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Und jedem Anfang wohnt ein Zauber inne

- Hermann Hesse, Stufen

1 Introduction

1.1 Cellular Life in the Context of Physical Laws

In a human being’s lifetime more than a light-year of DNA is replicated. Thereby, a
replication fork operates at a surprisingly high speed of ∼ 50 nucleotides per second and
with an incredibly low error rate of 1 : 108. This happens in all of our ∼ 1013 cells, more
precisely, in the nuclei of our cells. A cell nucleus has a diameter of a few micrometers,
but it stores DNA with a total length of 2 meters [1, 2]. Nature overcomes this apparent
discrepancy by tightly wrapping the DNA around histone-proteins and condensing the
resulting nucleosome complexes into chromosomes. Besides, our hereditary information
has to deal with permanent attacks stemming from different sources: The DNA of a
single human cell is harmed by approximately 70000 lesions per day [3]. Also here, our
cells have developed a remarkable arsenal of repair mechanisms that enable the recogni-
tion and repair of damages at high fidelity. We therefore have discovered the fascinating
beauty of cellular life with respect to both, architecture and dynamic functionality. Part
of this beauty, which drives us as scientists, is our lack of understanding. How can all
this be carried out at such a high level of precision and speed? What are the physical
rules behind these processes which are basal to life?
What is certain about life, however, is that it is made of atoms, that it happens in a
thermodynamic ensemble, and that, in Feynman’s words, it can be understood as ’jig-
gling’ and ’wiggling’ of these atoms. That we can conceptualize cellular life as concerted
motions of atoms is the basic motivation behind my thesis for two reasons:
Firstly, it sets the topic. The double-helical structure of DNA was discovered by Wat-
son and Crick in 1953 [4]. Fifty years later, the entire human genome was sequenced
[5]. Though great progress has hence been made in the field of molecular biology, our
understanding is limited to a rather static picture. But it is essential to life, that DNA
also acts dynamically, that it can be transcribed and replicated. This requires ruptures,
local melting of specific DNA sequences to facilitate access to our hereditary informa-
tion. Moreover, many cellular functions are triggered by the binding of proteins to target
DNA sequences. All these dynamic processes cause deformations of the DNA, and thus,
we can only begin to understand them by understanding the mechanics of DNA first. An
example for my contribution to this topic is the development of a coarse-grained model
for DNA, presented in chapter 7. Here, we express the deformation free energy for a
given double-stranded DNA structure by an Ising model, in which we consider two dis-
tinct conformational subspaces for every base-pair step. These two subspaces represent
the BI and BII backbone configurations and are described by a multivariate harmonic

1



1 Introduction

Figure 1.1: Nucleosome complex, consisting of double-stranded DNA (the two back-
bone strands are highlighted in orange) wrapped around the histone-proteins
(shown in blue, cartoon representation) [6]. This complex represents a fun-
damental mechanism how DNA is compacted and accommodated in the cell
nucleus. Formation of this complex requires strong mechanical deformation
of the DNA and is hence dependent on DNA’s sequence. Note that the
figures in this thesis have been created with pymol and VMD [7, 8].

approximation, whereby we account for correlation to adjacent base-pair steps. In this
way, we have been able to derive a first coarse-grained DNA model that captures both,
nearest-neighbor coupling and multimodality. Our model is parameterized from MD
simulations on a set of DNA sequences composed of all possible 136 tetranucleotides.
Thus, we can quantify sequence-dependent free energies afforded by proteins to deform
the DNA. We have applied our model to compute deformation free energies for DNA
in the nucleosome complex (Fig 1.1) in the context of DNA’s sequence. This explains
for instance why specific sequences, poly(dA/dT)-tracts, avoid nucleosome formation,
as they are mechanically too resistant to undergo such deformations.

Secondly, it sets the method. In the past, we have learned a lot about DNA’s mechanics
from experimental methods, such as optical tweezers and atomic force microscopy [9].
However, these techniques come with limited insight. The only microscopes with which
we can observe the dynamics at the atomic level and femtosecond time resolution are
those in our computers. The computational microscope utilized in my thesis is Molecular
Dynamics simulations, and we have made hard efforts to contribute to the development of
this method. From high-level quantum mechanical calculations on DNA subsystems, we

2



1.2 Overview

have inferred a description for the interaction between all atoms of the DNA. Subjecting
now the description for DNA’s potential energy to Newton’s laws of motion allows one to
propagate a DNA system in time. Basically, this is what we understand with Molecular
Dynamics (MD) simulations and how we try to find answers to questions of cellular
life. Within my PhD thesis, I have conducted a large number of Molecular Dynamics
simulations, and will share in the following my insights on many aspects of the mechanics
of DNA.

1.2 Overview

At the beginning of my thesis, I give an overview of DNA’s structure and various con-
cepts to describe it. Next, fundamental principles of statistical mechanics are outlined,
followed by an introduction to Molecular Dynamics simulations and an explanation of
related techniques. We then turn to Quantum Chemistry, where the theories behind our
conducted quantum mechanical calculations are summarized.
Chapter 4 has been published in similar form in J. Phys. Chem. B, 121(49), 11019-
11030, 2017 [10]. It deals with the question of how local unwinding stress is absorbed
by the DNA and highlights the role of global restraining. Furthermore, we characterize
resulting phase transitions and discuss their sequence dependence.
In chapter 5, we elucidate sterical effects which impact DNA’s local conformational flex-
ibility: Clashes between methyl groups (as present in the thymine or C5-methylated
cytosine base) and sugar rings suppress the population of the BII backbone substate.
We show that this also causes sequence-dependent deformabilities. This study has been
published in Nucleic Acids Res., 47(3):1132-1140, 2018 [11].
Chapter 6 deals with global unwinding of double-stranded DNA, and has been published
in similar form in Plos One, 15(5):e0232976, 2020 [12]. Here, we point out that global
stress causes a non-uniform distribution of the deformation energy. For lower stress lev-
els, this serves as a protection mechanism for AT-rich sequences. High torsional stress,
instead, is fully absorbed by the melting of a promoter-like TATA box segment. By
means of our free energy simulations, we give novel atomistic insights into the opening
of promoter boxes and draw comparison to an Ising model, which we have established
from experimental values.
Derivation of a coarse-grained model for double-stranded DNA is the subject of chapter
7. Thereby, we describe DNA’s deformability by combining a multivariate harmonic
approximation with an Ising model. In this way, we account for both effects, nearest-
neighbor correlation and multimodality, which is a consequence of backbone polymor-
phism. Our multivariate Ising model is more precise than the conventional, harmonic
approximation, as the overestimation of free energies is reduced. Based on our new
model, we show that deformation free energies are in excellent correlation with experi-
mentally derived binding affinities for the papillomavirus-E2 protein. Furthermore, we
quantify sequence-dependent deformation free energies arising in the nucleosome com-
plex. We demonstrate that the incorporation of poly(dA/dT) sequences is mechanically
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1 Introduction

unfavorable, which serves as explanation for their reluctance to undergo nucleosome for-
mation.
In chapter 8, we derive an entirely new DNA force field from quantum mechanical cal-
culations. We have subjected our new force field (’Tumuc1’) to many different DNA
systems: For B-DNA we find an accurate description of our force field, where most
parameters are in good agreement with experimental data. Especially for the dihedral
angles, we achieve significant improvements over the bsc1 force field. Besides, Tumuc1
is also robust for other DNA systems and excels in hybridization of single-strands and
hairpin folding.
Chapter 9 deals with the structure of DNA blunt-ends, which can be thought of as
double-strand breaks. We study the structure and conformational flexibility of these
motives with MD simulations and QM calculations. Our main point here is that blunt-
end stacks adopt a negatively twisted configuration, which is possibly of high biological
and technical relevance.
In chapter 10, we quantify the binding free energy for the Cren7/DNA complex with
advanced free energy simulations. Our estimation for the binding free energy strongly
overestimates experimental values, which may be a result of an insufficient electrostatic
description by the bsc1 force field. In addition, we compute the configurational con-
tributions to the binding free energy. Thereby, we emphasize that the Cren7 protein
experiences only little structural changes upon binding, but it strongly deforms the
DNA.

4



1.3 Bibliography

1.3 Bibliography

[1] Franziska Bleichert, Michael R. Botchan, and James M. Berger. Mechanisms for
initiating cellular DNA replication. Science, 355(6327), 2017.

[2] Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and
Peter Walter. DNA Replication, Repair, and Recombination. In Molecular Biology
of the Cell, chapter 5, pages 263–328. Garland Science, Taylor & Francis Group,
5th edition, 2008.
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2 The Structure of DNA

2.1 From the Chemical Structure to the Double Helix

The DNA molecule is composed of nucleotides, which consist of a nucleobase, a deoxy-
ribose sugar and a phosphate backbone (Fig 2.1). In DNA, there naturally exist four
different nucleobases, adenine (A), cytosine (C), guanine (G) and thymine (T), which
are linked to the sugar ring by a glycosidic bond with the C1’ atom. Two nucleotides
can be merged through the phosphate group, which forms a phosphodiester bond to the
C3’ atom of the first and the C5’ atom of the second nucleotide. In this way, nucleotides
build a polymer, a DNA single strand, with a 5′ → 3′ polarity [1].

Figure 2.1: Chemical structure of a guanine-nucleotide composed of a phosphate back-
bone (yellow), a sugar ring (orange) and a nucleobase (red). Ref [2] served
as template for this figure.

The DNA double helix emerges from the hybridization of two single strands polarized
in opposite direction. Thereby, bases of the opposite strands are paired together in a
complementary way: Adenine is generally paired with thymine through two, and cyto-
sine with guanine through three hydrogen bonds (Fig 2.2) [3, 4].

The DNA double helix occurs in different topologies, such as A- and B-DNA. A-DNA has
a larger diameter but reduced winding and helical extension than the classical B-DNA,
which is depicted in Fig 2.3.
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2 The Structure of DNA

Figure 2.2: Chemical structure of a DNA double strand. Adenine (blue) pairs with
thymine (black), and guanine (red) with cytosine (green). The figure has
been taken from Ref [2]. Slight modifications have been made.

Figure 2.3: Structure of the DNA double helix in B-form, shown in Cartoon-
representation. The backbone strands are highlighted as orange spline
curves.
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2.2 Base-Pair Geometry

B-DNA has a helical extension of ∼ 3.4 Å and a winding of ∼ 34.5◦ per base-pair step
[5–7]. Another important feature of DNA is its groove asymmetry: The appearance of a
minor and major groove has strong mechanical and biological consequences and results
from the non-diametrical arrangement of the glycosidic bonds [8–10].
Moreover, DNA’s double-helical structure is stabilized through base-stacking, mean-
ing that the aromatic bases arrange in a parallel geometry. In this configuration, the
base-pairs experience exchange-repulsion, attractive London-dispersion and electrostatic
interactions, with the latter two causing the stability of the complex [11, 12].

2.2 Base-Pair Geometry

DNA’s double-helical structure is commonly quantified through a rigid-body model,
where each base is represented as a bead [13–15]. The pairing of two bases is then
described by three translational (shear, stretch, stagger) and three rotational parame-
ters (buckle, propeller, opening), which map one bead onto the bead corresponding to
its paired base. The stacking-geometry between two successive base-pairs is computed
by rigid-body transformations of ’mean’-beads of the base-pairs, and yields again three
translational (shift, slide, rise) and three rotational parameters (tilt, roll, twist). Note
that a DNA double helix with N base-pairs contains 12N − 6 degrees of freedom in this
local frame. Alternatively, DNA’s structure can be described by a set of helical param-
eters (inclination, tip, x-displacement, y-displacement, helical-rise, helical-twist). These
parameters are calculated by interpolating a mean-helical axis into DNA’s structure,
whereby helical-rise and helical-twist are very similar to their local pendants. All local
and helical parameters are depicted in Fig 2.4.

2.3 The Backbone Structure of Double-Stranded DNA

DNA’s base-pair geometry is strongly correlated with the backbone strands. The con-
figuration of the backbone is determined by the dihedral angles shown in Fig 2.5.

The backbone dihedral angles represent a highly coupled system, which is typically
described through ε/ζ and α/γ conformers. Note that the ε and ζ dihedral angles define
the prominent BI and BII substates (Fig 2.6):

ε− ζ < 0 : BI (2.1)

ε− ζ > 0 : BII (2.2)

The population of these states is sequence-dependent, which is elucidated in chapter
5. In general, however, a strand is preferentially in the BI conformation [18]. Base-
pair steps with Watson- and Crick-strand in BI configuration usually adopt stacking
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2 The Structure of DNA

Figure 2.4: Parameters describing DNA’s base-pair geometry [16].

Figure 2.5: Extract of a DNA strand, showing all backbone and sugar dihedral angles.
Ref [2] served as template for this figure.
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2.4 Sugar Puckering

Figure 2.6: Snapshots of an ApT-step in BI- (A) and in BII-conformation (B). These
conformations are determined by the ε and ζ dihedral angles [17].

geometries with smaller twist and slide but higher roll compared to conformations with
one of the two strands in the BII substates (both in BII configuration is very unlikely)
[19, 20]. Thus, the BI and BII states give rise to bimodal distributions in some of the
base-pair parameters [21]. Furthermore, it has been argued that these substates are also
implicated in readout-mechanisms by proteins [22–24].
The remaining backbone dihedral angles are classified in three substates:

g+ : 0◦ − 120◦ (2.3)

t : 120◦ − 240◦ (2.4)

g− : 240◦ − 360◦ (2.5)

The α/γ dihedral angles occupy the g − /g+ substate in regular B-DNA. A transition
to another substate causes strong local distortions in the DNA structure [25–27]. For
the parameterization of a DNA force field, dominant population of g-/g+ for α/γ is
therefore essential.

2.4 Sugar Puckering

Sugar puckering is a concept to quantify the non-planarity of DNA’s sugar ring. Thereby,
the conformational space of the sugar ring is mapped onto a polar coordinate system
spanned by a phase angle P [18, 28]:

tan(P ) =
ν4 + ν1 − ν3 − ν0

2ν2 · (sin(36◦) + sin(72◦))
(2.6)

and an amplitude [18, 28]

τm =
ν2

cos(P )
. (2.7)
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2 The Structure of DNA

Figure 2.7: Conformational states of the sugar ring, defined by the pseudorotational
phase angle P. The C2’-endo and C3’-endo subspaces are colored in green
and blue, respectively. The figure has been taken from Ref [29], slight mod-
ifications have been made.

Figure 2.8: Exemplary structures of a cytosine-nucleoside in C2’-endo (A) and in C3’-
endo conformation (B).

The state of the sugar ring is determined only by the phase angle P, see Fig 2.7.

The most important states are the C2’-endo (144◦ ≤ P ≤ 180◦, Fig 2.8 A) and the
C3’-endo (0◦ ≤ P ≤ 36◦, Fig 2.8 B) states . In this nomenclature, ’endo’ represents
states with the corresponding atom lying outside of the sugar ring on the side of the
C4’-C5’ bond, whereas ’exo’ denotes opposite positioning. B-DNA usually adopts the
C2’-endo and A-DNA the C3’-endo state. Importantly, sugar puckering is correlated to
the backbone dihedrals, which is also reflected in the absence of BII-states in A-DNA
[18].
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3 Theoretical Background

3.1 Principles of Statistical Mechanics

The phase space of a N-particle system is defined by the generalized coordinates q1, ...,qN
= q1, q2, .., q3N−1, q3N and their conjugate momenta p1, ...,pN = p1, p2, ..., p3N−1, p3N .
The probability to find the system at time t in the surrounding of a certain point
(q1, ...,qN ,p1, ..,pN) is given by ρ(q1, ...,qN ,p1, ..,pN , t) · dNq · dNp, whereby we have
introduced the ensemble distribution function ρ(q1, ...,qN ,p1, ..,pN , t). As stated by the
Liouville equation, the ensemble distribution function is constant in time [1]:

d

dt
ρ =

∂ρ

∂t
+ {ρ,H} = 0. (3.1)

In thermodynamic equilibrium, observables do not explicitly depend on time and hence
also not the ensemble distribution function. With ∂ρ

∂t
= 0, we then obtain {ρ,H} = 0.

Thus, ρ is a function of H [2]. In the microcanonical ensemble, the system evolves
according to Hamilton’s equations of motion, implying also conservation of energy:
H(q1, ..,qN ,p1, ...,pN) = E. This condition is fulfilled by ρ ∼ δ(H(q1, ..,qN ,p1, ...,pN)−
E), which also assumes that every microscopic state (defined by a phase space vector
(q1, ..,qN ,p1, ..,pN) ) is equally probable [3].
Now, the microcanonical partition sum Ω(N, V,E) results from integration over the
phase space [3, 4]:

Ω(N, V,E) =
∆E

N !h3N

∫
dNq · dNp δ(H(q1, ..,qN ,p1, ..,pN)− E). (3.2)

Thereby, we have accounted for Heisenberg’s uncertainty relation ∆q · ∆p = h. ∆E
represents the uncertainty of measuring E and is without effect on thermodynamic
properties, whereas the factor 1/N! corrects for the particles being indistinguishable.
From Ω(E, V,N), we can calculate all thermodynamic quantities. In biology, however,
most systems do not obey the conservation of energy. Constant temperature ensembles,
such as the canonical (NVT) and isothermal-isobaric (NPT) ensemble, are more realistic.
The canonical ensemble is derived by considering two microcanonical ensembles, where
the larger one acts as a thermal reservoir [4]. The canonical partition sum emerges then
as the Laplace-transform of the microcanonical partition sum [5, 6]:
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Z(N, V, T ) =
1

∆E

∫
dE exp[−βE] ·Ω(N, V,E) =

1

N !h3N

∫
dNq ·dNp exp[−βH]. (3.3)

We hence obtain ρ ∼ exp[−βH] in the canonical ensemble, and the free energy is given
by F = − 1

β
ln(Z). Note that the isothermal-isobaric partition sum, in turn, is the

Laplace-transform of the canonical partition sum with respect to the volume [7]. The
expectation value of any observable A can be calculated by its integration over the phase
space weighted by the ensemble distribution function [8]:

< A >=
1

N !h3N

∫
dNq · dNp ρ(q1, ..,qN ,p1, ...,pN) · A(q1, ..,qN ,p1, ...,pN). (3.4)

Importantly, the ensemble average of an observable is equal to its temporal average
(measured for a sufficiently long time), as stated by the ergodic hypothesis [8]:

< A >= lim
τ→∞

1

τ

∫ τ

0

dt A(t). (3.5)

3.2 Molecular Dynamics Simulations

3.2.1 General Remarks

The most basic decision for studying a N-particle system has to be made for the choice
of the level of theory. Here, Molecular Dynamics (MD) simulations use a classical for-
malism, whereby the system is propagated in time by numerically solving Newton’s
equations of motion [9, 10]. The major reasonings behind this choice are the follow-
ing: First, a quantum mechanical treatment is computationally too expensive for larger
systems [11]. Second, nuclear and electronic motion can be separated according to the
Born-Oppenheimer approximation [11]. Third, we neglect motions of the electrons, as
they relax quickly upon motion of the nucleus, which we then approximate to move in
an averaged electron density [12].
Recently, the classical description of biological systems is under criticism, as especially
the classical treatment of hydrogen atoms is contestable. Indeed, Pereyaslavets and
coworkers have shown that reproduction of essential properties of alkane systems is
highly problematic on the basis of classical mechanics and that nuclear quantum effects
play a major role in these systems [13]. However, several MD studies have also revealed
excellent agreement with experimental studies, such as accurate folding behavior of pro-
teins [14], the reproduction of elastic properties of DNA and RNA [15], and binding of
proteins into the correct binding-site of double-stranded DNA [16]. Furthermore, nuclear
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quantum effects can be easily incorporated into classical MD simulations by representing
atoms as a polygon composed of pseudo-particles [17, 18].
In the following, we explain the basic principles behind Molecular Dynamics simulations.
This includes the description of the potential energy landscape, the integration of the
equations of motion and the treatment of boundary conditions and long-range electro-
static interactions. Moreover, we discuss the simulation in the NVT and NPT ensemble
as well as advanced sampling methods.

3.2.2 Force Fields

The term ’force field’ means the description of the potential energy U(r1, ..., rN), whose
gradients are the forces acting on the respective particles. MD simulations performed
within this thesis rely on an additive force field [19]:

U(r1, ..., rN) =
∑
Bonds

kd · (d− d0)2 +
∑
Angles

kθ · (θ − θ0)2+

+
∑

Dihedrals

Vn
2
· [1 + cos(nφ− γ)] +

∑
i<j

[
Aij
r12
ij

− Bij

r6
ij

+
qiqj
ε · rij

]
.

(3.6)

The first two terms on the right side model the bonds and angles between covalently
bound atoms and use a harmonic form. Here, most force fields rely on empirical values for
the parameters kd, d0, kθ and θ0. Dihedral angles are parameterized through a truncated
Fourier series (commonly to third order). Note that this potential term does not have
a direct physical justification, it is rather used to correct for local misdescriptions [20].
Inaccuracies in the parameterization of dihedrals lead to obvious structural artifacts in
the simulations. Refinements of force fields have therefore mostly addressed the dihedral
parameters [20–26]. The last sum models the non-bonded interactions. It consists of a
short-range, repulsive (Pauli-exclusion) and a dispersion-related attractive interaction.
Eventually, electrostatic interactions are described through a point-charge model.
Major attempts in improving this potential form include multipole expansions for the
charge model and especially polarizations terms [27, 28]. Recently, it has been shown
that the omission of polarization effects is highly problematic when multivalent ions
are involved [29]. Nevertheless, polarizable force fields have not replaced the additive
functional form of equation 3.6 from the status quo. Not only are polarizable force fields
computationally more expensive, but also harder to parameterize. We find that clear
examples, where a polarizable force field systematically outperforms standard force fields
are still outstanding. Finally, we emphasize that the general difficulty of parameterizing
Molecular Mechanics force fields can already be anticipated from the problems of cheap
quantum mechanical methods [20].
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3.2.3 Integrating Newton’s Equations of Motion

As mentioned in the previous section, our representation of the internal energy U(r1, ..., rN)
enables the calculation of forces through Fi = −∇iU(r1, ..., rN). According to Newton’s
second law, we can obtain the acceleration of the particles:

Fi = m
d2ri
dt2

(3.7)

The equations of motion are then integrated numerically. In the following, we show the
velocity Verlet algorithm [3, 30]. Here, updates in the coordinates are given by a Taylor
expansion to second order:

ri(t+ ∆t) = ri(t) + ∆tvi(t) +
∆t2

2m
Fi(t) (3.8)

From another Taylor expansion, starting from ri(t+∆t) and going back in time, we find
for the update in velocities:

vi(t+ ∆t) = vi(t) +
∆t

2 ·mi

[Fi(t) + Fi(t+ ∆t)] (3.9)

Intriguingly, the velocity Verlet algorithm can also be derived from Trotter expansion
of the Liouville operator. Note that the velocity Verlet algorithm is time-reversible and
symplectic, i.e. it preserves phase space [3, 31]. Vibrations of bonds between light
atoms would require a subfemtosecond time step, however, employing holonomic, time-
independent constraints allows a time step of ∆t = 2 fs [12, 32, 33].

3.2.4 Temperature and Pressure Coupling

The theoretical concepts presented so far allow us to simulate biological systems in the
microcanonical (NVE) ensemble. Physiologically more sensible, however, are the NVT
or NPT ensemble. In the following, we therefore briefly discuss methods to couple a
thermostat and a barostat to a simulation system.
One of the most widely used thermostats is the Berendsen thermostat, which scales the
velocities, vi 7→ λ · vi, with [34, 35]:

λ =

[
1 +

∆t

τT
·
(
T0

T
− 1

)] 1
2

. (3.10)

T0 represents the reference and T the actual temperature. τT is the coupling constant,
recommended values are 0.5 ps − 5.0 ps. Larger values result in too low kinetic energy
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fluctuations, whereas the choice of a lower τT risks running into flying ice cube arti-
facts through transferring kinetic energy from high frequency into low frequency modes
[36, 37].

Analogously, pressure coupling is achieved by scaling of the box size and the coordinates:
ri 7→ µ · ri and l(t + ∆t) = µl(t), whereby the pressure-scaling factor is expressed as
a function of isothermal compressibility β, a coupling constant τP and the reference
pressure P0 and actual pressure P [34]:

µ =

[
1 +

β∆t

τP
· (P − P0)

] 1
3

. (3.11)

From P = kBT
(
∂ln(Z)
∂V

)
N,T

it is deducible, that we can obtain P as ensemble average

[38]:

P =
1

3V

〈∑
i

[
p2
i

mi

+
∑
j<i

rij · Fij

]〉
. (3.12)

Note that the second term is the virial, with rij = ri − rj and Fij the force between
corresponding particles.

3.2.5 Periodic Boundary Conditions and Electrostatic Interactions

An important aspect in the simulation of a biomolecular system exposed to explicit
solvent is the treatment of boundary conditions. Restricting the system to a finite
space by hard boundaries leads to artifacts, as a large number of particles stick at
the boundary surface [39]. Most MD simulations therefore include periodic boundary
conditions. Thereby, the simulation system represents a unit cell in an infinite lattice of
copies of the system. As shown in Fig 3.1, a particle that leaves the system towards one
side enters it on the opposite side. Using periodic boundary conditions, particles also
interact with particles of other periodic images [39].

In order to reduce computational costs, short-range interactions are usually truncated
and shifted so that they vanish at a predefined cut-off distance (∼ 9Å) [37, 39]. The
long-range Coulomb interactions are treated with the Ewald summation method, which
improves the scaling of the performance from O(N2) to O(N

3
2 ) [40]. In this method,

a Gaussian screening charge density is added to each point charge in order to gener-
ate short-range electrostatic potentials. Each screening charge density is neutralized
by means of a compensating Gaussian charge density (Fig 3.2), whose long-range elec-
trostatic potential is obtained by solving the Poisson equation in Fourier-space. By
correcting for self-interactions, the overall electrostatic potential finally becomes [41]:
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Figure 3.1: Schematic representation of periodic boundary conditions in two dimensions:
The central unit cell is the simulation system, which is embedded in an
infinite lattice of copies.
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Figure 3.2: Principle of the Ewald summation. The long-range point-charge potentials
are split into two terms: The point charges screened by Gaussian distribu-
tions of opposite sign plus compensating Gaussian distributions.

Uelec =
1

2
·
∑
i 6=j

qiqjerfc(
√
αrij)

rij
+

1

2V

∑
k 6=0

4π

k2
|ρ(k)|2exp

[
− k

2

4α

]
−
(α
π

) 1
2 ·
∑
i=1

q2
i , (3.13)

whereby α is chosen such, that we achieve best computational efficiency [41].

3.2.6 Umbrella Sampling and Hamiltonian Replica Exchange

Umbrella Sampling and Hamiltonian Replica Exchange Molecular Dynamics simulations
are advanced sampling methods, which enable the calculation of Free Energy profiles
along a reaction coordinate ξ [42, 43]. In Umbrella Sampling, a system is simulated
in consecutive windows, whereby each window is characterized by a specific external
potential. The external potential is usually of harmonic form employing for every window
i the same spring constant but different equilibrium values ξrefi [43, 44]:

U ext
i =

k

2
· (ξ − ξrefi )2. (3.14)

Note that the set of ξrefi defines the reaction path. The recorded probability distribu-
tion of the reaction coordinate Pi(ξ) depends on the spring constant k and ξrefi [43].
Importantly, they should warrant the probability distributions of juxtaposed windows
to overlap sufficiently, as this is essential for the calculation of the Free Energy profile
(also denoted as Potential of Mean Force, PMF) with the Weighted Histogram Analysis
Method (WHAM) [45].
However, in many cases, the Hamiltonian Replica Exchange Method offers better con-
vergence prospects. Here, simulation of the windows is not performed consecutively but
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in parallel, while every window may still have the same external potential as in the stan-
dard Umbrella Sampling [46–48]. After a certain number of steps, neighboring windows
are allowed to exchange conformations based on the Metropolis criterion [49]:

P ((Xi, Yi+1)→ (Yi, Xi+1)) = min{1, exp[β · (U(Xi)− U(Xi+1) + U(Yi+1)− U(Yi))]}.
(3.15)

Xi and Yi denote individual conformations of the system exposed to window i. This
method can be used in various contexts, e.g. by varying the temperature instead of the
Hamiltonian.

3.2.7 Weighted Histogram Analysis Method

Using the aforementioned sampling methods, we obtain biased probability distributions
P bias
i (ξ). The Weighted Histogram Analysis Method (WHAM) facilitates the determi-

nation of the entire unbiased probability distribution P (ξ). Therefore, the latter is ex-
pressed as a linear combination of unbiased probability distributions from the Umbrella
windows [44, 50]:

P (ξ) =
∑
i=1

Ci(ξ)Pi(ξ). (3.16)

The unbiased probability distributions are given by [50, 51]

Pi(ξ) = P bias
i (ξ) · exp[βwi(ξ)] · exp[−βFi], (3.17)

where wi(ξ) are the Umbrella potentials and Fi are free energy constants we need to
solve for.

Minimizing the statistical error, ∂σ(P (ξ))2

∂Ci(ξ)
, under the constraint

∑
i=1

Ci(ξ) = 1 eventually

yields [44, 45, 50, 51]

P (ξ) =
∑
i=1

ni · P bias
i (ξ)∑

j=1

njexp[−β(wj(ξ)− Fj)]
. (3.18)

ni is the number of conformations sampled in window i, and Boltzmann-factors of the
free energy constants obey [44, 50, 51]

exp[−βFi] =

∫
dξ exp[−βwi(ξ)] · P (ξ). (3.19)
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Equation 3.18 and 3.19 are solved self-consistently by starting with an initial set for
the free energy constants, and these are plugged into equation 3.18. Thus, we obtain
an estimate for the probability distribution P (ξ), from which we calculate a new set
of free energy constants Fi. This iterative procedure is carried out until convergence is
achieved. The free energy profile can then simply be determined by Boltzmann inversion
of P (ξ) [44, 50, 51].

3.2.8 Free Energy Perturbation and Thermodynamic Integration

Suppose we want to calculate the free energy difference between two thermodynamic
states A and B, which differ with respect to the potential energies UA and UB. The free
energy difference is then given by:

∆FA,B = FB − FA = −kBT · ln
(
ZB
ZA

)
. (3.20)

Here, ZA and ZB denote configurational partition functions, as the integration over the
momenta cancels out [44],

ZA =

∫
dNr exp[−βUA(r1, ..., rN)]

ZB =

∫
dNr exp[−βUB(r1, ..., rN)]. (3.21)

The ratio of the configurational partition functions in equation 3.20 can be reformulated
as an average of ensemble A [44]:

ZB
ZA

=
1

ZA

∫
dNr exp[−βUA(r1, ..., rN)] · exp[−β(UB(r1, ..., rN)− UA(r1, ..., rN))] =

= 〈exp[−β(UB(r1, ..., rN)− UA(r1, ..., rN))]〉A . (3.22)

Plugging equation 3.22 into 3.20, yields the Zwanzig equation [44, 52]:

∆FA,B = −kBT · ln 〈exp[−β(UB − UA)]〉A . (3.23)

Practically, however, a direct evaluation of equation 3.23 is often problematic. If the
configurations we sample for ensemble A are unfavorable in ensemble B, then we under-
estimate the Boltzmann factor in the Zwanzig equation. A solution to this problem is
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to include intermediate ensembles between A and B by introducing a ’control-variable’
λ. Therefore, we define a new potential energy function [44]:

U(r1, .., rN , λ) = (1− λ)UA + λUB. (3.24)

Thus, increasing λ from 0 to 1 allows a stepwise transition from A to B.

The free energy difference can be written as

∆FA,B =

∫ 1

0

∂F

∂λ
dλ, (3.25)

and with

∂F

∂λ
= −kBT

Z

∂Z

∂λ
= −kBT

∫
dNr

(
−β∂U

∂λ

)
exp[−βU(r1, ..., rN , λ)] =

〈
∂U

∂λ

〉
, (3.26)

we arrive at the thermodynamic integration formula [44, 53]:

∆FA,B =

∫ 1

0

〈
∂U

∂λ

〉
dλ =

∫ 1

0

〈UB − UA〉λ dλ. (3.27)

In order to calculate now ∆FA,B, MD simulations or Monte Carlo samplings are carried
out for different values of λ within [0,1] and equation 3.27 is integrated numerically.

3.3 Quantum Chemistry

3.3.1 Hartree-Fock Method

Separating electronic and nuclear motion by means of the Born-Oppenheimer approxi-
mation, we write the electronic Schrödinger equation as [54, 55]

[
−1

2
·
∑
i

∆i −
∑
A,i

ZA
rA,i

+
∑
i>j

1

rij

]
Ψ(r,R) = EelΨ(r,R), (3.28)

with ZA denoting the nuclear charge, r the coordinates of the electrons and R the fixed
nuclear positions.

However, the electronic wave function does not only depend on spatial degrees of freedom
but also on the spin coordinate. We therefore express the absolute electronic wave
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3.3 Quantum Chemistry

function through spin orbitals φi(r, σ) = ϕi(r) · αi(σ), which are a product of spatial
orbitals ϕi and spin functions αi [54, 56].
Due to the antisymmetric nature of fermions, we make the ansatz of a Slater determinant
for the absolute electronic wave function [54, 56]:

Ψ =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

φ1(1) φ1(2) .... φ1(N)
φ2(1) φ2(2) .... φ2(N)
. . . .
. . . .
. . . .

φN(1) φN(2) .... φN(N)

∣∣∣∣∣∣∣∣∣∣∣∣
(3.29)

This satisfies both, the indistinguishability of electrons and the Pauli exclusion principle.

For the rest of this section, we introduce the one-electron operator [54, 56]:

ĥ(i) = −1

2
∆i −

∑
A

ZA
rA,i

. (3.30)

Furthermore, we make use of the Dirac-notation for the one-electron integral [54, 56]

< i|ĥ|j >=

∫
dx1φ

∗
i (x1)h(r1)φj(x1), (3.31)

and the two-electron integral [54, 56] :

< ij|kl >=

∫
dx1dx2φ

∗
i (x1)φj(x1)

1

r12

φ∗k(x2)φl(x2). (3.32)

Note that the Hartree-Fock method is a variational approach, i.e. we seek to find the
set of orbitals which minimizes Eel. The expression for the energy to be minimized can
be rewritten as [54, 56]

Eel =
∑
i

< i|ĥ|i > +
1

2

∑
ij

(< ii|jj > − < ij|ji >). (3.33)

We carry out variation under the constraint of orthonormality of spinorbitals [54, 56]

δ(Eel({φi})−
∑
i,j

Lij(< i|j > −δij) = 0, (3.34)

where Lij denote undetermined Lagrange multipliers. From this, we can derive the
Hartree-Fock equation [54, 56]

27



3 Theoretical Background

F̂ (x1)φi(xi) = εiφi(xi). (3.35)

The Fock operator is composed of the one-electron operator, Coulomb operator Ĵ(x1)
and the exchange operator K̂(x1): F̂ (x1) = ĥ(x1) + 2Ĵ(x1)− K̂(x1). The Coulomb and
exchange operator are given by equation 3.36 and 3.37, respectively [54, 56].

Ĵ(x1)φi(x1) =
∑
j

∫
dx2

1

r12

φ∗j(x2)φj(x2)φi(x1) (3.36)

K̂(x1)φi(x1) =
∑
j

∫
dx2

1

r12

φ∗j(x2)φi(x2)φj(x1) (3.37)

Expanding the molecular orbitals as a linear combination of atomic orbitals, φi(x1) =∑
s

cisχs(x1), we finally obtain the Hartree-Fock-Roothaan equations:

FC = SCε (3.38)

In the Hartree-Fock-Roothaan equation, F denotes the Fock-matrix, S the matrix of
overlap integrals of atomic orbitals and ε the diagonal matrix of orbital energies. As
a starting point in Hartree-Fock calculations, we choose an initial coefficient matrix C.
From the coefficients, we then calculate the Fock-matrix. With the estimate for F, we
solve the Hartree-Fock-Roothaan equation and hence obtain the molecular orbitals and
a new coefficient matrix. This procedure is carried out iteratively until we obtain a
self-consistent solution [54, 56].

3.3.2 Møller-Plesset Perturbation Theory

The Møller-Plesset perturbation theory captures electron correlation by introducing it as
perturbation potential. Hereby, the Hartree-Fock function φ

(0)
0 represents the zero-order

approximation of the ground state wave function, and the unperturbed Hamiltonian is
the sum of the Fock operators: Ĥ(0) =

∑
i

F̂ (xi).

For the ground state, we expand the wave function and energy in a power series [57, 58]

φ0 = lim
n→∞

n∑
i=0

λiφ
(i)
0 (3.39)

E0 = lim
n→∞

n∑
i=0

λiE
(i)
0 (3.40)
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and the perturbation potential is V̂ = Ĥ − Ĥ(0).

Incorporating the expansion into the Schrödinger-equation yields [57, 58]:

(Ĥ0 + λV̂ )(|φ(0)
0 > +λ|φ(1)

0 > +λ2|φ(2)
0 > +...) = (3.41)

= (E
(0)
0 + λE

(1)
0 + λ2E

(2)
0 + ...)(|φ(0)

0 > +λ|φ(1)
0 > +λ2|φ(2)

0 > +...).

We then evaluate equation 3.41 order by order in λ. Here, zeroth and first order correc-
tion together amount to the Hartree-Fock energy: E

(0)
0 +E

(1)
0 = EHF . The correction to

the Hartree-Fock energy comes with the second order, after which we usually truncate
the expansion [57, 58]:

EMP2 = EHF +
∑
k 6=0

| < φ
(0)
k |V̂ |φ

(0)
0 > |2

E
(0)
0 − E

(0)
k

. (3.42)

The φ0
k are excited Slater determinants, and it can be shown that only double-excitations

(i.e. we substitute occupied orbitals through virtuals : a → p, b → q) contribute.
Eventually, we find for the energy corrected to second order [57, 58]

EMP2 = EHF +
∑
a<b

∑
p<q

| < ab|pq > − < ab|qp > |
εa + εb − εp − εq

, (3.43)

whereby we used the notation for the two-electron integral from equation 3.32.

3.3.3 Density Functional Theory

The electron density ρ(r) =
∑
i

ni|φi(r)|2 is the central quantity in the Density Functional

Theory (DFT) [59–61]. As shown by Kohn and Hohenberg, the ground state electron
density ρ0(r) fixes an external potential Vext, to which it is also subjected, in an unique
way. Furthermore, the level of information stored in the ρ0 and the ground state wave-
function ψ0 is equivalent [59–61]. A formal expression for the ground state energy E0

is then pursued based on the variational principle E0 = min < ψ|Ĥ|ψ > and the Levy-
constraint search method [61–63]:

E0 = minρ,
∫
ρdV=Nminψ→ρ < ψ|T̂ + Û + Vext|ψ > . (3.44)

In this method, the ground state energy is found in two minimization steps: First, we
minimize the integral starting from a set of trial wave functions ψ, which correspond to a
certain electron density ρ. Thus, we obtain a set of electron densities. We then calculate
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the ground state energy by minimizing the integral from the set of electron densities
under the constraint of conserving the number of electrons N. Expressing the external

potential through one-electron contribution Vext =
N∑
i=1

υ(ri), we find < ψ|Vext|ψ >=∫
υ(r)ρ(r)dr. Thus, the first minimization step only affects the kinetic-energy operator

T̂ and the electron-electron interaction operator Û , which motivates the introduction of
the auxiliary functional [61–63]:

FHK [ρ] = minψ→ρ < ψ|T̂ + Û |ψ > . (3.45)

Note that the constraint search method is fairly impractical. However, the above con-
cepts provide the theoretical basis for modern DFT calculations, which rely on the
Kohn-Sham method. In the Kohn-Sham method, we rewrite the auxiliary functional
from equation 3.45 [60, 61]:

FHK [ρ] = T̂ [ρ] +
1

2

∫
ρ(r)ρ(r′)

|r− r′|
drdr′ + EXC [ρ]. (3.46)

The exchange correlation functional EXC [ρ] is not known yet. The famous Kohn-Sham
equation is then derived by variation of the functional EHK [ρ] =

∫
υ(r)ρ[r]dr + FHK [ρ]

with respect to ρ [60, 61]:

(
−1

2
∇2 +

∫
ρ(r2)

|r1 − r2|
dr2 + vXC(r1) + υ(r1)

)
φi = εiφi. (3.47)

Here, we have defined vXC(r) = δEXC [ρ]
δρ(r)

. Different approaches to EXC [ρ] exist, within
the projects of this thesis we used the B3LYP hybrid functionals. These are empir-
ically derived functionals, which are composed by functionals stemming from various
methods (Hartree-Fock exchange energy, local density approximation and generalized
gradient approximation) [64–66]. Analogously to the Hartree-Fock method, the Kohn-
Sham equation can be solved self-consistently now. From a starting set for the orbitals
φi, we calculate the zeroth-iteration density ρ(r) and consequently the operators in the
Kohn-Sham equation. These in turn give us new orbitals, and we proceed iteratively
until we match the convergence criteria.
The ground state energy in the Kohn-Sham approach then equals [60, 61]

E0 =
∑
j

εj + EXC [ρ(r)]−
∫
vXC(r)ρ(r)dr− 1

2

∫
ρ(r)ρ(r′)

|r− r′|
drdr′. (3.48)

Unfortunately, the Kohn-Sham energy does not capture the long-range London disper-
sion interactions correctly. Modern DFT corrections are therefore commonly comple-
mented by the Grimme correction. Two- and three-body energies are added to the
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Kohn-Sham energy in this correction. Thereby, the two-body terms are dominant [67]:

E2 =
∑
AB

∑
n=6,8,10..

sn
CAB
n

rnAB
fd,n(rAB). (3.49)

Summation is carried out over all atom-pairs (indicated by AB), sn denote scaling fac-
tors, CAB

n dispersion coefficients, rAB the internuclear distance and fd,n(rAB) damping
functions to avoid singularities for small rAB [67]:

fd,n(rAB) =
1

1 + 6 · ( rAB
sr,nRAB0

)−αn
. (3.50)

This damping function is defined by new scaling parameters sr,n to the cut-off radii RAB
0

and steepness-parameters αn [67].

3.3.4 Technical Concepts

Basis Sets

Remind that the molecular orbitals are a linear combination of atomic orbitals, about
whose shape we have not made any statement yet. The most natural choice therefore are
Slater-type-orbitals (STOs), as they resemble the eigenfunctions of the hydrogen atom
[68]:

χSTO ∼ rn−1exp[−ζr]Ylm(θ, φ). (3.51)

On the downside, the evaluation of integrals including STOs becomes computationally
very expensive. Gaussian-type-orbitals (GTOs) benefit strongly from the product rule:
The product of two GTOs can be represented by a linear combination of GTOs. Thus,
modern QM calculations utilize GTOs [68]:

χGTO ∼ xlymznexp[−αr2]. (3.52)

Moreover, it has also become standard to treat valence electrons with multiple basis
functions. In this thesis, we usually have employed the Karlsruhe triple-valence basis
set [69].

Resolution of Identity

The Resolution of Identity technique (RI) has matured to a widely used method in order
to speed up QM calculations. Hereby, we introduce an auxiliary basis set ηµ(r), which
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is defined as the product of two basis functions [70]:

χi(r)χj(r) =
∑
µ

cµijηµ(r). (3.53)

The coefficients cµij can be obtained by minimizing the RI-induced error in the two-

electron integral (eq. 3.32). This yields cµij =
∑
ν

< ij|ν > V −1
νµ , with Vνµ =

∫ ην(r)ηµ(r′)
|r−r′| drdr′.

Note that ν and µ indicate auxiliary basis functions.

In this way, the four-center Coulomb integrals (i.e. two-electron integral) reduce to the
computationally cheaper calculations of three- and two-center integrals: [70]

< ij|kl >≈
∑
µ,ν

< ij|µ > V −1
µν < ν|kl > . (3.54)
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dynamics simulations: advances and applications. Advances and applications in
bioinformatics and chemistry : AABC, 8:37–47, 2015.

[10] Scott A. Hollingsworth and Ron O. Dror. Molecular Dynamics Simulation for All.
Neuron, 99(6):1129–1143, 2018.

[11] Stewart A Adcock and J Andrew McCammon. Molecular Dynamics: Survey of
Methods for Simulating the Activity of Proteins. Chem. Rev., 106(5):1589–1615,
2006.

[12] J. Meller. Molecular Dynamics. eLS, 2001.

[13] Leonid Pereyaslavets, Igor Kurnikov, Ganesh Kamath, Oleg Butin, Alexey Illari-
onov, Igor Leontyev, Michael Olevanov, Michael Levitt, Roger D. Kornberg, and
Boris Fain. On the importance of accounting for nuclear quantum effects in ab
initio calibrated force fields in biological simulations. Proc. Natl. Acad. Sci. USA,
115(36):8878–8882, 2018.

[14] Kresten Lindorff-Larsen, Stefano Piana, Ron O. Dror, and David E. Shaw. How
Fast-Folding Proteins Fold. Science, 334(6055):517–520, 2011.

33



3 Theoretical Background
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4 Unwinding-Induced Melting of
Double-Stranded DNA 1

4.1 Introduction

The elasticity of DNA is central to many biological functions. In particular, DNA un-
winding is implicated in processes such as replication, transcription and repair of dam-
aged DNA [1–6]. The local melting of DNA induced by unwinding is thereby of special
interest, as it provides direct access to the hereditary information. Experimentally, DNA
unwinding has been studied on the kilo-base-pair length scale, leading to a comprehen-
sive description of DNA’s global relaxation to torsional stress [4, 7–18]. More recently,
Molecular Dynamics simulations have provided valuable insight into DNA’s local struc-
ture and flexibility [19–26]. Thereby, harmonic stiffness models have been employed to
characterize DNA’s global and local flexibility at equilibrium [27–32]. Nevertheless, on
the base-pair level, many questions have remained open: How does DNA locally absorb
torsional stress, and in how far are the structural changes dependent on the sequence?
What amount of energy is required to induce separation of the DNA strands and to
what level can this be modulated by global restraints? Are such phase transitions fully
reversible?
In this study, we have performed Molecular Dynamics (MD) simulations on two 15 base-
pair long dsDNA molecules exposed to explicit solvent. We include a torsional reaction
coordinate acting on the termini of the DNA, hence enabling us to control unwinding of
the central segment and calculate changes in the free energy. From these Hamiltonian
Replica Exchange Umbrella Sampling (HREUS) simulations we find a harmonic response
of the DNA molecule to torsional stress close to equilibrium. Here, the free energy curve
can be reproduced from a harmonic model based on a stiffness description inferred from
covariance matrices. In this way, we deduce that coupling to bending degrees plays
an important role in absorbing local unwinding stress. The harmonic response remains
valid up to a phase transition, which is characterized by denaturation. In case of the
AT-rich sequence, this leads to local strand dissociation, whereas backbone deforma-
tions and stacking perturbations are predominantly found for the pure GC-sequence.
Achieving this phase transition through unwinding requires a free energy of about ∼ 1.0
(AT) to 1.2 kcal/mol (GC) per base-pair step. We then have performed another series

1This chapter has been previously published in similar form in J. Phys. Chem. B, 121(49), 11019-
11030, 2017.
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4 Unwinding-Induced Melting of Double-Stranded DNA

of free energy simulations, during which we restrain the bending flexibility of the DNA
molecules. In line with our harmonic model based conception of relaxation mechanisms
through coupled bending, we show that enhancing bending suppression leads to earlier
onset of local melting. The DNA molecules show only little further resistance to un-
winding in the melted phase, and the free energy profiles indicate full reversibility of
the unwinding-process. We validate this reversible character through unrestrained MD
simulations starting from denatured structures, where we obtain relaxation to intact
B-DNA on the nanosecond timescale.

4.2 Materials and Methods

4.2.1 DNA Structures and Equilibration

All MD simulations have been performed on two B-DNA structures. Both duplexes
are 15 bp long and either contain a central segment composed of A:T base-pairs d(5’-
CGCGCATATACGCGC) or of G:C base-pairs d(5’-CGCGCGCGCGCGCGC), termed
centAT and centGC, respectively. The simulations have been carried out with the Am-
ber14 Molecular Dynamics Package [33]. The simulation systems were neutralized by
potassium ions [34], and were solvated in explicit solvent (TIP3P water model) with
a rectangular box [35]. The minimum distance between DNA and box boundary was
set to 10Å. The bsc0 force field was used to describe DNA’s interactions [36] and all
simulations were performed with the pmemd.cuda module. Prior to simulation, the
DNA structures were aligned along the z-axis of the box and the systems were energy
minimized in 5000 steps. Afterwards, the systems were heated up to 300 K in three
stages including positional restraints on all heavy atoms of the DNA. Each stage en-
tailed a temperature increase of 100 K and was simulated in the NVT ensemble for
100 ps. The positional restraints were subsequently reduced from 25 kcal/(mol · Å2) to
0.5 kcal/(mol · Å2) in five consecutive stages simulated in the NPT ensemble (T=300 K,
p=1bar). The equilibration was finalized by a 2 ns NPT simulation including cylindrical
restraints (discussed in the next paragraph) only on terminal base-pairs.

4.2.2 Cylindrical Restraints

In order to allow translational and rotational motion with respect to the helical z-axis,
we applied cylindrical restraints. Thereby, only the distance to the z-axis was restrained,
hence also resulting in restraining bending degrees of freedom. Three different scenarios
were investigated: In a first case (unrestrained bending: UB), the cylindrical restraints
were applied on the two terminal base-pairs of one end. Thus, the DNA retains full
bending mobility. For the second setup, weak bending restraints (WBR), cylindrical
restraints were activated on the two terminal base-pairs of both ends, which also limits
DNA’s bending mobility. Finally, restraints were applied on the four terminal base-pairs
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4.2 Materials and Methods

of both ends, termed strong bending restraints (SBR). This freezes DNA’s bending
motion almost completely, whereas other degrees of freedom remain again unaffected.
In all cases, the force constant was set to 0.1 kcal/(mol · Å2).

4.2.3 HREUS Simulations

Controlled unwinding of the DNA molecules was induced using the Umbrella Sampling
(US) method. Thereby, a torque was applied on the C1’ atoms of the 4th base-pair and
its symmetric counterpart, the 12th base-pair. A quadratic potential was assigned on
the torsional (dihedral) reaction coordinate:

V = k · (ξ − ξrefi )2. (4.1)

The force constant k was set to 150 kcal
molrad2

∼= 0.0457 kcal
moldeg2 . ξ denotes the reaction coor-

dinate as depicted in Fig 4.1 . Unwinding is induced by changes in the reference value
ξrefi , which was decreased from 70◦ to −35◦ in 5◦ intervals during the US simulations,
resulting in 22 US windows. Sampling along the reaction coordinate was improved by
allowing exchanges of the conformations between adjacent US windows (Hamiltonian
Replica Exchange Umbrella Sampling: HREUS). Exchanges between neighboring repli-
cas were attempted every 500 steps, and overall at least 20000 exchanges were attempted
for every replica. Using a time step of 2 fs, this results in a simulation time of at least
20 ns for every replica. The simulation time was extended up to 120 ns for regions,
where convergence issues were noted. The trajectories were analyzed with VMD and
CURVES+ [37, 38]. Free energy profiles were calculated with WHAM and corresponding
error bars based on thermodynamic integration and block averaging [39, 40].

We followed the methodology of Strahs and Schlick to evaluate bending (curvature),
which is anisotropic and can be decomposed into directional terms [41]:

curvature =
√
θ2
T + θ2

R, (4.2)

with

θT =
11∑
j=4

τj · cos

(
j∑
i=4

ti

)
+ ρj · sin

(
j∑
i=4

ti

)
, (4.3)

and

θR =
11∑
j=4

−τj · sin

(
j∑
i=4

ti

)
+ ρj · cos

(
j∑
i=4

ti

)
. (4.4)
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4 Unwinding-Induced Melting of Double-Stranded DNA

Figure 4.1: Umbrella Sampling setup. The DNA is shown as stick model, atom-color
coded center indicates absence of restraints for all setups. In case of weak or
strong bending suppression (WBR/SBR), cylindrical restraints with respect
to the z-axis have been applied on terminal base-pairs. The torque to induce
unwinding of the central segment acts on the C1’ atoms of the 4th and 12th
base-pair (shown as blue dots, A-D).
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The variables τj and ρj denote tilt and roll of step j and ti the twist of step i. Directional
bending is indicated by global roll θR and global tilt θT : θR < 0 means bending toward
the minor, θR > 0 toward the major groove. θT quantifies bending toward the backbone.
For denatured structures, this methodology is error-prone due to difficulties in parame-
terizing the local parameters roll/tilt/twist. Therefore, we also employed the total bend
angle computed with CURVES+ as an alternative. It assigns a helical axis for the DNA
molecule so that total bending is mainly determined by the relative orientation of the
DNA’s termini.

4.3 Results and Discussion

4.3.1 Free Energy Changes related to DNA Unwinding and
Comparison to Harmonic Models

We have performed free energy simulations of two 15 bp long DNA sequences, one with
a central AT- (centAT) and one with a central GC-sequence (centGC). By applying
a torque to the terminal parts of the DNA (4th and 12th bp), we have been able to
stepwise unwind the central eight base-pair steps. Changes in the free energy along
the torsional reaction coordinate ξ have been calculated with the WHAM-procedure.
Notably, unwinding of DNA affects its twisting, stretching and bending behavior. How-
ever, in vivo these modes can also be restricted, e.g. changes in bending are suppressed
through packing or binding by proteins. Therefore, we have investigated the impact
of bending-restriction on DNA’s response to unwinding by covering three scenarios of
bending suppression: In a first scenario, we left bending motions unrestrained (termed
UB). We have then performed simulations on a setup which includes weak bending sup-
pression (termed WBR) and on one with strong bending suppression (termed SBR) by
inclusion of cylindrical restraints on the termini. The calculated free energy profiles of
the three scenarios for both sequences are shown in Fig 4.2. Close to equilibrium, the
free energy changes quadratically with respect to unwinding with an in general softer
response for the centAT sequence. Moreover, we observe that an increased bending
suppression results in a stiffer response of the DNA to unwinding, as unwinding then
implies a higher cost in the free energy. Consistently, the suppression of bending also
leads to an earlier onset of local denaturation. In this section, however, we focus on the
harmonic regime (denoted as regime I) in which the DNA retains its regular structure.
Here, we draw comparison between the calculated free energy profiles and a harmonic
approximation for DNA’s deformability. In the harmonic approximation, DNA’s free
energy is described by

F (∆w) =
1

2
∆wT ·K ·∆w, (4.5)

where ∆w denotes deviations of the internal coordinates from their equilibrium [28, 30,
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4 Unwinding-Induced Melting of Double-Stranded DNA

Figure 4.2: Changes in the free energy upon DNA unwinding for different levels of bend-
ing suppression.

32]. K represents the stiffness matrix, which is obtained from inversion of the covariance
matrix C:

K = kBTC
−1. (4.6)

Note that we have calculated equilibrium parameters as well as the stiffness matrix
from unrestrained 500 ns long MD simulations. Thus, the motivation for comparing
free energy calculations to the harmonic model is twofold: First, how well do free en-
ergy profiles agree with the deformability description extracted from equilibrium MD
simulations, and second, which modes of the DNA absorb the unwinding stress. To
this purpose, we have investigated various applications of the harmonic model. In the
simplest approach, we have chosen only the twist variable (between 4th and 12th bp)
as the internal coordinate. The stiffness matrix then reduces to the inverse of the twist-
variance. The second set of internal coordinates consists of the twist, stretch, global
roll and global tilt variable, whereby the latter two describe orthogonal bending mo-
tions, hence K becomes a 4x4 matrix. Furthermore, we have also applied the harmonic
model directly to the torsional reaction coordinated ξ to assess the accuracy and range
of validity of the harmonic approximation.

The free energy estimates obtained from the harmonic model can be directly compared
to the PMFs of the HREUS simulations. Close to equilibrium, relative free energy curves
show harmonic behavior, matching the harmonic estimates from the inverse variance of
the reaction coordinate ξ (compare black and pink dotted curves in Fig 4.3). Thus, we
argue that our harmonic models allow for quantitative conclusions on DNA’s elasticity.
Application of the simplest harmonic model with the inverse of the twist variance as the
only force constant already agrees well with the HREUS simulations in the harmonic
regime (compare red and black dotted curve in Fig 4.3). Unwinding stress in the har-
monic regime is hence absorbed by twisting motions of the base-pairs. Note, however,
that this model indirectly also accounts for coupling to orthogonal degrees of freedom
such as bending. It therefore relates to an effective persistence length of ∼ 76 and
∼ 83 nm for centAT and centGC, which is in good agreement with experiments [14].
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4.3 Results and Discussion

Figure 4.3: Comparison of the PMF (per base-pair step) along the reaction coordinate ξ
(black dotted curves) obtained from the HREUS simulations with different
harmonic models. The sequences and setups are given in the inset of each
panel. The dotted pink curve is computed from the stiffness with respect
to ξ from equilibrium simulations (i.e. absence of an external torque) of the
respective restraining system (UB, WBR, SBR). Red curves show free energy
predictions based only on the twist stiffness. In order to translate this to the
reaction coordinate, the twist has been calculated as average in each HREUS
window, hence obtaining free energy curves based on the quadratic model.
A similar procedure was carried out to obtain the blue and green curves, but
employing different modeling of the stiffness. For the blue curve, the 4x4
stiffness matrix includes twist, stretch, global roll and global tilt entries. For
the green curve, only the diagonal twist stiffness of this matrix was taken
into account.
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4 Unwinding-Induced Melting of Double-Stranded DNA

The second harmonic model, the 4x4 stiffness matrix, also results in close agreement
with the HREUS-PMF calculations (blue curve in Fig 4.3). This model includes twist,
bending and stretching deformabilities as diagonal elements in K. The non-diagonals
represent coupling terms. If we instead use just the diagonal twist stiffness element of
this 4x4 matrix, we overestimate free energy changes upon unwinding (see corresponding
green curves in Fig 4.3). From this, we see that twist-bend coupling plays an impor-
tant role in relaxing unwinding stress. Moreover, this effect is apparently stronger for
the centAT sequence, indicating that the softer response for AT-rich sequences to un-
winding largely results from their more pronounced twist-bend coupling. Furthermore,
we can translate the diagonal twist-stiffness element to an intrinsic twist persistence
length of ∼ 102 − 120 nm. These estimates are in close agreement with previous sim-
ulation studies [32] and experiments [14]. In the case of strong bending suppression
(SBR-simulations), free energies obtained from the full 4x4 matrix and from just the
diagonal twist element are indistinguishable (compare blue and green curves in Fig 4.3).
This stresses the consistency of our harmonic model considerations, as in the SBR sim-
ulations the DNA can only respond through twisting motions. We therefore conclude
that deformation energy caused by torsional stress is nearly fully absorbed in untwisting
and coupled local bending of the DNA. Besides, we also highlight the validity range
of the harmonic model: During equilibration MD simulations we sample fluctuations
in mean twist around 3 − 3.5◦ (in the UB case). However, the harmonic model agrees
with HREUS-PMFs in deviations up to ∼ 7◦. Eventually, we find that the breakdown
of the harmonic response depends on the level of bending suppression. Analogously to
the UB-case, we also observe a harmonic response for the WBR and SBR simulations,
but it is limited to a smaller deformation range with a stiffer response. Note that the
discussed implications of bending restriction may not only apply for straight, but also
for packed or circularly closed DNA and are hence of high biological relevance [42].

4.3.2 Free Energy Change upon DNA Unwinding beyond the
Harmonic Regime

As shown in Fig 4.2 and 4.3, the free energy required to overcome the harmonic regime
amounts ∼ 1.0 kcal/mol per bp-step for the centAT sequence, and is slightly more expen-
sive for the centGC sequence (by ∼ 0.2 kcal/mol per bp-step). Overcoming the harmonic
regime implies a phase transition, resulting in local melting of the DNA. In the UB case,
this phase transition occurs at an average twist of ∼ 25 − 26◦. Free energy costs for
further unwinding are then significantly reduced. In the WBR-HREUS simulations, the
harmonic regime ends at a higher average twist of ∼ 27◦. The relation between bend-
ing suppression and earlier phase transition holds also true for the SBR case, where
the harmonic regime ends at ∼ 28◦. Note that the free energies required to induce
phase transition is smaller for the centAT sequence in all setups, sequence-dependent
structural changes will be discussed in the next paragraph. Intriguingly, the PMFs do
not show any local minima in the melted regime. Although one can assume that this
might be due to insufficient sampling in this regime, we emphasize that this indicates
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AT GC
regime slope UB slope WBR slope SBR slope UB slope WBR slope SBR

I 0.886 0.920 0.998 0.861 0.905 1.01
II 1.55 2.86 1.33 1.93 2.04 1.37
III 1.27 1.21 1.03 1.24 1.07 1.01

Table 4.1: Slopes for the average twist of the central 8 base-pair steps vs. torsion
reaction coordinate ξ.

a fully reversible character of unwinding. The relaxation of underwound and disrupted
structures to regular B-DNA is investigated in paragraph 4.3.5.

4.3.3 Torque Induced Helical Conformations

As shown in Fig 4.4, application of a torque results in systematic untwisting of the DNA.
In the harmonic regime, marked as area I in Fig 4.4, we find a linear relationship between
reaction coordinate and average twist. If the torsional stress causes only untwisting, a
slope of 1 would be expected for the linear relationship. However, the fact that external
stress is partially absorbed by bending explains the lower correlation of ∼ 85% in the
UB case (Table 4.1).

Furthermore, simulations under conditions of bending suppression show higher correla-
tions: We obtain a correlation of ∼ 92% for the WBR and almost exactly 100% for the
SBR case (Table 4.1). The relationship between torque and average twist is therefore
fully in line with our conclusion on the elasticity of DNA (see paragraph 4.3.1) and em-
phasizes the role of twist-bend coupling. For the further discussion of structural changes
during phase transition, we limit on the total bend angle and relevant helical variables,
as most of the other parameters do not allow conclusions due to very large fluctuations
in the melted phase. The total bend angle continuously increases upon unwinding in
regime I, but begins to drop upon transition to regime II (see Fig 4.5 and Fig 4.6).
Moreover, we see that bending is mostly composed of strong local kinking in this phase
because of structural failure. The loss in twist-bend coupling must be compensated for
by increased untwisting. Thus, we obtain torque-twist slopes clearly exceeding 100% in
regime II. This correlation balances again in regime III with slopes closer to 1 (Fig 4.4),
although irregular bending is still observed. Structural failure occurs with the begin-
ning of the transition phase (regime II) and its character is highly sequence-dependent
(Fig 4.5, 4.7): For the centAT sequence, we observe local strand dissociations, various
flipping and unstacking events. In the centGC case, however, we have mainly sampled
stacking perturbations and left-handed segments. Apart from transient flipping events,
the centGC sequence largely conserves base-pairing. Note that this different behavior
is revealed by significant changes in the opening angle for the centAT sequence (Fig
4.6). Upon unwinding, helical rise decreases in regime I due to twist-stretch coupling
[26, 43], hence shifting the DNA’s topology closer to A-form. In regime II, however, this
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4 Unwinding-Induced Melting of Double-Stranded DNA

Figure 4.4: Relation between reaction coordinate ξ/8 and average twist over the central
8 bp steps. Only data of the last 20 ns of each replica was used, ξ was
measured every ps, and snapshots were taken every 10 ps. For each replica,
an average was calculated for ξ and the average twist over the central 8 bp
steps. Average twist values were determined with CURVES+. Only the 4th,
8th and 12th bp were taken into account. The twist values computed for
the steps 4 7→ 8 and 8 7→ 12 were added and divided by 8. This procedure
turned out to perform robustly in regime II and III, where strong struc-
tural deformations prevent reliable parameterization of single base-pair step
parameters. Linear interpolation was performed for each regime.
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Figure 4.5: Snapshots of representative conformations. (A) Snapshots taken from equi-
librium simulations. Helical axis was computed with CURVES+. (B) Snap-
shots taken from regime I prior to melting (C) Snapshots taken from regime
II/III, exhibiting less bending but structural distortions in the central seg-
ment.

is reversed by rapid helical extension. For the centAT sequence, the helical extension
relaxes back to B-form values, whereas the centGC sequence shows an excessively large
extension due to the ladder-like stacking irregularities. In order to better distinguish
regime II from III, we have looked at the probability distributions of the mean twist
in different regimes (Fig 4.8). While regime I is characterized approximately by single
Gaussian distributions, regime II shows bimodal behavior. This reflects a greater variety
of accessible states in regime II, resulting from partially melted structures mixed with
regular conformations. In regime III, the distribution becomes narrower and unimodal
again. Thus, we argue that there is a small window for the external stress to generate a
high structural polymorphism.

4.3.4 Changes in the Backbone Structure

In the previous paragraph, we have discussed that unwinding in regime I transforms
DNA’s shape closer to A-form like structures. This is also reflected in transitions of
the backbone structure and sugar puckering (Fig 4.9): Unwinding significantly reduces
the B-DNA characteristic C2’-endo substate in regime I, while the O1’-endo population
(closer to A-form) increases. Upon phase transition, we find the opposite tendency, anal-
ogously to our observations on the adaption of the helical structure. Furthermore, we
have quantified changes in the α/γ and BI/BII population along unwinding. In regime
I, unwinding results in an increase of BI states, which is in agreement with equilibrium
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Figure 4.6: Changes in global bending (left), helical rise (middle) and base-pair opening
angle (right) induced during HREUS simulations for the UB case. The plot
was generated in a similar way as described in the caption of Fig 4.4.

Figure 4.7: Structural snapshots (four base-pairs) taken from HREUS windows in regime
III, A:T base-pairs are shown in blue (panel A,B), G:C base-pairs in green
(panel C,D).
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Figure 4.8: Probability distribution of the mean twist (average over the central 8 base-
pair steps) in different HREUS windows. Narrow Gaussian type distributions
are sampled in regime I (A:centAT, D:centGC), whereas multimodal distribu-
tions are obtained in the transition phase, regime II (B:centAT, E:centGC).
The sampling in regime III is narrow Gaussian type again (C:centAT,
F:centGC).
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Figure 4.9: Relation between reaction coordinate ξ and sampled ε/ζ and α/γ backbone
couplings (A:centAT, C:centGC). The population of sugar pucker states is
given in (B:centAT) and (D:centGC). The data shows sampling of the central
segment in the UB case.

MD simulations [19]. Entering regime II coincides with large changes in both popula-
tions, reflecting strong changes in the backbone structure. For the centGC sequence we
obtain a higher affinity for α/γ flips (g-/g+ denotes the native state) compared to the
centAT sequence. We therefore point out that GC-sequences absorb torsional stress pre-
dominantly through backbone-deformation, because α/γ flips are associated with large
structural consequences.

4.3.5 Relaxation of Denatured DNA to Intact B-DNA

The calculated free energy curves indicate full reversibility with respect to unwinding,
i.e. unwound DNA structures are not kinetically trapped. We have challenged this view
by starting MD simulations from denatured DNA conformations (sampled in regime
III) in the absence of torsional restraints (Fig 4.10). For the locally melted centAT
sequence, the DNA recovers to fully regular B-DNA after only ∼ 50 ns. Moreover, the
average twist relaxes to its equilibrium value after only ∼ 10 ns, thus showing that
global helical structures relax on a shorter timescale than local distortions. The helical
relaxation proceeds through sharp transient bending (up to ∼ 60◦) and a drop of the
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Figure 4.10: Relaxation of unwound DNA toward regular B-DNA in unrestrained MD
simulations. (a) Time evolution of global parameters twist, helical rise and
bending during 100 ns unrestrained MD simulation starting from a locally
melted centAT structure. The parameters are given relative to their mean
values. Characteristic snapshots are shown in the inset of the panel and
corresponding simulation times are labeled accordingly (snapshots A-D).
(b) Time evolution of global parameters by starting an unrestrained 300 ns
long MD simulation from a strongly unwound centGC conformation.

helical rise. Intriguingly, this reflects the transition from regime I to II as sampled
in our HREUS simulations. Once the helical structure has relaxed, it remains intact,
hence enabling also local deformations to decay. Instead, for the centGC case, denatured
structures mostly remained base-paired with a higher amount of backbone irregularities.
Relaxation from these structures to B-DNA occurred in abrupt transitions on longer
timescales (> 200 ns).

4.4 Conclusion

DNA unwinding is a central mechanism in many biological processes. It is implicated
in supercoiling, packing, damage repair and even proposed to be a key determinant in
transcription and replication as it promotes access to DNA’s single strands [1–5]. In this

53



4 Unwinding-Induced Melting of Double-Stranded DNA

study, we have investigated DNA unwinding by means of Hamiltonian Replica Exchange
Umbrella Sampling simulations on two 15 bp long sequences varying in the AT-content
of the central segment. We have found that DNA unwinding can be distinguished in
three regimes: Close to equilibrium, regime I, unwinding results in quadratic changes
in the free energy. Thus, DNA’s deformability can be described through a harmonic
model [28, 30, 32]. By employing different kinds of harmonic models, we have figured
out that unwinding stress is absorbed by untwisting. Here, however, the coupling to
orthogonal degrees of freedom, mostly bending, plays an important role. In line with
this, we find that simulations conducted under bending restriction also show a stiffer
response of the DNA to unwinding. Furthermore, we see that a collapse in the harmonic
response coincides with a phase transition to regime II. In this phase, the DNA begins
to denature locally, coupling between twist and bending breaks down, which leads to
a sudden helical extension, stochastic kinking and an overshoot in untwisting. Upon
further unwinding, the DNA equilibrates to a continuous phase, regime III. Calculated
PMFs indicate full reversibility and show that further unwinding requires only minimal
free energy. Importantly, torsional stress leads to local strand dissociation in an AT-rich
sequence. For GC bps, however, stress is mainly absorbed in deformation of the backbone
and stacking perturbation. The reversible nature of DNA unwinding has been confirmed
by starting unrestrained simulations from denatured structures, where highly damaged
structures relax back to B-DNA on a timescale of 50 − 250 ns. In this study, we have
characterized the unwinding process of DNA, discussed induced sequence-dependent
structural defects and revealed the impact of bending flexibility. So far, however, we
have focused on aspects of DNA’s deformability and local effects. In a follow-up project
(chapter 6), we have studied longer DNA duplexes, hence also clarifying the impact of
local melting on DNA’s global behavior and coupling between distant sites.
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Walther, Ricard Illa Pujagut, Federica Battistini, Josep Lluis Gelṕı, and Richard
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5 How Methyl-Sugar Interactions
Determine DNA Structure and
Flexibility 1

5.1 Introduction

The backbone of DNA has a large impact on DNA’s structure and flexibility and plays
an important role in the recognition by proteins [1–3]. Thereby, the ε and ζ dihedral
angles define the most prominent conformational polymorphism: The BI and BII sub-
states. The population of these substates not only determines the bimodal distribution
of base-pair step parameters or is altered through the binding of proteins, but it is also
strongly dependent on the base-pair sequence [4–19]. By means of MD simulations, it
has recently been shown that the formation of unconventional hydrogen bonds between
base and backbone atoms (C8-H8...O3’ between purine base (R) and backbone for RpR
and YpR steps, C6-H6...O3’ between pyrimidine base (Y) and backbone for RpY and
YpY steps) correlates excellently with population of the BII state [15, 19]. Thus, the
differential formation of these hydrogen bonds serves as an explanation for the sequence-
dependent population of BI/BII states. However, in principle all DNA bases could build
such contacts and the hierarchy of the hydrogen bonds itself is unclear, hence a sterical
explanation has still remained elusive. A major unexplained phenomenon in this respect
is that methyl groups (in thymine or C5-methylated cytosine) stabilize the BI opposed
to BII substates [20–22]. Three major mechanisms are hypothetically causal to this
interdependency: First, the methyl groups are hydrophobic and directed towards the
major groove. Therefore, it has been argued that an altered hydration pattern in the
major groove is a central effect of DNA methylation [23, 24]. Furthermore, BI states
may be stabilized by a water molecule bridging between methyl-carbon and a phosphate
bound oxygen [22]. This hypothesis, however, has been revised by Wibowo et al in a
follow-up study, suggesting that methyl group induced BI stabilization results from an
increased mean water residence time around base atoms [25].
Second, steric repulsion between the methyl group and sugar ring of the 5’-neighboring
base may be causal. The existence of this effect has been hypothesized by Hunter [26]
and more recently in a MD based study by Peguero-Tejada and coworkers [21].

1This chapter has been previously published in similar form in Nucleic Acids Res., 47(3):1132-1140,
2018.
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5 How Methyl-Sugar Interactions Determine DNA Structure and Flexibility

Third, BI states are stabilized through methyl-π stacking. Interactions between the
thymine methyl group and a 5’-neighboring base are attractive, which has been argued
to be strongly implicated in DNA’s deformability [27–29].
We have investigated the molecular mechanisms of a methyl group in thymine and in
C5-methylated cytosine through comparative MD simulations, during which we have
included or explicitly omitted nonbonded interactions between the methyl group and
solvent or other parts of the DNA. The simulations reveal that neither methyl-π stack-
ing nor methyl-solvent interactions have considerable impact on DNA’s backbone struc-
ture. Switching off interactions between methyl group and the sugar C2’ atom of the
5’-neighboring nucleotide and its hydrogen atoms, however, significantly increases the
population of BII states. We further show that under these conditions the degree of
unconventional hydrogen bonding between nucleobase and backbone is also strongly
increased. The drastic effects on the BI/BII ratio imply a strong impact on DNA’s
structure and flexibility: Methyl-sugar clashes increase DNA’s intrinsic bending but
considerably reduce its stiffness. Bending and stretching stiffness are reduced by up to
∼ 40% when methyl-sugar clashes are allowed, and for GpT and CpT steps the twist
stiffness can lower even about ∼ 60%. Given the substantial impact of methyl-sugar
clashes on DNA’s local structure and flexibility, we suppose that this atomistic effect is
causal to many genetic functions, e.g. C5-methylation of cytosine is a central mecha-
nism in regulating gene expression. Moreover, thymine’s methyl group and the chemical
environment of the C2’ atom are the only difference between RNA and DNA. In this
study, we propose a fundamental interaction between both moieties.

5.2 Materials and Methods

5.2.1 Force Field Modifications

All starting structures were generated with the nab module of the Amber16 package
[30]. In total, seven different 15bp long DNA duplexes have been studied. The DNA
structures were neutralized with potassium ions and solvated to explicit solvent (TIP3P
water model [31]) with the xleap module. The minimum distance between box boundary
and DNA was thereby set to 10Å, and parmbsc1 was selected as force field [32]. For the
base atoms of C5-methylated cytosine, the parameters by Rauch et al, which served as
extension to the parm99 force field, were employed [22]. Updates to the parm99 force
field concerned only torsional backbone angles and not nonbonded parameters. Thus,
the parameters by Rauch et al for C5-methylated cytosine are fully compatible with the
bsc1 parameters. Classical force fields have the form:
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5.2 Materials and Methods

U(r1, ..., rN) =
∑
Bonds

kd · (d− d0)2 +
∑
Angles

kθ · (θ − θ0)2+

+
∑

Dihedrals

Vn
2
· [1 + cos(nφ− γ)] +

∑
i<j

[
Aij
r12
ij

− Bij

r6
ij

+
qiqj
ε · rij

]
.

(5.1)

The last sum represents Coulomb and van-der-Waals interactions, which describe all
nonbonded interactions. Besides regular parameter topologies, also topology files with
modified force field descriptions were generated. Thereby, nonbonded interactions be-
tween methyl groups and specific partner groups were switched off using the parmed
module of Amber16 [30]. This required the removal of partial charges on the methyl
group (C7, H71,H72,H73) and redistribution of the base atoms’ charges according to the
demethylated analogs. Furthermore, the pairwise van-der-Waals parameters between
methyl and defined partner group were set to zero. Thus, three additional topologies
were generated for each sequence, neglecting either:

• interactions between methyl groups and all water molecules

• interactions between methyl groups and the C2’ and its hydrogen atoms of the 5’
neighboring sugar

• or interaction between methyl groups and their 5’ neighboring base atoms.

5.2.2 Simulation Setup and Equilibration

Initially, the systems were energy minimized (steepest descent method) in 2500 steps
with the sander module of the Amber16 package [30]. All subsequent MD simulations
were carried out with the pmemd.cuda module. First, systems were heated up to 300 K
in three stages. Each stage induced a temperature increase of 100 K and was simulated
for 100 ps including positional restraints (with respect to the starting structure) on
all of DNA’s non-hydrogen atoms. Afterwards, the restraints were gradually reduced
from 25 kcal

molÅ2
to 0.5 kcal

molÅ2
in five consecutive simulations at 300 K and at a constant

pressure of 1 bar (weak coupling with a time constant of 5 ps). The equilibration was
completed with a 2 ns simulation in which only the first two base-pairs were positionally
restrained with a small force constant of 0.1 kcal

molÅ2
. The output structures served as

input for the production runs, where we maintained the soft restraints on the first two
base-pairs. Data gathering simulations were performed for 900-4000 ns, and coordinates
were written out every 5000 steps. Activation of hydrogen-mass-repartitioning allowed
a time step of 4 fs.
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Figure 5.1: ApT base-pair step in BI (A) and in BII conformation (B), respectively.

DNA-sequence abbrev. P(BI) [%]
5′ − CGCGCATATACGCGC − 3′ AT 83.6
5′ − CGCGCAUAUACGCGC − 3′ AU 75.5
5′ − CGCGCGCGCGCGCGC − 3′ CG 73.4

5′ − CGCGCGC∗GC∗GCGCGC − 3′ C*G 78.8
5′ − CGCGCAAAAACGCGC − 3′ AA 88.3
5′ − CGCGCTCTCTCGCGC − 3′ CT 77.2
5′ − CGCGCTGTGTCGCGC − 3′ GT 76.4

Table 5.1: Sequences of the studied DNA duplexes and population of BI states. C*
denotes methylated cytosine

5.3 Results and Discussion

5.3.1 How the Methyl Group Affects DNA’s Backbone

In a dinucleotide step, a DNA backbone strand can either adopt BI or BII conformations
which are determined by the ε and ζ dihedral angles (Fig 5.1):

ε− ζ < 0 : BI, ε− ζ > 0 : BII. (5.2)

We have performed MD simulations on seven different DNA duplexes to capture the
sequence dependence of these backbone states. The computed probabilities for the BI
state as a function of the sequence are summarized in Table 5.1.

We notice two major findings: First, increasing the A:T content results in a higher popu-
lation of the BI substate (by ∼ 10− 15%). Second, replacing thymine or C5-methylated
cytosine by their demethylated analogs destabilizes the BI state (∼ 5 − 8%). Thus,
our MD simulations point out that the methyl group in thymine and C5-methylated
cytosine stabilizes the BI conformation. Similar tendencies have also been reported in
other studies [21]. In order to reveal the molecular mechanism behind this stabilization,
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we have performed MD simulations of the AT-sequence (central ATATA segment, Ta-
ble 5.1) during which we have excluded physical interactions between the methyl group
and specific atom groups in the system. We have either turned off all interactions of
the methyl group with solvent molecules, with the atoms of the 5’-neighboring base or
with the C2’ and its hydrogen atoms of the 5’ sugar. Corresponding free energy profiles
along the ε− ζ coordinate have been computed by Boltzmann inversion of the sampled
probability distributions which represent averages over the central DNA segment (steps
6 to 9). Intriguingly, the exclusion of interactions between methyl groups and all water
molecules (Fig 5.2, purple curve) or the atoms of the 5’ neighboring bases (Fig 5.2,
yellow curve) results in negligible changes with respect to standard conditions (Fig 5.2,
blue curve). This means that neither the hydrophobic nor the methyl-π stacking effect
impacts DNA’s backbone structure. However, turning off interactions between methyl
groups and the C2’ atom and its hydrogens causes a large drop of the free energy in the
BII region (Fig 5.2, red curve). Thus, we conclude that the steric methyl sugar clashes
trigger BI promiscuity of C5-methylated sequences.

5.3.2 Why Methyl-Sugar Clashes Trigger BI Promiscuity

Methyl-sugar clashes can only occur in base-pair steps if the thymine (or C5-methylated
cytosine) base is at the 3’ position (e.g. in ApT but not in TpA steps). In the ApT
steps, the BII states are even more stabilized (by ∼ 2 kcal/mol) through the exclusion
of methyl-sugar interactions than expected from the free energy profiles obtained as
averages over the central segments (compare Fig 5.2 with Fig 5.3). On the contrary, for
adjacent TpA steps the exclusion results in a remarkable destabilization of BII states
(∼ 0.5 kcal/mol). Note that this behavior reflects the anticorrelation of DNA base-pair
steps and has been reported in previous studies [18, 33]. Here, we provide a qualitative
sterical explanation for this nearest-neighbor anticorrelation, see Fig 5.3. When an ApT
step is in BI configuration, the 3’ sugar (T nucleotide) preferentially adopts a lower
pucker phase than the 5’ sugar (A nucleotide). On the other hand, if a base-pair step
is in BII configuration, the 3’ sugar preferentially adopts a higher pucker phase than
the 5’ sugar. Note that the 5’ sugar adopts the role of a 3’ sugar in the consecutive
step. Having shifted the sugar to a lower phase due to the BII conformation therefore
suppresses another BII conformation in the neighboring step.

Based on our MD simulations, we can further illustrate the methyl-group induced BII
destabilization (Fig 5.4). In order to avoid clashing with the 5’ sugar, the bases are
locked to a conformational subspace where the backbone preferentially adopts the BI
configuration. Switching off this sterical hindrance allows both components to come
closer together and hence also the BII subspace becomes accessible. These states are
then stabilized by unconventional hydrogen bonds between thymine’s H6-atom and the
O3’-atom of the backbone.
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Figure 5.2: Sterical effects which may hypothetically trigger BI promiscuity: Hydropho-
bic interactions, methyl-sugar clashes and methyl−π stacking (A-C). Illustra-
tion for excluding interactions of the methyl group with all water molecules
(A), with the 5’-neighboring C2’ atom and its hydrogens (B) and with the
atoms of the 5’-neighboring base (C). (D) Free energy profiles along the ε−ζ
coordinate for the AT-sequence including all interactions or switching off
specific interactions (indicated by different colors). The free energy curve
for the uracil containing sequence (AU) is shown in green. The free energies
along the ε − ζ coordinate have been calculated by Boltzmann inversion,
F = −kBT · ln(p), and as average over all dinucleotide steps in the central
segments.
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Figure 5.3: Calculated free energies along ε− ζ for individual base-pair steps in the AT-
sequence. (A) Free energy profiles obtained under regular conditions. (B)
Free energy profiles obtained from simulations with exclusion of methyl-sugar
interactions. (C) Snapshot of a BI conformation. (D) Normalized density
plot of 3’-sugar’s pucker phase versus ε − ζ. Here, BI states prefer a lower
phase compared to BII states. (E) Normalized density plot of 5’-sugar’s
pucker phase versus ε − ζ. In this case, BI states prefer a higher phase
compared to BII states. (F) Snapshot of a BII conformation with arrows
indicating the shift in the puckering phases.
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Figure 5.4: Methyl-sugar clashes destabilize the BII subspace in ApT steps. (A) Center
of mass distance between methyl group and C2’ atom of 5’-neighboring base
as a function of ε− ζ, sampled in the regular MD simulation. BII states are
populated very rarely. (B) Same as in (A), but methyl-sugar interactions
have been excluded, hence both groups can approach each other making
the BII subspace accessible. (C) BI conformation, taken from regular MD
simulation. (D) Center of mass distance between methyl group and C2’ atom
of 5’-neighboring base versus H6-O3’ distance. The normalized density has
been computed from regular MD simulations and shows no unconventional
hydrogen bonding. (E) Same as in D, but for simulations during which
methyl-sugar interactions have been excluded. Methyl and 5’-sugar group
can come close to each other, thereby also giving rise to unconventional H6-
O3’ hydrogen bonding. (F) Snapshot of a BII conformation sampled during
MD simulation with excluded methyl-sugar interactions. The dashed red
line illustrates the unconventional H6-O3 hydrogen bond, which stabilizes
the BII subspace.

66



5.3 Results and Discussion

Figure 5.5: Free energy along ε − ζ for the AA, CT, GT and C*G sequences. Blue
lines correspond to simulations without the exclusion of specific nonbonded
interactions, and the red lines to simulations with excluded methyl-sugar
interactions.

In addition, we have studied the effect of methyl-sugar clashes for other sequences (Fig
5.5). Overall, we find that methyl-sugar clashes destabilize BII states for each of the
investigated sequences. For the CT, GT and C*G sequences, this effect turned out to
be even stronger than for the AT-sequence.

The sequence dependence of DNA backbone substates has also been studied with NMR
experiments. Thereby, it has been reported that out of the ten dinucleotide steps the
four which contain a thymine on the 3’-position (ApT, GpT, TpT and CpT) clearly
exhibit the lowest BII population [2]. This confirms our results remarkably well and
emphasizes that the effect of methyl-sugar clashes is indeed realistic.
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5.3.3 Methyl-Sugar Clashes Influence DNA’s Global Structure and
Flexibility

The conformation of DNA’s backbone is strongly coupled to base-pair stacking [1, 2, 34,
35]. In the following, we quantify the impact of methyl-sugar clashes on DNA’s struc-
ture and flexibility by considering mean twist, stretch and bending of the central DNA
segments as relevant parameters (Fig 5.6). Bending has been computed as curvature
as introduced in chapter 4. While we find only negligible changes in mean twist and
stretching, methyl-sugar clashes cause a pronounced increase in the intrinsic bending of
the DNA double helix (up to ∼ 18% for methylated cytosine tracts). We have calculated
the stiffnesses based on the harmonic approximation, K = kBTC

−1 [36–40]. Here, we
have computed the stiffnesses K directly by inversion of the parameters variance (de-
noted by C). In general, methyl-sugar repulsion has a strong softening effect: Excluding
methyl-sugar interactions decreases the bending stiffness by ∼ 40% for C*G and by
∼ 20−30% for the GT and CT sequence. The stretching stiffness is also reduced (by up
to ∼ 35%), while the twist stiffness decreases drastically for the CT and GT sequence
(∼ 50−60%). Nevertheless, we emphasize that these findings do not necessarily indicate
that methylated sequences are more flexible than their demethylated analogs, as we have
studied only the direct impact of methyl-sugar interactions. Van-der-Waals interactions
between methyl groups and other chemical groups are still included.
The impact of methylation on stiffness has been investigated in previous studies with
different conclusions having been made [40–42]. Based on our MD simulations, we have
made the following observations: GpC* steps are stiffer than GpC, whereas C*pG are
generally more flexible than CpG. Globally, methylated cytosine sequences exhibit a
lower stretching and bending stiffness (∼ 5− 7%), but they are much stiffer in response
to twisting (∼ 20%).
Note that the increase in flexibility induced by methyl-sugar clashes is counterintuitive.
However, we argue that this is a direct influence of the backbone: Within the BI sub-
space, the twist distribution is broader than in the BII subspace (Fig 5.7). An increased
population of BII states may therefore result in a narrower overall twist distribution,
and this lower variance directly relates to a higher stiffness.
Furthermore, one might also expect from the ε − ζ free energy profiles that the twist
distribution of BI is narrower. However, the backbone states do not map linearly to
stacking geometry, as for instance similar ε− ζ conformations can be coupled to entirely
different twisting (illustrated in Fig 5.7).
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Figure 5.6: Relative changes in structure and flexibility due to methyl-sugar clashes. The
first three columns show changes in equilibrium twist, stretch and bending of
the central segment, whereas the last three columns represent changes in the
stiffness. For the latter cases, red entries indicate that methyl-sugar clashes
have a decreasing/softening effect, and blue entries reflect increased stiffness.
All changes are given as relative to the reference case of reassignment of
thymines’ and methylated cytosines’ charges, i.e. the entries depict the effect
of van-der-Waals interactions between methyl and sugar group.
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Figure 5.7: Methyl-sugar clashes increase DNA’s flexibility. (A) Calculated twist dis-
tribution of a GpT step in case of simulations including methyl-sugar in-
teractions. Distribution of the BI and BII states as well as the cumulative
distribution are shown separately. The distribution of BI states is shifted and
broader (standard deviation σ = 7.2◦) than that for BII states (σ = 6.2◦).
The standard deviation of the cumulative distribution amounts to σ = 7.1◦.
(B) Similar as (A), but with excluded methyl-sugar interactions. As a con-
sequence of the higher BII population, the variance of the cumulative dis-
tribution becomes lower (σ = 5.7◦). (C) Snapshot of an undertwisted GpT
step (∼ 20◦) at ε− ζ ∼= −80◦ in Watson and Crick strand. (D) Snapshot of
an overtwisted GpT step (∼ 38.5◦) at ε− ζ ∼= −80◦ in both strands.

5.4 Conclusion

DNA methylation is a central epigenetic mechanism to regulate the expression of genes
[43–45]. These biological functions are likely to be caused by the altered deformability
of DNA [40, 41, 46]. In this study, we have shown that the methyl group in thymine and
C5-methylated cytosine impacts the population of BI/BII backbone substates and con-
sequently DNA’s deformability. Performing comparative MD simulations, we have been
able to identify methyl-sugar clashes as the sterical origin of the BI promiscuity induced
by the methyl groups. Neither the exclusion of nonbonded interactions between methyl
group and water molecules nor between methyl group and 5’-neighboring base atoms
changes the population of BI states. However, switching off interactions between methyl
group and the C2’ and its hydrogen atoms stabilizes the BII subspace remarkably and
hence destabilizes the BI subspace. Notably, thymine’s methyl group and the absence
of a hydroxyl group on the C2’ atom are the only chemical difference between DNA and
RNA. In the presented study we have pointed out that both components are strongly
coupled, which regulates DNA’s fine structure. This interaction has been found for each
of the investigated sequences. Thereby, the strongest changes have been observed for
sequences including CpT and GpT steps or methylated cytosine.
Previous studies have put forward the role of unconventional hydrogen bonds (H6-O3’
or H8-O3’) for stabilization of BII conformations [15, 19]. Within our study, we largely

70



5.4 Conclusion

agree with this view. Nevertheless, we emphasize that this is not sufficient to explain
the sequence dependence of BI/BII population. This becomes clear from our simulations
during which we have switched off methyl-sugar interactions: Allowing the clashes also
suddenly leads to formation of these unconventional hydrogen bonds.
Besides, we have been able to give a sterical explanation for the anticorrelation of DNA’s
base-pair steps: The backbone states are tightly coupled to the sugar puckering. In ad-
jacent base-pair steps, a given sugar ring adopts the opposite roles (5’ or 3’), thus
promoting opposite backbone behavior in both steps.
As a consequence of the large impact of methyl-sugar clashes on the BI/BII population,
also DNA’s global structure and flexibility is strongly affected. Methyl-sugar interac-
tions increase DNA’s intrinsic bending, but significantly decrease DNA’s stiffness. For
instance, the torsional rigidity of CpT and GpT rich sequences is decreased by 50−60%.
This finding can be explained by the higher variance of the BI subspace, so that its sta-
bilization results in an overall higher flexibility.
Finally, we emphasize that our simulation methodology of excluding specific nonbonded
interactions may be applied in future studies to also elucidate other phenomena, e.g.
the role of hydrogen bonding in structure formation.
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[5] Tomáš Dršata and Filip Lankaš. Theoretical models of DNA flexibility. Wiley
Interdiscip. Rev. Comput. Mol. Sci., 3(4):355–363, 2013.

[6] Korbinian Liebl and Martin Zacharias. Unwinding Induced Melting of Double-
Stranded DNA Studied by Free Energy Simulations. J. Phys. Chem. B,
121(49):11019–11030, 2017.

[7] Christophe Oguey, Nicolas Foloppe, and Brigitte Hartmann. Understanding the
Sequence-Dependence of DNA Groove Dimensions: Implications for DNA Interac-
tions. PLOS ONE, 5(12):1–8, 2011.

[8] Fajar R. Wibowo, Christine Rauch, Michael Trieb, and Klaus R. Liedl. M.TaqI
facilitates the base flipping via an unusual DNA backbone conformation. Biopoly-
mers, 79(3):128–138, 2005.

[9] James C. Robertson and Thomas E Cheatham. DNA Backbone BI/BII Distribu-
tion and Dynamics in E2 Protein-Bound Environment Determined by Molecular
Dynamics Simulations. J. Phys. Chem. B, 119(44):14111–14119, 2015.

[10] Rashmi S. Hegde, Steven R. Grossman, Laimonis A. Laimins, and Paul B. Sigler.
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6 How Global DNA Unwinding Causes
Non-uniform Stress Distribution and
Melting of DNA 1

6.1 Introduction

DNA unwinding is an important process which is involved in protein-binding, gene-
expression and melting of double-stranded DNA [1–9]. Intriguingly, theoretical studies
by Benham suggest that regulatory regions are intrinsically destabilized due to super-
helical stress in bacteria [10, 11]. Experimentally, the effect of torsional stress on DNA
has been studied in single-molecule torque measurements, whereby not only the twist
flexibility but also twist-stretch coupling and DNA denaturation have been character-
ized [12–15]. In chapter 4, we have elucidated DNA’s elastic response to unwinding,
sequence-dependent structural changes, the role of global restraints and local denatura-
tion. Furthermore, we have also pointed out that this mechanism is highly reversible.
However, this study was limited to relatively short DNA duplexes (15 base-pairs) [16].
This leaves many questions open: How do distant sites interact in larger DNA sequences
upon unwinding, how is this altered through local melting, and how does local melt-
ing depend on the global sequence? In this study, we have performed explicit-solvent
all-atom MD simulations on two 50 base-pair long DNA duplexes, which both con-
tain a transcription start like sequence (TATA-box). Unwinding of the duplexes has
been implemented using a torque restraining potential. From these simulations, we
infer that global unwinding induces coupling between distant sites of the DNA, a phe-
nomenon which is absent in the relaxed case. By employing a harmonic stiffness model
[16–22] we find that this also causes a non-uniform stress distribution along the DNA:
Cytosine/Guanine-rich segments absorb a higher amount of elastic energy due to en-
hanced transitions from the BII to the BI state. The TATA-box, instead, remains rather
relaxed. This character changes abruptly upon phase transition, where we observe local
melting within the TATA-box for both sequences. Here, the global deformation energy
is absorbed by the denaturation bubble in the TATA-box, whereas other sequences relax
back to near B-form. From our MD simulations, we have also calculated PMFs for the
unwinding process. We have related the free energy curves to an Ising model, which
we have established from experimental parameters [23]. The direct comparison with the

1This chapter has been previously published in similar form in Plos One, 15(5):e0232976, 2020.
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DNA-sequence Label
5′ − cgcgcatgaactgcagttatatggacctcgatgcggcgtacagtacgcgc− 3′ AT
5′ − cgcgcgcgcgcggccgttatatgggccgcgcggcggcgcgccgcgcgcgc− 3′ GC

Table 6.1: Simulated sequences. TATA-boxes are highlighted in bold.

MD simulations shows a remarkably good agreement for the torsional stress required to
initiate the melting transition but also for the position of the melted segment. More-
over, the Ising model gives excellent agreement with the PMFs in the harmonic regime,
whereas a slight overstabilization of the DNA force field (bsc1) is indicated. Overall,
this study gives new insights into the molecular mechanism of torsional stress induced
DNA melting and reveals a high degree of reliability of MD simulations to also capture
large-scale transitions in DNA realistically.

6.2 Materials and Methods

6.2.1 Simulation Setup

Two 50 base-pair long dsDNA sequences varying in their C/G content were studied, see
Table 6.1.
The sequences were processed with the xleap-tool of the Amber16 package [24]. Thereby,
each system was neutralized by sodium ions and solvated with the TIP3P water model
[25] using a minimum distance of 12 Å between DNA and rectangular box boundary.
The topology of the DNA molecules was described through the bsc1 force field [26]. The
DNA structures were initially aligned along the z-axis of the box, and afterwards energy-
minimized in 5000 steps (steepest-descent) with the sander module of the Amber16
package. All following simulations were performed with the pmemd.cuda module. We
equilibrated the systems to 300 K in three steps while including positional restraints
on DNA’s non-hydrogen atoms. In five subsequent simulations (T=300 K, p=1 bar),
the restraints were gradually removed from 25 kcal

molÅ2
to 0.5 kcal

molÅ2
. Resulting structures

served as the starting structures for production runs of at least 500 ns, where we applied
cylindrical restraints (introduced in chapter 4) with a small force constant of 0.1 kcal

molÅ2

on the two terminal base-pairs of both ends. From these simulations, we inferred the
stiffness matrices for the two DNA sequences (see below). The output structures served
as input for the Umbrella Sampling (US) simulations. In the US simulations, we used
a dihedral angle as reaction coordinate, ξ = 6 (: 4@C1′ : 97@C1′ : 53@C1′ : 47@C1′).
This dihedral angle represents a rotation of the 47th base-pair with respect to the 4th
base-pair. The reaction coordinate was biased by a harmonic potential V = k · (ξ− ξ0)2,
with k = 0.0122 kcal/(mol · deg2) = 40.0 kcal/(mol · rad2). The reference value ξ0 was
changed in steps of 10◦ per US interval (window). Simulations of every window were
performed for at least 100 ns and the first 50 ns have been skipped in the analysis.
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6.2.2 Calculation of Stiffness and Covariance Matrices

Stiffness matrices for both sequences were obtained by inversion of the covariance matrix:
K = kBT ·C−1, whereby we used the twist, roll and tilt angles of all 43 central base-pair
steps. These parameters were calculated with the Curves+ program [27]. Furthermore,
we calculated the twist persistence length for both sequences by P = Contour·ktw

kBT
, where

ktw denotes the twist stiffness as the inverse of the twist variance between 4th and 47th
base-pair, and Contour the corresponding contour length measured by the sum of the
rise-parameters.

6.2.3 Computation of Geometric Parameters through Rigid-Body
Transformation

Besides parameterization with Curves+, we have also developed a new protocol to cal-
culate base-pair and base-pair stacking parameters. The major differences to other
protocols (such as Curves+) are:

• All rotational parameters are Euler angles in our method (including also opening
and buckling).

• We can easily obtain a reference-axis system for every base and base-pair. This
enables us to measure bending as the angle of the axis-vectors, which are orthogonal
to the respective base-pairs.

• No specifications are required, except topology- and trajectory files as input.

The protocol works as follows: First, we span a local reference system on every base.
The local x-vector is the glycosidic bond. We then define a preliminary vector yp as
the vector-difference between the two base-carbon atoms next to the glycosidic nitrogen
(e.g. C2, C6 in case of thymine). In the Crick-strand, we define this vector in opposite
direction. The local z-vector is obtained by z = x × yp. We then calculate the actual
y-vector through y = x× z. We place this axis-system (denoted A) on the correspond-
ing C1’ atom, which serves as anchor-point. Second, we calculate six intra base-pair
parameters. The three translational parameters are given by the vectors connecting the
anchor-points of paired bases. Afterwards, we calculate the rotation matrix R, which
transforms the Watson-axis system into the Crick-axis system: R = ACrickA

T
Watson. The

three rotational intra base-pair parameters are obtained from this matrix as Euler-angles.
Third, we calculate the six base-pair step parameters. For this, we first determine a mid-
axis system for every base-pair by performing half-translation and half-rotation between
the axis-systems of the paired bases. Analog to the calculation of the intra base-pair
parameters, the base-pair step parameters are computed by means of rigid-body trans-
formations between successive mid-axis systems.
Moreover, bending angles are calculated as the angle between the z-vectors of the mid-
axis systems of the chosen base-pairs.
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6.2.4 Specification of Base-Pair Fraying

In order to estimate the fraying/breathing tendency of adenine vs thymine base-pairs in
the melting region, we computed the center of the two sugar rings of a base-pair, which
yields a center point. The distance B of the center point to a reference point in the
base (N1-atom for adenine, N3-atom for thymine) was then compared to the distance
S between the sugar and the center point. If distance S < distance B, then the base
is counted as frayed, otherwise not. The rationale behind this procedure is that in the
frayed state, the base rotates away from the center point of the base-pair and hence the
sugar is then closer to the center of the base-pair.

6.3 Results and Discussion

6.3.1 DNA as a Set of Harmonic Oscillators

Close to the equilibrium structure, dsDNA’s energy landscape can be well described
as a harmonic system in terms of intra and inter base-pair parameters [17–20]. For
an unrestrained system, one expects on average equipartitioning of the deformation
energy E. On a simple mechanical system we first demonstrate how equipartitioning of
deformation energy changes upon introduction of a global restraint (such as an external
restraint on the twist of DNA). We consider two harmonic oscillators, for simplicity we
neglect coupling terms as it does not affect the general mechanism outlined here:

E = k1 · (q1 − q0
1)2 + k2 · (q2 − q0

2)2, (6.1)

whereby the individual deformation energies are given by E1 = k1 · (q1 − q0
1)2 and

E2 = k2 · (q2 − q0
2)2. The expected energy is determined by the virial theorem:

〈
qi
∂E

∂qj

〉
= δijkBT. (6.2)

When exposed to a thermal heat bath, both oscillators absorb on average the same

amount of deformation energy,
〈
qi
∂E
∂qj

〉
= 〈2k1q1 · (q1 − q0

1)〉 = 〈2k1(q1 − q0
1)2〉 = 〈2E1〉 =

〈2E2〉 = kBT .

However, if we impose a global restraint on the system, Eres = kR · (L−L0)2, all parts of
the system are coupled through the geometric condition q1 + q2 = L. As a consequence
of the virial theorem, thermal energy is then no longer equipartitioned between the
individual oscillators but between coupled modes:

kBT =
〈
2kiqi · (qi − q0

i )
2 + 2kRqi · (qi + qj − L0)

〉
. (6.3)
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Figure 6.1: Covariance matrix of the twist fluctuations obtained for the central 43 base-
pair steps during MD-simulations (AT-sequence). In the unrestrained case
(left panel), relevant coupling occurs only between nearest-neighbor steps.
Upon global unwinding (right panel, σ = 0.067) also distant sites become
coupled to a significant extent.

Thus, equipartition of deformation energy, 〈E1〉 = 〈E2〉, is no longer obligatory, global
restraints rather induce correlations between distant sites. Intriguingly, this is also
revealed by our MD simulations of DNA subjected to global unwinding. In the unre-
strained case, the changes in twist at a given base-pair step exhibit relevant correlation
only with the nearest-neighbors, whilst non-diagonal elements in the covariance matrix
are close to zero. However, significant non-nearest-neighbor correlations arise upon ad-
dition of the global restraints (Fig 6.1). Qualitatively, this can be understood by changes
at one side being able to neutralize opposite changes at a distant side so that the entire
system is set in line with the global restraints. Indeed, such long-range correlations have
been reported for minicircles in a MD study by Sutthibutpong and coworkers [28].

6.3.2 Local Bimodality in the Twist Distribution of dsDNA

As discussed in chapter 5, the ε and ζ dihedral angles give rise to conformational polymor-
phism in DNA by adopting either the canonical BI or BII configuration [17, 18, 22, 29–
31]. These backbone states affect the base-pair stacking geometry and can trigger devia-
tions from the harmonic behavior (Fig 6.2). In general, BII states are associated with a
larger equilibrium twist than BI states [22, 30]. Thus, upon unwinding, torsional stress
may partially be relaxed by transitions from BII to BI states. Since the population
of the BI/BII states is sequence-dependent, Reymer et al have proposed that specific
sequences act as ’twist capacitors’. In their study, the authors demonstrate a sequence-
dependence in relative changes in twist, but have not related this to the local stiffness
[31]. It has therefore remained unclear how much of the deformation energy is absorbed
due to backbone polymorphism.
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Figure 6.2: (A) Twist distribution sampled for a CpG step during unrestrained MD sim-
ulation. The probability distribution is bimodal due to the BI/BII-backbone
polymorphism. BI states generally have a lower twist and a higher variance
than BII states. (B) Changes in the overall BI population at different levels
of global unwinding (for AT and CG steps). At σ = 0.067 an increase in
the BI population is observed which relaxes for higher σ as a consequence of
TATA-box melting and relaxation to standard B-DNA of all other segments.

6.3.3 Structural Changes in dsDNA upon Global Unwinding

We have performed MD simulations including a torque on the dsDNA termini to con-
tinuously unwind two different, 50 base-pair long, dsDNA molecules. Note that our
sequences are apparently longer than those of previous MD studies (usually 10-20 base-
pairs) [16, 32] and contain an AT-rich segment (’TATA-box’). Otherwise, our first
sequence is heterogeneous (labeled ’AT’), whereas the second sequence contains in ad-
dition to the TATA-box only G-C base-pairs. Employing the Umbrella Sampling (US)
technique with a torsional reaction coordinate, it is feasible to unwind the central 43
base-pair steps down to local melting. The setup is shown in Fig 6.3. In the follow-
ing, we indicate the degree of unwinding by just the magnitude of supercoiling density
σ (positive number). As pointed out previously, a global unwinding restraint induces
long-range couplings in the DNA polymer. At a global unwinding of σ = 0.067, most
base-pair steps are significantly undertwisted relative to regular B-DNA (Fig 6.4). How-
ever, further unwinding (σ = 0.073) causes melting of the TATA-box (and no other
region) for both sequences. This transition allows the rest of the DNA to relax back to
B-DNA, i.e. almost the entire global stress is then absorbed in the TATA-box. This
not only implies untwisting but also bending/stochastic kinking of the TATA-box (Table
6.2). In accordance with our observations from MD studies on shorter sequences (chapter
4), we characterize global unwinding by three phases. Plotting changes in twist of just
the TATA-box segment vs global unwinding (Fig 6.5) reveals small gradual unwinding
of the TATA-box at modest global stress (regime I). Melting of the TATA-box occurs
then to absorb large proportions of global unwinding (regime II), and further unwinding
entails steeper changes in twist compared to regime I. In regime III, global unwinding is
hence accommodated in the denaturation bubble of the TATA-box (Fig 6.4). This also
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6.3 Results and Discussion

Figure 6.3: Setup of the simulation systems (as stick models with the backbone shown as
cartoon). Yellow circles highlight the position of the C1’ atoms of the 4th and
47th base-pair, and constitute the torsional reaction coordinate (illustrated
as dashed line, curved arrow indicates unwinding). Stepwise unwinding even-
tually causes melting of the TATA-box segment. C/G bases are shown in
green, A/T bases in blue.

outlines the scenario of forming left-handed DNA structures in the melted region for
longer sequences. Indeed, experimental studies have reported that left-handed segments
can occur in strongly supercoiled DNA [12, 33–35]. Consistent with previous studies on
base-pair formation and melting [36–38], we have found an asymmetric fraying/breathing
tendency of adenine vs thymine bases in the melted region. Overall, we obtain on average
an increased breathing of thymine bases in the denatured TATA-box by a factor of 1.2
(AT-sequence) and 1.3 (GC-sequence), respectively. Details on the computation of the
breathing tendency are given in paragraph 6.2.4. Due to long-range couplings induced
by the global unwinding stress, structural changes are also representable for TATA-box
distant sites: Small global unwinding stress results in untwisting and helical-shortening
of those sites, but increasing torsional stress does not induce structural transitions. On
the contrary, the twist and other helical parameters relax to equilibrium values at these
sites when the TATA-box begins to denature. This mechanism is illustrated by snapshots
in Fig 6.6.
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Figure 6.4: Average changes in twist at each base-pair step (relative to unrestrained
DNA, AT-sequence) for two different levels of global unwinding: Slightly
below TATA-box melting (blue), and for melted TATA-box (red). The aver-
age deviations and standard deviations were calculated as averages of three
adjacent base-pair steps.

Twist/bp [deg] Bending/bp [deg]
σ = 0.0 34.37± 1.21 2.32± 1.24
σ = 0.067 31.88± 1.39 3.13± 1.46
σ = 0.073 21.59± 2.79 4.45± 1.83

Table 6.2: Deformation of the TATA-box under different levels of global unwinding, av-
eraged over both sequences. Parameters have been obtained by rigid-body
transformation of the first C-G base-pair prior to the TATA-box to the first
C-G base-pair after it. Our parameterization methodology is described in
paragraph 6.2.3
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Figure 6.5: Change in total twist of the TATA-box segment upon global unwinding for
the AT-sequence (A) and GC-sequence (B). Close to equilibrium (regime I),
slight continuous unwinding of the TATA-box is observed, which changes
abruptly during the transition phase (regime II). In this phase, the TATA-
box begins to denature and thus largely stores global unwinding. Further
unwinding causes continuous unwinding of the TATA-box (regime III) with
a steeper slope than in regime I. Due to its smaller persistence length, the
denaturation bubble absorbs most of the global stress. Global twisting and
twisting of the TATA-box segment have been computed based on our protocol
presented in paragraph 6.2.3.

Figure 6.6: Snapshots of two selected 8 base-pair segments of the DNA at different levels
of global unwinding. Structures of the TATA-box containing segment are
shown in the upper series. Structures of a distant GC-rich segment are
illustrated in the lower series (same color-coding as in Fig 6.3.)
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6.3.4 Redistribution of Elastic Energy upon Global Unwinding

From our US simulations, we have calculated mean deformation energies for each base-
pair step as a function of global unwinding employing the harmonic model [17–20]:

E(∆w) =
1

2
∆wTK∆w, (6.4)

∆w denotes deviations of the internal coordinates form their equilibrium values and K
the stiffness matrix, obtained as inverse of the covariance matrix of the internal coor-
dinates: K = kBT · C−1. Note that the stiffness matrix and equilibrium values have
been determined from extensive unrestrained MD simulations. Since changes in global
unwinding may be coupled to bending of the DNA, we have selected twist, roll and tilt
of each of the 43 central base-pair steps as internal coordinates. Thereby, we assume
that other internal parameters relax according to the corresponding covariations. How-
ever, our description fully specifies all twist and bending modes, hence K becomes a
129x129 matrix. The elastic energy for each base-pair step includes diagonal and half
of the secondary diagonal terms. In the absence of external stress, we obtain ∼ kBT

2

per degree of freedom, which is expected due to the equipartition theorem. In the
presence of torsional stress, the local elastic behavior of the DNA changes completely:
Already at modest global unwinding, the deformation energy profiles along the DNA
sequence show a non-uniform distribution (upper panels in Fig 6.7). Further increase
of global torsional stress results in strong fluctuations of absorbed deformation energy.
On average, the stress levels of A/T segments are lower compared to C/G segments and
the TATA-boxes are rather relaxed (middle panels in Fig 6.7). Segments storing higher
amounts of elastic energy exhibit significant transitions in the backbone structure. Since
C/G segments have a higher propensity for adopting a BII state in unrestrained DNA
[22, 39–41], these segments also have a higher capacity towards transitions from BII to
BI states, which relax the unwinding stress. Especially for strong unwinding (prior to
melting) we observe a significantly increased BI population mostly for C/G segments.
This finding indicates a protection mechanism of the DNA, as in this way unwinding
of the DNA does not lead to higher flipping rates of A/T base-pairs. In chapter 5, we
have pointed out that clashing of thymine’s methyl group with the 5’ sugar promotes
population of BI states. We now argue that this steric effect has a strong impact on how
the DNA responds to global stress. Unwinding to σ ∼ 0.07 induces a phase transition
characterized by local denaturation. In this phase, most of the deformation energy is
absorbed in the denaturation bubble, whereas all other segments of the DNA relax to
equilibrium conformation (bottom panels in Fig 6.7). This is also in line with the adap-
tion of the twist parameters, discussed in paragraph 6.3.3. In the melted region, the
computed elastic energies of the TATA-box only have a qualitative meaning, as the har-
monic model is not valid for denatured conformations. The impact of global unwinding
on the sequence-dependent deformation energy distribution is presented schematically
in Fig 6.8.
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Figure 6.7: Average elastic energy per degree of freedom and changes in the BI/BII pop-
ulation with respect to unrestrained simulations for each of the central 43 bp
steps of the AT sequence (left column) and the GC sequence (right column).
Vertical dashed lines in the panels correspond to a base-pair (sequence indi-
cated on the x-axis). The black lines indicate the average deformation energy
at each base-pair step. Cyan bars indicate an increase in BII, orange bars
an increase in BI states relative to the unrestrained simulation. The profiles
have been generated for different levels of global DNA unwinding. Upper
panels show profiles of Umbrella windows with low unwinding. Middle pan-
els illustrate moderate unwinding conditions, where the DNA structure is still
intact. Bottom panels show simulations at strong unwinding, which results
in TATA-box melting for both sequences. In order to calculate Eelast, we de-
termined deformation energies for every frame and then calculated averages
(over three adjacent base-pair steps). Note that a harmonic description for
the deformation energy is insufficient for denatured structures, correspond-
ing values therefore only have qualitative meaning. Error bars have been
calculated as standard errors by splitting the simulation into bins of 25 ns.
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Figure 6.8: Scheme for sequence-dependent response to global unwinding. In the absence
of global stress, all sequences undergo equal levels of deformation (∼ kBT

2
, A,

highlighted in blue). Global unwinding then causes G/C sequences to absorb
most of the stress (orange color in B), whereas A/T rich segments are less
stressed (light blue color in B). At strong levels of unwinding, global stress
is absorbed through melting of the TATA-Box (red in C), whereby distant
sequences are relaxed again (blue in C).
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Figure 6.9: Free energy profiles for global unwinding of the DNA molecules obtained from
US simulations (PMFs, solid lines) and calculated by Ising models (dotted).
Error bars of the PMFs have been calculated by thermodynamic integration
and block-averaging [43].

6.3.5 Calculation of Free Energy Changes

We have calculated relative free energy profiles (PMFs) as a function of global unwinding
σ with the Weighted Histogram Analysis Method (WHAM) [42], see Fig 6.9. In agree-
ment with chapter 4, we find a quadratic form of the PMFs up to relatively large σ [16].
Upon local melting (σ ∼ 0.07), the free energy curves change drastically to a flat shape
with a small slope. This behavior reflects the description of structural changes during
unwinding (paragraph 6.3.3): After local melting, global unwinding is absorbed in the
denaturation bubble (TATA-box), which has a lower stiffness. Thus, costs in the free
energy for further unwinding are significantly reduced. Consistently, TATA-box melting
occurs in both sequences at similar values of σ and requires ∼ 6 kcal/mol.

6.3.6 Modeling Melting Behavior upon Unwinding by an Ising
Model

In a next step, we have compared the thermodynamic behavior extracted from our all-
atom US simulations with predictions from an Ising model. In an Ising model, the
stability of dsDNA is determined by nearest-neighbor interactions (base-pairing and
stacking interactions), and mechanical destabilization is described by the global twist
stiffness (persistence length) and a smaller stiffness for denatured segments [6–8]. Note
that the Ising model allows us to calculate the partition function and associated ther-
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ag ac at aa ta
Estack -1.44 -2.19 -1.72 -1.49 -0.57

tc tg gg gc cg
Estack -1.81 -0.93 -1.82 -2.55 -1.29

Table 6.3: Stacking energies of the ten different base-pair steps used in the Ising model.
For base-pairing, we used Ebp = 0.64 and Ebp = 0.12 for AT and GC pairs,
respectively. All values have been adopted from [44] and are in units of
kcal/mol.

modynamic quantities as a function of global unwinding σ.
Our Ising model is based on experimentally determined base-stacking and base-pairing
parameters [44]. Furthermore, we use an empirical bubble initiation parameter ε =
4.1 kcal/mol, which has been shown by Krueger et al [23] to reconcile the base-stacking
and pairing energies with measured probabilities for base-pair opening. We set the stiff-
ness constant for denaturation bubbles to C = 0.79 cal/(mol · deg2), and write the elastic

energy as E = C · ∆τ−34.5·(n+1))2

2·n . This approximation for the elasticity of denaturation
bubbles has been introduced by Benham [6]. Importantly, the effective stiffness depends
on the number of molten base-pairs n. For regular dsDNA, we use a twist persistence
length P = Contour·ktw

kBT
extracted from our unrestrained MD simulations by measuring

the mean contour-length and the stiffness ktw as the inverse of the twist variance. At this
point, we have used parameters extracted from our simulations in order to account for
the sequence dependence. Moreover, the extracted twist persistence lengths (110.8 nm
for the AT and 119.9 for the GC-sequence) are close to experimental estimates (around
100 nm) [13]. In the Ising model, we discretize base-pairing by the eigenstates | i >, | j >

:=

(
1
0

)
for an intact base-pair and

(
0
1

)
for a denatured base-pair. The resulting

Hamiltonian is then given in 6.5. The elements of the interaction matrix Hij are related
to the state of the base-pairs < i | and | j >, e.g. the entry on the upper left of Hij

describes the state where both base-pairs are intact. This state is therefore not penalized
by any potential.

H =


ΣN
i=0,j=i+1 < i|

(
0 ε− Ej

bp − E
ij
stack

−Ei
bp − E

ij
stack −E

j
bp − Ei

bp − E
ij
stack

)
| j > +Ebubble , n > 0

kBTP
2L

∆τ 2 , n = 0

(6.5)

The partition sum can then be obtained through a transfer-matrix calculation that sums
over all possible states and the corresponding Boltzmann weight:
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Z = exp [−βEbubble] · < 0 | ΠN
i=0,j=i+1exp [−βHij] | N+1 > −exp [−βEbubble]+exp [−βHn=0] .

(6.6)

We set < 0 | = | N + 1 >=

(
1
0

)
, as these two overhang base-pairs are not affected

by torsional stress. Note that this treatment reflects the setup of our MD simulations.
However, we must ensure that the number of denatured eigenstates equals n (in the
elastic bubble energy), hence we only keep according terms in our implementation of
the Ising model. For optimization purposes, we neglect macrostates containing more
than one denaturation bubble. This approximation is justified as our DNA sequences
are relatively short compared to the size of plasmids and such states are penalized by
another 4.1 kcal/mol. Importantly, the partition sum is a function of global unwind-
ing ∆τ . Therefore, we can also calculate relative free energies as a function of σ by
F = −kBT · ln(Z). These free energy curves can be directly compared to the PMFs
obtained from our US simulations. As shown in Fig 6.9, the agreement between both
free energy curves is remarkably good: Close to equilibrium, the Ising model calcula-
tions coincide very well the MD-based PMFs. Interestingly, the Ising model also shows
a flattening in the free energy profile upon transition to the melted phase, which is a
consequence of the low elastic constant of the denaturation bubble and represents an
enthalpic character of DNA melting. Compared to our all-atom simulations, the Ising
model predicts an earlier onset of the phase transition and hence lower stability of the
intact phase (by ∼ 2 kcal/mol). We identify two likely reasons therefore: First, in our
simulations we only find melting of the TATA-box region, as bubble closing and re-
opening at different positions occurs on a too large timescale to be sampled in current
all-atom MD simulations. Thus, our simulations entropically underestimate the denatu-
ration phase. By means of the Ising model, we estimate this effect to correspond to only
∼ 0.09/0.40 kcal/mol (GC/AT). Second, we suppose base-stacking to be overstabilizing
in current DNA force fields. This argument has also been made in previous studies
[45–47].
Besides, the Ising model allows us to determine local melting probabilities (Fig 6.10).
Here, we obtain a dominant contribution from the TATA-box, and see that increased
global C/G content promotes earlier melting of this region. This phenomenon has al-
ready been found experimentally by Vlijm et al [15]. We explain this finding as a melting
competition between different sites of the DNA, as melting of one segment has a relax-
ation contribution on all other segments and hence decreases their melting probability.
Thus, we think of it as an entropic rather than an enthalpic phenomenon, as the persis-
tence lengths of our sequences are also quite similar. Furthermore, we predict the length
of the denaturation bubble to ∼ 1− 3 bps for our sequences. This also nicely resembles
the observation from our simulations.
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Figure 6.10: Calculated melting probabilities along the sequence using the Ising model
at a global supercoiling stress of σ = 0.067.

6.4 Conclusion

In this study, we have achieved atomistic simulation of localized melting of a promoter-
like TATA-box sequence for the first time. Thereby, we have not only calculated the
required free energy for unwinding induced DNA melting but also complemented our
MD simulations with an Ising model. This physical model is independent from our un-
winding simulations and based on empirical parameters. Though the Ising calculations
indicate an overstabilization of the MD force field, we overall obtain good agreement
between both theories.
In addition, we also give new insights into structural changes and the absorbance of local
deformation energies as a function of global unwinding. Whereas elastic energy is evenly
distributed in the absence of global restraints, it is absorbed highly non-uniform along
the sequence upon global unwinding. Here, we find that C/G sites take up most of the
global stress, hence relaxing the TATA-box. The reason therefore is that in equilibrium
C/G segments exhibit a higher population of BII states [22, 31, 40, 41]. This increases
their capacity to flip into the BI subspace which absorbs global unwinding stress. One
can interpret this as a protection mechanism, as it implies that modest unwinding does
not promote base flipping in A/T sites. Note that we have given a sterical explanation
which underlies this mechanism in chapter 5: In equilibrium, A/T sites have a higher
population of BI (and hence less BII states) than C/G sites due to thymine’s methyl
group clashing with the 5’ neighboring sugar [22]. It is therefore possible that overwind-
ing causes the opposite behavior and preferentially stresses A/T sites by switching from
BI to BII states.
However, unwinding to σ ∼ 0.07 causes a phase transition including melting in the
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TATA-box and requires ∼ 6 kcal/mol (as obtained from our US-simulations). Simulta-
neously, all other sites of the DNA relax to equilibrium conformation. Further unwinding
then requires only little energy, because the denaturation bubble in the TATA-box ab-
sorbs nearly the entire global stress. This principle, that strong global stress localizes
the least stable part in the DNA, may also arise in other biological processes: Inhibition
of the DNA gyrase enzymes, for instance, decreases the repair fidelity of UV damages
in bacteria drastically [2], and Dittmore et al [48] have shown that supercoiling locates
mismatches in DNA.
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[18] Tomáš Dršata and Filip Lankaš. Theoretical models of DNA flexibility. Wiley
Interdiscip. Rev. Comput. Mol. Sci., 3(4):355–363, 2013.
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and Michal Otyepka. Influence of BII Backbone Substates on DNA Twist: A
Unified View and Comparison of Simulation and Experiment for All 136 Distinct
Tetranucleotide Sequences. J. Chem. Info. Mod., 57(2):275–287, 2017.

[31] Anna Reymer, Krystyna Zakrzewska, and Richard Lavery. Sequence-dependent
response of DNA to torsional stress: a potential biological regulation mechanism.
Nucleic Acids Res., 46(4):1684–1694, 2017.

[32] Srinivasaraghavan Kannan, Kai Kohlhoff, and Martin Zacharias. B-DNA Under
Stress: Over- and Untwisting of DNA during Molecular Dynamics Simulations.
Biophys. J., 91(8):2956–2965, 2006.

[33] Florian C Oberstrass, Louis E Fernandes, Paul Lebel, and Zev Bryant. Torque spec-
troscopy of DNA: base-pair stability, boundary effects, backbending, and breathing
dynamics. Phys. Rev. Lett., 110(17):178103, 2013.

[34] Zev Bryant, Michael D. Stone, Jeff Gore, Steven B. Smith, Nicholas R. Cozzarelli,
and Carlos Bustamante. Structural transitions and elasticity from torque measure-
ments on DNA. Nature, 424(6946):338–341, 2003.

[35] E Di Capua, A Stasiak, T Koller, S Brahms, R Thomae, and F M Pohl. Tor-
sional stress induces left-handed helical stretches in DNA of natural base sequence:
circular dichroism and antibody binding. EMBO J., 2(9):1531–1535, 1983.

97



6 How Global DNA Unwinding Causes Non-uniform Stress Distribution and Melting of DNA

[36] Francesco Colizzi, Cibran Perez-Gonzalez, Remi Fritzen, Yaakov Levy, Malcolm F
White, J Carlos Penedo, and Giovanni Bussi. Asymmetric base-pair opening drives
helicase unwinding dynamics. Proc. Natl. Acad. Sci. USA, 116(45):22471–22477,
2019.

[37] C Izanloo, GA Parsafar, H Abroshan, and H Akbarzadeh. Denaturation of Drew-
Dickerson DNA in a high salt concentration medium: Molecular dynamics simula-
tions. Journal of computational chemistry, 32(16):3354–3361, 2011.

[38] Xiaojun Xu, Tao Yu, and Shi-Jie Chen. Understanding the kinetic mechanism of
RNA single base pair formation. Proc Natl. Acad. Sci. USA, 113(1):116–121, 2016.

[39] Alexandra Balaceanu, Marco Pasi, Pablo D. Dans, Adam Hospital, Richard Lavery,
and Modesto Orozco. The Role of Unconventional Hydrogen Bonds in Determining
BII Propensities in B-DNA. J. Phys. Chem. Lett., 8(1):21–28, 2017.
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7 Coarse-graining DNA: A
Multivariate Ising Model

7.1 Introduction

DNA’s sequence encodes not only the sequence of proteins but also its own local de-
formabilities [1–5]. This relationship plays an important role in protein-DNA binding,
processes of outmost biological relevance [4, 6–10]. Chromatin folding, for instance, de-
pends on DNA’s sequence-dependent deformability, as nucleosome formation strongly
bends the DNA [8, 11–15]. Another interesting example is the binding specificity of
papillomavirus proteins. These proteins locally deform DNA upon binding and show
binding affinities which strongly depend on DNA’s sequence [16–19]. Understanding
of these processes, how proteins recognize and bind to specific DNA sequences is very
limited so far. As a possible explanation, the concept of indirect readout mechanism,
which states that proteins find their target sites by scanning DNA’s local deformability,
has been proposed [6, 20]. In this view, the energetic cost to deform a contacted DNA
segment serves as a selection criterion for binding. However, this concept of indirect
readout strategies has remained vague and hypothetical. A major reason therefore is
the difficulty in describing DNA’s deformability.
It has been well established that the deformability of a dsDNA polymer can be as-
sembled from the deformabilities of tetranucleotide sequences [21–24]. Nevertheless,
modeling DNA’s deformability is complicated by two factors: First, nearest-neighbor
base-pair stacking is correlated [22, 25, 26]. Second, DNA exhibits a high level of bi-
modality, which is caused by conformational substates in the backbone [26–29]. In
general, coarse-grained models have approached DNA’s deformability with a simple, ad-
ditive and harmonic Hamiltonian [10, 14, 23, 24, 30]. However, such a Hamiltonian fails
to simultaneously capture both, nearest-neighbor correlation and multimodality. The
ThreaDNA- as well as the cgDNA-model account for nearest-neighbor correlation but are
unimodal [24, 30]. On the other hand, the coarse-grained method by Walther et al treats
multimodality, but their Hamiltonian neglects nearest-neighbor coupling. Furthermore,
it also does not explicitly account for intra base-pair parameters [23]. In this study, we
propose a novel approach to DNA’s deformability: By combining the multivariate har-
monic approximation with the Ising model, we account for nearest-neighbor correlation
and multimodality. Our model is fully parameterized from ∼ 1µs MD simulations of the
ABC-sequences [21], which include all 136 tetranucleotides, and accounts for all base-
pairing and base-pair stacking degrees of freedom. We show that our Ising model is more
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accurate by ∼ 0.03 kcal/mol per degree of freedom than the standard model in the eval-
uation of MD simulations on regular B-DNA oligomers. We have also applied the Ising
model to simulations on papillomavirus-protein/DNA complexes. Here, the free energy
estimations from the Ising model correlate very well with experimental binding affini-
ties, whereas the harmonic model is too imprecise to resolve sequence-dependent effects
accurately. In a next step, we have studied sequence-dependent deformation energies
in nucleosome structures. Thereby, we have applied our Ising model to comparatively
quantify energies along DNA’s sequence for the human nucleosome core particle with
its original and with an A-tract replaced sequence. Our Ising model based calculations
clearly reveal a strong increase in deformation energies upon substitution by A-tracts.
This explains why A-tracts deplete the formation of nucleosomes in vivo, an effect of
high importance for chromatin folding [31].
Thus, our multivariate Ising model provides a new and reliable approach to quantify
sequence-dependent deformation contributions that arise in protein-DNA binding. Our
routine is fast and hence enables evaluation of crystal structures and µs-long MD-
simulations within a few seconds.

7.2 Materials and Methods

7.2.1 MD Simulations of the ABC and Test Sequences

For the parameterization of the coarse-grained models (pure harmonic as well as Ising
model), we simulated all 39 sequences of the ABC consortium [21]. Together, these se-
quences (each consists of 18 base-pairs) contain all possible 136 tetranucleotides. Initial
structures were generated with the nab module of the Amber16 package [32]. The struc-
tures were then neutralized with sodium ions and solvated to explicit solvent (TIP3P
water model [33], 10 Å minimum distance between box boundary and DNA) with xleap.
The OL15 force field was used [34]. Afterwards, the systems were energy minimized in
2500 steps with the sander module of the Amber16 package. Subsequent simulations
were then performed with the pmemd.cuda module. Initially, the systems were heated
up to 300 K in three consecutive simulations. Each of these simulations lasted 100 ps
and induced a temperature increase of 100 K. Thereby, positional restraints were ap-
plied on all of DNA’s non-hydrogen atoms. The restraints were reduced from 25 kcal

molÅ2
to

0.5 kcal

molÅ2
in five consecutive simulations at 300 K and a constant pressure of 1 bar (with

a coupling constant of 5 ps). The equilibration was completed with a 2 ns simulation
in which only the first two base-pairs were restrained with a small force constant of
0.1 kcal

molÅ2
. The output structures were then used as input for the production runs, which

lasted ∼ 1µs and include the soft restraints on the terminal base-pairs. We used the
same protocol for the equilibration of two 16 base-pair long B-DNA molecules (Table
7.1), for which we tested the harmonic and the Ising model. The production runs were
performed for 2µs.
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sequence 1 5’-gcgcaatggagtacgc-3’
sequence 2 5’-cgtcaaagtacccagc-3’

Table 7.1: Sequence of the Watson-strand for the two simulated double-stranded DNA
molecules. The Crick-strand is complementary. Based on the simulation of
these sequences, we evaluated the accuracy of the Ising and standard harmonic
model.

7.2.2 Parameterization and Implementation of the Ising Model

The standard harmonic and the Ising model were exclusively parameterized based on
the simulations of the ABC-set [21]. Base-pair and base-pair step parameters for all
simulations were calculated with Curves+ [35]. For each tetranucleotide, we calculated
the equilibrium values for these parameters. In case of the Ising model, equilibrium
values were calculated for the (backbone) substates. The backbone substates were spec-
ified by ε − ζ, these dihedral angles were also computed with Curves+. The stiffness
parameters were obtained by inversion of the covariance matrices, K = kBT ·C−1. The
covariance matrices were calculated starting from two base-pair steps prior up to two
base-pair steps behind the corresponding tetranucleotide. From the resulting stiffness
matrices, we extracted only the central part which represents the tetranucleotide seg-
ment. The reason for calculating covariance matrices for longer segments and cutting
its inversed matrix afterwards is that in this way the stiffness matrix represents the case
of being explicitly coupled to neighboring steps. This is desired for building a descrip-
tion for DNA’s elasticity composed of tetranucleotide fragments. For the Ising model,
this procedure was performed for every substate. Since our interaction matrix in the
Ising model is spanned over two base-pair steps (less than a tetranucleotide segment),
we have split tetranucleotide parameters in two fragments: The first fragment contains
equilibrium and stiffness parameters for the first two base-pairs and base-pair steps, the
second fragment for the second and third base-pairs and the last two base-pair steps.
The application of our Ising model requires only the sequence, the number of the cen-
tral base-pair step of the first tetranucleotide in this sequence, and prior processing of
the MD simulation/crystal structure with Curves+. In our implementation of the Ising
model, all parameters are then read in automatically, interaction matrices are calculated
according to equation 7.2. The partition sum is then computed according to equation
7.9. In this way, the free energy is calculated for every frame in the trajectory.

7.2.3 MD Simulations of the Papillomavirus E2 Systems and
Nucleosome Complexes

The papillomavirus E2 systems were built based on the 1jj4 pdb-structure [18]. In order
to generate complexes with the five different central spacer sequences, all base-atoms of
the spacer sequence except N1/N9, C2/C4 and C6/C8 were cut. The residue-names of
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Position original A-tract
24-33 ACCAAAAGTG AAAAAAAAAA
49-58 CCATCAAAAG TTTTTAAAAA
89-100 CTTTTGATGGAG TTTTTTAAAAAA
121-130 GGTAGAATCT AAAAAAAAAA

Table 7.2: Substituted DNA sequences of the Watson-strand. The Crick-strand is always
complementary.

these three atoms, which largely define the geometry of the base, and of the correspond-
ing backbone atoms were reassigned according to the intended substitution. The missing
base-atoms are then automatically added in xleap. The rest of the preparation of the
systems, equilibration and MD simulations largely followed the same methodology as
for the ABC-simulations. The production runs lasted 20 ns, the protein was described
with the ff14SB force field [36] and no restraints were applied. The analog procedure
was carried out for the five DNA duplexes alone, where the production runs lasted for
10 ns.
Nucleosome systems were constructed from the 2CV5 pdb-structure [37]. Here, two
nucleosome systems differing in the DNA sequence were studied. In the first system
(termed ’original’), the DNA sequence and structure of the pdb-file was left unmodified.
In the second, we substituted several sites of the DNA by A-tract sequences. The sites of
the substitutions are given in table 7.2. Note that substitution and all of the subsequent
procedure was carried out in the same way as for the papillomavirus systems. Produc-
tion runs for the nucleosome systems were performed for 20 ns. For the evaluation of all
systems, we used only the second half of the production runs.

7.3 Results

7.3.1 Splitting DNA’s Mechanical Information into a Subset of
Tetranucleotides

The structure of double-stranded DNA can be described through three translational and
three rotational degrees of freedom for each base-pairing as well as base-pair stacking [35,
38, 39]. Thus, it has become standard to also described DNA’s deformability in terms of
these parameters (e.g. twist, rise, slide, hereafter denoted by q). As a starting point, we
outline a procedure to model DNA’s deformability based on the harmonic approximation
from predetermined parameters for all 136 tetranucleotides. This description serves as
a basis for the development of our Ising model. The parameters of the models are
derived from ∼ 1µs long all-atom MD simulations of all 39 sequences studied in the
ABC consortium. This set of DNA sequences includes all 136 tetranucleotides [21].
From these simulations we have extracted the stiffness matrices (with respect to the
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internal base-pair (stacking) parameters) by inversion of the covariance matrices: K =
kBT · C−1. Furthermore, we also measure the mean values for all parameters, q0. The
deformation energy for a tetranucleotide structure can then be approximated in harmonic
form [14, 28, 40–42]:

E =
1

2
· (q− q0)T ·K · (q− q0). (7.1)

In order to describe now the deformation energy of any dsDNA-structure of arbitrary
sequence, we first decompose the DNA’s sequence into pieces of tetranucleotides. We
then merge the associated stiffness matrices in the following way: For every tetranu-
cleotide, we use the full ’self-terms’ of its central step (indicated by cross-hatched area
in the tetranucleotides of Fig 7.1). The ’self-terms’ of the flanking sites are set to zero,
while we scale coupling terms between central and flanking sites by a factor of 1/2
(single-hatched area in the tetranucleotide, Fig 7.1). Finally, we successively sum over
all tetranucleotides, hence we obtain a mean deformability for nearest-neighbor coupling
terms (shown as cross-hatched with green stroke in the full matrix of Fig 7.1). It has
been shown that nearest-neighbor coupling terms play an important role in DNA de-
formability [22, 26]. This is already established in the aforementioned method. Note
that it excludes non-nearest-neighbor interaction (indicated by 0 in the full matrix of
Fig 7.1), which is justified as distant sites do not physically interact [43]. However, so
far our method relies on a pure harmonic description of DNA’s deformability, but it has
already been addressed by several studies that some sequences show a high level of mul-
timodality [21, 26, 28, 44]. Multimodality means the existence of several states in one
base-pair step. While a multimodal treatment of one base-pair step itself is fairly easy,
the inclusion of nearest-neighbor coupling becomes challenging. This requires a theory,
in which the states of all base-pairs are coupled to all nearest-neighbor states. Such
a theory cannot be realized by expressing the Hamiltonian as a simple pure additive
function, which has been state of the art so far. The derivation of a Hamiltonian which
fulfills both, nearest-neighbor coupling and multimodality is the objective of this study.
Therefore, we combine the harmonic approximation with an Ising model.

7.3.2 Inclusion of Multimodality

A harmonic model as introduced in the previous section fails to reproduce multimodal
behavior, hence it is insufficient to accurately describe DNA’s free energy landscape.
The major source for DNA’s deviation from unimodality is the BI and BII backbone
substates. These substates are defined by the ε and ζ dihedrals (BI: ε − ζ < 0, BII:
ε − ζ > 0), and their population is strongly sequence-dependent [21, 26, 28, 44, 45].
Generally, a backbone strand preferentially adopts the BI substate. In the following, we
denote a base-pair step with BI, when Watson- and Crick-strand are in BI configuration
and otherwise with BII. Dissecting now DNA’s local conformational space into BI and
BII harmonically-approximated subspaces provides a very sound basis for capturing
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Figure 7.1: Modeling the deformability of a DNA polymer: DNA’s sequence is split up
into tetranucleotides. For every tetranucleotide, the deformability of the cen-
tral step is fully retained (cross-hatched), whereas nearest-neighbor coupling
is scaled by 1/2 (single-hatched). The ’self-terms’ of the flanking sites as well
as non-nearest-neighbor couplings are set to zero (indicated by 0-panels).
The deformability for the entire polymer is then obtained by connecting the
tetranucleotide-descriptions additively.

DNA’s multimodal behavior (Fig 7.2) [26, 28]. We then link the splitting of one base-
pair (step) into subspaces to its nearest-neighbors’ subspaces by means of an Ising model.
In this way, our description of local subspaces also includes coupling terms to nearest-
neighbor subspaces. As shown in Fig 7.2, our Ising model reproduces the multimodal
probability distribution significantly better than the harmonic approximation.

7.3.3 Ising Model

We model DNA’s multimodality by discretizing DNA’s conformational space with re-

spect to the backbone substates:

(
1
0

)
denotes the BI, and

(
0
1

)
the BII substate.

In the following, the numbers of the base-pair (steps) are indexed by i and j, the corre-
sponding sequences by k and l, and the (backbone) substates by m and n (can be either
0 or 1). The interaction between adjacent base-pair (steps) i and j is then determined
by E =< i | Hij | j >=< i | Hkl

mn | j >, with :

Hkl
mn =

 1
2
∆qkl T00 Kkl

00∆qkl00 + Ekl
00

1
2
∆qkl T01 Kkl

01∆qkl01 + Ekl
01

1
2
∆qkl T10 Kkl

10∆qkl10 + Ekl
10

1
2
∆qkl T11 Kkl

11∆qkl11 + Ekl
11

 . (7.2)
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Figure 7.2: Bimodal distribution of a base-pair step parameter (twist). The standard
harmonic model fails to accurately reproduce the probability distribution
(A). The distribution can be decomposed into Gaussian distributions, which
represent BI/BII states. The different colors represent different conforma-
tional spaces for the backbones (B). Building an Ising model based on dis-
cretization towards backbone states yields a significantly better reproduction
of the probability distribution (C).

For each of the four states, we make a harmonic ansatz for the deformation energy. The
stiffness matrices are computed from inversion of the covariance matrices, which have
been calculated by accounting only for frames with the corresponding backbone con-
figuration, and we tailor the stiffness matrices analogously to the full harmonic model.
Additionally, we measure the set of equilibrium coordinates for every substate. In the
following, we directly account for the deviation from the equilibrium parameters, denoted
by ∆qklmn. All parameters are calculated from the simulations of the ABC-set contain-
ing the 136 tetranucleotides [21]. Note that the ground state energies Ekl

mn are so far
undetermined. However, a harmonic approximation for the energy implies a Gaussian
probability distribution:

ρklmn = exp

[
−β ·

(
1

2
∆qkl Tmn K

kl
mn∆qklmn + Ekl

mn

)]
. (7.3)

The overall probability for state mn of sequence kl is then given by:

pklmn =

∫ +∞

−∞
exp

[
−β ·

(
1

2
∆qkl Tmn K

kl
mn∆qklmn + Ekl

mn

)]
dNq = (7.4)

=

√
(2π)N

det(β ·Kkl
mn)

exp(−βEkl
mn). (7.5)

On the other hand, pklmn is a quantity we can directly measure from our simulations, and
hence we are also able to calculate the ground state energies:
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Ekl
mn = − 1

β
ln

(
pklmn

√
det(β ·Kkl

mn)

(2π)N

)
. (7.6)

In our description, we have scaled the Ekl
mn values by a factor of 1/2, due to the overlap

of juxtaposed matrices. In this way, we obtain mean ground state energies. As shown
in Fig 7.3, our approach provides a sound basis for capturing multimodal probability
distributions. Thus, we can evaluate the full Hamiltonian for a DNA duplex with known
configuration of the N base-pair (steps):

H =< 1 | H12 | 2 > + < 2 | H23 | 3 > +....+ < N − 1 | HN−1,N | N > . (7.7)

The partition sum results from summation over all (backbone) substates:

Z =
∑

|1>=

(
1
0

)
,

(
0
1

)
∑

|2>=

(
1
0

)
,

(
0
1

) ...
∑

|N>=

(
1
0

)
,

(
0
1

) exp[−βH]. (7.8)

Applying the transfer-matrix method, we obtain a simple matrix product:

Z =
∑

|1>=

(
1
0

)
,

(
0
1

)
∑

|N>=

(
1
0

)
,

(
0
1

) < 1 | ΠN−1
i=1 exp[−βHi,i+1] | N > . (7.9)

Finally, we calculate the deformation free energy through F = −kBT · ln(Z).

7.3.4 Free Energy Profiles

In order to check the quality of our Ising model, we have performed MD simulations
on two DNA test sequences (Table 7.1). From these simulations, we have computed
free energy profiles along various modes through Boltzmann inversion (red dots, Fig
7.4 and Fig 7.5). We have then calculated the deformation energy for every snapshot
of the trajectories by means of the pure harmonic model (blue dots) and our Ising
model (green dots, Fig 7.4, 7.5). Obviously, the Ising model substantially decreases
overestimations in the free energy and is hence overall in better agreement with the
actual free energy profiles. Note that we achieve significant improvements for base-
pair parameters (e.g. buckle and propeller), which have been omitted in the recent
multimodality approach by Walther et al [23]. Besides, we have also compared the
entire deformation energies between the two theories (Fig 7.6). For the harmonic model,
we find an average deformation energy of ∼ 0.36 kcal/mol per degree of freedom for
both sequences. The Ising model, instead, yields ∼ 0.33 kcal/mol in both cases and
is thus in better agreement with the equipartition theorem (∼ 0.30 kcal/mol). This
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Figure 7.3: Probability distributions of the twist and slide parameter for the central step
of various tetranucleotide sequences. The sampled distribution is shown as
histogram plot in grey bars, predictions by the harmonic model in red and
by the Ising model in green. The curves for the harmonic and the Ising
model have been calculated from the parameter’s variance, which has been
obtained by inversion of the stiffness matrix of the corresponding model.

means that energy overestimation is on average reduced by ∼ 4.3 kcal/mol for 11 bp
long unrestrained B-DNA structures. Due to the improvements in the free energy profiles
and the better reproduction of the equipartition theorem, we therefore conclude that the
Ising model offers a clearly better description of DNA’s deformability than the standard
harmonic model.

7.3.5 Application to DNA-Papillomavirus Complexes

We have applied the Ising model to the DNA/papillomavirus-E2 complex (see Fig 7.7)
[18]. Papillomavirus E2 proteins (short E2 proteins) bind to ACGGNNNNCGGT se-
quences. Thereby, the binding affinity of the E2 protein strongly depends on the cen-
tral spacer-sequence -NNNN-, although the protein hardly interacts with this sequence
and instead contacts the adjacent major grooves [18]. However, interaction with the
major grooves results in pronounced bending of the spacer sequence (Fig 7.7). Thus,
the E2 system represents a model system for the indirect readout hypothesis: Pro-
teins bind to specific sites by probing the local deformability. Experimental stud-
ies have shown that the ranking of the binding affinities for the spacer sequence is
AATT > AAAT > AAAA > TTAA > ACGT [18]. Moreover, it has also been pointed
out that the BI/BII polymorphism plays an important role in this complex [46]. We have
subjected the indirect readout hypothesis to the harmonic model and our Ising model.
To this purpose, we have performed MD simulations for the protein-DNA complexes (20
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Figure 7.4: Relative free energy profiles obtained for different parameters from simula-
tion of sequence 1. Red dots show the exact free energy curves, calculated
by Boltzmann inversion. Free energy estimates from our Ising model are
depicted in green and from the harmonic model in blue dots.

110



7.3 Results

Figure 7.5: Relative free energy profiles obtained for different parameters from simula-
tion of sequence 2, following the same methodology as in Fig 7.4.
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Figure 7.6: Free energy computations on MD simulations for sequence 1 (A), and se-
quence 2 (B). Blue curves represent calculations based on our Ising model,
red curves based on the standard harmonic model. Free energies have been
averaged in bins of 10 ps. Average free energies are shown by the dashed cyan
and dashed orange lines for the Ising model and the harmonic description.

∆Gexp HM single-molecule Ising single-molecule HM complex Ising complex
AATT -12.0 37.4± 0.3 33.9± 0.3 48.3± 0.4 38.2± 0.3
AAAT -10.8 37.0± 0.3 33.9± 0.3 46.0± 0.3 39.2± 0.3
AAAA -10.6 39.2± 0.3 36.3± 0.3 48.4± 0.4 41.7± 0.3
TTAA -10.2 40.8± 0.3 36.9± 0.3 44.5± 0.4 41.6± 0.3
ACGT -9.2 38.0± 0.3 35.1± 0.3 47.3± 0.3 43.2± 0.3

Table 7.3: Experimental binding affinities [18] and deformation energies calculated with
the harmonic and the Ising model for DNA configurations simulated as single-
molecule systems and in complex with the E2 protein. Values are in kcal/mol.

ns) and the DNA duplexes alone (10 ns) for each of the five sequences. We have then
calculated the deformation energy as the difference in the average free energy between
single-molecule and complex configurations for both models. For the Ising model, we
find an excellent correlation between deformation energy and experimentally obtained
binding affinity. In contrast, the harmonic model fails to predict correct ranking of the
sequences (Fig 7.7 A). As shown in Table 7.3, the harmonic model estimates higher
free energies than the Ising model for every simulation. The higher fluctuations in free
energies eventually prevent the resolution of sequence-dependent effects based on a pure
harmonic treatment. Thus, the Ising model performs significantly better in the compu-
tation of deformation free energies of DNA complexed to proteins than the harmonic
model. Apparently, the Ising model is accurate enough to reproduce good agreement
with experimental binding affinities, and is hence also supporting the indirect readout
theory.
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Figure 7.7: Free energy calculations on the papillomavirus E2 system: Correlation of
computed deformation energies (blue: Ising model, red: harmonic model)
with experimental binding affinities for the spacer-sequences AATT, AAAT,
AAAA, TTAA and ACGT [18] (A). Snapshot of the E2 protein in complex
with the DNA (B) and bending of the central spacer region (C).

7.3.6 Deformation Energies in Nucleosome Complexes - A-tract
Depletion

In a next step, we have applied our Ising model to quantify deformation energies for
DNA in the nucleosome complex. To this purpose, we have performed 20 ns simu-
lations for the human nucleosome core particle (pdb 2CV5 [37], denoted as ’original’
sequence) and for the same complex where we have substituted specific sites by A-tract
sequences (Table 7.2). From these simulations, we have computed deformation energies
along the DNA sequences. Deformation energies for A-tracts in the nucleosome com-
plex are of particular interest because of their overabundance in eukaryotic genomes and
their resistance to actually undergo nucleosome complex formation. This phenomenon
is known as A-tract depletion in nucleosomes and plays a major role in chromatin fold-
ing [14, 31]. Though the intrinsic resistance of A-tracts towards nucleosome formation
is uncontested and of high biological relevance, the mechanism behind it has not been
clarified [31]. Dršata et al have studied the positioning of A-tracts in nucleosomes based
on a harmonic model. Here, the authors find that A-tracts are associated with larger
deformation energies than CG-sequences. However, this study is not only based on a
rather simple description for DNA’s deformability but also only resolves a very small
subset of base-pair (step) parameters without allowing full structural adaption of the
A-tracts to nucleosome binding [14]. Our methodology, in contrast, allows full structural
adaption of the A-tracts, accounts for all base-pair (step) parameters and includes mul-
timodal behavior. Application of the Ising model to both trajectories (Fig 7.8) yields the
following results: First, the deformation energy is distributed rather uniformly for the
heterogeneous, original sequence, except at the 50-60 base-pair position. At this site,
kinking/partial unstacking was observed in the trajectory which may be a deficiency
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Figure 7.8: (A) Snapshot of the human nucleosome core particle [37] with heterogeneous
DNA sequence (denoted as ’original’). (B) Deformation energies for the
original DNA sequence and the A-tracts including sequence. Deformation
energies have been calculated with our Ising model over 9 base-pair long DNA
segments, and averaged over the last 10 ns of the MD trajectory. From the
resulting energies, we have subtracted kBT

2
for every degree of freedom. Po-

sitions of the A-tracts are labeled by asterisks, error bars represent standard
deviations.

in the force field. Second, deformation energies for the A-tract sequence are higher.
Summed over the total length of the DNA, the free energy is higher by 30.4 kcal/mol
compared to the original sequence. Third, destabilization strongly depends on where
the A-tracts are positioned, e.g. at the 24-33 base-pair position the placement of A-
tracs is not unfavorable. Overall, our Ising model strongly indicates that A-tracs avoid
nucleosome formation due to their stiffness and intrinsic structure. Thus, we further
emphasize the role of DNA’s sequence-dependent deformability for biological functions
and the importance of a high-level theory modeling it.

7.4 Conclusion

Up to now, the development of coarse-grained models for DNA’s free energy landscape
has been challenging and from the mechanistic point of view incomplete. Base-pair
stacking in DNA is strongly correlated to adjacent stacking interactions [22, 26], and
base-pair stacking itself shows a high level of multimodality [21, 26, 28, 44]. Account-
ing for each of the two effects alone is simple, as the Hamiltonian can then be written
in an additive, harmonic form. The difficulty arises when accounting for both effects
simultaneously, as every substate in a base-pair step needs to be treated as correlated
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to all nearest-neighbor substates. We have solved this problem by combining the har-
monic model with the Ising theory. Thereby, we discretize DNA’s conformational space
into backbone-subspaces and introduce a harmonic interaction matrix between nearest-
neighbor base-pair steps. In this way, we also account for all possible nearest-neighbor
couplings. We have parameterized our Ising model for all 136 DNA tetranucleotides from
MD simulations on the ABC-set of DNA sequences [21]. Notably, our Ising model does
not only account for base-pair stacking but also for base-pairing deformabilities, which
has been neglected in the coarse-grained model by Walther et al [23]. Evaluations of the
free energy profiles for two dsDNA sequences reveal a substantially higher accuracy of
our Ising model than the standard harmonic model. The overestimation of deformation
free energies is strongly reduced in the Ising model, hence resulting in closer agreement
with the Virial theorem. In a next step, we have studied protein-DNA systems. For
five papillomavirus E2/DNA complexes, differing in the central spacer sequence, we
have calculated reliable deformation energies for the DNA based on our Ising model.
Furthermore, we have found excellent agreement between the sequence-dependent de-
formation energies and experimentally obtained binding affinities. To the best of our
knowledge, this is the first time that reliable DNA deformation energies in correlation
with binding affinities are reported, and we emphasize that these findings strongly sup-
port the indirect readout theory. Besides, we also point out that investigating this
phenomenon requires a high level theory for DNA’s deformability, as the standard har-
monic model fails to accurately quantify deformation energies. In addition, we have
analyzed sequence-dependent deformation energies in nucleosome complexes, whereby
we have focused on A-tract depletion in nucleosomes. A-tracts are frequently occurring
sequences in eukaryotic genomes and their pronounced reluctance to undergo nucleosome
formation plays an important role in chromatin folding [31]. Here, we have shown that
A-tracts mechanically destabilize nucleosome complex formation with respect to a het-
erogeneous DNA sequence. This further stresses the role of DNA’s sequence-dependent
deformability in chromatin folding and gene expression. Altogether, we conclude that
calculation of realistic sequence-dependent deformation energies upon protein binding
has become feasible through our Ising model. Moreover, our protocol is easy and efficient
to use, it only requires preceding processing of the MD-trajectory/crystal structure with
Curves+ and the DNA-sequence as input. Development of a Monte-Carlo procedure to
study deformation energies for DNA under global stress will be a next step. This will
also enable us to screen sequence-dependent effects in high throughput.
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[40] Tomáš Dršata, Alberto Pérez, Modesto Orozco, Alexandre V Morozov, Jǐŕı Šponer,
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8 Tumuc1: Parameterization of a New
DNA Force Field

8.1 Introduction

Over the last decades, Molecular Dynamics simulations have strongly matured due to im-
provements in both, soft- and hardware, which promoted the field into the microsecond-
timescale [1–5]. Efforts in the theoretical description (force field development), in con-
trast, are still mainly based on deprecated parameters. Although overstabilization of
stacking interactions [5–13] and understabilization of hydrogen bonding [4, 14, 15] has
been reported in several studies, the nonbonded parameters in Amber’s DNA force fields
[4, 16–21] have not been revised since the pioneering publication by Cornell et al in 1995
[22]. The same also holds largely true for RNA and proteins, over the last ∼ 25 years
force field development has focused on refinements of the dihedral parameters. Probably,
this approach is followed by the scientific community because of its simplicity: Changes
in nonbonded parameters are way more challenging, as this instantaneously requires
reparameterization of dihedral angles, but not vice versa. From the theoretical point of
view, maintaining the nonbonded parameters (especially charges) from the ’90s is very
questionable: Charges were derived on a low level of QM-theory (Hartree Fock) and
calculated on small DNA-fragments with a low grid resolution. These choices were rea-
sonable ∼ 25 years ago due to a much lower computing capacity [22, 23]. From today’s
point of view, however, we strongly doubt that this can be considered as a parameteri-
zation procedure on a high level. In addition, state of the art DNA force fields also show
deficiencies in the dihedral parameters, which results in sampling bugs.
In this project, we undertake a radical, yet constructive approach to establish a sound
DNA force field. The parameters in our force field (’Tumuc1’, for 1st generation of
the Technical University Munich) are derived from high-level QM calculations (RI-
MP2/def2-TZVP). Thereby, bond- and angle-terms are parameterized with the mod-
ified Seminario method [24]. All partial charges are calculated by fitting of electrostatic
potentials based on the Merz-Kollman procedure [23, 25, 26]. In a next step, we have
scanned the QM potential energy landscapes for all relevant dihedral angles, and then
fitted the dihedral parameters to achieve best possible agreement between the MM and
QM potential energy landscapes. For the Lennard-Jones parameters, the Tumuc1 force
field relies on the old Cornell parameters. The Tumuc1 force field is as easy to use as all
standard Amber force fields and has been tested on several DNA-systems: We achieve an
excellent description of B-DNA’s helical structure, and a significantly better sampling of
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backbone states than the bsc1 force field, which is up to now considered as state of the
art. Our force field shows precise population of the BI and BII states, good sugar puck-
ering and a very robust α/γ population, which prevents serious, transient distortions
in DNA’s local structure as it occurs in the bsc1 force field. For the Dickerson-Drew-
Dodecamer, the Tumuc1 force field shows an average rmsd of 1.52Å with respect to the
crystal structure and likewise the stacking-parameters are in excellent agreement with
experiments. Here, Tumuc1 also maintains its good performance with respect to changes
in the solvent conditions. Simulation with the OPC water model yields (compared to
TIP3P) an even lower rmsd of 1.41Å. Importantly, (in vacuo) base-pair hydrogen bond-
ing is stronger in the Tumuc1 description compared to classical Amber force fields, which
results in lower base-pair breathing for the terminal base-pairs. Moreover, we have been
able to simulate hybridization of DNA single-strands into the correct duplex structure
with Tumuc1, and we demonstrate successful folding of a DNA hairpin in an unrestrained
MD simulation. DNA quadruplex structures remain stable within the µs-timescale in
the Tumuc1 force field, whereas it exhibits stronger base-pair breathing for Z-DNA but
better conservation of the left-handed helicity than the bsc1 force field.
We conclude from the test simulations, that the Tumuc1 force field provides a sound
standard for the simulation of DNA systems. In particular with respect to B-DNA, we
state clear progress compared to the bsc1 force field. It is hence not only competitive
with current force fields, but has also been designed in a way which allows future re-
finements: In contrast to other force fields, parameterization of Tumuc1 is based on just
the QM theory. Additionally, we provide a library composed of more atom types, which
makes changes in the Lennard-Jones parameters for instance easier. Thus, we are con-
vinced that the Tumuc1 force field opens necessary long-term prospects. It represents a
clear alternative to the conventional force fields, especially with respect to the electro-
static description, and creates strong competition in the field of force field development,
which will prove highly beneficial in the long run. Parameterization of our DNA force
field required elaboration of parameterization techniques. For the future, we are also
going to make use of these for the force field development for other biomolecules, e.g.
RNA.

8.2 Results and Discussion

8.2.1 Parameterization

General Outline

The Tumuc1 force field is a classical force field derived from QM calculations in a bottom-
up approach. Our force field description relies on the additive Cornell-form [22, 27]:
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Thereby, we stick to the same Lennard-Jones parameters as the conventional Amber
force fields for two reasons: First, these parameters are already physically sensible.
Second, we observe the electrostatic contributions to be absolutely dominant in hydrogen
bonding and stacking landscapes outside Pauli exclusion effects. We have therefore
derived an entirely new set of partial charges as well as bond- and angle-parameters
from QM calculations. Consequently, we have parameterized the relevant dihedral terms
employing the previously established set of parameters. For trivial dihedral angles (e.g.
dihedrals within a nucleobase) we use the standard parameters.

Partial Charges, Bond- and Angle-Parameters

We have computed RI-MP2 implicit solvent (ε = 80) geometry optimizations [28–31] on
model-systems slightly larger than a nucleotide. From these calculations, we have in-
ferred partial charges with the Merz-Kollman procedure, whereby we incorporate charge
constraints [23, 25, 26]. Given the size of our model-systems, we can enforce the par-
tial charges of a whole nucleotide to sum up to -1 (Fig 8.1 A,B). Thus, our force field
will maintain integer charges for any DNA-system, so that the latter can always be
neutralized by counterions. Furthermore, we also include equivalence constraints, e.g.
hydrogens bound to the C2’-atom should be physically identical. Note that the resulting
electrostatic description shows significant differences to classical Amber force fields, such
as substantially stronger (in vacuo) hydrogen bonding (Fig 8.2).
Parameters for bonded interactions (bonds, angles, dihedrals) have been determined
from in vacuo QM calculations. In order to obtain bond- and angle-parameters, we
have performed QM frequency calculations on slightly smaller model-systems than for
the charges (overall four nucleoside- and two backbone-models). We then have applied
the modified Seminario approach, recently developed by Allen and coworkers [24]. This
method excels through improved mapping of the QM-derived Hessian matrix in Carte-
sian space to deformability in internal modes (bonds, angles). The derivation directly
from the QM Hessian matrix is highly beneficial for our bottom-up approach, as the
bond and angle parameters are then independent of all other force field parameters in
contrast to interpolation approaches (Fig 8.1 C). Thus, we do not need to update them
iteratively. While current Amber force fields still use the empirical bond- and angle-
parameters established ∼ 25 years ago, we now provide a new set in consistency with
QM calculations. This may also prove advantageous for the dihedral parameters, which
are generally derived from fitting MM energies to QM scans.
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Figure 8.1: Derivation of charges, bond- and angle-parameters. (A) Model-system for the
computation of charges. Equivalence constraints have been applied (dashed
green lines). The sum of charges over a whole nucleotide has been constrained
to -1. (B) Illustration of the fitting-procedure. Charges are fit to optimally
reproduce the QM electrostatic potential on a grid around the molecule.
Errors in the calculation are shown color-coded. Blue dots mean accurate
description by the partial charges, red dots deviations by up to ∼ 5 kcal/mol.
(C) Bond- and angle-parameters are obtained with the modified Seminario
method. In this method, an accurate projection of the Hessian matrix in
Cartesian space (computed in QM calculations) on the internal parameters
is achieved.
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Figure 8.2: In vacuo hydrogen bonding for QM (RI-MP2/def2-TZVP), bsc1 and the Tu-
muc1 description. The scan has been performed by constraining interatomic
distances between the base-pairs stepwise to higher values. (A) Hydrogen
bonding energies for an A-T base-pair. (B) Hydrogen bonding energies for a
G-C base-pair. (C,D) Systems used in the calculations. Note that we have
used the same structures for QM and MM calculations. For the MM calcu-
lations, however, the hydrogen atoms on the glycosidic nitrogens have been
removed.

Parameterization of Dihedral Angles

Parameters for all relevant dihedral angles have been deduced from three different types
of model-systems (Fig 8.3). For each dihedral angle, we have performed a QM scan
(RI-MP2/def2-TZVP) [29, 30] employing constraints on specific internal modes (see
Materials and Methods section for details). Note that fitting of the dihedral parameters
requires a force field description for each model-system in consistency with the final DNA
force field. Thus, we have derived charges for the model-systems by multi-configurational
fitting of the electrostatic potential using the same procedure as for the nucleotide-like
system (see previous paragraph). Furthermore, we have also incorporated the bond- and
angle-parameters which are used in the DNA force field. The description of the model-
systems is then completed by setting the torsional potential for the scanned dihedral
angles to zero. Subsequently, we have minimized the output-structures from the QM-
scans with respect to our MM-descriptions. Thereby, we maintain the constraints of
the QM calculations. In this way, we have generated MM-profiles along the relevant
dihedrals. These MM-profiles can be understood as ’noise-profiles’, because the actual
torsional barriers are excluded and remain to be parameterized. We then have fitted
the dihedral parameters to minimize the differences between QM and MM landscapes,
schematically shown for the α, β and γ dihedrals:
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We have usually expanded the torsional potentials to fourth order. In our approach,
the relevant torsional potentials are fitted simultaneously. The rationale of this proce-
dure is to account for the interdependency of dihedral angles (e.g. changes in α can
affect the β and γ dihedrals). For this reason, we have also performed scanning of di-
hedral angles with coupled dihedrals constrained to specific values (see Materials and
Methods section). Besides, we introduce a weighting function w(α, β, γ) to ensure a
higher fitting-quality for important conformational spaces. Thereby, w(α, β, γ) is flexi-
ble: Overestimating the MM energy of unfavorable regions is penalized by low weights,
whereas underestimation of such regions is strongly penalized. The motivation behind
this design is that destabilization of conformational spaces, which are absent in DNA’s
structure, is practically without consequences. Stabilization of such regions, in contrast,
may allow them to occur in MD simulations and hence have serious effects. The QM
potential energy surfaces and fitted MM profiles for the backbone dihedrals are shown
in Fig 8.4 and 8.5.
In our protocol, model-system C of Fig 8.3 represents a special case, as it includes four
different nucleosides. Thereby, we have parameterized the χ dihedrals by restraining the
sugar pucker to C2’-endo conformation (Fig 8.6). In a next step, we have parameterized
the δ-dihedral by scanning of the cytosine nucleoside, while constraining it to C2’-endo
conformation (Fig 8.7). Thereafter, we use the same δ-parameters for all nucleosides.
The χ- and δ-parameters have been considered in the parameterization for the sugar
pucker, which is defined by the dihedrals in the sugar ring. We describe sugar puckering
for all nucleosides by the same parameter-set for ν0, ..., ν4 [32, 33]. For parameterization
of the sugar puckering, we adjusted the weight function to allow destabilization of the
C3’-endo with respect to the C2’-endo state. Based on test-runs with the new DNA force
field, we have decided to destabilize the C3’-endo state by another 0.35 kcal/mol. This
empirical modification has been made due to a high proportion of C3’-endo states for
cytosine-bases. Intriguingly, similar decisions have also been made in other QM-based
parameterization approaches [34].
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Figure 8.3: Model-systems for parameterization of the dihedral angles. (A) Parameter-
ization of the α−, β− and γ-dihedrals. (B) Model-system for the ε− and
ζ−dihedrals. (C) Dihedral-parameters for the glycosidic bonds and sugar
puckering are derived from nucleoside systems. All nucleosides are described
by the same sugar puckering. The δ-dihedral is parameterized solely from
the cytosine-nucleoside.

Figure 8.4: QM energy landscapes for scans of the α−, β− and γ−dihedrals are illus-
trated in blue. The fitted MM profiles are shown in green. The γ-profile also
includes calculations with the β−dihedral constrained to 70◦.
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8 Tumuc1: Parameterization of a New DNA Force Field

Figure 8.5: QM and fitted MM profiles for the ε− and ζ-dihedrals. Upper panels rep-
resent relaxed dihedral-scans, lower plots scans with ζ or ε constrained to
270◦.
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Figure 8.6: QM and fitted MM profiles for the χ-dihedral of the four nucleosides. The let-
ters inside the panels indicate the base. The energy landscapes are obtained
from scans with the sugar pucker constrained to C2’-endo conformation.
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8 Tumuc1: Parameterization of a New DNA Force Field

Figure 8.7: QM and fitted MM profiles for the δ-dihedral and the sugar pucker phase.
Note that the δ-dihedral is strongly correlated to sugar puckering. The
δ-dihedral (left panel) is therefore parameterized under constrained sugar
pucker conditions (C2’-endo). Profiles for the sugar pucker phase angle are
given in the right panels. Here, the previously derived χ− and δ-dihedrals
have been used for the MM-description.

8.2.2 Simulation Results

B-DNA

Dickerson-Drew-Dodecamer We have checked the accuracy of the new Tumuc1 force
field for several different DNA sequences.
The Dickerson-Drew-Dodecamer (DDD, d(CGCGAATTCGCG)) represents one of the
most intensively studied DNA molecules [2, 5, 21, 35]. Note that the bsc1 force field is
in large parts empirically parameterized to capture the DDD-structure accurately [21].
As shown in Fig 8.8 A, MD simulations with the Tumuc1 force field exhibit smaller
deviations from the X-ray structure than with bsc1. This is reflected in an overall
smaller rmsd, 1.52 Å for Tumuc1 and 1.69 Å for bsc1. Comparing the simulations to a
NMR structure [36] yields substantially higher rmsds for both force fields (Fig 8.8 B).
In this case, the performance of Tumuc1 and bsc1 is indistinguishable (rmsd of 3.42 vs
3.43 Å). In a next step, we have checked the robustness of the Tumuc1 force field with
respect to solvation. Upon increase of salt concentration (from neutralization only to
500mM NaCl) as well as change of the water model (TIP3P to OPC) [37, 38], Tumuc1
remains in excellent agreement with the X-ray structure. For the OPC water model,
the accuracy apparently improves. The average rmsd in this case is 1.41Å, for increased
salt concentration it is 1.49Å. The excellent agreement between simulations with the
Tumuc1 force field and X-ray structure is visualized in Fig 8.9. Here, the average struc-
ture reveals stacking- and hydrogen bonding-patterns and backbone-geometries in close
agreement with the X-ray structure. We have quantified all internal parameters of the
DDD-molecule, and averaged them over the sequence. All parameters are summarized
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in Table 8.1, whereby we draw comparison to the bsc1 force field as well as X-ray and
NMR measurements [21, 35, 36]. With respect to base-pair, base-pair step and helical
parameters, both the Tumuc1 and bsc1 force field are in good agreement with the exper-
iments. For these parameters, far-reaching conclusions on the quality of the force fields
are questionable due to the large differences between NMR- and X-ray measurements.
Nevertheless, the Tumuc1 force field at least does not perform worse here. Concerning
the dihedral angles, there is good consensus between NMR- and X-ray measurements.
Thereby, the Tumuc1 force field performs clearly better than bsc1: For the α, δ, ε and ζ
dihedrals, bsc1 deviates from experimental values by up to ∼ 15◦. Note that this has
already been reported only shortly after the release of the bsc1 force field [5]. Average
dihedral angles as captured by the Tumuc1 force field are generally in closer agreement to
the experimental values. In addition, we have also computed elastic constants from the
MD simulations (Table 8.2). Both force fields show good agreement with experimental
values [39], except the stretch modulus, which is strongly overestimated by both force
fields. However, overestimation of the stretch modulus by MD has been shown by the
Noy group to be a length scale effect [40, 41]. For longer DNA sequences, existing force
fields reproduce accurate stretch moduli. Calculating the stretch modulus as end-to-end
distance (four base-pair steps longer than the previous scheme), yields already a signif-
icantly lower stretch modulus of 1854.0 pN with the Tumuc1 force field. As terminal
base-pair fraying/breathing is very infrequent in the Tumuc1 force field (4, 0%, bsc1:
49.6%), this represents a reliable estimate. The substantially higher integrity of termi-
nal base-pairs in the Tumuc1 force field is probably a result of the electrostatics, which
reproduces a stronger (in vacuo) base-pairing. In these calculations, we have defined
base-pairs to be frayed for a rmsd higher than 2.0 Å.
Furthermore, we have verified the reproduction of local parameters along the DDD-
sequence (Fig 8.10). For twist, roll and slide parameters, the Tumuc1 force field shows
good agreement with X-ray data: Twisting around the central ApT step is in quantita-
tive agreement with experiments. The roll angle is generally slightly underestimated, but
the qualitative trend along the sequence matches with the X-ray profile quite well. The
slide variable is underestimated by the bsc1 and the Tumuc1 force field. Nevertheless,
the sequence dependence is captured accurately in both cases. Moreover, the Tumuc1
force field reproduces the sequence-dependent population of BI/BII states very well: In
the central AT-segment, the backbone strongly prefers the population of the BI space,
whereas CG-segments have a higher propensity for BII states. We have also investigated
the distribution of all backbone dihedrals and sugar puckering to check the force field for
possible artifacts. Importantly, the Tumuc1 force field does not populate non-canonical
backbone states (see blue curves in Fig 8.11). In contrast, simulations with the bsc1
force field reveal sampling of a 60− 70◦ state for the β-dihedral which is correlated with
the γ dihedral flipping to ∼ 175◦. We are convinced that this is a serious force field
artifact: First, the existence of this state in naked B-DNA is not supported by database
research [42]. Second, it is not sampled in any other force field (bsc0, OL15, Tumuc1)
[5]. Third, the β-dihedral has never been parameterized for bsc1. The overall population
of this substate with bsc1 is 3− 4%. However, here we have considered means over both
backbone-strands along the entire DNA. For a 12 base-pair sequence, this means that
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Figure 8.8: Simulations for the Dickerson-Drew-Dodecamer. (A) Rmsd-curves with re-
spect to the X-ray structure (pdb:1BNA) for Tumuc1 and bsc1 simulations.
(B) Rmsd-curves with respect to the NMR-structure (pdb:1NAJ). (C) Rmsd-
curves of MD simulations with the Tumuc1 force field under different solvent
conditions: OPC water model (black) and TIP3P water model at 500mM
NaCl (green). The X-ray structure has been used as reference.

this artifact occurs very frequently at some position. Population of this artifact is also
sequence-dependent, hence it is likely to be sampled more often in other sequences (e.g.
in the second base-pair step of the Watson strand (GpC) its population amounts ∼ 15%).
We notice that it occurs more frequently in C/G segments. This artifact has strong con-
sequences for the local structure: The sugar ring is flipped which distorts base-pairing
and base-stacking (Fig 8.11 D). In addition, it opens the minor groove widely (Fig 8.11
E), indicating fundamental problems when studying DNA-protein interactions. Thus,
the structural integrity achieved with the Tumuc1 force field provides a huge advantage
over bsc1. Apart from that, both force fields show reliable sugar puckering, whereby
sampling of the Tumuc1 force field is more strongly confined to the C2’-endo state.

A-tract Conundrum A- and T-tracts display unique structural properties. The A-
tract d(5’-AAAATTTT-3’) is bent towards the minor groove (due to a high negative
roll at the central ApT step), whereas the T-tract d(5’-TTTTAAAA-3’) is bent towards
the major groove with a high positive roll at the TpA step [46, 47]. MD simulations
of the A-tract sequence reveal that the bsc1 and the Tumuc1 force field reproduce the
sequence-dependent structure qualitatively correct (Fig 8.12 A-C). However, the central
feature of this sequence is not covered very well. Both force fields underestimate bending
at the ApT step remarkably. The rmsd-curves indicate equal performance of bsc1 and
Tumuc1. In both cases, the DNA structure remains intact, for Tumuc1, short-lived
plateaus at an rmsd of ∼ 3.8Å are apparent (Fig 8.12 D). These plateaus correspond to
slightly slided conformations of the terminal base-pairs, and are absent when the rmsd
is calculated over the central segment (Fig 8.12 E,F). Note that we did not impose any
restraints on the terminal base-pairs during our simulations.
For the T-tract sequence, we find similar performances. Twist-, roll- and slide-profiles
are in qualitative agreement with the NMR-structure, but bending at the central base-
pair step is again underestimated (Fig 8.13 A-C). Here, the rmsd-curves show a more
reliable description for the Tumuc1 force field (Fig 8.13 D). After ∼ 700 ns, the dsDNA
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Figure 8.9: Average DDD-structure of the Tumuc1 simulation (colored) superposed to
the X-ray structure (black). The average structure of the MD-trajectory has
been computed as the Cartesian average with VMD [43].

Figure 8.10: Profile of DNA parameters as a function of the DDD-sequence. Twist-,
roll- and slide-profile for Tumuc1- (blue) and bsc1-simulations (red) and
the X-ray structure (black). The right panel shows the BI population along
the sequence for Tumuc1 (blue), bsc1 (red), NMR measurements from [44]
(green) and NMR measurements from [45] (black). A higher BI popula-
tion of the central AT-segment compared to flanking CG-sites is correctly
sampled with bsc1 and Tumuc1.
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Tumuc1 bsc1 X-ray NMR

shear [Å] 0.00± 0.09 0.00± 0.10 0.01 0.00

stretch [Å] −0.04± 0.04 0.03± 0.04 -0.05 -0.33

stagger [Å] 0.07± 0.14 0.07± 0.15 0.12 -0.16
buckle [deg] −0.04± 4.58 −0.09± 4.40 1.09 -0.13

propeller [deg] −10.32± 3.12 −10.30± 2.93 -13.19 -19.56
opening [deg] 2.11± 1.38 1.50± 1.69 3.45 2.33

shift [Å] 0.00± 0.16 0.02± 0.19 0.01 -0.01

slide [Å] −0.25± 0.23 −0.22± 0.24 -0.03 -0.07

rise [Å] 3.31± 0.07 3.30± 0.07 3.23 3.18
tilt [deg] 0.00± 1.05 0.15± 1.17 -0.07 0.01
roll [deg] 1.11± 2.16 2.52± 1.85 1.97 3.61

twist [deg] 34.83± 1.26 34.68± 1.40 33.88 35.73

x-displacement [Å] −0.54± 0.40 −0.78± 0.42 -0.15 -0.77

y-displacement [Å] 0.00± 0.19 −0.04± 0.23 0.04 0.03

helical rise [Å] 3.32± 0.08 3.31± 0.08 3.23 3.19
inclination [deg] 1.15± 2.87 3.80± 2.79 0.66 5.29

tip [deg] −0.01± 1.53 −0.28± 1.75 -0.49 -0.11
helical twist [deg] 35.04± 1.25 34.93± 1.37 34.04 35.98

major groove width [Å] 12.28± 0.75 11.86± 1.03 11.52 11.69

minor groove width [Å] 5.19± 0.58 5.66± 0.59 4.42 4.70
sugar pucker phase [deg] 140.48± 22.19 114.36± 32.63 127.91 135.46

α[deg] 292.87± 4.53 286.05± 7.99 298.64 301.18
β[deg] 168.57± 7.05 165.34± 8.11 174.16 170.49
γ[deg] 57.18± 2.42 54.56± 11.71 54.12 49.26
δ[deg] 128.29± 4.14 134.26± 5.36 122.51 125.24
ε[deg] 194.55± 7.50 201.08± 7.08 186.07 188.97
ζ[deg] 248.57± 7.76 245.06± 8.60 256.36 257.21
χ[deg] 252.63± 3.88 247.46± 5.17 246.11 249.84

Table 8.1: DNA parameters as obtained for DDD-simulations with Tumuc1 and bsc1 as
well as X-ray and NMR measurements. Values for Tumuc1 and bsc1 have
been computed from the 2µs MD simulations. The two terminal base-pairs
of both ends have been omitted. The values represent averages over the DNA-
structure and simulation time. Error estimates are standard deviations.
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Figure 8.11: Population of backbone parameters sampled with bsc1 and Tumuc1 for
the Dickerson-Drew-Dodecamer (last two base-pairs of both termini are
excluded). (A) Probability-distributions shown for the backbone-dihedrals
as obtained with bsc1 (red curves) and Tumuc1 (blue curves). (B) Sugar
puckering of Tumuc1. Radial-component is the puckering amplitude and
the azimuthal component is the phase-angle. (C) Sugar puckering of bsc1.
(D,E) β−artifact in the bsc1 simulation. Transition to β ∼ 70◦ causes
flipping of the γ-dihedral and an inclined position of the sugar ring (see
central Adenine-nucleotide in (D). This also results in a strong local opening
of the minor groove (E).

Tumuc1 bsc1 experimental
Twist persistence length [nm] 97.6 78.6 109± 4

Bending persistence length [nm] 47.3± 8.4 43.9± 6.2 45± 2
Stretch modulus [pN] 3021.7 3045.5 1000± 200

Twist-stretch coupling [Å/deg] 0.0094± 0.0002 0.0149± 0.0004 0.014± 0.003

Table 8.2: Elastic parameters calculated for the Dickerson-Drew-Dodecamer over the
same segment as in Table 8.1. Experimental values are taken from [39]. Er-
rors of the bending persistence length and twist-stretch coupling computed
for Tumuc1 and bsc1 are standard deviations of the interpolation procedure.
Stretch modulus is overestimated in the simulations due to length-scale effects
[40, 41]. Calculating stretch modulus over the entire DNA-molecule (end-to-
end) yields an apparently lower stretch modulus of 1854 pN for Tumuc1.
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Figure 8.12: MD simulations of the A-tract sequence in comparison to the NMR-
structure (pdb:1RVH) [46]. (A) Twist-profile along the central sequence
for Tumuc1 (blue), bsc1 (red) and NMR (black). (B,C) Roll- and slide-
parameters along the central sequence. (D) Rmsd-curves for Tumuc1 (blue)
and bsc1 (red). Small plateaus at ∼ 3.85 Å are sampled in the Tumuc1-
simulation. (E) Rmsd-curves excluding the three terminal base-pairs of
both ends. No clear plateaus are visible in the Tumuc1-simulation. (F)
Small plateaus for Tumuc1 at∼ 3.85 Å correspond to sliding motions (blue).
These deformations occur at the termini. Note that no restraints have been
applied during the simulation. The superposed NMR-structure is shown in
red.

helix breaks apart in the bsc1-simulation. These unstacking and flipping events are
caused by a γ-flip in a central base-pair step (Fig 8.13 E,F). This broken conformation
is stable for ∼ 20 ns and reveals further problems in the bsc1 force field. Sampling of
such strong distortions is not reasonable, as base-flipping occurs on the millisecond time-
scale. We suppose that this is a force field artifact, and importantly Tumuc1 maintains
the structural integrity substantially better (Fig 8.13 E).

Heterogeneous, 50 Base-Pair long Sequence We have performed a 2µs long MD
simulation for the heterogeneous 50 base-pair long sequence (studied in chapter 6, [13])
with the Tumuc1 force field (Fig 8.14). Here, we record an excellent α/γ stability of
100% population of the g−/g+ basin [48], an accurate BI/BII balance (74%/26%) [49]
and dominant population of the C2’-endo state (76%) [50]. These data demonstrate
that DNA’s structural integrity is conserved for various sequence contexts and excludes
the scenario of small possible inaccuracies accumulating to severe artifacts in longer
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Figure 8.13: MD simulations of the T-tract sequence in comparison to the NMR-
structure (pdb:1RVI) [46]. (A-C) Twist-, roll- and slide-profiles, similar
as in Fig 8.12. (D) Rmsd-curves for Tumuc1 (blue) and bsc1 (red). (E)
γ-dihedral in the Watson-strand of the central base-pair step. Full stability
is maintained in the Tumuc1 force field. Flips in the bsc1-simulation reveal
artifacts. (F) Snapshot of an artifact in the bsc1-simulation (at ∼ 750 ns),
caused by a γ-flip to ∼ 300◦. Complete rupture of the DNA double-helix
and subsequent base-flippings are observed.

139



8 Tumuc1: Parameterization of a New DNA Force Field

Figure 8.14: Simulation of a heterogeneous 50 base-pair long DNA sequence with the
Tumuc1 force field. (A) Rmsd-curve. Larger values are associated with
strong global bending. (B) Average twist over the central 43 base-pair steps
as a function of time, revealing an accurate description of DNA’s helicity
by the Tumuc1 force field. (C) Average structure of the 2µs simulation
(blue), generated in the same way as for Fig 8.9. The structure has been
superposed to the experimentally expected structure built with the nab-
module (red). The backbones and hence minor and major grooves align
very well. Note that the average structure appears slightly shorter (∼ 2
base-pair steps) due to bending fluctuations. (D) Snapshot taken from the
simulation, the backbones are highlighted in cartoon representation. The
DNA transiently undergoes strong global bending in the simulation with
the Tumuc1 force field.

sequences. Larger rmsd values correspond to strong global bending, structural irregu-
larities have not been observed. Furthermore, the Tumuc1 force field yields an excellent
helicity: The average twist amounts to 34, 4◦, which is equivalent to experimental val-
ues for heterogeneous sequences [51, 52]. Overlaying the average Cartesian structure
from the MD simulation with the crystal structure shows a very good description of the
backbone as well as major and minor groove. Note that the average structure appears
slightly shorter than the straight crystal structure (∼ 2 base-pair steps) due to the bend-
ing motions.
Thus, we conclude that the Tumuc1 force field represents a highly robust description
for B-DNA’s local and global structure. The description of backbone-dihedrals is appar-
ently better than for bsc1. While the Tumuc1 force field does not capture all sequence-
dependent parameters quantitatively correct, the qualitative behavior is generally accu-
rate. This already represents a good success, as our parameterization procedure does
not include any sequence-specific empirical modeling. We rather have built an atom-
istic, physical description for DNA based on quantum mechanical calculations, and this
description widely agrees with experimental data on B-DNA.
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Figure 8.15: 2µs MD simulation of a G4-quadruplex. (A) Rmsd-curve computed for the
12 guanine bases in reference to the crystal structure (pdb:1KF1) [57]. (B)
Average distances between the potassium ions and interacting O6-guanine
atoms. Both ions stay in between the two quadruplex-layers during the
2µ s-simulation. (C) Structure of the G4-quadruplex. Potassium ions are
highlighted as orange spheres. (D,E) Average structure of the G4-layers
(colored) superposed to the crystal structure (black) in top- and in side-
view.

Stability of the G-Quadruplex Structure

Guanine quadruplex (G4) structures are often found in telomeric ends and are known
to be of outmost biological relevance (e.g. changes of the telomeric state are associated
with senescence) [53, 54]. G4 structures consist of multiple layers, whereby each layer
is a quadratic arrangement of four guanine bases. The quadratic arrangement is formed
through hydrogen bonding of the guanines via the Watson-Crick and Hoogsten edges.
The overall structure is further stabilized by the capture of a cation between successive
layers [54–57]. We have studied the stability of G4-structures in the Tumuc1 force field
by an unrestrained 2µs MD simulation (Fig 8.15). Throughout the simulation, the G4-
structure remains stable, and, importantly, both potassium ions remain in between the
quadratic layers. We have not observed distortions in the hydrogen bonding or stacking
of the guanine bases during the whole simulation time. Indeed, the average structure
of the guanine layers recorded from the Tumuc1 simulation is in good agreement with
the crystal structure. We therefore state a sound description of guanine quadruplex
structures with the Tumuc1 force field.
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Hairpin Folding

As a next test-system, we have studied the 5’-GCGCAGC-3’ DNA single-strand. This
sequence forms a hairpin with the central cytosine-base in loop position, the juxtaposed
G and A-base thereby form a mismatched base-pair [58]. We have carried out a 2µs
MD simulation for this sequence with the Tumuc1 force field starting from an extended
single-strand structure (Fig 8.16). After ∼ 600 ns, the DNA strand folds into the cor-
rect hairpin-structure. For the rest of the simulation, the hairpin conformation remains
stable. Intriguingly, the single-strand is folded into an intermediate state prior to the
correct hairpin-structure. The intermediate state is characterized by correct loop for-
mation but irregular hydrogen bonding at the terminal base-pair (Fig 8.16 D). This
irregularity is caused by flipping of the 5’-Guanine base to syn-conformation (∼ 60◦).
Note that the syn-state of 5’-end Guanines is stabilized by an unconventional hydrogen-
bond between the HO5’ and the N3’-base atom [59, 60]. It is likely that such interactions
are too attractive in current Amber force fields, hence overstabilizing the syn-state for
5’-terminal purines [60]. This imbalance can strongly impede structure formation of
DNA. However, simulation of the DNA single-strand indicates that the Tumuc1 force
field has a good balance between electrostatics and glycosidic dihedrals: The syn-state
is visited twice for the 5’-terminal guanine, but the base is not caught in this state and
undergoes transitions back to the native anti-state. Thus, we have been able to simu-
late correct hairpin folding in a standard, unrestrained MD simulation. To the best of
our knowledge, hairpin folding has been reported so far only based on advanced replica
exchange simulations [21, 58, 61].

Hybridization of two 5’-CGCG-3’ Single-Strands

We have performed a 2µs-long MD simulation for a solvated system which contains
two 5’-CGCG-3’ single-strands with the Tumuc1 force field (Fig 8.17). The two single-
strands were placed ∼ 27 Å away from each other, and hence have not been in contact
at the beginning of the simulation. The two strands then approach by stacking on top
of each other (Fig 8.17 C). However, this complex does not remain stable and decays
after ∼ 30 ns. The two strands then contact each other by hydrogen bonding of the two
5’-terminal bases of both strands (Fig 8.17 D). After ∼ 40 ns the two strands dissociate
and adopt a complex characterized by a stronger hydrogen bonding network (Fig 8.17
E). Nevertheless, the two strands are aligned in parallel 5’-3’ polarity. This complex
is thermodynamically unstable and decays after a few nanoseconds. The two strands
then approach each other in correct polarity, whereby the complementary bases pair
accordingly, hence hybridizing the two strands into the correct duplex structure (Fig
8.17 F). This complex remains stable for the rest of the simulation. So far, hybridization
of single-strands has not been introduced as a criterion to check the quality of the force
fields. However, results with the Tumuc1 force fields are encouraging: Not only do we
obtain the precise duplex structure, but also is the force field capable of overcoming
meta-stable states. This indicates good kinetic behavior of the Tumuc1 force field.
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Figure 8.16: Folding of the 5’-GCGCAGC-3’ single-strand. (A) Rmsd-curve with re-
spect to the crystal structure shows folding after ∼ 600 ns. (B) χ-dihedral
of the 5’-guanine base as a function of time. Transitions from anti- to syn-
conformation and vice versa are observed. An accurate balance between
both conformations is important for single-strand folding. (C) The simula-
tion was started from an extended single-strand structure. (D) The hairpin-
loop is correctly folded, but the 5’-guanine is in syn-conformation (χ ∼ 60◦).
This conformation is stabilized by an unconventional HO5’-N3 hydrogen-
bond (highlighted by black dots), and prevents correct base-pairing and
base-pair stacking at the termini. (E) Structure of the single-strand folded
into the correct hairpin-conformation.
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Figure 8.17: Hybridization of two 5’-CGCG-3’ single-strands simulated with the Tumuc1
force field. (A,B) Rmsd-curves with respect to the duplex structure shown
for the entire simulation time (A) and for the first 150 ns (B). (C) At the
beginning of the trajectory, the two single-strands go into a stacked confor-
mation. (D) Meta-stable state. Hydrogen bonding between terminal bases
occurs. (E) Conformation characterized by stronger hydrogen bonding, but
parallel strand polarity. (F) After ∼ 150 ns, the two single-strands have
hybridized to the correct duplex structure.
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Formation of Duplex Structure

Tumuc1’s potential to capture formation of DNA duplex structures has been further in-
vestigated in ten ∼ 1.2µs MD simulations of the d(5’-CGTTGTTGG-3’) DNA sequence.
The ten simulations were started from the same structure, in which the first five base-
pairs are in B-DNA configuration and the terminal four base-pairs are dissociated. Note
that each simulation was run with different starting velocities, hence resulting in differ-
ent trajectories. Thereby, the DNA-structure has folded correctly in five simulations,
and is trapped in non-native conformations in the other five simulations (Fig 8.18). For
the refolding of the DNA duplex structure, we thus find a success-rate of 50%, which is
likely to increase upon extension of the simulation time.

Z-DNA

Finally, we have tested the Tumuc1 force field for Z-DNA. Thereby, we have simulated a
Z-DNA hexamer [62] at 2M NaCl for 2µs with the Tumuc1 force field and comparatively
with the bsc1 force field (Fig 8.19). Measured over the entire DNA-structure, the Tumuc1
force field shows a substantially higher rmsd, which can be explained by strong fraying of
the terminal base-pairs. Excluding the terminal base-pairs results in a slightly lower rmsd
compared to the bsc1-simulation. Intriguingly, we have observed only modest fraying
in the bsc1 force field, revealing a reversed trend to the B-DNA simulations, where
terminal base-pair fraying is significantly more pronounced for bsc1 than for Tumuc1.
Here, information from the experimental side is scarce and challenging to compare to MD
simulations due to the relatively short simulation times [5]. With respect to the helicity,
however, the Tumuc1 force field performs better as it maintains Z-DNA’s left-handed
structure very well and reproduces base-pair stacking appropriately. The bsc1 force field,
instead, overtwists the Z-DNA remarkably. Another advantage of the Tumuc1 force field
is the accurate sampling of sugar puckering (Table 8.3): Guanine bases preferentially
adopt the C3’-endo state, whereas cytosine bases exclusively occupy the C2’-endo state
[62]. In the bsc1-simulations, all sugar rings adopt B-form puckering (around C2’-endo).
In previous paragraphs, we have shown that the Tumuc1 force field captures B-DNA’s
backbone structure very accurately. For Z-DNA, in contrast, we find that the native
g+/t state is unstable. This is also largely the case for the bsc1 force field (Table 8.4).
Z-DNA is known as a challenging system for force fields, and a reliable investigation of
these structures with non-polarizable force fields has even been questioned [5, 20]. The
performance of both, the bsc1 and the Tumuc1 force field is not optimal. Nonetheless,
better reproduction of left-handed helicity might be a clear bonus for the Tumuc1 force
field, as unwinding of double-stranded B-DNA can be absorbed by transition of G/C
rich segments to Z-form [63]. For such phenomena, an accurate description of twisting
is hence important.
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Figure 8.18: Refolding of the partially melted DNA duplex. The rmsd with respect to
the correct B-DNA structure is shown in black and blue (binned in 8 ns).
Restarts of the simulation are highlighted by lines to a rmsd of 0 Å. From
ten simulation runs, five folded into the correct structure, shown by a rmsd
of ∼ 1.5 Å.
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Figure 8.19: MD simulations of the Z-DNA hexamer (pdb:1ICK) with Tumuc1 and bsc1.
(A) Higher rmsd-values for Tumuc1 are caused by terminal base-pair fray-
ing. (B) For the central base-pairs, Tumuc1 shows on average a slightly
lower rmsd. (C) Twist averaged over the three central base-pair steps. We
report better agreement for Tumuc1 with the crystal structure than for
bsc1, which overtwists Z-DNA’s left-handed structure. (D) Snapshot taken
from the Tumuc1 simulation. The two terminal guanine-bases are flipped
out. (E) Snapshot of the four central base-pairs taken from the Tumuc1
simulation after 2µs (shown in color) superposed to the crystal structure
(black). (F) Snapshot for the four central base-pairs taken from the bsc1
simulation (shown in color). Superposition to the crystal structure (black)
illustrates reduced left-handedness. (G) Sugar puckering in the Tumuc1
simulation, the C3’-endo state is also sampled. (H) Sugar puckering in the
bsc1 simulation, showing sampling only at B-DNA configuration (around
C2’-endo).

cytosine guanine

C2’-endo [%] C3’-endo [%] C2’-endo [%] C3’-endo [%]
Tumuc1 85.5 0 21.7 33.3

bsc1 58.5 0 69.7 1.7
experimental 100 0 33.3 50.0

Table 8.3: Sugar puckering for the cytosine and guanine bases in Z-DNA as obtained
by the MD simulations and from the crystal structure [62]. Here, we have
considered only the two most prominent pucker conformations.
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g−/g+[%] t/g+[%] g+/g+[%] g+/t[%]
Tumuc1 38 55 6 0

bsc1 14 68 0 17
experimental 0 40 0 60

Table 8.4: Population of α/γ-substates recorded from MD simulations and the crystal
structure [62].

Figure 8.20: Model-systems for the parameterization of bonds and angles. (A,B) Model-
systems used to parameterize the backbone and sugar ring. (C) Model-
system for the derivation of base and base-to-sugar parameters.

8.3 Materials and Methods

8.3.1 Parameterization

Bonds and Angles

Bond- and angle-parameters for the Tumuc1 force field have been determined based
on QM calculations and the modified Seminario method [24]. For this purpose, QM-
optimization and frequency-calculations have been performed on the model-systems
shown in Fig 8.20. The cc-pVTZ basis set [64, 65] and B3LYP exchange correlation func-
tional [66–68] in combination with the empirical D3 version of the Grimme dispersion-
correction was used [69]. These QM calculations were carried out with the Gaussian09
program [70]. From the QM calculations, bond- and angle-parameters have been ex-
tracted with the modified Seminario method. Thereby, the Matlab-script provided by
Allen and coworkers was used and the scaling factor was set to 1.0 [24]. In cases where
this method yielded slightly different parameters for equivalent atom-type combinations,
we selected the average values for the Tumuc1 force field.

Charges

The model-system for calculation of the charges is shown in the Results section (Fig
8.1). This model-system is slightly larger than a whole nucleotide and was used for the
four different bases: Adenine, cytosine, guanine and thymine. For each of the bases, a
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RI-MP2 optimization was performed with the orca 4.2.0 software [31]. The def2-TZVP
basis-set and the def2/JK auxiliary basis-set were used [29, 30]. Calculations were
performed in implicit solvent (CPCM, ε = 80) [28]. The output was processed with the
Multiwfn 3.6 software to fit the partial charges to reproduce the electrostatic potential
from the QM calculation [26]. Fitting was done by means of the Merz-Kollman scheme
[23, 25], where a grid is spanned around the molecule. We spanned grids composed of 6
data points per Å2, and four layers were placed around each atom, whereby each layer
was placed in multiples of 1.4, 1.6, 1.8 and 2.0 of the vdW-radii to the atoms. This
resulted in overall ∼ 25000 data-points, for which the electrostatic potential was fitted
(Fig 8.1). Furthermore, charge- and equivalence-constraints were employed. A charge
of -1 was enforced for a nucleotide, and charges of equivalent atoms were constrained to
have the same value. As a first step, charges were derived for the Adenine-system. For
the remaining three molecules, charges on backbone and sugar atoms were constrained
to the same values as in the Adenine-system. Finally, charges for the 5’- and 3’-hydroxyl
groups were derived. This was done based on QM-calculations for a cytosine-nucleoside,
whereby all non-hydroxyl-charges were constrained to the previously derived cytosine-,
sugar- and backbone-charges.

QM Energy Profiles along the Dihedrals

For the parameterization of dihedral angles, QM-scans were performed for all relevant
dihedrals with orca 4.2.0 [31]. The QM calculations are based on the RI-MP2/def2-
TZVP, def2/JK level of theory [29, 30]. Thereby, we applied constraints on specific
other dihedrals and angles to reduce the ’noise’ in the MM-energy landscapes. In this
way, the energetic contribution of the scanned dihedral angle could be identified more
easily. Scanning of the dihedral angles was carried out by equally spaced samples over
the corresponding intervals.

α/β/γ Parameters for the α, β and γ dihedral angles were derived by scanning each
dihedral angle from 0◦ to 360◦ in 21 steps. Scanning was carried out for model-system
A in Fig 8.3. Thereby, sugar puckering was constrained as well as the O5’-P-O3’-C3’
dihedral angle. Note that the C3’ atom represents a methyl-capping carbon, and we did
not derive dihedral parameters therefore. This problem is circumvented by constraining
it, as this dihedral angle does then not contribute to the relative MM energy-landscape.
In addition, we conducted QM calculations for the γ dihedral at 40◦, 160◦ and 280◦,
whereby the β-dihedral was constrained to 70◦ (the α-dihedral was unrestrained). These
additional calculations were necessary to eradicate the β-artifact which is present in the
bsc1 force field.

ε/ζ The ε and ζ dihedrals were scanned from 0◦ to 360◦ through 24 samples in each
case. The calculations were performed for model-system B in Fig 8.3. Additional scans
from 150◦ to 270◦ with 13 samples were conducted for each of the two dihedrals with one
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of them being constrained to 270◦. In this way, the BI and BII conformational spaces
were extensively sampled. Puckering and the C5’-O5’-P-O3’ dihedral were constrained
in all calculations, for similar reasons as in the α/β/γ case: The C5’ atom is a capping
methyl-carbon. In addition, the P-O3’-C3’, O3’-C3’-C2’ and O3’-C3’-C4’ angles were
constrained. From previous, initial scans we have observed that these angles can undergo
large changes, which may not be covered accurately by the uncoupled, harmonic form
of our force field.

δ Parameters for the δ-dihedral were obtained from scanning of the cytosine-nucleoside
with constraints on the χ-dihedral and sugar pucker. The scans comprise 10 samples in
the range from 90◦ to 180◦, and another 10 samples from 50◦ to 80◦.

χ χ-dihedrals were scanned for the four nucleosides by 21 samples in the range from
0◦ to 360◦. Sugar puckering was constrained to the C2’-endo state.

SugarPucker The sugar pucker was scanned for all four nucleosides without any fur-
ther constraints. Thereby, the sugar pucker phase angle was scanned from 0◦ to 180◦

with 16 samples for each nucleoside. Scanning of the sugar pucker was achieved by
constraining the ν1 and ν3 dihedrals to corresponding values.

MM Energy Profiles along the Dihedrals

Fitting of the dihedral-parameters requires an MM-description (topology) for the model-
systems. Topology-files for the model-systems were built with the antechamber module
[27]. For model-systems A and B of Fig 8.3, we have derived charges similar to paragraph
8.3.1. Here, we considered multiple conformations along the scanned dihedral-profiles.
Charges of the nucleoside systems were directly taken from the previously derived charges
for the Tumuc1 force field. Analogously, also the same bond- and angle-parameters as
in the Tumuc1 force field were used. The bond-, angle- and charge-parameters were
incorporated into the topology-files with the parmed module of the Amber16 package
[27]. We also used the parmed-module to set parameters to zero for the dihedrals which
we fitted.

Fitting of the Dihedral-Parameters

Generation of MM Trajectories Coordinate-outputs of the QM-scans were trans-
formed to Amber-compatible format with VMD [43]. Resulting structures were then
energy-minimized with respect ot the previously established topologies. Minimization
included 2500 steps of steepest-descent and the same constraints as in the QM calcu-
lations were applied. In this way, reliable MM trajectories for the dihedral-scans are
obtained.
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Fitting Procedure MM energy profiles along the dihedrals are derived from the MM
trajectories and the constructed topologies. Dihedral parameters were now fitted to
offset differences between the QM and MM energy landscapes. As discussed in the
results section, dihedral-potentials are usually expanded to 4th order, and weighting
functions were used to guarantee higher fitting quality for thermodynamically more
relevant conformational spaces. Note that puckering is described by the same parameters
for all four nucleosides, and energy-overestimation of the C3’-endo state has been allowed
by at least 0.35 kcal/mol. Large energetic changes in the δ-dihedral are a consequence
of the applied constraints. In order to avoid overfitting, boundaries have been applied
to fitting of the δ-dihedral. Potential barriers were confined to intervals of (-2.25,2.25),
(-1.75, 1.75) and (-1.25, 1.25) kcal/mol for the three orders (higher potential barriers are
allowed for lower orders). Similarly, phase-angles were confined to (70◦, 170◦), (75◦, 160◦)
and (75◦, 160◦). Fitting was then carried out with the Basin-hopping technique [71]. For
each model-system, we performed fitting at least 10 times, and then chose the parameter-
set for the Tumuc1 force field, which yields the best agreement between MM and QM
(i.e. the lowest value for the function f in equation 8.2).

8.3.2 MD Simulations

Starting structures for all systems were generated either from pdb-structures or with the
nab-module of the Amber16 package (system dependent details are given in the following
paragraphs) [27]. All systems were prepared with the xleap-module, where the Tumuc1
force field files can easily be accessed. The systems were neutralized by sodium ions
and solvated with explicit solvent described by the TIP3P water model [37] if not stated
otherwise. The distance between box-boundary and DNA was set to 10.0 Å. After
preparation, the systems were energy minimized, heated up and equilibrated for the
NPT ensemble (p = 1 bar, T = 300 K) for overall 1 ns. The production runs lasted 2µs,
all simulations were performed with the pmemd.cuda module of the Amber16 package.
If not explicitly mentioned, no restraints were applied in these simulations.

Dickerson-Drew-Dodecamer

The sequence of the Dickerson-Drew-Dodecamer is d(5’-CGCGAATTCGCG-3’). The
crystal structure (pdb:1BNA) [35] served as starting structure for the simulations.

A- and T-tract

The 1rvh- and 1-rvi-pdb structures were used as input for simulations of the A- and
T-tract, respectively [46].
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Heterogeneous 50 Base-Pair Sequence

The same sequence as in chapter 6, [13] was studied, see Table 6.1 label AT. During the
2µs production run, positional restraints were applied on the first two base-pairs. The
force constant was 0.1 kcal

molÅ2
.

Guanine-Quadruplex

The 1kf1 pdb-structure [57] was used as starting structure.

Hairpin Folding

The 5’-GCGCAGC-3’ single-strand was studied. A B-form like extended single-strand
was generated as a starting structure with the nab module [27].

Hybridization

Two 5’-CGCG-3’ single-strand structures were generated with the nab-module [27]. The
two single-strands were displaced manually using VMD (center of mass distance is ∼
27Å) [43].

Formation of Duplex Structure

Refolding of the d(5’-CGTTGTTGG-3’) DNA duplex structure has been simulated at a
temperature of T = 320 K. Positional restraints were applied on the first two base-pairs
with a force constant of k = 0.25 kcal

molÅ2
. Ten simulations were started from the same

partially melted structure, but with different velocities. Hydrogen-mass-repartitioning
was activated, which allowed a time step of 4 fs. Atom coordinates were written out
every 80 ps. The total simulation time was ∼ 12µs.

Z-DNA

The 1ick-pdb structure [62] was used. This DNA structure consists of six guanine-
cytosine base-pairs. 2M NaCl were added.

8.3.3 Analysis of MD Trajectories

RMSD and DNA-Parameters

The rmsd is defined by:
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rmsd =

√√√√ 1

N

N∑
i=1

‖ri − ri,eq‖2. (8.4)

Rmsd-curves of the MD trajectories were calculated with VMD [43]. All other internal
parameters for the DNA molecules (base-pair and base-pair step parameters, dihedrals
and sugar pucker) were computed with Curves+ [72].

Global Elasticities

For the Dickerson-Drew-Dodecamer, twist persistence length C, bending persistence
length A, stretch modulus S and twist-stretch coupling D were determined based on
the Tumuc1 and bsc1 force fields. Twist persistence length and stretch modulus were
obtained as inverse of the variance, C = L

var(φ)
and S = kBT ·L

var(L)
. φ denotes the total twist

over the corresponding segment and L the contour-length measured as sum of the rise-
parameters. Twist-stretch coupling D was extracted from linear interpolation between
helical-twist and helical-rise. We used our rigid-body protocol introduced in chapter 6,
to calculate the bending persistence length A. This allowed us to compute a mean axis
for every base-pair. Thus, bending as a function of contour-length could be recorded.
The bending persistence length is defined by [41]:

< cos(θ) >= e−
L
A . (8.5)

From series expansion, < cos(θ) >= 1− < θ2

2
> and e−

L
A = 1− L

A
, we find:

< θ2 >=
2 · L
A

. (8.6)

The bending persistence length A was then derived from linear interpolation of equation
8.6.

8.4 Conclusion

We have derived a new DNA force field (”Tumuc1”) in a bottom-up approach. Charges,
bonds, angles and dihedral angles have been parameterized based on high-level QM
calculations. Charges have been fitted with the Merz-Kollman scheme [23, 25] using
a high grid resolution, which results in a significantly different electrostatic landscape
compared to the classical Amber force fields. We have employed the recently developed
modified Seminario method [24] to compute bond- and angle-parameters. These tech-
niques represent novelties for the development of force fields, classical Amber force fields
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still rely on the charge-,bond- and angle-parameters established by Cornell et al in 1995
[22]. The Tumuc1 force field contains the same Lennard-Jones parameters as classical
Amber force fields. The force field is completed by parameters for the critical dihedral
angles, which we have obtained from scanning and fitting of the quantum mechanical
energy landscapes. Parameter- and library-files have been set up to make the Tumuc1
force field as simple to use as standard force fields.
We have tested the Tumuc1 force field for several systems: MD simulations on the
Dickerson-Drew-Dodecamer overall reveal a better performance of Tumuc1 compared to
bsc1. Here, we have made remarkable improvements for the dihedral angles, and sam-
pling with the Tumuc1 force field is in excellent agreement with the X-ray structure.
Furthermore, we have also obtained decent values for global elasticities. For the A-
and T-tract sequences, the Tumuc1 force field exhibits decent sampling as shown by the
correct qualitative trends for the internal parameters. Importantly, the Tumuc1 force
field guarantees a highly robust description for the backbone: Accurate populations of
the BI/BII states, α/γ stability and dominant C2’-endo puckering demonstrate a high
quality of our force field. This is confirmed by a 2µs MD simulation of a heterogeneous
50 base-pair sequence. We have not observed an artifact in any of the B-DNA simula-
tions, in contrast to the bsc1 force field, which suffers from a too limited approach. Our
main criticism here is, that parameterization of the β- and δ-dihedrals has been ignored,
hence sticking to deprecated, rough estimates.
A 2µs MD simulation of a G-quadruplex structure records good performance of the
Tumuc1 force field: The stacking and hydrogen bonding pattern remains stable, and the
potassium ions stay inside the quadruplex-layers throughout the whole simulation.
In an unrestrained MD simulation, the 5’-GCGCAGC-3’ single-strand folded from an ex-
tended starting-structure into the correct hairpin-structure with the Tumuc1 force field.
This simulation further indicates a good syn-anti balance for the glycosidic-dihedrals.
To the best of our knowledge, hairpin folding has only been achieved by means of replica
exchange simulations so far. Precise folding of a single-strand during an unrestrained
simulation hence gives further trust in the accuracy of Tumuc1.
Likewise, we have simulated folding of two 4 bases long single-strands folding into the
correct duplex-structure with Tumuc1. Thereby, several meta-stable states are over-
come, which indicates a good description of the kinetics.
Finally, we have also simulated a Z-DNA hexamer at 2M NaCl employing either the Tu-
muc1 or bsc1 force field. Simulations with Tumuc1 show a substantially stronger fraying
of the terminal base-pairs. However, stacking of the inner sequence and sugar puckering
is better captured by Tumuc1. On the other hand, both force fields show a lack in the
description of α/γ substates for Z-DNA.
Altogether, we find that the Tumuc1 force field performs on a high level and in many
ways outperforms bsc1, which is widely considered as state of the art. The develop-
ment of the Tumuc1 force field is therefore completed and will be released to stand the
test of time. Nevertheless, expecting fully satisfying results for all applications without
further room for improvements is naive. A main concept in the construction of Tu-
muc1 has been to making changes in the force field easily achievable without the danger
of causing inconsistencies. For this reason, we have developed Tumuc1 from just one
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theory, generated a new library with more atom-types and realized several parameter-
ization techniques. Thus, we claim the best fundament for the long-term competition
between DNA force fields and are optimistic to also contribute to the theory of other
biomolecules. As a next step, we are intending to develop a RNA force field.
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[12] Holger Kruse, Pavel Banáš, and Jǐŕı Šponer. Investigations of Stacked DNA Base-
Pair Steps: Highly Accurate Stacking Interaction Energies, Energy Decomposition,
and Many-Body Stacking Effects. J. Chem. Theory Comput., 15(1):95–115, 2019.

[13] Korbinian Liebl and Martin Zacharias. How global DNA unwinding causes non-
uniform stress distribution and melting of DNA. PLOS ONE, 15(5):e0232976, 2020.
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Simulations of Noncanonical Nucleic Acids with Different χ Variants of the AMBER
Force Field: Quadruplex DNA, Quadruplex RNA, and Z-DNA. J. Chem. Theory
Comput., 8(7):2506–2520, 2012.
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9 The Geometry of Blunt-end and
Base-Pair Stacking

9.1 Introduction

In this chapter, we study the conformation of DNA blunt-ends. Although experimen-
tal data and computational insights are overall scarce on this subject, a few crystal
structures suggest that blunt-end stacking adopts a negatively-twisted geometry [1–3].
Furthermore, a left-handed conformation was reported for the stacking of poly(dA:dT)
fragments in a MD study by the Aksimentiev group [4]. We have investigated the stack-
ing geometry of DNA blunt-ends by unrestrained MD simulations for all ten possible
blunt-end stacks starting from B-DNA like conformations. Our simulations indicate that
a configuration with a twist of φ ∼ −30◦ is indeed the native state for all sequences,
except for the GA and GC sequences, where we find equal stabilities between the right-
and left-handed conformation. In most cases, a transition to the left-handed state oc-
curs within ∼ 10 ns, and the stability ranges from ∼ 2 − 4 kcal/mol. We characterize
blunt-end stacking by a canonical B-DNA rise of ∼ 3.3−3.4 Å and sliding close to ∼ 0 Å,
which reflects negligible lateral displacement for blunt-end base-pair stacking.
The finding of a completely different state compared to regular B-DNA is of high rel-
evance for the following reasons: First, blunt-end stacks represent DNA double-strand
breaks and are for instance induced by the Cas9 endonuclease, which is utilized in the
CRISPR/Cas-method [5–7]. Double-strand breaks are repaired through the HDR or
NHEJ mechanism [8–10]. The large structural difference of blunt-ends to conventional
DNA base-pair stacking is likely to be strongly implicated in these processes. Second,
blunt-end motives are used in DNA-nanotechnology [11, 12]. Knowledge of their struc-
tural arrangement is hence important for applicative purposes. Third, blunt-end stacking
also occurs in DNA crystallization. We have found three different blunt-end sequences
from DNA crystal structures (TA,GC and TG step), which are in good agreement with
our computational results [1–3, 13]. The TA and TG blunt-end steps show a negative
twist (φ ∼ −25◦), whereas GC is twisted by φ ∼ 26◦. Fourth, we learn a fundamental
thing: What is the origin of DNA’s right-handed structure? Based on this study, we
argue it is not a consequence of base-stacking. It is rather caused by the backbone
constraining the base-pairs into the right-handed conformation. This understanding has
already been useful for the development of Tumuc1, as it shows that an accurate descrip-
tion of B-DNA’s helical structure can hardly be achieved by modulation of nonbonded
interactions. Parameterization of the bonded backbone-terms is central therefore.
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We have complemented our MD simulations of blunt-end structures by extensive DFT-
calculations on base-pair stacks. Thereby, we have scanned the quantum mechanical
potential energy for twisting of all ten base-pair stacks. These calculations reveal that
B-DNA like stacking conformations (φ ∼ 34.5◦) do not represent the energetically most
favorable base-pair stacking configuration. In general, base-pair stacking turns out to
become more stable for modest twisting (φ ∼ 0◦). However, the energetically most stable
state in the MD simulations on the blunt-end systems as well as in the QM calculations
on the base-pair stacks is characterized by translational base-pair step parameters cor-
responding to B-DNA (rise ∼ 3.3− 3.4 Å and slide ∼ 0 Å).
For the blunt-end systems, we obtain a negative twist, as the φ ∼ 0◦ state is unfavorable
due to clashing of the sugar rings, hence they adopt a stacking geometry with a twist of
φ ∼ −30◦. Therefore, we point out that blunt-end stacking prefers a negatively twisted
state and that the right-handed helical structure of B-DNA may be a constraint-effect
of the backbone-strands.

9.2 Materials and Methods

9.2.1 MD Protocol

Preparation of Blunt-end Systems

Starting structures have been constructed from complementary d(5’-CGCXYCGC-3’)
B-DNA structures, which were generated with the nab-module [14]. X and Y denote the
base-pairs between which double-strand breaks were induced to built blunt-end stacked
DNA duplexes (Fig 9.1 A). All ten possible base-pair steps (XY) were studied. The
double-strand breaks were incorporated by removing the phosphate atoms of the Watson-
and Crick-strand in the fourth base-pair step (between X and Y base-pairs). Residue
names of the bases in the X/Y base-pairs were changed to 3’- and 5’-ends, respectively.
The structures are then automatically completed at the junction with the xleap-module.
The bsc1 force field [15] and TIP3P water model [16] was used (10 Å between DNA and
box-boundary). The systems were neutralized with sodium ions.

MD Simulations

The systems were energy-minimized in 2500 steps with the sander-module and after-
wards stepwise heated up and equilibrated for the NPT-ensemble (p=1bar, T=300K) in
consecutive MD simulations with the pmemd.cuda module of the Amber16 package [14].
This protocol covers a simulation time of 2 ns. The output-structures served as input
for the subsequent production runs, which lasted 200 ns. No restraints were applied in
the production runs.
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9.3 Results and Discussion

Figure 9.1: Studied Structures: (A) MD simulations were performed on blunt-end
stacked duplexes. (B) The base-pair stacking geometry has been scanned
with QM calculations by employing a dihedral angle on the glycosidic nitro-
gens as reaction coordinate.

9.2.2 QM Calculations

DFT calculations were conducted for all ten base-pair stacks. Note that these sys-
tems do not include sugar- or backbone-atoms (Fig 9.1 B). The B3LYP functionals
[17–19] and def2-TZVP basis-set with an auxiliary basis-set for the Coulomb-integrals
were used [20, 21]. The Becke-Johnson damping function (D3BJ) [22] was employed
to account for dispersion correction, and the QM calculations were performed at im-
plicit solvent (CPCM, ε = 80) [23]. Stacking of the base-pairs was scanned along the
dihedral 6 (NW1, NC1, NC2, NW2) in 5◦-steps between 35◦ and −35◦. NW1 (and other
atoms accordingly) denotes the glycosidic-nitrogen atom of the Watson-base in the first
base-pair. Scanning of the dihedral angle was done by means of geometry optimiza-
tion at the constrained dihedral angles. In cases where the optimization procedure was
not successful, geometry optimization with BLYP-functionals [17, 18] was performed.
The output of these calculations was then used as input for new calculations with the
B3LYP-functionals.

9.3 Results and Discussion

9.3.1 MD Simulations of Blunt-end Base-Pair Steps

We have started the unrestrained 200 ns MD simulations from blunt-end stacking ge-
ometries similar to the right-handed B-DNA geometry. However, structural transitions
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Figure 9.2: Twist of the DNA blunt-end stacks as recorded from the MD simulations for
all sequences. Note that the simulations were started from a right-handed
conformation (φ > 0). The plot was generated by averaging of 10 ps bins.

to a left-handed state (φ ∼ −30◦) occur after already ∼ 10 ns (Fig 9.2). Note that we
have computed the geometric parameters with our protocol presented in chapter 6 [24].

Only the GC and GA sequences behave differently, and show a strong population of
the canonical B-DNA state (φ ∼ 34.5◦). We have quantified the stabilities of the states
by recording the probability as a function of twist and subsequently calculating relative
free energy profiles by Boltzmann inversion, F = −kBT · ln(p(φ)). The resulting free
energy curves illustrate a stability of the left-handed state of ∼ 2 − 4 kcal/mol, except
for the GC and GA steps (Fig 9.3, 9.4). This state is stabilized by unconventional
hydrogen bonds between HO5’ and phosphate bound oxygens (Fig 9.4). Otherwise, our
results indicate that base-pair stacking in a B-DNA twisted configuration is energetically
unfavorable. Thus, we argue that B-DNA’s helical structure is not primarily shaped by
stacking interactions, but by the backbone-strand which induces large restrictions on
the conformational space for base-pair stacking.

From database queries, we have found three different blunt-end sequences: TA, GC
and TG (Fig 9.5). Intriguingly, these structures also show negative twisting for the TA
and TG blunt-end stacks (φ = −21.6◦/−25.8◦), whereas the GC-step is in right-handed
configuration (φ = 25.8◦) [1, 2, 13]. Although these values are not in perfect quantitative
agreement with the free energy curves obtained from the MD simulations, this confirms
our key message: Blunt-end stacking prefers a left-handed geometry. Furthermore, the
sequence-dependent behavior is also in line with the MD simulations, as we have sampled
a large proportion of right-handed states for the GC-step.

Moreover, every blunt-end stack exhibits instability for non-twisted conformations (φ ∼
0◦) in our simulations, which is a consequence of steric repulsion of the sugar-groups (Fig
9.4 B). This conformation is only accessible for high axial displacement (rise) between
the blunt-end base-pairs (see maxima in Fig 9.6). For the φ ∼ −30◦ state, the axial
displacement is analog to B-DNA, ∼ 3.3 − 3.4 Å (Fig 9.6). The lateral displacement
(slide), in contrast, approaches to ∼ 0 Å, hence causing strong overlap between the
blunt-end base-pairs (Fig 9.7).
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Figure 9.3: Relative free energy profiles as a function of twist for all sequences. Free
energy estimates were obtained by Boltzmann inversion of the probabilities.
The probabilities have been computed by dividing the covered twist-range
into 60 equally spaced bins and counting the population of each bin. The
error bars represent standard deviations which have been obtained by slicing
the trajectory into 100 subintervals. For each subinterval, a free energy curve
is computed, and the final standard deviations are then calculated over the
free energy curves of all subintervals.
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Figure 9.4: Structural snapshots taken from the MD simulations: (A) AT-step at φ ∼
−30◦. This configuration is stabilized by hydrogen bonds between the HO5’
atom and a phosphate-bound oxygen, see dashed lines. (B) AT-step at φ ∼
0◦. The blunt-end stack shows strong axial displacement in order to avoid
sterical clashing of the sugar and backbone groups. (C) AT-step at φ ∼ 35◦.
(D,E) The GA- and GC-step are meta-stable at φ ∼ 40◦. (F) The right-
handed conformation is unfavorable for the GG-step.

Figure 9.5: Blunt-end structures found from database: (A) TA-step in left-handed con-
formation (φ = −21.6◦, pdb:1ilc) [2]. (B) GC-step in right-handed confor-
mation (φ = 25.8◦, pdb:1d23) [13]. (C) TG-step in left-handed conformation
(φ = −25.8◦, pdb:330d) [1].
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Figure 9.6: Twist-rise profiles obtained from the MD simulations for all ten blunt-end
sequences. The maxima positions at φ ∼ 0◦ reflect evasive motions due to
sugar-clashing. The plots were generated in a similar way as for Fig 9.3.

Figure 9.7: Twist-slide profiles obtained from the MD simulations on the blunt-end struc-
tures. The plots were generated in a similar way as for Fig 9.3.
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Figure 9.8: Correlation between the reaction-coordinate, the dihedral angle, and the
twist variable, obtained from the QM scans of all ten possible DNA base-pair
stacks. The dashed lines represent linear interpolation between the dihedral
and the twist angles. The slopes are in the range of 1.0 to 1.3.

9.3.2 QM Calculations of the Potential Energy of Base-Pair
Stacking

We have scanned the potential energy surface for all ten possible DNA base-pair stacks
in a series of DFT-calculations. Thereby, we have employed a dihedral angle (defined
by the glycosidic nitrogens) which shows a good correlation with the twist variable
(also used in the analysis of MD simulations), see Fig 9.8. Thus, our setup facilitates
stepwise untwisting of base-pair stacking. Structural snapshots are depicted in Fig 9.9
and demonstrate sound sampling with our methodology.

The computed energies as a function of twist are shown for all sequences in Fig 9.10.
These profiles reveal that a B-form stacking conformation is not the optimal state for
plain base-pairs. In fact, a conformation characterized by modest twisting (φ ∼ 0◦) is
mostly favored. Exceptions therefore are the AT, CG, TG and GC sequence. The TG
step prefers twisting of ∼ −20◦ and the GC step twisting of ∼ 20◦. Note that this
corresponds very well with the blunt-end crystal structures for the two sequences which
occupy a very similar state. From the computed QM energy landscapes, we conclude
that base-pair stacking alone does not give rise to B-DNA’s right-handed helicity, but the
backbone plays a key role. Consequently, this also suggests conformational transitions
upon backbone damages.

The relationship between twist and rise as obtained from the QM calculations is given
in Fig 9.11. At the ground state, the base-pair steps have a rise characteristic for B-
DNA (∼ 3.3− 3.4 Å). In our QM calculations, the slide variable undergoes remarkable
fluctuations (Fig 9.12), but the energy minima coincide with a slide of ∼ 0 Å for many
sequences (compare Fig 9.10 and 9.12). This is especially apparent for the CG and GC
sequence. Notably, the slide for base-pair stacking is also very small in regular B-DNA
(see Table 8.1 in chapter 8). Thus, our QM calculations reveal that the ground state in
base-pair stacking has compared to regular B-DNA very similar values for translational
but not for rotational degrees of freedom. The twist of ∼ 34.5◦ for B-DNA may hence be
enforced by accommodation of the backbone atoms. Note that a different conclusion can
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Figure 9.9: Geometry-optimized structures extracted from the QM calculations: (A)
AT-step at φ = −30◦. (B) AT-step at φ = 0◦. (C) AT-step at φ = 35◦. (D)
GA-step at φ ∼ 40◦. (E) GC-step at φ ∼ 40◦. (F) GG-step at φ ∼ 40◦.

Figure 9.10: Quantum mechanical potential energy as a function of twist for all ten
base-pair steps.
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Figure 9.11: Relation between twist and rise as obtained from the QM calculations for
all base-pair steps.

Figure 9.12: Relation between twist and slide as obtained from the QM calculations for
all base-pair steps.

be inferred from the QM calculations by Parker et al [25]. However, these calculations
have been performed with the SAPT0 method, exclude solvent effects and have scanned
twisting over shorter ranges while including constraints on orthogonal degrees of freedom.

9.4 Conclusion

Blunt-end stacked DNA structures represent double-strand breaks and can occur in vivo
both, inadvertently and deliberately [26]. Resolving the structure of blunt-end stacks
is therefore important for understanding the recognition and repair of double-strand
breaks [8–10]. Furthermore, this motif is also used in DNA-nanotechnology and occurs
in DNA crystals [11, 12].
In this study, we have carried out unrestrained 200 ns long MD simulations for all ten
possible DNA blunt-end stacks exposed to explicit solvent. While the blunt-end struc-
tures adopt a B-DNA like geometry with respect to translational parameters (rise ∼
3.3− 3.4 Å and slide ∼ 0 Å), they undergo a rapid transition to a left-handed conforma-
tion (φ ∼ −30◦) in our MD simulations. The MD simulations allowed us to calculated
free energy profiles as a function of the twist-parameter through Boltzmann inversion.
Calculated stabilities for the left-handed state range from 2 − 4 kcal/mol, except for
the GA and GC sequence. For these two sequences the left-handed state shows equal
stability compared to the canonical B-DNA conformation (φ ∼ 34.5◦). From database
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queries, we have found three different blunt-end sequences (TA, GC and TG) [1, 2, 13].
These crystal structures widely agree with our MD simulations: The TA and TG steps
are in a negatively twisted conformation, whereas the GC-step is twisted by 25.8◦. Thus,
we give strong evidence that a left-handed state is the preferred conformation for DNA
blunt-end steps.
In order to seek a better understanding of base-pair stacking, we have performed exten-
sive QM calculations (DFT, implicit solvent) for the twisting of base-pair steps. Result-
ing energy landscapes show that a canonical twist of φ ∼ 34.5◦ does not represent the
optimal conformation for base-pair stacking. Indeed, the ground state structures adopt
similar translational parameters as in B-DNA and the base-pair steps have a twist of
φ ∼ 0◦ for most sequences. Based on these results, we argue that base-pair stacking
alone does not cause B-DNA’s right-handed helicity. We suppose that adaption of the
backbone structure to the base-pair geometries plays a key role.
For the future, our study might be extended by focusing on the following two aspects:
First, our MD simulations indicate that blunt-end stacking is stabilized by unconven-
tional hydrogen bonds between the HO5’ atoms and a phosphate-bound oxygen. We
will quantify the energetic contribution of this hydrogen bond by MD simulations dur-
ing which we switch off these interactions (employing the same technique as proposed in
chapter 5, [27]). Second, more extensive, higher-dimensional QM scans might be carried
out for base-pair stacking, in order to clearly dissect the energy profiles for rotational
and translational degrees of freedom.
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10 Calculation of the Absolute Binding
Free Energy for the Cren7-DNA
Complex

10.1 Introduction

The binding of proteins to DNA regulates the activity and architecture of the genome
[1–6]. For this reason, a large number of MD studies have been devoted to protein-DNA
interactions [7–11]. While these studies give valuable insight into the conformational
flexibility of protein-DNA complexes, the computation of absolute binding free energies
has mostly been approached with oversimplifying methods leading to rather qualitative
conclusions [12–16]. Calculating absolute binding free energies from MD simulations is
challenging as it requires advanced sampling methods, which guarantee a proper dis-
sociation pathway and convergence. In this study, we have applied an advanced free
energy method [17], which is commonly employed only for small ligands, to the Cren7-
DNA complex. The Cren7-protein sharply bends the DNA upon binding and in this
way compacts the global DNA structure [4, 6]. From experiments, absolute binding free
energies of ∼ −7.0 to −9.4 kcal/mol have been determined for this system, with a slight
preference for AT-rich sequences [18, 19].
Here, we demonstrate that the free energy method developed by Woo and Roux is
principally applicable to the relatively large Cren7-DNA complex. Our setup is techni-
cally sound, however, we obtain a significant overestimation of the binding free energy,
Gbind = −23.8 kcal/mol. We discuss that this likely stems from classical force fields
(we have used bsc1 for DNA) overstabilizing attractive electrostatic interactions. This
possible, major force field deficiency has also been pointed out in a very recent review
from the Aksimentiev group [20], for the sliding of PCNA along DNA even an under-
estimation of the diffusion coefficient by a whole order of magnitude has been reported
[8]. Thus, we emphasize that further investigations and optimizations of the force field
accuracy for DNA/protein complexes are urgent.
Besides, this method allows us to compute the energetic costs required to keep the pro-
tein as well as the DNA in the configurational subspace of their bound forms. For the
Cren7 protein, we obtain a configurational contribution of only ∼ 0.9 kcal/mol. Sub-
stantially higher costs arise for the DNA, where we find a configurational contribution
of ∼ 6.3 kcal/mol. The large difference in the configurational terms for the two binding
partners reflects that the Cren7 protein undergoes only little structural adaption in the
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binding process, whereas the DNA is strongly deformed (bent). We have compared the
configurational cost for the DNA to the deformation energy calculated from a harmonic
stiffness model, which is based on the two bending modes of the binding site. The har-
monic stiffness model indicates a deformation energy for the DNA of ∼ 8.6 kcal/mol.
While this model hence yields an overestimation of more than 2 kcal/mol compared to
the configurational term, we nevertheless can draw qualitative conclusions from the re-
sulting energy landscape, which depends on the two bending modes. Here, we show that
the DNA is not bent along its principal axis in the complex. Thus, our findings indicate
an active role of the Cren7 protein: Upon binding, the DNA is strongly bent, whereby
its own elasticity is not determinant for the deformation. Moreover, this process does
not require energetic-expensive, structural changes of the Cren7-protein.
Future efforts may be directed to the impact of global restraints on the binding affinity,
in order to mimic cooperative effects. Finally, repeating simulations with the Tumuc1
force field is of high interest. By reweighting the trajectories with Tumuc1, we find a
reduction of the binding affinity by 12.5 kcal/mol. Although this must be considered
as a rough estimate, it gives slight optimism for a better performance of protein/DNA
systems when the DNA is described with Tumuc1.

10.2 Materials and Methods

10.2.1 Advanced Sampling Method for the Computation of
Absolute Binding Free Energies

In the following, we summarize the advanced free energy method developed by Woo and
Roux. Assuming low ligand concentration and neglecting ligand-ligand interactions, the
equilibrium binding constant can be written as [17]:

Keq =

∫
site

d1
∫

dXexp[−βU ]∫
bulk

d1δ(r1 − r∗1)
∫

dXexp[−βU ]
. (10.1)

The degrees of freedom are denoted by 1 for the ligand and X for the remaining molecules
(solvent and receptor). r∗1 is a large distance between receptor and ligand, i.e. the ligand
is somewhere in the bulk region [17]. The main idea behind the Woo-Roux method is
to enhance sampling by decomposing receptor-ligand binding into restrained binding,
orientational, axial and configurational contributions which is achieved by extension of
equation 10.1.
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Keq =

exp[βGsitec ]︷ ︸︸ ︷∫
site

d1
∫

dX exp[−βU ]∫
site

d1
∫

dX exp[−β(U + Uc)]
·

exp[βGsiteo ]︷ ︸︸ ︷∫
site

d1
∫

dX exp[−β(U + Uc)∫
site

d1
∫

dX exp[−β(U + Uc + Uo)]
·

·

exp[βGsitea ]︷ ︸︸ ︷∫
site

d1
∫

dX exp[−β(U + Uc + Uo)]∫
site

d1
∫

dX exp[−β(U + Uc + Uo + Ua)]
·

exp[−βGbindrestr]/C
0︷ ︸︸ ︷∫

site
d1
∫

dX exp[−β(U + Uc + Uo + Ua)]∫
bulk

d1δ(r1 − r∗1)
∫

dX exp[−β(U + Uc + Uo)]
·

·

exp[−βGbulko ]︷ ︸︸ ︷∫
bulk

d1δ(r1 − r∗1)
∫

dX exp[−β(U + Uc + Uo)]∫
bulk

d1δ(r1 − r∗1)
∫

dX exp[−β(U + Uc)]
·

exp[−βGbulkc ]︷ ︸︸ ︷∫
bulk

d1δ(r1 − r∗1)
∫

dX exp[−β(U + Uc)]∫
bulk

d1δ(r1 − r∗1)
∫

dX exp[−βU ]
.

(10.2)

As shown by Woo and Roux, the restrained binding free energy can be split into two
terms [17]:

exp[−βGbind
restr]/C

0 =

∫
site

d1
∫

dX exp[−β(U + Uc + Uo + Ua)]∫
bulk

d1δ(r1 − r∗1)
∫

dX exp[−β(U + Uc + Uo)]
= S · I, (10.3)

with

S = (r∗1)2

∫ π

0

sin(θ1)dθ1

∫ 2π

0

dφ1 exp[−βUa(θ1, φ1)] (10.4)

and

I =

∫
site

dr1 exp[−β(W (r1)−W (r∗1))]. (10.5)

C0 is the standard concentration of 1/1661Å3, θ and φ are axial angles, and hereafter
we denote the orientational angles with α, γ, ε [17]. Introducing restraints on the axial
angles (Ua) allows us to simplify sampling in the way that ligand and receptor are sepa-
rated in radial direction. Motions along the spherical surface are hence suppressed. The
orientation of the ligand with respect to the receptor is restrained by a potential de-
pending on the orientational angles, Uo(α, γ, ε). Furthermore, we make use of restraints
in which the internal flexibility of both, receptor and ligand, are restricted. In our case,
these are rmsd-restraints on the Cren7 protein and on the DNA-molecule. Due to the
isotropy of the bulk, we calculate the orientational bulk term analytically [17]:
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Gbulk
o = − 1

β
ln

[
1

8π2

∫ π

0

dα sin(α)

∫ 2π

0

dγ

∫ 2π

0

dε exp[−βUo(α, γ, ε)]
]
. (10.6)

The remaining contributions are computed by means of Free energy perturbation. Thus,
we can calculate the equilibrium constant [17]:

Keq = S · I · exp[−β(Gbulk
o +Gbulk

c −Gsite
a −Gsite

o −Gsite
c )]. (10.7)

The absolute binding free energy is [17]:

Gbind = − 1

β
ln(KeqC

0) = Gbind
restr +Gbulk

o +Gbulk
c −Gsite

a −Gsite
o −Gsite

c . (10.8)

10.2.2 MD Simulations

System-Preparation and Equilibration

The Amber16 package was used for the preparation of the systems and all subsequent
MD simulations [21]. The starting structure was built based on the crystal structure
(pdb:3LWH) [22]. The dsDNA structure was extended on the 5’ Watson-end with a
complementary d(5’-CGCGC-3’) and on the 3’ end with a d(5’-GCGCG-3’) sequence
using a VMD protocol developed by Dr Coles. The resulting DNA-Cren7 complex
structure was neutralized with Na+ ions and exposed to explicit solvent (TIP3P water
model [23], the distance between the octahedral box boundary and the complex was
set to 25 Å) with the xleap-module [21]. Additional Cl- and Na+ ions were added
to achieve a salt concentration of 250mM. The ff14SB [24] and bsc1 force field [25]
was used for the protein and the DNA, respectively. Afterwards, the systems were
energy-minimized in 60000 steps with the sander-module [21]. The energy-minimized
systems were then equilibrated for the NPT-ensemble (p = 1 bar, T = 300 K) which
includes gradual removement of positional restraints. The simulation time for the whole
equilibration phase amounts to ∼ 2 ns. Finally, we conducted a 350 ns long unrestrained
MD simulation. Note that all simulations were carried out with the pmemd.cuda module
[21]. Analogously, a system for the DNA as well as the Cren7-protein alone was set up
and equilibrated. Besides, we have also conducted MM/GBSA calculations based on the
unrestrained MD simulation for salt concentrations of 250mM, 500mM, 750mM and 1M
NaCl. Thereby, the gb=5 model was employed [26].

Free Energy Simulations

Virtual sites defined for the restraints are given in Table 10.1, and the restraints used
in the free energy simulations are defined in Table 10.2 and are illustrated in Fig 10.1.
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Virtual sites D1 D2 D3 C1 C2 C3
residue number 68,87 69,70 85,86 39,49 51,52,53 36,37,38

Table 10.1: Defined virtual sites are the center of mass of the corresponding residues.

Restraint Definition Type
r1 C3-D1 distance
φ 6 (C2, C1, D1) angle (axial)
θ 6 (C3, C2, C1, D1) dihedral (axial)
α 6 (C3, D1, D2) angle (orientational)
γ 6 (C2, C1, D1, D2) dihedral (orientational)
ε 6 (C1, D1, D2, D3) dihedral (orientational)

Table 10.2: Restraints employed in the advanced sampling setup.

Umbrella Sampling (US) simulations along the distance r1 were performed in order to
evaluate equation 10.5. The US simulations consisted of 48 equally spaced windows with
an increase in the reference-distance by 0.60Å and a force constant of 25 kcal

mol·Å2
. Initially,

each window was simulated for 2.5 ns. The first 10 windows were simulated for another
20 ns to improve convergence. In cases of insufficient overlap between the probability
distributions, additional simulations were carried out to cover sampling gaps. All US
simulations included axial, orientational and configurational restraints. The free energy
profile W (r1) was calculated with WHAM [27] and all integrals were computed with
the trapezoidal rule. In a next step, we evaluated the axial term, Gsite

a . Hereto, we
performed two simulations: One with a force constant for the axial restraints of 240,
and one with 0 kcal

molrad2 . Each simulation still included orientational and configurational
restraints and covered 0.5 ns. In a similar way, the Gsite

o -term was derived. These
simulations included configurational restraints and were otherwise analog to the Gsite

a -
related simulations. Configurational free energy terms were calculated from two MD
simulations whereby the rmsd-restraints were reduced from 500 to 0 kcal

molÅ2N
(N denotes

number of atoms). This procedure was carried out for three systems: The Cren7-DNA
complex, the Cren7-protein and the DNA alone. Simulations in the unrestrained case (0

kcal

molÅ2N
), were performed for 50 ns for the Cren7-protein and the Cren7-DNA complex.

For the DNA alone, this window was simulated for 100 ns, as the DNA relaxes from
the strongly bent configuration to regular B-DNA under these conditions. Based on all
those simulations, the Gsite

a , Gsite
o , Gsite

c and Gbulk
c (= Gbulk,DNA

c + Gbulk,Cren7
c ) terms were

determined from free energy perturbation.
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Figure 10.1: Cren7-DNA system. (A) Crystal structure (pdb:3LWH) [22]. The Cren7-
protein is shown in Cartoon representation. (B) Illustration of the advanced
sampling setup. The defined virtual sites are highlighted by blue spheres.

10.3 Results and Discussion

10.3.1 Binding Free Energy

The calculated free energy contributions for binding of the Cren7 protein to DNA are
given in Table 10.3. With equation 10.8, we hence obtain a binding free energy of
−23.8 ± 7.3 kcal/mol. Note that this estimate strongly exceeds the experimentally de-
termined binding free energy of Gexp

bind ∼ −7.0 to −9.4 kcal/mol [18, 19]. The overesti-
mation of the binding affinity as computed from our MD simulations is mainly caused
by the high restrained binding free energy, Gbind

restr = −33.89 ± 7.32 kcal/mol, which is
derived from the distance PMF (Fig 10.2). Most studies rely on MM/PBSA or Steered
Molecular Dynamics simulations and yield binding free energies in the order of ∼ −50 to
−100 kcal/mol, hence having only qualitative meaning [12–16]. By means of MM/GBSA
calculations, we have also studied the influence of salt concentration on the binding
affinity (Fig 10.3). At a salt concentration of 250mM NaCl, we obtain a binding free
energy of −67.7 kcal/mol, which reflects the lower accuracy of the MM/GBSA simu-
lations compared to advanced Umbrella Sampling simulations. Nevertheless, we find
only small decreases in the binding affinity upon increase of the salt concentration in
our MM/GBSA computations: Calculations at 1M NaCl reveal a binding free energy of
−62.3 kcal/mol.
We rather interpret the overestimation of the binding free energy obtained from our
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advanced sampling simulations as an overstabilization in the force field. Thus, we have
reweighted the trajectories from the first and from the last Umbrella window of the
distance PMF shown in Fig 10.2. We have evaluated the energies for every frame of the
second half of the trajectories using an implicit solvent model (gb=5). We then have
calculated the free energy difference between both Umbrella windows, which yields a
new, rough estimate for Gbind

restr:

∆F = − 1

β
· ln


∑
i

exp(−βE1
i )∑

j

exp(−βE49
j )

 , (10.9)

where we sum over the frames i or j of the first and last (49th) window, respectively.
This calculation yields ∆F = −77.6 kcal/mol for the force fields used so far (bsc1 for
DNA). If we describe the DNA with our Tumuc1 force field, we obtain a substantially
lower binding affinity, ∆F = −65.1 kcal/mol. This finding indicates that the bsc1 force
field overstabilizes the protein-DNA complex, and a more realistic binding affinity may
be inferred with Tumuc1. We emphasize that this comparison remains vague, as we rely
on an implicit solvent description and only reevaluate the energies of the trajectories.
In order to compare the performance of the force fields precisely, the MD simulations
should be repeated with the Tumuc1 force field. For small minor-groove-binding ligands,
accurate absolute binding free energies have been determined in two MD studies, which
followed a very similar approach as in our study [28, 29]. However, this does not nec-
essarily mean that accurate binding free energies can also be obtained for substantially
larger protein-DNA complexes with the Amber force fields. Indeed, You and coworkers
have reported very recently that the sliding-diffusion of proteins along DNA is under-
estimated by a whole order of magnitude in the classical Amber force fields [8], and an
overstabilization of Homeodomain-DNA complexes by ∼ 5−15 kcal/mol has been found
by means of standard Umbrella Sampling simulations [30].

Besides, we find a relatively small configurational contribution for the Cren7-protein,
Gbulk,Cren7
c = 0.93 kcal/mol, which reveals only little structural adaption of the Cren7-

protein upon binding. For the DNA, instead, we obtain Gbulk,DNA
c = 6.32±0.03 kcal/mol.

This is caused by the strong bending deformation the DNA undergoes during binding
of the Cren7 protein, and can therefore be directly related to estimates for DNA’s de-
formation energy based on a harmonic model.
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Gbind
restr −33.89± 7.32
Gsite
a 0.76± 0.02

Gsite
o 0.57± 0.03

Gbulk
o 5.13

Gsite
c 0.94± 0.00

Gbulk,DNA
c 6.32± 0.02

Gbulk,Cren7
c 0.93± 0.00

Table 10.3: Computed free energy terms. All values are in kcal/mol.

Figure 10.2: Computation of Gbind
restr. Left panel shows the distance PMF W (r1). Rep-

resentative snapshots for the Cren7-DNA system are depicted for the first
Umbrella window (A) and for the last Umbrella window (B).

Figure 10.3: Binding free energy as a function of the logarithm of salt concentration.
The binding free energies have been calculated with MM/GBSA.
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10.3.2 Deformation Energy of the DNA upon Binding

We have studied the deformability of the DNA’s central six base-pair steps, as they
represent the binding site for the Cren7 protein (Fig 10.4 A). Here, we consider the
three rotational degrees of freedom, which describe the rigid body transformation from
the orientation of axis system A1 (composed of the x1, y1 and z1 vectors) to A2 (defined
by x2, y2 and z2): R = A2A

T
1 [31]. In this way, we have found that binding of the Cren7

protein induces only very modest untwisting (∼ 4.4 deg), but pronounced bending (Fig
10.4 B). Thus, we limit the discussion on DNA’s deformation energy to the two bending
modes (φ, θ). We have extracted the stiffness matrix and equilibrium parameters from
the 100 ns long MD simulation for the DNA molecule, the deformation energy is then
given by [32–34]:

Edef =
1

2
(θ − θ0 φ− φ0)

(
kθθ kθφ
kφθ kφφ

)(
θ − θ0

φ− φ0

)
. (10.10)

Based on this harmonic approximation we can quantify deformation energies as a func-
tion of θ and φ. We hence evaluate DNA’s deformation energy upon binding by the
Cren7 protein to 8.59 kcal/mol (see red cross in Fig 10.4). Note that this overesti-
mates the configurational term for the DNA by more than 2 kcal/mol (Gbulk,DNA

c =
6.32 kcal/mol). This is probably due to a deviation from the quadratic behavior in the
severely bent/kinked subspace. Nevertheless, the deformation energy profile in (θ, φ)
-space (Fig 10.4 B) reveals two interesting results: First, bending by ∼ 25− 30 deg can
already increase the binding affinity by 2 kcal/mol. Second, the complex structure is
very distant from the principal axis. In the complex, the DNA is actually bent into
the stiffer direction (larger deformation of the θ-mode), which is reflected by a lower
variance for θ, var(θ) = 116.0 deg2 and var(φ) = 145.5 deg2. This indicates an active
mechanism of the Cren7 protein, but is also compatible with allosteric effects. Previous
studies have indeed suggested a cooperative mechanism as a result of protein binding
induced changes in DNA’s global elasticity [6, 35].
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Figure 10.4: Deformability of DNA’s binding site. (A) Two axis-systems (x1, y1, z1) and
(x2, y2, z2) have been defined, which allowed us to compute bending pa-
rameters for the binding site. (B) Deformation free energy landscape of
the binding site with respect to bending. Reference values for the DNA
in unbound and in complex conformation are marked by a black and red
cross, respectively. The deformation energy is shown color-coded in units
of kcal/mol.

10.4 Conclusion

The Cren7 protein packages chromosomal DNA in archaea by inducing strong local bend-
ing in DNA’s binding site [6, 18, 19]. Experimentally, binding free energies of ∼ −7.0 to
−9.4 kcal/mol have been measured with a slight preference for AT-rich sequences [18, 19].
In this chapter, we have quantified free energy contributions for binding of the Cren7
protein to DNA with advanced free energy simulations. Overall, we obtain a significant
overestimation of the binding affinity, Gbind = −23.8±7.3 kcal/mol. We suspect that this
demonstrates further deficiencies of the classical force fields. Reweighting the trajectory
with the Tumuc1 force field for DNA makes the binding less stable by ∼ 12.5 kcal/mol.
Note that this represents a rough estimate, and by repeating simulations with Tumuc1
we will be able to give a more precise comparison. However, deficiencies of current force
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fields for protein-DNA complexes have also been reported in previous studies [8, 20, 30].
You and coworkers, for instance, have shown that the sliding diffusion of PCNA along
DNA is underestimated by a whole order of magnitude [8]. Thus, our observed oversta-
bilization of protein/DNA complexes is conceivable.
In addition, we have quantified configurational contributions of the Cren7 protein and
the DNA. Here, we have found only small conformational changes for the Cren7 pro-
tein in contrast to the DNA, for which we have obtained a configurational contribu-
tion of Gbulk,DNA

c = 6.32 kcal/mol. This term can be directly compared to a defor-
mation energy computed from a harmonic model. From a harmonic model, we have
estimated that bending the DNA into its complex structure requires a free energy cost
of 8.59 kcal/mol, which overestimates the configurational term possibly due to deviations
from the quadratic landscape for higher bending. Note that theoretical and experimental
studies have proposed that protein binding alters DNA’s elastic behavior, hence trigger-
ing cooperative binding effects [6, 35]. The investigation of such effects is out of scope
for the present MD study. However, the analysis of DNA’s deformability has shown that
DNA is not bent along the principal axis. This indeed points to an active or cooperative
mechanism of the Cren7 protein, as it means that DNA’s elasticity itself is not determi-
nant. Altogether, one can hence think of the binding process as a strong deformation of
the genetic material, which is caused by a relatively rigid machine.
The large difference between experimentally and computationally determined binding
free energy demands further focus on the methodology of our MD simulations. Though
computationally expensive and no sampling issues were noted, the simulation times
might be extended. Moreover, carrying out the advanced free energy simulation with
Tumuc1 will elucidate the impact of the electrostatic description by the force field on
the binding free energy. For the mechanistic understanding of the Cren7-DNA binding
process, it would be interesting to include global restraints on the DNA during the MD
simulations and hence quantify the binding free energy as a function of DNA’s global
topology (similarly to [9]).
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So eine Arbeit wird eigentlich nie fertig,
man muss sie für fertig erklären, wenn
man nach Zeit und Umständen das
Möglichste getan hat.

- Goethe, Italienische Reise

11 Outlook

Within my PhD thesis, I have used Molecular Dynamics simulations, Quantum Me-
chanical calculations and other theoretical concepts to explore the mechanics of DNA.
In the beginning of my PhD, I was much concerned with how torsional stress affects
DNA’s structure, what is the impact of global restraints, what sort of phase transition
does it trigger and does the stress at a certain level localize at specific sequences? Here,
we have clearly seen the importance to study DNA’s mechanics at atomistic resolution.
The switching between local BI and BII states regulates to a far extent DNA’s deforma-
bility. This results from a sequence-dependent population of the backbone states, a
phenomenon for which we have been able to give a far-reaching atomistic explanation:
Sterical clashing between thymine’s methyl group and the C2’ atom with its hydrogens
leads to a significant stabilization of the BI conformation.
In chapter 7 we have accounted for the role of the backbone states for DNA’s mechanics.
We have derived a new method to compute deformation free energies for double-stranded
DNA structures: The DNA is described as an Ising model, whereby each base-pair step
is discretized to be either in the BI or BII conformation. Each configuration is approxi-
mated by a multivariate harmonic ansatz and we thereby account for nearest-neighbor
coupling. Thus, we have been able to develop the first theory for DNA’s elasticity which
captures both local effects, nearest-neighbor coupling and multimodality. The success
of our model is not only shown by the evaluation of single-molecule MD simulations for
DNA but also demonstrated in protein-DNA systems: With our Ising model we find
excellent agreement between experimentally obtained binding affinities and computed
deformation energies for the papillomavirus E2-protein/DNA complexes, whereas the
standard harmonic model falls behind.
However, I hypothesize that by focusing on atomistic interactions we may lose the essence
of some cellular processes. In the past years, much has been published on DNA-protein
interactions from the MD community, many of them deal with the binding of repair
enzymes to DNA damages. And here, we always do the same: Take the crystal struc-
ture of the protein bound to a small fragment of DNA and let our computers go. But
maybe things work out entirely differently in our cells as there is much more allosteric
regulation than we can anticipate right now? For the recognition of DNA damages, for
example, I imagine the following: Enzymatic processes like transcription and replication
generate high torsional stress for the DNA, which leads to supercoiling. Now, where does
the tip of the supercoil localize? The tip of the supercoil is bent by approximately 180◦

and hence absorbs the largest amount of mechanical stress. Thus, the softest sequence,
which most likely is a damage if present, should be in tip position. Note that this mech-
anism underlies the same principle as TATA-box melting which we have elaborated in
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chapter 6. The DNA damage would then be structurally exposed and in addition, the
compacted supercoil may provide a distinct electrostatic signal for enzymes. This repre-
sents one of many scenarios why I think that a combination of coarse-grained modeling
and atomistic simulation is an important future step. In this way, we would be able to
study cellular processes in atomistic detail while capturing long-range, allosteric effects.
The plausibility of such effects has also been discussed in chapter 10
Another point of concern is the theory we employ in our MD simulations, the force fields.
In my opinion, the quality of force fields has not been examined sufficiently. To me, this
is not very understandable, as the parameterization methods behind them are in large
parts clearly outdated, which is enough reason to adopt a critical perspective on the
standard force fields. Bsc1 represents the most prominent DNA force field. In chapter
8, we have revealed several problems of this force field. My concerns about current
force fields and recent development approaches have motivated me to construct a new
DNA force field based on QM calculations. By the end of my PhD, a first version has
been completed. The force field is named after my alma mater, ’Tumuc1’ for Technical
University of Munich. We have tested it on several different DNA systems: For B-DNA,
we obtain good agreement with experimental data, and also more complex events such
as hairpin folding or hybridization of single strands have been captured accurately. De-
spite its good performance so far, I do not think that it can be the final solution. The
final solution that is just what we are constantly striving for - the way is the aim. In
the coming years, we will closely follow the performance and reputation of Tumuc1 and
by time take action and refine it. A central aspect in the development of Tumuc1 has
actually been to generate a description which is easily modifiable and does not have
to suffer from Amber’s tight corset of generalization. Besides, it is my very ambition
that Tumuc1 will also enter the RNA and protein field. Thereby, we will greatly benefit
from the techniques and experiences we have developed during parameterization of the
DNA force field. However, in the future, we shall go to more complex force fields, which
include polarization effects. By now, polarization effects are generally not considered
in MD studies, but in this way, we neglect interactions that may be central to certain
events. For instance, methylation of pyrimidines at the 5’ position, which represents a
major epigenetic modification, increases the polarizability. It is therefore of interest to
clarify in how far polarization effects can alter nucleosome stability and affect protein-
DNA binding in general.
My outlook is very optimistic. The great advances in hardware provide us with plenty
of possibilities for the future. We can simulate longer timescales in MD, and perform
QM calculations more efficiently. What we need to do now is to improve our theories
and develop new methods.

198



Wenn ich weiter geblick habe, so deshalb,
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- Isaac Newton
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