
Ingenieurfakultät Bau Geo Umwelt
Lehrstuhl für Computation in Engineering

Towards scalable finite cell computations
on massively parallel systems

John Njuguna Jomo, M.Sc.

Vollständiger Abdruck der von der Ingenieurfakultät Bau Geo Umwelt der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs

genehmigten Dissertation.

Vorsitzender: Prof. Dr.-Ing. André Borrmann

Prüfer der Dissertation: 1. Prof. Dr. rer. nat. Ernst Rank

2. Assoc. Prof. Dr. ir. Clemens V. Verhoosel

3. Priv.-Doz. Dr. rer. nat. habil. Ralf-Peter Mundani

Die Dissertation wurde am 11.11.2020 bei der Technischen Universität München
eingereicht und durch die Ingenieurfakultät Bau Geo Umwelt am 16.03.2021 angenommen.

Zusammenfassung
Die numerische Analyse von Körpern mit topologisch und geometrisch komplizierter Struktur
stellt eine Herausforderung in der Ingenieurspraxis dar. Wenn herkömmliche Finite Elemente
Methoden angewendet werden, kann die Erstellung eines Körper-angepassten Netzes äußerst
umständlich sein und einen großen Teil der von Ingenieuren aufgewendeten Zeit ausmachen. Es
besteht daher ein wachsender Bedarf an robusten Diskretisierungstechniken für komplexe Ge-
ometrien. Diese Techniken sollen nicht nur eine einfache Handhabung aufweisen, sondern auch
auf große Probleme von technischer Relevanz angewendet werden können, an denen mehrere
Millionen oder sogar Milliarden von Unbekannten beteiligt sind. Fiktive Gebietsmethoden bi-
eten einen Rahmen für die Analyse von Körpern mit komplexen Geometrien. Sie zielen nicht
darauf ab, den Rand einer Geometrie konform abzubilden, sondern platzieren den Körper
in ein Einbettungsnetz mit einer einfachen Struktur. Die Verwendung einer Einbettungs-
diskretisierung reduziert den Aufwand für die Netzgenerierung erheblich.
Die weit verbreitete Verwendung von fiktiven Gebietsmethoden zur Berechnung von großen

Problemen war eine lange Zeit durch zwei Hauptgründe begrenzt. Erstens weisen einge-
bettete Methoden eine schlechte Konditionierung auf. Dieses Phänomen ist auf Elemente
zurückzuführen, welche von der Oberfläche der eingebetteten Geometrie geschnitten werden.
Die schlechte Konditionierung hat die Verwendung iterativer Gleichungslöser, welche für das
Lösen großer linearer Systeme gut geeignet sind, erschwert. Bis vor wenigen Jahren haben
Wissenschaftler und Forscher hauptsächlich auf die Verwendung von direkten Lösern zurück-
gegriffen, die für große Gleichungssysteme nur begrenzt anwendbar sind. Zweitens gibt es nur
wenige numerische Codes, mit denen man eingebettete Berechnungen mit mehreren Millionen
Freiheitsgraden durchführen kann. Solche Codes erfordern ein ordnungsgemäßes Design, um
eine effiziente Ausnutzung der Rechenressourcen auf massiv parallelen Systemen zu erzielen.
In dieser Arbeit werden Algorithmen und Datenstrukturen vorgestellt, die große Berech-

nungen mittels der Finite-Zellen-Methode ermöglichen. Darin wird gezeigt, wie angepasste
Vorkonditionierungsstrategien angewendet werden können, um die Konditionierungsprobleme
zu verbessern, welche in Zusammenhang mit der Finite-Zellen-Methode auf gleichmäßige Git-
ter und mehrstufige, hp-verfeinerte Netze auftreten. Es wird ein massiv-paralleles Framework
entwickelt, welches Berechnungen mit bis zu 98000 Prozessoren erlaubt. Die in dieser Ar-
beit entwickelten Methoden finden Anwendung in der additiven Fertigung von metallischen
Bauteilen. Erstens helfen großangelegte parallele Simulationen bei der Materialcharakter-
isierung von additiv gefertigten Teilen. Der zweite Anwendungsbereich ist die Simulation
von Fertigungsprozessen. Hierzu werden speziell entwickelte parallele Verfeinerungsstrategien
verwendet, welche die numerische Analyse von additiven Herstellungsverfahren ermöglichen.

Abstract
Numerical analysis of bodies with complex shapes poses a challenge in engineering practice.
When standard finite element methods are applied, the process of generating a body-fitting
mesh can be exceedingly cumbersome and may make up the bulk of time spent by practitioners.
There is, therefore, a growing need for robust discretizational techniques that not only allow
an easy treatment of complex geometries, but that can be also applied to large-scale problems
of engineering relevance involving multiple millions or even billions of unknowns. Immersed
finite element methods provide a framework for the analysis of bodies with complex geometries.
They do not aim to resolve the boundary of a complex geometry, but rather place the body
in an embedding mesh with a simple structure. The use of an embedding discretization
significantly reduces the effort related to mesh generation.
The widespread use of immersed finite element methods for the computation of large-scale

problems has for a long time been limited by two main reasons. First, immersed methods
are proven to ill-conditioning due to the elements that are intersected by the boundary of
the embedded geometry. This made the use of iterative solvers, that are well-suited for the
solution of large linear systems, impractical in many cases since methods for the systematic
treatment of ill-conditioning where scarce. Scientists and researchers would mainly resort to
the use of direct solvers, which have limited applicability for large problem sizes. Secondly,
there are only a few numerical codes, capable of performing immersed computations with
multiple millions of degrees of freedom. Such codes require a proper design in order to run
efficiently on massively parallel systems.
This thesis presents algorithms and data structures needed for large-scale immersed compu-

tations using the finite cell method. It demonstrates how dedicated preconditioning strategies
can be used to ameliorate conditioning problems associated with the finite cell method on
uniform meshes and multi-level hp-refined grids. A massively parallel framework is developed
that can perform immersed computations with up to 98000 processors. The methods pre-
sented in this work are applied to second-order elliptic problems as well as in two areas in
the field of metal additive manufacturing. First, large-scale parallel simulations aid in the vir-
tual material characterization of additively manufactured parts. The second application area
is the simulation of the manufacturing process itself. Specially designed parallel refinement
strategies are used that allow the numerical analysis of the fabrication procedure.

Preface
This thesis was created during my time as an employee and PhD researcher at the Chair for
Computation in Engineering at the Technical University of Munich from December 2014 to
June 2020. I would like to take this opportunity to express my gratitude to all the people and
institutions that contributed to the success of this work.
First of all, I thank my doctoral supervisor, Prof. Ernst Rank, for his continual support and

guidance throughout my thesis. He granted me the freedom to expand my scientific knowledge
by exploring different research topics. I appreciate his valuable advice, the opportunities he
offered me to participate in numerous courses and scientific events and his ability to bring
people together, which resulted in fruitful collaborations.
I also thank Dr. Clemens V. Verhoosel for agreeing to be part of my doctoral committee.

I got the opportunity to visit him in 2017 and to spend time with his research group in
Eindhoven. This experience was an important milestone in my doctoral research project and
I am grateful for the collaboration between Munich and Eindhoven.
Furthermore, I thank PD Dr. Ralf-Peter Mundani for being part of my PhD committee. Dr.

Mundani has been of great help over the years in providing guidance and advice on super-
computing questions. He was also involved in several successful applications for computing
resources and funding.
I also thank Prof. Dr.Ing. Andŕe Borrmann for serving as the chairman during my thesis

examination.
I would like to extend my gratitude to Dr. Stefan Kollmannsberger, the team leader of the

Simulations in Applied Mechanics group, of which I was a proud member. Thank you for
providing a conducive work environment and a friendly atmosphere, that made work at the
chair a great joy. I enjoyed our long discussions and brainstorming sessions in and out of the
office and the unrelenting support you provided at every stage of the doctoral thesis.
One pivotal experience during my time as a doctoral candidate was my research stay at the

Technical University of Eindhoven from April 2017 to May 2017. I would like to thank Prof.
Harald Van Brummelen and Dr. Clemens Verhoosel and Dr. Frits de Prenter for hosting me
during this time. I am grateful for the many fruitful discussions and invaluable insight you
provided on preconditioning techniques for immersed methods. In particular, I would like to
extend my deepest gratitude to Frits for his friendship and unwavering support even after
my stay in Eindhoven. Thank you for sharing your knowledge with me. I truly appreciate
the numerous Skype sessions, constructive critique and the encouraging words, which were
integral to the completion of this thesis.
My international research stay at the University of Pavia from September 2019 to October

2019 was another important experience during my time as a PhD researcher. I want to
express my sincere thanks to my hosts Prof. Ferdinando Auricchio, Prof. Alessandro Reali and
Dr. Massimo Carraturo. I appreciate the time spent in Pavia, the helpful contributions and
suggestions you provided and your in-depth knowledge of numerical methods and material
modeling. I especially want to thank Massimo for organizing all the paperwork for my stay,
for the many discussions over Skype and the fruitful collaboration on immersed layerwise
simulations for metal additive manufacturing processes.
Furthermore, I thank all my colleagues, past and present, who made working at the Chair

for Computation in Engineering an unforgettable experience. I will cherish the time we spent

iv

together, the lively discussions and lunch sessions and the experiences we shared during and
outside work. Many thanks to (in alphabetical order) Tino Bog, Davide D’Angella, Mohamed
Elhaddad, Christoph Ertl, Bobby Ginting, Lisa Hug, Philipp Kopp, Nina Korshunova, László
Kudela, Alexander Paolini, Nevena Perovic, Jing Rao, Robert Seidl, Benjamin Wassermann
and Nils Zander. I also want to thank Hanne Cornils for handling all administrative matters
with great care and efficiency. Special thanks go to Ali Özcan, with whom I shared the pleasure
of sharing an office for close to four years. I am grateful for the many laughs, discussions and
great time we had together.
I want to also thank the various institutions that supported the work and activities done

during my doctoral thesis. First and foremost, I want to thank the International Graduate
School of Science and Engineering (IGSSE) for their financial support and help in devel-
oping my scientific and personal skills. IGSSE enabled me to attend several international
conferences and workshops and spend a total of three months at internationally renowned
universities. I also want to acknowledge the support of the Kompetenznetzwerk für wis-
senschaftliches Höchstleistungsrechnen in Bayern (KONWIHR) and the Leibniz Supercom-
puting Center (LRZ) who provided the financial and technical support needed to develop
efficient code for numerical simulations with the finite cell method.
Furthermore, I want to express my sincerest gratitude to my family and friends for their

unrelenting support. I thank my parents for always encouraging me to strive for academic
excellence and their sacrifice in helping me achieve my goals.
I thank my wife Frauke, for supporting me in every possible way. The completion of this

thesis would not have been possible without your steadfast love and sacrifice. Last but not
least, I want to thank God for giving me the strength, patience and opportunity to undertake
this doctoral project and see it through to its completion.

John Njuguna Jomo
Munich, July 2020

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2
1.3 Outline . 3

2 The finite element method 5
2.1 The Galerkin finite element method . 5

2.1.1 Finite element discretization . 6
2.1.2 Numerical quadrature and matrix assembly 7
2.1.3 Solution of the linear system . 9

2.2 Extensions of the finite element method . 11
2.2.1 The h-version of the finite element method 11
2.2.2 The p-version of the finite element method 12
2.2.3 The hp-version of the finite element method 15

2.3 Immersed finite element methods . 16
2.3.1 The core idea behind immersed finite elements 16
2.3.2 Cut cells and their implications . 17

2.3.2.1 Dedicated numerical quadrature rules for cut cells 17
2.3.2.2 Weak imposition of Dirichlet boundary conditions 20
2.3.2.3 Conditioning of the system 22

2.3.3 A brief overview of different immersed methods 24

3 Formulation of the multi-level hp-finite cell method 27
3.1 Fundamentals of the finite cell method . 27
3.2 Multi-level hp-refinement . 29

3.2.1 Construction of the basis . 29
3.2.2 Nomenclature and properties of a multi-level hp-mesh 29
3.2.3 Numerical integration . 30

3.3 A software framework for hp-refined high-order finite elements 31
3.3.1 Code structure and serial implementation 31
3.3.2 Code performance, bottlenecks and limitations 33

4 Parallel immersed computations 35
4.1 Fundamentals of parallel computing . 35
4.2 Ingredients for scalable finite element analysis 38

4.2.1 Scalable and efficient mesh management 39

vi Contents

4.2.2 Robust and scalable solvers . 40
4.2.3 Scalable post-processing . 40
4.2.4 A brief review of parallel frameworks for high-order finite elements . . . 40

4.3 A simple parallelization scheme based on replicated mesh data structures . . . 41
4.3.1 Parallel simulation pipeline . 41
4.3.2 Numerical examples . 42

4.3.2.1 A 3D Poisson problem involving complex refinement patterns 42
4.3.2.2 Loading of a bone implant system 45

4.3.3 Limitations of the parallel implementation 47
4.4 A massively parallel framework for finite cell analysis 48

4.4.1 Parallel mesh generation . 48
4.4.2 Parallel enforcement of mesh compatibility 52
4.4.3 Dealing with dynamic mesh refinement and growing domains 57
4.4.4 Numerical examples . 60

4.4.4.1 Strong scalability: Loading of a gearbox housing 60
4.4.4.2 Weak scalability: Popcorn benchmark 64

5 Iterative solution schemes for multi-level hp-FCM 69
5.1 Conditioning analysis of the finite cell method 69
5.2 Additive Schwarz preconditioning for FCM 70

5.2.1 Preconditioning of uniform finite cell meshes 71
5.2.2 Preconditioning of multi-level hp-refined finite cell meshes 74
5.2.3 Analysis of the influence of p, h and k on the effectiveness of the additive

Schwarz preconditioners . 78
5.2.4 Implementational aspects . 86

5.2.4.1 Preconditioning of cut cells under a certain volume fraction . 86
5.2.4.2 Stabilization of the preconditioner 87
5.2.4.3 Use of shared-memory and distributed parallelism 88
5.2.4.4 Summary of the preconditioner construction 90

5.2.5 Numerical examples . 90
5.2.5.1 Compression of a cube with a spherical exclusion 91
5.2.5.2 Image-based simulation of a lumbar vertebra 93
5.2.5.3 Loading of a die-cast gearbox housing 98

5.3 Multigrid solvers for multi-level hp-FCM . 106
5.3.1 Multigrid methods . 107
5.3.2 A hp-multigrid approach for the multi-level hp-method 111
5.3.3 Selection of suitable smoothing strategies 114
5.3.4 Numerical examples . 116

5.3.4.1 Poisson problem with a manufactured solution 116
5.3.4.2 Perforated linear elastic plate 121
5.3.4.3 Cube with spherical cavities 124
5.3.4.4 Loading of an aluminum rod 128

Contents vii

6 Application of the finite cell method to metal additive manufacturing 135
6.1 Virtual material characterization of AM products 135

6.1.1 Characterization of a microporous metallic structure 136
6.2 Modeling heat transfer in selective laser melting 139

6.2.1 Governing equations . 139
6.2.2 Spatial and temporal discretization . 141
6.2.3 The heat source in high-fidelity SLM simulations 142

6.2.3.1 Simulating the fabrication on an aluminum specimen 142
6.2.4 A layer-by-layer element activation approach 146

6.2.4.1 Simulation of an optimized engine Bracket 148

7 Conclusion and outlook 153

1

Chapter 1

Introduction

1.1 Motivation
Numerical methods have become indispensable in modern engineering practice. The finite
element method (FEM) in particular has emerged as the method of choice for numerous
problems in mechanical and civil engineering. It is applied in problems where the underlying
physical phenomena can be described through partial differential equations (PDEs). FEM
is used, for example, in the design of optimized components, to analyze the strength and
durability of load-bearing structures, to predict the onset of material failure and to gain insight
on the influence of process parameters in manufacturing techniques such as die casting, metal
forming and additive manufacturing.
The widespread use of FEM in the engineering community has been largely driven by ad-

vances in the field of computing. Today, computers help perform many engineering tasks that
used to be executed manually. Their impact can be seen in several modern disciplines such as
computer-aided engineering (CAE), computer-aided design (CAD) and computer-aided man-
ufacturing (CAM).
The last few decades have seen an upward trend in the complexity of finite element simula-

tions. Nowadays, multiphysics and multiscale simulations allow a more accurate description of
real-life systems compared to FE analyses in the past, by coupling different physical fields and
incorporating information from varying spatial and/or temporal scales. Parallel computing
is now widely used in modern finite element codes, enabling users to exploit the computa-
tional power, in terms of speed and space, of many-core and distributed memory machines.
Furthermore, the geometrical models used in FE simulations have also become increasingly
sophisticated. Modern simulation frameworks have to handle different types of geometrical in-
put data such as CAD files, voxel-based data and implicit models, and also be able to perform
analyses on bodies with a complex shape and morphology.
Although tremendous progress has been made towards more realistic and efficient numerical

simulations, the development of finite element codes capable of handling complicated physics
and complex geometries still has many challenges that need to be addressed and opportunities
that remain undiscovered. The three sources of complexity, mentioned in the previous para-
graph, continue to be the central theme of many research topics to date. Several alternatives
to and variants/extensions of the finite element method have been developed over the years
to cater to the growing needs in industry and provide novel solutions to existing problems.

2 1. Introduction

Notable examples include isogeometric analysis (IGA) that strives for a seamless integration
of CAD geometries in numerical simulations and the extended finite element method (XFEM)
that provides a mechanism for treating discontinuities due to cracks and material interfaces
in finite element simulations.
Unfitted, immersed and fictitious domain finite element methods are innovative techniques

that aim to provide scientists and engineers with a robust and versatile FE framework for
handling complex geometries. In a practitioner’s day-to-day work, a lot of time and effort is
spent in the generation of body-fitting meshes that are typically required in standard finite
element approaches. Immersed methods apply a methodology that significantly simplifies the
task of mesh generation for complex geometries and allows a straight-forward incorporation
of different geometric models and input data in numerical simulations. They employ a dis-
cretization that does not need to capture the boundaries of a complex body, but rather embed
the body in a surrounding domain with a simple structure. This procedure results in elements
that lie completely inside the original body and cut elements that are intersected by the body’s
boundary.
One immersed finite element method that has been gaining traction over the last few years

is the finite cell method (FCM). It combines the flexibility of fictitious domain methods with
the approximation qualities of high-order finite elements, yielding a powerful scheme for per-
forming numerical analyses on complex geometries. This method has been applied to various
problems in fluid and solid mechanics, providing quality results with fewer degrees of freedom
than standard boundary-conforming approaches. FCM is often used in conjunction with the
multilevel hp-refinement, a novel hp-method that allows the resolution of fine-scale features in
critical regions of the computational mesh.
A major difficulty that faces many immersed methods, including the finite cell method, is the

extension of these approaches to allow for efficient, large-scale computations for problems of
engineering relevance. Such computations require well-designed parallel codes that allow the
scalable generation and storage of mesh elements as well as efficient algorithms that can lever-
age the capabilities of modern computing clusters. It was only until recently that the inherent
conditioning problems due to the cut elements in immersed methods were systematically an-
alyzed and numerically verified. In fact, the development of stabilization and preconditioning
techniques for immersed methods is a vibrant research field, with numerous publications and
ongoing research projects focused on this subject. These developments have not only begun
to open the door for the use of iterative solvers in the immersed community but have also
created a demand for efficient parallel immersed frameworks that can be applied to a variety
of problem classes. To date, only a few codes are capable of performing large-scale immersed
computations with multiple millions and even billions of unknowns.

1.2 Objectives
The aim of this thesis is the development of efficient algorithms and data structures for mas-
sively parallel computations using the finite cell method and multi-level hp-refinement. To
accomplish this goal it is required to innovate various aspects of the FCM framework, most
notably i) the design of scalable algorithms and data structures for the management of par-
allel finite cell grids, ii) the development of robust and efficient iterative solution techniques
for finite cell discretizations and iii) the application of the developed methods in problems of

1.3. Outline 3

engineering relevance.
A key feature of this work is the light-weight distributed data structures based on an adap-

tive Cartesian grid that is utilized for mesh creation and manipulation in a parallel setting.
Although the use of adaptive Cartesian grids is not new, the approach presented in this work is
specially adapted to the finite cell method and multi-level hp-refinement. Another cornerstone
of this thesis is the use of dedicated preconditioning techniques based on the additive Schwarz
lemma to resolve the conditioning issues of finite cell systems. In this thesis, the pioneering
work of de Prenter et al. [2017] on preconditioners for uniform immersed discretizations is
extended to finite cell systems involving multi-level hp-refinement and further improved by
the use of hierarchical multigrid solution techniques. These additions provide engineers with
new possibilities for the iterative solution of large finite cell systems.
This thesis also illustrates how well-designed parallel data structures and iterative solution

strategies can be used hand-in-hand to solve engineering problems involving complex geome-
tries. Examples of such problems are shown from the field of linear elasticity and metal
additive manufacturing processes.

1.3 Outline
The thesis at hand is organized into seven chapters. Chapter 2 introduces the concepts,
terminology and notation needed to understand subsequent parts of this work. It reviews the
fundamental principles of the finite element method and its h-, p- and hp-extensions. The
chapter presents the core concept behind immersed methods and highlights the influence of
cut elements on numerical quadrature, strong boundary condition imposition and the condi-
tioning of immersed systems. The chapter concludes with a brief review of prevalent immersed
methods.
A summary of the finite cell method and the multi-level hp-method is given in Chapter

3. These discretization techniques form the basis of this work and the nomenclature used in
connection with these approaches is presented. This chapter also introduces the numerical
framework, AdhoC++, that is used in this thesis.
Chapter 4 begins by revisiting the fundamentals of parallel computing. It mentions the

essential ingredients for scalable finite elements in general, i.e. scalable mesh management,
robust and efficient iterative solvers and scalable post-processing and provides a review of
parallel frameworks for high-order finite element methods. The chapter also presents two
parallelization strategies for FCM and multi-level hp-refinement. The first scheme is based on
replicated data structures and is suitable for small computing clusters. The second approach
is based on a fully distributed adaptive Cartesian grid that allows large-scale simulations on
massively parallel systems.
The development of robust iterative solution schemes for finite cell problems involving multi-

level hp-refinement is handled in Chapter 5. The chapter recapitulates the underlying cause
of ill-conditioning in FCM and presents theoretical and implementational aspects of additive
Schwarz preconditioning strategies for uniform finite cell meshes and multi-level hp-refined
finite cell grids. A multi-grid framework that takes advantage of the hierarchical structure in
the finite cell method and multi-level hp-refinement is presented at the end of this chapter.
A series of numerical examples show the effectiveness of the proposed solution strategies for
large-scale finite cell analysis of problems of industrial relevance.

4 1. Introduction

Chapter 6 illustrates how the methods development in this thesis can be applied in the
context of metal additive manufacturing processes. Two application areas are considered, the
simulation of additively manufacturing products and the simulation of the fabrication process
itself. The first part of the chapter shows how large-scale finite cell computations can be used
in the virtual material characterization of additively manufactured foams while the use of
immersed technology for high-fidelity and layerwise simulations of the selective laser melting
processes is shown in the second part of the chapter.
This thesis concludes in Chapter 7 with a summary and outlook.

5

Chapter 2

The finite element method

The chapter at hand lays the foundation for understanding the algorithms and methods pre-
sented in this work. It briefly introduces the concepts, terminology and notation used in this
thesis. A comprehensive overview of the finite element method (FEM) can be found in dif-
ferent works such as [Bathe, 2007; Ciarlet, 2002; Hughes, 2000; Larson and Bengzon, 2013;
Szabó and Babuška, 1991]. FEM is a numerical method used to find approximate solutions
of partial differential equations (PDEs) posed on a domain of computation. It relies on the
transformation of the differential or strong form of a PDE, that has to be fulfilled in every
point in a body Ω, into an expression termed the weak or integral form that only needs to be
fulfilled in an integral sense. This transformation is usually carried out using variational prin-
ciples that are applied to the differential equations and their respective boundary conditions.
Boundary segments along which the value of the solution is prescribed are known as Dirichlet
boundaries, denoted by ∂ΩD, while those along which the derivatives are specified are called
Neumann boundaries, which are denoted by ∂ΩN .
The continuous weak form of second-order PDEs, such as those arising in linear problems

in heat exchange and elasticity, can be written as
Find u ∈ V that satisfies a(u, v) = f(v) ∀ v ∈ V0, (2.1)

where the term u denotes the solution of the weak form, v an arbitrary test function, a(·, ·) a
bilinear symmetric operator and f(·) a linear operator. The terms V and V0 both represent a
set of functions, in which each function contained in the set and its first derivative is square-
integrable. These sets differ when a non-zero function denoted by gD is prescribed on the
Dirichlet boundary. The function u ∈ V assumes a value of gD on ∂ΩD while v ∈ V0 is
equal to zero on ∂ΩD. The following section elaborates on the steps needed to transform the
continuous weak form into a set of algebraic equations using the finite element method.

2.1 The Galerkin finite element method
The Galerkin finite element method transforms the continuous infinite-dimensional problem
in (2.1) into a discrete finite-dimensional problem by introducing a finite-dimensional sub-
space Vh ⊂ V in which a solution uh that approximates u is sought. This allows (2.1) to be
reformulated as

Find uh ∈ Vh that satisfies a(uh, vh) = f(vh) ∀ vh ∈ V0,h. (2.2)

6 2. The finite element method

2.1.1 Finite element discretization
In order to explain the core principle behind the finite element method, a body Ω with Dirichlet
boundaries ∂ΩD and Neumann boundaries ∂ΩN is considered, where ∂Ω = ∂ΩD ∪ ∂ΩN and
∂ΩD ∩∂ΩN = ∅. The subspace Vh is constructed in two steps. First, the problem domain Ω is
partitioned into a set of nonoverlapping subdomains called finite elements in a process known
as discretization. The symbol K is used to represent a single element while the mesh, denoted
by Th, represents the union of all elements.
Ciarlet [2002] postulates requirements on the geometrical form of a finite element, stating

thatK must be a closed subset of Ω with a non-empty interior and Lipschitz-continuous bound-
ary ∂K. It is common to define the geometry of an element K ∈ Rd using a d-dimensional
polytope — such as a triangle or quadrilateral in two dimensions or using a tetrahedron or
hexahedron in three dimensions — but elements with arbitrarily curved boundaries can also be
used. The element boundary ∂K is made up of m-dimensional manifolds with 0 ≤ m ≤ d− 1.
These topological entities can be classified according to their dimensionality as nodes for
m = 0, edges for m = 1 and faces for m = 2.
A finite element mesh Th is associated with a mesh parameter h that represents an element’s

characteristic length. A large value of h corresponds to a mesh with large elements while a
small value of h is associated with small elements. A mesh with few large elements is usually
termed as “coarse” as opposed to a “fine” mesh, which comprises small elements.
Once the mesh Th has been set up, the second step in the construction of Vh can be per-

formed. This involves associating each element with an element space PK ⊂ Cs(K), a finite-
dimensional Cs-continuous vector space defined on K. It is common to choose PK as a space
of mapped polynomials since they can be easily evaluated. Spaces based on different functions
can also be chosen, e.g. non-rational functions [Cottrell et al., 2009], but this is not considered
in this work. In order to introduce the terminology used in this manuscript, a polynomial
element space PK of polynomial degree p and dimensionality np is considered. This space is
associated with a set of np linear independent element basis functions NK defined on K and
a set of np coefficients uK defined as

NK = {ϕi,K}npi=1 , uK = {ui,K}npi=1 , (2.3)

where ϕi,K represents the ith polynomial element basis function and ui,K ∈ R the ith element
coefficient. Each ui,K is linked to a specific ϕi,K allowing an arbitrary polynomial function
uK ∈ PK to be represented as a linear combination of element basis functions and their
respective coefficients as per the formula

uK =
np∑
i=1

NK ui,K . (2.4)

The element spaces in the mesh collectively provide an elementwise definition of the subspace
Vh since any given function vh ∈ Vh can be represented through its restriction vh|K = vK on
individual elements. The finite element space Vh can, therefore, be defined as

Vh(Th) = {v ∈ V : v|K ∈ PK , ∀K ∈ Th}. (2.5)

In the finite element method, a differentiation is made between quantities that are defined on
element-level (local-level) such as vK and quantities defined on global-level such as vh. Global

2.1. The Galerkin finite element method 7

counterparts of NK and uK exist, namely the set of global basis functions N and the set of
global coefficients, also called degrees of freedom (DOFs), denoted by u, where

N = {ϕi}nDOFs
i=1 , u = {ui}nDOFs

i=1 . (2.6)

In (2.6) nDOFs denotes the number of degrees of freedom while ϕi and ui represent the ith
global basis function and global coefficient, respectively. Note that the local coefficient ui,K on
an element K is equal to the restriction of its corresponding global coefficient on that element
i.e. ui|K = ui,K . In general, elementwise interpolation operators πKij are needed to relate a
global basis function ϕi to the local basis functions as shown in (2.7).

ϕi =
∑
j

πKij ϕj,K ∀K ∈ Th. (2.7)

Following equations (2.4) to (2.7), the function uh can be written as

uh =
nDOFs∑
i=0

ϕi ui. (2.8)

As already indicated in (2.1) and (2.2) a Bubnov-Galerkin framework is applied in this thesis,
in which the same space Vh is chosen for both uh and vh. Consequently, the weak form can
be transformed into the expression

nDOFs∑
j=1

a(ϕi, ϕj) uj = f(ϕi), ∀i ∈ {1, . . . , nDOFs}. (2.9)

The discrete weak form in (2.9) can be rewritten in matrix-vector notation as

Au = F with Aij = a(ϕi, ϕj) and Fi = f(ϕi). (2.10)

The matrix A is usually referred to as the stiffness matrix, while the right-hand side vector
F is generally referred to as the force vector. It should be noted that the Neumann boundary
conditions are incorporated in the operators a(·, ·) and f(·). Dirichlet boundary conditions can
be applied in a systematic manner as discussed in several books on finite elements e.g. [Bathe,
2007; Hughes, 2000; Larson and Bengzon, 2013] using techniques generally referred to as strong
imposition of Dirichlet boundary conditions. An alternative approach to these techniques is
the weak imposition of Dirichlet boundary conditions. Weak imposition is applied in this
thesis and will be presented in the context of immersed finite elements in Section 2.3.2.2.
In subsequent sections, it will be assumed that the boundary conditions have already been
incorporated in (2.10) such that A is invertible and a unique solution u exists.

2.1.2 Numerical quadrature and matrix assembly
It is common practice to evaluate the individual components of A and F on element-level and
accumulate these values over all mesh elements in a process called assembly. The assembly
procedure can be illustrated with the help of the assembly operator A as suggested in [Hughes,
2000] as

A = Anel

e=1 Ae, (2.11a)

F = Anel

e=1 Fe, (2.11b)

8 2. The finite element method

where Ae and Fe denote the element stiffness matrix and element force vector of the element
Ke and nel the number of elements in Th. The terms Ae and Fe can be computed as

Aeij = a(ϕi,Ke , ϕj,Ke), (2.12a)
F e
i = f(ϕi,Ke). (2.12b)

When a concrete weak form such as that arising from a Poisson’s problem is considered, then
the element matrices in (2.12) can be rewritten in matrix-vector notation as

Ae =
∫
Ke

(∇NK)T (∇NK) dΩ, (2.13a)

Fe =
∫
Ke

NT
Kf dΩ. (2.13b)

In finite element codes, the evaluation of element vectors and matrices is usually simplified
by introducing a reference (standard) element K̂ with a simple shape with predefined element
basis functions NK̂ = {ϕi,K̂}npi=0. Instead of evaluating quantities, such as basis function values
or their derivatives, directly on an arbitrarily shaped element K ∈ Th, one can first evaluate
these quantities in the reference element K̂ and map them into K. A mapping function ΨK

can be defined for each elementK that transforms a point ξ in the reference element coordinate
system into a global point x ∈ K

x = ΨK ξ. (2.14)

Moreover, a Jacobian matrix JK is introduced for each element K that takes into account the
change of variables from x to ξ when evaluating integrals and derivatives in K̂ for a given K.
This matrix can be computed as

JK(ξ) = ∂ΨK

∂ξ
. (2.15)

Using the mapping function and the Jacobian matrix, it is possible to reformulate integrals
over a given element Ke in terms of integrals over the reference element K̂. Equation (2.13)
formulated in terms of K̂ reads

Ae =
∫
K̂

(J−1
Ke∇NK̂)T (J−1

Ke∇NK̂) det(JKe) dΩ̂, (2.16a)

Fe =
∫
K̂

NT
K̂
f(ΨKe) det(JKe) dΩ̂, (2.16b)

where Ω̂ denotes the domain of the reference element while J−1
Ke and det(JKe) represent the

inverse and the determinant of the Jacobian matrix of an element Ke, respectively. For
quadrilateral elements, it is common to define a reference element K̂ with a local coordinate
system ξ = (ξ, η) where Ω̂ = [−1, 1]× [−1, 1] and dΩ̂ = dξ dη, see Figure 2.1.

Another common procedure in finite element codes is the numerical integration of element
matrices. Numerical integration is more suitable for computer algorithms than analytical

2.1. The Galerkin finite element method 9

evaluation of integrals since it relies on discrete operations that require less computational re-
sources. It involves the evaluation of integrands at distinct points called integrations (quadra-
ture) points, and the weighted summation of these values to yield the final result. The concept
of numerical integration can be illustrated for a one-dimensional reference domain Ω̂ = [−1, 1]
and ξ = ξ as

1∫
−1

f(ξ) dΩ̂ ≈
nGP∑
i=1

wi f(ξi), (2.17)

In (2.17), nGP represents the number of integration points whereas ξi ∈ Ω̂ denotes the ith
integration point and wi its corresponding weight. The set of nGP pairs (ξi, wi) used for
numerical integration is usually referred to as a quadrature rule. Commonly used quadrature
rules include the Gauss-Legendre quadrature [Lowan et al., 1942] and the Gauss-Lobatto
quadrature [Chandrasekhar, 1960]. In this work, Gauss-Legendre quadrature is applied.

K1 K2 K3

K4

Mesh Th

K5 K6

(-1,1) (1,1)

(1,-1)(-1,-1)

ξ

η

Reference element K̂

ΨK6

xx

x x

x Integration point

Figure 2.1: Illustration of a quadrilateral reference element K̂ (adopted from [Zander, 2017]).
Reference elements are used to simplify the numerical evaluation of element matrices.

2.1.3 Solution of the linear system
The discretized weak form in the finite element method can be transformed into an algebraic
system of equations of the form

Ax = b, (2.18)

where the matrix A ∈ Rn×n is typically large and sparse. Various techniques can be employed
to solve this system and they can be categorized as either direct or iterative solution methods.
Direct solution methods are typically based on a factorization of the matrix A and yield an
exact solution of the system. Common direct methods for large sparse systems include sparse
implementations of Gaussian elimination, LU factorization and multifrontal decomposition.
Iterative solution strategies provide an approximate solution of the system by repeatedly
improving an initial guess of the solution until a specified tolerance is reached.

10 2. The finite element method

Direct solution approaches are typically robust, in the sense that their computational effi-
ciency is not largely affected by the spectral properties of the matrix A, given that this matrix
is non-singular. Their computational cost i.e. the number of operations needed to solve a
system and the amount of storage needed in the process, is primarily affected by the sparsity
structure and the size of the matrix. Gaussian elimination generally has a computational
cost in the order of O(n3) in terms of floating-point operations (flops) and O(n2) in terms
of memory usage [Hackbusch, 1994]. Tailored sparse direct solvers can reduce the arithmetic
complexity for certain matrix structures and thereby reduce the scaling rate of the compu-
tational cost. This can increase the size of solvable systems for direct solvers, but is still a
bottleneck in large-scale finite element analyses with multiple millions or billions of unknowns.
Furthermore, the parallelization of direct solvers is challenging, making them less suitable for
parallel computing [Dongarra et al., 1998; Saad, 2003].
Iterative solution methods are more suitable for solving large systems than their direct coun-

terparts since their the memory footprint and arithmetic cost scale better with the system size
[Barrett et al., 1994]. This is attributed to the fact that they are mostly based on matrix-vector
operations. Iterative methods can, moreover, be easily parallelized and in some cases allow
a matrix-free implementation that further reduces their memory costs. The main drawback
of iterative methods is that their effectiveness in solving a system is strongly dependent on
the spectral properties of the system matrix A. The convergence rate of an iterative methods
denotes how the approximate solution in a given iteration xi approaches the true solution.
The convergence is often assessed by monitoring the development of the residual ri, defined as
ri = b−Axi. A system with a well-clustered spectrum and a small spectral radius generally
converges better than a system with a large unclustered spectrum. The spectrum λ(A) of a
matrix A denotes the set of eigenvalues of the matrix A, i.e. λ(A) = {λ1, λ2, . . . , λn}. Systems
with spectral properties that result in fast convergence of iterative solvers are referred to as
well-conditioned, while those that lead to slow convergence are referred to as ill-conditioned.
A commonly applied indicator of the conditioning of a system is the condition number κ(A)
defined as κ(A) = ‖A‖‖A−1‖. This can be written for symmetric positive definite matrices
as

κ(A) = ‖A‖‖A−1‖ = λmax

λmin
=

max‖v‖=1 vTAv
min‖u‖=1 uTAu

, (2.19)

with λmax and λmin denoting the largest and smallest eigenvalues of A and the vectors v and
u maximizing and minimizing the Rayleigh quotient.
The convergence of an ill-conditioned system can be improved by the application of a pre-

conditioner M−1. Instead of solving the original ill-conditioned system, a modified system
with better spectral properties is formed which has better convergence behavior. The most
common approach for obtaining this modified system is by left preconditioning as shown in
2.20.

M−1Ax = M−1b. (2.20)
It is also possible to apply M−1 using right preconditioning

AM−1u = b, with x = M−1u, (2.21)
or as a split preconditioner, where M = MLMR and

M−1
L AM−1

R u = M−1
L b, with x = M−1

R u. (2.22)

2.2. Extensions of the finite element method 11

A suitable preconditioner improves the convergence, while being cheap in its construction,
storage and application. It is, however, not trivial to construct robust preconditioners as
multiple sources of ill-conditioning may exist. This work provides insight into preconditioning
strategies in the context of the finite cell method and its extensions.

Comment on the notation
Now that the fundamental ingredients of the finite element method have been introduced,
the notation used for certain terms will be simplified to foster readability. The finite element
mesh will from here on be denoted by T instead of Th. From this point forward, we will
only distinguish between global basis functions ϕi, that are defined over Ω, and element basis
functions ϕ̂i, that are defined in the reference element coordinate system. Furthermore, an
index set I = {i . . . nDOFs} will be used, where each entry in I refers to a specific global
basis function. This index set will later be beneficial when classifying the global degrees into
different groups in the section on parallel computations.

2.2 Extensions of the finite element method
The quality of a finite element solution is strongly dependent on the spatial resolution of the
mesh and the polynomial order of the elements it contains. Different error measures can be
used to assess how well a finite element solution uh approximates the true solution u. Common
error measures include the L2-error of the primal variable, ‖u− uh‖L2(Ω), and the error in the
energy norm, ‖u− uh‖E(Ω), which are defined as

‖v‖L2(Ω) =

√∫
Ω
v2 dΩ, (2.23)

‖v‖E(Ω) =
√
a(v, v). (2.24)

Several discretization strategies can be used to improve (extend) the approximation prop-
erties of a finite element mesh. These methods are commonly referred to as extensions of
the finite element method and differ in i) the way in which the mesh is modified to reduce
the discretization error of the approximation and ii) the rate at which the numerical solu-
tion approaches the true solution in a certain norm. The following section briefly introduces
the three most prevalent finite element extensions, namely the h-extensions, p-extensions and
hp-extensions. The interested reader is referred to [Yosibash, 2011] for a discussion on the
convergence rates of these extensions for different problem classes.

2.2.1 The h-version of the finite element method
The h-version of the finite element method (h-FEM) reduces the discretization error by in-
creasing the spatial resolution of the mesh while leaving the polynomial orders of its elements
unaltered. Elements with low polynomial orders, i.e. p = {1, 2}, are commonly employed in h-
FEM. The spatial refinement, or h-refinement, can be applied either globally on all elements in
the mesh or on a subset of elements in localized regions of the mesh. Methods that use global
h-refinements are generally characterized by algebraic convergence rates in commonly used

12 2. The finite element method

error measures. Local h-refinements are usually performed in regions of the computational
mesh associated with a large discretizational error. The choice of these crucial regions can be
guided by error indicators, error estimators or a priori information such as specific geometri-
cal features. An advantage of using local h-refinements as opposed to global h-refinements is
that the number of unknowns does not drastically increase when capturing fine-scale solution
characteristics. Numerical methods involving local h-refinements are, however, not trivial to
implement since the presence of refined elements results in mesh irregularities which need to
be resolved.

2.2.2 The p-version of the finite element method
In the p-version of the finite element method (p-FEM), a reduction of the discretizational error
is achieved by elevating the polynomial order of the mesh elements while keeping the mesh’s
spatial resolution constant. A central aspect in p-FEM is the easy and efficient alteration
of the mesh elements’ polynomial orders. For this reason, it is common to employ elements
with hierarchic shape functions. Since all hierarchic shape functions from order 1 up to
order p − 1 are contained in the hierarchic shape function set of order p, the elevation of an
element’s polynomial degree only involves the addition of new basis functions to previously
defined functions. This is in contrast to non-hierarchic basis functions such as those based on
Lagrange polynomials, where p-refinement results in the replacement of all previously defined
basis functions with a set of completely new basis functions. The difference between hierarchic
and non-hierarchic basis functions is illustrated for the one-dimensional case in Figure 2.2.

p = 1

p = 2

p = 3

(a) Integrated Legendre basis

p = 1

p = 2

p = 3

(b) Lagrange basis

Figure 2.2: Comparison of the linear, quadratic and cubic one-dimensional Lagrange and
integrated Legendre basis functions.

High-order finite elements based on the p-version of the finite element method proposed in
[Babuška et al., 1981; Szabó and Babuška, 1991] play a key role in this thesis. The remaining
part of this section summarizes central aspects of p-FEM and introduces concepts and terms
important for understanding subsequent sections of this manuscript. The higher dimensional
hierarchic element spaces introduced in [Szabó and Babuška, 1991] are constructed from a
tensor product of one-dimensional integrated Legendre element spaces Spi as shown in (2.25),
where the subscript i denotes the respective coordinate direction in the reference element. An
element space is said to be isotropic if the same polynomial order is chosen in all coordinate
directions and anisotropic in all other cases.

2D case : Spξ,pη = Spξ ⊗ Spη
3D case : Spξ,pη ,pζ = Spξ ⊗ Spη ⊗ Spζ . (2.25)

2.2. Extensions of the finite element method 13

The one-dimensional element space Sp is spanned by the set of p + 1 integrated Legendre
polynomials defined as

ϕ̂1(ξ) = 1
2(1− ξ)

ϕ̂2(ξ) = 1
2(1 + ξ)

ϕ̂i+1(ξ) = Pi(ξ), i = 2, . . . , p, (2.26)

where Pi(ξ) is the ith integrated Legendre polynomial computed from the Legendre polynomials
Li−1(ξ), Li(ξ) and Li−2(ξ) via the formula,

Pi(ξ) =
√

2i− 1
2

ξ∫
−1

Li−1(ξ) dξ = 1√
4i− 2

(Li(ξ)− Li−2(ξ)), i = 2, . . . , p. (2.27)

Bonnet’s recursion formula can be used to compute the Legendre polynomials Li(ξ) for values
of i larger than two and the start values L0(ξ) = 0 and L1(ξ) = 1.

Li(ξ) = 1
i
[(2i− 1)ξLi−1(ξ)− (i− 1)Li−2(ξ)], ∀i > 2. (2.28)

High-order integrated Legendre bases have several advantages. First, it was already men-
tioned that a p-refinement of a hierarchic basis can be readily realized by simply adding new
basis functions. Secondly, using a hierarchic basis results in better conditioning of the discrete
system than the standard Lagrange basis [Carey and Barragy, 1989]. An important property
of the integrated Legendre basis is the direct association of each shape function to a specific
topological component — node, edge, face, volume — of an element. This results in the
classification of an element’s shape functions, which are typically referred to as modes, into
nodal, edge, face and volume modes. The number of modes associated with each component is
determined by the order p and the type of function or ansatz space used to define the element.
Different types of ansatz spaces can be constructed in multi-dimensional problems that differ
in the completeness of the monomials used to span these spaces. Szabó and Babuška [1991]
present two possible ansatz spaces for quadrilateral and hexahedral elements, the tensor prod-
uct space Sps and the trunk space Sts. Trunk spaces are similar to serendipity spaces and are
spanned by reduced (truncated) sets of monomials resulting in fewer modes than the tensor
product space [Szabó and Babuška, 1991].
The different modes associated with the element topology are now presented for the tensor

product and trunk spaces.

• Nodal modes: These functions are constructed by forming a tensor product of one-
dimensional nodal functions. They are defined as

2D case : ϕ̂i(ξ, η) = 1
4(1 + ξiξ)(1 + ηiη), i = 1, . . . , 4 (2.29a)

3D case : ϕ̂i(ξ, η, ζ) = 1
8(1 + ξiξ)(1 + ηiη)(1 + ζiζ), i = 1, . . . , 8, (2.29b)

with ξi, ηi and ζi denoting the local coordinates of the ith node in the respective reference
element.

14 2. The finite element method

0

2

3 1

0 1

3 2

0

ξ

η

(a) Quadrilateral element
0

1

2

3

8

9

10

11

4 5

6 7

0 1

2 3

4 5

6 7

0

1

2 34

5

ξ
η

ζ

(b) Hexahedral element

Figure 2.3: Illustration of the standard quadrilateral and hexahedral p-FEM elements and the
enumeration of their various topological components.

• Edge modes: Each edge is associated with pr − 1 basis functions that assume their
maximum values along this edge and are zero on all other edges and nodes. pr is the
polynomial order in the space direction of the edge with r ∈ {ξ, η, ζ} and r ≤ 2. In
order to construct an edge mode, a one-dimensional high-order mode is multiplied with
either a single one-dimensional linear mode in a quadrilateral element or with two one-
dimensional linear modes in a hexahedral element. The modes ϕ̂e0

i associated with edge
0 in Figures 2.3a and 2.3b read

2D case : ϕ̂e0
i (ξ, η) = 1

2 ϕ̂i(ξ)(1− η), i = 2, . . . , pξ (2.30a)

3D case : ϕ̂e0
i (ξ, η, ζ) = 1

4 ϕ̂i(ξ)(1− η)(1− ζ), i = 2, . . . , pξ. (2.30b)

• Face modes: The functions associated with a given face assume their maximum values
on that face and are zero on all other nodes, edges and faces. A face mode is constructed
by the product of two one-dimensional high-order modes for a quadrilateral element or by
multiplying two high-order 1D modes with one linear 1D mode for hexahedral elements.
The modes ϕ̂f0

i,j associated with face 0 in figures 2.3a and 2.3b are

2D case : ϕ̂f0
i,j(ξ, η) = ϕ̂i(ξ)φj(η), (2.31a)

3D case : ϕ̂f0
i,j(ξ, η, ζ) = 1

2 ϕ̂i(ξ)ϕ̂j(η)(1− ζ), (2.31b)

with the following bounds for the indices i and j

2.2. Extensions of the finite element method 15

tensor product space trunk space

i = 2, . . . , pξ i = 2, . . . , pξ − 2
j = 2, . . . , pη j = 2, . . . , pη − 2

i+ j = 4, . . . ,max(pξ, pη)

Following the above definition of face modes, the number of modes associated with
a single face with local coordinates r, s is (pr − 1)(ps − 1) for tensor product space
elements and (min(pr, ps)− 2)(max(pr, ps)− 3)/2 for trunk space elements.

• Volume modes: These functions are also called internal modes since they are only
nonzero in the interior of an element. They are constructed by a tensor product of three
one-dimensional high-order shape functions and are thus only defined for more than two
spatial dimensions. The modes ϕ̂v0

i,j,k associated with the volume of a hexahedral element
are defined as

ϕ̂v0
i,j,k = ϕ̂i(ξ)ϕ̂j(η)ϕ̂k(ζ), (2.32)

with the following bounds for the indices i, j and k that differ for the tensor product
and trunk spaces.

tensor product space trunk space

i = 2, . . . , pξ i = 2, . . . , pξ − 4
j = 2, . . . , pη j = 2, . . . , pη − 4
k = 2, . . . , pζ k = 2, . . . , pζ − 4

i+ j = 6, . . . ,max(pξ, pη, pζ)

Each hexahedral element has (pξ−1)(pη−1)(pζ−1) volume modes for the tensor product
space and (max(pξ, pη, pζ)− 5)(med(pξ, pη, pζ)− 4)(min(pξ, pη, pζ)− 3)/6 modes for the
trunk space, where med(·) denotes the median of pξ, pη and pζ .

2.2.3 The hp-version of the finite element method 1

The hp-version of the finite element method (hp-FEM) combines an increase of the mesh
spatial resolution, as performed in the h-version, with an adaptation of the element polynomial
orders, as in the p-version, in crucial regions of the computational mesh. By combining the
benefits of both h- and p-FEM, hp-FEM provides efficient discretizations associated with an
improved approximation accuracy and comparatively low computational cost. It has been
shown that this combination even allows exponential convergence rates to be recovered in
singular problems [Babuška and Suri, 1990].

1The following section is based on [Jomo et al., 2017]. The main scientific research as well as the textual
elaboration of the publication was performed by the author of this work.

16 2. The finite element method

Although hp-adaptive formulations possess superior approximation qualities, their imple-
mentational complexity has inhibited their widespread use in the field of computational me-
chanics. This complexity stems mainly from the algorithms and data structures needed to
deal with mesh irregularities that arise during refinement and coarsening procedures. Classi-
cal hp-formulations commonly perform mesh refinement by replacing elements having a high
discretization error with a set of smaller elements, cf. [Paszyński and Demkowicz, 2006; Šolín,
2004]. This process introduces mesh irregularities, usually referred to as hanging nodes, as the
basis functions of the new elements lack a corresponding counterpart in their unrefined neigh-
boring elements [Hughes, 2000]. Special algorithms are therefore needed to constrain these
hanging nodes and restore inter-element continuity. Many hp-formulations, as a consequence,
only allow one level of mesh irregularity between elements e.g. [Demkowicz, 2007; Paszyński
and Demkowicz, 2006], while others implement sophisticated constraining algorithms that can
deal with arbitrary levels of hanging nodes such as [Šolín et al., 2008, 2010].
Zander et al. [2015] propose a novel hp-adaptive approach based on refinement by super-

position that circumvents the difficulties introduced by hanging nodes. By utilizing simple
rule-sets to ensure compatibility and linear independence of the shape functions, intuitive
refinement and coarsening procedures are developed. The need for complex data structures
and algorithms to consolidate and constrain multiple levels of hanging nodes is alleviated as
hanging nodes are treated naturally in the method. This hp-method plays a key role in this
thesis and is explained in Section 3.2.

2.3 Immersed finite element methods
Immersed methods, also referred to as embedded or unfitted methods, are a class of finite
element techniques that aim at providing a versatile and simple FE-analysis pipeline, by
minimizing the effort needed for mesh generation. This is achieved by utilizing a non-boundary
conforming discretization, i.e. a mesh that does not coincide with the boundary of the body
being analyzed. This is in contrast to boundary-conforming or mesh-fitting finite elements, in
which the boundary of the computational mesh captures, either perfectly or approximately, the
boundary ∂Ω. Generating boundary-conforming meshes can be a challenging task, especially
when bodies with complex geometries are considered. The effort associated with this task is
further increased in the case of high-order finite elements, where different blending operations
may be required to achieve an acceptable representation of the complex boundary. Such
operations can be time-consuming as they may require manual intervention and/or a chain of
meshing operations, potentially involving different software packages, to obtain an analysis-
suitable discretization.

2.3.1 The core idea behind immersed finite elements
Immersed methods avoid computationally demanding mesh generation steps by using a back-
ground discretization that is independent of the shape of the domain Ω. The name “immersed”
originates from the fact that Ω is enclosed by (or immersed in) the background mesh. This im-
mersion results in three kinds of elements: i) firstly elements completely within the geometry
of the original body, termed inside elements, denoted in this manuscript by K in, ii) elements
completely outside Ω termed as outside or inactive elements, Kout, and iii) so-called cut or

2.3. Immersed finite element methods 17

trimmed elements, Kcut, which as the name suggests are intersected (cut) by the boundary
∂Ω. In general only inside and cut elements, collectively referred to as active elements Kact,
are considered during a simulation in immersed approaches.

(a) Original domain Ω. (b) Boundary-conforming mesh. (c) Immersed mesh.

Figure 2.4: Illustration of the general idea behind immersed finite element methods. A body
Ω with an arbitrary shape is placed in a surrounding background mesh resulting in active,
cut and inactive elements. This is in contrast to boundary-conforming finite elements, whose
element topology matches the domain boundary ∂Ω.

2.3.2 Cut cells and their implications
Although mesh generation is trivial in the context of immersed methods, the presence of cut
elements has several implications on the subsequent stages of the finite element pipeline. The
three major aspects affected by cut elements include:

1. The numerical quadrature on cut elements.
2. The application of Dirichlet boundary conditions.
3. The conditioning of the system and the stability of the immersed method.

Proper handling of these three aspects is crucial in order to exploit the full benefits of
immersed methods. Favorable properties of boundary-conforming FE-methods such as optimal
convergence rates or the scaling of the condition number with respect to the mesh size are
not naturally present in immersed methods. These properties are only recovered when certain
aspects of the cut cells are adequately addressed. The following section briefly reviews some of
the strategies developed to deal with cut cells in the areas of numerical quadrature, boundary
condition imposition and conditioning. These three areas have been the subject of several
publications and remain vibrant research topics to date.

2.3.2.1 Dedicated numerical quadrature rules for cut cells

Standard quadrature rules are not accurate when directly applied on cut cells due to the
discontinuous integrands that result from the presence of the immersed boundary. For this
reason, more elaborate quadrature schemes are required to adequately approximate/capture

18 2. The finite element method

(a) Recursive quadtree scheme. (b) Blended partitioning. (c) Voxel integration.

Figure 2.5: Illustration of three commonly used cut-element integration techniques: Figure
2.5a shows a recursive quadtree scheme, Figure 2.5b shows a conformal decomposition scheme
by means of blended partitioning [Kudela et al., 2015] and Figure 2.5c depicts a voxel-based
integration scheme.

integrals on cut cells. Numerous cut-cell integration schemes exist and [Düster et al., 2017]
gives an overview of the different strategies that can be applied. In this work, focus is placed
on schemes based on the partitioning of a cut cell into separate integration subdomains,
followed by the application of the quadrature rule separately on each subdomain. This form
of integration is referred to as composed integration [Düster et al., 2008; Parvizian et al., 2007]
since an integral over a cut cell is approximated by a sum of integrals over the subdomains.
Equation (2.33) illustrates the concept of composed integration for a single one-dimensional
finite element with x ∈ [a, b] partitioned into nsub non-overlapping integration domains. Each
subdomain has a local coordinate system ri ∈ [−1, 1] and a Jacobian matrix Jri that transforms
entities from the local coordinate system of the ith subdomain to the coordinate system of the
reference element. The number of quadrature points in each subdomain is denoted by nGP
whereas ri,j denotes their position and wj their respective weights.

b∫
a

f(x) dx =
1∫

−1

f(ξ)|JK | dξ =
nsub∑
i=1

1∫
−1

f(ri) |Jri ||JK | dri =
nsub∑
i=1

nGP∑
j=1

f(ri,j)wj|Jri ||JK |. (2.33)

Several composed integration techniques have been developed, which mainly differ in the
generation and topology of the integration subdomains and in the quadrature rules applied
on each subdomain. The union of all integration subdomains is called the integration mesh.
This integration mesh does not introduce additional unknowns and needs not adhere to strict
requirements, such as continuity over element edges and faces, and can thus contain hanging
nodes, cells of different types, or even cells with high aspect ratios [Hubrich et al., 2017]. Gauss
quadrature is typically applied on the integration subdomains. Some approaches combine
composed integration with moment-fitting, where the latter is used to generate the position
and weight of the integration points in the different subdomains [Hubrich et al., 2017; Joulaian
et al., 2016].

2.3. Immersed finite element methods 19

Recursive space-tree decomposition

The most prevalent approach for the generation of integration subdomains is the use of recur-
sive space-trees, i.e. quadtrees in two dimensions and octrees in three dimensions. Space-trees
recursively refine the integration mesh towards the immersed boundary until a specified depth,
see Figure 2.5a. They can deal with arbitrary cut configurations and are widely used in con-
junction with standard Gauss quadrature due to their robustness [Düster et al., 2008]. This
approach is not only robust but can be easily automatized and allows the control of the inte-
gration error [Hubrich et al., 2017]. Integration schemes based on space-tree decomposition of
cut cells usually have a higher computational cost for the same level of integration error than
other schemes. This is due to the high number of integration points generated. A recent pub-
lication shows that integration points can be more effectively distributed over the integration
subdomains of a space-tree using an adaptive approach based on error-estimates [Divi et al.,
2020]. This strategy can help reduce the computational effort associated with space-tree type
integration procedures.

Conformal decomposition of cut cells

Standard space-tree decomposition yields a 0th-order approximation of the immersed bound-
ary in cut cells. Different strategies can be employed to achieve a better approximation of the
immersed boundary. First-order boundary approximations can be achieved by a tessellation of
the cut cells, a concept that originated from XFEM [Sukumar et al., 2000]. This tessellation
can either be applied directly on the cut cell, or combined with a space-tree approach and
applied on the highest level of the space-tree as in [Verhoosel et al., 2015]. Other integration
approaches decompose cut cells into high-order subdomains, which provide a high-order ap-
proximation of the immersed boundary such as [Cheng and Fries, 2010; Kudela et al., 2015,
2016], see Figure 2.5b. Although integration schemes based on conformal decompositions yield
accurate results with a smaller number of integration points compared to the standard space-
tree approach, they are less robust than the space-trees and require knowledge of the position
and shape on the immersed boundary to calculate intersection points.

Voxel-based integration schemes

The simplest way of performing numerical quadrature on a cut element is by partitioning it
using a uniform grid into integration subdomains and performing standard Gauss quadrature
on each subdomain as illustrated in Figure 2.5c. Consider the integration of the element
stiffness matrix Ke in a linear elastic problem, in which the element domain Ωe is divided into
vx × vy × vz voxels. The voxel-wise computation of Ke can be written as

Ke =
∫

Ωe
BTαCB dΩe =

vx∑
l=0

vy∑
n=0

vz∑
m=0

∫
Ωv

BTαCB dΩv

Ke =
∫

Ωe
BTαCB dΩe =

vx∑
l=0

vy∑
n=0

vz∑
m=0

nGPi∑
i=0

nGPj∑
j=0

nGPk∑
k=0

BTαCB wiwjwk|Jv||JKe|

 (2.34)

where Ωv and |Jv| denote the domain and Jacobian matrix of a single voxel, respectively.
The term B represents the linear strain operator and C denotes the material matrix. This

20 2. The finite element method

approach is commonly applied in image-based immersed analyses involving CT scans e.g.
[Korshunova et al., 2020; Ruess et al., 2012], where each integration subdomain encloses a
predefined number of voxels. The structure and simplicity of this approach allows the use of
different kinds of optimization techniques that accelerate the computation of element matrices.
In [Yang et al., 2012], the matrix Ke is pre-computed for linear elastic problems leading to
significant reductions in the computational time. Schillinger and Ruess [2014] use shared-
memory parallelism to accelerate the computation of the Ke following 2.34 and also investigate
the benefits of pre-computation. Korshunova et al. [2020] combine the pre-computation of Ke

with the parallel algorithms developed in this thesis for the computataion of large finite cell
systems based on CT scans. An example of one of these computations is shown in Section
6.1.1.

2.3.2.2 Weak imposition of Dirichlet boundary conditions

Homogeneous Neumann boundary conditions are naturally satisfied in immersed methods
while their inhomogeneous counterparts are applied in the same manner as in boundary con-
forming methods by integrating over the Neumann surfaces. Dirichlet boundary conditions,
however, need special treatment in immersed methods since the domain boundary ∂Ω does
not coincide with mesh entities, such that the traditional strong imposition of boundary con-
ditions is not applicable. It is common to apply Dirichlet boundary conditions weakly using
variational techniques that are based on a modification of the weak form in immersed methods.
The following section gives a brief description of three of the most prevalent methods.

Lagrange multiplier method

The Lagrange multiplier method reformulates the application of boundary conditions as a
constrained minimization problem. In this method, the Dirichlet boundary conditions play
the role of the constraints that are enforced through an additional field of unknowns attributed
to the Lagrange multipliers. The original weak formulation a(u, v) = f(v) is thus transformed
into a two-field problem that is made up of the unknown variables u, the Lagrange multiplier
field λLM and their corresponding test functions v and µ as shown in (2.35). gD denotes the
values prescribed along the Dirichlet boundaries.

a(u, v)Ω − (λLM , v)∂Ω = f(v) (2.35a)
(u, µ)∂Ω = (gD, µ)∂Ω. (2.35b)

The major advantage of the Lagrange multiplier method is its generality, i.e. the approach
can be readily applied to different types of PDEs [Fernández-Méndez and Huerta, 2004]. One
of the method’s main drawbacks is the introduction of additional unknowns. Moreover, the
discretized form in the Lagrange multiplier method leads to a saddle point problem. The finite
element spaces associated with the trial and test functions in this approach therefore have to
be specially chosen to guarantee inf-sup stability. Examples of immersed grids that use this
method include [Burman and Hansbo, 2010; Gerstenberger and Wall, 2010; Glowinski and
Kuznetsov, 2007].

2.3. Immersed finite element methods 21

The penalty method

This is the simplest method for the weak enforcement of boundary conditions [Babuška, 1973].
It involves the introduction of a penalty term β(u− gD, v) in the weak form, that controls the
enforcement of the Dirichlet boundary conditions through the value of the penalty parameter
β. The penalty method can be interpreted as a regularization of the Lagrange multiplier
method and is widely used because it does not introduce additional unknowns, is easy to
implement, has a low computational cost, maintains the symmetry and positive definiteness
of the system when discretized and does not require modification for different problem types.
The modified weak form in the penalty method can be written as

a(u, v) + β(u, v)∂Ω = f(v) + β(gD, v)∂Ω. (2.36)

Sufficiently large penalty parameters are required to guarantee proper enforcement of the
boundary conditions. The penalty method is asymptotically consistent since the exact solution
is only recovered when β tends to infinity. High penalty values can, however, have a negative
effect on the conditioning of the system. Moreover, a proper scaling of the penalty parameter
with respect to the mesh size h is needed in order to maintain optimal convergence orders.
In [Babuška, 1973], the penalty parameter is chosen proportional to h− 2p+1

3 resulting in a rate
of convergence in the energy norm of order h 2p+1

3 . The penalty method is widely used in the
finite cell community e.g. [Schillinger and Ruess, 2014] and is applied in this thesis.

Nitsche’s method

Nitsche [1971] proposed a variationally consistent method for the weak imposition of Dirichlet
boundary conditions that does not add any additional unknowns. There are different ways
of interpreting Nitsche’s method and it is often viewed as a penalty method that contains
additional terms that ensure variational consistency for finite values of β [Fernández-Méndez
and Huerta, 2004] but can be also viewed as a stabilized method that is related to stabilization
techniques in Lagrange multiplier methods [Stenberg, 1995]. Two variants of Nitsche’s method
are generally used in immersed finite element methods, a symmetric version whose weak form
for the Poisson equation is given by

a(u, v)− (n ·∆u, v)∂Ω − (u, n ·∆v)∂Ω + β(u, v)∂Ω

= f(v)− (gD, n ·∆v)∂Ω + β(gD, v)∂Ω, (2.37)

and a non-symmetric version whose corresponding weak form reads

a(u, v)− (n ·∆u, v)∂Ω + (u, n ·∆v)∂Ω = f(v)− (gD, n ·∆v)∂Ω. (2.38)

The non-symmetric version of Nitsche’s method [Burman, 2012] does not require stabilization,
i.e. penalty terms that are added to guarantee coercivity of the weak form as opposed to its
symmetric counterpart. The symmetric version is, however, more prevalent in literature, one
of the reasons being that it maintains the symmetry of positive-definite systems and does
not require solvers for non-symmetric matrices. The stabilization parameter in this version is
chosen in proportion to the mesh size with β ∝ h−1. The value of β can be set globally by
intuition or by solving a global eigenvalue problem [Griebel and Schweitzer, 2003] or set locally
for every cell with a Dirichlet boundary by solving local eigenvalue problems as proposed in

22 2. The finite element method

[Embar et al., 2010]. A major advantage of Nitsche’s method over the penalty method is
that it does not require large penalty values in order to ensure correct enforcement of the
boundary conditions. Applying Nitsche’s method to general problems is, however, challenging
since the consistency terms need to be consistently treated e.g. the consistency terms need to
be correctly linearized in nonlinear problems.

2.3.2.3 Conditioning of the system2

It is well known that small cut cells in immersed methods deteriorate the conditioning of the
arising systems, a phenomenon commonly referred to as the small cut cell problem. De Prenter
et al. conduct a systematic study of the conditioning of immersed FE methods in de Prenter
et al. [2017] and identify the root cause of ill-conditioning in these methods as a combination
of the presence of small basis functions and the occurrence of basis functions that become
almost linear dependent when elements are cut. They derive a scaling relation between the
condition number κ(A) and the smallest volume fraction η defined as the smallest relative
intersection of the physical domain Ωphys and a mesh element K with

η = min
K∈Th

|K ∩ Ωphys|
|K| . (2.39)

This relation is derived under the assumption that the cut elements are shape regular, i.e.
elements that are non-degenerate with det(JK)> 0. This relation is given as

κ (A) ∝ η−(2p+1−2/d), (2.40)

with d the spatial dimension of the problem and p the polynomial order of the discretization.
The interested reader is referred to [de Prenter et al., 2017] for a derivation of this relation.
Different strategies can be adopted to reduce, avoid or even eliminate the conditioning

problems related to cut elements. The following section provides a brief overview of some of
the commonly used methods for treating conditioning problems in immersed methods. Note
that the mentioned strategies can also be combined to improve the convergence of iterative
solvers when solving immersed systems.

Preconditioning

Tailored preconditioners can be used to remedy the conditioning problems resulting from im-
mersed boundaries. This strategy has been employed for different immersed methods and
for similar problems in the extended finite element method (XFEM) [Belytschko and Black,
1999; Moës et al., 1999]. In XFEM, these preconditioners generally split the matrix in (i)
non-problematic DOFs, which can be treated by standard preconditioning techniques and
(ii) problematic DOFs, that are treated separately by local Cholesky decompositions [Béchet
et al., 2005], a tailored FETI-type method [Menk and Bordas, 2011], a Schur complement
based algebraic multigrid preconditioner [Hiriyur et al., 2012] or a Schwarz-type domain de-
composition preconditioner [Berger-Vergiat et al., 2012; Waisman and Berger-Vergiat, 2013].
The last two references are conceptually similar to the approach applied in this work, but

2The following section is based on [Jomo et al., 2019]. The main scientific research as well as the textual
elaboration of the publication was performed by the author of this work.

2.3. Immersed finite element methods 23

differ in the choice of subdomains as the problematic DOFs in the finite cell method, i.e. all
DOFs on the boundary, are generally large connected sets. For immersed finite element meth-
ods it is proposed in [Lehrenfeld and Reusken, 2017] to diagonally scale the non-problematic
DOFs and treat the problematic DOFs by an algebraic multigrid procedure. This strategy is
demonstrated to be effective for linear basis functions but has restrictions on the manner in
which elements can be cut. In [Badia and Verdugo, 2017] the scaling in a Balancing Domain
Decomposition by Constraints preconditioner (BDDC) is customized for cut basis functions,
which is shown to result in an effective method for linear bases. A preconditioner that com-
bines a diagonal scaling with a local orthonormalization of the problematic DOFs is developed
in [de Prenter et al., 2017]. In de Prenter et al. [2019a] it is shown that this orthonormalization
is very similar to additive Schwarz preconditioning, e.g. [Brenner and Scott, 2008], of the cut
elements. The preconditioner developed in [de Prenter et al., 2019a] is demonstrated to be
effective for immersed finite element methods with high-order basis functions. A modification
of this preconditioner is applied to the multi-level hp-basis in [Jomo et al., 2019] and applied
in a distributed parallel setting. de Prenter et al. [2019b] present a geometric multigrid pre-
conditioner that robustly deals with cut cells in hp-refined problems and leads to convergence
rates of iterative solvers that are independent of the mesh size.

Fictitious domain stiffness

In immersed boundary methods a differentiation is made between the physical domain Ωphys,
i.e. the domain defined by the original body Ω, and the non-physical or fictitious domain Ωfict,
made up of all points that do not belong to Ωphys. A simple but effective way of stabilizing
cut elements is to assume a soft material in the fictitious domain. This introduces an artificial
stiffness in the system by evaluating integrals in cut cells for points lying within the physical
and the fictitious domain. The amount of added stiffness is controlled by a scalar parameter
α, which is usually chosen as a small constant 0 < α � 1. The inclusion of minimal stiffness
improves the conditioning of the system and can be interpreted as a volumetric stabilization.
[Dauge et al., 2015] provides an extensive analysis of this method. Fictitious domain stiffness
is widely used in the finite cell method [Düster et al., 2008; Parvizian et al., 2007] and is
commonly used together with different preconditioning techniques [Jomo et al., 2019].

Ghost penalty

Ghost penalty [Burman, 2010; Burman et al., 2014a; Burman and Hansbo, 2012] remedies
the conditioning problems associated with cut cells by the addition of penalty terms at the
interface of the cut and fully supported elements. This stabilization technique introduces a
weak coupling between degrees of freedom in cut cells and their fully supported adjacent ele-
ments hereby extending the coercivity of the physical domain to the cut elements. Although
the ghost penalty method effectively ameliorates condition problems associated to cut cells,
it leads to an increased sparsity pattern that increases the effort needed to solve the system.
Ghost penalty can be efficiently applied in the context of isogeometric analysis since its im-
plementation is simplified by the high-order regularity of the B-spline basis. Ghost penalty
has been successfully applied in different scenarios such as in flow problems [Burman et al.,
2014a; Massing et al., 2018].

24 2. The finite element method

Basis function manipulation

An alternative way of dealing with the ill-conditioning in immersed methods is by eliminating
the problematic basis functions only supported on small cut cells. This can be done in different
ways. One approach is to simply exclude problematic basis functions with small support inside
the domain of computation from the linear system. This strategy remedies ill-conditioning
and also bounds the stabilization parameter in Nitsche’s method. It is applied in [Elfverson
et al., 2018] without affecting the accuracy of the solution and also in [Verhoosel et al., 2015].
The effect of cut cells can also be eliminated by strongly coupling problematic basis functions
to neighbor elements as done in [Badia et al., 2018b; Höllig et al., 2005; Höllig et al., 2001;
Marussig et al., 2018; Verdugo et al., 2019].

2.3.3 A brief overview of different immersed methods
The ability of immersed finite element methods to deal with a wide range of geometric mod-
els makes them a suitable choice for performing numerical analyses on complex geometries.
Several immersed methods have been developed in the past decades. These techniques differ
mainly in the means by which Dirichlet boundary conditions are applied, the type of cut cell
integration used, the way in which the conditioning of the system is improved and the type of
basis functions they employ. The most prominent immersed methods include

• The finite cell method, FCM, is an immersed method that combines a fictitious domain
approach with high-order finite elements and was introduced by Parvizian et al. [2007]
in the two-dimensional setting and extended to three dimensions in [Düster et al., 2008].
The work in this thesis is centered on the finite cell method and a detailed description
of the method is given in Section 3.1.

• The Cut Finite Element Method, or CutFEM in short, is an immersed FE method
attributed to Burman and Hansbo [2012]. Although different flavors of this method
exist, the most common ingredients in CutFEM-type methods include the application of
essential boundary conditions using Nitsche’s method and the use of the ghost penalty
to treat the ill-conditioning of cut cells. This combination allows the use of a global
stabilization parameter that is independent of the cut elements. CutFEM has numerous
applications fields such as various flow problems [Burman et al., 2014b; Burman and
Hansbo, 2012; Massing et al., 2018], fluid-structure interaction [Ager et al., 2019; Schott
et al., 2019] and topology optimization [Burman et al., 2019].

• The aggregated unfitted method, AgFEM, is a novel immersed technique that is based
on the removal of problematic basis functions through the use of specially designed
constraints [Badia et al., 2018b]. These constraints ameliorate the ill-conditioning due to
cut cells and allow the application of standard solvers and preconditioners e.g. algebraic
multigrid preconditioners as demonstrated in [Verdugo et al., 2019].

• The Cartesian grid Finite element method, abbreviated as cgFEM, is an embedded
method based on Cartesian background grids. By taking advantage of the structure
of the embedding mesh, it is shown that the method can be implemented efficiently
and results in low computation times. The method has been applied in linear elastic
simulations [Nadal Soriano et al., 2013], image-based analyses [Giovannelli et al., 2014]
and immersed contact mechanics [Navarro-Jiménez et al., 2018].

2.3. Immersed finite element methods 25

• The shifted boundary method [Main and Scovazzi, 2018a], is a recently introduced em-
bedded domain method that is based on an approximate/surrogate boundary algorithm.
The core idea behind this method entails the shifting of the location at which boundary
conditions are applied from the immersed boundary to surfaces that correspond to el-
ement boundaries. The original boundary conditions are modified accordingly to allow
the weak enforcement on the new boundary-conforming surfaces and to preserve optimal
convergence rates of the numerical method. This method eliminates the conditioning
problems related to cut cells and has been successfully applied to numerical tests for
the Poisson and Stokes equations [Main and Scovazzi, 2018a] as well as the advection-
diffusion equation and the Navier-Stokes equation [Main and Scovazzi, 2018b].

Although different immersed methods exists, these approaches have more similarities than
differences. In fact, most if not all of the algorithms presented in Section 2.3.2 can be applied
to all immersed methods without requiring significant modifications. The most commonly
used method for the weak imposition of Dirichlet boundary conditions is Nitsche’s method,
while the most prevalent method for dealing with small cut cells is either preconditioning or
some form of basis function manipulation.

27

Chapter 3

Formulation of the multi-level hp-finite
cell method

In this chapter, the discretization techniques that are central to this work, namely the finite
cell method and multi-level hp-refinement, are presented. These numerical methods have been
jointly used in a wide range of engineering applications involving bodies with complex geome-
tries. These application areas include cohesive fracturing modeling [Zander et al., 2016b],
stress analysis of structures such as bone-implant systems [Elhaddad et al., 2018] and me-
chanical engineering artifacts manufactured by die casting [Jomo et al., 2019], the simulation
of metal additive manufacturing processes [Kollmannsberger et al., 2019, 2018; Özcan et al.,
2019] and the modeling of fracture growth in brittle structures using a phase-field approach
[Hug et al., 2020; Nagaraja et al., 2019].
In this thesis, the finite cell method is used in conjunction with multi-level hp-refinement for

the efficient numerical analysis of geometrically and topologically complex domains. Alterna-
tive approaches presented in literature combine FCM with hierarchical B-splines thus merging
the benefits of immersed methods with those of isogeometric analysis. This methodology has
been successfully applied in the context of (non-linear) elasticity [Schillinger et al., 2012] and
in image-based analysis of trabecular bone [Verhoosel et al., 2015].

3.1 Fundamentals of the finite cell method
The finite cell method (FCM) is a well-known immersed finite element method first introduced
in [Parvizian et al., 2007]. It combines the favorable approximation properties of high-order
finite elements with a fictitious domain concept yielding a flexible and accurate discretization
scheme suitable for FE-analysis of bodies with a complex geometry. Various types of high-
order shape functions can be utilized in constructing a FCM mesh, such as the integrated
Legendre polynomials commonly used in p-FEM [Düster et al., 2008; Parvizian et al., 2007],
B-splines or NURBS [Kamensky et al., 2015; Schillinger and Rank, 2011a] and Lagrange
polynomials based on Gauss-Lobatto nodal distributions [Joulaian et al., 2014; Schillinger and
Rank, 2011b]. Note that any admissible set of high-order basis functions used in boundary-
conforming finite element frameworks can be incorporated into the finite cell setting.
In this thesis, the commonly used integrated Legendre basis functions presented in Section

2.2.2 are utilized. This choice is motivated by the functions’ hierarchical nature that simplifies

28 3. Formulation of the multi-level hp-finite cell method

Ωphys

ΓD

ΓN

t̄

(a) Physical domain Ωphys

Ωphys

ΓD

ΓN

t̄

Ωfict

α � 1

α = 1

α � 1

α � 1

(b) Fictitious extension

Ωphys

ΓD

ΓN

t̄

Ωfict

α � 1

α = 1

α � 1

α � 1

(c) Structured discretization

Figure 3.1: Schematic representation of the finite cell method adopted from [Bog et al., 2017].

the p-adaptation of mesh elements. All theoretical considerations and numerical examples in
this thesis are, therefore, based on this class of basis functions. The developed concepts can,
however, be extended to different basis function classes, albeit with certain modifications.
The finite cell method provides a flexible and accurate discretizational framework. An

original domain of complex shape, usually termed the physical domain Ωphys, is extended by
or immersed in a fictitious domain, Ωfict, such that their union yields a computational domain
Ω∪ of simple shape that can be trivially discretized using regular elements. As a consequence,
the effort associated with mesh generation in FCM is negligible.
Another implication of this fictitious extension is that the weak form in FCM is no longer

posed solely on Ω = Ωphys but rather on the extended computational domain Ω∪ = Ωphys∪Ωfict.
In order to differentiate between points lying in Ωphys and Ωfict, an indicator function α is
introduced which associates each material point x with its respective domain such that

α(x) =
{

1 ∀x ∈ Ωphys
� 1 ∀x ∈ Ωfict

. (3.1)

The indicator function α(x) is applied to the original weak form to penalize the contributions
of the fictitious domain. The strength of this penalization is controlled by the value of α and is
usually taken to be a small constant 0 < α� 1 instead of α = 0 to ensure numerical stability.
The modified weak form in the context of the finite cell method can be written as

a(u, v)Ω + α · a(u, v)Ωfict + bc(u, v)∂ΩD = (f, v) + bc(gD, v)∂ΩD + (gN , v)∂ΩN (3.2)

where bc(u, v)∂ΩD and bc(gD, v)∂ΩD denote the contributions of the weak boundary conditions
to the system matrices and force vector respectively, see Section 2.3.2.2. It should be noted
that the indicator function introduces minimal artificial stiffness in the fictitious domain in
order to improve the conditioning of the system. This additional stiffness is associated with a
modeling error that is proportional to

√
α. In [Dauge et al., 2015] it is shown that FCM retains

the optimal convergence properties of high-order finite elements and is an asymptotically
consistent method, since the original weak form is recovered when α tends to zero in the
fictitious domain.

3.2. Multi-level hp-refinement 29

3.2 Multi-level hp-refinement
Section 2.2.3 presented the main goal of hp-methods, which is combining h-refinement and
p-refinement to yield high-quality finite element discretizations capable of capturing fine-scale
solution characteristics in localized regions of the computational mesh. Classical hp-methods
perform mesh refinement based on the replacement of elements and introduce mesh irregu-
larities called hanging nodes in the process, due to the incompatibility of the basis functions
of the newly introduced small elements with existing basis functions of adjacent unrefined
elements. Although hanging nodes can be treated in a systematic manner through specially
designed constraints, implementing these algorithms is quite challenging especially for multiple
refinement levels.
Multi-level hp-refinement, introduced in [Zander et al., 2015], is a novel hp-scheme that

performs spatial refinement based on superposition rather than replacement. The scheme was
developed in order to circumvent the challenges associated with constraining arbitrary levels
of hanging nodes, while at the same time preserving the desirable characteristics of classical
hp-formulations [Zander, 2017]. Furthermore, the scheme relies on intuitive procedures for
refinement and coarsening, that not only simplify the implementation but also make the scheme
suitable for dealing with complex dynamic mesh refinement scenarios in multiple dimensions.
In this work, spatial refinement in the multi-level hp-method is driven by a priori information
such as geometrical features but error estimators could also be employed as in [D’Angella
et al., 2016].

3.2.1 Construction of the basis
The idea of refinement by superposition was first introduced by Mote in [Mote, 1971] and
has since then be adopted in several refinement schemes such as [Belytschko et al., 1990;
Moore and Flaherty, 1992; Rank, 1992; Schillinger and Rank, 2011a]. In multi-level hp-
refinement, spatial refinement is carried out by superposing elements in a coarse base mesh with
multiple levels of hierarchical overlay meshes. Arbitrary levels of hanging nodes are naturally
treated through the use of homogeneous Dirichlet boundary conditions at the boundary of
the overlay meshes. This process ensures the global C0-continuity of the hp-mesh and with
it the compatibility of the discretization. Linear independence of the basis functions can
also be readily enforced through the deactivation of specific basis functions following a simple
ruleset, that can be easily extended to multiple dimensions [Zander, 2017; Zander et al., 2016a,
2015]. This deactivation can be done in a straightforward manner by taking advantage of the
direct relation between the basis functions and the element topology. Further details on the
construction and implementation of the multi-level hp-basis can be found in [Zander, 2017].
Figure 3.2 illustrates the construction of the multi-level hp-mesh for different space dimensions.

3.2.2 Nomenclature and properties of a multi-level hp-mesh
A multi-level hp-mesh comprises elements with different refinement levels as shown in Figure
3.2. The letter k denotes the refinement level/depth of an element. Elements on the lowest
refinement level are referred to as base elements and have a refinement depth k = 0. When
performing h-refinement, a base element is superposed by subelements formed by a uniform
bisection of the base element. This process is repeated recursively until the desired refinement

30 3. Formulation of the multi-level hp-finite cell method

Active node

Inactive node due to
linear independence

Inactive node due
to compatibility

Active edge

Inactive edge due to
linear independence

Inactive edge due to
compatibility

Active face

Inactive face due to
linear independence

Inactive face due to
compatibility

k = 0

k = 1

k = 2

(a) One-dimensional case (b) Two-dimensional case (c) Three-dimensional case

Figure 3.2: Illustration of the multi-level hp-refinement scheme with two refinement levels,
k = 2, in different spatial dimensions. The deactivation of specific topological components
following a simple rule-set ensures compatibility and linear independence of the basis functions,
[Zander et al., 2016a].

depth, resulting in a refinement tree for every base element. Generation of subelements by
uniform bisections guarantees that each sub-element is associated with only one parent ele-
ment. Each refined (parent) element has either two subelements in the one-dimensional case,
four subelements in the case of quadrilateral elements, or eight subelements in the case of
hexahedral elements. The term leaf elements is used to denote the set of all elements in the
mesh that do not have subelements, hence, this set contains unrefined base elements, subele-
ments on intermediate refinement levels that have no children and subelements belonging to
the highest refinement level.
As mentioned in the previous section, certain topological components in a multi-level hp-

mesh need to be deactivated to enforce mesh compatibility and linear independence of the
basis functions as shown in Figure 3.2. It should be noted that only degrees of freedom
associated with active topological components are considered when setting up the linear system
of equations in a simulation. Furthermore, when a multi-level hp-mesh is used in combination
with FCM, a further distinction has to be made between active and inactive (leaf) elements
on the basis of their intersection with the physical domain Ωphys. Elements completely outside
Ωphys are not taken into account in numerical simulations.

3.2.3 Numerical integration
An important aspect in hp-schemes based on the superposition principle is the correct nu-
merical integration of the variational form. Standard elementwise quadrature rules cannot be
directly applied to base elements in a multi-level hp-mesh since basis functions within these

3.3. A software framework for hp-refined high-order finite elements 31

elements are only piecewise polynomials. Instead, integration points have to be distributed
with respect to the leaf elements as the basis functions in these elements are polynomial and
thus C∞-continuous.
Figure 3.3 depicts the integration domains on a single one-dimensional element with three

levels of overlay elements. The base element is partitioned into four integration domains in
which the basis functions are polynomial and only the basis functions supported on an inte-
gration domain are taken into account when evaluating quantities for a given subdomain. It
should be noted that more elaborate integration strategies may be required when combining
FCM and multi-level hp-refinement. In this case, any cut-cell integration strategy (see Sec-
tion 2.3.2.1) can be applied on the leaf element integration domains, e.g. voxel or space-tree
partitioning.

N2
0

N1
0

N1
1

N2
1

N2
2

N = [N0
1 , N

0
2 , N

1
1 , N

2
1 , N

2
2]

LM = [1, 2, 3, 6, 7]

dof1 dof2

dof3

dof4

dof5

dof6

dof7

dof8

Figure 3.3: Illustration of Gaussian integration for a one-dimensional multi-level hp-refined
mesh, adopted from [Zander et al., 2016a]. The integration domains are chosen such that the
basis functions are C∞-continuous within each domain.

3.3 A software framework for hp-refined high-order
finite elements

All algorithms and numerical examples in this thesis have been realized within the software
framework AdhoC++. The following section gives a short overview of the implementation and
design of the serial version of the code framework. The interested reader is referred to [Zander,
2017; Zander et al., 2016a, 2015] for more elaborate information on the data structures and
algorithms needed to enforce linear independence and compatibility of the multi-level basis.
The extension of this code framework to allow for distributed-memory computations is the
subject of Chapter 4.

3.3.1 Code structure and serial implementation
AdhoC++ is an object-oriented finite element code developed by the Chair for Computation
in Engineering at the Technical University Munich for performing numerical simulations with

32 3. Formulation of the multi-level hp-finite cell method

high-order finite elements in the field of solid mechanics. The code’s name is an acronym
that stands for Advanced high-order finite element Code in C++. The programming language
C++ was chosen due to its efficiency, portability, scalability and support of object-oriented
programming. Furthermore, several optimized libraries written in C++ exist that can be used as
a basis for building performant software. AdhoC++ was originally designed as a shared-memory
code in 2012 and supports both boundary-conforming finite element modeling and finite cell
computations using quadrilateral and hexahedral elements with arbitrarily curved edges and
faces. The framework mainly uses high-order elements based on a (isotropic or anisotropic)
tensor product of univariate integrated Legendre polynomials, see Section 2.2.2. A core feature
of AdhoC++ is the implementation of the multi-level hp-refinement scheme. Classical hp-
formulations generally require complex algorithms and data structures to consolidate and
constrain hanging nodes and are associated with a high implementational effort. The natural
treatment of hanging nodes in the multi-level hp-scheme, allows it to be implemented in
a simple and intuitive manner using object-oriented programming concepts [Zander et al.,
2015].
An important aspect in the design of finite element software is the organization of different

functionality into libraries and modules. This encourages code reuse and reduces the effort
associated with code extension and modification. Each library contains a set of algorithms and
classes that are related to a specific aspect of the finite element pipeline e.g. the geokernel
library is responsible for the creation and manipulation of geometric entities such as vertices
and lines while the fekernel library handles aspects relating to the finite element spaces.
The object-oriented concept also allows different relations to be defined between class objects
using C++ pointers. This is illustrated in the UML diagram in Figure 3.4, which shows three
central interclass relations needed to perform refinement by superposition on high-order finite
elements. These relations are i) each degree of freedom is uniquely associated with a topological
entity, ii) a topological entity stores pointers to its subcomponents and iii) each element stores
a pointer to its topological entities and pointers to its children.

DegreeOfFreedom AbsTopologicalComponent Element

Node Edge Face Solid

Figure 3.4: UML diagram adopted from [Zander et al., 2016b] depicting the relations between
the DOFs, topological entities and elements. Expression of object relations using pointers
allows an intuitive implementation of the multi-level hp-scheme.

3.3. A software framework for hp-refined high-order finite elements 33

Finite cell simulation pipeline

In order to perform a simulation in AdhoC++, one first needs to formulate an initial boundary
value problem in a C++ file that is then compiled into an executable. Setting up a typical quasi-
static finite cell computation in AdhoC++ involves the definition of the physical domain Ωphys,
which can be defined in several ways e.g. as an implicit function, a constructive solid geometry
object or read in as input from stereolithography file (STL file) or a computer tomography
image (CT image). Next, the geometric properties of the embedding mesh such as its spatial
dimensions and element resolution need to be specified. Thereafter, the problem type and
corresponding material properties, as well as the type of ansatz space that should be used
is specified. If needed, a hp-refinement strategy for performing mesh adaptation can also be
defined. The final stage in the simulation setup involves the specification of the boundary
conditions that need to be applied, the choice of the linear system solver and the quantities
that should be post-processed.
The stages in a finite cell computation do not differ much from those of a standard FE

computation and include pre-processing, the integration of element matrices and their assem-
bly, the solving of the resulting equation system and post-processing. In FCM simulations,
integration is usually performed using one of the specialized integration techniques described
in Section 2.3.2.1. During this phase, each integration point needs to be associated with the
correct value of the indicator function and material properties through a simple query that
depends on the geometrical model defining Ωphys.

3.3.2 Code performance, bottlenecks and limitations
AdhoC++ has undergone several optimizations to improve its node-level performance. An im-
portant ingredient for improving single processor performance on modern computing architec-
tures is the use of (Single Instruction Multiple Data) SIMD instructions, such as vectoriza-
tion. Vectorization is extensively used in the code and significantly improves the performance
when computing matrix-vector and matrix-matrix products during the integration and solu-
tion phases. Shared-memory multiprocessing through OpenMP directives is also heavily applied
in the integration and solving phases.
One of the major bottlenecks of AdhoC++ is its high memory usage. This is attributed

to the matrix-based solution approach adopted in the code and the memory footprint of
the computational mesh. The multi-level refinement procedure implemented in AdhoC++ is
based on pointers and requires that each topological entity be generated and stored as a
distinct object in memory. The relation between different topological components, such as
their adjacency, is also explicitly stored. This results in a rather large memory footprint
associated with the mesh data structures.
Prior to the work done in this thesis, AdhoC++ had two major limitations that made the

computation of large-scale finite cell problems involving more than a million elements and
several million or even billions of DOFs unfeasible. Firstly, the code did not make use of
distributed memory parallelism and could only be used on a single NUMA (non-uniform
memory access) node. Secondly, at that time it was customary to use direct solvers to solve
finite cell systems since research on iterative solution techniques for immersed problems was
limited. The thesis at hand seeks to eliminate these restrictions and show how efficient FCM
examples of industrial relevance can be computed using well-designed parallel data structures

34 3. Formulation of the multi-level hp-finite cell method

and algorithms. Chapter 4 addresses how concepts of parallel computing can be incorporated
in the code to enable the generation and manipulation of large FCM meshes on parallel sytems,
while Chapter 5 presents robust iterative solvers for the efficient solution of large finite cell
systems.

35

Chapter 4

Parallel immersed computations

The previous chapter presented the discretization methods that play a central role in this
thesis, namely the finite cell method and the multi-level hp-scheme. The chapter at hand
discusses the application of parallel computing to these methods and describes the algorithms
and data structures needed for large-scale finite cell analyses in problems of engineering rele-
vance. The content of this chapter is structured as follows: A short introduction to parallel
computing will be given at the beginning that introduces the relevant parallel paradigms and
the different metrics applied in this work to quantify parallel performance. Note that this
introduction is by no means exhaustive and should be supplemented with secondary literature
such as [Hager and Wellein, 2010] for readers unfamiliar with parallel algorithms in the context
of scientific computing. Next, the ingredients needed for scalable parallel finite element com-
putations will be highlighted and a review of different parallel frameworks for high-order finite
elements is given. This will be followed by a presentation of the first attempt at a parallel
implementation of AdhoC++ that is based on replicated mesh data structures. The content
in this section is based on the work reported in [Jomo et al., 2017]. In the final part of this
chapter, a parallel framework for the finite cell method and multi-level hp-refinement based
on an adaptive Cartesian mesh is presented. This approach allows for scalable computations
on massively parallel systems like the SuperMUC-NG at the Leibniz Supercomputing Center
in Munich, Germany.

4.1 Fundamentals of parallel computing
The term parallel computing is used to describe a group of computational units working simul-
taneously to solve a problem or a set of problems. For the sake of simplicity, a single core will
be the smallest computing unit considered in this thesis and no details on parallelism involving
its subcomponents such as vectorization or other forms of instruction-level parallelism will be
discussed. It should be noted, however, that a code must exploit all levels of parallelism in
order to achieve satisfactory performance. Modern computers ranging from a simple desktop
to large computing clusters are equipped with multiple cores that provide several benefits, e.g.
a user is able to run multiple programs simultaneously or experience an improved performance
in a single application such as faster execution. Parallel computing in the field of scientific
computing has two central goals, firstly it aims to accelerate computations and lead to lower
execution times. The second goal is the use of combined resources to solve larger problems

36 4. Parallel immersed computations

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

core

socket

C node

memory

network

Figure 4.1: Simplified layout of a computing cluster depicting its various components.

than those that can be solved by a single core.
Before introducing the different types of parallelism, the hardware components used in high-

performance computing are presented. Figure 4.1 shows a simplified layout of two computing
nodes. Modern computing clusters are made up of several nodes that are connected with each
other through a (high-speed) network. Each node usually contains a fixed number of physical
cores (processors) that are grouped together into sockets. Each node also contains memory
modules and other components that support the processing and transfer of information within
the node.

Parallelism and parallel programming models
There are different forms of parallelism and only those that exploit multiple cores or nodes are
considered in this work. Furthermore, only data parallelism is considered, where cores work
concurrently to manipulate different subsets of the same data e.g. cores working in tandem
to solve a linear system. This is in contrast to task parallelism where cores perform different
independent operations on the same data. A parallel programming model is an abstraction that
dictates how various components of a parallel machine can be used. It provides a generalization
of how processors can interact and communicate with each other in order to formalize and
simplify the design of parallel codes. The main parallel programming models commonly used
in scientific codes are

• Shared-memory models: In these programming models, processors share a common
physical address space (memory) and can generally only be used within a single node.
They allow variables to be shared between processors and easily accessed during run-
time without the need for communication between processors. Modification of shared

4.1. Fundamentals of parallel computing 37

variables needs to be coordinated to ensure their validity. Prominent shared-memory
programming models include Open Multi-Processing (OpenMP) [Dagum and Menon,
1998] and Intel Thread Building Blocks (TBB) [Reinders, 2007].

• Distributed-memory models: These programming models allow the use of several
processors across multiple nodes. This is generally achieved through interprocessor com-
munication by means of message passing over a communication network. A commonly
used library that implements this programming model is the Message Passing Interface
(MPI) [Clarke et al., 1994].

• Hybrid models: these models combine shared-memory parallelism within a node with
a distributed-memory scheme such as MPI across nodes. They are often more sophisti-
cated to program than pure MPI applications since different ways exist for partitioning
processors between the two levels of parallelism. Hybrid models, however, reduce the
number of messages required during program execution and allow the possibility of over-
lapping communication and computation that can be favorable in certain applications.

In this thesis, a hybrid programming model that utilizes OpenMP and MPI is applied. This
approach is chosen for two main reasons. First, as previously mentioned, a hybrid approach can
reduce parallel overhead as less MPI tasks participate in the communication during programm
execution than in a pure MPI approach. Second, a hybrid code may require less memory than
a pure MPI code in scenarios where the data that needs to be stored by a single MPI task
does not scale well with the number of participating MPI tasks. Note that the terms MPI
task or MPI process will be used interchangeably to refer to the compiled MPI application
that is mapped to a processor when the code is executed. The term thread will be used to
denote an OpenMP application that is created by the runtime environment and allocated to
different processors at the beginning of an OpenMP region.

Quantifying parallel performance
One of the key goals of high-performance computing is the optimal use of the available com-
putational resources i.e. cores and memory. For this reason, it is necessary to define different
metrics that quantify parallel performance. These metrics simplify the identification of code
bottlenecks and help guide code optimization. In the context of parallel algorithms, it is com-
mon to consider three metrics that are independent of the programming model used. These
are speedup, parallel scalability and parallel efficiency. Speedup describes the ratio of the exe-
cution time of a program run in serial ts, to that of the same program run with N processors
tN under the assumption that the amount of work remains the same i.e. speedup = ts/tN .
Parallel scalability is closely related to speedup and is often used to judge the quality of a par-
allel algorithm. A differentiation is made between strong scaling that considers the speedup
due to parallelism when the number of processors are increased for a problem of fixed size
and weak scaling that describes the evolution of the execution time when the problem size is
increased in proportion to the number of processors.
Under perfect conditions, an ideal strong scaling curve should be a linear curve with a slope

of one. Likewise, perfect weak scalability translates to a constant execution time when the
problem size is increased in proportion to the number of processors. Perfect scalability is,
however, hard to achieve in practice due to several factors such as parallel overhead, load
imbalance due to an uneven distribution of work between processors, the need for synchro-

38 4. Parallel immersed computations

nization and the presence of serial parts of code [Hager and Wellein, 2010]. The effect of serial
code segments can be taken into account when modeling the scalability one should expect.
This is done through Amdahl’s law [Amdahl, 1967] in the case of strong scaling and through
Gustafson’s law [Gustafson, 1988] in the case of weak scaling. These two relations provide a
more realistic view of the speedup that should be expected in practice. Let s be the fraction
of serial work in an application and p the fraction of parallelizable work such that s + p = 1,
then the speedup in Amdahl’s can be defined as

Amdahl’s law: speedup = 1
s+ p

N

. (4.1)

It is also possible to provide a definition of speedup in the case of weak scaling as

Gustafson’s law: speedup = s+ p×N. (4.2)

Parallel efficiency is usually defined as the ratio of the speedup to the number of processors N .
Consequently, an application that makes optimal use of parallel resources has an efficiency of
one. Figure 4.2 shows an example of speedup and efficiency curves for three different values
of the serial work fraction computed using Amdahl’s law.

1 4 8 12 16 20 24 28
1

4

8

12

16

20

24

28

Number of processors

S
p
ee
d
u
p

Ideal speedup

s = 0.002

s = 0.02

s = 0.2

(a) Speedup

1 4 8 12 16 20 24 28
0.0

0.2

0.4

0.6

0.8

1.0

Number of processors

P
ar

al
le

l
effi

ci
en

cy

Ideal curve

s = 0.002

s = 0.02

s = 0.2

(b) Parallel efficiency

Figure 4.2: Exemplary curves showing the speedup and parallel efficiency for three values of
the serial work fraction s computed using Amdahl’s law.

4.2 Ingredients for scalable finite element analysis
Designing a parallel finite element framework with decent parallel scalability is an extremely
involving task. It is of paramount importance that the chosen algorithms and data structures
allow efficient and scalable use of the processors and available memory in order to facilitate
optimal performance. Some of the best practices when designing parallel programs in a general
setting are presented in [Foster, 1995] while aspects specific to parallel finite element code
design are summarized in [Bangerth et al., 2011; Patra et al., 2003].

4.2. Ingredients for scalable finite element analysis 39

The parallelization of all stages of the finite element pipeline must be adequately addressed
in order to yield an efficient code. In general, the following three ingredients are indispensable
in a well-designed parallel code

• Scalable and efficient mesh management.
• Robust iterative solvers.
• Scalable post-processing.

4.2.1 Scalable and efficient mesh management
Mesh management in the context of parallel finite elements refers to all components and
operations associated with the generation, storage and manipulation of mesh elements and
their related data. The choice of data structures and algorithms to use for these operations
is governed by factors such as the size of the target system that a parallel application will be
run on, the type of computational mesh used i.e. whether it is structured or unstructured, and
whether the mesh topology will be changing over time e.g. due to dynamic hp-refinements or
domain growth as in the case of additive manufacturing processes. According to Patra et al.
[2003] and Bangerth et al. [2011] a well-chosen mesh management strategy is characterized
by i) distributed storage of the computational mesh, ii) fast algorithms for element retrieval,
refinement and data exchange between processors and iii) efficient load balancing strategies
that dynamically map mesh elements to different processors. Furthermore, point-to-point
communications should be preferred over collective MPI calls and ought to be used in their
place whenever possible.
There are several different strategies for representing and handling mesh data in parallel

codes. The most commonly employed mesh management schemes can be grouped into

• Mesh management schemes based on replicated resources: In these schemes, the
entire mesh data is generated and stored on each MPI task. Although such approaches
inefficiently utilize available node memory, they are easy to implement and are often an
initial step when transitioning from a serial code to a distributed-memory code. In fact
many of the prominent scalable finite element codes currently available such as deal.II
[Bangerth et al., 2007] and libMesh [Kirk et al., 2006] started out with replicated mesh
data structures. Examples of finite element codes based on replicated meshes are [Jomo
et al., 2017; Paszyński and Pardo, 2011].

• Mesh management schemes based on distributed resources: These schemes
rely on the distributed storage of mesh data across all MPI tasks. They allow efficient
usage of nodal memory and foster parallel scalability. Since no single MPI task knows
the complete extent of the computational mesh, specialized algorithms are needed to
determine a consistent degree of freedom numbering and maintain mesh compatibility
across MPI tasks during simulations. A convenient way of incorporating distributed
mesh functionality commonly used in many parallel codes is the use of packages such
as P4est [Burstedde et al., 2011] or ITAPS iMesh [Ollivier-Gooch et al., 2010] that
implement this functionality.

40 4. Parallel immersed computations

4.2.2 Robust and scalable solvers
Optimized parallel linear algebra routines and solvers are needed for achieving parallel scalabil-
ity. Many parallel FE codes do not implement this functionality internally but rather leverage
highly optimized implementations present in packages such as Trilinos [Heroux et al., 2005]
and PETSc [Balay et al., 1997]. Trilinos for example provides a suite of classes for the construc-
tion of distributed sparse matrices, Epetra and Tpetra, that support distributed assembly of
linear systems. It also contains an array of parallel iterative solvers in the packages AztecOO
and Belos. Another mentionable parallel solver suite is the package Hypre [Falgout et al.,
2006], which contains algebraic multigrid preconditioners and solvers for extreme-scale parallel
systems. When deciding which parallel linear algebra and solver packages to use, one should
have the following criteria in mind: i) The package should have well-designed interfaces that
allow the use of user-defined routines. This is of particular importance in problems where
custom preconditioning techniques are needed. ii) It is also beneficial to use packages with a
large userbase and good support.

4.2.3 Scalable post-processing
The term post-processing is a very broad concept in the finite element method and refers to
all operations performed once a finite element solution has been obtained. Such operations
can be performed at the end of a simulation, between two consecutive simulations or when a
simulation is still running. Typical post-processing operations in FEM can be grouped into
three main classes i) the computation of secondary quantities derived from the FE solution
e.g. the calculation of stresses within an element or a posteriori error estimates for the purpose
of guiding adaptive mesh refinement, ii) the storage of simulation results to the file system
and iii) the visualization of the simulation results for the purpose of drawing meaningful con-
clusions. Each of these operation classes is a vibrant research topic and cannot be thoroughly
handled in this thesis. They, however, need to be sufficiently addressed to guarantee paral-
lel scalability and efficient use of the parallel resources. The efficient writing and storage of
data to the file system is a challenging task and falls under the research field of parallel I/O
(Input/Output). Liu et al. [2010] elaborate on various approaches for massively parallel post-
processing in the context of partitioned solver systems. Many parallel finite element codes
leverage libraries such as HDF5 [The HDF Group, 1997] and Parallel NetCDF [Li et al., 2003]
that provide standardized I/O operations. Commonly used applications for data analysis and
parallel visualization include ParaView [Ahrens et al., 2005], Visit [Childs et al., 2012] and
GiD [Coll et al., 2016].

4.2.4 A brief review of parallel frameworks for high-order finite
elements

The use of parallel computing is not only restricted to research codes but is also present in
many proprietary finite element software suites as well as several open-source finite element
packages. A vast amount of parallel frameworks for FEA exist and an exhaustive review of
these is beyond the scope of this work. In recent years, several community-based codes also
known as general-purpose finite element codes have emerged. These codes have a wide userbase
and implement generic functionality that can be used in different scientific and engineering

4.3. A simple parallelization scheme based on replicated mesh data structures 41

applications. Many of these codes have the capability of using different high-order finite
elements and hp-methods. Noteworthy frameworks include deal.II [Bangerth et al., 2007],
libMesh [Kirk et al., 2006], DUNE [Dedner et al., 2010], FEMPAR [Badia et al., 2018a] and MFEM
[Anderson et al., 2020]. To the author’s knowledge, they are only a few frameworks reported in
literature that can perform parallel finite element computations using immersed methods. A
parallel version of AgFEM is presented in [Verdugo et al., 2019] and is implemented in FEMPAR.
This method has been extended to h-adaptive meshes in [Badia et al., 2020; Neiva and Badia,
2020]. A cutFEM code is used for parallel Fluid-Structure Interaction computations in [Schott,
2017].

4.3 A simple parallelization scheme based on
replicated mesh data structures

This section is based on the work reported in [Jomo et al., 2017] and presents the first attempt
at a parallel framework for multi-level hp-refinement and the finite cell method. The main
motivation for this work was the development of a simple parallelization scheme that would
tackle the major bottleneck in AdhoC++ at the time, namely the integration of the element
system matrices. For this reason, a hybrid framework (MPI+OpenMP) was designed based
on parallel mesh management using replicated mesh data structures. A conceptually similar
approach can be found in [Paszyński and Demkowicz, 2006]. The scheme proposed in this
thesis partitions the active leaf elements are among MPI tasks and is briefly explained in the
following section.

4.3.1 Parallel simulation pipeline
Algorithm 4.1 shows the simulation pipeline of the parallelization strategy based on a shared
mesh data structure. Each MPI process generates the entire computational domain at the
start of the simulation. Mesh refinement is performed on the entire mesh such that the same
discretization is present on all MPI tasks. Next, the active leaf elements are partitioned
among the processes using either a geometric or graph-based partitioner in Zoltan [Devine
et al., 2002]. For partitioning purposes, each leaf element is associated with a weight w that
is proportional to the amount of computational work related to it. Since the evaluation of
the element matrices is usually the main bottleneck in high-order immersed computations, the
weight of a given leaf element is chosen such that w ≈ nGP ∗ N3, where nGP corresponds to
the number of integration points and N the number of active basis functions supported on the
leaf element. In concrete simulations, w is normalized with the weight of an unrefined element
yielding a modified weight w∗ = w/w0, so as to factor in influences not taken into account
during its derivation.
Once an MPI process has determined which leaf elements it is responsible for, it performs

numerical integration on these elements. Shared-memory parallelism is used to accelerate this
process and the results of the integration are stored in an intermediate linear system. The
ownership of the degrees of freedom is determined just before the assembly of the distributed
linear system. Since all MPI processes have knowledge of the complete computational domain,
all DOFs already posses a consistent numbering. [Jomo et al., 2017] described two options for

42 4. Parallel immersed computations

determining the DOF ownership. Owned DOFs can be easily determined by either assigning
blocks of contiguous DOFs to the MPI processes in an ascending order or assigning interface
DOFs to the MPI process with the lowest rank. Once the DOF ownership has been determined,
the global distributed system is assembled using the parallel matrices in Trilinos [Heroux
et al., 2005]. These packages allow non-local matrix and vector entries to be communicated
in an efficient way, which is essential in this scheme since ghost elements are not utilized. The
distributed linear system is then solved with the parallel direct or iterative solvers in Trilinos
and the post-processing carried out using the parallel hierarchical data format library HDF5.

Algorithm 4.1: Summary of the simulation pipeline
1 mesh = createMesh()
2 for iStep : timeSteps do
3 refineElements(mesh)
4 myProcessLeafIds = getActiveLeafElementsOnProcess(mesh)
5 registerActiveLeafElementsOnProcess(myProcessLeafIds)
6 for iLeafElement : myProcessLeafElements do
7 #pragma omp for
8 for intPoint : Integrationpoints do
9 elementMatrices =+ calculateLeafElementMatrices()

10 end
11 intermediateLinearSystem.scatterInto(elementMatrices)
12 end
13 myProcessDofs = distributeDegreesOfFreedom(mesh, myProcessLeafIds)
14 globalLinearSystem = initializeGlobalLinearSystem(myProcesDofs)
15 globalLinearSystem.assembleLinearSystem(intermediateLinearSystem)
16 solution = globalLinearSystem.solve()
17 postProcessResults(mesh, solution)
18 end

4.3.2 Numerical examples
The following numerical examples showcase the performance of the proposed parallelization
scheme that utilizes replicated mesh data structures. These simulations were computed on the
CoolMAC cluster at Technical University of Munich that was equipped with a node architec-
ture comprising 16 Intel Sandy Bridge-EP Xeon E5-2670 processors and 128GB of memory.
This cluster is unfortunately no longer in service. All examples are solved using the paral-
lel Conjugate Gradient solver with a multigrid preconditioner available in Hypre. Although
the implementation can be run within a hybrid framework as portrayed in Algorithm 4.1, the
numerical examples present only investigate the MPI-flat (only MPI) performance of the code.

4.3.2.1 A 3D Poisson problem involving complex refinement patterns

The first example investigates the scalability of our parallel implementation in a transient three
dimensional Poisson problem involving complex mesh refinement patterns. This benchmark is

4.3. A simple parallelization scheme based on replicated mesh data structures 43

Ansatz order

8641

(g) Graded mesh at t=5.

(a) t = 2 (b) t = 4 (c) t = 5

Solution of the shock problem.

(d) t = 2 (e) t = 4 (f) t = 5

Distribution of the domain among 8 processes.

Figure 4.3: Problem setup of the transient shock problem.

known as the “shock problem”. It is considered in [Rachowicz et al., 2006; Zander et al., 2016a]
and entails solving the Poisson equation on a unit cube subjected to Dirichlet and Neumann
boundary conditions derived from the manufactured solution uref that is specially chosen to
represent a shock-like function

uref = tan−1(α̃(r − r0)) with r0 =
√

3 and α̃ ∈ {40, 80, 160}, (4.3)

with r the radial coordinate about a shifted origin where

r =
√

(x− x0)2 + (y − y0)2 + (z − z0)2 and x0 = y0 = z0 = −0.25. (4.4)

The factor α̃ determines the sharpness of the shock. The interested reader is referred to [Zander
et al., 2016a] for a detailed derivation of the applied boundary conditions and multi-level hp-
convergence properties. In this numerical example, the original shock problem is modified to
allow for a time-dependent initial radius r0 = r0(t) in (4.3). The performance of the parallel
framework in a transient setup is then assessed for a sharpness α = 160 and different values
of r as illustrated in Figure 4.3a-c. The example at hand begins in the first time step with
an initial mesh of 123 hexahedral trunk space elements. The initial mesh consists of unrefined
elements and has a uniform polynomial degree p = 8. This mesh is refined in every time step
towards the shock with a refinement depth of three as illustrated in Figure 4.3d-f and a total
of five time steps are computed. A graded polynomial order is applied to the elements, cf.
[Zander et al., 2016a], as illustrated in Figure 4.3g for the final time step, where the polynomial
order is decreased when increasing the refinement level. A graded mesh poses a challenge for
load balancing, as the number of basis functions within the leaf elements varies greatly. Table
4.1 summarizes the number of leaf elements and unknowns within each time step.

44 4. Parallel immersed computations

Time step 1 2 3 4 5
r0 0.2

√
3 0.4

√
3 0.6

√
3 0.8

√
3

√
3

No. degrees of freedom 158 437 191 329 240 028 266 506 214 576
No. leaf elements 6 474 19 095 38 604 48 390 27 201

Table 4.1: Time step information in the transient shock problem.

Scalability of the simulation pipeline

To investigate the scalability of the parallel implementation, the time spent in performance-
critical routines over the five time steps and their contribution to the overall simulation time
is monitored. A strong scaling analysis is performed in which the processor count is progres-
sively doubled in 7 steps from 1 to 128. Figure 4.4 presents the scaling results of different
routines in the simulation pipeline as well as their influence on the execution time. Almost
perfect scalability is achieved for the integration routines which make up over 50% of the serial
computation time. The PCG solver does not scale well in this simulation due to the fact that
rather small systems (with ≈ 2 · 105 DOFs) are considered in this study. These systems do to
provide enough workload for the participating processors resulting in a high communication
overhead in the linear solver. Increasing the processor count above 128 is likely to cause the
performance to plateau or even decline due to increased parallel overhead. Figure 4.4b shows
that the serial routines of the code, which include the mesh generation and refinement, have
a detrimental impact on overall code performance. These routines do not scale and make up
a major part of the computational time many MPI tasks are used.

1 2 4 8 16 32 64 128
1

2

4

8

16

32

64

128

Number of processes

S
p
ee
d
u
p
[T

1
/
T
]

total execution time

integration of the linear system

linear solver

post-processing

ideal

(a) Strong scaling results of selected routines.

1 4 8 16 32 64 128

25

50

75

100

number of processes

%
o
f
ex
ec
u
ti
o
n
ti
m
e

integration assemble distributed system

linear solver post-processing

serial operations

(b) Contribution of different components to the total
execution time.

Figure 4.4: Analysis of the overall performance in the shock problem.

4.3. A simple parallelization scheme based on replicated mesh data structures 45

4.3.2.2 Loading of a bone implant system

The final example in this section combines the finite cell method and multi-level hp-refinement
to simulate the loading of a bone-implant system. The setup consists of a lumbar vertebra with
embedded pedicle screws that is supported on its bottom surface and loaded on its upper flank
as shown in Figure 4.5a. The major benefit of using FCM in this simulation is its ability to deal
with multiple geometric models easily without the need of generating a boundary conforming
mesh. This enables the simultaneous analysis on the bone material, which is based on a HR-
pQCT scan with a voxel size of 146.5 µm, and the screws, whose geometry is described by a
CAD model. A computational mesh shown in Figure 4.5b for example, can be easily generated
by embedding both the voxel model and screw in a bounding box and using the density values
of the CT scan together with the surface of the screws to filter out elements lying completely
in the fictitious domain. The resulting computational domain is refined towards the interface
of the bone material and the screws as illustrated in Figure 4.5c, to better capture the solution
in this area. Furthermore, the composed integration technique in Section 2.3.2.1 is applied
on the voxel level, to make use of the available fine grain information of the CT scan. This
high resolution integration is depicted in Figure 4.5d, where the black colored cells represent
the leaf elements while the blue colored cells depict the voxels. This results in a very high
computational cost, rendering the integration of the linear system the main bottleneck in this
simulation.

46 4. Parallel immersed computations

(a) Loading of a bone implant system. (b) Mesh split for 4 MPI processes.

(c) Adaptive refinement. (d) Composed integration on voxel level.

Figure 4.5: Simulation of a bone-implant system.

This example presents a excellent test for the parallel implementation. The major challenge
here lies in the efficient distribution of the computational domain to guarantee good perfor-
mance. The leaf elements not only differ in the number of DOFs due to refinement, but also
in the number of voxels. Moreover, an inside-outside test has to be performed for each inte-
gration point to find out if the point lies within the bone material, screw or fictitious domain.
To perform the numerical analysis, an initial mesh comprising 1 341 base elements that are
refined in two steps towards the interface of the bone and the screws is used. A polynomial
degree of p = 3 is chosen resulting in 7 571 leaf elements upon refinement and 147 889 DOFs.

4.3. A simple parallelization scheme based on replicated mesh data structures 47

1 2 4 8 16 32 64
1

2

4

8

16

32

64

Number of processes

S
p
ee
d
u
p
[T

1
/
T
]

total execution time

integration of the linear system

linear solver

post-processing

ideal

(a) Strong scaling results for selected routines.

1 2 4 8 16 32 64
100

101

102

103

104

105

Number of processes

T
im

e
[s
ec
]

total execution time

integration

linear solver

post-processing

assemble distributed system

ideal

(b) Execution time analysis of the simulation pipeline.

Figure 4.6: Analysis of the bone-implant system simulation.

Figure 4.6 shows the parallel performance of the simulation pipeline for the example at hand.
Satisfactory scaling results are obtained for the most time consuming routines: the integration
of the stiffness matrices and the post processing. More effort, however, needs to be invested in
load balancing, i.e. in the distribution of the integration domains among processes, in order
to improve the algorithms parallel efficiency.

4.3.3 Limitations of the parallel implementation
Although the proposed parallelization scheme is able to yield satisfactory results for problems
with a few hundred elements per process, its applicability is limited due to its high memory
requirements. A study of the code’s memory footprint is conducted in [Jomo et al., 2017] and
shows that the memory usage does not scale well when the number of MPI processes used in
a simulation increases, but rather rapidly levels off due to the replicated mesh. This scheme
nevertheless shows the potential of using parallel computing in the context of the finite cell
method together with multi-level hp-refinement and serves as a basis for developing the more
efficient parallel code described in Section 4.4.

48 4. Parallel immersed computations

4.4 A massively parallel framework for finite cell
analysis

This section presents a distributed mesh management strategy that was designed to overcome
the shortcomings of the shared mesh strategy outlined in the previous section. The core idea
behind the proposed scheme is the introduction of an adaptive Cartesian grid that is easy to
construct, light-weight i.e. has low storage requirements, and is easy to modify in that the
cells it contains can be easily refined and coarsened. This grid provides an abstraction of the
mesh in the sense that geometrical operations and load balancing can first be performed on its
cells, before being related to a finite cell mesh. Once a distributed grid has been constructed,
each MPI task is able to generate a local mesh from the grid data structure that can be used
for parallel FE computations. In this way, it is possible to create and store a full parallel mesh
in a scalable manner.
As previously mentioned, the concept of using adaptive Cartesian grids or tree-based struc-

tures for parallel element creation is not new but has been implemented in various parallel
finite element codes e.g. [Badia et al., 2019; Bangerth et al., 2011]. The mesh management
strategy proposed in this thesis is specially tailored to the needs of the finite cell method and
multi-level hp-refinement and allows efficient immersed computations involving multi-million
and even billions of unknowns on over 10K processors. The presented algorithms can, how-
ever, be easily extended to other immersed methods involving hp-refinement. This section
presents a set of algorithms for the generation of a fully-distributed, analysis-suitable FCM
mesh as well as methods for mapping element data between MPI processes in the case of
parallel simulations involving changing discretizations. Before explaining the algorithms in
detail, the terminology and notation used in this section are introduced.

4.4.1 Parallel mesh generation

Terminology, notation and classification of the grid cells

Let G denote an adaptive Cartesian grid consisting of grid cells, with C denoting a single grid
cell. Each cell can be uniquely identified by its index j and refinement level l. Ginit denotes
the initial state of the Cartesian grid in which all cells have a refinement level l = 0. This
grid will be referred to as the coarse initial grid. Refinement of cells in the grid is performed
using uniform bisections resulting in four and eight child grids in two and three dimensions
respectively. When dealing with adaptive grids in a parallel setting, it is common to group the
grid cells into different categories. These categories play a key role in the mesh manipulation
algorithms and are listed in the following paragraph:

• Inside and outside cells: In analogy to inside and outside elements, a differentiation
is made between grid cells that have an intersection with the physical domain and those
that are completely within the fictitious domain. C in denotes an inside cell while Cout a
cell with C ∩Ωphys = ∅. The set of all inside cells is denoted by Cin, while Cout represents
the collection of all outside cells.

• Owned, and ghost cells: Since the adaptive Cartesian grid is created and stored
in a distributed manner, it is necessary to associate each grid cell that will be used
for element generation with a unique owning MPI task. The ownership of the grid

4.4. A massively parallel framework for finite cell analysis 49

cells is determined during the load balancing process performed using Zoltan. The
symbol Cown is used to represent a single owned cell and Cown the set of cells owned
by a specific MPI task. Cells neighboring (or adjacent to) owned cells are referred
to as ghost cells. The presented algorithms require two levels of adjacent cells and
differentiate between immediate neighbors of owned cells called first-level ghost cells
and second-level ghost cells. Cghost,1 denotes a first-level ghost cell and Cghost,2 a second-
level ghost cell whereas Cghost,1 and Cghost,2 represent all first-level and second-level cells
in G, respectively. The second-level of ghost cells is needed for three reasons: i) it
allows the direct communication of degrees of freedom between processes in a single
communication step as described in Section 4.4.2, ii) it ensures that the refinement of
all first-level ghost elements is consistent as illustrated in Figure 4.7 and iii) it enables
the preconditioners to be constructed without communication as elaborated in Section
5.2.4.3.

• Active and inactive cells: This label is used on MPI task level to indicate which cells
should be considered during the mesh generation process. It follows from the previous
grid cell categories that only inside cells that are either owned or ghost cells can be active
on a given MPI task. An active cell is denoted by Cact while C inact denotes an inactive
cell. The set of all active and inactive cells are denoted by Cact and Cinact, respectively.

(a) Scenario 1: Cghost,2 is unrefined. (a) Scenario 2: Cghost,2 is refined.

Cown Cghost,1 Cghost,2 active node inactive node

Figure 4.7: A simple grid consisting of three elements (with p = 1) that illustrates the impor-
tance of second-level ghost elements in ensuring the validity of DOFs on the interface between
Cghost,1 and Cghost,2 when using multi-level hp-refinement. In the figure at hand, the refinement
state of Cghost,2 determines whether the node lying between Cghost,1 and Cghost,2 is active or
inactive. Note that the DOFs in Cghost,2 do not play a role in any of the algorithms used in
this work and thus their correct state does not need to be enforced.

Mesh creation algorithm

The algorithm proposed in this work generates a distributed finite cell mesh T from a light-
weight adaptive Cartesian grid G that is structurally similar to the computational mesh. Each
MPI task only stores a portion of the Cartesian grid denoted by Grank and is able to generate
a local high-order mesh Trank from the active cells in Grank at a given refinement level lm. The
ability to specify the grid refinement level for element generation is advantageous in that it
allows the creation of a high-resolution FCM mesh from a rather coarse initial grid. Moreover,

50 4. Parallel immersed computations

a grid refinement level lr and a mesh creation level lm can be specified at the start of the mesh
creation procedure making it possible to generate a uniform FCM mesh when lr = lm and a
multi-level hp-refined mesh for lr > lm. A 1-to-1 relation always exists between the generated
elements and the active grid cells in Grank with l ≥ lm (see Figure 4.8). The full computational
mesh is obtained from the union of all local MPI task meshes i.e. T =

⋃
i Ti. A schematic

illustration of the parallel mesh generation process is provided in Figure 4.8 while a summary
of the scheme is presented in Algorithm 4.2.

The mesh generation algorithm consists of the following steps:
1. An initial coarse grid Ginit that can be readily stored on each MPI task is created, see

Figure 4.8a.
2. An inside-outside test is performed to determine the set of inside cells Cin.
3. The cells in Cin are partitioned among the MPI tasks using Zoltan [Devine et al., 2002].

The space-filling curves available in Zoltan are used to this end. Each process thereafter
marks its active cells Cact, with Cact = Cown ∪ Cghost,1 ∪ Cghost,2.

4. Each MPI task refines the cells in Cact recursively until a predefined grid refinement level
lr, see Figure 4.8b.

5. The active cells with a refinement level l = lm are repartitioned using Zoltan. This step
is necessary since the refinement process generally leads to an imbalance in the number
of active cells that needs to be remedied, compare Figure 4.8b and Figure 4.8c.

6. Each MPI task then determines the new sets of ghost elements Cghost,1 and Cghost,2 and
updates the refinement state and owning MPI process of these ghost cells. At the end
of this step, each MPI task knows the owning MPI processes of all its active cells. This
information is required to determine the point-to-point interprocess communications
patterns needed in subsequent stages of the simulation pipeline.

7. A high-order finite cell mesh Trank is then generated from all the active cells in Grank with
l ≥ lm, see Figure 4.8d.

Remark 4.4.1. Load balancing in the proposed parallelization scheme is performed on the
granularity of the cells in G that correspond to the base elements of the multi-level hp-refined
grids created on each MPI process. The computational cost of each base element, or its weight
w, is chosen in proportion to the number of leaf elements it contains as well as the number of
integration points on each leaf element.

4.4. A massively parallel framework for finite cell analysis 51

Ωfict

Ωphys

(a) An initial coarse grid Ginit is generated and
partitioned using Zoltan. The region enclosed in
the red box depicts the initial subdomain Ginit,1 as-
signed to the MPI task with rank = 1.

Ωfict

Ωphys

(b) The initial subdomain Ginit is refined w.r.t the
fictitious domain until a predefined depth lr=3.
The owned grid cells (green) are marked and again
repartitioned to account for possible load imbalance
introduced during the refinement process.

Ωfict

Ωphys

(c) Updated grid G1 after the load balancing of
the refined grid cells with lm > 2. Owned grid
cells (green) and their neighbors (blue and red) are
marked for the next stage of mesh generation.

Ωfict

Ωphys

(d) A refined FCM mesh T1 is generated from the
active grid cells on MPI process 1.

Figure 4.8: Schematic representation of the generation of a hp-refined finite cell mesh from
the point of view of a single MPI process (rank = 1).

52 4. Parallel immersed computations

Algorithm 4.2: Trank = generateMesh(Ωphys, Ginit, lr, lm)
1 # perform an inside-outside test to determine Cin
2 for C ∈ Ginit do
3 if C ∩ Ωphys 6= ∅ then
4 C.setInsideState(true)
5 end

6 end
7 # partition inside cells using Zoltan
8 Cown = partitionCells(Ginit)
9 # update ghost cell states

10 Grank = updateGhostCells(Grank, Cown, lm)
11 # refine locally active cells until depth lr
12 for Cact ∈ Grank do
13 refineCellRecursively(Cact,Ωphys, lr)

14 end
15 # re-partition active cells with l = lm using Zoltan
16 Cown = repartitionCells(Grank, lm)
17 # update ghost cell states
18 Grank = updateGhostCells(Grank, Cown, lm)
19 # create a local mesh from active cells in Grank
20 Trank = extractMesh(Grank, lm, lr)
21 return Trank

4.4.2 Parallel enforcement of mesh compatibility
The process by which each MPI task generates a portion of the total computational mesh
from the active cells in a distributed adaptive Cartesian grid was outlined in the previous
section. It should be noted, however, that these meshes cannot be directly used for parallel
simulations since the finite element spaces they define are independent of each other and
first need to be connected. The process of connecting these local meshes will be referred to
as the enforcement of parallel mesh compatibility. This procedure is necessary in order to
obtain an analysis-suitable discretization. In the context of parallel finite cell computations,
a computational mesh is considered analysis-suitable when the following criteria are met

(i) Each degree of freedom in the computational mesh T is associated with a unique global
identifier (global index) and a unique owning MPI task.

(ii) The (point-to-point) interprocessor communication patterns needed to update data as-
sociated with the degrees of freedom of the ghost elements in Trank have been established.

The enforcement of mesh compatibility results in a consistent enumeration of DOFs across
all MPI tasks. With this in place, a distributed finite element space formed by the union of

4.4. A massively parallel framework for finite cell analysis 53

all owned elements exists that has the correct inter-element continuity and total number of
unknowns.

Degree of freedom nomenclature

In parallel finite element codes, it is common to decouple an MPI task’s mesh from the
routines that enforce mesh compatibility and instead use separate classes (or a single class)
that implement(s) the logic of connecting the local finite element spaces across all processes
e.g. [Bangerth et al., 2011; Dedner et al., 2010]. The mesh management strategy presented
in this thesis is also based on a decoupled mesh approach and implements a class called the
DistributedDofHandler that is responsible for managing the degree of freedom data and
setting up the data structures needed to perform interprocessor communication.
Every DOF in an MPI task’s local mesh is associated with a triple that contains the DOF’s

local index, global index and the owning process i.e. the rank of the MPI task that currently
owns the DOF. The set of local DOF indices in the local mesh is denoted by Ilocal = {i}nlocali=1 ,
where nlocal represents the number of DOFs in Trank. The symbol Iglobal is used to represent
the set of global DOF indices in Trank. The values assigned to a DOF’s global index and
owning process are determined during the enforcement of mesh compatibility and are used to
characterize the DOFs into the following groups

• Valid vs invalid degrees of freedom: The DOFs in Trank are associated with three
kinds of basis functions: i) basis functions that are fully supported on owned elements,
ii) functions with support on both owned and ghost elements and iii) functions that
are only supported on ghost elements. A DOF with a local index i is considered as
valid on a given MPI task if the support of its corresponding basis function ϕi intersects
at least one function ϕj that is fully supported on the union of owned elements in the
local mesh. All other DOFs, for which this condition does not hold, are considered as
invalid DOFs. The symbols Ivalid and Iinvalid represent the set of valid and invalid DOFs
respectively. From the above definition, it is clear that invalid DOFs can only occur on
second-level ghost elements, see Figure 4.9. An MPI task only needs to have the correct
global indices of its valid DOFs since only these DOFs play a role in the assembly of the
distributed linear system.

• Owned vs remote degrees of freedom: The valid DOFs of each MPI task can be
further subdivided into two distinct sets, namely owned DOFs denoted by Iowned and
remote DOFs denoted by Iremote. An MPI task is responsible for the storage and ma-
nipulation of finite element data associated with its owned DOFs. This is of particular
importance when coordinating the creation of parallel matrices and vectors or when per-
forming linear algebra operations such as matrix-vector multiplications or the calculation
of norms over distributed data structures. An MPI task can also store data associated
to remote DOFs in Trank. In general, it is crucial that the remote data stored is valid
i.e. data associated with a remote DOF k is consistent with the data on the MPI task
that owns k. If this is not the case, then inconsistent data must be updated through
interprocessor communication with the owning MPI task responsible for DOF k.

Remark 4.4.2. It should be noted that each DOF in T is associated with only one owning
MPI task and a unique global index. Moreover, the total number of degrees of freedom nDOFs
in T can be determined as the cardinality of the union of Iowned over all MPI tasks. Although

54 4. Parallel immersed computations

trivial, it is worth mentioning that nDOFs is an invariant that is independent of the number of
MPI tasks used in a simulation or the distribution of the mesh elements over these tasks.

Cown

Cghost,1

Cghost,2

owned DOF

remote DOF

invalid DOF

Figure 4.9: Classification of the degrees of freedom in the local mesh T1 with linear elements
into invalid DOFs, remote DOFs and owned DOFs. T1 is the mesh belonging to the MPI
process with rank one in Figure 4.8d.

Degree of freedom ownership

Before highlighting the specific steps needed to enforce mesh compatibility, we first elaborate
on how the ownership of degrees of freedom is determined. This step is an integral part
in parallel finite element computations. It must produce consistent results across all MPI
tasks and should require minimal interprocessor communication [Bangerth et al., 2011]. When
considering DOF ownership, one should distinguish between internal DOFs that are associated
with basis functions only supported on owned elements in Trank and interface or shared DOFs
that are supported on owned and first-level ghost elements and whose corresponding basis
functions are present on multiple MPI tasks. Since internal DOFs are only present on a single
MPI task, it is a natural choice to assign this task as their owning MPI process.
Determining the ownership to interface DOFs is more involved. Different strategies exist in

literature that differ in the rules used for assigning DOF ownership and the type and amount
of interprocessor communication they require. One commonly used strategy is to assign the
ownership of interface DOFs to the MPI task with the smallest rank that contains the given
DOF as in [Bangerth et al., 2011; Logg, 2009]. An alternative strategy designed for nodal
finite elements and octree-based meshes treats each nodal DOF as an octant that lies in
a unique enclosing element and assigns the DOF to the MPI task that owns the enclosing
element [Burstedde et al., 2011; Tu et al., 2005]. The algorithm presented in this thesis is also
based on geometrical properties but follows a different approach. Since the basis functions
and consequently the DOFs are associated with mesh topological entities – nodes, edges, faces,
volumes — one can assign ownership of a DOF to the element with the lowest grid index that
contains the DOFs topological entity. This element is referred to as the anchor element of
the DOF in question. This approach is suitable for several reasons: firstly it is not restricted
to hierarchical bases but can be readily applied to different kinds of finite element spaces.

4.4. A massively parallel framework for finite cell analysis 55

Secondly, the algorithm does not require any communication since the index of any given
element is equal to that of its corresponding grid cell and therefore unique and known a priori.
Finally, this strategy simplifies the process of debugging since DOF ownership is associated
with the geometry and independent of the partitioning of elements among MPI tasks. Figure
4.9 depicts the owned DOFs in a local mesh of a single MPI task.

Algorithm for enforcing parallel mesh compatibility

The process by which the finite element spaces defined by the local meshes on different pro-
cessors are connected with each other is now described from the point of view of a single MPI
task. This procedure involves the interplay of the local grid Grank, the local computational
mesh Trank and the DistributedDofHandler and consists of the following steps:

1. Determine the value of nlocal, i.e. the number of DOFs in Trank, and initialize the local
DOF indices with the values from 1 to nlocal.

2. Distinguish between the valid and invalid DOFs based on the adjacency relations of the
elements and the support of the basis functions in Trank. Mark the invalid DOFs as
de-registered by assigning an invalid value of -1 to each invalid DOF’s global index and
owning process.

3. Determine the owned and remote DOFs in the set of valid DOFs and initialize the owning
process of each owned DOF with the value rank. The owning processes of the remote
DOFs are also initialized at this stage following the algorithm outlined in the previous
section.

4. Once the set of owned DOFs in Trank is established, the global index of all owned DOFs,
as well as the total number of DOFs contained in T , can be determined. To this end, an
MPI_Scan operation is carried out to determine the start index that an MPI task should
use to enumerate its owned DOFs. The global index of the ith owned DOF in Trank is
calculated by offsetting i with the start index.

5. The final step in the enforcement of mesh compatibility is the communication of global
indices between MPI tasks so that each MPI task is aware of the correct global indices
of all its remote DOFs. To achieve this, a simple ruleset that allows an elegant com-
munication algorithm is applied. In this scheme, a distinction is made between send
DOFs, owned degrees of freedom that a processor sends to its neighbors, and receive
DOFs, that constitute remote DOFs on first-level ghost elements whose indices and
values need to be obtained from adjacent processes. The proposed algorithm has the
following characteristics: i) Communication is performed in a single stage involving only
non-blocking point-to-point communication between any two given processors. ii) Data
is always sent directly from one MPI task to another and not via any other processors.
iii) All operations are performed in parallel and communication takes place only during
the data exchange phase. iv) The algorithm ensures correct global indices of all DOFs
on first-level ghost cells and not only for DOFs on the interface of owned and first-level
ghost elements as in [Logg, 2009]. v) No step in the algorithm needs to be repeated
as in [Bangerth et al., 2011] and send data is clustered before sending it to the desired
destination to avoid duplication of entries in the send buffer. The communication of
DOF indices is achieved through the following procedure:
(a) Identify the valid DOFs that will be received from other MPI tasks by looping over

56 4. Parallel immersed computations

all first-level ghost elements in Trank. Each receive DOF is associated with a single
pair containing the DOF’s local index and the rank of its owning MPI task. This
pair is inserted into a list of pairs called the receive vector. Since a DOF is generally
supported on multiple elements, duplicate entries exist in the receive vector. At the
end of this step, the receive vector is sorted and duplicate entries are eliminated.

(b) Identify the valid DOFs that will be sent to other MPI tasks by looping over all
owned elements that share a common mesh entity with any first-level ghost element
Kghost,1. Each send DOF is associated with one or more pairs containing its local
DOF index and the rank of the MPI task it should be sent to. These pairs are
inserted in a list and duplicate entries contained in the list removed after sorting.
At the end of this step, the number of pairs associated with a single send DOF
corresponds to the number of MPI tasks that contain the given DOF in Iremote.

(c) Concatenate the entries in the send vector and receive vector that have the same
destination or source in order to obtain a list of indices that should be sent to or
received from a given processor. This step allows communication between any two
given MPI tasks to be done in a single send and receive step.

(d) Create buffers where the global indices should be stored and initialize the send
buffers with the correct global DOF indices.

(e) Perform non-blocking point-to-point communication between the MPI tasks. Note
that the communication pattern between any two MPI tasks pi and pj is symmetric
as they both send and receive data from each other.

(f) Read the data from the receive buffers and update the global indices of the remote
DOFs in the DistributedDofHandler.

Figure 4.10 illustrates how the algorithm described in this section can be used to set up the
interprocess communication patterns for determining the correct DOF numbering in first-level
ghost elements. It considers a simple two-dimensional mesh comprising 5 × 5 quadrilateral
elements with a polynomial order p = 1 that is partitioned among 3 MPI tasks as shown in
Figure 4.10a. The local mesh on the MPI task with rank = 2 is shown in Figure 4.10b. This
figure shows the owned and ghost elements as well as the owned, remote and invalid DOFs
and their respective local DOF indices. Note that the owning processes of the ghost elements
are also indicated. By looping over its first-level ghost elements, the MPI process with rank
= 2 establishes that it has to receive the correct global indices associated with the local DOFs
{2, 3, 5, 7, 12, 13, 14, 15} from the task with rank = 0 and {9, 16, 17, 22, 23} from the process
with rank = 1; Analogously, by looping over its owned boundary elements, the MPI tasks
identifies the local DOFs that need to be sent to processes 0 and 1. These send vectors are
{18, 19, 20, 21} for the MPI task with rank = 0 and {20, 21, 26, 27, 28, 29} for the process with
rank = 1.

4.4. A massively parallel framework for finite cell analysis 57

(a) Distribution of a 5× 5 mesh over 3
MPI tasks.

0 0 0 1

1 1

0 0 0 1 1

1

0 1

3 2

4

5

6

7

8

9

10

11

1213 14 15 16 17

22 231819 20 21

2425 26 27 28 29

Kown

Kghost,1

Kghost,2

Remote DOF

Invalid DOF

Owned DOF

X local DOF index

(b) Local mesh T2 showing the owned and ghost elements as well
as the invalid, remote and owned DOFs with their corresponding
local indices.

Figure 4.10: An illustration of the creation of the communication patterns in a simple two-
dimensional example comprising of a 5× 5 mesh partitioned between three MPI processes.

Remark 4.4.3. The communication patterns set up when enforcing mesh consistency are
reused at different junctures in the simulation pipeline such as when updating solution values
in ghost elements after solving. Furthermore, it should be noted that the parallel generation of
multi-level hp-refined grids does not require the enforcement of a 2:1 mesh balance since the
multi-level hp-scheme naturally treats arbitrary levels of hanging nodes.

4.4.3 Dealing with dynamic mesh refinement and growing
domains

The previous section addressed the creation of a parallel, fully distributed mesh in the context
of static finite cell simulations. In this section, parallel algorithms for the management of
evolving domains will be presented. These procedures are necessary for time-dependent or
dynamic analyses, in which the computational domain is not fixed, but changes over time.
Time-dependent domains are common in simulations involving dynamic mesh refinement and
in those where the physical domain, Ωphys, grows over time. In such simulations, dynamic
redistribution of mesh-related data is often needed to ensure a balanced computational load.
This rebalancing process entails the exchange of element data between MPI tasks. The algo-
rithms presented in this section are applied in the simulation of metal additive manufacturing
processes, see Section 6.2.

58 4. Parallel immersed computations

Grid G Element distribution

over MPI tasks

(a) Time step t = 12

Grid G
with new layer

new layer

Element distribution

over MPI tasks

(b) Time step t = 13

Figure 4.11: Illustration of a growing domain in an additive manufacturing process simulation.
The union of the active grid cells across all MPI tasks as well as the distribution of elements
over four processes is shown for two consecutive time steps. The geometry of the chess piece
is obtained from [JP1, 2016].

(a) Time step t = 1 (b) Time step t = 2

Laser spot Laser path

Figure 4.12: Illustration of parallel mesh refinement around a laser spot in a parallel simulation
of a Selective Laser Melting (SLM) process. The distribution of elements over four processes
is shown for two consecutive time steps.

4.4. A massively parallel framework for finite cell analysis 59

Parallel dynamic mesh management

In this thesis, evolving or transient domains due to domain growth and/or dynamic mesh
refinement are considered. Figures 4.11 and 4.12 depict how the distribution of the elements
over the MPI tasks can change in these two scenarios. Since the active grid cells and elements
residing on an MPI task can change over time, it is necessary to transfer element data, such
as the solution and state variables between processors. To this end, a simple algorithm is em-
ployed that is applicable for both dynamic refinements and growing domains. This algorithm
makes use of the 1-to-1 relations between cells in the grid Grank and the mesh Trank and first
performs operations of the grid before relating them to the mesh elements. It should be noted
that the proposed approach is designed for refined scenarios, in which the refinement is guided
by geometrical information e.g. the position and path for a laser. The algorithm can, however,
be easily modified to allow for refinement based on error indicators and error estimators by
adding an extra procedure at the start of each simulation step.

1. At the start of a new simulation step, each MPI process updates the state of the cells in
its local grid Grank. This procedure can involve the activation of formerly inactive cells
in the case of domain growth or the refinement and/or coarsening of cells.

2. The previous step generally introduces an imbalance in the computational load across
MPI processes. To resolve this, a load balancing step is performed, resulting in a new
set of owned grid cells on each MPI process. Although most partitioning tools such as
Zoltan allow the exchange of element data during (re-)partitioning, this functionality
cannot be used in this work. This is because each MPI process not only requires the
information of the new elements it receives, but also the information of its first-level
ghost elements. For this reason, the proposed algorithm performs this data transfer in
a separate step.

3. Next, store the indices and MPI rank of the active cells in the previous simulation step
before updating the active cells in Grank and creating a new mesh Trank.

4. Enforce parallel mesh compatibility for all meshes Trank following the procedure presented
in Section 4.4.2, resulting in a consistent DOF numbering across all MPI processes.

5. The mesh generated in Step 4. contains uninitialized element data, e.g. values of the
valid DOFs, or internal problem-dependent state variables that depend on the solution
of the previous simulation step. Updating the data of the new elements involves local and
global operations. Local updates are performed without communication and entail the
transfer of data between elements that existed in both the previous and current mesh.
Global updates involve interprocess communication. Before the actual communication
stage, each MPI task first determines the element indices that need to be sent to and
receive from other MPI tasks. By following the simple rule that element data related to a
cell k can only be sent by an MPI process that owned the cell in the previous simulation
step, one can setup the interprocess communication patterns. An MPI task’s receive
operations involve elements not present in the previous simulation step on which valid
DOFs are supported. Conversely, send operations involve previously owned elements that
were not present on the receiving MPI process and on which valid DOFs are supported.
Figure 4.13 illustrates the elements involved in the interprocess communication for the
configuration presented in Figure 4.12.

6. Perform non-blocking interprocess communication and update the values in Trank.

60 4. Parallel immersed computations

(a) Time step t = 1 (b) Time step t = 2

R R R

S19

30

Cown Cghost,1 Cghost,2 C inact R cell to receive S cell to send

Figure 4.13: Cells on the MPI process with rank = 1 that are involved in the interprocessor
communication due to the mesh adaptation performed in Figure 4.12. In the second time
step, three receive cells adjacent to the cell 19 need to be received by rank = 1, while the cell
marked S needs to be sent to the processor that owns cell 30.

4.4.4 Numerical examples
The performance of the proposed distributed-memory framework for scalable finite cell simula-
tions is analyzed in the following section. All computations are performed on the SuperMUC-
NG system hosted at the Leibniz Supercomputing Center in Garching, Germany. The nodes
used have an architecture comprising dual-socket Intel Xeon Scalable Platinum 8168 proces-
sors (Skylake). Each node has a total of 48 cores and 96GB of main memory. Furthermore,
the following compiler and library versions are used: IntelMPI compiler version 19.0, Trilinos
12.12.1, GNU compiler 7.0, Insight Toolkit 4.12 and Boost version 1.61. The most aggressive
level of compiler optimization flags are chosen for the nodal architecture and include -O3 and
-funroll-loops among others. The execution time of critical routines in the simulation pipeline
is monitored using the cpu_timer implementation in the Boost library [Schling, 2011] while
the memory consumption of each MPI task is queried from the operating system. Note that
only steady-state examples are considered in this section. The performance of the proposed
hybrid framework in transient problems is investigated in Section 6.2.

4.4.4.1 Strong scalability: Loading of a gearbox housing

The first numerical example investigates the strong scalability of the parallel algorithms de-
veloped in this thesis for large-scale embedded computations. It consists of a linear elastic
analysis of an aluminum gearbox housing that was manufactured by die casting. This ge-
ometry was first analyzed using the finite cell method in [Monavari, 2011] and the effect of
the pores on the stress state is studied in [Jomo et al., 2017] using FCM and the multi-level
hp-method. Section 5.2.5.3 provides a detailed description of the problem setup and studies
the convergence of the arising linear systems when two different preconditioning techniques

4.4. A massively parallel framework for finite cell analysis 61

are applied. The study at hand focuses on the efficiency of the parallel simulation framework
and assesses the scalability of performance-critical routines.
The input data for the example at hand is a CT scan of the gearbox housing with a resolution

of 944×592×512 voxels and a voxel size of 198.7×198.7×198.7µm3. Figure 4.14a shows the
outer surface of the gearbox that was reconstructed using a marching cubes algorithm [Maple,
2003]. This step is necessary in order to obtain the surfaces required for boundary condition
application. The green surfaces in the figure are fully clamped while a horizontal displacement
ūx = 0.1 is applied on the red cylindrical surfaces. Different finite cell meshes can be generated
by simply prescribing the number of voxels that should be contained in a single finite cell.
Two discretizations are considered in the current study, the first comprising 353 936 quadratic
hexahedral elements and 43 voxels per element. The second mesh consists of a total of 2 484 111
quadratic hexahedral elements and 23 voxels per cell. Both meshes consist of elements from
the trunk space and contain approximately 5.2 million and 33.6 million DOFs respectively.
Note that the utilized meshes are generated following the procedure described in Section 4.4.1
starting from a coarse grid G0 with 59×37×32 cells. Since the underlying geometry of the body
is described through a CT scan, the Insight Toolkit [Ibanez et al., 2003] is used to read in the
scan file. A voxel-based integration technique using the pre-integration procedure described
in [Korshunova et al., 2020] is applied in this example due to its efficiency and suitability
for scanned input data. The arising linear systems are solved using the Conjugate Gradient
available in the AztecOO package of Trilinos [Heroux et al., 2005] in conjunction with the
elementwise additive Schwarz approach presented in Section 5.2.1.
In the current analysis, the strong scaling of hybrid computations is analyzed. The 48 cores

available on each node are partitioned by spanning 8 MPI tasks and a total of 6 OpenMP
threads per task. The number of compute nodes is progressively increased from 2 to 64 for the
mesh with 5.2 million DOFs and from 16 to 512 for the mesh with 33.6 million DOFs. Figures
4.15 and 4.16 display the execution time for different routines in the simulation pipeline plotted
against the number of cores. These routines include the time needed for the generation of the
distributed mesh, the enforcement of mesh consistency, the creation of the sparsity pattern,
the assembly of the intermediate system matrices, the assembly of the distributed system
matrix as well as the preconditioner, and the time spent performing the CG iterations.

62 4. Parallel immersed computations

(a) Geometry of the gearbox housing (b) Element distribution over 16 MPI tasks

Figure 4.14: Linear elastic analysis of a gearbox housing

96 192 384 768 1536 307210−2

10−1

100

101

102

103

Number of cores

T
im

e
[s
]

ideal scaling
PCG iterations

create mesh elements
intermediate preconditioner construction

assemble distributed preconditioner
assemble distributed system matrix

intermediate linear system construction
sparsity pattern

enforce mesh consistency

Figure 4.15: Strong scaling analysis of the linear elastic gearbox housing with 5.2 million
DOFs.

4.4. A massively parallel framework for finite cell analysis 63

384 768 1536 3072 6144 12288 2457610−2

10−1

100

101

102

103

Number of cores

T
im

e
[s
]

ideal scaling
PCG iterations

create mesh elements
intermediate preconditioner construction

assemble distributed preconditioner
assemble distributed system matrix

intermediate linear system construction
sparsity pattern

enforce mesh consistency

Figure 4.16: Strong scaling analysis of the linear elastic gearbox housing with 33.6 million
DOFs.

The solution of the linear system is the most time consuming routine in the simulation
pipeline as shown in Figures 4.15 and 4.16. The PCG solver shows good parallel scalability
for both discretizations considered in this analysis. Its parallel efficiency lies between 0.99 to
0.73 for the mesh with 5.5 million DOFS and between 0.94 and 0.57 for the mesh with 33.6
million DOFs. The number of iterations performed by the solver is independent of the number
of cores and is equals to 1879 for the discretization with 5.5 million DOFs and 3792 for the
larger mesh. Other routines that show acceptable scalability include the construction of the
sparsity pattern and intermediate linear system. The algorithm for enforcing parallel mesh
consistency proposed in Section 4.4.2 also exhibits satisfactory performance requiring a mere
290ms on 24576 cores.

96 192 384 768 1536 3072 6144 12288 24576

128

256

512

1024

Number of cores

M
em

or
y
U
sa
ge

[M
B
]

5.2 million DOFs
33.6 million DOFs

Figure 4.17: Memory usage per core for the analysis of the gearbox housing.

Figure 4.17 shows the highest amount of memory needed by a single core during an entire
simulation run. Note that a maximum available memory per core is slightly less than 2048MB.

64 4. Parallel immersed computations

The memory usage shows satisfactory scaling and levels off at around 294MB. This value
corresponds to the amount of memory needed by the Insight Toolkit to process the scan file.
The results in Figure 4.17 show that the parallelization strategy proposed in this thesis based
on a distributed data structures, has low memory requirements and is suitable for massively
parallel machines. This is in contrast to the shared-mesh strategy suggested in [Jomo et al.,
2017], that has high memory requirements.

4.4.4.2 Weak scalability: Popcorn benchmark

To assess the weak scalability of the parallel framework presented in this work, a classical
benchmark example comprising of a popcorn geometry is considered. This geometry is com-
monly used in interface problems e.g. [Annavarapu et al., 2012; Chern and Shu, 2007] and
immersed analyses e.g. [Burman et al., 2014a]. A level-set function φ(x, y, z) can be used to
describe the surface of the popcorn geometry where

φ(x, y, z) =
√
x2 + y2 + z2 − r0 −

11∑
k=0

Ae−((x−xk)2+(y−yk)2+(z−zk)2)/σ2
, (4.5)

and

(xk, yk, zk) = r0√
5

(
2 cos

(2kπ
5

)
, sin

(2kπ
5

)
, 1
)
, for k ∈ [0, 4],

(xk, yk, zk) = r0√
5

(
2 cos

((2(k − 5)− 1)π
5

)
, sin

((2(k − 5)− 1)π
5

)
, 1
)
, for k ∈ [5, 9],

(x10, y10, z10) = (0, 0, r0),
(x11, y11, z11) = (0, 0,−r0),

with the parameters r0=0.6, A=3 and σ=0.2. The physical domain Ωphys comprises all point
lying on the popcorn surface and its interior, i.e. all points with φ < 0. Following [Chern and
Shu, 2007], a Poisson problem with a prescribed solution field

u(x, y, z) = x3 + xy2 + y3 + z4 + sin(3(x2 + y2)), x ∈ Ωphys. (4.6)

is considered in the current example. This solution is prescribed through a source term
s = −κ−1∆u and the enforcement of Dirichlet boundary conditions on φ = 0. A marching
cubes algorithm is used to obtain the surfaces for boundary condition application. The penalty
method with β = 104 is used to apply the Dirichlet boundary conditions and the value of α
is set to 10−6. An embedding domain consisting of a cube (−1, 1)3 is used in all numerical
investigations.

4.4. A massively parallel framework for finite cell analysis 65

(a) Popcorn geometry. (b) Finite cell mesh.

Figure 4.18: Poisson problem posed on a popcorn domain.

A weak scaling analysis is performed to investigate the efficiency of the proposed hierarchical
multigrid approach. The simulations are performed on the SuperMUC-NG supercomputer
at the Leibniz Supercomputing Center in Garching, Germany. The number of elements is
increased in 12 steps while at the same time increasing the number of compute nodes nnodes,
from 1 to 2048. The 48 cores within a node are partitioned such that each node has a total
of 8 MPI tasks and 6 OpenMP threads per task. The computational domain is generated
in a fully parallel manner using the scheme presented in Section 4.4.1 and discretized using
hexahedral trunk space elements with a polynomial order p = 3. The number of elements per
MPI task is approximately 41 000 in all simulations. The simulation with the coarsest mesh is
run on 48 cores has a total of 250 336 elements and 1.83 · 106 DOFs while that with the finest
mesh is run on 98 304 cores, and has a total of 460 980 224 elements and approximately 3.2 ·109

DOFs. The different linear systems are solved using a parallel CG solver with a p-multigrid
preconditioner and elementwise additive Schwarz smoothing.

66 4. Parallel immersed computations

106 107 108 109 1010
10−1

100

101

Number of DOFs

T
im

e
[s
]

ideal scaling
PCG iterations

create mesh elements
intermediate smoother construction
assemble distributed smoothers

assemble distributed system matrix
intermediate linear system construction

sparsity pattern
enforce mesh consistency

Figure 4.19: Weak scaling analysis of a Poisson problem on a popcorn domain.

Figure 4.19 shows the results of the weak scaling analysis of the Poisson problem posed on
the popcorn domain. The maximum time spent in performance-critical routines is plotted
against the number of DOFs. The results show that exceptional scaling is achieved for many
of the routines in the simulation pipeline, e.g. element creation, integration of the stiffness
matrices and the enforcement of mesh consistency. A parallel PCG solver with a p-multigrid
preconditioner is used in all simulations, see Section 5.3.2 for details. This solver exhibits
satisfactory scalability for the considered linear systems and leads to convergence rates that
are independent of the mesh size h, see Figure 4.20. The assembly of the distributed smoothers
can be further optimized to improve the overall scalability of the framework.

106 107 108 109 1010

5

10

15

20

25

30

Number of DOFs

N
u
m
b
er

of
C
G

it
er
at
io
n
s

Figure 4.20: Convergence behavior in the weak scaling analysis of a popcorn domain.

4.4. A massively parallel framework for finite cell analysis 67

4
8

9
6

1
9
2

3
8
4

7
6
8

1
5
3
6

3
0
7
2

6
1
4
4

1
2
2
8
8

2
4
5
7
6

4
9
1
5
2

128

256

512

1024

Number of cores

M
em

or
y
U
sa
ge

[M
B
]

memory consumption

Figure 4.21: Memory usage per core for the Poisson problem on a popcorn domain.

The weak scalability of the distributed data structures is assessed by monitoring the average
memory usage per core during the different simulation runs. Figure 4.21 summarizes these
results of this analysis. The memory usage per core exhibits good weak scalability as the
average memory requirement per core remains around 470 MB per core. The current study
shows that the proposed data structures are suitable for massively parallel computations.

69

Chapter 5

Robust iterative solution techniques
for the finite cell method

Immersed finite element systems suffer from ill-conditioning due to the presence of cut cells
that lead to the occurrence of small and/or almost linear dependent basis functions. Section
2.3.2 mentions possible remedies to ameliorate these conditioning problems such as basis func-
tion manipulation, ghost penalty and preconditioning strategies. The chapter at hand will
focus on the development of preconditioning strategies for the finite cell method on uniform
meshes and discretizations involving multi-level hp-refinement. The preconditioners presented
in this work play an integral role in allowing efficient large-scale finite cell computations and
are used within the parallelization strategies introduced in the previous chapter. It is well
known that the convergence of iterative solvers strongly depends on the conditioning of the
system, e.g. [Saad, 2003]. Without tailored preconditioning or stabilization techniques, FCM
systems generally show severe ill-conditioning, which practically prohibits the application of
iterative solvers. As a result, finite cell computations have for a long time been restricted
to the use of direct solvers [Düster et al., 2008; Rank et al., 2012; Ruess et al., 2013, 2014;
Schillinger et al., 2012; Schillinger and Ruess, 2014].

5.1 Conditioning analysis of the finite cell method
Although it has been known for many years that small cut elements cause ill-conditioning of
FCM systems, it was only until recently that the root cause of ill-conditioning was systemat-
ically analyzed and numerically verified in [de Prenter et al., 2017]. In their work, de Prenter
et al. show that ill-conditioning is generally caused by basis functions on small cut elements

This chapter is reproduced from [Jomo et al., 2019]: J. Jomo, F. de Prenter, M. Elhaddad, D. D’Angella,
C.V. Verhoosel, S. Kollmannsberger, J.S. Kirschke, V. Nübel, E.H. van Brummelen, and E. Rank. Robust
and parallel scalable iterative solutions for large-scale finite cell analyses. Finite Elements in Analysis and
Design, 2019. This paper has been included in the dissertations of the first two authors with the approval of
all co-authors and the (co-)promotors. The co-authors and (co-)promotors of the first two authors confirm
that the contributions of both John Jomo and Frits de Prenter were essential in this joint publication. The
fundamental concepts in the paper have been developed in close collaboration between the first two authors.
The specific contributions of Frits de Prenter pertained to the theoretical modification and stabilization of
the preconditioner, while John Jomo specifically contributed his expertise in the properties of the hp-adaptive
basis functions and in the implementation and parallelization.

70 5. Iterative solution schemes for multi-level hp-FCM

that can become not only arbitrarily small but also almost linearly dependent. In the latter
case, basis functions that are linearly independent on a full element can become very simi-
lar and thus almost linearly dependent when the element is cut. This can arise in scenarios
where higher order contributions of basis functions become arbitrary small compared to linear
(or lower order) contributions or in cut configurations where dependencies on one parametric
dimension (e.g. horizontal or vertical) can become arbitrarily small compared to the other
parametric dimensions. These cases lead to a reduction of a higher order or multivariate func-
tion to an almost linear or univariate function and by so doing, cause functions to become
almost linearly dependent and thereby deteriorate the conditioning of the system. In order
to understand the effect of small and almost linearly dependent basis functions in immersed
elements, the definition of the condition number given in (2.19) is recalled and shown below.

κ(A) = ‖A‖‖A−1‖ = λmax

λmin
=

max‖v‖=1 vTAv
min‖u‖=1 uTAu

. (2.19)

In FCM, small and almost linearly dependent basis functions generally yield functions in the
approximation space that are only supported on small cut elements and have small mag-
nitudes. These functions can become arbitrarily small compared to the magnitude of the
vectors that represent them in the isomorphic vector space — which is independent of the
volume of the intersection between an element and the physical domain. For this reason,
FCM systems generally have min‖u‖=1 uTAu� 1 resulting in a large condition number as per
(2.19). The effect of these problematic DOFs, i.e. basis functions that can potentially become
linearly dependent, can be systematically analyzed and the aforementioned scaling relation
of the smallest volume fraction η and the condition number shown in (2.40) can be derived.
This relation holds for second-order problems on uniform tensor product meshes with shape
regular elements. Furthermore, de Prenter et al. [2017] show that both Jacobi and Gauss-
Seidel preconditioning fail to resolve the ill-conditioning of FCM systems in a robust manner
as these methods only target small basis functions but cannot adequately treat almost lin-
early dependant functions. They present a preconditioner that combines diagonal scaling and
orthonormalization of problematic DOFs and show its effectiveness in treating conditioning
problems for high-order tensor product uniform meshes. This preconditioner can be viewed
as a special type of a class of preconditioners called additive Schwarz preconditioners.

5.2 Additive Schwarz preconditioning for FCM
Ill-conditioning in FCM can be effectively resolved by the use of additive Schwarz precondition-
ers as shown in [de Prenter et al., 2019a, 2017; Jomo et al., 2019]. This type of preconditioning
strategy has been used in different numerical methods and a rich literature exists on the sub-
ject in a general setting [Smith et al., 1996; Toselli and Widlund, 2005] or in the context of
finite elements, e.g. [Brenner and Scott, 2008; Ferencz and Hughes, 1998].
The main idea behind additive Schwarz preconditioning is the construction of a precon-

ditioner M−1 that is a sparse approximation of A−1 through the inversion and summation
of sub-matrices extracted from A. The selection of these sub-matrices is performed by first
grouping the basis functions into groups or blocks. Each block contains indices that correspond
to certain basis functions. In general, there is no restriction on the number of groups a single
basis function φk can be present in. With the help of restriction and prolongation operators,

5.2. Additive Schwarz preconditioning for FCM 71

P and PT , it is possible to extract sub-matrices from A, invert them and sum the inverse
matrices into the preconditioner as summarized by the formula

M−1 =
nblocks∑
i=1

Pi

(
PT
i APi

)−1︸ ︷︷ ︸
A−1
i

PT
i , (5.1)

where nblocks denotes the number of blocks, i the index corresponding to the ith block containing
m basis functions such that Ai ∈ Rm×m and Pi ∈ RnDOFs×m.
The proper selection of the additive Schwarz blocks is essential for obtaining a robust and

effective preconditioner, as different choices yield varying preconditioners with different prop-
erties. For example, one can assign blocks such that every function is in a single, separate
block. This results in the standard Jacobi preconditioner which is not robust when elements
are cut, as demonstrated in Section 5.2.1. On the other extreme, one can theoretically as-
sign only one block containing all functions such that M−1 = A−1. Such a preconditioner is
optimal in terms of spectral properties, but is prohibitively expensive as it involves inverting
the full system. For FCM, it is useful to assign blocks based on the additive Schwarz lemma
[Lions, 1988; Matsokin and Nepomnyaschikh, 1985; Smith et al., 1996; Toselli and Widlund,
2005]:

vTMv = min
v=

nblocks∑
j=1

Pjvj

nblocks∑
i=1

vTi Aivi . (5.2)

In this formulation, vi denotes a vector whose length corresponds to the size of the ith block.
Pivi is a prolongated vector whose length corresponds to the size of the full system and that
only has nonzero entries at the indices of block i. When each index is in at least one block,
for every vector v there exists a set {vj} such that v =

∑
j Pjvj. With overlapping blocks,

different sets {vj} with this property exist. The lemma states that the inner product of a
vector v with M is equal to the minimum of the sum of inner products over all sets {vj} that
sum up to v.
The additive Schwarz lemma can be used to guide the block selection process in FCM. To

this end, it is important to recall the cause of ill-conditioning in FCM — basis functions on
small cut elements that are small and/or almost linearly dependent. The lemma establishes
that a vector v that has a small inner product with A, will also have a small inner product with
M provided that functions that are almost linearly dependent are aggregated in one block.
An elegant way of performing this clustering is by assigning one block for every (cut) element,
consisting of all basis functions that are supported on that element, since basis functions
generally need intersecting supports in order to be almost linearly dependent. When the
blocks are set up in this manner, it so follows from the additive Schwarz lemma that M
inherits the small eigenvalues of A caused by small cut elements. The preconditioner can
therefore effectively treat the fundamental cause of ill-conditioning of the finite cell method,
which has already been demonstrated for uniform discretizations in [de Prenter et al., 2019a].

5.2.1 Preconditioning of uniform finite cell meshes
In this section, the effectiveness of additive Schwarz preconditioning is demonstrated for uni-
form FCM discretizations without refinement by means of a simple two-dimensional example.

72 5. Iterative solution schemes for multi-level hp-FCM

The chosen example consists of a Poisson problem posed on a square domain of unit length
that is rotated about the origin with respect to a fixed background grid resulting in different
cut scenarios as illustrated in Figure 5.1a. The angle of rotation is denoted by ψ. The method
of manufactured solutions is applied in this numerical test and a temperature field ū chosen
such that

ū = 1
2κa2 cos(a x′) sin(a y′), (5.3)

with a = 3
2π and x′, y′ denoting the coordinates of the rotated coordinate system defined at

the center of the domain. A source term s is derived from the manufactured solution following
the Poisson equation −κ∆u = s with s = cos(a x′) sin(a y′) and applied in Ωphys. Dirichlet
boundary conditions are prescribed on all edges of the square domain such that u = ū on
∂ΩD. These constraints are enforced using the penalty method with β = 104. The example at
hand is suitable for investigating the effect of cut cells on the convergence of iterative solvers.
The manufactured solution is chosen such that the total strain energy in Ωphys is independent
of ψ.

∂ΩD x

y

x′

y′

Ωphys

Ωfict

ψ

(a) Geometry of the rotating square domain. (b) Prescribed solution.

Figure 5.1: Rotating Poisson problem with a manufactured solution.

In this study, the angle of rotation ψ is varied in 30 steps from 0◦ to 45◦ on a fixed grid of
32 × 32 quadrilateral elements with a polynomial order of p = 2. A conductivity of κ = 10
is chosen in Ωphys while the value of α in Ωfict is set to 10−6. A Conjugate Gradient solver is
used to solve the different systems and the performance of three different preconditioners is
investigated: i) a scenario where no preconditioner is used, ii) a Jacobi preconditioner and iii)
an additive Schwarz preconditioner constructed in such a way that each element results in an
additive Schwarz block. The details of the construction of this preconditioner are summarized
in Algorithm 5.1. The results of the current study are presented in Figure 5.2. Figure 5.2a
compares the convergence of the relative residual for the different configurations while Figure

5.2. Additive Schwarz preconditioning for FCM 73

5.2b shows the condition number of the preconditioned systems. The simulations with no
preconditioner are represented by the label A, while simulations using Jacobi and additive
Schwarz preconditioning are denoted by D−1A and M−1A respectively. A computation is
terminated when either a tolerance of 10−9 in the relative residual is reached or when the
number of iterations is equal to the system size.

100 101 102 103

100

10−2

10−4

10−6

10−8

10−10

Number of iterations

‖r
‖/
‖b
‖

A

D−1A

M−1A

(a) Convergence of the relative residual.

0 10 20 30 40
100

102

104

106

108

1010

1012

1014

Angle of rotation ψ

λ
m
ax
/λ

m
in

A D−1A M−1A

(b) Comparision of the condition numbers.

Figure 5.2: Study of the effect of cut cells on the conditioning and convergence behavior of a
Conjugate Gradient solver with three different preconditioning techniques.

The study at hand asserts the well-known fact that unpreconditioned FCM systems suffer
from severe ill-conditioning as none of the unpreconditioned systems converge to the desired
error tolerance. Jacobi preconditioning works well for discretizations that are not prone to al-
most linear dependencies but performs poorly in scenarios where these phenomena occur. This
preconditioning technique can, therefore, be considered not robust with respect to severely
cut cells. Additive Schwarz preconditioning adequately deals with the conditioning problems
caused by cut cells in this example. It results in a conditioning that is independent of the cut
configuration and a convergence behavior that is not significantly influenced by the cut cells.
A detailed analysis of the effectiveness of the different preconditioners can be performed by

comparing the spectra of the preconditioned systems. Figure 5.3 shows the spectra of the
unpreconditioned system λ(A), the diagonally scaled system λ(D−1A) and a system precon-
ditioned with the additive Schwarz preconditioner λ(M−1A) for an angle of rotation ψ = 45◦.
The largest eigenvalue in the unpreconditioned system is in the order of βh ≈ 104·32−1 = 312.5,
while the smallest eigenvalue is close to the value of α. Jacobi preconditioning is able to reduce
the magnitude of the largest eigenvalue as shown in Figure 5.3. This preconditioner, however,
fails to detect basis functions that are almost linear dependent and does not fully treat all the
problematic eigenmodes on the cut elements. The additive Schwarz preconditioner effectively
acts on both the large and small eigenvalues, yielding a better clustering of the eigenvalues
compared to the other two preconditioners. This clustering explains the improved performance
of the Conjugate Gradient solver reflected in Figure 5.2a.

74 5. Iterative solution schemes for multi-level hp-FCM

10−6 10−4 10−2 100 102 104 106

Re(λi)

-0.1

0

0.1

Im
(λ

i)

λ(A)

10−6 10−4 10−2 100 102 104 106

Re(λi)

-0.1

0

0.1

Im
(λ

i)

λ(D−1A)

10−6 10−4 10−2 100 102 104 106

Re(λi)

-0.1

0

0.1

Im
(λ

i)

λ(M−1A)

Figure 5.3: Comparison of the eigenvalues of the preconditioned systems in the rotating plate
example. The mesh comprises 32 × 32 elements with a polynomial order p = 2 and an angle
of rotation ψ = 45◦.

5.2.2 Preconditioning of multi-level hp-refined finite cell meshes
The previous section portrayed how the ill-conditioning of FCM systems on uniform tensor
product meshes can be adequately treated using additive Schwarz preconditioning. The uti-
lized preconditioner is constructed by inverting sub-matrices of basis function groups selected
in an elementwise manner. This strategy has been successfully applied to problems in linear
elasticity [de Prenter et al., 2017; Jomo et al., 2019] and flow problems [de Prenter et al.,
2019a].
Extending the additive Schwarz preconditioning technique presented in Section 5.2.1 to FCM

problems involving multi-level hp-refined grids is not a trivial task. To begin with, the presence
of elements and basis functions on different levels in the multi-level hp-method makes the
identification of basis functions that can be linear dependent on cut elements more involving.
Considering the requirement that functions that are almost linearly dependent need to be in
the same block, multiple possibilities exist for selecting basis function blocks in multi-level
hp-grids. Moreover, since different refinement patterns are conceivable, it is harder to derive
an analytical formula, similar to that for uniform meshes in (2.40), that gives the relation
between the smallest volume fraction η, the polynomial order p and the refinement level k
that holds in a general setting. Due to the mentioned reasons, a more heuristic approach is
adopted in this thesis and several possible preconditioner setups are analyzed experimentally.
Uniform grids and multi-level hp-grids have two fundamental differences with regard to

the selection of basis function groups. First, on uniform grids the number of basis functions
supported on an element is constant, e.g. (p+ 1)d for d-dimensional scalar problems using the
tensor product space. For multi-level hp-grids the total number of basis functions supported
on base or leaf elements is, in general, not bounded. This is attributed to the superposed
linear hat functions that are present on every refinement level. This superposition results in
multiply-defined linear basis functions within an element, as shown in Figure 5.5 . The presence
of multiply-defined linear functions does not pose a problem on fully supported elements. In

5.2. Additive Schwarz preconditioning for FCM 75

fact, when the scheme is applied in a boundary conforming manner, these functions actually
leads to a better conditioning of multi-level hp-systems than classical hp-schemes [Zander
et al., 2016a]. These functions, however, can lead to severe ill-conditioning in the context of
the finite cell method.
The second difference with regard to block selection between uniform grids and multi-level

hp-grids is that the number of elements that a basis function is supported is bounded in a
uniform mesh, i.e.≤ 2d for C0-finite elements. With multi-level hp-discretizations, it is possible
that a (coarse) linear basis function is supported on a large number of (fine) leaf elements, see
Figure 3.2. Consider the case that a basis function ϕk is in n different blocks with n� 1. The
unit vector ek corresponding to ϕk has a Rayleigh quotient Akk with A. Next we construct a
set {vi} with the value 1/n for all vector entries corresponding to ϕk and the value 0 for all
other entries. Clearly

∑nblocks
i=0 Pivi = ek and from (5.2) it follows that the Rayleigh quotient

of ek with M is bounded from above by Akk/n. This shows that a basis function that is in
many different blocks yields a small eigenvalue in M, relative to A, and consequently a large
eigenvalue in M−1. This reduces the efficiency of the preconditioner, which is demonstrated
in Section 5.2.5.3 .
When choosing a preconditioner, a balance is sought between the preconditioner’s compu-

tational cost, in terms of its setup time, storage requirements and cost of application, and its
effectiveness in improving the convergence of an iterative solver. Three possible strategies for
the construction of additive Schwarz preconditioners for multi-level hp-meshes are investigated
in this thesis: i) selection of blocks based on leaf elements, ii) block selection based on base
elements and iii) the selection of basis functions based on element patches. Figure 5.4 depicts
the three different approaches for setting up the additive Schwarz blocks considered in this
thesis. A discussion on the computational cost of setting up M−1 using the different additive
Schwarz blocks is given in Section 5.3.3.

1 2 3 4

5
6 7

8 9

10 11

12 13
14

15
16 17

18 19

20 21

22 23
24

25 26 27 28

(a) Leaf element blocks.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

(b) Elementwise blocks.

1 2 3

4 5 6

7 8 9

(c) Patchwise blocks.

Figure 5.4: Illustration of three different possibilities of choosing additive Schwarz blocks for
finite cell grids with multi-level hp-refinement. This selection occurs on the granularity of
the leaf elements, base elements or using base element patches. The numbers in the figures
indicate the number of additive Schwarz blocks and the support of the 6th block is shaded.

76 5. Iterative solution schemes for multi-level hp-FCM

Selection of blocks based on leaf elements

k = 0

k = 1

k = 2

0

1

T3
0

1

T3

T1 T2 T3 T4 T5

(b) Full blocks:
All 6 basis functions on T3

considered in B3

(c) Truncated blocks:
selected basis functions on T3

considered in B3

(a) One dimensional multi-level hp-mesh with 5 leaf elements.

Figure 5.5: Block selection for multi-level hp-grids with the full and truncated blocks of element
T3.

In order to obtain an effective yet efficient additive Schwarz preconditioner from the leaf
elements in the multi-level hp-method, the basis function blocks have to be carefully selected
to ensure that (i) the number of blocks a given basis function belongs to is bounded and
that (ii) the size of each block is small. As already noted in [de Prenter et al., 2019a] it
is sufficient but not necessary to devise a block for every element with all basis functions
supported on it. In fact, it is enough to overcome the conditioning problems of FCM, due
to small eigenvalues on small cut elements, if the blocks contain the basis functions that can
potentially become almost linearly dependent. This obviously reduces the size of the blocks,
and thereby repairs the large computational cost of setting up, storing and applying the
preconditioner. Furthermore, the large linear basis functions that are supported on many leaf
elements, and cause large eigenvalues in M−1 as described earlier, are not the basis functions
that suffer from almost linear dependencies. Therefore, truncating the blocks to only the basis
functions that can become almost linearly dependent when the element is cut resolves both
mentioned issues related to the preconditioning of the multi-level hp-finite cell method.
To describe the truncation, we first consider a one-dimensional multi-level hp-grid with ele-

ments of polynomial order p = 3. Figure 5.5a illustrates that more than p+ 1 basis functions
can be supported on a leaf element due to multiply-defined linear basis functions. As men-
tioned previously, these large sets of supported basis functions need to be truncated in order
to result in efficient elementwise additive Schwarz blocks. To achieve this, it is first noted that
although more than p+ 1 basis functions can be supported on a single element, each element
only has p+ 1 unique polynomial degrees of freedom. Since eigenvalues with problematically
small eigenmodes are only supported on a small cut element, efficient preconditioning only
requires the additive Schwarz block of an element to span these p + 1 polynomial degrees of
freedom. This set of p+ 1 functions must be made up of the p− 1 higher order basis functions
accompanied by two linear basis functions. These linear basis functions depend on the posi-
tion and refinement depth of a leaf element as illustrated in Figure 5.5a . In the grid shown,
two different cases are distinguished: (i) the element simply has two linear functions on the

5.2. Additive Schwarz preconditioning for FCM 77

highest level, e.g. T1 and T5; (ii) the element has one linear function on the highest level and
the second linear function is selected by traversing down the element hierarchy and taking
the linear function that is linearly independent of the first selected linear function. This can
be from a refinement level immediately below the highest level, as is the case for T3 and T4,
or from an even lower level in the element hierarchy, as is the case for T2. Figures 5.5b and
5.5c show the block on element T3 before and after truncation, respectively. Note that when
the domain in Figure 5.5a is cut either from the left or the right on any of the elements, the
truncated additive Schwarz block described here always spans all functions that are only sup-
ported on the cut element and form the problematic eigenmodes for the conditioning of FCM.
The truncation in multiple dimensions is achieved by the tensor product of the procedure in
one dimension, yielding blocks of (p+ 1)d basis functions. Moreover, this choice of blocks not
only reduces the size of each block, but also ensures that the number of blocks a single basis
function belongs to is at most 2d. The performance of the truncated and full additive Schwarz
blocks obtained from the leaf elements is examined in Section 5.2.5.
Remark 5.2.1. The size of the preconditioner constructed using truncated additive Schwarz
leaf element blocks cannot exceed the size of the original matrix as only basis functions with in-
tersecting supports can be included in the same group. This is in contract to the preconditioner
based on full leaf element blocks.

Selection of blocks based on base elements

Additive Schwarz blocks can also be constructed based on the base elements in a multi-level
hp-mesh. In this approach, all basis functions supported on a given base element and its
subelements constitute an additive Schwarz block. It should be noted that the size of the
additive Schwarz blocks selected in this way is not bounded and can become rather large,
especially in three-dimensional problems with several refinement levels and high polynomial
orders. Although the time needed to set up the preconditioner can be reduced by the use of
parallelism, the size and cost of storing the preconditioner may become prohibitively large.
In this case, it is possible to apply the preconditioner in a matrix-free manner instead of
explicitly constructing M−1. This algorithm can be expressed by considering the action of the
preconditioner M−1 on an arbitrary vector r, i.e.

z = M−1r. (5.4)

Inserting the definition of the additive Schwarz preconditioner from (5.1) in the above function
yields,

z =
(
nblocks∑
i=1

PiA−1
i PT

i

)
r =

nblocks∑
i=1

Pi(A−1
i ri) =

nblocks∑
i=1

Piyi. (5.5)

Following the above equation, the effect of the preconditioner can be obtained by solving
nblocks linear systems and summing up the resulting vectors. These linear systems, Aiyi = ri,
can be solved easily using a direct solver.

Selection of blocks based on element patches

Severe cut scenarios can occur in finite cell meshes with multi-level hp-refinement, in which
both the leaf element and base element additive Schwarz approaches fail to detect basis func-

78 5. Iterative solution schemes for multi-level hp-FCM

tions that can become almost linearly dependent, as shown in Section 5.2.3. Small modes can
“slip” through these preconditioners and cause slow convergence. These modes are observed
to be not only restricted to a single element but extend to groups of adjacent elements. In
order to gain control over these problematic modes that span over adjacent elements, additive
Schwarz blocks can be built from element patches. In the proposed approach all elements
surrounding a mesh node are considered as a patch as indicated in Figure 5.4c. Numerical
examples in Section 5.2.3 show that this preconditioner robustly deals with complex cut sce-
narios and leads to convergence rates that are independent of the refinement depth. This
preconditioner can be constructed explicitly or in a matrix-free manner as explained in the
previous section.

5.2.3 Analysis of the influence of p, h and k on the effectiveness of
the additive Schwarz preconditioners

Before elaborating on the implementational aspects of the additive Schwarz preconditioners
presented in the previous two sections, the influence of the element polynomial order p, the
mesh size h and refinement level k on the convergence of these preconditioners is first analyzed.
To this end, the Poisson problem of a revolving square domain considered in Section 5.2.1 is
used in a series of numerical examples. A value of α = 10−8 is used in all experiments while the
value of the penalty parameter is chosen proportional to h−(2p+1)/3, following the observations
in [Babuška, 1973].

Convergence behavior for different polynomial orders

The influence of the element polynomial order p on the effectiveness of the additive Schwarz
preconditioner is assessed for a background mesh comprising 16×16 elements and polynomial
orders p ∈ [1, 4]. In analogy to the example in Section 5.2.1, the angle of rotation ψ is varied
in 30 steps from 0◦ to 45◦, resulting in different cut scenarios. A penalty parameter β = 2000
is chosen for the p = 1 discretizations and computed in proportion to h−(2p+1)/3 for all other
polynomial orders.
Figure 5.6 shows the results of the study on the effect of p on the convergence behavior of

the additive Schwarz preconditioner. In Figure 5.6a the relative residual is plotted against the
number of iterations while the condition numbers of the preconditioned systems are compared
in Figure 5.6b. Figure 5.6a shows an increase in the number of iterations for increasing
polynomial orders. These results are in accordance with similar studies on immersed elements
such as in [de Prenter et al., 2019a]. Furthermore, the results show that the additive Schwarz
preconditioner effectively deals with badly cut cells, as there is only a slight variation in the
number of iterations for a given polynomial order when ψ is varied. The effectiveness of the
preconditioner is also reflected in the condition numbers plotted in Figure 5.6b.

5.2. Additive Schwarz preconditioning for FCM 79

100 101 102 103

102

100

10−2

10−4

10−6

10−8

10−10

Number of iterations

‖r
‖/
‖b
‖

p = 1 p = 2 p = 3 p = 4

(a) Relative residual.

0 10 20 30 40100

101

102

103

104

Angle of rotation ψ

λ
m
ax
/λ

m
in

p = 1 p = 2 p = 3 p = 4

(b) Condition number.

Figure 5.6: Investigating the influence of the polynomial order on the convergence of the
additive Schwarz preconditioner for values p ∈ [1, 4].

Convergence behavior for different mesh sizes

The influence of the mesh size h on the effectiveness of the additive Schwarz preconditioner is
assessed for a fixed polynomial order of p = 2 and 30 angles of rotation. The mesh size is varied
such that h = { 1

16 ,
1
32 ,

1
64 ,

1
128}. A penalty parameter β = 5000 is chosen for the coarsest grid

with h = 1
16 and all other values computed in proportion to h−(2p+1)/3. The results in Figure

5.7a show an increase in the number of iterations with an increase in the mesh resolution.
Similarly, one can see an increase in the condition number with a decrease in the element size
in Figure 5.7b. The iteration count for a fixed ψ is proportional to h−1 and is accordance with
findings in literature [Saad, 2003].

80 5. Iterative solution schemes for multi-level hp-FCM

100 101 102 103

102

100

10−2

10−4

10−6

10−8

10−10

Number of iterations

‖r
‖/
‖b
‖

h = 1
16

h = 1
32

h = 1
64

h = 1
128

(a) Relative residual.

0 10 20 30 40100

101

102

103

104

Angle of rotation ψ

λ
m
ax
/λ

m
in

h = 1
16

h = 1
32

h = 1
64

h = 1
128

(b) Condition number.

Figure 5.7: Investigating the influence of the mesh size on the convergence of the additive
Schwarz preconditioner for values h = { 1

16 ,
1
32 ,

1
64 ,

1
128}.

Convergence behavior for different levels of refinement

In the next numerical study, the influence of the refinement depth k on the convergence of a
CG solver is compared for the four additive Schwarz preconditioning techniques proposed for
FCM systems involving multi-level hp-refinement. The preconditioners employed include: the
preconditioner with full blocks based on leaf elements; the preconditioner with truncated blocks
based on leaf elements; an elementwise preconditioner, where basis functions supported on a
base element and all its subelements are taken as one block; and a patchwise preconditioner,
which considers all functions supported on a group of elements surrounding a node as a block.
The embedding mesh in this study comprises 16×16 elements with a polynomial order of p = 2.
This mesh is refined recursively towards the boundary of the domain with k ∈ {0, 1, 2, 3}. In
analogy to the previous investigations in this section, 30 angles of rotation are considered for
each refinement level and the results of this study presented in Figures 5.8 to 5.11.
The results in Figures 5.8 and 5.9 show an increase in the number of iterations when the

level of refinement is increased for the additive Schwarz preconditioners based on full and
truncated leaf element blocks. Recall that the truncated preconditioner limits the number of
basis functions in a single block, resulting in smaller additive Schwarz blocks than the full
preconditioner. This truncation reduces the computational cost of constructing the precondi-
tioner and leads to an improved conditioning compared to the immersed systems based on full
leaf element blocks. This improved conditioning is reflected in smaller condition numbers and
smaller iteration counts of the truncated preconditioner compared to the full preconditioner.

5.2. Additive Schwarz preconditioning for FCM 81

100 101 102 103

102

100

10−2

10−4

10−6

10−8

10−10

Number of iterations

‖r
‖/
‖b
‖

k = 0 k = 1 k = 2 k = 3

(a) Relative residual.

0 10 20 30 40100

102

104

106

108

1010

1012

1014

Angle of rotation ψ

λ
m
ax
/λ

m
in

k = 0 k = 1 k = 2 k = 3

(b) Condition number.

Figure 5.8: Investigating the influence of the refinement depth k on the convergence behavior
of the additive Schwarz preconditioner with full blocks based on leaf elements.

100 101 102 103

102

100

10−2

10−4

10−6

10−8

10−10

Number of iterations

‖r
‖/
‖b
‖

k = 0 k = 1 k = 2 k = 3

(a) Relative residual.

0 10 20 30 40100

102

104

106

108

1010

Angle of rotation ψ

λ
m
ax
/λ

m
in

k = 0 k = 1 k = 2 k = 3

(b) Condition number.

Figure 5.9: Investigating the influence of the refinement depth k on the convergence behavior
of the additive Schwarz preconditioner with truncated blocks based on leaf elements.

It is possible to further improve the convergence behavior in the study at hand, by investing
more effort in the construction of the preconditioner. As mentioned in Section 5.2.2, this can
be achieved by selecting additive Schwarz blocks based on functions supported on a single
base element or on a base element patch around a node. Figure 5.10 and 5.11 show the results
when preconditioners based on elementwise and patchwise blocks are used.

82 5. Iterative solution schemes for multi-level hp-FCM

100 101 102 103

102

100

10−2

10−4

10−6

10−8

10−10

Number of iterations

‖r
‖/
‖b
‖

k = 0 k = 1 k = 2 k = 3

(a) Relative residual.

0 10 20 30 40100

102

104

106

108

1010

Angle of rotation ψ

λ
m
ax
/λ

m
in

k = 0 k = 1 k = 2 k = 3

(b) Condition number.

Figure 5.10: Investigating the convergence behavior of the elementwise additive Schwarz pre-
conditioner for different levels of refinement. Basis functions supported on a base element are
considered to be in a group.

100 101 102 103

102

100

10−2

10−4

10−6

10−8

10−10

Number of iterations

‖r
‖/
‖b
‖

k = 0 k = 1 k = 2 k = 3

(a) Relative residual.

0 10 20 30 40100

101

102

103

Angle of rotation ψ

λ
m
ax
/λ

m
in

k = 0 k = 1 k = 2 k = 3

(b) Condition number.

Figure 5.11: Investigating the convergence behavior of the patchwise additive Schwarz pre-
conditioner for different levels of refinement.

Figure 5.10 shows that selecting blocks based on base elements leads to smaller condition
numbers and fewer iterations than when the preconditioner based on truncated leaf element
blocks is used. The preconditioner based on patchwise blocks is the most computationally
intensive in its construction, as it involves the inversion of larger basis function blocks than
the other preconditioners considered in this study. This preconditioner, however, leads to
convergence rates that are independent of the level of refinement as shown in Figure 5.11.

5.2. Additive Schwarz preconditioning for FCM 83

10−8 10−6 10−4 10−2 100 102 104 106

Re(λi)

-0.1

0

0.1

Im
(λ

i)

AS preconditioner with full leaf element blocks: λ(M−1A)

10−8 10−6 10−4 10−2 100 102 104 106

Re(λi)

-0.1

0

0.1

Im
(λ

i)

AS preconditioner with truncated leaf element blocks: λ(M−1A)

10−8 10−6 10−4 10−2 100 102 104 106

Re(λi)

-0.1

0

0.1

Im
(λ

i)

elementwise AS preconditioner: λ(M−1A)

10−8 10−6 10−4 10−2 100 102 104 106

Re(λi)

-0.1

0

0.1

Im
(λ

i)

patchwise AS preconditioner: λ(M−1A)

Figure 5.12: Comparison of the eigenvalues of the preconditioned systems for the addi-
tive Schwarz preconditioners with blocks based on leaf elements, base elements and element
patches. The spectra shown belong to a mesh comprising of 16×16 elements with a polynomial
order p = 2, an angle of rotation ψ = 30◦ and a refinement level of k = 2.

In order to gain more insight into the convergence behavior of the four preconditioners uti-
lized in this study, a spectral analysis of the preconditioned systems is performed. Figure 5.12
shows an example of the spectra typically obtained for the different preconditioned systems.
In general, the preconditioners based on leaf elements and single base elements fail to capture
all small modes due to the cut cells. These modes can be said to “slip” through the precon-
ditioner and cause slow convergence. This occurs when using the preconditioners based on
full leaf element blocks, truncated leaf element blocks and elementwise blocks. Note that only
few modes slip through the truncated and elementwise preconditioners. These modes do not
severely affect the convergence of the Conjugate Gradient Method and only result in a few
additional iterations. The patchwise preconditioner is able to detect and effectively deal with
all problematic small modes on cut elements. Its robustness suggests that problematic modes
in immersed multi-level hp-discretizations not only occur on single cut elements, but can span
over multiple adjacent elements.
Figures 5.13 to 5.16 show a visualization of the smallest and largest eigenmodes of the

systems preconditioned with the additive Schwarz preconditioners used in this study. The
underlying mesh consists of 16× 16 elements with p = 2 and k = 2. The smallest eigenmode
for all preconditioners with exception of the patchwise preconditioner is a function that is
only supported on a few cut elements. These small modes fail to be detected by the given
preconditioners. In the case of the patchwise preconditioner in Figure 5.16, the smallest
eigenmode corresponds to the smallest eigenmode one would expect if standard boundary
conforming elements were used. The largest eigenmodes associated with the preconditioners
based on full and truncated leaf elements groups are functions that are also supported on cut
elements while those associated with the elementwise and patchwise preconditioner are the
typical largest eigenfunctions present in boundary-conforming FE approaches.

84 5. Iterative solution schemes for multi-level hp-FCM

Figure 5.13: Smallest and largest eigenmodes of a finite cell system preconditioned using the
additive Schwarz preconditioner based on full leaf element blocks. The smallest and largest
eigenmodes are functions supported on badly cut cells.

Figure 5.14: Smallest and largest eigenmodes of a finite cell system preconditioned using the
additive Schwarz preconditioner based on truncated leaf element blocks. The smallest and
largest eigenmodes are functions supported on badly cut cells.

5.2. Additive Schwarz preconditioning for FCM 85

Figure 5.15: Smallest and largest eigenmodes of a finite cell system preconditioned using the
elementwise additive Schwarz preconditioner. The underlying mesh has a polynomial order
p = 2 and is refined in two steps towards the embedded boundary using the multi-level hp-
method.

Figure 5.16: Smallest and largest eigenmodes of a finite cell system preconditioned using the
patchwise additive Schwarz preconditioner. The underlying mesh has a polynomial order p = 2
and is refined in two steps towards the embedded boundary using the multi-level hp-method.

86 5. Iterative solution schemes for multi-level hp-FCM

Remark 5.2.2. The study at hand investigates the influence of the polynomial order p, the
mesh size h and the refinement depth k, on the performance of the additive Schwarz precon-
ditioners considered in this thesis. Other factors that affect the conditioning and therefore
convergence behavior of the immersed systems such as the value of the penalty parameter β,
the fictitious domain stiffness α and different methods for strong boundary condition imposi-
tion, e.g. Nitsche’s method, are not analyzed. The study, however, suffices in showing that the
effort needed to solve finite cell systems increases with an increase in the polynomial order,
mesh resolution and refinement depth. Furthermore, when dealing with immersed multi-level
hp-systems, different types of additive Schwarz preconditioning techniques with varying com-
putational costs and effectiveness in dealing with cut cells are possible. In this work, the trun-
cated preconditioner is used in the numerical examples in Section 5.2.5 that utilize a Conjugate
Gradient solver, since this preconditioner is cheap to construct and shows good performance in
examples with moderate use of multi-level hp-refinement. The number of additional iterations
needed to deal with modes that slip through this preconditioner is small compared to the over-
all number of iterations. The patchwise additive Schwarz technique is used in Section 5.3.4
as a smoother for hp-refined grids within a multigrid framework. In this case, the patchwise
approach helps keeps the number of iterations small.

5.2.4 Implementational aspects
The following section elaborates on implementational aspects that are advantageous in im-
proving the construction and/or performance of additive Schwarz preconditioners in practice.
It also provides a summary of the algorithms needed to construct the preconditioners.

5.2.4.1 Preconditioning of cut cells under a certain volume fraction

The bulk of the computational effort in the construction of the additive Schwarz precondition-
ers lies in inverting the sub-matrices in (5.1) and storing the inverses, and is proportional to
the number of basis function blocks. When a block is devised for every element in the mesh,
this may lead to a large computational cost. Repairing the specific ill-conditioning effects of
FCM does not require a block for every element, as can be explained by the additive Schwarz
lemma in (5.2) and is demonstrated in [de Prenter et al., 2019a] by only devising blocks for
cut elements. The work in [Jomo et al., 2019] explores whether the computational cost can be
further reduced by only devising blocks for cut elements whose volume fraction η is smaller
than a threshold η̄. Note that this generally results in a large number of basis functions that
lie completely inside the physical domain and are not contained in any of the blocks. Jacobi
preconditioning is applied for these basis functions and this operation can technically be in-
terpreted as devising a separate block for every such function. Choosing a smaller value of η̄
reduces the number of blocks, which yields a more sparse preconditioner and thereby reduces
the computational cost. However, smaller values of η̄ allow smaller untreated elements and
with that large condition numbers in accordance with (2.40). This reduces the effectiveness of
the preconditioner and increases the required number of iterations in an iterative solver. The
effect of η̄ on the memory usage, number of iterations and computation time is investigated
in Section 5.2.5.2.

5.2. Additive Schwarz preconditioning for FCM 87

5.2.4.2 Stabilization of the preconditioner

Constructing the preconditioner in (5.1) entails the inversion of sub-matrices Ai, which should
theoretically be symmetric and positive definite, due to the coercive and symmetric weak
form of the PDEs considered. Cut scenarios are however possible, in which severely small
cuts lead to sub-matrices that contain arbitrarily small eigenvalues. This in turn, can lead
to a large difference between the largest and smallest eigenvalues in a sub-matrix. When this
difference is in the order of the machine precision or smaller, small eigenvalues that should
theoretically be positive can become negative because of rounding errors attributed to the
finite precision. Inverting such a matrix with a negative eigenvalue yields an inverse with an
arbitrarily large negative eigenvalue that may cause the Conjugate Gradient solver to diverge
when the eigenmode associated with this eigenvalue becomes a dominant part of the error.
This problem can be remedied by replacing the inverse of Ai by a pseudo inverse A−1

i,+ that
eliminates eigenmodes in the sub-matrices, when the ratio between the smallest and largest
eigenvalues becomes smaller than a certain threshold.
As a starting point for the construction of the pseudo inverse, we consider the spectral

decomposition of a SPD matrix Ai and its inverse A−1
i written as

Ai =
ni∑
k=1

λkvk ⊗ vk , A−1
i =

ni∑
k=1

1
λk

vk ⊗ vk , (5.6)

with ni the dimension of Ai and λk and vk the k-th eigenvalue and eigenvector of Ai, respec-
tively. The pseudo inverse that replaces A−1

i and stabilizes the preconditioning technique is
defined following (5.6) and using a cut-off threshold λtres = εmax(λk) such that the smallest
eigenvalue that is inverted is sufficiently larger than the machine precision.

A−1
i,+ =

ni∑
k=1

λ−1
k,+vk ⊗ vk with λ−1

k,+ =
{
λ−1
k for λk > λtres ,

0 for λk ≤ λtres ,
(5.7)

A typical value for this threshold is ε = 10−13. It should be noted that the computation of the
pseudo inverse involves a eigenvalue decomposition, which is more computationally intensive
than the computation of a standard inverse. This routine can, however, be easily accelerated
through the use of parallelization and is not a bottleneck in practical computations. Moreover,
this pseudo inverse does not need to be applied to all cells but can be applied only to severely
cut cells. The numerical example in Section 5.2.5.2 studies the effect of the pseudo inverse on
the convergence of an engineering example involving the loading of a spinal vertebra. Note
that alternative stabilization techniques can be used in place of a pseudo inverse such as the
recursive elimination of problematic basis functions at group level as elaborated in [de Prenter
et al., 2019a].

Remark 5.2.3. The stabilized preconditioner with pseudo inverses generally contains a
nullspace. Therefore iterative solvers based on Krylov subspaces such as the Conjugate Gradi-
ent method theoretically do not fully converge to the exact solution, unless b is in the range
R(A), e.g. [Kaasschieter, 1988; Saad, 2003]. However, even if these modes are a part of the
solution, this effect is very small in practice because the eigenvalues of the modes disregarded
are at least a factor ε smaller than the largest eigenvalues in the system. To quantify this
effect: (i) the relative residual can still converge to at least ε (which is set to be smaller than

88 5. Iterative solution schemes for multi-level hp-FCM

the tolerance of the solver), (ii) the relative energy norm error still converges to at least
√
ε

and (iii) the relative preconditioned residual can theoretically still fully converge to 0.

5.2.4.3 Use of shared-memory and distributed parallelism

The construction and application of the additive Schwarz preconditioner can be sped up though
the use of various levels of parallelism. The following section describes how shared-memory
and distributed-memory parallelism can be employed to this end.

Shared-memory parallelism

Different shared memory paradigms can be used to accelerate the computation of M−1 on
shared memory systems. We opt for the use of OpenMP pragmas [OpenMP Architecture
Review Board, 2008] to speed up the construction by parallelizing the loop over the basis
function blocks shown in lines 3 to 7 of Algorithm 5.1 . A short study showing the OpenMP
scalability of the computation of M−1 will be discussed in Section 5.2.5.2.

Distributed-memory parallelism

Distributed memory systems are essential for overcoming the time and memory bottlenecks
related to the computation of large engineering problems [Ferronato, 2012]. In such compu-
tations, the mesh T is divided over a set of processes that communicate with one another at
well-defined synchronization points via message passing libraries such as the Message Passage
Interface (MPI) [Clarke et al., 1994]. The locality of the developed preconditioner allows it to
be easily used in a distributed memory setting. Chapter 4 explained that each MPI-process is
identified by a unique id called rank and assigned a portion Trank of the mesh, with Trank ⊂ T .
The mesh Trank consists of elements only residing on the process rank and so-called ghost ele-
ments which are copies of (boundary) elements owned by the neighboring processes of process
rank, see Figure 5.17. A hybrid approach combining MPI and OpenMP is adopted, where
each MPI-process can use OpenMP threads to speed up local computations on every Trank.
Although iterative solvers are easier to parallelize than direct solvers, e.g. [Dongarra et al.,

1998; Saad, 2003], they face the challenge of robustness w.r.t. the number of processes used
[Ferronato, 2012]. A typical caveat of parallel preconditioned iterative solvers is an increase
in the number of iterations needed for convergence when the number of processes utilized
in a simulation increases. Because of the sensitivity of additive Schwarz preconditioning for
the finite cell method caused by the inversion of small cut element contributions, two layers
of ghost elements are utilized to ensure that the exact theoretical preconditioner is obtained
regardless of the number of processes or the topology of the partitions Trank. This has the
additional advantage that the number of iterations needed for convergence is independent of
the number of processes used and thus favors good parallel scalability. It should be noted
that the evaluation of the ghost element layers does not significantly increase the setup time
of the linear system, since the number of ghost elements on a process is much smaller than the
number of active elements. Moreover, since the bulk of the execution time is spent in solving
the linear system, the iterative solver’s scalability largely governs the overall scalability of the
simulation.
Figure 5.17 depicts the partitioning of a mesh between two MPI-processes. The red and blue

elements represent active elements on T0 and T1 owned by process 0 and process 1 respectively.

5.2. Additive Schwarz preconditioning for FCM 89

The hatched elements constitute the first layer of ghost elements. This layer allows a process
to compute the full contributions in A associated with DOFs it owns without communicating
with other processes. This is illustrated in Figure 5.17b where process 0 can independently
compute all entries in A associated with DOF 11 by integrating all the elements around
this node. Likewise, the second layer of ghost elements ensures that the exact theoretical
preconditioner M−1 can be constructed without communication. The importance of this
second ghost-element layer can be explained using Figure 5.17b . Since DOF 11 shares a
support with DOFs 9, 10 and 12, process 0 requires the complete entries in A associated with
these DOFs to ensure that all entries in M−1 related to DOF 11 are computed independent
of the partitioning as per (5.1). This guarantees that the convergence of an iterative solution
method is independent of the number of processes and the element distribution. The above
explanation considers uniform meshes, but can trivially be extended to locally refined grids.
The parallel performance of a preconditioned parallel Conjugate Gradient solver using the
described approach will be investigated in the numerical examples section.

(a) Computational mesh T .

(b) Active elements in T0.

(c) Active elements in T1.

first-level ghost elements for
the setup of A

second-level ghost elements for

the setup of M−1

DOF 11DOF 10
DOF 9 DOF 12

Figure 5.17: Partitioning of the mesh in parallel computations for the setup of A and M−1.

Remark 5.2.4. The number of options and optimization knobs for tuning the performance of
the additive Schwarz preconditioners in order to improve the conditioning of the system, speed
up the computation of M−1 or reduce its storage requirements may appear to be daunting. It is
even possible to apply the additive Schwarz preconditioners implicitly in a matrix-free setting.
All these different parameters and settings reflect the complexity of preconditioning hp-refined
finite cell systems in a general setting. In practice, when computing an FCM problem for the
first time, the following approach is recommended: first start with the simplest variant of the
proposed additive Schwarz preconditioner i.e. use a matrix-based approach with elementwise
blocks inverted using a standard inverse and η = 1.0. If this works, then the computational
time could be possibly improved, if necessary, by measures such as altering the cut threshold as
per Section 5.2.4.1. If the solver does not converge, then the elementwise preconditioner that
utilizes a pseudo inverse should be utilized. If the solver convergence is still not satisfactory,
then the patchwise preconditioner should be employed. Although rigorous tests for different
problem types have been conducted to assess the effectiveness of the proposed preconditioners,
it should be noted that cut configurations can occur which the preconditioners may not detect.
Moreover, It should be noted the cause of slow convergence and solver divergence could lie in

90 5. Iterative solution schemes for multi-level hp-FCM

Algorithm 5.1: computePreconditioner(A, {ηKi}, η̄)
1 # loop over additive Schwarz blocks
2 for i ∈ nblocks do
3 # check if the element is badly cut
4 if ηKi < η̄ then
5 Ai = PT

i APi

6 A−1
i,+ = pseudoInverse(Ai)

7 M−1 = M−1 + PiA−1
i,+PT

i

8 end

9 end
10 n = size(A)
11 for j ∈ {1, ..., n} do
12 # check if function not in any block
13 if M−1

jj == 0 then
14 M−1

jj = 1/Ajj
15 end

16 end
17 return M−1

other factors such as improper integration or a too coarse mesh.

5.2.4.4 Summary of the preconditioner construction

A flow diagram describing the construction of the additive Schwarz preconditioner M−1 pre-
sented in the previous sections is shown in Algorithm 5.1. The volume fraction ηKi of an
element is used as a criterion to decide whether a block is devised for the basis functions
supported on it. The submatrix associated with this block is then inverted using the “pseudo
inverse” presented in Section 5.2.4.2. Note that the algorithm does not explicitly devise a
separate block containing one basis function for the basis functions that are not present in any
of the blocks but rather performs a separate diagonal scaling step for these basis functions
in lines 10 to 16. A major advantage of the proposed preconditioning technique is its suit-
ability for parallel computing, as operations for each block can be performed independently
with minimal synchronization. This can be done using both shared and distributed memory
parallelism, as described in the Section 5.2.4.3.

5.2.5 Numerical examples
This section demonstrates the suitability of the proposed preconditioner for finite cell analy-
sis of real-life problems. The numerical examples are specifically chosen to highlight various
aspects presented in the previous sections. Focus is placed on image-based geometries, an
application field where the finite cell method is particularly advantageous in circumventing la-
borious mesh generation procedures. The first example addresses the extension of the additive

5.2. Additive Schwarz preconditioning for FCM 91

Schwarz preconditioning technique to FCM problems involving multi-level hp-refinement by
studying a simple example of a cube with a spherical cavity subjected to uniaxial loading. The
second example, from the field of biomechanics, considers the loading of a lumbar vertebral
body and studies the effect of the pseudo inverse and the volume fraction threshold η̄ on the
computational cost of a preconditioned Conjugate Gradient solver. Finally, the last example
brings together FCM, multi-level hp-refinement, additive Schwarz preconditioning and parallel
computing in the image-based analysis of a die-cast gearbox housing.
The convergence of the PCG solver applied in this section is assessed by monitoring the

development of either the relative residual or the relative preconditioned residual defined as

‖M−1ri‖
‖M−1b‖ = ‖M

−1b−M−1Axi‖
‖M−1b‖ , (5.8)

and when possible the relative error in the energy norm

ei = ‖xref − xi‖A

‖xref‖A
=

√
(xref − xi) A (xref − xi)T√

xrefAxTref
, (5.9)

with a reference solution xref obtained from the parallel direct solver Intel® Pardiso, con-
tained in the Intel Math Kernel Library [Intel, 2009]. The subscript i in (5.8) and (5.9) denotes
quantities in the ith Conjugate Gradient iteration. Since the systems involved in the following
numerical examples are rather large, the effectiveness of the preconditioners used is assessed
by monitoring the convergence of the residual and energy error. Computing condition number
for the considered systems is prohibitive and is not performed.

5.2.5.1 Compression of a cube with a spherical exclusion

The following example investigates the selection of additive Schwarz block for multi-level hp-
grids based on the leaf elements. It illustrates the importance of carefully selecting suitable
blocks for additive Schwarz preconditioning in FCM simulations with multi-level hp-refinement
as described in Section 5.2.2. To this end, a simple example comprising of a cube with a spher-
ical cavity under compressive loading is considered. Although this setup yields a relatively
small system, with a small number of DOFs (< 17 000), it serves as a good starting point to
illustrate the effectiveness of the preconditioning technique developed in this manuscript as it
already shows the conditioning problems associated with FCM and multi-level hp-refinement.

92 5. Iterative solution schemes for multi-level hp-FCM

r
a

P

Figure 5.18: Cube with a spherical cavity under compressive loading.

Problem setup

A cube of unit length with a spherical cavity of radius r = 0.01 is subjected to a homogeneous
pressure load P as shown in Figure 5.18 . The cube has a Young’s modulus of 70 GPa and
Poisson’s ratio ν = 0.34. Homogeneous Dirichlet boundary conditions in the normal direction
are applied using a penalty parameter β = 1010. The base mesh consists of 8× 8× 8 elements
and is refined toward the surface of the exclusion with a refinement depth k ∈ {0, 1, 2, 3, 4}.
The tensor product space is applied in this example and a polynomial order p = 3 is used,
resulting in the numbers of unknowns for the different refinement depths given in Table 5.1 .
Numerical integration is performed using octree partitioning with a tree-depth of 3 relative to
the local element size.

k 0 1 2 3 4
DOFs 13 851 14 541 15 231 15 921 16 611

Table 5.1: Number of degrees of freedom for different refinement depths k.

Convergence behavior

The convergence of the PCG solver preconditioned with the full and the truncated blocks is
shown in Figure 5.19. The results show that the convergence of the residual closely follows
the convergence of the energy. This is generally not the case for ill-conditioned systems such
as unpreconditioned FCM, e.g. [de Prenter et al., 2017] or Figure 5.21, and indicates that
both preconditioners are robust w.r.t. small cut cells. Figures 5.19a and 5.19c, however, show
the effect of local refinements on the convergence speed of the solver when no truncation
is used in the construction of M−1. This indicates that the preconditioner with full blocks
is sensitive to the refinement depth — i.e. a small increase in the number of unknowns, by
approximately a factor of 1.2, leads to a significant increase in the number of iterations needed
to reach convergence, which increases by a factor of around 3.6. The intensity of this effect is
significantly reduced when the preconditioner with truncated blocks is used as demonstrated in
Figures 5.19b and 5.19d. The truncated preconditioner is therefore not only computationally
less expensive than the full preconditioner (due to the smaller block sizes), but also yields

5.2. Additive Schwarz preconditioning for FCM 93

better conditioning. Similar results are obtained using a more complex geometry in the third
example in Section 5.2.5.3.

100 101 102

100

10−2

10−4

10−6

10−8

10−10

Number of iterations

‖M
−

1 r
‖/

‖M
−

1 b
‖

M−1A, k = 0
M−1A, k = 1
M−1A, k = 2
M−1A, k = 3
M−1A, k = 4

(a) Full preconditioner: residual convergence.

100 101 102

100

10−2

10−4

10−6

10−8

10−10

Number of iterations
‖M

−
1 r

‖/
‖M

−
1 b

‖

M−1A, k = 0
M−1A, k = 1
M−1A, k = 2
M−1A, k = 3
M−1A, k = 4

(b) Truncated preconditioner: residual conver-
gence.

100 101 102

100

10−2

10−4

10−6

10−8

10−10

10−12

Number of iterations

e

M−1A, k = 0
M−1A, k = 1
M−1A, k = 2
M−1A, k = 3
M−1A, k = 4

(c) Full preconditioner: energy convergence.

100 101 102

100

10−2

10−4

10−6

10−8

10−10

10−12

Number of iterations

e

M−1A, k = 0
M−1A, k = 1
M−1A, k = 2
M−1A, k = 3
M−1A, k = 4

(d) Truncated preconditioner: energy convergence.

Figure 5.19: Cube with a spherical cavity: Convergence behavior of the PCG solver with full
and truncated blocks for multi-level hp-refinement. Note that the convergence of the residual
is not monotone as the PCG solver minimizes the energy and the residual is only loosely bound
to this, e.g. [Saad, 2003] .

5.2.5.2 Image-based simulation of a lumbar vertebra

The applicability of the preconditioner in biomechanical simulations is highlighted in the
following image-based simulation of a lumbar vertebra subjected to compressive loading, with
the computational setup following [Elhaddad et al., 2018]. Elastostatic computations are

94 5. Iterative solution schemes for multi-level hp-FCM

performed with the described setup, utilizing a PCG solver for the solution of the linear system
of equations with either no preconditioner, diagonal scaling, or the presented additive Schwarz
preconditioner. Various aspects of the iterative solver’s convergence behavior are monitored
during the simulation for different solver and preconditioner configurations. This example
does not consider local mesh refinement. However, the resulting relatively simple problem
on a complex geometry is a good test case to examine the stability of the preconditioning
technique and the effectiveness of different threshold volume fractions η̄. Note that on the
uniform mesh without local refinements truncation of the blocks is not applicable.

Problem setup

Material vertebral bone
Young’s modulus, Ebone 12 GPa

Poisson’s ratio, ν 0.3
l × w × h [mm] 47.3× 55.3× 34.1

(a) Geometric and material properties of the
lumbar vertebra.

(b) Computational mesh of active elements.

(c) Cut showing the porous bone structure and
distribution of the CT-number.

Figure 5.20: Setup of the lumbar vertebra example.

The geometry of the lumbar vertebra is obtained via a high-resolution micro-CT scan of the
specimen with a voxel size of 80 × 80 × 80 µm3. A subsequent segmentation of the scan
using ITK-SNAP [Yushkevich et al., 2006] yields a model of the vertebral body without the
surrounding soft tissue, see Figure 5.20a . It is noted that the segmentation only considers the
outer boundary of the vertebra and no distinction is made between cortical and trabecular
bone.
A non-boundary conforming discretization is generated using the finite cell method with 103

voxels contained in each element resulting in 170 982 elements. Elements completely outside
the physical domain are removed in a preprocessing step yielding 75 821 active elements. A
polynomial order of p = 3 is chosen and the trunk space is applied, resulting in approximately
1.7 million degrees of freedom. Material properties within each element are defined on a voxel-
level by applying a threshold on a voxel’s CT-number. The CT-number is a measure of the
x-ray absorption coefficient that can be related to the density and consequently the stiffness of

5.2. Additive Schwarz preconditioning for FCM 95

the material in a voxel. Material identified as inside the bone structure is assigned a Young’s
modulus Ebone = 12 GPa and Poisson’s ratio ν = 0.3, corresponding to values commonly
used in literature [Keaveny et al., 2001]. Fictitious material, on the other hand, is assigned
the material properties Efict = 10−11 GPa and ν = 0.3 in order to avoid peak stresses in cut
elements [Elhaddad et al., 2018]. The surface of the entire vertebral body is recovered using
a marching cubes algorithm [Maple, 2003] and thereafter trimmed to provide a triangulation
for the superior end-plate, where a uniformly distributed vertical load of 800N is applied, and
the inferior end-plate, which is weakly clamped using the penalty method with β = 106. In
this example, numerical integration is performed using voxel integration where each element
is partitioned into a fine grid of integration sub-cells.

Convergence behavior and stability of M−1

Figure 5.21 shows the values of the relative preconditioned residual and the energy error plot-
ted against the number of PCG iterations performed. The solver is terminated when either a
cut-off tolerance in the relative preconditioned residual of 10−10 or the maximum number of
iterations (300 000) is reached. One can observe that the unpreconditioned system, denoted
by the curves labeled A, suffers from ill-conditioning characterized by the slow residual con-
vergence rates and high energy norm errors even after a significant number of iterations. The
diagonally preconditioned system, D−1A, shows an improved convergence behavior but also
fails to reach the desired cut-off tolerance within the specified maximum number of iterations.

100 101 102 103 104 105 106

100

10−2

10−4

10−6

10−8

10−10

Number of iterations

‖M
−

1 r
‖/

‖M
−

1 b
‖

A
D−1A
M−1

∗ A
M−1A

(a) Relative preconditioned residual.

100 101 102 103 104 105 106

100

10−2

10−4

10−6

10−8

Number of iterations

e

A
D−1A
M−1

∗ A
M−1A

(b) Error in the energy norm.

Figure 5.21: Convergence of the relative residual and the energy norm errors for different
preconditioners in the lumbar vertebra example. The curves A,D−1A,M−1

∗ A and M−1
∗ A

represent no preconditioning, Jacobi preconditioning, unstabilized additive Schwarz precondi-
tioning and stabilized additive Schwarz preconditioning, respectively.

The curves M−1
∗ A and M−1A depict the systems preconditioned with the preconditioning

scheme developed here using the full inverse (M−1
∗) and stabilized pseudo inverse (M−1)

respectively, with cut-off tolerance ε = 10−13. The importance of filtering out eigenvalues

96 5. Iterative solution schemes for multi-level hp-FCM

smaller than the machine precision in the local inverses A−1
i,+, as described in Section 5.2.4.2 ,

is clearly visible from these curves in Figures 5.21a and 5.21b . Both M−1
∗ A and M−1A exhibit

the same convergence until the eigenvectors of M−1
∗ A with negative eigenvalues become the

dominant part of the error. It is apparent that the relative energy norm error stagnates and the
relative residual diverges in the case of M−1

∗ A. These problematic eigenvalues are discarded
by M−1A, resulting in convergence up to the desired tolerance as indicated in the figures.
It should be noted that potential loss of accuracy due to the discarding of extremely small
eigenmodes is not observed in this example.
It is customary in FCM to pre-process the system and discard all functions that completely

lie outside of the physical domain. By stabilizing with the pseudo inverse and setting the
fictitious stiffness α = 0, this preprocessing step is theoretically not required since the pseudo
inverse will ignore these functions. Discarding these functions in a preprocessing step still
reduces the computational cost however. It is noted that with α large enough the system
does not contain eigenvalues of the order of the machine precision, and the pseudo inverse is
equivalent to the full inverse.

Optimization: Preconditioning only severely cut cells

In [de Prenter et al., 2019a] it is mentioned that the number of blocks used in the setup of the
preconditioner can be reduced by considering only elements below a certain volume fraction.
This idea is followed in Section in 5.2.4.1 where it is proposed to only invert blocks of basis
functions for elements with a volume fraction smaller than a threshold value η̄ ∈ [0.0, 1.0].
Basis functions that are not present in any of these elements are instead diagonally scaled,
to reduce the computational cost. In this section we study the effect of the threshold value
η̄ on the performance of the preconditioner for the lumbar vertebra model described above.
To this end, the linear system is solved by a PCG solver for different values of η̄. A value
η̄ = 1.0 corresponds to the preconditioner with a block for every element while η̄ = 0.0 results
in a Jacobi preconditioner. It is again stipulated that in this computation the mesh does not
contain local refinements, such that the blocks are not truncated.
Figure 5.22 depicts the influence of η̄ on the convergence of the PCG solver, the solution

time and memory requirements of setting up the preconditioner. Figures 5.22a - 5.22b confirm
that the effectiveness of the preconditioner is maintained as long as problematic basis functions
are taken into account when constructing M−1. This holds for η̄ ∈ [0.4, 1.0], while values of
η̄ ≤ 0.4 allow smaller untreated elements and thus reduce the effectiveness of M−1. Reducing
the value of η̄ leads to a sparser preconditioner which requires less storage space as shown in
Figure 5.22c , where the size of the preconditioner scales linearly with the number of additive
Schwarz blocks. The increased sparsity of M−1 for values of η̄ < 1.0 leads to a reduction
in the computational cost of a single PCG iteration, since the matrix-vector multiplication
involving S and r takes less time. This leads to an overall faster execution time as shown
in Figure 5.22d, where the number of iterations needed until convergence is plotted alongside
the corresponding solution time for different values of η̄. The solver converges in less time
for 0.6 ≤ η̄ < 1.0, with the solver converging 1.6 times faster for η̄ = 0.7 than for η̄ = 1.0.
This study shows that values of η̄ ∈ [0.6, 0.7] yield an effective preconditioner which is sparser
and consequently faster than the complete preconditioner for η̄ = 1.0 with a block for every
element. To enable comparison of all presented examples, in the remainder of this chapter the
non-optimized choice of η̄ = 1.0 will be considered.

5.2. Additive Schwarz preconditioning for FCM 97

100 101 102 103 104

10−10

10−8

10−6

10−4

10−2

100

Number of iterations

‖M
−

1 r
‖/

‖M
−

1 b
‖

η̄ = 1.0
η̄ = 0.8
η̄ = 0.6
η̄ = 0.4
η̄ = 0.2

(a) Convergence of the relative residual for various η̄

100 101 102 103 104

100

10−2

10−4

10−6

10−8

Number of iterations

e

η̄ = 1.0
η̄ = 0.8
η̄ = 0.6
η̄ = 0.4
η̄ = 0.2

(b) Convergence of the energy error for various η̄

4000 8000 16000 32000 64000 128000
256

512

1024

2048

4096

8192

η̄ = 0.2

η̄ = 0.4
η̄ = 0.6

η̄ = 0.8

η̄ = 1.0

Number of blocks I

Si
ze

[M
B]

M−1(η̄)

(c) Preconditioner size for different values of η̄

·103 ·102

0.2 0.4 0.6 0.8 1.0

2

4

8

η̄

N
u
m

b
er

of
it

er
at

io
n
s

5

10

20

40

S
ol

u
ti

on
ti

m
e

[s
]

(d) Convergence behavior for different values of η̄

Figure 5.22: Preconditioning of cut cells with ηKi ≤ η̄.

Computational cost of setting up M−1

Section 5.2.4.3 explains how the construction of M−1 can be accelerated by the use of shared-
memory parallelism. This is illustrated in a short study that shows the OpenMP speed up
achieved for a variable number of threads involved in the setup of the preconditioner. Three
different preconditioners with different numbers of additive Schwarz blocks, and consequently
different computational costs, are analyzed. The results of this study are shown in Figure 5.23 .
Although good parallel scalability is achieved for the different number of blocks, the parallel
efficiency decreases gradually with an increase in the number of threads. This is attributed to
the synchronization needed when assembling the entries of A−1

i,+ into M−1, (5.1). This effect

98 5. Iterative solution schemes for multi-level hp-FCM

can be improved by the use of graph coloring algorithms [Farhat and Crivelli, 1989].

1 2 4 6 8 10 12 14 16
1
2

4

6

8

10

12

14

16

Number of threads

Sp
ee

d
up

11578 blocks
6206 blocks
2976 blocks
ideal

Figure 5.23: Setup of M−1 — OpenMP scalability for different numbers of additive Schwarz
blocks.

5.2.5.3 Loading of a die-cast gearbox housing

Finally, an industrial example is considered that portrays the suitability of the preconditioner
for the solution of large-scale embedded problems involving multi-level hp-refinement. The
example focuses on the loading of an aluminum gearbox housing produced by die casting,
a manufacturing process by which molten metal is forced under high pressure into a mold
cavity producing a net-shape structure upon solidification of the molten metal. Die casting
is widely used for the production of small- to medium-sized non-ferrous metal parts due to
its high production rates, the quality and dimensional consistency of the produced parts
and its design freedom, that allows the production of parts with high geometric complexity
[Vinarcik, 2002]. The extensive use of die-cast parts is, however, limited by defects such as
shrinkage cavities and entrapped gas bubbles that lead to increased porosity in the parts.
Pores negatively affect the mechanical properties of die-cast parts and are the preferred sites
for fatigue-crack initiation.
Several studies have been conducted on the influence of pore size, position and orientation

on the stress state, crack growth and fatigue behavior of aluminum die-cast parts [Ammar
et al., 2008; Mayer et al., 2003; Yi et al., 2003]. Finite element analysis of die-cast parts can
help quantify the stress concentration in the vicinity of pores through the use of image-based
computations Nicoletto et al. [2010]. The limitations of boundary conforming methods in
capturing the complex pore morphology can be overcome by the use of the finite cell method
as investigated in [Duczek et al., 2015; Monavari, 2011; Würkner et al., 2018].
In this section, we revisit the die-cast example considered in [Monavari, 2011]. The first

major modification in contrast to the original example is the use of a preconditioned iterative
solver for solving the linear system of equations instead of a direct solver. This modification
allows, due to the smaller memory requirement, for computations with a higher resolution

5.2. Additive Schwarz preconditioning for FCM 99

of the die-cast part. Moreover, distributed memory parallelism is exploited to accelerate the
performance of the preconditioned iterative solver. The second major modification is the use
of multi-level hp-refinement to achieve a higher spatial resolution around the pores in the
specimen, leading to a better resolution of the complex stress state in these regions.

Problem setup

Material aluminum alloy
EN AC-46000

Young’s modulus, E 70 GPa
Poisson’s ratio, ν 0.29
l × w × h [mm] 175× 101× 80

(a) Geometric and material properties of the
gearbox housing.

(b) Cut-plane C of the housing CT scan
depicting pores in the specimen.

5 10

1.5

2

·104

Distance [cm]

C
T

-n
um

be
r

CT-number
Threshold

(c) Distribution of the CT-number
along the cut-line A-B.

Figure 5.24: Setup of the die-cast gearbox housing example.

The geometry of the gearbox housing is obtained from a CT scan with a voxel size of 198.7×
198.7 × 198.7 µm3. A non-boundary conforming mesh is generated with 103 voxels grouped
to form a single finite cell. Elements completely inside the fictitious domain are eliminated
yielding a total of 34 230 active elements in the base mesh before refinement. The classification
of the material properties is done by applying a threshold on the intensity values (CT-number)
of the CT scan. The threshold is chosen such that the metal material and cavities or internal
pores (which are part of the fictitious domain) can be distinguished, as illustrated in Figure

100 5. Iterative solution schemes for multi-level hp-FCM

5.24b and Figure 5.24c. Metal material is assigned a Young’s modulus Emetal = 70 GPa
and Poisson’s ratio ν = 0.3 while fictitious material is assigned the values Efict = 10−11 GPa
and ν = 0.3. Figure 5.25a depicts the computational mesh of the gearbox housing. The
discretization is refined towards the surfaces of the interior pores with a refinement depth k ∈
{0, 1, 2, 3}. We apply a polynomial order p = 4 and the trunk space, resulting in the number of
DOFs listed in Table 5.2 . A fine grid of integration sub-cells is used for numerical integration
as in the previous example. Homogeneous Dirichlet boundary conditions are applied on the
dark green surfaces while a displacement ūx = 0.1cm is applied on the red cylindrical surfaces
as depicted in Figure 5.25b . All boundary conditions are enforced weakly using the penalty
method with the penalty parameter β = 106.

(a) Discretization of the gearbox hous-
ing.

(b) Application of boundary conditions.

Figure 5.25: Mesh and boundary conditions of the gearbox housing example. All displacements
on the dark green surfaces are fixed while a displacement field ūx = 0.1cm is prescribed on
the red surfaces.

k 0 1 2 3
DOFs 1 662 666 1 670 478 1 683 792 1 716 102

Table 5.2: Number of degrees of freedom for different refinement depths k.

Influence of the pores on the stress distribution

Before studying the convergence behavior of the iterative solver for different refinement depths
k, we highlight the necessity of local refinements in resolving stress states in the vicinity of
small geometric features with an economical number of DOFs. To this end, the three pores
indicated in Figure 5.24b are considered. Figure 5.26 shows a smoothed representation of the
pore geometries obtained by segmenting the pores gearbox scan using ITK-SNAP and exporting
the resulting triangulated surfaces.

5.2. Additive Schwarz preconditioning for FCM 101

Y coordinates [mm]

Z
co
o
rd
in
a
te
s
[m

m
]

(a) Frontal view of the considered pores. (b) Aerial view of the considered pores.

X
co
o
rd
in
a
te
s
[m

m
]

Y coordinates [mm]

Figure 5.26: Geometry of the three pores (left to right) shown in Figure 5.24b.

Different values of the refinement depth k yield comparable results of the overall displace-
ment and stress fields in the gearbox housing with an exemplary result given in Figure 5.27 .
Differences arise, however, in the stress fields in the vicinity of the pores as shown in Figures
5.28 - 5.29 . Without local mesh refinement, the chosen mesh is unable to accurately capture
the expected stress concentration around the pore boundary, as shown in Figure 5.29a . The
use of a globally h-refined mesh would help capture stress concentration around the pores, but
is not a viable option since the number of DOFs would increase drastically. Moreover, per-
forming h-refinement would not significantly affect the stress distribution away from the pores,
since this state is already adequately represented by the coarse mesh as shown in Figure 5.28 .
The stated arguments motivate the use of hp-refinement to capture local solution stress distri-
butions in a computationally efficient manner. The results of the Von Mises stress available in
Figure 5.29b and Figure 5.28 show that the location of the peak stress shifts to the boundary of
the pores upon application of multi-level hp-refinement, which is physically realistic behavior.
Note that this linear elastic example only portrays the importance of refinement in resolving
small geometric features and is not an extensive analysis of the stress state around the pores.
Such a detailed analysis would require more advanced models e.g. elasto-plastic behavior.

102 5. Iterative solution schemes for multi-level hp-FCM

(a) Displacement magnitude. (b) Von Mises stress distribution.

Figure 5.27: Results of the displacement and von Mises stress fields of the gearbox housing.

2 4 6 8 10 12 140

100

200

300

Distance [cm]

Vo
n

M
ise

s
st

re
ss

[M
Pa

]

k = 0
k = 4

Figure 5.28: Comparison of the von Mises stress in the vicinity of the pores along the cut-line
A-B shown in Figure 5.24b .

5.2. Additive Schwarz preconditioning for FCM 103

k = 0

(a) Distribution of the von Mises stress in cut-plane C for k = 0.

k = 4

(b) Distribution of the von Mises stress in cut-plane C for k = 4.

Figure 5.29: Influence of the refinement depth on the stress distribution around pores in
cut-plane C.

Convergence behavior

An analogous study to that in Section 5.2.5.1 is carried out to analyze the influence of multi-
level hp-refinement on the convergence of the PCG solver. We refine the computational mesh
towards the internal pores with a refinement depth k ∈ {0, 1, 2, 3}. The development of the
relative preconditioned residual and energy error is monitored in computations involving the
full and truncated preconditioners based on additive Schwarz groups formed from the leaf
elements of the multi-level hp-grid. Figure 5.30 portrays the convergence behavior of the full
and truncated preconditioner for different levels of multi-level hp-refinement of the gearbox
housing mesh. The results show similar convergence behavior as in the numerical example
considered in Section 5.2.5.1. When the full preconditioner is used, the number of iterations
drastically increases with the refinement depth. The truncated preconditioner performs better

104 5. Iterative solution schemes for multi-level hp-FCM

than the full preconditioner since it only takes into account basis functions that can potentially
become almost linearly dependent. Table 5.3 shows the maximum number of blocks a basis
function belongs to, denoted as nmax, for the preconditioner with full and truncated blocks.

100 101 102 103 104 105

100

10−2

10−4

10−6

10−8

10−10

Number of iterations

‖M
−

1 r
‖/

‖M
−

1 b
‖

M−1A, k = 0
M−1A, k = 1
M−1A, k = 2
M−1A, k = 3

(a) Full preconditioner: residual convergence.

100 101 102 103 104 105

100

10−2

10−4

10−6

10−8

10−10

Number of iterations

‖M
−

1 r
‖/

‖M
−

1 b
‖

M−1A, k = 0
M−1A, k = 1
M−1A, k = 2
M−1A, k = 3

(b) Truncated preconditioner: residual convergence.

100 101 102 103 104 105

100

10−2

10−4

10−6

10−8

10−10

10−12

Number of iterations

e

M−1A, k = 0
M−1A, k = 1
M−1A, k = 2
M−1A, k = 3

(c) Full preconditioner: energy convergence.

100 101 102 103 104 105

100

10−2

10−4

10−6

10−8

10−10

10−12

Number of iterations

e

M−1A, k = 0
M−1A, k = 1
M−1A, k = 2
M−1A, k = 3

(d) Truncated preconditioner: energy convergence.

Figure 5.30: Comparison of the convergence behavior of the full and truncated preconditioners
for multi-level hp-refinement.

5.2. Additive Schwarz preconditioning for FCM 105

k 0 1 2 3
Full blocks 8 64 274 810

Truncated blocks 8 8 8 8

Table 5.3: Maximum overlap nmax of the full and truncated additive Schwarz blocks for differ-
ent refinement depths k in the gearbox housing example. nmax is bounded and equals 2d = 8
for the truncated preconditioner but unbounded for the full preconditioner.

Analysis of the parallel scalability

Section 5.2.4.3 describes the use of the preconditioner in a hybrid (distributed and shared
memory) parallel setting. The results shown are computed using the parallelization scheme
based on replicated mesh data structures described in Section 4.3. The study at hand aims
to show the performance of a parallel PCG solver in large-scale finite cell computations. We
use the parallel PCG solvers available in Trilinos [Heroux et al., 2005] in conjunction with
the presented preconditioner. Two different discretizations of the gearbox housing are consid-
ered. The first discretization is the mesh used in the gearbox convergence study consisting of
34 230 elements and approximately 1.7 million degrees of freedom. The second mesh is a finer
discretization of the gearbox that consists of 83 757 elements formed by grouping 73 voxels
to form a single finite cell. A polynomial order of p = 4 is chosen here as well, resulting in
approximately 3.98 million DOFs. Boundary conditions are applied for both discretizations
as illustrated in Figure 5.25b with a penalty value β = 106 . The numerical computations are
performed on the CoolMAC cluster at the Technical University of Munich equipped with four
AMD Bulldozer Opteron 6274 CPUs and 256 GB memory per node. These hybrid computa-
tions are carried out by varying the number of nodes from 1 to 16 for the coarser discretization
and from 2 to 16 for the fine discretization. Each node is made up of 64 processing units (cores),
i.e. one MPI-process × 64 OpenMP threads.
Figure 5.31 shows the execution time of the PCG solver plotted against the number of pro-

cessing units used in the hybrid computations for both discretizations of the gearbox housing.
The preconditioned solver shows excellent parallel scalability for both discretizations up to 256
cores, where superlinear speedup is achieved due to cache effects when moving to more cores.
This trend can be maintained as long as the computational work in every PCG iteration —
the matrix-vector multiplications — is significantly larger than the communication overhead.
This is shown by the loss of efficiency in the computations involving 1.7 million degrees of
freedom and more than 256 cores. The fine discretization provides adequate computational
work and maintains a parallel efficiency of 115% up to 1024 processing units.

106 5. Iterative solution schemes for multi-level hp-FCM

64 128 256 512 1024

125

250

500

1000

2000

4000

8000

Number of processing units

T
im

e
[s]

3.98 million dofs
1.7 million dofs
linear speed up

Figure 5.31: Parallel scalability study of the PCG solver for two different problem sizes.

5.3 Multigrid solution and preconditioning techniques
for multi-level hp-FCM

Additive Schwarz preconditioners for finite cell problems involving uniform high-order meshes
and multi-level hp-refinement were presented in the previous section. This preconditioning
approach was shown to effectively treat the conditioning problems associated with badly cut
cells and significantly improve the convergence of the Conjugate Gradient solver utilized.
Combining the presented strategies and distributed parallelism enables the computation of
large FCM systems on distributed memory machines that were previously unconceivable when
a direct solver was applied.
The numerical studies in Section 5.2.3 demonstrated that finer grid sizes, higher polynomial

orders and multiple levels of hp-refinement yield systems with larger condition numbers that
generally require more CG iterations when solved. These findings are also reflected in the
examples in Section 5.2.5. The bulk of the computational effort in the preconditioned Conju-
gate Gradient method is performing two matrix-vector products within each iteration. Each
multiplication requires O(m) operations, with m denoting the number of nonzero entries in
the sparse matrix A ∈ Rn×n and m ∈ O(n) [Shewchuk, 1994]. Following [Saad, 2003] and
[de Prenter et al., 2019a] one can determine the total computational cost of a CG solver by
considering the fact that the number of CG iterations required to solve a system is gener-
ally proportional to the mesh size i.e. O(h−1) = O(n 1

d). The total cost can, therefore, be
determined as O(n 1

d) · O(n) = O(n1+ 1
d), where d is the dimensionality of the problem. This

complexity estimate is applicable when global h-refinement is performed on meshes with a
fixed polynomial order. Its derivation is based on the fact that the condition number of the
stiffness matrix scales in proportion to h−2 in h-FEM. Deriving such an expression in the case
of p-refinement is more involved. First, the growth of the condition number, a good indicator
of the computational cost of solving a system, depends on the type of high-order method used

5.3. Multigrid solvers for multi-level hp-FCM 107

such as p-FEM with integrated Legendre polynomials, spectral elements or isogeometric anal-
ysis, see e.g. [Eisenträger et al., 2020; Maitre and Pourquier, 1996]. For the p-FEM applied in
this thesis, it can be shown that the condition number scales in proportion to p4(d−1), where d
is the dimensionality of the problem [Hu et al., 1998; Maitre and Pourquier, 1996]. Secondly,
the condition number is only an indicator of the computational cost of a system and the
actual iteration count is significantly influenced by the initial guess and the structure of the
right-hand side. In fact, it is not uncommon to encounter scenarios in which the convergence
of a system is faster for odd values of p than even values, see e.g. [Babuška et al., 1989] or test
case A in Section 5.3.4.1.
Reducing the computational cost of solving a linear system can lead to significant improve-

ments in terms of computational time. This can be especially beneficial when solving systems
with multi-million DOFs on large distributed computers. Multigrid solution techniques pro-
vide a means of achieving a computational complexity in the order of O(n), i.e. the number
operations needed to solve a system scales linearly with the number of unknowns. This is
achieved by the use of a hierarchy of coarse discretizations that help accelerate the conver-
gence of the finest discretization. Most multigrid-based methods are therefore characterized
by convergence rates that are independent of the mesh size (h-invariance). In some methods,
a convergence rate that is independent of the element polynomial order, p-invariance, is also
observed.

5.3.1 Multigrid methods
A vast amount of literature exists on multigrid methods. Classical works with a more theo-
retical perspective include [Hackbusch, 2013; Hackbusch and Trottenberg, 1982], while [Briggs
et al., 2000; Trottenberg et al., 2001; Wesseling, 2004] provide a more accessible introduction
into the subject matter. The central idea behind multigrid techniques is to accelerate the con-
vergence of a fine problem by the incorporation of correction terms generated from a hierarchy
of coarse problems. These terms approximate the smooth components of the error, hereby
leading to a fast convergence of smooth modes that generally converge slowly in single-grid
methods. Multigrid techniques generally fall into one of two categories, geometric or alge-
braic methods. Geometric multigrid methods generate the coarse problems using geometrical
information. In finite element analysis, this translates to the generation of coarse problems
based on a sequence of discretizations with varying element sizes (h-multigrid), polynomial
orders (p-multigrid) or both (hp-multigrid). Algebraic multigrid methods generate their coarse
problems solely from the fine system and are usually applied in scenarios, where geometrical
information is not available or cannot be easily obtained [Shapira, 2003]. In this work and in
the forthcoming sections, only geometric multigrid schemes will be considered.
Multigrid methods can be applied as stand-alone solvers or as preconditioners within a

Krylov method, e.g. the Conjugate Gradient method. In the latter case, the iterative method
preconditioned with a multigrid technique exhibits a computational costs of O(n) and in many
applications even outperforms multigrid as a stand-alone solver. The following section briefly
explains the essential steps in a multigrid algorithm as well as the use of multigrid as a solver
and preconditioner.

108 5. Iterative solution schemes for multi-level hp-FCM

Ingredients of the multigrid algorithm

Multigrid methods aim at improving the convergence of a linear system by incorporating
information obtained from a hierarchy of coarse discretizations. Consider a sequence of func-
tion spaces V0,V1 . . .V`−1,V`, where the index ` denotes the level-number and ` ∈ [0, `max].
V`max denotes the finest space which contains the solution of the original problem, whereas V0
denotes the coarsest space. Each multigrid level is associated with a system of equations

A`x` = b`. (5.10)

In this work, only sequences of nested spaces are considered with the consequence that basis
functions in a coarse space can be expressed as a linear combination of basis functions from a
finer space. This makes it possible to define restriction operators R` that map basis functions
from the fine space of level ` into the next coarse space of level ` − 1. Conversely, the
prolongation operators RT

` can be introduced that map a vector in the coarse space ` − 1
to a vector in the fine space ` which corresponds to the same function. These operators
allow quantities such as vectors and matrices to be transferred from one level to another e.g.
A`−1 = R`A`RT

` and r`−1 = R`r`, where r` and r`−1 denote the residuals on level ` and `− 1,
respectively.
The two main steps in a multigrid iteration are a smoothing process and the coarse-grid

correction. These steps are considered complementary since they act on different components
of the error. The error in each multigrid level can be expressed as the difference between the
exact solution x` and the current approximation x̃`, i.e.

e` = x` − x̃` (5.11)

The smoothing process, or smoothing in short, efficiently reduces the oscillatory components
of the error that are associated with large eigenvalues in level `. Smoothing is performed by
the repeated application of linear iterative methods such as fixed-point iterations. Standard
smoothers include the weighted Jacobi method and the Gauss-Seidel method, but it is also
possible to use fixed-point smoothing based on additive Schwarz techniques, multiplicative
Schwarz techniques and incomplete LU factorizations. In this work, the smoothing process is
based on additive Schwarz techniques since they can be readily applied in massively parallel
settings as their construction can be done in a fully parallel manner without the need for
synchronization. This is in contrast to techniques such as Gauss-Seidel and multiplicative
Schwarz, which often require coordinated application in parallel settings such as multicoloring
algorithms, see e.g. [Saad, 2003]. The application of the additive Schwarz smoother is done
per the formula

x̃` ← x̃` + ωM−1
` r`, (5.12)

where ω denotes the relaxation parameter and M−1 the additive Schwarz smoother. Note that
this operation can be performed by explicitly constructing the matrix M−1 as per Algorithm
5.1, or in a matrix-free manner following (5.5). The choice of the relaxation parameter ω for
the various FCM meshes applied in this manuscript is elaborated in Section 5.3.3.
The coarse-grid correction accelerates the convergence of the smooth components of the

error that are associated with small eigenvalues in level `. By taking advantage of the relation
between the residual r` and the error e`

A`e` = r` (5.13)

5.3. Multigrid solvers for multi-level hp-FCM 109

it is possible to approximate the smooth components of the error e` using a coarser discretiza-
tion (grid), where e` ≈ RT

` e`−1, by solving the coarse-grid system

A`−1e`−1 = r`−1. (5.14)

The right-hand side vector of this coarse system is formed by restricting the residual at level
` to level ` − 1, i.e. r`−1 = R`r`. Once this system has been solved, its solution termed the
coarse-grid correction can be transferred to level ` through the expression

x̃` = x̃` + RT
` e`−1. (5.15)

A single multigrid iteration or cycle consists of the repeated application of the smoothing
and coarse-grid correction steps on the different multigrid levels. An exception is, however,
made on the coarsest level ` = 0. Here, the coarse system is solved with either a direct solver,
if the system is small in size, or with an iterative solver before prolongating its solution to
level ` = 1. There are different ways of traversing the levels within a multigrid cycle, the most
prevalent of which are the V-cycle, W-cycle and the full multigrid cycle (FMG). A schematic
representation of each of these cycles is given in Figure 5.32. V-cycles are applied in this work
and a summary of the multigrid algorithm for this iteration type is given in Algorithm 5.2.

` = 3

` = 2

` = 1

` = 0

(a) V-cycle. (b) W-cycle. (c) FMG-cycle.

Figure 5.32: Illustration of three different types of multigrid iterations. The circular dots
represent ns smoothing steps performed on every level with ` 6= 0, while the square dots rep-
resent an “exact” solve performed on ` = 0. Downwards pointing arrows represent restriction
operations, while upwards pointing arrows represent prolongations.

Multigrid as a solver

Applying the multigrid algorithm as a solver entails the repetition of multigrid cycles until
the desired error tolerance of the finest problem is reached. This process is summarized for
the V-cycle in Algorithm 5.3. One quantity that is often used to judge the effectiveness of a
multigrid solver is the contraction number ρi. It is defined as the quotient of two consecutive
residual norms and is a measure of the error reduction in the iteration process. ρi is computed
as

ρi = ‖ri‖2

‖ri−1‖2
. (5.16)

Note that the subscripts in the above equation refer to multigrid iterations as shown in Al-
gorithm 5.3. ρmax is a measure that denotes the maximum contraction number in a series of
iterations.

110 5. Iterative solution schemes for multi-level hp-FCM

Multigrid as a preconditioner

Multigrid methods can be used to accelerate the convergence of Krylov space solvers. Early
research in this field can be found in [Braess, 1986; Braess and Peisker, 1986; Kettler, 1982].
Braess [1986] reports that multigrid as a preconditioner shows improved convergence in scenar-
ios where multigrid solver’s contraction number ρmax is larger than 1/3. Algorithm 5.4 shows
how the multigrid V-cycle can be used within a CG solver. In this thesis, a single multigrid
V-cycle is applied as a preconditioner in each iteration. When applying a multigrid method in
a CG solver, it is important that the multigrid cycle corresponds to the application of a sym-
metric preconditioner. For this reason, nonsymmetric smoothers such as Gauss-Seidel, SOR
and multiplicative Schwarz have to be replaced by their symmetric pre- and post-smoothing
versions.

Algorithm 5.2: x̃` = performVcycle(x̃`, r`, `)

1 if l 6= 0 then
2 # perform ns pre-smoothing steps
3 for i ∈ ns do
4 x̃` ← x̃` + ωM−1

` r`
5 end
6 # update residual
7 r` = b` −A`x̃`
8 # coarse grid correction
9 r`−1 = R`r`

10 x̃`−1 = performVcycle(0, r`−1, `− 1)
11 x̃` = x̃` + RT

` x̃`−1
12 r` = b` −A`x̃`
13 # perform ns post-smoothing steps
14 for i ∈ ns do
15 x̃` ← x̃` + ωM−1

` r`
16 end
17 else
18 # solve the coarse system
19 x̃` = solve(A`, r`)
20 end

5.3. Multigrid solvers for multi-level hp-FCM 111

Algorithm 5.3: x̃ = multigridSolver(A,b)

1 x = 0 # initial guess
2 r = b−Ax̃
3 # perform ncycles consecutive V-cycles
4 for i ∈ ncycles do
5 r = b−Ax̃
6 x = performVcycle(x̃, r, `max)
7 if ‖r‖/‖r0‖ < tol then
8 break;
9 end

10 end

Algorithm 5.4: x̃ = PCGMGSolver(A,b)

1 x = 0 # initial guess usually 0
2 p0 = 0, z0 = 0
3 r0 = b−Ax̃
4 z0 = performVcycle(r0, z0, `max)
5 # perform niters iterations
6 for k ∈ niters do

7 αk = rTk zTk
pTkApk

8 x̃k+1 = x̃k + αkpk
9 rk+1 = rk − αkApk

10 if ‖r‖/‖r0‖ < tol then
11 break;
12 end
13 zk+1 = performVcycle(0, rk+1, `max)

14 βk =
zTk+1rTk+1

zTk rk
15 pk+1 = zk+1 + βkpk
16 end

5.3.2 A hp-multigrid approach for the multi-level hp-method
Multigrid methods have been successfully applied to boundary conforming FE-methods based
on the p-version of the finite element method e.g. [Babuška et al., 1989; Craig and Zienkiewicz,
1985] and isogeometric analysis e.g. [Gahalaut et al., 2013; Hofreither et al., 2016; Tielen et al.,
2020], yielding convergence rates that are independent of the grid-size h. p-invariance of the
iteration count is, however, harder to achieve and is dependent on the type of smoother
employed and the problem type. In most cases, standard smoothers such as Jacobi or Gauss-

112 5. Iterative solution schemes for multi-level hp-FCM

Seidel result in convergence rates that deteriorate with increasing values of p, as shown in
[Gahalaut et al., 2013]. In [Tielen et al., 2020], it is shown that using an ILUT smoother in
an isogeometric p-multigrid framework helps achieve p-independence for the problem classes
considered therein. Likewise, smoothers based on the multiplicative Schwarz algorithm have
been shown to yield convergence rates independent of p for two-dimensional problems in
isogeometric analysis [de la Riva et al., 2019].
Approaches based on multigrid cycles have also been employed in immersed methods. An

algebraic multigrid solver is utilized in AgFEM to solve large scale problems in the range
of hundreds of millions of unknowns [Verdugo et al., 2019]. In [de Prenter et al., 2019b] a
h-multigrid approach for truncated hierarchical B-splines is presented and convergence rates
that are independent of the cut configuration and the element size are reported. An analysis
of the spectra arising from the application of different smoothers is given by de Prenter et al.
and results based on multiplicative Schwarz smoothing of immersed systems with up to 10
million unknowns are shown.
One possibility of constructing the nested multigrid spaces in high-order and adaptive finite

element methods is by defining them based on the values of p, the different levels of refinements
k, or a combination of p and k. Selecting the spaces in this way gives rise to so-called p-
multigrid and hp-multigrid techniques. Several works exist on the analysis and use of these
methods such as [Babuška et al., 1989; Craig and Zienkiewicz, 1985; Foresti et al., 1989;
Yserentant, 1985, 1986]. A comprehensive review of the origin and development of these
methods can be found in [Mitchell, 2010].
In this work, a multilevel multigrid method is proposed that takes advantage of the hier-

archical nature of the finite element spaces arising in FCM and the multi-level hp-refinement
scheme. As previously mentioned, FCM utilizes high-order integrated Legendre shape func-
tions that are hierarchical in nature, i.e. the set of basis functions of order p contains all
basis functions from 1 up to p − 1. Likewise, the superposition principle used to perform
h-refinements in the multi-level hp-method results in a hierarchical basis. Let N` denote the
set of basis functions that belong to the multigrid level `, then for each level in a p-multigrid
(for uniform meshes) or hp-multigrid (for multi-level hp-meshes) the following relation holds

N0 ⊂ N1 . . .N`−1 ⊂ N`. (5.17)

The hierarchical structure in (5.17) is also reflected in the degree of freedom vector u. The
vector of DOFs on level `, denoted by u`, is made up of coefficients from level `−1, represented
by u`−1 and entries solely on level `, denoted by w`, i.e.

u` =
[

u`−1
w`

]
. (5.18)

From (5.17) it follows that the basis functions spanning the (coarse) nested subspace can not
only be constructed by a linear combination of basis functions in the fine space, which is done
in restriction and prolongation, but are explicitly contained in the basis functions of the fine
space. This leads to an elegant and efficient multigrid framework since all restriction and
prolongation operators reduce to binary matrices which do not need to be explicitly applied.
Transitioning from one multigrid level to another is done easily by either leaving out specific
basis functions or re-introducing them back into the system. Equation (5.19) illustrates how

5.3. Multigrid solvers for multi-level hp-FCM 113

the DOFs on level ` can be “trimmed” to obtain the DOFs on level ` − 1. I represents a
identity matrix while the term 0 denotes a matrix in which all entries are zero.

u`−1 = [I, 0]
[

u`−1
w`

]
. (5.19)

For uniform grids with high-order elements, an arithmetic p-sequence is used to generate the
coarse subspaces, i.e. the value of p is progressively reduced until p = 1, see Mitchell [2010].
In the case of multi-level hp-grids, it is required to first reduce the polynomial order p in
the overlay meshes, before reducing the levels of refinement. This procedure ensures that the
resulting coarse spaces are subspaces.
The hierarchical nature of the FE-basis in FCM and the multi-level hp-scheme is also re-

flected in the system matrices. Consequently, computation of lower-level matrices is not needed
as this information is readily available. Equation (5.20) shows the structure of a hierarchical
matrix of level `, which consists of entries Ã` belonging to basis functions contained solely in
the highest level, a term Ã`−1 that contains entries of all lower levels up to `− 1 and a term
Ã`,`−1 that couples DOFs on level ` with all other DOFs.

A` =
[

Ã` Ã`,`−1
ÃT
`,`−1 A`−1

]
(5.20)

No distinction will be made from this point on in the manuscript between the p-multigrid
scheme for uniform meshes and the hp-multigrid approach of the multi-level hp-discretizations,
since the p-multigrid can be regarded as a special case of the hp-multigrid in which k = 0.
Figure 5.33 shows the hp-multigrid levels used for a one-dimensional multi-level hp-mesh. A
reduction in the p-level is performed first, followed by a reduction in the levels of refinement
until the lowest multigrid level with p = 1 and k = 0 is reached.

(a) ` = 4 with p = 3 and k = 2 (b) ` = 3 with p = 2 and k = 2 (c) ` = 2 with p = 1 and k = 2

(d) ` = 1 with p = 1 and k = 1 (e) ` = 0 with p = 1 and k = 0

Figure 5.33: Multigrid levels in a one-dimensional mesh with two levels of multi-level hp-
refinement (k = 2) and a polynomial order of p = 3.

114 5. Iterative solution schemes for multi-level hp-FCM

Remark 5.3.1. The p = 1 and k = 0 level is chosen as the coarsest level in the proposed hp-
multigrid approach. This allows a simple yet elegant parallel implementation, since only the
DOFs on the finest problem need to be distributed over the MPI tasks. All coarse sub-problems
in the multigrid hierarchy are able to reuse the parallel data structures that have already been
set up for the fine problem, and do not require any additional steps such as redistribution or
partitioning of the DOFs. It should be noted, however, that the p = 1, k = 0 problem can be
coarsened further using a standard geometric multigrid algorithm. This procedure can improve
the convergence of the coarse problem and is beneficial in applications where the solution of
the coarse problem is slow.

5.3.3 Selection of suitable smoothing strategies
The choice of an appropriate smoother is integral in achieving convergence rates that are
independent of the mesh parameter h. In specific problems, it is even possible to achieve
convergence rates that are independent of the element polynomial order, such as those reported
in [Tielen et al., 2020] or handled in Section 5.3.4.1 and 5.3.4.2.
When the multi-level hp-refinement is applied to boundary-conforming discretizations, stan-

dard smoothing techniques such as Jacobi smoothing or the Gauss-Seidel can be applied, as
both these approaches lead to convergence rates independent of h, see Section 5.3.4.1. These
techniques are, however, not suitable for FCM problems as shown in [de Prenter et al., 2019b]
as they fail to resolve the conditioning problems associated with cut cells. [de Prenter et al.,
2019b] shows that smoothers based on the additive and multiplicative Schwarz lemmas are
better suited for multigrid methods involving cut cells and presents results of multiplicative
Schwarz smoothing in different linear elastic examples.
As mentioned in the previous section, an additive Schwarz approach is applied in this work

since it is less computationally expensive than the multiplicative approach, and can be easily
parallelized as it does not require a coordinated application. This smoothing approach, how-
ever, requires sufficient stabilization in order to converge. It is well known that the convergence
of fixed-point iterations requires that the eigenvalues of the iteration matrix are bounded, i.e.

ρ(I− ωM−1A) < 1. (5.21)

In [de Prenter et al., 2019b], it is shown that the largest eigenvalue of the matrix M−1A
is bounded from above by the maximum overlap nmax of the additive Schwarz blocks i.e.
λmax(M−1A) ≤ nmax. Since the value of nmax is 2d for Cartesian grids, the relaxation param-
eter ω can be chosen as ω = 2/nmax, thus guaranteeing stability of the fixed-point iteration.
Note, however, that the relation between the largest eigenvalue and nmax is an inequality and
that it is possible to choose values for ω that are higher than 2/nmax. For the integrated Leg-
endre basis functions considered in this work, the best performance was achieved by choosing
ω = 1/3 for two-dimensional problems and ω = 2/15 for three-dimensional problems, when
using an additive Schwarz smoother based on elementwise blocks. When the additive Schwarz
blocks are chosen in a patchwise manner nmax is larger and the best convergence rates are
achieved using ω = 1/6 and ω = 1/18 in two and three dimensions respectively. The values
of ω suggested in this work were determined in a heuristic approach and achieve the mesh
independent convergence rates for different geometries.

5.3. Multigrid solvers for multi-level hp-FCM 115

It should be noted that different smoothing strategies can be applied on the different multi-
grid levels, e.g. additive Schwarz on the finest level and Gauss-Seidel or Jacobi smoothing on
lower levels. This is, however, not investigated in this thesis and additive Schwarz smoothing
is applied on all levels with ` 6= 0.

Computational costs

The two main procedures that influence the overall computational cost of the proposed multi-
grid solution scheme are: i) constructing and applying the additive Schwarz smoothers and
ii) solving the coarse problem.
Construction of the AS smoothers following (5.1) entails the inversion of sub-matrices derived
from basis function groups. The cost of this operation is dictated by the number and size of
these sub-matrices. The number of sub-matrices increases linearly with the number of ele-
ments. The maximum size of a sub-matrix formed from the additive Schwarz groups, denoted
by mmax, is proportional to the polynomial order p, the spatial dimension d, the manner in
which the AS groups are selected (elementwise or patchwise selection) and the number of
unknown field variables denoted by nf . For a Poisson problem nf = 1 while nf = 3 for a
three-dimensional linear elastic problem. Since the number of DOFs associated with the topo-
logical components for the tensor product and trunk space elements is known, it is possible to
compute an upper bound for mmax for uniform grids, see Table 5.4 and Figure 5.34a.

tensor product space trunk space
nf (np+ 1)3 nf (n+ 1)2(3np− 2n+ 1) for p < 4

0.5nf (n+ 1)(3n2p2 − 9n2p+ 6np+ 14n2 − 2n+ 2) for 4 ≤ p ≤ 5
nf (n3p3 − 3n3p2 + 9n2p2 + 20n3p− 9n2p+ 18(np− n3 + 2n2) + 6) for p ≥ 6

Table 5.4: Maximum size of the additive Schwarz groups,mmax, in a uniform three-dimensional
grid. p represents the element polynomial order, nf the number of field variables in the problem
and n is a factor that is equal to one for elementwise blocks and equal to two when patchwise
block selection is applied.

In the case of multi-level hp-grids,mmax is not bounded and its size depends on the refinement
level k and the refinement pattern applied to the mesh elements. Figure 5.34b shows the
value of mmax for the benchmark problem considered in Section 5.3.4.3. From Table 5.4 and
Figure 5.34 it is clear that the inversion of the patchwise additive Schwarz sub-matrices can
become increasingly expensive for high polynomial orders and refinement levels. It is therefore
important that optimized algorithms are used to perform these inversions. Our code framework
makes use of distributed and shared memory parallelism to accelerate the construction of the
additive Schwarz smoothers. For “small” sub-matrices, where Ai ∈ Rm×m and m < 1000,
the built-in invert function of the BOOST library is used for the inversion. When m exceeds
1000, the direct solver Pardiso [Schenk and Gärtner, 2011] is used to invert Ai by solving an
equation system with m right-hand side vectors. This operation can be written as AiX = B,
where B is a m×m matrix whose columns are made up of the unit vectors ej with j ∈ [0,m].

116 5. Iterative solution schemes for multi-level hp-FCM

1 2 3 4 5 6100

101

102

103

104

Polynomial order p

M
ax

im
u
m

gr
ou

p
si
ze

patchwise AS groups, product space
patchwise AS groups, trunk space

elementwise AS groups, product space
elementwise AS groups, trunk space

(a) Maximum AS group size for uniform grids.

1 2 3 4 5 6100

101

102

103

104

Polynomial order p

M
ax

im
u
m

gr
ou

p
si
ze

k = 0
k = 1
k = 2

(b) Maximum group size for the benchmark example
involving multi-level hp-refinement in Section 5.3.4.3.

Figure 5.34: Illustration of the maximum size of the basis function groups used to construct
the additive Schwarz smoothers for three-dimensional linear elastic problems.

The use of the Epetra package for the distributed storage of the additive Schwarz smoothers
M−1

` allows the numerical code presented in this thesis to make use of its optimized parallel
multiplication kernels. This ensures that the smoothers can be applied in an efficient and
scalable manner. The AztecOO package in Trilinos is utilized for the solution of the coarse
systems with p = 1 and k = 0. These systems are solved using the package’s parallel CG
solver and an additive Schwarz preconditioner.

5.3.4 Numerical examples
The performance of the proposed multigrid solution techniques are investigated in the following
numerical examples. Only SPD systems arising from problems in linear elasticity or Poisson’s
equation are considered in this section. A value ns = 5 is used in all examples, meaning that
five pre- and post-smoothing steps are applied on every multigrid level ` 6= 0 in a V-cycle.

5.3.4.1 Poisson problem with a manufactured solution

The first numerical examples investigates the performance of using the multigrid V-cycle as
a stand-alone solver and as a preconditioner within a Conjugate Gradient scheme. To this
end, the Poisson problem with a manufactured solution handled in Section 5.2.1 is applied on
two simple two-dimensional geometries that are depicted in Figure 5.35 . The first geometry
is a square-shaped domain of unit length, that shall be used to test the implementation of the
multigrid solvers when applied to boundary conforming discretizations in a series of numerical
experiments referred to as test case A. The second geometry constitutes a unit square with a
circular cavity of a radius r =

√
2/8 at its center. This domain is used to assess the solver

performance for FCM grids in studies referred to as test case B. A fixed penalty parameter
β = 105 is used in all experiments and the value of α is set to 10−6.

5.3. Multigrid solvers for multi-level hp-FCM 117

(a) Square domain — Test case A. (b) Square domain — Test case B.

Figure 5.35: Discretizations considered in test case A and B.

In both test cases A and B, the convergence behavior of multigrid as a solver and a pre-
conditioner is analyzed for different polynomial orders with p ∈ [2, . . . , 5] and mesh sizes
h = {1

8 ,
1
16 ,

1
32 ,

1
64}. Each solver is terminated when the value of the relative residual is below

10−9 or when the number of iterations exceeds 500. Moreover, four different smoothers are
applied: i) Jacobi smoothing, ii) Gauss-Seidel smoothing, iii) additive Schwarz smoothing
with elementwise blocks and iv) additive Schwarz smoothing with patchwise blocks.
The results of test case A are summarized in Table 5.7. In this boundary-conforming exam-

ple, all smoothers achieve convergence rates that are independent of the mesh size h. These
results indicate the correct implementation of the multigrid scheme. These convergence rates
are, however, dependent on the polynomial order for the Jacobi, Gauss-Seidel and elementwise
additive Schwarz smoothers as shown in Table 5.7 and indicated by the maximum contraction
of the residual for a mesh with h = 1

32 recorded in Table 5.5. These smoothers appear to
perform better for odd polynomial orders than for even orders. A similar odd-even pattern is
reported in [Babuška et al., 1989] and may lie in the asymmetry of the manufactured solution.
Convergence rates independent of the polynomial order p are obtained using the patchwise
additive Schwarz smoother.

Smoother
p 2 3 4 5

Jacobi .478 .391 .683 .617
Gauss-Seidel .125 .095 .362 .255

Elementwise AS .309 .252 .430 .414
Patchwise AS .162 .164 .140 .162

Table 5.5: Maximum contraction number ρmax of multigrid as a solver for different values of
p. The values are obtained in test case A for a mesh with h = 1

32 .

118 5. Iterative solution schemes for multi-level hp-FCM

Smoother
p 2 3 4 5

Jacobi .996 .997 .999 .998
Gauss-Seidel .998 .998 .998 *

Elementwise AS .519 .628 .734 .891
Patchwise AS .126 .103 .124 .119

Table 5.6: Maximum contraction number ρmax of multigrid as a solver for different values of
p. The values are obtained in test case B for a mesh with h = 1

32 .

The results of test case B are summarized in Table 5.8. The effect of the ill-conditioning
due to the cut cells is clearly seen in this example as the standard smoothers, i.e. the Jacobi
and Gauss-Seidel methods, fail to improve the conditioning of the linear systems and are
characterized by poor convergence of the multigrid solution techniques applied in this study.
An analysis of the spectra of the multigrid preconditioned system clearly shows that both
Jacobi and Gauss-Seidel smoothing fail to act on the small eigenvalues associated with cut
cells, see Figure 5.36. The additive Schwarz smoothers do a better job of detecting almost
linear dependent functions as shown in Table 5.8. Note that the elementwise smoother may
contain a few small modes that cause slow convergence when multigrid is utilized as a stand-
alone solver. These modes, however, only result in a few additional CG iterations, when the
multigrid algorithm is used as a preconditioner. The patchwise smoother robustly deals with
all small modes due to cut cells and results in convergence rates independent of h and p.

10−3 10−2 10−1 100 101

Re(λi)

-0.1

0

0.1

Im
(λ

i)

Jacobi smoothing

10−3 10−2 10−1 100 101

Re(λi)

-0.1

0

0.1

Im
(λ

i)

Gauss-Seidel smoothing

10−3 10−2 10−1 100 101

Re(λi)

-0.1

0

0.1

Im
(λ

i)

elementwise AS smoothing

10−3 10−2 10−1 100 101

Re(λi)

-0.1

0

0.1

Im
(λ

i)

patchwise AS smoothing

Figure 5.36: Comparison of the eigenvalues of the multigrid preconditioned systems for four
different smoothers i.e. a Jacobi smoother, a Gauss-Seidel smoother, an elementwise additive
Schwarz smoother and a patchwise additive Schwarz smoother. The spectra shown belong to
a mesh comprising of 8× 8 elements with a polynomial order p = 2.

5.3. Multigrid solvers for multi-level hp-FCM 119

Test case A: Convergence study for a square domain

Multigrid as a solver
Jacobi smoother (5,5)

p
h 1

8
1
16

1
32

1
64

2 23 25 25 24
3 17 16 15 15
4 31 33 35 37
5 24 24 26 27

CG with multigrid preconditioner
Jacobi smoother (5,5)

p
h 1

8
1
16

1
32

1
64

2 10 10 10 10
3 8 8 8 8
4 13 13 13 13
5 10 11 11 11

Multigrid as a solver
Gauss-Seidel smoother (5,5)

p
h 1

8
1
16

1
32

1
64

2 7 7 7 7
3 6 6 6 6
4 13 13 14 14
5 10 10 10 10

CG with multigrid preconditioner
symm. Gauss-Seidel smoother (5,5)

p
h 1

8
1
16

1
32

1
64

2 6 6 6 6
3 5 5 5 5
4 8 8 8 8
5 8 7 7 7

Multigrid as a solver
elementwise AS smoother (5,5)

p
h 1

8
1
16

1
32

1
64

2 12 13 13 13
3 10 10 10 9
4 17 17 17 17
5 14 12 13 13

CG with multigrid preconditioner
elementwise AS smoother (5,5)

p
h 1

8
1
16

1
32

1
64

2 7 8 8 8
3 7 7 7 7
4 9 9 9 9
5 8 8 8 8

Multigrid as a solver
patchwise AS smoother (5,5)

p
h 1

8
1
16

1
32

1
64

2 8 8 8 7
3 7 6 6 6
4 7 7 7 6
5 6 6 5 5

CG with multigrid preconditioner
patchwise AS smoother (5,5)

p
h 1

8
1
16

1
32

1
64

2 6 6 6 6
3 6 5 5 5
4 6 6 6 6
5 5 5 5 5

Table 5.7: Convergence study for ψ = 0 comparing the performance of different smoothers for
varying element sizes and polynomial orders. The figures in the tables represent the number
of iterations required to reach a tolerance in the relative residual of 10−9. Five pre- and
post-smoothing steps are performed per V-cycle on each multigrid level with ` 6= 0.

120 5. Iterative solution schemes for multi-level hp-FCM

Test Case B: Convergence study for a square domain with a circular cavity

Multigrid as a solver
Jacobi smoother (5,5)

p
h 1

8
1
16

1
32

1
64

2 * * * *
3 * * * *
4 * * * *
5 * * * *

CG with multigrid preconditioner
Jacobi smoother (5,5)

p
h 1

8
1
16

1
32

1
64

2 36 75 125 189
3 67 340 * *
4 167 * * *
5 * * * *

Multigrid as a solver
Gauss-Seidel smoother (5,5)

p
h 1

8
1
16

1
32

1
64

2 * * * *
3 * * * *
4 * * * *
5 * * * *

CG with multigrid preconditioner
Gauss-Seidel smoother (5,5)

p
h 1

8
1
16

1
32

1
64

2 46 95 188 224
3 106 435 * *
4 216 * * *
5 401 * * *

Multigrid as a solver
elementwise AS smoother (5,5)

p
h 1

8
1
16

1
32

1
64

2 12 18 12 13
3 134 58 13 12
4 * * 30 21
5 * * 101 20

CG with multigrid preconditioner
elementwise AS smoother (5,5)

p
h 1

8
1
16

1
32

1
64

2 8 10 9 9
3 9 11 10 9
4 14 13 11 10
5 16 14 11 10

Multigrid as a solver
patchwise AS smoother (5,5)

p
h 1

8
1
16

1
32

1
64

2 8 9 7 7
3 8 7 7 6
4 7 7 7 6
5 6 6 8 9

CG with multigrid preconditioner
patchwise AS smoother (5,5)

p
h 1

8
1
16

1
32

1
64

2 5 5 5 5
3 5 5 5 4
4 5 5 5 4
5 4 5 5 4

Table 5.8: Convergence study for ψ = 30◦ comparing the performance of different smoothers
for varying element sizes and polynomial orders. The figures in the tables represent the
number of iterations required by the solver while the symbol * indicates that the solver did
not converge to a tolerance of 10−9 within 500 iterations. Five pre- and post-smoothing steps
are performed per V-cycle on each multigrid level with ` 6= 0

5.3. Multigrid solvers for multi-level hp-FCM 121

5.3.4.2 Perforated linear elastic plate

The previous numerical example established the suitability of using a multigrid preconditioner
in conjunction with additive Schwarz smoothers in FCM problems arising from the Poisson
equation. The performance of this preconditioner is now investigated in the context of linear
elasticity. To this end, a square domain with a length of l = 4 is subjected to a tensional force
on one end and fully clamped on the other end as depicted in Figure 5.37a. The square domain
has four circular cavities with a radius of 0.3

√
2 and is characterized by an elastic modulus

E = 2.069 · 105 MPa and a Poisson’s ratio ν = 0.29. The finite cell method is applied in this
example with α = 10−8 in Ωfict and a penalty parameter β = 108. The number of elements
per direction is chosen such that h ∈ {1

8 ,
1
16 ,

1
32 ,

1
64}.

x

y

ty= 100

(a) Perforated linear elastic plate (b) Von Mises stress.

Figure 5.37: Setup and von Mises stress of the linear elastic perforated plate example.

Using the setup shown in Figure 5.37a, numerical studies are carried out that investigate
the convergence of a CG solver when the presented additive Schwarz techniques are employed
as preconditioners or as smoothers within an hp-multigrid preconditioner. The first study
is conducted on uniform grids with varying element sizes and polynomial orders, while the
second study analyzes multi-level hp-refined grids with a fixed polynomial order and varying
levels of refinement. In the latter case, elements intersected by the immersed boundary are
refined recursively to a predefined depth.
The results of the numerical study on uniform grids is summarized in Table 5.9. Faster

convergence is achieved for the systems that use a multigrid preconditioner compared to the
systems where additive Schwarz preconditioning is employed. The two coarsest meshes with
h = 1

8 and h = 1
16 have the peculiarity that their rather large elements lead to the occurrence

of basis functions at the center of the circular cavities that connect disjoint parts of the
physical domain, see Figure 5.37a. These functions are not treated by the elementwise additive
Schwarz blocks and cause slow convergence of the Conjugate Gradient solvers that employ
this technique as either a smoother or preconditioner. The patchwise additive Schwarz blocks,

122 5. Iterative solution schemes for multi-level hp-FCM

however, are able to treat these problematic modes since the basis functions in question are
grouped together in this approach.
The number of CG iterations when using patchwise additive Schwarz preconditioning or ele-

mentwise additive Schwarz preconditioning on sufficiently fine meshes, increases in proportion
to 1/h. When the additive Schwarz techniques are used as smoothers in a multigrid precondi-
tioner convergence rates independent of h are achieved. Moreover, this example shows that the
use of patchwise additive Schwarz blocks can lead to convergence rates that are independent
of the polynomial order, irrespective of whether they are utilized in a smoother or precondi-
tioner, whereas the CG solvers based on elementwise blocks show an increase in the number
of iterations with increasing polynomial orders.

CG with elementwise AS
preconditioner

p
h 1

8
1
16

1
32

1
64

2 60 76 135 262
3 91 81 135 262
4 170 101 140 262
5 349 135 150 262

CG with multigrid preconditioner
elementwise AS smoother (5,5)

p
h 1

8
1
16

1
32

1
64

2 12 9 9 9
3 19 12 9 9
4 35 15 11 11
5 67 19 12 12

CG with patchwise AS
preconditioner

p
h 1

8
1
16

1
32

1
64

2 43 64 109 210
3 43 64 109 210
4 43 65 109 210
5 43 64 109 210

CG with multigrid preconditioner
patchwise AS smoother (5,5)

p
h 1

8
1
16

1
32

1
64

2 7 7 7 7
3 7 7 7 7
4 7 7 6 6
5 6 6 6 6

Table 5.9: Perforated plate example: Convergence behavior of a CG solver for four differ-
ent preconditioners. The study considers uniform high-order finite cell meshes with varying
resolutions.

5.3. Multigrid solvers for multi-level hp-FCM 123

x

y

ty= 100

Figure 5.38: Setup of the perforated plate example involving multi-level hp-refinement. The
mesh is refined towards the circular cavities.

Table 5.10 shows the number of iterations required by the different preconditioner and
smoother configurations for multilevel hp-grids with quadratic elements and varying levels of
refinement. When the elementwise additive Schwarz blocks are utilized as both smoothers
and preconditioners, increasing the refinement depth leads to an increase in the number of
iterations. The multigrid algorithm that uses these elementwise blocks for smoothing does
not achieve convergence rates that are independent of the mesh parameter h. This behavior is
attributed to the fact that certain small modes can remain untreated by the elementwise blocks
leading to slow convergence, see Section 5.2.3. In the case of patchwise blocks, convergence
rates are achieved that are independent of the refinement depth employed. Furthermore, the
multigrid algorithm that employs a patchwise smoothing approach achieves mesh-independent
convergence rates.

124 5. Iterative solution schemes for multi-level hp-FCM

CG with elementwise AS
preconditioner

k
h 1

8
1
16

1
32

1
64

0 60 76 135 262
1 81 220 234 1192
2 183 367 807 2114
3 294 483 1803 2566

CG with multigrid preconditioner
elementwise AS smoother (5,5)

k
h 1

8
1
16

1
32

1
64

0 12 9 9 9
1 15 30 29 79
2 31 46 63 115
3 50 67 102 114

CG with patchwise AS
preconditioner

k
h 1

8
1
16

1
32

1
64

0 43 64 109 210
1 43 64 109 210
2 43 65 109 210
3 43 64 109 210

CG with multigrid preconditioner
patchwise AS smoother (5,5)

k
h 1

8
1
16

1
32

1
64

2 7 7 7 7
3 7 7 7 7
4 7 7 6 6
5 6 6 6 6

Table 5.10: Perforated plate example: Convergence behavior of a CG solver for four levels of
refinement and four different preconditioners. The study considers multi-level hp-refined finite
cell meshes with varying resolutions and a fixed polynomial order of p = 2.

5.3.4.3 Cube with spherical cavities

To assess the performance of the proposed hp-multigrid approach in a three-dimensional set-
ting, we now consider a simple example consisting of a linear elastic cube of unit length with
spherical cavities subject to compressional loading. The cube has the same material properties
as the perforated plate in the previous example and the values of α = 10−8 and β = 1010 are
chosen. The radii of the cavities are chosen such that r = 0.3

√
2. A homogeneous pressure

load P = 100 N/mm2 is applied on the upper surface of the cube as shown in Figure 5.39a.

5.3. Multigrid solvers for multi-level hp-FCM 125

(a) Cube geometry. (b) Von Mises stress.

Figure 5.39: Cube with spherical cavities example.

Influence of the polynomial order

The effect of the element polynomial order on the convergence of a Conjugate Gradient Solver
with a p-multigrid preconditioner utilizing elementwise additive Schwarz smoothing is the
subject of the following study. To this end, a sequence of meshes with varying element sizes
is analyzed. The mesh size is chosen such that h = { 1

32 ,
1
64 ,

1
128} resulting in the number of

unknowns summarized in Table 5.11.

p
h 1

32
1
64

1
128

2 417 339 3 188 763 24 853 851
3 727 659 5 569 083 43 448 139
4 1 337 499 10 284 507 80 451 675
5 2 246 859 17 335 035 135 864 459

Table 5.11: Number of unknowns for trunk space hexahedral elements in the study of the
influence of p on the convergence of the Conjugate Gradient Solver with a p-multigrid precon-
ditioner.

Similar to the two-dimensional benchmark cases, the proposed p-multigrid approach leads
to convergence rates that are independent of the mesh size h in the example at hand as shown
in Figure 5.40. The number of iterations ranges between 16 and 19 for p = 2, between 14 and
15 for p = 3, between 22 and 23 for p = 4 and between 22 and 26 for p = 5.

126 5. Iterative solution schemes for multi-level hp-FCM

100 101 102

100

10−2

10−4

10−6

10−8

10−10

Number of iterations

‖r
‖/
‖b
‖

h = 1
32

h = 1
64

h = 1
128

(a) Relative residual for p = 2.

100 101 102

100

10−2

10−4

10−6

10−8

10−10

Number of iterations

‖r
‖/
‖b
‖

h = 1
32

h = 1
64

h = 1
128

(b) Relative residual for p = 3.

100 101 102

100

10−2

10−4

10−6

10−8

10−10

Number of iterations

‖r
‖/
‖b
‖

h = 1
32

h = 1
64

h = 1
128

(c) Relative residual for p = 4.

100 101 102

100

10−2

10−4

10−6

10−8

10−10

Number of iterations

‖r
‖/
‖b
‖

h = 1
32

h = 1
64

h = 1
128

(d) Relative residual for p = 5.

Figure 5.40: Convergence of the CG solver with a p-multigrid preconditioner and elementwise
additive Schwarz smoothing for hexahedral trunk space elements.

Figure 5.41 shows the computational cost of the CG solver with a p-multigrid focusing on the
time spent to construct the smoother and performing the CG iterations. The latter procedure
includes the application of the smoother and the solution of the coarse problem. From Figures
5.41a and 5.41b one can see that the computational cost of the solver increases for higher
polynomial orders.

5.3. Multigrid solvers for multi-level hp-FCM 127

p = 2 p = 3 p = 4 p = 5

0

20

40

1.13

5.31

17.23

46.16

1.23 2.83

13.1

31.35

T
im

e
[s
]

h = 1
32

construct smoother

perform iterations

(a) CPU timings for h = 1
32 . All simulations are run

on 96 cores.

p = 2 p = 3 p = 4 p = 5

0

20

40

1.11

7.08

21.93

48.29

2.04 3.38

12.97

33.6

T
im

e
[s
]

h = 1
64

construct smoother

perform iterations

(b) CPU timings for h = 1
64 . All simulations are run

on 768 cores.

Figure 5.41: Execution time for the CG solver with a p-multigrid preconditioner.

Influence of the refinement level

The effect of the refinement level on the performance of the hp-multigrid preconditioner is
now studied. Starting from an initial grid of 323 elements quadratic elements, the mesh is
refined in two steps towards the spherical cavities yielding a total of 4.1 · 105, 5.2 · 105 and
8.9 · 105 DOFs for k = 0, k = 1 and k = 2, respectively. The patchwise additive Schwarz
groups are used to construct the smoothers that are applied on every multigrid level ` 6= 0 in
analogy to the two-dimensional examples considered in the previous studies. This approach
yields convergence rates that are independent of the refinement level as shown in Figure 5.42.

128 5. Iterative solution schemes for multi-level hp-FCM

100 101 102

100

10−2

10−4

10−6

10−8

10−10

Number of iterations

‖r
‖/
‖b
‖

k = 0 k = 1 k = 2

(a) Convergence behavior.
k = 0 k = 1 k = 2

0

100

200

3.5
14.77

183.79

0.87 1.21 4.4

T
im

e
[s
]

construct smoother

perform iterations

(b) Computation cost of the hierarchical multigrid
solver for a set of simulations running on 384 cores.

Figure 5.42: Performance of the CG solver with an hp-multigrid preconditioner and patch-
wise additive Schwarz smoothing for a three-dimensional benchmark involving multi-level hp-
refinement.

The computational cost of the solver for the different refinement levels considered is shown
in Figure 5.42b. The results shown are obtained in hybrid simulations on 394 cores that
are partitioned into 32 MPI tasks each with 6 OMP threads. As expected, the inversion
of the sub-matrices for the construction of the patchwise AS smoothers is the most time-
consuming operation. This procedure is performed using the sparse direct solver Pardiso,
since it outperforms the built-in invert function of the BOOST library [Schling, 2011] for large
matrices. The time spent setting up the patchwise smoothers can be further reduced by the
use of a more optimized inversion algorithm. Moreover, it is possible to conceive different
strategies for the grouping of basis functions that yield smaller group sizes and therefore lower
computation times.

5.3.4.4 Loading of an aluminum rod

The next three-dimensional example considers the loading of an aluminum rod. The rod has
an elastic modulus E = 70GPa and a Poisson’s ratio ν = 0.3. Connecting rods are typically
used in mechanical engineering to transform the linear movements of a piston into circular
motion of a crankshaft in combustion engines.

5.3. Multigrid solvers for multi-level hp-FCM 129

lx

lz

ly

∂ΩN

∂ΩD

(a) Rod geometry and boundary condition surfaces. (b) Finite cell mesh.

Figure 5.43: Loading of an aluminum connecting rod.

Figure 5.43a shows the geometry of the connecting rod with lx = 150 mm, ly = 60 mm and
lz = 20 mm. The cylindrical surfaces labeled ΩD are fixed using the penalty method with
a penalty parameter β = 106. A surface load tx = 10N/mm2 is applied on the cylindrical
surfaces labeled ΩN in the direction of the rod’s shaft. The resultant force acting on the rod
is Fx = 2πrh · tx = 2π · 20 · 10 ≈ 12.566 kN.
In this example, the performance of the multigrid solution techniques developed in this thesis

is assessed in a practical engineering application. To this end, three finite cell discretizations
of the rod with h ∈ {2, 1, 0.5} are considered and the polynomial degree of the grids chosen as
p ∈ {2, 4}. Table 5.12 summarizes the number of DOFs in each grid. An octree scheme with a
depth of 3 is used for the integration of the element matrices. The resulting linear systems are
solved using a preconditioned CG solver. In the study at hand, the convergence behavior and
execution time of the iterative solver with elementwise additive Schwarz preconditioner and
the hierarchical multigrid preconditioner are compared in a practical engineering application.
Figure 5.44 shows the displacement magnitude and von Mises stress in the aluminum rod that
result from the loading process.

DOFs
h mesh resolution p = 2 p = 3 p = 4
2 75× 30× 10 156 594 271 596 492 285
1 150× 60× 20 1 066 059 1 861 425 3 410 673
0.5 300× 120× 40 7 880 868 13 755 963 25 365 804

Table 5.12: Summary of the number of DOFs for the different discretizations considered in
the aluminum rod example.

130 5. Iterative solution schemes for multi-level hp-FCM

(a) Displacement magnitude. (b) Von Mises stress.

Figure 5.44: Visualization of the displacement magnitude and the von Mises stress.

The convergence behavior for the different finite cell meshes considered in this example
is shown in Figure 5.45. Both preconditioners yield the expected convergence rates i.e. the
elementwise additive Schwarz preconditioner yields convergence rates that are proportional
to h−1, while the use of the p-multigrid preconditioner leads to convergence rates that are
independent of the mesh size. Moreover, there is only a minimal difference in the convergence
behavior of different polynomial orders for all preconditioners.
Although multigrid solution techniques lead to lower iteration counts than single-grid meth-

ods, they do not necessarily lead to faster execution times than single-grid solvers. To study
the computational efficiency of the single-grid and multigrid preconditioning techniques sug-
gested in this thesis, an analysis is conducted in which the number of processors is increased
in proportion to h−1 from 48 to 3072 cores (1 to 64 nodes). The amount of time needed to
perform the CG iterations is monitored for the different meshes and preconditioner config-
urations. All simulations runs are performed on the SuperMUC-NG system at the Leibniz
Supercomputing Center and comprise of hybrid computations with 8 MPI tasks per node and
6 OpenMP threads per task.

5.3. Multigrid solvers for multi-level hp-FCM 131

104 105 106 107 108
100

101

102

Number of DOFs

T
im

e
[s
]

p = 4, EAS preconditioner
p = 4, MG preconditioner
p = 3, EAS preconditioner
p = 3, MG preconditioner
p = 2, EAS preconditioner
p = 2, MG preconditioner

Figure 5.46: Comparison of the execution time of a CG solver for two different preconditioners:
an elementwise additive Schwarz preconditioner (EAS) and a p-multigrid preconditioner (MG).

Figure 5.46 shows the execution time of the CG solver for the two different preconditioners
considered in this study. The CG solver using the multigrid preconditioner outperforms the
single-grid solver for all polynomial orders higher than p ≥ 3. The example at hand clearly
shows that multigrid preconditioning can help improve the efficiency of high-order immersed
FE-analysis. The multigrid preconditioned CG solver presented in this thesis can, however,
be further optimized to improve its weak scalability. In the current study, the solution of
the coarse problem with p = 1 is the most time-consuming routine in the multigrid solver.
Improving the solution of the coarse system will have a positive effect on the overall efficiency
of the proposed solver.

Comparison to different iterative solvers

The final numerical study in this example compares the preconditioning techniques pro-
posed in this thesis, i.e. additive Schwarz preconditioning and an hp-multigrid scheme for
immersed methods, to different solvers and preconditioners available in the AztecOO package
of Trilinos. To this end, the linear system arising from the aluminum rod with h = 2 and
p = 3 is solved using different iterative solvers. All simulations are run on four nodes of the
SuperMUC-MG and each solver’s convergence behavior and execution time are monitored.

132 5. Iterative solution schemes for multi-level hp-FCM

100 101 102 103 104 105

102

100

10−2

10−4

10−6

10−8

10−10

Number of iterations

‖r
‖/
‖b
‖

cgmg-eas cg-eas gmres-ilu
cg-diag cg-amg

(a) Relative residual.

cg
m
g-
ea
s

cg
-e
as

cg
-d
ia
g

cg
-a
m
g

gm
re
s-
il
u

0

500

1000

1500

2000

1.671.7926.46

1,867

470

T
im

e
[s
]

(b) Solver time.

Figure 5.47: Comparison of the convergence behavior and execution time of different iterative
solvers in the aluminum rod example.

In the study at hand, the convergence behavior and execution time of five different iterative
solution techniques is compared in Figures 5.47a and 5.47b. The solvers applied include:
i) a CG solver with diagonal scaling, denoted by cg-diag, ii) a CG solver with elementwise
additive Schwarz preconditioning, denoted by cg-eas, iii) a CG solver with a p-multigrid
preconditioner and elementwise additive Schwarz smoothing, denoted by cgmg-eas, iv) a CG
solver with an algebraic multigrid solver based on smoothed aggregation, denoted by cg-amg
and iv) a GMRES solver with an incomplete LU preconditioner, gmres-ilu. Note that the
solvers cg-diag, cg-amg and grmes-ilu are available in the AztecOO package in Trilinos. The
results in Figure 5.47 show that the additive Schwarz-based solution techniques put forward
are well suited for immersed systems as they not only show superior convergence behavior
than conventional solvers but also exhibit lower computational times.

100 101 102 103 104

100

10−2

10−4

10−6

10−8

10−10

Number of iterations

‖r
‖/
‖b
‖

h = 2 h = 1 h = 0.5

(a) Additive Schwarz preconditioner for p = 2 meshes.

100 101 102

100

10−2

10−4

10−6

10−8

10−10

Number of iterations

‖r
‖/
‖b
‖

h = 2 h = 1 h = 0.5

(b) p-multigrid preconditioner for p = 2 meshes.

100 101 102 103 104

100

10−2

10−4

10−6

10−8

10−10

Number of iterations

‖r
‖/
‖b
‖

h = 2 h = 1 h = 0.5

(c) Additive Schwarz preconditioner for p = 3 meshes.

100 101 102

100

10−2

10−4

10−6

10−8

10−10

Number of iterations

‖r
‖/
‖b
‖

h = 2 h = 1 h = 0.5

(d) p-multigrid preconditioner for p = 3 meshes.

100 101 102 103 104

100

10−2

10−4

10−6

10−8

10−10

Number of iterations

‖r
‖/
‖b
‖

h = 2 h = 1 h = 0.5

(e) Additive Schwarz preconditioner for p = 4 meshes.

100 101 102

100

10−2

10−4

10−6

10−8

10−10

Number of iterations

‖r
‖/
‖b
‖

h = 2 h = 1 h = 0.5

(f) p-multigrid preconditioner for p = 4 meshes.

Figure 5.45: Aluminium rod example: Convergence of a CG solver with two different precondi-
tioners; i) an elementwise additive Schwarz preconditioner and ii) a p-multigrid preconditioner
and elementwise additive Schwarz smoothing. The considered grids comprise of trunk space
hexahedral elements with different polynomial orders.

135

Chapter 6

Application of the finite cell method to
metal additive manufacturing

Numerical simulations are becoming increasingly important in the field of metal additive man-
ufacturing (AM). In general, simulations in the field of metal additive manufacturing can be
divided into two groups; AM process simulations and AM product simulations. Process sim-
ulations involve a model-based representation of the printing procedure and aim to reproduce
the relevant physical effects and changes taking place using numerical methods. Such simu-
lations provide valuable insight into the process’ underlying physical phenomena and can be
used to improve process parameters leading to better quality products. Product simulations
are commonly performed to investigate the suitability of the final AM product for its intended
use i.e. whether the product exhibits the desired physical properties e.g. mechanical response,
porosity, thermal conductivity. Process and product simulations can be performed in tandem
to optimize the properties of the final product.
The chapter at hand portrays how the finite cell method, parallelism and multi-level hp-

refinement can be applied in the context of metal additive manufacturing. First, it is shown
how the developed methods can be used in product simulations of additively manufactured
micro-architectured components. Starting from CT scans of the specimens, its is shown how
the mechanical properties of bodies with complex microstructures can be determined. The
latter part of this chapter is dedicated to the simulation of the selective laser melting process
(SLM) using the methods presented in this thesis. The ease of mesh generation in FCM is
advantageous in these simulations, as it allows the consideration of bodies with complex geo-
metrical shapes. Moreover, the growth of the additive manufacturing part can be easily mod-
eled via an evolving embedded domain Ωphys. Thermal- and thermo-mechanical simulations
are presented that show the benefit of using FCM, parallelism and multi-level hp-refinement
for AM process simulations.

6.1 Virtual material characterization of AM products 1

The physical properties of additively manufactured products highly depend on the param-
eters of the process used to fabricate them. It is common for these products to exhibit

1The following section is based on [Korshunova et al., 2020]

136 6. Application of the finite cell method to metal additive manufacturing

significant variations from the intended geometry such as process-induced porosity, different
surface roughness, or other undesired morphological variations that affect the product’s overall
physical behavior. Finite element simulations provide a means of assessing the usability of
these imperfect products through virtual material characterization. These simulations mainly
take computer tomographic images of the products as their input. Boundary-conforming mesh
generation for imperfect AM geometries is quite involving especially when small geometrical
features need to be resolved. The finite cell method is better suited from image-based FE-
simulations than boundary-fitting methods since it can be readily applied to the CT scans
of the AM products. The following section presents how the finite cell method and parallel
computing techniques can be applied in the material characterization of additively manufac-
tured porous micro-architectured components. The macroscopic behavior of such components
is significantly influenced by morphological imperfections that can be easily captured using
FCM.
The results in this section are based on the work presented in [Korshunova et al., 2020]. This

publication considers three different numerical methods for the characterization of imperfect
AM products based on CT scans namely i) Direct numerical simulations (DNS) using high-
order Voxel FEM ii) Direction numerical simulations using the finite cell method and iii) An
approach that combines the finite cell method and numerical homogenization techniques. The
modularity and generality of the finite cell method and the parallel approach presented in
Section 4.4 allows these three methods to be incorporated into AdhoC++. Only the first two
approaches will be considered in the following section for the sake of brevity.

6.1.1 Characterization of a microporous metallic structure
The following study seeks to determine the macroscopic behavior of additively manufactured
foam structures produced by Selective Laser Melting. The structures are fabricated by Siemens
AG and are made up of an Inconel®718 alloy with a Young’s modulus E = 190GPa and a
Poisson’s ratio ν = 0.294. Tensile experiments are performed on three specimens of the foam
structure yielding the macroscopic properties provided in Table 6.1. The wide range of values is
attributed to the difficulty in controlling the SLM process parameters at the mircoscopic level
resulting in manufacturing defects that affect the reproducibility of the parts. The specimens
are of type specimen 600 with a geometrical form as shown in Figure 6.1a.

Specimens Ezz [MPa] νxy [−] νxz [−]
600 L1-L3 15 339. . . 26 731 -0.04. . . 0.13 0.05. . . 0.14

600 L2 Narrow 20 851 -0.04 0.08
600 L2 wide 25 915 - -

Table 6.1: Specimen 600: Results of the tensile experiments of three specimens.

6.1. Virtual material characterization of AM products 137

(a) Inconel®718 specimen 600. (b) Coronal slice of the unsegmented CT scan.

(c) Voxel model after segmentation - Specimen 600 L2.

Figure 6.1: Geometry of the Inconel®718 specimen 600

In order to carry out the virtual testing through numerical simulations, one of the Specimen
600 L2 foams was subjected to computer tomography and segmented using deep learning
techniques as outlined in [Korshunova et al., 2020]. Figure 6.1b shows a slice through the
unsegmented CT scan while Figure 6.1c shows the final 3D voxel model after segmentation.
The segmented CT scan is used as input of the numerical simulations and has a resolution of
800× 368× 400.
The simulation pipeline for the DNS with voxel FEM and the finite cell method are rather

similar with the major difference being the setup and nature of the computational mesh. Voxel
FEM fully resolves the geometry of the specimen by taking one element per voxel while the
immersed approach in FCM allows the use of much coarser meshes with several voxels within
a single element and resolves the specimen’s geometry only at integration level. Standard
Gauss quadrature is applied in voxel FEM simulations while the voxel integration approach
presented in Section 2.3.2.1 is used in all FCM computations. The virtual tensile tests are
performed by applying a virtual displacement field on the top and bottom end surfaces of the
foam specimen in x-direction. To guarantee comparability of the results, the penalty method is
used in all simulations for the application of the boundary conditions. Furthermore, elements
from the trunk space are used in both the voxel FEM and FCM simulations. Two different
discretizations are used for the FCM simulations, the first mesh consists of a 100 × 46 × 100

138 6. Application of the finite cell method to metal additive manufacturing

elements, with each element containing 8×8×4 voxels, while the second FCM mesh comprises
200× 92× 200 elements, with each element containing 4× 4× 2 voxels.
The effective elastic modulus of the foam specimen is determined from the quotient of the

average stress and average strain obtained by performing linear-elastic simulations using the
described setup. The parallelization scheme using fully distributed mesh data structures is
utilized to this end. Furthermore, the elementwise additive Schwarz preconditioning approach
is used in conjunction with a parallel Conjugate Gradient solver for the solution of the linear
system. A convergence study of the elastic modulus is performed by raising the polynomial
order of the meshes such that p ∈ [1, 6] for the FCM simulations and p ∈ [1, 4] for the voxel
FEM computations. The total number of unknowns in each computation is summarized in
Table 6.1.

FCM voxel FEM
p 100× 46× 100 elements 200× 92× 200 elements 800× 368× 400 elements
1 1 067 010 3 421 977 118 600 659
2 3 953 580 12 714 699 451 734 033
3 6 840 150 22 007 421 784 867 407
4 12 272 916 39 560 592 1 428 159 774
5 20 251 878 65 374 212 -
6 31 504 386 101 839 776 -

Table 6.2: Number of DOFs in the different simulation setups.

Convergence of the Young’s modulus Exx

The Young’s modulus in x-direction is determined in each numerical simulation and compared
to the solution of the high-order voxel FEM simulation with a polynomial order of p = 4. This
value of Exx = 23584.62MPa is close to the average value obtained from the experiments of the
foam specimens of type 600 L2, see Figure 6.1. It should be noted, however, that the quality
of the overkill solution obtained using high-order voxel FEM is subject to modeling errors due
to the stepwise definition of the elastic modulus and dependent on the resolution of the CT
scan. The relative error in Exx with respect to the overkill solution is plotted over the number
of degrees of freedom and displayed in Figure 6.2. The results of this convergence study show
that the finite cell method is able to provide acceptable values of the elastic modulus without
the need for fully resolving the microstructure with the computational mesh. The coarsest
FCM discretization provides an error of 9.74% with respect to the overkill solution while the
finest one provides an error of 5%. Voxel FEM, as expected, provides a better approximation
of the elastic modulus since the mircostructure is fully resolved by the mesh. This high
resolution, however, comes at a cost since more computational resources are needed to run
these simulations. The simulation with 1.42 billion DOFs, for example, required a minimum
of 700 nodes of the SuperMUC-NG cluster. The study at hand also shows the benefit of using
higher order polynomials as they lead to better quality approximations of Exx in both voxel
FEM and FCM.

6.2. Modeling heat transfer in selective laser melting 139

105 106 107 108 109
0.2

1

5

10

25

50

E∗
xx = 25 881.40MPa

E∗
xx = 24 745.79MPa

Degrees of freedom

R
el

at
iv

e
er

ro
r

in
E

x
x
,[

%
]

100×46×100 elements, Embedded DNS
200×92×200 elements, Embedded DNS
voxel FEM

Figure 6.2: Specimen 600: Convergence of the directional Young’s modulus Exx.

6.2 Modeling heat transfer in selective laser melting
Selective laser melting is a laser powder bed fusion (LPBF) process in which a concentrated
laser beam is used to melt selected regions of a powder bed, allowing a part to built up in a
layer-by-layer fashion. Different modeling approaches can be used when simulating the SLM
process. These approaches consider different spatial and temporal scales and can be grouped
into powder models, microstructure models and part-scale models [King et al., 2015]. In this
thesis, only part-scale models are considered for the thermal simulation of SLM processes: a
high-fidelity approach that explicitly resolves the laser spot and an m-layer-by-m-layer model
that averages the heat input during a heating step. The section at hand shows how the finite
cell method can be utilized in the simulation of the SLM process. It begins with a summary of
the governing equations before illustrating how FCM can be used in high-fidelity and part-scale
layerwise simulations.

6.2.1 Governing equations
The heat transfer during the SLM process can be modeled using the balance of energy equation
that relates the rate of change in volumetric enthalpy H to the heat input per unit volume Q
and the heat conduction flux q as shown in (6.1), where the time is denoted by the variable t
and the conductivity by κ. Note that the effects of mass transfer are neglected in the below
approach.

∂H

∂t
−∇ · q = ∂H

∂t
−∇ · (κ∇T) = Q. (6.1)

140 6. Application of the finite cell method to metal additive manufacturing

The volumetric enthalpy H is defined as a function of the temperature T , a reference temper-
ature Tref and a set temperature-dependent quantities, the specific heat capacity c, density ρ,
latent heat L and a phase change function fpc, as shown in (6.2).

H(T) =
T∫

Tref

ρc dT + ρLfpc. (6.2)

The phase change function fpc describes the relative volume fraction of the solid and liquid
phases of a material as a function of the temperature. Its shape depends on the nature of the
SLM process and the material’s thermal properties. Pure materials generally undergo isother-
mal phase change from the solidus to liquidus states (and vice versa) and are characterized
by a distinct melting (solidification) temperature Tm. In this case, a Heavyside step function
can be used to described fpc as shown in the below equation.

fpc(T) =
{

1 T ≤ Tm
0 T > Tm

. (6.3)

Most alloys do not have a distinct melting temperature but rather solidify over a temperature
range. For numerical reasons, it is common to use a smooth regularization of fpc for both pure
materials and alloys given by

fpc(T) = 1
2

[
tanh

(
S

2
Tl − Ts

(
T − Ts + Tl

2

))
+ 1
]
. (6.4)

The shape and slope of the regularized phase change function is controlled by a parameter S
and the solidification range defined by the temperature Ts at which the material is completely
solid and the temperature Tl at which the material is completely molten. Figure 6.3 illustrates
the phase change functions for the isothermal and non-isothermal cases.

T

fpc

Tm
0

1

(a) Isothermal phase change.

T

fpc

0

1

Ts Tl

(b) Non-isothermal phase change.

S = 2

S = 3

S = 4

Figure 6.3: Phase change functions for the isothermal and non-isothermal cases.

Inserting (6.2) in (6.1) yields the strong form of the nonlinear heat equation with phase change
that reads: Find T for all x ∈ Ω that satisfies the equation

ρc
∂T

∂t
+ ρL

∂fpc
∂t
−∇ · (κ∇T) = Q, (6.5)

6.2. Modeling heat transfer in selective laser melting 141

subjected to an initial condition and the Dirichlet and Neumann boundary conditions in (6.6)
with the term T0 representing the initial temperature and T̄ denoting a prescribed temperature.
It is common to use a prescribed temperature to model the heat conduction through the
building platform e.g. [Chiumenti et al., 2017].

Initial condition: T (x, t = 0) = T0 in Ω, (6.6a)
Prescribed temperature : T (x, t) = T̄ on ∂ΩD, (6.6b)

Heat loss over the boundaries : (κ∇T) · n = q on ∂ΩN . (6.6c)

In SLM, the total heat loss q over the boundary ∂ΩN is driven by three main mechanisms,
namely, i) the convection of heat through the surrounding environment that is expressed us-
ing Newton’s law. It takes into account the ambient temperature Te and the heat transfer
coefficient for convection between the printed material and the environment in the printing
chamber as shown in (6.7a), ii) the conduction of heat through the powder that is also com-
puted using Newton’s law as shown in (6.7b) and takes into account the average temperature
of the powder Tp in areas away for the HAZ and the heat transfer coefficient by conduction
hcond between the printed material and the powder and iii) heat radiation that is computed
using the Stefan-Boltzmanns’s law as shown in (6.7c). Here, the Stefan-Bolzmann constant σ
and the emissivity of the radiating surface ε are related to the temperature T of the radiating
surface and the ambient temperature Te.

Convection through the surrounding : qconv(T) = hconv(Te − T) on ∂Ωe, (6.7a)
Conduction through the powder : qcond(T) = hcond(Tp − T) on ∂Ωcond, (6.7b)

Heat loss by radiation : qrad(T) = σε(T 4
e − T 4) on ∂Ωe. (6.7c)

Following [Chiumenti et al., 2017] it is possible to express the heat loss by radiation in (6.7c)
in terms of a Newton’s law as

qrad(T) = hrad(Te − T) on ∂Ωe, with hrad = σε
(
T 3 + T 2Te + TT 2

e + T 3
e

)
. (6.8)

We follow the approach in [Chiumenti et al., 2017] and utilize the effective heat loss term qloss
presented in (6.9) that combines the contributions of convection and radiation since it is hard
to distinguish the effect of these heat transfer modes in practice. It should be noted that the
resulting heat transfer coefficient hloss has no direct physical interpretations and has to be
calibrated with experiments.

qloss(T) = hloss(Te − T) on ∂Ωe. (6.9)

6.2.2 Spatial and temporal discretization
The finite element method can be readily applied to the strong form in (6.5) resulting in
continuous the weak form written as

∫
Ω
ψρc

∂T

∂t
dΩ +

∫
Ω
ψρL

∂fpc
∂t

dΩ +
∫

Ω
∇ψ · (κ∇T) dΩ =∫

Ω
ψQ dΩ +

∫
∂Ωe

ψ qloss dΩ +
∫
∂Ωcond

ψ qcond dΩ, (6.10)

142 6. Application of the finite cell method to metal additive manufacturing

where ψ is a test function that vanishes on ∂ΩD. This equation can be discretized within
the Bubnov-Galerkin framework yielding the semi-discrete system of equations given by

CṪ + L̇ + KT = F, (6.11)

with the capacitance matrix C, conductivity matrix K, load vector F, latent heat vector
L and the vector of unknown temperature coefficients T. The underlying integrals for the
computation of the terms in (6.11) and the details pertaining to the temporal discretization
of (6.11) can be found in [Kollmannsberger et al., 2018].

6.2.3 The heat source in high-fidelity SLM simulations
In high-fidelity thermal SLM simulations, the heat input due to the laser is modeled by
incorporating the shape and size of the laser spot in the numerical model. In this thesis, the
strategy presented in [Özcan et al., 2019] is used and the heat input modeled as a moving
body load that is based on Goldak’s ellipsoidal model [Goldak et al., 1984]. Equation 6.12
shows the heat source q(x, y, z). The variables xc, yc, zc represent the center of the laser spot
while lx, ly and lz denote the semi-axes of the ellipsoid and Q denotes the laser power.

q(x, y, z) = 6
√

3Q
π
√
π lr lr ld

e
−3
(x− xc

lr

)2

e
−3
(y − yc

lr

)2

e
−3
(z − zc

ld

)2

, (6.12)

6.2.3.1 Simulating the fabrication on an aluminum specimen

The following benchmark example shows the interplay of the finite cell method, multi-level hp-
refinement and parallel computing for high-fidelity thermal SLM simulations. It considers an
aluminum specimen with a simple geometry, see Figure 6.4a, that is made up of an aluminum
AlSi10Mg alloy. Figure 6.5 shows the material properties of the alloy that are relevant for the
thermal analysis. The emissivity of the metal is set to 0.47 and a latent heat value of 270 000
J/Kg is used while the initial temperature is set to 25◦C.

6.2. Modeling heat transfer in selective laser melting 143

5 mm

5m
m

5 mm

(a) Final geometry of the aluminum specimen. (b) Visualization of the laser path.

Figure 6.4: Geometry of the aluminum specimen and visualization of the laser path.

Simulation parameters

Apart from the material properties given in Figure 6.4, it is necessary to provide additional
process parameters when performing high-fidelity simulations such as the laser specifications.
In the example at hand, the following process parameters are used.

Laser power 350 W
Laser velocity 1100 mm/s

Laser spot radius 0.04 mm
Hatch distance 0.08 mm

Table 6.3: Process parameters

Problem setup

The example at hand is intended to verify the parallel implementation and the data transfer
algorithms presented in Section 4.4.3 and therefore uses certain simplifications that aim at
reducing the computational cost. First, it is assumed that the specimen has already been
built to a height of 1mm and the simulation commences at this height. Secondly, the base
plate is not modeled since only the evolution of the melt-pool is of interest in the current
study.
The specimen geometry is discretized with a mesh comprising of 32×32×16 elements. This

mesh is refined in four steps towards the laser spot using the multi-level hp-method. Since the
laser position is known a priori, it is possible to pre-refine the mesh along the laser track and
update the refinement every tr time steps. This increases the efficiency of the simulation as
load balancing only needs to be performed every tr time steps when the discretization changes.

144 6. Application of the finite cell method to metal additive manufacturing

0 100 200 300 400 500 600 700

T [◦C]

0.0

0.2

0.4

0.6

0.8

1.0

L
iq

u
id

fr
ac

ti
on

[-
]

0 100 200 300 400 500 600 700

T [◦C]

2.3

2.4

2.5

2.6

2.7

D
en

si
ty

[g
/c

m
3
]

0 100 200 300 400 500 600 700

T [◦C]

80

100

120

140

160

180

T
h

er
m

al
co

n
d

u
ct

iv
it

y
[W

/m
K

]

0 100 200 300 400 500 600 700

T [◦C]

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

S
p

ec
ifi

c
h

ea
t

[J
/(

g
K

)]

Figure 6.5: Material properties of the Aluminium AlSi10Mg alloy.

To reduce the pressure on the file system and the size of output files, one can prescribe the
time steps that should be post-processed. In the example at hand, the performance of our
framework for two different polynomial orders is compared, i.e. p = {1, 2}. A total of 200
time steps are computed, in which the laser travels a distance of 8mm. The refinement is
updated every tr = 10 time steps while the temperature field is post-processed every tp = 20
time steps.

6.2. Modeling heat transfer in selective laser melting 145

Results

(a) Time step 20 (b) Time step 50

(c) Time step 100 (d) Time step 200

Figure 6.6: Temperature distribution in the aluminum specimen at selected time steps.

The temperature distribution in the aluminum specimen for four different time steps is shown
in Figure 6.6. A threshold is applied at the mean melting temperature of the aluminum alloy
in order to visualize the geometry of the melt pool, which is represented by the bright red
region in the figures. Figure 6.7 shows the computational cost of each time step for the two
different discretizations used. For the sake of brevity, the number of processors used in the
simulation is not varied. A total of 56 cores partitioned into 8 MPI tasks each using 4 OpenMP
threads are used in both simulations. Figure 6.7a shows the number of DOFs per time step
while the total duration of each time step is shown in Figure 6.7b. No mesh coarsening is
applied in the example at hand, which explains the increase in the number of DOFs over time.
This also leads to a gradual increase in the computational cost of the time steps as shown in
Figure 6.7b. The duration of each time step is, however, still remarkably low considering the
fact that an average of three Newton-Rhapson iterations are performed per time step. The
total time needed to perform the 200 time steps on 56 cores is 10min for the p = 1 mesh and
23min 48s for the p = 2 discretization.
The current numerical example illustrates how efficient thermal SLM computations can be

performed using the finite cell method and multi-level hp-refinement. Although the computa-
tion times shown are impressive, it would require an inordinate number of time steps (10 000
time steps per layer × 125 layer ≈ 1.25 · 106 time steps) to simulate the fabrication of the

146 6. Application of the finite cell method to metal additive manufacturing

entire aluminum cube that is only a mere 125mm3.

0 20 40 60 80 100 120 140 160 180 200
0.1

0.5

1

1.5

2

2.5
·105

Time step

N
u
m
b
er

of
D
O
F
s

p = 1
p = 2

(a) Number of DOFs.

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12

14

Time step
D
u
ra
ti
on

[s
]

p = 1
p = 2

(b) Computational cost of the simulation time steps.

Figure 6.7: Number of DOFs and computational cost of the time steps in the high-fidelity
thermal simulation on an aluminum specimen.

6.2.4 A layer-by-layer element activation approach
Simulating the fabrication of an entire artifact using high-fidelity SLM simulations is a tremen-
dously challenging task due to the spatial and temporal scales that need to be resolved. Instead
of explicitly modeling the position of the laser, it is possible to use simulation strategies that
average the amount of energy input over a period of time. These approaches allow the com-
putation of entire parts in a feasible amount of time as large time steps can be applied. Such
strategies include a hatch-by-hatch approach or a layer-by-layer approach as presented in e.g.
[Chiumenti et al., 2017]. In this thesis, a novel layer-by-layer approach based on the finite
cell method is applied. Figure 4.11 illustrates how the proposed scheme can be used in a
parallel setting. The following section briefly explains the central procedures in the suggested
layer-by-layer approach. These include, how the averaged heat source Q is determined, the
applications of the boundary conditions and manner in which time integration is performed.
A detailed explanation on these subjects can be found in [Carraturo et al., 2020].

Heat Source Q

The heat source Q in layerwise SLM simulations is modeled as an equivalent heat source
contribution applied as a volumetric load in the HAV (Heat-affected volume). It is directly
proportional to the material’s absorptivity ηt, the nominal power of the laser beam P and
inversely proportional to the heat-affected volume and can be computed using the expression

Q = ηtP

HAV
. (6.13)

6.2. Modeling heat transfer in selective laser melting 147

Boundary conditions

The Neumann boundary conditions applied in the layer-by-layer simulations correspond to
those mentioned in Section 6.2.1 and include i) the conduction of heat between the lateral
surfaces of the part and the surrounding powder, and ii) the combined heat loss by convection
and radiation from the upper surface of the powder bed.

Time integration

As previously mentioned, time integration is performed using a backward Euler scheme. The
size of a given time step ∆th is not fixed but varies depending on whether a heating or cooling
phase is been simulated. In the heating phase, the time step size is computed at runtime using
the laser hatch distance hd, laser velocity v and the surface activated within the time step
HASi as

∆th =
nlayers∑
i=1

HASi
v hd

, (6.14)

where HASi denotes the heat-affected surface of the ith layer and nlayers the number of layers
activated within the heating phase. This calculated time step corresponds to the amount of
time it would take a laser to print the HAV under the assumption of a constant laser velocity
during the printing process. The time step size for the cooling phase takes into account the
time spent by the machine for recoating and time spent to print other components on the base
plate. These values are user-defined and can be specified before the simulation and read in
from an external input file.

Layerwise activation scheme

An m-layers-by-m-layers activation scheme is applied in this work in which each finite cell con-
tains m powder layers. The proposed scheme is an extension of the serial approach employed
in [Carraturo, 2019; Carraturo et al., 2020] and can be used in a distributed-memory setting.
It utilizes the finite cell method to model the growth of a component to be print through the
evolution of the physical domain Ωphys. The current physical domain Ωphys(t) is obtained by
intersecting the geometry of the complete artifact with a cuboid whose height is defined by
the z-coordinate of the uppermost powder layer. This procedure is shown in Figure 6.8 for
a chess piece geometry. The finite cell method decouples the geometric description from the
discretization and enables the suggested layer-by-layer methodology to be used for the analysis
of artifacts with complex geometries. Moreover, FCM allows the activation of multiple voxel
layers within a single element. This is in contrast to standard m-layers-by-m-layers schemes
that can only handle the activate of element layers.
Note that the proposed scheme uses a parallel adaptive Cartesian grid that is independent

of the computational mesh to describe the geometry of the structure as elaborated in Section
4.4.1. This grid allows elements in a newly activated layer to be created “just-in-time” and no
inactive elements need to be stored as in the quiet element method [Michaleris, 2014]. This
“on-the-fly” activation strategy is chosen due to its suitability for parallel computations and
its low memory requirements. During a heating time step the following steps are executed
before solving the system of equations:

148 6. Application of the finite cell method to metal additive manufacturing

1. Update the physical domain Ωphys(t) with respect to the current powder layer.
2. Create a new layer of elements if the Ωphys(t) is not part of the computational mesh.
3. Perform a load balancing setup and transfer data between the MPI processes.
4. Create the external surfaces of the artifact that are needed for the application of bound-

ary conditions using a marching cube algorithm.
A predefined number of cooling time steps is performed after every heating time step. It

should be noted that no redistribution of the computational domain is required during the
cooling phases.

Grid G Mesh T

(a) Time step t = 11

Grid G
with new layer

new layer

Mesh T
with new layer

newly created elements

(b) Time step t = 12

Figure 6.8: Illustration of the element creation procedure in m-layer-by-m-layer simulations.
A new element layer is generated from an adaptive Cartesian grid at the beginning of every
heating time step. This procedure circumvents the need of storing inactive elements.

6.2.4.1 Simulation of an optimized engine Bracket

The following section illustrates how the suggested layerwise methodology can be used to
simulate the fabrication of an industrial component. The specimen considered is shown in
Figure 6.9a and comprises of an optimized engine bracket, a commonly used model for AM
applications.
A layer-by-layer thermal analysis of the fabrication process is performed using the shown

geometry. The simulation consists of 60 stages, with each stage made up of a single heating
step and cooling step, resulting in a total of 120 time steps. Each finite cell is divided into 53

voxels. m = 5 powder layers are activated within a single heating step. The mesh elements
are generated in parallel using the approach presented in Section 4.4.1. A coarse initial grid
Ginit that spans the entire domain comprising 60× 100× 72 grid cells is used for the element
generation. Mesh elements belonging to a newly activated grid layer are created at the begin-
ning of each heating time step following the approach illustrated in Figure 6.8. The number

6.2. Modeling heat transfer in selective laser melting 149

(a) Geometry of an optimized engine bracket. (b) Finite cell mesh.

Figure 6.9: Geometry and discretization of the engine bracket.

of DOFs for the two different discretizations ranges between 80 473 and 91 277 for the p = 1
mesh and between 313 087 and 337 529 for the p = 2 mesh.
In the example at hand, the performance of the hybrid parallel framework in transient nonlin-

ear problems is assessed for two different polynomial orders, p = {1, 2}. A parallel Conjugate
Gradient solver that utilizes the elementwise additive Schwarz preconditioning technique pre-
sented in Section 5.2 is used for the solution of the arising linear systems. In this study, the
total simulation time for different hybrid computations is compared. The computations are
run on the Linux cluster at the Leibniz Supercomputing Center, in Garching Germany, that
is equipped with dual-socket Haswell nodes comprising 28 cores and 64GB of DDR4 memory
per node. In each simulation, the 28 cores available on each node are partitioned into four
MPI tasks and 7 OpenMP threads per task.

p 28 cores 56 nodes 112 cores 224 cores
1 23 min 01s 16 min 06s 12 min 06s 9 min 44s
2 40 min 08s 25 min 12s 20 min 57s 13 min 02s

Table 6.4: Comparison of the total runtime in the engine bracket example. The simulation
consists of 120 time steps.

Table 6.4 shows a summary of the total execution time of simulations with different processor
counts. One can see that increasing the number of processes leads to an improvement in the
overall computation time. Figure 6.10 shows exemplary results of the temperature distribution
in the bracket for selected time steps.
It should be noted that the proposed layer-by-layer approach cannot accurately capture

the thermal history of points in the component due to the averaging performed. It can,

150 6. Application of the finite cell method to metal additive manufacturing

nevertheless, correctly predict regions in which overheating can occur, e.g. thin regions with
downwards facing surfaces, see time steps 21 and 41 in Figure 6.10. This behavior occurs
since no supporting structures are incorporated into the simulation. The current example is
chosen to illustrate how the finite cell method can be used in part-scale simulations. The
results shown are promising and can be extended by incorporating mesh refinement using the
multi-level hp-method. Another interesting aspect that can be addressed in future work is the
partial activation of elements in the build direction as proposed in [Carraturo et al., 2020].

6.2. Modeling heat transfer in selective laser melting 151

(a) Time step 1. (b) Time step 21.

(c) Time step 41. (d) Time step 61.

(e) Time step 81. (f) Time step 101.

Figure 6.10: Distribution of the temperature in the GE-bracket for different heating time
steps.

153

Chapter 7

Conclusion and outlook

The main focus of this thesis was the development of efficient algorithms and data structures for
scalable finite cell analyses involving multi-level hp-refined grids on parallel computer systems.
A simulation framework is presented that enables the use of FCM in different engineering
applications of practical relevance. The developed methods can be readily applied in both
linear and non-linear simulations and not only lead to faster execution times but also extend
the boundary of computable FCM systems.

Summary
Two central aspects necessary for achieving satisfactory performance in distributed-memory
finite cell analysis namely, the efficient handling of hp-grids and the development of robust
and scalable iterative solvers for large finite cell systems, are addressed in this work. The
following section provides a summary of these central topics.

Efficient mesh management
In this thesis, two strategies are presented for the management of parallel grid data structures.
The first approach is based on a replication of the mesh on all MPI tasks. This strategy
allows the mesh to be easily set up and significantly simplifies the management of degrees of
freedom across processors. The method, however, has limited scalability as its high memory
requirements render it applicable to small computing clusters with a large amount of memory
per node. The second mesh management strategy was designed to remedy the shortcomings
of the first approach and is based on a light-weight adaptive Cartesian grid that provides an
abstraction of the computational mesh. Partitioning and load balancing operations are first
performed on this data structure before being related to the mesh elements. The adaptive
grid enables a distributed storage of mesh elements and has excellent parallel scalability as the
amount of data stored by a single MPI task scales inversely with the number of MPI tasks.
Since no single process knows the complete extent of the final computational mesh, special
algorithms are needed to ensure parallel mesh compatibility, i.e. the DOF numbering across
processor boundaries must be consistent. An algorithm that performs these operations in a
fast manner for immersed multi-level hp-grids is presented in this work. This thesis portrays

154 7. Conclusion and outlook

how the suggested mesh management strategy allows finite cell computations with multiple
millions and billions of DOFs on up to 32 000 cores.
Parallel mesh management in the context of dynamic meshes is also tackled in this thesis. A

redistribution and rebalancing algorithm is proposed that maps data between MPI tasks when
the computational load changes during a simulation. This algorithm is applied to evolving
domains due to dynamic mesh refinement and growing domains. An application area that
benefits from this approach is the field of additive manufacturing process simulation.

Robust iterative solvers for finite cell systems
One cornerstone of the present work is the development of dedicated preconditioners and ro-
bust solvers for finite cell systems. The pioneering work of de Prenter et. al on additive Schwarz
preconditioner for immersed methods on uniform meshes is extended to FCM problems in-
volving multi-level hp-refined grids. A key aspect of this preconditioning technique is the
appropriate grouping of basis functions into additive Schwarz blocks. A pragmatic approach
is adopted in this thesis that analyzes three different manners in which basis functions can be
grouped. Basis functions are selected based on either leaf elements, base elements or element
patches. Selecting additive Schwarz blocks based on leaf elements is the simplest approach and
improves the conditioning of systems when truncation is applied. The preconditioner that is
constructed in this way maintains the sparsity structure of the system matrix and is cheap to
construct. It is shown, however, that scenarios can occur in which certain problematic modes
are not detected by the preconditioner and “slip” through it. These modes lead to an increase
in the number of iterations. Single-grid solvers, like the Conjugate Gradient method, are gen-
erally able to sufficiently deal with a few small modes that slip through the preconditioner
as they only required a few additional iterations. Investing more effort in the construction
of additive Schwarz preconditioner by utilizing blocks based on base elements and element
patches can be applied to further improve the conditioning.
An hp-multigrid approach that leverages the hierarchical nature of the integrated Legendre

polynomials and h-refinement scheme in the multi-level hp-method is presented in this thesis.
The approach is combined with the finite cell method resulting in solvers with convergence
rates that are independent of the cut configurations, mesh size and in some cases even the
polynomial order and refinement level. The elementwise and patchwise Additive Schwarz
techniques are applied as smoothers in the multigrid algorithm.
The efficiency of the developed solvers is showcased in a variety of benchmark problems and

also shown in problems of practical industrial relevance. All solvers are implemented in an
efficient numerical code and can be applied to systems with up to a few billion unknowns.

Additive manufacturing product and process simulation
The parallel mesh data structures developed in Chapter 4 and the preconditioning strategies
for the finite cell method proposed in Chapter 5 are applied in the simulation of additive
manufacturing product and process simulation. Using the parallel framework, it is possible
to compute systems with multiple million and even billions of unknowns that can be used
to analyze the material properties of additively-manufactured components. Two methods for
performing thermal simulations of the selective laser melting process are presented in the final
part of Chapter 6.

155

Outlook and future work
The methods presented in this thesis open the door for performing efficient computations of
real-life engineering problems using the finite cell method, multi-level hp-refinement and paral-
lel computing. Although a lot of time was invested in the design, implementation and testing
of the code framework and developed algorithms, the presented work can be further improved
and extended. Furthermore, several questions and undiscovered opportunities remain which
can be addressed in future research projects.
The finite cell problems considered in this work embedded their physical domain in an axis-

aligned Cartesian grid. The second mesh management strategy proposed in Chapter 4 is
tailored to multi-level hp-analyses on such grids. This strategy can, however, be extended to
arbitrarily-oriented hexahedral meshes and even unstructured grids. This step would allow
the parallel framework to be used in an even broader setting.
Several aspects regarding the developed solvers and preconditioners can also be extended

in future studies. A more elaborate mathematical investigation of the selection of additive
Schwarz blocks for multi-level hp-refinement can be performed to find the best trade-off be-
tween the spectral properties of the preconditioned system and the computational cost of the
preconditioner. Alternative preconditioning methods e.g. multiplicative Schwarz techniques
or non-overlapping domain decomposition methods are other possible directions for future
research. The hp-multigrid approach proposed in this thesis can be made more efficient by
applying a geometric multigrid approach to accelerate the convergence of the p = 1 coarse sys-
tem. This step will be beneficial in applications where the convergence of the coarse problem
is slow e.g. in computations involving thin-walled structures undergoing bending.
Chapter 6 focused on the use of the finite cell method and multi-level refinement in the

simulation of additive manufacturing products and processes. The presented results focused
on showing the computational efficiency of the developed parallel framework. More effort
should be directed towards extending the parallel framework to be able to perform parallel
thermo-mechanical SLM simulations. An ongoing project in conjunction with the University
of Pavia investigates the use of m-layer-by-m-layer approaches for the prediction of residual
stresses and the deflection of the final part upon its removal from the base plate. A serial
framework has been developed and validated against experimental measurements [Carraturo
et al., 2020]. This framework can serve as a basis for future developments.
Improving the efficiency of AdhoC++ is a perpetual task that cannot go without mentioning.

A substantial amount of effort should be invested in improving the performance and scalability
of the parallel framework developed in this thesis. General tasks include a thorough analysis of
the node-level performance, the communication patterns and the identification and elimination
of bottlenecks. Specific algorithms that need to be improved include the inversion of large
additive Schwarz blocks for grids with several refinement levels and the load balancing strategy
for grids with dynamic mesh refinements and different cut cell integration strategies. The
optimization process must be guided by code optimization experts and involve the use of
state-of-the-art performance profiling software. Code efficiency can be further improved by
updating the third-party packages on which the parallel algorithms in AdhoC++ are built upon.
The results presented in this thesis were obtained using the following libraries, i) Trilinos
Version 12.12, ii) IntelMPI compiler version 19.0, iii) GNU compiler 7.0, iv) ITK Version
5.12, v) BOOST Version 1.61. Updating this software to their most recent releases would able

156 7. Conclusion and outlook

users of AdhoC++ to benefit from the improvements and new features in these libraries.
The methods developed in this thesis are applied to linear second-order elliptic problems

and nonlinear simulations of metal additive manufacturing processes. Further application
areas that can benefit for the proposed algorithms include the simulation of brittle fracture
by means of a phase-field approach.

BIBLIOGRAPHY 157

Bibliography

Ager, C., Schott, B., Winter, M., and Wall, W. (2019). A Nitsche-based cut finite element
method for the coupling of incompressible fluid flow with poroelasticity. Computer Methods
in Applied Mechanics and Engineering, 351:253–280.

Ahrens, J., Geveci, B., and Law, C. (2005). Paraview: An end-user tool for large data
visualization. Visualization Handbook.

Amdahl, G. M. (1967). Validity of the Single Processor Approach to Achieving Large Scale
Computing Capabilities. In Proceedings of the Spring Joint Computer Conference, AFIPS
’67 (Spring), pages 483–485, New York, NY, USA. ACM.

Ammar, H., Samuel, A., and Samuel, F. (2008). Porosity and the fatigue behavior of hypoeu-
tectic and hypereutectic aluminum-silicon casting alloys. International Journal of Fatigue,
30(6):1024–1035.

Anderson, R., Andrej, J., Barker, A., Bramwell, J., Camier, J.-S., Červený, J., Dobrev, V.,
Dudouit, Y., Fisher, A., Kolev, T., Pazner, W., Stowell, M., Tomov, V., Dahm, J., Medina,
D., and Zampini, S. (2020). MFEM: A modular finite element methods library. Computers
& Mathematics with Applications.

Annavarapu, C., Hautefeuille, M., and Dolbow, J. (2012). A robust Nitsche’s formulation for
interface problems. Computer Methods in Applied Mechanics and Engineering, 225–228:44–
54.

Babuška, I. (1973). The Finite Element Method with Penalty. Mathematics of Computation,
27(122):221.

Babuška, I., Griebel, M., and Pitkäranta, J. (1989). The problem of selecting the shape
functions for a p-type finite element. International Journal for Numerical Methods in En-
gineering, 28(8):1891–1908.

Babuška, I. and Suri, M. (1990). The p- and h-p versions of the finite element method, an
overview. Computer Methods in Applied Mechanics and Engineering, 80(1):5–26.

Babuška, I., Szabo, B., and Katz, I. (1981). The p-Version of the Finite Element Method.
SIAM Journal on Numerical Analysis, 18(3):515–545.

Badia, S., Martín, A. F., Neiva, E., and Verdugo, F. (2019). A generic finite element framework
on parallel tree-based adaptive meshes. preprint available on arXiv.

158 BIBLIOGRAPHY

Badia, S., Martín, A. F., Neiva, E., and Verdugo, F. (2020). The aggregated unfitted finite
element method on parallel tree-based adaptive meshes. preprint available on arXiv.

Badia, S., Martín, A. F., and Principe, J. (2018a). FEMPAR: An Object-Oriented Parallel
Finite Element Framework. In Archives of computational methods in engineering, volume 25,
pages 195–271.

Badia, S. and Verdugo, F. (2017). Robust and scalable domain decomposition solvers for un-
fitted finite element methods. Journal of Computational and Applied Mathematics, 344:740–
759.

Badia, S., Verdugo, F., and Martín, A. F. (2018b). The aggregated unfitted finite element
method for elliptic problems. Computer Methods in Applied Mechanics and Engineering,
336:533–553.

Balay, S., Gropp, W. D., McInnes, L. C., and Smith, B. F. (1997). Efficient management of
parallelism in object oriented numerical software libraries. In Arge, E., Bruaset, A. M., and
Langtangen, H. P., editors, Modern Software Tools in Scientific Computing, pages 163–202.
Birkhäuser Press.

Bangerth, W., Burstedde, C., Heister, T., and Kornbichler, M. (2011). Algorithms and Data
Structures for Massively Parallel Generic Adaptive Finite Element Codes. ACM Transac-
tions on Mathematical Software, 38(2):14:1–14:28.

Bangerth, W., Hartmann, R., and Kanschat, G. (2007). deal.II – a General Purpose Object
Oriented Finite Element Library. ACM Transactions on Mathematical Software, 33(4):24/1–
24/27.

Barrett, R., Berry, M., Chan, T., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo,
R., Romine, C., and van der Vorst, H. (1994). Templates for the Solution of Linear Systems:
Building Blocks for Iterative Methods. SIAM.

Bathe, K. J. (2007). Finite Element Procedures. Prentice Hall, New Jersey.

Béchet, E., Minnebo, H., Moës, N., and Burgardt, B. (2005). Improved implementation and
robustness study of the X-FEM for stress analysis around cracks. International Journal for
Numerical Methods in Engineering, 64(8):1033–1056.

Belytschko, T. and Black, T. (1999). Elastic crack growth in finite elements with minimal
remeshing. International Journal for Numerical Methods in Engineering, 45(5):601–620.

Belytschko, T., Fish, J., and Bayliss, A. (1990). The spectral overlay on finite elements for
problems with high gradients. Computer Methods in Applied Mechanics and Engineering,
81(1):71–89.

Berger-Vergiat, L., Waisman, H., Hiriyur, B., Tuminaro, R., and Keyes, D. (2012). Inexact
Schwarz-algebraic multigrid preconditioners for crack problems modeled by extended finite
element methods. International Journal for Numerical Methods in Engineering, 90(3):311–
328.

BIBLIOGRAPHY 159

Bog, T., Zander, N., Kollmannsberger, S., and Rank, E. (2017). Weak Imposition of Friction-
less Contact Constraints on Automatically Recovered High-Order, Embedded Interfaces
Using the Finite Cell Method. Computational Mechanics, 61(4):385–407.

Braess, D. (1986). On the combination of the multigrid method and conjugate gradients. In
Hackbusch, W. and Trottenberg, U., editors, Multigrid Methods II, pages 52–64, Berlin,
Heidelberg. Springer Berlin Heidelberg.

Braess, D. and Peisker, P. (1986). On the Numerical Solution of the Biharmonic Equation
and the Role of Squaring Matrices for Preconditioning. IMA Journal of Numerical Analysis,
6(4):393–404.

Brenner, S. and Scott, L. (2008). The Mathematical Theory of Finite Element Methods.
Springer.

Briggs, W., Henson, V., and McCormick, S. (2000). A Multigrid Tutorial, 2nd Edition. SIAM.

Burman, E. (2010). Ghost penalty. Comptes Rendus Mathematique, 348(21):1217–1220.

Burman, E. (2012). A Penalty-Free Nonsymmetric Nitsche-Type Method for the Weak Impo-
sition of Boundary Conditions. SIAM Journal on Numerical Analysis, 50(4):1959–1981.

Burman, E., Claus, S., Hansbo, P., Larson, M. G., and Massing, A. (2014a). CutFEM:
Discretizing geometry and partial differential equations. International Journal for Numerical
Methods in Engineering, 104(7):472–501.

Burman, E., Claus, S., and Massing, A. (2014b). A Stabilized Cut Finite Element Method for
the Three Field Stokes Problem. SIAM Journal on Scientific Computing, 37.

Burman, E., Elfverson, D., Hansbo, P., Larson, M. G., and Larsson, K. (2019). Cut topology
optimization for linear elasticity with coupling to parametric nondesign domain regions.
Computer Methods in Applied Mechanics and Engineering, 350:462–479.

Burman, E. and Hansbo, P. (2010). Fictitious domain finite element methods using cut ele-
ments: I. A stabilized Lagrange multiplier method. Computer Methods in Applied Mechanics
and Engineering, 199(41–44):2680–2686.

Burman, E. and Hansbo, P. (2012). Fictitious domain finite element methods using cut
elements: II. A stabilized Nitsche method. Applied Numerical Mathematics, 62(4):328–341.

Burstedde, C., Wilcox, L., and Ghattas, O. (2011). p4est : Scalable algorithms for parallel
adaptive mesh refinement on forests of octrees. SIAM J. Scientific Computing, 33:1103–
1133.

Carey, G. F. and Barragy, E. (1989). Basis function selection and preconditioning high degree
finite element and spectral methods. BIT Numerical Mathematics, 29:794–804.

Carraturo, M. (2019). Modelling, Validation, and Design for Additive Manufacturing: Appli-
cations of numerical methods to 3D printing processes. PhD Thesis, University of Pavia and
the Technical University of Munich, Pavia and Munich.

160 BIBLIOGRAPHY

Carraturo, M., Jomo, J., Kollmannsberger, S., Rank, E., Reali, A., and Auricchio, F. (2020).
Modeling and experimental validation of an immersed thermo-mechanical part-scale analysis
for laser powder bed fusion processes. submitted to AM.

Chandrasekhar, S. (1960). Radiative Transfer. Dover, New York.

Cheng, K. W. and Fries, T.-P. (2010). Higher-order XFEM for curved strong and weak
discontinuities. International Journal for Numerical Methods in Engineering, 82(5):564–
590.

Chern, I.-L. and Shu, Y.-C. (2007). A coupling interface method for elliptic interface problems.
Journal of Computational Physics, 225(2):2138–2174.

Childs, H., Brugger, E., Whitlock, B., Meredith, J., Ahern, S., Pugmire, D., Biagas, K., Miller,
M., Harrison, C., Weber, G. H., Krishnan, H., Fogal, T., Sanderson, A., Garth, C., Bethel,
E. W., Camp, D., Rübel, O., Durant, M., Favre, J. M., and Navrátil, P. (2012). VisIt:
An End-User Tool For Visualizing and Analyzing Very Large Data. In High Performance
Visualization–Enabling Extreme-Scale Scientific Insight, pages 357–372.

Chiumenti, M., Neiva, E., Salsi, E., Cervera, M., Badia, S., Moya, J., Chen, Z., Lee, C.,
and Davies, C. (2017). Numerical modelling and experimental validation in Selective Laser
Melting. Additive Manufacturing, 18:171–185.

Ciarlet, P. G. (2002). The Finite Element Method for Elliptic Problems. Number 40 in Classics
in applied mathematics. Society for Industrial and Applied Mathematics, Philadelphia, PA.

Clarke, L., Glendinning, I., and Hempel, R. (1994). The mpi message passing interface stan-
dard. In Decker, K. M. and Rehmann, R. M., editors, Programming Environments for
Massively Parallel Distributed Systems, pages 213–218, Basel. Birkhäuser Basel.

Coll, A., Ribó, R., Pasenau, M., Escolano, E., Perez, J., Melendo, A., Monros, A., and Gárate,
J. (2016). GiD v.13 User Manual.

Cottrell, J. A., Hughes, T. J. R., and Bazilevs, Y. (2009). Isogeometric Analysis: Toward
Integration of CAD and FEA. John Wiley & Sons.

Craig, A. W. and Zienkiewicz, O. C. (1985). A multigrid algorithm using a hierarchical finite
element basis. In Paddon, D. J. and Holstein, editors, Multigrid Methods for Integral and
Differential Equations, pages 310–312. Clarendon Press, Oxford,.

Dagum, L. and Menon, R. (1998). OpenMP: an industry standard API for shared-memory
programming. Computational Science & Engineering, IEEE, 5(1):46–55.

D’Angella, D., Zander, N., Kollmannsberger, S., Frischmann, F., Rank, E., Schröder, A., and
Reali, A. (2016). Multi-level hp-adaptivity and explicit error estimation. Advanced Modeling
and Simulation in Engineering Sciences, 3(1):33.

Dauge, M., Düster, A., and Rank, E. (2015). Theoretical and Numerical Investigation of the
Finite Cell Method. Journal of Scientific Computing, 65(3):1039–1064.

BIBLIOGRAPHY 161

de la Riva, A. P., Rodrigo, C., and Gaspar, F. J. (2019). A Robust Multigrid Solver for
Isogeometric Analysis Based on Multiplicative Schwarz Smoothers. SIAM J. Scientific
Computing, 41:321–345.

de Prenter, F., Verhoosel, C., and van Brummelen, E. (2019a). Preconditioning immersed
isogeometric finite element methods with application to flow problems. Computer Methods
in Applied Mechanics and Engineering, 348:604–631.

de Prenter, F., Verhoosel, C., Van Brummelen, H., Evans, J., Messe, C., Benzaken, J., and
Maute, K. (2019b). Multigrid solvers for immersed finite element methods and immersed
isogeometric analysis. Computational Mechanics, 65:807–838.

de Prenter, F., Verhoosel, C.V., van Zwieten, G.J., and van Brummelen, E.H. (2017). Condi-
tion number analysis and preconditioning of the finite cell method. Computer Methods in
Applied Mechanics and Engineering, 316:297–327.

Dedner, A., Klöfkorn, R., Nolte, M., and Ohlberger, M. (2010). A generic interface for par-
allel and adaptive discretization schemes: abstraction principles and the dune-fem module.
Computing, 90(3):165–196.

Demkowicz, L. (2007). Computing with hp-Adaptive Finite Elements, Vol. 1: One and Two
Dimensional Elliptic and Maxwell Problems. Applied mathematics and nonlinear science
series. Chapman & Hall/CRC, Boca Raton.

Devine, K., Boman, E., Heaphy, R., Hendrickson, B., and Vaughan, C. (2002). Zoltan Data
Management Services for Parallel Dynamic Applications. Computing in Science and Engi-
neering, 4(2):90–97.

Divi, S. C., Verhoosel, C. V., Auricchio, F., Reali, A., and van Brummelen, E. H. (2020).
Error-estimate-based Adaptive Integration For Immersed Isogeometric Analysis. Computers
& Mathematics with Applications.

Dongarra, J. J., Duff, L. S., Sorensen, D. C., and Vorst, H. A. V. (1998). Numerical Linear
Algebra for High Performance Computers. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA.

Duczek, S., Berger, H., and Gabbert, U. (2015). The Finite Pore Method: a new approach
to evaluate gas pores in cast parts by combining computed tomography and the finite cell
method. International Journal of Cast Metals Research, 28(4):221–228.

Düster, A., Parvizian, J., Yang, Z., and Rank, E. (2008). The Finite Cell Method for Three-
Dimensional Problems of Solid Mechanics. Computer Methods in Applied Mechanics and
Engineering, 197(45–48):3768–3782.

Düster, A., Rank, E., and Szabó, B. A. (2017). The P-Version of the Finite Element Method
and Finite Cell Methods. In Encyclopedia of Computational Mechanics, volume 2, pages
1–35. John Wiley & Sons, Chichester, West Sussex.

162 BIBLIOGRAPHY

Eisenträger, S., Atroshchenko, E., and Makvandi, R. (2020). On the condition number of high
order finite element methods: Influence of p-refinement and mesh distortion. Computers &
Mathematics with Applications. Article in press, online version available.

Elfverson, D., Larson, M. G., and Larsson, K. (2018). CutIGA with basis function removal.
Advanced Modeling and Simulation in Engineering Sciences, 5(1):6.

Elhaddad, M., Zander, N., Bog, T., Kudela, L., Kollmannsberger, S., Kirschke, J., Baum, T.,
Ruess, M., and Rank, E. (2018). Multi-level hp-finite cell method for embedded interface
problems with application in biomechanics. International Journal for Numerical Methods
in Biomedical Engineering, 34(4):e2951.

Embar, A., Dolbow, J., and Harari, I. (2010). Imposing Dirichlet boundary conditions with
Nitsche’s method and spline-based finite elements. International Journal for Numerical
Methods in Engineering, 83(7):877–898.

Falgout, R. D., Jones, J. E., and Yang, U. M. (2006). The Design and Implementation of hypre,
a Library of Parallel High Performance Preconditioners. In Bruaset, A. M. and Tveito, A.,
editors, Numerical Solution of Partial Differential Equations on Parallel Computers, pages
267–294, Berlin, Heidelberg. Springer Berlin Heidelberg.

Farhat, C. and Crivelli, L. (1989). A general approach to nonlinear FE computations on
shared-memory multiprocessors. Computer Methods in Applied Mechanics and Engineering,
72(2):153–171.

Ferencz, R. and Hughes, T. (1998). Solutions in Nonlinear Solid Mechanics. Elsevier.

Fernández-Méndez, S. and Huerta, A. (2004). Imposing Essential Boundary Conditions in
Mesh-Free Methods. Computer Methods in Applied Mechanics and Engineering, 193(12-
14):1257–1275.

Ferronato, M. (2012). Preconditioning for Sparse Linear Systems at the Dawn of the 21st
Century: History, Current Developments, and Future Perspectives. International Scholarly
Research Notices Applied Mathematics, 2012:49.

Foresti, S., Brussino, G., Hassanzadeh, S., and Sonnad, V. (1989). Multilevel solution of the
p-version of finite elements. Computer Physics Communications, 53:349–355.

Foster, I. (1995). Designing and Building Parallel Programs: Concepts and Tools for Parallel
Software Engineering. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Gahalaut, K., Kraus, J., and Tomar, S. (2013). Multigrid methods for isogeometric discretiza-
tion. Computer Methods in Applied Mechanics and Engineering, 253:413–425.

Gerstenberger, A. andWall, W. A. (2010). An embedded Dirichlet formulation for 3D continua.
International Journal for Numerical Methods in Engineering, 82(5):537–563.

Giovannelli, L., Ródenas, J. J., Navarro-Jimenez, J. M., and Tur, M. (2014). Element stiffness
matrix integration in image-based cartesian grid finite element method. In Zhang, Y. J.
and Tavares, J. M. R. S., editors, Computational Modeling of Objects Presented in Images.

BIBLIOGRAPHY 163

Fundamentals, Methods, and Applications, pages 304–315, Cham. Springer International
Publishing.

Glowinski, R. and Kuznetsov, Y. (2007). Distributed lagrange multipliers based on fictitious
domain method for second order elliptic problems. Computer Methods in Applied Mechanics
and Engineering, 196(8):1498–1506.

Goldak, J., Chakravarti, A., and Bibby, M. (1984). A new finite element model for welding
heat sources. Metallurgical Transactions B, 15(2):299–305.

Griebel, M. and Schweitzer, M. A. (2003). A Particle-Partition of Unity Method Part V:
Boundary Conditions. In Hildebrandt, S. and Karcher, H., editors, Geometric Analysis and
Nonlinear Partial Differential Equations, pages 519–542. Springer, Berlin, Heidelberg.

Gustafson, J. L. (1988). Reevaluating Amdahl’s Law. Commun. ACM, 31(5):532–533.

Hackbusch, W. (1994). Iterative solution of large sparse systems of equations (1st ed.), vol-
ume 95. Springer Switzerland.

Hackbusch, W. (2013). Multi-Grid Methods and Applications. Springer Series in Computa-
tional Mathematics. Springer Berlin Heidelberg.

Hackbusch, W. and Trottenberg, U. (1982). Multigrid Methods. Proceedings of the Conference
Held at Köln-Porz, November 23-27, 1981.

Hager, G. and Wellein, G. (2010). Introduction to High Performance Computing for Scientists
and Engineers. CRC Press, Inc., Boca Raton, FL, USA, 1st edition.

Heroux, M. A., Bartlett, R. A., Howle, V. E., Hoekstra, R. J., Hu, J. J., Kolda, T. G., Lehoucq,
R. B., Long, K. R., Pawlowski, R. P., Phipps, E. T., Salinger, A. G., Thornquist, H. K.,
Tuminaro, R. S., Willenbring, J. M., Williams, A., and Stanley, K. S. (2005). An overview
of the Trilinos project. ACM Transactions on Mathematical Software, 31(3):397–423.

Hiriyur, B., Tuminaro, R., Waisman, H., Boman, E., and Keyes, D. (2012). A Quasi-algebraic
Multigrid Approach to Fracture Problems Based on Extended Finite Elements. Siam Jour-
nal on Scientific Computing, 34(2):603–626.

Hofreither, C., Jüttler, B., Kiss, G., and Zulehner, W. (2016). Multigrid methods for isogeo-
metric analysis with thb-splines. Computer Methods in Applied Mechanics and Engineering,
308:96–112.

Höllig, K., Apprich, C., and Streit, A. (2005). Introduction to the Web-method and its
applications. Advances in Computational Mathematics, 23(1):215–237.

Höllig, K., Reif, U., and Wipper, J. (2001). Weighted Extended B-Spline Approximation of
Dirichlet Problems. SIAM Journal on Numerical Analysis, 39(2):442–462.

Hu, N., Guo, X., and Katz, I. (1998). Bounds for eigenvalues and condition numbers in the
p-version of the finite element method. Math. Comput., 67:1423–1450.

164 BIBLIOGRAPHY

Hubrich, S., Di Stolfo, P., Kudela, L., Kollmannsberger, S., Rank, E., Schröder, A., and
Düster, A. (2017). Numerical integration of discontinuous functions: moment fitting and
smart octree. Computational Mechanics, 60:863–881.

Hug, L., Kollmannsberger, S., Yosibash, Z., and Rank, E. (2020). A 3D benchmark problem
for crack propagation in brittle fracture. Computer Methods in Applied Mechanics and
Engineering, 364:112905.

Hughes, T. (2000). The Finite Element Method: Linear Static and Dynamic Finite Element
Analysis. Dover Civil and Mechanical Engineering. Dover Publications.

Ibanez, L., Schroeder, W., Ng, L., and Cates, J. (2003). The ITK Software Guide. Kitware,
Inc., first edition. ISBN 1-930934-10-6.

Intel (2009). Intel Math Kernel Library. Reference Manual. Intel Corporation.

Jomo, J., de Prenter, F., Elhaddad, M., D’Angella, D., Verhoosel, C., Kollmannsberger, S.,
Kirschke, J., Nübel, V., van Brummelen, E., and Rank, E. (2019). Robust and parallel
scalable iterative solutions for large-scale finite cell analyses. Finite Elements in Analysis
and Design, 163:14–30.

Jomo, J. N., Zander, N., Elhaddad, M., Özcan, A., Kollmannsberger, S., Mundani, R.-P., and
Rank, E. (2017). Parallelization of the multi-level hp-adaptive finite cell method. Computers
& Mathematics with Applications, 74(1):126–142.

Joulaian, M., Duczek, S., Gabbert, U., and Düster, A. (2014). Finite and Spectral Cell Method
for Wave Propagation in Heterogeneous Materials. Computational Mechanics, 54(3):661–
675.

Joulaian, M., Hubrich, S., and Düster, A. (2016). Numerical Integration of Discontinuities on
Arbitrary Domains Based on Moment Fitting. Computational Mechanics, 57:979–999.

JP1 (2016). Chess Display Pieces - King & Queen . http://www.thingiverse.com/thing:
1661934.

Kaasschieter, E. F. (1988). Preconditioned Conjugate Gradients for Solving Singular Systems.
J. Comput. Appl. Math., 24(1-2):265–275.

Kamensky, D., Hsu, M.-C., Schillinger, D., Evans, J., Aggarwal, A., Bazilevs, Y., Sacks, M.,
and Hughes, T. (2015). An immersogeometric variational framework for fluid-structure inter-
action: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics
and Engineering, 284:1005–1053.

Keaveny, T. M., Morgan, E. F., Niebur, G. L., and Yeh, O. C. (2001). Biomechanics of
Trabecular Bone. Annual Review of Biomedical Engineering, 3(1):307–333.

Kettler, R. (1982). Analysis and comparison of relaxation schemes in robust multigrid and
preconditioned conjugate gradient methods. In Hackbusch, W. and Trottenberg, U., editors,
Multigrid Methods, pages 502–534, Berlin, Heidelberg. Springer.

http://www.thingiverse.com/thing:1661934
http://www.thingiverse.com/thing:1661934

BIBLIOGRAPHY 165

King, W., Anderson, A., Ferencz, R., Hodge, N., Kamath, C., and Khairallah, S. (2015).
Overview of modelling and simulation of metal powder bed fusion process at Lawrence
Livermore National Laboratory. Materials Science and Technology, 31:957–968.

Kirk, B. S., Peterson, J. W., Stogner, R. H., and Carey, G. F. (2006). libMesh: A C++
Library for Parallel Adaptive Mesh Refinement/Coarsening Simulations. Engineering with
Computers, 22(3–4):237–254.

Kollmannsberger, S., Carraturo, M., Reali, A., and Auricchio, F. (2019). Accurate prediction
of melt pool shapes in laser powder bed fusion by the non-linear temperature equation
including phase changes. Integrating Materials and Manufacturing Innovation, 8:167–177.

Kollmannsberger, S., Özcan, A., Carraturo, M., Zander, N., and Rank, E. (2018). A hierar-
chical computational model for moving thermal loads and phase changes with applications
to selective laser melting. Computers & Mathematics with Applications, 75(5):1483–1497.

Korshunova, N., Jomo, J., Lékó, G., Reznik, D., Kollmannsberger, S., Balázs, P., and Rank,
E. (2020). From CT-scans to material characterization:linear elastic mechanical behavior.
accepted in Computers & Mathematics with Applications.

Kudela, L., Zander, N., Bog, T., Kollmannsberger, S., and Rank, E. (2015). Efficient and
accurate numerical quadrature for immersed boundary methods. Advanced Modeling and
Simulation in Engineering Sciences, 2(1):1–22.

Kudela, L., Zander, N., Kollmannsberger, S., and Rank, E. (2016). Smart Octrees: Accurately
Integrating Discontinuous Functions in 3D. Computer Methods in Applied Mechanics and
Engineering, 306:406–426.

Larson, M. and Bengzon, F. (2013). The Finite Element Method: Theory, Implementation,
and Applications. Springer.

Lehrenfeld, C. and Reusken, A. (2017). Optimal preconditioners for Nitsche-XFEM discretiza-
tions of interface problems. Numerische Mathematik, 135(2):313–332.

Li, J., Liao, W.-k., Choudhary, A., Ross, R., Thakur, R., Gropp, W., Latham, R., Siegel, A.,
Gallagher, B., and Zingale, M. (2003). Parallel netCDF: A High-Performance Scientific I/O
Interface. pages 39–39.

Lions, P. (1988). On the Schwarz alternating method. I. In First international symposium on
domain decomposition methods for partial differential equations, pages 1–42.

Liu, N., Fu, J., Carothers, C., Sahni, O., Jansen, K., and Shephard, M. (2010). Massively
Parallel I/O for Partitioned Solver Systems. Parallel Processing Letters, 20:377–395.

Logg, A. (2009). Efficient representation of computational meshes. International Journal of
Computational Science and Engineering, 4(4):283–295.

Lowan, A., Davids, N., Levenson, A., and (U.S.), M. T. P. (1942). Table of the Zeros of
the Legendre Polynomials of Order 1-16 and the Weight Coefficients for Gauss’ Mechanical
Quadrature Formula. Maestri e testimoni.

166 BIBLIOGRAPHY

Main, A. and Scovazzi, G. (2018a). The shifted boundary method for embedded domain
computations. Part I: Poisson and Stokes problems. Journal of Computational Physics,
372:972–995.

Main, A. and Scovazzi, G. (2018b). The shifted boundary method for embedded domain com-
putations. Part II: Linear advection-diffusion and incompressible Navier-Stokes equations.
Journal of Computational Physics, 372:996–1026.

Maitre, J. and Pourquier, O. (1996). Condition number and diagonal preconditioning: compar-
ison of the p-version and the spectral element methods. Numerische Mathematik, 74:69–84.

Maple, C. (2003). Geometric design and space planning using the marching squares and
marching cube algorithms. In 2003 International Conference on Geometric Modeling and
Graphics, 2003. Proceedings, pages 90–95.

Marussig, B., Hiemstra, R., and Hughes, T. J. (2018). Improved conditioning of isogeometric
analysis matrices for trimmed geometries. Computer Methods in Applied Mechanics and
Engineering, 334:79–110.

Massing, A., Schott, B., and Wall, W. (2018). A stabilized Nitsche cut finite element method
for the Oseen problem. Computer Methods in Applied Mechanics and Engineering, 328:262–
300.

Matsokin, A. and Nepomnyaschikh, S. (1985). The Schwarz alternation method in a subspace.
Soviet Mathematics (Izv. Vyssh. Uchebn. Zaved. Mat.).

Mayer, H., Papakyriacou, M., Zettl, B., and Stanzl-Tschegg, S. (2003). Influence of porosity
on the fatigue limit of die cast magnesium and aluminium alloys. International Journal of
Fatigue, 25(3):245–256.

Menk, A. and Bordas, S. (2011). A robust preconditioning technique for the extended finite
element method. International Journal for Numerical Methods in Engineering, 85(13):1609–
1632.

Michaleris, P. (2014). Modeling metal deposition in heat transfer analyses of additive manu-
facturing processes. Finite Elements in Analysis and Design, 86:51–60.

Mitchell, W. F. (2010). The hp-multigrid method applied to hp-adaptive refinement of trian-
gular grids. Numerical Linear Algebra with Applications, 17(2-3):211–228.

Moës, N., Dolbow, J., and Belytschko, T. (1999). A finite element method for crack growth
without remeshing. International Journal for Numerical Methods in Engineering, 46(1):131–
150.

Monavari, M. (2011). The Finite Cell Method for the analysis of die casts based on X-ray
computed tomography. Master’s thesis, Technische Universität München, Munich.

Moore, P. K. and Flaherty, J. E. (1992). Adaptive local overlapping grid methods for parabolic
systems in two space dimensions. Journal of Computational Physics, 98(1):54–63.

BIBLIOGRAPHY 167

Mote, C. D. (1971). Global-local finite element. International Journal for Numerical Methods
in Engineering, 3(4):565–574.

Nadal Soriano, E., Ródenas, J., Albelda, J., Tur, M., Tarancón, J., and Fuenmayor, F. (2013).
Efficient Finite Element Methodology Based on Cartesian Grids: Application to Structural
Shape Optimization. Abstract and Applied Analysis, 2013.

Nagaraja, S., Elhaddad, M., Ambati, M., Kollmannsberger, S., De Lorenzis, L., and Rank, E.
(2019). Phase-field modeling of brittle fracture with multi-level hp-fem and the finite cell
method. Computational Mechanics, 63:1283–1300.

Navarro-Jiménez, J. M., Tur, M., Fuenmayor, F. J., and Ródenas, J. J. (2018). On the effect
of the contact surface definition in the Cartesian grid finite element method. Advanced
Modeling and Simulation in Engineering Sciences, 5(1):12.

Neiva, E. and Badia, S. (2020). Robust and scalable h-adaptive aggregated unfitted finite
elements for interface elliptic problems. preprint available on arXiv.

Nicoletto, G., Anzelotti, G., and Konečná, R. (2010). X-ray computed tomography vs. metal-
lography for pore sizing and fatigue of cast Al-alloys. Procedia Engineering, 2(1):547–554.
Fatigue 2010.

Nitsche, J. (1971). Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Ver-
wendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abhandlungen
aus dem Mathematischen Seminar der Universität Hamburg, 36(1):9–15.

Ollivier-Gooch, C., Diachin, L. A., Shephard, M. S., Tautges, T. J., Kraftcheck, J., Leung,
V. J., Luo, X., and Miller, M. (2010). An Interoperable, Data-Structure-Neutral Component
for Mesh Query and Manipulation. ACM Transactions on Mathematical Software, 37:29:1–
29:28.

OpenMP Architecture Review Board (2008). OpenMP Application Program Interface Version
3.0.

Özcan, A., Kollmannsberger, S., Jomo, J., and Rank, E. (2019). Residual stresses in metal
deposition modeling: Discretizations of higher order. Computers & Mathematics with Ap-
plications, 78(7):2247–2266.

Parvizian, J., Düster, A., and Rank, E. (2007). Finite Cell Method. Computational Mechanics,
41(1):121–133.

Paszyński, M. and Demkowicz, L. (2006). Parallel, fully automatic hp-adaptive 3D finite
element package. Engineering with Computers, 22(3-4):255–276.

Paszyński, M. and Pardo, D. (2011). Parallel self-adaptive hp finite emelent method with
shared data structure. Computer Methods in Material Science, 11(2):399–405.

Patra, A., Laszloffy, A., and Long, J. (2003). Data structures and load balancing for parallel
adaptive hp finite-element methods. Computers & Mathematics with Applications, 46:105–
123.

168 BIBLIOGRAPHY

Rachowicz, W., Pardo, D., and Demkowicz, L. (2006). Fully automatic hp-adaptivity in three
dimensions. Computer Methods in Applied Mechanics and Engineering, 195(37–40):4816–
4842.

Rank, E. (1992). Adaptive remeshing and h-p domain decomposition. Computer Methods in
Applied Mechanics and Engineering, 101(1–3):299–313.

Rank, E., Ruess, M., Kollmannsberger, S., Schillinger, D., and Düster, A. (2012). Geometric
Modeling, Isogeometric Analysis and the Finite Cell Method. Computer Methods in Applied
Mechanics and Engineering, 249-252:104–115.

Reinders, J. (2007). Intel Threading Building Blocks. O’Reilly & Associates, Inc., Sebastopol,
CA, USA, first edition.

Ruess, M., Schillinger, D., Bazilevs, Y., Varduhn, V., and Rank, E. (2013). Weakly enforced
essential boundary conditions for NURBS-embedded and trimmed NURBS geometries on
the basis of the finite cell method. International Journal for Numerical Methods in Engi-
neering, 95(10):811–846.

Ruess, M., Schillinger, D., Özcan, A. I., and Rank, E. (2014). Weak Coupling for Isogeometric
Analysis of Non-Matching and Trimmed Multi-Patch Geometries. Computer Methods in
Applied Mechanics and Engineering, 269:46–71.

Ruess, M., Tal, D., Trabelsi, N., Yosibash, Z., and Rank, E. (2012). The finite cell method for
bone simulations: verification and validation. Biomechanics and modeling in mechanobiol-
ogy, 11(3-4):425–37.

Saad, Y. (2003). Iterative Methods for Sparse Linear Systems. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2nd edition.

Schenk, O. and Gärtner, K. (2011). PARDISO, pages 1458–1464. Springer US, Boston, MA.

Schillinger, D., Dedè, L., Scott, M. A., Evans, J. A., Borden, M. J., Rank, E., and Hughes,
T. J. (2012). An isogeometric design-through-analysis methodology based on adaptive hier-
archical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces.
Computer Methods in Applied Mechanics and Engineering, 249-252:116–150.

Schillinger, D. and Rank, E. (2011a). An Unfitted Hp-Adaptive Finite Element Method Based
on Hierarchical B-Splines for Interface Problems of Complex Geometry. Computer Methods
in Applied Mechanics and Engineering, 200(47-48):3358–3380.

Schillinger, D. and Rank, E. (2011b). Numerical Analysis of Lamb Waves Using the Finite
and Spectral Cell Methods. Computer Methods in Applied Mechanics and Engineering,
99(47-48):3358–3380.

Schillinger, D. and Ruess, M. (2014). The Finite Cell Method: A Review in the Context of
Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Archives of
Computational Methods in Engineering, 22(3):391–455.

Schling, B. (2011). The Boost C++ Libraries. XML Press.

BIBLIOGRAPHY 169

Schott, B. (2017). Stabilized Cut Finite Element Methods for Complex Interface Coupled Flow
Problems. Dissertation, Technische Universität München, Munich.

Schott, B., Ager, C., and Wall, W. (2019). A monolithic approach to fluid-structure interac-
tion based on a hybrid Eulerian-ALE fluid domain decomposition involving cut elements.
International Journal for Numerical Methods in Engineering, 119(3):208–237.

Shapira, Y. (2003). Matrix-Based Multigrid: Theory and Applications. Numerical methods
and algorithms. Kluwer Academic Publishers.

Shewchuk, J. R. (1994). An Introduction to the Conjugate Gradient Method Without the
Agonizing Pain. Technical report, USA.

Smith, B., Bjørstad, P., and Gropp, W. (1996). Domain Decomposition: parallel multilevel
methods for elliptic partial differential equations. Cambridge university press.

Šolín, P. (2004). Higher-Order Finite Element Methods. Studies in advanced mathematics.
Chapman & Hall/CRC, Boca Raton.

Šolín, P., Červený, J., and Doležel, I. (2008). Arbitrary-level hanging nodes and automatic
adaptivity in the hp-FEM. Mathematics and Computers in Simulation, 77(1):117–132.

Šolín, P., Dubcova, L., and Doležel, I. (2010). Adaptive hp-FEM with arbitrary-level hanging
nodes for Maxwell’s equations. Advances in Applied Mathematics and Mechanics, 2(4):518–
532.

Stenberg, R. (1995). On some techniques for approximating boundary conditions in the finite
element method. Journal of Computational and Applied Mathematics, 63(1):139 – 148. Pro-
ceedings of the International Symposium on Mathematical Modelling and Computational
Methods Modelling 94.

Sukumar, N., Moës, N., Moran, B., and Belytschko, T. (2000). Extended finite element method
for three-dimensional crack modelling. International Journal for Numerical Methods in
Engineering, 48(11):1549–1570.

Szabó, B. A. and Babuška, I. (1991). Finite Element Analysis. John Wiley & Sons, New York.

The HDF Group (1997). Hierarchical Data Format, version 5. http://www.hdfgroup.org/
HDF5/.

Tielen, R., Möller, M., Göddeke, D., and Vuik, C. (2020). p-multigrid methods and their
comparison to h-multigrid methods within Isogeometric Analysis. Computer Methods in
Applied Mechanics and Engineering, 372:113347.

Toselli, A. and Widlund, O. (2005). Domain Decomposition Methods: Algorithms and Theory.
Springer.

Trottenberg, U., Ulrich Trottenberg, C., Oosterlee, C., Schuller, A., Brandt, A., Oswald, P.,
and Stüben, K. (2001). Multigrid. Elsevier Science.

http://www.hdfgroup.org/HDF5/
http://www.hdfgroup.org/HDF5/

170 BIBLIOGRAPHY

Tu, T., O’Hallaron, D. R., and Ghattas, O. (2005). Scalable parallel octree meshing for teras-
cale applications. In Proceedings of the 2005 ACM/IEEE Conference on Supercomputing,
SC ’05, pages 4–, Washington, DC, USA. IEEE Computer Society.

Verdugo, F., Martín, A. F., and Badia, S. (2019). Distributed-memory parallelization of the
aggregated unfitted finite element method. Computer Methods in Applied Mechanics and
Engineering, 357:112583.

Verhoosel, C.V., van Zwieten, G.J., van Rietbergen, B., and de Borst, R. (2015). Image-Based
Goal-Oriented Adaptive Isogeometric Analysis with Application to the Micro-Mechanical
Modeling of Trabecular Bone. Computer Methods in Applied Mechanics and Engineering,
284:138–164.

Vinarcik, E. (2002). High Integrity Die Casting Processes. Wiley.

Waisman, H. and Berger-Vergiat, L. (2013). An adaptive domain decomposition preconditioner
for crack propagation problems modeled by XFEM. International Journal for Multiscale
Computational Engineering, 11(6):633–654.

Wesseling, P. (2004). An Introduction to Multigrid Methods. An Introduction to Multigrid
Methods. R.T. Edwards.

Würkner, M., Duczek, S., Berger, H., Köppe, H., and Gabbert, U. (2018). A Software Platform
for the Analysis of Porous Die-Cast Parts Using the Finite Cell Method. In Altenbach, H.,
Carrera, E., and Kulikov, G., editors, Analysis and Modelling of Advanced Structures and
Smart Systems, volume 81 of Advanced Structured Materials, chapter 14, pages 327–341.
Springer, Singapore, 1 edition.

Yang, Z., Ruess, M., Kollmannsberger, S., Düster, A., and Rank, E. (2012). An Efficient
Integration Technique for the Voxel-Based Finite Cell Method. International Journal for
Numerical Methods in Engineering, 91(5):457–471.

Yi, J. Z., Gao, Y. X., Lee, P. D., Flower, H. M., and Lindley, T. C. (2003). Scatter in fatigue
life due to effects of porosity in cast A356-T6 aluminum-silicon alloys. Metallurgical and
Materials Transactions A, 34(9):1879.

Yosibash, Z. (2011). Singularities in Elliptic Boundary Value Problems and Elasticity and
Their Connection with Failure Initiation. Interdisciplinary Applied Mathematics. Springer
New York.

Yserentant, H. (1985). Hierarchical bases of finite-element spaces in the discretization of
nonsymmetric elliptic boundary value problems. Computing, 35:39–49.

Yserentant, H. (1986). Hierarchical bases give conjugate gradient type methods a multigrid
speed of convergence. Applied Mathematics and Computation, 19(1):347–358.

Yushkevich, P. A., Piven, J., Cody Hazlett, H., Gimpel Smith, R., Ho, S., Gee, J. C., and
Gerig, G. (2006). User-Guided 3D Active Contour Segmentation of Anatomical Structures:
Significantly Improved Efficiency and Reliability. Neuroimage, 31(3):1116–1128.

BIBLIOGRAPHY 171

Zander, N. (2017). Multi-Level Hp-FEM: Dynamically Changing High-Order Mesh Refinement
with Arbitrary Hanging Nodes. PhD Thesis, Technische Universität München, Munich.

Zander, N., Bog, T., Elhaddad, M., Frischmann, F., Kollmannsberger, S., and Rank, E.
(2016a). The Multi-Level hp-Method for Three-Dimensional Problems: Dynamically Chang-
ing High-Order Mesh Refinement with Arbitrary Hanging Nodes. Computer Methods in
Applied Mechanics and Engineering, 310:252–277.

Zander, N., Bog, T., Kollmannsberger, S., Schillinger, D., and Rank, E. (2015). Multi-Level hp-
Adaptivity: High-Order Mesh Adaptivity without the Difficulties of Constraining Hanging
Nodes. Computational Mechanics, 55(3):499–517.

Zander, N., Ruess, M., Bog, T., Kollmannsberger, S., and Rank, E. (2016b). Multi-Level hp-
Adaptivity for Cohesive Fracture Modeling. International Journal for Numerical Methods
in Engineering, 109(13):1723–1755.

	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Outline

	2 The finite element method
	2.1 The Galerkin finite element method
	2.1.1 Finite element discretization
	2.1.2 Numerical quadrature and matrix assembly
	2.1.3 Solution of the linear system

	2.2 Extensions of the finite element method
	2.2.1 The h-version of the finite element method
	2.2.2 The p-version of the finite element method
	2.2.3 The hp-version of the finite element method

	2.3 Immersed finite element methods
	2.3.1 The core idea behind immersed finite elements
	2.3.2 Cut cells and their implications
	2.3.2.1 Dedicated numerical quadrature rules for cut cells
	2.3.2.2 Weak imposition of Dirichlet boundary conditions
	2.3.2.3 Conditioning of the system

	2.3.3 A brief overview of different immersed methods

	3 Formulation of the multi-level hp-finite cell method
	3.1 Fundamentals of the finite cell method
	3.2 Multi-level hp-refinement
	3.2.1 Construction of the basis
	3.2.2 Nomenclature and properties of a multi-level hp-mesh
	3.2.3 Numerical integration

	3.3 A software framework for hp-refined high-order finite elements
	3.3.1 Code structure and serial implementation
	3.3.2 Code performance, bottlenecks and limitations

	4 Parallel immersed computations
	4.1 Fundamentals of parallel computing
	4.2 Ingredients for scalable finite element analysis
	4.2.1 Scalable and efficient mesh management
	4.2.2 Robust and scalable solvers
	4.2.3 Scalable post-processing
	4.2.4 A brief review of parallel frameworks for high-order finite elements

	4.3 A simple parallelization scheme based on replicated mesh data structures
	4.3.1 Parallel simulation pipeline
	4.3.2 Numerical examples
	4.3.2.1 A 3D Poisson problem involving complex refinement patterns
	4.3.2.2 Loading of a bone implant system

	4.3.3 Limitations of the parallel implementation

	4.4 A massively parallel framework for finite cell analysis
	4.4.1 Parallel mesh generation
	4.4.2 Parallel enforcement of mesh compatibility
	4.4.3 Dealing with dynamic mesh refinement and growing domains
	4.4.4 Numerical examples
	4.4.4.1 Strong scalability: Loading of a gearbox housing
	4.4.4.2 Weak scalability: Popcorn benchmark

	5 Iterative solution schemes for multi-level hp-FCM
	5.1 Conditioning analysis of the finite cell method
	5.2 Additive Schwarz preconditioning for FCM
	5.2.1 Preconditioning of uniform finite cell meshes
	5.2.2 Preconditioning of multi-level hp-refined finite cell meshes
	5.2.3 Analysis of the influence of p, h and k on the effectiveness of the additive Schwarz preconditioners
	5.2.4 Implementational aspects
	5.2.4.1 Preconditioning of cut cells under a certain volume fraction
	5.2.4.2 Stabilization of the preconditioner
	5.2.4.3 Use of shared-memory and distributed parallelism
	5.2.4.4 Summary of the preconditioner construction

	5.2.5 Numerical examples
	5.2.5.1 Compression of a cube with a spherical exclusion
	5.2.5.2 Image-based simulation of a lumbar vertebra
	5.2.5.3 Loading of a die-cast gearbox housing

	5.3 Multigrid solvers for multi-level hp-FCM
	5.3.1 Multigrid methods
	5.3.2 A hp-multigrid approach for the multi-level hp-method
	5.3.3 Selection of suitable smoothing strategies
	5.3.4 Numerical examples
	5.3.4.1 Poisson problem with a manufactured solution
	5.3.4.2 Perforated linear elastic plate
	5.3.4.3 Cube with spherical cavities
	5.3.4.4 Loading of an aluminum rod

	6 Application of the finite cell method to metal additive manufacturing
	6.1 Virtual material characterization of AM products
	6.1.1 Characterization of a microporous metallic structure

	6.2 Modeling heat transfer in selective laser melting
	6.2.1 Governing equations
	6.2.2 Spatial and temporal discretization
	6.2.3 The heat source in high-fidelity SLM simulations
	6.2.3.1 Simulating the fabrication on an aluminum specimen

	6.2.4 A layer-by-layer element activation approach
	6.2.4.1 Simulation of an optimized engine Bracket

	7 Conclusion and outlook

