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Zusammenfassung

Ein globales physikalisches Referenzsystem ist essentiell, um dynamische Erdprozesse, wie Mee-
resspiegelvariationen oder Massenbewegungen zu verstehen und zuverlassig zu modellieren. Fr
die entsprechende Realisierung in einem Internationalen Héhenreferenzrahmen ("International
Height Reference Frame", IHRF) missen daflr zunachst global verteilte Referenzstationen definiert
werden. AnschlieBBend kénnen deren Potentialwerte oder physikalische Héhen durch regionale
Schwerefeldmodellierung mit hoher Genauigkeit bestimmt werden. Diese Modellierung, eine Kom-
bination von global konsistenten Satelliten- oder Schwerefeldmodellen mit lokalen Gravimetriemes-
sungen, wird aktuell von mehreren Arbeitsgruppen der "International Association of Geodesy" (IAG)
vorangetrieben. Diese Dissertation prasentiert die "Residual Least-Squares Collocation" (RLSC)
als eine neue Methode der regionalen Schwerefeldmodellierung und evaluiert deren Vorteile fur die
Berechnung von Schwerefeldfunktionalen an Referenzstationen des IHRFs.

Die RLSC ist eine Erweiterung der klassischen "Least-Squares Collocation" (LSC) und enthalt
zwei essenzielle Veranderungen: Erstens verwendet die RLSC per Definition nur Residuen eines
"remove-compute-restore" Ansatzes und nutzt dabei individuelle Fehlerkovarianzmatrizen firr die
Beschreibung aller InputgréBen. Zweitens ist die RLSC in der Lage, die volle Varianz- und Kova-
rianzinformation eines hochaufldsenden, globalen Schwerefeldmodells zu nutzen, um das aniso-
trope und ortsabhangige Schwerefeld der Erde zu modellieren. Beide Verdnderungen flhren
zu einer realistischeren Genauigkeitsangabe der Ausgabefunktionale, was diese Dissertation an
einer synthetischen Testumgebung und einer Kombination von Schwerefelddaten aus Satelliten-
missionen, terrestrischen und flugzeuggetragenen Messungen demonstriert. Zusatzlich wird die
stochastische Modellierung dieser Dissertation noch durch die Vermeidung einer tblichen Verein-
fachung in der flugzeugbasierten Gravimetrie verbessert: Zum ersten Mal werden Korrelationen
eines Tiefpassfilters nach Gauf3 zur Beseitigung von hochfrequentem Rauschen direkt in eine
LSC-basierte Berechnung eingebaut. Diese Anséatze zur Verbesserung der Genauigkeitsangabe
kénnen einen wichtigen Vorteil fir die Definition eines Internationalen Hohenreferenzsystems ("In-
ternational Height Reference System", IHRS) darstellen. Aufgrund der global variierenden Daten-
qualitdt und haufigen Datenrestriktionen ist es unméglich, eine einheitliche Genauigkeit fur alle
Stationen des IHRFs zu erreichen. Dementsprechend sollen Potentialwerte und physikalische
Héhen an den entsprechenden Referenzstationen méglichst realistische Genauigkeitsangaben er-
halten.

Die Ergebnisse der RLSC werden im Rahmen einer internationalen Arbeitsgruppe, des sogenan-
nten 1 cm Geoid-Experiments, einem Vergleichstest mit 14 teilnehmenden Gruppen, validiert. In



v

den Rocky Mountains in Colorado zeigen Héhenanomalien der RLSC eine sehr gute Ubereinstim-
mung mit dem Mittelwert aller L6sungen, was die hohe Leistungsféhigkeit und die Stabilitat der
vorgestellten Methode unter den anspruchsvollen Bedingungen einer Hochgebirgsregion demon-
striert. Diese Dissertation analysiert und quantifiziert die verbleibenden Fehler des 1 cm Geoid-
Experiments, die sich zum Beispiel aus der Qualitat der topographischen Reduktion, dem Effekt
der relativen Gewichtung zwischen unterschiedlichen Datensatzen oder systematischen Fehlern in
den Inputbeobachtungen ergeben. Zusammenfassend stellt die RLSC damit eine hervorragende
Erweiterung der LSC-Methoden dar und bietet insbesondere durch die realistischere Genauig-
keitsangabe einen entscheidenden Vorteil.



Abstract

A global physical reference system is essential for modeling and understanding dynamic Earth
processes like sea level variations or mass distributions. For the realization in an International
Height Reference Frame (IHRF), globally distributed reference stations need to be defined. By
applying regional gravity field determination, globally consistent satellite or gravity models can be
combined with local gravity field measurements to calculate potential values and physical heights
at reference stations of the IHRF with high accuracy, as is currently planned by working groups of
the International Association of Geodesy (IAG). This dissertation derives 'Residual Least-Squares
Collocation’ (RLSC) as a new method for regional gravity field determination, and evaluates its
advantages for the calculation of gravity-derived quantities at IHRF reference stations. The RLSC
method is an enhancement of Least-Squares Collocation (LSC), which includes two main modifi-
cations. First, RLSC uses by definition only residuals from a remove-compute-restore approach,
and applies individual error covariance matrices for every input quantity. Second, RLSC is able
to include full variance-covariance information of a high-resolution global gravity field model that
allows an anisotropic and location-dependent modeling of the Earth’s gravity field. Both adaptions
lead to a more realistic accuracy estimation of the output quantities, which this work presents for
a synthetic test case and a combination of satellite, terrestrial and airborne gravity information.
Additionally, stochastic modeling in this thesis is improved by avoiding a common simplification in
airborne gravimetry. For the first time, the correlations from a Gaussian low-pass filter to remove
high-frequency noise are considered directly in a LSC-based calculation method. These aspects
of improved accuracy estimation can provide an important benefit for the definition of the Interna-
tional Height Reference System (IHRS). Due to globally varying gravity data quality and common
data restrictions, it is impossible to reach homogeneous accuracies for all IHRF stations. Accord-
ingly, potential values and physical heights at IHRF stations should be accompanied with realistic
accuracy estimates. Within an international IAG working group, the RLSC results are validated
in the frame of the 1 cm geoid experiment, a regional gravity field inter-comparison exercise with
14 participating groups. In the Rocky Mountains of Colorado, height anomalies from RLSC show
a very good agreement with the mean value of all solutions, which demonstrates the robustness
and very good performance of RLSC in the challenging scenario of a mountainous region. This
thesis analyzes and quantifies the remaining errors in the 1 cm geoid experiment, which result, for
example, from the quality of topographic reductions, the effect of relative weighting among different
data sets and systematic errors in the observations. All in all, RLSC is an excellent addition to
already existing LSC methods, and provides a main advantage by giving more realistic accuracy
estimates.
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Chapter 1

Preamble

1.1 Motivation and scope

The International Terrestrial Reference System (ITRS, Petit & Luzum, 2010) defines a global, uni-
fied reference system for geometric measurements. It is realized by reference stations around the
world and fulfills the main criteria of a geodetic reference frame: (1) it is consistent and reliable
around the world, (2) it provides long-term stability, and (3) its millimeter accuracy is smaller than
the magnitude of most effects, which are described with it (Sanchez, 2012). While this International
Terrestrial Reference Frame (ITRF) enables the monitoring of the System Earth geometrically, a
corresponding physical reference frame is still missing. However, a global physical reference frame
is essential to understand and to model dynamic Earth processes (e.g., sea level variations, mass
redistributions). Furthermore, it is needed to define physical heights accurately and in a globally
consistent way (Gruber et al., 2014). Accordingly, the definition of an International Height Refer-
ence System (IHRS, /hde et al., 2017) and the establishment of the International Height Reference
Frame (IHRF), as an integral part of a Global Geodetic Reference Frame (GGRF), have been main
objectives of the International Association of Geodesy (IAG) for several years now.

In 2010, the Global Geodetic Observing System (GGOS, Kutterer, 2012) Theme 1 ’Unified Height
System’ was set up in order to combine existing activities and initiatives with a similar purpose
(Sanchez, 2012). Since that time, the issue of a unified height system is permanently addressed
in different working groups of IAG. Within the IAG period from 2015 to 2019, for example, 'the
1 cm geoid experiment’ started as Joint Working Group (JWG) 2.2.2. It validates and com-
pares different regional gravity calculation methods, which might be used for the calculation of
IHRF stations at the end, and its main results are summarized in Wang et al. (in review) and
Sanchez et al. (in review). The latest version of the IHRS definition and its current status are
given in lhde et al. (2017) and Sanchez & Sideris (2017). Earlier publications about a unified
height system or physical reference frame are numerous, but often using different terms: ’a world
vertical network’ is proposed by Colombo (1980), a ’vertical datum definition’ by Rummel & Teu-
nissen (1988), a ’global vertical datum’ by Balasubramania (1994), a ’global unification of height
systems’ by Rummel (2001) and a ’global unified height reference system’ by lhde & Sanchez
(2005).
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Huge improvements towards the IHRS definition have been brought by gravity satellite missions,
mainly GRACE (Gravity Recovery And Climate Experiment, Tapley et al. 2004) and GOCE (Grav-
ity field and steady-state Ocean Circulation Explorer, Drinkwater et al. 2003). They provide the
static gravity field of the Earth with an accuracy of 1-2 cm at spatial scales of 100 km and longer
(Brockmann et al., 2014; Gruber et al., 2012). Accordingly, publications within the last decade
agree, that Height System Unification (HSU) will be based upon the globally consistent, long-
wavelength part of the gravity field, which is derived from satellite missions (Rdlke et al., 2012;
Rummel, 2012; Gerlach et al., 2013; Gruber et al., 2014). However, gravity signals with shorter
wavelengths cannot be observed by satellite missions due to the gravity signal attenuation with the
satellite’s distance from the Earth’s surface, and have to be added from different sources. In most
cases, gravity observations from terrestrial, airborne and shipborne campaigns, satellite altimetry
and topographic forward modeling (Rexer et al., 2016; Hirt & Rexer, 2015) are combined, accord-
ing to availability, in order to calculate the gravity signal beyond satellite resolution (e.g., Pavlis
et al. 2012). High-resolution Global Geopotential Models (GGM) combine available gravity data
sources around the world and can be synthesized at arbitrary point positions in terms of different
gravity functionals. Accordingly, a high-resolution GGM is the easiest possibility to calculate grav-
ity functionals at an IHRF station, but its accuracy depends on the availability and quality of the
corresponding gravity data within the GGM. In areas with sparse data distribution, the omission er-
ror of the high-resolution GGM could increase significantly, and correspondingly propagates to the
IHRS. Furthermore, the reliability of high-resolution GGMs is decreased due to the often unknown
quality of the models and the restricted access to the original gravity data bases. Accordingly, /hde
et al. (2017) prefer to realize IHRF stations by a satellite-only GGM, which is refined regionally by
satellite altimetry and regional gravity observations. This challenge of optimally combining different
data sets for a local territory is an often discussed topic in the geodetic community, and generally
called regional gravity field determination.

A variety of different methods can be applied for regional gravity field determination, from which this
work here focuses mainly on Least-Squares Collocation (LSC). LSC is a statistical least-squares
optimization. Accordingly, it is the only method that provides a statistical minimization of residuals
by applying a parameter estimation with covariance matrices (Tscherning, 2015). Additionally,
it is selected in this thesis for its advanced stochastic modeling and its ability to calculate a full
covariance information of the output functional. In general, LSC is one of the most common and
oldest methods for regional gravity field determination. It was first mentioned in Krarup (1969), and
then further developed in Moritz (1980), which provides one of the most detailed and consistent
LSC descriptions. However, the description in Moritz (1980) was almost 30 years before the first
calculation of a high-resolution GGM and is not intended for their inclusion into LSC. Furthermore,
it uses isotropic covariance matrices to describe a non-isotropic gravity field, which cannot yield
optimal results (Tscherning, 1999).

This work develops Residual Least-Squares Collocation (RLSC) as a new method for regional
gravity field determination. It describes the definition and application of RLSC, which adapts the
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LSC concept by Moritz (1980) in such a way, that it allows the consistent inclusion of high-resolution
GGMs and an extended error formulation. In comparison to previous approaches of LSC (e.g.,
Forsberg & Tscherning 1981; Moritz 1980; Hofmann-Wellenhof & Moritz 2006; Rieser 2015), this
residual least-squares collocation brings the following benefits:

1) Inclusion of non-isotropic and non-homogeneous covariance matrices, which describe the
accuracy information of a high-resolution GGM and allow a more realistic modeling of the
Earth’s gravity field.

2) The mathematical formalism is expanded to a consistent inclusion of a remove-compute-
restore concept, which describes every input quantity with corresponding accuracy informa-
tion and uses only error covariance matrices.

3) The method is able to provide a realistic formal error estimate, since it includes all related
error components.

It should be noted that some LSC approaches already introduce accuracy information from a
satellite-only model (e.g., Haagmans & van Gelderen 1991; Pail et al. 2010; Sanso & Sideris
2013), and therefore also include all related error components (item 3) in a different realization
than RLSC. /hde et al. (2017) mentioned the unknown reliability of high-resolution GGMs as the
main reason to neglect them for the calculation of IHRF stations, and use satellite-only GGMs in-
stead. However, with the XGM models (e.g., XGM2016, Pail et al., 2018) we have a combined
GGM with a significantly improved error modeling. Furthermore, RLSC is able to consider qual-
ity and correlations of the XGM by including its corresponding covariance functions. Accordingly,
RLSC could improve the calculation of IHRF stations, while providing a more realistic error estima-
tion at the same time. This sets the scope of this work, when reduced to a single sentence, as the
following:

The dissertation shall explain and demonstrate the advantages of residual least-squares
collocation for regional gravity field modeling, and how these are beneficial for the estab-
lishment of an IHRS.

Therefore, the work envies to satisfy the following main objectives:

O1 - To understand the main challenges of height system unification, and the benefits that are
provided by a global high-resolution GGM.

02 - To derive the mathematical concept for RLSC, to explain the reason for adapting the LSC
approach by Moritz (1980), and to work out the differences between the two methods.

O3 - To apply RLSC for a combination of high-resolution GGM, terrestrial and airborne gravimetry,
and to verify its results by internal and external validations.

In the next section, the structure of this thesis is described in detail, whereby the contribution of
different chapters is characterized and their connections outlined.
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1.2 Structure and research questions

This thesis is a paper-based dissertation, which means, that the main results of this work are
already published in peer-reviewed journals. Three corresponding first author publications are
reprinted in Appendix A, while the original article of one co-authored publication is available as
open access. Appendix A additionally includes a declaration of the own contribution for all four
publications, and a respective short summary. In the following, these publications are referred
to as P-I to P-IV. The scope of this work is to connect them in a scientific context and evaluate
their individual and combined benefit for the geodetic community. In order to characterize the
main contribution of each publication to the research objectives (Sect. 1.1), this chapter defines
two research questions for each publication, which are answered in the corresponding section of
this thesis. It is important to understand, that the publications are all self-contained studies. They
individually consist of a problem definition, a method description, research results and a conclusion.
However, in the combined analysis of this work, the publications are also part of a mainly linear
structure, which can be interpreted as theory (P-I, P-Il), methodology (P-Ill) and application (P-IV).
This structure is also represented in the chapters of this work, whereby each publication is assigned
to one main chapter (Fig. 1.1). In the following, the content of the different chapters is described
first, then the contribution of each publication is explained together with the corresponding research
questions.

Quality assessment

Test case

Benefit for HSU Prove of concept

/_\ /\

Chapter 2: Theory Chapter 3: Methodology Chapter 4: Application
Gravity field and N Residual least- N The 1 cm geoid
height systems squares collocation experiment
P-1 P-ll P-1ll P-IV
Requirements for Specialization for
IHRF calculation Y Colorado

Chapter 5 p

Discussion h

Y

Chapter 6

Conclusion

Fig. 1.1 — Structure of this cumulative thesis, which marks the connection between different chapters in
black color, and the connection between the publications P-1 to P-1V by blue arrows.
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Chap. 2 ('Gravity field and height systems’) describes the theoretic background of this work by
providing basic principles of gravity field modeling, potential theory and height systems. It derives
the mathematical background for spherical harmonic synthesis from the formulation by Hofmann-
Wellenhof & Moritz (2006), which provides the possibility to synthesize arbitrary gravity functionals
from a GGM. The chapter explains different heights and height systems as well as the IHRS defini-
tion. Thereby, the IHRS is discussed in more detail than in Sect. 1.1 by setting requirements for its
introduction and presenting its current status. Finally, the benefits of different gravity data sets are
explained, their possibilities for combination are explained and different approaches for regional
gravity field modeling are outlined. In summary, Chap. 2 defines the problem of different height
systems and the resulting challenges for a HSU. Regarding the overall structure (Fig. 1.1), Chap. 2
sets the requirements for the IHRF calculation, which will be addressed by RLSC (Chap. 3). Fur-
thermore, the work towards HSU leads to the establishment of ‘the 1 cm geoid experiment’ as test
case for regional gravity field modeling (Chap. 4).

Accordingly, in Chap. 3 ('Residual least-squares collocation’) the basics of RLSC are explained and
its differences to other LSC approaches are demonstrated. Although it should be noted that the
detailed derivation of RLSC is presented in P-1ll, Chap. 3 explains the corresponding main advan-
tages in detail. Furthermore, it focuses on the calculation of covariance functions, which are the key
factor for collocation. Thereby, Chap. 3 explains the differences in covariance functions between
P-1ll and P-IV, as they use different reference surfaces. RLSC fits into the overall framework of
this thesis (Fig. 1.1), as it provides several benefits for the challenges of HSU (Chap. 2) when com-
pared to other methods for regional gravity field determination. Chap. 3 describes the methodology
of RLSC, which is applied in Chap. 4 for a case study in Colorado.

Chap. 4 ('The 1 cm geoid experiment’) describes the background and the goals of JWG 2.2.2 and
the so-called 'the 1 cm geoid experiment’. Furthermore, it explains the challenge of using noisy
airborne gravity observations. Comparisons within 'the 1 cm geoid experiment’ validate the RLSC
results, and demonstrate that RLSC is able to provide an excellent and robust solution in a chal-
lenging test case. All submitted solutions are evaluated for their error contribution, which includes,
for example, inconsistencies and relative weighting between different data sets, measurement er-
rors, and method-specific differences among various approaches. Advantages and disadvantages
of different validation methods are analyzed in detail, whereby the work focuses on the comparison
of individual approaches to a joint mean value. Additionally, high-quality measurements from GNSS
(Global Navigation Satellite System) and spirit leveling are considered for the discussion. Finally,
Chap. 4 highlights the author’s contribution to other publications in the context of 'the 1 cm geoid ex-
periment’. The application of RLSC in 'the 1 cm geoid experiment’ proves the concept that was de-
rived in Chap. 3. Furthermore, Chap. 4 provides a quality assessment of regional gravity field deter-
mination that can support the introduction of an IHRS (Chap. 2).

A combined analysis of all four publications and the previous chapters follows in Chap. 5. It fo-
cuses on the continuation of 'the 1 cm geoid experiment’, and summarizes the benefits of RLSC
for HSU. Furthermore, it discusses gravity data and GGM improvements as method-independent
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approaches for the enhancement of regional gravity field determination. Finally, a conclusion and
an outlook are presented in Chap. 6.

Two research questions are defined for each of the publications in order to clarify their main contri-
bution to the research objectives (O1-0O3). The answers to these research questions are given in
detail in the corresponding chapter and are furthermore summarized at the end of each chapter.
The publications P-I and P-II have some overlap in terms of their contribution, since both of them
apply GNSS/leveling, explain the role of GGMs in a HSU and give insights about the quality of
GGMs. Nevertheless, their research questions are separated to define a main contribution to each
publication, while the discussion in Sect. 2.5 combines the corresponding answers. An additional
summary about each individual publications is included at the end of this chapter, while the corre-
sponding abstracts are also separately presented in Appendix A.

P-1 focuses on challenges of HSU in general, and gives a concrete example for the mainland of
Greece and its islands. In it, the problem of different height systems and reference surfaces is
explained in detail. It evaluates three different geoid models for their capability in terms of HSU,
whereby it sets a special focus on the omission error and a quality assessment. The research
questions for P-1 are:

Q1 - What is the benefit of introducing a unified height system based on a GGM?

Q2 - How can the omission error be handled in HSU, and why is it an essential limitation in the
process?

P-1I contains a quality assessment of various GGMs, which is an important evaluation for all sec-
tions of this work. It analyzes signal and error content for a combination of high-resolution GGMs
with topographic gravity information, and gives geoid accuracies that can be reached by this. In
the frame of this comparison, P-Il particularly highlights the benefit of the GOCE mission. The
research questions of P-Il are defined as:

Q3 - How is GNSS/leveling used for the evaluation of GGMs?

Q4 - What accuracies can be reached by regional geoid determination from high-resolution GGMs
that are combined with topography-induced gravity information?

P-Ill formulates the concept for RLSC as an adaption to the LSC formulation by Moritz (1980). It
explains how covariance matrices from high-resolution GGMs can be exploited in RLSC, and why
this formulation, which uses accuracy information for every input quantity, is beneficial. P-IIl closely
links and compares the RLSC approach to other formulations of LSC (e.g., Forsberg & Tscherning
1981; Haagmans & van Gelderen 1991; Pail et al. 2010; Sanso & Sideris 2013; Rieser 2015).
Lastly, P-lll uses a synthetic closed loop environment to quantify the differences between LSC and
RLSC, and shall answer the following research questions:

Q5 - How is the RLSC method derived mathematically?

Q6 - What is the benefit of RLSC and what are the differences to other LSC formulations?
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P-1V applies RLSC for a combination of satellite, terrestrial and airborne gravimetry in order to
calculate the height anomaly in Colorado and New Mexico. For the validation of these calcula-
tions, it compares the height anomaly with 13 independently calculated results from the same
area, which are available from 'the 1 cm geoid experiment’. P-1V also derives a concept for the
handling of noisy airborne gravity observations in RLSC, and answers the following research ques-
tions:

Q7 - Why are low-pass filters applied in airborne gravimetry and how can the filter process be
included into the RLSC formalism?

Q8 - What is the performance of RLSC in comparison to other independent solutions from the
1 cm geoid experiment?

The next two pages give a general overview of the publications this work is based on (P-l to
P-1V). They include title, contributors and publisher for each of the publications, as well as a short
summary of the corresponding content.
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P-|

P-1

Analysis of GOCE Omission Error and its Contribution to Vertical Datum
Offsets in Greece and its Islands
Martin Willberg, Thomas Gruber, Georgios S. Vergos
in: International Association of Geodesy Symposia 148

This publication analyzes different geoid models in Greece and its islands for their
signal content, their omission error, and their applicability for a height system unifi-
cation. The three evaluated geoid models are a satellite-only GGM (GOCOO05S) up
to spherical harmonic degree 200, an extended satellite model as combination of
GOCO05S, EGMO08 and topography-induced gravity information, and a local geoid
model. The study compares these geoid models with available GNSS/leveling ob-
servations, and concludes that the globally unified GOCOO05S is not sufficient for
a height system unification due to the omission error. The other two models show
comparable results in the error analysis. Our findings in the studied test area indi-
cate, that the high-resolution GGM (with topographic corrections) performs almost
as well as a local geoid model for describing the regional characteristics of the
Earth’s gravity field.

Signal and Error Assessment of GOCE-based High Resolution Gravity Field
Models
Thomas Gruber, Martin Willberg
in: Journal of Geodetic Science

In this publication, the quality of high-resolution GGMs is assessed in terms of the
improvement from GOCE, the signal content and the error level. Therefore, six
GGMs are analyzed for their signal degree variances and furthermore compared to
geoid heights from GNSS/leveling. The terrestrial data quality that is incorporated in
the high-resolution GGMs is of significant importance for their overall performance.
In a comparison of recent models to EGM2008, approximately 80% of the improve-
ment are traced back to the GOCE mission, while the remaining 20% result from
terrestrial data improvements. The calculation of geoid height differences and geoid
slope differences are tools to evaluate GGMs, but also to draw conclusions about
the quality of leveling observations and GNSS heights. Furthermore, they allow the
analysis of possible error sources or even systematic errors in the data.
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Residual least-squares collocation: use of covariance matrices from
high-resolution global geopotential models
Martin Willberg, Philipp Zingerle, Roland Pail
in: Journal of Geodesy

This publication presents an enhanced formulation of least-squares collocation.
This residual least-squares collocation uses covariance matrices from a high-
resolution global geopotential model (XGM2016) in order to describe the gravity
field as anisotropic and location-dependent quantity. This is advantageous com-
pared to the two customary methods, which derive covariance matrices either from
signal degree variances or empirical covariance fitting. Furthermore, RLSC (1) im-
plicitly includes a remove-compute-restore concept, (2) models input quantities with
error covariance matrices instead of signal covariance matrices, and (3) is able
to derive realistic error estimates since it involves all components in terms of the
stochastic modeling. In a synthetic closed loop environment the method is tested
and compared to a standard LSC approach. Thereby, RLSC demonstrates better
performance in general with particular advantages in areas with sparse terrestrial
gravity observations. Furthermore, RLSC provides improved uncertainty estimates.

Integration of airborne gravimetry data filtering into residual least-squares
collocation - example from the 1 cm geoid experiment
Martin Willberg, Philipp Zingerle, Roland Pail
in: Journal of Geodesy

This paper applies RLSC to calculate height anomalies within the 1 cm geoid ex-
periment, a regional geoid modeling inter-comparison exercise. This allows an eval-
uation of RLSC with 13 independent solutions from various regional modeling ap-
proaches. The comparison indicates, that the result from RLSC is among the best
solutions and even shows the smallest standard deviation to a joint mean value.
Furthermore, this publication establishes a method to include a low-pass filter for
airborne gravimetry consistently into the functional and stochastic model of RLSC,
which further improves accuracy estimates by considering the correlations from the
filter process. We demonstrate the necessity to remove this high-frequency noise
from the airborne gravity observations in this area, and realize it with a Gaussian
low-pass filter, which is applied to both, observations and covariance matrices.
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Chapter 2

Gravity field and height systems

2.1 Global gravity field determination

This section gives fundamentals of potential theory and spherical harmonic series expansion ac-
cording to Hofmann-Wellenhof & Moritz (2006), and can be found in much greater detail there,
since the presented work only focuses on selected aspects. The Earth’s gravity potential W is a
sum of the gravitational potential V" and the centrifugal potential ¢

W=V+90. (2.1)

It can be approximated with the normal gravity potential U, which is derived from the definition of a
reference ellipsoid, e.g., the Geodetic Reference System 1980 (GRS80, Moritz 2000). Accordingly,
the difference

T=W-U, 2.2)

leaves a relatively small residual part and is denoted as disturbing potential or anomalous potential.
In order to describe the disturbing potential 7" with a (solid) Spherical Harmonic (SH) expansion,
we start with the general expression for surface spherical harmonics Y, (1, A) in spherical coordi-
nates (radius r, geocentric co-latitude 17, and geocentric longitude \)

n

Yo(9,N) = Z [(anm coS MA + by, SIn m)\) P (cos 19)} , (2.3)

m=0

where ay,, and b, are arbitrary constants, n is the SH degree, m the SH order, and P,,, the
Legendre function. According to Laplace’s equation the disturbing potential 7' is a harmonic func-
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tion outside the Earth’s masses. Therefore, it can be described with (Laplace’s) surface spherical
harmonics as (Torge, 2003)

GM <&
R

m=0

Tn(9,X) = [(A Chrm cos mA + AS,,, sin m)\> Prm(cos 19)] : (2.4)

where ( is the gravitational constant, M the Earth’s total mass and R the spherical harmonic ref-
erence radius. R is usually defined as mean equatorial radius of the Earth. Furthermore, A C),;,,
and AS,,, are residual spherical harmonic coefficients without the normal field of the Earth (cf.
Eqg. 2.2). It should be noted that Eq. 2.4 is often formulated with fully-normalized Legendre Poly-
nomials P,,, and fully normalized, residual coefficients A C,,,, and A S, as this has numerical
benefits (e.g., Fecher et al., 2015; Rexer, 2017). The (solid) spherical harmonic series for the
disturbing potential 7'(7, 9, ) is

T(r, 9, )) = f: (5)"“ To (9, ). (2.5)

r
n=0

It describes the disturbing potential 7" at each point (r,%, \), which is not within the Earth’s
masses, whereby the (fully normalized) residual spherical harmonic coefficients ACym and AS,n,
are available from a GGM. Accordingly, in practice, the sum in Eq. 2.5 is not applied to infinity,
but to the maximum SH degree of the GGM (e.g., described in P-IV). In this work, GGMs are
in general distinguished between high-resolution GGMs and satellite-only GGMs. Thereby, high-
resolution GGMs are defined to have at least a maximum SH degree of 719 (e.g., XGM2016), while
satellite-only GGMs include the Earth’s gravity field to approximately SH degree 200 or 300 (e.g.
GOCOO06S, Kvas et al., 2019), which is equal to the maximum resolution of GOCE.

The process of applying a spherical harmonic series for the calculation of gravity functionals (e.g.,
Eq. 2.5) is called Spherical Harmonic Synthesis (SHS). It is applied for the calculation of geoid
heights and the validation of GGMs in P-I and P-II (details in Sect. 2.2). Furthermore, it is used for
the reduction of gravity measurements in P-1ll and P-1V, and, in general, for the Remove-Compute-
Restore (RCR) procedure. The spherical harmonic expansion for other gravity functionals is also
derived from Eq. 2.5. For the gravity anomaly Ag (in spherical approximation) and the gravity
disturbance ¢ g we have

Ag=-2=_=T
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Apart from SHS, the gravity disturbance d¢g and the gravity anomaly Ag can also be derived
from (full) gravity measurements g by reducing the normal gravity ~y

Ag=gp—17q, (2.8)

09 =gp — P, (2.9)

whereby the subscript of g and v defines the point, where the normal gravity is calculated (Fig. 2.1).
Eq. 2.9 is applied to calculate the gravity disturbance d¢g from absolute gravity measurements
in P-1V.

2.2 Heights and height systems

The basic structure of potential surfaces and physical heights is presented in Fig. 2.1, and ex-
plained in accordance with Hofmann-Wellenhof & Moritz (2006). We define a point Py on the
geoid, an equipotential surface with W = W, (details in P-1), and project it onto the point )y on
the ellipsoid by means of the ellipsoidal normal. Thereby, the ellipsoid is defined by the surface,
where the normal potential U is equal to the potential 11 in point Py. According to the theory of
Stokes, the distance between P and Qg is denoted geoid height N (or geoid undulation), and is
calculated by

N = , (2.10)

where 7q, is the normal gravity at the ellipsoid in Qp. According to the theory of Molodensky
(Hofmann-Wellenhof & Moritz, 2006), we find a similar relation for the height anomaly ¢ (or quasi-
geoid height)

(=—=, (211)

with P being a point on the Earth’s surface, and Q) the corresponding point on the telluroid with the
same ellipsoidal normal (Fig. 2.1). Thereby, the telluroid is defined by the surface where the normal
potential U of every point () is equal to the gravity potential 11/ of every point P. Furthermore, the
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Fig. 2.1 — Overview of physical heights and potential surfaces according to the theory of Stokes (left)
and the theory of Molodensky (right). Visualization is adapted from Gerlach (2003).

ellipsoidal height / of a point P is given as the distance between the Earth’s surface and the ellip-
soid. It can be written as a combination with either the geoid height N

h=N+H, (2.12)

where H is the orthometric height of point P, or with the height anomaly ¢

h=C+HY, (2.13)

where HY is the normal height of point P. The orthometric height H and the normal height A~
are the two most important types of physical heights, and can be transferred by spirit leveling
and gravimetry (Heiskanen & Moritz, 1967). Ellipsoidal heights are usually measured by GNSS
(Hofmann-Wellenhof & Moritz, 2006). The publications P-I, P-1l and P-IIl calculate geoid heights,
while P-1V uses height anomalies according to the theory of Molodensky.

In an ideal case, all orthometric heights would refer to the true geoid, that is a global equipotential
surface. However, in P-I we see that local height systems are defined by a local vertical datum,
which is usually realized by a local tide gauge instead of a global equipotential surface. Additionally,
there is a variety of different definitions and standards for height systems around the world (e.g.,
the difference between orthometric and normal heights). As a result, physical heights are often not
comparable. In order to make physical heights comparable among each other, they either have
to refer to the same equipotential surface, or their corresponding geoid height/height anomaly and
ellipsoidal height have to be available with high accuracy (Gruber et al., 2014). With the introduction
of an International Height Reference System it would be possible to connect physical heights to
a globally consistent vertical datum, which therefore enables a height comparison and transfer
(Sanchez & Sideris, 2017; Ihde et al., 2017). It should be noted that P-I includes more details
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about various reference surfaces. Furthermore, it shows a visualization with the relation between
two realizations of a local vertical datum, a respective equipotential surface, and the corresponding
physical heights.

From the satellite missions GOCE and GRACE, the static part of the Earth’s gravity field at spatial
scales of 80-100 km is available with an accuracy of 1-2 cm (P-I; P-l; Brockmann et al. 2014;
Gruber et al. 2012). Accordingly, a satellite-only GGM with this spatial resolution is able to provide
a globally consistent reference surface, which should be used as a basis for HSU (P-I; P-Il; Gerlach
et al. 2013; Gruber et al. 2014; Rilke et al. 2012). However, geoid signals with smaller spatial
resolution (higher SH degrees) are still missing and introduce an omission error, whose effect on
HSU is explained in P-I. Therefore, HSU, with a globally consistent GGM alone, is not sufficient to
reach centimeter accuracy (P-I). In high-resolution GGMs, on the other hand, the omission error
is significantly reduced (P-Il). However, some regions in high-resolution GGMs include only very
sparse gravity data for the refinement of higher frequencies (e.g., Pavlis et al. 2012). Accordingly,
they still include a significant omission error there (/hde et al., 2017). Additionally, inhomogeneous
or faulty gravity data can result in a commission error, that might be included in a high-resolution
GGM. Both errors pose a significant problem for high-accuracy applications such as the realization
of an IHRF, since they would normally propagate to the frame’s quality. Accordingly, /hde et al.
(2017) propose not to use high-resolution GGMs for HSU, but their corresponding potential is
quantified nevertheless.

P-1I assesses the quality of high-resolution GGMs, and quantifies their potential and suitability
for HSU. The applied method is called GNSS/leveling (details in P-1 and P-Il). It calculates the
difference between the ellipsoidal height measurements i from GNSS, and the sum of the geoid
heights N from a GGM and the orthometric heights H from spirit leveling (all quantities in Eq. 2.13).
The resulting difference allows an analysis of the included omission error in the GGM as well as
the corresponding measurement errors. P-Il gives the accuracy of a geoid model from a high-
resolution GGM (with added information about the topography induced gravity) according to the
gravity information that is incorporated in the GGM. In areas with very high observation density,
a geoid accuracy of 1 cm might be feasible, while less good coverage reduces the performance
to several centimeters or a decimeter (P-II). It should be noted that apart from the data coverage,
also the terrain structure has a very high impact to the geoid accuracy. Correspondingly, P-IV in-
dicates that geoid accuracies are worse, when the calculations are done in mountainous regions.
Furthermore, the GNSS/leveling method analyzes a combination of errors from GGM, GNSS and
spirit leveling. Accordingly, it is not always easy to conclude, which component contributes er-
rors to what extent (Gruber et al., 2012). In case the geoid is calculated from a high-resolution
GGM only, Gruber et al. (2014) give an accuracy of 4 to 6 cm in well-surveyed regions, and 20 to
40 cm in sparsely surveyed regions. Although, Sanchez & Sideris (2017) and Ihde et al. (2017)
take over these values in their publications, it should be noted that the values might be better de-
pending on the terrestrial gravity data quality and the gravity signal above the resolution of the
GGM.
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2.3 International Height Reference System

P-1 already describes the problem, which results from different vertical height systems and the
corresponding advantage from HSU or the introduction of an IHRS. A more detailed description of
the issue can be found in Sanchez (2012); Sanchez & Sideris (2017) and /hde et al. (2015, 2017),
which should be summarized in the following.

Geometry and gravity potential are used to characterize the Earth. Heights can describe the ge-
ometry of the Earth by an ellipsoidal height h (Fig. 2.1), but also its geopotential part (e.g., or-
thometric heights H in Eq. 2.12). At the moment, the definition of ellipsoidal heights has several
advantages compared to the measurement of physical heights. Ellipsoidal heights are already
consistent around the world, their measurement with GNSS works at high accuracy, is quick and
has rather low costs. Physical heights, in contrast, are defined in local vertical systems differ-
ently around the world and their transfer could be difficult (P-I, Sect. 2.2). However, only physical
heights can describe the flow of water or mass distributions on the Earth, which makes a global
physical height reference system mandatory (/hde et al., 2017). The topic is much discussed
in literature and was already mentioned by Rummel & Teunissen (1988) and Rapp & Balasub-
ramania (1992). Nowadays, the realization of an IHRS is significantly simplified by the high ac-
curacy of the static part of the Earth’s gravity field, which is available from GOCE and GRACE
mainly (P-11).

Based on the necessity of an IHRS introduction, the matter is constantly supported by IAG work-
ing groups for approximately a decade (details in /hde et al., 2017). Furthermore, in 2015, the
'definition and realization of an International Height Reference System’ was published as an IAG
resolution (Drewes et al., 2016). It specifies the main goals in this matter, and defines the vertical
reference level for the IHRS as W, = 62636853.4 m?s~2, while the derivation of W is explained
in Sanchez et al. (2016). The IHRS should define a global physical reference frame with high ac-
curacy, and it should be realized with the IHRF as an equivalent to the already existing ITRF. Its
reference stations should be distributed around the world, and define the gravity potential Wp that
correlates to the geometric coordinates of a point P.

For the unification of already existing physical height systems, /hde et al. (2017) propose three
possibilities:

1) The common adjustment of existing leveling networks could combine neighboring countries,
and is therefore only possible on the same continent. The European Vertical Reference
System (EVRS) is an example for a height combination from leveling adjustment (/hde et al.,
2002; Ihde & Augath, 2002).

2) The unification by a combination of tide gauge observations and Mean Dynamic ocean To-
pography (MDT) could combine measurements at the coast. However, MDT measurements
might suffer from local effects, and altimetry measurements from reduced quality close to the
coast (Rummel, 2012).
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3) The combination of GNSS observations with a geoid model could provide the absolute po-
tential value W from the disturbing potential 7' (see Eq. 2.2). Therefore, the unification uses
either a (high-resolution) GGM, or preferably the refinement of a GGM with regional gravity
data.

Case 1 and 2 are restricted to certain requirements, so that only case 3 could be applied as a
general case for HSU. /hde et al. (2017) mention the development of strategies for the calculation
of potential values at IHRF reference stations as an unsolved issue in the outlook. The newly
developed residual least-squares collocation (Chap. 3, P-1ll) can provide significant benefits for the
combination of high-resolution GGM and regional gravity data, and therefore also for the calculation
of potential values W at IHRF stations. This method and its application for HSU are the main focus
of this thesis.

Although, it is necessary to calculate the absolute gravity potential I/ for the definition of IHRF
stations, the most common case for regional gravity field determination is the prediction of geoid
heights or height anomalies from gravity anomalies or disturbances. Accordingly, P-lll uses syn-
thetic gravity anomalies to calculate geoid heights, and P-1V gravity disturbances to result in height
anomalies. Thereby, both publications establish the required connection between ellipsoidal and
physical heights (Sect. 2.2), and it should be noted that the calculation of absolute potential val-
ues W (from Eq. 2.2) and physical heights (Eqg. 2.12 or 2.13) is methodically quite similar to the
calculations in P-1ll and P-IV.

2.4 Regional gravity field determination

Data for regional gravity field determination:

Apart from the calculation of gravity functionals by SHS with GGMs (Sect. 2.1 and 2.2), there is
also the possibility to combine the globally consistent satellite information with available gravity
measurements and topography-induced gravity locally (e.g., around an IHRF station). This com-
bination is necessary since different forms of gravity observations have different advantages and
disadvantages:

e Satellite information, for example, is better suited for calculating the long-wavelength part of
the Earth’s gravity field, which is globally consistent with high accuracy (compare Sect. 2.2).
However, due to the distance to the Earth’s surface, satellite missions are not able to measure
the gravity field at wavelengths below approximately 80-100 km. Consequently, they suffer
from a significantly omission error (P-I).

e Terrestrial gravity measurements can provide the short to medium-wavelength part of the
Earth’s gravity field, depending on their distribution. However, they might suffer from sys-
tematic effects locally, which follows from the fact that terrestrial observations are mainly
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measured with relative gravimeters, were often taken several decades ago and sometimes
do not contain a detailed documentation.

e Airborne gravity measurements combine advantages and disadvantages from terrestrial and
satellite measurements: on the one hand, they are theoretically consistent for a local region
and generally well distributed over an area. On the other hand, they might issue a bias prob-
lem for individual flight lines, and the measured gravity signal is already attenuated due to
the flight height of the aircraft. Additionally, airborne gravimetry commonly requires prepro-
cessing in order to remove high-frequency noise from the observations (P-1V).

e The very high-frequency parts of the Earth’s gravity field, e.g., above the resolution of a GGM,
are mainly related to the topography (e.g., Rexer et al. 2016). Accordingly, topographic in-
formation is often used to describe these frequencies, as other gravity sources rarely have
the same resolution (see Hirt et al. 2019). This is especially important in mountainous areas
or areas with varying topography, where the high-frequency part of the gravity field can con-
tribute significantly to the gravity signal. However, topography-induced gravity information has
to include density assumptions, which might not coincide with reality. For more details about
topographic gravity information, it is referred to Hirt et al. (2013) and Hirt & Rexer (2015),
while P-IV describes the handling of high-frequency gravity signals from mountainous topog-
raphy in practice.

In this context, this thesis focuses on the combination of terrestrial, airborne and satellite gravity
measurements with related topographic information (e.g., P-1V). For the derivation of gravity values
from satellite altimetry it is referred to Sandwell & Smith (1997).

Methods for regional gravity field determination:

As a result of the individual advantages and disadvantages, the challenge is often an optimal com-
bination of different sources of gravity information. While SH functions (Eqgs. 2.4 and 2.5) provide a
good global representation, they are limited in their ability of spatial localization and generally pro-
vide no proper representation of terrestrial data with varying quality or density. Accordingly, LSC
and several other methods such as Spherical Radial Basis Functions (SRBF, Freeden et al. 1998;
Schmidt et al. 2007), Stokes’s formula (Heiskanen & Moritz, 1967; Agren et al., 2009), multipole
wavelets (Chambodut et al., 2005; Hohlschneider et al., 2003), Sleepian functions (Simons, 2010)
or point-mass models (Stinkel, 1981; Agren, 2004) are applied for regional gravity field determi-
nation. This work focuses on LSC and RLSC, gives reasons for that in Sect. 1.1 and presents
the corresponding approaches in P-1ll and Chap. 3. However, results from other approaches, es-
pecially from a calculation with SRBFs (Sect. 4.6), are used for comparisons in Chap. 4 and P-IV.
Accordingly, the basics of SRBFs and some connections between different approaches for regional
gravity field modeling are shortly outlined in the following. The corresponding references can be
used for a more detailed study of the methods, which should not be repeated here. An overview
of the mentioned approaches for regional gravity field determination as well as a list of individual
advantages and disadvantages is given in Lieb (2017).
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Radial basis functions are isotropic kernel functions that use the spherical distance between an
input point and a target point as primary input. Correspondingly, SRBFs are appropriate functions
applied on the sphere. They are generally used to calculate a regular grid of (unknown) coeffi-
cients, which is afterwards exploited for the calculation of different gravity functionals. Freeden
et al. (1998) provide the basics for calculations with SRBFs, which are applied and extended in
numerous publications (examples in the following and Lieb et al. 2016). Schmidt et al. (2007) use
these formulations to derive the relation between space localizing methods (spherical splines and
wavelets as example for SRBFs) from the general formulation of SH functions. Bentel et al. (2013)
examine different forms of SRBFs for regional gravity field modeling. Thereby, differences between
the shape, the location and the bandwidth of SRBFs are main criteria for the final performance (Liu
et al., 2020a). Finally, multiresolution representation allows SRBFs to optimally combine different
sources of gravity data to exploit them in specific frequency bands of the gravity field (Schmidt et
al., 2007; Lieb et al., 2016).

SH functions use Legendre polynomials as basis for modeling gravity effects, as is done by all of
the above mentioned approaches in order to ensure a solution of Laplace’s equation (Hofmann-
Wellenhof & Moritz, 2006) in the global case. While SH functions apply Legendre polynomials for
a mere spectral representation, SRBFs, multipole wavelets and Sleepian functions use them for
a compromise between spectral and spatial representation (Freeden et al., 1998), which is also
visualized in Lieb (2017). The advantages of SH functions and SRBFs can be combined, when SH
functions are used for the low degrees of the gravity field, and spherical wavelets for the medium
to high-frequency part (Schmidt et al., 2005). Regarding the remaining methods, LSC applies Leg-
endre polynomials in the definition of covariance functions, which are used to calculate a minimum
norm solution ( Tscherning, 2015). Point-mass models use Legendre polynomials in the expansion
of the reciprocal distance. Finally, Stokes’s formula includes Legendre polynomials in the definition
of the Kernel function within an integration procedure (Heiskanen & Moritz, 1967). This joint appli-
cation of the Legendre polynomials as basis functions in regional gravity field determination also
results in similarities among different approaches, which are studied in the several publications:
de Min (1995) reports about similarities between LSC and Stokes’s formula, while Eicker (2008)
compares LSC with SRBFs from a spline kernel. In specific cases and after some modifications,
it is even possible to show a (numerical) equivalence between LSC, Stokes’s formula and SRBFs
(Ophaug & Gerlach, 2017).

Handling of the GGM in regional gravity field determination:

Apart from the variety of methods, there are also three different approaches (referred to as cases)
in the handling of the GGM in regional gravity field determination. These approaches are evaluated
in the following for their ability to calculate the absolute gravity potential at an IHRF station. Thereby,
all three approaches should be combined with topography-induced gravity information whenever
this is necessary.

1) SHS of high-resolution GGMs is the fastest and easiest approach to calculate arbitrary gravity
functionals (e.g., applied in P-1, P-11). In this case, local measurements (which are not already
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in the GGM) cannot be included into the calculation and local characteristics might not be
presented correctly in the available GGM models. Accordingly, this approach very much
depends on the quality of GGMs and suffers heavily from the omission and commission
error of the model. In general, the quality of the terrestrial gravity observations (which was
included to the corresponding GGM calculation) is the main driver for its final performance.
Furthermore, the selection of the GGM can have a considerable impact on the result, as
various high-resolution GGMs can differ significantly from each other (P-Il). The main value
of this approach would display in areas, where all available terrestrial gravity measurements
are already included into the high-resolution GGM or the accuracy requirements are not that
demanding.

2) The combination of a satellite-only GGM with regional and local gravity measurements pro-
vides a globally consistent reference surface and allows a good representation of the high-
frequency part of the gravity field at the same time (Pail et al., 2010; Agren & Sjéberg, 2014;
Gerlach & Ophaug, 2017). Its advantage is a good adaptation to the local characteristics,
since the method allows a flexible weighting among different data sets. However, this might
also be disadvantageous, since several IHRS stations that are calculated with this method
are not necessarily consistent due to the possibly high impact of the local measurements.

3) Ahigh-resolution GGM can also be refined with regional and local gravity measurements (e.g.,
Forsberg et al. 2014; Abd-Elmotaal 2017; McCubbine et al. 2018). In this case the calcula-
tion can be adapted to local characteristics, while other disadvantages of the first case might
remain (e.g., commission error, impact from GGM selection, questionable reliability of GGM).
In comparison with case 2, case 3 generally needs less regional gravity field information, and
observations in a smaller area respectively.

Although, /hde et al. (2017) recommend case 2 for HSU, this thesis shows why case 3 is generally
preferable when the method of RLSC is applied. RLSC allows a consistent inclusion of accuracy
information from the high-resolution GGM. Thereby, RLSC presents a significant improvement to-
wards other realizations of case 3, since the GGM is not introduced with a questionable accuracy
any more, which was mentioned as a main disadvantage by /hde et al. (2017). Furthermore,
the application of regional varying weighting in XGM calculations results in an improved accuracy
estimation, which can be included to RLSC calculations in the form of location dependent variance-
covariance information (details in Chap. 3). As a result, the selection of the GGM in RLSC has less
impact than it would have in other methods, as long as the corresponding accuracy estimation is
realistic. In comparison to case 2, the application of case 3 with RLSC furthermore exploits the
generally good quality of high-resolution GGMs over the ocean, and provides a high consistency
for different stations around the world (P-III).



2.5 Evaluation, summary and research questions 21

2.5 Evaluation, summary and research questions

Chap. 2 explains the basics of spherical harmonic series and GGMs (Sect. 2.1), height sys-
tems (Sect. 2.2), the IHRS (Sect. 2.3), and regional gravity field determination (Sect. 2.4). To-
gether with P-1 it emphasizes that a globally consistent reference is needed for the height system
unification, and that satellite gravity missions are the only possibility to provide it with the desired
accuracy (Q1). Although, a satellite-only GGM has an accuracy of 1-2 cm at spatial scales of
80 to 100 km, it cannot be used for HSU alone due to the omission error (P-1). In order to reduce
the omission error, and to apply a satellite-only GGM for HSU, it has to be refined by regional grav-
ity field determination with local measurements or from a combination towards a high-resolution
GGM (Q2).

The quality of different high-resolution GGMs is analyzed with GNSS/leveling in P-Il. GNSS/level-
ing allows an assessment of the error content in GGMs, and can therefore be used for their valida-
tion (Q3). In combination with topography-induced gravity effects, GGMs might be able to calculate
geoid heights with an accuracy up to 1 cm, in case the terrestrial gravity data in the GGM is of very
high quality. This is shown for an analysis from GNSS/leveling data in Germany (P-Il). In general,
however, the geoid accuracy that is available from a GGM alone, is given with a few centimeters in
case of good terrestrial data coverage and some decimeters in case of sparse coverage (Q4). P-1I
furthermore quantifies how much a HSU depends on the selection of the high-resolution GGM,
as it validates 6 different high-resolution models for 24 different data sets from GNSS/leveling.
Topography-induced gravity effects can and should be added to the geoid effects in order to model
the very high-frequency effects of the gravity field. Obviously, this will become more important if
the topography gets rougher. The combination of Chap. 2, P-l and P-II satisfies research objec-
tive O-1, as the challenges and benefits for a HSU are explained, and the role of a globally unified
GGM is demonstrated.

Apart from the geoid calculation with a GGM alone, Sect. 2.4 gives also an overview of different
data and methods for regional gravity field determination. Two strategies for the refinement of a
GGM with terrestrial gravity data are discussed, which are based on a satellite-only GGM or a high-
resolution GGM respectively. We regard these two methods for regional gravity field determination
as generally beneficial towards the GGM-only method in terms of accuracy (/hde et al., 2017), and
consider advantages and disadvantages for both of them (Sect. 2.4). However, the disadvantages
from a refinement of a high-resolution GGM with regional gravity data can be reduced significantly,
when the model is introduced with reliable accuracy estimation. Consequently, in the next chapter,
residual least-squares collocation is presented as a new and beneficial method for the combination
of a high-resolution GGM and regional gravity field information.
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Chapter 3

Residual least-squares collocation

3.1 Introduction to RLSC

Summary of P-lil:
The publication P-11l is of highest importance for Chap. 3, since it not only describes the basics and
the derivation of RLSC, but also

e explains the fundamentals of LSC on which RLSC is based (Moritz, 1980);
e names the reason for adapting LSC and lists the advantages of the RLSC approach;

e justifies a new notation for covariance matrices, which distinguishes between covariance

matrices derived from the total average (C) and the expectation operator (C);

¢ introduces a consistent notation system, which allows the distinction between different sources
of gravity functionals (e.g., GGM or topographic gravity model) and different forms of covari-
ance matrices;

¢ highlights the differences to already existing LSC formulations with explicit comparison to
Moritz (1980); Forsberg & Tscherning (1981); Haagmans & van Gelderen (1991); Hofmann-
Wellenhof & Moritz (2006); Pail et al. (2010); Sanso & Sideris (2013) and Rieser (2015);

e explains the benefits, which RLSC provides for the introduction of an IHRS;
e and displays the advantages of RLSC in comparison to standard LSC in a synthetic test case.

This chapter outlines parts of P-1ll, while it is referred to the original publication for details. Accord-
ingly, Tab. 3.1 provides an overview of the differences between standard LSC and RLSC, which
are described in P-1ll. Thereby, Tab. 3.1 is intended to summarize main aspects in a clear struc-
ture, while it cannot provide the same differentiation as given in P-lll, since differences between
various LSC approaches are not distinguished. As a result of this simplification, LSC approaches
with anisotropic or location-dependent covariance information (e.g., Tscherning 1999; Darbeheshti
& Featherstone 2009 or Migliaccio et al. 2011) cannot be considered in Tab. 3.1. Furthermore,
the advantages of RLSC in comparisons to LSC approaches with included variance covariance
information (Haagmans & van Gelderen, 1991; Pail et al., 2010; Sanso & Sideris, 2013) differ from



Literature (real
data application)

General approach

RCR
Covariance GGM

Covariance
residuals

Covariance topo-
graphic reduction

Modeling of
the gravity field

Agren & Sjoberg (2014); Rieser
(2015); Abd-Elmotaal (2017)

Signal covariance matrices C
model the gravity signal

Generally included

Might be included for satellite-only
model, but most approaches do not
include the variance covariance in-
formation of a GGM

Empirical covariance fitting (Tsch-
erning & Rapp, 1974) or
signal degree variances (Sect. 3.2)

Not included;
modeling of remaining gravity sig-
nal instead

Beyond the resolution of a satellite-
only model: independent of the lo-
cation (homogeneous) and inde-
pendent of the location (isotropic)
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Standard LSC Residual least-squares collocation

Overview Basic LSC approaches differ in the Least squares collocation approach
handling of covariance matrices, that uses only residuals, and in-
RCR, GGM and topographic reduc- cludes individual covariance infor-
tion. mation for every input quantity.

Literature Moritz (1980); Pail et al. (2010); P-IlI

(theory) Sanso & Sideris (2013)

P-1V

Error covariance matrices C
model accuracies and correlations
of input quantities

Included by definition

Always included;

covariance matrices are derived di-
rectly from the XGM normal equa-
tion system (P-Ill, Sect. 3).

Not included;
signal is not modeled in RLSC

Error information is not available,
therefore covariance matrices are
approximated from signal degree
variances (Sect. 3.2)

Up to resolution of GGM: location-
dependent and anisotropic

Tab. 3.1 — Summary of basic differences between standard LSC and RLSC. A more detailed description
of the differences as well as a differentiation of various LSC approaches is given in P-Ill.

LSC approaches without (e.g., Forsberg & Tscherning 1981; Hofmann-Wellenhof & Moritz 2006;
Rieser 2015), but cannot be distinguished in Tab. 3.1. However, RLSC advantages to different
LSC methods are distinguished in P-Ill and two main benefits of RLSC exist in comparison to all
previous formulations of LSC:

e RLSC includes anisotropic and location-dependent covariance matrices from a high-resolution
GGM.

e RLSC formulates a residual concept, which uses only error covariance matrices and consid-
ers accuracy information for every input quantity.

These two main advantages provide RLSC with the ability to give more realistic accuracy estimates,
and are further explained in the following.
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Covariance information of a high-resolution GGM:

In regional geoid determination, the Earth’s gravity field is often modeled as isotropic and homo-
geneous, although this is generally not true in reality (Tscherning, 1999). In the LSC formulations
by Moritz (1980); Forsberg & Tscherning (1981); Hofmann-Wellenhof & Moritz (2006) and Rieser
(2015), for example, covariance matrices model an isotropic and homogeneous gravity field. In
contrast, RLSC is able to include anisotropic and location-dependent covariance matrices, which
are derived from a high-resolution GGM that applies regional varying weighting (Fecher et al.,
2015). Thereby, the variance-covariance information is derived directly from the normal equation
system of the model, which is formulated in P-Ill (Sect. 3). Currently, this covariance information
from a high-resolution GGM is available for either GOCOO05C (Fecher et al., 2015) or one of the
XGM models (e.g., XGM2019 by Zingerle et al., 2020 accepted). However, the computation of
covariance matrices for input and output is very CPU-intensive (details in the conclusion of P-III).
It should also be noted that, in theory, RLSC can also be used with a satellite-only GGM (e.g.,
GOCO06S). In this case, however, it would lose its main benefits and resemble the already exist-
ing approaches by Pail et al. (2010) and Sanso & Sideris (2013), which already include accuracy
information from a satellite-only GGM.

Error covariance matrices in the residual concept:

The difference between RLSC and LSC defined by Moritz (1980) is clearly visible when we com-
pare the calculation formulas themselves. However, the difference in the notation is explained first;
for the (input) observations 1 as a combination of the true input signal t and the random (stochastic)
observation noise n, P-lIl uses the following notation for (standard) LSC

S = Cﬁ{ (Cnn + Ctoill, (3.1)
where
S = output functional,
Cy = signal covariance matrix between input and output,
C.n = error covariance matrix for the input 1,
Ct{ = signal covariance matrix for the input 1.

Thereby, our notation includes two adaptions to the formulation by Moritz (1980). First, the true
gravity functionals are marked by the separated symbols t (input signal) and s (output signal). Sec-
ond, the bar over a quantity marks a covariance function C or a resulting gravity functional (e.g., §),
which is calculated from the total average E instead of the expectation value E (details in P-IIl,
Sect. 2.1). Accordingly, the LSC notation in Eq. 3.1 is equivalent to the following notation in Moritz
(1980)

§ = Cg (Cun + Ctt)_ll, (3.2)
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where every equivalent quantity has the same meaning. Regarding the Egs. 3.1 and 3.2, the
observations 1 are described with two different covariance matrices, whereby Cy and Cy describe
the signal part and C,,,, the corresponding observation error.

This differs from the approach in RLSC, where the signal part is reduced by applying a RCR
procedure. Details about the RCR approach are described in Hofmann-Wellenhof & Moritz (2006)
or Rieser (2015). Accordingly, the signal part of the observations is reduced by an a priori model
without systematic errors. As a result, the signal part is not modeled in the collocation, which is
applied to residuals only. In order to highlight quantities, that result from an a priori model, they are
marked by a hat operator. Following P-Ill, the formula for RLSC is

s=Cy (Cn + Cﬁ)il(l — i) +s. (3.3)
where

s = output functional ,
C,; = error covariance matrix between input and output model,

Cy = error covariance matrix for the input 1,

= input functional derived from the a prior model,

C;; = error covariance matrix for the input model i,
|
S = output functional derived from the a priori model.

Unlike LSC in Eq. 3.1, RLSC in Eq. 3.3 has an error covariance matrix for every input quantity,
so that C; describes the accuracy of the input observations 1, and Cﬁ the model observations i,
respectively. Correspondingly, the stochastic modeling of RLSC benefits from involving all related
components and provides a more realistic accuracy estimation. It should be noted that LSC in
Eqg. 3.1 does not correspond to RLSC even when it includes a remove-compute-restore approach,
as the covariance matrices Cst and (_3& stay signal covariance matrices even when they model the
residual gravity signal. This difference is described in detail in Sect. 2.3 of P-IIl. The same section
also presents the stochastic model corresponding to Eq. 3.3 (P-Il, Eq. 32).

3.2 Covariance functions in RLSC

In RLSC (Eq. 3.3) there are covariance matrices for the observations (Cj;) and the a priori mod-
els (Cy;, Cy). While the calculation of the former is explained in detail in the publications P-IIl and
P-1V, respectively, the derivation of the latter ones is shortly discussed in the following.

In P-Ill and P-1V, the model observations 1 are a combination of a high-resolution GGM and a topo-
graphic gravity model. The corresponding covariance functions of the high-resolution GGM are de-
rived directly from its normal equation system, which is also explained in P-Ill. For the topographic
gravity model, however, there is no accurate accuracy information available (Rexer et al., 2016).
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Accordingly, the covariance function is approximated from empirical covariance fitting (P-111), which
is @ common approach in regional gravity field modeling, and explained in detail by Tscherning
& Rapp (1974). A possible method to do so, is the definition of covariance functions from signal
degree variances, which is described in the following.

The statistical behavior of the gravity field (e.g., disturbing potential 7") can be described by covari-
ance functions, which are calculated from a global average operator. Their derivation in spherical
harmonics is explained in Heiskanen & Moritz (1967) or Rieser (2015) and not repeated here.
Instead, we adopt the resulting covariance function C’TT(T, ', 1)) for the disturbing potential T’
between the points P(r,9,)) and S(r’,9,\') outside the sphere

_ ; © R2 n+1
Crr(r,',0) =3 (5) ka Palcosv), 34)
n=2

(0 = spherical distance between P and S,

R = constant Earth radius,

k, = signal degree variances,

P, (cos 1)) = Legendre polynomials for cosines of the spherical distance ).

The signal degree variances k,, for the disturbing potential cannot be measured directly, but are
available from a residual GGM by calculating

o= (AC2, +AS2), (3.5)

m=0

where AC,,, and AS,,, are the fully-normalized coefficients not considering the normal gravity
field (Sect. 2.1). When A C,,,, and AS,,,,, are provided from a GGM, covariance functions describe
an average global gravity field. However, regional characteristics of the gravity field generally do not
coincide with a global average, which is why regional gravity field determination needs an adaption
of the covariance matrices in Eq. 3.4 (details in Sect. 3 of P-1ll or Sect. 3.3 of this thesis). Another
approach for empirical covariance fitting without using signal degree variances is explained by
Tscherning & Rapp (1974) or Rieser (2015). Regardless of the underlying method, covariance
functions are of essential importance for the calculation.

Following the basics of spherical harmonics in Chap. 2.1 the covariance function for the disturbing
potential can be used to calculate other functionals by covariance propagation. A detailed summary
of various derivatives of the covariance function is given by Rieser (2015). In the following, only
covariance functions, which are used in P-lll, are listed:
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Covariance function for the geoid undulation N:

_ 1 -
Cnn (r, 7' ) = 2 Crr(r, ') (3.6)
0

Covariance function for the gravity anomaly Ag:

_ ) X (n—1)2 ;R2\nt1
CAgAg(Ta r W) = Z % (W) En Pn(COS W (3.7)
n=2

Cross-covariance function between geoid undulation NV and gravity anomaly Ag:

~ . 1 & —1) s/ R2\n+1
ONAg(rv r 7¢) = % nz_2 (nr—/) (W) kn Pn(COS w) (3.8)

The covariance functions for P-1V are calculated correspondingly, whereby -y is replaced by vq
(compare Egs. 2.10 and 2.11), as P-IV uses the height anomaly ( instead of the geoid undula-
tion N. Furthermore, the (n — 1) term in the Egs. 3.7 and 3.8 is replaced by (n + 1) to account
for the gravity disturbances (EqQ. 2.9) in this publication.

3.3 Application of covariance functions

For applications in regional gravity field determination, covariance functions (Egs. 3.6 to 3.8) are not
calculated from degree 2 to infinity, but adapted to the local residuals instead ( Tscherning & Rapp,
1974). Thereby, an Empirical Covariance Function (ECF) is calculated from the reduced input
observations, and a Model Covariance Function (MCF) is fitted to it. P-1ll explains details about this
procedure, which includes a visual comparison between ECF and MCF, and the derivation of the
resulting signal degree variances k. Accordingly, in P-IIl, for example, the covariance function is
applied from SH degree 720 to 2160 with a scaling factor, as this fits the local residuals. This is even
consistent to the calculation scenario, as SH degrees from 2 to 719 are removed by the XGM2016
model, and degrees above 2160 are neglected due to the synthetic test case. In P-1V, covariance
matrices are calculated to the maximum SH degree 5400. For the airborne observations, the
gravity signal above this degree is negligible, because of signal attenuation at the flight height and
an additionally applied low-pass filter (P-1V). For modeling the gravity field on the Earth’s surface we
do not expect the terrestrial observations to improve the result above SH degree 5400, which is due
to their limited spatial resolution. Accordingly, we consider topography-induced gravity information
as best gravity source above SH degree 5400, and therefore apply ERTM2160 (Hirt et al., 2014)
in P-IV. However, it should be noted that (R)LSC is not very sensitive to the maximum SH degree,
as signal degree variances decrease with rising degree.
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The Earth radius R in Chap. 3.2 is commonly included as constant value. In Moritz (1980) or
Hofmann-Wellenhof & Moritz (2006), for example, R is chosen as approximate mean radius of the
Earth

R=Va2b~6371km, (3.9)

where a is the semimajor, and b the semiminor axis of th;a Earth’s ellipsoid. This is also the imple-
mentation that is applied in P-1ll. Correspondingly, the (%) term depends only on the height of the

two observation points (hg, h}%) about the reference sphere R, which is defined as

hR:T—R,
hp=r"—R. (3.10)

In case that variances are extracted from the covariance functions in Chap. 3.2, they vary mainly
by their height hp above the reference sphere R. However, the height i depends not only on the
ellipsoidal height i (Eq. 2.13), but also on the latitude ¢. As a result, variances from the a priori
model (e.g., Egs. 3.6 to 3.8) show a significant dependence on latitude. This is presented for the
variance of the topographic gravity model in Fig. 5 of P-1ll. The dependence on latitude is a common
effect in representations of covariance functions, and for example, also visible in Gerlach & Fecher
(2012). However, in a general point of view this dependence on latitude does not make sense, as it
affects (R)LSC predictions, but is generally not included in the observation accuracy itself. In P-lIl,
for example, the observation accuracy from altimetry does not depend on the latitude in the way
the variance model does. With this consideration in mind, the calculation of the (%2,) term was
adopted in P-IV.

In P-1V, the reference surface is not implemented by a sphere with a constant radius R, but with
the changing radius R, of an ellipsoid. Following a presentation in Heiskanen & Moritz (1967), the
relation between the ellipsoidal height A (Sect. 2.2) for a point P(r, ¢, A), and the corresponding
ellipsoidal radius R is schematically presented in Fig. 3.1. In contrast to Eq. 3.10, this results in
the following approximation

h =1 — R,
h/ ~ 'f’l — Rén . (311)

Correspondingly, the term (%2,) now depends mainly on the ellipsoidal height / of an observation
instead of its height hr above the reference sphere (Eq. 3.10). As a result, we get rid of the
dependence on latitude that is visible in P-lll and Gerlach & Fecher (2012) resulting in better fitting
covariance matrices. This is of special importance in P-1V, as the (f—Q) term generally has a higher

7"/
influence for airborne gravity observations.
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Fig. 3.1 — Relationship between spherical coordinate r, ellipsoidal height 4 and ellipsoidal radius R,
for a point P(r, ¢, A) on the Earth’s surface.

3.4 Evaluation, summary and research questions

P-1ll repeats the basics of collocation with random errors, which are given by Moritz (1980, Chap. 14).
Following the publication of Tscherning (1999), P-1ll describes, why homogeneous and isotropic
covariance functions in LSC cannot provide an optimal result when modeling the gravity field of
the Earth. Consequently, P-Ill derives a mathematical concept to include location-dependent and
anisotropic covariance matrices from a high-resolution GGM to LSC, naming it RLSC, and high-
lighting differences to the original approach by Moritz (1980). In this method, all input quantities are
included with a consistent error covariance matrix, which describes corresponding accuracies and
correlations. In P-llI, for example, error covariance matrices are included for the gravity observa-
tions, XGM2016 and the topographic gravity model. Covariance functions of XGM thereby describe
existing correlations, while a covariance function of the topographic gravity model is not available,
and therefore included by an isotropic and homogeneous approximation. By this approach, the
stochastic model incorporates all involved components and provides more realistic accuracy esti-
mates than other LSC approaches. Accordingly, P-1ll satisfies the research objective O2 and the
research question Q5.

In contrast to RLSC, previous formulations of LSC (e.g., Moritz 1980; Haagmans & van Gelderen
1991; Hofmann-Wellenhof & Moritz 2006; Pail et al. 2010; Sanso & Sideris 2013; Rieser 2015)
always include signal covariance matrices. Furthermore, RLSC is the first approach that includes
full covariance information of a high-resolution GGM directly to collocation, while Haagmans &
van Gelderen (1991); Pail et al. (2010) and Sanso & Sideris (2013) already included covariance
matrices from satellite-only GGMs. The biggest differences between RLSC and LSC arise when
LSC approaches do not include the accuracy of the reduction model (e.g., Forsberg & Tscherning
1981; Hofmann-Wellenhof & Moritz 2006 and Rieser 2015), or do not implicitly include a reduction
model (Moritz, 1980). The more detailed description of these differences in P-Ill, the resulting
advantages and the explanations in Chap. 3 answer research question Q6. Furthermore, they
result in the following advantages for a possible IHRS calculation.
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RLSC can benefit from the generally good accuracy of high-resolution GGMs over oceans and
in coastal areas, where the manual combination of different data sources might be more compli-
cated (discussion in Sect. 5.2). Furthermore, P-lll demonstrates that regional gravity field modeling
with RLSC outperforms LSC in areas with sparse gravity data coverage and explains, why RLSC, in
general, produces better results when the number of local gravity observations is limited. This helps
the establishment of an IHRF, as its stations should be distributed globally, therefore obviously in-
cluding areas with sparse data coverage as well. Finally, RLSC is able to provide realistic accuracy
estimates, which are of essential importance for the IHRS (/hde et al., 2017). A general disadvan-
tage of the application of high-resolution GGMs as reference model for the IHRS might be, that
errors from the model will most likely affect the IHRS as well. However, in RLSC, possible errors in
the GGM should at least be represented in the corresponding covariance matrices, which therefore
considers these errors in the resulting accuracy estimates.
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Chapter 4

The 1 cm geoid experiment

4.1 1AG working group 2.2.2

The definition of a regional gravity calculation test case in Colorado was decided during the busi-
ness meeting of IAG JWG 0.1.2 (Strategy for the Realization of the IHRS, chair L. Sanchez) at
IAG-IASPEI 2017 (Kobe, Japan). This test case called 'the 1 cm geoid experiment’ was estab-
lished as JWG 2.2.2 within the IAG period from 2015 to 2019, and chaired by Y. M. Wang. Its
purpose was the validation of different methodologies for regional gravity field determination with
identical input data. The designed area in the US states Colorado and New Mexico was selected
for its dense gravity data availability from terrestrial and airborne measurement campaigns, and
due to the contained Geoid Slope Validation Survey 2017 (GSVS17). In the GSVS17, positions,
gravity values and deflections of the vertical were measured with very high accuracy. Although,
the results and computations of GSVS17 are not yet publicly available (June 2020), they should be
published soon (D. van Westrum, personal communication).

Within JWG 2.2.2, 14 international groups calculated geoid heights along the 223 benchmarks
of GSVS17. 13 of these groups also submitted corresponding height anomalies and potential
values, whereby the height anomalies are studied in P-IV and this thesis. Accordingly, P-1V also
explains the background of 'the 1 cm geoid experiment’ in more detail. It highlights the RLSC
result that was calculated in this context, while the findings are also summarized in Sect. 4.3.
P-1V includes the first application of RLSC with real gravity data, since P-1ll used only synthesized
observations. Furthermore, P-1V contains airborne gravimetry in RLSC for the first time, whereby
resulting challenges and solutions are described in Sect. 4.2.

Two summary papers of the JWG by Wang et al. (in review) and Sanchez et al. (in review) each
include an overview of the 1 cm geoid experiment, name all groups that participated, and shortly
describe the different methodologies that have been applied. While Wang et al. (in review) com-
pare the height anomaly and geoid height results along GSVS17 among all participants and pro-
vide preliminary comparisons against the GSVS17 measurements (details in Sect. 4.5), Sdanchez
et al. (in review) provide similar comparisons for the potential values. However, both summaries
are not published yet (June 2020), and only Wang et al. (in review) is available for discussion in
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this thesis (Sect. 4.4 and 4.5), as | am a co-author. Apart from the gravity functionals at GSVS17
benchmarks, participants of the 1 cm geoid experiment also calculated a regular grid of height
anomalies and geoid heights with the approximate size of 500 x 300 km on the Earth’s surface. In
Wang et al. (in review), these grid calculations are validated against a set of historical GNSS/level-
ing data, and among each other.

My contribution to the summary paper (Wang et al., in review) is given mainly from the leader-
ship in the RLSC contribution, which is denoted as '|IAPG’ (Institute of Astronomical and Physical
Geodesy). In the context of a research trip to National Geodetic Survey (NGS), | discussed the
content of the summary paper with the paper’s main author (Y. M. Wang) and contributed several
ideas and corrections to the manuscript at that time (November 2019). Additionally, | helped with
reviewing and editing in the final stages of the manuscript.

Furthermore, | am a co-author of the publication Liu et al. (2020b), which describes another solution
of the 1 cm geoid experiment, that is named DGFI (Deutsches Geodatisches Forschungsinstitut)
in Wang et al. (in review). This contribution uses SRBFs and explains this approach in detail,
while its results are summarized in Sect. 4.6 of this thesis. As DGFI joined the 1 cm geoid ex-
periment as one of the latest groups, | helped the paper’s main author Q. Liu with the general
introduction to the project and my experience about the corresponding gravity observations. To-
gether we prepared the gravity data selection for the SRBF’s input (e.g., detection of duplicate
observations, reduction of airborne observation frequency), but it should be noted that the calcu-
lations of IAPG and DGFI include significant differences in the selection and inclusion of airborne
gravity observations (P-1V; Liu et al. 2020b). Furthermore, | selected the most suitable (a priori)
reduction models for airborne and terrestrial gravity observations, and accordingly, the solutions
IAPG and DGFI include similar reduction models (Sect. 4.4). Lastly, | contributed by editing the
manuscript.

It should be noted that my overall contribution to Wang et al. (in review) and Liu et al. (2020Db) is
relatively small in comparison to the corresponding main author, so that these publications are not
included as an integral part of this thesis. All methods in the 1 cm geoid experiment rely on GGMs
for data reduction, and often use the same models (Wang et al., in review). Furthermore, the final
results of P-1V differ significantly from the a priori models, which are used in the remove-compute-
restore approach (demonstrated in Sect. 4.4). Accordingly, the fact that some similarities occur in
the gravity data handling between the RLSC approach (IAPG) and the SRBF approach (DGFI) is
not sufficient to consider these results as strongly correlated.
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4.2 Application of low-pass filters in airborne gravimetry

Airborne gravity measurements differ from terrestrial gravity observations not only due to the sig-
nal (content and frequency, see Sect. 2.4), but also because of the corresponding noise effects.
In general, the noise in airborne gravity measurements is higher due to the measurement in mo-
tion, and is handled by a low-pass filter (Wei & Schwarz, 1998; Childers et al., 1999; Olesen,
20083; Li, 2011; Becker, 2016). Correspondingly, the main challenge in the usage of airborne grav-
ity data is the separation between signal and noise, which constitutes in the following problem:
removing the high-frequency noise from airborne observations will also result in an attenuation
of the signal, while keeping the full signal is not possible without retaining significant parts of
the noise. Accordingly, the low-pass filter that is applied to airborne observations should consti-
tute the best compromise between removing the noise and keeping the signal (Childers et al.,
1999).

In the introduction of P-1V, this aspect is explained in more detail, while the corresponding Sect. 2
('Reasons for low-pass filter in airborne gravimetry’) justifies the inclusion of a low-pass filter to
airborne gravity observations in the GRAV-D project (Gravity for the Redefinition of the Ameri-
can Vertical Datum). While a low-pass filter for airborne gravity measurements is very effective
in reducing the observations noise, it also correlates the measurements (and the gravity signal).
However, these correlations are not considered in previous LSC approaches, where low-pass fil-
tered observations are generally assumed as uncorrelated (Forsberg et al., 2000, 2014; Hwang et
al., 2007). Accordingly, in Sect. 3 of P-IV ("Methodology’), an approach for the consistent inclu-
sion of a low-pass filter to the functional and stochastic model of RLSC is derived at the example
of a Gaussian low-pass filter. As a result, the approach in P-IV should give a more consistent
error modeling and an improved accuracy estimation. Especially in the combination with other
data sets (e.g., terrestrial gravity) it appears important to consider the correlations in filtered air-
borne gravity observations. Finally, the one-step RLSC approach allows to consider the very high
resolution of airborne gravimetry in along-track direction, which is often not possible in other ap-
proaches (see P-IV) being based on gridded input data.

4.3 Validation of RLSC in Colorado

We consider the frame of the 1 cm geoid experiment as perfect validation opportunity for the RLSC
method, since we can derive a reference result, although the experiment uses real gravity data for
the calculation. This follows from the fact that the mean value of 14 independent results (13 for
height anomaly) along the 223 benchmarks of GSVS17 is assumed to be of much higher accuracy
than an individual result itself (P-1V). Correspondingly, we calculate the mean value from all results
of the 1 cm geoid experiment, denote it as ‘'mean reference’, and compare our result with it (P-1V). It
should be noted that all comparisons in P-IV are computed for the height anomaly (, since we (and
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most of the groups in JWG 2.2.2) use the theory of Molodensky (see Chap. 2.2) for the calculations.
Comparisons with the geoid height N can be found in Wang et al. (in review), but suffer heavily
from the geoid-quasigeoid separation term, which is not consistent among the groups. Additional
validations for the absolute potential value W are presented in Sanchez et al. (in review). Apart
from the comparison to the mean reference, several internal validations in P-IV allow the assess-
ment of our own result, and provide insights for the target area and available data sets. The findings
from comparisons in P-IV are summarized in the following:

e Our output grid (height anomalies () provides significant benefits towards available gravity
models. Compared to the combination of our a priori models, which consist of XGM2018 (in-
ternal successor of XGM2016), dV_ELL_Earth2014 (Rexer et al., 2016; Hirt & Rexer, 2015),
and ERTM2160, our result shows notable improvements in the medium wavelengths of the
gravity field. These differences between SH degree 720 and 2190 represent mainly the bene-
fit of the gravity observations towards the a priori models, which consist only from topography-
derived information in these degrees. In comparison to EGM2008 (Pavlis et al., 2012) our
result includes long wavelength improvements from the GOCE mission.

e The analysis of output residuals indicates a very good consistency between satellite, ter-
restrial and airborne gravity data in the non-mountainous regions. However, the terrestrial
measurements show partially disagreements to satellite and airborne observations in the
highly mountainous regions of Colorado. We assume that these differences result at least
partially from outliers or measurement errors in the gravity database of the terrestrial obser-
vations. Furthermore, the inhomogeneous data distribution should be considered: terrestrial
observations are often located in mountain valleys, which could result in a systematic bias for
the representation of the full gravity field.

e Further improvements of the RLSC result could be reached by an outlier detection or an
iterative RLSC approach, where the output residuals are used to derive input accuracies for
a second RLSC calculation.

¢ In comparison to the mean reference our height anomaly result has a mean value of 1.0 cm
and the lowest standard deviation (7.5 mm) among all 13 results (confirmed by Wang et al.
in review). When the individual mean offsets are corrected, our solution is the only result
that stays within +=2 cm to the reference, while it furthermore provides a realistic accuracy
estimation.

e Four alternative solutions (with adapted RLSC input) provide variations between a few mil-
limeter and up to 6 cm (P-1V, Fig. 11). This indicates that first, RLSC is able to adjust with
the necessary flexibility when there is detailed information about the individual data sets;
and second, that the remaining differences among the methods result partly from flexible
weighting of the data sets (satellite, terrestrial and airborne observations), and not only from
variations in the regional gravity calculation methods, the reduction models or the topographic
modeling.
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P-1V and this chapter mainly validate and quantify the performance of RLSC, while the following
two chapters focus on the results of the 1 cm geoid experiment in general, their error contributions
and the quality of different methods.

4.4 Comparisons to a mean reference

The individual groups in the 1 cm geoid experiment provide height anomaly results which differ
with a standard deviation of 7.5 mm to 2.4 cm from the mean reference (P-1V). In doing so, 10 out
of 13 groups show standard deviations between 1 and 2 cm, which is considered as the corre-
sponding benchmark. A description of each method and further statistics are presented in Wang
et al. (in review), while visualizations of the differences can be found in P-IV and Wang et al. (in
review). It should be noted that the input gravity measurements in this evaluation scenario are iden-
tical for all groups, and accordingly, the mentioned standard deviations cannot be considered as
overall accuracy for regional gravity field determination. However, the differences include effects
from regional gravity field and topographic modeling methods, global reduction models, weight-
ing between different data sources and conventions. The conventions are mostly unified during
several stages in the 1 cm geoid experiment, which is shown in Wang et al. (in review). How-
ever, some differences remain even after the final iteration (e.g., theory of Molodensky vs. Stokes,
Sect. 2.2).

P-IV demonstrates that the different handling and relative weighting of available data sources (in the
1 cm geoid experiment: satellite, terrestrial and airborne measurements) have a significant effect to
the final performance. This effect should be approximated based on the calculations in P-1V, where
three RLSC results are presented with different relative weighting between airborne and terrestrial
data. In Fig. 4.1, the three combined solutions are repeated from P-IV in relation to the mean
reference, which is defined as zero. The black curve shows the final RLSC result in the 1 cm geoid
experiment. The green curve is based on the same calculations, but includes a reduced relative
weight for the airborne observations, while it is increased for the purple curve respectively (details
in P-1V). The standard deviation of the differences between the final result (black) and the two
alternate versions (green and purple) is 0.4 and 0.5 cm, respectively. These are effects resulting
from a slight modification within a consistent processing method, which even includes the same
weighting for the satellite information and the XGM2018 in general. Correspondingly, the effect of
relative weighting within the 1 cm geoid experiment, where we have different approaches which all
differ in their data reduction, data thinning (see P-IV) and downward continuation, is assumed to
be significantly higher, and accounted for with 0.5 to 1 cm at least.

The additional curves in Fig. 4.1 show model-only solutions. The red curve is the height anomaly
result for the combination of our a priori models (XGM2018, dV_ELL_Earth2014, ERTM2160),
which equals Eq. 29 in P-IV without the RLSC effect (A (,ut). Like already discussed in P-IV, the
model only solution results in significant disadvantages in the medium wavelengths of the gravity
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Fig. 4.1 — Comparison of different height anomaly solutions along GSVS17.

field, where it contains only topography-derived gravity information instead of measurements. In
the Colorado test area, the topography is generally highly mountainous. Additionally, GSVS17
runs along mountain valleys and over mountain passes, where the mere topographic information
from dV_ELL_Earth2014 seems not reliable enough to describe the real gravity field with a very
high accuracy. In Fig. 4.1, we cannot see any correlations between the final RLSC result (black)
and the combination of our a priori models (red). Correspondingly, the two solutions IAPG and
DGFI in the 1 cm geoid experiment are assumed to include only minor correlations, although their
a priori models are very similar and differ only in the version of XGM. The blue curve in Fig. 4.1 is
an EGM2008 based model-only solution, which is combined with ERTM2160 for the gravity field
effects above SH degree 2160. In the medium wavelengths of the gravity field, the blue curve fits
generally better to the mean reference than the a priori models (red). However, we see a long-
wavelength deviation due to missing GOCE information. Accordingly, the interpretation of model-
only solutions along GSVS17 in Fig. 4.1 is identical to the corresponding analysis in P-IV (Fig. 7),
which used grid comparisons.

In terms of a statistical comparison towards the mean reference, the a priori models in P-1V have a
standard deviation of 4.0 cm with a mean value of -0.8 cm, while the EGM2008 based solution has
a standard deviation of 2.3 cm with a mean of 0.6 cm (Tab. 4.1). Correspondingly, we can verify that
in a comparison to the mean reference along GSVS17, regional gravity field modeling in general
provides better results than a solution from SHS or a combination of models (theory described in
Chap. 2.4). RLSC shows much better standard deviations than the model-only solutions. However,
it should be noted that the model-only solutions in the area have generally not included the airborne
gravity measurements yet, which could lead to an improvement of those in the future. Furthermore,
the mean reference of all groups from the 1 cm geoid experiment is not the perfect validation for
global models or SHS, as is explained in the following chapter.
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Solution SD Mean value Description Figure

RLSC (IAPG’) 0.7cm 1.0cm Sect. 4.3 Fig. 4.1; P-IV: Fig. 10 & 11
SRBF ('DGFI’) 0.9cm 0.5cm Sect. 4.6 in Liu et al. (2020b)
EGM2008 23cm 0.6cm Sect. 4.4 Fig. 4.1

A priori models in P-IV. 4.0cm -0.8cm Sect. 4.4 Fig. 4.1

Tab. 4.1 — Comparison of different solutions to the mean reference of the 1 cm geoid experiment in
Colorado. Provided are Standard Deviation (SD), mean value, the corresponding chapter in
this thesis and the figure, where the solution is visualized.

4.5 Quality assessment from GSVS17 measurements

The quality of individual solutions is validated against a reference mean value in Sect. 4.3 and 4.4,
but can also be analyzed in comparison to independent GNSS/leveling measurements with a
higher accuracy, which will be available from GSVS17. These GSVS17 measurements should
be published together with a detailed description and evaluation by van Westrum et al. (in review).
They were purposefully not shared within the 1 cm geoid experiment in order to provide an inde-
pendent validation method for the results of the individual groups (Wang et al., in review). However,
the JWG’s summary paper by Wang et al. (in review) already includes an in advance comparison,
which shows the visual difference of individual solutions with GSVS17 and the corresponding mean
value, standard deviation, minimum and maximum value. It should be noted that the submission of
the summary paper (April 2020) by Wang et al. (in review) was much later than the submission of
P-1V (early November 2019). Accordingly, P-1V does not include comparisons with the measure-
ments of GSVS17, and this thesis only a general discussion, as the actual values of GSVS17 are
still not publicly available (June 2020). For the comparisons of individual results with GSVS17, a
bias has to be removed (Wang et al., in review), which is included in the orthometric heights of
NAVD88 (North American Vertical Datum of 1988).

In Wang et al. (in review), the height anomalies of the 1 cm geoid experiment differ with standard
deviations of 1.8 to 3.6 cm from the GSVS17 measurements. Thereby, 12 out of 13 solutions range
within the standard deviations from 2.5 to 3.6 cm, which is considered as the overall quality of grav-
ity data and methods in this case (since the accuracy of the GSVS17 measurements is assumed to
be very high). However, the GSVS17 measurements show systematic effects compared to the indi-
vidual solutions from the 1 cm geoid experiment (Wang et al., in review). While the height anomaly
of the models is in average a few centimeters higher than GSVS17 from benchmark 1 to 165, it is
several centimeters lower after this point. At one point around benchmark 185, all solutions from
the 1 cm geoid experiment are at least 3.5 cm below GSVS17, and the mean reference shows ab-
solute differences of more than 5 cm to GSVS17 at some benchmarks. This effect cannot be traced
back to the methods, which are generally independent from each other, and are likely to result from
systematic effects within the gravity data of the 1 cm geoid experiment or even a remaining problem
in the GSVS17 validation. Accordingly, the overall quality of 2.5 to 3.6 cm includes a significant con-
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tribution from systematic effects in the underlying measurements. It can be expected that even a
perfect method in the 1 cm geoid experiment could not reach results, which are similar to GSVS17.
As a result, GSVS17 cannot be used for the validation of different methods without adaptions, and
the comparison to the mean reference is currently considered as the preferred quality assessment
for modeling methods within the 1 cm geoid experiment.

4.6 Co-author publication: Liu et al. (2020b)

Accordingly, the DGFI result in Liu et al. (2020b) is also validated against the mean reference
of height anomalies along GSVS17. With a mean value of 0.5 cm and a standard deviation of
0.9 cm (Tab. 4.1), the result from SRBF is the second solution with a standard deviation below
1 cm (Wang et al., in review). Note that Liu et al. (2020b) do not include the same value, as the
publication focuses on Root Mean Square (RMS) calculations, where its difference to the mean
reference is 1.0 cm. Liu et al. (2020b) offer the only solution in the 1 cm geoid experiment, which
results are from SRBFs, and explain the corresponding method in detail. Thereby, the publication
highlights the effects and the characteristics that result from the selection of various SRBFs. Unlike
P-1V, this publication also includes comparisons about geoid heights (along GSVS17), but shows
clearly that the comparison of height anomalies is beneficial in the 1 cm geoid experiment. This
also supports the findings in Wang et al. (in review).

Like P-1V, Liu et al. (2020b) include height anomaly solutions in case either the terrestrial or the
airborne data set is not included to the calculation. Both publications agree that the combination
of all available data sets is clearly beneficial to the respective ‘single solutions’, and show this
visually (Fig. 11 in P-IV; Fig. 6 in Liu et al. 2020b). In both cases, the terrestrial-only solution
provides better results than the airborne-only solution, as the difference between airborne-only
solution and mean reference is dominated by a specific wavelength. Obviously, in a mountain-
ous region, airborne gravity measurements with a setting like in the GRAV-D project (e.g., data
line spacing 10 km) are not recommended as only gravity observation source. However, P-IV
and Liu et al. (2020b) show a much better agreement for other areas in the Colorado experi-
ment, which indicates that the lack of terrestrial observations would have a much smaller impact
there.

In general, methods for regional gravity field determination depend on the quality of a priori models.
This results from the fact that local gravity field calculations cannot determine the long wavelength
components of the gravity field, which are mainly available from satellite missions (Sect. 2.2). Fur-
thermore, the density of terrestrial observations is in general not sufficient to determine the very
high frequencies of the gravity field, which are largely correlated to topography and approximated
from it (Hirt et al., 2013; Rexer et al., 2016). Fig. 4.1 and Sect. 4.4 indicate that a priori models alone
are generally not sufficient to meet requirements of very high accuracy. However, the results in P-1V
and Liu et al. (2020b) suggest that RLSC and SRBFs work well with the corresponding a priori mod-
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els, as the combination of XGM, dV_ELL_Earth2014 and ERTM2160 is applied in the two solutions
with the lowest standard deviation (in comparison to the mean reference for height anomalies).
Thereby, the amplitudes of the very high frequencies in the solutions IAPG and DGFI are relatively
small by comparison to other methods (P-1V, Fig. 10 and Wang et al. in review), which supports the
inclusion of ERTM2160. More importantly, the same effect can be observed in a validation against
the GSVS17 measurements (Wang et al., in review), which confirms the corresponding handling of
high-frequency signal. It should be noted that it is not possible to evaluate the XGM model from the
comparison to the mean reference, as more than half of the participating groups included it to their
calculation (Wang et al., in review). Accordingly, the differences between XGM and the GSVS17
measurements should be studied in detail, as soon as the GSVS17 measurements are published
with a detailed documentation of their calculation.

4.7 Co-author publication: Wang et al. (in review)

P-1IV and previous parts of this chapter explain why the comparison to a mean reference along
GSVS17 is the best approach to validate different methodologies for regional gravity field determi-
nation in the 1 cm geoid experiment. Apart from the evaluation of standard deviations and mean
values in comparison to the mean reference (Sect. 4.4, P-1V) and the analysis of the high-quality
measurements along GSVS17 (Sect. 4.5), Wang et al. (in review) provide further validations, which
are partially discussed for RLSC and SRBFs in the following.

In the comparison against the mean reference, Wang et al. (in review) also present a statistical
value which is called range’. It gives the bandwidth between the maximum and minimum differ-
ence from the mean reference. While this range is 3.4 cm for the IAPG result and 4.3 cm for
DGFI, the average of the remaining methods amounts a range of 8.4 cm. RLSC and SRBFs pro-
vide not only the lowest standard deviations, but also the smallest peak deviations to the mean
reference. Accordingly, the calculation of these two methods is less likely to include significant
errors, which could result from data preparation, the remove-compute-restore approach or basic
definitions. This is considered to be an additional prove of their reliability in the 1 cm geoid experi-
ment.

The 1’ x 1" height anomaly grids, which are submitted in the 1 cm geoid experiment, are also evalu-
ated against a common mean reference. However, it should be considered that unlike the GSVS17
benchmarks, the definition of the output grids and their positions was not generalized among all
groups. Accordingly, different groups might calculate gravity functionals at a different topography,
and Wang et al. (in review) had to interpolate some grids due to different cell-registrations. In
case one solution is considered as an outlier, the standard deviations in comparison to the mean
reference amount from 1.5 to 2.9 cm. The corresponding range varies from 18.0 to 44.9 cm ac-
cordingly. In both cases, the DGFI result shows with 1.5 cm and 18.0 cm the smallest (best) values,
whereby RLSC is slightly behind with 1.8 cm and 20.3 cm respectively. In general, the standard
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deviation of the grid comparison increases by a factor of 1.5 to the GSVS17 benchmarks. We
conclude that this increase results mainly from differences in the output positions among various
groups. Accordingly, the comparison of grid results is not as reliable as the comparison of GSVS17
benchmarks in order to evaluate an individual method’s quality. The comparison of 1° x 1’ geoid
grids is also included in Wang et al. (in review), but includes the separation term, as most groups
calculate the height anomaly ( first, and derive the geoid height /V from it. As a result, all values
for the quality assessment of geoid heights N increase significantly in comparison to the height
anomaly (. For the geoid heights the standard deviations are between 2.1 cm and 5.6 cm, while
the range amounts for 25.0 to 68.7 cm. However, it should be noted that in this case no solution is
identified as outlier.

In Wang et al. (in review) these geoid height grids are also used for the validation with historical
GNSS/leveling observations, which allow the derivation of geoid values N. However, the signifi-
cance of these comparison is limited by the following aspects:

e The validation of GNSS/leveling observations also includes errors from the separation term
between the height anomaly ¢ and the geoid height N.

e In order to compare the individual solutions to the GNSS/leveling observations, the geoid
height grids have to be interpolated at the GNSS/leveling benchmarks. In the mountainous
area of the Rocky Mountains, this interpolation is likely to produce effects in the measurable
range.

e The GNSS/leveling observations include a tilt and a bias, which is reduced by the values
from a mean geoid grid. Although, this reduction should be able to characterize the local
bias/tilt, some effects from the separation term or the topographic reduction could remain in
the comparison.

e According to Wang et al. (in review) the quality of historical GNSS/leveling observations in
the mountainous areas of the Rocky Mountains is believed to be poor. It is estimated to be
between 3 and 5 cm.

Correspondingly, the analysis of historical GNSS/leveling observations cannot be the main indica-
tor for the quality of different solutions in 'the 1 cm geoid experiment’. The standard deviations in
this comparison are between 4.3 and 6.0 cm, whereby RLSC has 4.9 cm and SRBFs have 4.8 cm.
The range is between 27.8 and 39.9 cm (when one solution is considered as outlier). RLSC has a
range of 31.8 cm, while SRBFs have 34.5 cm. Accordingly, RLSC and SRBFs produce average re-
sults in the validation from historical GNSS/leveling observations.



4.8 Evaluation, summary and research questions 43

4.8 Evaluation, summary and research questions

P-1V applies RLSC with original gravity field observations for the first time. It explains why air-
borne gravity measurements should be smoothed with a low-pass filter, and how this filter is con-
sidered in the functional and stochastic model of RLSC. Since previous LSC approaches do not
consider correlations from low-pass filtered observations, the RLSC concept in P-IV should be
able to improve the combination of heterogeneous gravity data and provide a more realistic accu-
racy estimation. Correspondingly, the formulation in P-IV explains, how and why a low-pass filter
is included to the RLSC formulation, which answers research question Q7. P-IV also describes
the RLSC result within the scope of IAG JWG 2.2.2 'the 1 cm geoid experiment’. Accordingly,
the purpose and main conclusions of P-IV are summarized in Sect. 4.1 and Sect. 4.3, respec-
tively.

The available terrestrial and airborne gravity data in Colorado and New Mexico are used for re-
gional gravity field modeling by 14 international groups. In order to evaluate the height anomaly
results along the GSVS17 benchmarks, a mean value of all solutions is used as reference. In a
comparison against this reference, the height anomaly solutions IAPG with RLSC and DGFI with
SRBFs provide the smallest standard deviations among all results (0.7 and 0.9 cm respectively).
Although, this does not necessarily mean they are the best methods for regional gravity field mod-
eling, it demonstrates their validity and robustness in a challenging real data scenario. This is also
supported by the small peak-to-peak range, which both methods have in the comparison to the
mean reference. Furthermore, the comparisons verify the results of the newly developed concept
of RLSC with an included low-pass filter approach (P-1V). Currently, the comparison to the mean
reference along GSVS17 is considered as one of the most meaningful quality assessments. This
chapter and Wang et al. (in review) also describe other comparisons and validations for the results
in the 1 cm geoid experiment. Thereby, RLSC and SRBFs produce either good or average results.
The detailed description in P-IV and the analysis in this chapter answer research question Q8, as
they evaluate the performance of RLSC in various validations.

Within the 1 cm geoid experiment we result in the following conclusions for the error assessment:
the overall accuracy of height anomaly calculations with various methods along GSVS17 is gener-
ally between 1 and 2 cm, when the input accuracy of gravity measurements is not considered. In a
comparison to real measurements of high accuracy (GSVS17), various methods show differences
between 2.5 and 3.6 cm. However, this presently includes systematic effects, which result most
likely from the terrestrial gravity observations in the 1 cm geoid experiment. A proportion of these
comparison results exists only from differences in the relative weighting between terrestrial and
airborne observations. In an analysis along GSVS17, this effect is estimated with approximately
1 cm. The quality of two model-only solutions was investigated as well, and indicates significant
disadvantages along GSVS17. However, the performance of these solutions cannot be quantified
directly, as they should be compared to the high-quality observations from GSVS17 instead of the
mean reference (as done in Sect. 4.4).
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In the overall structure of this thesis, Chap. 4 and P-IV apply and verify RLSC in a combination of
terrestrial, airborne and satellite information, which satisfies research objective O3. Chap. 4 spe-
cializes the RLSC concept from Chap. 3 for a data scenario in Colorado. In collaboration with P-1V, it
thereby validates the RLSC method with real data for the first time.



Chapter 5

Discussion

5.1 Future aspects of the 1 cm geoid experiment

Conclusions of 'the 1 cm geoid experiment’ are currently published in the special issue 'Reference
Systems in Physical Geodesy’ (RSPG) of Journal of Geodesy. It should include all publications
that are mentioned in this context in Chap. 4, whereby the current status (June 2020) of these
publications is given in the following:

e P-IV was first submitted in November 2019 and was accepted after the second revision on
July 1, 2020.

e The summary paper Wang et al. (in review) was initially submitted in April 2020 and is still in
review.

e The publication Liu et al. (2020b) is in review since March 2020.

e The summary paper Sanchez et al. (in review) with the strategy for implementation of the
IHRS was first submitted in May 2020 and is currently in review.

e van Westrum et al. (in review) was also submitted in May 2020 and is in review at the moment.

Several other publications in RSPG describe the solutions of other participating groups in detail,
while their results and a short summary are also included in Wang et al. (in review) and Sanchez et
al. (in review). van Westrum et al. (in review) describe the gathering and evaluation of high-quality
measurements along GSVS17. After their publication, the analysis of high-quality measurements
along GSVS17 should be used for further studies within the continuation of the 1 cm geoid exper-
iment. Furthermore, the publication of high-quality measurements along GSVS17 would allow a
more detailed analysis of the systematic effects in Wang et al. (in review). It should be possible
to define a part of GSVS17 that is not affected by systematic effects, which allows the determina-
tion of an overall accuracy for regional gravity field determination in very challenging terrain. The
availability of high-quality observations will additionally allow a better evaluation of the model-only
solutions which are presented in Sect. 4.4.
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Analysis of the 1 cm geoid experiment will be continued in a new JWG in the IAG period from 2019
to 2023. This JWG is called 'Error assessment of the 1 cm geoid experiment’ and chaired by the
author of this thesis. Its purpose is to further validate the computations, derive realistic error esti-
mates, and determine and quantify possible error sources. Thereby, particular importance should
be given to the separation of data-driven errors and method-driven errors, as the latter could sig-
nificantly affect the calculation of IHRF stations. In general, the ability of a method to estimate an
error budget for the computation of potential values is very important for the IHRS. Due to data
restrictions, varying data quality and different local characteristics, the quality of IHRS stations will
vary significantly around the globe. Accordingly, potential values of the IHRS should be accompa-
nied with realistic accuracy estimations. The contribution of the 1 cm geoid experiment to the IHRS
and a specific proposal for the implementation of this HSU are already included in the conclusions
of P-1V, and will be further explained in Sanchez et al. (in review).

5.2 RLSC for the calculation of IHRF stations

The most general approach for the unification of (physical) height systems is the combination of
GNSS measurements with a geoid model (Sect. 2.3, /hde et al. 2017). In Sect. 2.4, three ap-
proaches are considered in order to calculate the geoid model regionally around an IHRF station.
In the author’s opinion, the combination of a high-resolution GGM with a refinement from local
gravity observations is preferable for the realization of the IHRS (Sect. 2.4, case 3). This approach
provides the most consistent solution globally, as all stations of the IHRS would include the same
high-resolution GGM as reference model. Especially IHRF stations in regions close to the sea
could benefit from this approach, as high-resolution GGMs generally provide a good quality over
oceans. In these areas, regional gravity field determination from a satellite-only GGM (case 2)
would have to consider altimetry on top of local gravity observations. This would make the cal-
culation more complicated, and would most likely result in method-dependent differences for the
calculation of IHRF stations around the world. Case 1, which is the derivation of potential values
from model calculations alone, stays the easiest approach. However, it should be preferred only in
cases, where no local gravity observations are available or the accuracy requirements are not too
demanding.

RLSC provides consistent results for the refinement of a high-resolution GGM with local gravity
field observations (P-1V). In the 1 cm geoid experiment, it performs among the best and most
robust solutions of 13 independent calculations. For the introduction of an IHRS, we consider
RLSC as beneficial, since it provides the probably most sophisticated error modeling among all the
contributing methods of the 1 cm geoid experiment. The advantages of RLSC in terms of accuracy
estimation are repeated in the following from P-lll and P-1V:

e LSC, in general, allows the derivation of accuracy estimates from stochastic modeling, and
can even provide full covariance information of all output quantities (e.g., P-lll, Eq. 2). While
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other approaches for regional gravity field estimation are sometimes not able to provide ac-
curacy estimates, most of them are not able to calculate a full covariance matrix.

e RLSC models the accuracy of every input quantity and therefore includes all accuracy fac-
tors directly in its calculation (P-lll). This is not always the case for regional gravity field
estimations, as, for example, the reference model is often assumed as error free. Other LSC
approaches that consider the accuracy of all relevant error contributions are listed in P-III.

e The RLSC approach allows a (partially) anisotropic and location-dependent modeling of
the Earth’s gravity field (P-lll). This is enabled by the covariance information from a high-
resolution GGM (e.g., XGM2016), which is calculated from regional varying weighting. Pail
etal. (2010); Sanso & Sideris (2013) and Haagmans & van Gelderen (1991) include a similar
advantage, but formulate it only for satellite-only GGMs, while P-IIl is the first formulation for
high-resolution GGMs.

e RLSC allows the consideration of correlations between observations, which result, for ex-
ample, from a low-pass filter in airborne gravimetry (P-1V). Thereby, P-IV presents the first
inclusion of these correlations to a LSC-based calculation, as they are usually not taken
into account in regional gravity field determination. In a combination between different data
sets these correlations are of increased importance, as they influence the relative weighting
between different data sets (e.g., terrestrial and airborne observations).

e Airborne observations generally contain a very high resolution in along-track direction. The
direct one-step calculation in RLSC allows the full exploitation of this information for the com-
bination of various data sets (P-1V). Other approaches which include a regular grid as inter-
mediate step might lose the very high along-track resolution for their data combination.

We consider also two disadvantages for the calculation of IHRF stations with the present formu-
lation. First, the computation of covariance matrices for RLSC, in general, but specifically their
derivation from the high-resolution GGM, is very CPU-expensive (P-lll, Sect. 5). However, with
implementations for massive parallel computing, the computations are not necessarily time con-
suming in the absolute sense. Second, the estimation of output accuracies cannot automatically
consider inconsistencies between different data sets. At the present stage, these accuracies de-
pend significantly on the distribution of input observations (P-Ill, P-1V). Accordingly, an iterative
RLSC approach would be able to calculate realistic input accuracies in a first step. In a sec-
ond step, these estimated input accuracies, which for example consider inconsistencies between
terrestrial and airborne data sources, are used in a second RLSC calculation. However, this disad-
vantage is not specific for LSC or RLSC, but a common problem in approaches for regional gravity
field determination that provide an output accuracy.

A major focus of this thesis (P-lll and P-IV) is on the improvement of regional gravity field deter-
mination by adapting LSC. However, also the enhancement of gravity observations or reduction
models would lead to benefits in regional gravity field determination, and is therefore discussed in
the following two sections.
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5.3 The gravity models XGM2019e and EGM2020

In the 1 cm geoid experiment the RCR approach in RLSC is implemented with XGM2018 in com-
bination with the topography-induced gravity model dV_ELL_Earth2014 and partially ERTM2160.
Details of the reduction are described in P-IV (Sect. 4). This combination of dV_ELL_Earth2014
and XGM is considered as so useful that it is, by now, implemented in a new GGM. XGM2019e
is a combination of dV_ELL_Earth2014 and the new XGM2019 (Zingerle et al., 2020 accepted). It
includes the updated satellite model GOCOO06S (Kvas et al., 2019), and is available in three dif-
ferent versions and resolutions (Zingerle et al., 2019), which are described in Zingerle et al. (2020
accepted):

e XGM2019: includes no information of dV_ELL_Earth2014. lts spatial resolution is identical to
XGM2016 and XGM2018. It combines GOCOO06S and terrestrial data by applying full normal
equation systems. For a calculation of potential values at IHRF stations, XGM2019 would be
used for the covariance matrices Cg', C i and Cy” (see P-lll, Sect. 2.4).

e XGM2019e_2159: the resolution is identical to EGM2008. In P-1V, and possibly future IHRF
calculations, this model could be used for the remove-compute-restore approach of terrestrial
data in combination with ERTM2160.

e XGM2019e_5399: in its maximum resolution the XGM2019e is equivalent to a spatial resolu-
tion of 2’, which equals approximately 4 km. This model is equivalent to the combination that
was applied for the reduction of the airborne gravity measurements in P-IV.

Accordingly, XGM2019e would provide the following main benefits in a comparison to the reduction
approach in P-IV:

e Improvements from the new satellite model GOCOO06S.

e A more consistent transition zone around SH degree 719, where the high-resolution GGM
and the topography-induced gravity model are combined. XGM2019e applies a direct combi-
nation of the normal equation systems of XGM2019 and dV_ELL_Earth2014, therefore pro-
viding a consistent solution even in the transition area.

e A simplified data reduction (P-1V, Sect. 4), as the topography-induced gravity model is in-
cluded in the high-resolution GGM.

Additional changes to its predecessors (XGM2016, XGM2018) are also described in Zingerle et
al. (2020 accepted). Further improvements of XGM2019e are planned as soon as improved ter-
restrial gravity observations are available, for example, from EGM2020. This long-awaited succes-
sor of EGM2008 is currently developed by the National Geospatial-Intelligence Agency (NGA). It
will be provided in the same resolution as EGM2008, with a spatial resolution of approximately
10 km. In comparison to EGM2008, EGM2020 will benefit from new calculation procedures and
extended gravity data sources. Especially the representation of the long-wavelength component
of the Earth’s gravity field improved significantly since the publication of EGM2008, mainly by the
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satellite missions GRACE and GOCE (Sect. 2.2). Furthermore, several new acquisitions of gravity
data (terrestrial, shipborne and airborne) as well as additional marine observations from altimetry
will be included to EGM2020.

At one point, EGM2020 was planned for December 2019, but its publication prolonged and it is
currently not announced for a specific date (June 2020). Although, the model is not available yet,
it will likely be used as basis for the IHRS in the future. Since NGA has access to the world largest
gravity data base, EGM2020 will probably be for the time being the best representation of the
gravity field above satellite resolution. Accordingly, it makes sense to exploit the advantages of
EGM2020 for the definition of the IHRS and the calculation of IHRF stations. EGM2020 cannot
be included directly for RLSC, since it does not provide full variance-covariance information, and
its normal equation system will not be published. However, the publication of EGM2020 will allow
the calculation of a new XGM model, which would use the improved terrestrial data, and therefore
also improve RLSC. Correspondingly, we conclude that RLSC will be able to build upon up-to-date
GGM models even in the future.

5.4 Improvement of the GRAV-D processing

In the course of raw data analysis with GRAV-D observations at NGS, | have identified some possi-
bilities for data improvement. The current version of the GRAV-D processing (Beta2, GRAV-D Team
2018a,b) applies a Gaussian low-pass filter to the absolute gravity measurements, thereby assum-
ing a constant flight height in the observations. Although, the vertical movements of the aircraft are
relatively small, they can easily affect the absolute gravity observation which changes with height.
Consequently, the Gaussian low-pass filter should be applied to gravity disturbances g (Sect. 2.1)
rather than the absolute gravity g, as the normal gravity v is a good approximation for gravity
changes from height differences. Accordingly, the Gaussian low-pass filter would, in this case, not
reduce high-frequency noise from vertical movement, but only high-frequency noise from the grav-
ity instrument. Preliminary studies show, that low-pass filtered gravity disturbances are significantly
smoother than gravity disturbances from the current GRAV-D processing.

Furthermore, the outlier detection in the current processing seems overcautious, as it eliminates
more flight segments than necessary. This detection of outliers is implemented by a comparison
of the GRAV-D observations with synthesized values from a GGM (Sect. 2.1). However, the GGM
is realized with a SH model to degree 2190, therefore neglecting frequencies above. In the moun-
tainous areas of the Rocky Mountains (e.g., Colorado) the gravity signal at flight height can easily
exceed SH degree 2190. Accordingly, flight segments in these regions can be detected as outliers
not because of incorrect measurements, but simply due to high-frequency gravity signal. In my
opinion, the risk of incorrect outlier detection could be reduced, when it would be realized with
a GGM to a higher SH degree (e.g., XGM2019¢e). In the GRAV-D block MS05 (GRAV-D Team,
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2018b), which was used for the Colorado experiment, this approach would result in significantly
less data gaps than the current processing.

Finally, the identification and calculation of offsets in individual flight lines of the GRAV-D project
is not solved yet. In the beta2 version, GRAV-D measurements are tied to absolute gravity field
measurements at the airfield. However, this approach often results in a significant bias of in-
dividual flight lines compared to a GGM. Possible alternatives are the correction of individual
offsets directly from a GGM, or a crossover analysis between all flight lines of an observation
block. In both cases, the calculation of the offset gets more robust, when the length of the flight
line or respectively, the number of crossovers increases. Accordingly, both approaches would im-
prove when offsets are not calculated individually for each flight line, but jointly for all flight lines
between start and landing of the aircraft. An overview of these is available in GRAV-D Team
(2018a).

All in all, the analysis of these aspects is not finished, but will be continued in strong cooperation
with NGS.



Chapter 6
Conclusions

Regional gravity field determination in general and LSC methods in particular, use common simpli-
fications for their calculation procedure. Accordingly, the gravity field of the Earth is often modeled
as isotropic and homogeneous, although it is known that this is not true. Furthermore, correla-
tions from a low-pass filter in airborne gravimetry are generally not considered in common gravity
field modeling approaches. In this thesis, the new method called residual least-squares collo-
cation considers a high-resolution GGM as anisotropic and location-dependent, and includes it
in terms of a full variance-covariance matrix. Additionally, correlations resulting from a Gaus-
sian low-pass filter in airborne gravimetry are handled consistently in the functional and stochastic
model. Correspondingly, RLSC enables a more realistic accuracy estimation and provides an
enhanced modeling of the Earth’s gravity field. This makes RLSC a useful extension to already
existing LSC methods, which could be applied for the calculation of potential values at IHRF sta-
tions.

Although, potential values at IHRF stations can be derived from high-resolution GGMs, this would
generally not satisfy the accuracy requirements for the definition of an IHRS, mainly because of
the remaining omission error. Accordingly, the calculation of IHRF stations should be based on
regional gravity field determination on top of a GGM, which ensures global consistency. Therefore,
a satellite-only GGM or a high-resolution GGM is refined with local gravity observations, and ad-
ditionally supplemented with detailed information about topography-induced gravity effects. In this
thesis, RLSC is proposed for regional gravity field determination, as it could provide substantial
advantages for the calculation of IHRF stations.

RLSC is an adaption of already existing LSC approaches. RLSC models explicitly only residu-
als, whereby it uses error covariance matrices instead of the signal covariance matrices, which
are applied in LSC. As a result, the method describes every input quantity with a corresponding
covariance matrix, therefore providing error estimates that include all relevant contributions. For
the first time, RLSC includes full variance-covariance information of a high-resolution GGM into a
LSC-based calculation method. Furthermore, this thesis derives a concept for an optimal combina-
tion of a high-resolution GGM, terrestrial gravity observations and filtered airborne gravimetry. The
results of RLSC are validated by a comparison to height anomalies from 12 other approaches of
regional gravity field determination in the 1 cm geoid experiment. Thereby, RLSC provides reliable
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height anomalies in a very challenging and mountainous test area. RLSC leads to the smallest
standard deviation and the smallest peak-to-peak variation in a comparison to the mean refer-
ence along the GSVS17 benchmarks in Colorado. This is currently characterized as one of the
most important validation tools for regional gravity field modeling methods in the 1 cm geoid ex-
periment. In comparison to independent high-quality GNSS/leveling measurements, RLSC shows
lower high-frequency variations than several other methods, but also systematic effects. However,
these effects occur in a majority of the methods in the 1 cm geoid experiment, therefore indicating
that they are not related to the RLSC procedure itself.

In general, the assessment of method-related differences in the 1 cm geoid experiment amounts for
approximately 1 to 2 cm. Thereby, at least 0.5 cm of the differences, but more likely close to 1 cm,
result from different relative weightings of input data. The combination of method-related and data-
related errors is generally between 2.5 and 3.6 cm, when the high-quality measurements from the
GSVS17 benchmarks are considered as reference. However, data-related errors are significantly
increased by systematic effects, which will be analyzed in the current IAG period (2019-2023)
as soon as the GSVS17 measurements are publicly available. Most likely, it will be possible to
eliminate these systematic effects, or at least identify an area without them, so that the high-quality
measurements along GSVS17 would provide a realistic quality assessment of all error sources in
the 1 cm geoid experiment. Additionally, this would allow a better distinction between data-related
and method-related differences.

In the end, results in the 1 cm geoid experiment should be evaluated by a combined comparison
against the high-quality GNSS/leveling measurements along GSVS17, and the joint mean value of
all solutions. Thereby, the comparison to high-quality measurements evaluates a method’s general
ability to calculate potential values with high accuracy. Especially in the high-frequency part of the
gravity field, GNSS/leveling observations provide a very accurate validation. The comparison to
the joint mean value ensures that different methods provide similar results when using identical
data, which should guarantee a uniform IHRS system even when IHRF stations are calculated with
different methods. Accordingly, methods that perform well in both validations prove their reliability
and performance in a very challenging test case, and could generally be used for the calculation of
IHRF stations. Apart from the evaluation of GSVS17 measurements, the continuation of the 1 cm
geoid experiment will also resume the analysis of differences among the methods. Especially the
handling of topography, the inclusion of airborne gravimetry and the separation term between geoid
height and height anomaly are likely to be responsible for remaining differences in the results. The
contribution of these aspects should be quantified, which will finally allow an even better unification
of all methods.

To summarize, this thesis explains why the adaptations in RLSC provide more realistic error es-
timates than common LSC approaches. RLSC improves the calculation of gravity functionals by
modeling an anisotropic and location dependent gravity field, and enables a direct combination
of heterogeneous gravity data even considering the correlations from a low-pass filter. This work
presents a determination and quantification of possible error sources in the 1 cm geoid exper-
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iment, which will be intensified in the continuation of the JWG. While this thesis already evalu-
ates advantages of the RLSC approach in order to derive realistic accuracy estimates, the con-
tinuation of the JWG will study this aspect for other methods of regional gravity field determina-
tion.
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Appendix A

P.1 Publication I: Analysis of GOCE Omission Error and its
Contribution to Vertical Datum Offsets in Greece and its
Islands
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Abstract

In this paper we evaluate three different geoid models (a pure and an extended satellite-only model
and a local geoid solution) for the mainland of Greece and fourteen of its biggest islands in terms
of signal content and applicability for height system unification. By comparing local geoid heights
from GNSS and spirit leveling with the three geoid models it is possible to make statements about
the Earth’s gravity signal that is omitted in these models (omission error). In a further step we
try to quantify the contribution of the omission error to the height system unification between the
investigated islands. It becomes obvious that a satellite-only gravity field model (GOCOO05S) until
degree and order 200 is not sufficient for the mountainous islands of Greece due to an omission
error of up to 2 m. The same model with high frequency corrections from EGMO08 as well as
topography is able to reduce the omission error drastically and shows similar results as for the
local geoid model. As an outcome, we can see homogeneous omission errors for the smaller
islands and in general a high correlation between the size of the island and the amplitudes of the
omission error.
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1 Introduction and Problem Definition

Abstract

In this paper we evaluate three different geoid models (a pure and an extended satellite-
only model and a local geoid solution) for the mainland of Greece and fourteen of its
biggest islands in terms of signal content and applicability for height system unification. By
comparing local geoid heights from GPS and spirit levelling with the three geoid models it is
possible to make statements about the Earth’s gravity signal that is omitted in these models
(omission error). In a further step we try to quantify the contribution of the omission error
to the height system unification between the investigated islands. It becomes obvious that a
satellite-only gravity field model (GOCOO05S) until degree and order 200 is not sufficient for
the mountainous islands of Greece due to an omission error of up to 2 m. The same model
with high frequency corrections from EGMOS as well as topography is able to reduce the
omission error drastically and shows similar results as for the local geoid model. As an
outcome, we can see homogenous omission errors for the smaller islands and in general a
high correlation between the size of the island and the amplitudes of the omission error.

Keywords
GOCE -« Height systems ¢ Local vertical datum ¢ Omission error

it is observed by the Gravity field and steady-state Ocean
Circulation Explorer mission (GOCE) satellite (Drinkwater
et al. 2003) in combination with other satellite information

The connection and unification of height systems has been
identified as one of the most important tasks in physical
geodesy. The International Association of Geodesy (IAG)
accommodated this and issued a resolution about the
establishment of an International Height Reference System
(IHRS) (Drewes et al. 2016). The basis of height system
unification is a globally consistent Earth gravity field as
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as it is provided by the Gravity Recovery And Climate
Experiment mission (GRACE) (Tapley et al. 2004). It has
been proven that GRACE/GOCE based Earth gravity field
models deliver the static part of the geoid with an accuracy
of 1-2 cm at spatial scales of 100 km and larger (Brockmann
et al. 2014). Still missing are geoid signals with smaller
spatial resolution, which cannot be observed by satellites
due to their distance from the Earth surface. This is the
so-called omission error, which plays an important role in
height system unification and is the major topic of this paper.

We investigate the possibility to account for the omission
error (or in other words the omitted signal) in a satellite-
only gravity field model depending on local characteris-
tics at the evaluation points (e.g. availability of gravity
observations, terrain roughness, land-ocean transition). We
regard three possible approaches: (1) The omission error
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is neglected at all, assuming that no surface gravity data
is available. (2) The omitted signal is estimated from a
global high resolution gravity field model incorporating
surface and altimetry-derived gravity data, e.g. the EGM2008
model (Pavlis et al. 2012, 2013), and topography-induced
gravity field information (confer Hirt et al. 2010). (3) A
regional geoid model (Grigoriadis 2009) based on a satellite
model and terrestrial/altimetry gravity data is used, assuming
that this model contains the full gravity signal. The results
obtained from these three approaches are finally compared to
independent geoid heights as they are derived from GPS and
spirit levelling. This will allow us to gain accuracy estimates
about the incorporated data sets and/or the estimation of the
omission error at each individual point investigated. Finally,
the impact of the omission error on offsets between different
height systems can be quantified as well.

With its hundreds of islands Greece is an ideal test area
for such analyses. The mainland of Greece and the islands
have numerous different (orthometric) height systems, also
known as locally realised vertical datums, which have never
been connected through hydrostatic levelling. Most of the
islands show large topographic effects and the omission error
frequently lies far above the global average of about three
decimetres as it is determined from standard degree variance
models (Gruber et al. 2011, 2014). Furthermore, the islands
in the Aegean and Ionian Sea have already been subject
to several studies about the geopotential value Wy and the
height offsets (Kotsakis et al. 2012; Grigoriadis et al. 2014).
These can be complemented with the different aspects of
this analysis. The origin of the Hellenic Vertical Datum is
defined by the tide gauge station in Piraeus harbour near
Athens, but only the mainland of Greece is connected to this
official vertical datum. All islands have their own vertical
datum installed by the Hellenic Military Geographic Service
between 1963 and 1986 according to the local mean sea level
at one point respectively (Grigoriadis et al. 2014).

The situation between various islands is exemplified by
two different vertical height systems and an ocean in between
(Fig. 1). The following description is a summary of Gruber
etal. (2012), but adapted to the situation in Greece. As ortho-
metric heights are chosen as height coordinates in Greece we
stick to these in the following analyses, but all conclusions
are applicable to normal heights as well. For more details
about height systems, geoid determination from spherical
harmonics, or regional approaches we refer to Heiskanen and
Moritz (1967).

Local height systems are defined by the local equipoten-
tial surface through the origin of the vertical system, which in
most cases is set to the observed mean sea level at one point
at the coast (e.g. tide gauge) (brown solid line). Orthometric
heights (brown dotted lines) can then be transferred from
the origin to every other point on the Earth surface by spirit
levelling and gravimetry.

M. Willberg et al.

— Local vertical datum

— Satellite equipotential surface

— True equipotential surface

------ Ellipsoidal height h (from GPS)

= Orthometric height H (from levelling)
Computed geoid height N (from model)

------ Commission and omission error

“““ Offset of local vertical datum

Fig. 1 Overview of different heights and reference surfaces as used in
this paper. Adapted from Gruber et al. (2012)

With the combination of ellipsoidal heights determined
from GPS (green dotted lines) and in case of error-free
orthometric heights one can compute the height of the local
equipotential surface above the reference ellipsoid, which
is named local geoid throughout the paper. But neither the
local geoid height nor the orthometric height can be com-
pared between different height systems, because of different
origins in the vertical datum (Fig. 1). Satellite based global
gravity field models are able to deliver a globally consistent
equipotential surface (red solid line), but as explained above
this still differs from the true equipotential surface (purple
solid line) due to the commission and omission error (black
dotted line).

The paper is structured as follows: Sect. 2 describes the
different data sets used in this study. After that, we present
the procedures and their results for three different geoid
models with a special emphasis on the accuracies of each
model in Sect. 3 and the influence of these accuracies on
height systems in Sect. 4. The final Sect. 5 summarizes the
results and provides some conclusions.

2 Data Sets Used for the Study

For the evaluation we need geoid information from a Global
Gravity Model (GGM) based on GOCE, a local geoid
calculation based on terrestrial gravimetry information
and GPS/levelling data, which we use to check our three
approaches at selected stations. Of all the Greek islands we
select only those with twelve or more GPS/levelling stations
available for our study. In addition, we include data from
the Greek mainland. The procedure itself is not limited to
the chosen islands, but a minimum number of GPS/levelling
stations helps to derive conclusive results. A map with the
14 selected islands (Andros, Chios, Corfu, Crete, Eyvoia,
Karpathos, Kefalonia, Kos, Lesvos, Limnos, Naxos, Rhodes,
Samos and Zakynthos) can be found in Sect. 4 (Fig. 3).

martin.willberg@tum.de
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2.1 Geoid Solutions from Global Model

With GOCOO05S we use a state-of-the-art satellite-only GGM
based on all data from the GRACE and GOCE missions
(Mayer-Giirr and GOCO Team 2015). Comparisons to other
combined GGMs (EGM2008, GOCOO05C) show that it has
full signal content approximately up to degree 200-220.
Therefore, using this model up to degree and order 200,
assuming that no terrestrial data is available, is a good
starting point for our initial analysis (confer case 1 in the
introduction). For case 2 the omitted signal is approximated
in two steps: first, by adding the EGM2008 model geoid
from degree 201 to degree 2190, and second, by adding
the geoid impact computed from a Residual Terrain Model
(RTM) above the resolution of EGM2008. A more detailed
description of the general approach of using a GGM in order
to estimate the omission error can be found in Gruber et al.
(2011).

2.2 Local Hellenic Geoid Model

The Hellenic Geoid Model 2009 (HGM2009) was derived
from a thoroughly validated gravity database, which contains
terrestrial data for land and sea areas as well as satellite
altimetry derived gravity anomalies. The HGM2009 was esti-
mated by employing the spherical Stokes kernel and the 1D
spherical FFT approach (Haagmans et al. 1993). Regarding
the necessary reductions, the EGM96 (Lemoine et al. 1998)
was chosen as the geopotential reference model, while a
Digital Terrain and Bathymetry Model, obtained from the
combination of SRTM3 (Farr et al. 2007) and SRTM30-Plus
(Becker et al. 2009), was used for computing the terrain
corrections.

23 GPS-Levelling Data

The GPS measurements used in this paper originate from a
nation-wide campaign carried out in 2007 and their resulting
height accuracy is given as 2-5 cm (Vergos et al. 2014). The
orthometric heights were measured by spirit and/or precise
trigonometric levelling long before the GPS measurements
were taken and their precision at that time was given as
approximately 1-2 cm. Nevertheless, their true precision
remains unknown, because the levelling was not accom-
panied by local gravimetric ground measurements; instead,
interpolated values from free air anomaly maps were used
(Kotsakis et al. 2012). This results in a hardly quantifiable
error due to nonparallel equipotential fields. For this reason,
the levelling data represent the most problematic data set
used in our study.
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3 Omission Error Analysis

For the omission error analysis, we compare the geoid
solutions of the three mentioned cases with the local geoid
height which we get from GPS-levelling by subtracting the
orthometric height H from the ellipsoidal height 4 (compare
Fig. 1). This is done for every point i with GPS/levelling
observations by the difference

AN; = Ni—(h;-H,;), (1)

where N; is the selected geoid solution. As the geoid model
N and the orthometric height H in general refer to differ-
ent equipotential reference surfaces there is a height offset
in AN. It is assumed that the GPS/levelling observations
contain the full signal of the Earth gravity field, so the
omission error of our geoid models N completely transfers
to AN along with random and systematic errors in all three
quantities involved. Systematic errors can occur due to geo-
metrical distortions in the levelling network, long or medium
wavelength effects in the geoid model, datum inconsistencies
between geoid and ellipsoidal heights and unmodeled time-
dependent variations (Kotsakis et al. 2012). For analyzing
the omission error, we eliminate the constant offset and the
systematic distortion from the observations by a planar fit to
AN and by subtracting this plane from the differences.

AN; corrected _ Ni— (hi_Hi) _A NcorrectionSurface (2)

We do not apply a higher order correction surface as this
could partially remove the omitted signal as well. Because
there are outliers in the GPS/levelling data we also apply
a simple 20 criterion during the data processing, which
eliminates about 5% of our observation points. Also, these
outliers were not used for further analyses.

After removing the offset and the systematic distortions,
the random errors as well as the omission errors remain in
AN;omeed and can be interpreted for our three test cases.
As we are not interested in single point differences we use
the standard deviations over a target area (island or mainland
Greece respectively) to evaluate geoid differences (Fig. 2).
When we neglect the observation errors of GPS and levelling
for a moment and assume that the estimation of the correction
plane removes systematic distortions, then in cases 1 and 2
the remaining AN;*°™®d gives us the sum of omission and
commission error of our geoid model N determined from
spherical harmonics. In case 3, in contrast, AN;corrected ghowg
mainly modelling errors in the local Hellenic Geoid. Accord-
ing to a variance-covariance propagation of the GOCOO05S
model, the commission error in Greece accounts for about
1.6 cm.
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Fig. 2 Standard deviation of 0.3
AN;orected for the three different
geoid models: case 1 (blue), case
2 (green) and case 3 (yellow). All 0.25
bars are presented after
parameter estimation of a plane
and outlier removal by a 20 02 -
criterion. Cutted bars show = :
48 cm for the mainland, 64 cm =
for Crete, 39 cm for Kefalonia r;:
and 33 cm for Rhodes = 015}
<
B
? 04t
0.05 -

The standard deviations in case 1 range from 5 to 65 cm
and are much higher than in the other cases (Fig. 2) because
all gravity field signals above degree 200 are neglected. In
both the second and the third case our extreme values account
from 3 to 4 cm to about 12 cm; thereby the local Hellenic
geoid in case 3 generally provides slightly better results.

As expected, case 1 shows by far the worst results, though
there are islands (Karpathos, Limnos and Samos) where
case 1 performs slightly better than case 2. In general, it
can be seen that large islands, respectively islands with a
higher number of measurement points, tend to show higher
omission errors here.

Of course our simplification with error-free observations
is not true and, in fact, we already know that our
GPS/levelling observations were not optimally done. The
visualized difference in Fig. 2 shows (in all 3 cases) random
errors due to the observation accuracy of GPS and spirit
levelling and therefore the omission error (cases 1 and 2) and
the modelling errors (case 3) of the high frequency signal are
even below the values presented in Fig. 2. As a conclusion,
the approach in case 2, where we calculate the geoid heights
N only by using a global satellite model, point positions,
and EGMOS8 coefficients as input, shows almost the same
performance as the far more complex local geoid calculation.

4 Height System Offsets Between

Islands

In Sect. 3 we used the comparison of the selected geoid
models to the local geoid from GPS/levelling to evaluate the
accuracy of our models at selected islands. Now we take

M. Willberg et al.
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the geoid model differences AN again, but do not subtract
the correction surface resulting in absolute geoid height
offsets AN™®*" for every island. This is done by calculating
the mean value over Eq. (1), where n is the number of
observation points per island:

AN™™ = 5 (N;— (hi—H,)) /n (3)

These AN™®" values per island represent the mean offset
of the Local Vertical Datum (LVD) to the geoid model N
and enable the connection of different vertical datums. As
in general, there are no well observed tide gauge stations on
the Greek islands; it is considered to be more accurate to use
mean values over the whole island instead of single reference
points (e.g. tide gauges) for the offsets of the LVD. However,
with this consideration it is not possible to compare heights
between two individual points of different vertical datums as
the offsets stay unknown.

In Fig. 3 the offsets of the LVD are visualized for every
island and the mainland in case 1 (upper value) and case
2 (lower value). While in case 1 the offsets have a wide
distribution from —243 to 425 cm, they range from —38
to +13 cm in case 2. Almost all of the offsets are negative
which means that the LVD for that island is below the used
geoid model.

In Sect. 3 we showed that the GOCOO05S model performs
much better when adding high frequency parts from EGM
and RTM information. This allows us to calculate the omis-
sion error in case 1 by using the more accurate case 2 results
as reference. The omission error of GOCOO0S5S up to degree
and order 200 is then a simple difference of the two values in
Fig. 3. Regarding the islands, it varies from about 8 cm for
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Mainland
-14.0
-13.1

Kefalonia
-210.6
-19.4

Zakynthos
-187.9
-4.0 .

Karpathos
+25.3
-3.2

Rhodes
243.2
-38.1

Fig. 3 Mean offset of GOCOO05s and extended GOCOO05s geoid models to point-wise GPS-levelling observations. The two values give the mean
offset of the LVD when calculating the model with EGM and RTM above degree 200 (case 2, bottom value) and without them (case 1, upper value)

Lesvos to almost 2 m for Rhodes. Most of the islands show
omission errors far above the average of 30 cm, while the
impact for the mainland is much smaller (3 cm). The reason
is the small size of the islands compared to the resolution
of GOCE (about 100 km for degree 200). Even the biggest
island, Crete, has only an extension of up to 55 km in the
north-south direction. When a target area is smaller than the
resolution of GOCE the satellite-only gravity field is not able
to calculate a representative mean value (especially when
there is variable topography) and this can result in increased
omission errors (Fig. 3).

The bottom values in Fig. 3 are then used for the com-
putation of height offsets between the data sets (islands
and mainland) as shown in Fig. 4. The offsets of the LVD
in case 2 are presented as absolute values of the pairwise
differences which gives us a 15 x 15 matrix where the
colour indicates the height system offset between two data
sets. The result is a symmetric matrix with values up to
50 cm with the maximum being the result of the differ-
ence between the highest and the lowest offset (Corfu and
Rhodes). Dark blue values show data sets with similar offsets
of the vertical datum while brighter values (e.g. column or
line of Rhodes) indicate that a LVD has a large discrepancy
to the others. Pairwise differences provide an easy way

[m]
; 0.5
mainland
andros
chios
corfu
crete
eyvoia
karpathos
kefalonia
kos
lesvos
limnos
naxos
rhodes
5amos
zakynthos

0.4

103

0.2

0.1

Fig. 4 Pairwise difference of the height offset between chosen
islands/mainland. Calculation based on the GOCOO05S model with
EGM & RTM (case 2)

for height system unification to visualize height systems
offsets.
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5 Summary and Conclusions

When combining the results from Sects. 3 and 4 it becomes
clear that a satellite-only model (case 1) is not suitable to
calculate geoid heights for the Greek islands. The small size
of the islands leads to large omission errors because GOCE
is not able to distinguish the island from the surrounding
sea. However, the omission error for the smaller islands (all
except Crete, Rhodes, Kefalonia) is homogenous and similar
to all points on the island, which can be seen by the small
standard deviations in Fig. 2.

Case 2 shows in both investigations large differences
compared to case 1, which again demonstrates that the grav-
ity field signal above degree 200 should not be neglected.
The big differences between the smaller and the bigger
islands in case 1 are reduced though not eliminated in case
2 when using the GOCOO05S model with EGM and RTM
information. And the geoid differences are quite similar
between cases 2 and 3, which is a good indicator that a
satellite-only model with corrections is able to adapt to local
characteristics.
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P.2 Publication lI: Signal and Error Assessment of GOCE-based High
Resolution Gravity Field Models

Reference
Gruber, T., Willberg, M. (2019). Signal and error assessment of GOCE-based high resolution grav-
ity field models, Journal of Geodetic Science, 9(1), 71-86. doi 10.1515/jogs-2019-0008

Copyright

This work originally has been published in Journal of Geodetic Science as open access, available
at https://www.degruyter.com/. The publication is available under the license of Creative Commons.
The copyrights remain with the authors.

Abstract

The signal content and error level of recent GOCE-based high resolution gravity field models is
assessed by means of signal degree variances and comparisons to independent GNSS-leveling
geoid heights. The signal of the spherical harmonic series of these models is compared to the pre-
GOCE EGM2008 model in order to identify the impact of GOCE data, of improved surface and alti-
metric gravity data and of modeling approaches. Results of the signal analysis show that in a global
average roughly 80% of the differences are due to the inclusion of GOCE satellite information, while
the remaining 20% are contributed by improved surface data. Comparisons of the global models
to GNSS-leveling derived geoid heights demonstrate that a 1 cm geoid from the global model is
feasible, if there is a high quality terrestrial gravity data set available. For areas with less good cov-
erage an accuracy of several centimeters to a decimeter is feasible taking into account that GOCE
provides now the geoid with a centimeter accuracy at spatial scales of 80 to 100 km. Comparisons
with GNSS-leveling geoid heights also are a good tool to investigate possible systematic errors in
the global models, in the spirit leveling and in the GNSS height observations. By means of geoid
height differences and geoid slope differences one can draw conclusions for each regional data
set separately. These conclusions need to be considered for a refined analysis, e.g., to eliminate
suspicious GNSS/leveling data, to improve the global modeling by using full variance-covariance
matrices and by consistently weighting the various data sources used for high resolution gravity
field models. The paper describes the applied procedures, shows results for these geoid height
and geoid slope differences for some regional data sets and draws conclusions about possible
error sources and future work to be done in this context.
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Ideas and study design 25 %
Analysis and interpretation 25 %
Text 15 %
Figures 15 %
Tables 15 %
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P.3 Publication lll: Residual least-squares collocation: use of
covariance matrices from high-resolution global geopotential
models

Reference

Willberg, M., Zingerle, P., Pail, R. Residual least-squares collocation: use of covariance matrices
from high-resolution global geopotential models. J Geod 93, 1739—-1757 (2019). doi 10.1007/s00190-
019-01279-1

Copyright

This work originally has been published in Journal of Geodesy, available at https://link.springer.com/,
and is reprinted here with permissions of Springer. The copyright has been transferred to Springer-
Verlag GmbH Germany.

Abstract

The paper presents a modified formulation of Least-Squares Collocation. This Residual Least-
Squares Collocation (RLSC) includes a remove-compute-restore procedure with a high-resolution
Global Geopotential Model (GGM) and a topographic gravitational potential model. In contrast to
previous approaches, in RLSC, the remaining input residuals are modeled with error covariance
matrices instead of signal covariance matrices. Therefore, we include the full variance-covariance
information of a high-resolution GGM, namely the XGM2016, to the procedure. The included co-
variance matrices are anisotropic and location-dependent and enable a realistic error modeling
of a target area. This fact represents an advantage over covariance matrices derived from sig-
nal degree variances or empirical covariance fitting. Additionally, due to the stochastic modeling
of all involved components, RLSC provides realistic accuracy estimates. In a synthetic closed-
loop test case with a realistic data distribution in the Andes we demonstrate the advantages of
RLSC for regional geoid modeling and quantify the benefit which results mainly from a rigorously
handled high-resolution GGM. In terms of root mean square deviations from the true reference
solution, RLSC delivers an improvement of about 30% compared to a standard LSC approach,
where the benefit is particularly pronounced in areas with a sparse data distribution. This im-
proved performance, together with the fact that the resulting stochastic error estimates better re-
flect the true errors, might be an important aspect for the application of RLSC to derive gravity
potential values and their uncertainties at reference stations of the International Height Reference
System.
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MW and PZ derived the mathematical formulation of RLSC and the study design together, which
are mostly the results of joint discussions (between MW and PZ). MW designed the test case in
South America and the comparison between RLSC and LSC. PZ produced covariance matrices for
XGM2016. Apart from that, MW performed the majority of all computations and created the results.
MW was responsible for most of the analysis and interpretations, where PZ and RP contributed
with discussions, corrections and support. MW wrote the text with improvements from RP and PZ.
MW created figures and tables for the paper.

The overall own contribution of MW for P-/ll is estimated at 85 %, which is the average value of
the percentage values estimated for the six criteria listed in the table below (Tab. P.3).
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Analysis and interpretation 75 %
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Abstract

The paper presents a modified formulation of least-squares collocation. This residual least-squares collocation (RLSC)
includes a remove—compute—restore procedure with a high-resolution global geopotential model (GGM) and a topographic
gravitational potential model. In contrast to previous approaches, in RLSC, the remaining input residuals are modeled with
error covariance matrices instead of signal covariance matrices. Therefore, we include the full variance—covariance information
of a high-resolution GGM, namely the XGM2016, to the procedure. The included covariance matrices are anisotropic and
location-dependent and enable a realistic error modeling of a target area. This fact represents an advantage over covariance
matrices derived from signal degree variances or empirical covariance fitting. Additionally, due to the stochastic modeling
of all involved components, RLSC provides realistic accuracy estimates. In a synthetic closed-loop test case with a realistic
data distribution in the Andes we demonstrate the advantages of RLSC for regional geoid modeling and quantify the benefit
which results mainly from a rigorously handled high-resolution GGM. In terms of root mean square deviations from the true
reference solution, RLSC delivers an improvement of about 30% compared to a standard LSC approach, where the benefit is
particularly pronounced in areas with a sparse data distribution. This improved performance, together with the fact that the
resulting stochastic error estimates better reflect the true errors, might be an important aspect for the application of RLSC to
derive gravity potential values and their uncertainties at reference stations of the international height reference system.

Keywords Least-squares collocation - Regional geoid modeling - Covariance function - Remove—compute-restore -
XGM2016 - High-resolution GGM

1 Introduction

In this paper, we present a method for improving regional
geoid modeling by including full covariance information
from a high-resolution global geopotential model (GGM)
in least-squares collocation (LSC). Since its foundation by
Krarup (1969), and the key publication by Moritz (1980)
LSC is considered as one of the most important methods for
local and regional geoid modeling. Although the main con-
cept of LSC has never changed, a few adaptations have been
introduced recently. Nowadays, frequently a satellite-only
model is used in LSC as background for the long wave-
length part of the Earth’s gravity field. LSC thereby benefits

Martin Willberg
martin.willberg @tum.de

Institute of Astronomical and Physical Geodesy, Technical
University of Munich, Arcisstrasse 21, 80333 Munich,
Germany

from the good model quality in the long wavelength part that
is mainly provided by the Gravity Recovery And Climate
Experiment (GRACE; Tapley et al. 2004) mission and the
Gravity field and steady-state Ocean Circulation Explorer
(GOCE; Drinkwater et al. 2003) mission.

Compared to satellite-only GGMs, high-resolution GGMs
(we use this term for models with a maximum degree of
719 or higher) have included a wider spectral range of the
Earth’s gravity signal and therefore exhibit a higher com-
mission error. For many of these high-resolution GGMs, the
associated variance—covariance information is not fully avail-
able. As an example, in the case of EGM2008 only grids of
geographic error variances of gravity anomalies and geoid
undulations are provided (Pavlis et al. 2012). Additionally,
EGM2008 and other high-resolution GGMs like EIGEN-6¢
(Forste et al. 2014) assume constant accuracy for their
input ground data. However, with GOCOO5c (Fecher et al.
2017) and its successor XGM2016 (Pail et al. 2018) we
have two high-resolution GGMs that apply regional vary-

@ Springer
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ing weighting which results in an improved, more realistic
and location-dependent accuracy estimation that enables us
to use covariance matrices from these models for LSC. In
this paper, we present the first inclusion of high-resolution
GGMs with their full covariance matrices in LSC, develop the
corresponding methodology and demonstrate its improve-
ment to standard LSC in a numerical closed-loop simulation.
The benefit of consistently including covariance matrices
from a satellite-only GGM has already been demonstrated
in various publications. This was first performed with a full
covariance matrix by Haagmans and van Gelderen (1991).
Pail et al. (2010) then demonstrated the rigorous inclusion
of a GGM and its full accuracy information to LSC in a
remove—compute—restore (RCR) approach. However, unlike
other methods, our approach is specifically adjusted to work
with high-resolution GGMs which leads us to an extended
formalism of the LSC problem. Gerlach and Fecher (2012)
showed that for GOCE covariance information, the very high
computation effort of calculating full covariance matrices can
be significantly reduced using approximations such as sparse
or block-diagonal covariance matrices without losing much
benefit. However, this simplification is not valid in our case
since GGMs with regional weighting cause strong correla-
tions among the gravity field parameters (Fecher et al. 2017).

The LSC approach is in practice still a frequently applied
method for regional gravity geoid modeling. According to
Moritz (1980) and Sanso (1986) the disturbing gravity field T
of the Earth can be described as a random field. Also, it is
possible to derive a statistical and homogeneous description
of T that determines a global average part of the gravity
field (Moritz 1980; Tscherning 1999). However, this does
not coincide with reality because the correlation length and
the covariance change with location. As a result, the use
of homogeneous and isotropic covariance functions (e.g., in
Moritz 1980) does not always give an optimal result in LSC
(Tscherning 1999). Therefore, we adapt the LSC notation
from Moritz (1980) in several, closely connected ways: (1)
we include consistent treatment of covariance information
in an RCR approach, (2) we change the definition of covari-
ance matrices by replacing the total average operator with the
mathematical expectation value, and (3) we use only residu-
als as LSC input which changes the nature of the covariance
matrices as they describe only uncertainties instead of signal
content. Here, our approach differs from previous studies by
Moritz (1980), Pail et al. (2010), Forsberg and Tscherning
(1981), Tscherning and Rapp (1974), or Sanso (1986). Only
through these adaptations, we are able to use the location-
dependent covariance matrices that are derived directly from
the normal equation system of a high-resolution GGM. Fur-
thermore, our notation offers the advantage that every input
quantity in LSC is directly described by a covariance matrix
which is in contrast with, for example, the definition by
Haagmans and van Gelderen (1991). We see these adapta-
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tions as a necessary step towards using modern high-quality
models effectively in LSC. At the present stage, we use
the XGM2016 (Pail et al. 2018) and the topographic grav-
ity model dV_ELL_Earth2014 (Rexer et al. 2016) for the
RCR approach.

This paper is structured as follows. In Sect. 2 we derive
in detail the adaptations to LSC by Moritz (1980). Next, in
Sect. 3 we describe the specifications of a synthetic test case
scenario in South America as well as the data sets that we
use to show the benefit of our method. The results of three
numerical test cases are visualized and outlined in Sect. 4, and
finally Sect. 5 draws conclusions, describes ways to benefit
from the demonstrated approach, and provides an outlook.

2 Theoretical background

2.1 LSC according to Moritz (1980)

This section adopts the content and notation of Moritz (1980).
For our purposes we rewrite only those parts that are essen-
tial for the next sections. The formulas of the least-squares
prediction for random observations 1 and a random output
signal s are given in Moritz (1980, Chapter 9) with

s=CqCy'l, 1)
Egs = Cys — CSICHICISs (2

where E is the error covariance of the output s, and C are
covariance matrices with the subscripts giving the positions
and functionals of the related points. This is valid for all 1
and s with

E{l} =0, E{s}=0, 3)

where E describes the expectation operator in form of a math-
ematical probability distribution. Afterwards, in the section
‘Collocation with random errors’ (Moritz 1980, Chapter 14)
the observations 1 as a functional of the gravitational
potential T are redefined as a combination of the true input
signal t and a random (stochastic) noise n. So that, in sym-
bolic notation we have

l1=t+n. 4

In analogy to the definition of t, s is defined as the true output
signal. The gravity field functionals t and s are not random
in a mere statistical manner since every evaluation point has
a value without uncertainty. However, as it is done by Moritz
(1980, Chapter 14), we treat t and s as statistical values in a
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formal sense. This justifies the usage of the expectation oper-
ator E which, however, leaves the signals t and s unaffected

E{s} = s,
E{t} = ¢,
E{n} =0,
E{l} = E{t} + E{n} = t. 5)

In contrast to the expectation in a probabilistic sense, the
operator M describes a homogeneous, isotropic average over
the sphere which gives the mean global behavior of the grav-
itational field. t, s and 1 are all functionals of the disturbing
potential. Therefore, applying the operator M to t, s and 1
gets zero. Thus, we write for the spatial average M

M{s} = 0,
Mt} = 0,
M{l} = 0,
M{n} = n. (©)

In Eq. 5, we can see that in general the observations I are not
centered, but in a global view with the definition of a total
average operator E

E =EM, (N

which is an average over the probability distribution and the
global distribution (sphere), they can be considered as cen-
tered quantities

E{s} = EM{s} = 0,
E{t} = EM{t} =0,
E{l} = EM{t} + EM{n} = 0. 8)

To be able to distinguish between different forms of covari-
ance matrices in the following sections, we write covariance
matrices that are derived from the total average E with C
instead of C. Consequently, the covariance matrices of the
centered quantities defined by the total average E are

C.; = E{ss'} = EM{ss'} = M{ss '},
Cy = E{ttT) = EM{tt"} = M{tt1),
Con = E{nn"} = EM{nn"} = E{nn"} = C,,. )

By considering the fact that t and s are uncorrelated to n, we
write by using Eq. 4
Ci = E(™

=E{(t+n)(t+n)"}

= E{(tt)} + E{(tn")} + E{(nt")} + E{(n")}

= Ctt + Ctn + Cnt +Cnn
— =
=0 =0
= Cy¢ + Cyy, (10)
C. = E{sl"}
=E{(s)(t+n)"}
= E{(st")} + E{(sn")}
= Cst + Csn . (11)
—~—
=0

Applying these expressions, the fundamental formula for
least-squares collocation with noise is obtained from Eq. 1

§=Cot (Cyt + Con) 'L (12)

For consistency with the following sections and in contrast
to Moritz (1980) we retain the bar over all quantities with
inclusion of the global average operator E, and write for the
corresponding error covariance matrix Egs according to Eq. 2

Ess = Co5 — Co¢(Cit + Con) ' CL. (13)

This description of least-squares collocation by Moritz
(1980, Chapter 14) has been established as standard proce-
dure in the literature (see Tscherning 2015; Arabelos and
Tscherning 2009; Hofmann-Wellenhof and Moritz 2006;
Rieser 2015) and we follow this notation because in our
opinion it is the most consistent and detailed description.
However, it should be kept in mind that these definitions are
only valid for centered observations 1 and a centered output s,
because this was set as a requirement (Eq. 3) and is used
in the definitions of the covariance matrices (Eqs. 9-11).
Furthermore, the covariance matrices as defined in this sec-
tion assume a normal distribution of gravitational functionals
and describe an average part of the Earth’s surface. Accord-
ingly, these covariance matrices are mainly independent of
the location on the Earth (homogeneous) as well as of the
direction (isotropic), and as a consequence may not be opti-
mal for local gravity field collocation (Tscherning 1999).
Note, that most of the covariance matrices in Moritz (1980)
are calculated from signal degree variances, but the discus-
sion in this paragraph holds also for analytical covariance
matrices which are calculated by empirical covariance fitting,
e.g., from a Tscherning—Rapp model (Tscherning and Rapp
1974). While the latter do not consider a global view, they
use the same assumptions, namely centered and normally
distributed observations, for a target regional area, therefore
resulting in homogeneous and isotropic covariance functions
as well.
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2.2 The remove-compute-restore (RCR) approach

For many applications, LSC is combined with a remove—
compute—restore (RCR) approach (Forsberg and Tscherning
1981; Forsberg 1984). According to the name, RCR means
that a part 1of the signal is removed from the observations 1
before the computation

A

Al=1-1. (14)

Accordingly, the collocation I" is performed only with the
residuals of the input signal Al

As =T Al (15)
and afterwards, the removed part § is restored again
s = As+8§, (16)

to yield the output s of the collocation. The main reason for
using RCR in collocation is that LSC with residuals is more
accurate than it would be with the full signal content. For
more detailed background, we refer to Hofmann-Wellenhof
and Moritz (2006, Chapter 11) or Rieser (2015, Chapter 4).
Usually, the remove and restore steps describe different
functionals of the gravity field, and the RCR thereby implic-
itly includes a field transformation. Moreover, because a
field transformation moves signal energy between different
degrees in the frequency domain an error in the remove step
may not be consistently restored after a field transforma-
tion. This might even be the case when remove and restore
steps are calculated consistently. Therefore, we see the need
to model the accuracy of the remove step consistently in
LSC. Only some of the LSC approaches take the accuracy
of the reduction model into account (e.g., Haagmans and
van Gelderen 1991; Pail et al. 2010; Sanso 2013) while
other approaches do not (e.g., Forsberg and Tscherning 1981;
Hofmann-Wellenhof and Moritz 2006; Rieser 2015).

In general, the corresponding covariance matrices in all
these approaches are calculated either from signal degree
variances (Heiskanen and Moritz 1967, Chapter 7.3; Moritz
1980, Chapter 10) or from empirical covariance fitting (Tsch-
erning and Rapp 1974). Those approaches that include the
accuracy of a reduction model directly in the calculation,
additionally introduce the covariance matrix of a satellite-
only model to the method (e.g., Haagmans and van Gelderen
(1991)). Since all of these LSC approaches are formulated
differently and use various notations, we do not go into fur-
ther detail but point out only the differences of our approach
to the existing ones in the following sections.
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2.3 Residual least-squares collocation

Although observations 1 and output s of a LSC as func-
tionals of the disturbing gravity field 7 of the Earth
are centered globally (Heiskanen and Moritz 1967,
Chapter 2.19), it is not possible to automatically assume
the same for regional gravity field modeling. However,
the definition of LSC according to Sect. 2.1 is only valid
if the observations and the output are centered over the
target area (Eq. 3). We propose rather to use covari-
ance matrices from a purely stochastic point of view
and thereby follow the standard definition of a covari-
ance with an expectation value in a mathematical
sense E (Egs. 17-19). As a result, we are no longer

limited to the requirements of Eq. 3. The gravity function-
als t and s are furthermore regarded as statistical quantities
in a formal sense. As they are defined as true signal con-
tent of the gravity field, repeated error-free measurements at
one point always give the same result (see Eq. 5). Consid-
ering this, we write for the covariance matrices Cgg, Cit

and Cj

Css = E{(s — E{s})(s — E{s) T} = {0}, (17)
-, 5
Cy = E{(t — E{t})(t — E{t)T} = {0}, (18)
- 7
Ci =E{0—- EHA— EAYT) =E{mn"} = Cpo, (19
—~— ~—~—
=t =t

which differs from the equivalent formulation in Moritz
(1980) (Egs. 9, 10). The covariance of the uncorrelated
observations that is named C,, in Moritz (1980) is here-
inafter called Cj. We consider this notation as more con-
sistent, because it describes the accuracy of the observa-
tions. Note at this point, that t and 1 are not centered
(Eq. 5). Now, we assume that we can calculate an unbi-
ased GGM without systematic errors that is able to describe
the full signal content of the Earth’s gravity field. From
this model we derive different gravity field functionals t
at the input points. Since this variable is not error-free,
we denote the quantity 1 and write for its expectation

value E

E{l} = t. (20)

We use the hat operator for quantities that are derived from
an introduced model in order to distinguish them from mea-
surements and error-free quantities. Since we assumed that 1
does not contain systematic errors, the difference Al

Al=1-1, 1)
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is centered and describes a remove step (see Sect. 2.2). By
analogy, we write § as the result of the same model as an
approximation of the true gravity signal s and obtain

AS =5 —8§. (22)

The resulting covariance matrices Cj;, Cg and Cg of our
estimated values 1 and § are defined by

C; = E{d - Efpd — E(AYT)

=B{d-tvd-vT}, (23)
C4 =E{@ —Es)Hd — E{p")

=E{E-sd-9"}, (24)
Cs = E{G — E{§)(8 — E{§h"}

=E{§—-5)E—9)"}. (25)

They are used in the following to form the covariance matri-
ces Cajal, Casal and Cagas. For the transcription of Cajag
we use Egs. 4, 19, 21 and 23 and the fact that the random
noise n is uncorrelated to a signal.

Caial = E{(Al — E{Al})(Al — E{AI})}
N — ——
=0 =0
= E{AlAIT}
= E{((t+n) —D(t+n) - DT
=E{(t=D+n)((t—1)+nm7)
=E{(t—Dt -1} + E{(t — Dn"}
————
=0
+E{n¢t—-DT}+E{nn"}
—— ———
=0
=C;+ Gy (26)

Al contains the uncertainty of the observations 1 as well as
the uncertainty of observations 1 synthesized from a GGM.
Correspondingly, we can divide the covariance matrix Cajaj
into the covariance of the model accuracy Cﬁ, and the covari-
ance Cj that describes the observation noise according to
Eq. 19. Again applying the fact that the random noise n is
uncorrelated to s and §, we write analogously for Casa) and
CAsAs

Casal = E{(As — E{As}) (Al — E{AI)T)
=0 =0
= E{AsAlT}
=E{(s —8((t+n) - DT}
=E{(s —9((t-D+n)T)

= E{(s —$§)(t — )T} + E{(s — $)n"}
————

=0
=Cy, (7
Casas = E{(As — E{As})(As — E{As)T}
=0 =0
= E{AsAs'}
=E{(s —8)(s — 9"}
= Cy, (28)

with C being the covariance of the introduced model that
describes the uncertainties and correlations between the posi-
tions and functionals of the input to those of the output.
Analogously, the covariance Cg describes the uncertainties
and the correlations of § among different output positions
(and functionals).

Thus, we can rewrite the definition of LSC from Eq. 12
with Al and As instead of 1 and s and use the findings from
Egs. 21, 26 and 27, resulting in a notation of LSC that uses
only residuals as input

As = Casal (Calan ™" Al
=C4(Cn+Cp~a-. (29)

After restoring the subtracted signal part § we define the resid-
ual least-squares collocation (RLSC)

s=Cq(Cu+Cp'A-1+8. (30)

Instead of centered observations and a centered output which
are used as requirements in Sect. 2.1, we introduce the
assumption that it is possible to describe the observations 1
and the output s by means of an unbiased model (i and §).
In this way, the input (1 — 1) of RLSC stays centered. We
have two key factors of RLSC in comparison with other
LSC methods: (1) the input consists only of residuals, and
(2) the covariance matrices Cy and Cy; describe the accu-
racy of the input 1 and 1 directly. With these considerations,
we differ from previous LSC approaches (e.g., Moritz 1980;
Haagmans and van Gelderen 1991; Pail et al. 2010; Sanso
2013; Rieser 2015), which always include signal covariance
matrices in LSC, while in our approach the covariance matri-
ces contain only the uncertainties of input and output. For
example, Haagmans and van Gelderen (1991) also include a
reduction step with full covariance information in LSC, but
at the same time they use a third covariance matrix inside
the brackets of Eq. 30 that describes the covariance of the
gravity signal itself (equal to Cy¢ from Sect. 2.1). The reason
for the difference at this point is that we assume the exis-
tence of a high-quality GGM, whose uncertainties can be
fully described by a variance—covariance matrix (no system-
atic errors), which other approaches do not.
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The interpretation of Eq. 30 is quite different from the
definitions in Sect. 2.1 where the covariance matrices in
the collocation describe the signal content instead of the
error characteristics. Nevertheless, RLSC is consistent with
the theory of Moritz (1980), which can be demonstrated
by the following thought experiment. If the model 1in
Eq. 30 becomes worse, then the elements of the covariance
matrix Cj; that describe its uncertainties will become larger.
This is also valid for an extreme case where we do not subtract
amodel at all, so that 1 becomes zero. In this case, the covari-
ance Cj; describes the full signal content of the observations 1
which is basically the same idea as in Moritz (1980). How-
ever, the covariance Cj; is still regarded as the uncertainty of
the bad (or missing) model instead of the covariance of the
signal content (as itis in Sect. 2.1). Even with1 = 0 there is a
difference in the approaches, since in general the expectation
value E is not equal to the total average E (Eq. 7). However,
it is possible to use the total average E as an approximation
of the expectation value E, which means that for 1=0we
can approximate

Cji ~ Cy,
Cy ~ Car. 31)

With this approximation our formulation of least-squares
collocation with errors (Eq. 30) becomes identical to stan-
dard LSC from Moritz (1980) (Eq. 12) including the RCR
approach (Egs. 14, 16). Accordingly, we write for the error
covariance matrix Eg of the output s in Eq. 30 and refer
to Moritz (1980, Chapter 14) for an analogous and detailed
derivation
Eg = C — C (Ci + Cp~'C. (32)
Note that, by definition there is no difference between E
and C in our approach since both describe error covariance
matrices. Nevertheless, we retain this notation because it clar-
ifies that E refers to the covariance of the output s instead
of the true gravity signal s or the model §.

2.4 Inclusion of a GGM and a topographic gravity
model into RLSC

To calculate RLSC from Eq. 30 we require estimates of the
inputi and the output § as well as the related covariance matri-
ces for the input Cy;, the output Cg; and the combination Cy.
All of these can be derived from the normal equation system
related to a GGM

NipX" = qf. (33)

Here, Nif is the normal equation matrix, qf is the right-
hand side, and X{" are the estimated Spherical Harmonic (SH)
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coefficients. The superscript ‘m’ refers to quantities that are
derived from a GGM. In the following we continue to use
superscripts to clarify the origin of covariance matrices and
vectors. In contrast, the subscripts are continuously applied
to describe the corresponding functionals and their positions
with the subscript ‘f” standing for the frequency domain of the
SH coefficients. For more details about the normal equation
system describing the SH coefficients we refer to Fecher et al.
(2015). Next, the normal equation matrix N is inverted

cn = (Nm)~! (34)

to obtain the covariance matrix Cj; of the SH coefficients,
which is used to solve the normal equation system and esti-
mate the SH coefficients X"

&M = Cm g, (39)

Afterwards, we write the transformations of the SH coeffi-
cients to different functionals and point positions in the space

domain with the design matrices Affom,

sm = Al &M, (36)
and for the calculation of the covariance matrices

m f emAfT
Cﬁ == Al Cff Al )

m f emAfT

f fT

@ =ACHA; . 37
Here, the covariance C." describes the uncertainties and cor-
relations of the GGM at the input points, quf the covariance at
the output points, and C Sm their cross correlations. The square
root of the main diagonal of Cliln gives the standard deviations
of the GGM parameters at the input points in terms of the
respective functional. Note that as the result of a GGM, 1™ is
a representative of the gravity field up to a certain spherical
harmonic degree N, but does not consider the full frequency

spectrum of 1. However, we can use ™ from a GGM, because
it centers the difference Al (in the degrees up to N)

Al=1-1", (38)

asintroduced in Eq. 14. When a GGM is considered, there are
two possibilities: either a GGM from a satellite-only solution
that describes the gravity field up to degrees around 200-280
(e.g., GOCOO0S5s; Mayer-Giirr et al. 2015) is used, or a GGM
with much higher spatial resolution that already contains
terrestrial information like EGM2008 (Pavlis et al. 2012),
EIGEN-6¢4 (Forste et al. 2014) or XGM2016 (Pail et al.
2018). In both cases, the approximation of the true gravity
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field t by 1 can be improved by additionally considering the
information in the frequencies above the maximum degree of
the GGM. In general, large parts of the gravity signal beyond
a GGM’s resolution are related to the topography (Forsberg
and Tscherning 1981; Hirt et al. 2013; Rexer et al. 2016),
which is why we use an additional model for the topographic
gravity effect above the maximum degree N of the GGM and
calculate its effect I' (with ‘t’ standing for topography) at the
input points

A

1=1m 41, (39)
and the output points
§=8m 43" (40)

The same requirements that apply for the definition of 1™ also
apply for I, so that the resulting Al is normally distributed
and centered (up to the maximum degree of the topographic
gravity model)

Al=1-1m -1 41)

From a practical point of view it is also important that 1™ and
1' can be considered as independent of each other so that the
variance propagation from Eq. 39 yields

Cp=Cl+Ch, 42)

with C! being the covariance of the topographic gravity
model that describes the models uncertainties and correla-
tions. This is analogous to the character of C" for the GGM,
and the same is valid for the covariance matrices C and Cgg

o _ (m t
Ci=Ci + G

Cy = Cgrg + Cgtg. (43)

As we use the topographic gravity model only in the degrees
above the maximum degree N of the GGM, we regard the
two models as uncorrelated and write for their degree n

n™ € {2, N},
n' € {N + 1, Nmax}, (44)

where Npax 1S the maximum degree of It. Usually, there is
neither a normal equation system available for the degrees
above a GGM nor another source for a covariance matrix
that describes the accuracy of the topographic gravity model.
Therefore, without the possibility of deriving direct accuracy
or covariance information for the topographic gravity model,
we must use the total average E for the derivation of a covari-
ance matrix. The resulting covariance is an approximation for

the accuracy and the correlations of the topographic grav-
ity model and is derived under the assumptions mentioned
in Sect. 2.1. This covariance can for example be calculated
fromthe residuals Al, because the topography is usually asso-
ciated with the largest source of uncertainties in Al. The
approach of empirical covariance fitting is quite common in
regional geoid modeling and is described in Tscherning and
Rapp (1974). Note that the resulting covariance matrices are
designed to describe a finite dimensional space and therefore
disregard the gravity signal above degree Npax . Adopting this
approach our notation changes as follows, again marking the
covariance matrices derived from the total average E with a
bar, as in Sect. 2.1.

(45)

By inserting C, Gy, 1and § from the previous equations into
Eq. 30, we obtain the final formulation of RLSC including
the GGM and the topographic gravity model

s=(CI+C) (Ci+CP+ Cﬁ)—l A=1m -1y +8m +8'.
[ —
Part 1 Part 2 Part 3 Part 4

(46)

Since Eq. 46 is very important in the following sections, we
look at its various parts in more detail. Part 3 contains the
residual input to RLSC subject to the condition that it is cen-
tered. Here, the remove step is performed by reducing 1™ and
1 from the observations I. Part 2 describes the uncertainties of
part 3 accordingly. Every quantity from the input (1, Im, i‘) has
its own covariance matrix (Cy, Cﬁn, Cﬁ). Similarly, we have
the covariance matrices between input and output uncertain-
ties in part 1, except that the covariance between the accuracy
of the observations and the output s is missing because the
two are assumed to be uncorrelated (Eq. 27). Finally, part 4
describes the restore step in the output functional (§™, §').

The approach taken from Eq. 46 uses the full covari-
ance information of a GGM up to a certain degree N, and
topographic information above, from degree N + 1 up to
degree Npax. The approach therefore delivers several advan-
tages compared to the approach of Moritz (1980):

1. The observations I themselves do not have to be centered.
Instead, we use the condition that GGM and topographic
gravity model have the same offset as the observations 1
so that 1 — I™ — 1 is centered.

2. The covariance matrices C" and C" are neither homo-
geneous nor isotropic but fit perfectly to a target area and
can benefit from the continuously improving quality of
(high-resolution) GGMs.
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3. This approach uses only residuals as input for LSC,
because it can be shown that this yields the best results
(see Sect. 2.2).

4. RLSC can give a realistic formal error estimate, because
with the inclusion of the GGM uncertainties all the
stochastic information is included in the resulting error
covariance matrix Eg, which is calculated (analogously
to Eq. 46) by inserting Cﬁn, Cg‘ln and C' into Eq. 32

Eg = Cy — C (Ci + Cp)~'C
=€+ ng) —(CF+CY
x (Ci+ € +CHTICF +CH . (47)

In comparison with the existing literature that has already
included accuracy information from a satellite-only model
(e.g., Haagmans and van Gelderen 1991; Pail et al. 2010;
Sanso 2013) our approach still maintains the advantages 1
and 2. Point 4 is only advantageous in comparison with
approaches that do not include all stochastic parts in LSC
(e.g., Forsberg and Tscherning 1981; Hofmann-Wellenhof
and Moritz 2006; Rieser 2015).

3 Data and simulation concept

We show the benefit of including full covariance matrices
from a high-resolution GGM in collocation by a comparison
between RLSC (Eq. 46) and a comparable approach without
GGM covariance matrices, which we refer to as standard
LSC. We derive standard LSC
s=CL(Cn+CH'a—1" -1 +5m+3, (48)
from the approach by Moritz (1980) (Eq. 12), but include
an RCR approach for the GGM and the topographic gravity
model that is analogous to Eq. 46. Standard LSC is thereby
equivalent to RLSC (Eq. 46) except that the two covariance
matrices Cm and C“]1 are missing, because the GGM is either
assumed to be error-free or its noise component is implicitly
included in the model covariance function, which is used to
fit the empirical covariance function (Tscherning and Rapp
1974). In case of an error-free GGM the corresponding error
covariance matrix Egg results in accuracy estimates of S that
are overly optimistic
Ess = Cf - C4(Cn+CH~'CLT (49)
The comparison of the two methods works best within
a synthetic test case scenario that allows us to compute the
residuals of the two methods by knowing the pre-defined
truth. Moreover, it makes it possible to evaluate and assess the
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formal error estimate of the stochastic part of the collocation
(compare RLSC: Eq. 47 and standard LSC: Eq. 49). To obtain
realistic results from a synthetic test case, we add noise to
the observations and to the GGM (as shown below).

The synthetic test case is calculated for one of the most
common challenges of regional geoid modeling, i.e., the cal-
culation of the geoid from gravity anomalies given at selected
input points. As the calculation should be an evaluation test
for a real geoid computation, we use the input positions of
actual gravity observations for our synthetic test case. Output
is a regular grid of geoid heights in the target area, the South
American Andes. This is a useful test area for the study since
the Andes are one of the most demanding regions worldwide
in terms of gravity signal variations, heterogeneous data dis-
tribution, and topographic effects. Also, we have access to
the actual terrestrial database for this area (Hosse et al. 2014)
and can therefore realistically simulate the data distribution
on land.

The terrestrial gravity observation points are inhomoge-
neously distributed in an area between longitude [— 72° to
—66°] and latitude [—29° to — 18°] that is the northern
part of Chile (CHL), north-western Argentina (ARG) and
south-western Bolivia (BOL, Fig. 1a). Furthermore, we add
altimetry observations to cover the ocean region of the test
area. The altimetry observations are given as a regular grid
with 5’ spacing in the Pacific Ocean (PAC) bordered by the
— 74° longitude meridian and the — 31° parallel. Altimetric
gravity data on aregular grid are available from various ocean
products, e.g., DTU13 (Andersen et al. 2015) or Sandwell
and Smith (2009) and can be found for download at the cor-
responding websites. The distribution of the input points in
Fig. la is displayed together with the terrain height. The
image shows the Pacific Ocean to the West and the main
ridge of the Andes from north to south. The test case includes
areas with quite dense terrestrial observations, while oth-
ers show large data gaps. Overall, there are 14,613 gravity
anomaly input points with 7814 from terrestrial observations
and 6799 altimetry grid points. As output, geoid heights N
are estimated for the whole study area as a regular 5" grid,
which results in 21,901 output points (Fig. 1b).

As a GGM we use the XGM2016 (Pail et al. 2018),
because we have its full normal equation system available
that allows the calculation of the covariance matrices C{M“,
Cgi‘ and C3 (Eq. 37), as well as input and output function-

als (I™, §™) in Eq. 36. The XGM2016 is a combined gravity
field model up to degree 719 which uses relative regional
weighting for the combination of terrestrial and satellite
information. Compared to the GOCOO05c model (Fecher et al.
2017), the XGM2016 includes an improved terrestrial data
set provided by the National Geospatial-Intelligence Agency
(NGA). In our opinion the XGM2016 is one of the most
consistently calculated high-resolution GGMs, and its good
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Fig.1 LSC input points and (a)
pre-defined truth of the test
scenario with borders as white
lines. a Terrain heights with the
distribution of the input points
with altimetry observations (red
dots) and terrestrial
measurements (black dots).

b Regular 5 resolution grid of
geoid heights that are the
pre-defined truth s for the
synthetic test case

performance in comparison with other high-resolution grav-
ity field models such as EGM2008 (Pavlis et al. 2012),
EIGEN-6¢4 (Forste et al. 2014) and GOCOO5¢ (Fecher et al.
2017) is demonstrated in Pail et al. (2018). In a post-analysis
of the variance—covariance matrix of XGM2016, however,
we found out that the accuracy estimates in the higher degrees
(beyond the resolution of the satellite data) underestimate
the true noise behavior. The regionally varying weights of
XGM2016 have been computed empirically from compari-
son of satellite and low-pass filtered ground data (Pail et al.
2018). This procedure ensures an adequate relative weighting
of satellite and ground data, but implicitly disregards signal
content in the high degrees. In a new version of XGM2016,
which shall be released soon, we will take this omission error
into account by means of scaling the error estimates by their
high-frequency signal content. From this analysis, we con-
sider a factor of 3 as a reasonable value to calibrate the error
estimates in the area of our synthetic test case. Therefore, we
scale the XGM2016 accuracy estimates in Sects. 4.1 and 4.2
by a factor of 3 and hence must increase the elements of
the covariance matrices C, C;‘} and ng by a factor of 9.
However, in Sect. 4.3 we present results with the original
XGM2016 accuracy and thus investigate the impact of the
accuracy of the GGM.

For the definition of the true gravity signal, we choose
a XGM2016 and EIGEN-6¢4 combination model [ GOCE-
OGMOC’, Gruber and Willberg (2019)] up to degree 2190
and calculate s and t from it. The main reason for using
this model is that we can be sure it does not contain sys-

(b)

4000

6000

tematic errors relative to the XGM2016 model because the
long wavelength parts are identical. The geoid heights s that
we use as pre-defined truth, and to which we subsequently
compare our results, are presented in Fig. 1b. In the tar-
get area, the geoid heights vary from 10 m in the Atacama
Trench up to almost 50 m in the plateau of Bolivia. The
true gravity anomalies t are used to calculate the simulated
gravity observations 1 by adding white noise n which is cal-
culated from a random noise vector e' and the accuracy of the
observations o'

l=t+n=t+o'e. (50)

olis also used in the covariance matrix Cy; of the observations
where we assume the accuracies of different observations 1
to be uncorrelated and therefore obtain the diagonal
matrix Cy

Ci=o'l. (51)

We must consider this as a simplification because we assume
that we know the accuracy o' of the input observations which
is not guaranteed in reality.

For I' and §' we use a spherical harmonic synthesis from
the topographic gravity model dV_ELL_Earth2014 (Rexer
et al. 2016) from degree N + 1 to Npax. Note that it is not
necessary for 1 (or §') to contain all remaining gravity sig-
nals above the degree N of the GGM provided it is without
systematic error and independent of I™ (conditions in the
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Table 1 Overview of all quantities, their definition and source in our synthetic test case scenario
Quantity Description Source Equations
t Pre-defined truth synthesized in input functional GOCE-OGMOC -
5 Pre-defined truth synthesized in output functional GOCE-OGMOC -
111“ GGM.: error covariance function for input points XGM2016 37
C ;“ GGM: error covariance function for input and output XGM2016 37
ct GGM: error covariance function for output points XGM2016 37
m GGM: synthesized in input functional (remove step) XGM2016 36
sm GGM: synthesized in output functional (restore step) XGM2016 36
N Maximum degree of the GGM XGM2016 44
" Colored noise of GGM at input points (synthetic case only) White noise and XGM2016 56
s" Colored noise of GGM at output points (synthetic case only) White noise and XGM2016 56
K" Combined colored noise of GGM (synthetic case only) White noise and XGM2016 54
_lll Topo. gravity: error covariance function for input points Fit to empirical covariance 45
C :l Topo. gravity: error covariance function for input and output Fit to empirical covariance 45
ng Topo. gravity: error covariance function for output points Fit to empirical covariance 45
it Topo. gravity: synthesized in input functional (remove step) dV_ELL_Earth2014 39
gt Topo. gravity: synthesized in output functional (restore step) dV_ELL_Earth2014 40
Nmax Maximum degree of the topographic gravity model dV_ELL_Earth2014 44
o! Assumed accuracy of input observations Accuracy of observations 50
Ci Error covariance function of observations, diagonal matrix Accuracy of observations 51
¢! White noise vector (synthetic case only) White noise 50
e™ White noise vector (synthetic case only) White noise 54
definition of Sect. 2.4). An overview of all quantities of the n mam ﬁ“ C g‘i“T m
synthetic test case can be found in Table 1. 1" = chol(Czz) ™ = chol Ch Ch € 54
Finally, we add noise to the GGM. Since the XGM2016 S
model uses regional Varyil.lg Weighting, colored noise that which is defined by
actually describes the regionally varying accuracy of the
model is added in terms of a (random) realization based
on the variance—covariance information. For the calculation T
of this covariance, we combine the observations 1 and the X = chol(X) chol(X) ", (GR)

output s in one vector k

1
‘= (s) , (52)

and propagate the variance—covariance matrix of the GGM
Cif to the combined covariance matrix C.J%. of input and out-
put by attaching the three formulas of Eq. 37 to give
f fT

m_ AL AT, (53)
where A£ is the design matrix for the transformation from
SH coefficients to the input and output points «. We obtain
the colored noise «™ of input and output by multiplying a
random vector e™ with white noise characteristics and the

Cholesky decomposition of the combined covariance matrix
m
KK
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where X is a positive definite matrix (e.g., covariance matrix).
Consequently, we obtain the noise of the GGM for the
input 1" and the output s" analogously to the definition in

Eq. 52 by

W
= (S> (56)

and add them correspondingly to 1™ and §™. Thus, for a syn-
thetic test case we adjust the formula of RLSC (Eq. 46) with
the inclusion of the observation noise n (Eq. 50) and the noise
of the XGM2016 model I" and s" (Egs. 54, 56)

s=(CP+CHECu+C +CH ((t+m) — (@™ +1") -1
+ @™ +s") + 8, (57)
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Fig.2 LSC remove step for the gravity anomalies: a terrestrial observations with oy,

¢ LSC input Al after reducing XGM?2016 and topographic gravity

and analogously, for standard LSC from Eq. 48

§=C4(Cu+ Cﬁ)—l((ur n) — 1™+ 1" =19 + E™ + ") + &
(58)

In both cases, the stochastic part of the collocation does not
change, so that the calculation of the error covariance matri-
ces Eg (Eq. 47) and Egg (Eq. 49) remain unchanged in the
synthetic test case.

The effect of the remove step in Egs. 57 and 58 is pre-
sented in Fig. 2, where the observations always include a
white noise of ¢! = 1 mGal (see Eq. 50). The XGM2016
model up to degree N = 719 contains the colored noise
that is calculated from the Cholesky decomposition (Eq. 54),
and the topographic gravity reduction is used from N + 1
to 2190. Figure 2a shows the original, noisy observations 1.
We reduce the observations 1 first by the high-resolution
XGM2016 model (I™ + I") (Fig. 2b) and afterwards also by
the gravity signal that is related to the topography, resulting
in the residual input vector 1 — (I™ + 1) — ' (Fig. 2¢). Note
that the color scale decreases significantly between Fig. 2a
and Fig. 2c. This is also apparent in Table 2, which shows the
mean value and the standard deviation of the corresponding
data sets in Fig. 2. Regarding its standard deviation (SD), the
signal is reduced by about 80% by subtracting the XGM2016
model and more than 90% in combination with the topog-
raphy. With a mean value of only 0.2 mGal the condition

1 mGal, b observations after reduction of XGM2016 model,

of a centered LSC input is almost fulfilled in this case. In
our numerical simulation, the final LSC input contains the
noise of the observations and the GGM as well as the inac-
curacy of the topographic gravity model. These three effects
are modeled in the related error covariance matrices of our
approach (Eq. 57). The inaccuracy of the topographic gravity
model thereby also includes density anomalies in the spec-
tral range from N + 1 to Npax, Which are contained in the
residual observations. These anomalies are not adequately
represented in the topographic gravity model, because it
assumes a constant topographic density (Rexer 2017, Chap-
ter 3.2).

Currently we do not have accuracy information for the
topographic gravity model (see Sect. 2.4) and this kind of
information is not available for any of the topographic gravity
models (Rexer et al. 2016; Grombein et al. 2016). However,
because we assume the largest part of the LSC input results
from differences between the topographic gravity model and
the observations in the high frequencies (as they contain
also the effect of density anomalies), we calculate a Model
Covariance Function (MCF) that fits the LSC input. This
is considered to be a standard approach in LSC which is
used for the calculation with signal degree variances (Moritz
1980, Chapter 12) as well as for empirical covariance fitting
with the most common approach by Tscherning and Rapp
(1974). The result is an isotropic and homogeneous covari-
ance matrix for the spectral range above degree 719 that fits
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Table 2 Consistent numerical analysis of the LSC remove step in Fig. 2

Signal description Notation Mean value (mGal) SD (mGal) Figures
Observations I=t+n 10.2 78.7 2a
Reduced by XGM2016 only 1— @™ +1) —-33 15.2 2b
Reduced by XGM2016 + topographic gravity 1—dm 4+ -t 0.2 55 2

30
=6—Scaled signal degree variances|
O —©— Empirical covariance from input
& 20F
£
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o
S 10
=
©
>
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o
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>
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-10

0 0.5 1 1.5
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Fig. 3 Empirical covariance function that is calculated from the LSC
residuals in the target area (red) and the scaled covariance from signal
degree variances (blue) as it is used for LSC. Both covariance functions
are shown dependent on the spherical distance between two points

to our input residuals. In general, we calculate the covari-
ance matrices C! and C GtA from signal degree variances and
refer to Moritz (1980) for more details. However, global sig-
nal degree variance models describe an average Earth, but
the South American Andes are not an average area in terms
of gravity signal (due to large topographic masses). Thus,
we have to use a scale factor to fit model degree variances
(blue, Fig. 3) to the Empirical Covariance Function (ECF)
of the LSC input residuals (red). In Fig. 3, we calculate
signal degree variances, according to our data simulation,
from the difference between the GOCE-OGMOC and the
dV_ELL_Earth2014 model from degree 720 to 2190 and
scale them by a factor of 4.25. Figure 3 then shows the ECF
and MCF in dependence of the spherical distance between
two points. In this case the correlation length amounts to
only 0.12°.

4 Results of the synthetic test scenario

Section 3 describes the method, the parameters and the
sources that are used to evaluate RLSC (Eq. 57) in com-
parison with standard LSC (Eq. 58). Both methods use the
RCR concept where a GGM and the topographic gravity are
removed before the collocation, and their effects are restored
(to the output functional) afterwards. For the calculation we
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set the degree N of the GGM first and use the topographic
gravity model always from degree N + 1 to Npax = 2190.
The results of s (or §) are compared with the assumed truth s,
and the difference indicates the accuracy of the collocation
result under these pre-defined conditions. In terms of numer-
ical classification we define the Root Mean Square (RMS)
over a target area with nP'™ points as a quality criterion for
the LSC result s (or S)

2
Zpoints (s—s)

ppoints

RMS = (59)

We use an equivalent formula to characterize the Mean
estimated standard deviation (MSD), which describes the
stochastic accuracies and is derived from Eg (or Egg) with
diag(X) giving the main diagonal of a square matrix X

/ Zpoints diag(ESS)

4.1 Simulation with satellite-only model resolution

(60)

At first we compare LSC for calculations with the XGM2016
model but use the model only up to degree 200 (case A).
Consequently, RLSC resembles other approaches in which
covariance functions from satellite-only global gravity fields
are included to LSC (e.g., Pail et al. 2010; Sanso 2013). How-
ever, the actual computation of the covariance matrices in
our case is still different (Eq. 37). Standard LSC in case A is
similar to LSC approaches that do not account for the accu-
racy of the GGM (e.g., Rieser 2015; Hofmann-Wellenhof
and Moritz 2006). The main reason why it is so common to
use a GGM up to degree of 180-250 in LSC is the high accu-
racy of GGMs in this frequency range (Gruber et al. 2011),
which is mainly due to the GOCE mission (Drinkwater et al.
2003). Thus, in the first case we use the XGM2016 model
withn™ € {2, 200} for all quantities with the superscript ‘m’,
and n' € {201, 2190} accordingly. The accuracy of the input
observations o, is assumed to be 1 mGal. For the calcula-
tions in Sects. 4.1 and 4.2, the accuracy of the XGM2016
model is multiplied by a factor of 3 (see Sect. 3). It is added
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Fig.4 Case A: Geoid height
residuals with the XGM2016
model up to degree 200.
Presented is a the absolute
difference between the
pre-defined truth s and the
RLSC result s, b the difference
between the result of standard
LSC s and RLSC s

as described in Sect. 3 but limited to degree 200 in case A.
An overview of all quantities is given in Table 1.

The collocation result s of RLSC from Eq. 57 in case A
is presented as an absolute geoid height difference (residu-
als) to the pre-defined truth s in Fig. 4a. In Fig. 4 and the
following images, we separate a region with terrestrial data
coverage (R1, left side) from an area without ground data
(R2, right side) by a white line, because we see large differ-
ences between these two regions. For the interpretation we
focus mainly on the region R1. In Fig. 4a, we see a high cor-
relation between the LSC residuals and the positions of the
input observations (see Fig. 1a): in the Pacific Ocean and the
bulge in the north we have dense observations and therefore
only small residuals mainly below 1 cm. In region R2, the
residuals amount to more than 10 cm which is also the case
for large parts of R1 in the Argentinian area (southeast). We
conclude that the number of terrestrial observations in this
area is not dense enough to describe the geoid height sig-
nals above degree 200. The RMS (Eq. 59) of the region R1
accounts for 6.0 cm, and is obviously significantly larger
in R2.

In case A, the RLSC results s (Fig. 4a) and standard LSC s
(Eq. 58) show almost the same RMS (Table 3) and only small
differences among each other. The difference S minus s in
Fig. 4b shows maximum values of about &£ 5.0 cm, but these
values occur to a large extent in areas without observations.
In areas with dense gravity observations (e.g., Pacific Ocean)
the differences between the two methods are of the order of
just a few millimeters. The reason for the differences being

so small is the fact that the extracted variances from CI
and Cg‘ of the GGM are insignificantly small compared to

the corresponding variances of the topographic gravity in CL

and C ‘l Therefore, C " and C ™ from RLSC do not have an
essential effect on the summat1on in Eq. 57.

diag(C") << diag(C})
diag(Cgin) << diag(Cgi) (61)

This is demonstrated in Fig. 5 which shows the variances
that are extracted from Cﬁ (Fig. 5a) and Cﬁ“ (Fig. 5b). The

variances from the topographic gravity in C! are in the order
of 1000 times larger than the variances of the GGM in Cﬁ“.
We can conclude that in case A the additional benefit of
adding the covariance matrices C" and C ™ to LSC is small.

This is also the explanation why LSC approaches oftenignore
the accuracy of a satellite-only resolution GGM completely
(e.g., Hofmann-Wellenhof and Moritz 2006; Rieser 2015).

4.2 Simulation with full GGM resolution

However, this changes in case B where we use the full
degree N = 719 of the XGM2016 model for reduction
™ € {2,719}) and thus apply the topographic gravity
for n' € {720, 2190}. In principle, the procedure remains
the same, but we would like to emphasize that this set-up
increases all matrix elements in C, C M and CIP, and there-
fore also the noise of the XGM2016 model (see Eq. 54).
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Table 3 Overview of the three

. Case Sections N Signal Method RLSC (cm) Standard LSC (cm) Figures
synthetic test cases and the
numerical results for region R1 A 4.1 200 Residuals RMS 6.0 6.1 4
200 Formal error MSD 5.2 5.2 -
B 4.2 719 Residuals RMS 3.9 6.9 6
719 Formal error MSD 3.6 2.2 7
C 4.3 719 Residuals RMS 2.9 33 8
719 Formal error MSD 2.6 2.2 -
Fig.5 Case A: Comparison of ° ° ° °
the extracted variances that are (a) 0w 65 W (b) 0w 65 W

used in RLSC. a Variances

extracted from the covariance

matrix Cﬁ of the topographic

gravity model which depends

only on latitude and height.

b Regional varying variance 20°S
elements from the covariance

matrix CILI“ of the XGM2016

model (to degree 200)

25" S

The results of a collocation with XGM2016 to full degree
(case B) are visualized in Fig. 6, where we show again the
absolute differences to the pre-defined truth s. From this
point, we retain the form in which we present RLSC with
GGM covariance (Eq. 57) on the left-hand side (Fig. 6a) and
standard LSC (Eq. 58) on the right-hand side (Fig. 6b). It is
obvious that RLSC performs much better in case B. In Fig. 6a,
we again see a high correlation with the distribution of the
input points. In areas with dense terrestrial observation, e.g.,
the Pacific Ocean or the bulge in the north, the residuals
are mainly below 1 cm. The residuals over the well-covered
Chilean area are much smaller than on the Argentinian side,
which also results from the corresponding point distributions.
In the region R2 the residuals are largest and often above
10 cm. In Fig. 6b, we have in general much larger residu-
als, so that even areas with dense gravity observations show
residuals of at least 2 cm. The higher residuals primarily
result from the noise of the GGM since standard LSC regards
the noisy XGM2016 model as error-free and therefore fully
reflects its error in the result. The RMS of standard LSC in
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region R1 accounts for 6.9 cm, while the one of RLSC is only
3.9 cm (Table 3).

In summary, RLSC and standard LSC perform very sim-
ilarly with a satellite-only resolution GGM in case A, but
when using a high-resolution GGM as in case B, there are
significant improvements when including the GGM covari-
ance (Table 3, Fig. 6). Furthermore, the benefit of including
a high-resolution GGM itself is demonstrated when we com-
pare the RLSC result in case B (Fig. 6a) with the result in
case A (Fig. 4a). Even with the much higher error from
the GGM in case B, the RMS for RLSC in region R1 is
reduced from 6.0 to 3.9 cm. This improvement results at
least partly from the area with sparse terrestrial measure-
ments in Argentina that has clearly higher residuals in case A
(Fig. 4a). However, even areas with small data gaps which
are common in mountainous areas and the edges of observed
areas benefit highly from the inclusion of a high-resolution
GGM in RLSC. The latter is for example visible at the south-
ern end of the Pacific Ocean where case A clearly shows
edge effects while case B does not. Standard LSC, on the
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Fig.6 Case B: Geoid height ()
residuals with the XGM2016

model that is the absolute

difference between the

pre-defined truth s and a the

RLSC result s, b the standard

LSC result s

20°S

30°S

other hand, performs worse in case B, and its RMS increases
due to the noise I" of the GGM from 6.1 cm in case A to
6.9 cm in case B. We conclude that, in contrast to stan-
dard LSC, RLSC is able to handle the noise in the GGM
and gives good results in areas with a sufficient number
of observations.

Figure 7 shows the formal error of case B, which is derived
from the error covariance matrix Eg or respectively Egg as
square root of the main diagonal elements (Eq. 60). The dif-
ference between Fig. 7a and Fig. 7b results from the neglected
covariance matrices Cliln and C in Eq. 58, and since covari-
ance matrices are positive defsmite, the estimated error for
standard LSC (Fig. 7b) is always smaller than the one from
RLSC (Fig. 7a). The corresponding MSD (Eq. 60) in region
R1is 3.6 cm for RLSC and 2.2 c¢m for standard LSC. Thus,
we see that the residuals and the formal errors agree much
better (see Table 3) for RLSC (Figs. 6a+7a) than for stan-
dard LSC (Figs. 6b+7b). We again point out the Pacific
Ocean and the bulge in Bolivia where in both cases the dark
green values of Fig. 7b do not fit to the corresponding error
in Fig. 6b. In contrast, we see that for RLSC essentially all
peaks in the residuals (Fig. 6a) are indicated by higher val-
ues in Fig. 7a as well, which demonstrates that the formal
error of RLSC fits much better to its residuals. We con-
clude that standard LSC cannot realistically represent the
formal error since the accuracy of the GGM is not included.
Therefore, the result of Eg; is always too optimistic. The con-
sistent calculation of Eg is considered as a main advantage
of RLSC.

0.02 0.04 0.06 0.08 0.1

4.3 Simulation with a different XGM2016 accuracy

To analyze the behavior of RLSC in dependence of the
accuracy of the GGM, we repeat the computations with the
original XGM2016 accuracy, i.e., without multiplying it by
a factor of 3. Therefore, we recalculate case B with the orig-
inal XGM2016 covariance matrices Cﬁ“, Cgin and CQT and
name it case C. Note, that this will generally improve the
results since the downscaling of the covariance matrices also
decreases the noise 1" and s" of the GGM which is used in
the RCR step.

Figure 8 shows again the resulting absolute geoid height
differences between the results of RLSC and standard LSC
to the pre-defined truth s. At first glance the two images in
Fig. 8 look similar. As in case B, in general we have small
errors in the Pacific Ocean, medium errors in the land areas
with observations, and the largest errors in region R2. But
nevertheless, we see that the result of RLSC (Fig. 8a) is bet-
ter than standard LSC (Fig. 8b). The RMS from region R1
amounts to 2.9 cm (Fig. 8a) and 3.3 cm (Fig. 8b), respec-
tively. Especially, the dark green area in the Pacific which
indicates residuals below 1 cm is more uniform in Fig. 8a.
Also, for RLSC the bulge in the north shows mainly resid-
uals below 1 cm, while for standard LSC it shows much
higher residuals.

Table 3 summarizes the RMS and MSD values of the three
synthetic test cases in region R1, from which the follow-
ing conclusions can be drawn. Generally, in all three test
cases RLSC performs better than standard LSC. However,
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Fig.7 Case B: Formal error of (a)
the geoid height calculation.

This derives a from Eg for

RLSC, b from Eg for standard

LSC, as the square root of the

main diagonal

20°S
25'S
30°S
Fig.8 Case C: Geoid height (a)
residuals with the original
XGM2016 accuracy. Presented
is the absolute difference
between the pre-defined truth s
and a the RLSC result s, b the
standard LSC result §
20°S
25°S
30°S

the benefit in case A is negligibly small. With the given point
distribution in the target area we see a benefit from including
a high-resolution GGM in RLSC which decreases the RMS
from 6.0 cm (case A) to 3.9 cm (case B). This benefit is
particularly apparent in areas with sparse or medium-dense
data distributions and at the edges of the terrestrial observa-
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tions. The inclusion of a high-resolution GGM without using
RLSC yields with 6.9 cm the worst result among the three
cases. Figure 6b demonstrates this even more clearly than
the RMS comparison. As expected, the inclusion of a higher
quality GGM (case C) gives better results in both of the LSC
methods, but still favors RLSC. In contrast to standard LSC,
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in all three cases the accuracy of RLSC is well approximated
by the formal error estimates. In case B and C the MSD of
the formal error differs by only 0.3 cm from the RMS of the
residuals (Table 3).

5 Conclusion and outlook

In this paper, we derive and evaluate an approach named
residual least-squares collocation that includes several adap-
tations to previous LSC methods. Principally, we use only
residuals as input to RLSC and the stochastic properties of
all inputs in the RCR step are separately described by a
corresponding covariance matrix. As a result, this adapted
formulation only uses error covariance matrices instead of
covariance matrices that describe the gravity signal as used
in Moritz (1980), Pail et al. (2010), Sanso (2013) or Haag-
mans and van Gelderen (1991).

We derive the formulation of RLSC from the basics of
Moritz (1980) but use the mere stochastic expectation opera-
tor E instead of the total average operator E for the definition
of the covariance matrices. On this basis, for the first time
we include a full covariance matrix of a high-resolution
GGM in regional geoid modeling. The method also allows
us to use covariance matrices that are tailored to a target
area. It was already formulated by Tscherning (1999) that
the use of isotropic covariance functions does not yield the
optimal result in estimating the non-isotropic functionals of
the Earth’s disturbing gravity field 7. Therefore, we derive
covariance functions directly from the normal equation sys-
tem of the high-resolution GGM (here: XGM2016) and use
them for the collocation. In general, these location-dependent
and non-isotropic covariance matrices fit better to a target
area than covariance matrices derived purely from signal
degree variances (Moritz 1980; Heiskanen and Moritz 1967)
or empirical covariance fitting (Tscherning and Rapp 1974),
which both describe only an average part of the Earth (or
respectively an average part of a target area). Furthermore,
similar to the LSC methods in Pail et al. (2010) or Sanso
(2013) RLSC offers the advantage that all stochastic effects
are included in a consistent way directly in LSC, which
should lead to a realistic accuracy estimation of the output
quantities. The downside of the presented approach is that the
computation of the covariance matrices for the input and the
output points (Cﬁ“, Cg and CJ}) is very CPU-intensive. For
the calculation we exploited the LRZ supercomputing sys-
tem SuperMUC phase 2 where we used 80 Haswell nodes
(Xeon E5-2697 v3). These nodes have 28 cores each with a
peak performance of 41.6 GFlops/s, which results in a com-
putation time less than an hour. Additionally, it is necessary
to have access to the full normal equation system of the GGM
which is frequently not available to the public.

For an optimum evaluation of the benefit of the RLSC
method we formulate a synthetic test case with a pre-defined
truth. To obtain realistic results from it we add noise to the
GGM and to the terrestrial gravity observations. However,
a number of assumptions must be included in the scenario.
In particular, we assume that the variance—covariance infor-
mation of the XGM2016 model is correct, since we use it
to derive the noise of the GGM. Furthermore, we band-limit
the gravity signal to degree 2190. In a case where we use real
gravity data, we would have to extend the topographic gravity
reduction to higher frequencies. Nevertheless, the simulation
of three different test cases yields meaningful results and
allows us to evaluate RLSC compared to a standard LSC.
We see that regional gravity modeling can benefit from the
inclusion of a high-resolution GGM with RLSC. In our test
case, the numerical advantage of this is an RMS reduction
from 6.0 cm (case A) to 3.9 cm (case B) for RLSC where
the RMS values are largely affected by the areas with sparse
ground data distribution. In areas with a good data coverage
RLSC gives residuals mainly below 1 cm in all of the three
test cases. In general, by including a high-resolution GGM
in RLSC, we obtain better results especially in areas with
sparse observations or close to data gaps. In our opinion, this
constitutes a big advantage, because terrestrial gravity mea-
surements are often inhomogeneously distributed and data
gaps are almost inevitable especially in mountainous regions.
Furthermore, it is shown that the stochastic error estimates of
the RLSC approach provide realistic uncertainty estimates,
which becomes very important when real gravity data is used.

An additional advantage of the inclusion of a high-
resolution GGM in LSC and thus working with rather
high-frequency residuals is, that it can significantly reduce
the amount of terrestrial data that is needed for the calcula-
tion. As shown in Sect. 3, the correlation length when using
XGM2016 and a topographic gravity model in the remove
step is only 0.12°. Therefore, it is possible to reduce the
amount of data thatis included to RLSC locally and for exam-
ple use only those observations for the calculation that are
within a specified distance from the output. Considering this,
we regard the calculation of height reference stations for the
International Height Reference System (IHRS; more infor-
mation in Ihde et al. 2017 or Sanchez and Sideris 2017) as a
predestined application for RLSC. The high-resolution GGM
could be used as the basis of a worldwide height unification,
and terrestrial observations would be used for the local refine-
ment around a height reference station. The unique advantage
of RLSC in this context is that terrestrial data coverage would
not be needed in an area as large as about 200 km around an
IHREF station, which is the current default for a satellite-only
GGM. Furthermore, THRS stations will be distributed glob-
ally, so that numerous IHRF stations can either benefit from
the in general good quality of high-resolution GGMs over
oceans that results from satellite altimetry, or are set to areas
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with little terrestrial data coverage where RLSC appears to
perform best. Finally, a correct stochastic accuracy estima-
tion is very important for the calculation of potential values
at the IHREF stations.

The next step will be to validate the performance of the
presented approach within the IAG Joint Working Group
(JWG, 2.2.2: the 1 cm geoid experiment) with real measure-
ments. JWG 2.2.2 aims to assess the calculation of gravity
potential values at IHRS stations from different calculation
methods, and therefore enables another comparison of RLSC
to other regional gravity field determination methods. In any
case, with continuously improving high-resolution GGMs
and especially with the announcement of the Earth Gravi-
tational Model 2020 (EGM2020) by the NGA, we see the
impact of high-resolution GGMs for regional geoid model-
ing even increasing in the future.

Acknowledgements A large part of the investigations presented in
this paper was conducted in the framework of the project ‘Optimally
combined regional geoid models for the realization of height systems
in developing countries’ funded by the German Research Foundation
(DFG Project No. PA 1543/14-1). We also acknowledge the provision
of computer resources by the Leibniz Supercomputing Centre (LRZ;
Address: Boltzmannstrasse 1, 85748 Garching, Germany).

References

Andersen O, Knudsen P, Stenseng L (2015) The DTU13 MSS (mean sea
surface) and MDT (mean dynamic topography) from 20 years of
satellite altimetry. In: Jin S, Barzaghi R (eds) IGFS 2014. Interna-
tional association of geodesy symposia, vol 144. Springer, Cham,
pp 111-120. https://doi.org/10.1007/1345_2015_182

Arabelos DN, Tscherning CC (2009) Error-covariances of the esti-
mates of spherical harmonic coefficients computed by LSC, using
second-order radial derivative functionals associated with realis-
tic GOCE orbits. J Geod 83(5):419—430. https://doi.org/10.1007/
s00190-008-0250-9

Drinkwater MR, Floberghagen R, Haagmans R, Muzi D, Popescu A
(2003) GOCE: ESA’s first earth explorer core mission. In: Beutler
GB et al (eds) Earth gravity field from space—from sensors to
earth sciences, space sciences series of ISSI, vol 17, pp 419-432.
Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1333-
7_36

Fecher T, Pail R, Gruber T (2015) Global gravity field modeling based
on GOCE and complementary gravity data. Int J Appl Earth
Obs Geoinf 35A:120-127. https://doi.org/10.1016/j.jag.2013.10.
005 (ISSN 0303-2434)

Fecher T, Pail R, Gruber T, the GOCO Consortium (2017) GOCOO05c: a
new combined gravity field model based on full normal equations
and regionally varying weighting. Surv Geophys 38(3):571-590.
https://doi.org/10.1007/s10712-016-9406-y

Forsberg R (1984) A study of terrain reductions, density anomalies and
geophysical inversion methods in gravity field modelling. Reports
of the Department of Geodetic Science and Surveying, No. 355,
Ohio State University, Columbus

Forsberg R, Tscherning CC (1981) The use of height data in gravity field
approximation by collocation. J Geophys Res 86(B9):7843-7854.
https://doi.org/10.1029/JB086iB09p07843

Forste C, Bruinsma SL, Abrikosov O, Lemoine JM, Marty JC, Flechtner
F, Balmino G, Barthelmes F, Biancale R (2014): EIGEN-6C4 the
latest combined global gravity field model including GOCE data

@ Springer

up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse.
GFZ Data Services. https://doi.org/10.5880/icgem.2015.1

Gerlach C, Fecher T (2012) Approximations of the GOCE error
variance—covariance matrix for least-squares estimation of height
datum offsets. J Geod Sci 2(4):247-256. https://doi.org/10.2478/
v10156-011-0049-0

Grombein T, Seitz K, Heck B (2016) The rock—water—ice topographic
gravity field model RWI_TOPO_2015 and its comparison to a
conventional rock-equivalent version. Surv Geophys 37(5):937-
976. https://doi.org/10.1007/s10712-016-9376-0

Gruber T, Willberg M (2019) Signal and error assessment of GOCE-
based high resolution gravity field models. In: International sym-
posium gravity, geoid and height systems 2, J Geod Sci (accepted)

Gruber T, Visser PNAM, Ackermann C, Hosse M (2011) Validation
of GOCE gravity field models by means of orbit residuals and
geoid comparisons. J Geod 85(11):845-860. https://doi.org/10.
1007/s00190-011-0486-7

Haagmans RHN, van Gelderen M (1991) Error variances—covariances
of GEM-TT: their characteristics and implications in geoid compu-
tation. J Geophys Res 96(B12):20011-20022. https://doi.org/10.
1029/91JB01971

Heiskanen WA, Moritz H (1967) Physical geodesy. Freeman and Com-
pany, San Francisco

Hirt C, Claessens SJ, Fecher T, Kuhn M, Pail R, Rexer M (2013) New
ultra-high resolution picture of Earth’s gravity field. Geophys Res
Lett 40(16):4279-4283. https://doi.org/10.1002/grl.50838

Hofmann-Wellenhof B, Moritz H (2006) Physical geodesy. Springer,
Wien ISBN 10 2-211-33544-7

Hosse M, Pail R, Horwath M, Holzrichter N, Gutknecht BD (2014)
Combined regional gravity model of the andean convergent sub-
duction zone and its application to crustal density modelling in
active plate margins. Surv Geophys 35(6):1393—1415. https://doi.
org/10.1007/s10712-014-9307-x

Ihde J, Sanchez L, Barzaghi R, Drewes H, Forste C, Gruber T, Lieb-
sch G, Marti U, Pail R, Sideris M (2017) Definition and proposed
realization of the international height reference system (IHRS).
Surv Geophys 38(3):549-570. https://doi.org/10.1007/s10712-
017-9409-3

Krarup T (1969) A contribution to the mathematical foundation of
physical geodesy. In: Borre K (ed) Mathematical foundation of
geodesy—selected papers of Torben Krarup. Springer, Berlin.
https://doi.org/10.1007/3-540-33767-9

Mayer-Giirr T, and the GOCO consortium (2015) The new combined
satellite only model GOCOO05s. EGU General Assembly, Vienna.
https://doi.org/10.13140/RG.2.1.4688.6807

Moritz H (1980) Advanced physical geodesy. Herbert Wichmann, Karl-
sruhe ISBN 3-87907-106-3

Pail R, Reguzzoni M, Sanso F, Kiihtreiber N (2010) On the combination
of global and local data in collocation theory. Stud Geophys Geod
54(2):195-218. https://doi.org/10.1007/s11200-010-0010-1

Pail R, Fecher T, Barnes D, Factor JF, Holmes SA, Gruber T,
Zingerle P (2018) Short note: the experimental geopotential
model XGM2016.J Geod 92(4):443-451. https://doi.org/10.1007/
s00190-017-1070-6

Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The devel-
opment and evaluation of the Earth Gravitational Model 2008
(EGM2008). J Geophys Res 117:B04406. https://doi.org/10.1029/
2011JB008916

Rexer M (2017) Spectral solutions to the topographic potential in the
context of high-resolution global gravity field modelling. Disser-
tation, Technical University of Munich

Rexer M, Hirt C, Claessens S, Tenzer R (2016) Layer-based modelling
of the Earth’s gravitational potential up to 10-km scale in spher-
ical harmonics in spherical and ellipsoidal approximation. Surv
Geophys 37(6):1035-1074. https://doi.org/10.1007/s10712-016-
9382-2



Residual least-squares collocation: use of covariance matrices from high-resolution global... 1757

Rieser D (2015) GOCE gravity gradients for geoid and Moho determi-
nation applying the Least Squares Collocation approach. Disser-
tation, Graz University of Technology

Sénchez L, Sideris MG (2017) Vertical datum unification for the
international height reference system (IHRS). Geophys J Int
209(2):570-586. https://doi.org/10.1093/gji/ggx025

Sandwell DT, Smith WHF (2009) Global marine gravity from retracked
Geosat and ERS-1 altimetry: ridge segmentation versus spread-
ing rate. J Geophys Res 114:B01411. https://doi.org/10.1029/
2008JB006008

Sanso F (1986) Statistical methods in physics geodesy. In: Suenkel H
(ed) Mathematical and numerical techniques in physical geodesy.
Lecture notes in earth sciences, vol 7. Springer, Berlin, pp 49-155.
https://doi.org/10.1007/BFb0010132

Sanso F (2013) The local modelling of the gravity field by collocation.
In: Sanso F, Sideris MG (eds) Geoid determination: theory

and methods. Springer, Heidelberg. https://doi.org/10.1007/978-
3-540-74700-0

Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The grav-
ity recovery and climate experiment: mission overview and early
results. Geophys Res Lett 31(9):L09607. https://doi.org/10.1029/
2004GL019920

Tscherning CC (1999) Construction of anisotropic covariance functions
using Riesz-representers. J Geod 73(6):332-336. https://doi.org/
10.1007/s001900050250

Tscherning CC (2015) Least-squares collocation. In: Grafarend E
(ed) Encyclopedia of geodesy. Springer, Cham. https://doi.org/10.
1007/978-3-319-02370-0_51-1

Tscherning CC, Rapp RH (1974) Closed covariance expressions for
gravity anomalies, geoid undulations, and deflections of the ver-
tical implied by anomaly degree variance models. Reports of the
Department of Geodetic Science, No. 208, Ohio State University,
Columbus

@ Springer



P.4 Publication IV: Integration of airborne gravimetry data filtering
into residual least-squares collocation - example from the 1 cm
geoid experiment

Reference

Willberg, M., Zingerle, P., Pail, R. Integration of airborne gravimetry data filtering into residual
least-squares collocation: example from the 1 cm geoid experiment. J Geod 94, 75 (2020).
doi 10.1007/s00190-020-01396-2

Copyright

This work originally has been published in Journal of Geodesy, available at https://link.springer.com/
and is an open access publication. The publication will be available under the license of Creative
Commons. The Copyrights remain with the authors.

Abstract

Low-pass filters are commonly used for the processing of airborne gravity observations. In this
paper for the first time, we include the resulting correlations consistently in the functional and
stochastic model of residual least-squares collocation (RLSC). We demonstrate the necessity of
removing high-frequency noise from airborne gravity observations, and derive corresponding pa-
rameters for a Gaussian low-pass filter. Thereby, we intend an optimal combination of terrestrial
and airborne gravity observations in the mountainous area of Colorado. We validate the combina-
tion in the frame of our participation in 'the 1 cm geoid experiment’. This regional geoid modeling
inter-comparison exercise allows the calculation of a reference solution, which is defined as the
mean value of 13 independent height anomaly results in this area. Our result performs among
the best and with 7.5 mm shows the lowest standard deviation to the reference. From internal
validation we furthermore conclude that the input from airborne and terrestrial gravity observations
is consistent in large parts of the target area, but not necessarily in the highly mountainous areas.
Therefore, the relative weighting between these two data sets turns out to be a main driver for
the final result, and is an important factor in explaining the remaining differences between various
height anomaly results in this experiment.


https://doi.org/10.1007/s00190-020-01396-2
https://link.springer.com/

100 Appendix

Declaration of own contribution

(MW: Martin Willberg; PZ: Philipp Zingerle; RP: Roland Pail)

MW had the idea to contribute to the 1 cm geoid experiment, prepared the gravity observations and
performed initial results, where high-frequency noise was detected in the airborne observations.
Accordingly, MW and PZ formulated the methodology section which handles high-frequency noise
consistently in the RLSC approach. MW performed most of the calculations and created the results
in the paper. The coauthors supported MW in analysis and interpretation, and provided detailed
comments and corrections to the manuscript from MW. MW created figures and tables for the
paper, whereby PZ had the idea for the figures 2 and 3.

The overall own contribution of MW for P-1V is estimated at 87 %, which is the average value of
the percentage values estimated for the six criteria listed in the table below (Tab. P.4).

Criteria Estimated
own contribution

Computation and results 90 %
Ideas and study design 75 %
Analysis and interpretation 80 %
Text 90 %
Figures 85 %
Tables 100 %
Total 87 %

Tab. P.4 — Criteria and estimated contribution share of Martin Willberg for P-1V



Confirmation by the authors

We hereby confirm the correctness of the declaration of own contribution for the publication

Willberg, M., Zingerle, P., Pail, R. (2020) Integration of airborne gravimetry data filtering into
residual least-squares collocation: example from the 1 .cm geoid experiment. J Geod 94, 75.
doi: https://doi.org/10.1007/s00190-020-01396-2

Philipp Zingerle

Institute for Astronomical and Physical Geodesy, Technical University of Munich, Germany

{ )
Signature: /Z' Date: ... 24102020 ..o

Roland Pail

Institute for Astronomical and Physical Geodesy, Technical University of Munich, Germany

I
Signature: ... %IM"‘ ........ Date: ....... ZO/{O ZOLO ...........



Journal of Geodesy (2020) 9475
https://doi.org/10.1007/s00190-020-01396-2

ORIGINAL ARTICLE o‘)

Check for
updates

Integration of airborne gravimetry data filtering into residual
least-squares collocation: example from the 1 cm geoid experiment

Martin Willberg'® - Philipp Zingerle' - Roland Pail’

Received: 8 November 2019 / Accepted: 1 July 2020
© The Author(s) 2020

Abstract
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demonstrate the necessity of removing high-frequency noise from airborne gravity observations, and derive corresponding
parameters for a Gaussian low-pass filter. Thereby, we intend an optimal combination of terrestrial and airborne gravity
observations in the mountainous area of Colorado. We validate the combination in the frame of our participation in ‘the 1 cm
geoid experiment’. This regional geoid modeling inter-comparison exercise allows the calculation of a reference solution,
which is defined as the mean value of 13 independent height anomaly results in this area. Our result performs among the best
and with 7.5 mm shows the lowest standard deviation to the reference. From internal validation we furthermore conclude that
the input from airborne and terrestrial gravity observations is consistent in large parts of the target area, but not necessarily in
the highly mountainous areas. Therefore, the relative weighting between these two data sets turns out to be a main driver for
the final result, and is an important factor in explaining the remaining differences between various height anomaly results in
this experiment.
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1 Introduction

In this paper we adapt the residual least-squares colloca-
tion (RLSC, Willberg et al. 2019) so that correlations from
low-pass-filtered airborne gravity observations are handled
consistently. Simultaneously, we present our final result from
an International Association of Geodesy (IAG) joint working
group (JWG) which is designed to support the realiza-
tion of the International Height Reference System (IHRS,
Ihde et al. 2017). Within this JWG 2.2.2, called ‘the 1 cm
geoid experiment’, different participating groups calculate
height anomaly, geoid height and potential values by using
identical terrestrial and airborne gravity observations. The
main objective of this JWG is to increase the compatibility
between different methods for regional geoid determination
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University of Munich, Arcisstrasse 21, 80333 Munich,
Germany

Published online: 03 August 2020

by analyzing and quantifying differences between the results.
Furthermore, the experiment should help to define common
standards for the IHRS realization and verify the quality of
the submitted results. Additional information about the pur-
pose and benefit of the JWG is published in a summary paper
(Wang et al. (2020), this issue).

The study area of ‘the 1 cm geoid experiment’ lies at the
southern end of the Rocky Mountains in the United States
of America; mainly in the states of Colorado and New Mex-
ico. It was selected for its geoid slope validation survey from
2017 (GSVS17) where positions, gravity and deflections of
the vertical are measured with very high accuracy at a line of
223 benchmarks along U.S. Highway 160. However, these
measurements or their processing are not yet published, so
they will function as reference values for the JWG results
only in the future. Furthermore, the region has good coverage
in terms of terrestrial and airborne gravity measurements, but
is also intended to be a very challenging region for regional
geoid determination, as it includes highly mountainous areas.
Another major challenge within the JWG, and one main
topic of this paper, is the optimal inclusion of airborne grav-
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ity observations from the ‘Gravity for the Redefinition of
the American Vertical Datum’ project (GRAV-D, GRAV-D
Team 2018b). Within this project, the complete area of the
United States is covered with equally distributed airborne
observations in order to define a new gravity-based verti-
cal datum, preferably with an accuracy of 1-2 cm (GRAV-D
Team 2017).

For our calculation we include RLSC (Willberg et al.
2019) as a modified version of the standard least-squares
collocation (LSC) by Moritz (1980). By including a remove—
compute—restore (RCR) approach with a high-resolution
global geopotential model (GGM) and a topographic grav-
ity model, the input of RLSC consists only of residuals. As
GGM, we include the XGM2018 model, an internal succes-
sor of XGM2016 (Pail et al. 2018). Both models provide a
full variance—covariance information from regional varying
weighting, which enables improved error-modeling in RLSC.
However, XGM2018 provides a more realistic stochastic
model for the GGM reduction (see discussion on this issue
in Willberg et al. 2019). Additionally, accuracy estimation
in RLSC benefits from the fact that individual covariance
matrices contain stochastic information of all involved com-
ponents. Detailed justification for the application of RLSC
and a comparison between RLSC and standard LSC is pub-
lished in Willberg et al. (2019). This contribution adapts
RLSC to airborne gravimetry for the first time.

A crucial task thereby is to separate the target gravity
signal from the observation noise which is normally imple-
mented by a low-pass filter (e.g., Childers et al. 1999).
While the variety of different filters for this purpose is
huge, their purpose is very similar: to reduce the high-
frequency noise from the airborne observations (details in
Sect. 2). The application of a low-pass filter is necessary
for platform-stabilized gravimeters (Childers et al. 1999;
Olesen 2003) as well as strapdown gravimeters (Wei and
Schwarz 1998; Becker 2016; Li 2011). Detailed descrip-
tions of the two different measurement systems and the
predominant error sources are given in Schwarz and Wei
(1995). In general, both gravimeter types are used within the
GRAV-D project, but in the target area (5th block mountain
south, MSO05), we only have airborne measurements from
the platform-stabilized gravimeters Micro-g LaCoste TAGS
S-137 (turn-key airborne gravimetry system) and TAGS
S-211. Detailed documentation about the instrumentation
and the flight lines from block MSO05 is provided in GRAV-D
Team (2018a).

The inclusion of a low-pass filter for the processing of
airborne gravity data is the standard procedure. However,
a low-pass filter will inevitably result in a significant cor-
relation of the airborne observations along the track of the
aircraft, which is usually not considered in airborne process-
ing. As an example, Forsberg et al. (2000, 2014) and Hwang
et al. (2007) assume low-pass filtered airborne observations
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to be uncorrelated in LSC. Within this paper, for the first time,
we derive an approach which includes correlations result-
ing from a low-pass filter consistently in the functional and
stochastic model of RLSC. As aresult of the modification, we
have a more consistent error modeling and filter dependent
covariance matrices. Taking these correlations into account
seems of even higher significance when the airborne observa-
tions are combined with other measurements (e.g., terrestrial
gravity observations).

We see another advantage of our presented approach in the
fact that the combination of terrestrial and airborne gravity
measurements is included in a direct, one-step LSC, which
also contains field transformation and the downward con-
tinuation of airborne measurements. For the combination of
different data sets, the one-step calculation allows the full
exploitation of the much higher airborne resolution in along-
track direction. For other approaches, which either calculate
a regular grid before the downward continuation (Forsberg
et al. 2000) or include a spectral method for the analysis of
airborne measurements at flight height (Smith et al. 2013;
Jiang and Wang 2016), the difference between along-track
and across-track accuracy gets lost.

In summary, the main innovations of this paper include
(1) a novel approach to include a low-pass filter to regional
gravity field modeling in general, and RLSC in particular;
(2) application of GRAV-D data with recommendations for
its use; (3) the first application of RLSC to real gravity obser-
vations, as the theory paper on RLSC (Willberg et al. 2019)
uses a synthetic simulation environment; (4) demonstration
of the RLSC contribution to ‘the 1 cm geoid experiment’ and
comparison of corresponding results.

This paper is structured as follows. In Sect. 2 we motivate
the application of a low-pass filter for airborne observations.
Next, in Sect. 3 a suitable filter is derived and included into the
RLSC formalism, resulting in a rigorous formulation for the
combination of filtered (airborne) and unfiltered (terrestrial)
observations. The data sets and our calculation procedure
from ‘the 1 cm geoid experiment’ are explained in Sect. 4, and
its results are analyzed in Sect. 5. Additionally, we include
comparisons of our results along GSVS17 in relation to the
JWG mean value (Sect. 6). Lastly, we draw conclusions and
give an outlook in Sect. 7.

2 Reasons for low-pass filter in airborne
gravimetry

For optimal comparisons within ‘the 1 cm geoid experiment’
the input observations used by all contributing groups should
be identical. Therefore, the airborne observations of block
MSO05 are provided as gravity measurements within the JWG.
In contrast to the original GRAV-D airborne data available at
the homepage of the National Geodetic Survey (2019, NGS),
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the provided data is already corrected for the individual line
bias by comparison with already existing models and cross-
point validation. Furthermore, the data is provided with the
uniform frequency of 1 Hz while the gravimeter Micro-g
LaCoste TAGS S-211 originally records data at 20 Hz
(GRAV-D Team 2018a).

As is well known, airborne gravity observations include
in general higher noise levels than stationary terrestrial data.
This results from the dynamics of the aircraft. Corrections
have to be applied for Eotvos accelerations (Harlan 1968),
the vertical acceleration (Zhong et al. 2015), and the off-
level error of the instrument (LaCoste 1967; Swain 1996).
The exact corrections that are applied to the observations are
described in GRAV-D Team (2017), and a description of the
underlying software with the use of the same notation can be
found in Zhong et al. (2015). It is commonly assumed that the
occurring noise shows up mainly in the short wavelengths,
while the gravity signal dominates the longer wavelengths
(e.g., Childers et al. 1999). Accordingly, the inclusion of a
low-pass filter in along-track direction of airborne gravimetry
is common practice.

Airborne observations from the GRAV-D project are
already low-pass filtered with a time domain Gaussian
filter (GRAV-D Team 2017, Chapter 2.2). However, its pur-
pose was to preserve the amplitude of the gravity signal,
and it leaves significant short-wavelength noise in the data
(GRAV-D Team 2018a). Accordingly, the GRAV-D Team
(2018a, Chapter 4.1) recommends using a second low-pass
filter for the airborne observations in order to remove the
short-wavelength noise. In this study, we assume that the
first filter actually leaves the gravity signal untouched (as it
was intended), because it allows us to neglect the first filter in
the theoretical derivations (Sect. 3). As a consequence, in the
following we call the GRAV-D observations provided within
‘the 1 cm geoid experiment’ as ‘original airborne observa-
tions’, although they already include the first low-pass filter,
the line bias correction and the resampling to uniform 1 Hz
frequency. Accordingly, in further usage of the expression
“filter”, we are referring only to the second one. The GRAV-D
Team (2018a, Chapter 4.1) also emphasizes that the low-pass
filter should be included prior to a downward continuation,
as it would otherwise amplify the noise. Since LSC implic-
itly includes a downward continuation, we apply a suitable
low-pass filter before the LSC method (details in Sect. 3).

In general, we consider the characterization of the high-
frequency noise as a sophisticated problem, because its
amplitude and frequency distribution can change due to
various reasons like wind conditions or flight velocity. An
analysis of the most dominant error sources in airborne
gravimetry and its assessment can be found in Schwarz and
Wei (1995). However, we need to specify filter criteria in
order to separate the noise and gravity signal. We demon-
strate this in the following example: some of the flight lines

in MSO05 are actually divided into two segments (GRAV-D
Team 2018a). Accordingly, there is a total of seven flight
segments, where the end of one flight line overlaps with the
beginning of another. One of these flight segments has over-
lapping measurements over approximately 100 km which is
significantly more than all other combinations. In Fig. 1, we
present the overlapping segments of these two flight lines
(FL) 103 (red) and 203 (blue) with its original gravity dis-
turbances (bright solid lines) and the filtered observations
(dark solid lines), respectively. Additionally, the dotted lines
result from an approximation by available spherical harmonic
(SH) coefficient models (details in Sect. 4). Therefore, in
our case we include a combination of XGM2018 and the
topographic gravity model dV_ELL_Earth2014, which is
calculated according to Rexer et al. (2016), but continued
to SH degree 5480 by including 1 arc-min topography infor-
mation from Hirt and Rexer (2015). Note that the presented
flight lines result from the same flight plan, which is why their
horizontal offset is negligible. Their gravitational difference
from the vertical offset is small and can be approximated by
the difference between the two modeled observations (dotted
lines).

In this section of the flight lines we see major anomalies
due to the fast-changing topography, and the gravity distur-
bances change with about 100 mGal over a distance of only
50 km. The two close-up analyses in Fig. 1 display that there
is basically no correlation between the high-frequency sig-
nals of FL103 and FL.203, which indicates dominating noise
in these frequencies. The modeled airborne observations con-
tain gravity signals to SH degree 5480. Nevertheless, they
appear very smooth in comparison to the original gravity
observations, which is assumed to result from high-frequency
noise in the observations as well. By including a Gaussian
low-pass filter we reduce high frequencies in the obser-
vations, so that the modeled observations and the filtered
observations approximately contain the same spectral sig-
nal content (Fig. 1). Details about the Gaussian filter are
explained at a later stage in Sects. 3.1 and 3.3. Apart from
the reduction of high-frequency noise and the recommen-
dations by the GRAV-D team, we consider a low-pass filter
necessary for the following reasons:

(1) The original airborne observations are available with a
frequency of 1 Hz, all in all resulting in 283,716 obser-
vations. Because there is a very high correlation between
consecutive observations, we do not consider it reason-
able to include all observations directly in the processing.
However, decreasing the amount of observations is only
possible if a low-pass filter is applied first, and otherwise
we will create aliasing errors (details in Sect. 3.3).

(2) Furthermore, decreasing the amount of airborne obser-
vations is necessary in order to prevent RLSC from
containing numerically singular covariance matrices.
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Fig. 1 Overlapping flight segments between the flight lines 103 (red) and 203 (blue). The gravity disturbances for the original observations, the
filtered observations and the modeled observations are presented. Two parts of 10 km each are enlarged for more details

These would inevitably arise when airborne observations
are included with a 1 Hz sampling frequency.

(3) In the current implementation our RLSC approach for
airborne observations is limited to the maximum SH
degree 5480, as this is the highest available resolu-
tion for a topographic gravitational potential model (in
our case: dV_ELL_Earth2014). Consequently, airborne
gravity signals above this SH degree would result in a
model error. It is commonly assumed that airborne obser-
vations do not include a significant gravity signal above
SH degree 5480 (approx. 4 km in spatial resolution) due
to signal attenuation with altitude. However, we have to
consider the following: a few of the flight lines are located
at 5200 m above the ellipsoid while the Rocky Mountains
beneath the corresponding lines reach heights of more
than 4000 m. Accordingly, the flight tracks can be quite
close to the signal generating masses. At the same time,
there might be significant errors in the topographic grav-
ity model due to problems of Shuttle Radar Topography
Mission (SRTM) in areas with fast-changing topogra-
phy. Lastly, the limited spatial resolution of topographic
elevation models in highly mountainous areas is another
reason that might result in errors. Only by including a
low-pass filter can we guarantee that these problems do
not arise in (R)LSC.
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3 Methodology

In this section, we show the attenuation of different low-
pass filters in the frequency domain by using the recursion
formulas by Jekeli (1981). Next, we derive a Gaussian low-
pass filter that is suitable for airborne gravity data, include it
consistently in the functional and stochastic model of RLSC,
and explain its effect. Thereby, we also present a numerical
example for the final covariance matrix. Lastly, we formulate
the combination of filtered airborne and unfiltered terrestrial
gravity observations.

3.1 A Gaussian low-pass filter

A normalized Gaussian weighting function wg can be written
as a function of the Euclidean distance d

d2
wg(d) = aexp (—20—2), (D

whereby the standard deviation of the Gaussian filter o
defines the smoothing effect. The weighting function wg(d)
includes the normalization factor « so that the overall signal
content is not amplified or weakened by the filter. This nor-
malization factor « will be derived later on (cf. Eq. 9). Jekeli
(1981) derives the weighting function wg of a Gaussian filter
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on the sphere in dependence of its spherical distance

wG () = aexp(—=b (1 —cos ), @

where b gives the smoothing effect which is defined by the
radius of the Earth R

R2
b=;. 3)

Note that Egs. 1 and 2 can be derived from each other using
simple trigonometry. Furthermore, Jekeli (1981) gives recur-
sion formulas which are normalized on the unit sphere. They
enable the formulation of the attenuation 8, which results
from a Gaussian filter per SH degree n in the frequency
domain

Bo=1,
1 +exp(=2b) _1
'Bl_l—exp(—Zb) b’
2+ 1
Bt = Byt B )

b

We see that with decreasing 3, the attenuation of the Gaus-
sian filter increases when either the SH degree or the standard
deviation o becomes larger. Strictly speaking, the recursion
formulas are only valid for points on the sphere, which is why
Jekeli (1981) includes a spherical approximation for points
on the ellipsoid. By analogy, we include the same approxi-
mation since we apply the filter to airborne observations with
a relatively constant flight height above the ellipsoid. In the
following, the standard deviation o is replaced by the more
intuitive half width at half maximum (HWHM)

HWHM
O = —.
JV2In2)

The HWHM of a Gaussian low-pass filter describes the
distance after which the weighting function wg decreases to
half its maximum. Figure 2 presents the attenuation 8 per SH
degree n (Eq. 4) that is evoked by different Gaussian filters
with a HWHM between 1 and 5 km. While the HWHM of
5 km (green) basically erases all signals at SH degree 5000,
the HWHM of 1 km (blue) attenuates only 20% of the signal
at this SH degree.

&)

3.2 Including the Gaussian filter into the functional
model

The Gaussian weighting function defined in Eq. 1 can be
formulated to describe the filter process in form of a func-
tional model AC. It calculates filtered observations 19 from

1

—1km
—2km
0.8 3 km{]
N —4 km
—5km
S 06 i
T
2
o 04r
<
0.2
0 . N .
0 2000 4000 6000 8000 10000

SH Degree

Fig.2 Relationship between the SH degree n and the attenuation S of
the Gaussian filter according to the recursion formulas by Jekeli (1981)
in Eq. 4. Five different filters with the HWHM between 1 and 5 km are
presented

the original airborne observations 1
16 = AC1. (6)

Note that number and position of the original observa-
tions 1 and the filtered observations 19 do not have to be
identical. If there are, for example, less point positions in 19
than there are in 1, the functional model AC will result in a
reduction of the sampling frequency. This process is called
downsampling in the following. In order to keep the signal
content consistent before and after the filter process, AY is
normalized so that the summation of one row in A® equals
one

N
> a=1. @)
j=1

Therein, a;; are the matrix elements of the functional
model AS and N is the number of observations 1 in one
flight line. Consistently, 4, ; are the elements of the functional
model before the normalization

d>
dij = Wg(dij) = exp (—ﬁ) : ®)

with Wg(d;;) being the related Gaussian weighting func-
tion for the distance d;;. The normalized Gaussian weighting
function can be formulated by adding the normalization fac-
tor «;

N -1
o = (Z &ik> : ©)

k=1

to Eq. 1
d?
AS = {we(di))} = {a,- exp (—ﬁ)} ) (10)
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We see that the elements of AS after the normalization are
defined by the Gaussian weighting function wg(d;;). Note
that the high-frequency noise of airborne observations occurs
only in along-track direction, so that we use a 1-D Gaussian
filter along individual flight lines. Accordingly, our approach
differs from the 2-D filters in Jekeli (1981) or Huang et al.
(2008), who apply and normalize their filters on the unit
sphere or surface element, respectively. In the functional
model AC, every row refers to a filtered observation whereas
the columns refer to the original observations. Accordingly,
one row in AY defines which original observations are used to
calculate the corresponding filtered value. One column in AS
describes to what extent a specific original observation will
be included in different filtered values (Eq. 6). Visualizing
the values of either one row or one column would look like
a bell-shaped curve since the functional model A is calcu-
lated from a (Gaussian) low-pass filter. Its shape is thereby
defined by the combination of the filter radius in the Gaussian
weighting function and the flight velocity at recording time.
Note that in general the functional model is not symmetric
since it is normalized only in one dimension.

3.3 Spectral limitation of airborne gravity data

In Sect. 2 we found that the very high frequencies in the air-
borne observations should be removed before the downward
continuation. Furthermore, the total number of observations
has to be reduced before LSC. We regard the functional model
of a Gaussian filter AC, as a suitable tool to put these two
aspects into practice.

The airborne gravity measurements are discrete obser-
vations of the continuous gravity field. According to the
Nyquist—-Shannon sampling theorem, a continuous signal
with the maximum frequency f™** can only be reconstructed
from an equidistant sampling with a frequency higher
than 2 f™#*_ Accordingly, simply reducing the sampling fre-
quency of very high-frequency observations generally results
in aliasing effects. In practice, a common approach to treat
this issue is the use of alow-pass filter (Childers et al. 1999). It
reduces the maximum frequency f™#* and therefore also the
new sampling frequency that is needed to fulfill the Nyquist—
Shannon sampling theorem. In the case that the equidistant
sampling after the filter process is done with the frequency
2 f%, all frequencies below f* could be restored while the
frequencies above f* are irretrievably lost.

‘We want to exploit these aspects in order to separate signal
and noise in the airborne observations. For this purpose, we
assume that the airborne observations mainly include noise
above a specific SH degree u and follow our three-step pro-
cedure in order to remove this noise by means of the Gaussian
functional model AS. Additionally, Fig. 3 visualizes the three
steps with their relationship in terms of SH degree and atten-
uation factor 8 (introduced in Eq. 4 and Fig. 2).
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Fig. 3 Relationship between the SH degree and the attenuation § of
the Gaussian filter with p set to SH degree 5400. The red ‘areas’ are
removed by the Gaussian filter. The two dark areas are assumed to
mainly consist of noise, while the two brighter colored areas are domi-
nated by signal

(1) A Gaussian low-pass filter removes the two red parts
in the frequency domain (Fig. 3). Thereby, it filters
most of the noise, but also parts of the signal from the
observations. The Gaussian filter radius is selected as a
compromise between the preservation of the signal and
the removal of the noise. In Fig. 3 we set it exemplary to
HWHM = 3 km, as this keeps only 10% of the noise at
SH degree .

(2) Reducing the sampling frequency of the observations to
SH degree u irretrievably removes the previously filtered
data above this SH degree (Fig. 3: dark red area). By doing
this, the dark blue area is discarded as well, however it
is still present in the filtered observations, thus causing a
small aliasing effect. For the implementation we combine
step 1 and 2, so that the functional model AS includes
the low-pass filter and the downsampling process (refer
to Sect. 3.2).

(3) Lastly, the previously filtered signal representing SH
degrees below p (Fig. 3: light red area) can be restored
from the filtered observations 1S by means of a high-
pass filter. This step works analogous to a deconvolution
by multiplication with the inverse Gaussian functional
model AS. It results in observations 1S which are spec-
trally limited to SH degree 1

15 = A5, (11)

Here, the Gaussian functional model AS is a square
matrix that describes the point positions of 19 in both
dimensions and is normalized according to Eq. 10. Note
that the Gaussian functional models AS and AS are
derived in the same way. They differ only in the cor-
responding point positions, and the normalization factor,
as it is related to the input positions.
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Applying these steps removes high-frequency noise and
results in spectrally limited observations 15 which could be
inserted into LSC. In this case, the spectral limitation from
step one to three could be interpreted as an airborne prepro-
cessing. However, in the next section we include these three
steps consistently within RLSC instead, thereby considering
the correlations from the Gaussian filter between consecutive
observations as well. Linking the described steps to the RLSC
procedure, we insert the filtered observations 1€ (step 2) as
input and apply a high-pass filter (step 3) implicitly within
RLSC.

3.4 Adapting RLSC to include the Gaussian filter
model

The RLSC formula for calculating an output s from the input
observations 1 is given by Willberg et al. (2019)

s=Cgq(Cyu+Cp'a—1+3, (12)

where Cy is the covariance matrix of the observations, Cjj
the covariance matrix of an unbiased reduction model i and
C,; the cross-covariance matrix between input and output.
In general, the hat-operator marks quantities which have
been derived from external reference models (GGM, topo-
graphic gravity model). The positions and functionals of
covariance matrices are defined by its subscript. In Eq. 12
a remove—compute—restore (RCR) approach analogous to
Willberg et al. (2019) is already included,

s=As+8, (13)

so that we reduce the observations 1 with unbiased model
observations I before RLSC. The reduction model in the out-
put functional § is restored accordingly after RLSC. Note
that the covariance function of the reduction model Cﬁ is
contained consistently in Eq. 12. Following Eq. 6 we apply
the Gaussian functional model A€ to Al and, due to linearity
of this operator, correspondingly to both 1 and 1

ASAL= AC1 - AS]
=16 -6, (14)

The corresponding covariance functions of 19 and 1G are
calculated from simple error propagation. From Eq. 6, we
obtain the covariance matrix of filtered observations Cﬁ;

Cj =A% Cy (A9, (15)

and accordingly the covariance function of the model obser-
vations Cg

Clsf =A% C; A9T. (16)
Similarly, we obtain for the cross-covariance matrix Cg
Cg = Ci A9, (17)

considering that the output model § is not filtered, thus mul-
tiplying AS only once. From Egs. 14 to 17, we conclude that
the RLSC method with filtered observations

s = Cg (C}f + CH 119 —1%) +3, (18)

is identical to the standard formula for RLSC (Eq. 12) except
that the covariance matrices C, the observations I° and the
model observations 1° refer to filtered values instead of the
original ones. Note that the output s should contain an unfil-
tered signal, therefore we do not use superscripts for s and §.
In the case that airborne gravity observations are included in
Eq. 18, their spectral limitation (Sect. 3.3, step 1 and 2) is
already included in the filtered values 19 and 1. The decon-
volution (step 3) happens within the multiplication of the
inverted covariance matrices Cl? and Cchl; .

3.5 A noise covariance function for the observations

In LSC, the covariance function of the observation noise is
often included as a diagonal matrix (Moritz 1980; Arabelos
and Tscherning 2009) under the assumption that different
observations are not correlated among each other. Obviously,
this assumption does not hold for low-pass-filtered observa-
tions as they contain a strong correlation among consecutive
measurement epochs. In this section, we derive a covariance
function for the filtered observations Clcl; in Eq. 15.

The covariance information of the unfiltered observations
Cj is in general unknown, which is one of the main rea-
sons for applying the Gaussian low-pass filter in the first
place. Thus, instead of propagating Cy to Clcl} we can define
the variances alG o alG (from elementwise multiplication o)
on the main diagonal of Clcli . Thereby, we assume to know
the accuracy of the observations after the filter process. In
this case Cy is introduced as identity matrix I, and the row
vector m is included as factor to set the variances of Cl(l} to

o o o0, We can write

Ci = ASTA9T) o mmT), (19)
m— GIG o olG (20)
V| diag(AC (AG)T)’
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whereby Eq. 20 uses elementwise division and diag(X)
defines the main diagonal of a square matrix X. By includ-
ing the identity matrix in Eq. 19 we assume an uncorrelated
error for the airborne observations 1 before the Gaussian fil-
ter process which, in general, is not the case. However, the
simplification is justified in our case as the correlation of this
error is assumed to be small in comparison to the correlation
resulting from the Gaussian filter.

Exemplary, Fig. 4a shows the covariance function Cl?
(Eq. 19) of a single flight line (FL103) without downsam-
pling. The main diagonal of Cﬁ is defined by the variances
alG o alG of the filtered observations, which are equally
set to 1 mGal®. The same information with more detail is
presented in Fig. 4b which zooms to the first 300 observa-
tions. We can see a band matrix with very strong correlations
among consecutive observations instead of the usual diag-
onal matrix (e.g., Forsberg et al. 2000, 2014; Hwang et al.
2007). Thus, Fig. 4b verifies that the reduction of the sam-
pling frequency is reasonable in this case due to the very
strong correlations among consecutive observations. Further-
more, this is necessary as in general the covariance matrix
Clcl; without downsampling tends to be numerically singular
for the same reason. The downsampling procedure we intro-
duced in Sect. 3.2 would generally retain the structure of a
band matrix in Cl(f , but the covariance would drop to zero
much faster.

3.6 Combining filtered and unfiltered observations

In the Colorado experiment, we have a combination of ter-
restrial and airborne gravity observations, and all reasons we
listed for applying a low-pass filter to the airborne observa-
tions (Sect. 2) are not valid for the terrestrial ones. Therefore,
we present a formulation that applies the standard RLSC
from Eq. 12 to the terrestrial observations, while the air-
borne observations are processed according to Eq. 18 with a
Gaussian filter. In order to realize a consistent formulation,
we keep naming the original observations 1, but now con-
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sider them as a combination of terrestrial lie; and airborne l,;;
observations

_ Leer
1= I:lairi| : 1)

Similarly, we handle the reduction model i

iz |der| (22)
lair

The combination of filtered and unfiltered measurements
requires updating the functional model AC. We now name
it A2, as it contains the Gaussian filter only for the airborne
part

I0
Af = [0 AG] 23)

AC is calculated according to Eq. 10 and I is an iden-
tity matrix with a size that equals the number of terrestrial
observations. We multiply the new functional model A to
the observations 1, the model observations 1 and the covari-
ance matrices Cg and Cj. Accordingly, we obtain the RLSC
formula for combined input quantities analogous to Eq. 18

—1 R
s=CqAHT (Cf+A2CADT)  (Af1-A) +5.
(24)

In this form, the covariance matrix Cﬁ defines the input
observation accuracy. It is set up as a combination of an
unfiltered terrestrial covariance matrix Ceer or and a filtered

airborne covariance matrix Cgr air

Cj = [C“‘g‘“ CGO ] : (25)

air, air
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since the observation noise is not correlated between airborne
and terrestrial measurements. The terrestrial part simplifies
to (o2, 1) in case the observations are uncorrelated and of
equal accuracy. Thereby, 0.2, is the variance of the terrestrial
observations. The variance orlG ) orlG of the airborne obser-
vations is defined as main diagonal of Cﬁ; (Eq. 19). In the
case they are of equal accuracy, alG ) alG can be replaced by
the scalar values Uazir as simplified variance of the airborne

observations.

Analogous to Eq. 24, we derive the stochastic model for a
combination of filtered and unfiltered observations. The error
covariance matrix Egg of the output s is based on the standard
formula by Willberg et al. (2019)

-1
Eg = Cg — Cy (A%)" (C;‘=’l +AEC (Ag)T) AL (Cy".
(26)

Therein, Cg is the error covariance function for the model
observations, which stays unfiltered as it refers only to the
output functional.

4 Data and calculation

From Sect. 2, we conclude that the airborne gravity obser-
vations have to be low-pass-filtered in along-track direction.
In Sect. 3 we derive a suitable concept to do so. Originally,
there were 283,716 airborne gravity observations from the
GRAV-D block MS05. They were corrected for their indi-
vidual line biases and provided with a uniform sampling
rate of 1 Hz. We chose a Gaussian low-pass filter with a
HWHM of 3 km for its good compromise between removing
noise and keeping gravity signal. Fig. 3 demonstrates that
this HWHM removes approximately 90% of the noise above
SH degree 5400. Additionally, Fig. 1 shows that the resulting
frequencies in the filtered airborne observations are similar
to the modeled observations.

A consequence of the low-pass filter is the very high cor-
relation between consecutive observations (Fig. 4), which
allows a significant reduction of the sampling frequency.
However, this reduction is another benefit-risk assessment:
a strong downsampling increases the numerical efficiency,
but could also result in a loss of signal information. We
exemplary show this in Table 1 for five different sampling fre-
quencies and three different filter lengths (given in HWHM).
The table gives the mean error in mGal when all 283,716 fil-
tered observations are reproduced from the downsampled
observations with a simple spline interpolation. We interpret
this value as a quality criterion for the signal loss due to the
low-pass filter. Considering that the maximum error of a spe-
cific observation can be much higher than the average value,

Table 1 Overview of the benefit-risk assessment between HWHM and
sampling frequency

~ Sampling

HWHM\\ 1Hz 1/8 Hz 1/16 Hz 1/32 Hz 1/64 Hz
1km singularity  bad k 0,03

2km singularity  singularity  bad k

3 km singularity  singularity  singularity ‘ 0,02 0,14

Colored values are classified by their average signal loss [mGal], which
indicates the ability to restore the filtered but non-downsampled signal
again. Additionally, combinations are marked which resultin covariance
matrices with an especially high condition numbers (‘bad «’) or even
numerical ‘singularity’

we want to keep the average error well below 0.1 mGal.
Furthermore, we mark combinations which are not feasible
due to a very high condition number « for the covariance
matrix Cl(l} respectively with ‘bad «’ or numerical ‘singu-
larity’. While for a higher sampling frequency or a larger
filter length the condition number « of the covariance matrix
Cl? increases, a smaller sampling frequency or shorter filter
length increases the signal loss.

We conclude, that first, downsampling is needed in any
case to prevent a numerical singular covariance matrix Cl(l}'
Secondly, the sampling frequency of 1/32 Hz is the best com-
promise for a HWHM of 3 km in the target area. Note that
this sampling frequency is a main driver for the final filter
characteristics. Together with the flight velocity, it defines
the SH degree 1 above which we assume mainly noise in
the airborne observations (Fig. 3). By reducing the sampling
frequency to 1/32 Hz, we result in a total number of 8976
filtered airborne observations. Thereby, two adjacent obser-
vations have an average distance of 3.4 km in along-track
direction. The actual distance or spatial sampling, however,
depends on the flight velocity of the aircraft and varies sig-
nificantly in the target area. In general, the aircraft have been
slowest in the mountainous areas of MS05 so that the shortest
point distances are in those areas where it is most beneficial.
Otherwise, we could have included a different downsampling
method which we tested as well: it provides a constant spatial
sampling and therefore results in a varying sampling fre-
quency. However, in this case the filter method would model
space-correlated noise in the airborne observations. Since the
airborne gravity observation noise is mainly time-correlated
instead, our method with constant sampling frequency stays
preferable.

The 59,303 terrestrial observations are distributed in the
area between longitude [35° to 40°] and latitude [— 110° to
— 102°]. Their distribution is presented in Fig. 5 together
with GSVS17, the area of the output grid and the borders of
the surrounding states: Colorado (CO), New Mexico (NM),
Utah (UT), Arizona (AZ), Oklahoma (OK) and Texas (TX).
The database contains some duplicate point values which are
deleted in order to prevent inconsistencies. All in all, there
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Fig. 5 Input residuals of RLSC: reduced gravity disturbances for a the terrestrial observations and b the airborne observations. The observations
are removed by the XGM2018 model and the topographic gravity potential. The extent of the output grid is marked by a red box and GSVS17 by

a black line

are densely measured regions in the target area, but also some
observation gaps. The quality of the terrestrial observations
is not well-defined as there is almost no metadata available.
However, some additional information about the terrestrial
data set can be found in Wang et al. ((2020), this issue). The
topographic heights of the output area grid (red box in Fig. 5)
are visualized in Fig. 6.

In RLSC we include an a priori assumption for the accu-
racy of the observations (Eq. 25 or Willberg et al. 2019) which
is basically unknown for both the terrestrial and the airborne
observations. GRAV-D Team (2018a) contains an error anal-
ysis for the airborne measurements, but we do not think it can
give us reliable accuracies for the following reasons: (1) the
derivation of the error is based on observations from differ-
ent flight heights. Therefore, all values are continued to a
mean height by standard free-air correction (GRAV-D Team
2017) which introduces assumptions and errors. (2) The qual-
ity assessment in GRAV-D Team (2018a) still contains the
high-frequency noise which was reduced in Sect. 3. Lastly,
(3) the crossover statistics cannot describe the overall accu-
racy accurately (GRAV-D Team 2018a), as they only assess
measurement errors in the data lines (in our case: east-west),
not the crossover lines (north-south).

For the filtered airborne observations we assume a uniform
standard deviation of o,;; = 1 mGal, which seems reasonable
according to Schwarz and Wei (1995), Childers et al. (1999),
Novik et al. (2003) and Lu et al. (2017). While the airborne
observations are well-distributed, terrestrial observations in
general benefit from measuring the full gravity frequency
spectrum on the Earth’s surface. Therefore, we prefer a RLSC
combination where both airborne and terrestrial observa-
tions have a similar influence on the overall result. In our
case, this can be achieved by a uniform standard deviation
of oter = 3 mGal for the terrestrial observations, since their
number is significantly higher, and they do not include corre-
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lations or a downward continuation. At the present stage, our
a priori accuracies are partly based on default values for the
appropriate observation method. However, we verify these
values with comparisons in Sect. 5.

A remove—compute—restore procedure is essential for
RLSC and explained in detail in Willberg et al. (2019). In it,
we include XGM2018 as high-resolution GGM to its maxi-
mum SH degree 760. The topographic gravitational potential
model dV_ELL_Earth2014, or the ERTM2160 gravity model
(Hirt et al. 2014) are added, respectively, in the frequen-
cies above. Following aspects should be noted regarding the
remove—compute—restore procedure:

(1) Although, the maximum SH degree of XGM2018 is 760,
its actual spectral resolution is defined by the maxi-
mum degree in spheroidal harmonics, which is 719. The
same effect is visible in dV_ELL_Earth2014 where the
maximum SH degree is 5480, but 5400 in spheroidal
harmonics, respectively. For simplicity, we stick to the
models actual spectral resolution, and as of now the cor-
responding SH degrees refer to spheroidal harmonics.
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(2) Furthermore, the reduction models for terrestrial and air-
borne data are not identical in our case. ERTM2160 is
given in an approximately 250 m resolution grid format,
therefore providing the very high-resolution informa-
tion which we need for the reduction of terrestrial data
on the Earth’s surface. However, dV_ELL_Earth2014
is calculated from SH synthesis which can be used for
arbitrary point positions (e.g., airborne observations). In
this case, the different reduction steps are justified as
dV_ELL_Earth2014 and ERTM2160 are both calculated
from the SRTM v4.1 topography model by Jarvis et al.
(2008) in the target area. Accordingly, they contain iden-
tical signal information in the respective SH degrees.

(3) Lastly, dV_ELL_Earth2014 and ERTM2160 are based
on simplified density assumptions and cannot reflect lat-
eral density variations. Deviations of the real density from
these model assumptions are reflected in the residual
input signals of RLSC. Accordingly, they are consistently
collocated to the output quantities. This issue is not spe-
cific for the present RLSC method, but holds generally
for all regional gravity field modeling methods that are
using the RCR technique. Yang et al. (2018) demonstrate
that the use of available lateral density maps does not nec-
essarily improve the gravity modeling results.

The reduced gravity disturbances A §g which enter RLSC
are presented in Fig. 5 and described in the following. For the
terrestrial observations (Fig. 5a), we calculate from Eq. 13

Ager = lier — iter
= 8ter — gter(XGMZ()lS)

— 8. (dV_ELL_Earth2014) — g,..(ERTM2160) ,

27)

with the SH degrees nXOM2018 ¢ 12 719} and

pdV-ELL_Earth2014 ¢ 750 2159}, ERTM2160 is applied from

SH degree 2160 to its maximum resolution, which equals

approximately 250 m. Correspondingly, we have for the air-
borne observations (Fig. 5b)

G G 1G

Agg =L — I

= ggr —8,.(XGM2018)—g, . (dV_ELL_Earth2014) ,

(28)

with nXGMZOlS c {2 7 19} and ndV_ELL_Earth2014 c

{720, 5400}. The reduction to different SH degrees is valid in

our case since the gravity signal above SH degree 5400 is neg-

ligible at the position of the airborne observations. This is first

due to signal attenuation with altitude, which significantly

reduces the high-frequency gravity signal at flight height.

Secondly, the low-pass filter removes approximately 90% of

the still remaining signal above SH degree 5400 (compare to
Fig. 3).

In Egs. 27 and 28 we apply globally unbiased mod-
els to a very high degree. Accordingly, we can safely
assume that they do not have a significant bias in our
study area, which is a requirement for calculating the height
anomaly output A ¢, of RLSC (Eq. 13). The final height
anomalies ¢, are calculated by restoring the effect of the
corresponding models (XGM2018, dV_ELL_Earth2014 and
ERTM2160)

Cout = Asout + Sout
=A ;Out + Eout (XGM2018)

+ & oy (dV_ELL_Earth2014) + ¢, (ERTM2160) ,
(29)

with exactly the same SH degrees as in the terrestrial
reduction. The subscript ‘out’ refers to specified output
points on the Earth’s surface which are a combination
of a regular 1’ x 1’ grid and the GSVS17 points. The
topographic heights of the output area are presented in
Fig. 6, whereby the highest mountains reach more than
4000 m. The location of GSVS17, a west-east traverse
of approximately 350 km through the mountains of Col-
orado, is added in blue. Note that the location of the grid
is centered within the area of terrestrial observations, but
significantly shifted in relation to the airborne observations
(Fig. 5).

In the RLSC approach, we include the original full covari-
ance information of XGM2018. The SH coefficients of
XGM2018 and XGM2016 are very similar, but the cor-
responding covariance information of XGM2018 has been
improved and is even more realistic now. The covariance
matrices Cﬁ, Céi and Cg of the reduction model (Eqgs. 24, 26)
are calculated from a model covariance function (MCF)
that fits the reduced gravity disturbance input (Fig. 5). The
approach is explained and justified in detail by Willberg et al.
(2019).

We present our result in agreement with the reference
potential value Wy of the THRS definition (Ihde et al. 2017)
in the mean-tide system. Since output points within the JWG
are specified on the Earth’s surface, we include the theory
of Molodensky (Hofmann-Wellenhof and Moritz 2006) and
prefer the calculation of height anomalies instead of geoid
heights. Comparisons of the absolute potential values and
geoid heights, which are also calculated within the JWG, are
not discussed here, but presented in Sanchez et al. ((2020),
this issue) and Wang et al. ((2020), this issue). However, we
also include the calculation of gravity disturbances at the
input positions (with a corresponding restore step) in order
to compare them to the original measurements in Sect. 5.
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Fig.7 Comparison of RLSC result against available models. a the height anomaly A ¢,,. b Difference to EGM2008 [£ oy - & o (ERTM2160) -
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5 Analysis of the RLSC grid

In this and the following section, we present and quantify our
height anomaly result £, (Eq. 29) related to ‘the 1 cm geoid
experiment’. We refer to Wang et al. ((2020), this issue) for
general conclusions and further results from the JWG. The
high-resolution measurements along GSVS17 have not been
published yet, therefore we include internal and external vali-
dation to verify our results. At first, in Fig. 7, we compare our
result against available models to indicate main effects in the
result. Fig. 7a shows the height anomaly A ¢, from RLSC
(without restore step), which gives the improvement from the
gravity measurements with respect to the prior models. As
expected, we see a high correlation between the output resid-
uals A ¢, and the input residuals in Fig. 5. The dominating
effects are signals with a spatial extent of approximately
0.1° to 0.3° which corresponds to SH degrees between 720
and 2160. In these frequencies, the reduction model con-
sists only of topography-derived gravity information. Thus,
we assume that the signals in Fig. 7a are significant improve-
ments due to the input gravity measurements. However, there
is also one maximum on the left-hand side with a much larger
spatial extent. The terrestrial input residuals (Fig. 5a) espe-
cially show a positive bias in this area which seems to be
responsible for this maximum. The spatial extent of the red
area in Fig. 7a indicates that XGM2018 and the terrestrial
gravity observations are not consistent in this area.

Figure 7b presents the difference between the height
anomaly result ¢, and the corresponding height anomaly
derived from EGM2008 (Pavlis et al. 2012). However, in this
comparison we do not restore ¢, (ERTM2160) in Eq. 29,
because the resolution of ERTM2160 is not included in
EGM2008. The presented difference is dominated by fea-
tures with a spatial extent in the order of 100 km and
can be attributed to the difference between EGM2008 and
our three data sources: XGM2018, the terrestrial, and air-
borne gravity observations. Note that the dominating effects
from Fig. 7a are not visible in Fig. 7b. We therefore con-
clude that EGM2008 represents the gravity field between
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SH degree 720 and 2160 significantly better than the mere
topographic gravitational model dV_ELL_Earth2014.

In a second step, we calculate gravity disturbances for
the input points of RLSC and compare them to the original
observations. We refer to the appropriate difference as output
residuals, whereby their presentation in Fig. 8 is limited to
the area of the output grid. The output residuals indicate the
improvement of the combined RLSC solution with respect
to the original gravity measurements. For the terrestrial out-
put residuals in Fig. 8a, we see significant differences in the
target area: In areas with topographic heights below 2500 m,
e.g., east of —105% longitude or in the south-west corner,
the output residuals are close to O mGal. In the mountainous
areas of Colorado they often exceed + 5 mGal. It is common
for LSC methods to smooth the input gravity observations
in regions with strongly varying gravity signals (e.g., moun-
tains). In our case, this is the result of a homogeneous and
isotropic covariance function above the maximum resolu-
tion of XGM2018, which consequently leads to high output
residuals. However, the very inhomogeneous parts in Fig. 8a
indicate that at least some of the output residuals are outliers
or measurement errors in the gravity database.

Atthis point, we do not detect or exclude outliers in RLSC,
as there is no beneficial metadata. Furthermore, individual
data point selections will inevitably complicate the compar-
isons with other groups from ‘the 1 cm geoid experiment’.
However, we acknowledge that an additional, individual data
point inspection and corresponding outlier detection could be
able to improve the final results. Once more, the area with
an offset to XGM2018 stands out in the center of the mid
left side, where a large area is dominated by positive output
residuals and warm colors. Apparently, RLSC combines the
differing data sets XGM2018 and terrestrial observations,
thus resulting in residuals to XGM?2018 (visible in Fig. 7)
and to the terrestrial gravity observations, respectively (visi-
ble in Fig. 8). We see a possible reason for the bias in the
inhomogeneous distribution of the terrestrial observations
which are more often located in mountain valleys. The stan-
dard deviation of all terrestrial output residuals is 2.3 mGal,
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Fig. 8 Output residuals in terms of gravity disturbance, namely original observations—RLSC result for a the terrestrial gravity observations and

b the airborne gravity observations

and its mean value is 0.3 mGal. The output residuals for the
airborne gravity observations, in terms of the original obser-
vations, have a standard deviation of 1.6 mGal with a mean
value of —0.1 mGal (Fig. 8b). The dominating effects are
again short-wavelength effects in the mountainous regions
of Colorado, once again affected from the smoothing effect
of LSC. However, this time the output residuals are affected
from the included low-pass filter as well. Furthermore, differ-
ences between terrestrial and airborne gravity observations
are assumed to be a main contributor for the output residuals
in Fig. 8. As there are no long wavelength signals visible in
Fig. 8b, we conclude that XGM2018 and airborne gravity
observations are consistent in the target area.

The residual’s standard deviations confirm that the scale of
our a priori observation accuracy, oier = 3 mGal and o,j; =
1 mGal respectively, are generally reasonable. However, the
data sets seem to show a spectral dependence, as indicated by
much higher residuals in the Colorado mountains. As a result
of the equally weighted observation accuracies for a single
data type, RLSC produces output accuracies depending on
the data distribution and a priori accuracies only. Accord-
ingly, the estimated accuracies cannot adequately represent
the problems of suspicious areas that we see from the resid-
uals.

Figure 9 shows the resulting 30 confidence level for height
anomalies in the target area which is derived from the error
covariance matrix Eg in Eq. 26. The values depend on the
accuracy assumptions for the gravity observations, their point
distribution and the covariance information of XGM2018.
The 30 confidence level varies from approximately 1 cm in
areas with very dense terrestrial observations to more than
5 cm in the very north where the solution is not supported by
airborne observations (cf. Fig. 5). The availability of accuracy
estimates is a main advantage of LSC approaches. However,
in this case an iterative RLSC approach would be necessary
to derive more realistic output accuracies. For example, we
could use the residuals in Fig. 8 to derive individual input

38
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36 =
-109 -108 -107 -106 -104 -103
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Fig. 9 30 confidence level from RLSC for the height anomaly in the
target area. GSVS17 is included with blue color

accuracies depending on the consistency of terrestrial and
airborne data.

In summary, the terrestrial gravity observations show
notable differences to XGM2018 and airborne gravity obser-
vations in the highly mountainous regions of Colorado, but a
generally good consistency everywhere else. We assume that
the height anomaly result ¢, could be further improved by
an outlier detection, or far-reaching data inspection in gen-
eral. Additionally, an iterative RLSC approach could derive
accuracy assumptions from the output residuals. This would
result in a more selective weighting between the data sets and
animproved accuracy estimation in general. However, we see
these aspects as beyond the scope of this paper. Our focus is,
first, on the derivation of a consistent methodology for low-
pass filtering within RLSC, and second on the generation of
a comparable result within ‘the 1 cm geoid experiment’.

6 Comparison along GSVS17

The height anomalies along GSVS17 have been computed by
13 different groups and are presented with different colors in
Fig. 10a. The values at the 223 benchmarks are given as dif-
ference to the joint mean value of each individual point. As
long as the real reference values along GSVS17 are not yet

@ Springer
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Fig. 10 Comparison of different height anomaly results as difference
to the joint mean value along GSVS17. a Among all submissions within
the JWG, our result (black) includes the smallest variations. b 7 selected

available, we assume that the mean value of 13 independent
calculation methods is significantly better than an individ-
ual solution. This notion is, for example, used analogously
in meteorological literature (Evans et al. 2000; Ebert 2001).
Therefore, we interpret the common mean value as a refer-
ence which is represented by zero in Fig. 10. However, it
should be noted that this mean value is not necessarily with-
out systematic effects, as they could be introduced by the
input gravity observations, and thus reflected in all solutions.
During several phases of the JWG the offset between differ-
ent solutions was reduced (Wang et al. (2020), this issue),
mainly by the adaptation of common standards, e.g., zero-
degree term and tide system. The remaining difference in the
mean value might result from differences in the processing
strategies, the topographic reduction or the individual data
handling, and cannot be solved by this paper. At the present
stage, the absolute mean offsets of the different curves in
Fig. 10a range from 0.1 to 2.7 cm, and the standard devia-
tions from 7.5 to 2.4 cm. Our solution, which is highlighted
by a black color, has a mean value of — 1.0 cm, and with
7.5 mm the lowest standard deviation among all results. As a
result, the variations in our solution are significantly reduced
in comparison to most others (Fig. 10a).

InFig. 10b, the remaining issue of the mean offset between
different height anomaly solutions is ignored and individu-
ally corrected. Furthermore, we selected only seven out of
the 13 solutions which are most consistent to the previously
introduced mean value. Our height anomaly result (black
line) is the only solution that varies only within £2 cm in
relation to the joint mean value. The estimated 30" confidence
interval of our solution is additionally overlaid with gray
color. We conclude that several of the other results are mainly
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submissions with an individually corrected mean value, whereby our
estimated confidence interval is additionally shown in gray color

covered within this confidence level, in spite of the fact that
our provided standard deviation is probably too optimistic in
the mountainous parts of Colorado (see Sect. 5). Even when
we reduce a mean offset and consider only the solutions in
Fig. 10b, there are remaining variations of some centime-
ters between the different height anomaly results. Note that
similar approaches might benefit from the comparison to a
mean value as they are more likely to end up close together.
However, our approach is the only RLSC approach, and the
only one-step LSC method among the contributing groups.
One of the main reason for the remaining variations in
Fig. 10 are the differences between terrestrial and airborne
observations in the area. In order to quantify the spread result-
ing from different weighting between terrestrial and airborne
observations, a series of additional test computations have
been performed. In Fig. 11, the black line is again our height
anomaly result ¢, in reference to the mean, while other
curves represent alternative solutions. We exemplary include
the following four cases: (1) using only terrestrial observa-
tions and disregarding airborne data in blue, (2) using only
airborne observations in red, (3) using a different airborne
input accuracy in green, and (4) a solution without low-pass
filter of airborne data in purple. In general, significant differ-
ences show up, especially between the terrestrial-only and
the airborne-only result. In an extreme case (around point
ID 110) two airborne flight lines are positioned above two
opposing mountain flanks, while GSVS17 runs through the
in-between valley with a distance of approximately 5 km to
both of the flight lines. As a result, the two corresponding
solutions differ by more than 8 cm, obviously measuring
a different gravity signal. We conclude from the height
anomaly results shown in Fig. 11 that rather large differ-
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ences of several centimeters can be caused by the weighting
of the individual data sets.

As an example, the green curve in Fig. 11 is calculated
equally to the black one, but uses a different input accu-
racy for the airborne observations, namely o,y = 1.5 mGal
instead of 1 mGal. As a result, RLSC gives a lower relative
weight to the airborne observations, which leads to a shift of
the combined solution towards the terrestrial-only solution.
An opposite effect is visible for the purple curve. It is a com-
bined solution that includes unfiltered airborne observations
with an 8 Hz sampling frequency and an accuracy assump-
tion of o,y = 2 mGal since the high-frequency noise is
still included. The significantly increased number of airborne
observations, and the fact that they are assumed to be uncorre-
lated, amplifies their relative weight in RLSC. Accordingly,
this solution is shifted towards the airborne-only solution (red
curve). This could be an indication that one of the main reason
for the height anomaly differences in Fig. 10a is the various
treatment of terrestrial and airborne input data. Therefore, it
is not only related to the different regional gravity modeling
approaches used in this inter-comparison exercise.

In summary, our height anomaly ¢, performs very well
in a comparison among the JWG results and shows the small-
est variations in regard to the joint mean value. We highlight
differences in the available data sources, and conclude that
their relative weighting will be one of the main drivers of
the final performance. However, we emphasize that all data
issues mentioned in ‘the 1 cm geoid experiment’ are not a
problem of our gravity modeling approach, but rather mere
inconsistencies in the available data sources. In order to solve
these issues, a detailed data inspection of the original data
sources would have to be done, which would go far beyond
the scope of this study. However, solving some of the data
issues could become easier once the high-quality observa-
tions from the GSVS17 project are released. At the present
stage, we conclude that different scenarios of RLSC show
consistent results in a simple comparison along the GSVS
line. Furthermore, we demonstrate that our method provides
the necessary flexibility for an adjustment in case a data set
provides either benefits or problems in a target area.

7 Conclusion and outlook

In this paper, we use a low-pass filter for reducing high-
frequency noise in airborne gravity observations from the
GRAV-D project. Accordingly, we derive a novel concept in
order to include the resulting correlations to regional grav-
ity field modeling. In RLSC, the functional and stochastic
model is adapted, whereby filtered observations and filtered
covariance matrices are treated in a consistent manner. The
approach is verified with a combination of filtered (airborne)

0.08 T T T T
—— Combined: final result
— Terrestrial observations only
0.06 ) ) b
Airborne observations only
Combined: o__= 1.5 mGal
air
0.04 —— Combined: airborne unfiltered | |

Height anomaly to mean [m]

-0.08 ' - - :
50 100 150 200

GSVS17: point ID

Fig. 11 Comparison of different internal height anomaly results along
GSVS17. Solutions vary according to their relative weighting between
terrestrial and airborne observation, and show differences of up to 8 cm

and unfiltered (terrestrial) observations in the frame of ‘the
1 cm geoid experiment’.

In the target area of Colorado, our calculated height
anomaly grid displays significant improvements compared
to already existing gravity models. They are visible as
long wavelength differences to the EGM2008, and short to
medium-wavelength deviations from the a priori topographic
gravity model. The calculated output residuals for the grav-
ity disturbance indicate a very good consistency of terrestrial
and airborne data in areas with topographic heights below
2500 m, but reveal some issues in the highly mountainous
regions of the Rocky Mountains. We even identified one
region where the terrestrial observations differ significantly
from the long wavelength part of XGM2018.

Within ‘the 1 cm geoid experiment’ the RLSC method
performs very well in a comparison among 13 independent
height anomaly results along the GSVS17 benchmarks. Since
the actual results of GSVS17 are not yet available, the ref-
erence value which is used to evaluate the performance of
our solution, is calculated from a common mean value. In
general, the final height anomaly results deviate from the
reference by a few centimeters. With a standard deviation of
only 7.5 mm our solution shows the smallest variations with
respect to the reference. Furthermore, it is the only result that
always stays within 4= 2 cm (in case the individual offsets are
reduced).

Moreover, we analyzed the impact of the systematic differ-
ences between the available data sources on the final result.
In a comparison along GSVS17, we tested four further data
and processing scenarios, and could show that the relative
weighting among the input data types can cause differences
in the order of several centimeters in the height anomaly
results. Consequently, RLSC can be individually adapted in
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the case that there is additional information about the qual-
ity of the gravity observations. More generally, we conclude
that a significant part of the differences in ‘the 1 cm geoid
experiment’ might be related to a different treatment and rel-
ative weighting of the input data, and not only to various
regional gravity field modeling methods. In this regard, it
might be useful to check the internal weighting between our
data sets again, as soon as the high-quality measurements
along GSVS17 are available to the public.

One of the main advantages of the statistical method of
(R)LSC is that it also provides variance—covariance informa-
tion of the resulting quantities. The availability of realistic
error estimates will be crucial for the realization of the IHRS.
Due to restricted availability and heterogeneous quality of
ground gravity data, it is to be expected that a similar accu-
racy of absolute potential values at the IHRS stations cannot
be achieved. In this case, the provision of realistic error esti-
mates in addition to the potential values themselves will be
very important. The estimated standard deviations of height
anomalies are, in our current solution, mainly dominated by
the distribution of the gravity observations as well as the rel-
ative weighting of the input data sets. However, a constant
weight of the two data sets, terrestrial and airborne observa-
tions, has been included. In an iterative RLSC approach, the
post-fitresiduals could be used to modify the a priori accuracy
of the input data, and thus the relative weighting scheme. By
this, the identified systematic differences between terrestrial
and airborne data in certain areas could also be taken into
account. Consequently, this would result in an even more
realistic stochastic modeling and further improved error esti-
mates for the output quantities. Since the main goal was to
inter-compare the results with other study teams, this has not
been applied in the present solution but will be part of further
studies.

Summarizing, ‘the 1 cm geoid experiment’ helps for the
scheduled IHRS definition and realization because it pro-
vides a meaningful accuracy benchmark in the case of a good
data distribution in very difficult terrain. Within this JWG all
contributing groups have proven their capability to calculate
the height anomaly with an accuracy of some centimeters.
In the end, IHRS should be defined by absolute potential
values, but their derivation from the disturbing potential T,
which is also needed for the height anomaly, is straightfor-
ward. Sanchez et al. ((2020), this issue) propose a globally
distributed computation of potential values at IHRS reference
stations due to common data restrictions. Thereby, for exam-
ple, all institutions with a specific performance in terms of a
reference could be allowed to contribute to the calculation of
IHRS stations with their own method. Consequently, it will be
extremely important to analyze, how much of the remaining
deviations are caused by differences in the regional gravity
modeling methods, and how much by the different treatment
and relative weighting of input data.

@ Springer

The benefit of including covariance information from
high-resolution GGMs in RLSC and the resulting advan-
tage in terms of the calculation of THRS reference stations
is already explained in Willberg et al. (2019). With the con-
sistent handling of airborne gravity data and by including a
covariance propagation of the filter behavior, we can further
enhance the stochastic modeling, which, as discussed above,
will be very beneficial for the IHRS realization.
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