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Abstract—For the evaluation of autonomous driving systems,
this paper provides a new approach of generating reference
data for multiple extended object tracking. In our approach, we
apply a forward-backward smoother for objects with star-convex
shapes based on the Labeled Multi-Bernoulli (LMB) Random
Finite Set (RFS) and recursive Gaussian processes. We further
propose to combine a robust birth policy with a backward filter
to solve the conflict between robustness and completeness of
tracking. Thereby, cluster candidates are evaluated based on
a quality measure to only initialize objects from more reliable
clusters in the forward pass. Missing states will then be recovered
by the backward filter through post-processing the unassociated
data after the smoothing process. Simulations and real-world
experiments demonstrate superior performance of the proposed
method in both cardinality and individual state estimation
compared to naive LMB filter and smoother for extended objects.

Index Terms—ground-truth generation, track-before-detect,
multi-object tracking, random finite set, extended object mod-
eling, Gaussian process, forward-backward smoothing

I. INTRODUCTION

Aiming to improve both safety and comfort, autonomous
driving systems have gained increasing attention in many rele-
vant research and industry fields. For validation and evaluation
of autonomous driving systems, novel methodologies such as
evaluation without ground-truth [1], [2] and automatic ground-
truth generation [3], [4] have been investigated in the recent
years to cope with the shortage of ground-truth data [5]. In
this paper, a new method is proposed to generate more reliable
reference data that can be used as ground truth: based on
LiDAR data, we perform offline forward-backward Bayesian
tracking for multiple extended objects, which benefits from
simultaneous estimation of kinematics and object contours and
information fusion of past, current, and future sensor data.

The objective of multi-object tracking is to jointly estimate
the amount of existing tracks as well as their individual states
from a sequence of noisy and cluttered recordings. Apart from
temporary occlusion, the substantial difference between multi-
object and single-object tracking is the varying amount of
tracks due to object births and deaths [6], [7]. Algorithms for
multi-object tracking can be classified into three paradigms
according to the applied data association appraoch [8]: Joint
Probabilistic Data Association methods [6], [9] assign weights
to individual observations due to the association probabilities;
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Multiple Hypothesis Tracking methods [10], [11] propagate
association hypotheses in time; and the Random Finite Set
(RES) framework [7] involves modeling the multi-object states
as a whole.

The fundamental methodology of the RFS framework is
to model the collection of individual object states, including
object births, deaths, occlusion and clutter, as finite set-valued
random variables, and cast the data association problem in
the classic Bayesian inference framework using Finite Set
Statistics (FISST) developed in [7]. Tracking via propagat-
ing posterior densities using the RFS framework has gained
popularity in recent years, of which the Probability Hypothesis
Density filter [12], [13], the Multi-Target Multi-Bernoulli filter
[7], [14], the Generalized Labeled Multi-Bernoulli (GLMB)
filter [15] and its first moment approximation LMB filter [16]
have been widely applied [17]-[19]. The formulae of the
corresponding RFES-based smoothers have also been developed
in the literature [20]-[23].

The previously-mentioned approaches model objects as sin-
gle points without extents; however, one is often additionally
interested in estimating the shape of objects. Objects that can
occupy multiple resolution cells of the sensor are denoted
as extended objects, for which trackers have been developed
by integrating extended object models. In some simple cases,
object contours can be modeled as basic shapes like circles
[24], [25] or rectangles [26], [27]. The random matrix model
is frequently applied to estimate elliptical shapes [28]-[30],
while the random hypersurface model proposed in [31] is flexi-
ble to model various kinds of contours such as elliptical or star-
convex [32], [33]. The recursive Gaussian process proposed in
[34] can efficiently propagate shapes approximated by certain
basis vectors [35], [36].

In most object tracking scenarios, measurement extraction
involves some thresholding operation to prevent false tracks,
which could in turn result in loss of information when the
signal-to-noise ratio is low. A higher threshold usually leads
to more robust estimations yet less complete tracks. The term
track-before-detect refers to tracking approaches that process
all sensor data without applying a threshold [37], and is
typically used for object tracking on radar intensity images
[38]. This term can be generalized to describe approaches
based on LiDAR data [39], where the number of measurements



decreases as the object gets further from the sensor.

The contribution of this paper is as follows: first, we
integrate the star-convex shape model into forward-backward
LMB smoothing, enabling offline tracking for multiple ex-
tended objects to improve kinematics and shape estimations;
second, we propose a backward filter process to generate track-
before-detect estimations for objects approaching from remote
positions. By applying robust birth and post-processing the
unassociated data, our proposed method solves the conflict
between robustness of extended object estimation and com-
pleteness of track. We evaluate the performance of the pro-
posed method in both simulations and real-world experiments
to demonstrate its capability of ground-truth generation.

II. PRELIMINARIES

This section provides a brief review of basic theories on
tracking with LMB-RFS and extended object modeling, which
provide the foundation of the method proposed in this paper.

A. Notations

In this paper, scalars are denoted with regular small letters
(e.g., x), vectors with underlined small letters (e.g., x), sets
with regular capital letters (e.g., X,Z), and spaces with
blackboard bold letters (e.g., X,L). Bold face letters (e.g.,
x, X) are used for labeled variables (see section II-B) to
distinguish from unlabeled ones.

The multi-object exponential for a real-valued function /& on
a finite set X is denoted by h* £ [] .y h(z) with R =1.
The inner product is denoted by

(9) 2 [ r@)glade m
The inclusion function is given by
A1, ifXCY,
Iy (X) = { 0, otherwise. 2)

If X = {z}, the notation 1y (x) is used for brevity.

B. Labeled Multi-Bernoulli RFS

A labeled RFS X defined on the state space X and discrete
label space L has only distinct labels within each realization,
ie., let L(X) = {¢: (z,¢) € X} denote the set of labels in
X, the distinct label indicator
L LX) = | X|
A(X) = L. ’ 3

=0 e 2 x ©
always satisfies A(X) = 1.
A labeled multi-Bernoulli (LMB) RFS is a multi-Bernoulli

RFS with distinct labels attached to non-empty Bernoulli
components, defined by the parameter set

r={(r.p")} _ . )

where (*) is the existence probability and p(*) the probability
density of the component with label ¢ € L. The density of an
LMB REFS is then given by [15]

m(X) = A(X)w(L(X))p, (5)

where

| 0
w(L)=1] (1 - T(z)) 11 11]L(_£)T(z) ) (6)

p(z,0) = p(2). (7
A generalized labeled multi-Bernoulli (GLMB) REFS is a
labeled RFS distributed according to [15]:

m(X) = AX) Y wO(£(X)) [p9]
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where Z is a discrete index set. The weights w(¢) (L) and the
spatial distributions p(¢) satisfy the normalization conditions
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It can be observed from (5) and (8) that an LMB is a special
case of a GLMB (with one single component in =).

C. Extended Object Modeling

1) Star-Convex: A shape S C R? is a star-convex, if there
exists one reference point x, such that for every z € S, the
line segment between z, and x is fully contained in S [32].
With known reference point, the contour of a star-convex can
be fully described by a radial function p = f(¢}) in polar
coordinates that maps angles to radii, i.e.,

S={z.+p0)f(0), 9 (-}, (10)

where S is the contour of S and p(d) = [cos() sin(d)]" the
orientation vector for angle 1.
2) Gaussian Process: A Gaussian process (GP) [40]

f(u) ~ GP (:u‘(u)vk(uv u/)) (11)

is a stochastic process uniquely defined by its mean u(u)
and covariance (kernel) function k (u,u’) of a multivariate
Gaussian distribution

[ (ur) e (ur)
: ~ N (u, K), where pn = : ,
Unp Un,
f () n) |
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and K =
k(un,U1) k(unaun)

Given measurements z = [z; --- zxy|' and their corre-
sponding input uw = [u; --- uy]’, a GP can be used to
learn function values f = [f1 -+ fn,]' at certain points
uwf = [uf - u‘]’i,f]T. Assuming the mean function p = 0,

the joint distribution of z and [ is given by

[;]NN@’[;((%% é(((;‘f% ]) (13)

which yields

p(flz) =N (mf, PY), (14)
with
m! = K (v, u) K (u,v)z,
Pl =K (o, v 4>



III. ROBUST LMB SMOOTHER FOR EXTENDED OBJECTS
A. Extended State Vector

Typically, while the orientation of road objects (vehicles,
cyclists, pedestrians) can alter with time, the velocity and
acceleration exist almost only in the direction of their ori-
entation. To better model the motion of typical road objects,
the Constant Turn Rate and Acceleration (CTRA) model with
white noise [41] is used in this paper to describe the kinematics
of objects, i.e., individual kinematic state can be defined by
position, velocity, orientation, turn rate and acceleration as:

= y v ¢ w d, (16)
whose transition follows from
&, = [vcosy wsing a w 0 0T 4+w (17)

with process noise w ~ A(0, diag(0,0,0,0,02,02)).

By modeling an object contour as star-convex, it is fully
defined by its radial function that can be approximated by
function values p* = [p5,-- -, pfvS]T at a certain set of angles
97 =[95,--- ,9%.]". In this way, contours can be efficiently
inferred over time by recursive Gaussian processes [34], [35].

The exponential sine square kernel with period 27 [42]

’
2sin2(7‘ﬂ;19 ‘)

k(9,9") =ofe” =z (18)

is applied for the Gaussian process to guarantee smoothness
and closure of contour estimations while assuming no other
prior knowledge about the shape to maximize the flexibility.

Combined together, an individual extended object can be

fully described by its extended state vector z = [z, (p*)] T

B. Forward Pass

The forward computation of LMB smoother consists of
two steps: the prediction step incorporates newborn objects
and surviving objects from the last time step; the update step
adjusts the predictions with the current measurement set.

1) Prediction: Suppose the posterior multi-object density
on state space X and label space L is given by the pa-
rameter set 7 = {(r"),p")}, o, from the last time step,

and the multi-object birth model on X x B is given by

ro = { (1.l

B
is also an LMB RFS 0% the state space X and the label space
L, =L UDB defined by the parameter set [16]

. The predicted multi-object density
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where
s = us(Or,
p-&-,S(&» 5) _ <pS,k|k—1('vé)f(ﬂ'vf)»p(':[»7 (20)

ns ()
ns(0) = (pspjp—1(-0),p(-, £)) .
Ps,k|k—1(x, £) is the state-dependent survival probability from

k—1to k, ng(¢) the survival probability of a certain track ¢,
and f(x|z’,¢) the single track transition density.
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Fig. 1: Factors influencing the suitability of a cluster regarding
birthing: measurement density (calculated by cardinality and
azimuth angle range ), mean distance s to the sensor, and
shape ratio (represented by PCA variances 02, 03).

In the prediction step, a dynamic birth model 7p is realized
by a consecutive process resembling the adaptive birth density
in [16], i.e., clusters not assigned to any track are likely to
correspond to new objects. Registration is applied between
previously unassigned clusters from two different time steps,
and new objects are initialized by the pairs yielding high shape
similarity and valid kinematics.

Unlike tracking point objects, tracking extended objects
requires a cluster of measurements with enough information
to additionally yield robust initial contour estimation. This
requirement is typically not fulfilled in sensor data for objects
approaching from distant positions, leading to inaccurate ini-
tialization and negative influence on the subsequent inference
processes. Thus, in this paper, we introduce a measure for the
suitability of a cluster regarding birthing by three factors: its
cardinality, its mean distance s to the sensor, and its shape
ratio V' = 22, where 0% > o3 are the two variances from the
principle component analysis (PCA) of cluster points. A robust
birth policy then adjusts the existence probability based on the
horizontal angular resolution D of the sensor and a constant
parameter o > 0, i.e.,

) D Uy (Z
O <u9w<z>>21,)

where U(Z) denotes a certain partition of the measurement
set Z into clusters, § : L — {0,1,--- ,|U(Z)|} the track-to-
cluster association map on label space L, and ¢ (UQ(g)(Z))
the azimuth angle range of the cluster from the perspective
of the sensor. t = e~**Uo©)(2)) controls the weights of both
terms based on the cluster’s mean distance to the sensor, of
which the first term rewards clusters with a high measurement
density and the second term the clusters with measurements
from different sides of an object. As we prefer possibly
dense clusters with measurements over more dimensions of
the object contour, the observation of a single side can still be
sufficient if the cluster is close to the sensor (the ego-vehicle),
e.g., to account for car-following maneuvers.

Higher quality of initialization can be achieved in such
manner at the cost of losing some early states due to insignifi-
cant existence probability of certain candidates, which will be
compensated later in the proposed backward filtering process.



2) Extended Object Likelihood: The LMB filter for ex-
tended objects differs from the classic one mainly in the
partition-based extended object likelihood in the update step.
Let pp(z, £) be the state-dependent detection probability, « the
detection-independent clutter density, and go(Z) the clutter
distribution, the extended object likelihood is given by [30]

| X |+1
X
9(Z1X)=9c(2) > Y. [tuzn0]", @2
i=1 U(Z)ePi(2)
0cOU(2))
where
po(z,0)§(Uoce) (Z)|z,4)
¢u(z)($7f;9)={ K)o 2 , 00 >0, (23)
1 _pD(£7 6)1 9(4) =0.

P; is the set of partitions dividing the measurement set Z into
exact i clusters, O(U) the space of possible track-to-cluster
association maps under partition ¢/, and g (Ug(g)(Z )|z, €) the
likelihood for cluster Uy(¢)(Z) given the single state (z, £).

3) Update: In contrast to GLMB, LMB is not closed under
the update operation [15]. Thus, the predicted LMB from (19)
is first interpreted as a GLMB with one single component to
enable exact measurement updates. To constrain the exponen-
tially increasing number of components, the posterior GLMB
density is then approximated by an LMB density that matches
its first moment, given by [30]

|L|+1
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Computing the posterior density in (24) requires the set of
all track-to-cluster associations, which is in general intractable
due to its combinatorial growth in cardinality. In this paper,
the distance partitioning algorithm [43] is used to generate
only the most likely partitions, which is then pruned by
thresholding the likelihood based on the predicted multi-
object states (similar to prediction partitioning in [29]). A
ranked assignment algorithm is also utilized to produce the
most substantial track-to-cluster associations based on these
partitions [30].

C. Backward Pass

The Bernoulli RFS is closed under the smoothing operation
[23]. Moreover, let Ty = {(r,(j)T,p%)T)}ZGL denote the

smoothed LMB density from time 7" to & where T" > k and
assume no re-entry of track after death, the smoothed density

at k—1 is also an LMB RFS j,_ = {(r,g_)llT,pngT)}
Lell

given by
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As Gaussian distributions are assumed for object states,
Gaussian mixture densities may be produced in the GLMB-
to-LMB approximation from multiple parallel hypotheses in
the forward update step [16]. In many real-world applications,
however, hypotheses containing wrong cluster-to-object asso-
ciations (if any, after prediction pruning discussed in section
II-B3) will hardly survive due to insignificant likelihood that
quickly approaches zero as the deviation from the predicted
position increases. This is caused by the high frame rate of
LiDAR and the smooth radial function of contour estimation.
The mixture reduction algorithm based on Kullback-Leibler
divergence [44] is used to guarantee that only the most sig-
nificant component remains, and thus enables state smoothing
in (26) with an extended Rauch-Tung-Striebel smoother [45].
Alternatively, a particle filter can be used as in [23], which
requires much more computation yet is assumed to produce
limited performance improvement in this case.

IV. TRACK-BEFORE-DETECT GENERATION

As the distance to the sensor grows larger, the number
of measurements from the same object usually decreases,
and states may be missing in the early time steps of the
track for approaching objects due to insignificant existence
probabilities of birth candidates from sparser clusters. We
propose a backward LMB filter in this paper to generate track-
before-detect estimations by further extracting states from
unassociated data after forward-backward smoothing, as in the
left part of Fig. 2. Note that instead of its original intention
for tracking on radar intensity images, we use the term frack-
before-detect to denote the utilization of all recorded LiDAR
data in the proposed offline tracking scheme to also produce
state estimations before the first detection of an object.
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Fig. 2: The proposed method to generate track-before-detect estimations with a backward filter. kg denotes the original birth
time of a certain track in the forward pass, and the dashed arrow denotes the initial estimate of kinematics through cluster

registration (as in section III-B1). The possibly missing states at kg — 1, kg —2,---

After the smoothing operation, clusters associated to any
extracted state are removed from the original dataset Z =
{Zk}k=1,.. 7 to form a new one composed of measurements
with no specific association, i.e., for each time step k with
partition U, and association map 6, in estimation extraction,

Z]/C =7 \ {ng(g)(zk) : 9k<£) > O}ZEIL' (28)

Such dataset Z' = {Z} }j=1,... r corresponds to measure-
ments from untracked states or clutter. A modified LMB filter
then starts from the last time step 7" and runs on Z’ backward
in time to search for missing states in each track. Instead of
performing adaptive birth as in the forward pass (see section
II-B1), the state of track ¢ is initialized automatically at its
original birth time kp(¢) in the forward pass with identical
contour and reversed kinematics as from smoothing, i.e.,

~(0) _ (.0 ~(£)
g = (TkB(é)\T’pkB(é)lT) ) (29)

where 5y~ N (AR B ). o
and 222 T denote the smoothed mean and covariance
matrix of track ¢ at kp(¢), and the matrix Ap =
diag(1,1,—1,1,—1,—1, In,) reverses the direction of veloc-
ity, turn rate and acceleration of the extended state vector. The
state and covariance matrix of each track are then propagated
backward by the filter in the same two-step manner as de-
scribed in section III-B until death, which corresponds (or at
least closer) to its true birth in the original dataset.

V. PERFORMANCE EVALUATION

In this section, the evaluation of the proposed method is
performed in two simulations and one real-world experiment
to verify its effectiveness in different aspects. In the first simu-
lation, the proposed method is applied to a single maneuvering
object to investigate its capability in simultaneously estimating
kinematics and contour. In the second simulation, multiple ob-
jects perform typical traffic behaviors like turning, following,
paralleling, etc. to further illustrate the method’s performance
in complicated situations and track-before-detect generation.
In the real-world scenario, a vehicle track is extracted from
LiDAR data using the proposed method and compared to the

will be recovered by the backward filter.

corresponding Differential Global Positioning System (DGPS)
recordings to demonstrate the practical capability.

In the simulations, objects are abstracted as rectangles of
various geometries, and data points are generated as if coming
from a one-layer LiDAR at (0,0) with 360° field of view,
horizontal angular resolution D = 6deg™" and sampling
interval AT = 0.1s. The surveillance region is the square
[—80, 80] x [—80, 80] (units in meter), corresponding to the typ-
ical sensing range of a LiDAR, and the number of uniformly
distributed clutter follows Poisson distribution with A = 15.
Process noises for acceleration and turn rate are assumed to
be zero-mean Gaussian with 0, = 33 AT, 0, = 20%AT,
which resemble the normal kinematics of road vehicles. Sim-
ilarly, ops = 5cm is set as measurement noise for each single
LiDAR point. The survival and detection probabilities are set
as ps = 0.99, pp = 0.98 for both forward and backward
passes at all time steps.

A. Single Object Simulation

In the single object scenario, one simulated object ap-
proaches the sensor along straight trajectory, performs a 90°
left turn, and leaves the scene straightly. The estimated po-
sitions and velocities are compared to the true values. The
Intersection-over-Union (IoU) ratio [26] is used as metric to
evaluate contour estimation, i.e., let A and Ag be the area of
estimated and true contours, respectively,

AU Ag G0
where IoU = 1 denotes perfectly estimated contour.

The results for this scenario are depicted in Fig. 3. As can
be noticed from Fig. 3c, the contour estimation in the forward
pass has been largely improved after time step 80 due to the
arrival of new information from the other side of the contour
that just became visible to the sensor. By comparing Fig. 3a
and 3c, fluctuations of IoU during forward pass can be partly
explained as side effect of estimation errors in kinematics, and
are mostly reduced in the final results.

The improved contour is propagated backward in the back-
ward pass and thus results in better estimation in the first 80
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Fig. 3: Simulation results for single object scenario before and after smoothing

steps. As a consequence, the errors in position and velocity
have been reduced as illustrated in Fig. 3a and 3b. It can also
be noticed that the 1-step lag at the beginning of the forward
pass caused by the adaptive birth has been corrected.

To test the flexibility of estimating free forms, we assume no
prior knowledge of the object contour except for smoothness
and closure, thus no advanced kernel function (e.g., symmetric,
conservative kernels or explicit basis function [35]) is utilized
to constrain the contour estimation with the Gaussian pro-
cess, resulting in slightly irregular estimations as in Fig. 3d.
Nonetheless, for specific applications where assumptions can
be made for the geometry, the symmetry or the completeness
of the contour, certain kernel functions can notably enhance
the performance of the contour estimation [35], [36].

B. Multi-object Simulation

In the multi-object scenario, six objects with various geome-
tries and birth/death intervals are present to simulate possible
traffic behaviors at an intersection. The true and estimated
trajectories are depicted in Fig. 4a. Using the IoU ratio and
the Optimal SubPattern Assignment (OSPA) metric [46], the
proposed track-before-detect method (Smoother with Robust
Birth and Backward Filter, S-RB-BF) is compared against
naive LMB smoother for extended objects and Smoother with
Robust Birth (S-RB) in Table I and Fig. 4.

In the forward pass, the original birth times for objects are
denoted as triangles, and some missing states can be observed
as objects enter the scene (especially for the objects entering

TABLE I: Average IoU ratios over time

Objects | Smoother | S-RB | S-RB-BF

1 0.8387 0.8387 0.8445
2 0.8863 0.8863 0.8917
3 0.4837 0.8833 0.8939
4 0.8885 0.8885 0.8946
5 0.6744 0.6512 0.8675
6 0.7333 0.6424 0.7490

from bottom and right in Fig. 4a). After the backward pass,
the proposed backward filter recovers these missing states and
finally generates estimations which accurately follow the true
tracks with a low cardinality error.

In Table I, the IoU ratios based on different methods are
averaged over time for each object. Comparing the results of
the naive smoother and S-RB, it can be seen that robust birth
policy yields much better estimations for the object 3, yet
worse results due to an initial cardinality error for objects 5
and 6 (entering from bottom and right in Fig. 4a). S-RB-BF
then recovers almost all missing states and produces overall
better results for all objects (comparing columns 2 and 4).

Comparing the OSPA errors of naive LMB smoother and
S-RB in Fig. 4b, it can be observed that although the initial
OSPA errors are low for the smoother without robust birth,
some tracks are quickly lost due to a poor contour initialization
(cf. Table I). In contrast, missing states in the early steps of
S-RB cause high OSPA errors, which quickly decrease after
all objects are tracked. The OSPA errors in the later steps
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Fig. 5: Trajectory and contour estimations generated by the proposed method (solid lines), and DGPS-recorded trajectory with
true contours (dashed lines). The corresponding sensor of the standing ego-vehicle is located at (0,0).

are identical between S-RB and S-RB-BF, while S-RB-BF
effectively recovers most missing states in the early steps and
thus largely reduced the OSPA errors in this period.

C. Real-world Experiment

In this scenario, the proposed method is applied to a dataset
collected by a Hesai Pandar LiDAR with 40 vertical channels,
a horizontal angular resolution of 0.2°, and the sampling
interval AT = 0.1s. All points are projected onto the X-
Y plane and possible contour points (points visible to the
sensor on the 2D plane) are extracted as described in [47].
For the validation, the motion data of the object vehicle is
acquired using a RTK-supported DGPS system from OxTS.
As the object to be tracked, we consider a BMW 740Li vehicle
with a given contour shape to evaluate the estimations. As can
be seen in Fig. 5, the generated trajectory is tightly bounded
around the DGPS positions, and the contour estimation also
yields a low deviation from the true contour, demonstrating
the feasibility of the proposed method in practical cases.

VI. CONCLUSIONS

In this paper, the estimation of star-convex shapes using
Gaussian processes is integrated in the LMB smoother to
enable a simultaneous smoothing of the kinematics and the
contour shapes for multiple extended objects. Robust birth
policy is applied in the forward pass to guarantee enough
information for the initialization of newborn objects, and
thus improves both kinematics and contour estimations in the
subsequent time steps. A novel approach is also proposed
for generating track-before-detect estimations, which post-
processes the unassociated data in a backward pass with
a modified LMB filter to recover possibly missing states.
Simulations and experiments have shown that our proposed
method can yield more accurate estimations in both cardinality
and individual states compared to the naive LMB smoother for
extended object.

Our proposed approach allows developers to obtain ref-
erence data at low expense and high accuracy to fulfill the
increasing demand in validating autonomous driving systems.



In the future, we would extend the contour model to 3D and
investigate better metrics for evaluating cluster information to
further improve robustness on processing real-world data.
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