp+(x
+, x̂+)

φ
l+

ϵ
c

=

∑m
p=1 Sp(fp(x,w), x̂

+)

φ
l+1
ϵ
c

≤
∑m

p=1 φcpSp(x, x̂)

φ
1
ϵ
c φ

l
ϵ
c

+

∑m
p=1(T (w, x, ŵ, x̂, Qp) + γp(η

x))

φ
l+1
ϵ
c

≤ φc
ϵ−1
ϵ V((x, p, l), (x̂, p, l)) +

∑m
p=1 T (w, x, ŵ, x̂, Qp)

φ
l+1
ϵ
c

+

∑m
p=1 γp(η

x)

φ
kd
ϵ
c

.

• l = kd − 1, p+ = p and l+ = kd − 1, using (4.2.14) and ϵ−1
ϵ < 1, one gets

V((x+, p+, l+), (x̂+, p+, l+)) =
∑m

p+=1 Sp+(x
+, x̂+)

φ
l+

ϵ
c

=

∑m
p=1 Sp(fp(x,w), x̂

+)

φ
l
ϵ
c

≤
∑m

p=1 φcpSp(x, x̂)

φ
l
ϵ
c

+

∑m
p=1(T (w, x, ŵ, x̂, Qp) + γp(η

x))

φ
l
ϵ
c

≤ φc
ϵ−1
ϵ V((x, p, l), (x̂, p, l)) +

∑m
p=1 T (w, x, ŵ, x̂, Qp)

φ
l
ϵ
c

+

∑m
p=1 γp(η

x)

φ
kd
ϵ
c

.

• l = kd − 1, p+ ̸= p and l+ = 0, using (4.2.14), kd ≥ ϵ ln(µ̂)

ln( 1
φc

)
+ 1 ⇔ µ̂φ

kd−1

ϵ
cp ≤ 1, and

ϵ−1
ϵ < 1, one has

V((x+, p+, l+), (x̂+, p+, l+)) =
∑m

p+=1 Sp+(x
+, x̂+)

φ
l+

ϵ
c

≤ µ̂
m∑
p=1

Sp(fp(x,w), x̂
+)

≤
µ̂φ

kd−1

ϵ
c

(∑m
p=1(φcpSp(x, x̂) + T (w, x, ŵ, x̂, Qp) + γp(η

x))
)

φ
kd−1

ϵ
c

≤
∑m

p=1 φcpSp(x, x̂)

φ
kd−1

ϵ
c

+

∑m
p=1(T (w, x, ŵ, x̂, Qp) + γp(η

x))

φ
kd−1

ϵ
c

≤ φc
ϵ−1
ϵ V((x, p, l), (x̂, p, l)) +

∑m
p=1 T (w, x, ŵ, x̂, Qp)

φ
kd−1

ϵ
c

+

∑m
p=1 γp(η

x)

φ
kd
ϵ
c

.

Let γ̃ = φ
−kd
ϵ

c
∑m

p=1 γp. Since Ĥ2(x̂, p, l) = h2(x̂) and H2(x, p, l) = h2(x), ∀(x, p, l) ∈ X,
∀(x̂, p, l) ∈ X̂, ∀w ∈W , and ∀ŵ ∈ Ŵ , one obtains

V((x+, p+, l+), (x̂+, p+, l+)) ≤ φc
ϵ−1
ϵ V((x, p, l), (x̂, p, l)) + γ̃(ηx)

+

[
w − ŵ

H2(x, p, l)−H2(x̂, p, l)

]⊤

Q̃

[
w − ŵ

H2(x, p, l)− Ĥ2(x̂, p, l)

]
.
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Hence, inequality (4.2.3) is satisfied with σ = φc
ϵ−1
ϵ , R = Q̃, ε = γ̃(ηx). Thus, V is a

sum-type augmented simulation function from T̂ (Σ) to T (Σ).

Observe that using exactly the same argument, we can show the V is a sum-type
augmented simulation function from T (Σ) to T̂ (Σ).

Remark 4.2.9. If equation (4.2.10) is satisfied with the same Qp, ∀p ∈ P , then function
V in Theorem 4.2.8 reduces to V((x, p, l), (x̂, p, l)) := φ

−l
ϵ
c Sp(x, x̂). In addition, if Σ

admits a common δ-P storage function, function V reduces to V((x, p, l), (x̂, p, l)) :=
S(x, x̂).

Remark 4.2.10. For affine switched systems Σ = (A,B,C1, C2, D) as in Definition
2.4.3, we can restrict our attention to δ-P storage functions of the form Sp(x, x̂) =
(x − x̂)⊤Zp (x − x̂), Zp ≻ 0. It can be readily seen that such functions always satisfy
(4.2.9) and (4.2.11) with µ̂ = max

{
λmax(Zp)
λmin(Zp)

,
λmax(Zp′ )

λmin(Zp′ )

}
, for all p, p′ ∈ P . Moreover,

inequality (4.2.10) reduces to the linear matrix inequality[
θpA

⊤
pZpAp A⊤

pZpDp

D⊤
p ZpAp θpD

⊤
p ZpDp

]
≼

[
φcpZp + C⊤

2 Q
22
p C2 C⊤

2 Q
21
p

Q12
p C2 Q11

p

]
(4.2.15)

in which Zp and Qp can be determined by semi-definite programming, where θp > 1, 0 <
φcp < 1. Consequently, it can be readily verified that ε in (2.2.2) can be defined as
ε = cpλmax(Zp), for some cp > 0 depending on θp and the dimensions of Zp.

4.2.5 Case Studies
Here we apply the proposed results of this section to a model of road traffic by construct-
ing compositionally a symbolic model of a network containing 50 cells of 1000 meters
each. We also design controllers compositionally maintaining the density of traffic lower
than 30 vehicles per cell. Additionally, we apply those results to a network of switched
systems admitting multiple incrementally passive storage functions.

4.2.5.1 Road Traffic Model

Consider the network of switched systems Σ which is adapted from [dWOK12] and
described by

Σ :

{
x(k + 1) = Ax(k) +Bp(k),

y(k) = x(k),
(4.2.16)

where A ∈ R50×50 is a matrix with elements {A}q,q = 0.9− τv
d if q ∈ Q1 = {q is odd |q ∈

[1; 50]} and {A}q,q = 0.65− τv
d if q ∈ Q2 = {q is even |q ∈ [1; 50]}, {A}q+1,q = {A}1,50 =

τv
d , ∀q ∈ [1; 50], and all other elements are identically zero, where τ = 10

60×60 , d = 1, and
v = 120 are sampling time interval in hours, length in kilometers, and the flow speed
of the vehicles in kilometers per hour, respectively. The vector Bp ∈ R50 is defined
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Σ1 Σ2

.

Σ25

Road Traffic

Network

Σ1

.

.

Cell2Cell1

ExitExitEntry

with traffic signal

Figure 4.2: Model of a road traffic network in a circular highway composed of 25 identical links,
each link has two cells.

as Bp = [b1p1 ; . . . ; b25p25 ] such that bipi = [0; 0] if pi = 1, and bipi = [0; 12] if pi = 2,
∀i ∈ [1, 25], [p1; . . . ; p25] ∈ P = {1, 2}25, where P is the set of modes of Σ.

The chosen switched system Σ here is the model of a circular road around a city
(Highway) divided in 50 cells of 1000 meters each. The road has 25 entries and 50 exits.
A cell q has an entry and exit if q ∈ Q1 and has an exit and no entry if q ∈ Q2. All
the entries are controlled by traffic signals, denoted by sr, r ∈ [1; 25]. In Σ, the dynamic
we want to observe is the density of traffic, given in vehicles per cell, for each cell q of
the road. During the sampling time interval τ , we assume that 12 vehicles can pass the
entry controlled by a traffic signal sr when it is green. Moreover, 10% of vehicles that
are in cells q ∈ Q1, and 35% of vehicles that are in cells q ∈ Q2 go out using available
exits.

Now, in order to apply the compositionality result, we introduce systems Σi, ∀i ∈
[1; 25]. Each switched system Σi represents the dynamic of one link of the entire highway,
where each link contains 2 cells, one entry, and two exits, as schematically illustrated in
Figure 4.2. The switched system Σi, ∀i ∈ [1; 25], is described by

Σi :


xi(k + 1) = Aixi(k) +Diwi(k) +Bipi(k),

y1
i (k) = xi(k),

y2
i (k) = C2

i xi(k),
(4.2.17)

Ai =

[
0.9−τv

d 0
τv
d 0.65−τv

d

]
, Di =

[
τv
d
0

]
, Bi1 =

[
0
0

]
, Bi2 =

[
12
0

]
, C2

i =

[
0
1

]⊤

,

and the set of modes is Pi = {1, 2}, ∀i ∈ [1; 25]. Clearly, Σ = IM (Σi)i∈[1,25], where the
elements of the coupling matrix M are {M}i+1,i = {M}1,25 = 1, ∀i ∈ [1; 25], and all
other elements are identically zero. Note that, for any i ∈ [1; 25], conditions (4.2.9) and
(4.2.10) are satisfied with Sipi(xi, x̂i)= (xi − x̂i)

⊤Zipi(xi − x̂i), Zipi = I2, φxipi (s) = s2,
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Figure 4.3: Closed-loop state trajectories of network Σ consisting of 50 subsystems.

φcipi = 0.98, Q11
ip = 0.3527, Q12

ip = Q21
ip = 0.0937, Q22

ip = −0.6785 ∀pi ∈ Pi. More-
over, since Sipi = Sip′i ,∀p, p

′ ∈ P , and according to Remarks 4.2.9 and 4.2.10, function
Vi((xi, pi, li), (x̂i, pi, li)) = Si(xi, x̂i) is a sum-type augmented simulation function from
T̂i(Σi), constructed as in Definition 4.2.5, to Ti(Σi), defined in Definition 2.4.2. Now, by
choosing µi = 1,∀i ∈ [1; 25] and finite internal input sets Ŵi of T̂i(Σ̂i) in such a way that∏25
i=1 Ŵi = M

∏25
i=1 X̂i, conditions (4.2.4) and (4.2.5) are satisfied. Therefore, applying

Theorem 4.2.3, function S̃((x, p, l), (x̂, p, l)) =
∑25

i=1Vi((xi, pi, li), (x̂i, pi, li)) is an alter-
nating simulation function from T̂ (Σ) = IM (T̂i(Σi))i∈[1,25] to T (Σ) = IM (Ti(Σi))i∈[1,25].

Let us now design a controller for Σ via symbolic models T̂i(Σi) such that controllers
maintain the density of traffic lower than 30 vehicles per cell (safety constraint), and
to allow only 2 consecutive red lights for each traffic signal (fairness constraint). The
former constraint implies that each vehicle can keep a 30-meter safe distance from the
one directly in front. The latter constraint is a way to avoid the trivial solution (always
red) of the safety constraint and ensures fairness between modes 1 and 2. The idea here
is to design local controllers for symbolic models T̂i(Σi), and then refine them to the
ones for concrete switched systems Σi. To do so, the local controllers are designed while
assuming that the other systems meet their specifications.

Note that the direct computation of the symbolic model for the original 50-dimensional
system Σ is not possible monolithically. We leverage software tool SCOTS [RZ16] for con-
structing symbolic models and controllers for Σi compositionally with the state quan-
tization parameter ηxi = 0.03 and the computation times are amounted to 10.2s and
0.014s, respectively. Figure 4.3 shows the closed-loop state trajectories of Σ, consisting
of 50 cells.

4.2.5.2 Fully Connected Network

In this example, we apply our results to a network Σ composed of N ≥ 2 linear switched
systems Σi, i ∈ [1;N ], admitting multiple δ-P storage functions and supply rates. In
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this respect, we choose the dynamics’ parameters such that neither condition (4.2.9)
nor (4.2.10) holds with common δ-P storage functions and supply rates for all systems.
In particular, as all systems are affine switched systems, we choose their dynamics’
parameters such that the solution of the linear matrix inequality (4.2.15) with common
Zi and Qi (i.e. Zipi = Zip′i and Qipi = Qip′i , ∀p, p

′ ∈ P, i ∈ [1;N ]) is infeasible. Hence,
none of the switched systems admits a common δ-P storage function and supply rate.
The dynamic of the network of switched systems Σ has the set of modes P = {1, 2}N , N ∈
N≥2, and it is given by

Σ :

{
x(k + 1) = Ap(k)x(k) +Bp(k),

y(k) = x(k).

The vector Bp ∈ Rn, where n = 2N , is defined as {B}i,1 = Bpi such that Bpi = [−0.9; 0.5]
if pi = 1, and Bpi = [0.9;−0.2] if pi = 2, ∀i, j ∈ [1;N ], i ̸= j. The elements of the matrix
Ap ∈ Rn×n are as follows:

{A}i,j =
[
0.015 0
0 0.015

]
, {A}i,i =Api =


[
0.05 0
0.9 0.03

]
if pi = 1,[

0.02 −1.2
0 0.05

]
if pi = 2.

Now, by introducing Σi described by

Σi :


xi(k + 1) = Aipi(k)xi(k) + ωi(k) +Bipi(k),

y1
i (k) = xi(k),

y2
i (k) = xi(k),

Ai1 =

[
0.05 0
0.9 0.03

]
, Ai2 =

[
0.02 −1.2
0 0.05

]
, Bi1 =

[
−0.9
0.5

]
, Bi2 =

[
0.9
−0.2

]
,

and the set of modes as Pi = {1, 2}, one can readily verify that Σ = IM (Σi)i∈[1,N ],
where the elements of the coupling matrix M are {M}i,i=02 and {M}i,j={A}i,j , ∀i, j ∈
[1;N ], i ̸= j. Note that, for any i ∈ [1;N ], conditions (4.2.9) and (4.2.10) are satisfied
with Sipi(xi, x̂i)=(xi − x̂i)

⊤Zipi(xi − x̂i),

Zi1 =

[
0.3030 0.0087
0.0087 0.4938

]
, Zi2 =

[
0.4899 −0.0033
−0.0033 0.4291

]
,

Qi1 = 10−3Li1, φci1 = 0.7, φxi1(s) = 0.3s2, Qi2 = 10−3Li2, φci2 = 0.7, φxi2(s) = 0.4s2,
where

Li1 =


2.7 0 −1 −3
0 1 −3 0
−1 −3 −201.3 −17
−3 0 −1.7 270.8

 , Li2 =

2.9 0 −1.4 2.7
0 1.6 2.7 0

−1.4 2.7 156 17.5
2.7 0 17.5 −294

 .
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Since Assumption 4.2.6 and kd ≥ ϵ ln(µ̂)
ln(1/φcp )

+ 1 hold with µ̂ = 1.63, kd = 3, ϵ = 1.01,

one can easily find a matrix Q̃ such that ∀q∈{1, 2}, Q̃−0.7
−q
ϵ
∑2

p=1Qp≽0 by using semi-
definite programming such that function Vi((xi, pi, li), (x̂i, pi, li)) =

∑N
i=1 Sipi(xi, x̂i)κ

−l/ϵ
pi

is a sum-type augmented simulation function from T̂i(Σi) to Ti(Σi). Choose an ar-
bitrary N , then by choosing µi = 1, ∀i ∈ [1;N ], and finite internal input sets Ŵi

of T̂i(Σ̂i) in such a way that
∏N
i=1 Ŵi = M

∏N
i=1 X̂i, conditions (4.2.4) and (4.2.5)

are satisfied. Hence, utilizing the result of Theorem 4.2.3, one can see that function
S̃((x, p, l), (x̂, p, l)) =

∑N
i=1 Vi((xi, pi, li), (x̂i, pi, li)) is an alternating simulation function

from T̂ (Σ) = IM (T̂i(Σi))i∈[1,N ] to T (Σ) = IM (Ti(Σi))i∈[1,N ].
Given N ≥ 5, a set of state Xi = [0, 1], and ηxi = 0.1, we observe that constructing

the symbolic model for the original system Σ is only possible compositionally even with
this small range of state set and coarse quantization parameters. The computation time
for constructing symbolic models of Σi is amounted to 0.53s, using tool SCOTS [RZ16]
with the state quantization parameter ηxi = 0.1.

4.3 Small-Gain Approach (SGA)
4.3.1 Networks of Discrete-Time Switched Systems: SGA Formulation
Definition 4.3.1. Consider discrete-time switched systems Σi = (Xi, Pi,Wi, Fi,Y1

i ,Y2
i ,

h1i , h2i), i ∈ N := [1;N ], N ∈ N. The finite network of discrete-time switched systems
Σ = (X, P, F,Y, h), denoted by Σ = I(Σi)i∈N , is defined by X =

∏
i∈N

Xi, P =
∏
i∈N

Pi,

F =
∏
i∈N

Fi, Y =
∏
i∈N

Y1
i , h(x) = (h1i (xi))i∈N , where x = (xi)i∈N , with the internal

variables constrained by wi = (y2j )j∈Ni = (h2j (xj))j∈Ni,
∏
j∈Ni

Y2
j ⊆ Wi, ∀j ∈ Ni, ∀i ∈ N ,

where Ni is a finite subset of N that enumerates the neighbors of Σi. The network of
discrete-time switched system is defined by the difference equations

Σ :

{
x(k + 1) = fp(k)(x(k)),

y(k) = h(x(k)),
(4.3.1)

where x : N → X, p : N → P, y : N → Y, and fp(x) = (fpi(xi, wi))i∈N with p = (pi)i∈N .

4.3.2 Max-Type Augmented Simulation Functions
Consider network of discrete-time switched systems Σ = I(Σi)i∈N , or their equivalent
network of transition systems T (Σ) = I(Ti(Σi))i∈N , where each Ti(Σi) given as in Defi-
nition 2.4.2. Assume that each system Ti(Σi) = (Xi, X0i ,Wi, Ui,Fi, Y 1

i , Y
2
i , H1

i ,H2
i ) and

T̂i(Σi) = (X̂i, X̂0i , Ŵi, Ûi, F̂i, Ŷ 1
i , Ŷ

2
i , Ĥ1

i , Ĥ2
i ) admit a max-type augmented simulation

function as defined next.

Definition 4.3.2. Consider systems Ti(Σi) = (Xi, X0i ,Wi, Ui,Fi, Y 1
i , Y

2
i , H1

i ,H2
i ) and

T̂i(Σi) = (X̂i, X̂0i , Ŵi, Ûi, F̂i, Ŷ 1
i , Ŷ

2
i , Ĥ1

i , Ĥ2
i ) where Ŷ j

i ⊆ Y j
i , j ∈ [1; 2], Ŵi ⊆ Wi. A
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function Si : Xi × X̂i → R≥0 is called a max-type augmented simulation function from
T̂i(Σi) to Ti(Σi) if there exist αi, ρwi ∈ K∞, 0 < σi < 1, and some εi ∈ R≥0 so that the
following hold:

• For every (xi, pi, li) ∈ Xi, (x̂i, pi, li) ∈ X̂i, j ∈ [1; 2], one has

αi(|Hj
i (xi, pi, li)− Ĥj

i (x̂i, pi, li)|)≤Si((xi, pi, li), (x̂i, pi, li)). (4.3.2)

• For every (xi, pi, li) ∈ Xi, (x̂i, pi, li) ∈ X̂i, ûi ∈ Ûi, wi ∈Wi, ŵi ∈ Ŵi, (x
+
i , p

+
i , l

+
i ) ∈

Fi(xi, wi, ui), there exists (x̂+i , p
+
i , l

+
i ) ∈ F̂i(x̂i, ŵi, ûi) so that

Si((x+i , p
+
i , l

+
i ), (x̂

+
i , p

+
i , l

+
i )) ≤ max{σiSi((xi, pi, li), (x̂i, pi, li)), ρwi(|wi − ŵi|), εi}.

(4.3.3)

Here, T̂i(Σi) is called an abstraction of Ti(Σi) if there exists a max-type augmented
simulation function from T̂i(Σi) to Ti(Σi). Moreover, if T̂i(Σi) is finite, it is called a
symbolic model of Ti(Σi).

The following small-gain assumption is needed to provide the compositionality results
for this section.
Assumption 4.3.3. Functions γij defined in (3.3.4) for functions αi, and ρwi and
constant σi associated with Si, ∀ i ∈ N , given in Definition 4.3.2 satisfy the small-gain
condition (3.3.6).

4.3.3 Compositional Abstractions for Finite Networks of Discrete-Time
Switched Systems: SGA

In the following, we show how to construct an alternating simulation function from the
finite network of abstractions T̂ (Σ) = I(T̂i(Σi))i∈N to T (Σ) = I(Ti(Σi))i∈N , associated
to network of discrete-time switched systems Σ = I(Σi)i∈N , via max-type augmented
simulation functions from T̂i(Σi) to Ti(Σi).
Theorem 4.3.4. Consider the finite network of transition systems T (Σ) = I(Ti(Σi))i∈N ,
associated to the network of discrete-time switched systems Σ = I(Σi)i∈N . Suppose each
transition system Ti(Σi) admits an abstraction T̂i(Σi) with the corresponding max-type
augmented simulation function Si. Let Assumption 4.3.3 holds. Then, for the K∞
functions ψi given in (3.3.7), function S̃ : X × X̂ → R≥0 defined as

S̃((x, p, l), (x̂, p, l)) := max
i∈N

{ψ−1
i (Si((xi, pi, li), (x̂i, pi, li)))}, (4.3.4)

is an alternating simulation function from T̂ (Σ) = I(T̂i(Σi))i∈N to T (Σ) = I(Ti(Σi))i∈N .
Proof. Consider z, ẑ, z+, ẑ+, σ̃, and ε̃ defined in the proof of Theorem 4.2.3. Now, we
show that (2.2.1) holds for some K∞ function α̃. Consider any zi ∈ Xi, ẑi ∈ X̂i,
∀i ∈ [1;N ]. Then, one gets

|H(z)− Ĥ(ẑ)| = max
i

{|H1
i (zi)− Ĥ1

i (ẑi)|} ≤ max
i

{α−1
i ◦ Si(zi, ẑi)}

≤ max
i

{α−1
i ◦ ψi} ◦max

i
{ψ−1

i ◦ Si(zi, ẑi)} = max
i

{α−1
i ◦ ψi} ◦ S̃(z, ẑ).
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S̃(z+, ẑ+) =max
i∈N

{ψ−1
i ◦ Si(z+i , ẑ

+
i )}

≤max
i∈N

{
ψ−1
i

(
max{σiSi(zi, ẑi), ρwi(|wi − ŵi|), εi}

)}
=max

i∈N

{
ψ−1
i

(
max{σiSi(zi, ẑi), ρwi(|(y2j )j∈Ni − (ŷ2j )j∈Ni |), , εi}

)}
=max

i∈N

{
ψ−1
i

(
max{σiSi(zi, ẑi), ρwi(max

j∈Ni

{|y2j − ŷ2j |}), , εi}
)}

≤max
i∈N

{
ψ−1
i

(
max{σiSi(zi, ẑi), ρwi(max

j∈Ni

{|H2
j (zj)− Ĥ2

j (ẑj)|}), εi}
)}

≤max
i∈N

{
ψ−1
i

(
max{σiSi(zi, ẑi), ρwi(max

j∈Ni

{α−1
j (Sj(zj , ẑj))}), εi}

)}
≤ max
i,j∈N

{
ψ−1
i

(
max{γij(Sj(zj , ẑj)), εi}

)}
= max
i,j∈N

{
ψ−1
i

(
max{γij ◦ ψj ◦ ψ−1

j (Sj(zj , ẑj)), εi}
)}

≤ max
i,j,l∈N

{
ψ−1
i

(
max{γij ◦ ψj ◦ ψ−1

l (Sl(zl, ẑl)), εi}
)}

= max
i,j∈N

{
ψ−1
i

(
max{γij ◦ ψj(S̃(z, ẑ)), εi}

)}
≤max

{
σ̃(S̃(z, ẑ)),max

i∈N

{
ψ−1
i (εi)

}}
=max

{
σ̃(S̃(z, ẑ)), ε̃

}
, (4.3.5)

Hence, condition (2.2.1) is satisfied with α̃ = (max
i

{α−1
i ◦ ψi})−1. Now consider the

chain of inequalities in (4.3.5), which satisfies (2.2.2), and implies that S̃ is indeed an
alternating simulation function from T̂ (Σ) = I(T̂i(Σi))i∈N to T (Σ) = I(Ti(Σi))i∈N .

4.3.4 Construction of Symbolic Models

Here, we show that if each subsystem (mode) Σp, p ∈ P , of Σ = (X, P,W, F,Y1,Y2, h1, h2)
is δ-ISS and some mild assumptions hold, one can construct a symbolic model for Σ
along with the corresponding max-type augmented simulation functions between Σ and
its symbolic model.

4.3.4.1 Incremental Input-to-State Stability

Definition 4.3.5. System Σp is δ-ISS if there exist functions Vp : X × X → R≥0,
φ
xp
, φxp , φwp ∈ K∞, and constant 0 < φcp < 1, such that for all x, x′ ∈ X, and for all
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w,w′ ∈ W

φ
xp
(|x− x′|) ≤ Vp(x, x

′) ≤ φxp(|x− x′|), (4.3.6)

Vp(fp(x,w), fp(x̂, w
′)) ≤ φcpVp(x, x

′) + φwp(|w − w′|). (4.3.7)

We say that Vp, ∀p ∈ P , are multiple δ-ISS Lyapunov functions for system Σ if it
satisfies (4.3.6) and (4.3.7). Moreover, if Vp = Vp′ , ∀p, p′ ∈ P , we omit the index p in
(4.3.6), (4.3.7), and say that V is a common δ-ISS Lyapunov function for system Σ. We
refer interested readers to [Lib03] for more details on common and multiple Lyapunov
functions for switched systems.

Now, we show how to construct a symbolic model T̂ (Σ̂) of transition system T (Σ)
associated to the switched system Σ in which Σp is δ-ISS.

4.3.4.2 Symbolic Models

The symbolic model of T (Σ) associated with the switched system Σ in which Σp is
δ-ISS can be constructed similarly to the one in Definition 4.2.5. Particularly, in
the contest of networks of systems, the symbolic model of T (Σ) is system T̂i(Σi) =
(X̂i, X̂0i , Ŵi, Ûi, F̂i, Ŷ 1

i , Ŷ
2
i , Ĥ1

i , Ĥ2
i ) given by Definition 4.2.5 in which Ŵi should be con-

structed in such a way that the finite network T̂ (Σ) = I(T̂i(Σi))i∈[1;N ] is well-defined.
For example, one may choose Ŵi such that Ŵi =

∏
j∈Ni

Ŷ 2
j , ∀j ∈ Ni, ∀i ∈ [1;N ], where Ni

is given as in Definition 4.3.1.

4.3.4.3 Construction of Max-Type Simulation Functions

In this subsection, we show how to construct a max-type augmented simulation function
between T (Σ), associated to the switched system Σ in which Σp is δ-ISS, and its symbolic
models T̂ (Σ) constructed as in Definition 4.2.5.

Theorem 4.3.6. Consider a switched system Σ = (X, P,W, F,Y1,Y2, h1, h2) with its
equivalent transition system T (Σ) = (X,X0,W,U,F , Y 1, Y 2, H1,H2). Let Σp be δ-ISS
as in Definition 4.3.5. Consider a symbolic system T̂ (Σ) = (X̂, X̂0, Û , Ŵ , F̂ , Ŷ 1, Ŷ 2,
Ĥ1, Ĥ2) constructed as in Definition 4.2.5. Assume that Assumptions 4.2.6 and 4.2.7
hold for function Vp in Definition 4.3.5. Let ϵ > 1. If, ∀p ∈ P, kd ≥ ϵ ln(µ̂)

ln( 1
φcp

)
+ 1, then

function V defined as

V((x, p, l), (x̂, p, l)) := Vp(x, x̂)

φ
l
ϵ
cp

, (4.3.8)

is an alternating simulation function from T̂ (Σ̂) to T (Σ).
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Proof. Recall that Ĥj = Hj = hj , j ∈ [1; 2], by Definition 2.4.2 and 4.2.5. Hence, Ĥj

and Hj satisfy the Lipschitz assumption given on hj , j ∈ [1; 2], in Remark 2.5. Since,
∀p ∈ P , Σp is δ-ISS , from (4.3.6), ∀(x, p, l) ∈ X and ∀(x̂, p, l) ∈ X̂, we have

|Hj(x, p, l)− Ĥj(x̂, p, l)| = |hj(x)− hj(x̂)| ≤ ℓj(|x− x̂|)

≤ ℓj ◦ φ−1
xp

(Vp(x, x̂)) = ℓj ◦ φ−1
xp

(
φ

l
ϵ
cpV((x, p, l), (x̂, p, l))

)
≤ ℓj ◦ φ−1

xp
(V((x, p, l), (x̂, p, l))) ≤ α̂ (V((x, p, l), (x̂, p, l))) ,

where α̂ = max
p∈P

{max
j∈[1;2]

{ℓj} ◦ φ−1
xp

}. By defining α = α̂−1, one obtains

α(|H(x, p, l)− Ĥ(x̂, p, l)|) ≤ V((x, p, l), (x̂, p, l)),

satisfying (4.3.2).
Now from (4.2.12), ∀x ∈ X, ∀x̂ ∈ X̂, ∀w ∈ W, ∀ŵ ∈ Ŵ, we have

Vp(fp(x,w),x̂
+) ≤ Vp(fp(x,w), fp(x̂, ŵ)) + γp(|x̂+ −fp(x̂, ŵ)|),

for any x̂+ such that (x̂+, p+, l+) ∈ F̂((x̂, p, l), û, ŵ). Now, from Definition 4.2.5, the
above inequality reduces to

Vp(fp(x,w), x̂
+) ≤ Vp(fp(x,w), fp(x̂, ŵ)) + γp(η).

Note that by (4.3.7), one gets

Vp(fp(x,w), fp(x̂, ŵ)) ≤ φcpVp(x, x̂) + φwp(|w − ŵ|).

Hence, ∀x ∈ X, ∀x̂ ∈ X̂, and ∀w ∈ W, ∀ŵ ∈ Ŵ, one obtains

Vp(fp(x,w), x̂
+) ≤ φcpVp(x, x̂) + φwp(|w − ŵ|)+γp(η), (4.3.9)

for any x̂+ such that (x̂+, p+, l+) ∈ F̂((x̂, p, l), û, ŵ). Now, in order to show function V
defined in (4.3.8) satisfies (4.3.3), we consider different scenarios in Definition 4.2.5:

• l < kd − 1, p+ = p and l+ = l + 1, using (4.3.9) and kd > l + 1, we have

V((x+, p+, l+), (x̂+, p+, l+)) =
Vp+(x

+, x̂+)

φ
l+

ϵ
cp

=
Vp(fp(x,w), x̂

+)

φ
l+1
ϵ
cp

≤
φcpVp(x, x̂) + φwp(|w − ŵ|) + γp(η)

φ
l+1
ϵ
cp

≤
φcp

κ
1
ϵ
p

Vp(x, x̂)

φ
l
ϵ
cp

+
φwp(|w − ŵ|) + γp(η)

φ
l+1
ϵ
cp

≤ φ
ϵ−1
ϵ

cp V((x, p, l), (x̂, p, l)) +
φwp(|w − ŵ|) + γp(η)

φ
kd
ϵ
cp

.
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• l = kd − 1, p+ = p and l+ = kd − 1, using (4.3.9) and ϵ−1
ϵ < 1, one gets

V((x+, p+, l+), (x̂+, p+, l+)) =
Vp+(x

+, x̂+)

φ
l+

ϵ
cp

=
Vp(fp(x,w), x̂

+)

φ
l
ϵ
cp

≤
φcpVp(x, x̂) + φwp(|w − ŵ|) + γp(η)

φ
l
ϵ
cp

≤ φcp
Vp(x, x̂)

φ
l
ϵ
cp

+
φwp(|w − ŵ|) + γp(η)

φ
l
ϵ
cp

≤ φ
ϵ−1
ϵ

cp V((x, p, l), (x̂, p, l)) +
φwp(|w − ŵ|) + γp(η)

φ
kd
ϵ
cp

.

• l = kd − 1, p+ ̸= p and l+ = 0, using (4.3.9), µ̂φ
kd−1

ϵ
cp ≤ 1, and ϵ−1

ϵ < 1, one has

V((x+, p+, l+), (x̂+, p+, l+))=
Vp+(x

+, x̂+)

φ
l+

ϵ
vp+

≤ µ̂Vp(fp(x,w), x̂+)

≤
µ̂φ

kd−1

ϵ
cp

(
φcpVp(x, x̂) + φwp(|w − ŵ|) + γp(η)

)
φ

kd−1

ϵ
cp

≤
φcpVp(x, x̂) + φwp(|w − ŵ|) + γp(η)

φ
l
ϵ
cp

≤ φcp
Vp(x, x̂)

φ
l
ϵ
cp

+
φwp(|w − ŵ|) + γp(η)

φ
l
ϵ
cp

≤ φ
ϵ−1
ϵ

cp V((x, p, l), (x̂, p, l)) +
φwp(|w − ŵ|) + γp(η)

φ
kd
ϵ
cp

.

Note that ∀p ∈ P, µ̂φ
kd−1

ϵ
cp ≤ 1 since kd ≥ ϵ ln(µ̂)

ln( 1
φcp

)
+ 1. By defining φc = max

p∈P

{
φ

ϵ−1
ϵ

cp

}
,

φw = max
p∈P

{
φ
− kd

ϵ
cp φwp

}
, γ̂ = max

p∈P

{
φ
− kd

ϵ
cp γp

}
, ∀(x, p, l)∈X, ∀(x̂, p, l)∈ X̂, ∀w∈W , and

∀ŵ ∈ Ŵ , one obtains

V((x+, p+, l+), (x̂+, p+, l+)) ≤ φcV((x, p, l), (x̂, p, l)) + φw(|w − ŵ|) + γ̂(η).

By using the result of Theorem 2.2.9, one obtains

V((x+, p+, l+), (x̂+, p+, l+)) ≤ max{φ̃cV((x, p, l), (x̂, p, l)), φ̃w(|w − ŵ|), γ̃(η)},

where φ̃c = 1 − (1 − ψ)(1 − φc), φ̃w = (Id + λ) ◦
(

1
(1−φc)ψ

χ ◦ φw
)

, γ̃ = (Id + λ−1) ◦(
1

(1−φc)ψ
χ ◦ (χ− Id)−1 ◦ γ̂

)
, where λ, χ, ψ are some arbitrarily chosen K∞ functions and
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positive constant with χ > id, 0 < ψ < 1. Hence, inequality (4.3.3) is satisfied with
σ = φ̃c, ρw = φ̃w, ε = γ̃(η). Thus, V is a max-type augmented simulation function from
T̂ (Σ̂) to T (Σ).

Note that by using exactly the same argument, we can show the that V is a max-type
augmented simulation function from T (Σ) to T̂ (Σ).

Remark 4.3.7. If Σ admits a common δ-ISS Lyapunov function satisfying Assumption
4.2.7, then function V in Theorem 4.3.6 reduces to V((x, p, l), (x̂, p, l)) := V (x, x̂).

Now we provide similar results as in the first part of this subsection but tailored to a
class of nonlinear switched systems which are computationally more efficient. Consider
the class of discrete-time nonlinear switched systems described by

Σ :


x(k + 1) = Ap(k)x(k) + Ep(k)ϕp(k)(Gp(k)x(k)) +Dp(k)ω(k) +Bp(k),

y1(k) = C1x(k),
y2(k) = C2x(k),

(4.3.10)

where Ap ∈ Rn×n, Bp ∈ Rn×1, Dp ∈ Rn×b, C1 ∈ Rq1×n, C2 ∈ Rq2×n, Ep ∈ Rn×1,
Gp ∈ R1×n, ∀p ∈ P = {1 · · · ,m}, and ϕp : R → R satisfying

0 ≤ ϕp(c)− ϕp(d)

c− d
≤ ap ∀c, d ∈ R, c ̸= d, (4.3.11)

for some ap ∈ R>0 ∪ {∞}.
We use the tuple Σ = (A,B,C1, C2, D,E,G,Φ, P ) to refer to the class of switched

systems of the form (4.3.10), where A = {A1, · · · , Am}, B = {B1, · · · , Bm}, D =
{D1, · · · , Dm}, E = {E1, · · · , Em}, G = {G1, · · · , Gm}, and Φ = {ϕ1, · · · , ϕm}. Note
that the nonlinear function ϕp in (4.3.10) has been widely used for modeling many phys-
ical systems including fuel cell [AGPV03], active magnetic bearing [AK01], underwater
vehicles [AAFK01], and so on.

Remark that the incremental input-to-state stability assumption on system Σp in
Subsection 4.3.4.1 boils down in this specific nonlinear case to the following assumption.

Assumption 4.3.8. Let Σ = (A,B,C1, C2, D,E,G,Φ, P ). Assume that ∀p ∈ P there
exist constants 0 < φcp < 1, θp ∈ R>0, and matrices Zp ≻ 0 of appropriate dimensions
such that the following matrix inequality hold(1 + 2θp)A

⊤
pZpAp A⊤

pZpEp

E⊤
p ZpAp (1 + 2θp)E

⊤
p ZpEp

 ≼

φcpZp −G⊤
p

−Gp 2/ap

 . (4.3.12)

Now, consider the quadratic function Vp, p ∈ P, defined as

Vp(x, x̂) = (x− x̂)⊤Zp(x− x̂). (4.3.13)

Note that for any function defined as in (4.3.13), one can always find µ̂ satisfying Assump-
tion 4.2.6 (e.g., µ̂ :=

maxp,∈P {λmax(Zp)}
minp,∈P {λmin(Zp)} ). Then, by employing Vp in (4.3.13), Theorem

4.2.8 reduces to the following one for this specific class of nonlinear switched systems.
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Theorem 4.3.9. Consider T (Σ) associated to Σ = (A,B,C1, C2, D,E,G,Φ, P ) and
the symbolic model T̂ (Σ) constructed as in Definition 4.2.5. Suppose Assumption 4.3.8
holds. Let ϵ > 1 and consider Vp given in (4.3.13). If ∀p ∈ P, kd ≥ ϵ ln µ̂

ln 1
φcp

+ 1, then

function V defined as

V((x, p, l), (x̂, p, l)) = Vp(x, x̂)

φ
l
ϵ
cp

, (4.3.14)

is a max-type augmented simulation function from T̂ (Σ) to T (Σ).
Proof. First, we show that condition (4.3.2) holds. Since Cj = Ĉj , j ∈ [1; 2], we have
Hj((x, p, l)) − Ĥj((x̂, p, l))|2 = |Cjx − Ĉj x̂|2 ≤ nλmax(C

j⊤Cj)|x − x̂|2, and similarly
λmin(Zp)|x− x̂|2 ≤ (x− x̂)⊤Zp(x− x̂). From the previous inequalities, one has

λmin(Zp)

nλmax(C⊤C)
|H((x, p, l))− Ĥ((x̂, p, l))|2 ≤ (x− x̂)⊤Zp(x− x̂)

= Vp(x, x̂) = V((x, p, l), (x̂, p, l))φ
l
ϵ
cp ≤ V((x, p, l), (x̂, p, l)),

which implies that (4.3.2) holds for V defined in (4.3.14) with α(s) = min
p

{
λmin(Zp)

nλmax(C⊤C)

}
s2,

for any s ∈ R≥0.
We continue to show that (4.3.3) holds as well. Define c1 = (1+θp+

2
θp
), c2 = (1+ 3

θp
),

consider any x+ = Apx+Epϕp(Gpx)+Dpw+Bp, and let x̂+ be defined as in Definition
4.2.5. Define ∆ := Apx + Epϕp(Gpx) +Dpw + Bp − x̂+, and observe that |∆| ≤ ηx by
Definition 4.2.5.

Note that, from the slope restriction (4.3.11), ϕp(Gpx)−ϕp(Gpx̂) = βp(Gpx−Gpx̂) =
βpGp(x−x̂), where βp is a constant and depending on x and x̂ takes values in the interval
[0, ap]. Furthermore, consider the chain of inequalities in (4.3.15).

Now, in order to show function V defined in (4.3.14) satisfies (4.3.3), we consider the
different scenarios in Definition 4.2.5. First, define ρp = bc1|

√
ZpDp|22, γp = nc2λmax(Zp),

p ∈ P , then consider
• l < kd − 1, p+ = p and l+ = l + 1, using (4.3.15) and kd > l + 1 we have

V((x+, p+, l+), (x̂+, p+, l+)) = Vp(x
+, x̂+)

φ
l+1
ϵ
cp

≤
φcp

φ
1
ϵ
cp

Vp(x, x̂)

φ
l
ϵ
cp

+
ρp|w − ŵ|2 + γp(η

x)2

φ
l+1
ϵ
cp

≤ φ
ϵ−1
ϵ

cp V((x, p, l), (x̂, p, l)) + ρp|w − ŵ|2 + γp(η
x)2

φ
kd
ϵ
cp

.

• l = kd − 1, p+ = p and l+ = kd − 1, using (4.3.15) and ϵ−1
ϵ < 1 we have:

V((x+, p+, l+), (x̂+, p+, l+)) = Vp(x
+, x̂+)

φ
l
ϵ
cp

≤ φcp
Vp(x, x̂)

φ
l
ϵ
cp

+
ρp|w − ŵ|2 + γp(η

x)2

φ
l
ϵ
cp

≤ φ
ϵ−1
ϵ

cp V((x, p, l), (x̂, p, l)) + ρp|w − ŵ|2 + γp(η
x)2

φ
kd
ϵ
cp

.
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Vp(x
+, x̂+)

= (Apx+ Epϕp(Gpx) +Dpw +Bp − (Apx̂+ Epϕp(Gpx̂) +Dpŵ +Bp)

+ (Apx̂+ Epϕp(Gpx̂) +Dpŵ +Bp)− x+)⊤Zp

(Apx+ Epϕp(Gpx) +Dpw +Bp − (Apx̂+ Epϕp(Gpx̂) +Dpŵ +Bp)

+ (Apx̂+ Epϕp(Gpx̂) +Dpŵ +Bp)− x+)

= (x− x̂)⊤(Ap + βpEpGp)
⊤Z(Ap + βpEpGp)(x− x̂) + (w − ŵ)⊤D⊤

p ZpDp(w − ŵ)

+ 2(w − ŵ)⊤D⊤
p Zp∆p + 2(x− x̂)⊤(Ap + βpEpGp)

⊤ZpDp(w − ŵ) + 2(x− x̂)⊤

(Ap + βpEpGp)
⊤Zp∆p +∆⊤

pZp∆p

≤

 x− x̂

βpGp(x− x̂)

⊤(1 + 2θp)A
⊤
pZpAp A⊤

pZpEp

E⊤
p ZpAp (1 + 2θp)E

⊤
p ZpEp

 x− x̂

βpGp(x− x̂)


+ bc1|

√
ZpDp|22|w − ŵ|2 + nc2λmax(Zp)(η

x)2

≤

 x− x̂

βpGp(x− x̂)

⊤ φcpZp −G⊤
p

−Gp 2/ap

 x− x̂

βpGp(x− x̂)

+ bc1|
√
ZpDp|22|w − ŵ|2

+ nc2λmax(Zp)(η
x)2

= φcpV (x, x̂)− 2βp

(
1− βp

ap

)
(x− x̂)⊤G⊤G(x− x̂) + bc1|

√
ZpDp|22|w − ŵ|2

+ nc2λmax(Zp)(η
x)2

≤ φcpV (x, x̂) + bc1|
√
ZpDp|22|w − ŵ|2 + nc2λmax(Zp)(η

x)2. (4.3.15)

• l = kd − 1, p+ ̸= p and l+ = 0, using (4.3.15), φ
kd−1

ϵ
cp µ̂ ≤ 1, and ϵ−1

ϵ < 1 we have:

V((x+, p+, l+), (x̂+, p+, l+)) =
Vp+(x

+, x̂+)

φ
0
ϵ
vp+

≤ µ̂Vp(x
+, x̂+)

≤
φ

kd−1

ϵ
cp µ̂

(
φcpVp(x, x̂) + ρp|w−ŵ|2+γp(ηx)2

)
φ

kd−1

ϵ
cp

≤φcp
Vp(x, x̂)

φ
l
ϵ
cp

+
ρp|w−ŵ|2+γp(ηx)2

φ
l
ϵ
cp

≤ φ
ϵ−1
ϵ

cp V((x, p, l), (x̂, p, l)) + ρp|w − ŵ|2 + γp(η
x)2

φ
kd
ϵ
cp

.
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By defining φc = max
p

{
φ

ϵ−1
ϵ

cp

}
, φw = max

p

{
φ
− kd

ϵ
cp ρp

}
, γc = max

p

{
φ
− kd

ϵ
cp γp

}
, p ∈ P , one

has

V((x+, p+, l+), (x̂+, p+, l+)) ≤ φcV((x, p, l), (x̂, p, l)) + φw|w − ŵ|2 + γc(η
x)2

for the all scenarios. Using the previous inequality and by following a similar argument
as the one in the proof of Theorem 2.2.9, one obtains

V((x+, p+, l+), (x̂+, p+, l+)) ≤ max{φ̃cV((x, p, l), (x̂, p, l)), φ̃w|w − ŵ|2, γ̃c(ηx)2},

where φ̃c = 1 − (1 − ψ)(1 − φc), φ̃w = (id + λ) ◦
(

1
(1−φc)ψ

χ ◦ ρc
)

, γ̃c = (id + λ−1) ◦(
1

(1−φc)ψ
χ ◦ (χ− id)−1 ◦ γc

)
, where λ, χ, ψ are some arbitrarily chosen K∞ functions

and positive constant with χ > id, 0 < ψ < 1. Hence, inequality (4.3.3) is satisfied with
σ = φ̃c, ρ(w) = φ̃ws

2, ∀s ∈ R≥0, and ε = γ̃(ηx)2. Thus, V is a max-type augmented
simulation function from T̂ (Σ) to T (Σ).

Remark that by following the same argument in the previous proof, it can be readily
verified that V is also a max-type augmented simulation function from T (Σ) to T̂ (Σ).

Remark 4.3.10. For affine switched systems Σ = (A,B,C1, C2, D) as in Definition
2.4.3, we can restrict our attention to δ-P storage functions of the form Sp(x, x̂) =
(x − x̂)⊤Zp (x − x̂), Zp ≻ 0. It can be readily seen that such functions always satisfy
(4.3.6) and (4.2.11) with µ̂ = max

{
λmax(Zp)
λmin(Zp)

,
λmax(Zp′ )

λmin(Zp′ )

}
, for all p, p′ ∈ P . Moreover,

inequality (4.3.7) reduces to the linear matrix inequality

(1 + 2θp)A
⊤
pZpAp ≼ φcpZp, (4.3.16)

where θp > 1, and 0 < φcp < 1. Consequently, it can be readily verified that ε in (4.3.3)
would be defined as ε = cpλmax(Zp), for some cp > 0 depending on θp and the dimensions
of Zp.

4.3.5 Case Studies

In this subsection, to demonstrate the effectiveness of our proposed results, we first
apply our approaches to a road traffic network in a circular cascade ring composed of 50
identical cells, each of which has the length of 1000 meters with 1 entry and 2 exits, and
construct compositionally a symbolic model of the network. We employ the constructed
symbolic model as a substitute to compositionally synthesize controllers keeping the
density of traffic lower than 30 vehicles per cell. Finally, to show the applicability of our
results to switched systems accepting multiple Lyapunov functions with dwell-time, we
apply our proposed techniques to a fully interconnected network.
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4.3.5.1 Road Traffic Model

Consider the road traffic network Σ = I(Σi)i∈[1,25] defined in (4.2.16), where each Σi is
defined as in (4.2.17) with ωi(k) = C2

i−1xi−1(k) ( C2
0 := C2

N , and x0 := xN , N = 25).
Note that, for any i ∈ [1; 25], conditions (4.3.6) and (4.3.7) are satisfied with Vipi(xi, x̂i) =
|xi− x̂i|, φxipi

= φxipi
= id, φvipi = 0.65, φwipi

= 0.33, ∀pi ∈ Pi. Furthermore, condition
(4.2.12) is satisfied with γipi = id, ∀pi ∈ Pi. Moreover, note that Vipi = Vip′i ,∀p, p

′ ∈ P .
Consider systems T̂i(Σi), constructed as in Definition 4.2.5, and Ti(Σi), defined in Defi-
nition 2.4.2. According to Remark 4.3.7, function Vi((xi, pi, li), (x̂i, pi, li)) = |xi − x̂i| is
a sum-type augmented simulation function from T̂i(Σi) to Ti(Σi), satisfying conditions
(4.3.2) and (4.3.3) with αi = id, σi = 0.99, ρwi = 0.98, and εi = 99ηxi , where ηxi is
the state set quantization parameter. Now, since we have γij(s) < id, ∀i, j ∈ [1; 25],
the small-gain condition (3.3.6) is satisfied. Using the results in Theorem 4.3.4 with
ψ−1
i = id, ∀i ∈ [1; 25], one can verify that S̃((x, p, l), (x̂, p, l)) = maxi{|xi−x̂i|} is an alter-

nating simulation function from T̂ (Σ) = IM (T̂i(Σi))i∈[1,25] to T (Σ) = IM (Ti(Σi))i∈[1,25]
satisfying conditions (2.2.1) and (2.2.2) with σ̃ = 0.98, α̃ = id, ε̃ = maxi{εi}.

Figure 4.4: Closed-loop state trajectories of network Σ consisting of 50 systems.

Now we synthesize a controller for Σ via symbolic models T̂i(Σ̂i) maintaining the
density of traffic lower than 30 vehicles per cell, and allowing only 2 consecutive red light
for each traffic signal. We design local controllers based on assume-guarantee reasoning
for symbolic models T̂i(Σ̂i), and then use them in concrete switched systems Σi. We
leverage software tool SCOTS [RZ16] for constructing symbolic models and controllers for
Σi. The computation times for constructing symbolic models and designing controllers
for Σi with state quantization parameter ηi = 0.03 are 10.2s and 0.014s, respectively.
Figure 4.4 shows the closed-loop state trajectories of Σ, consisting of 50 cells.

Finally, one can compute the mismatch between the output behavior of the concrete
network Σ = I(Σi)i∈[1,25] and that of its symbolic model T̂ (Σ) = I(T̂i(Σi))i∈[1,25] by
utilizing Proposition 2.2.11. In particular, using (2.2.8) and since α̃ = id, we have
ε̂ = α̃−1(ε̃) = maxi∈[1;25]{εi} = 2.9.
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4.3.5.2 Fully Connected Network

In order to show the applicability of our results to switched systems accepting multi-
ple Lyapunov functions with dwell-time, we apply our proposed techniques to a fully
interconnected network of N switched nonlinear systems (totally 2N dimensions) for
any N ≥ 2, and construct their symbolic models. The dynamic of the interconnected
switched system Σ has a set of modes P = {1, 2}N ∋ p = [p1; · · · ; pN ], N ∈ N≥1, and it
is described by

Σ :

{
x(k + 1) = Ap(k)x(k) + Eφ(Gx(k)) +Bp(k),

y(k) = x(k).

The elements of the matrix Ap ∈ Rn×n, and the vector Bp ∈ Rn, where n = 2N , are as
follows:

{A}i,j =
[
0.015 0
0 0.015

]
, {A}i,i = Api =


[
0.05 0
0.9 0.03

]
if pi = 1,[

0.02 − 1.2
0 0.05

]
if pi = 2,

{B}i,1 = Bpi =


[
−0.9
0.5

]
if pi = 1,[

0.9
−0.2

]
if pi = 2,

∀i, j ∈ [1;N ], i ̸= j. Additionally, E = [0.1; · · · ; 0.1] ∈ Rn, G = [0.1, · · · , 0.1] ∈
Rn, φ(s) = sin(s),∀s ∈ R. Now, by introducing Σi described by

Σi :


xi(k + 1) = Aipi(k)xi(k) + Eiφi(Gixi(k)) +Diωi(k) +Bipi(k),

y1
i (k) = xi(k)

y2
i (k) = xi(k).

one can readily verify that Σ = I(Σi)i∈[1,N ], where, ∀i ∈ [1;N ], ωi(k) =
∑N

j=1,j ̸=i y
2
j (k),

φi(s) = sin(s), ∀s ∈ R,

Ai1 =

[
0.05 0
0.9 0.03

]
, Ai2 =

[
0.02 −1.2
0 0.05

]
, Di =

[
0.015 0
0 0.015

]
, Bi1 =

[
−0.9
0.5

]
,

Bi2 =

[
0.9
−0.2

]
, Ei =

[
0.1
0.1

]
, Gi =

[
0.1 0.1

]
, Pi = {1, 2}.

Following the same argument as in [Lib03] and [GPT10] for the case of continuous
switched systems, one can observe that system Σi does not have a common δ-ISS
Lyapunov function because it exhibits unstable behaviors for some switching signals
(e.g., apply periodically mode 1 during 1 time unit, then mode 2 during 1 time unit
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and so on). However, system Σi has multiple δ-ISS Lyapunov function of the form
(xi − x̂i)

⊤Zipi(xi − x̂i). Accordingly, condition (4.3.12) is satisfied with

Zi1 =

[
1.311 0.001
0.001 0.492

]
, Zi2 =

[
0.4 0.01

0.012 1.49

]
, φci1 = φci2 = 0.7, θi1 = θi2 = 0.4.

Note that Assumption 4.2.6 and kd ≥ ϵ ln(µ̂)

ln( 1
κp

)
+1 hold with µ̂ = 3.27, kd = 7, and ϵ = 1.7.

Now, consider function V defined as Vi((xi, pi, li), (x̂i, pi, li))=(xi−x̂i)⊤Zipi(xi−x̂i)φ
−l/ϵ
cipi

,
systems T̂i(Σi), constructed as in Definition 4.2.5, and Ti(Σi), defined in Definition
2.4.2. Then according to Theorem 4.3.9, function V is a max-type simulation func-
tion from T̂i(Σi) to Ti(Σi), satisfying conditions (4.3.2) and (4.3.3) with αi(s) = 0.2s2,
σi = 0.99, ρwi(s) = 0.19s2, and εi = 2.26 × 103(ηxi )

2. Since we have γij(s) < id,
∀i, j ∈ [1;N ], i ̸= j, the small-gain condition (3.3.6) is satisfied. Using the results in
Theorem 4.3.4 with ψ−1

i = id, ∀i ∈ [1;N ], one can verify that S̃((x, p, l), (x̂, p, l)) =

maxi{(xi − x̂i)
⊤Zipi(xi − x̂i)φ

−l/ϵ
cipi

} is an alternating simulation function from T̂ (Σ) =

I(T̂i(Σi))i∈[1,N ] to T (Σ) = I(Ti(Σi))i∈[1,N ] satisfying conditions (2.2.1) and (2.2.2) with
σ̃ = 0.99, α̃(s) = 0.2s2, ∀s ∈ R≥0, ε̃ = maxi{εi}.

4.4 Summary
In this chapter, we proposed a compositional scheme based on dissipativity and small-
gain type reasoning for the construction of symbolic models for networks of discrete-
time switched systems. We used notions of a sum- and max-type augmented simulation
functions in order to construct compositionally an alternating simulation function that
is used to quantify the error between the output behavior of the network of switched
system and that of its symbolic model. Furthermore, under some assumptions ensuring
incremental passivity or incremental input-to-state stability of each mode of switched
systems, we showed how to construct symbolic models together with their corresponding
sum and max-type augmented simulations functions of the concrete systems. Finally, we
applied our results to a model of road traffic by constructing compositionally a symbolic
model of a network containing 50 cells of 1000 meters each. We used the constructed
finite abstractions as substitutes to design controllers compositionally keeping the density
of traffic lower than 30 vehicles per cell. We also applied our results to a network of
switched systems admitting multiple incrementally passive storage functions, and also
a network of switched systems accepting multiple incremental input-to-state Lyapunov
functions with dwell-time.
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5 Conclusions and Future Contributions

5.1 Conclusions
In this dissertation, we tackled the scalability issues that arise in the synthesis of sym-
bolic models for large-scale cyber-physical systems. We proposed novel compositional
techniques based on which one can construct symbolic models for networks composed of
discrete-time control or switched systems. In the first approach, we leveraged techniques
from dissipativity theory to provide the compositionality results. The proposed dissi-
pativity conditions may enjoy specific interconnection topologies and provide scale-free
compositional synthesis for symbolic models of networks of discrete-time control sys-
tems. We showed that if those dissipativity-type conditions hold, it is possible to design
a symbolic model for a network composed of a finite number of discrete-time control
systems using symbolic models of those systems. Particularly, we used a notion of so-
called sum-type simulation function between concrete systems and their symbolic models
to compositionally construct so-called alternating simulation functions that ensure that
the output behaviors of the networks of discrete-time control systems are quantitatively
approximated by the corresponding ones of their symbolic models.

In the second approach, we used two different small-gain type reasoning to provide
the compositionality results. First, we utilized nonlinear max-type small-gain conditions
to provide a compositional framework for constructing symbolic models for finite net-
works of discrete-time control systems. We showed that the proposed max small-gain
approach is more general than the classic one in the literature since it does not require
linear growth on the gains of systems which is the case in the classic small-gain. We also
proved that the overall approximation error is independent of the number of discrete-
time control systems in the concrete network. Specifically, this overall approximation
error is proportional to the maximum of the approximation errors between local sys-
tems and their symbolic models. Hence, the proposed results can potentially provide
symbolic models for a network composed of a large number of discrete-time control sys-
tems with a much smaller approximation error in comparison with those based on the
classic small-gain and dissipativity approaches. Additionally, we introduced a composi-
tional technique based on recently published robust small-gain conditions to synthesize
symbolic models for concrete networks consisting of infinitely many finite-dimensional
discrete-time control systems.

Moreover, we used the same dissipativity and max small-gain conditions mentioned
above to provide a compositional construction of symbolic models for finite networks of
discrete-time switched systems. In addition, we provided a technique for constructing
symbolic models for discrete-time control systems that are incrementally passive or in-
crementally input-to-state stable. We extended our results from discrete-time control
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systems to switched ones whose switching signals accept a dwell-time condition with
multiple δ-ISS Lyapunov functions (or multiple δ-P storage functions in the dissipativity
setting). Moreover, we showed that those stability properties can be replaced by some
linear matrix inequalities for particular classes of discrete-time control and switched
systems.

Finally, we provided several case studies illustrating the efficiency of the proposed
techniques. In all those case studies, we have assumed that the dynamics of the physical
plants can be described by either discrete-time control or switched systems. If this is
not the case and the states of physical plants evolve continuously in time (described
by either continuous-time control or switched systems), a discrete-time models of those
continuous-time systems still can be obtained through discretization. The obtained
discrete-time models could be exact ones (e.g., available if continuous-time systems is
linear) or approximate models (obtained from applying a numerical scheme, e.g., Euler
method). In this case, a formal upper bound for the mismatch between the output
behaviors of the concrete system and its symbolic model can be provided only at sampling
instances. In addition, the closeness of those output behaviors during intersampling
periods can be also analyzed using reachability analysis [GG10b, GG10a].

5.2 Recommendations for Future Research
In the following paragraphs, we propose some interesting subjects that could be consid-
ered as future research lines.

• Network decomposition. In this dissertation, we provided different composi-
tional approaches for synthesizing symbolic models for networks of discrete-time
control and switched systems. In order to provide such compositional approaches,
we first i) decomposed the overall concrete network into a number of concrete
systems and construct symbolic models of them individually; ii) then we used dis-
sipativity and max small-gain conditions to provide compositionality results that
allow us to construct a symbolic model of the overall network using those individual
ones.
Generally, a decomposition of a network can be derived directly from its physical
description or its mathematical models. The physical decomposition suggests a
“natural” grouping of the state variables which leads in numerical simplifications
and provides information about the important structural properties of the system.
However, a mathematical model of systems is usually what we have, and the prop-
erties of such a model provide little or no insight into how the a decomposition
should be performed [Sil07]. A future direction is to develop a general framework
for networks decomposition and investigate how the techniques used in this de-
composition could be leveraged to increase the chance of the satisfaction of the
dissipativity and max small-gain conditions used in this work.

• Compositional controller synthesis. From the standpoint of controllers design,
designers more often aim to establish a decomposition framework which produces
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a number of interconnected subsystems that are controlled by local distinct control
action. In other words, it is often desirable to formulate control laws that use only
locally available states information. This strategy is computationally efficient,
easy to implement, and can significantly reduce costly communication between
subsystems [Sil10].
In this dissertation and based on the assume-guarantee reasoning approach, the
compositionally constructed symbolic models might be used to synthesize con-
trollers compositionally to enforce some decomposable specifications. However,
when dealing with high-level properties that go beyond invariance, synthesizing
controllers in a compositional fashion is far from being obvious. As one potential
direction for future work, one may investigate possible compositional techniques
for controller synthesis for networks of systems. In other words, given a general
specification over a concrete network, one can explore how to compositionally de-
sign a controller enforcing those specification using local controllers for symbolic
models.

• New compositionality conditions. Although the compositionality conditions
used in this dissertation based on dissipativity and max small-type reasoning might
be satisfied in many applications, there are still sufficient. Therefore, developing
necessary compositionality conditions could be a possible direction of future re-
search. The necessity of those compositionality conditions means that a composi-
tionally constructed symbolic model for a concrete network exists if and only its
monolithically constructed one does.

• Enlarging classes of systems. In this dissertation, we mainly focused on two
types of networks of systems, namely, discrete-time control and switched systems.
It would be interesting if one can design symbolic models for networks of other
classes of hybrid systems, e.g., impulsive systems or state-dependent switched sys-
tems. In this direction, we recently provided a monolithic approach for construct-
ing symbolic models for a class of time-dependent impulsive systems in [SGZ20].
We expect that it is possible to combine the proposed compositional framework in
this dissertation with the results in [SGZ20] to provide compositional construction
of symbolic models for networks of impulsive systems.

• Compositional control barrier functions. A discretization-free approach,
based on control barrier functions, has shown the potential to solve the formal
synthesis problems. Different compositionally results have been recently proposed
on the construction of control barrier functions for finite networks of discrete-time
control systems in [JSZ20], for large-scale interconnected stochastic systems in
[ALZ20, NSZ20b], for finite networks of stochastic switched systems in [NSZ20a].
A future direction is to explore the compositional construction of control barrier
functions for infinite networks while considering other classes of hybrid systems.
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