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A General Framework to Increase Safety of Learning
Algorithms for Dynamical Systems Based
on Region of Attraction Estimation
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Abstract—Although the state-of-the-art learning approaches ex-
hibit impressive results for dynamical systems, only a few appli-
cations on real physical systems have been presented. One major
impediment is that the intermediate policy during the training
procedure may result in behaviors that are not only harmful to the
system itself but also to the environment. In essence, imposing safety
guarantees for learning algorithms is vital for autonomous systems
acting in the real world. In this article, we propose a computation-
ally effective and general safe learning framework, specifically for
complex dynamical systems. With a proper definition of the safe
region, a supervisory control strategy, which switches the actions
applied on the system between the learning-based controller and
a predefined corrective controller, is given. A simplified system
facilitates the estimation of the safe region for the high-dimensional
dynamical system. During the learning phase, the belief of the safe
region is updated with the actual execution results of the corrective
controller, which in turn enables the learning-based controller
to have more freedom in choosing its actions. Two examples are
given to demonstrate the performance of the proposed framework,
one simple inverted pendulum to illustrate the online adaptation
method, and one quadcopter control task to show the overall
performance.

Index Terms—Deep learning in robotics and automation,
learning and adaptive systems, robot safety, safe reinforcement
learning.

1. INTRODUCTION

EINFORCEMENT learning and deep reinforcement

learning have exhibited attractive results in various tasks,
e.g., decision making [1], image processing [2], or natural lan-
guage processing [3]. This encourages the extension of these
algorithms to highly nonlinear and high-dimensional dynamical
systems (referred to as complex dynamical systems in this
work), where purely model-based controller design might be
difficult or even infeasible [4]. Recently developed algorithms,
where deep neural networks are utilized as the learning-based
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controller, have illustrated impressive achievements in these sce-
narios, such as humanoid control [5] or control of manipulation
tasks [6]. However, most of the state-of-the-art results are still
presented only in the simulated environment. A major reason
is that the inherent random exploration mechanism of many
learning algorithms hinders their implementations on real-world
problems, as the intermediate policies may lead to harmful
behaviors to the system or to the environment. For example, an
autonomous mobile robot may collide with obstacles many times
before it learns a successful policy. Hence, one central aspect of
applying learning algorithms to physical dynamical systems is
to effectively impose safety guarantees during the exploration
process.

In earlier studies of employing a learning-based controller
for real dynamical systems, safety was usually achieved by
introducing an additional manual control mechanism, e.g., in [7]
and [8], a human pilot takes over the control of the helicopter in
case of failure. However, application of such a strategy is quite
limited, as monitoring the entire training procedure requires
a considerable amount of resources. Later work on transfer
learning inspires another possibility of implementing learning
techniques on physical systems [9]. A satisfying initial policy
is first trained in the simulator and then transferred to the real
system [10]. Although this might reduce the total required train-
ing time, no safety guarantee has been proposed for the transfer
process. Due to the inevitable mismatch between the simulation
and the reality, there is still a high probability of encountering
a risky intermediate policy during the early learning phase
on the real systems [11]. Clearly, a learning approach with a
reliable safety guarantee is desirable, as it can expand the range
of real-world implementations of modern learning methods on
physical systems.

Safety in reinforcement learning has remained an open re-
search problem for over a decade [12]. In discrete action space
problems, such as Markov decision processes (MDPs), safety
is introduced as an extra component in the reward function.
For example, Geibel and Wysotzki [13] incorporated the risk of
driving the system to an error state into the expected return while
robust MDPs maximize the reward under uncertain transition
probabilities [14]. Moldovan and Abbeel [15] also proposed a
safe exploration algorithm for MDPs where a constraint about
being able to go back to the initial state is imposed. The prob-
abilistic formulation of safety guarantee in [15] inspired later
work of using Bayesian optimization as a tool for the safety
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analysis [16]. An accurate probabilistic system model is needed
for these aforementioned approaches. For tasks with continuous
action space, the safety has been tackled as a constraint satisfac-
tion problem in a model-free learning algorithm [17]. Bayesian
optimization and Gaussian process models have been employed
to give high-probability worst-case safety guarantees. However,
such a strategy usually results in a task-specific policy and the
state constraints may still be violated as no actual system model
is considered.

For scenarios where a system model is available, recent
studies provide reliable safety analysis by incorporating control-
theoretical concepts into the learning algorithms. In [18], a
Lyapunov-based reinforcement learning approach that switches
between several predefined safe controllers is proposed, how-
ever, finding these prior controllers might be a challenging
task. Robust model-predictive control was applied to impose
safety guarantees on the learning process, e.g., by learning a
model of the uncertain environmental constraints [19] or system
dynamics [20], robust feasibility and constraint satisfaction are
guaranteed with bounded error [21]. However, the performance
of such robust controllers depends on the accuracy of the learned
model. Recent research has presented more promising results
by combining data-driven and model-based techniques. In [22],
the safe exploration during learning is modeled as a differential
game, where the controller keeps the system within a safe region
under external disturbances. The safe region is obtained by
reachability analysis where the optimal solution is calculated
from the Hamilton—Jacobi-Isaacs equation [23]. The uncertainty
is modeled as a Gaussian process, which is updated during the
learning procedure. Similarly, Berkenkamp et al., [24] suggested
an approach where the exploration of the learning algorithm is
limited to the region of attraction (ROA). A prior system model
with partially unknown dynamics is utilized to safely estimate
the ROA under a given control policy. Moreover, it is shown that
the policy itself can also be updated with high probability guar-
antees on safety by iteratively learning the system dynamics [25].
The key idea of these studies is to construct a forward invariant
safe region. If the system trajectory starts there, a valid control
policy will exist to keep the future trajectory inside. Hence, the
learning algorithm has the flexibility to explore and update its
policy within the safe region, and safety is ensured as long as a
corrective controller is applied when the system approaches the
boundary of the safe region. However, for dynamical systems
with high-dimensional state spaces, the solution to the partial
differential equation in [22] might be hard to obtain, or the
direct estimation of the ROA through sampling in [25] might
become infeasible. Furthermore, estimating the unknown sys-
tem dynamics or disturbances, those algorithms which rely on
to provide safety guarantees, also poses difficulties. Acquiring
a sufficient amount of data to get an accurate estimate as well as
making feasible and suitable assumptions about the distribution
of dynamics, e.g., which kernel function to be used in a Gaussian
process, are challenging. In essence, itis not trivial to apply those
methods for complex dynamical systems.

In most cases where a learning-based controller is desirable, it
is likely that traditional controller design techniques might also
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be difficult to implement, mainly due to the complex dynamics.
Hence, a safe learning approach should be capable of working on
complex dynamical systems. Furthermore, finding the balance
between the efficiency of exploration and the reliability of safety
guarantees is critical. Although the learning performance can be
improved by increasing the flexibility in the exploration process,
more freedom might increase the risk of entering an unsafe state.
A well-performed safe learning algorithm should maintain a
high probability of safety while ensuring that the learning-based
controller is not too restrictive. However, designing such an
approach is challenging, especially when the system is high
dimensional.

In this article, we propose a generalizable safe reinforcement
learning framework that can be effectively used on complex
dynamical systems. It allows autonomous systems to learn in
the real world safer than standard learning methods, which
in turn prevent damages to the system and the environment.
With a proper definition of the safe region, the learning-based
controller is able to execute the desired actions as long as
the system is evolving inside the safe region. A predefined
corrective controller is activated to keep the system inside the
safe region when it reaches the safety boundary. By utilizing
such a supervisory control strategy, the framework is compatible
with arbitrary reinforcement learning algorithms, and is also
applicable in various learning scenarios. For example, it can be
used to increase the safety for transfer learning [10] or when a
learning algorithm tries to improve the performance of a given
controller [26]. In order to solve the challenging problem of
dealing with complex dynamics, we utilize model order reduc-
tion techniques to construct a simplified system [27]. Such a
simplified system facilitates an estimation for the safe region
and enables a good initialization of the safe learning framework.
To increase the flexibility of the learning-based controller, the
safe region is modified through an online adaptation method.
Due to the computational difficulty of calculating the exact
safe region on complex dynamics [28], we have to relax the
absolute safety guarantee by allowing a reasonable amount of
failures. The proposed framework can learn effectively from
those failures, and later avoid similar dangerous behaviors.
During the adaptation, the execution results of the corrective
controller provide feedback information to update the belief
on maintaining the safety as well as the estimation of the safe
region.

As the main contribution of this work, we provide a possi-
ble solution to the challenging problem of applying learning
algorithms on complex dynamical systems in a safer and less
restrictive manner, which enables application of state-of-the-art
learning algorithms in real-world scenarios. Furthermore, we
analyze the influence of the supervisory control strategy on
the learning process through comprehensive simulations, which
provide practical insights on how to achieve good balance be-
tween safety and learning performance.

The remainder of this article is organized as follows. A safe re-
inforcement learning framework that is directly implementable
on low-dimensional dynamical systems is given in Section II.
Thereafter, by using a model order reduction technique, the
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practical realization of the framework on complex dynamical
systems is proposed in Section III. In Section IV, two exam-
ples are given to demonstrate the performance of the proposed
safe learning framework; followed by the discussion of several
aspects of the framework in Section V. Finally, Section VI
concludes this article.

II. SAFE LEARNING BASED ON THE ROA

In this section, a safe reinforcement learning framework based
on the ROA is explained. Safe reinforcement learning aims to
learn a control policy while satisfying safety constraints during
the learning process. From the control theoretical perspective,
one major criterion related to the safety of a dynamical system
is stability. In that regard, if a given equilibrium point is known
to be a safe state and is also locally asymptotically stable under
a given control policy, then the ROA of this equilibrium point
forms a safe region of the system. A supervisory control scheme,
which switches between the learning-based controller and a
predefined corrective controller, is constructed based on the safe
region, such that the system remains safe during the training
procedure. Details about the framework are presented in the
remaining part of this section.

A. System Model and ROA

A general nonlinear control affine dynamical system is given
by

&= f(z) +g(x)u (1)

where x € X C R" is the n-dimensional system state within
a connected set X and u € U C R™ is the m-dimensional
control input. For a given control policy u = K(z) : X — U,
the closed-loop system dynamics is denoted as

&= fx(r) (2)

where fx(z) = f(x) + g(z)K(x). A state z is said to be an
equilibrium point if fx (z) = 0. Through a state transform, any
equilibrium point can be shifted to the origin, hence in this
work, we only focus on the ROA of the origin. The following
assumptions are made for the system.

Assumption 1: fx(x) is Lipschitz continuous and bounded
in X.

Assumption 2: The origin is a locally asymptotically stable
equilibrium point under K ().

Given these assumptions, the ROA of the origin under a given
control policy K (z) is defined as

Rk ={rg € X'| tlglglo Qg (t;9) =0} 3)

where @k (t;x0) denotes the system trajectory of (2), which
starts at initial state xo when time ¢ = 0.

If the origin is a known safe state, then by utilizing the ROA,
we define the safe region in this work as follows.

Definition 1: A closed positive invariant subset of the ROA
‘R i containing the origin is defined as the safe region D of the
closed-loop dynamical system (2).

B. Safe Learning Framework

Typical reinforcement learning algorithms learn a parameter-
ized control policy u = 7(z) : X — U by iteratively updating
its parameters through maximizing a reward function, whereas
safe learning algorithms additionally require that certain safety
constraints have to be satisfied during the learning process.

To formulate a safe reinforcement learning framework, a
predefined corrective controller K () and its safe region D are
introduced to the learning process. As long as the system state
z is inside the safe region D, we can apply the control policy
K (x) to drive the system back to a safe state. Since D is a closed
positive invariant set and the trajectory is continuous, the only
possibility that the system leaves D is by crossing the boundary
OD. Thus, it is sufficient to apply K (z) on the boundary 0D
to keep the system safe while providing flexible control action
executions in the interior of D.

Accordingly, we formulate the safe learning framework by
switching the actual control action between the learning-based
policy 7(x) and the corrective controller K (z) for each learning
iteration as

(), ift <t 2

| K(x), else ¢
where t* is the first time point where the system state x is on
the boundary of the safe region 0D. For each learning iteration,
the system state x starts inside the safe region D for time ¢ = 0.
The learning algorithm has the flexibility to evolve the trajectory
within D and update the control policy 7(x). Once the system
state x is on the boundary of the safe region, i.e., z € 0D, this
learning iteration is terminated at time ¢ = t*. The corrective
controller K () is then applied for the remaining time of this
learning iteration to drive the system back to a safe state, i.e.,
the origin in our case. After the safety recovery, the learning
environment is reset and the next learning iteration starts again
with time ¢ = 0. In practice, the time point ¢* might be missed
because of discretization of the control. In such cases, the time
point ¢* has to be modified by considering the tolerable distance
to the boundary of the safe region with respect to the actual
control frequency.

Such a supervisory control strategy is applicable to arbitrary
reinforcement learning algorithms. We refer to this switching
controller as the supervisor to the standard reinforcement learn-
ing structure (see Fig. 1). It examines the current system state x
atevery time step before applying the control action, and decides
whether the learning-based controller has to be replaced by the
corrective controller in order to keep the system safe. The volume
of the safe region D depends on the corrective controller K (x).
A good choice of controller K (x) provides a large enough D
such that the system maintains sufficient flexibility under the
policy 7(x).

One essential part of the safe learning framework is to rep-
resent the safe region as accurately as possible; however, the
exact calculation of the safe region and the ROA is usually
not feasible [29]. In literature, a sum-of-squares (SOS) pro-
gramming approach is widely used to get at least an inner
approximation of the ROA [30]. Since this approximation is
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Fig.1. Safereinforcement learning framework with the supervisor that decides

the actual control action applied on the system.

represented as a closed positive invariant subset of the ROA,
it serves as an initial estimate of the safe region. However,
scalability is a major challenge in SOS programming [31], which
hinders its application on complex dynamical systems. Although
there exist methods to relax the computational limitation of SOS
programming [31], it is still difficult to effectively update the
high-dimensional approximation of the ROA obtained through
these methods. Thus, in the next section, we propose a practically
implementable safe learning framework for complex dynamical
systems.

Remark 1: Using the ROA for defining the safe region pro-
vides computational efficiency; however, other concepts can
also be utilized to define the safe region. For example, maximal
control invariant set [32], invariance functions [33], or barrier
functions [34] can be used to construct a safe region. The safe
learning framework is generally compatible with these different
concepts, as long as a closed and control invariant safe region
can be defined.

III. PRACTICAL REALIZATION ON COMPLEX SYSTEMS

In order to overcome the computational limitations, we pro-
pose a generalizable practical realization of the safe learning
framework for complex dynamical systems in this section. An
overview of the implementation is given in Fig. 2. We first utilize
amodel order reduction technique to extract a simplified system
model from the complex dynamical system (denoted as the orig-
inal system). Then, an approximation of the safe region of the
simplified system is obtained through SOS programming. This
approximation provides an initial belief about the safe region
of the original system, and is used to initialize the supervisor
of the safe learning framework. During the learning process, an
online adaptation method is employed to update the supervisor
as well as the belief about the true safe region. While the
learning-based policy m(z) is updated through reinforcement
learning, a more reliable supervisor is learned simultaneously
by using the feedback data from the execution of the corrective
controller K (z).

A. Initialization With Simplified System Model

One of the key properties of the safe learning framework
is the identification of the safety of a state by the supervisor.
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Fig. 2. Overview of the practical realization of the safe learning framework
for complex dynamical systems. The supervisor and the belief about the safe
region are initialized by using a simplified system model and are updated through
feedback data.

Since no actual data are available prior to the learning process
and finding the safe region of a complex dynamical system is
computationally infeasible, the supervisor is initialized using the
simplified system model.

1) Simplified System: In practical engineering problems, var-
ious model order reduction techniques are used when the direct
operation over the original system is computationally infeasi-
ble [27], e.g., physically inspired approaches [35], balanced
truncation [36], system immersion [37], or abstraction [38].
In this work, we perform the model order reduction by using
physically inspired approaches. In general, if the original system
is represented by (1), then by considering important physical
features, the model order reduction finds a simplified system

T = fs(s) + gs(ws)us (5)

where x; € R™s, ny < n is the ns-dimensional simplified sys-
tem state and us € R™ is the ms-dimensional control input to
the simplified system. The mapping of the model order reduc-
tion, which transfers the original system state x to the simplified
system state x, is defined as x5 = W(z). For a given control
policy us = K(xs), the safe region of the simplified system,
denoted as D, can be estimated through SOS programming [30].
For obtaining an approximation of the safe region of the
original system D, the following assumption is made.
Assumption 3: There exists a region around the original
system’s origin V = {x € R™ | ||z|| < ¢} C D with a constant
€ > 0, such that Vz, if x € V, then ¥(x) = x5 € Ds.
Assumption 3 is a requirement on the quality of the combi-
nation of corrective controller K (x) and simplified system. It
says that if an original system state x is safe under the corrective
controller K (x), then the trajectory @y (¢; ) corresponds to a
safe trajectory of the simplified system. Thus, it motivates the
initialization of the safe region of the original system D by using
the safe region of the simplified system D;. In general, if the
original system state = corresponds to a safe simplified system
state x5 € Ds, then a suitable corrective controller K () is most
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Fig.3. Relationships between the safe regions of the original system and the simplified system. (a) For an original system state x and its corresponding simplified

system state x5, if ©5 € Ds, then it is most likely that z € D can be achieved by, e.g., solving ¥ (® (¢; z)) = @ _(t; z5). (b) Different original system states z
mapped to the same simplified system state x5 have the same probabilistic estimate of safety. (c) Probabilistic estimate of safety is represented by the corresponding

belief mass.

probably also able to control the original system state back to
a safe state. This can be achieved if there exists a corrective
controller K (z) that realizes ideal trajectory matching

V(Qk(t;m)) = @i (B 25) (6)

where ®% (t; ) is the reference trajectory obtained from the
simplified system that converges to the origin [see Fig. 3(a)].
See Remark 2 for an optimization-based approach. We will later
discuss other choices for the corrective controller K () that are
found by physical insight or by considering technical limita-
tions. Nevertheless, the simplified system provides a reasonable
initialization of the safe learning framework.

In this work, we assume that a simplified system satisfying
Assumption 3 is available, and a sufficiently accurate estimate
of its safe region Dy is computable. D, is then utilized as an
initial belief of the safe region of the original system D, which
is modified later by an online adaptation method explained in the
next section. A well-designed simplified system can provide an
accurate belief that in turn reduces the amount of data required
in the adaptation process.

Remark 2: To achieve (6), one possible choice for the cor-
rective controller K () is minimizing the discrepancy between
the mapped trajectory W (® g (¢; 2)) and the reference trajectory
3 (t; x,). Hence, we have the following optimization problem

m&n||Vm\Il(x)(f(x) +g(z)u) — &sl|, stueld (7)
where &5 = fs(xs) + gs(zs) Ks(zs). However, since the orig-
inal system has more degrees of freedom than the simplified
system, in general, the set {u | V¥ (2)(f(z) + g(x)u) = &}
is not a singleton. In such cases, additional constraints or costs
are required to find the optimal control input « [33].

2) Probabilistic Estimate of Safety: Initially, the safety of
an original system state x is estimated through the safety of
its corresponding simplified system state x5 = ¥(x). However,
there are three reasons for the inaccuracy when performing such
an estimation, which are as follows.

1) Due to different control input spaces, the ideal trajectory
matching represented by (6) may not be possible for all
original system states z. Thus, the safety of an original
system state x is not guaranteed by the safety of its corre-
sponding simplified system state x4 (e.g., V(P (¢;21))
in Fig. 4).

If an original system state = is mapped to a simplified
system state x, that is not in the safe region of the
simplified system Dg, the original system state x may
still be a safe state (e.g., U(Px(t;x2)) in Fig. 4), since
the control input of the original system u is usually
more flexible than the control input of the simplified
system us. However, in this case, prior knowledge about
the original system is required to design the corrective
controller K (z) as trajectory matching is not suitable
here.

Due to the order reduction, it is unavoidable that multiple
original system states  are mapped to the same simplified
system state x5 (e.g., ¥(z1) = ¥(z3) = 5,1 in Fig. 4).
Although these original system states = have the same
estimate of safety from the simplified system, their actual
safety properties are likely to be different, as the corrective
controller provides different control signals for different
original system states x.

Due to these reasons, we propose that for a given original
system state x, the estimate of its safety obtained from the
simplified system is represented in the following probabilistic

2)

3

~
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Fig. 4. Reasons for the inaccuracy of estimating the safety of an original

system state through the simplified system. The original system state x does
not always have the same safety property as its corresponding simplified system
state x5, and different original system states mapped to the same simplified
system state may have different safety properties.

way:

p(z € D) = p(z € D|¥(x) € Ds) p(¥(x) € Ds)

p1()
+p(z € D|¥(2) ¢ Ds) p(¥(x) € Ds)  (8)

p2(x)

where different original system states x mapped to the same
simplified system state x5 = W (z) have the same probabilities
p1(x) and po(x). As the safe region of the simplified system Dj
is fixed, we have either p(¥(z) € D) = Lorp(¥(z) ¢ Ds) =
1. Since p(¥(z) € Dy) + p(¥(x) ¢ Ds) = 1, (8) is simplified
with the corresponding conditional probability as

o pl(x)a
plweD) = {Pz(fﬂ),

if U(z) € D,
e ©)
if U(x) ¢ D;

which represents the probabilistic estimate of safety of an orig-
inal system state x [see Fig. 3(b)].

3) Supervisor Initialization: For the initialization of the su-
pervisor, the only available information about the safe region of
the original system D is the probabilistic estimate of safety de-
rived from the simplified system. We therefore design a function
approximator F(x) as

F(x) = p(x € D) ~ [0,1] (10)
which gives the probability of a given original system state x
being inside the safe region of the original system D. Then,
with a threshold «, the previous supervisor (4) is transformed
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into the following form:

7(x),

| K@),
where t denotes the first time point that the probability obtained
from the function approximator is not larger than the threshold,
i.e., F(x) < a. Based on the probability of being in the safe
region, the supervisor categorizes the original system states into
safe and unsafe classes. Such a supervisor can be considered as
a probabilistic binary classifier [39].

To initialize the function approximator F'(z) of the supervisor,
we first sample & normally distributed points in the original
system state space {z1,%2,...,%;,...,x}, where k depends
on the dimension of the state space. Then, according to (9),
the probabilistic estimate of safety of each sample is calculated
by using the safe region of the simplified system D,. We set the
probability distributions to constants p; () = P, p2(z) = p, and
obtain the initial estimate a

ift <t
else

(1)

5, if U(z;) € D,
Pinit (z; € D) = {p (:) (12)

p, if ¥(x;) ¢ Dy

where 0 < p < a < p < 1. The values of p and p are chosen to
be the same as in the prior belief map, which is explained in
Section III-B.3. An example is given in the following.
Example 1: Assume the original system state is x =
[Ta, Ty, Te, 2q]T € X C R%, we define the simplified system
state 7, € R? and the safe region of the simplified system D as

xs="(x) = [a:e,a:f]T = [xq + xp, T + md]T (13)

D, = {a |z + 27 < 9}. (14)

Then, for one sampled state 2; = [0.1,0.2,0.3,0.4]7, we have
Pinit (21 € D) = Psince 251 = ¥(z1) = [0.3,0.7]T € D;.
The function approximator F'(x) is then initialized by train-
ing with all sampled states and their corresponding estimates
obtained from (12). In general, this initialization is expected to
result in a restricted supervisor. To increase the performance of
the safe learning framework, we update the supervisor with an
online adaptation method that is described in the next section.
Remark 3: Depending on the sample size k, we use either a
Gaussian process regression (GPR) model or a neural network
(NN) for the function approximator F'(z) in this work. Although
training a GPR model is more transparent compared to NN, it
has computational difficulties when dealing with a large dataset.
Therefore, to enable efficient training, we use an NN when
the original system state space has dimensions higher than 8§,
where usually more than a few thousand data points are required
for a reliable approximation. The function approximator F'(x)
can also be represented by other models, as long as reasonable
predictions can be made and efficient training is feasible.

B. Online Adaptation of the Supervisor

During the learning process, a learning iteration is termi-
nated when the supervisor realizes that the trajectory is on the
boundary of the estimated safe region of the original system D.
The predefined corrective controller K (x) is then activated to
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recover safety by controlling the original system state x back
to the origin. The success of this recovery informs us about the
ground-truth value of safety and is defined as feedback data.

Definition 2: The feedback data of a learning iteration that
requires safety recovery contain two elements (x, p(x € D) =
{1,0}). x is the original system state where the corrective con-
troller K () is activated. p(z € D) = {1, 0} represents whether
this state can be controlled back to the origin under the given
corrective controller K (x). We call it positive feedback data
if p(x € D) = 1, and negative feedback data if p(z € D) = 0.
The set of all feedback data is denoted as X,cai-

Ideally, the supervisor is updated by only using feedback
data so that if enough trials are available, the supervisor will
provide accurate predictions. However, for a system with high-
dimensional state space, it is not feasible to acquire such an
amount of feedback data through real trials. The proposed online
adaptation method tackles this problem. The central idea is to
update the supervisor by a hybrid data source, comprising the
feedback data and the probabilistic estimate of safety obtained
from the simplified system. For getting accurate estimates, the
belief about the safe region of the original system D is updated
during the learning process such that a reliable supervisor is
obtained through the online adaptation method.

1) Belief Function Theory: The probabilistic estimate of
safety obtained from (9) comes from the simplified system.
However, as the exact mathematical relationship between the
safe region of the original system D and the safe region of the
simplified system Dj is unclear, such an estimate is in fact a
subjective probability [40]. Moreover, for obtaining accurate
estimates, the probability distributions p; (x) and p2(x) need to
be updated using feedback data. Due to the insufficiency of feed-
back data, there is an internal uncertainty affecting the accuracy
of the update. For example, when tossing a coin, the probabilities
of “heads” and “tails” are equal, i.e., p(heads) = p(tails) = 0.5.
But with only one toss, the probability we obtain from the
observation is either p(heads) = 1 or p(tails) = 1. The same
problem occurs when computing probability from insufficient
feedback data, which makes it also a subjective probability.

To deal with subjective probability, we integrate the belief
function theory [41] into our safe learning framework. Be-
lief function theory provides a general approach for modeling
epistemic uncertainty by using belief mass and basic belief
assignment (BBA). While belief mass represents the probability
of the occurrence of an event, BBA denotes the assignment of
belief masses to all possible events. The subjective uncertainty
is included as a belief mass on the entire event domain, i.e., the
probability that one arbitrary event happens [42]. Therefore, we
reformulate the probabilistic estimate of safety into belief mass
and design the online adaptation method accordingly, this allows
to adjust the belief about the safe region by accounting for the
subjective uncertainty.

2) Belief Map: In order to efficiently employ the belief func-
tion theory, the simplified system state space is discretized into
grid cells. Each grid cell is indexed by an index vector v € Z'}*
that indicates its location in the simplified system state space.
We then define a labeling function L(z).

Definition 3: For an original system state x, the labeling
function L(z) returns the index vector v of the grid cell that
the corresponding simplified system state x, = W(z) lies in.

We assume that all original system states x, which have the
same index vector v from the labeling function L(z), i.e., they
map to the same grid cell in the simplified system state space,
have the same probabilistic estimate of safety. For taking the
subjective probability into consideration, we design a belief map
that transforms (9) to belief masses.

Definition 4: A belief map B(v) that assigns a BBA to each
index vector v is defined as

B(v) = (by(x € D),by(x ¢ D), 0,) (15)

where b, (z € D) and b,(x ¢ D) are belief masses, o, is the
subjective uncertainty. For each BBA, it holds

by(z €D)+by(x ¢ D)+o0, =1

and b, (z € D), b,(x ¢ D), 0, lie within the interval [0,1].

The belief masses b, (x € D) and b, (z ¢ D) withineach BBA
represent the probabilities of the occurrence of two complemen-
tary events x € Dand x ¢ D, i.e., given the fact that the original
system state x has the index vector v from the labeling function
L(x), whether z is in the safe region of the original system D or
not. The subjective uncertainty o, reflects the confidence level of
making such a probabilistic estimate. o, = 0 means we believe
that the estimate is absolutely correct. To simplify the notations,
we denote b, (z € D) as b, s and b, (v ¢ D) as b, ,, for belief
masses of the safe and unsafe events.

The belief map B(v) utilizes the index vector v to make
the probabilistic estimate of safety for different original system
states . The probability distributions p;(z) and po(z) in (9)
are discretized and replaced accordingly with the belief mass
b, s for each index vector v. For an original system state x, the
probabilistic estimate of safety obtained from the belief map
B(v) is given as

p(x € D) =by(x € D) =by s

(16)

amn

where the corresponding index vector v = L(x) is determined
by the labeling function L(x) [see Fig. 3(c)]. An example of the
belief map B(v) is given as follows.

Example 2: Continued from Example 1, we assume that
all original system states = € X have their simplified sys-
temstates z; in Xy = {z, | —4 <z, <4,—4 <y <4} Af-
ter the discretization with step size 1 for both z. and z;
in the simplified system state space, an index vector v =
[vr, v T, vp,ve € {1,2,...,8}isassigned to each grid cell (see
Fig. 5 ). For original system states x; = [0.1,0.2,0.3,0.4]7,
r9 = [0.2,0.3,0.4,0.5]7, and z3 =1[0,1.5,1,1.5]7, by lo-
cating the corresponding simplified system states x4 =
[0.3,0.7]7, x50 = [0.5,0.9]7, and =5 3 = [1.5,2.5]7, we thus
have L(x1) = L(z2) = [4,5]T and L(z3) = [2, 6]T. The prob-
abilistic estimates of safety are therefore given as p(z1 € D) =
p(x2 € D) = by 57 s and p(z3 € D) = b g7 -

3) Priorand Feedback Belief Map: As mentioned earlier, the
subjective uncertainties are caused by the unknown reliability of
the simplified system and the insufficient amount of feedback
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Fig. 5. Prior belief map Bs(v) of the examples. The BBA for each index
vector v is determined by the center point ¢,, of the corresponding grid cell.

data. In the proposed online adaptation method, we consider
these two types of subjective uncertainties with two different
belief maps.

For the subjective uncertainty in the simplified system, we
construct a prior belief map B> (v) with the constants p and p
from (12) as B

BS(U) = (bg,svb§¢u703)
_ (§717ﬁ700a0—0)3 %fcv GDS (18)
(23»1—]3—00,00), if ¢, ¢Ds

where for each index vector v, the BBA is determined by
identifying if the center point ¢, of the corresponding grid cell
lies inside the safe region of the simplified system Dy (e.g.,
v = [2,4]T in Fig. 5). The subjective uncertainty > reflects the
reliability of the simplified system and is set to a constant o for
all index vectors v. The superscript S stands for the simplified
system as the belief source.

The prior belief map B (v) represents the initial belief about
the safe region of the original system D obtained from the
simplified system. As the simplified system is fixed during the
learning process, we keep the prior belief map B (v) unchanged.

The subjective uncertainty in feedback data decreases with
more observations. Accordingly, we first initialize two counters
Cp(v) and C,(v) to zero for every index vector v. For each
index vector v, Cp,(v) counts the number of positive feedback
data (similarly, C), (v) for negative feedback data) whose original
system state 2 maps to the grid cell indexed by v, i.e., L(x) = v.
Every time the corrective controller K () has to be applied for
an original system state x, the counters C)(v) and C,(v) are
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updated based on the corresponding feedback data as

Cy(v)
Cr(v)

Cp(v) +1,
Cp(v)+1,

ifp(z € D) =

if p(z € D) = .

with the index vector v = L(z) obtained from the labeling
function L(z).

By utilizing the counters C,(v) and C, (v), we therefore con-
struct another feedback belief map BY (v), where the superscript
F indicates that the belief is based on the feedback data. For each
index vector v, the BBA obtained from the feedback belief map
BY(v) is defined as

BY(v) = (bF oY, oF)

v,s7 Yv,ur Yo

(20)

where if at least one feedback data is available for the given
index vector v, i.e., Cp(v) + Cy,(v) > 0, we let

Cp(v)
P Gplv) o §
oo = Cp(v) + Cp(v) (1=0,) @2n
Ch(v)
= g oo 2
o Cp(v) + Cy(v) (1-0y) (22)
JE =c- e—c2'(Cp(v)+Cn (v)-1) 23)

otherwise we set B (v) to an empty BBA. The subjective uncer-
tainty o0& depends on the amount of feedback data. If sufficient
data are obtained, the subjective uncertainty oX approaches 0,
and the belief mass bgys becomes the actual probability. Coeffi-
cients c; and co define the initial value and the decay rate of the
uncertainty, respectively.

During the learning, the counters C),(v) and C), (v) are itera-
tively modified when new feedback data are obtained. Whenever
an update of the supervisor is needed, the feedback belief map
BY(v) is calculated from the up-to-date counters Cj,(v) and
Chn(v).

While the prior belief map B (v) stands for the model-based
belief, the feedback belief map BY (v) represents the data-driven
belief. For getting a more accurate belief about the safe region
of the original system D, in the following, we introduce a belief
fusion operation to combine these two belief maps.

Remark 4: The subjective uncertainty of in (23) can be
represented in different forms, as long as it lies within the
interval [0,1] and satisfies that the uncertainty decreases with
more feedback data.

4) Weighted Belief Fusion: Combining the prior belief map
BS(v) and the feedback belief map BY (v) is referred to as
weighted belief fusion [43], which results in a combined belief
map B (v). For each index vector v, the BBA of the combined
belief map B¢ (v) is defined as

BC(U) = (bg,s’ bg,w Ug)

if BY (v) is empty

_ B%(v),
B {Bs(v) @ BY(v), if BY(v) is not empty %)
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where the operator & is given as

bs,s(l - 018))05 + bg,s(l - O—F)Uis)

bhs = oS+ oF —2030F - ()
o _Vall=obot 4ot
v oS +oF —2050F

o_ @2—oy —oy)oyoy

v oS +oF — 20508 @7)

The combined belief map B(v) satisfies the following
properties.

Proposition 1: If a sufficiently large set of feedback data
is provided, the combined belief map B®(v) converges to the
actual probabilities and the prior belief map B (v) has no effect
in making estimates.

Proof: The following holds for the weighted belief fusion:

lim b, =0k,
Cp(v)+Chp(v)—o0 ' ’
lim b, = bk,
Cp(v)+Cn(v)—00 '
lim ol =a5 =0 28
Cp()+Ch (v)=o0 © v (28)
which directly leads to Proposition 1. |

An example is given as follows.

Example 3: Continued from previous examples, we now ob-
serve two feedback data (21, p(z1) = 1), (22, p(z2) = 0) with
x1 = [0.1,0.2,0.3,0.4]7 and x5 = [0.2,0.3,0.4,0.5]7. Then,
for the index vector v = [4,5]7, we have C,([4,5]T) =1,
Cn([4,5]T) = 1, and the corresponding BBA obtained from the
feedback belief map BY (v) is

BY([4,5]") = (0.47,0.47,0.06) (29)

ifc; = 0.1and co = 0.5. Assume that the prior belief map B (v)
is constructed with p = 0.8, p=0.1, and o¢ = 0.1, we obtain

B5([4,5]7) = (0.8,0.1,0.1). (30)

Therefore, the BBA of the combined belief map B¢ (v) for v =
[4,5]7 is calculated as

BC([4,5]T) = (0.59,0.34,0.07). (31)

The combined belief map B¢ (v) is then used to make the prob-
abilistic estimate of safety for other original system states, e.g.,
for x4 = [0.4,0.3,0.2,0.1]7, we have p(z4 € D) = b[?;75]T,S =
0.59.

In essence, the prior belief map BS(v) serves as the initial
belief that facilitates the safe learning framework in the earlier
phases. During the learning process, such an initial belief is
improved through weighted belief fusion. With more available
feedback data, the combined belief map B (v) gets closer to the
actual probabilities, and therefore, a more accurate probabilistic
estimate of safety is obtained. The update of the supervisor is
thus performed by using the combined belief map B (v).

Parameters of the framework are chosen by considering the
following aspects.

1) The threshold « decides on the aggressiveness of actions
and is selected based on the actual task and the severity of
failure.

2) The initialization of the prior belief map B5(v) depends
on the representation power of the simplified model. For
an informative simplified model, a high probability is
assigned to p along with a low uncertainty (. p can be
chosen as 1 —p — o¢ such that it represents the com-
plementary probability of an initial unsafe estimate. In
general, to ensure an adequate initial action space, p needs
to be larger than a.

3) The parameters of the feedback belief map BY (v) are
selected by considering the number of positive feedback
data needed to convert an initial unsafe estimate to a safe
estimate. For example, if three positive feedback data are
required, then c; and cy satisfy that bgs > « is obtained
from (25) with C},(v) = 3 and C,,(v) = 0.

5) Supervisor Update: Although the set of feedback data
Xeal contains the ground-truth information about the safe re-
gion of the original system D, its limited size makes it inefficient
for the update of the supervisor. We solve this problem by
generating another set of auxiliary data using the combined
belief map B¢ (v). Considering the computational efficiency,
we perform one update of the supervisor whenever k,, feedback
data are obtained, where the value of &, depends on the task.

Similar to the initialization of the supervisor in
Section III-A.3, we first sample k. normally distributed
original system states {x1,zo,...,2;,...,2, ;. To prevent
repetition with the set of feedback data X,.,, the samples
have to be not in the neighborhood of any known states with
a distance threshold d, i.e., V& € X, it holds ||z — ;|| > d
with ¢ = 1...k.. Then, according to (17), the probabilistic
estimate of safety is assigned to each sample by using the
combined belief map B¢ (v) as

p(z; € D) =b5 (32)

where the index vector v; = L(z;) is computed by the labeling
function L(x). This set of estimates is denoted as X5 and is
used to support the update of the supervisor. While the set of
feedback data X, represents the absolute safety of already
known states, Xs predicts the safety of unknown states. In
each supervisor update iteration, a new set of estimates X iS
created with the up-to-date combined belief map B (v). When
the accuracy of the combined belief map B€(v) is improved
with more feedback data, more reliable estimates are obtained.

The update of the supervisor is performed by training a new
function approximator F'(z) from the combined dataset that
includes the set of feedback data X, and the set of estimates
Xest- In the learning process, we incrementally extend the set
Xreal after new feedback data are obtained. The size k. of the
set of estimates X is set to a fixed value since X4 only works
as supplementary data.

Although the combined belief map B (v) converges to the
actual probabilities with more data points, acquiring a sufficient
amount of data is usually not feasible in practice. Therefore, it is
unavoidable that some estimates are incorrect, especially in the
early stage of learning. Estimates with a high error rate will not
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only result in a poorly performing supervisor, but also indicate
that the prior belief map B (v) constructed from the simplified
system is not reliable. In such a case, a considerable amount of
feedback data is required until the inaccuracy of the prior belief
map BS(v) is offset through the weighted belief fusion. As a
result, our original intention of using the simplified system to
provide initial belief about the safe region becomes insignificant.
To prevent this, we additionally introduce a validation process
into the safe learning framework.

6) Validation: The validation aims to identify the accuracy of
the combined belief map B¢ (v). During the learning process, we
perform the validation prior to the update of the supervisor. Since
the supervisor works as a binary classifier, we use the confusion
matrix obtained from the classification for the validation.

For each original system state x in feedback data, the prob-
abilistic estimate of safety is obtained by using the combined
belief map B¢ (v) with (32). Then, according to the estimate,
a predicted class label is assigned to each feedback data by
categorizing it into safe and unsafe classes with respect to the
same threshold o in (11). Comparing with the true class label of
feedback data, i.e., p(x € D) = {1, 0}, we acquire the number
of true positive (TP), true negative (TN), false positive (FP), and
false negative (FN) data points, respectively. The reliability of
the combined belief map B (v) is therefore represented by the
accuracy ACC = (TP 4 TN)/(TP + TN + TP 4+ TN) and the
FP ratio FPR = FP/(FP + TN).

Since the corrective controller is applied when the supervi-
sor considers the current state to be on the boundary of the
estimated safe region, the set of feedback data X, in fact
only contains information about the boundary. In that sense, the
validation process also examines whether the combined belief
map B (v) can represent the real decision boundary accurately.
For a successful implementation of the proposed framework, the
simplified system should fulfill the following assumption.

Assumption 4: The safe and unsafe regions of the original
system are separable in the simplified system state space, i.e., the
decision boundary exists.

The accuracy (ACC) and the FP ratio (FPR) reflect how
well Assumption 4 is satisfied. To ensure the performance of
the supervisor, the combined belief map B (v) should possess
a high ACC and a small FPR. Otherwise, the safe learning
process is suggested to be terminated and restarted with another
simplified system model.

One possible way to find a better simplified system model is
examining the original system states that cannot be distinguished
by the current simplified system model, i.e., they have the same
index vector v but show different safety properties. The state
variables (features) that differ significantly between these orig-
inal system states could be incorporated into the new simplified
system model. However, this increases the complexity of the
simplified system.

C. Safe Learning Algorithm

The practical realization of the proposed safe learning frame-
work is given in Algorithm 1. During the learning process, a
learning iteration is terminated if the supervisor believes that
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Algorithm 1: Practical Realization of the Proposed Safe
Learning Framework.

Input: Safe region of the simplified system D,
probability threshold «, distance threshold d,
initialization sampling size k, estimation sampling size
ke, number of learning iterations k;, supervisor update
interval k., ;

Initialize F(x) with Dy and k ;

Initialize BS(v) with D, ;

Initialize Cp,(v) and Cy,(v) ;

Set X,ca1 as an empty set;

1=0,7=0;

while 7 < k; do

while current learning iteration is not terminated do

if F'(z) > « then

| u=m(x);
else

‘ Iteration is terminated ;
end

end

Update 7(x) ;

Apply K (z) ;

if Vo, € Xical, ||z — 24|| > d or p(x € D) =0 then

Append X, o with (z,p(z € D) ={0,1}) ;

Update Cp,(v) or Cy(v) 3

j=Jj+1;

end

if j =k, then

Calculate B (v) from C,(v) and C,,(v) ;

Calculate B€(v) ;

Validation ;

if Valid then

Create X.s with B€(v) and ke, d ;
Update F'(x) with X;ea and Xegt 5

J=0;
else
Safe learning process is suggested to be
terminated ;
end
end
1=14+1;
end

the current state is on the boundary of the estimated safe region.
The corrective controller K () is then applied to attempt to drive
the system back to the origin. The learning-based policy 7(z)
is updated based on a predefined reward function, whereas the
supervisor is updated according to the feedback data. Once new
feedback data are obtained, the set of feedback data X, is
extended, and the counters Cp(v) and C,,(v) are updated. To
prevent repetition, this modification only happens if all original
system states stored in X,e,] have distances to the new feedback
data’s state x larger than a threshold d, or the new feedback data
represent a failure. Whenever k,, feedback data are obtained, the
prior belief map B> (v) and the feedback belief map BF (v) are
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Fig. 6. Model order reduction for a two-link inverted pendulum. By using
the CoM, a one-link inverted pendulum approximates the two-link inverted
pendulum dynamics.

employed to form the combined belief map B¢ (v). The set of
estimates Xg¢ is then generated by using the combined belief
map BC(v). A new function approximator F'(x) is therefore
trained with the combined dataset, and formulates an updated
supervisor for the following learning iteration.

With the proposed algorithm, we are able to realize a feasible
implementation of the safe learning framework on complex dy-
namical systems. The supervisor proposed in this work provides
predictions about the safety in an effective way. The results of
this practical yet accurate framework are demonstrated in the
next section.

IV. SIMULATIONS AND EXPERIMENTS

In this section, two examples are presented. First, a simple
two-link inverted pendulum example illustrates how the super-
visor and the belief map are updated based on the feedback
data. Second, in a quadcopter control task, the performance of
the proposed safe learning framework for complex dynamical
systems is demonstrated.

A. Two-Link Inverted Pendulum

We first demonstrate the online adaptation of the supervisor
for a two-link inverted pendulum given in Fig. 6. It is assumed
thatly = I3, m; = mo, and the links have no masses. The system
state combines the two joint angles and the angular velocities,
ie.,x =[0,09, 91, éQ]T, and the control input u is the torques
applied on the links. The origin, which is the upright equilibrium
point, is considered as the safe state. A simple PID controller is
implemented as the corrective controller K (x). By limiting the
input torques, the inverted pendulum cannot be driven back to the
origin by the given corrective controller K (x) once it exceeds a
certain angle. The purpose of the online adaptation is therefore
to find a supervisor that can accurately represent the safe region
of the original system, i.e., the two-link inverted pendulum.

By using a physically inspired model order reduction, a
one-link inverted pendulum is constructed based on the center
of mass (CoM) m, and is considered as the simplified system

(see Fig. 6). The simplified system state is z, = [0, 6] and the
corresponding mapping x5 = ¥(z) is
v

x . )
0 = arctan hmc, 0=

me !

(33)

where the link length [ is assumed to be fixed to [ =1 + %’
The joint angle 6 is determined from the horizontal and vertical
positions of the CoM, z,,,_, and h,,_, and the angular velocity 0is
obtained by the velocity of the CoM. Note that the velocity of the
CoM has two components, one is along the link v;, and the other
is perpendicular to the link v,,. As the link length [ is considered
to be fixed, vy, is infeasible for the one-link inverted pendulum
and thus has to be neglected in the mapping. The omission of vy,
represents the expected drawback of losing information when
the system order is reduced in terms of the dimensionality of the
state space.

Due to the simplicity of this example, the safe region of the
simplified system D, obtained from SOS programming provides
an accurate estimate about the safe region of the original system
D. To demonstrate the online adaptation clearly, instead of using
SOS programming, we select the safe region of the simplified
system as D, = {x, | 6% + 02 < 0.62}, where the units of ¢
and 6 are radian and radian per second, respectively. The dis-
crepancies caused by this selection are compensated later by the
feedback data. Moreover, no learning algorithm is implemented
in this example. Since if a learning-based controller is intro-
duced, then under the given input constraints, most of the grid
cells in the simplified state space cannot be visited through a
natural movement of the system. For example, there exists no
admissible control signal to drive the system to states that have
a large positive angle ¢ and a large negative angular velocity 0 at
the same time. Therefore, to fully illustrate the update process of
the combined belief map B (v), the corrective controller K ()
is activated at randomly selected original system states « such
that more states can be visited.

The parameters of the safe learning framework used in this
example are given in Appendix B. For the two-link inverted
pendulum, we set [y =I5 =1 m and m; = mg = 1 kg. The
input torque limit is selected as 12 N for both links. The sim-
plified system state space 5 = [0, 0]7 is assumed to be within
the range of # € [—1.6rad, 1.6rad], § € [—2 rad/s, 2 rad/s], and
is discretized with 0.1 rad for 6 and 0.1 rad/s for 6.

The corresponding results are shown in Fig. 7. The first
row of the figure gives the probability p(z € D) from the
function approximator F(x) for the slice 8; = 6, = 0 in dif-
ferent supervisor update iterations, whereas the second row
shows the slice #; = 65 = 0. The ground-truth values of safety
p(z € D) = {0, 1} are presented for comparison. The last row
illustrates the belief mass bgﬁs from the combined belief map
B€(v) for different index vectors v. In the first supervisor update
iteration, i.e., the initialization, the combined belief map B® (v)
is equal to the prior belief map B%(v). Due to the inaccuracy
of the prior belief map B3(v), the prediction differs from the
ground-truth value [see Fig. 7(a), (e), and (i)]. However, after
ten updates of the supervisor, the accuracy of the prediction
increases quickly. The combined belief map B (v) also changes
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Online adaptation of the two-link inverted pendulum example. (a)—(d) Probability p(x € D) from the function approximator F'(z) for the slice 6y =0,=0

in different supervisor update iterations N = 1, N = 10, N = 30, and N = 70. The ground-truth values of p(z € D), obtained by testing the given corrective
controller K (x) at each sampled point, are presented for comparison. (e)—(h) Probability p(z € D) for the slice 62 = 02 = 0 in different iterations. (i)-(1) Belief
mass bg’ . from the combined belief map B (v) for different index vectors v in different iterations.

iteratively according to the feedback data [see Fig. 7(b), (f),
and (j)]. With more iterations, e.g., 30 iterations in Fig. 7(c), (g),
and (k), the prediction is quite close to the ground-truth value.
Besides, the combined belief map B€(v) turns out to have a
similar shape as the well-known ROA of the one-link inverted
pendulum [44]. The performance clearly depends on the amount
of feedback data, i.e., as more feedback data are available, not
only the prediction, but also the combined belief map B (v)
becomes more accurate [see Fig. 7(d), (h), and (1)].

The ACC and the FPR of the combined belief map B¢ (v) in
different update iterations are given in Fig. 8. The threshold for
the classification is selected as 0.5. As expected, with more feed-
back data, the combined belief map B (v) gives more accurate
estimates while the FPR is kept small. Due to the selected c;
and c, for the feedback belief map BY (v), several iterations are
required until a wrong estimate obtained from the prior belief
map BS(v) is corrected by the feedback data. As a result, the
belief about the safe region of the original system D is expanded
cautiously, which leads to the presented slow improvement in
the accuracy. The FPR does not reach to 0 because there are
some original system states x that, even though, they are mapped
to the same grid cell, show different safety properties, such as
illustrated in Fig. 4.

Since in this example, the corrective controller K () is ac-
tivated on randomly selected original system states x among
the entire state space, more data are required for the update of

1 10.1
0.95 f 10,08
0.9}
J0.08
Q o
Q085 f o
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10.04
08}
075 | 10.02
0.7 - - - - -

. 0
0 10 20 30 40 50 60 70
Iteration

Fig. 8. ACC and FPR of the two-link inverted pendulum example.

the supervisor. However, in practice, we are only interested in
locating the decision boundary, as in the example, we described
in the next section involving a complex dynamical system.

B. Quadcopter Flight Control

To demonstrate the utility and the performance of the pro-
posed safe learning framework for complex dynamical systems,
we control the Crazyflie, a lightweight nano quadcopter (see

![Online]. Available: https:/www.bitcraze.io/crazyflie-2/
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&
(b)

Fig. 9. (a) Crazyflie model in Gazebo simulation environment. (b) Crazyflie
with four tracking markers for the Qualisys motion capture system.

Fig. 9). The learning-based controller 7(z) aims to control the
quadcopter to fly while tracking a given constant reference ve-
locity v? in Cartesian space, and is trained by using the proximal
policy optimization (PPO) [45] from OpenAl Baselines.” The
corrective controller is a PID controller that keeps the quadcopter
hovering at a given height. By using the proposed safe learning
framework, we reduce the number of quadcopter crashes during
the learning process.

The system state of the quadcopter is = = [py, 0, vy, wp
where p, = [ps, py,p-]* and 0, = [0,.,0,,0,]" are the linear
and angular positions in the ground frame, respectively, and v, =
[Vg, Uy, v:])T and wy, = Wy, wp, w,]” are the linear and angular
velocities in the body frame, respectively. Since positions p, and
py have no effect on the corrective controller, the input to the
function approximator F'(x) that decides on safety of an original
system state x has ten dimensions.

For obtaining the simplified system model, we assume that
the thrust provided by the motors is large enough, such that the
height p, and the velocity v, play a less important role in deter-
mining whether the current state is safe or not. Therefore, accord-
ing to the physical properties of the quadcopter, the simplified
system state can be chosen as the angular positions ¢, and 6,, and
their angular velocities w, and w,, in roll and pitch directions,
respectively. However, to be able to visualize the update of the
combined belief map B (v), we only use the angular velocities
w, and w,, as the simplified system state in this example, i.e.,
zs = ¥(z) = [w,,wp|T. Considering the maximal motor speed
of the Crazyflie, the simplified system state space is assumed
to be in the range of w,,w, € [—30rad/s, 30rad/s| and is dis-
cretized with 1 rad/s. The safe region of the simplified system D;
is chosen as Dy = {zs | —4 <w, <4, -4 <w, <4}. Note
that if angular positions are included to form a more physical
meaningful simplified system, SOS programming can be intro-
duced for getting a better initial estimate. An example where
SOS programming is used is given in Appendix A.

There are four steps in each learning trial, which are as
follows.

1) The quadcopter takes off from the ground and hovers at

the position p, = [0,0,1 m]7.

2) The learning-based controller starts to control the

quadcopter.

]T

s

2[Online]. Available: https:/github.com/openai/baselines

3) Once the supervisor suggests that the current state is on
the boundary of the estimated safe region, this learning
trial is terminated and the corrective controller is activated.
Note that in order to provide enough physical space for
the corrective controller, the switching also happens if the
height of the quadcopter is lower than 0.7 m, i.e., p, <
0.7 m. The corrective controller attempts to balance the
quadcopter back to a safe hovering state.

4) In the end, if the balance is successful, the quadcopter
lands on the ground and waits for the next trial.

The detailed experimental setup can be viewed in the supple-

mentary video.

We examine the performance of the proposed safe learning
framework both in simulation and in reality, and present the
results as follows.

1) Simulation: The learning process is simulated in Gazebo?
with the Crazyflie model provided in [46] [see Fig. 9(a)]. The
communication between the Gazebo simulator and the PPO
algorithm is established through the Robot Operating System
(ROS) using the Gym-Gazebo package [47].

To analyze how the supervisor affects the learning process,
we perform the simulation in the following different conditions.

1) No supervisor (NS): NS is implemented and the corrective
controller is activated only when p, < 0.7 m.

2) Feedback data only (FO): The supervisor is trained only
with the feedback data. In addition to the height condition,
the corrective controller is also activated when F'(z) < «
with o = 0.51in (11).

3) With supervisor (WS): The proposed framework is im-
plemented and three different thresholds are investigated:
a=02 (WS-0.2), a=0.5 (WS—0.5), and a = 0.8
(WS—-0.8).

The learning-based controller 7(x) controls the four motor
speeds and runs at 200 Hz. The parameters as well as the reward
function used in this example are given in Appendix B. Starting
with a random initial policy, we run the PPO algorithm for
307200 timesteps (75 updates with 4096 timesteps per each
update) and each condition is trained with three different seeds.

The rewards of the learning processes are presented in
Fig. 10(a). If a supervisor is used, the reward in the early learning
phase is observed to be higher. Since each learning trial is
terminated before the system leaves the estimated safe region,
the supervisor provides an early-stopping functionality and helps
with the policy update. However, more training time is required,
because more time is spent on balancing the quadcopter and
training the supervisor. The learning performance is affected
by the threshold .. While with a low threshold (WS—0.2), the
supervisor has a minor effect on the learning process, and a high
threshold (WS—0.8) may lead to an over restricted safe region
and, thus, decreases the final learning performance.

The cumulated failures in the first 500 feedback data are
given in Fig. 10(b). Since a small threshold allows more risky
actions, the threshold « influences the total number of failures
as well as the speed of the expansion of the safe region. This
can also be observed from the update of the combined belief

3[Online]. Available: http://gazebosim.org/
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Fig. 10.
the belief mass bgy  of the combined belief map B C( ). (d)—(f) Belief mass be

N = 10. (2)-(i) Belief mass b5,

v,8
in the supervisor update iteration N = 40.

map BC(v) given in Fig. 10(c)—(i), where a higher threshold
leads to a more restricted expansion process. If only feedback
data are used (FO), the supervisor is initialized with the same
prior belief map, as no feedback data are available prior to
the learning process. After the first supervisor update iteration,
failures happen immediately as predictions based only on the
feedback data are unreliable due to the insufficient data amount.
The introduction of the belief maps improves the performance
of the supervisor, especially in the early learning phase. The
overall success rates of the corrective controller for the entire
learning process are: 25% (NS), 58% (FO), 53% (WS—0.2),
77% (WS—0.5), and 91% (WS—0.8). Note that by only using
the angular velocities, certain failures cannot be separated, e.g.,
in Fig. 10(g)—(i), some belief masses bv , are close to 0.5.
Therefore, to increase the performance of the combined belief
map B (v), more features need to be included in the simplified
system state.

2) Real-World Experiment: The proposed safe learning
framework is also tested for a real Crazyflie [see Fig. 9(b)].
The PPO algorithm runs on a PC with Intel i5-3570 CPU and

()

@

Simulation results for the quadcopter example. (a) Learning rewards (b) Corresponding failure counts in the first 500 feedback data. (c) Initialization of

for conditions WS—0.2, WS—0.5, and WS—0.8 in the supervisor update iteration

the corrective controller is implemented on-board. Through the
wireless communication provided by the Crazyflie, the learning
algorithm receives angular positions 6, linear velocities vy, and
angular velocities wy from the sensors of the quadcopter. The
linear positions p, are obtained through a Qualisys* motion
capture system.

Considering the safety of the hardware, the learning process
is performed only with supervisor and a moderate threshold
a = 0.5(WS—0.5). In addition, considering the limited tracking
area of the Qualisys system, the corrective controller is also
activated if the quadcopter exceeds the region givenas —0.5 m <
Pr <2mand —0.4m < p, < 0.4m. Note that limited by the
communication speed between the PC and the Crazyflie, we
can only run the learning-based controller at a frequency of
50 Hz. Under such a delay, it is difficult to achieve a stable
flight control with motor speeds. To overcome this problem, we
select the output u of the learning-based controller as the desired
angular positions 07 = [0¢, 0, 67]" and the desired thrust ¢%,

TV po

4[Online]. Available: https://www.qualisys.com/
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Results of the quadcopter real-world experiment. (a) and (b) Reward and cumulated failures of the learning process. (c) ACC and FPR of the combined

belief map BC (v). (d)—~(f) Belief mass bgy s from the combined belief map BC€ (v) for different index vectors v in supervisor update iterations N = 1, N = 10,

and N = 35, respectively.

i.e., u = [0, ¢]. Then, an on-board PID controller that runs at
500 Hz controls the quadcopter to follow the given command.
The parameters used in this experiment are given in Appendix B.

Starting with a random initial policy, we perform 30 PPO
update iterations (1024 timesteps per each update) of the
learning-based controller. Details of the experimental results
are presented in the supplementary video. The reward and the
accumulated failures are given in Fig. 11(a) and (b), respectively.
The success rate of the corrective controller is 89% for the entire
learning process. Compared to the simulation, less failures are
observed since controlling through desired angular positions and
thrust is, in general, safer than directly controlling the motor
speeds.

The belief mass bS', of the combined belief map B (v) in
different supervisor update iterations is shown in Fig. 11(d)—(f).
In the early learning phase, due to the conservative estimate of
the safe region, the learning-based controller is quickly replaced
by the corrective controller. When more feedback data are ob-
tained, the estimate of the safe region is expanded, and therefore,
the learning-based controller has more flexibility in choosing
its actions. The expansion stops when failures start to happen,
which provide information about the boundary of the safe region.
The ACC and the FPR are given in Fig. 11(c). Since in the
early learning phase, the corrective controller is activated within
the initial safe region, the ACC starts from 1. Later, due to the
expansion of the safe region, the accuracy decreases as it requires
a certain amount of feedback data to compensate the prediction
made by the prior belief map B®(v). Once a more reliable
estimate of the safe region is obtained, the accuracy remains
high. However, we observe a high FPR in this example. As the
simplified system state consists only of angular velocities w,. and

wp, it is not precise enough to separate certain failures. For mak-
ing a better prediction, more information should be included in
the simplified system state, e.g., the angular positions 6,. and 6,,.

V. DISCUSSION

In this article, we propose a framework to increase the safety
of learning for autonomous systems. A supervisor is constructed
to guide the exploration process to prevent the generation of risky
behaviors from the intermediate policy. For complex dynamical
systems, a simplified system is introduced to enable the practical
implementation of the framework. Several critical features of the
framework are discussed in this section.

A. Safety in Complex Dynamical Systems

In recent studies [22], [25], the expansion of the safe region is
performed based on learning a model of unknown dynamics
or disturbances. By executing control commands within the
current safe region, these approaches try to predict how the
system will behave if it is outside the region. Obtaining such
a prediction relies on the assumption that the unknown part
follows a certain distribution, e.g., different kernel functions in
the Gaussian process represent different characteristics. How-
ever, for high-dimensional systems, not only providing suitable
assumptions about the distribution is nontrivial, but also a con-
siderable amount of data is required until an accurate model can
be learned. Moreover, predicting the system behavior based on
complex dynamics is also computational difficult. Therefore,
it is challenging to implement such an expansion on complex
dynamical systems.
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Since both the direct computation of the safe region and the
estimation on the complex dynamics pose feasibility challenges,
the real safety boundary can effectively be determined only by
visiting it. While a prior belief about the safe region is con-
structed to provide baselines for safety estimates, the decision
boundary is modified by using feedback data. With suitable c;
and ¢, in (23), the decision boundary is expanded cautiously,
i.e., only when enough positive feedback data are observed.
However, we have to relax the absolute safety guarantee as
it is unavoidable that failure will happen when the supervisor
tries to learn the real boundary. In that regard, we formulate our
framework with the purpose that it can effectively learn from
failures, so that in a later learning process, similar dangerous
maneuvers are avoided.

B. Safety and Learning Performance

In general, the exploration process of the learning algorithm
needs to be restricted to ensure safety, but meanwhile, too much
constraining may lead to a poor learning performance. Thus, one
central problem of designing a well-performed safe learning
approach is to find a suitable balance between maintaining
the safety and maximizing the learning performance. In the
proposed approach, such a balance is provided by the supervisor
decision threshold «, which determines the aggressiveness of ac-
tions. An appropriate threshold « not only results in a satisfying
learning performance with less failures, but also enables efficient
policy update in the early learning process. Since in most tasks,
the desired policy should fulfill the safety constraints of the
system, the supervisor provides an early-stopping functionality
to the learning algorithm by preventing dangerous behaviors.

Finding a good balance between the supervisor and the learn-
ing algorithm requires prior knowledge about the system and
is usually task dependent. Two measures may assist in relaxing
this issue. First, by improving the capability of the corrective
controller, a larger safe region can be acquired, which reduces
the conflicts between safety and learning performance. Second,
safety can also be incorporated in the reward function of the
learning algorithm [48]. By encouraging safe behaviors, the
learning-based controller tends to stay within the safe region
such that less guidance is needed from the supervisor. However,
designing a versatile corrective controller or a well-performed
reward function often requires a thorough understanding of the
task as well as the system.

C. Applications

The supervisory control strategy is compatible with arbitrary
reinforcement learning algorithms, thus the proposed safe learn-
ing framework is generally applicable to various learning tasks.
For example, it can be used to increase safety when a parame-
terized model-based controller updates its parameters through a
learning algorithm [49]. Note that in this work, we treat safety as
stability and consider no state constraints. For scenarios where
environmental constraints are critical, e.g., collision avoidance,
the definition of the safe region has to be modified. For example,
control Lyapunov-barrier function [50] can be used in such
cases to incorporate state constraints along with stability. The

IEEE TRANSACTIONS ON ROBOTICS

applicability of the proposed framework can be increased with an
appropriate description of the safe region. Nevertheless, finding
such a description might not be trivial in complicated learning
tasks.

Moreover, when applying learning algorithms in real-world
scenarios, the learning efficiency is limited by various practical
factors, e.g., resetting the environment of the learning algorithm.
As demonstrated in the real-world quadcopter experiment, we
have to manually put the quadcopter back to a fixed starting
position to reset the environment, which requires a considerable
amount of time. In general, to reduce the total training time, a
reasonable initial policy should be provided, especially when the
learning-based controller is expected to accomplish complicated
tasks. In that case, the proposed framework aims to increase the
safety when the learning algorithm is improving the initial policy
according to the real system behavior.

D. Limitations

One major limitation of our framework is that in the early
learning phase, the supervisor can only learn about unsafe states
by actually visiting them. Thus, although the supervisor is able
to adjust its predictions based on feedback data, the framework is
only applicable to cases where a reasonable amount of failures
is tolerable. For extremely safety-critical cases, where even a
single failure is not allowed, an absolute safety guarantee has to
be given. However, how to impose such a guarantee for complex
dynamical systems is still an open research question.

Besides, since each learning iteration is terminated when the
system state is outside the safe region, the learner is only able to
learn policies that are contained in this safe region. Therefore, the
upper limit of the learning performance is restricted by the choice
of the corrective controller. A corrective controller that provides
alarger safe region is beneficial for searching the optimal policy,
but finding such a corrective controller requires more effort.

Furthermore, to reduce the computational cost, we utilize a
simplified system and assume that original system states x with
the same corresponding simplified system state z share similar
safety characteristics. Although this enables the proposed frame-
work to be used on complex dynamical systems, the reliability
of the safety estimates depends on the representation capacity
of the simplified system. In general, from the perspective of
model order reduction, there is a tradeoff between preserving
information, which usually results in higher dimensions in the
simplified system, and the computational cost. Thus, how to
efficiently find a suitable simplified system is a challenging task
and further investigations are needed.

VI. CONCLUSION

In this article, we proposed a general safe reinforcement
learning framework, which was implementable for complex
dynamical systems. A learning-based controller was combined
with a corrective controller to ensure that during the exploration
process of the learning algorithm, the system remains inside a
safe region. We utilized the concept of ROA to describe the safe
region. A supervisor was designed to switch the learning-based
controller to the corrective controller when the current state
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Fig. 12.  Humanoid walking example. (a) Atlas model in Gazebo simulation
environment. (b) Humanoid robot is simplified to an inverted pendulum model
with respect to the CoM.

was on the boundary of the estimated safe region. To enable
the practical implementation on complex dynamical systems, a
simplified system was introduced to give estimates about the
safe region. These estimates were updated online by utilizing
the feedback data from the execution results of the corrective
controller. Two examples were given to demonstrate the per-
formance of the proposed safe learning framework. A simple
two-link inverted pendulum was used to illustrate how the online
adaptation method works, whereas a quadcopter control example
showed the performance on complex dynamical systems. For
future work, one possible direction is to find an effective way
to create a representative simplified system from the original
system. We believe that the proposed safe learning framework
is applicable to a wide range of dynamical systems, and it
gives an insight about how to safely extend the modern learning
algorithms to real-world tasks.

APPENDIX A
HUMANOID 2-D WALKING

In this example, a humanoid robot is used to further demon-
strate the applicability and the performance of the proposed
safe learning framework. The Atlas humanoid model (version
1) from DRCSIM? is utilized and is constrained to be able to
move in the X—Z plane [see Fig. 12(a)]. For simplicity, the
arms are excluded from the robot model. Each leg has three
motors attached on the hip, the knee, and the ankle joint, which
constitute the six motor torque commands. A learning-based
controller 7(z) is trained by the PPO algorithm with the purpose
to control the robot to walk forward as fast as possible. By
using the proposed safe learning framework, we aim to reduce
the possibility of falling to avoid damages to the system. The
simulation is performed in Gazebo using OpenAl Baselines and
the Gym-Gazebo package.

5[Online]. Available: https://bitbucket.org/osrf/drcsim/

The state of the humanoid is = = [py, vy, ", ¢7]T, where
Py = (24, zg,Og]T are the global coordinates and orientation
of the body frame with respect to the ground frame and v, =
[Tg,2q, ég]T are the body velocities. ¢ and ¢ are vectors of six
joint angles and six joint velocities, respectively. As x, and
24 have no effects on determining if the current state can be
balanced or not, the input to the function approximator F'(z)
is 16-D. Based on the CoM m, of the humanoid, an inverted
pendulum is used as the simplified system [see Fig. 12(b)].
The simplified system state is 75 = [2¢, 2, Tc, 2], Where z.
and z. are the relative positions of the CoM with respect to
the contact point of the support foot, whereas . and Z. are
the velocities of the CoM [35]. Considering the physical limits
of the system, the CoM properties are assumed to be within
the range as z. € [-1m, 1 m], 2. € [0.4m, 1 m], and &, 2. €
[—5 m/s, 5m/s]. The simplified system state space is discretized
with 0.2 m for x. and z. and 1 m/s for . and Z...

The corrective controller K () implemented here is a one-
step balance controller based on the capture point concept, which
defines a point on the ground that the robot can step on to balance
itself [51]. Along with the capture point, a reference trajectory
for the CoM is generated from the simplified system. The bal-
ance controller tries to control the humanoid to step on the cap-
ture point while following the CoM reference trajectory. If the
trajectory following is not suitable, then the balance controller
takes a step with the maximal step length. As a result of stepping
functionality for humanoids, the safe region in the safe learning
framework is replaced by a concept called NV -step viable-capture
basin [51]. It represents the set of all initial states from which
the robot, with an appropriate control sequence, can come to a
stop within n steps (e.g., n = 0 means the robot can stabilize
itself without stepping). In this example, we use the one-step
viable-capture basin as the safe region. Itis infeasible to calculate
such a basin directly on the original humanoid dynamics, but it
can be estimated from the simplified system. The one-step viable
capture basin of the inverted pendulum, i.e., the safe region of
the simplified system D, is obtained by applying the approach
described in [44].

The parameters used in this example are given in Appendix B.
During the learning, the balance controller is activated if the
supervisor believes that the current state is on the boundary of
the estimated safe region. By using the feedback data, the belief
about the safe region of the humanoid is expanded cautiously
until the balance controller starts to fail. Such failures are used
to locate the decision boundary for the supervisor. The experi-
mental setup and the resulting behaviors are demonstrated in the
supplementary video. The overall success rate of the corrective
controller is 79%. Note that while the safety is increased with the
proposed safe learning framework, the learning performance is
limited by the implemented one-step balance controller. Since
the volume of the safe region is restrictive if the humanoid is
only allowed to take one step to balance itself. A more satisfying
walking behavior can be obtained if a better balance controller
is provided. However, improving the balance controller is not
the focus of this work and thus is not discussed here.
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TABLE I
PARAMETERS OF THE SAFE LEARNING FRAMEWORK
Inverted Crazyflie Crazyflie Humanoid
Pendulum Simulation Real
o 0.5 0.2/0.5/0.8 0.5 0.6
D 0.8 0.8 0.8 0.8
D 0.1 0.1 0.1 0.1
oo | 0.1 0.1 0.1 0.1
c1 0.2 0.2 0.1 0.3
c2 0.3 0.5 0.4 0.1
k 1000 8000 8000 10000
ke 1000 8000 8000 10000
ku 100 50 20 200
d 0.01 0.1 0.1 0.5
F(z) | GPRmodel: | NN:  two | NN: two | NN: two
squared layers with | layers with | layers with
exponential 128 neurons | 128 neurons | 128 neurons
kernel in each in each in each
TABLE II

HYPERPARAMETERS OF THE PPO ALGORITHM

Hyperparameter Crazyflie | Humanoid
Num. steps 4096 8192
Num. epochs 20 20
Num. minibatches 128 256
Adam stepsize 3e-4 le-4
Discount 0.99 0.99
GAE parameter 0.95 0.95

APPENDIX B
LEARNING PARAMETERS

A. Parameters

The parameters used in this work are given in Tables I and II.

B. Reward Functions

The reward function of the Crazyflie example is

r(t) = 1ebl|ps — pg(t = 1)I| = 1ed||p: — py (1)l
~[lop(t) = v¥||* = 0.1[ws (t)[*

where p; = 100v? is a virtual target used for giving reward on
making progress in the direction of v. We use v¢ = [1 m/s, 0, 0]
in the given example.

The reward function of the humanoid example is

r(t) = led(zy(t) —xy(t — 1)) — 10(992 —2n;

where n; is the number of joints that are on the limit.
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