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Abstract—This paper proposes a scalable approach for syn-
thetic image generation of industrial objects leveraging Blender
for image rendering. In addition to common components in
synthetic image generation research, three novel features are
presented: First, we model relations between target objects and
randomly apply those during scene generation (Object Relation
Modelling (ORM)). Second, we extend the idea of distractors and
create Object-alike Distractors (OAD), resembling the textural
appearance (i.e. material and size) of target objects. And third, we
propose a Mixed-lighting Illumination (MLI), combining global
and local light sources to automatically create a diverse illumina-
tion of the scene. In addition to the image generation approach
we create an industry-centered dataset for evaluation purposes.
Experiments show, that our approach enables fully synthetic
training of object detectors for industrial use-cases. Moreover,
an ablation study provides evidence on the performance boost in
object detection when using our novel features.

Keywords— Object detection, Synthetic data, Domain random-
ization

I. INTRODUCTION

In recent years, machine learning methods have gained in-

creasing attention. Particularly, supervised learning using deep

neural networks solves previously insoluble problems. These

developments are especially apparent in the field of computer

vision: convolutional neural networks (CNNs) enable object

detection [1]–[4] and segmentation [5], [6], as well as pose

[7], [8] and depth estimation [9], [10]. A decisive factor for

the success of these networks is the existence of large amounts

of annotated image data.

While the global research community has already published

many diverse datasets, there are still use cases for which

no or insufficient data is available. In the public sector in

particular, there are large datasets available that deal with

autonomous driving [11], [12], common objects [13], [14],

or famous landmarks [15], to only name a few. On the

other hand, datasets within the industrial domain are rarely

found, as few images are published. Accordingly, for many

industrial applications, realistic datasets must first be collected

and annotated before applying them to specific use-cases.

Collecting and annotating a dataset is a very money and time

consuming endeavour [16].

This work was supported by the BMW AG (BMW Group).

Fig. 1. Prediction results of a fully-synthetic trained object detector. The
detection model is trained on synthetic image data only using the proposed
image generation approach. To meet industrial requirements, we implement
novel features to represent specific object relations, to suppress false detections
and to model complex industrial lighting conditions while maintaining a
maximum level of scalability.

The time required for annotating images depends on the

specific application. For an image-level classification task, for

example, annotation can be done rather quickly, as it means

that each image to be used for training needs to be assigned

to a specific class. The more complex the task, the greater

the annotation effort; for example, within object detection,

in addition to the classification of an object, its position in

the image plays a decisive role. Depending on the desired

level of detail, the localization can be done using bounding

boxes (low level of detail resulting in low annotation effort)

or segmentation masks (high level of detail resulting in high

annotation effort).

To solve this challenge in a long-lasting manner, different

methods were proposed to synthetically create image data in

order to train deep neural networks. In contrast to generating

training datasets using natural images, artificial images can

be created automatically with very precise annotations (i.e.

bounding box, per-pixel depth, object pose, object segmen-

tation, etc.) at negligible cost. However, the existing domain



gap between synthetic and natural images makes the neural

network trained on synthetic images perform poorly on natural

images [17]. Various methods have been introduced in an

attempt to close this gap. Yet, there is no universal approach

known to resolve this issue. Therefore, within the scope of

this paper we have investigated synthetic image generation

for industrial applications.

In particular we present a scalable, Blender-based image

generation approach, that enables fully-synthetic training of

object detectors used in industrial applications (see Fig. I).

The scientific contributions of this paper can be summarized

as follows:

1) Scalable synthetic image generation approach. We

present a scalable image generation approach adopting

well-working methods and augmenting them with novel

features such as Object-alike Distractors (OADs), Ob-

ject Relation Modelling (ORM) and a Mixed-lighting

Illumination (MLI).

2) Industry-centered evaluation dataset. We present a

natural image dataset enabling the evaluation of syn-

thetic image generation approaches for industrial ob-

jects. Our dataset contains realistic images covering a

single industrial object (small load carrier) in a close-to-

industry environment facing multiple industry-relevant

challenges (e.g. different lighting conditions, multiple

objects, object relations).

3) Extensive ablation study. We evaluate our approach

on the previously mentioned dataset providing realistic

performance feedback. Furthermore, we provide insights

into the different aspects of our approach by ablating

features and showcasing their performance boost.

II. RELATED WORK

Generating artificial training data is gaining popularity in

computer vision research. Reference [18] created training

images by cutting images of target objects from other datasets

and pasting them on background images. Although their

method ensures patch-level realism, it requires plenty of real

images with considerable human efforts in segmenting out

objects. Others are using computer graphics render engines to

generate synthetic training images, relying on an elaborately,

manually-created and close-to-real-world scene [19], [20].

Even though synthetically generated images can appear photo-

real to us humans, deep neural networks still show problems

when being transferred from the simulation to the real world.

The domain gap between the simulated training images and

the real world experiments might be due to the fact that most

render engines are built to leverage the human perception

system in order to efficiently create images that appear to be

photo-real [21].

Domain adaptation (DA). One way to overcome this gap

is to adapt one area to another. The basic idea of DA is to

transfer a model trained in the source domain to the target

domain [22]. Among all different DA methods, semi-synthetic

training is a simple and effective method [23]. Training the

neural network on a large synthetic dataset first and fine-

tuning it on limited data from the target domain afterwards

boosts the performance of neural networks [16], [24], [25].

Furthermore, generative adversarial networks can be applied

to achieve domain adaptation [26]. Differently, [27] focused on

image translation of synthetic images. They created a generator

to translate both synthetic and real images to canonical images.

The application only needed to handle canonical images and

never got in contact with ’raw’ synthetic images. Although

DA can improve neural network performance, the deficiencies

are apparent. Firstly, it is inevitable to use data from the

target domain. However, one of the main reasons to generate

synthetic training data in the first place is to avoid the usage

(and need) of real training data. Secondly, domain adaptation

may improve the performance of the neural network on images

from the target domain. However, when it is tested on other

domains (even the source domain), its performance degrades

significantly [25].

Domain randomization (DR). A second approach towards

overcoming the sim2real gap is by applying DR. The gen-

eral idea behind DR is that by randomizing parameters in

the source domain (i.e. simulation), the target domain (i.e.

real world) appears to the neural network as just another

variation of the source domain [21], [28], [29]. In practice,

different parameters of objects, background, camera and lights

are randomized in the synthetic image generation process

[24], [30]. Besides, [29], [31] imported random distractors to

create random occlusion and prevent the neural network from

detecting distractors in the real world. Reference [20] proposed

structured domain randomization which takes the context into

consideration resulting in high recall performance. Moving

from color images to depth images, [28] proposes synthetic

depth data randomization to generate depth images for train-

ing. Although their neural network trained only on synthetic

depth images outperforms the detector trained on real data,

the method is limited to depth images. Instead of generating

images using modeled scenes or images as background, [21]

randomly fills the background with plenty of objects in order

to prevent the neural network from learning a certain pattern

in the background. Their experiments demonstrate the effect

of a randomized background generation.

Guided domain randomization (GDR). As an improve-

ment to general DR, many guided DR methods were proposed.

Reference [32] developed active domain randomization, which

searches for the most informative environment variations by

measuring the discrepancies between the randomized and ref-

erence environments. Environments with high informativeness

can then increase the difficulties of training in order to im-

prove the performance. Although active domain randomization

achieves better results compared to general DR methods, the

correlation between discrepancy of environments and training

difficulty is still unknown. Similarly, [33] proposed the auto-

matic domain randomization approach to increase the difficulty

during the training process. This is achieved by automatically

and gradually expanding the distribution over environments,

helping to improve prediction accuracy but also significantly



increasing the process duration.

In summary, different approaches for generating synthetic

data are known. Each approach proposes novel features, which

in turn are being utilized in the next iteration of synthetic

image generation approaches. Since the industrial application

of synthetic image data has hardly been researched so far,

this paper presents our approach towards synthetic image

generation for industrial applications.

III. SYNTHETIC IMAGE GENERATION OF INDUSTRIAL

OBJECTS

We propose a scalable image generation approach for indus-

trial objects using computer graphics. Specifically, we render

images from automatically generated 3d scenes. Hereby, we

adopt well-working methods and augment them with novel

features such as Object-alike Distractors (OADs), Object Re-

lation Modelling (ORM) and a Mixed-lighting Illumination

(MLI). Rendering is based on the open-source 3D creation

suite Blender. Our image generation approach is visualized in

Fig. 2 and can be divided into three process steps, namely

background creation, foreground creation and rendering. All

process steps are subject to domain randomization in order

to reduce the resulting domain gap. Building on top of

3D modeled objects, we are able to automatically generate

annotated training data for different computer vision tasks

with varying complexity. The following section describes each

process step in detail.

Fig. 2. Synthetic image generation approach for industrial objects. Using 3D
modeled objects, we automatically generate a 3D scene and render images
from it. Wherever possible we are using domain randomization to decrease
the domain gap.

A. Background Generation

First, the background of the 3D scene is created automat-

ically. We mostly adopt the background generation process

described in [21]. In a nutshell, [21] is forming the background

by using a multitude of 3D objects and randomly positioning

them in the background plane.

As we found that using many 3D objects for background

generation increases the computational effort and reducing the

amount of 3D objects resulted in spots without any object, we

additionally load and place a random image in the background

plane. The voids among these objects are then filled by

the loaded image. This simple measure provides a balance

between the level of clutter and the computational cost for

image generation.

B. Foreground Generation

Second, we automatically create the foreground consisting

of randomized target object(s) and distractor(s) within the

cameras view space. Fig. 3 visualizes an automatically gener-

ated, pyramid-like 3D scene in Blender.

Fig. 3. Automatically generated 3D scene. Our approach creates the back-
ground using randomly placed background objects and a background plane,
places target objects and distractors within the pyramid-like camera view space
and creates the Mixed-lighting Illumination. Next, the 3D scene is transformed
to the image space using one of Blenders’ render engines.

Similar to known approaches, we randomize the number,

type, location, rotation and material of target objects. In ad-

dition to that, we propose Object Relation Modelling (ORM),

a novel feature applying predefined relations between target

objects when placing them in 3D space. In order to do so,

relation files are created manually by recording the relative

translation and rotation of one target object to another before

the image generation. This spatial relation can later be ran-

domly applied during foreground generation. If an intersection

is detected when applying a relation, the related object will be

deleted. Since ORM is based on coordinate transformation,

it is applicable to describe any relation amongst objects.

ORM intentionally increases the probability of certain spatial

relations which could hardly be achieved by chance within the

synthetic dataset. As expected, our experiments show that this

increases detection performance when facing those relations

in natural images.

In the fashion of [29] and [31], we place distractors in our

scenes. Distractors are random geometries in the forground

creating occlusions and ’distracting’ the detector to be trained.

The distractors are automatically created and placed in the

scene with random geometry, position, orientation, scale and

material. Additionally, we extend the idea of general distrac-

tors and implement so called Object-alike Distractors (OADs).



Again, OADs are randomly generated basic geometries, but in

contrast to standard distractors they share the same size and

material as the target object, causing the detector to focus on

structural features of the target objects geometry rather than

much simpler textural cues of a certain material.

C. Lighting and Camera

In addition to the previously mentioned steps, lighting

as well as camera settings are subject to DR. The lighting

condition within training data significantly affects the per-

formance of neural networks [21], [31], [34]. In contrast to

other approaches that create a single domain-randomized light

source we propose a Mixed-lighting Illumination (MLI) that

divides illumination into a global and a local component.

Global lighting illuminates the entire scene whereas local

lighting creates specific highlights on random positions within

the cameras view space.

Global illumination consists of on the one hand passive

illumination from the set environment texture and on the other

hand a global light source that illuminates the entire scene.

This global light source is placed randomly on a projected

hemisphere. In contrast, local light sources are only placed

within the pyramid-like camera view space. The environment

texture as well as the global and local light source properties

(i.e. location, color, energy, size) are all subject to domain

randomization. Fig 4 showcases the variance in illumination;

(a) shows a brightly illuminated scene with a soft greenish-

turquoise hue, whereas (b) is a much darker lit scene, that puts

the focus on the yellow sphere-shaped geometry due to local

spotlights automatically generated by MLI.

(a) (b)

Fig. 4. Mixed-lighting illumination. Two automatically generated sample
images using the mixed-lighting illumination approach. Image (a) consists
of a bright scene with greenish-turquise hue, whereas (b) is a rather dark
scene with a high contrast created due to the local light sources.

Also the cameras properties are subject to domain random-

ization. In contrast to other approaches, we only randomize

the camera z-position to vary the distance from camera to

object. Furthermore, we randomize the focus distance, f-stop

and aperture blades in order to generate images with random

out-of-focus blur.

D. Annotations

One of the main advantages of synthetic image generation

is that creating annotations can be performed automatically.

In addition to rendering images, we also generate a variety

of annotations useful for different computer vision tasks. Our

system currently generates ground truth data in the form of

bounding boxes, segmentation masks as well as depth maps

(as illustrated in Fig. 5).

(a) (b)

(c) (d)

Fig. 5. Ground-truth generation. For each rendered image (a), our system
automatically generates bounding boxes (b), panoptic segmentation masks (c)
as well as depth maps (d).

IV. EXPERIMENTS

We now present experiments of an object detection model

trained only on synthetically generated images using the pro-

posed approach. Furthermore, an ablation study was conducted

and provides detailed insights into the design principles for

reducing the domain gap featured in this novel approach.

In order to do so, we chose a single object class, namely

small load carriers (SLCs), because they are widely used

in industry, they are standardised and are also subject to

automated material flow handling by robots in the future. We

believe that synthetic image generation techniques for use in

logistics could allow such applications. In sum, SLCs are used

for transporting materials and are standardized by the German

Association of the Automotive Industry (VDA). Furthermore

SLCs are available in different sizes as illustrated in Fig. 6

which can be consolidated and stacked fitting onto a pallet

(1.200 mm x 800 mm). In the context of our experiments, we

consider load carrier types VDA RL-KLT 3147, 4147, 4280,

6147 and 6280.

A. Industry-centered Evaluation Dataset

In order to investigate the different characteristics of our

method in a systematic and controlled way an evaluation

dataset with natural images was created (see Fig. 7). The

evaluation dataset was recorded at the chair’s research fa-

cility, resembling a realistic industrial environment. Hereby

special emphasis was put on various aspects of capturing

known influences in the industrial environment. The evaluation

dataset contains images under different lighting conditions,

with varying number of objects, different object sizes, dif-

ferent distances to the target objects as well as logistically

specific states of the SLCs such as loaded as well as stacked

load carriers. In total, the dataset consists of 1460 manually

annotated images, which can be divided into seven categories:

• single-object images

• multi-object images

• images with small object instances (<1 % image area)



(a) 600 x 400 x 280 (b) 600 x 400 x 147

(c) 400 x 300 x 280 (d) 400 x 300 x 147

(e) 300 x 200 x 147

Fig. 6. Small load carriers and their respective size (length x width x height)
in millimeters. VDA RL-KLT 6280 (a), 6147 (b), 4280 (c), 4147 (d) and 3147
(e) are standardized by the Association of the Automotive Industry (VDA) and
can be found in logistics throughout different sectors.

• images with medium object instances (between 1-10 %

image area)

• images with large object instances (>10 % image area)

• loaded SLCs

• stacked SLCs

B. Model Training

We evaluate our method by training a deep neural network

object detector. The darknet framework and in particular the

YOLOv3 model [35] was chosen for object detection. The

model is trained exclusively on synthetic data and evaluated on

natural test images. For training a pretrained feature extractor

is used. From a network structure perspective, only the number

of convolutional filters is adjusted to accommodate the single

object category. Other parameters as well as the augmentation

strategy remain unchanged. The model was trained on a Nvidia

V100 GPU.

C. Evaluation and Ablation Study

Finally we describe the evaluation process and ablate dif-

ferent design choices within our image generation approach.

Unless otherwise noted, the training was performed as de-

scribed in section IV-B. We present the precision as well as

recall metric for each of the models at an intersection over

union (IoU) of 0.5.

Render engines. Firstly, we compared the effects of images

generated using Cycles and EEVEE, two different render

engines within Blender. Cycles renders images by tracing

back light paths and accumulating them, causing it to be

slow, but rather physically correct. EEVEE in contrast is a

game-engine and creates images by projecting images from

(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 7. Industry-centered evaluation dataset. In order to evaluate our approach,
we captured and annotated a dataset containing images with single (a),
multiple (b), stacked (c) and loaded (d) small load carriers. Furthermore, the
images can be distinguished by the relative size of the SLC in an image (large
(e), medium (f) and small (g)). Note that the classification is not mutually
exclusive.

the 3D space to a 2d plane. As these projections do not

take into consideration lighting and tracing lightrays, these

images look less realistic, but are also generated faster. Fig. 8

presents the test results of YOLOv3 trained on 2.500 images

generated by Cycles and EEVEE respectively. Trained on the

same amount of images, it can be concluded that the detector

trained on images rendered by Cycles outperforms the one

that was trained on EEVEE-rendered images. Due to the fact

that EEVEE ignores the physical realism, it can render images

much faster than Cycles. In our experiments, the time for

Cycles to generate 2.500 images is equal to the time for

EEVEE to generate 5.700 images using devices with same

computational capabilities. Therefore, we further investigated

the effect of 2.500 Cycles images and 5.700 EEVEE images. It

can be seen that increasing the size of the training set improves



detection performance. In conclusion, it can be summarized,

that the information content per synthetic image generated

using Cycles is higher. In contrast, EEVEE is able to generate

more images in the same amount of time, but these images

contain less information useful for training the network. We

chose to continue our experiments with Cycles as a render

engine (denoted as standard in following figures).

EEVEE2.5k Cycles2.5k EEVEE5.7k
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Fig. 8. Ablation study on render engines. Detection performance of a model
fully trained on synthetic images rendered by Cycles and EEVEE, two
different render engines within Blender.

Background objects and distractors. In the next experi-

ment we evaluated the importance of background objects and

distractors in our approach. To do so, two additional image

batches were created, one without background objects (but the

background plane), and another one without distractors. Fig. 9

illustrates our findings and compares them to the performance

of the standard model with background objects and distractor.

It can be observed that precision and recall decrease slightly

after removing the background objects. This suggests that the

background objects are not as effective as in experiments

presented by [21]. Besides, this experiment clearly shows the

importance of using distractors as the detection performance

plummets when removing them.

Object relation modelling. In order to study the effects

of ORM in our approach, we used the standard image batch

with a single modelled relation and generated two additional

image batches; one batch without modelled relations (i.e.

objects were placed randomly), and one batch with multiple

different relations. Again, the trained detectors were tested

on natural images, many of which contain SLC stacks and

loaded SLCs. Fig. 10 suggests, that increasing the number

of applied relations in synthetic training images improves the

performance of the detector. Furthermore, we tested these

detectors on two different subsets of our dataset. One subset

containing only images with SLC stacks (“stacks” subset) and

another subset containing images of loaded SLCs (“loaded”

subset). The results are shown in Fig. 11 and indicate a similar
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Fig. 9. Ablation study on background objects and distractors. Detection
performance of a model fully trained on synthetic images, synthetic images
without background objects and synthetic images without distractors.

tendency as shown before. Furthermore, this suggests that

ORM has similar effects on both subsets.
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Fig. 10. Ablation study on Object Relation Modelling (ORM). Detection
performance of a model fully trained on synthetic images with one modelled
relation (standard), synthetic images without ORM and synthetic images with
multiple modelled relations.

Object size. Finally, we performed experiments to investi-

gate how the detector trained on synthetic images generated by

our method performs on real test images with respect to objects

of different size. The results presented in Fig. 12 show that the

performance drops prominently as the object size decreases.

When detecting large objects, the precision reaches up to 0.81.

However, for the challenging detection of small objects, it

drops to only 0.11.



no relations standard

(one rel.)

multiple

relations

0.1

0.2

0.3

0.4

0.1

0.25

0.32

0.14

0.28

0.35

P
re

ci
si

o
n

an
d

re
ca

ll
p

er
fo

rm
an

ce

Performance on ”stacks” subset

Precision Recall

no relations standard

(one rel.)

multiple

relations

0.2

0.3

0.17

0.27

0.33

0.18

0.29

0.35

P
re

ci
si

o
n

an
d

re
ca

ll
p

er
fo

rm
an

ce

Performance on ”loaded” subset

Precision Recall

Fig. 11. Ablation study on Object Relation Modelling (ORM) focussing
on “stacks” (top) and “loaded” (bottom) subset containing images where
understanding the relation between objects is necessary. For each subset, we
present the detection performance of a model fully trained on synthetic images
with one modelled relation (standard), synthetic images without ORM and
synthetic images with multiple modelled relations.
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Fig. 12. Ablation study on object size. Detection performance of a model
fully trained on synthetic images with one relation (standard) and synthetic
images with more relations tested on subsets of our dataset containing large,
medium and small objects.

V. CONCLUSION

In this paper we have presented a scalable approach for

synthetic image generation of industrial objects utilizing well-

working features and augmenting them with novel compo-

nents, such as Object-alike Distractors (OAD), Object Relation

Modelling (ORM) and a Mixed-lighting Illumination (MLI).

Due to missing industrial datasets, we generated and presented

a industry-centered dataset for evaluation purposes of synthetic

image generation methods. Finally, an extensive ablation study

is presented, wrapping up our experiments.

Most importantly, we show, that our approach enables fully

synthetic training for object detection in industry. Still, in

its current state, it is limited to certain boundaries and the

detection performance is worse compared to detectors trained

on natural images only. Furthermore, we show that our novel

features (Object Relation Modelling, Object-alike Distractors

and Mixed-lighting Illumination) are simple, effective and

scalable (i.e. are able to be automated) methods to consider

when developing synthetic image generation methods. They

work by changing the statistics of certain features within the

synthetic dataset and ’guiding’ the detection model to focus on

these features. All of this, whilst still being scalable, without

the need of manually modelling different 3D scenes. Finally,

we found that backwards ray-traced rendering increases the

information entropy within synthetic datasets, suggesting that

physical correctness is important for current convolutional

neural networks.

For future research we plan to extend our approach and

further analyse Blenders capabilities as a synthetic image

generation system. This requires additional experiments with

different object classes in diverse industrial applications

to prove the generalization and robustness of our method.

Furthermore, we will be expanding our tests to other network

architectures as well as computer vision tasks in order to

investigate the domain gap in different tasks. Finally, the

domain gap is still apparant, so future research needs to focus

on minimizing it.
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