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Abstract

This dissertation is motivated by the challenges arising in the analysis and synthesis
of large-scale cyber-physical systems (CPSs). In the past decades, CPSs have received
considerable attention as an important modeling framework describing many engineer-
ing systems and play major roles in many real-life applications including transporta-
tion systems, traffic networks, power systems, and so on. Automated verification and
control synthesis for this type of complex systems with the aim to achieve high-level
specifications is quite challenging. It is known that providing automated synthesis of
correct-by-design controllers for CPSs is definitely crucial in several safety-critical ap-
plications such as autonomous driving. As a promising technique, symbolic models are
introduced to cope with the computational complexity arising in the analysis of large-
scale CPSs. More specifically, one method to deal with encountered complications is
to first construct symbolic models for the concrete systems, then design controllers for
the symbolic models. Finally one can refine the controllers back to the original systems
based on some behavioral relation between original systems and their symbolic models
such as approximate alternating simulation relations [PT09] or feedback refinement re-
lations [RWR17]. Since the mismatch between the output of the concrete system and
that of its symbolic model is formally quantified, one can guarantee that the original
systems also satisfy the same specifications as the symbolic ones with guaranteed error
bounds on their output trajectories.

Unfortunately, construction of symbolic models for large-scale CPSs in a monolithic
fashion suffers acutely from the so-called curse of dimensionality. Specifically, the com-
putational complexity of the construction of symbolic models grows exponentially with
respect to the dimension of the state and input sets. Consequently, such a construc-
tion will become computationally intractable when dealing with large-scale systems. To
resolve this issue, one promising technique is to consider the large-scale CPS as a net-
work composed of many systems, and provide a compositional scheme for synthesizing
a symbolic model for the given network using symbolic models of its local systems. This
dissertation provides novel compositional methodologies to design symbolic models for
large-scale CPSs in a constructive and formal manner.

The compositional methodologies in the dissertation are based on two approaches.

e The first approach utilizes some dissipativity type conditions which may enjoy spe-
cific interconnection topologies and provide scale-free compositional construction
for symbolic models of the concrete networks. We show that if some dissipativity
type conditions hold, one can construct symbolic models of a network composed
of finitely many systems using symbolic models of those systems.
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Abstract

e The second approach leverages general small-gain type conditions to provide a
compositional framework for constructing symbolic models for either infinite or
finite concrete networks. We show that the proposed max type small-gain approach
is more general than the classic one in the literature since it does not require
linear growth on the gains of systems which is the case in the classic small-gain
approach. We also show that the overall approximation error is proportional to the
maximum of the approximation errors of symbolic models of systems. In our small-
gain framework, the overall approximation error is determined independently of the
number of systems that constitute the concrete network. Therefore, the results here
can potentially provide symbolic models for a large network contains an in(finite)
number of systems with much smaller approximation error in comparison with
those proposed based on the classic small-gain and dissipativity approaches.

In addition, we provide a procedure for constructing symbolic models for a class of
discrete-time control systems that are incrementally passive or incrementally input-to-
state stable. Moreover, we extend the results from discrete-time control systems to
switched ones by imposing those stability properties on each mode of the switched sys-
tems.
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Zusammenfassung

Diese Dissertation ist motiviert durch die Herausforderungen, die sich bei der Anal-
yse und Synthese hochdimensionaler cyberphysischer Systeme (CPS) stellen. In den
vergangenen Jahrzehnten haben CPS erhebliche Beachtung erfahren als wichtiger Mod-
ellierungsrahmen zur Beschreibung vieler Engineeringsysteme. Zudem spielen CPS eine
grofle Rolle in vielen realen Anwendungen wie zum Beispiel Transportsystemen, Verkehrs-
netzwerken usw. Automatische Verifikation und Reglersynthese fiir diesen Typ von
komplexen Systemen mit dem Ziel gewisse High-LevelSpezifikationen zu erfiillen ist sehr
anspruchsvoll. Insbesondere ist es in verschiedenen sicherheitskritischen Anwendungen
wie z.B. beim autonomen Fahren entscheidend, eine automatische Synthese von a pri-
ori korrekten Reglern bereit zu stellen. Fiir diese Aufgabe werden symbolische Modelle
eingefithrt als eine vielversprechende Methode um mit der rechnerischen Komplexitét
fertig zu werden, die sich in der Analyse von hochdimensionalen CPS ergibt. Spezi-
fischer ist es eine vielversprechende Methode um mit den auftretenden Komplikationen
umzugehen zuerst symbolische Modelle fiir die konkreten Systeme zu konstruieren, dann
Regler fiir die symbolischen Modelle zu entwerfen und schliefllich die Regler zur Anwen-
dung auf die urspriinglichen Modelle zu verfeinern basierend auf behavioral relations
zwischen den Originalsystemen und ihren symbolischen Modellen wie etwa approxima-
tiven alternierenden Simulationsrelationen [PT09] oder FeedbackRefinement-Relationen
[RWR17]. Da der Unterschied zwischen dem Ausgang des konkreten Systems und der
seines symbolischen Modells formal quantifiziert ist, kann man garantieren, dass die
Originalsysteme dieselben Spezifikationen wie die symbolischen Systeme erfiillen mit
garantierten Fehlerschranken fiir ihre Ausgangstrajektorien.

Ungliicklicherweise leidet die Konstruktion von symbolischen Modellen fiir hochdi-
mensionale CPS auf monolithische Art stark am sogenannten Fluch der Dimensional-
itdt: die rechnerische Komplexitéit der Konstruktion von symbolischen Modellen wéchst
exponentiell mit der Dimension der Zustands- und Eingangsmengen; daher wird eine
solche Konstruktion fiir hochdimensionale Systeme rechnerisch unlésbar. Ein vielver-
sprechender Ansatz um dieses Problem zu losen ist es, das hochdimensionale CPS als
ein Netzwerk von vielen Systemen zu betrachten und eine kompositionelle Strategie zur
Synthese von symbolischen Modellen fiir das gegebene Netzwerk bereit zu stellen, die
symbolische Modelle von dessen lokalen Systemen verwendet. Diese Dissertation liefert
neue kompositionelle Methoden um symbolische Modelle fiir hochdimensionale CPS auf
konstruktive und formale Art zu konstruieren.

Die kompositionellen Methoden in dieser Dissertation basieren auf zwei Ansétzen.

e Der erste Ansatz verwendet gewisse Dissipativitdtsbedingungen, die unter Umstén-
den spezifische Netzwerktopologien genieflen und eine skalierungsfreie komposi-
tionelle Konstruktion fiir symbolische Modelle der konkreten Netzwerke liefern.
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Zusammenfassung

Wir zeigen, dass falls gewisse Dissipativitdtsbedingungen erfiillt sind, symbolis-
che Modelle eines Netzwerks konstruiert werden kénnen, das aus abzahlbar vielen
Systemen zusammengesetzt ist, wobei wir symbolische Modelle dieser Systeme ver-
wenden.

e Der zweite Ansatz verwendet hinreichend allgemeine SmallGain-artige Bedingun-
gen, um ein kompositionelles Framework zur Konstruktion symbolischer Modelle
fiir unendliche oder endliche konkrete Netzwerke bereit zu stellen. Wir zeigen, dass
der vorgestellte Max-Small-Gain Ansatz allgemeiner ist als der klassische in der
Literatur, da er kein lineares Wachstum der Gains des Systems fordert, was bei
klassischem Small-Gain der Fall ist. Wir zeigen auch, dass der gesamte Approxi-
mationsfehler proportional zum Maximum der Approximationsfehler symbolischer
Modelle von Systemen ist. Daher kénnen diese Resultate potentiell symbolische
Modelle fiir ein grofies Netzwerk mit (un)endlicher Zahl an Systemen liefern mit
viel kleinerem Approximationsfehler im Vergleich zu denen, die auf klassischer
Small-Gain-Analyse und Dissipativitédtsansidtzen basieren

Zusétzlich liefern wir ein Verfahren zur Konstruktion symbolischer Modelle fiir eine
Klasse zeitdiskreter Kontrollsysteme, die inkrementell passiv oder inkrementell Input-
to-State stabil sind. Dariiber hinaus erweitern wir die Resultate von zeitdiskreten zu
geschalteten Systemen, indem wir diese Stabilitdtseigenschaften fiir jeden Modus des
geschalteten Systems fordern.
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1 Introduction

1.1 Motivation and Contributions

Cyber-physical systems (CPSs) are complex interconnected models combining both cy-
ber (computation and communication) and physical components, which tightly interact
with each other in a feedback loop [LS16]. In the past decades, CPSs have received con-
siderable attention as an important modeling framework describing many engineering
systems and play major roles in many real-life applications including transportation sys-
tems, traffic networks, and so on Figure 1.1. Most CPSs are of hybrid nature: discrete
dynamics model computation units including hardware and software, and continuous dy-
namics model physical components. The complexity raised by the interaction between
computation units and physical components often makes it difficult to obtain analytical
results for this type of complex systems. For instance, automated verification and con-
trol synthesis for CPSs to achieve some high-level specifications, e.g., those expressed
as linear temporal logic (LTL) formulae [Pnu77], is quite challenging [DLS12, KK12].
In addition, many CPSs are safety critical or mission critical; hence, the satisfaction of
safety or some desired specifications must be guaranteed.

Transportation Systems Healthcare Systems

B wp

Cyber Space

efe
N
Wie )

Smart Grids Industrial 10T Systems

= 0Pe ¢

S e (¢
=¥ s 2
|

...... > Information Flow
=+ =- > Physical Sensing

Figure 1.1: Application scenarios of CPSs.

Formal methods are known to provide fundamental tools for the synthesis of CPSs,
as they give theoretical or rigorous mathematical frameworks which ensure that the
system meets the desired specification [CW96, Win90, Ses15]. Although formal methods
have been originally developed in software engineering as a framework to find bugs or
security vulnerabilities in software, they have been recently identified to be useful in
many other applications, including control design of CPSs. In particular, one of the



1 Introduction

most successful approaches that interface formal methods and control synthesis of CPSs
is the so-called symbolic control [Tab09]. In this approach, symbolic models (a.k.a. finite
abstractions) are commonly used to replace the concrete systems in the analysis and
controller synthesis process. Symbolic models are abstract descriptions of the continuous-
space control systems in which each discrete state and input correspond to an aggregate
of continuous states and inputs of the original system, respectively. In general, there
exist two types of symbolic models: sound ones whose behaviors (approximately) contain
those of the concrete systems and complete ones whose behaviors are (approximately)
equivalent to those of the concrete systems [Tab09]. Remark that existence of a complete
symbolic model results in a sufficient and necessary guarantee in the sense that there
exists a controller enforcing the desired specifications on the symbolic model if and only if
there exists a controller enforcing the same specifications on the original control system.
On the other hand, a sound symbolic model provides only a sufficient guarantee in the
sense that failing to find a controller for the desired specifications on the symbolic model
does not prevent the existence of a controller for the original control system. Since
symbolic models are finite, controller synthesis problems can be algorithmically solved
over them by resorting to automata-theoretic approaches [MPS95, Tho95, BJP112].
Then one can refine the synthesized controllers back to the original systems based on
some behavioral relation between original systems and their symbolic models such as
approximate alternating simulation relations [PT09] or feedback refinement relations
[RWR17]. Figure 1.2 schematically describes the symbolic control scheme.

Original System Symbolic Model
9 )
W . ,;gcﬁ
& W\ Eﬁﬂ
e,
Discrete
Synthesis
Refinement

( Hybrid Controllers )<::( Discrete Controllers)

Figure 1.2: Symbolic control flowchart.

Large numbers of studies have been conducted on the computation of symbolic mod-
els for various classes of systems. In [TP06, TP03b, TP03a], complete symbolic models
were constructed for controllable linear systems. In [BHO06], a feedback control over facet
was utilized to design complete symbolic models for nonlinear control affine systems, in
[ADLB14] complete abstractions were constructed for switched linear systems using poly-
hedral sublevel sets of Lyapunov function, and in [AHLPO0O0] equivalent discrete abstrac-
tions of different classes of hybrid systems were introduced. Approximately complete
symbolic models were synthesized for different classes of systems, among many others, in
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the following papers: nonlinear systems [PGT08, PT09], switched systems [GPT10], sin-
gularly perturbed hybrid affine systems [KG19], time-delay systems [PPB10, PPB15], in-
finite dimensional systems [Girl4, JZ20], networked control systems [BPB19, ZMKA1§],
and stochastic systems [MA14, ZEM"14]. There are other results in which symbolic
models were constructed for concrete systems. A finite abstractions for continuous sys-
tems was proposed in [RO98] as a nondeterministic automaton. The notion of a strongest
[-complete approximation was introduced in [MR99, MROO02] as a discrete abstraction
for time invariant behavioral systems, and the applicability of this notion was enlarged
in [SR14] using the notion of so called asynchronous l-complete approximations. Sym-
bolic models for piecewise-affine hybrid system were introduced in [HCv06]. Results
for stabilizable and incrementally forward complete nonlinear systems were established
in [Tab08, ZPMT12, LLO15]. In [MGW19, CA17], symbolic models were designed for
monotone and mixed monotone systems, and in [LTOM12] for differentially flat systems.
Markov chain abstractions have been introduced and leveraged to safety verification and
reachable sets computation in the framework of traffic networks and autonomous ve-
hicles in [ASBO7b, ASB07a, ASB08, ASB09b, ASB09a]. We refer interested reader to
[Tab09, BYG17, GP11, PB19] for more details on some of the results mentioned above.

However, the computational complexity of constructing symbolic models often scales
exponentially with the dimension of the state and input spaces. Several approaches have
been proposed in the literature to overcome this scalability problem. Adaptive multi-
resolution and multi-scale state-space discretization approaches have been proposed in
[T109, GGM16, HMMS18b] to compute symbolic models. A state-space discretization
free approach was introduced in [CGG13, ZAG15, Girl4] where symbolic states are
given by input sequences. In [WRR17|, the size of symbolic models were minimized
using optimal discretization parameters. In [GKA17], symbolic models were constructed
by exploiting sparse interconnection structure of the dynamical systems. In [HMMS18a,
HMMS18a], a lazy versions of multi-layered abstractions for nonlinear systems against
safety and reachability specifications have been proposed. The authors in [CGG11,
GGM16] introduced lazy safety synthesis for incrementally stable switched systems using
multiscale symbolic models.

Unfortunately, all the aforementioned monolithic approaches for synthesizing symbolic
models will become computationally intractable while dealing with large-scale systems.
A convenient method to cope with this challenge is to provide a compositional frame-
work for constructing symbolic models for networks of concrete systems. To do so, one
should first ¢) partition the overall concrete network into a number of concrete systems
and construct symbolic models of them individually; i) then establish a compositional
scheme that allows us to construct a symbolic model of the overall network using those
individual ones. This divide-and-conquer scheme is illustrated in Figure 1.3.

The compositional framework for designing symbolic models based on a divide-and-
conquer scheme [Keall] is not new. Several results have already introduced compo-
sitional techniques for constructing symbolic models of networks of control systems.
The results in [TI08, PPB16, MSSM19] provide techniques to approximate networks of
control systems by networks of complete symbolic models by assuming some stability
property of the concrete systems. Other compositional approaches provide techniques
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Figure 1.3: A divide and conquer strategy scheme.

to design sound symbolic models of concrete networks without requiring any stability
property or condition on the gains of systems [MGW17, HAT17, KAZ18]. In addition,
compositional approaches for constructing finite abstractions (a.k.a. finite Markov deci-
sion processes) for stochastic systems have been widely investigated in the recent years;
see [LSZ20b, LSZ20a] and references therein.

Unfortunately, as we are concerned here with complete symbolic models for determin-
istic systems, all the results in [TI08, PPB16, MSSM19] have three main drawbacks: 7)
they deal only with networks composed of finite number of systems and can not be ap-
plied to networks consisting of infinite numbers of components. ii) those compositional
results are not concerned with switched systems, and they do not provide any com-
positional framework for the construction of symbolic models for networks of switched
systems. #ii) they use conservative small-gain type conditions which implicitly require
concrete systems to have a (nearly) linear behavior. Motivated by the above limitation,
this dissertation aims at proposing a compositional framework for constructing symbolic
models for (in)finite networks of concrete systems by considering more relaxed composi-
tional conditions and also providing compositionality results for networks consisting of
infinitely many finite-dimensional systems.

In this dissertation, we first propose compositional techniques based on dissipativity
theory. The utilized dissipativity conditions may enjoy specific interconnection topolo-
gies and provide scale-free compositional construction for symbolic models of the net-
works of discrete-time control systems. Under the satisfaction of those conditions, we
construct a symbolic model of a network composed of finitely many discrete-time control
systems using their symbolic models. In particular, we use a notion of so-called sum-type
simulation function between systems and their symbolic models to compositionally con-
struct a so-called alternating simulation function as a relation between the network of
symbolic models and that of control systems. The existence of such an alternating simu-
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lation function ensures that the output behavior of the network of discrete-time control
systems is quantitatively approximated by the that one of their symbolic models.

We also leverage general small-gain type conditions to provide a compositional scheme
for designing symbolic models for either infinite or finite networks of discrete-time con-
trol systems. We show that the proposed small-gain approach is more general than the
classic one in the literature since it does not require linear growth on the gains of sys-
tems which is the case in the classic one. We also show that the overall approximation
error is proportional to the maximum of the approximation errors of symbolic models
of systems. In our small-gain framework, the overall approximation error is determined
independently of the number of discrete-time control systems in the concrete network.
Therefore, the proposed results can potentially provide symbolic models for a network
composed of a large number of discrete-time control systems with much smaller approx-
imation error in comparison with those proposed based on the classic small-gain and
dissipativity approaches. Additionally, we introduce a compositional scheme based on
robust small-gain conditions to construct symbolic models for networks consisting of
infinitely many finite-dimensional discrete-time control systems.

Furthermore, using the same dissipativity and max small-gain conditions, we extend
our compositionality results from finite networks of discrete-time control systems to
the ones of switched systems whose switching signals satisfy a dwell-time condition.
In addition, we provide a procedure for constructing symbolic models of local systems
(discrete-time control and switched systems) that are incrementally passive or incremen-
tally input-to-state stable. We also provide some linear matrix inequalities replacing
those stability properties for some classes of concrete systems. We provide case studies
illustrating efficiency of all proposed techniques.

1.2 Qutline of the Thesis

This dissertation is divided into 5 chapters, the first of which is the current introduction.
The rest is structured as follows:

Chapter 2 presents some mathematical notations and preliminaries, and also some
systems definitions, propositions, lemmas that will be frequently used throughout the
dissertation.

Chapter 3 studies compositional construction of symbolic models for infinite and
finite networks of discrete-time control systems based on two different compositionality
approaches, i.e., dissipativity and small-gain approaches. The results of this chapter are
respectively presented based on [SGZ18, SZ19b, SNZ20].

Chapter 4 discusses compositional construction of symbolic models for finite networks
of discrete-time switched systems with the same compositional techniques as the previous
chapter. The results of this chapter are respectively presented based on [SZ19c, SZ19a].

Chapter 5 summarizes the results of this dissertation and outlines potential directions
for the future research.

For more clarity of exposition, Chapters 3 and 4 follow a common structure. They
start with an introduction including a description of the problem addressed, a brief
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literature review, and a statement of the contributions made. The developed techniques
are detailed in subsequent sections, followed by a section illustrating their efficiency on
different case studies. The chapters are concluded with a summary section.



2 Notations and Preliminaries Results

2.1 Notations

We denote by R, Ny, and N the sets of real numbers, non-negative integers, and positive
integers, respectively. We denote the closed, open, and half-open intervals in R by |[a, b],
(a,b), [a,b), and (a,b], respectively. For a,b € Ny and a < b, we use [a;b], (a;b), [a;b),
and (a;b] to denote the corresponding intervals in Ng. Given any a € R, |a| denotes the
absolute value of a. Given any v = [v1;- -+ ;1] € R”, the infinity norm of v is defined by
|v| = maxi<i<p |vi|. Elements of R™ are by default regarded as column vectors and we
write v for the transpose of a vector v € R™. Given a symmetric matrix A, Apax(A), and
Amin(A) denote the maximum and minimum eigenvalues of A, respectively. By (> we
denote the Banach space of all infinite uniformly bounded sequences s := (s;);en € £°°,
where s; denotes the ith position of a sequence s € £°°. Moreover, £3° denotes the
positive cone in £*° consisting of all vectors s € £ with s; > 0,7 € N. For all s,s" € £
we say that s < ¢ if s; < s for all 7 € N, and that s # s if there is i € N such
that s; < s,. The standard unit vectors in £*° are denoted by e;, i € N; i.e., e; is the
sequence of zeros with exception of position ¢, where the entry is 1. Given an operator
D:fP — 42, k>1¢€N, we define I'*(-) := T*"L o I'(), where I'? is the identity
operator on £*°. We denote by card(A) the cardinality of a set A and by & the empty
set. For any set S C R™ which is a finite union of boxes, e.g., S = Ujj\il S; for some finite

number M € N, where S; = [[I,[¢/,d}] € R™ with ¢/ < d/, and a positive constant
n < span(S), where span(S) = minj=1,_. ans; and ng; = min{\d{ - c{\, | =)
we define [S], ={a €S | a;j=kin, k; € N,i=1,...,n}. The set [S], will be used as a
finite approximation of S with precision 7. Note that [S], # @ for any n < span(S).
We use the notations K and K to denote different classes of comparison functions,
as follows: K = {a : R>o — R>¢| « is continuous, strictly increasing, and «(0) = 0};
Koo ={a € K| TILHOlO a(r) = co}. For a, 7€ Ko we write a < v if a(r) <~(r), and, with
abuse of the notation, o =c¢ if a(r) =cr for all » > 0 and a given ¢ > 0. Finally, we
denote by id the identity function over R>g, that is id(r) = r, Vr € R>o.

2.2 Transition Systems

In this section, we consider a general form of transition systems which allows us to model
concrete systems and their symbolic models in a common framework.

Definition 2.2.1. A transition system is a tuple T = (X, Xo, W, U, F, Y1, Y2 H' H?),
consisting of:
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a set of states X;

e a set of initial states Xo C X;

e a set of external inputs U;

e a set of internal inputs W ;

o transition function F : X xW x U = X;
e an external output set Y';

e an internal output set Y?;

e an external output map H' : X — Y1;

e an internal output map H? : X — Y2,

The transition 1 € F(x, w,u) means that the system can evolve from state z to state
27 under the inputs w and u. Thus, the transition function defines the dynamics of
the transition system. Sets X, W, U, and Y are assumed to be subsets of normed vector
spaces with appropriate finite dimensions.

If forall z € X,w € W,u € U, card(F(z,w,u)) < 1 we say that T is deterministic,
and non-deterministic otherwise. Additionally, T is called finite if X, W, U are finite sets
and infinite otherwise. Furthermore, if for all x € X there exists w € W and u € U such
that card(F(z,w,u)) # 0 we say that T' is non-blocking. In this work, we only deal with
non-blocking transition systems.

2.2.1 Networks of Transition Systems

Let .4 be either infinite or finite set, i.e.,./ := N, or A4 := [1; N] for a finite number
N € N. As we consider T; to be a part of a network, we define the following sets defining
the neighbors of T;. For each i € A4 let N; and M, be finite subsets of .4#". Here,
the index sets N; and M; enumerate the neighbors of T, i.e., those systems Tj,j € N;,
Tj,j' € M; that affect or are affected by Tj, respectively. By definition, we require that
i ¢ NiUM,, Vie A Since N; and M, are finite subsets of .4, each T; can have only
a finite number of neighbors.

Now, we provide a formal definition of the network of transition systems based on two
different compositional approaches, i.e., the dissipativity and small-gain approaches.

2.2.1.1 Dissipativity Approach Formulation

Definition 2.2.2. Consider transition systems T; = (Xi,Xoi,Wi,UZ-,]:Z-,Y?,KQ,H},
H?), i € N = [1;N], N € N. Let M be a static matriz of an appropriate dimen-

sion defining the coupling of these systems such that M ][] Yi2 C [ W;. The network
ieN ieN
of transition systems is a tuple T = (X, Xo,U, F,Y,H), denoted by T = Zp(T3)ic v,
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where X = [[ X4, Xo= [[ Xo,, U= ] Ui, Y = [[ Y. Moreover, F and H are

(2

iEN 1eN 1EN 1EN
defined as

f(x,u) = {(mj_)ZE/V‘a:j_ € }—i(x%wi?ui)}v H(x) = (Hzl(xz))zé/i/a
where © = (zi)icy, u = (W)icn, and with the internal variables constrained by
(wi)ier =M (hF(2:))ier -

Note that condition M [ Y2 C [[ W; is required to have a well-defined inter-
ieN ieN
connection. The interconnection scheme of network 71" based on dissipativity approach

formulation is illustrated in Figure 2.1.

—_— T1 —

TN

(wi)z'e[l;N} = M(h?(xi))z‘E[l;N}

M

Figure 2.1: The interconnection scheme for network T' composed of N systems based on the
dissipativity approach formulation.

2.2.1.2 Small-Gain Approach Formulation
Definition 2.2.3. Consider transition systems T; = (Xi,Xoi,Wi,Ui,fi,Yl Y2 7-[}7

IR A
H2), i € N . The network of transition systems is a tuple T = (X, Xo, U, F,Y,H), de-
noted by T = I(T;)ic.v, where X = {x = (z;)icn : ;i € Xi, ||z|| := sup;e_s {|zi|} < 00},
Xo ={z = @i)icr 1w € Xo,}, U ={u = (wi)icn : ui € Ui, |Jul| := sup;e 4 {|uil} <
OO}, Y = Hieﬂf Y;li ]:(a:,u) = {(xj)zé/i/’xj_ € ‘Fi(mhwi,ui)}’ H(x) = (Hzl(xl))ze/if; and
with the internal variables constrained by w; = (y?)jgj\/’i = (h?($j))jej\[i7 I Yj2 c Wi,

JEN;
Vi e N, Vie N,

The interconnection scheme of network 7" based on small-gain formulation is illustrated
in Figure 2.2.

Remark 2.2.4. If 4 :=[1;N], N € N, sets X, Xy, and U in Definition 2.2.3 can be
also written as those in Definition 2.2.2. o
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™ T

TN

w; = (Yj)jen; = (h?(xj))je/\/w
1 € [1; N]

Figure 2.2: The interconnection scheme for network 7' composed of N systems based on the
small-gain approach formulation.

2.2.2 Alternating Simulation Functions

Next we introduce a notion of so-called alternating simulation functions, inspired by
[GP09, Definition 1], which quantitatively relates two network of transition systems as
in Subsection 2.2.1.

Definition 2.2.5. Let T = (X, Xo, U, F,Y,H) and T= (X,XO, IA],]?,Y,?:[) be networks
of transition systems withY CY. A function S : X x X — R>¢ is called an alternating
simulation function from T to T if there ewist &,5 € Koo, with 6 < id, py € Koo U {0},
and some € € R>q so that the following hold:

o Foreveryxe X,2 € X, one has

a([H(x) - H(@)) <8 (e, ). (2.2.1)

o Foreveryr € X,z € X, 0 € U, there exists u € U such that for every x* € F(x,u)

there exists 3 € F(Z,4) so that

S(z",&") < max{5(S(z,2)), pu(llal]), €}. (2.2.2)

We say that T is an abstraction of 7' and write 7' < § T if there exists an alternating
simulation function from 7' to T. In addition, if T is finite (X and U are finite sets), we
say that Tis a symbolic model of T. Moreover, note that when T is a finite network,
we have || - || = |- |. Hence, from now on, we use | - | instead of || - || in the conditions
2.2.1 and 2.2.2 if the network is finite.

Let us point out some differences between our notion of alternating simulation func-
tion and the one in Definition 1 in [GP09]. The notion of simulation function in [GP09,
Definition 1] is defined between two continuous-time control systems, whereas in Defini-
tion 2.2.5, we define the alternating simulation function between two transition systems
which can be used to represent several classes of systems including continuous-time

10
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control systems. Additionally, on the right-hand-side of (2.2.2), we introduce constant
€ € R>¢ to allow the relation to be defined between two systems defined over either infi-
nite or finite state and input sets. The role of this constant will become clear later when
we introduce symbolic models. Such a constant does not appear in [GP09, Definition 1]
which makes it only suitable for systems defined over infinite sets. Furthermore, we for-
mulate the decay condition (2.2.2) in a maz-form, while in [GP09] the decay condition
is formulated in an implication-form.

The following technical lemmas are used to prove some of the results in this chapter
and the following ones.

Lemma 2.2.6. For any a,b € Ry, the following holds
a+b < max{(id + \)(a), (id + \71)(b)}, (2.2.3)
for any A € K.

Proof. Define ¢ = A~1(b). Now, one has

+b_{a—l—)\(c)Sc—l—)\(c):(id—l-)\_l)(b) ifa <e,
PTPTVa+Me) <a+Aa) = (id+N(a) ifa>e,

which implies (2.2.3). O
The next lemmas are borrowed from [Kell4].

Lemma 2.2.7. Consider o € K and x € K&, where (x —id) € K. Then for any
a,be R>g

ala+b) < aox(a)+aoyo(x—id) (b).
Lemma 2.2.8. For any function & € K, there exists a function & < id € Ko satisfying
6<¢6.
The next theorem shows that the decay condition (2.2.2) of the alternating simulation

function in Definition 2.2.5 can be also formulated in a sum-form.

Theorem 2.2.9. Consider systems T and T and function S : X x X = R>o as in
Definition 2.2.5. Assume that there exist functions &, € Ko, with ¢ < id, p, €
Koo U{0}, and some & € R>q such that for everyz € X, % € X, U € U, there exists u € U
such that for every xt € F(x,u) there exists &+ € F(&,4) so that

Szt &7) < 5(S(x, &) + pu(||a]]) + & (2.2.4)

Then there exist &,6 € Koo, with & < id, pu € Koo U {0}, and some & € Rxq such that
S satisfies (2.2.2).

11
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Proof. Since ¢ < id, define 6 =id — 6 € K. Let 9 be a K function with ¢ < id, and
define ¢ = 6~ oy~ (pyu(|l]) +&). Let D = {(x,%) € X x X|S(z, %) < ¢}. First, assume
(z,2) € D. Then S(z,%) < ¢, that is, 1 0 6(S(x, #)) < pu(]|i]|) + &. Since & < id, and
P od(c) = pu(]|e]]) + & and by using (2.2.4), one obtains

o(S(z, &) + pu(lla]) + &
(id = 6)(S(w, ) + pu(llal) + € < (id = 6)(c) + ¥ 0 5(c)
¢c—=06(c)+9od(c) < —(id=y)(d(c)) + ¢ <c

Using the definition of ¢ and by utilizing Lemmas 2.2.6 and 2.2.7, we have the following
inequality

S(z*, ")

ININ TN

S(a*,2%) <67 o™ pu(llal]) + &) < max{pu(lla]), e}, (2.2.5)

where p, = (id+A) o5 Loy~ toxop,, and € = (id+ A1) os Loy~ Loxo(x—id)1(5),
for some arbitrarily chosen A, x € Ko with x > id.
Now assume (z,2) ¢ D. Then ¢ o 6(S(z, %)) > pu(||@]]) + &, and one has

S(at %) < S(a,2) - 6(S(w,2)) + Yo 6(S(x,2)) < S(x,2) — (id — ) (6(S(x,2)))
< —(S(z, ) + Sz, @) < (id — P)(S(, 2)), (2.2.6)
for all * € f(z,u) and some & € f(&,4), where ¢)(s) := (id — ¥) 0 5. Observe that

(id — 9) is a Ko function since id — 1) and & are Ko functions and (id — ¥) < id. From
(2.2.6) and by defining & := (id — 1)), one gets

St it < 5(S(x, 2)). (2.2.7)
Combining (2.2.5) and (2.2.7), one gets

S(a*, %) < max{5(S(z,2)), pu(lal), £},
which completes the proof. O

Before showing the next result, let us recall the definition of an alternating simulation
relation introduced in [PT09].

Definition 2.2.10. Let T = (X, Xo,U, F,Y,H) and T = (X, Xo,U,F,Y,H) be net-
works of transition systems with Y CY. Arelation R C X x X is called an é- approzximate
alternating simulation relation from TtoT if for any (z,%) € R

(i) | H(z) - ()| < &

(ii) For any @ € U, there exists u € U such that for all z+ € F(x,u) there exists
@t € F(&,4) satisfying (z*,27) € R.

In addition, if (i) still holds when reversing the role of 7' and T, the relation R is in
fact an Z-approximate alternating bisimulation relation between T and 7' [PT09].

The next result shows that the existence of an alternating simulation function for
networks of transition systems implies the existence of an approximate alternating sim-
ulation relation between them as defined above.

12
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Proposition 2.2.11. Let T = (X, Xo, U, F,Y, 1) and T = (X, Xo, U, F, Y, H) be net-
works of transition systems with Y CY. Assume S is an alternating simulation function
from T to T as in Definition 2.2.5 and that there exists 7 € Rsq such that ||| < r for
all @ € U. Then, relation RC X x X defined by

R— {(gg,;z) e X x X|8(x, #) < max {ﬁu(r)vé}} ,

is an £-approrimate alternating simulation relation from T to T with
¢ = a H(max{p,(r),&}). (2.2.8)

Proof. Ttem (i) in Definition 2.2.10 is a simple consequence of the definition of R and
condition (2.2.1) (ie. &([|H(x) — H(2)|) < S(z,#) < max{p,(r),&}), which results
in [|[H(z) — H(z)|| < a_l(max{pu( ),€}) = é. Ttem (ii) in Definition 2.2.10 follows
immediately from the definition of R, condition (2.2.2), and the fact that 6 < id. In
particular, we have S(z*, #%) < max{p,(r),&} which implies (z*,2%) € R. O

The approximate alternating simulation relation guarantees that for each output be-
havior of T' there exists one of T such that the distance between these output behaviors
is uniformly bounded by £.

Remark 2.2.12. Since the input set in all practical applications is bounded, requiring
the control inputs to be bounded is not restrictive at all. Moreover, under certain stability
properties of concrete systems, one can choose function p, in (2.2.8) to be identically
zero which cancels the dependency on the size of control inputs in Proposition 2.2.11. ©
2.3 Discrete-Time Control Systems
The discrete-time control systems considered here are defined below.
Definition 2.3.1. A discrete-time control system X is defined by the tuple

Y =X, W,U, f, Y, Y2 At h2), (2.3.1)
where

e XCR*UCR™ WCR",Y!'C qu, and Y? C RY are the state set, external input
set, internal input set, external output set, and internal output set, respectively;

F:XxUxW — X is the transition function;

h': X — Y is the external output map;

h?: X — Y? is the internal output map.

13
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The discrete-time control system X is described by difference equations of the form

x(k+1) = f(x(k),w(k),v(k)),
by yi(k) = ht(x(k)), (2.3.2)
y?(k) = h*(x(k)),

where x :N =X, w: N> W, v: N> U, y' : N = Y and y? : N = Y? are the state
stgnal, internal input signal, external input signal, external output signal, and internal

output signal, respectively.
If ¥ is linear, (2.3.2) reduces to

x(k+1) = Ax(k) + Dw(k) + Bv(k),
¥ yi(k) = CO'x(k), (2.3.3)
y* (k) = C?x(k),

where A € R™" B e R™™, (Ol ¢ R‘IIX", C? e quxn, and D € R™". We use the
tuple ¥ = (A, B,CY,C2, D) to refer to the class of control systems of the form (2.3.3).

2.3.1 Discrete-Time Control Systems as Transition Systems

Here, we represent discrete-time control systems as transition systems. Such a represen-
tation allows us to write discrete-time control systems and their symbolic models in a
unified way.

Definition 2.3.2. Given a discrete-time control system ¥ = (X, W, U, f, Y', Y2, h! h?)
we define the associated transition system T(X) = (X, Xo, W, U, F, Y1, Y2 H! H?),
where: X =X, Xo=X, W =W, U =0, Y' =Y Y2=Y2 H! =h', H> = h?, and
xt € F(z,w,u) if and only if x* = f(z,w,u).

2.4 Discrete-Time Switched Systems
In this section, we consider discrete-time switched systems as defined below.
Definition 2.4.1. A discrete-time switched system Y is defined by the tuple

Y =(X,W,P,F,Y', Y2 h' h?), (2.4.1)

where

e XCR*»,WCR"Y!C ]qu, and Y? C R are the state set, internal input set,
external output set, and internal output set, respectively;

e P={1,...,m} is a finite set of modes;
e F={f1,...,fm} is a collection of transition maps fp : X x W — X for all p € P;

e h':X = Y! is the external output map;

14
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e h?:X — Y? is the internal output map.

The discrete-time switched system Y is described by difference equations of the form

x(k+1) = fou)(x(k), w(k)),
P y (k) = hl(x(k)), (2.4.2)

(
yA (k) = h*(x(k)),

where x : N - X, w:N—=> W, p: NP, y' : N = Y!, and y? : N = Y? are the
state signal, internal input signal, switching signal, external output signal, and internal
output signal, respectively. We denote by X, the system (2.4.2) with constant switching
signal p(k) = p € P Vk € N>1. Let ¢, k € N>1, denote the time when the k-th switching
instant occurs and define ® := {¢r : k € N>1} as the set of switching instants. We
assume that signal p satisfies a dwell-time condition [Mor96] (i.e. there exists kq € N>,
called the dwell-time, such that for all consecutive switching time instants ¢y, g1 € P,

Grt1 — Gk > ka)-
If ¥ is an affine switched system, (2.4.2) reduces to

x(k+1) = Aypx(k) + Dyayw(k) + By,
¥ yi(k) = C'x(k), (2.4.3)
y*(k) = C?x(k),

where A, € R™™ B, e R*, C' € R *", C% € R®"*" and D, € R™*", for all p € P.
We use the tuple ¥ = (A, B,C',C?,D) to refer to the class of control systems of the
form (2.4.3), where A ={Ay,...,An}, B={B1, - ,Bn}, D={D1,...,Dy}.

2.4.1 Discrete-Time Switched Systems as Transition Systems

Similar to Subsection 2.3.1, we also define discrete-time switched systems as transition
systems.

Definition 2.4.2. Given a discrete-time switched system ¥ = (X, W, P, F,Y', Y2, h', h?)
we define the associated transition system T(X) = (X, Xo, W, U, F, Y1 Y2 H! H?),
where:

e X =XxPx{0,--+,kg— 1} is the state set;
o Xo=Xx P x {0} is the initial state set;

e U = P is the external input set;

e W =W is the internal input set;

(zt,pt,1%) € F((z,p,1),u,w) if and only if z* = fy(x,w),u = p and the following
scenartos hold:

—l<kyg—1,pt =pand It =1+ 1: switching is not allowed because the time
elapsed since the latest switch is strictly smaller than the dwell time;

15
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—l=kqg—1,p" =pandlt = kq—1: switching is allowed but no switch occurs;

—l=kg—1,p" #pandl™ = 0: switching is allowed and a switch occurs;
Yl — Yl .
Y2 — Y2 .
H : X — Y is the external output map defined as H'(x,p,1) = h'(x);

H? : X — Y? is the external output map defined as H*(x,p,1) = h?(x).

General Remark

We assume that there exists a unique solution to (2.3.2) and (2.4.2) describing the
evolution of the discrete-time control and switched systems in (2.3.1) and (2.4.1),
respectively.

. The external and internal output map h?, j € [1;2], for systems in (2.3.1) and

(2.4.1), satisfy the following general Lipschitz assumption: there exist # € Ku
such that |h/(x) — k7 (2')] < ¢/ (|x—2']) for all z,2” € X and for all j € [1;2]. Note
that this assumption on h’, j € [1;2] is not restrictive at all provided that one is
interested to work on a compact subset of X.

. The network of the discrete-time control and switched systems in (2.3.1) and (2.4.1)

based on the Dissipativity and small-gain approaches can be similarly defined to the
network of transition systems in Definitions 2.2.1.1 and 2.2.1.2. Those definition
will be formally given in the following chapters.

The use of transition systems as an alternative description for discrete-time control
and switched systems allows one to define infinite and finite systems in a common
framework. Moreover, it allows us to directly apply the compositional frameworks,
which will be introduced in the following chapters.



3 Symbolic Models for (In)finite Networks
of Discrete-Time Control Systems

3.1 Introduction

Large-scale networks appear in a wide variety of modern applications, including traffic
networks [Ker19], transportation systems [Cas01], and power systems [Qua77]. More-
over, in many applications, a system is considered as a finite but very large network with
possibly unknown number of systems; see [JB05, BPD02, Lill] and references therein.
Hence, it is reasonable to over-approximate such a system by an infinite network which
is seen as an interconnection of infinitely many finite-dimensional systems. In general,
designing controllers enforcing sophisticated properties on those large networks is a chal-
lenging problem. Construction of symbolic models was introduced in recent years as a
promising method to address these issues. Unfortunately, the construction of symbolic
models for large-scale systems is itself computationally a complex and challenging task.
An appropriate technique to overcome this challenge is to first construct symbolic models
of the concrete systems individually and then establish a compositional framework using
which one can construct a symbolic model of the overall network using those individual
symbolic models. Motivated by the above limitation, this chapter is concerned with
providing compositional approaches for designing symbolic models for (in)finite network
of discrete-time systems. We propose a compositional technique for the construction of
a notion of so-called alternating simulation function as a relation between a network of
symbolic models and that of discrete-time systems. The alternating simulation function
provides a formal upper bound for the mismatch between the output behaviors of the
concrete and the abstract network.

3.1.1 Related Work
3.1.1.1 Finite Network

In the past few years, there have been several results on the compositional construc-
tion of symbolic models of networks of control systems. The framework introduced
by [TI08] based on the notion of interconnection-compatible approximate bisimulation
relation provides networks of symbolic models approximating networks of stabilizable
linear control systems. This work was extended by [PPB16] to networks of incrementally
input-to-state stable nonlinear control systems using the notion of approximate bisimu-
lation relation. The recent result by [MSSM19] introduces a new system relation, called
(approximate) disturbance bisimulation relation, as the basis for the compositional con-
struction of symbolic models. The proposed results by [TI08], [PPB16], and [MSSM19]

17
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use the small-gain type conditions and provide complete symbolic models of intercon-
nected systems compositionally. Unfortunately, those small-gain type conditions are
conservative, in the sense that they are all formulated in terms of “almost” linear gains,
which means the considered systems should have a (nearly) linear behavior. Those con-
ditions may not hold in general for systems with nonlinear gain functions. Additionally,
those small-gain type conditions depend essentially on the size of the network graph
and can be violated as the number of systems in the network increases [DK04]. More-
over, all compositional techniques for the construction of symbolic models introduced
in [TI08, PPB16, MSSM19] are tailored to networks composed of finitely many systems
and can not be directly applied to networks consisting of an infinitely many components.

3.1.1.2 Infinite Network

Construction of symbolic models for infinite dimensional systems is already proposed in
[PPB10, Girl4, PPB15, JZ20]. In [PPB10], symbolic models are constructed for non-
linear continuous time-delay systems with known and constant delays. This work was
extended in [PPB15] to the same class of systems with unknown and time-varying de-
lays. The results in [Girl4] provide a generic state-space discretization-free approach
for computing symbolic models of finite or infinite dimensional systems which are in-
crementally stable. A state-space discretization-free approach was also introduced in
[JZ20] for designing symbolic models for infinite dimensional stochastic systems, partic-
ularly, retarded jump-diffusion systems. While the results in [PPB10, PPB15, JZ20] deal
with time-delay systems evolving over finite-dimensional state spaces, here we deal with
an interconnection of infinitely many finite-dimensional systems evolving over infinite-
dimensional state spaces. The result in [Girl4] deals with a single incrementally stable
infinite-dimensional system with finite-dimensional input space and the finite abstrac-
tion is based on input sequences which is not the case in this work. Here both state
and input spaces of the concrete network is infinite-dimensional and the construction of
symbolic models is based on the discretization of both state and input spaces. Moreover,
all the proposed results in [PPB10, Girl4, PPB15, JZ20] take a monolithic view of the
systems while constructing symbolic models. However, our result provides a composi-
tional approach on the construction of a symbolic model of the network using those of
local systems.

3.1.2 Contributions

In the first part of this chapter, we introduce a compositional approach for the construc-
tion of symbolic models of finite networks of discrete-time control systems by leveraging
techniques from dissipativity theory [AMP16]. First, we introduce a notion of so-called
sum-type simulation function inspired by the one introduced in [ZA17] and use it to
quantify the joint dissipativity-type properties of local discrete-time control systems and
their symbolic models. Given a sum-type simulation function between systems and their
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symbolic models, we drive compositional conditions under which one can construct a so-
called alternating simulation function as a relation between the network of symbolic
models and that of control systems. The existence of such an alternating simulation
function ensures that the output behavior of the concrete network is quantitatively ap-
proximated by that of its symbolic model. In addition, we provide a procedure for the
construction of symbolic models together with their corresponding sum-type simulation
functions for a class of discrete-time control systems satisfying some incremental passiv-
ity property. We also show that for a network of linear discrete-time control systems,
the aforementioned incremental passivity property can be readily verified by checking a
matrix inequality. Finally, we apply the proposed results to the temperature regulation
in a circular building and construct compositionally a symbolic model of a network con-
taining 1200 rooms. Moreover, we show the effectiveness of the proposed results in the
case of fully connected network as well.

In the second part of the chapter, we introduce a compositional approach for the con-
struction of symbolic models for network of discrete-time control systems using more
general small-gain type conditions. First, we introduce a notion of so-called max-type
simulation functions inspired by [GP09, Definition 1] as a system relation. Given max-
type simulation functions between local systems and their symbolic models, we derive
some small-gain type conditions to construct an overall alternating simulation function
as a relation between the interconnected abstractions and the concrete network. Those
general small-gain type compositional conditions are formulated in a general nonlinear
form which can be applied to both linear and nonlinear gain functions without making
any pre-assumptions on them. We show that our proposed small-gain type condition
is much more general than the ones proposed in [PPB16, MSSM19]. Moreover, we in-
troduce a compositional methodology for constructing symbolic models for a network
composed of infinitely many finite-dimensional systems. Based on the recently developed
small-gain theorem [DMSW19], we show that an alternating simulation function can be
constructed by composing max-type simulation functions relating each finite-dimensional
system and its symbolic model. In addition, we provide a framework for the construction
of symbolic models together with their corresponding max-type simulation functions for
discrete-time control systems satisfying an incremental input-to-state stability property
[TRK16]. Finally, we illustrate results based on the small-gain approach in three case
studies by compositionally constructing symbolic models of three networks of (linear and
nonlinear) discrete-time control systems and their corresponding alternating simulation
functions. The first and second case studies particularly elucidate the effectiveness of the
proposed results in comparison with the compositionality result using dissipativity-type
conditions in the first part of this chapter. The third case study shows the effectiveness
of our proposed technique by applying it to a model of a road traffic network containing
infinitely many cells (systems). We construct symbolic models for the original systems
and compositionally construct an alternating simulation function from the interconnec-
tion of infinitely many symbolic models to the interconnection of the concrete systems.
We also design controllers compositionally maintaining the density of traffic between 10
and 25 vehicles per cell.
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3.2 Dissipativity Approach (DA)

3.2.1 Finite Networks of Discrete-Time Control Systems: DA Formulation

Definition 3.2.1. Consider discrete-time control systems ¥; = (Xi,Wi,Ui,fi,Yil,Y?,
ht,h?),i€ 4 :=[1;N], N €N. Let M be a static matriz of an appropriate dimension

1"

defining the coupling of these system such that M [] Y? C I W;. The network of
eN ieN
discrete-time control system is a tuple ¥ = (X, U, f,Y, h), denoted by ¥ = Tps(X;)icr

where X = [[ X;, U= [[ U;, Y= [] Y}. Moreover, f and h are defined as
ieN iceN ieN

f(x,u) = (fi(wi,wi,uz‘))ie/a h(x) = (h@'l(xi))ie,/i/y

where © = (zi)icy, u = (W;)icn, and with the internal variables constrained by
(w;i)ieyr = M(h3(z;))ier - The network is described by the difference equations

J x(k+1) = f(x(k),v(k)),
S { hx(k)). (3.2.1)

where Xx ' N—=-X v:N—=U, andy : N =Y.

Note that condition M [] Y? C ] W, is required to have a well-defined intercon-
ieN ieN
nection.

3.2.2 Sum-Type Simulation Functions

Consider a network of discrete-time control systems ¥ = Zp;(%;);c_r, or their equivalent
network of transition systems T'(X) = Zy(T;(2;))ics, where each T;(3;) given as in
Definition 2.3.2. Assume that each system T;(%;) = (X;, Xo,, Wi, Us, Fi, Vi1, Y2, HE, H?)
and TZ(EZ) = (Xi, Xoi, W;, U;, Fi, 1?;-1, }A/f, 7:111, 7:[12) admit a sum-type simulation function
as defined next.

Definition 3.2.2. Consider systems T;(3;) = (Xi, Xo,, Wi, Ui, F, Y1, Y2 HE H?) and
TZ(El) = (X“XOZ.,WZ',Ui,]}i,ﬁl,}?,ﬁ},f[?) where )A/il C Yt A function S; : X; x
X; — R is called a sum-type simulation function from Tz(Ez) to T;(%;) if there exist
i, 0; € Koo, pu; € Koo U{0}, a symmetric matriz R; of appropriate dimension with
conformal block partitions Rﬁljl, i',7" € [1;2], and some g; € R>q so that the following
hold:

o For every x; € X;,%; € Xi, one has

(M} (i) = HE(8:)]) < S, &) (3.2.2)
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o For every x; € X;,2; € Xi,ﬁi S UZ-, there exists u; € U; such that for every
w; € Wi, w; € Wi,x;r € Fi(x;, w;, u;) there exists i"j € Fi(&;, w;, u;) so that

Si(x,3) = Si(wi, #:) < — 0i(Silwi, 1)) + pu, (|il) + & (3.2.3)
R,L'I:

w; — UA)l " RH R12 wy; — ’UAJl
+ {2 520 A 91 o2 2 20|

System Tj(%;) is called an abstraction of Tj(3;), denoted by T;(3;) =ss Ti(%;), if there
exists a sum-type simulation function from Tj(3;) to T;(%;). Moreover, if Tj(;) is finite,
it is called a symbolic model of T;(%;).

3.2.3 Compositional Abstractions for Finite Networks of Discrete-Time
Control Systems: DA

We assume that we are given 3; = (X;, W;, Uy, f;, Y1, Y2, hl, h?), or equivalently T;(%;) =
(X, Xo,, Wi, Ui, Fi, Y1, Y2 HE, H?) as in Definition 2.3.2, together with their abstrac-
tions TZ(Z,) = (Xi,Xoi,Wi,Ui,ﬁi,}}il,ﬁ%ﬁ%, ?:lf), 1 € A, and sum-type simulation
functions S; from ﬁ(Ez) to T;(%;) as in Definition 3.2.2.

The next theorem provides a compositional approach on the construction of abstrac-
tions of the networks of transition systems T'(X) = Zas(7;(%;))ie.s associated to network
of discrete-time control systems ¥ = Zp;(3;);e.» and that of the corresponding alter-

nating simulation function.

Theorem 3.2.3. Consider the network T'(X) = Zas(T3(2:))ie.v associated to the network
of discrete-time control systems 3 = Tyr(3;)ienv. Suppose each transition system T;(%;)
admits an abstraction TZ(El) with the corresponding sum-type simulation function S;. If
there exist p; > 0, i € A such that the matriz inequality and inclusion

M| - [M
_< . .
[LI] RL{J] =0 (324)
ML, V2 CILL, Wi, (3.2.5)
are satisfied, where
-’ulR%l /_LlR%Z -
~ Rll ng
= 1 RY HVEEN 11 R ANENL (3.2.6)
L NNR]Q\; [LNR%?_
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and q is the number of rows in M, then

2) =Y piSi(wi, &), (3.2.7)

ieN

is an alternating simulation function, as in Definition 2.2.5, from T(E) =Ty (Tz(zz))zeﬂ/
to T(X) = I (Ti(20) )ien -

Proof. First we show that inequality (2.2.1) holds. Consider any z € X and Z € X, one
gets:

H(x) — H(&)| = !( i) = HE(20))ier|
N
< Z Hy (i) = Hi (@) <07 (Silwi, #4)) < &(S(x, 2)),
i=1
where & is a K4 function defined as

a(s) —max{vala 1(sz~)|;f§—s},

$>0

where § = (s;)ier € Rgo and p = (ui);cr. By defining the Ko, function & = &=, one
obtains

a(|H(x) = H(&)]) < S(x,2),
satisfying inequality (2.2.1). Now we show that inequality (2.2.2) holds as well. Define

_gg{ZMZJZ si)|u's = s} (3.2.8)
S PO TIIEE ) o

where 0 € Koo and p, € Koo U {0}. Moreover, consider condition (3.2.4), and the
definition of matrix R in (3.2.6). Then, one gets the chain of inequalities in (3.2.9).
Now, without loss of generality, we can consider & < id and write

St 2%) < o(S(z,2)) + pullal]) + &,

where ¢ = id — . Otherwise, we can define ¢ = id — &, where & is given as in Lemma
2.2.8 for function ¢ appearing in (3.2.8). By using the result of Theorem 2.2.9, one
obtains

S(a*,a%) < max{5(S (x,2)), pu(ll), €},
satisfying (2.2 ) with & := (id — (id =) o (id—0)), py = (id+X)o(id—o) Loyt oxop,,

and £ = (id+ Ao (id—0) oy~ oxo(x - id)~1(¢), for some arbitrarily chosen
A, x € Ko WlthAw < id and x > id. Hence, § is an alternating simulation function
from T'(X) = Zas(T3(%5))ien to T(X) = Tap(Ti(%5))icr - O
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W;

SZ i <_ 0i(Si(wi, &)+ pu, (|8i]) +ei+ [Hz(x) :ZA}(@)T [gi gz] [H?(xij —HQ(:B)D

N T
N (04 (Ss (- 3 2 +es (Wi —Wi)ie.r : (wi =i )ie.r
= x&<z,1»+pwuzw+&)+LH%x0 e )M&J }{Lﬂﬂxﬂ—Hﬂ@»mﬂl

SZ_NZ( ( xzaxz +Zﬂzpul |uz’ +Z,Uz52
+Wmm—%@mwfg}égﬁm%w4wmmA

N
SZ_/J”L( ( 1'171‘1 +Z/'LZ’0“1 |Uz’ +ZN151

1
=—ﬂ3@w»+mwm+& (3.2.9)

Figure 3.1 schematically shows the results of Theorem 3.2.3.

Remark 3.2.4. Condition (3.2.4) is a linear matrix inequality which can be verified by
some semi-definite programming tools (e.g. YALMIP [Lof04] or SeDuMi [Stu98]). Note
that condition (3.2.5) is required to have a well-defined interconnection of abstractions
and is automatically fulfilled if one constructs the internal input sets of each abstractions
Zf’l(i]l) such that the equality ]\/.I']_[Z]\;1 Yy = Hf\il Wi holds. o

3.2.4 Construction of Symbolic Models

In the following, we introduce some stability properties for ¥ = (X, W, U, f,Y!, Y2,
h', h?) based on which one can construct its symbolic model along with the corresponding
sum-type simulation functions between X and its symbolic model.

3.2.4.1 Incremental Passivity

Definition 3.2.5. System X is called incrementally passive (§-P) if there exist functions
S XXX = Reo, ¢u,9s,0u € Koo, with ps < id, and a symmetric matriz Q of
appropriate dimension, such that for all z,x' € X, u,v’ € U, and for all w,w' € W

@u(z = 2'[) < S(z, "), (3.2.10)
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Figure 3.1: Compositionality results for constructing network of abstractions provided that
condition (3.2.4) and (3.2.5) are satisfied.

S(f(a, w,w), (o', w' ) < @u(S(a, ') + pullu— o) (3.2.11)
Q=

w— 1w T Qll 12 w—w
+ [hQ(m) _ hz(m/)] [Qm Q22} [hz(:n) _ hz(m')] :
We say that S and @ are J-P storage function and supply rate, respectively, for system
¥ if they satisfy (3.2.10) and (3.2.11).

3.2.4.2 Symbolic Models

In the following lines, we show how to construct a symbolic model T(X) of transition
system T'(X) associated to a §-P discrete-time control system X.

Definition 3.2.6. Consider a transition system T(X) = (X, Xo, W, U, F, Y1, Y2 H H?),
associated to a 0-P discrete-time control system ¥ = (X, W, U, f,Y!, Y2 h', h?). Suppose
X, W, U are finite unions of bozes (see Chapter 2, Section 2.1). Then one can construct
a symbolic model T(E):(X',XO, W, U,F, Y, Y2,7:l1,7:[2) where:

e X = [X]pe, where 0 < n® < span(X) is the state set quantization parameter;
o XO == [Xo]nac;

e W = [(Wyw, where 0 < n* < span(W) is the internal input set quantization

parameter;
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Figure 3.2: An illustration of the computation of the transitions of T (%) for particular &, i, .

U = [Ulpe, where 0 < n* < span(U) is the external input set set quantization
parameter;

e &t e F(&,w,0) if and only if |+ — f(&,w,0)] < n*;
o Y1={H'2)|2 e X};
o V2= (H%(i)|2 € X};
o Tl =l
o 2=
An illustration of the computation of the transitions of 7'(X) is shown in Figure 3.2.

Remark 3.2.7. In the context of networks of systems in which we consider TZ(El) =
(Xi, Xo,, Wi, Uy, Fi, YL Y2 HE, H2) as a component of T(X) = IM(TAi(Ei))iE[l;N}, the
quantization parameter ;" of the set W; should be chosen in such a way that the network
T(2) is well-defined. Alternatively, if we directly choose W; such that Z\JHZ]\L1 }A/Z-Q =
1Y, Wi, condition (3.2.5) holds and T() is well-defined (cf. Remark 3.2.4).

In the next subsection, we show the existence of sum-type simulation functions between
T(X) associated to 0-P discrete-time control systems ¥ and their symbolic models 7'(X)
constructed as in Definition 3.2.6.

3.2.4.3 Construction of Sum-Type Simulation Functions

Given a 0-P discrete-time control system X, we show that the 0-P storage function S in
Definition 3.2.5 is a sum-type simulation function from 7'(¥) to T'(X) and from T'(X) to
T(%).
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Theorem 3.2.8. Consider a transition system T(X), associated to a 0-P discrete-time
control system Y. Let T(X) be a symbolic model constructed as in Definition 3.2.6.
Assume that there exists a Koo function v such that for any x,y,z € X

S, y) < Sz, 2) +(ly = 20), (3.2.12)

for S in Definition 3.2.5. Then S is a sum-type simulation function from T(Z) to T(X)
and from T(X) to T'(X).

Proof. Given the Lipschitz assumption on h' and since system ¥ is incrementally passive,
from (3.2.10), for any x € X and any & € X, we have

H (@) — 7 (@)] = 1 () — b (@)] < (e - 2]) < €' 0 o5 (S(x, 2)).

By defining o = (/! 0 1)~ !

, one obtains

o[ (2) = H!(2)]) < S(x,2),

satisfying (3.2.2).
Now consider any @ € U and choose u = 4. Then, using (3.2.12), forany z € X,z € X,
any 4 € U, and any w € W,w € W, we have

for any &t € F(&,4,w). Now, from Definition 3.2.6, the above inequality reduces to

S(f(x,a,w), &%) < S(fw,a,w), f(&, 4, w)) +~(n").
Note that by (3.2.11), we get

o
(700 S0 0) S (S0 + [0 ] T o o] b |

It follows that for any x € X, & € X, any o € U, and any w € W, w € W, one obtains

for any &+ € F(&,10,w), satisfying (3.2.3) with ¢ = v(1%), 0 = id — @s, py = 0, and
R = Q. Hence, S is a sum-type simulation function from 7(X) to T'(X). The rest of the
proof follows similar argument. In particular, by the definition of U, for any u € U there
always exists @ € U such that ¢, (Ju —@|) < pu(n*) which results in e = @, (%) + v(n%).
Other terms in the sum-type simulation function S are the same as the first part of the
proof. O
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Remark 3.2.9. Note that if system ¥ is not §-P, one can assume that 3 is incrementally
passivable. That is there exists feedback controller G:X— U such that (3.2.11) is satisfied
with the left-hand side of (3.2.11) given as S(f(z,w,G(z)+u), f(/,w',G(z")+u')). <

Remark 3.2.10. Remark that condition (3.2.12) is not restrictive at all provided that
one is interested to work on a compact subset of X. We refer the interested readers to the
explanation provided after equation (V.2) in [ZEM™ 1] on how to compute such function
. o

Now we provide similar results as in Theorem 3.2.8 but tailored to linear control
systems as in (2.3.3) which are computationally more efficient. In particular, the in-
cremental passivity assumption in Definition 3.2.5 boils down in the linear case to the
following assumption.

Assumption 3.2.11. Consider linear control systems ¥ = (A, B,C',C?, D). Assume
that there exists matrix Z > 0, a symmetric matriz G of appropriate dimension with
conformal block partitions GY, i, j € [1;2] of appropriate dimensions such that the matriz
inequality
(1+0)ATZA  A"ZD } . [%Z +crgee? o g
DTAZ (1+6)D"ZD| — G2C? Gt

holds for some constants 0 < ¢, < 1, and 6 € Rg.

(3.2.13)

Theorem 3.2.12. Consider a transition system T(X), associated to linear control sys-
tems ¥ for which Assumption 3.2.11 holds. Let T(X) be a symbolic model constructed
as in Definition 3.2.6. Then function S defined as

S(x,2) = (x—2)" Z(z — ), (3.2.14)
is a sum-type simulation function from T(X) to T(X) and from T(X) to T(X).
Proof. First, we show that condition (3.2.2) holds. Since C! = C1, we have
Cla — C'2[* < nAmax(CY CY)[2 — 22,
and similarly
Min(Z)|z — 2> < (z — ) Z(x — 7).

It can be verified that (3.2.2) holds for S defined in (3.2.14) with a(s) = %52

for any s € R>g. We continue to show that (3.2.3) holds as well. Let @ be given
and choose u = 4. Consider any 7 = Az + Dw + B4 and let £+ be defined as in
Definition 3.2.6. Define A := A% + Dw + Bd — &, and observe that |A| < n* by

Definition 3.2.6. Now, one obtains the chain of inequalities in (3.2.15) satisfying (3.2.3)

with € = (2+”9))‘m;X(Z)(7ix)2

,0=1—1¢ py =0, and R = G. Hence, S is a sum-type
simulation function from T'(X) to T'(X). The rest of the proof follows similar argument.
In particular, by the definition of U, for any u € U there always exists 4 € U such that
ou(Ju —1a]) < pu(n*) which results in e = (2+n9)’\max(g)(‘BW+nx)2. Other terms are the
same as before. O
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S(xt,2™)

Ax—i—Dw—i—Bu—
Az + Dw + Bu —

A% + D + Ba) + (A2 + Dw + Ba) —27)"Z
A% + D + Ba) + (A2 + D + Ba) — &7)
Az + Dw + Bi — (Aé + Do+ Ba) + A)" Z

Az + Dw + Bi — (Af + D + Ba) + A)

(x
(
(
(
(
(A(x —2) +D(w — )+ A)" Z(A(x — 2) + D(w — ) + A
(
(
<(
(

o~ o~ o~ o~

IN A

r—2) AT ZA(x —2)+2(x —2)"ATZD(w — ) + 2(x :)i‘)TATZA

w—w)"D"ZD(w — ) +2(w—w)" D" Zn*+ ATZA

e—2)TATZA(x—2)+2(x — 2)TATZD(w—0)+2|(x—2)TATVZ |3V ZA|,

w— ) D" ZD(w — ) + 2|(w — @) D"VZ|2[VZA|z + nAmax(Z) (1%)?

VZAl3
0

IA

(x—2)TATZA(z—iH2(x—2)TATZD(w—0)H8|(z—&)TATVZ |2+

(w—0)"DTZD(w — ) + 0| (w —w) D VZ|2 + |\/70A|§ + nAmax (Z2) (7%)?
<(14+0)(z—2)"A"ZA(x —2) +2(x —2)"ATZD(w — w)
(2 + n0) Amax(Z2) (n")?

] [1+e VATZA ATZD } [xex] (2 + 16) Amax (Z) (0")?

+ (14 6)(w—®)" D ZD(w — ) +

I
l—|
s> 5

DTAZ  (1+6)DZD| |w—b 0

_fr—2] [pez +C? G20 PTG [ 2], (24 n0)Anax(Z)(n")
< N 12 2 11 -t
— W GH<C G w — W 0
G:=
w—w ] GV G2|[ w-w (2 + 10) Amax(Z2) (n*)?
< R U v max
_SDCS<1'7 .73) + |:02$ _ C2i':| I:G21 GZQ] |:021' _ CQQ] + 0

(3.2.15)

Remark 3.2.13. Note that if condition (3.2.13) can not be satisfied, one can still have
the result in Theorem 3.2.12 by assuming that there exists matrices Z > 0, G, and K of
appropriate dimensions such that the matriz inequality

(1+6)(A+BK)"ZA (A+ BK)TZD} . {%Z +C?aRe? oragn

D" (A+ BK)Z (1+6)D"ZD G202 ol | (3.2.16)

holds for some constants 0 < p. < 1, and 8 € R~g. Here, K is a state feedback controller
gain. o
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3.2.5 Case Studies

In this section we provide two case studies to illustrate the results of this section. First,
we apply our results to the temperature regulation in a circular building of n > 3 rooms
by constructing compositionally a symbolic model of the network. Then, we apply the
proposed techniques to a fully connected network to show its applicability to strongly
connected networks as well. The construction of symbolic models and controllers are
performed using SCOTS [RZ16] on a PC with Intel i7@3.4GHz CPU and 16 GB of
RAM.

3.2.5.1 Room Temperature Control

Here, we apply our results to the temperature regulation in a circular building of n > 3
rooms, each equipped with a heater. The dynamics of the temperature x for all rooms
are described by the interconnected discrete-time model:

. {x(k +1) = Ax(k) + BTg + ST (k) (3.2.17)

y (k) = x(k),

adapted from [MGW17], where A € R™" is a matrix with elements {A};; = (1 —
25 — 5 — 6I/Z(k‘)), {A}i,i—l—l = {A}’H-Li = {A}l,n = {A}n,l = B, Vi € [l;n — 1], and all
other elements are identically zero, x(k) = [x1(k);...;xn(k)], v(k) = [v1(k);...;vn(k)],
Tg = [Te1;...;Ten], where v;(k), Vi € [1;n], are taking values in [0,0.5]. The other
parameters are as follow: Vi € [1;n], Te; = —1°C is the outside temperature, T, =50 °C
is the heater temperature, and the conduction factors are given by 5 = 0.45, B = 0.045,
and 8 = 0.09.

Now, by introducing ¥; described by

xi(k+1) = (128 — B — Bui(k))xi(k) + w;i(k) + BTei + BThvi(k),
% yi (k) = x;(k),
y2(k) = x;(k),

one can readily verify that ¥ = Zy/(3;);e[1,, where the elements of coupling matrix M
are {M}iip1 ={M}iy1i={M}n={M},1=0,1i¢€[l;n—1], and all other elements
are identically zero.

Note that for any 7 € [1;n], condition (3.2.13) is satisfied with Z; = 1, ¢., = 0.95,
f; = 0.02, and

Gt sz] _ [(1+9i) Az‘] , (3.2.18)

Gi - |:G121 G122 /\i v

where A\; = (1 — 28 — 8 — Bri(k)), and m = (14 6;)A? + 6; — @.,. Hence, Si(x;,&;) =
(x; — &) " Zi(x; — T4), is a sum-type simulation function from TZ(Zz) to T;(%;), satisfying
(3.2.2) and (3.2.3) with a;(s) = s2 Vs € Rxg, 05 = 1 — ¢, pu, = 0, R; = G, and
_ (2400 Amax(Zi)(n7)?/4)

P =

(3
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By choosing y; = 1 for all i € [1,7n], matrix R in (3.2.6) reduces to

o [(1+0), AL
R_[ M, wl,|’

where A = \; and 6 = 0; for all i € [1,n]. Consequently, condition (3.2.4) reduces to

.
[M] R{M}z (1+0)M™M +2\M — nl,, <0,
I, I,

which, by Gershgorin circle theorem[Bel65], always holds without any restrictions on
the number of the systems Moreover, by choosing finite internal input sets W; of T (%))
in such a way that [J, W; = MT[Y, X;, condition (3.2.5) is satisfied. Now, one
can verify that S(z,#) = Z?ﬁl( ; — ;)% is an alternating simulation function from
(%) = IM(Ti(Zi))ie[Ln] to T'(X) = T (Ti(%4))iep,n satisfying conditions (2.2.1) and
(2.2.2) by & = (id — (id — ¥) 0 0y, pu = 0, and & = o+ 0y~ (Y0, EHONET ) g
some arbitrarily chosen 9 € K with ¢ < id. '

Now, we synthesize a controller for 3 via abstractions ﬁ(El) such that the temperature
of each room is maintained in the comfort zone .# = [19, 20]. The procedure is as the
following: First, local controllers for abstractions Tl(EZ) are synthesized while assuming
that the other systems meet their specifications. Then, those local controllers are refined
to concrete systems T;(%;). This approach is called assume-guarantee reasoning [HSR9S],
and it allows for the compositional synthesis of controllers. The computation times for
constructing symbolic models and synthesizing controllers for 7;(3;) are 0.6s and 0.005s
Vi € [1,n]. Figure 3.3 shows the maximum and minimum of the state trajectories of the
closed-loop network ¥, consisting of 1200 rooms with the state quantization parameters
ny = 0.01 Vi € [1;1200].

3.2.5.2 Fully Connected Network

In order to show the applicability of our approach to strongly connected networks, we
consider a nonlinear control network ¥ described by

5. { x(k+1) = Ax(k) + o(x(k)) + v(k),
' y(k) =x(k),

where A = I, — 7L for some Laplacian matrix L € R™ ™ of an undirected graph
[GRO1], and constant 0 < 7 < 1/A, where A is the maximum degree of the graph
[GRO1]. Moreover x(k) = [x1(k);...;xn(k)], v(k) = [v1(k);...;vn(k)], and p(x(k)) =
[o1(x1(K)); ... s on(xn(k))], where ¢;(x;) = 0.1sin(x;),Vi € [1;n]. Assume L is the
Laplacian matrix of a complete graph:

n—1 =1 —1 7

-1 n-1 -1 - =1

L= —1 -1 n-1 ... -1
| -1 s =1 n—1]
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21 \
—max{x;(k)}
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Figure 3.3: Bounds inside which state trajectories of the closed-loop network ¥ consisting of
1200 rooms are evolving.

Now, by introducing ¥; described by

xi(k+1) =x(k)+ pi(xi(k)) +wi(k) + vi(k),
I vi(k) =x;(k), (3.2.19)
yi(k) =xi(k),

one can readily verify that ¥ = IM(EZ)ze[l n] Where the coupling matrix M is given by
M = —71L. Note that, for any ¢ € [1;n], conditions (3.2.10) and (3.2.11) are satisfied
with Si(z, %) = (z; — &) (v — &4), a;(s) = s, @, = 0.5, py, = 0, Vr € R>g, where we
have used function G in Remark 3.2.9 with G;(x;) = —0.5x;, Vi € [1;n], and

1.1 0.5
G = {0'5 0 ] . (3.2.20)

Hence, S;(x;, ;) = (z; — ;) " (x; — &;) is a sum-type simulation function from Tl(Zl) to
T;(%;) associated to %;. .
By choosing p; = 1 for all ¢ € [1,n], matrix R in (3.2.6) reduces to

B 1.11, 0.51,
0.51, Opxn |’

Consequently, condition (3.2.4) reduces to

:
[_ITL] X [_ITL] =7L(1.17L —I,) <0,

which always holds without any restrictions on the number of the systems with 7 = -2 51

In order to show the above inequality, we used L™ = L = 0, and employing Gershg rin
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circle theorem [Bel65] to show that 1.17L — I,, < 0. Moreover, by choosing finite internal
input sets W; of T'(%;) in such a way that HZJL W; = M]_[Z]\i1 X;, condition (3.2.5) is
satisfied.

Now, one can verify that S(z,#) = 3.1, (x;—;)? is an alternating simulation function
from T'(2) = Zag(T5(%s))ic(i,n t0 T(E) = Zns(Ti(S:))iepr,n satisfying conditions (2.2.1)
and (2.2.2) by § = 0.95, p, = 0, and € = 2> | v(n¥), where ¥ is the state set
quantization parameter of abstraction TZ(El) and ; is the K function satisfying (3.2.12)
for S;.

3.3 Small-Gain Approach (SGA)

3.3.1 (In)finite Networks of Discrete-Time Control Systems: SGA
Formulation

Definition 3.3.1. Let A :=N, or 4 :=[1;N], N € N. Consider discrete-time control
systems ¥; = (X4, W;, Uy, £i, Y1, Y2, b1 h2), i € A . The (in)finite network of discrete-

177

time control system is a tuple ¥ = (X, U, f,Y,h), denoted by ¥ = Z(%;);c.y, where

X={z = @)ier : i € Xy, |lz] := sup;e sy {|zi]} < o0}, U= {u = (wi)ies : u €
Ui, |Jul| := sup;e s {Juil} < 00}, and Y = [[ Y}. Moreover, f and h are defined as
ieN

f(fL‘, u) = (fZ(:El? Wi, ui))ie/i/a h(l‘) = (hzl (1'1))16/1/7

and with the internal variables constrained by w; = (y]z)je/\/i = (hjz»(xj))je/\/i, l_J[\/ sz C
JEN;

W;, Vj € N;,Vi € A, where N; is a finite subset of A enumerating the neighbors of

Y, i.e., those systems ¥;,j € N; that affect 3 with i ¢ N;. The network is described

by the difference equations

L x(k+1) = f(x(k),v(k)),
E'{ y(k) = h(x(k)), (3.3.1)

wherex :N—- X v:N—- U, andy : N — Y.

We also assume that f(z,u) € X for all pairs (z,u) € X x U to ensure the network
Y = (X,U, f,Y,h) is well-defined which is automatically satisfied if .4 = [1; N]. Note
that if A4 :=[1; N], N € N, sets X, U, and Y in Definition 3.3.1 can also be defined in
the same way as those in Definition 3.2.1.

3.3.2 Max-Type Simulation Functions

Consider networks of discrete-time control systems ¥ = Z(3;);c 4, or their equivalent
networks of transition systems 7'(X) = Z(7T;(%;))ie.s, where each T;(3;) given as in
Definition 2.3.2. Assume that each systems T;(%;) = (X;, Xo,, Wi, Ui, Fi, Vi1, Y2, HE, H?)
and TZ(ZZ) = (XZ, Xoi, W;, U;, Fi, Yil, Yf, 7:[11, 7—212) admit a max-type simulation functions
as defined next.
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3.3 Small-Gain Approach (SGA)

Definition 3.3.2. Consider systems T;(3;) = (Xi, Xo;, Wi, U, Fi, ;1L Y2 HE H?) and
Ti(2:) = (X4, Xo,, Wi, Ui, Fi, V1, Y2 HY HE) where Y? C Y7, j e [1;2], W; C Wi, A
function §; + X; x X} — R>¢ is called a maz-type simulation function from TZ(ZZ) to
T;(%;) if there exist o, @, ai_, Pw; € Koo, pu; € Koo U{0}, and some €; € R>q so that the
following hold:

o For every x; € X;,4; € X;, j € [1;2], one has
(1M () — 1] (&)]) < Silwi, #:) < @l — &) (3.3.2)
o For every xz; € X;,&; € Xi,ﬂi S Ui, there exists u; € U; such that for every
w; € Wi, w; € Wi,xj € Fi(xi, w;,u;) there exists i’f € Fi(Zs, 4, 1;) so that

Sl(xj_7 ‘%j_) < maX{UZ(’Sl(xZ? il))a pwb(|wl - UA}ZD? pm(ml‘)7 61} (333)

Here, T5(%;) is called an abstraction of Tj(%;), denoted by Ti(%;) 2sm Ti(%;), if there
exists a max-type simulation function from 7}(%;) to T;(X;). Moreover, if T;(3;) is finite,
it is called a symbolic model of T;(%;).

Remark 3.3.3. The upper bound &;(|x; — &;|) in inequality (3.3.2) will be used later to
ensure that the alternating simulation function composed of maz-type simulation func-
tions is well defined when A = N. However, if /" = [1; N], such an upper bound can
be omitted. o

For functions oy, ;, and p,, associated with S;, V i € .47, given in Definition 3.3.2,
we define Vi, j € A

o if i=j,
Yij =4 Puw; ogjfl if jenN;, (3.34)
0 if i#j,j ¢ N

Moreover, in the case we consider an infinite network, i.e., .4/ = N, we additionally
define an operator I' : £5° — £5° by

I(s) = (%Q{%j(sg')})iew s € LT (3.3.5)

Additionally, we assume that there exist &, py, & € Ko such that o; < &, py; < pw,; >
& for all ¢ € A7, whenever .4 = N. This assumption guarantees that I' is well-defined.

3.3.3 Compositional Abstractions for Finite Networks of Discrete-Time
Control Systems: SGA

Let .4 := [1;N], N € N. Assume that we are given ¥; = (X;, W;, U, f;, YL, Y2, b} h2),
or equivalently T;(%;) = (X;, Xo,, Wi, Us, Fi, Y, Y2 HE, H?) as in Definition 2.3.2, to-
gether with their abstractions TZ(El) = (Xl, Xo,“ L= Yil,ﬁQ,?:lil, 7-212), i €A, and
max-type simulation functions S; from TZ(Zl) to T;(3;) as in Definition 3.3.2.

In order to establish the compositionality results for the finite network, we make the
following small-gain type assumption.
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Assumption 3.3.4. Assume that functions v;; defined in (3.3.4) satisfy
Vigi2 © Yigiz © *** © Vip_1iy © Vipi < id, (3.3.6)
V(i1 ... i) € {1,...,N}", wherer € {1,...,N}.

Note that by Theorem 5.2 in [DRW10], the small-gain condition (3.3.6) implies the
existence of ; € Koo Vi € [1; N, satisfying

jﬁgﬁi{wi—l °7ij 0 b} < id. (3.3.7)

The next theorem provides a compositional approach to construct an alternating simu-
lation function from the finite network of abstractions T'(2) = Z(T3(2;))ics to T(X) =
Z(T;(%:))icx, associated to the network of discrete-time control system ¥ = Z(3;);c s,
via a max-type simulation function from 7;(%;) to T;(%;).

Theorem 3.3.5. Consider a finite network of transition systems T(X) = Z(T;(%:))icr
associated to the network of discrete-time control system ¥ = Z(3;)ic.y. Suppose each
transition system T;(3;) admits an abstraction Tz(El) with the corresponding maz-type
simulation function S;. Suppose Assumption 3.8.4 holds. Then, function S : X x X =
R>o defined as

S(z, &) == Eré%({@b;l(&(:ri,i,;))}, (3.3.8)

is an alternating simulation function from T(2) = Z(Ti(Z:))ics to T(X) = Z(Ty(Z4))icr -
Proof. First, we show that (2.2.1) holds for some Koo function &. Define & := (max{a; ‘o
(2

¥ })71, and consider any z € X, & € X. Then, one gets
— ()] = Ty —lia. < 110G (. 4.
[H(x) = #(2)] = max{[H; (z:) — H; (2:)[} < max{a; (Si(wi, 20))}
< —1 5. 1S (. I
< max{a; " o i} omax{y); (Sifwi, 44))}

Hence, one obtains &(|H(z) — H(&)|) < S(z, 1), satisfying (2.2.1).

Now, we show that (2.2.2) holds. Let & = 'maﬁ{d};l o vi; o ¥;}. It follows from
1,) €.

(3.3.7) that ¢ < id. By defining p, and € as p, := m%{%_l} o ma}/c{pui} and € :=
1€ 1€

miff{wi_l(fi)}v one gets the chain of inequalities in (3.3.9) which satisfies (2.2.2), and

1€

implies that S is indeed an alternating simulation function from 7'() = Z(Tj(%:))ics
to T(%) = Z(Ti (%) )ie.r - O

Figure 3.4 schematically shows the results of Theorem 3.3.5. Note that, similar tech-
nique was proposed in [RZ18] using nonlinear small-gain type condition to construct
compositionally an approximate infinite abstraction of an interconnected continuous-
time control system. Since in [RZ18, Definition 2] a simulation function between each
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S(zt, &%) =max{y; ! o Si(x,27)}

N i
-1 NS L. N )
<1Z‘I€137/({7/)l maX{UZ(SZ(xuxZ))’Pwiqwz w1|)apui(‘“1|)a51})}
= max ¢y (max{oi(Si(i, &), puw, (|(Y2)jen; — (ﬁ?)jeM\%Pui(Wz‘!)aEi})}
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[
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§>
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< max {o;" (max{yyy(8;(z5, 7)), pus (). 1) |

= mmax {%_ (max{yij o ;0 ¥ (Sj(ws, &5)), pu, (|8l), €i})}

< Inax {Ml(max{%‘j ogjo wz_l(Sz(ﬂ?lvffz)),ﬂui(!ﬁi\)ﬁi})}

= max {v7! (max{y; 0 ¥;(S(a. ). pu (i), =1}) |

= max {5(S(@,2)), max {7 o pu, (fal), max {v7 ()} |

<max {5(S(x, ), max {17! o max{py, ()}, max {7 (=)} |

< max {5(5(:11, #)), max {9 o max{pu, (max{|iil})}, max {1/1{1(81')}}

= max {5(§(x,35)),ﬁu(|ﬁ|),€}, (3.3.9)

system and its abstraction is formulated in a dissipative-form [NGGT18], an extra op-
erator (the operator D in [RZ18, equation (12)]) is required to formulate the small-gain
condition and to construct what is called an Q-path [DRW10, Definition 5.1, which is
exactly the o functions v;,7 € 4, that satisfy condition (3.3.7). However, the def-
inition of the alternating simulation function in our work is formulated in a maz-form
[NGG*18] which results in not only simpler formulation of the small-gain condition but
also the Q-path construction can be achieved without the need of the extra operator; see
[DRW10, Section 8.4].

Remark 3.3.6. Here, we provide a general guideline on the computation of Koo functions
i, i € [1; N] as the following: (i) In a general case of having N > 1 systems, functions
Yi,i € [1;N], can be constructed numerically using the algorithm proposed in [Eav72]
and the technique provided in [DRW10, Proposition 8.8], see [Ruf07, Chapter 4J; (ii)
Simple construction techniques are provided in [JMW96] and [DRW10, Section 9] for the
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ai gll U; yzl
— —> y —> —>
() |, 28m (2
— —> —» —>
—ub T1(21> —y’ _U. T1(21> —y’
. 28
TN(EN> TN<EN>
i = ()jen; = (B3(35))jex wi = ()jen; = (W (z;))jens,
ie[L;N] i € [1;N]

Figure 3.4: Compositionality results for constructing networks of abstractions provided that
condition (3.3.6) is satisfied.

case of two and three systems, respectively; (iii) the Koo functions v;,i € [1; N], can be
always chosen as identity functions provided that ~v;; < id, ¥V 4,5 € [1; N], for functions
vij appeared in (3.3.4). o

Remark 3.3.7. We emphasize that the proposed small-gain type condition in (3.3.6) is
much more general than the one proposed in [PPB16]. To be more specific, consider de-
terministic transition system T'(X) = Z(T1(X1),T2(X2)), in which the transition function
for each system is given as the following:

o) = Fi(w1,22,u1) = a121(k) + bry/ |2 (k)| + w,
xy = Fo(2,w1,u2) = aswa(k) + bag(x1(k)) + ua,

where 0 < a1 < 1, 0 < as < 1, and function g satisfies the following quadratic Lipschitz
assumption: there ewists an L € Rsq such that: |g(z) — g(z')| < Lz — 2'|*> for all
xz,x’ € R. One can easily verify that functions Sy(x1,%1) = |v1 — Z1| and Sa(xa,32) =
|xg — &o| are maz-type simulation functions from xz1-system to itself and xa-system to
itself, respectively. Here, one can not come up with gain functions satisfying Assumption
(A2) in [PPB16] globally. In particular, those assumptions require existence of Koo
functions being upper bounded by linear ones and lower bounded by quadratic ones which
is impossible. On the other hand, the proposed small-gain condition (3.3.6) is still
applicable here showing that S(x, %) = max{zpl_l 08 (;Ul,:%l),qu_l o So(xa, &)} is an
alternating simulation function from T(X) to itself, for some appropriate 11,12 € Koo
satisfying (3.3.7) which is guaranteed to exist if |b1|\/|b2|L < 1 and |bo|(11L)?> < 1. o
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3.3.4 Compositional Abstractions for Infinite Networks of Discrete-Time
Control Systems

Let 4 := N. Assume that we are given 3; = (X;, W;, Uy, f;, YL, Y2, hl, h2), or equiva-
lently T;(%;) = (X;, Xo,, Wi, Uy, F3, Y, Y2 HY, H?) as in Definition 2.3.2, together with
their abstractions Tz(Ez) = (X'Z-,X'Oi, w;, Ui,ﬁi,Yil,YiQ,ﬁ%, 7:13), 1 € A, and max-type
simulation functions S; from TZ(EZ) to T;(3;) as in Definition 3.3.2. The compositionality
result of the infinite network is based on the following robust small-gain type assumption,

inspired by [DMSW19].

Assumption 3.3.8. Consider operator I defined in (3.3.5). Assume thatsup;en{7i;(s;)}

> 0,Vs; > 0,Vi,j € N, T' is continuous on (5°, klim I'*(s) = 0,Vs € (3°, and there
—00

exist positive constants c¢i and ca such that for all i,j € N the operator T'; j(s) =

['(s) + c1sje;, s € (S0 satisfies

Iij(s) 2 (1 —c2)s, setP\{0}. (3.3.10)

Remark 3.3.9. If for any b > 0 the set of all functions {v;j,i,j € N} is uniformly
equicontinuous in [0,0], the operator I' defined in (3.3.5) is continuous. That is, for any
B1 > 0 there exists S > 0 such that for any ri,re € [0,b] with |r1 — ra| < B2 it follows
that |7vij(r1) — vij(r2)| < B1,Vi,j € N. We refer the interested readers to [DMSW19] for
more details on reqularity properties of the operator I. o

Note that by using Lemma 4.5 in [DMSW19], the small-gain condition (3.3.10) implies
that there exist a function ¢ := (¢;)ien : R>o — £3° with ¢; € Koo, i € N, and € € (0, 1)
such that

L(ip(r)) < (1 —e)ip(r), r€Rso. (3.3.11)

It follows from (3.3.11) that Vi € N and Vr € R>,

sup{7ij 0 1j(r)} < (1 = €)3hi(r) < i(r).
jEN
Applying ¥, ! to both sides, one has
Wi (sup{yig 0 9(r)}) = sup{y; " 0 i 0s(r)} < (3.3.12)
jeN JjEN
Since (3.3.12) holds for all ¢ € N, one has

1,jEN
Now we have all the ingredients to formulate the main result of this section. The
next theorem provides a compositional approach to construct an alternating simulation
function from the infinite network of abstractions T'(2) = Z(T}(2))ies to T(X) =
Z(T;(%4))iex, associated to the network of discrete-time control system ¥ = Z(3;);c s,
via a max-type simulation function from 7;(%;) to T;(%;).

37



3 Symbolic Models for (In)finite Networks of Discrete-Time Control Systems

Theorem 3.3.10. Consider the infinite network T(X) = Z(T;(3;))ier associated to
Y = Z(Zi)icy. Assume that each Ti(%;) and its abstraction Tj(%;) admit a maz-type
simulation function S; as in Definition 3.3.2. Suppose Assumption 3.3.8 holds and there
exist Koo functions 1,1, &,p,,, and constant € € R>qg such that ¢ < ¢; < ¥, @; < @&,

Pu; < Py, €i < E, Vi € N. Then, function S: X xX— R>o defined as

S(x, &) = jgg{wfl(Si(xi,ii))}, (3.3.14)

is well-defined and it is also an alternating simulation function from T(E) = I(Ti(zi))iew
to T() = Z(T; (%)) )icn -

Proof. First we show that function S given by (3.3.14) is well-defined. Note that Vz € X
and V& € X we have

S(x,2) = sup {; " (Si(wi, 24))} < sup{p; ' ow(|as — &)} < sup{ep; " o wi(|ai| + |2:])}
e N eN eN
< sup{y ! o &(|ai|+|&:|)} < ¢ o d(sup{|ai|+1d:|}) < ¢ o d(sup{|ai|} + sup{|Ei|})
e N ieN e N e N
<y loa(l|z] + [|2]]) < oo.

Next, we show that (2.2.1) holds for some K function é&. Consider any = € X, & € X.
One gets

(o) ~h(@)ll<sup {Ihle)—hitan) |} <sup fa; (i, &0)) y=sup i ovionsy (Si(an, #0)
<ot oB(sup{u ! (Silei #)))) = &7 o W(S(a,3))

Hence, inequality (2.2.1) holds with & := (&' o¢)~L.
Finally, we show that (2.2.2) holds. Let o := sup {gb;l 05005t pu = @Z)i_l op,, and
ijeN -
€= sup{wi_l(si)}. Observe that, by (3.3.13), o < id. Moreover, ¢ is well-defined since
1eN

e < ¢ !(sup{e;}) < ¢ () < co. Then, one gets the chain of inequalities in (3.3.15)

ieN
which satisfies (2.2.2), and implies that S in (3.3.14) is indeed an alternating simulation
function from T'(X) = Z(T;(%:))ies to T(X) = Z(T;(%:) )ien - O

Remark 3.3.11. If v;; <'id for any i,j € A, inequality (3.3.13) holds with v; = id
for all i € A, and inequality (3.3.14) reduces to S(z,Z) = sup;e 4 {Si(xi,2;)}, and,
consequently, the small-gain condition (3.3.10) is satisfied automatically. o

Remark 3.3.12. Note that computing the symbolic models of infinite networks using
those of their subsystems is not possible practically since it consumes infinite memory to
store. However, our proposed compositional framework is still required even if controller
synthesis problems can be solved compositionally using symbolic models of subsystems.
In particular, if decentralized (or distributed) controllers exist for some types of spec-
ifications, one still needs to establish the compositional relation as in Theorem 8.5.10
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ieN
< sup {7 (max{oi(Si(wi, 20)), pu, ([wi = @), pus (1), =i) }
iEeN
= sup {7 (max{o3(Si (@i, @), pus (1W)sen: = ()sen: D ol i) }
iEN
= sup {w;l(max{ai&(fvi,rﬁi),pwi(%%{ly? - @?I}),pui(lﬂi!),si})}
= sup {7 (max{ai(SiCes 20)), pu (iaexl 113 25) = @) 1) pu (i), i) |
< sup {wfl(max{ai(sz‘(%i“i))aPwi (m%{aj_l(sj(wjafj))})mui(!ﬁz‘\),fz‘})}
< sup {u! (max{yi; (Vs (w5, 25)), pu, (i), 21}) |
i,jEN
= sup {7 (max{yy 0 vy 0 07 (S)(w,85)), pus(liil), 1)
i,jEN
< sup {or (max{y o g 0 67 (Silen ), pu (), })
i,5,leN
= sup {u ! (maxtg o 05V (@ 0). (i) <))}
< max { sup {157 0715 0 v5(S(w, 2))}, sup {07 0 pu, (i)}, sup ()}
iL,jEN ieN ieN

< max {o(8(z,2)). ¢ o pu(sup {Jaal}), sup {05! (20}

= max {U(S(x,f)),pu(ua”),g}, (3.3.15)

to formally reason about the preservation and satisfaction of properties across related
infinite networks. o

Remark 3.3.13. In the context of stability analysis of infinite networks, condition
(3.3.10) is used to show different stability properties (e.g., uniform global asymptotic
stability or input-to-state stability) for the entire network by investigating stability criteria
for subsystems. Moreover, condition (3.3.10) is also been shown to be tight and cannot be
weakened in the context of stability verification of infinite networks. We refer interested
readers to [DMSW19] for more details on the tightness analysis of small-gain condition
(3.3.10). S
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3.3.5 Construction of Symbolic Models

In the following, we introduce some stability properties for ¥ = (X, W, U, f, Y},Y?,
h', h?) based on which one can construct a symbolic model for ¥ along with the corre-
sponding max-type simulation functions between ¥ and its symbolic model.

3.3.5.1 Incremental Input-to-State Stability

Definition 3.3.14. System X is incrementally input-to-state stable (6-1SS) if there exist
functions V : X x X = Rxo, P Pas Py Py Pu € Koo, with ¢, < id such that for all
z, 7 € X, u,u € U, and for all w,w’ € W

fw(’x - .%"D < V(xV%J) < @mﬂx - 1”’), (3316)

V(f(z,w,u), f(@', 0 u)) < o,(V(z,2)) + ouw(jw —w']) + ou(lu —|). (3.3.17)

We say that V is a 6-ISS Lyapunov function for system ¥ if it satisfies (3.3.16) and
(3.3.17). Observe that, any 6-ISS control system as in Definition 3.3.14 with ¢y, (r) = cr?,
for some ¢ € R5 and any r € R>q, is also J-P as in Definition 3.2.5. We refer interested
readers to [TRK16] for detailed information on incremental stability of discrete-time
control systems.

3.3.5.2 Symbolic Models

The symbolic model of T'(X) associated to 6-ISS discrete-time control system ¥ can
be constructed similarly to the one in Definition 3.2.6. In particular when we consider
a network of symbolic models, the symbolic model of T'(X) is the system TZ(ZZ) =
(Xi,Xoi,Wi,Ui,ﬁ,ffil, 1712,7-211,7:[12) given by Definition 3.2.6 in which W; should be
constructed in such a way that the network T(X) = Z(Ty(%:))ier is well-defined. For

example, choose W; such that W; = [] Y]?, Vj € N;,Vi € A, where N is given as in
JEN;
Definition 3.3.1.

3.3.5.3 Construction of Max-Type Simulation Functions

In this subsection, we show how to construct a max-type simulation function between
T'(X) associated to the 6-ISS discrete-time control systems 3 and its symbolic model

A

T'(X) constructed as in Definition 3.2.6.

Theorem 3.3.15. Consider a transition system T(X), associated to the §-1SS discrete-
time control system X. Let T(E) be a symbolic model constructed as in Definition 3.2.6.
Suppose Assumption 3.2.12 holds for function V' given in Definition 8.8.14. Then V is
a maz-type simulation function from T() to T(X) and from T(X) to T(X).

Proof. Recall that HJ = 7/ = hi, j € [1;2], by Definition 2.3.1 and 3.2.6. Hence, H’ and
H7 satisfy the Lipschitz assumption given on h7,j € [1;2] in the General Remark 2.5.
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Consequently, and since system ¥ is incrementally input-to-state stable, from (3.3.16),
for any x € X and any = € X, we have

[Hi(a) — W ()| < (e - 2]) < 0 0 o7 (V(a, 2)).

By defining o = ('m[zlau);]{ﬁj} o ¢~1)~1, one obtains a(|H!(z) — H'(2)]) < V(x,Z). Fur-
JE; -

thermore, define @ := %,. Hence, (3.3.2) is satisfied.
Now consider any @ € U and choose u = 4. Then, using (3.2.12), forany z € X,z € X,
any 4 € U, and any w € W,w € W, we have

for any &t € F(&, @, ). Now, from Definition 3.2.6, the above inequality reduces to

V(f(x,i,w),3") < V(f(z,a,w), f(&,0,%0)) +v(n").
Note that by (3.3.17), we get
V(f(z, @, w), f(&,4,D)) <po(V(z, 2)) + pu(|w — ).
It follows that for any x € X, & € X, any u € U, and any w € W,w € W, one obtains
V(f(z,i,w),37) < @u(V(z,2)) + u(lw —d]) + ("),
for any 27 € ./’:'(i, @, ). By using the result of Theorem 2.2.9, one obtains
V(f (i w), 5*) < max{go(V(2,2)), Gullw - 6]), 7)),

where @, = (id — (id — ¢) o (id = ¢,)), Guw = (id + A) o (id — ¢,) " 0o ™! 0 x 0 @y,
and 7 = (id + A1) o (id — ¢,) "oyt o x o (x —id)~! o, for some arbitrarily chosen
A, x € Ko with ¢ < id and x > id. Thus, inequality (3.3.3) is satisfied with o = &,
Pw = Pw, Pu = Pu, and € = J(n”). Hence, V is a max-type simulation function from
T(X) to T(X). The rest of the proof follows similar argument. In particular, by the
definition of U, for any u € U there always exists @ € U such that ¢, (ju —a|) < @, (n*)

which results in e = (id+A71) o (id — ¢,) Loy toxo (x —id) "L oy(pu(n®) +v(n%)). O

Remark 3.3.16. Observe that if p,, and v are linear functions in the previous theorem,
Gw and 7 reduce to Gy, = (id + ) o (id — @,) "t op ™l o, and ¥ = (id + A71) o (id —
©0y) Loyt on, respectively. ©

Remark 3.3.17. Although the choices of Koo functions \,x, and @ in the previous
theorem mainly depend on the dynamic of the given control systems, we provide a general
guideline on choosing those functions as follows: (i) In order to reduce the undesirable
effect of the inverse of id — ¢, and v in satisfying the small-gain condition in (3.3.6), or
in computing the value of the overall approximation error in (2.2.8), one should choose
those 1) to behave very close to the identity function, and @, as small as possible; (ii)
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Regarding A and x, one should choose those functions such that the small gain condition
in (3.3.6) is possibly satisfied, and then compute the overall approzimation error in
(2.2.8). If the computed error is acceptable by the user, no further action is required;
otherwise one should start slightly modifying those functions until a smaller error is
achieved while ensuring that the small gain condition is not violated. For example, one
can scale the Ko function \ by a linear function B(s) = c¢s € Koo , Vs € R>g,¢ > 1,
and then, using B o X instead of \, start increasing the value of ¢ until a smaller error is
obtained. Same procedure can be simultaneously applied to the Koo function x. It may
be the case that the desired error is not achievable with the chosen A and x, then one
should start over and choose different A\ and x and go through a similar procedure again.
o

Remark 3.3.18. Note that if system X% is not 6-1SS, one may assume that X is in-
crementally input-to-state stabilizable. That is there exists feedback controller G :
X — U such that (3.3.17) is satisfied with the left-hand side of (3.3.17) given as
V(f(w,w,0(x) + ), f(&, ', G(a') + ). o

If we consider linear control systems as in (2.3.3), similar results as in Theorem 3.3.15
can be provided in more computationally efficient way. In particular, the incremental
input-to-state stability assumption in Definition 3.3.14 boils down in the linear case to
the following assumption.

Assumption 3.3.19. Consider linear control systems ¥ = (A, B,C',C?, D). Assume
that there exists matriz Z > 0 of appropriate dimensions such that the matrix inequality

(14+20)A"ZA < p.Z, (3.3.18)
holds for some constants 0 < ¢, < 1, and 6 € Rsy.

Note that condition (3.3.18) is nothing more than asking matrix A being stable
[AMOT].

Theorem 3.3.20. Consider a transition system T(X), associated to the linear control
systems 3 for which Assumption 3.3.19 holds. Let T'(X) be a symbolic model constructed
as in Definition 3.2.6. Then function V' defined as

V(z, &) =/(z —2)TZ(x — 1), (3.3.19)

is a maz-type simulation function from T(X) to T(X) and from T(X) to T().

Proof. First, we show that condition (3.3.2) holds. Since C' = C, we have

|Cz — Ci| < v/PAmax(CTO)|x — &,

and similarity

Vnin(2)|z — 2| < V/(z —3)7Z(z — 3).
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It can be readily verified that (3.3.2) holds for V' defined in (3.3.19) with a(s) =

ﬁ(é@c)s for any s € R>g. We continue to show that (3.3.3) holds as well. Let z,

%, 4, and @ be given, and choose u as u := 4. Let 7 = Ax + Bu + Dw, and 2T be
defined as in Definition 3.2.6. Define A := A% + Ba + Dw — #7. Now, one obtains the
chain of inequalities in (3.3.20). By following a similar argument as the one in the proof

V(a®,a")
= ((Az + Bu+ Dw — (A% + Ba + D) + (A2 + Ba+ Dw) —31)"Z
(Az + Bu+ Dw — (A + Ba + D) + (Aé + Ba + D) — 21))2
=((z—2)"A"ZA(z - 2)+ (w — ) 'D"ZD(w — ) + 2(w — W) "D ZA
+2(x —2)TATZD(w — 0) + 2(x — 2)TATZA + ATZA)?
<((x—2)TATZA(x — 2) + (w — ) DT ZD(w — ) + 2|(w — b)) TDVZ|2|VZA|
+2|(x = )T ATVZVZA + 2|(x — 3)TATVZVZD(w — )|
+ P Amax(Z)0%) 2
< ((x—2)TATZA(x — ) +20|(x — 2)TATVZ3 + (w — @) DT ZD(w — 1)
(e w);DT\@% n Q\ﬁeAl%
< ((1 +20)(z —2)TATZA(x — &) +

N

+0)(w — ®) " DVZE + nAmax(Z2)1%)

(14 6+ 6?)(w—w)"DTZD(w — )
0

(2 + ) Ama(Z)02\ 2
T

) /14604 62 ) 2+ NAmax(Z
< VQDCV($7:L‘)+ 79 |VZD‘2|’UJ—w2—|—\/ ( )0 ( )77
1+6+02 + 0) Amax
< VeV (z, i) + \/p7+ 9+ IVZDls|w — )| +\/ n@+ )9 (Z )n. (3.3.20)

of Theorem 2.2.9, one gets

V(*,i+) < max {gﬁc((x &) 2 - @))5,@9 T/g))w e e ]
(1+1/7e) \/n(? + 0)Auax(2)

(1= Vo) 0 ’7}’

where ¢, = (1 — (1 — /) (1 — ¥)), satisfying (3.3.3) with 0 = @¢, py = 0, pu(s) =

1\—;%)% \/w]\/»D\g, = (11%§&C nuw)g““"(z)n, where 1. and ). can be

chosen arbitrarily such that 0 < 1. < 1 and A, > 0. Hence, the proposed V in (3.3.19) is
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a max-type simulation function from 7'(X) to T(X). The rest of the proof follows similar
argument. In particular, by the definition of U, for any u € U there always exists © € U

such that |Bl|lu — @] < |B|n™ which results in € = (fl_%)ﬁc n(2+9);\m"(z) (IBIn™ 4+ n™).
Other terms are the same as before. O

Remark 3.3.21. Note that if condition (3.3.18) can not be satisfied, one can assume
that ¥ = (A, B,C',C? D) is stabilizable and still have the result in Theorem 3.3.20.
That is there exists matrices Z > 0 and state feedback gain K of appropriate dimensions
such that the matrix inequality

(1+20)(A+ BK)"Z(A+ BK) < ¢.Z, (3.3.21)
holds for some constants 0 < . < 1, and 8 € R+y. o

Remark 3.3.22. Given constants p. and 0, one can easily see that inequality (3.3.21)
1s not jointly convex on decision variables Z and K and, hence, not amenable to existing
semidefinite tools for linear matriz inequalities (LMI). However, using Schur comple-
ment, one can easily transform inequality (3.3.21) to the following LMI over decision
variables B1 and Ey:

—pc Ei1AT + E'QTBT

~
AE,+BE, —(1+20)E, | =0 B1=0,

where By = Z~ 1 and Fy = KE;. o

3.3.6 Case Studies

In this section we provide two case studies to illustrate the results of Section 3.3 and
compare them with the results of Section 3.2. We first apply our results to the tempera-
ture regulation in a circular building by constructing compositionally a symbolic model
of a finite network containing n > 3 rooms, each equipped with a heater. Then we apply
the proposed techniques to a fully connected finite network to show its applicability to
strongly connected networks as well. Moreover, we verify the effectiveness of proposed
technique in Subsection 3.3.4 by applying it to a model of a road traffic network con-
taining infinitely many cells (systems). We construct symbolic models for the original
systems and compositionally construct an alternating simulation function from the infi-
nite network containing infinitely many symbolic models to the infinite network of the
concrete subsystems. We also design controllers compositionally maintaining the density
of traffic between 10 and 25 vehicles per cell. The construction of symbolic models and
controllers are performed using tool SCOTS [RZ16] on a PC with Intel i7@3.4GHz CPU
and 16 GB of RAM.

3.3.6.1 Room Temperature Control

In this subsection, we apply our results to the temperature regulation in a circular
building of n > 3 rooms, each equipped with a heater. The dynamic of the network X
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is described by (3.2.17). By introducing

xi(k+1) = (1 =28 - — Bri(k))xi(k) + [8; 8] wi(k) + BT + BThvi(k),
i yi (k) = xi(k),
yi(k) = xi(k),

one can readily verify that ¥ = Z(%;);¢[1,n), where w;(k) = [y2 1(k);y?2,, (k)] with y2 =
y2 and y2,, = yi. Note that for any i € [1;n], conditions (3.3.16) and (3.3.16) are
satisfied with V(as, &) = |z — &l, ¢, = @, = id, o, = 1 =28 — B, pu, = B, and
¢u; = 0, when v = «/. Furthermore, 23.2.12) is satisfied with v = id. Consequently,
Vi(zi, &;) = |x; — 24| is a max-type simulation function from Ti(Ei), constructed as in
Definition 3.2.6, to T;(%;) associated to X;.

Since we have 7;;(s) < id, Vi,j € [1;n], ¢ # j and for any n > 3, the small-gain
condition (3.3.6) is satisfied without any restriction on the number of rooms. Using
the results in Theorem 3.3.5 with w;l =id, Vi € [1;n], one can verify that S’(x,i‘) =
max;{|z; — ;|} is an alternating simulation function from T'(X) = I(Ti(zi))ie[l,n] to
T(X) = Z(T;(%:))ic1,n) associated to ¥, satisfying conditions (2.2.1) and (2.2.2) with
~ 5 _ 2.02 ~ . ~ ~ 2.02n7
o= max{(l — (1 -28+3)1072), ﬁ}, a=id, p, =0, £ = max; {17‘177;375)},
Vi € [1; N], where n¥ is the state set quantization parameter of abstraction T;(%;).

For the comparison, we compute error € in the é-approximate alternating simulation
relation as in (2.2.8) based on the dissipativity approach introduced in Section 3.2 and
the small-gain approach introduced in Section 3.3. This error represents the mismatch
between the output behavior of the concrete network ¥ and that of its finite abstraction
T (X). We evaluate ¢ for different numbers of systems n and different values of the state
set quantization parameters n¥ for abstractions Tj(%;) Vi € [1;n] as in Figure 3.5. As
shown, the small-gain approach results in less mismatch errors than those obtained using
the dissipativity based approach proposed in Section 3.2. The reason is that the error in
(2.2.8) is computed based on the maximum of the errors between concrete systems and
their symbolic models instead of being a linear combination of them which is the case
in Section 3.2. Hence, by increasing the number of systems, the error computed based
on the small-gain approach introduced in Section 3.3 does not change here whereas the
error computed by the dissipativity based approach proposed in Section 3.2 will increase
as shown in Figure 3.5.

Now, we synthesize a controller for ¥ via abstractions TZ(Ez) such that the temperature
of each room is maintained in the comfort zone . =[19, 21]. The idea here is to design
local controllers for abstractions i]i, and then refine them to concrete systems ;. To
do so, the local controllers are synthesized while assuming that the other systems meet
their own specifications. The computation times for constructing symbolic models and
synthesizing controllers for 3; are 0.048s and 0.001s, respectively. Figure 3.6 shows the
maximum and minimum of the state trajectories of the closed-loop network ¥, consisting
of 1000 rooms, under control inputs u; with the state and input quantization parameters
n? = 0.01 and n}* = 0.01, Vi € [1;1000], respectively.
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[ Small-Gain

Il Dissipativity

10?

Figure 3.5: Temperature control: Comparison of errors in (2.2.8) resulted from the approach
based on small-gain condition with those based on dissipativity-type condition for
different values of n > 3 and n =07 =--- =n?.

3.3.6.2 Fully Connected Network

In order to show the applicability of the small-gain approach to strongly connected
networks, we consider a nonlinear network > described by

5. { x(k+1) = Ax(k) + o(z) + v(k),
' y(k) = x(k),

where A = I, — 7L for some Laplacian matrix L € R™ ™ of an undirected graph
[GRO1], and constant 0 < 7 < 1/A, where A is the maximum degree of the graph
[GRO1]. Moreover x(k) = [x1(k);...;xn(k)], v(k) = [1(k);...;vn(k)], and ¢(x) =
[P1(x1);. .5 ¢Pn(xy)], where ¢i(x;) = sin(x;),Vi € [1;n]. Assume L is the Laplacian
matrix of a complete graph:

n—1 —1 —1 7

-1 n-1 -1 ... -1

L= —1 -1 n-1 --- =1
| -1 o =1 n—1]

Now, by introducing 3; described by

Xi(k‘ + 1) = aixi(k) + goz(wz) + dzwl(k) + I/i(k‘),
5y = xak),
yi(k) =xi(k),
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21
max{x;(k)}
| ——min{x;(k)}
0 205+
2
©
o 201
o
E —
G
195+ 1
19 1 1 1
0 5 10 15 20

Time step

Figure 3.6: Bounds inside which state trajectories of the closed-loop network ¥ consisting of
1000 rooms are evolving.

where a; = {A}i i, wi(k) = (¥7)jequnpi)y i = {AYirs -5 {AY i {A i -5 {AYin] T
one can readily verify that ¥ = Z(X;);c1,. Clearly, for any i € [1;n], conditions
(3.3.16) and (3.3.16) are satisfied with V;(x;,Z;) = |z; — &4, Gi(x;) = —cizy, where
“"2—“ <c¢ <a;+1, #, = Py, = id, @y, = (1+a; — ¢), puw, = |di|, and ¢,, = 0. Note
that we utilized feedback controller G as in Remark 3.3.18 to make systems ¥; 6-ISS.
Moreover, (3.2.12) is satisfied with v = id. Consequently, Vj(z;, &;) = |x; — &;| is a
max-type simulation function from Tj(%;), constructed as in Definition 3.2.6, to T;(%;)
associated to X;.

Fix 7 = % = %. Since we have v;;(s) < id, Vi,j € [1;n], i # j, the small-gain
condition (3.3.6) is satisfied without any restriction on the number of systems. Using
the results in Theorem 3.3.5 with ¢; * = id, Vi € [1;n], one can verify that S(z,#) =
max;{|z; — #;|} is an alternating simulation function from T'(X) = I(Ti(zi))ie[l,n] to
T(%) = I(Ti(X:))ie[1,n) associated to ¥ satisfying conditions (2.2.1) and (2.2.2) with

a = Id, ;511, = 0, g = maxi{%}j (}(3) = max{m?x{(l_W) 8},

max {#{%s} }, where 1y is the state set quantization parameter of abstraction

T(%).

Similar to the previous case study, we compare the small-gain technique in Section
3.3 to the one proposed in Section 3.2. A comparison of the error £ in (2.2.8) resulted
from the dissipativity approach proposed in Section 3.2 and the small-gain technique in
Section 3.3 is shown in Figure 3.7. We compute € for different n and different values
of 17 for abstractions Tj(%;) Vi € [1;n]. Clearly, the small-gain approach results in
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[ Small-Gain
Il Dissipativity

Figure 3.7: Fully connected network: Comparison of errors in (2.2.8) resulted from the approach
based on small-gain condition with those based on dissipativity-type condition for
different values of n > 1l and n =nf =--- =n?.

less mismatch errors than those obtained using the dissipativity based approach . The
computation time for constructing abstractions for 3; is 0.9s after fixing n = 1000,
ny =0.01, p; = 0.01, z; € [0,10], v; € [0,1], Vi € [1;n].

3.3.6.3 Infinite Road Traffic Model

In this case study, we apply the approach in Subsection 3.3.4 to a variant of the road
traffic model from [dWOK12]. We consider a traffic network divided into infinitely
many cells, indexed by ¢ € N. Each cell ¢ represents a one-dimensional subsystem
¥ = (X3, Wi, Uy, fi, X;) described by a difference equation of the following form

5 - { x;(k + D= (-7 —e)x;(k)+diw;(k)+bvi(k), (3.3.22)

yi(k) = xi(k), je€[1;2],
with the following structure
— di= (559 (3, ) wi = [yl 1yl ifi € Jii={1+2c: c e No};
—di=(1—-e),w; =y if i€ Jy:={2}
— di = (359 (B, )T wi = [yl gy if i € Jy i= {4+ 2¢: c € No}.

In (3.3.22), 7 is the sampling time interval in hours, [ is the length of a cell in kilometers
(km), and v is the flow speed of the vehicles in kilometers per hour (km/h). The state
of each subsystem Y;, i.e. x;, is the density of traffic, given in vehicles per cell, for each
cell ¢ of the network. The scalar b represents the number of vehicles that can enter the
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Figure 3.8: Model of a road traffic network composed of infinitely many systems.

cells through entries which are controlled by v;(-). In particular, v;(-) = 1 means green
light and v;(-) = 0 means red light. Moreover, the constant e € (0,1) represents the

percentage of vehicles that leave the cells using available exits. The infinite network and
its cells are illustrated in Figure 3.8.
Let us first show that ¥ = Z(%;);en is well-defined by showing that || f(z,u)| < oo,
where f(z,u) is constructed as in Definition 3.3.1. Define C1 = [1 — T —e|, Cy =
|(1—e)T?], C3 = |b], C = max;1<;<3{C;}, then one has

TV
I.f (z,u)|| = sup{]| fi(zi, wi, w;)|} = sup{|(1 — 7—€)$i+diwi+buz‘|}
1EN €N
p{|wi| } +Co sup{|z;| } +Cs sup{ |u;| } < C(sup{|xi|} +sup{|x|} +sup{|ui|})
N €N €N €N €N €N

<(Cisu
i€

= C(llll + =]l + flull}) < oo

Hence, ¥ = Z(%;)en is well-defined.
Fix 7 = ﬁ,v = 60,/ = 0.5, and e = 0.1, then for any ¢ € N, system X, is
0-1SS, where conditions (3.3.16) and (3.3.17) are satisfied with Vj(z;, Z;) = |x; — &4,
e, = Pp, = id, 05, = (1 = (F +¢)), pu;, = [(1 =€), and @,; = 0 with u; = ;.
Furthermore, (3.2.12) is satisfied with v; = id. Consequently, Vi(z;, ;) = |x; — &;] is a
max-type simulation function from Ti(Zi), constructed as in Definition 3.2.6, to T;(%;)
associated to ¥;. Note that for the construction of symbolic models Cf’i(Ei), we have
chosen the finite set WZ = Xi+1 X XH—Z for all i € Jq, WZ = Xi+1 for all © € Jo, and
Vi/i = Xi_z X Xi_l for all i € J3. Moreover, it can be readily verified that v;; < id.
Therefore, by remark 3.3.11, S(z,#) := sup;en{|®; — #4|} is an alternating simulation
function from T'(2) = Z(Tj(%i))ien to T(X) = Z(Ty(3;))ien associated to ¥ satisfying
conditions (2.2.1) and (2.2.2) with @ = id, & = 0.97, p, = 0, and € = 17sup;en{n’}.
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3 Symbolic Models for (In)finite Networks of Discrete-Time Control Systems

In order to guarantee that ¢ is well-defined, one should choose 1" such that there exists
n* € Ry so that n¥ <n*, Vi € N.

Now we show how to use the constructed symbolic models TZ(Ez) to design a controller
for ¥ such that the density of traffic is maintained between 10 and 25 vehicles per
cell (systems ¥;). Based on assume-guarantee reasoning, we compositionally synthesize
controllers for symbolic models, and then refine them to the ones for concrete systems.
In particular, we design local controllers w; for TZ(El) while assuming that the other
systems Ti(Ej), j # i, meet their specifications, and then refine u; to u; using w; = ;.
We leverage software tool SCOTS [RZ16] for constructing symbolic models and controllers
for ¥; compositionally with b = 5, state quantization parameter n” = 0.1 and the
computation times are amounted to 0.016s and 9 x 10~%s, respectively. Figure 3.9
shows trajectories of sample system ¥; starting from different initial conditions under
input u;. Finally, one can compute the mismatch between the output behavior of T'(¥) =
I(T;(25))ien and that of its symbolic model () = Z(T3(3;))ien by utilizing Proposition
2.2.11. In particular, using (2.2.8) and since & = id,p, = 0, we have ¢ = a~1(&) =
sup;en{éi} = L.7.
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Figure 3.9: Trajectories of sample subsystem ¥; starting from different initial conditions with
(up-left) i € Jy, (up-right) i € J3, and (down-middle) i € Js.

3.4 General Remark

Given that function S in Theorem 3.2.12, similarly in Theorem 3.2.8, is a sum-type
simulation function from T'(¥) to T'(¥) and from T'(X) to T'(X), it can be readily ver-
ified that function S defined in (3.2.7) is also an alternating simulation function from
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3.5 Summary

T(2) = Zar(Ti(Z0))ien to T(E) = Zas(Ti(2s))ies- Note that the same argument is valid
for function V in Theorem 3.3.15, similarly in Theorem 3.3.20. Thus, function S defined
in (3.3.8) or in (3.3.14) is an alternating simulation function from T'(X) = Z(T;(%;) )ie.s
to T(X) = Z(Tj(2))ies. Hence, T(X) is a complete symbolic model [Tab09] for the
concrete network T'(X). In other words, there exists a controller enforcing the desired
specifications on the abstract network T(E) if and only if there exists a controller en-
forcing the same specifications on the original network T'(X).

3.5 Summary

In the first part of this chapter, we proposed a compositional framework based on
dissipativity-type conditions for the construction of symbolic models for finite network
of discrete-time control systems. First, we used a notion of so-called sum-type simu-
lation functions in order to construct compositionally a notion of so-called alternating
simulation functions that is used to quantify the error between the output behavior of
the overall concrete network and that its symbolic model. Furthermore, we provided
an approach to construct symbolic models together with their corresponding sum-type
simulation functions for a class of discrete-time control systems under some incremental
passivity property. We apply our results to the temperature regulation in a circular
building by constructing compositionally a symbolic model of a finite network contain-
ing 1200 rooms. We use the constructed symbolic models as substitutes to synthesize
controllers compositionally maintaining room temperatures in a comfort zone.

In the second part of the chapter, we proposed a compositional framework using two
different nonlinear small-gain conditions for the construction of symbolic models for
(in)finite network of discrete-time control systems. First, we used a notion of so-called
max-type simulation functions in order to construct compositionally an alternating sim-
ulation function that is used to quantify the error between the output behavior of the
overall concrete network and that of its symbolic model. Furthermore, we provided
a technique to construct symbolic models together with their corresponding max-type
simulation functions for discrete-time control systems under incremental input-to-state
stability property. Finally, we illustrated the proposed results by constructing symbolic
models for three networks of (linear and nonlinear) discrete-time control systems and
their corresponding alternating simulation functions in a compositional fashion. The
first two case studies elucidated the effectiveness of our compositionality results in com-
parison with the ones using dissipativity-type reasoning. The third case study shows the
effectiveness of our compositionality technique when dealing with infinite networks.
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4 Symbolic Models for Finite Networks of
Discrete-Time Switched Systems

4.1 Introduction

Switched systems serve as an important modeling framework describing several engineer-
ing systems in which physical processes have various operation modes [Lib03]. Despite
considerable number of studies that have been conducted regarding stability of switched
systems (see for example [LHM11, YL15]), the fast grow in computational technology
requires us to make same progresses with respect to more sophisticated objectives such
as those expressed as linear temporal logic (LTL) formulae [BK08]. One particular tech-
nique to address complex objectives is based on the construction of symbolic models of
switched systems. However, as the complexity of constructing symbolic models grows
exponentially in the number of state variables in the switched system, the approaches
proposed for constructing symbolic models for switched system so far in the literature are
limiting the applications of symbolic models to only low-dimensional switched systems.
This chapter proposes a compositional framework based on dissipativity and small-gain
reasoning for synthesizing symbolic models for finite networks of switched systems.

4.1.1 Related Work

In recent years, there have been several results on the construction of symbolic models of
switched systems. The work by [GPT10] provides a symbolic model that is related by an
approximate bisimulation relation to the original incrementally stable switched system.
In [CGG13, ZAG15], an approximate bisimulation relation was established between a
symbolic model and incrementally stable switched system in which the symbolic states
are sequences of modes of a given length. Recently, the result in [GPT10] has been ex-
tended to the case of multi-rate symbolic models in [SG17], multi-scale symbolic models
computed using non-uniform adaptive space discretization in [GGM16], and to switched
systems with aperiodic time sampling in [KGS18|. Note that all the proposed results in
[GPT10, CGG13, ZAG15, GGM16, SG17, KGS18] take a monolithic view of switched
systems when abstracting the entire system. Hence, the construction of symbolic mod-
els for large-scale networks of switched systems is very complex from a computational
point of view. Although the result in [CGG13] provides a state-space discretization-free
approach for computing symbolic models of incrementally stable switched systems, this
approach is still monolithic and reduces the computational complexity only for switched
systems with small number modes, see [CGG13, Section IV(D)].
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4 Symbolic Models for Finite Networks of Discrete-Time Switched Systems

4.1.2 Contributions

In the first part of this chapter, we provide a compositional methodology for the construc-
tion of symbolic models of finite networks of discrete-time switched systems based on
dissipativity theory [AMP16]. We first define a notion of so-called sum-type augmented
simulation functions to relate switched systems and their symbolic models. Then, by
leveraging dissipativity-type compositional conditions, we construct a notion of so-called
alternating simulation function as a relation between the finite network of switched sys-
tems and that of their symbolic models. This alternating simulation function allows one
to determine quantitatively the mismatch between the output behavior of the network of
switched systems and that of their symbolic models. Moreover, we provide an approach
to construct symbolic models together with their corresponding sum-type augmented
simulation functions for discrete-time switched systems under some assumptions ensur-
ing incremental passivity of each mode of switched systems. Finally, we apply these
results to a model of road traffic by constructing compositionally a symbolic model of
a network containing 50 cells of 1000 meters each. We use the constructed symbolic
models as substitutes to design controllers compositionally maintaining the density of
traffic lower than 30 vehicles per cell. Additionally, we apply those results to a finite
network of switched systems admitting multiple incremental passive storage functions.

In the second part of the chapter, we introduce a compositional methodology based
on small-gain type reasoning for the construction of symbolic models of networks of
switched systems. The proposed approach leverages sufficient small-gain type condi-
tions to establish the compositionality results which rely on the existence of max-type
augmented simulation functions as relations between switched systems and their sym-
bolic models. In particular, based on some small-gain type conditions, we use those
max-type augmented simulation functions to construct compositionally an alternating
simulation function as a relation between a finite network of symbolic models and that
of original switched systems. Furthermore, under standard assumptions ensuring in-
cremental input-to-state stability of a switched system (i.e., existence of a common
incremental input-to-state Lyapunov function, or multiple incremental input-to-state
Lyapunov functions with dwell-time), we show that one can construct symbolic models
of switched systems in general nonlinear settings. Moreover, we show that the incre-
mental input-to-state stability assumption boils down to a linear matrix inequality for a
specific class of nonlinear switched systems. We also use the result based on small-gain
type reasoning to construct symbolic models and design controllers for the model of road
traffic introduced in the first part of this chapter. Moreover, we apply those results to
a network of switched systems admitting multiple incremental input-to-state Lyapunov
funtions.

4.2 Dissipativity Approach (DA)

4.2.1 Networks of Discrete-Time Switched Systems: DA Formulation

Definition 4.2.1. Consider discrete-time switched systems ¥; = (X;, P;, W;, Fi,Y},Y?,
hl,h?), i € A :=[1;N], N € N, and a static matriz M of an appropriate dimension
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4.2 Dissipativity Approach (DA)

defining the coupling of these systems, where M [] Y? C ] W;. The network of
1EN ieN
discrete-time switched system ¥ = (X, P, F, Y, h), denoted by ¥ = Zp;(3;)ic v, is defined

byX = [[ Xy, P=[] P, F= 1] F, Y =[] Y}, h(z) = (h}(x:))ic.rr, where
ieN ieN eN ieN

x = (2;)iex , with the internal inputs constrained according to (w;)ic.y = M(h2(xi))ic.s -

The network of discrete-time switched systems is defined by the difference equations

 x(B+1) = Sy (x(K)),
E'{ y(k) = h(x(k)), (4.2.1)

where x : N — X, p: N P,y : N =Y, and fouy = (fp, ) (Xi(k), wi(k)))ics with
p(k) = (pi(k))ic.r -

4.2.2 Sum-Type Augmented Simulation Functions

Consider a network of discrete-time switched systems ¥ = Zp;(3;);ec s, or the equiv-
alent network of transition systems 7'(3) = Zp(T3(%;))ic.r, where each T;(%;) given
as in Definition 2.4.2. Assume that each systems T;(%;) = (X;, Xo,, Wi, Uy, F, Y1, Y2,
H}, H?) and (%) = (Xi, Xo,, W, Ui,]:},lél,l}f,?:lil,ﬁ?) admit a sum-type augmented

simulation function as defined next.

Definition 4.2.2. Consider systems T;(3;) = (Xi, Xo;, Wi, U, Fi, Y1, Y2 HE H?) and
Tl(El) = (XZ-,)A(OZ,, VVi, Ui,ﬁi,ﬁl,ﬁz,ﬁ},’}:{?) where f/il C Y. A functionS;: X; x X; —
R>¢ is called a sum-type augmented simulation function from TZ(ZZ) to T;(%;) if there
erist a; € Koo, 0 < 0; < 1, a symmetric matrix R; of appropriate dimension with
conformal block partitions jo/, J.j" € [1;2], and some €; € R>o so that the following
hold:

e For every (x;,pi, ;) € Xy, (Zi,pi,1i) € X;, one has

i (| M (i, pi, 1) — HEH (i, pis 1)) < Sil (@i, pis i), (24, 93y 1) (4.2.2)

o For every (zi,pi i) € Xi, (#4,piy i) € Xy € Usw; € Wyyaty € Wy, (a7, pf, 1) €
Fi(xi, wi, u;), there exists (:%f,er IF) € Fi(&4,1;,1;) so that

AR}

Si((zf,ph ), @F ph 1) < 0Si((wi, pi, ), (£, 05, 1) + & (4.2.3)

R;:=
/_/h

N T «

w; — W; ] |:}%Z11 R,}Q Wi — Wy

(24, pis i)

+ HZ (w4, pi, ;) — H? R R?Q] [Hf(iﬁi,pz‘,li)—H?(i“upi,li)

Here, T;(%;) is called an abstraction of T;(X;) if there exists a sum-type augmented
simulation function from 7;(3;) to T;(%;). Moreover, if T;(%;) is finite, it is called a
symbolic model of T;(%;).
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4.2.3 Compositional Abstractions for Networks of Discrete-Time Switched
Systems: DA

We assume that we are given 3; = (X;, P, W;, Fi, Y1, Y7, hl, h?), or equivalently T;(%;) =
(Xi,Xo Wi, Ui, Fi, YA Y2 MY, 7—[2) as in Deﬁmtlon 2.3.2, together with their abstrac-
tions T(E) (Xz,XO ,W Ui, Fi, Y1 Y2 7-[1 7-[2), 1 € A, and sum-type augmented
simulation functions S; from T} (Z ) to T; (E ) as in Definition 4.2.2.

The next theorem provides a compositional approach on the construction of abstrac-
tions of the networks of transition systems T'(3) = Zys(7;(3;))ies associated to network
of discrete-time switched system ¥ = Zp;(%;);c 4 and that of the corresponding alter-

nating simulation functions.

Theorem 4.2.3. Consider the network T'(X) = Zas(T;(2:))iev associated to the network
of discrete-time switched system ¥ = Zpr(2;)ie . Suppose each transition system T;(%;)
admits an abstraction Tz(ZZ) with the corresponding sum-type augmented simulation
function S;. If there exist u; > 0, i € A, such that the matriz inequality and inclusion

.
[M] R [M] <0, (4.2.4)
1y Iy
ML, Y2 CTIY, Wi, (4.2.5)
are satisfied, where
_Il,l,lR%l IU/IR%2 -
R uNRy N Ry
Ri= : 1.2.6
ulR%l ,UlR%Q ( )
L MNRJz\% MNR%\%_

and q is the number of rows in M, then

S((l‘apal 7 :E p7 Z ,U"L z l"npu 'L) (i‘iapiali))a (427)
€N

is an alternating simulation function, as in Definition 2.2.5, from T(E) =Ty (TZ(ZZ))ZeA/
to T(X) = In(Ti(%4) )i -
Proof. First, define z = (2;)ic.v, 2 = (Z)iers 27 = (2] )iey, and 27 = (2 );c.r, where

2 = (24,00, 1), 2 = (X4, 01, 1) 2 = (x;r,p:r,l:r) and éj = (:%j,p;r,l:r) Vi € A . Now

(2

we show that inequality (2.2.1) holds. Consider any z € X and Z € X, one gets:

[H(2)—H(2) | =[(H] (z0)-HE (20)ier | D IHE (z0)-HEE)I<D_ar  (Silzi: 2:))< 4 (S (2, 2)),
€N eN
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where & is a Ko function defined as a(s) = mgg({vala Ys)u™s = s}, where
8>
A1

§ = (si)ie.y and p = (1;)ic.r- By defining the K function & = &~ ", one obtains
([ H(=) — H(Z)]) < S(=,2),

satisfying inequality (2.2.1). Now we show that inequality (2.2.2) holds as well. Define

o= rr[11a]>\<[ {oi}, € := > ;c 4 migi, and consider condition (4.2.4), and the definition of
i€

matrix R in (4.2.6). Then, one gets the chain of inequalities in (4.2.8). Now by using

= > pi(Si(z5h)

ieN

<Z )+ 4 wi—wi ' Rill Rilz wi—wi
2\ ST ST iy ][RP B2 PG -2

(wi — Wi)ien ]T =
= i(0:S, Zu Zz +¢&;) + "9 /A R
o )+ e e

1

< 3 ilosSiCan 2+ + [ -HGe)” ()] R[Y] (00 -R2 G
ieN q

< Z ,ul 0;S zz,zz + Z Wig; = S (z,2)+ & (4.2.8)

ieN ieN

the result of Theorem 2.2.9, one obtains
S(zt, %) <max{5S (2, 2),&}.

Thus, S satisfies (2.2.2) with 6 := (1—(1—1)(1—5)), and & = (1-5)~1¢~!(&), for some
arbitrarily chosen positive constant ¢ with ¢» < 1. Hence, § is an alternating simulation
function from T'(3) = Zp (T;(%;))iey to T(X) = Za (T3(3:))icy - O

4.2.4 Construction of Symbolic Models

In the following, we introduce some stability properties for the subsystems (mode) ¥, p €
P, described in Definition 2.4.2, based on which one can construct a symbolic model for
> along with the corresponding sum-type augmented simulation functions between X
and its symbolic model.

4.2.4.1 Incremental Passivity

Definition 4.2.4. Subsystem (mode) ¥, is 6-P if there exist functions S, : XxX — R>q,

fzp € Koo, a symmetric matriz Qp of appropriate dimension, and constant 0 < ¢, <1,

such that for all z,x' € X, and for all w,w’ € W
P, (|7 — 2'[) < Sp(a,2'), (4.2.9)
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Qpi=

., , w— 1w T 11 12 w—w'
< 4 D .
Sp(fp(xaw)vfp(x » W )) —‘Pcpsp(xvx ) + [hQ(x) o h2(l‘/):| { 12;1 12)2:| [hQ(x) o hQ(x/):|
(4.2.10)
We say that S, and @), Vp € P, are multiple -P storage functions and supply rates,
respectively, for system ¥ if they satisfy (4.2.9) and (4.2.10). Moreover, if S, = S,y and

Qp = Qp, Vp,p' € P, we omit the index p in (4.2.9), (4.2.10), and say that S and Q are
common J-P storage function and supply rate for system X..

4.2.4.2 Symbolic Models

In the following, we show how to construct a symbolic model T(E) of transition system
T'(X) associated to switched system 3 in which its modes 3, are 0-P.

Definition 4.2.5. Consider a transition system T(X) = (X, Xo, W, U, F, Y1, Y2 H H?),
associated to the switched system ¥ = (X, P,W, F,Y', Y2, h' h?), where X,W are as-

sumed to be finite unions of boxes. Let the modes ¥, for allp € P of ¥ be §-P as in Defi-

nition 4.2.4. Then one can construct a symbolic model T(Z) = (X, Xo, U, W,F, Y, V2,

7—11,7:[2), where:

e X =XxPx{0,-- kg—1}, where X = [X]yz and 0 < < span(X) is the state
set quantization parameter;

e Xo=XxPx{0};
e U=U =P is the external input set;

e W = [W],w, where 0 < n® < span(W) is the internal input set quantization
parameter.

o (&, pT, 1) € F((&,p,1),4,0) if and only if |fp(d,0) — &t| < 0%, 4 = p and the
following scenarios hold:

—l<kqg—1,p =pandlt =1+1;
—l=ky—1,pt=pandlt =k;—1;
—l=kg—1,p" #pandlt =0;

g ?1 = {’Hl(i,p,lﬂ(i,p,l) € X}’
o Y2 = {H2(z,p,0)|(&,p1) € X};

e H' : X = Y is the external output map defined as H'(&,p,1) = Hi(Z,p,1) =
h(z);

e H2: X — Y2 is the internal output map defined as 7:[2(33,1), l) = Ha(z,p,1) =
h?(z);
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4.2 Dissipativity Approach (DA)

Figure 4.1: An illustration of the computation of the transitions of 7' (%) for particular &, p, .

Note that the finite set W should be constructed in a similar way as discussed in
Remark 3.2.7. An illustration of the computation of the transitions of 7'() is shown in
Figure 4.1.

Let us point out some differences between the symbolic model in Definition 4.2.5 and
the one proposed in [GPT10]. There is no distinction between internal and external
inputs and outputs in the symbolic model defined in [GPT10], whereas their distinctions
in our work play a major role in defining the networks of switched systems and providing
the compositionality results of this chapter.

4.2.4.3 Construction of Sum-Type Augmented Simulation Functions

In this subsection, we show how to construct a sum-type augmented simulation function
between a symbolic model T(E) of transition system T'(X) associated to the switched
system Y where ¥, is 6-P. In the following, we impose assumptions on function .S, in
Definition 4.2.4 which are used to prove some of the main results later.

Assumption 4.2.6. There exists ji1 > 1 such that
Vo,y € X, Vp,p' € P, Sp(x,y) < 1Sy (z,y). (4.2.11)

Assumption 4.2.6 is an incremental version of a similar assumption that is used to prove
input-to-state stability of switched systems under constrained switching assumptions
[VCLOT7].

Assumption 4.2.7. Assume that Vp € P, 3, € K such that
Vo,y,z € X, Sp(x,y) < Sp(x,2) +p(ly — 2]). (4.2.12)

Now, we establish the relation between T'(X) and T/(X), introduced above, via the
notion of sum-type augmented simulation function as in Definition 4.2.2.
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4 Symbolic Models for Finite Networks of Discrete-Time Switched Systems

Theorem 4.2.8. Consider a switched system ¥ = (X, P,W, F, Y Y2 h' h2) with its
equivalent transition system T(X) = (X, U,W,F, Y1 Y2 HY H?). Let, Vp € P, 3, be §-
P as in Definition 4.2.4. Consider a symbolic modelT(E) = (X', UW,F, YL Y2 H, 7:12)
constructed as in Definition 4.2.5. Suppose that Assumptions 4.2.6 and 4.2.7 hold. Let
€ > 1 and define p. = maxpep {@c, }- 1If, kq > ehl:z(i))

wc
matriz Q such thatVq e {1,..., kg—1},Q — goc?q Zz; Qp = 0, then function V defined
as

+ 1, and there exists a symmetric

V((x,p, 1), (&,p,1) =@ Y Sp(x, &), (4.2.13)

is a sum-type augmented simulation function from T(X) to T(X).

Proof. Given the Lipschitz assumption on h! and since, Vp € P, %, is §-P , from (4.2.9),
Y(z,p,l) € X and Y(&,p,l) € X, we have

M (w.p.0) (2. 1) = 0 (2) — BA(&)| < i — &) < Lo g3} (Sy(. )
< tog} (X 8w) = o) (o600
< oy, V((x,p,1),(#,p.1)) < & (V((@,p,1), (,p,1)))

where & = malg({ﬂ o cp;pl}. Hence (4.2.2) is satisfied with o = &71.
pE

Now from (4.2.12) and Definition 4.2.5, Vo € X,Vi € X,Vw € W,V € W, we have

Sp(fp(z,w),27) < Sp(fplw,w), fp(d, @) + (127 = fp(2,0)])
< Sp(fp(@, w), fp(2,0)) + 7(n"),
for any 2 such that (2T,pt,I1%) € F((&,p,1), 0, ). Let T(w,z, & Q,) = [w —

w; h2(z) — h?(2)]TQplw — w; h?(z) — h?(2)] and note that by (4.2.10), one gets
Sp(fp(@,w), fp(&, 0)) < e, Sp(x,2) + T(w, z,0, 2, Qp)-
Hence, Vz € X,Vz € X, and Yw € W, Vw € W, one obtains
Sp(fp(z,w),2%) < e, Sp(z, &) + T (w, z,%, 2, Qp) + Yp(n"), (4.2.14)

for any #% such that (z+,pt,1T) € F((2,p,1), 4, ). Now, in order to show function V
defined in (4.2.13) satisfies (4.2.3), we consider the different scenarios in Definition 4.2.5
as follows.
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4.2 Dissipativity Approach (DA)

o [ <ky—1,pt =pand It =1+1, using (4.2.14), we have
Z;riﬂ Sp+(x+’j+) . Z;n:1 Sp(fp(,w), &)

V(( + + l+) ( +,p+,l+)) = e = T+1
Pc° Yc*
Z?:l (pCpSp(xv‘%) Z;nzl(T(w7x7ﬁ)7‘%va) +7p(77m))
— 1 1 + I+1
©épé e
e—1 . > o1 T(w, 2,0, %,Qp) Zmzl Yp(n")
<0 TV((@p,D), (3, p, 1) + 2220 0
9066 ©c°

e l=ky—1,pT =pand " =ky—1, using (4.2.14) and <! < 1, one gets

V(( + + l+) ( +,p+,l+)) = (s - T
Pc’ pe
> gt Py Sp(T, &) N >t (T (w, 2,0, &, Qp) +7p(77))
= 1 I3
we ¢
mf T w’ $7 22}7 i’Q m: ’y *
V() G ) + 22 r) | 2]

0, using (4.2.14), kq > €; ) 41 o ugocp <1, and

e l=kys—1,p" #pand T = (L)

% < 1, one has

mi S —‘,—7 ~+ m
2=t S D) SN s (few), )
=1

V(@ pt, 1), @5, 1)) = -
©c°
kg—1
_ e (S (e ) + T(w,2,00,8,Qy) + (7))
= kg—1
e ©
> g1 PepSp(s @) 0L (T(w, 2,0, 2, Qp) + 7p(n%))
> kg—1 + kg—1
e © e
e—1 N Zm:]_ T(w7 z, ?I), ia Qp) Emzl ’Yp(ﬁx)
pe © V((z.p, ), (&,p,1)) + =F T + =
e Pc’

—kq N
Let 7 = ¢c© > )L, - Since H2(2,p,1) = h3(2) and Ha(x,p,1) = h%(z), V(z,p,1) € X,
Y(z,p,l) € X, Yw € W, and Vib € W, one obtains

—1

V(™ p™ 1), (@7, p,11)) < e e V((@,p,1), (&,p,1) +

(n"*)

N

T ) - #2ep0)| @ P2 pd) - H2(Epo0))
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4 Symbolic Models for Finite Networks of Discrete-Time Switched Systems

Hence, inequality (4.2.3) is satisfied with o = cpc%, R=Q,e=7". Thus, Vis a
sum-type augmented simulation function from 7'(X) to T'(X). O

Observe that using exactly the same argument, we can show the V is a sum-type
augmented simulation function from 7'(X) to T'(X).

Remark 4.2.9. If equation (4.2.10) is satisfied with the same Qp,Vp € P, then function
-1

V in Theorem 4.2.8 reduces to V((x,p,1),(Z,p,1)) = @& Sp(z,2). In addition, if ¥
admits a common §-P storage function, function V reduces to V((x,p,l),(Z,p,1)) =
S(z, ).

Remark 4.2.10. For affine switched systems ¥ = (A, B,C',C?, D) as in Definition
2.4.3, we can restrict our attention to 6-P storage functions of the form S,(x,2) =
(x—2)"Z, (x — 2),Z, = 0. It can be readily seen that such functions always satisfy

(4.2.9) and (4.2.11) with ji = max { 322x2] Amax(Z,y

Amin(Zp)7 )‘min(Z /
inequality (4.2.10) reduces to the linear matriz inequality

))}, for all p,p’ € P. Moreover,

P

6,477, A, A;Zpr] . [«PcprJrCzTQ%zCz Cy zﬂ (4.2.15)

Dy Z,A, 0,D;Z,D, Q2 Co Q'

in which Z, and @, can be determined by semi-definite programming, where 6, > 1,0 <
we, < 1. Consequently, it can be readily verified that € in (2.2.2) can be defined as
€ = CpAmax(Zp), for some ¢, > 0 depending on 8, and the dimensions of Z,.

4.2.5 Case Studies

Here we apply the proposed results of this section to a model of road traffic by construct-
ing compositionally a symbolic model of a network containing 50 cells of 1000 meters
each. We also design controllers compositionally maintaining the density of traffic lower
than 30 vehicles per cell. Additionally, we apply those results to a network of switched
systems admitting multiple incrementally passive storage functions.

4.2.5.1 Road Traffic Model

Consider the network of switched systems ¥ which is adapted from [dWOK12] and
described by

5. { x(k+1) Ax(k) + By, (4.2.16)

y(k) =x(h),

where A € R59%%0 is a matrix with elements {A},, = 0.9 — Zifqge Q1 ={qisodd |q €
[1;50]} and {A}, 4 = 0.65 — 77 if g € Q2 = {q is even |q € [1;50]}, {A}qs1,4 = {A}1,50 =
7, ¥q € [1;50], and all other elements are identically zero, where 7 = ﬁ, d=1, and
v = 120 are sampling time interval in hours, length in kilometers, and the flow speed

of the vehicles in kilometers per hour, respectively. The vector B, € R is defined
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4.2 Dissipativity Approach (DA)

Road Traffic
Network

with traffic signal

Figure 4.2: Model of a road traffic network in a circular highway composed of 25 identical links,
each link has two cells.

as By = [bip,;-..;basp,s] such that by, = [0;0] if p; = 1, and b, = [0;12] if p; = 2,
Vi € [1,25], [p1;...;p2s) € P = {1,2}?5 where P is the set of modes of X.

The chosen switched system > here is the model of a circular road around a city
(Highway) divided in 50 cells of 1000 meters each. The road has 25 entries and 50 exits.
A cell g has an entry and exit if ¢ € ;1 and has an exit and no entry if ¢ € Q5. All
the entries are controlled by traffic signals, denoted by s,,r € [1;25]. In 3, the dynamic
we want to observe is the density of traffic, given in vehicles per cell, for each cell g of
the road. During the sampling time interval 7, we assume that 12 vehicles can pass the
entry controlled by a traffic signal s, when it is green. Moreover, 10% of vehicles that
are in cells ¢ € Q1, and 35% of vehicles that are in cells ¢ € Q2 go out using available
exits.

Now, in order to apply the compositionality result, we introduce systems ¥;, Vi €
[1;25]. Each switched system ¥; represents the dynamic of one link of the entire highway,
where each link contains 2 cells, one entry, and two exits, as schematically illustrated in
Figure 4.2. The switched system ¥;, Vi € [1;25], is described by

xi(k+1) = Aix;(k) + Diw;i(k) + Bip, (k)

DR yi(k) =x(k), (4.2.17)
yi(k) = CPxi(k),

0.9—7 0 Y 0 12 01"
A=, 0.65—”] , Di = [8] , Bi1 = [0] , Biz = [0] ,CF = [J )

and the set of modes is P; = {1,2}, Vi € [1;25]. Clearly, ¥ = Zps(X;);e[1,25, Where the
elements of the coupling matrix M are {M};11; = {M}125 = 1, Vi € [1;25], and all
other elements are identically zero. Note that, for any i € [1;25], conditions (4.2.9) and
(4.2.10) are satisfied with Sy, (xi, @) = (x; — T3) " Zip, (i — &), Zip, = I2, Py, (5) = 52,
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Figure 4.3: Closed-loop state trajectories of network 3 consisting of 50 subsystems.

Peip, = 0.98, Q%; = 0.3527, Q}ﬁ = 121} = 0.0937, Q?g = —0.6785 Vp; € P;. More-
over, since S;,, = Sipg,Vp, p’ € P, and according to Remarks 4.2.9 and 4.2.10, function
Vi((xi, piy i), (&4, 05, 1;)) = Si(zi, &;) is a sum-type augmented simulation function from
T3(%;), constructed as in Definition 4.2.5, to T;(X;), defined in Definition 2.4.2. Now, by
choosing u; = 1,Vi € [1;25] and finite internal input sets W; of Tj(3;) in such a way that
Hfil W; =M H?il X;, conditions (4.2.4) and (4.2.5) are satisfied. Therefore, applying
Theorem 4.2.3, function 5(($,p, D), (z,p, 1) = Zfilvi((xi,pi,li), (Z4,pi,yli)) is an alter-
nating simulation function from T'(X) = Za(T3(25))ic1 25) t0 T(2) = Zns (Ty(2:))ic 1 25)-

Let us now design a controller for ¥ via symbolic models Tl(EZ) such that controllers
maintain the density of traffic lower than 30 vehicles per cell (safety constraint), and
to allow only 2 consecutive red lights for each traffic signal (fairness constraint). The
former constraint implies that each vehicle can keep a 30-meter safe distance from the
one directly in front. The latter constraint is a way to avoid the trivial solution (always
red) of the safety constraint and ensures fairness between modes 1 and 2. The idea here
is to design local controllers for symbolic models TZ-(Ei), and then refine them to the
ones for concrete switched systems ¥;. To do so, the local controllers are designed while
assuming that the other systems meet their specifications.

Note that the direct computation of the symbolic model for the original 50-dimensional
system Y is not possible monolithically. We leverage software tool SCOTS [RZ16] for con-
structing symbolic models and controllers for ¥; compositionally with the state quan-
tization parameter 77 = 0.03 and the computation times are amounted to 10.2s and
0.014s, respectively. Figure 4.3 shows the closed-loop state trajectories of X, consisting
of 50 cells.

4.2.5.2 Fully Connected Network

In this example, we apply our results to a network ¥ composed of N > 2 linear switched
systems ¥;,7 € [1; N], admitting multiple -P storage functions and supply rates. In
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4.2 Dissipativity Approach (DA)

this respect, we choose the dynamics’ parameters such that neither condition (4.2.9)
nor (4.2.10) holds with common 0-P storage functions and supply rates for all systems.
In particular, as all systems are affine switched systems, we choose their dynamics’
parameters such that the solution of the linear matrix inequality (4.2.15) with common
Z; and Q; (ie. Ziy, = Zyy and Qip, = Qypy, Vp,p' € Pyi € [1;N]) is infeasible. Hence,
none of the switched systems admits a common -P storage function and supply rate.
The dynamic of the network of switched systems ¥ has the set of modes P = {1,2}V, N ¢
N>o, and it is given by

. { y(k) = x(k). ’

The vector B, € R", where n = 2N, is defined as { B}; 1 = By, such that B,, = [-0.9;0.5]
if p; =1, and By, = [0.9; —0.2] if p; = 2, Vi, j € [1; N],i # j. The elements of the matrix
A, € R™™ are as follows:

[0.05 0 ] =1
0.015 0 0.9 0.03 v
{A}"vj‘[ 0 0.015]’{‘4}”' = oo —12)

0 005 [Pi=2

Now, by introducing 3J; described by

xi(k+1) = Ap,wyXi(k) +wi(k) + Bip, k),
yi(k) =xi(k),

0.05 0 0.02 —1.2 —0.9 0.9
A = [0.9 0.03} A = [ 0 0.05}  Bun = [0.5 } B = [—0.2} ’

and the set of modes as P; = {1,2}, one can readily verify that ¥ = Zy/(¥;)icn, s
where the elements of the coupling matrix M are {M}; ;=02 and {M}; j={A}; ;, Vi,j €
[1; N],i# j. Note that, for any i € [1; N], conditions (4.2.9) and (4.2.10) are satisfied
with Sipi (xi, :f:l) = (JJ, - .%i)TZipi (:L’Z — iz‘),

7 _ [0-3030 0.0087] , _[04899 —0.0033
7 10.0087 0.4938| 7?2 T |-0.0033 0.4291 |’
Qil = 10_3-[12'17900-;1 = 077 P (S) = 0°3827Qi2 = 10_3[’2’27@01'2 = 077 SOI’L'Q(S) = 0'452)

where

27 0 -1 -3 29 0 —14 27
po_ |01 -3 0 ;|0 16 27 0
Tl 1 -3 —201.3 —17 |27 7 |—1.4 2.7 156 175

-3 0 =17 270.8 27 0 175 —-294
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Since Assumption 4.2.6 and kg > eln(l;l/(i) y + 1 hold with g = 1.63, kg = 3, ¢ = 1.01,
cp

one can easily find a matrix Q such that Yge {1,2},Q — 0.7% 22 1Qp = 0 by using semi-

definite programming such that function V;((z;, pi, i), (24, pi, i) = Zz 1 Sip; (x4, azl)m;f/e
is a sum-type augmented simulation function from Tj(%;) to Tj(X;). Choose an ar-
bitrary N, then by choosing p; = 1,Vi € [l;N |, and finite internal input sets W;
of Tj(3;) in such a way that [ 1T/V MTIY, X;, conditions (4.2.4) and (4.2.5)
are satisfied. Hence, utilizing the result of Theorem 4.2.3, one can see that function
S((x,p, D), (z,pl)) = vazl Vi((xi, piy i), (Zi,pi,1;)) is an alternating simulation function
from T'(2) = Zn(Ti (%)) iep,ny to T(X) = I (Ti(%0) )ien,ny-

Given N > 5, a set of state X; = [0, 1], and n¥ = 0.1, we observe that constructing
the symbolic model for the original system 3 is only possible compositionally even with
this small range of state set and coarse quantization parameters. The computation time
for constructing symbolic models of 3; is amounted to 0.53s, using tool SCOTS [RZ16]
with the state quantization parameter 1y = 0.1.

4.3 Small-Gain Approach (SGA)

4.3.1 Networks of Discrete-Time Switched Systems: SGA Formulation

Definition 4.3.1. Consider discrete-time switched systems ¥; = (X;, P;, W;, Fi,Y},Y?,
hi,,he,), i € & :=[1;N], N € N. The finite network of discrete-time switched systems
Y = (X,P,F,Y,h), denoted by ¥ = Z(%;)icr, is defined by X = [] Xi, P = [] P,

iEN eN
F=1]F,Y= [ Y} hz) = (h}(xi)icr, where z = (;)icy, with the internal
ieN €N
variables constrained by w; = (y] ieN; = (hQ(xJ))JGN, H Y2 CW,;, VjeN,Vie N,

JEN;
where N is a finite subset of A that enumerates the neighbors of ¥;. The network of

discrete-time switched system is defined by the difference equations

[ XD = i )
Z‘{ y(k) = hx(h). (431)

wherex :N =X, p: N—= P,y : N> Y, and fp(z) = (fp, (@i, wi))icr withp = (pi)ier -

4.3.2 Max-Type Augmented Simulation Functions

Consider network of discrete-time switched systems ¥ = Z(3;);c 4, or their equivalent
network of transition systems T'(X) = Z(T;(%;));c., where each T;(X;) given as in Defi-
nition 2.4.2. Assume that each system T;(%;) = (X;, Xo,, Wi, Us, Fi, Y1, Y2 HE, H?) and
TZ(E,) = (X'Z-,XONWZ-,Ui,ﬁi,ﬁl,ﬁ%ﬂ},ﬁ%) admit a max-type augmented simulation
function as defined next.

Definition 4.3.2. Consider systems T;(%;) = (X;, Xo,, Wi, U, Fi, Y Y2 HEHE) and
T‘Z(El) = (X’iaXOmVI/’iaUi7]:iaYtL'17Yvi2aH33H2) where Y;,j - YJ?] € [1 2] WZ - Wz A
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function S; : X; x X; — R>¢ is called a maz-type augmented simulation function from
Ti(%;) to T;(X;) if there exist o, puw; € Koo, 0 < 07 < 1, and some €; € R>q so that the
following hold:

e For every (x;,pi, ;) € X, (Zi,pi,1;) € X;, j€ [1;2], one has
ai([H (i, pis 1) — HL (&4, iy 1)) < Si((w,pi, 1), (B, iy 17).- (4.3.2)
( i D )GXZ,UlEUZ, ZUZEWZ,’U)ZGW“( ,apz,ﬁ)
Fi(xi, wi, u;), there exists (i’z+ pl ,l+) € ]-](a:l,wl,uz) so that

SZ((x;r’p;r,l;r)7(:%l 7pi ) )) maX{O—iSi((:E’iapiali)v(i‘iapiali))vaiﬂwi —121”),61'}.
(4.3.3)

e For every (xlvph ) € Xi,

Here, Tl(Ez) is called an abstraction of T;(%;) if there exists a max-type augmented
simulation function from Tj(%;) to Tj(X;). Moreover, if Tj(%;) is finite, it is called a
symbolic model of T;(%;).

The following small-gain assumption is needed to provide the compositionality results
for this section.

Assumption 4.3.3. Functions v;; defined in (3.3.4) for functions o;, and p,, and
constant o; associated with S;, ¥ i € N, given in Definition 4.3.2 satisfy the small-gain
condition (3.3.6).

4.3.3 Compositional Abstractions for Finite Networks of Discrete-Time
Switched Systems: SGA

In the following, we show how to construct an alternating simulation function from the
finite network of abstractions T(X) = Z(T3(2;))ie.s to T() = Z(Ti(%:))ic.s , associated
to network of discrete-time switched systems ¥ = Z(%;);c 4, via max-type augmented
simulation functions from Tz(ZZ) to T;(%;).

Theorem 4.3.4. Consider the finite network of transition systems T'(X) = Z(T;(%:))ie.r s
associated to the network of discrete-time switched systems ¥ = Z(%;);c v . Suppose each
transition system Tj(3;) admits an abstraction T;(X;) with the corresponding maz-type
augmented simulation function S;. Let Assumptzon 4.8.8 holds. Then, for the Ky
functions p; given in (3.3.7), function S : X x X - R>¢ defined as

S((l‘,p,l), (l’,p, l)) = ?61%1}/{{17&; ( i((:pi»pi, ll)’ (Cfi,pz', ll)))}v (434)

is an alternating simulation function from T(X) = T(Ti(2))iesy to T(X) = Z(Ty(Zs))icr -

Proof. Consider 2, 2,z%, 2%, &, and € defined in the proof of Theorem 4.2.3. Now, we
show that (2.2.1) holds for some K function &. Consider any z; € X;, 2; € X,
Vi € [1; N]. Then, one gets

[H(2) — H(2)| = max{|M} (=) — HL ()|} < max{a; ! o Si(=i,21))
< max{a; ! o} o max{y; ! o 8i(zi, 2)} = max{a; ! ovi} 0 §(z, 2).
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S(=*,27) =max{y; ! 0 Si(f, 57)}

ieN t
s];gg;c{ml(max{m 210 21), (s — i), 1} }
=max {y7 (max{oSi(zi, 20, pun (10)jens — )senil)s i) }
= max {7 (maxc{oii(zi. 2). pu, (maxl 97— 331)). ) }
<mas {07! (max{i8i(z0 2). pu (mas {113 (29) ~ H3(2))1)). <)) |
< ma {4 (max{o:Si(z1. 2). pu (ma{a; ' (8(z5. 5)))). 1)) |

< max {7 (ma( (8 (25.27)). 1)) |

= max {¢;1(max{7ij o9y 0 7 (S5 (z, %))ﬁi})}
< max {qpi_l(max{%jowjo"‘/’l (Si(z1, 1)), fz})}
= max {7 (max(y 01y (8(.2).2) |
gmax{5(3(zz smax {7 (e }}

— max {5(3@, z)),g}, (4.3.5)

Hence, condition (2.2.1) is satisfied with & = (max{ai_l o;})1. Now consider the

chain of inequalities in (4.3.5), which satisfies (2.2.2), and implies that S is indeed an
alternating simulation function from 7'(2) = Z(Ti(%:))ics to T() = Z(Ti(Z))icy. O

4.3.4 Construction of Symbolic Models
Here, we show that if each subsystem (mode) $,,p € P,of ¥ = (X, P,W, F, Y!, Y2, h', h?)
is 0-ISS and some mild assumptions hold, one can construct a symbolic model for ¥

along with the corresponding max-type augmented simulation functions between ¥ and
its symbolic model.

4.3.4.1 Incremental Input-to-State Stability

Definition 4.3.5. System ¥, is 0-1SS if there ewist functions V, : X x X — R>q,
3Py Puy € Koo, and constant 0 < ¢, < 1, such that for all z, ' € X, and for all
P
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w,w € W

¢, (lv =) < Vp(@,2") < By, (Jz — 2'|), (4.3.6)

Lxp

Vo fp(@,w), fp(,0')) < e, Vo(@,2") + pu, (lw — ). (4.3.7)

We say that V), Vp € P, are multiple 0-ISS Lyapunov functions for system ¥ if it
satisfies (4.3.6) and (4.3.7). Moreover, if V, = V,;,Vp,p’ € P, we omit the index p in
(4.3.6), (4.3.7), and say that V is a common 0-ISS Lyapunov function for system X. We
refer interested readers to [Lib03] for more details on common and multiple Lyapunov
functions for switched systems.

Now, we show how to construct a symbolic model T'(3) of transition system T'(X)
associated to the switched system ¥ in which X, is 6-ISS.

4.3.4.2 Symbolic Models

The symbolic model of T'(X) associated with the switched system ¥ in which ¥, is
0-ISS can be constructed similarly to the one in Definition 4.2.5. Particularly, in
the contest of networks of systems, the symbolic model of T(X) is system 7j(%;) =
(X3, Xo,, Wi, U, Fi, ?il, f’f, 7:[11, 7:112) given by Definition 4.2.5 in which W; should be con-
structed in such a way that the finite network 7(X) = I(Ti(Ei))ie[l; n is well-defined.
For example, one may choose W; such that W; = l_J[\f %2’ Vj € N;,Vi € [1; N], where N;
N,
is given as in Definition 4.3.1. ’

4.3.4.3 Construction of Max-Type Simulation Functions

In this subsection, we show how to construct a max-type augmented simulation function
between T'(X), associated to the switched system ¥ in which ¥, is §-ISS, and its symbolic
models T'(X) constructed as in Definition 4.2.5.

Theorem 4.3.6. Consider a switched system ¥ = (X, P,W, F,Y!, Y2 h' h?) with its
equivalent transition system T(X) = (X, Xo, W, U, F, Y1, Y2 HY H?). Let X, be §-ISS
as in Definition 4.3.5. Consider a symbolic system T(E) = (X,Xo,ﬁ,w,ﬁ,?l,Y2,
’}:11,7:[2) constructed as in Definition 4.2.5. Assume that Assumptions 4.2.6 and 4.2.7
hold for function V), in Definition 4.5.5. Let e > 1. If, Vp € P, kg > ¢ () 4 1, then

(L)

function V defined as

Va(, )

V((.’L‘,p, l)?(i.vpv l)) = ) (438)

L
€
SDCP

is an alternating simulation function from T(3) to T(X).
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Proof. Recall that HJ = HI = hi,j € [1;2], by Definition 2.4.2 and 4.2.5. Hence, H
and H/ satisfy the Lipschitz assumption given on h7,j € [1;2], in Remark 2.5. Since,
Vp e P, ¥, is 6-ISS , from (4.3.6), V(z,p,l) € X and V(Z,p,l) € X, we have

H (2, p,1) = H (&, p,)] = [W (x) = W (2)] < ¥ (|x — &)
< p og;pl(V (x,2) ( é (z,p,1), (2, p, l)))
<p ogpl V((x,p,1), (2,p,1)) < a(V((x,p,1), (2,p,1))),

where & = max{ max {#/} o o~ 1} By defining a = 471,

pEP j€(1;2]

a(|H(z,p,1) = H(&,p, 1)) <V((@,p,1), (& p,1)),

one obtains

satisfying (4.3.2). R R
Now from (4.2.12), Vz € X,V € X,Vw € W,V € W, we have

Vp(fp(z, w),& ) < Vp(fp(z,w), fp(2,w)) +’Yp(’x+ — fp(Z,w)]),

for any @ such that (z+,pt, 1) € F((2,p,1),4,%). Now, from Definition 4.2.5, the
above inequality reduces to

Vo(fp(@,w),27™) < Vy(fpl@,w), fp(&,1)) + ().
Note that by (4.3.7), one gets
Vo(fp(z,w), fp(2,0)) < e, Vp(2, &) + pu, (|w — W)
Hence, Vo € X,Vz € X, and Yw € W, Vi € W, one obtains
Vo(fp(z,w), &7) < e, Vp(@,3) + puy, (lw — b)) +,(1), (4.3.9)

for any @ such that (&t,pt,17) € F((&,p,1), 4, ). Now, in order to show function V
defined in (4.3.8) satisfies (4.3.3), we consider different scenarios in Definition 4.2.5:

e I<ky—1,pt =pand It =1+1, using (4.3.9) and kg > [ + 1, we have

V(" pt 1), (@, pt, 1)) = Vi (zt,27) _ Valfylar,w). i)

[ 11
Pep ey
< PeVo(2,2) + pu, (lw — @) + (1)
= [ES
Pey
Pe, Vo, @) | w, (Jw —0]) + (1)
= 1 l + I+1

P, (Jw — D) + vp(n)'

€
()Ocp

< SOCE V((a:,p, 1), (#,p,1)) +

70
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e l=kg—1,p" =pand It =ky—1, using (4.3.9) and < < 1, one gets

V((a:+,p+,l+), (fc+,p+,l+)) _ Vp+(x+,:%+) _ V};(fp(x,w),;fr)

i+ L
Pep 2
< e, Vo1, 2) + @uy (Jw — 0|) + vp(n)
— I
Péy
Vo(x, 2 w—w|) +
<0, o i 7) N P, (| l\) Yp(n)
Ve, Ve,
e=1 . Puwp, (Jw — W) +7p(n
< ey V((@,p,1),(2,p,1)) + e kd’ o)
(pcp
[
e l=kg—1,p" #pand It =0, using (4.3.9), fip.,© <1, and = <1, one has
Vo (zt 2t
V(at, ot 1), @t ) = 2D ), )
SOv;+
kg—1
_ e’ (e, Vo, &) 4 puw, (Jw — ) + (1))
= kg—1
(pcp€
< e Vpl@, &) + u, (Jw = @) + 7 (n)
— 1A
(pcép
Vo(z,2) o, (|w —0[) + (1)
S (,Ocp P( - ) + Wp ; p
P, P,
el R P, (|w — W) + (1)
< ey V((,p,0), (2,p,1)) + = TR
Pep

kd—l e—1

Note that Vp € P, fip.,© <1 since kg > €Ty (( )) + 1. By defining ¢, = maX{QDcp },
Pcp pe

kq kq
Pw = maX{‘Pcp prp} 7 - maX{‘Pcp ’Yp} V(m,p,l) GX, V(.@,p,l) GX, VQUEW, a‘nd
J4S J4S

Vi € W, one obtains

V((@®,p™,00), (@7, p7,107)) < e V((2,p,1), (&,p,1) + puwljw — b)) +5(n).

By using the result of Theorem 2.2.9, one obtains
V(" pt 1Y), (@F,p", 1)) < max{$V((x,p, 1), (2, p,1)), Gullw — @), 7(n)},

where . = 1 — (1 - 1/1)(1 - ‘Pc)7 Pw = (Id+)‘) © (mXOSOw)a = (Id +)\71) o

<m xo(x—Zg)to ‘y), where A, x, ¥ are some arbitrarily chosen Ko functions and
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positive constant with xy > id, 0 < ¢ < 1. Hence, inequality (4.3.3) is satisfied with
0= Pey P = Puw, € =7(n). Thus, V is a max-type augmented simulation function from
T(X) to T(X). O

Note that by using exactly the same argument, we can show the that V is a max-type
augmented simulation function from 7'(X) to T'(X).

Remark 4.3.7. If ¥ admits a common §-1SS Lyapunov function satisfying Assumption
4.2.7, then function V in Theorem 4.3.6 reduces to V((z,p,l), (Z,p,1)) =V (x,T).

Now we provide similar results as in the first part of this subsection but tailored to a
class of nonlinear switched systems which are computationally more efficient. Consider
the class of discrete-time nonlinear switched systems described by

x(k+1) = Apeyx(k) + Ep) Pp) (Gp(y (k) + Doy (k) + By
¥ yi(k) = C'x(k), (4.3.10)
yi(k) = C?*x(k),

where A4, € R™" B, € R™! D, € R Ct € R? X" C2 € ]R‘IQX",EP € R,
G, eR*" Vpe P={1---,m}, and ¢, : R — R satisfying

0< W <a, Ve, deR,c#d, (4.3.11)
for some @, € Rso U {o0}.

We use the tuple ¥ = (A, B,C',C? D,E,G,®, P) to refer to the class of switched
systems of the form (4.3.10), where A = {A;,---,An}, B = {B1,---,Bn}, D =
{Dl,‘-- ,Dm}, FE = {El,”- ,Em}, G = {Gl,--' ,Gm}, and & = {(bl,”- ,¢m}. Note
that the nonlinear function ¢, in (4.3.10) has been widely used for modeling many phys-
ical systems including fuel cell [AGPV03], active magnetic bearing [AKO01], underwater
vehicles [AAFKO1], and so on.

Remark that the incremental input-to-state stability assumption on system i, in
Subsection 4.3.4.1 boils down in this specific nonlinear case to the following assumption.

Assumption 4.3.8. Let ¥ = (A,B,C,C? D,E,G,®, P). Assume that Vp € P there
exist constants 0 < ¢, < 1, 0, € Rso, and malrices Z, = 0 of appropriate dimensions
such that the following matriz inequality hold

(1+20,) A Z, A, AT ZyE, ey Zpy —G]
=< : (4.5.12)
EJ Z,A, (1+20,)E] Z,E, -G, 2/a,

Now, consider the quadratic function V),,p € P, defined as
Vp(a, &) = (v — &) Zp(z — ). (4.3.13)

Note that for any function defined as in (4.3.13), one can always find /i satisfying Assump-
maxp ¢ P {Amax(Zp)} )

miny, e p{Amin(Zp)}

4.2.8 reduces to the following one for this specific class of nonlinear switched systems.

tion 4.2.6 (e.g., fi := . Then, by employing V,, in (4.3.13), Theorem
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Theorem 4.3.9. Consider T(X) associated to ¥ = (A,B,C',C? D,E,G,®,P) and
the symbolic model T'(X) constructed as in Definition 4.2.5. Suppose Assumption 4.3.8
holds. Let € > 1 and consider V, giwen in (4.3.13). IfVp € P,kq > € hi + 1, then

In
function V defined as

Pep

V(0,0 (@, 1)) = 28D, (4.3.14)

€
()Ocp

is a maz-type augmented simulation function from T(X) to T(X).
Proof. First, we show that condition (4.3.2) holds. Since C7 = (7, j € [1;2], we have
’Hj((ac,p,l)) - /Hj((fU,p, l))‘z = |C]£U - ij|2 < TL)\maX(C(]ATC'JA)|'5C - ZE‘Q’ and Simﬂaﬂy
Amin(Zp) |z — 22 < (2 — )" Zp(x — &). From the previous inequalities, one has
)\min(Zp)
NAmax(CTC)

= Vy(2,2) = V(. p,1), (8, D)0, < V(@ p,1), (2,p,1),

which implies that (4.3.2) holds for V defined in (4.3.14) with a(s) = min {JL((CZ?)C)} 2,
p max

H((z,p,1)) — H((&,p,0)]* < (z = 2) Zp(x — &)

for any s € R>q.

We continue to show that (4.3.3) holds as well. Define ¢; = (146, + %), co = (1+ %),
consider any 7 = A,z + E,¢,(Gpz) + Dyw + By, and let 1 be defined as in Definition
4.2.5. Define A := A,z + Epdp(Gpz) + Dpyw + B, — @1, and observe that |A| < n* by
Definition 4.2.5.

Note that, from the slope restriction (4.3.11), ¢,(Gpz) — ¢p(Gp) = Bp(Gpr — Gpt) =
BpGp(x—1), where 3, is a constant and depending on = and & takes values in the interval
[0,Gp]. Furthermore, consider the chain of inequalities in (4.3.15).

Now, in order to show function V defined in (4.3.14) satisfies (4.3.3), we consider the
different scenarios in Definition 4.2.5. First, define p, = bcl|J7pr|%, Yp = N2 max(Zp),
p € P, then consider

o [ <ky—1,pt =pand It =1+1, using (4.3.15) and kg > [ + 1 we have

(ot 1), (1)) = RO e Vol d) | pplw = b 3y (r7)

[ESRE T [N
4)00; ()OCEp (Pép SDCPG
= i pplw — % + 7,(n")”
< o V(@ po 1), (o, 1)) + 2o = O ()
Pey,

e l=ky—1,p" =pand I" =ks— 1, using (4.3.15) and <1 < 1 we have:

. Vp(zt, 2t Vp(z, 2 w— W[+ ,(n")?
V((I+ap+7l+)7 ($+,p+,l+)) = p( I ) < Pep p( L ) + pp‘ | L p(n )
Socep Spcep @ép
e—1 ~l2 x\2
=1 5 pplw — @ + 7(n")
S (pcp V((QU,P,l)v (l’,p,l)) + £ kg £ :
Pey,
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Vp(a™, &™)

= (Apz + Ep¢,(Gpx) + Dpyw + By, — (Apz + Epp(Gp2) + Dy + B))
+ (Ap2 + Epdp(Gpi) + Dy + By,) —27) " Z,
(Apr + Epgp(Gpz) + Dyw + By — (Api + Epp(Gp) + Dyt + By)
+ (Ap + Eypoy(Gpi) + Dpio + By) — z™)

= (x—2)"(Ap + BpEpGp) " Z(Ap + BpEpGh)(x — &) + (w — ) " Dy Zp Dp(w — )
+2(w — )" Dy ZpyAp +2(x — )T (Ap + BpEpGp) " ZpDp(w — w) 4 2(x — )"
(Ap + BpEpGp) ZpAp + AL Zp A,

T

A~

r—X

(1+26,)A] Z, A, Al Z,E,

IN

x—3 ]
BpGp(ac — ) E;ZpAp (1+ 29p)E;ZpEp BpGp(:c — )
+ bC1|\/ Zpr|g|w - w|2 + nc2>\maX(Zp)(77$)2

A T

T—T e, Zp —G, T—T
< +ber|y/ZpDyl3w —
ﬁpGp(x — ) -G) 2/Ep ,BpGp(:E — )
+ nCZ)\max(Zp)(T/x)2
= e, V(z, &) — 2B, ( — ?’) (x — 2)TGTG(x — &) + ber|/ZpDpl3|w — w|?
P
+ nc?AmaX(Zp)(nx)2
< e, V(z, &)+ bcl|\/Zpr|%|w - 121|2 + ncz)\max(Zp)(nx)Q. (4.3.15)
kg1
e l=kg—1,p" #pand It =0, using (4.3.15), ¢c,© £ <1, and <! < 1 we have:
V. +’ ~+
V(@ ot 1), @ p, 1) = D) )
P+
kg—1
ey /l(gocp‘/};(:c,m)—i—pp]w—w\Q—i—’yp(nz)Q) Vp(z,2) pp]w—ﬁ)|2+’yp(77’”)2
< kg—1 < Cp L + L
gpcpe (pcep SOCEP
< . pplw — 0 + 7, (n")*
< ¢e; V((@,p,1),(@,p,1)) + 2 ‘Ld )"
Pep
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e—1 _kg _ kg
By defining ¢, = m;)?ux {ng; }, P = mgx {cpcp € pp}, Ve = m;)lx {gocp € ’yp}, p € P, one
has

V(@b p™,17), (@%, 0T, 101) < o V((2,0,0), (2,0,1)) + @ulw — B + 7e(n®)?

for the all scenarios. Using the previous inequality and by following a similar argument
as the one in the proof of Theorem 2.2.9, one obtains

V(($+7p+7 l+)7 (i.Jr’er, l+)) S max{cﬁCV((x,p, l)7 ('f;’p’ l>)7 ¢w|w - w’27 :)/0(7733)2}7

where Sﬁc =1- (1 - ¢)(1 - 906); Sbw = (id + )‘) © (WXO&), :Yc = (id + /\71) ©

<mxo (x —id)~! o'yc>, where ), x,1 are some arbitrarily chosen Ko functions
and positive constant with y > id, 0 < ¢ < 1. Hence, inequality (4.3.3) is satisfied with
0= @, plw) = Gus?, Vs € Rxg, and ¢ = F(n®)2. Thus, V is a max-type augmented

simulation function from T'(X) to T/(). O

Remark that by following the same argument in the previous proof, it can be readily
verified that V is also a max-type augmented simulation function from 7'(X) to 7'(¥).

Remark 4.3.10. For affine switched systems ¥ = (A, B,C',C?, D) as in Definition
2.4.3, we can restrict our attention to 6-P storage functions of the form S,(x,2) =
(x —2)'Z, (x —2),Z, = 0. It can be readily seen that such functions always satisfy

(4.3.6) and (4.2.11) with o = max{i‘\m‘f‘xg:)), //\\méx((gp/))}, for all p,p’ € P. Moreover,
min min\4p/

inequality (4.3.7) reduces to the linear matriz inequality

(1+20,)A) Z, Ay < e, Zp, (4.3.16)

where 0, > 1, and 0 < ¢, < 1. Consequently, it can be readily verified that € in (4.3.3)
would be defined as € = cpAmax(Zp), for some ¢, > 0 depending on 6,, and the dimensions

of Zy.

4.3.5 Case Studies

In this subsection, to demonstrate the effectiveness of our proposed results, we first
apply our approaches to a road traffic network in a circular cascade ring composed of 50
identical cells, each of which has the length of 1000 meters with 1 entry and 2 exits, and
construct compositionally a symbolic model of the network. We employ the constructed
symbolic model as a substitute to compositionally synthesize controllers keeping the
density of traffic lower than 30 vehicles per cell. Finally, to show the applicability of our
results to switched systems accepting multiple Lyapunov functions with dwell-time, we
apply our proposed techniques to a fully interconnected network.
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4.3.5.1 Road Traffic Model

Consider the road traffic network % = Z(X;);c1,25) defined in (4.2.16), where each %; is
defined as in (4.2.17) with w;(k) = C? ;x;—1(k) ( C3 := C%, and x¢ := xy, N = 25).
Note that, for any i € [1;25], conditions (4.3.6) and (4.3.7) are satisfied with Vjp, (z;,2;) =
|x; — &), fxipi = Puyp, = id, Puy,, = 0.65, puy,, = 0.33, Vp; € P;. Furthermore, condition
(4.2.12) is satisfied with v, = id, Vp; € P;. Moreover, note that V), = Vip;,Vp,p’ e P.
Consider systems Tj(%;), constructed as in Definition 4.2.5, and T;(%;), defined in Defi-
nition 2.4.2. According to Remark 4.3.7, function V;((zi, pi, i), (Zi, pi, li)) = |z — & is
a sum-type augmented simulation function from Tj(%;) to T3(%;), satisfying conditions
(4.3.2) and (4.3.3) with o = id, o; = 0.99, py, = 0.98, and &; = 997F, where 7} is
the state set quantization parameter. Now, since we have ~;;(s) < id, Vi,j € [1;25],
the small-gain condition (3.3.6) is satisfied. Using the results in Theorem 4.3.4 with
¢t =id, Vi € [1;25], one can verify that S((z,p, 1), (&,p,1)) = max;{|z;—;|} is an alter-
nating simulation function from 7'(X) = IM(Ti(Ei))ie[l,%] to T(X) = Zn(Ti(%4))iep,25]
satisfying conditions (2.2.1) and (2.2.2) with & = 0.98, & = id, £ = max;{e; }.

Traffic density
&

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Time

Figure 4.4: Closed-loop state trajectories of network ¥ consisting of 50 systems.

Now we synthesize a controller for ¥ via symbolic models Tl(ilz) maintaining the
density of traffic lower than 30 vehicles per cell, and allowing only 2 consecutive red light
for each traffic signal. We design local controllers based on assume-guarantee reasoning
for symbolic models ﬂ(ﬁ]z), and then use them in concrete switched systems ;. We
leverage software tool SCOTS [RZ16] for constructing symbolic models and controllers for
3. The computation times for constructing symbolic models and designing controllers
for ¥; with state quantization parameter n; = 0.03 are 10.2s and 0.014s, respectively.
Figure 4.4 shows the closed-loop state trajectories of 3, consisting of 50 cells.

Finally, one can compute the mismatch between the output behavior of the concrete
network X = Z(X;);c1,25) and that of its symbolic model (%) = I(TZ-(EZ-))iE[L%] by
uti