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Abstract

Individual social power in the opinion formation process over social influence

networks has been under intense scientific investigation. Most related works as-

sume explicitly or implicitly that the interpersonal influence weights are always

non-negative. In sharp comparison, we argue that such influence weights can be

both positive and negative since there exist various contrasting relationships in

real-world social networks. Hence, this article studies the evolution of opinion

dynamics and social power on cooperative-competitive networks whose influ-

ence structure changes via a reflected appraisal mechanism along a sequence of

issue discussions. Of particular focus is on identifying the pathways and effects

of social power on shaping public opinions from a graph-theoretic perspective.

Then, we propose a dynamic model for the reflected self-appraisal process, which

enables us to discuss how the individual social power evolves over sequential is-

sue discussions. By accommodating differential Lyapunov theory, we show the

global exponential convergence of the self-appraisal model for almost all network

topologies. Finally, we conclude that the self-appraisals and social powers are

eventually dependent only on an interpersonal appraisal profile.
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1. Introduction

Opinion dynamics have always been the prominent focus subject in socio-

cybernetics [1, 2, 3] wherein social entities share and aggregate thoughts, ideas,

feelings, experiences, and observations over social networks, and generate new

concepts, trends, and reflections at the same time. Such social activities among5

humans can also find their similar counterparts in engineered systems, e.g., robot

and sensor networks, and natural communities, e.g., bacteria, neurons, and fire-

flies [4]. One central line of research in the modeling of opinion pooling can trace

back to the early influential works of French and DeGroot, nowadays known as

the French-DeGroot (FG) model [1]. The basis for these models is an empirical10

observation that individuals update their opinions as a convex combination of

their own and neighbors’ opinions; this observation is a historical milestone of

“cognitive and behavioral algebra” in experimental social psychology [2].

Related to the field of opinion dynamics, it is of particular interest to evalu-

ate the social influence or power of individuals in a collective debate on a given15

issue. Indeed, the seminal work [5] of French initiated the investigation of the

total (direct and indirect) influence of an individual’s initial idea on the final

collective opinion outcome. Especially, the individual social powers may change

over time in a social group due to the interconnections and interactions among

group members. Recent focus is shifting from the single-issue opinion evolution20

to the opinion formation process on a sequence of different issues [6, 7]. Among

others, significant research efforts [8] have been conducted in studying the co-

evolution of opinion dynamics and social power along the issue sequence [9].

Specifically, individuals can modify the relative influence structure before dis-

cussion on the next issue in response to their perceived social impact on the25

opinion outcome of the ongoing issue discussion. Such a self-modification of the

influence network across an issue sequence is rooted in the theory of reflected

appraisal [10]. The recent work [11] therefore introduces the so-called DeGroot-

Friedkin (DF) model to describe the evolution of an opinion dynamics process

and an accompanying self-appraisal process. Fundamentally speaking, the prin-30
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cipal objective of the DF model is to explore how the individual social powers

evolve through sequential discussion and reflected self-appraisal. Other research

efforts on developing the DF model include the validation by empirical data [8],

the relaxation to reducible influence networks [9] and single-timescale model [7],

the extension to dynamic interaction topology [12], distributed modeling in both35

continuous- [13] and discrete-time [14], the connection with nonlinear Markov

chain [15], and the variational interpretation [16].

The afore-cited works on studying the dynamic evolution of social power of-

ten postulate explicitly or implicitly that individuals cooperatively interact with

each other. Using graph-theoretic modeling of social networks, such pairwise co-40

operative interactions are conventionally represented by edges of non-negative

weights in the graph. This assumption, however, is not always appropriate

since there exist various antagonism, rebellion, and betrayal in many real-life

networks [17, 18]. In the graph representation, those competitive interrela-

tions appear in the form of negatively weighted edges in the so-called signed45

graphs [19]. In the past few years, opinion dynamics in cooperative-competitive

(coopetitive) social networks have been studied extensively in the literature;

see, e.g., [20, 21, 22]. Compared with cooperative networks, the opinion-forming

process on signed graphs may exhibit not only opinion consent, but also other

complex outcomes, including neutrality, polarization, and separation [23]. Nev-50

ertheless, the qualitative and quantitative analysis for individual social power

in coopetitive networks has been less studied than the unsigned cases.

In this article, we aim to study the evolution of opinion dynamics and social

power in social networks containing antagonistic interconnections over the se-

quence of issues. This article first extends on the opinion formation process of55

sequential issue discussions, which takes place on a coopetitive network. Along

with the opinion discussions, we describes the updating rule of the interper-

sonal influence structure via a reflected appraisal mechanism. For the influence

mechanism, each individual accords weights to others’ opinions proportionally

according to her/his positive or negative appraisals of them. As such, the spec-60

ification of group influence embodies the formal definition of social power in
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signed networks, which characterizes the oriented effects of individual impact

on shaping the collective opinion outcome. Different from the pioneering work,

this article further studies the topological characterization of social power from

a graph-theoretic perspective rather than algebraic expression, which also paves65

the way for general extensions to broader network topologies. Then, we develop

a concise mathematical treatment for the self-appraisal process of individual so-

cial powers and its explicit formulation. A rigorous theoretical analysis is then

conducted to examine the convergence and stability of the developed model by

taking into account multiple structural properties of the appraisal networks.70

Especially, we employ differential Lyapunov theory to study the incremental

stability of nonlinear dynamical systems. More specifically, we show that group

members forget exponentially fast their initial perception of social influence, and

the long-term configuration of individual social powers is completely determined

by an interpersonal appraisal network.75

The remainder of the article is organized as follows. In Section 2, we fix

the notation and introduce some basic concepts of graph representation and

control theory. Section 3 discusses the coevolution of opinion dynamics and

influence networks along issue sequence. The graph-theoretic description of

social power over signed networks and explicit mathematical formulation of80

self-appraisal dynamics can also be found in Section 3. Section 4 contains a

complete analysis of the convergence properties of the proposed models. Further

theoretical extensions can be found in Section 5. Simulations and conclusions

are respectively provided in Section 6 and Section 7. All technical proofs are

given in the appendices.85

2. Preliminaries

This section is dedicated to fixing the notations and to offering a recap of

basic concepts in algebraic graph and control theory.
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2.1. Notations

Let (R>0, R≥0) R be the set of (positive, non-negative) real numbers. Vector90

1n (0n) represents the n-dimensional column vector of all ones (zeros) with

appropriate dimensions. The canonical basis of Rn is defined by e1, . . . , en

and the n × n identity matrix is given by In := [e1, . . . , en]. The notation |a|

denotes the absolute value of a scale a and |z| implies the entry-wise absolute

value of a vector z = [z1, . . . , zn], i.e., |z| = [|z1|, . . . , |zn|]. Similarly, z ≥ 0 and95

(z > 0) indicate n component-wise inequalities zi ≥ 0 (zi > 0). We denote the

tangent space of an n-dimensional manifold Mn at z ∈ Mn by TzMn, and the

tangent bundle of Mn by TMn =
⋃

z∈Mn{z} × TzMn. A distance (or metric)

dM : Mn×Mn → R≥0 on a manifold Mn is a non-negative function and satisfies

dM(z1, z2) = 0 iff (if and only if) z1 = z2, and dM(z1, z2) ≤ dM(z1, z3) +100

dM(z3, z2) for arbitrary z1, z2, z3 ∈ Mn. The l-norm of a vector and their

induced matrix norms are denoted by ‖·‖l, where l ≥ 1. The set of n-dimensional

vectors whose 1-norm is 1 forms the surface of an n-dimensional cross-polytope

or orthoplex, i.e., Cn := {z ∈ Rn| − 1 ≤ z ≤ 1, ‖z‖1 = 1}, which has an interior

int(Cn) := {z ∈ Rn| − 1 < z < 1, ‖z‖1 = 1}. To save triviality, the orthoplex105

manifold with the exclusion of vertices is given by ∇Cn := Cn\{±e1, . . . ,±en}.

The n-dimensional simplex is given by Sn := {z ∈ Rn|z ≥ 0,1T
nz = 1} with

the interior int(Sn) = {z ∈ Rn|z > 0,1T
nz = 1} and the tangent space TzSn =

{δz ∈ Rn|1T
nδz = 0}. Finally, we denote ∇Sn := Sn\{e1, . . . , en}.

2.2. Graph Theory110

A signed directed graph (digraph) is given by a triple G = (V,E,A) where

V = {1, . . . , n} stands for the set of nodes, A = [aij ] ∈ Rn×n is the weighted

adjacency matrix, and E ⊆ V × V is a set of edges having elements as ordered

pairs (j, i) (an arc from node j to i) if the coupling weight aij 6= 0. Throughout

this article, we confine ourselves to the digon sign-symmetric graphs in which115

any pair of opposite edges (if exists) is identically signed, i.e. aijaji ≥ 0. A

signed graph is called balanced if
∑n
j=1,j 6=i |aij | =

∑n
j=1,j 6=i |aji| for all i ∈ V.

A signed digraph G = (V,E) is structurally balanced (SB) if V can be split
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into two disjoint subsets (i.e., V+ ∪ V− = V, V+ ∩ V− = ∅) such that aij > 0

if i ∈ V+, j ∈ V+ or i ∈ V−, j ∈ V−, and aij < 0 if i ∈ V+, j ∈ V− or120

j ∈ V+, i ∈ V−. Without loss of generality, a SB graph entails an n-dimensional

vector ρ := [ρ1, . . . , ρn]T ∈ {±1}n such that ρi = 1 if i ∈ V+ and ρi = −1 if

i ∈ V−. Structural balance epitomizes the famous sociological aphorism: “my

friend’s friend is my friend”, “my friend’s enemy is my enemy,” “my enemy’s

enemy is my friend,” and “my enemy’s friend is my enemy.”125

A node that can reach any other nodes of the graph through a path is called

the root. A digraph is quasi-strongly connected (QSC) or has a spanning tree if it

contains at least one root and is strongly connected (SC) if every node is a root.

A digraph G is called a star graph if there exists a unique node, called the center

node, such that the edges of G pointing either all to or all away from this center130

node. Moreover, a subgraph of graph G = (V,E,A) is given by Gs = (Vs,Es)

where Vs ⊆ V and Es ⊆ (Vs × Vs) ∩ E. We say a subgraph is in-isolated if

no edge comes from V\Vs to Vs. A subgraph Gs is an in-isolated structurally

balanced (ISB) component of a signed digraph G if it is an in-isolated subgraph

of G and SB, and any other subgraph of G strictly containing Gs is not in-isolated135

and SB.

For a matrix C := [cij ] ∈ Rn×n, we define the associated graph G(C) of C

to be a directed graph with node set {1, . . . , n} and edge set E which contains

a directed edge (j, i) ∈ E if cij 6= 0 and j 6= i.

2.3. Contraction Analysis and Differential Lyapunov Theory140

Before closing this section, we present the needed tools for convergence and

stability analysis of nonlinear dynamical systems.

Regarding nonlinear dynamical systems, the prior knowledge of specific solu-

tions (equilibrium points) or reference signals is a significant obstruction to the

applicability of linear techniques and Lyapunov stability theory for convergence145

analysis. Instead of studying the convergence to a specific equilibrium or an

unknown reference trajectory, one can look into the evolution of the distance

between a pair of trajectories. Along with this line of research, differential Lya-
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punov theory [24] has been well recognized within the control community, cen-

tral of which is the introduction of Finsler geometry and the lifting of Lyapunov150

functions to the tangent bundle. For more details on incremental stability and

contraction theory, we refer the interested reader to the tutorial articles [24, 25]

and references therein.

Consider a deterministic discrete-time nonlinear system described by the

difference equation

y(t+ 1) = g(y, t), and y(0) := y0 ∈Mn (1)

where g is a continuously differentiable vector field on an n-dimensional manifold

Mn. Let φ(·; t0,y0) be the semi-flow of system (1) starting from the initial155

condition y0 ∈Mn at time t0, i.e., φ(t0; t0,y0) = y0. Specifically, following the

work [24], we consider the forward invariant and connected subset Yn ⊂ Mn

for (1), on which φ(t; t0,y0) is forward complete for every y0 ∈ Yn.

To make this article self-contained, we recall the following definition of in-

crementally exponential stability which is a discrete-time analog to that in [24,160

Definition 1].

Definition 1. Consider system (1) on a given manifold Mn. Let Yn ⊂ Mn be

a connected and forward invariant set and dM : Mn ×Mn → R be a continuous

distance metric on Mn. System (1) is incrementally exponentially stable (IES)

on Yn if there exists a metric dM, c1 ≥ 1, and c2 > 1 such that

dM (φ(t; t0,y1),φ(t; t0,y2)) ≤ c1c−(t−t0)
2 dM(y1,y2). (2)

holds for all y1,y2 ∈ Yn and t ≥ t0 ∈ R≥0.

Note that the IES property is uniform since the right-hand side of (2) de-

pends only on the elapsed time t− t0 and thus in the case of Yn = Mn, we can

say that system (1) is uniformly globally IES.165

The dynamics of form (1) has an associated variational system as

δy(t+ 1) =
∂g(y, t)

∂y
δy(t), (3)
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where δy(t) : R≥0 → TyMn is a virtual displacement. System (1) together

with (3) is referred to as the prolonged system. Furthermore, the Finsler geom-

etry is important in the deduction of incremental stability.

Definition 2. A Finsler structure F (y, δy) ∈ TMn → R≥0 on the manifold

Mn satisfies the following conditions:170

(i) F is a smooth function on TMn\{0};

(ii) F (y, δy) ≥ 0 where the equality holds iff δy = 0;

(iii) F (y, aδy) = aF (y, δy) on TMn for a ≥ 0;

(iv) F (y, δy1 + δy2) ≤ F (y, δy1) + F (y, δy2) for all δy1, δy1 ∈ TyMn.

The development of the Finsler structure in the tangent bundle enables us

to induce a well-defined distance on Mn

dM(y1,y2) := inf
Γ(y1,y2)

∫ 1

0

F (γ(s), γ̇(s))ds, (4)

where γ : [0, 1] → Yn is a curve on Yn satisfying γ(0) = y1, γ(1) = y2, and175

Γ(y1,y2) is the collection of those piece-wise continuous curves.

In relation to continuous-time analogue in [24], the following theorem states

the differential Lyapunov framework for discrete-time systems.

Theorem 1. Consider system (1) on a smooth manifold Mn ⊆ Rn with a

continuously differentiable vector-valued function g in a connected and positively

invariant set Yn ⊂ Mn. If there exist a Finsler structure F (y, δy) ∈ TMn →

R≥0, scalars c1, c2 ∈ R≥0, c3 ∈]0, 1[, l ∈ R≥1 and a candidate differential

Lyapunov function V (y, δy) ∈ TMn → R≥0 being Lipschitz continuous, such

that, in coordinates,

c1F
(
y(t), δy(t)

)l ≤ V (y(t), δy(t)
)
≤ c2F

(
y(t), δy(t)

)l
(5)

V
(
y(t+ 1), δy(t+ 1)

)
− V

(
y(t), δy(t)

)
≤ −c3V

(
y(t), δy(t)

)
for t ∈ R, y ∈ Yn ⊂ Mn, and δy ∈ TyMn, then (1) is IES on the contraction

region Yn.180
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The above theorem describes a Lyapunov function characterization for a

contracting system and establishes the equivalence between incrementally ex-

ponential stability and contraction analysis.

3. Coevolution of Opinion Dynamics and Social Power

In this section, we study the dynamical evolution of opinion dynamics and185

social power in the context of sequential issue discussion. Our particular em-

phasis is on the influence network whose underlying graph may involve both

positive and negative links and its self-regulation across the issue sequence via

a reflected appraisal mechanism.

3.1. Motivation and Mathematical Description190

The starting point of this work is the extension of Altafini’s model [20] of

opinion formation processes on a single issue to opinion discussions on a sequence

of issues I = {0, 1, 2, . . .}. For any given issue s ∈ I, each agent i ∈ V (n ≥ 2) is

associated with a time- and issue-dependent variable xi(s, t) ∈ R that represents

his/her attitude on issue s at time t. With the definition x = [x1, . . . , xn]T, the

opinion dynamics of the entire group is given in a compact form

x(s, t+ 1) = P (s)x(s, t), x(s, 0) ∈ Rn (6)

where P (s) is referred to as influence matrix. More specifically, each agent

updates his/her opinion according to the following rule

xi(s, t+ 1) = pii(s)xi(s, t) +

n∑
j 6=i

pij(s)xj(s, t)

where pii(s) ∈ [0, 1] is the self-weight and pij(s) ∈ [−1, 1] is the interper-

sonal influence weight that agent i attaches to the opinion of agent j such

that
∑n
j=1 |pij(s)| = 1 on each issue s. For an easy exposition, the shorthand

zi(s) ∈ [0, 1] is used to denote the self-weight pii(s) for all i ∈ V.

From a psychological perspective, the diagonal and non-diagonal entries of

the influence matrix have distinct roles. Particularly, the self-weight zi(s) is des-

ignated as the indicator of his/her self-appraisal (self-worth or self-confidence)

9
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corresponding to the degree of assertiveness to his/her own opinion, whereas the

interpersonal weight pij(s) (j 6= i) represents his/her extent of trust-distrust to

the displayed opinion of individual j. More importantly, the topology of influ-

ence networks evolves from issue to issue via the so-called reflected appraisal

mechanism [10]. This mechanism illustrates that individuals intentionally revise

their influence structure based on the prior issue negotiation, thereby adjusting

the allocation of influence weights [26]. Before discussing on the next issue, each

individual therefore estimates his/her own influence on outcome of prior issue

discussion and regulates the interpersonal influence weights by

pij(s) = (1− zi(s))qij(s), i, j ∈ V, (7)

by which individuals allocate the aggregate relative influence 1 − zi by scaling195

using the interpersonal appraisal scores qij ∈ [−1, 1] which represents individual

i’s appraisal of individual j and satisfies qii = 0 and
∑n
j |qij(s)| = 1 for all

i ∈ {1, . . . , n}, thus ensuring
∑n
j |pij(s)| = 1.

Remark 1. In addition to the self-regulation of influence matrix along issue

sequence, individuals naturally prefer to revise their (positive or negative) ap-200

praisals – friendships and enmities – of others [27]. Therefore, the interpersonal

appraisal structure is encoded by the zero-diagonal matrix Q(s) := [qij(s)] ∈

Rn×n which updates from one issue to the next. Examples of variant appraisal

structures include a congress in the governance system where the representa-

tives of different nations or constituent states regularly assemble to manage205

issues in multiple domains involving political, economic and cultural matters.

Stemming from the common political and social benefit orientation, participants

may form conglomerates on some fixed issues while contesting with other op-

position factions. These “stable” relationships, however, varies as the discussed

topic changes. For instance, conventioneers may realign themselves with others,210

or possibly even cooperate with the opponents on prior issues. The considera-

tion of dynamic appraisal topology is consistent with the political maxim: “no

eternal allies, no perpetual enemies, only eternal and perpetual interests.” To

intrinsically understand how the opinion dynamics and individual social powers

10
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evolve through sequential discussion and reflected self-appraisal, the matrix Q215

and its associated spectral information are only regarded as an exogenous signal

in this article. Nevertheless, works on the evolution of interpersonal appraisals

have recently appeared in [28, 29], the developments of which seem to have a

great possibility for incorporation into this work.

From (7), the influence matrix in the sequence has the compact form

P (z,Q) = diag (z(s)) + (In − diag(z(s)))Q(s). (8)

If there is no confusion, we drop the explicit dependence of matrix P on z

and Q, and still write P (s) for the simplicity of notation. Regarding the sce-

nario of social networks without antagonistic interactions, the influence matrix

P (s) ∈ Rn×n≥0 satisfies the row-stochasticity for a given issue and thus, the strong

connectedness of graph G(P (s)) implies the existence of a unique normalized

left eigenvector p(s) ∈ Rn>0 associated with the dominant eigenvalue 1 such that

limt→∞P
t(s) = 1np

T(s). This is a direct application of the Perron-Frobenius

theorem to irreducible non-negative matrices. Therefore, the issue discussion

process (6) on issue s asymptotically reaches an opinion consensus

lim
t→∞

x(s, t+ 1) =
(

lim
t→∞

P t(s)
)
x(s, 0) =

(
pT(s)x(s, 0)

)
1n.

Namely, the opinions of social actors converge to a common value as time220

progresses, which is equal to some convex combination of individuals’ initial

thoughts. However, P (s) usually needs not to be row-stochastic when there

coexist positive and negative non-diagonal elements, and it even does not have

a dominant eigenvalue 1 whatever G(P (s)) is SC or not. Different from opinion

agreement on cooperative networks, outcomes of the opinion dynamics pro-225

cess (6) may involve rich opinion behaviors including neutrality, consensus and

polarity. Therefore, we need to characterize the properties of the influence ma-

trix.

Lemma 1. For each issue s ∈ I, consider an interpersonal appraisal matrix

Q(s) = [qij(s)] ∈ Rn×n with qii(s) = 0 and
∑n
j=1 |qij(s)| = 1 for all i ∈ V. If230
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the associated graph G(Q(s)) is SC and SB, then the following claims hold for

the influence matrix P (s) defined in (8):

(i) The matrix P (s) has a simple dominant eigenvalue 1;

(ii) There exists a unique pair of vectors p(s) ∈ Cn and ρ(s) = [ρi(s)] ∈ {±1}n

satisfying Q(s)ρ(s) = ρ(s), such that pT(s)P (s) = pT(s), P (s)ρ(s) =235

ρ(s), and limt→∞P
t(s) = ρ(s)pT(s);

(iii) For z(s) = 1/n, p(s) = ρ(s)/n iff G(Q(s)) is balanced;

(iv) Influence network G(P (s)) is SB;

(v) If z(s) = ei for some i ∈ V, then G(P (s)) has only one root at node i and

p(s) = ρi(s)ei;240

(vi) The graph G(P (s)) is SC and diag(ρ(s))p(s) > 0 for z(s) ∈ ∇Sn.

In the above lemma, we focus on the networks G(Q(s)) that are SC and SB

on each issue. As one will see, networks with weaker topological constraints

are also appreciated in the sequel of this article, thus making the developments

applicable to a wider range of real networks. An immediate consequence of claim

(ii) in Lemma 1 is that the opinion dynamics (6) on signed influence networks

converge after each issue discussion

lim
t→∞

x(s, t) =
(
pT(s)x(s, 0)

)
ρ(s) (9)

where ρ(s) ∈ {±1}n and p(s) ∈ Cn are the dominant right- and left-eigenvector

of the influence matrix P (s) on issue s, respectively.

Now, we are in a position to formally state how the self-confidence level

s 7→ z(s) evolves along the issue sequence via the reflected appraisal mecha-

nism, thereby adjusting the interpersonal weights in terms of (7). The most

important message of the convergence limit (9) is that the coefficient vector

p(s) mathematically specifies the true social contribution of individuals made

to the final decision making. In other words, p(s) can be regarded as a social

metric that measures the ability of individuals to relatively control the outcome

12
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of opinion discussion processes [30]. Therefore, the entry pi(s) is referred to as

the social power of individual i ∈ V. Recalling the reflected appraisal mecha-

nism that each agent tends to perceive his/her individual social power over the

sequence of issues, we therefore provide the following mathematical model for

the self-appraisal process in an antagonistic social network

z(s+ 1) = diag
(
ρ(s)

)
p(s) (10)

where the normalized vector p(s) is used, i.e., ||p(s)||1 = 1, so the elements of

self-confidence level z(s) are nonnegative and have unit sum, i.e., z(s) ∈ Sn.245

From (7), adjusting the self-weights zi(s+ 1) using ρi(s)pi(s), the interpersonal

weights pij(s+ 1) are also updated with (1− zi(s+ 1))qij(s+ 1) (10), thereby

engendering the evolution of individual social power pi(s+ 1).

Remark 2. The development in (10) reflects the psychological fact that there

may be dramatically opposite between self-perceived and veridical appraisals of250

individual social influence [10]. Indeed, the self-appraisal vector of individuals

takes values in Sn for all issues, while the social power metric p(s) allows a

negative vector in Cn using Lemma 1. Such deviation in the sign agrees with

the psychological fact that self-appraisal entails an individual’s subjective but

not necessarily objective assessment of his/her own power [31]. On the one hand,255

the individual generally has a positive self-impression z. On the other hand,

the network-wide quantification p concerning social power represents what the

actual appraisals of others on the individual are, and is an objective study of

the net effect.

Remark 3. For cooperative networks associated with a constant matrix Q, the260

self-appraisal model (10) degenerates to the traditional DF model examined

in [11, 8], wherein the dominant right- and left-eigenvectors here reduce to 1n

and a non-negative vector, respectively. Hence, the DF framework that unfolds

on a non-competitive network can be treated as a special case of this work.

In the spirit similar to the DF model, we also assume that the opinion forma-265

tion process and the self-appraisal process evolve on separate timescales for the

simplicity of modeling and analysis. More specifically, opinion dynamics reach
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convergence before updating the influence weights. The recent literature [7]

modifies the original DF model in the case of a single time-scale and provides

some interesting insights into future work.270

As such, the self-appraisal process (10) aims to adaptively modify the sta-

tus of individuals (assertion vs. reconciliation, confidence vs. uncertainty) in

response to their absolute power over prior issue outcomes. In order to provide

a deeper insight into the reflected self-appraisal process, the next subsection is

therefore dedicated to studying the dynamical and transient characterization of275

individual social powers in a cooperative-competitive context.

3.2. Dynamical and Graphical Description of Social Power

According to claim (ii) in Lemma 1, the stack vector form of social power is

given by

p(s) =
(

lim
t→∞

(
P t(s)

))T
ρ(s)/n, (11)

by which the self-regulation process of influence network using appraisal mech-

anism, as shown in (7) and (10), leads to the evolution of social power along

the sequence of issue.280

Slightly different from the notion of social power arising in the cooperative

context [30], coopetitive individuals’ social power in (11) may appear identical

magnitudes but with distinct signs according to Lemma 1. As such, the social

power admits an orientation system such that the relative control exerting along

the forward direction leads to a positive effect on discussions, while a negative285

influence along the backward direction, as addressed, e.g., in [32]. Sometimes,

the sign pattern of social power could be more significant than their exact values

in practical scenarios. For instance, media industries including traditional mass

media, e.g., TV, radio, and newspaper, and the recently emerged socio-technical

platforms, e.g., blogs, Facebook and Twitter, are of fundamental importance in290

information distribution. On some occasions, egoistic media with high audience

rating may release misleading reports for political or commercial reasons, and

manage to persuade people to believe a perceived but false truth. The social
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Figure 1: An illustrative calculation of social power in an SC and SB signed graph: two

spanning trees rooted from node 2.

power entraining negative influence accounts for this phenomenon. An example

is the shifting of U.S. public attitudes from “unjustified” to “justified” on the295

2003 invasion of Iraq after Powel’s speech [33]. From this point of view, the

dominant right eigenvector ρ is as informative as the dominant left eigenvector

p. Moreover, note that the oriented effect of social power is argued on a relative

scale; that is, the positiveness and negativeness of individual power are defined

in a relative coordinate but do not imply its absolute direction. For instance,300

although Powel’s speech fulfills a passive function on shaping the public opin-

ion of the Iraq invasion, it plays an active role from the perspective of a few

politicians.

Next, we characterize the transient properties of the social power during each

issue discussion s ∈ I by accommodating Kirchhoff’s matrix tree theorem [34]305

to the signed case.

Lemma 2. On a given issue s ∈ I, assume the associated graph G(P (s)) is QSC

and SB. Let |P (s)| = diag(ρ(s))P (s) diag(ρ(s)) where ρ(s) and ρ(s) are the

dominant left- and right-eigenvector of matrix P (s). For each i ∈ V, ρi(s)pi(s)

is equal to the sum, over all spanning tree rooted at node i in G(|P (s)|), of the310

products of weights of edges traversing each spanning tree.

Lemma 2 provides several insights into the perception of individual social

power. The first hint is that when the SB influence network G(P (s)) is SC for

a given issue s ∈ I, all individuals have a non-zero social power, since each node

on G(|P (s)|) has at least one spanning tree rooted at it. Especially, the absolute315
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social power |pi(s)| for s ∈ I is equal to the sum of the products of absolute

weights |pij(s)| of all the spanning trees starting from i in the graph G(P (s))

without self-loop. A paradigm is provided in Figure 1. Notably, the positive

and negative weighted interactions are treated equally without discrimination in

the evaluation of social power, although the total effect of social power may be320

positive or negative. Moreover, the individual influence is usually not imposed

via a single (direct) pathway, but through all available (indirect) paths reaching

others. In reference to p(s) ∈ Cn, the social power pi(s) (up to sign) represents

the ratio of the amount of spanning tree products that start from i to the total

number of the spanning tree products in the influence network.325

Lastly, we specify two distinct configurations of social power: autocracy and

democracy. The former features the existence of a dictator-like individual who

dominantly holds all the absolute social power and other members of the orga-

nization are dramatically vulnerable to the interpersonal influence. Instead, the

democratic specification means the members of social networks equally involving330

in making the final decision.

3.3. Explicit Formulation of Self-Appraisal Process over Signed Networks

Before ending this section, we explore an equivalent and explicit expression

for the dynamics of self-appraisal process (11) in terms of the interpersonal

appraisal network.335

Proposition 1. For each issue s ∈ I, let the graph G(Q(s)) associated to the

per-issue zero-diagonal matrix Q(s) ∈ Rn×n be SC and SB. The dynamics of

self-appraisal (10) are equivalent to the following discrete-time system

z(s+ 1) = f(z, s), (12)

where f : Sn × I→ Sn is a smooth map defined by

f(z, s) = θ(z, s)
[ρ1(s)q1(s)

1− z1(s)
, · · · , ρn(s)qn(s)

1− zn(s)

]T
(13)

where θ(z, s) = 1/
∑n
i=1

ρi(s)qi(s)
1−zi(s) is a scaling factor, the vectors q(s) := [qi] ∈

Cn and ρ(s) := [ρi] ∈ {±1}n satisfy qT(s)Q(s) = qT(s) and Q(s)ρ(s) = ρ(s).
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Figure 2: The schematic diagram of the coevolution of opinion dynamics and adaptive influ-

ence networks.

The result of Proposition 1 that f is continuous and smooth is useful for the

convergence analysis of self-appraisal dynamics, as well as of the social power

evolving process. Moreover, Proposition 1 implies that the dominant right- and340

left-eigenvector of the interpersonal appraisal matrix Q appears an important

role in the modeling and analysis of the self-appraisal process and the true social

power p(s) plays no direct role. As such, the dynamical evolution of the reflected

appraisal process combining (8) and (12) completely depends on an interpersonal

appraisal mechanism. In conjunction with the original model (10), Proposition 1345

undertakes to study the evolution and the convergence properties of social power

on coopetitive topologies combined with reflected appraisals. Figure 2 describes

the design philosophy of the theoretical framework, in which the outputs of

the interpersonal appraisal systems push forward the coevolutionary networks

concerning with the feedback loop of influence structure and opinion dynamics.350

4. Convergence Analysis

In this section, we study the theoretical analysis of the proposed self-appraisal

model in coopetitive social networks.

4.1. Constant Interpersonal Appraisal with Structural Balance

In this subsection, we consider the invariant interpersonal appraisal structure355

Q along the issue sequence. That is to say, issue discussants stick to their
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original impression of others and thus the social ties are solid from issue to

issue. The self-appraisal dynamics (12) therefore degenerate to a nonlinear

autonomous system.

First, we consider the special case when the underlying graph G(Q) has a360

star topology.

Lemma 3. Suppose that n ≥ 3 and the digraph G(Q) is a SC and SB. Let

q be the dominant left eigenvector of Q associated to eigenvalue 1. Then, the

following statements hold

(i) |qi| ≤ 1/2 for all i ∈ {1, . . . , n};365

(ii) there exists a node i with |qi| = 1/2 iff G(Q) is a star centered at node i.

For any initial condition z(0) ∈ ∇Sn, the self-weight vector z(s) governed

by the dynamics (12) converges to ei and the social power p(s) asymptot-

ically reaches to ρiei according to (10).

Lemma 3 features the predictable emergence of autocratic configuration in370

individuals’ absolute social power when the graph G(Q) is with a star topol-

ogy. More intuitively, social power tends to accumulate at the center node

corresponding to the dictator-like individual, for almost every initial conditions

except for the vertices of the simplex. Since then, the discussion outcomes

of subsequent issues are determined exclusively by the initial attitudes of this375

autocrat actor.

Next, we provide the following theorem regarding the convergence and sta-

bility of the self-appraisal mechanism (12) with a non-star graph G(Q).

Theorem 2. For n ≥ 3, consider the interpersonal appraisal graph G(Q) of a

non-star topology. If G(Q) is SC and SB, then the following claims hold for the380

self-appraisal system (12):

(i) Fixed points: the set of equilibrium points of f is {e1, . . . , en, z
∗}, where

z∗ ∈ int(Sn);

(ii) Convergence: for any non-autocratic initial conditions z(0) ∈ ∇Sn, the

self-weight vector z(s) converges exponentially to the equilibrium configu-385
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ration z∗ ∈ int(Sn) and thus the social power p(s) converges exponentially

to diag(ρ)z∗ ∈ int(Cn) as s→∞;

(iii) Stability: the fixed point in the interior of simplex is the unique stable

equilibrium for dynamics (12) in Sn;

(iv) Democracy: if G(Q) is further balanced, then for all z(0) ∈ ∇Sn, z(s)390

converges exponentially to the democratic configuration 1/n as s→∞.

The results of Theorem 2 provide several important indications. First, the

convergence and stability analysis benefits substantially from the aid of the

differential Lyapunov framework. The differential structure results in the expo-

nential convergence of nonlinear dynamics in question rather than asymptotic395

results explored in [11, 9]. The convergence property of contractive systems,

which is independent of initial conditions, gives that individuals exponentially

forget their original self-appraisal of relative control along the issue sequence.

Put differently, sequential issue discussion combined with the reflected appraisal

mechanism eliminates the initial perception of social power and the true social400

influence only depends on the interpersonal appraisal network.

Moreover, Theorem 2 implies that the graph eigenvector centrality |q| for the

graph G(Q) gives some ranking implications for the configuration of individual

social power at the equilibrium point: z∗i < z∗j (|p∗i | < |p∗i |) iff |qi| < |qj |

for any pair of i and j, and z∗i = z∗j (|p∗i | = |p∗j |) iff |qi| = |qj |. Recalling405

the proof of Theorem 2, the set An = {z ∈ Sn|0 ≤ zi ≤ 1 − r} ⊂ ∇S with

r ≤ mini∈V
1−2ρiqi
1−ρiqi is forward f -invariant and the stable equilibrium point z∗

exists in this contraction region. Therefore, it is reasonable to obtain an upper

bound for the absolute social power of individuals at the equilibrium point, i.e.,

0 < |p∗i | < |qi|/(1 − |qi|), by which a smaller |qi| gives a tighter upper bound410

for |p∗i |. In the meanwhile, a threshold value qthreshold = 1/3 can be attained

such that if |qi| < qthreshold for all i ∈ V, then |p∗i | < 1/2 for all i ∈ V. In other

words, there is no such agent who holds more than half of the total absolute

power after each issue discussion.

Regarding the proof of Lemma 3, a Lyapunov-based method is applied to415

19



Prep
rin

t

conduct the convergence analysis of self-appraisal dynamics when G(Q) is a star

graph. The implicit prediction or prior knowledge of the equilibrium point at

the autocratic state allows for the applicability of Lyapunov theory. However,

the first challenge encountered in using the Lyapunov methodology to non-star

networks is that the explicit calculation of the equilibrium may be an intractable420

task due to the nonlinear nature of dynamics. The customized remedy in the

proof of Theorem 2 does not directly seek to find a Lyapunov-based metric on the

state space. Instead, a differential framework by lifting the Lyapunov function

to the tangent bundle is employed to investigate the contraction of infinitesimal

dynamics, thus establishing the equilibrium-independent convergence of the self-425

appraisal dynamics.

Finally, we note that the topological interpretation of social power in Sec-

tion 3.2 enables us to extend the results of Theorem 2 to the case that G(Q)

is not SC but with multiple root nodes. On this occasion, only individuals

possessing spanning trees could exert their social powers on the issue discus-430

sions. More importantly, the individuals corresponding to non-root nodes of

G(Q) belong to the vulnerable groups in social activities. Since such individu-

als have few network-scale interpersonal relationships, sequential discussion to-

gether with reflected appraisal mechanism removes their social influence, even

they are initially empowered the supreme power in an autocratic configuration,435

i.e., pi(s)→ 0 as s→∞ when |p(0)| = ei and i has no spanning tree on G(Q).

We omit the detailed extension to save the risk of overlap.

4.2. Extension to Dynamic Interpersonal Appraisal Structure

In this subsection, we begin to examine the convergence behavior of the pro-

posed self-appraisal mechanism in a general context in which the interpersonal440

appraisal structure does not remain unchanged along the issue sequence.

The paradigm shift from a static appraisal structure to a dynamic ap-

praisal network makes the self-appraisal dynamics (12) become a nonlinear non-

autonomous system. To clarify the presentation, the following set encapsulates
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all interpersonal appraisal matrices under consideration

Q := {Q ∈ Rn×n| the non-star graph G(Q) is SC and SB},

where we assume Q is a finite set for theoretical rigor.

Theorem 3. For n ≥ 3, consider the self-appraisal system (12) on Sn and

the interpersonal appraisal matrix Q(s) ∈ Q at issue s ∈ I wherein Q(s) is

independent of z(s). For any z(0) ∈ ∇Sn, the self-weight vector z(s) ∈ Sn445

governed by the nonlinear map f in (13) converges exponentially to a steady-

state trajectory z∗(s) ∈ int(Sn). The network-scale social power p(s) ∈ Cn

converges exponentially to the trajectory diag(ρ(s))z∗(s) ∈ int(Cn) as s→∞.

As illustrated in Figure 2, the left- q(s) and right-eigenvector ρ(s) can be

treated as external inputs for the self-appraisal dynamics (12), which encode the450

topologically structural information of graph G(Q(s)) on issue s ∈ I. Therefore,

the steady-state solution z∗(s), in some sense, is specified implicitly by the

interpersonal appraisal mechanism.

From Theorem 2, the equilibrium ordering of self-weight/social-power for

the constant Q is related to the dominant eigenvectors q and ρ rather than455

waiting until the end of the issue sequence. In the case of issue-varying Q(s),

the self-appraisal system exhibits, however, the non-equilibrium asymptotic be-

havior because of the dynamic interpersonal appraisal mechanism. In fact, this

interrelated correspondence usually fails to preserve for the non-constant Q(s).

Nevertheless, the self-weights in some special scenarios may coincidentally reach460

a stationary fixed point. Let ∼e be an equivalence relation in the set Q such

that for arbitrary Q1,Q2 ∈ Q, it holds Q1 ∼e Q2 if Q1 and Q2 share the same

left-eigenvector q and right-eigenvector ρ. Such relation enables us to define an

equivalent class [Q]∼e of matrix Q ∈ Q.

Corollary 1. For arbitrary initial appraisal matrix Q(0) ∈ Q which has the left465

eigenvector q(0) and right eigenvector ρ(0) associated to eigenvalue 1, if it holds

Q(s) ∈ [Q(0)]∼e over the sequence of issue I, then the self-weight vector z(s)

governed by the vector field (13) converges exponentially to a static equilibrium
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point z∗ ∈ int(Sn) and the social power p(s) has an equilibrium configuration

p∗ ∈ int(Cn). Moreover, the equilibrium self-weights (social powers) of individ-470

uals satisfies: z∗i < z∗j (|p∗i | < |p∗i |) iff |qi(0)| < |qj(0)| for any pair of i and j,

and z∗i = z∗j (|p∗i | = |p∗j |) iff |qi(0)| = |qj(0)|.

The proof can be easily derived from Theorem 3 and therefore is omitted in

this article. Although the developed results of Corollary 1 provide preferable

ranking implication for the equilibrium social power, we have to admit such475

static configuration of relative control is a rare case, while self-appraisal mech-

anism of social power exposes mostly the stationary non-equilibrium dynamical

behavior.

5. Structural Unbalanced Interpersonal Appraisal Mechanism

Until now, we usually postulate explicitly or implicitly the structural bal-480

ance for the interpersonal appraisal structure in the study of opinion dynamics

and reflected appraisal mechanism. This condition, however, may not always be

satisfied in many real-life social networks [23]. For example, large-scale online

social networks typically have complex and multidimensional appraisal struc-

tures. Hence, the interpersonal appraisal graphs arising from such networks485

hardly satisfy the structural balance condition. So in what follows, we inves-

tigate the evolution of social power with structurally unbalanced interpersonal

appraisal mechanism.

For any issue s ∈ I, the opinion forming process on G(P (s)) which is SC and

structurally unbalanced, tends towards neutrality no matter what individuals’490

initial ideas are, i.e., lim 1t→∞x(s, t) = 0, for any x(s, 0) ∈ Rn. In reference

to (11), social power for opinion neutrality leads to p(s) = 0 as limt→∞P
t(s) =

0. Note that the magnitudes of all eigenvalues of P (s) are strictly smaller than

1. In other words, the neutral opinion dynamics represent that all individuals

make no direct contribution to the issue discussion and hence, the self-weights495

are accordingly set to zero for everyone. An intuitive interpretation for this

situation would be that all individuals have no desire for power.
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Theorem 4. For n ≥ 3, consider the self-appraisal system (12) and (10).

Assume the associated graph G(Q) of the constant interpersonal appraisal matrix

Q is aperiodic, strongly connected, and structurally unbalanced. The map f on

Sn ∪ {0} in (12) is then defined by

f(z) =

 ei if z(s) = ei, for all i ∈ V,

0 if z ∈ ∇Sn ∪ {0}.

Furthermore, the equilibrium points of f belong to {e1, . . . , en,0}. For arbitrary

initial condition z(0) ∈ ∇Sn ∪ {0}, the self-weight vector z(s) (social power

vector p(s)) are constantly 0 for s ∈ {1, 2, . . .}.500

Regarding Theorem 4, there are several interesting consequences. First, the

non-autocratic configuration of initial conditions gives rise to that individuals

do not take sides on any issue. Second, the proof of Theorem 4 shows that

the presence of autocratic social power (e.g., z(0) = ei) can generate different

collective behavior in opinion forming including a consensus outcome, two op-505

posite settled opinions, or a set of unreconciled views. This finding may open

up avenues for driving the occurrence of clustering in human populations [35]

using self-perception of their relative control.

6. Numerical Simulation and Further Discussion

This section serves to demonstrate the proposed mathematical model and510

the theoretical analysis via numerical tests.

6.1. Self-appraisal Dynamics with Constant Q

Thurman’s informal network of interpersonal ties among 15 staffs in the

office of an oversea branch of an international corporation is reported in [36].

To fit our work, we make a slight modification such that the antagonism is also

involved as shown in Figure 3, such that {Ann, Tina, Katy, Lisa, Pete, Amy} and

{Presendent, Rose, Mary, Mike, Emma, Peg, Minna, Andy, Bill} are two hostile
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cliques. The associated interpersonal appraisal matrix is given by Q1 associated

with a SC and SB graph G(Q1), which has a dominant right-eigenvector

ρ = [1, 1,−1, 1, 1, 1,−1,−1, 1, 1,−1,−1, 1, 1,−1]T

and a dominant left-eigenvector

q = [0.027, 0.026,−0.106, 0.027, 0.164, 0.111,−0.148,−0.066, . . . ,

0.027, 0.027,−0.14,−0.048, 0.014, 0.009,−0.058]T.

1

ROSE

2

MARY

3

ANN

4

MIKE

5

EMMA

9 PEG

6

PRESIDENT

10

MINNA

14

BILL

13

ANDY

7

LISA

8

TINA

12

KATY

15

AMY

11

PETE

Figure 3: The signed Thurman’s informal network: The cooperation interrelation is drawn in

blue arrow line and competition is in red.

We numerically study the proposed self-appraisal framework on this modified

Thurman’s social network. For illustrative purpose, we conduct the simulation

in a Monte-Carlo (MC) trial of 200 initial conditions. The dynamical trajec-515

tories of the self-appraisals of individuals are illustrated in Figure 4(a) which

shows the self-weights z(s) converge exponentially to an equilibrium point, inde-

pendent of initially perceived appraisals z(0). Especially, all self-weights strictly

belong to the domain ]0, 1[, evidencing that the equilibrium self-confidence lies

in the interior of the simplex Sn. In other words, individual social powers p(s)520

in (10) exponentially forget their initial configuration p(0) as a consequence of

sequential opinion discussion combined with the reflected-appraisal mechanism.

The numerical test is consistent with the statements in Theorem 2.
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Figure 4: Monte Carlo trial of self-weight dynamics: (a). Static case; (b). Comparison of

evaluation metrics: social power (SP), consensual appraisal (CA), average appraisal (AA)

and social power bound (SPB); (c). Dynamic case.

6.2. Comparisons of Social Power Metrics

Next, we compare different metrics of individual social powers. First, we525

introduce two additional measures of individual relative influence. Since each

column of Q collects others’ assessments of the corresponding individual, the

product
∑n
j=1 qjqij can be treated as the collective appraisal of others on the

individual i ∈ V. Thereby, one can also refer to the eigenvector centrality q as

the consensual appraisal of individuals based on the fact qi =
∑n
j=1 qjqij . An-530

other vector-based index arising from this context is an average interpersonal

appraisal qave := QTρ/n. Those influence metrics provide profound implica-

tions to the equilibrium ranking of individual social power.
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To this end, Figure 4(b) shows the comparison results among different social

power metrics, where p∗ is the steady-state social power, q is the consensual ap-535

praisal, qave = QT
1ρ/n is the average interpersonal appraisal, and pbd = [ qi

1−ρiqi ]

is the social power bound for i ∈ V. The first observation is that Emma who has

the most spanning tree starting from her, reaches the maximal personal influ-

ence; While Bill who has the least spanning tree, lies at the lowest power layer

in the office. This demonstrates Lemma 2. Second, as discussed in Section 4.1,540

the absolute social power of individuals is strictly upper bounded by pbd, i.e.,

|p∗i | <
|qi|

1−|qi| for all i ∈ V. Moreover, although those influence metrics (final

social power p∗, consensual appraisal q, average appraisal qave) are different

in the exact value, they share the same ordering of the importance ranking,

that is |p∗i | > |p∗i | iff |qi| > |qj | (|qiave| > |qjave|) for i, j ∈ V. Moreover, since545

all eigenvector centralities are lower than 1/3 in modulus, as discussed in Sec-

tion 4.1, nobody in the office possesses more than half of the total social power

at equilibrium. Even though there is no predominant actor in this organization,

the experiment retains the “iron law of oligarchy” in sociological study [37].

By giving a threshold 1 − θ(z∗) = 0.1123 at the equilibrium, we can observe550

from Figure 4(b) that social powers are accumulated in the individuals with

|qi| > 0.1123. More specifically, an oligarchic hierarchy is formed by Emma,

Pete and Lisa, since their social power satisfies |p∗i | > |qi|.
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Figure 5: Evolution of opinion dynamics on first three issues: (a). Opinion polarity; (b).

Opinion consensus; (c). Opinion neutrality.

6.3. Self-appraisal Dynamics with Dynamic Appraisal Topology

Next, we study the self-appraisal system (13) on a dynamic appraisal net-555

work. Let G(Q2) be the graph by converting all edges with negative weights of

graph G(Q1) into the positively weighted edges. Obviously, the graph G(Q2) is

unsigned and SC. By converting the cooperative link (7, 5) in graph G(Q1) to an

antagonistic one, we can explore a SC and structurally unbalanced graph G(Q3).

Then, we implement the self-appraisal dynamics on a periodically switching ap-560

praisal networks {Q1,Q2,Q3}, the Monte Carlo trial in Figure 4(c) exposes

that the self-weights asymptotically fall into an attractor system which relies on

the setup of the interpersonal appraisal mechanism, independent of the setup

of the initially perceived states z(0) ∈ ∇Sn. Note that it is generally difficult
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to draw any conclusion on the ordering of social power in the case of dynamic565

topology, since there does not exist a static equilibrium point.
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(c) z(s) = e7

Figure 6: Evolution of opinion dynamics with autocratic social power: (a). Opinion clustering;

(b). Opinion separation; (c). Opinion polarization.

In addition, we examine the evolution of opinion dynamics over sequential is-

sue discussion and the periodically switching appraisal structure {Q1,Q2,Q3}.

Figure 5 presents the opinion formation on the first three issues, exhibiting po-

larization in Figure 5(a), consensus in Figure 5(b), and neutrality in Figure 5(c).570

Using the interpersonal appraisal matrix Q3, we also study the forming process

of opinions under autocratic configuration of social power. Allocation of auto-

cratic power at a specific individual results in community cleavages of opinion

on issues as shown in Figure 6. What is intriguing is the case z(s) = e3 depicted

in Figure 6(b) in which the opinions of Ann and Rose polarize at the exact op-575
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posite values and the opinions of all other members in the office lie in between

these two polarized values. The perception of social power z(s) = e7 gives rise

to that the attitudes of the entire office evolve into two polarized camps.

Finally, we modify the graph G(Q1) in Figure 3 by breaking up the existing

links (4, 5), (10, 14), (10, 13) and building up positively weighted links (14, 10),

(13, 10) such that there is no spanning tree starting from the members {Mike,

Andy, Bill}. Therefore, let G(Q4) present the resulting graph which is QSC but

still SB. The associated interpersonal appraisal matrix Q4 from G(Q4) gives a

dominant right-eigenvector by

ρ = [1, 1, −1, 1, 1, 1, −1, −1, 1, 1, −1, −1, 1, 1, −1]T,

and a unique dominant left-eigenvector

q = [0.0353, 0.0286, −0.1143, 0, 0.1767, 0.1187, −0.1514, −0.0637, ...

0.0353, 0.0353, −0.1365, −0.0498, 0, 0, −0.0545]T.

Then, the dynamical trajectories of the self-weights with 200 randomly initial

conditions are illustrated in Figure 7(a). Likewise, individuals exponentially580

forget their originally perceived social influence. In analogy with the strongly

connected case, Emma still has the maximum equilibrium social power and the

statements on the ordering of the social power ranking at equilibrium point

hold, as illustrated in Figure 7(b). The observation that Mike, Andy and Bill

have zero social power in the equilibrium configuration verifies that statement585

that the non-root individuals lose social power in the limit.
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Figure 7: Self-appraisal dynamics on the QSC and SB graph G(Q4): (a). Monte Carlo trial

of 200 initial conditions; (b). Comparsion of different evaluation metrics.

6.4. Numerical Tests on The Sampson’s Monastery Network

The last test is on a real signed network which is inferred from Sampson’s

dataset for monastery interactions [38]. The graph G(Q5) associated with the

fourth time window of Sampson’s empirical data on the interpersonal esteem of

the monastery’s relation is SB and SC; see Figure 8(a). The corresponding two

dominant eigenvectors of Q5 are

ρ = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,−1,−1,−1,−1]T,

q = [0.0667, 0.0778, 0.0333, 0.0778, 0.0333, 0.0556, 0.0667, 0.0444, 0.0444, ...

0.0667, 0.0444, 0.0778, 0.0444, 0.0778,−0.0444,−0.0556,−0.0444,−0.0444]T.

Similarly, we implement the self-appraisal dynamics (12) in a Monte-Carol

trial of 200 randomly initial conditions and the resultant trajectories are drawn

in Figure 8(b) which shows that the individual self-appraisals converge to an590

equilibrium state in an exponential rate without dependence of initial conditions.

That is to say, the social power at the equilibrium point is determined only by

ρ and q. Moreover, we also compare the different metrics of individual social

power in this case. The results are shown in Figure 8. In addition to the

observations that have been obtained in previous cases, note that some pairs595

of nodes share the same absolute social powers but with different signs, e.g.,

p∗6 = 0.0553 and p∗6 = −0.0553.
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Figure 8: Numerical test on a real social network: (a). Sampson’s monastery interaction

network consists of two hostile campus: {1, 2, . . . , 14} and {15, . . . , 18}; (b). The self-appraisal

process; (c). Comparison of different social power metrics.

7. Conclusions and Future Works

In this article, we study the dynamic evolution of social power and self-

appraisal in a coopetitive network that holds the opinion formation process along600

a sequence of issues. First, we explore an interpersonal appraisal mechanism in

the configuration of influence relationships among individuals, such that the

interpersonal influences are proportional to the interpersonal appraisals. This

employment provides a natural, plausible explanation for the emergence of pos-

itiveness and negativeness in social interrelations. We also present the algebraic605

definition and graph-theoretical properties for the social powers of signed net-
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works. The dynamic evolution of social power is then studied by means of the

reflected self-appraisal process across the issue sequence. Regarding the theoret-

ical analysis, the accommodation of differential Lyapunov theorem establishes

the exponential convergence of the self-appraisal system and the associated dy-610

namics of social power. In more detail, we show that individuals gradually

forget their initial perception of relative importance in the networks as the issue

sequence enlarges. Individual social powers in the limit therefore rely only on

the topological properties of the interpersonal appraisal structure. For better

applicability, we also examine the theoretical framework under the consideration615

of networks with different topological hypotheses. The numerical illustrations

confirm the specifications of the theoretical results in this article.

There is much further work remaining to be done along this research line.

First, we have not addressed the specific dynamics of the interpersonal ap-

praisal mechanism throughout the article. As presented in Figure 2, we study620

the coevolution framework as a whole from an open-loop context, whereby the

appraisal matrix and its associated dominant spectral properties are regarded as

an exogenous signal. Therefore, the mathematical descriptions given in [28, 29]

which explain how an appraisal network evolves, are likely to incorporate in a

closed-loop sense with our framework. Furthermore, the self-appraisal process625

of individual importance in sequential opinion-forming is implemented in a cen-

tralized manner. From the viewpoint of network systems, we aim to develop the

rigorously mathematical methodology of the reflected appraisal mechanism in

a distributed way. Potential ideas involve distributed computation of objective

eigenvectors [39] and other distributed learning approaches [40]. In support of630

the obtained models and theoretical results, we need more empirical tests on

signed networks inferred from the well-known sociology datasets, e.g., in [41].
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Appendix A. Proofs

Appendix A.1. Proof of Theorem 1

As demonstrated by [42, Theorem 15], contraction analysis is equivalent

to uniform exponential incremental stability. The proof closely follows the730

continuous-time version found in [24, Theorem 1], which can mimic the discrete-

time counterpart of incremental Lyapunov stability criterion given by [42, The-

orem 9] and contraction analysis shown by [42, Theorem 11] The details are

omitted due to space limitations.

Appendix A.2. Proof of Lemma 1735

To make this treatment self-contained, the proof is not presented in the

same order as the claims appearing in the lemma. For a given issue s ∈ I, the

argument s of vectors or matrices in question will be dropped for the simplicity

of this proof.

First, we note that when z = ei for some i ∈ V or more concretely, let i = n

without loss of generality, the matrix P can be calculated by

P = diag(0, . . . , 0, 1) + diag(1, . . . , 1, 0)Q =

Q̃
eTn

 (A.1)
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where the matrix Q̃ ∈ R(n−1)×n is obtained by removing the n-th row from740

Q. As G(Q) is SC, each node of G(Q) has paths connecting to others. The

observation that the associated graph of P given in (A.1) has no other root

except for node n, implies G(P ) is only QSC in the case z = ei. Especially,

simple calculation shows p = ρiei and the proof of statement (v) is complete.

Here, G(P ) can be obtained from G(Q) by removing all incoming edges of node745

i and thus inherits the same structural balance from G(Q).

Regarding claim (vi), condition z ∈ ∇Sn implies the graph G(P − diag(z))

has the same sign pattern on the edge set as G(Q)’s, namely, G(P − diag(z)) is

SC and SB. As the self-appraisals is zi ∈ [0, 1) for all i ∈ {1, . . . , n}, the graph

G(P ) is also SC and SB. The statements (iv) and the first part of statement750

(vi) are proved.

Next, the structural balance of G(P ) implies the node set can be split into

two disjoint subsets that the negatively weighted edges only exist between nodes

belonging to distinct groups. By associating a vector ρ ∈ {±1}n to graph

G(P ), an observed relation is pij = |pij |ρiρj for all i, j ∈ V, and thus one has755

diag(ρ)P diag(ρ) = |P |. It is not difficult to show that |P | is a non-negative

matrix and is row-stochastic. Thanks to the similar transformation, P and |P |

share the same spectrum. Therefore, the application of the Perron-Frobenius

theorem to |P | shows indirectly the existence, uniqueness, and other properties

of the dominant left eigenvector p of matrix P , as well as the spectral property.760

This is the proof of statement (i). Note that diag(ρ)p is the left-eigenvector

associated to eigenvalue 1 of |P |, i.e., pT diag(ρ)|P | = pT diag(ρ). Therefore, if

G(P ) is SC, as is G(|P |), then the matrix |P | admits a unique (up to a scaling)

left eigenvector diag(ρ)p > 0. The second part of statement (vi) is proved.

Moreover, direct calculation shows that
∑n
j pijρj =

∑n
j |pij |ρi = ρi, for all765

i ∈ V, which implies the 1-norm of each row of P equals to 1, i.e., Pρ = ρ.

The final asymptotic behavior limt→∞P
t = ρpT is an immediate consequence

of claim (i), so the proof of claim (ii) is completed.

Finally, in regard to claim (iii) where z(s) = 1/n, the relation (8), by left

multiplying ρT(s)/n to both sides, results in ρT(s)P (s)/n = ρT(s) diag(1n/n)/n+
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(n− 1)ρT(s)Q(s)/n2, thus due to p(s) = ρ(s)/n, yielding

ρT(s)/n = ρT(s) diag(1n/n)/n+ (n− 1)ρT(s)Q(s)/n2.

Therefore, the equation ρTn(s)Q(s) = ρTn(s) holds, i.e., G(Q) is balanced ac-

cording to the definition. Meanwhile, if G(Q) is balanced, one can immediately770

prove that ρT(s)P (s)/n = ρT(s)/n, i.e., p(s) = ρ(s)/n.

Appendix A.3. Proof of Lemma 2

Following the proof of Lemma 1, diag(ρ(s))p(s) is known to be the dominant

left eigenvector of matrix |P (s)|, from which one can form a Laplacian matrix

by L(s) = I−|P (s)|. It is obvious that G(L(s)) is QSC, provided that G(P (s))775

is QSC and SB, so that dim ker(LT(s)) = 1 and (diag(ρ(s))p(s))TL(s) = 0n.

Let cof(L(s)) be the cofactor matrix associated to Laplacian L(s) where the

(i, j)-th cofactor [cof(L(s))]ij of L(s) is equal to (−1)i+jbij(s) where bij(s) is the

determinant of the (i, j)-th minor of L(s). A well-known fact is that cof(L(s)) ·

LT(s) = det(L(s))In = 0n×n. Since the sum of the rows of the Laplacian780

L(s) is zero for a given issue s ∈ I, i.e, L(s)1n = 0n, the characteristics of

the determinant function reveal that the entries of each column of cof(L(s))

are uniform. That is to say, [cof(L(s))]ij is independent of i and thus, one

says [cof(L(s))]ij = ρj(s)pj(s) ≥ 0 without loss of generality. Put differently,

ρi(s)pi(s) is equal to the sum, over all spanning tree rooted at node i in G(L(s)),785

of the products of weights of edges traversing each tree according to Kirchhoff

matrix tree theorem [43].

Appendix A.4. Proof of Proposition 1

According to statement (v) of Lemma 1, one has known that z(s+ 1) = ei

if z(s) = ei. For the self-weight vector z(s) ∈ ∇Sn at issue s ∈ I, an immediate

deduction from the fact P (s)TpT(s) = pT(s) and (10) is

P T(s) diag(ρ(s))z(s+ 1) = diag(ρ(s))z(s+ 1).
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In conjunction with the forming of influence matrix given in (8), straightforward

computation shows

QT(s) diag(1n − z(s)) diag(ρ(s))z(s+ 1) = diag(1n − z(s)) diag(ρ(s))z(s+ 1),

which means that diag(1n − z(s)) diag(ρ(s))z(s + 1) is a left eigenvector cor-

responding to eigenvalue 1 of Q(s). Bearing in mind z(s + 1) ∈ Sn, one can790

acquire ρi(s)(1− zi(s))zi(s+ 1) = θ(z, s)qi(s), for all i ∈ V, wherein the scaling

coefficient θ(z, s) = 1/
∑n
i=1

ρi(s)qi(s)
1−zi(s) guarantees z(s+ 1) ∈ Sn.

About the smoothness of the map f : Sn × I → Sn, we first consider the

self-appraisal process in a neighborhood of any vertex ei which is given by

Bi := {z ∈ Sn|dS(z, ei) ≤ c, z 6= ei}, where c > 0 is a constant scalar. For any

z(s) ∈ Bi, we can therefore rewrite the vector field into the following pattern

f(z, s) =
[ θ(z)

1− zi(s)
ρ1(s)q1(s)(1− zi(s))

1− z1(s)
, . . . ,

θ(z)ρi(s)qi(s)

1− zi(s)
,

. . . ,
θ(z)

1− zi(s)
ρn(s)qn(s)(1− zi(s))

1− zn(s)

]T
=

1∑n
j 6=i

ρjqj(1−zi)
1−zj + ρiqi

[ρ1q1(1− zi)
1− z1

, . . . , ρiqi, . . . ,
ρnqn(1− zi)

1− zn

]T
,

(A.2)

by which one can immediately attain f → ei as z(s) → ei. Thus, the map f

is continuous at vertices of the simplex. Namely, the continuity of f on Sn is

clear due the analytic expression for z ∈ Sn.795

Now, the remaining task is to prove the differentiability of f on simplex

Sn. For any z(s) ∈ Bi, entries of z(s) satisfy zj(s) < 1 for all j ∈ {1, , · · · , n}

which allows for the computation of the Jacobian of the vector field f in this

neighborhood Bi. That is to say, f is differentiable for any z(s) ∈ ∇Sn at issue

s ∈ I. Next, the Jacobian matrix of the vector field f at ei can be calculated

from (A.2) by

∂f

∂z
(z, s) =



0 · · · −ρ1(s)q1(s)
ρi(s)qi(s)

· · · 0
...

...
...

0 · · · 1−ρi(s)qi(s)
ρi(s)qi(s)

· · · 0
...

...
...

0 · · · −ρn(s)qn(s)
ρi(s)qi(s)

· · · 0


(A.3)
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which implies that f is also differentiable at ei. Obviously, the first order partial

derivative of f is continuous for z(s) ∈ Sn. The higher order differentiability of

function f can be deduced in the same manner. Therefore, the smoothness of

f is the immediate consequence of the differentiability for all orders and thus,

the proof is completed.800

Appendix A.5. Proof of Lemma 3

We first note that a signed graph with star topology is always SB and it can,

in some sense, be treated as an unsigned graph under gauge transformation [20].

Hence, the proof of statement (i) and the first-half part of the statement (ii)

closely follows the proof of [11, Lemma 2.3] The details are omitted due to space805

limitation.

The second-half part of the statement (ii) resembles the proof of [11, Lemma

3.2] by using |qij | = ρiρjqij, which again using the SB nature of star graphs.

Thus, we can demonstrate the nonexistence of equilibrium in ∇Sn when graph

G(Q) has a star topology. After assuming agent n be the center node of graph810

G(Q), without loss of generality, we summarize that zn(s + 1) − zn(s) > 0 for

zn(s) ∈ [0, 1[ and zn(s + 1) = zn(s) when zn(s) = 1. The specific details are

omitted due to space limitations and can be found in [11, Lemma 3.2].

Consider a Lyapunov function candidate by V (z(s)) = ‖z(s) − en‖1/2, for

z ∈ Sn, which has the difference

V (z(s+ 1))− V (z(s)) = zn(s)− θ(z(s))ρnqn
1− zn(s)

, (A.4)

where θ(z) is well defined and θ(z) > 0 for z(s) ∈ ∇Sn.

In the trivial case zn(s) = 0, the difference of Lyapunov function (A.4) leads

to V (z(s + 1)) < V (z(s)). For the nontrivial situation zn(s) > 0, the factor

θ(z) has a lower bound as follows

θ(z) =
1

ρnqn
1−zn(s) +

∑n−1
j=1

ρjqj
1−zj(s)

≥ 1
ρnqn

1−zn(s) + ρnqn
zn(s)

=
zn(1− zn)

ρnqn
,

where the inequality is derived from 1 − zj ≥ zn for j ∈ V\{n} and ρnqn =815 ∑n−1
j=1 ρjqj . Additionally, we underline the lower bound is given in a strict
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sense. That is, in the case that there exists k ∈ V\{n} such that 1 − zk = zn,

one can obtain that
∑n−1
j

ρjqj
1−zj(s) = ρkqk

1−zk(s) +(ρnqn−ρkqk) < ρnqn
zn

, wherein the

property |qn| > |qk| for all k ∈ V\{n} is used. Hence, one can draw conclusion

on the difference of Lyapunov function along the issue sequence as V (z(s+1)) <820

V (z(s)), ∀z(s) ∈ ∇Sn, where V (z(s)) > 0 for all z(s) ∈ ∇Sn. In conclusion, we

claim that en is the asymptotically stable equilibrium point for self-appraisal

dynamic (12) in the case of G(Q) having a star topology. This is a direct

application of Lyapunov stability theory to discrete-time system [44]. Therefore,

given the center node of graph G(Q) being i and lims→∞ z(s) = ei, one can825

immediately compute that ρiei is the appropriate dominant left eigenvector of

P (ei), which is equivalent to lims→∞ p(s) = ρiei. The proof is completed.

Appendix A.6. Proof of Theorem 2

From the analytic expression (13), the vertices ei (i ∈ V) of Sn are naturally

fixed points of the map f . Furthermore, the factor θ(z) is strictly positive for830

z(s) ∈ ∇Sn, which suffices to ensure z(s+ 1) > 0. Namely, no fixed point exists

on the boundary of simplex Sn.

We define a compact set by An = {z ∈ Sn|0 ≤ zi ≤ 1 − r, ∀i ∈ V}, where

r ∈ R>0 is a extremely small scalar and satisfies 0 < r ≤ mini∈V
1−2ρiqi
1−ρiqi . Note

that the properties of the dominant left eigenvector q developed in Lemma 3835

ensures that (1 − 2ρiqi)/(1 − ρiqi) > 0 for all i ∈ V and graphs G(Q) with a

non-star topology.

We first calculate the i-th entry of vector field f(z) by

fi(z) =
ρiqi

(1− zi)
∑n
j
ρjqj
1−zj

=
1

1 +

∑n
j 6=i

ρjqj
1−zj

ρiqi/1−zi

≤ 1

1 + r
ρiqi

∑n
j 6=i

ρjqj
(1−zj)

, (A.5)

as 1 − zi ≥ r. Due to 1 − zj < 1 for z ∈ ∇Sn and ρiqi = 1 −
∑n
j 6=i ρjqj , the

formula (A.5) further becomes

fi(z) <
ρiqi

r + (1− r)ρiqi
=

(1− ρiqi)r2 + (2ρiqi − 1)r

r + (1− r)ρiqi
+ 1− r

=
r(1− ρiqi)(r − 1−2ρiqi

1−ρiqi )

r + (1− r)ρiqi
+ 1− r ≤ 1− r,
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where the last inequality is based on the fact that r ≤ 1−2ρiqi
1−ρiqi for all i ∈ V.

Hence, one can derive the conclusion that f(An) ⊂ An. In what follows, we

restrict the consideration of self-appraisal dynamics to this compact set An.840

Referred to system (12), we attain the prolonged system by z(s+ 1) = f(z)

δz(s+ 1) = ∂f
∂z (z)δz(s)

(A.6)

where the infinitesimal displacement is δz ∈ TzSn and the Jacobian matrix of

vector field f has the form

[∂f
∂z

]
ij

(z) =


zi(s+1)(1−zi(s+1))

1−zi(s) if j = i

− zi(s+1)zj(s+1)
1−zj(s) if j 6= i,

where the relation ∂θ(z)
∂zi

= −ρiqiθ
2(z)

(1−zi)2 is an intermediate for the computation.

For each s ∈ I, z ∈ An, and δz ∈ TzAn, we consider a candidate Finsler-

Lyapunov function of the form

V (z(s), δz(s)) =
n∑
i=1

∣∣∣ δzi(s)

1− zi(s)

∣∣∣, (A.7)

which satisfies conditions of Definition 2 by using factors c1 = c2 = l = 1 and a

Finsler structure F (z(s), δz(s)) = V (z(s), δz(s))
1
l in (5).

Denote Π(z(s)) := diag(1/(1 − z1(s)), . . . , 1/(1 − zn(s))) for clarity of pre-

sentation. The Finsler-Lyapunov function then can be rewritten to a form

V = ‖Π(z(s))δz(s)‖1 in terms of the 1-norm, which has a difference calculation

along the issue sequence

V (z(s+ 1), δz(s+ 1))− V (z(s), δz(s))

=‖Π(z(s+ 1))
∂f

∂z
(z(s))δz(s)‖1 − ‖Π(z(s))δz(s)‖1

=‖K(z(s+ 1)Π(z(s))δz(z(s))‖1 − ‖Π(z(s))δz(s)‖1

(A.8)

where K(z(s)) represents the matrix with entries

[K]ij(z(s)) =

 zi(s) if j = i

− zi(s)zj(s)1−zi(s) if j 6= i.

42



Prep
rin

t

Due to 0 < zi ≤ 1− r for all i ∈ V and
∑
i zi = 1, one can obtain zi/1− zj < 1

for arbitrary j 6= i. Thus, the 1-norm of each column of the matrix K(z(s))

has a strict upper bound, i.e., zi(s) +
∑n
j=1,j 6=i

zi(s)zj(s)
1−zj(s) < 1, for all i ∈ V,

which guarantees, as well as the compactness of the set An, ‖K(z(s))‖1 < 1−κ

for some 0 < κ < 1 for all z(s) ∈ An. The difference inequality (A.8) can be

reformulated by

V (z(s+ 1), δz(s+ 1))− V (z(s), δz(s))

<(1− κ)‖Π(z(s))δz(s)‖1 − ‖Π(z(s))δz(s)‖1 = −κV (z(s), δz(s)),
(A.9)

which means the differential Lyapunov function V decreases non-trivially along

the trajectories of the prolong system (A.6). As a consequence of Theorem 1,845

the self-appraisal system (10) is incrementally exponentially stable on ∇Sn ⊂ Sn

with respect to the contraction measure V given in (A.7).

Then, we prove the existence and uniqueness of the equilibrium in the in-

terior of the simplex. The construction of the distance dS concerning curve

integration (4) endows Sn with the structure of metric space. Specifically, the

distance function dS induced by F (z, δ(z)) = V (z, δ(z)) in coordinates reads

dS(z1, z2) = inf
Γ(z1,z2)

∫
J

V

(
γ(τ),

∂γ(τ)

∂τ

)
dτ

where Γ(z1, z2) is the collection of piece-wisely differential curves γ : J → ∇S ⊂

S, J := {τ ∈ R|0 ≤ τ ≤ 1}, connecting z1 to z2, namely, γ(0) = z1 and γ(1) =

z2. For any initial conditions z1 and z2, and any given converging sequence

{χ1, . . . , χk, . . .} ∈ R>0 with limk→∞ χk = 0, one can develop a sequence of

continuously differential curves γk : Jk → Sn s.t.

lim
k→∞

∫
Jk

V
(
γk(τ),

∂γk(τ)

∂τ

)
dτ ≤ lim

k→∞
(1 + χk)dS(z1, z2) = dS(z1, z2), (A.10)

where Jk follows a reparameterization of γ : J → ∇S. From (A.9), one can

get V (z(s), δz(s)) ≤ (1 − κ)sV (z(0), δz(0)), for all s ≥ 0, which together

with (A.10) implies that in the limit of k → ∞, for arbitrary initial conditions

z1, z2 ∈ ∇Sn,

dS(φ(s; 0, z1),φ(s; 0, z2)) ≤
∫
Jk

V (γk(τ),
∂γk(τ)

∂τ
)dτ ≤ [(1− κ)]sdS(z1, z2).
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Since the Lipschitz constant (1 − κ)s is strictly smaller than 1, the map f :

Sn → Sn is a contraction mapping on Sn. Thereby, the employment of Banach

fixed-point theorem [44] to the complete metric space (∇Sn, dS) suffices to prove850

the existence and uniqueness of a fixed point z∗ ∈ ∇Sn such that z∗ = f(z∗).

Since the previous examination has addressed that there is no other fixed-point

on the boundary of the simplex, this non-vertex equilibrium z∗ only appears in

the interior z∗ ∈ int(Sn). The proof of statement (i) is achieved.

Hence, one can draw the conclusion that the trajectory of the solutions to855

z(s + 1) = f(z(s)) converge exponentially to a unique equilibrium point z∗ ∈

int(Sn). As a by-product of the convergence of self-weights, the social power

indicators p(s) converges exponentially to a unique fixed point p∗ ∈ int(Cn) as

the issue sequence progresses. The statement (ii) is finished.

The stability of the fixed point in the interior of simplex has been addressed860

in the above statement. That is, the fixed point z∗ ∈ int(Sn) is an exponentially

stable equilibrium point for the self-appraisal dynamics. It remains to elucidate

that the vertices ei (i ∈ {1, . . . , n}) are unstable fixed point. The Jacobian

matrix evaluated at the vertex of simplex can be found in the proof of Propo-

sition 1. Without loss of generality, for any i ∈ V, the virtual system with the865

Jacobian (A.3) at z = ei characterizes the linearization of (12) about the vertex

z = ei. In particular, this Jacobian has a single eigenvalue at (1 − |qi|)/|qi|

and all other eigenvalues are zero. From Lemma 3, the entry qi of the influence

matrix satisfies |qi| < 1/2 if the graph G(Q) has no star topology, thus imply-

ing (1 − |qi|)/|qi| > 1. Hence, the vertices of simplex are unstable equilibrium870

points for the self-appraisal dynamics Proposition 1 according to the adoption

of Lyapunov’s indirect method [44] to a discrete-time setting, thus claiming the

statement (iii). The balancedness of G(Q) implies q = ρ/n and the remaining

proof of the statement (iv) is simply the special case of the statement (ii).

Appendix A.7. Proof of Theorem 3875

It is straightforward to conduct the convergence analysis following from the

proofs of Theorem 2. In particular, one can treat the self-appraisal dynamics
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with vector field (13) as a switching system and then employ the function (A.7)

as a common (differential) Lyapunov function in the studying of stability. The

contraction region here is modified by An = {z ∈ Sn|0 ≤ zi ≤ 1 − r, ∀i ∈ V},880

where r ≤ infi∈V,s∈I
1−2ρi(s)qi(s)
1−ρi(s)qi(s) . The rest of proof can be induced issue-wise

from the proof of Theorem 2 and is omitted in order to save triviality. Since An

is convex and compact, by incremental exponential stability, the solution z(s)

starting from z(0) ∈ ∇Sn exponentially approaches to a limiting trajectory

z∗(s) ∈ int(Sn) being independent of its initial conditions.885

Finally, the limit set of z(s) is a trajectory in the interior of the simplex and

the social power p(s) converges either to a limiting trajectory |z∗(s)| ∈ int(Cn).

The proof is completed.

Appendix A.8. Proof of Theorem 4

For a given issue s ∈ I and any z(s) ∈ ∇Sn ∪ {0}, the graph G(P (s))890

is aperiodic, SC and structurally unbalanced according to the definition (8)

since SC graph G(Q) is structurally unbalanced and aperiodic, inducing the

formulation f(z) = 0.

Moreover, if z(s) = ei for some i ∈ V (without loss of generality, let i = n),

then graph G(P (s)) is QSC, as node n is the only root vertex in G(P (s)). Two895

cases are considered. First, if G(P (s)) is SB, it equivalently means that remov-

ing one or multiple incoming edges of node n in G(Q) retrieves the structural

balance. Thus, the vector field in this case has the same form as in the situation

when G(Q) is QSC and SB, i.e., f(ei) = ei. Second, if G(P (s)) is structurally

unbalanced, there exists one, and only one (ISB) component definitely contain-900

ing n in G(P (s)). By contradiction, assume there exists another ISB component

H in G(P (s)). Since node n as a root has a path to contact any nodes belong-

ing to H, so H has at least one inward edge, which contradicts the definition

of in-isolated subgraph. In this situation, P (s) has a dominant eigenvalue 1

associated with a (up to scaling) left eigenvector ei. Thus, we have f(ei) = ei905

for some i ∈ V. Finally, following the fact that f keeps constantly zero in

∇Sn ∪ {0}, one can immediately show lims→∞ z(s) = 0 and lims→∞ p(s) = 0.
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