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Abstract
We prove Goldschmidt’s formula (Goldschmidt in Phys Rev B 47:4858–4861, 1990) for
the free energy of the quantum random energy model. In particular, we verify the location
of the first order and the freezing transition in the phase diagram. The proof is based on a
combination of variational methods on the one hand, and bounds on the size of percolation
clusters of large-deviation configurations in combination with simple spectral bounds on the
hypercube’s adjacency matrix on the other hand.
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1 Introduction

The quantum random energy model (QREM) draws its motivation from various directions.
In mathematical biology, it has been put forward as a simple model for the expression of
genotypes undermutation in a randomfitness landscape [4,14].More recently, it gained atten-
tion as a basic testing ground of quantum annealing algorithms for searches in unstructured
energy landscapes (cf. [6,18] and references therein) as well as in the context of many-body
localization [5,9,15,19,25]. Its original motivation stems from the quest of understanding
quantum effects in mean-field spin glasses [10,13,17,22,26].

The classical backbone, the random energy model (REM) was put forward by Derrida
[11,12] in the early 1980s as the limiting and solvable case of a class of mean-field spin
glasses. The space of N -bit strings QN = {−1, 1}N serves as the configuration space of the
REM. The energy associated with σ = (σ1, . . . , σN ) ∈ QN is a rescaled Gaussian random
variable

Communicated by Ivan Corwin.

This work was supported by the DFG under EXC-2111 – 390814868.

B Simone Warzel
warzel@ma.tum.de

1 MCQST & Zentrum Mathematik, Technische Universität München, Munich, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10955-020-02492-5&domain=pdf
http://orcid.org/0000-0002-6250-4664
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U (σ ) := √
N g(σ )

with g(σ ) forming an independent and identically distributed (i.i.d.) process with standard
normal law.QN may be interpreted as the state space of a system of N spin- 12 quantumobjects
recorded, e.g., in the z-basis. The corresponding Hilbert space is given by the N fold tensor
product ⊗N

j=1C
2 which is unitarily equivalent to �2(QN ). Effects of a transversal (e.g. in the

negative x-direction) constant magnetic field of strength Γ ≥ 0 on the spins are taken into
account through the componentwise flip operators Fjσ := (σ1, . . . ,−σ j , . . . , σN ), which
are implemented on ψ ∈ �2(QN ) as

(Tψ) (σ ) := −
N∑

j=1

ψ(Fjσ).

This operator coincides with the negative sum of x-components of the Pauli matrices. The
energy of the QREM is then given by an Anderson-type random matrix

H := Γ T +U (1)

where U acts as a multiplication operator on �2(QN ).
The process U (σ ) is the limiting case p → ∞ of the Gaussian family of p-spin models

characterized by its mean and covariance function,

E [U (σ )] = 0, E
[
U (σ )U (σ ′)

] = N

⎛

⎝N−1
N∑

j=1

σ jσ
′
j

⎞

⎠
p

=: Nξp(σ, σ ′). (2)

The case p = 2 corresponds to the famous Sherrington–Kirkpatrick model. The simplifying
feature of the limit p → ∞ is the lack of correlations. The quantum p-spin generalisation
of the QREM is then given by the random matrix (1) in whichU is a multiplication operator
by the correlated field.

1.1 Main Result

In this paper, we will be interested in thermodynamic properties of the QREM which are
encoded in its partition function

Z(β, Γ ) := 2−N Tr e−βH

at inverse temperature β ∈ [0,∞), or, equivalently, its pressure

pN (β, Γ ) := N−1 ln Z(β, Γ ). (3)

Up to a factor of −β−1, the latter coincides with the specific free energy.
In the thermodynamic limit N → ∞ the pressure of the REM converges almost surely

[7,11,12],

lim
N→∞ pN (β, 0) = pREM(β) =

{ 1
2β

2 if β ≤ βc,
1
2β

2
c + (β − βc)βc if β > βc.

(4)

It exhibits a freezing transition into a low-temperature phase characterized by the vanishing
of the specific entropy above

βc := √
2 ln 2.
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656 C. Manai, S. Warzel

Fig. 1 Phase diagram of the QREM as a function of the transversal magnetic field Γ and the temperature β−1.
The first-order transition occurs at fixed β and Γc(β). The freezing transition is found at temperature β−1

c ,
which is unchanged in the presence of small magnetic field

Under the influence of the transversal field, the spin-glass phase of the REM disappears
for large Γ > 0 and a first-order phase transition into a quantum paramagnetic phase char-
acterised by

pPAR(βΓ ) := ln cosh (βΓ )

is expected to occur. The precise location of this first-order transition and the shape of the
phase diagram of theQREMhas been predicted byGoldschmidt [17] in the 1990s on the basis
of arguments using the replica trick and the so-called static approximation in the associated
path integral. His calculations have been repeated and refined in various papers—all still
based on the replica trick and further approximations [13,22] (see also [26] and references).
As a main result of this paper, we give a rigorous proof of this result.

Theorem 1 For any Γ , β ≥ 0 almost surely:

lim
N→∞ pN (β, Γ ) = max{pREM(β), pPAR(βΓ )}.

As will become clear from the proof, which is found in Sect. 2 below, the special structure
of the pressure as a maximum of competing extremal cases is mainly caused by the fact that
the REM’s energy landscape is steep and rough due to the lack of correlations. This renders
the model solvable. Before diving into the details of the proof, let us add some comments
(see also Fig. 1):

1. As in the classical case, the pressure pN (β, Γ ) is self-averaging, i.e. in the thermody-
namic limit it coincides with its probabilistic average, the so-called quenched pressure
E [pN (β, Γ )]. For the QREM, this follows immediately from the Gaussian concentra-
tion inequality for Lipschitz functions. The Lipschitz constant of the pressure’s variations
with respect to the i.i.d. standard Gaussian variables g(σ ) is bounded by
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∑

σ∈QN

(
∂ pN (β, Γ )

∂g(σ )

)2
= β2

N 22N Z(β, Γ )2

∑

σ

〈σ |e−βH |σ 〉2 ≤ β2

N
.

Here and in the following we use bracket notation for matrix elements. Consequently,
we have the Gaussian tail estimate

P

(
|pN (β, Γ ) − E [pN (β, Γ )]| >

t β√
N

)
≤ C exp

(−ct2
)

(5)

for all t > 0 and all N ∈ N with some constants c,C ∈ (0,∞). In fact, self-averaging
for more general quantum p-spin models has already been established in [10].

2. For fixed β a first-order phase transition is found at

Γc(β) := β−1 arcosh
(
exp
(
pREM(β)

))
.

In particular, Γc(0) = 1 and Γc(βc) = β−1
c arcosh(2). In the low-temperature limit,

limβ→∞ Γc(β) = βc, the first-order transition connects to the known location of the
quantum phase transition of the ground state [18]. In this context, it is useful to recall
that the REM’s extreme energies are almost surely found at ‖U‖∞ = βcN + o(N ), cf.
[7, Ch. 9]. For Γ < βc, the energetically separated ground state is sharply localized near
the lowest-energy configuration of the REM. For Γ > βc, the energetically separated
ground state resembles the maximally delocalized state given by the ground state of T .
Near Γ = βc, the ground-state gap closes exponentially [1].

3. For Γ > Γc(β), the magnetization in the x-direction is strictly positive,

β−1 ∂

∂Γ
pPAR(βΓ ) = tanh(βΓ ) > 0.

4. For all Γ < Γc(β) the line of the freezing transition transition remains unchanged at
β = βc. In the frozen regime, the QREM has zero specific entropy.

1.2 Comments and Open Problems

We close the introduction with some further comments and open problems:

1. For the quantum p-spin model it is conjectured that the structure of the phase diagram in
Fig. 1 only changes smoothly in 1/p at low temperatures (see e.g. [13] ). Non-rigorous
1/p expansions in a replica analysis have been the basis of these assertions. (A tiny step
towards a proof of the continuity of the pressure at p = ∞ has been undertaken recently
on the basis of the methods presented here in [21].)
Such expansion-based arguments have been extended in [22] to cover the case of ferro-
magnetic bias, in which the Gaussian spin-p couplings are tilted towards a ferromagnetic
interaction. The paper [22] argues that the spin glass phase will also disappear in favour
of a ferromagnetic phase for sufficiently large tilting.

2. As in the classical case, the quenched pressureE [pN (β, Γ )] is generally smaller than the
annealed pressure N−1 lnE [Z(β, Γ )]. However, in the high-temperature phase, β < βc,
asymptotic equality holds—even in the quantumcase as is not hard to showby performing
the annealed average in the path-integral representation. The fluctuation properties of the
partition function are well studied in classical cases (see e.g. [3,8] and [7, Ch. 9–10] for
further references). We leave it to a future work to extend these results to the quantum
case.
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3. For a large class of mean-field spin glasses, the pressure in the thermodynamic limit is
known to be universal in that it does not depend on the details of the randomness (cf.
[28] and references therein). Such universality results have been extended to the quantum
case in [10].

4. Most recently, there has been some progress in understanding the free energy of the
quantum Sherrington–Kirkpatrick model. The absence of a spin-glass phase for high
temperatures was addressed in [20]. In particular, it is shown that in the high-temperature
phase the quenched pressure asymptotically coincides with the annealed pressure thereby
generalising some of the results in [3]. The paper [2] identified the thermodynamic limit
of the quenched pressure with a certain limit of a variational principle involving classical
vector-spin glasses.

2 Proof

The proof of Theorem 1 consists of a pair of asymptotically coinciding upper and lower
bounds.

Proof of Theorem 1 The assertion is a consequence of Lemma 1 and Corollary 1 below. 
�

The following two subsections contain the details of the argument.

2.1 Lower Bound

Not surprisingly, our lower bound is more robust and will hold for more general p-spin
models also. Let us first recall that if U (σ ) is a Gaussian random field of the form (2) with
p ∈ [1,∞], then its pressure

pU(β) := lim
N→∞ N−1 ln 2−N

∑

σ∈QN

e−βU (σ ) (6)

is known to converge almost surely to a non-random expression, which is in fact given
by the famous Parisi formula [23,24,27,28]. In the special case p = ∞ this reduces to
pU(β) = pREM(β).

Lemma 1 Consider the quantum p-spin model, i.e. H = Γ T + U with U diagonal and
Gaussian of the form (2) with p ∈ [1,∞]. For any Γ , β ≥ 0 and almost surely

lim inf
N→∞ pN (β, Γ ) ≥ max{pU(β), pPAR(βΓ )}. (7)

Proof We use the Gibbs variational principle,

ln Tr e−βH = − inf
	

[
β Tr (H	) + Tr (	 ln 	)

]
(8)

in which the infimum is taken over all density matrices, 	 ≥ 0, Tr 	 = 1, on �2(QN ). There
are two natural choices:

1. We may pick 	 = e−βU/Tr e−βU . In this case, the right-hand side is lower bounded by

ln Tr e−βU − βΓ Tr (T 	) = ln Tr e−βU .
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The last step follows from the fact that the diagonal matrix elements of T vanish. Con-
sequently, we arrive at the bound,

pN (β, Γ ) ≥ 1

N
ln

⎛

⎝ 1

2N
∑

σ∈QN

e−βU (σ )

⎞

⎠ ,

which together with the known convergence (6) yields the first part of the claim.
2. We may also pick 	 = e−βΓ T /Tr e−βΓ T . In this case, the right-hand side in (8) reduces

to

ln Tr e−βΓ T − β Tr (U	) = N ln (2 cosh(βΓ )) − β

2N
∑

σ∈QN

U (σ ),

where we used 〈σ |e−βΓ T |σ 〉 = cosh(βΓ )N for the diagonal matrix element of the
semigroup generated by −T . Consequently, we arrive at the bound,

pN (β, Γ ) ≥ pPAR(βΓ ) − β

N2N
∑

σ∈QN

U (σ ).

The last term converges to zero almost surely by the strong law of large numbers. More
precisely, for any ε > 0, an exponential Chebychev bound yields

P

⎛

⎝ 1

N2N
∑

σ∈QN

U (σ ) > ε

⎞

⎠ ≤ e−Nε2/2
E

⎡

⎣exp

⎛

⎝ ε

2N+1

∑

σ∈QN

U (σ )

⎞

⎠

⎤

⎦

= e−Nε2/2 exp

⎛

⎝ ε2

22(N+1)

∑

σ,σ ′
N ξp(σ, σ ′)

⎞

⎠

≤ e−Nε2/4.

The same bound also applies to −∑σ U (σ ). Since the right-hand side is summable in
N , a Borel–Cantelli argument ensures the claimed almost-sure convergence.


�

2.2 Upper Bound

Typical values of the REM U (σ ) fluctuate on order O(
√
N ). Our upper bound rests on the

observation that configurations on which large negative deviations occur,

Lε := {σ ∈ QN
∣∣U (σ ) ≤ −εN

}
, (9)

form gap-connected clusters whose maximal size remains bounded uniformly in N even for
ε > 0 arbitrarily small. For the precise formulation of this result, it is useful to recall that the
Hamming distance

d(σ, σ ′) :=
N∑

j=1

1
[
σ j �= σ ′

j

]

rendersQN (through the nearest-neighbour relation) into a graph called the Hamming cube,
in which each vertex has exactly N neighbours. For future purposes, we also introduce the
Hamming ball of radius r ∈ [0, N ] centered at σ ∈ QN ,
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660 C. Manai, S. Warzel

Br (σ ) := {σ ′ ∈ QN
∣∣ d(σ, σ ′) ≤ r

}
.

Its volume |Br | is known to be bounded by exp (Nγ (r/N )) for all r < N/2 in terms of the
binary entropy, γ (ξ) := −ξ ln ξ − (1 − ξ) ln(1 − ξ). Here, a simpler bound is sufficient:

|Br | =
r∑

j=0

(
N

j

)
≤

r∑

j=0

N j

j ! ≤ e Nr . (10)

Definition 1 Let Q̃N be the supergraph of the Hamming cube QN , which one obtains by
adding the edges {σ, σ ′}, where σ, σ ′ are two vertices with d(σ, σ ′) = 2. We call Cε ⊂ Lε a
gap-connected component, if Cε is connected as a subset of Q̃N . A gap-connected component
Cε is maximal if there is no other vertex σ ∈ Lε\Cε such that Cε ∪{σ } forms a gap-connected
component.

For each realisation of the randomness the large-deviation set then naturally decomposes
into a finite (edge-)disjoint union of maximally gap-connected components,

Lε =
⋃

α

C(α)
ε .

On any gap-connected component Cε for every vertex σ ∈ Cε there is some σ ′ ∈ Cε\{σ }
with d(σ, σ ′) ∈ {1, 2} – not necessarily d(σ, σ ′) = 1. By construction, we thus have for all
α �= α′:

d
(
C(α)

ε , C(α′)
ε

)
= min

{
d(σ, σ ′) | σ ∈ C(α)

ε ∧ σ ′ ∈ C(α′)
ε

}
> 2. (11)

The next lemma controls with good probability the size of each subset C(α)
ε , which is just the

number of its vertices and denoted by |C(α)
ε |.

Lemma 2 For all ε > 0 and N ∈ N there is some subset Ωε,N of realizations such that:

1. for some cε > 0, which is independent of N , and all N large enough:

P
(
Ωε,N
) ≥ 1 − e−cεN ,

2. on Ωε,N : max
α

∣∣C(α)
ε

∣∣ < Kε :=
⌈
4 ln 2

ε2

⌉
.

Proof We start by noting that the event

Ωε,N :=
⋂

σ∈QN

{∣∣Brε (σ ) ∩ Lε

∣∣ < Kε

}
(12)

with rε := 4Kε implies the second assertion in the lemma. This follows from the fact that in
the event Ωε,N , in which there are at most Kε − 1 large deviation sites in the ball of radius rε
around any fixed σ ∈ Lε , the gap-connected component to which σ belongs, must be strictly
contained in a ball of radius at most 2(Kε − 1) < rε − 2, i.e. it cannot gap-connect to other
vertices outside the ball Brε (σ ) and hence consists of at most Kε vertices.

It therefore remains to estimate the probability of the event complementary toΩε,N . Using
the union bound we obtain:
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P

⎛

⎝
⋃

σ∈QN

{∣∣Brε (σ ) ∩ Lε

∣∣ ≥ Kε

}
⎞

⎠ ≤
∑

σ∈QN

P
(∣∣Brε (σ ) ∩ Lε

∣∣ ≥ Kε

)

≤
∑

σ∈QN

|Brε |∑

j=Kε

P
(∣∣Brε (σ ) ∩ Lε

∣∣ = j
)

≤ 2N
|Brε |∑

j=Kε

(|Brε |
j

)
e− jε2N/2 ≤ 2N

∞∑

k=Kε

|Brε | j
j ! e− jε2N/2

≤ 2N
|Brε |Kε

Kε! e−Kεε
2N/2 exp

(
|Brε |e−ε2N/2

)

≤ |Brε |Kε

Kε! e−Kεε
2N/4 exp

(
|Brε |e−ε2N/2

)
. (13)

Here the third line relies on the fact that the number of subsets of a given size equals the
binomial coefficient. Moreover, specifying the large-deviation sites in Brε (σ ) allows one
to compute the probability of the event using the independence of the random field U (σ ).
To estimate this probability, we use the elementary estimate on the complementary error
function,

P (σ ∈ Lε) =
∫ −ε

√
N

−∞
e−x2/2 dx√

2π
≤ e−ε2N/2, (14)

aswell as the trivial bound on the probability of the complementary elementary event. The last
inequality in the second line of (13) results from a simple bound on the binomial coefficient.
The forth line is the standard estimate of the remainder of the exponential series. Finally,
the last line follows by definition of Kε. Since the volume of the ball |Brε | grows only
polynomially in N by (10), the right-hand side of (13) is exponentially bounded for large
enough N . This completes the proof. 
�

Our main idea behind an upper bound on the partition function Z(β, Γ ) is to decompose
H into themultiplication operatorU restricted to vertices inLε and theQREM H restricted to
the complementary set Lc

ε plus a remainder term ALε . For this purpose, we write �2(QN ) =
�2(Lε) ⊕ �2(Lc

ε) and set ULε the multiplication operator by the REM values on �2(Lε). On
the orthogonal complement �2(Lc

ε), we define the natural restriction of (1). Note that −T is
the adjacency matrix on the Hamming cube. In the restriction HLc

ε
, we simply restrict the

adjacency matrix to the subgraph associated with Lc
ε . We then define ALε through:

H =: ULε ⊕ HLc
ε
− Γ ALε . (15)

Clearly, the matrix elements of the remainder term are related to all edges reaching Lε:

〈σ |ALε |σ ′〉 =
{
1 if σ ∈ Lε or σ ′ ∈ Lε and d(σ, σ ′) = 1,

0 else.
(16)

The following lemma contains an estimate on the operator norm of the remainder. In case
the components in the decompositions are of small size, this estimate is not so wasteful.

Lemma 3 Let Lε = ⋃α C(α)
ε stand for a finite (edge-)disjoint union of maximally gap-

connected components of the large deviation set (9). Then

∥∥ALε

∥∥ ≤
√
2N max

α

∣∣C(α)
ε

∣∣. (17)
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662 C. Manai, S. Warzel

Proof Since the components are edge-disjoint in the sense that (11) holds, we have
∥∥ALε

∥∥ = max
α

∥∥AC(α)
ε

∥∥,

where the operators in the right-hand side satisfy (16) with Lε substituted by C(α)
ε . Conse-

quently, their operator norms are bounded by a Frobenius estimate

∥∥AC(α)
ε

∥∥ ≤
√√√√
∑

σ,σ ′

∣∣∣〈σ |AC(α)
ε

|σ ′〉
∣∣∣
2
.

Since the double sum is restricted to σ ∈ C(α)
ε or σ ′ ∈ C(α)

ε and, in each of the two cases, the
other sum has at most N terms, the assertion follows. 
�
The fact that the operator norm in the preceding lemma does not scale with N might sound
remarkable at first sight. However, we remind the reader that even the full adjacency matrix
−TBNρ

restricted to a Hamming ball of radius Nρ with ρ ∈ (0, 1/2), is known [16] to be
bounded by

∥∥TBNρ

∥∥ ≤ 2N
√

ρ(1 − ρ) + o(N ).
We are now ready to conclude our asymptotically sharp upper bound.

Corollary 1 For any Γ , β ≥ 0 almost surely:

lim sup
N→∞

pN (β, Γ ) ≤ max
{
pREM(β), pPAR(βΓ )

}
.

Proof We pick ε > 0 arbitrarily small and start from the decomposition (15) of the Hamil-
tonian. The Golden–Thompson inequality yields

Z(β, Γ ) ≤ 2−N Tr e−βULε ⊕HLc
ε e−βΓ ALε

≤ 2−N eβΓ ‖ALε ‖ (Tr �2(Lε)
e−βULε + Tr �2(Lc

ε)
e−βHLc

ε

)
.

The first term in the bracket on the right-hand side is trivially estimated in terms of the
partition function of the REM:

2−N Tr �2(Lε)
e−βULε ≤ Z(β, 0) = eNpN (β,0).

For the second term we use the fact that the adjacency matrix −TLc
ε
has non-negative matrix

elements and hence generates a positivity preserving semigroup on �2(Lc
ε). Since the diagonal

values of its perturbation are bounded from below by−εN by assumption onLc
ε , we conclude

2−N Tr �2(Lc
ε)
e−βHLc

ε ≤ eβεN2−N Tr �2(Lc
ε)
e−βΓ TLc

ε

≤ eβεN2−N Tr e−βΓ T = exp
(
N
(
βε + pPAR(βΓ )

))
.

Here, the last inequality follows from the monotonicity of e−βΓ TLc
ε with respect toLc

ε , which
is in turn a consequence of the non-negativity of the matrix elements of the adjacency matrix.
To summarize, we thus obtain

pN (β, Γ ) ≤ max
{
pN (β, 0), βε + pPAR(βΓ )

}+ 1
N

(
βΓ ‖ALε‖ + ln 2

)
. (18)

According toLemma2 there is someΩε,N whose complementary probability is exponentially
small in N and on which Lemma 3 guarantees that for all N large enough:

pN (β, Γ ) ≤ max
{
pN (β, 0), pPAR(βΓ )

}+ 2βε .
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Since the probabilities of the complementary event are summable in N , a Borel–Cantelli
argument together with the known almost sure convergence (4) of the REM thus finishes the
proof. 
�
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