
Daniel Rene Jorde

Learning from Power:
Machine Learning on
Electrical Signals





Fakultät für Informatik

Lehrstuhl für Anwendungs- und Middlewaresysteme

Learning from Power:
Machine Learning on Electrical Signals

Daniel Rene Jorde

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: apl. Prof. Dr. Georg Groh

Prüfer der Dissertation:
1. Prof. Dr. Hans-Arno Jacobsen
2. Prof. Dr. Alexander Horsch

Die Dissertation wurde am 29.10.2020 bei der Technische Universität München eingereicht und
durch die Fakultät für Informatik am 25.02.2021 angenommen.





Ad Astra





Abstract

Electricity is everywhere. It powers devices ranging from small appliances to large
industrial machines. Seizing electrical signals to monitor the behaviour of electrical
consumers delivers insights that various applications, such as, for example, disaggregation
of energy measurements and industrial condition monitoring, rely on. Non-intrusive load
monitoring (NILM) techniques are one means for extracting device-level information
from electrical signals, without intrusively attaching sensors to each individual device.
In this dissertation, we contribute new advancements to the steps of the NILM analysis
pipeline: data acquisition, event detection, and appliance identi�cation.

Data acquisition: We introduce the �rst extensive publicly-available dataset for NILM-
based condition monitoring and analysis of industrial components in the �eld, namely,
the co�eemaker electrical activity measurements (CREAM) dataset. More particularly,
this dataset is the �rst one to include comprehensive ground-truth information and
high-sampling-rate electrical signals of industrial electrical components that are actively
working together to create products following a dedicated manufacturing process.

Event detection: Furthermore, we introduce a new multi-environment event detector
(MEED) for high-sampling-rate electrical signals. MEED improves the current state of the
art while being trained fully unsupervised. Thus, the algorithm does not require manual
adaption when being used in new environments. In addition, we provide an extensive
categorisation of the existing state of the art in event detection for NILM. We identify
research gaps based on this review and conduct a benchmark of our MEED approach
and four re-implemented state-of-the-art algorithms, showing that MEED achieves the
highest precision and recall on the BLUED and the BLOND dataset.

Appliance identi�cation: The subsequent appliance identi�cation step relies on previ-
ously detected events. Appliance identi�cation algorithms use hand-crafted features so far.
Di�erent appliances have di�erent features that represent them best, making the feature
engineering highly dependent on the respective appliance composition. We overcome
this manual e�ort by introducing a new approach that applies a deep convolutional
neural network to extract features from the raw signals. By evaluating the algorithm
on the WHITED and PLAID dataset, we show that it achieves F1-Scores of 1 and 0.69
respectively.
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Zusammenfassung

Elektrizität ist überall. Sie treibt Geräte von kleinen Haushaltsgeräten bis hin zu großen
industriellen Maschinen an. Die Nutzung von elektrischen Signalen zur Überwachung
des Verhaltens von elektrischen Verbrauchern liefert Einblicke auf denen verschiedenste
Anwendungen basieren, wie zum Beispiel, die Disaggregation von Energiemessungen und
industrielle Zustandsüberwachung. Non-intrusive load monitoring (NILM) Techniken
sind ein Mittel, um gerätespezi�sche Informationen aus elektrischen Signalen zu extrahie-
ren, ohne dabei invasiv Sensoren an den einzelnen Verbrauchern anzubringen. In dieser
Dissertation tragen wir neue Entwicklungen zu den Schritten der NILM-Analysepipeline
bei: Datanaquise, Eventerkennung und Geräteidenti�kation.

Datanaquise: Wir stellen den ersten ausführlichen, ö�entlich verfügbaren Datensatz
für NILM basierte Zustandsüberwachung und Auswertungen auf dem Gebiet vor, den
co�eemaker electrical activity measurements (CREAM) Datensatz. Insbesondere ist dieser
Datensatz der Erste, der umfassende Referenzdaten und hochaufgelöste elektrische Signa-
le von industriellen, elektrischen Komponenten enthält, die aktiv in einem dedizierten
Fertigungsprozess zusammenarbeiten, um mehrere Produkte zu erstellen.

Eventerkennung: Darüber hinaus stellen wir einen neuen, multi-umgebungs Even-
terkennungsalgorithmus (MEED) für hochaufgelöste elektrische Signale vor. MEED
verbessert den aktuellen Stand der Technik, obwohl er vollständig unüberwacht trainiert
wird. Daher benötigt der Algorithmus keine manuellen Anpassungen, wenn er in neuen
Umgebungen verwendet wird. Außerdem stellen wir eine umfangreiche Kategorisierung
des existierenden Standes der Technik in der Eventerkennung für NILM zur Verfügung.
Wir identi�zieren dabei, basierend auf diesem Überblick, Forschungslücken und führen
einen Benchmark unseres MEED Ansatzes mit vier neu implementierten Algorithmen
des aktuellen Standes der Technik durch und zeigen, dass MEED die höchsten Precision
und Recall Werte auf den Datensätzen, BLUED und BLOND, erreicht.

Geräteidenti�kation: Der nachfolgende Schritt der Geräteidenti�kation stützt sich auf
die zuvor erkannten Events. Algorithmen zur Geräteidenti�kation verwenden traditio-
nell händisch erarbeitete Charakteristiken. Verschiedene Geräte haben verschiedene
Eigenschaften durch die sie am besten repräsentiert werden, was die Entwicklung der
Eigenschaften stark abhängig von der entsprechenden Gerätezusammenstellung macht.
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Wir überwinden diesen manuellen Aufwand durch die Einführung eines neuen Ansatzes,
der ein tiefes, faltendes (convolutional) neuronales Netz verwendet, um Eigenschaften
aus den Rohsignalen zu extrahieren. Anhand der Auswertung des Algorithmus auf dem
WHITED und dem PLAID Datensatz zeigen wir, dass er entsprechende F1-Werte von 1
und 0, 69 erreicht.
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1

Introduction

Electrical signals can be found everywhere, from consumer products to large industrial
machinery. The speci�c inner workings and behaviour of appliances in�uence the elec-
trical signals that power them [1, 2]. Thus, measuring these signals exhibits information
about the components and appliances they are acquired from. We di�erentiate two
paradigms for measuring the respective voltage and current signals, namely, intrusive
load monitoring (ILM) and non-intrusive load monitoring (NILM). They represent the
trade-o� of either attaching a measurement device to every individual appliance and
component or of measuring multiple ones at the same time in a non-intrusive way [1].
For obtaining the behaviour of individual appliances from the aggregate signal in the
latter approach, intelligent algorithms are necessary to retrieve information from the
signal.

The non-intrusive paradigm bears several advantages over ILM, such as, for example,
a reduction in costs and maintenance, and the possibility to monitor appliances and
components for which an individual sensor placement is unfeasible. Monitoring the
electrical load of appliances and other electrical components enables various applications,
such as energy breakdowns and condition monitoring of machinery [1, 3].

In this work, we focus on the NILM paradigm to monitor the electrical load of both
consumer appliances and industrial components. NILM relies on the algorithms that are
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1.1. MOTIVATION

used to disaggregate the aggregate sensor readings. This thesis identi�es research gaps
along the analysis pipeline of NILM and overcomes them subsequently by proposing new
algorithms and data.

1.1 Motivation

Two trends and challenges raise the demand for the analysis of electrical consumer
appliances in households and o�ce environments on the one hand, and on industrial
electrical equipment on the other hand.

First, the depletion of natural resources with the simultaneous rise in demand for
(electrical) energy is one of today’s main challenges [4]. Consequently, innovations
to reduce the amount of energy consumed and to improve the use of limited resources
are necessary. One way is to advise end-users, both residential and industrial ones,
on how they can save electrical energy [5, 6]. This can be done by providing detailed
energy breakdowns to identify anomalies and potential sources of energy waste [6].
These energy breakdowns and appliance anomaly detection applications can be realised
by implementing respective measurement hardware and NILM algorithms. By non-
intrusively measuring and disaggregating the power consumption of the entities of
interest, such as, for example, residential households, one can provide per-appliance
usage and energy demand information to raise end-user awareness [5, 6]. NILM was
initially developed to provide per-appliance power usage information in residential
environments by applying disaggregation algorithms but is increasingly adapted in other
domains [7, 8, 9, 10, 11].

The second major trend that lays the basis for an application area beside the residential
and o�ce sector is the increasing adaption of cyber-physical systems as the backbone of
new industrial developments [12]. Detailed information about the behaviour of electrical
components lays the basis for implementing condition monitoring (CM) processes in the
industry [13]. NILM techniques can provide such per-component information, without
the need for deploying sensors to machinery in an intrusive way, as shown by the work of
Suzuki et al. [11]. Besides, analysing industrial equipment with NILM algorithms enables
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1. INTRODUCTION

energy breakdowns that o�er the potential to achieve energy savings in the industrial
sector.

In conclusion, both developments, the depletion of natural resources with the rising
energy demand, as well as the adoption of condition monitoring techniques in the industry
motivate the further development of NILM algorithms. In particular, these algorithms
contribute to reduce energy waste and to optimise the usage of industrial equipment
without intrusively attaching sensors to individual appliances and components.

1.2 Problem Statement

Recent advances in machine learning, such as the advancements in several �elds through
the adoption of neural network-based algorithms, o�er opportunities to further improve
the state of the art in NILM along all steps of the analysis pipeline. We divided the NILM
process, in particular, when being applied to high-sampling-rate data, into three steps
that �nally result in the disaggregated load, namely, data acquisition, event detection,
and appliance identi�cation, as shown in Figure 2.1.3.

Thus, the key problems and challenges of NILM that are covered in this thesis are described
with respect to the step they belong to in the following. As NILM can be applied in various
settings, the entities that are analysed can di�er substantially from whole appliances to
individual electrical components in industrial machinery. To facilitate readability and
to follow the traditional naming of the �eld, we use the terms appliance and component
interchangeably in the following to refer to the entity that is the target of the NILM
analysis process.

Data acquisition NILM was initially developed to disaggregate load pro�les from
residential environments [7]. As a result, most of the published datasets are from this
domain [8]. To further transfer NILM techniques into the domain of condition monitoring,
the need for a dataset to benchmark such algorithms arises. Currently, there is no high-
sampling-rate dataset containing industrial components, such as motors and pumps, that
are triggered following a dedicated production process pattern.
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1.3. APPROACH

Event detection In the �eld of NILM, various algorithms have been proposed to detect
relevant signal segments and state-changes in the high-sampling-rate voltage and current
waveform [14, 15, 16, 17, 18, 19]. The existing algorithms are often tailored to a speci�c
setting with a �xed appliance composition. Consequently, the algorithms need to be
manually adapted by human experts when being used in new environments, with a
potentially dynamic appliance composition. Furthermore, there is no comprehensive
overview of the existing approaches and no standard for evaluating the algorithmic
performance, making the algorithms hard to compare.

Appliance identi�cation Di�erent appliances have unique �ngerprints that are best
suited to identify them [2, 20]. Traditional NILM approaches rely on manually derived
features, that need to be �ned tuned for speci�c appliance compositions and settings.
In contrast, neural network-based representation approaches promise to automatically
extract features from the raw data, allowing the algorithms to generalise better without
human interference and manual �ne-tuning [21]. Thus, the adaption of such algorithms
can overcome the need for appliance speci�c feature engineering.

1.3 Approach

This dissertation presents multiple advancements along the complete analytical pipeline
of NILM that have the potential to overcome the existing problems and challenges in the
�eld.

Experimental results show, that NILM can be used for applications besides energy
disaggregation, in particular, for monitoring industrial equipment [3, 11]. Most of the
NILM algorithms have been developed with the purpose of disaggregating residential
load pro�les. In order to transfer these algorithms to an industrial setting for applications,
such as condition monitoring, new datasets are necessary that contain industrial electrical
components. The usage of these components has to follow the patterns of a dedicated
production process. Thus, we introduce the co�eemaker electrical activity measurements
for condition monitoring (CREAM) dataset. The dataset contains the fully-labelled ground-
truth electrical signals of two industrial-grade co�eemakers with typical industrial
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1. INTRODUCTION

electrical components. The purpose of this publicly available dataset is to provide a
baseline for benchmarking condition monitoring algorithms on electrical signals, as it
includes over 370000 expert labelled electrical events and corresponding maintenance
and production process labels.

The event detection step is fundamental to all subsequent actions in the NILM pipeline
on high-sampling-rate data, as it determines which signal segments are further processed
for appliance identi�cation and other applications. As outlined before, the existing event
detection algorithms for NILM are developed and evaluated for speci�c, often not publicly
available environments [22]. In addition, the algorithms need to be tediously �ne-tuned
when being transferred to another setting [22]. Furthermore, it is hard to compare
the wide variety of existing algorithms as they are often evaluated on non-public data
and use unknown parameters in the evaluation. We propose an unsupervised multi-
environment event detector (MEED) for NILM to overcome the �rst issue [23]. This
event detector can identify relevant signal segments without human supervision in a
fully unsupervised way. At its heart, MEED relies on a denoising autoencoder model
with bidirectional long short-term memory (LSTM) layers for encoding and decoding the
input. The only hyperparameter of MEED is a threshold on the mean-square-error (MSE)
reconstruction error to determine events in the signal. This parameter is automatically set
with respect to the error produced at the end of the training procedure. We have released
all source code of MEED to facilitate reproducibility. In addition to introducing MEED, we
have conducted an extensive literature review of the high-sampling-rate event detection
algorithms for NILM to overcome the issues of reproducibility and comparability in the
�eld [22]. Based on this review, we have re-implemented four of the state-of-the-art
event detection algorithms and evaluated them against MEED on two publicly available
datasets, showing the superiority of MEED in event detection for NILM. To make our
approach reproducible, we published all source code, including the four re-implemented
approaches, as open source.

Based on the detected events, one can determine the appliance that was responsible for the
respective event by classifying the signal segments. Handcrafting features is a tedious task,
that is dependent on the speci�c appliances that are used. The datasets in the �eld have
a comparatively small number of samples per appliance type, making the classi�cation
task on high-sampling-rate data challenging, due to the curse-of-dimensionality. By
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introducing a convolutional neural network (CNN) architecture, we show how the raw
voltage and current waveform can be used to automatically perform the classi�cation
based on the representation the network extracts from the raw input [24].

1.4 Contribution

With the goals of improving central aspects of the NILM analytical pipeline on the
one hand and of facilitating the usage of NILM algorithms in industrial environments
for condition monitoring, on the other hand, this work presents new algorithms and a
new dataset. In pursuit of achieving this, this dissertation includes the following main
contributions to the three steps of the analysis pipeline:

1. We introduce the co�eemaker electrical activity measurements for condition
monitoring (CREAM) dataset to overcome the lack of datasets to benchmark NILM
algorithms on industrial components for advanced applications other than energy
disaggregation. In particular, the dataset contains 370600 hand-labelled electrical
events and �ne-granular labels of manufactured products and maintenance actions
taken for two industrial-grade co�eemakers. The co�eemakers were selected
as they ful�l the requirements for a closed system in which industrial electrical
components, such as, for example, pumps and motors, are triggered according to
a pre-de�ned manufacturing process to produce various products. The dataset
can be used to evaluate various algorithms, such as non-invasive condition moni-
toring algorithms, component classi�cation techniques, and event detectors, on a
comprehensive set of labels.

2. We present an unsupervised multi-environment event detector (MEED) that out-
performs the existing state of the art in event detection on high-sampling-rate
electrical signals. The algorithm is fully unsupervised and requires no human
intervention when being used in multiple settings, such as residential and o�ce
environments. Our approach lowers the amount of missed and falsely identi�ed
events compared to the existing state of the art while generalising well between
di�erent environments.
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1. INTRODUCTION

3. We conduct an extensive review of the existing state of the art in event detection
for high-sampling-rate NILM. By categorising the publications and distilling the
evaluation criteria, we present an overview of algorithms that can be compared to
each other. Based on this, we identify shortcomings in the evaluation of the existing
algorithms and re-implement four state-of-the-art algorithms to evaluate them
against our MEED algorithm. In addition, we make all source code publicly available,
including the functions for evaluation, to overcome the issues of reproducibility
and comparability in the �eld.

4. We consider a new approach for performing appliance classi�cation on raw, high-
dimensional voltage and current signals. The approach does not require hand-
crafted, appliance speci�c feature engineering, as the CNN automatically extracts
a suitable representation from the input. With the CNN based approach, we
are able to achieve state-of-the-art results without dedicated feature engineering.
In addition, we discuss possible data augmentation techniques to overcome the
problems resulting from the small datasets in the NILM �eld that arise when training
deep neural networks.

Parts of the content and contributions of this work have been accepted and published in:

• D. Jorde, T. Kriechbaumer, T. Berger, S. Zitzlsperger, and H.-A. Jacobsen. “CREAM, a
component level co�eemaker electrical activity measurement dataset.” In: Scienti�c
Data (2020), accepted for publication on 15.10.2020

• D. Jorde, M. Kahl, and H.-A. Jacobsen. “MEED: An Unsupervised Multi-Environment
Event Detector for Non-Intrusive Load Monitoring.” In: 2019 IEEE International
Conference on Communications, Control, and Computing Technologies for Smart Grids
(SmartGridComm). 2019, pp. 1–6. doi: 10.1109/SmartGridComm.2019.
8909729

• D. Jorde and H.-A. Jacobsen. “Event Detection for Energy Consumption Mon-
itoring.” In: IEEE Transactions on Sustainable Computing (2020), pp. 1–1. doi:
10.1109/TSUSC.2020.3012066
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1.5. ORGANIZATION

• D. Jorde, T. Kriechbaumer, and H.-A. Jacobsen. “Electrical Appliance Classi�cation
using Deep Convolutional Neural Networks on High Frequency Current Measure-
ments.” In: 2018 IEEE International Conference on Communications, Control, and
Computing Technologies for Smart Grids (SmartGridComm). 2018, pp. 1–6. doi:
10.1109/SmartGridComm.2018.8587452

The latter paper on appliance identi�cation [24] is based on the master thesis of the author
of this dissertation. The master thesis was supervised by Prof. Dr. Hans-Arno Jacobsen
and advised by Dr. Thomas Kriechbaumer and is entitled "Identi�cation of Individual
Electronic Appliances in High Frequency Energy Data using an Arti�cial Neural Network
Approach". The thesis was submitted on the 12th of March 2018.

1.5 Organization

This dissertation is organised as follows. Chapter 2 presents the background to relevant
topics and our methodology for improving the existing state of the art along the NILM
analytical pipeline. Chapter 3 presents a short summary of the publications that this
thesis comprises. In particular, we describe the main achievements of each paper and
highlight the author’s contributions. We have attached the respective publications to
this thesis in the Appendices A, B, C, and D. In Chapter 4, we discuss the results and our
contributions to NILM in the larger context of the �eld. Chapter 5 concludes this thesis.
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2

Methodology

This chapter gives an overview of the Non-Intrusive Load Monitoring (NILM) methodol-
ogy, that is applied to disaggregate electrical signals in this thesis. In the �rst Section 2.1,
we provide an overview of the analysis pipeline and the general setup of Non-Intrusive
Load Monitoring techniques. In Section 2.2, we give an overview of data acquisition
systems that are used to collect the data that is processed by the NILM algorithms. In
particular, we describe the hardware used to collect the CREAM dataset in detail. In the
subsequent Section 2.3, we introduce the datasets that are used in this thesis to evaluate
the developed algorithms. The commonly used metrics to evaluate NILM algorithms are
then described in Section 2.4. Most of the NILM algorithms rely on the computation of
features from the raw voltage and current signals. Hence, we describe commonly used
features in Section 2.5. We then concluded this chapter by giving an overview of machine
learning methodologies applied to the electrical signals and features in Section 2.6.

2.1 Non-Intrusive Load Monitoring

When monitoring the electrical load of individual electrical components, or appliances,
one can take two approaches. One can either intrusively attach sensors to each component
to measure the power consumption, or one can use a single sensor to measure the
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2.1. NON-INTRUSIVE LOAD MONITORING

consumption of multiple components at the same time and apply intelligent algorithms
to separate the aggregate signal into the individual component signals afterwards [7].
The amount of sensors used and the ease of monitoring the individual component’s
power consumption represents a trade-o�. The intrusive placement of sensors introduces
costs, such as for the acquisition and maintenance of the sensors, and is not feasible in
some cases, due to the character and locations of individual components [1, 7]. The Non-
Intrusive Load Monitoring methodology was introduced to reduce the number of sensors
used by disaggregating the aggregate consumption of multiple components measured by
a single sensor [1, 7].

The general setup for measuring the consumption of individual components with NILM
is depicted in Figure 2.1.1. The metering hardware acquires the electrical signals from the
aggregate entity, that consist of multiple, individual electrical components. Each of these
components has unique characteristics that are re�ected in their power consumption.
NILM algorithms rely on these individual characteristics to disaggregate the aggregate
signals into the individual component ones [1, 7]. By doing that, one can monitor multiple
components with a single sensor.

Metering
Hardware

Component

Component

Component

Component
Aggregate

Signal

NILM algorithm

Aggregate Entity

Figure 2.1.1: NILM metering setup
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2. METHODOLOGY

NILM was originally introduced by Hart [7] to monitor residential appliances based on the
aggregate consumption of a residential home. Referring to the terminology introduced
before in Figure 2.1.1, each component is an electrical appliance, and the aggregate entity
is a residential home. The metering hardware is then installed at the electrical mains
of the house to monitor the aggregate signal of the house. After applying the NILM
algorithms, one obtains the detailed consumption information for each of the appliances,
such as typical household appliances like fridges. By analysing the aggregate voltage and
current recorded by a load monitor, Hart determines the turn-on and switch o� moments
of each appliance and their power consumption [7].

Other settings than the residential one, are, for example, industrial machinery or vessels.
In the case of industrial machinery, the aggregate entity can be a complete machine
consisting of electrical components, such as heaters, pumps, and motors.

The input to the NILM algorithms, an aggregate electrical signal, and the respective
output, the signals of each component, is shown in Figure 2.1.2. In the case of the example
in Figure 2.1.2, the overall apparent power consumption of three o�ce devices, namely, a
personal computer (PC), and two screens, are shown.

NILM algorithms

Figure 2.1.2: NILM disaggregation procedure
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2.1. NON-INTRUSIVE LOAD MONITORING

Hart also derived a load model that describes the underlying problem of NILM. The
central idea behind this model is the parallel wiring of the components to be monitored.
Consequently, the power the components consume is additive (to a �rst order approxi-
mation) [7], resulting in the following equation for the aggregate power consumption at
time t [7]:

P(t) =
n
∑
i=1
ai(t)Pi + e(t) (2.1.1)

The load of each component i when it is operating is modelled as a vector Pi . The error
term e(t) represents the existing background noise and other errors. The boolean vector
a(t) describes the state of the aggregate system at time t . When a component is activated
at time t , the vector has an 1 entry at index i [7].

Finding the correct combination of components that results in the aggregate power
consumption measured, is an NP-complete "weighted set problem" [7]. Thus, various
heuristics and machine learning based algorithms have been designed to solve the problem
and to determine the correct vector a(t) of activated and inactivated components for a
certain time t [1, 7].

The wide variety of NILM algorithms can be divided into two sets: state-based (i.e., non-
event based) NILM algorithms and event-based ones [26]. State-based algorithms aim to
disaggregate the electrical signal into the individual components directly. In contrast,
event-based algorithms rely on separating relevant and irrelevant signal segments before
determining the appliance status. Event-based algorithms detect state-changes of the
components in the signal. Thus, the event-based NILM algorithms consist of multiple-
steps: the detection of events, the identi�cation of the component that is responsible
for the event, and then the disaggregation of the aggregate signal [17]. The complete
analysis pipeline is depicted in Figure 2.1.3.

The precondition of NILM algorithms is the data acquisition, that is usually done using
smart meter devices or other dedicated hardware solutions for measuring the electrical sig-
nals. The two types of NILM algorithms are applied to data with di�erent sampling rates,
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State-based NILM Appliance (Component) 
Classification

Load Disaggregation

Event Detection

Advanced Applications

Data Acquisition

Sampling Rate

Process
Flow

Figure 2.1.3: House of NILM

respectively, as most of the state-based algorithms become computationally intractable on
higher sampling rates. Consequently, event-based algorithms are predominantly applied
to high-sampling-rate data [26]. The sampling rate gives information on the number of
samples-per-second (sps) the metering hardware collects.

A commonly used de�nition for low- and high-sampling-rates � is introduced by Liang
et al. [27]:

� =
⎧⎪⎪
⎨⎪⎪⎩

low, if � ≤ 1 sps

high, if � > 1 sps
(2.1.2)

Based on the results of either the state-based or the event-based approaches, one can
build other advances applications that rely on the disaggregated energy pro�les of
the components. Examples of such advanced applications are, for instance, activity
monitoring of elderly people and condition monitoring for naval vessels [3, 28]. In the
�rst example, Alcala et al. [28] use NILM algorithms to build a low-cost and scalable
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activity monitoring system. A NILM algorithm determines the activity of people based
on the appliances that are active at certain moments in time. By doing so, the authors are
able to �nd deviations from normal in the monitored people’s behaviour that can be used
to improve health-care services [28]. In the second example, Lindahl et al. [3] show the
usage of disaggregated electrical load pro�les to perform fault detection in naval vessels
by analysing the health condition of the respective machinery in a non-intrusive way [3].

In contrast to small sampling rates (� ≤ 1), higher ones posses several advantages, such
as the possibility to disaggregate more and even smaller components from the aggregate
signal [6]. Furthermore, more features can be extracted from the high-sampling-rate
data. In particular, frequency-based features, such as, for example, harmonics, need a
minimum sampling rate to compute them. Due to these advantages and the gaps in the
research on high-sampling-rate NILM, this thesis focuses on this domain. Consequently,
we discuss event-based algorithms in more detail than state-based ones.

2.2 Data Acquisition

The data the NILM algorithms process can be acquired using a wide variety of electrical
meters. Depending on their sampling rate capabilities, the meters can be classi�ed
as low-frequency energy meters or high-frequency meters. The features and signal
characteristics that can be extracted from the electrical signals depend on the sampling
rate. As an example, higher-order harmonics can only be extracted from high-sampling-
rate signals full-�lling the Nyquist-Shannon sampling criteria [1]. In a comprehensive
study, ul Haq and Jacobsen [29] analysed the capabilities of o�-the-shelf electrical meters.
They show that more than 80% of the investigated hardware has a maximum sampling
rate of 1 sps. Only a minority of the measurement devices provides sampling rates in the
range of multiple thousands of samples-per-second [29]. High-sampling-rate data possess
advantages over lower sampling rates, as it increases the capabilities for successful NILM
in settings with multiple devices [6]. On the other hand, the acquisition of such high-
sampling-rate poses various challenges, such as the storage of the data [8]. To solve
the challenge of acquiring high-sampling-rate signals for appliances, Kriechbaumer et
al. [30] designed the low-cost Mobile Energy Data Acquisition Laboratory (MEDAL). In
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the following, we further detail the MEDAL hardware, as it measured the data for the
CREAM dataset that is described in Appendix A. MEDAL is a cyber-physical system that
allows for high-sampling-rate signal acquisition and on-device algorithm execution for
preprocessing these signals [30]. The hardware consists of a six-socket power strip that
is equipped with one voltage and six current sensors to monitor the individual sockets. In
addition to the sensor hardware, MEDAL consists of an embedded-PC, a Raspberry pi-3,
to process the collected data [30]. The overall setup of the MEDAL system is depicted in
Figure 2.2.1.

Raspberry Pi 3

Microcontroller

USB Interface

…
…Sensor

ADC

Sensor

ADC

Inner workings of the MEDAL system

Sensor

ADC

Figure 2.2.1: MEDAL case and inner system architecture

Each of the sockets of the MEDAL’s power strip is connected to one current sensor and
one analog-digital-converter (ADC), as shown in Figure 2.2.1. Furthermore, it contains
an AC-AC transformer for sensing the voltage. This transformer also acts as a galvanic
isolator and a step-down converter [30]. The sensors deployed for measuring the six
current signals are Hall-e�ect-based sensors. The sensors and ADCs are controlled by a
microcontroller that collects the data and forwards it to the single-board PC (raspberry
pi 3) over a USB connection. As a result, the MEDAL system is capable of collecting the
signals at a sampling rate of up to 50 kilo-samples-per-second (ksps). The single-board
PC can then be used to perform various tasks, such as preprocessing the data, sending
the data to a permanent cloud storage, and locally executing NILM algorithms [30].
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2.3 Datasets

There are various publicly available datasets from di�erent research domains that are
commonly used to evaluate NILM-based algorithms. Most of the datasets have been
collected with a speci�c purpose, such as energy disaggregation, occupancy detection,
demand prediction, and anomaly detection [31]. In the following, we describe the datasets
that are used in this thesis. As the focus is on event-based NILM algorithms, the following
datasets are all high-sampling-rate ones.

WHITED The Worldwide Household and Industry Transient Energy Dataset (WHITED) [32]
contains isolated measurements of start-up moments of various appliance types. The
appliances were mostly recorded in multiple residential homes spread around the world.
For each of the 110 appliances, multiple 5 second samples were recorded using a custom-
designed low-cost sound card meter [32]. The sound card meter sampled WHITED at a
rate of 44 ksps with a 16 bit resolution ADC.

PLAID The Plug-Level Appliance Identi�cation Dataset (PLAID) [33] is available in
multiple-versions. The original version of the datasets contains the start-up moments of
11 appliance classes, resulting in 1049 measurements. The dataset is sampled at 30 ksps.
The appliances are residential ones, measured in 56 households in the USA [33].

BLUED In contrast to WHITED and PLAID that contain isolated appliance measure-
ments, the Building Level fUlly-labeled dataset for Electricity Disaggregation (BLUED) [34]
contains the aggregate power consumption of a US American home for one week. The
signals of the two phases of the house are sampled at 12 ksps [17]. The aggregate
measurements are complemented with turn-on and switch-o� events for all appliances.
These events were recorded with plug-level power meters and light-intensity sensors
near overhead lights. The two phases, phase A and B, contain 872 and 1548 events
respectively [17]. Looking at the appliances connected to each phase, one can see that
the ones that are more complicated to disaggregate are connected to phase B. As the
ground-truth for this high-sampling-rate dataset is the most comprehensive one that is
publicly available, the BLUED dataset became the de-facto standard for evaluating event
detection algorithms for NILM.
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BLOND The previously mentioned datasets are all recorded in residential environ-
ments. The creators of the Building-Level O�ce eNvironment Dataset (BLOND) intended
to overcome this by making a high-sampling-rate, long-term dataset from an o�ce
environment publicly available [8]. The dataset contains aggregate measurements of all
three phases of a German o�ce space. Furthermore, the authors used the previously
described MEDAL [30] system to acquire the plug-level ground truth signals for every
appliance in the o�ce space [8]. The overall BLOND dataset is a composite of two parts:
one dataset with the aggregate data being sampled at 50 ksps and another part with it
being sampled at 250 ksps [8].

Looking at the existing datasets, one can see that there is no high-sampling-rate dataset
with industrial components to benchmark NILM-based algorithms. Hence, we have
created the CREAM dataset that is described in Appendix A to overcome this shortcoming.

2.4 Performance Metrics

When evaluating event-based NILM algorithms, several metrics are commonly used.
Most of them are based on the values of the confusion matrix between ground-truth
and predicted values [17, 35]. The confusion matrix contains the counts of samples that
are True Positive (TP), False Positive (FP), True Negative (TN), and False Negative (FN).
Based on these scores, one can compute the following metrics, that are also commonly
used in other machine learning application areas:

precision = TP
TP + FP recall = TP

TP + FN FPR = FP
FP + TN (2.4.1)

FPP = FP
TP + FN F1-Score = 2 × recall × precision

recall + precision

For the evaluation of event detection algorithms, it is necessary to de�ne the determination
of the confusion matrix scores precisely. In the related literature, researchers applied
di�erent procedures to compute the respective scores [17, 35, 36]. As events can spread
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over a longer time frame than a single point in time, a certain tolerance in time is required
to determine correctly classi�ed events. Furthermore, the tolerance limit � is required as
the event labels in commonly used datasets can be imprecise, due to their often manual
generation. Thus, for event detection algorithms, a true-positive event is a detected event
d that lies in temporal proximity of a ground truth event g, such that:

∃g ∶ d − � ≤ g ≤ d + � (2.4.2)

When evaluating appliance (component) classi�cation algorithms with multiple classes,
the metrics for the overall performance for the classes in the dataset is computed by
taking the unweighted average of all per-class scores [37]. In particular, each metric is
calculated for every class individually �rst, before averaging them. In case there is a large
class imbalance or if the misclassi�cation of one class is more severe then the one of
others, one can weight the individual scores with a factor before averaging them.

2.5 Electrical Features

Based on the electrical signals measured, various characteristics, i.e., features, can be
computed [2]. Di�erent appliances produce di�erent �ngerprints when they are activated.
The various features that are proposed in the literature capture these �ngerprints and
allow algorithms to distinguish between the appliances or to detect events [2]. Careful
feature selection eases NILM related tasks, such as, for instance, appliance classi�cation.
In Figure 2.5.1, two sets of features for multiple instances of three appliances from the
BLUED [34] dataset are shown. As it can be seen visually, the appliances are clearly
separated from one another based on the feature set in the right plot, whereas the
characteristics are overlapping when using a di�erent feature set in the left plot.

As NILM research was and still is mainly focused on consumer appliances, researchers
divided these appliances into four categories according to common characteristics [1]

The appliances of the �rst type have two states of operation. They can either be turned-on
or switched-o� and do not possess any intermediary statuses [1].
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Figure 2.5.1: Di�erent feature sets for appliance (component) classi�cation

The second category consists of appliances that do not only have two states but a �nite
number of states they can be operated in. The state-transitions of these appliances follow
regular patterns that can be seized by NILM algorithms. [1].

In contrast to the second category, appliances of the third category have an in�nite
number of states. Thus, they are named continuously variable devices. Their power
characteristics do not exhibit repeated patterns [1].

Appliances that are continuously operating, i.e., that are active over long periods, are
assigned to the fourth category [1].

The di�erent appliance categories can be seized to design NILM approaches, such as
hierarchical classi�cation algorithms. Similar to the (consumer) appliances, it is also
common in the NILM research �eld to categorise features into three sets, namely, transient
features, steady-state features, and non-traditional features [1, 2]. Transient features are
extracted from signal areas that belong to transitions between states of the appliances,
in particular when they are turned on. In contrast, steady-state features describe the
stable state of operation of an appliance. In addition, other features, besides steady-state
and transient ones, are used to improve NILM algorithms. These features belong to the
non-traditional feature category [1].
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When extracting features, especially transient ones, this is done based on a fundamental
assumption on appliance behaviour that was introduced by Hart in his seminal paper on
NILM, namely, the Switching-Continuity-Principle (SCP) [7, 38]. This principle states
that, in a small time interval, only up to one component (appliance) changes its state.
Depending on the setting and the appliance composition, the SCP should only be rarely
violated [38]. Based on the SCP, one can compute an appliance �ngerprint, in particular,
based on the state-transitions, that belongs to only one individual appliance.

The three-dimensional �ngerprints in Figure 2.5.1 are computed based on the �rst two
seconds after the respective appliances were turned on. In order to give an overview of
potential features for NILM, the ones in Figure 2.5.1 are further described in the following.
Experiments by Kahl et al. [2] have shown, that a combination of features from the time-
domain and ones from the frequency-domain perform best. All features are derived from
the raw voltage (U ) and current (I ) signal. The power factor feature is the ratio between
the real (P ) and apparent (|S|) power of the signal segment of interest, with the rms being
the root-mean-square value of the respective physical quantity and � being the phase
angle between I and U [1, 2].The feature is computed for a certain region-of-interest (roi)
with n measurement samples.

rms(Iroi) =
√
1
n

n
∑
i=1
I 2i (2.5.1)

rms(Uroi) =
√
1
n

n
∑
i=1
U 2
i (2.5.2)

P = rms(Iroi) × rms(Uroi) × cos(�) (2.5.3)
S = rms(Iroi) × rms(Uroi) (2.5.4)

Q = rms(Iroi) × rms(Uroi) × sin(�) (2.5.5)

power factor = P
|S| (2.5.6)

Various scalar quantities can be used to capture the current waveform, such as, for
example, the mean-variance-ratio (mvr) feature. This feature is computed based on the
absolute of the current signal in the region-of-interest.
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mean(|Iroi |) =
1
n

n
∑
i=1

|Ii | (2.5.7)

var(|Iroi |) =
1
n

n
∑
i=1
(|Ii | − mean(|Iroi |))2 (2.5.8)

mvr = mean(|Iroi |)
var(|Iroi |)

(2.5.9)

Another feature that is multi-dimensional in contrast to the previous ones is the current-
over-time (cot) vector, with every element being the rms of the i’th period of the signal [2].

In addition to the features that capture the signal waveform in the time domain, frequency-
based features, such as the spectral centroid and the odd-even-harmonics ratio (oer), are
commonly used [2, 20].

spectral centroid = ∑f ∈fbins xf × f
∑f ∈fbins xf

(2.5.10)

oer = mean(xf1 , xf3 , ..., xf19)
mean(xf2 , xf4 , ..., xf20)

(2.5.11)

Both features are based on the results returned by a discrete Fourier Transformation
of the current signal, with xf being the magnitude and f being the frequency of the
respective bin of the discrete analysis [2].

2.6 Machine Learning

Machine learning algorithms are Arti�cial Intelligence (AI) algorithms that extract
knowledge from patterns in data [21].

Modern machine learning approaches have levelled up the performance of NILM al-
gorithms [39]. Dependent on the kind of experience machine learning algorithms use
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during learning, one can classify them into three categories: supervised- , unsupervised-,
and semi-supervised learning algorithms [21]. Supervised machine learning techniques
rely on datasets that contain labels for each sample in the dataset. The learning algorithm
uses these labels to di�erentiate between the individual classes in the datasets [21].
In contrast to supervised learning algorithms, unsupervised techniques do not rely on
labelled data. Semi-supervised learning algorithms are a hybrid form of both, supervised
and unsupervised techniques, and rely on partially labelled data. In the NILM research
�eld, a di�erent de�nition of supervised- and unsupervised-learning is frequently used [38,
40]. Unsupervised NILM algorithms can be trained in a supervised-way, in the sense of
the machine learning de�nition with labelled training data. The unsupervised nature
of these algorithms does not refer to the use of labelled training data but refers to the
non-availability of prior knowledge of the appliances or components in the setting of
interest [38, 40]. In particular, general models of the existing appliances and components
are transferred to an unknown setting. Using the three learning categories from machine
learning, unsupervised NILM algorithms are semi-supervised machine learning algo-
rithms [38]. Hence, one has to carefully look at the de�nition of the term unsupervised
that is used in the respective publications. In this thesis, we use the classic machine
learning de�nition.

The representation of the data, i.e., the electrical signals, in�uences the performance
of machine learning algorithms. Good representations of the information in the data
facilitate the learning task [21]. The same dataset can be represented using various
feature combinations, as it is shown in Figure 2.5.1. Instead of manually handcrafting
features to represent the data, one can also use machine learning algorithms to extract a
good representation from the data automatically. In particular, deep learning techniques
are capable of building complex representations from simpler concepts that are distilled
from the data [21]. Several challenges in machine learning have motivated the usage
of deep neural networks (NN), such as, for example, the curse-of-dimensionality. This
problem refers to the circumstance that many problems become more di�cult when the
data is high-dimensional [21]. The high-frequency electrical signals used in this thesis to
perform NILM related analysis tasks are high-dimensional and pose several challenges,
such as an increase in computational complexity, to the machine learning algorithms.
The application of NN to NILM problems is promising and increasingly adapted [39, 41,
42]. Commonly used NN architectures and building blocks are fully-connected neural
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networks (FCNN), convolutional neural networks (CNN), and recurrent neural networks
(RNN) [21]. These particular building blocks are used in di�erent variations in this thesis;
thus, they are brie�y described in the following.

FCNN The fully-connected feedforward type of neural network aims to approximate a
function f ∗. In the case of a classi�er, for example for appliance classi�cation, the FCNN
learns the parameters Θ of the mapping function y = f (x; Θ). In particular, the model
selects the parameters during learning that match the true, underlying function best [21].
In the feedforward FCNN, the information passes without feedback connections from
the input to the output of the network [21].

CNN Convolutional neural networks are designed to process data with a grid-like
topology [21]. Time series data, such as electrical signals, can be interpreted as a one-
dimensional grid with samples at regular (time) intervals [21]. The network relies on the
mathematical convolution operation. Convolutional neural networks often apply pooling
layers to learn hierarchical representations of the input. In contrast to traditional, plain
FCNNs, CNNs rely on parameter sharing to reduce the number of parameters [21].

RNN Recurrent neural networks are designed to process sequential data [21]. Hence,
they are well suited to process the raw electrical signal time-series data. Through
parameter sharing over the time indices, RNNs are able to process variable-length
sequences. For every (time) step in the sequence, RNNs produce an output. This output
is then combined with the input of the next time step. A special type of RNNs is the
long short-term memory (LSTM) cell network that relies on multiple gate mechanisms to
capture long-term dependencies from the sequential input [21].

In the next chapter, we summarise our NILM-related publications, showing how we
contribute new advancements to the �eld of NILM by using the previously described
neural network architectures.
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Summary of Publications

In this chapter, we summarise the individual contributions of this publication-based
dissertation. In particular, we provide the key ideas and achievements and the author’s
contribution to each of the four accepted peer-reviewed publications.
The following sections are ordered bottom-up with respect to the analysis pipeline of
NILM. First, we describe the CREAM dataset for condition monitoring in Section 3.1.
Subsequently, we introduce our event detector MEED in Section 3.2. This is followed
by our extensive literature review and algorithmic benchmark of the state of the art in
event detection for NILM in Section 3.3. Finally, we conclude this chapter by providing
the details on our appliance identi�cation approach in Section 3.4.
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3.1. CREAM, A COMPONENT LEVEL COFFEEMAKER ELECTRICAL ACTIVITY
MEASUREMENT DATASET

3.1 CREAM, a component level co�eemaker electrical
activity measurement dataset

Reference: D. Jorde, T. Kriechbaumer, T. Berger, S. Zitzlsperger, and H.-A. Jacobsen.
“CREAM, a component level co�eemaker electrical activity measurement dataset.” In:
Scienti�c Data (2020), accepted for publication on 15.10.2020

Full-text version enclosed: Appendix A

Summary: Non-intrusive condition monitoring delivers insights into the internal states
of industrial machinery. By analysing electrical signals, non-intrusive load monitoring
techniques can be used to derive the conditions of electrical components.

We introduce the �rst publicly available dataset for analysing the electrical signals of
industrial electrical components that follow a variety of pre-de�ned processes to output
various products. Based on these requirements, we have selected two industrial-grade
co�eemakers, as they resemble a closed system that mimics an industrial manufacturing
process. The dataset contains the continuous voltage and current readings of the
co�eemakers, sampled at 6400 samples-per-second with the MEDAL measurement device
and additional ground-truth information. In particular, we provide 370600 expert-labelled
electrical events, 1734 product events, and 3646 maintenance-related events.

We have implemented labelling tools to annotate the raw electrical signals and to re�ne
the ones that are automatically generated by the respective co�eemaker at a one-minute
granularity, i.e., the product- and maintenance events. All tools and related source code
are released to the public to enable researchers to further extend the dataset.

The dataset can be used to benchmark various analysis tasks, e.g. to monitor the
condition of the pumps, heaters, and motors of the co�eemakers. In addition, the dataset
provides the most extensive amount of labelled electrical events in the �eld at the time of
publication that can be used to develop new event detection algorithms.

Author’s contributions: Conceived and recorded the dataset. Adjusted and imple-
mented tools. Executed parts of the labelling. Wrote the paper.
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3.2 MEED:AnUnsupervisedMulti-Environment Event
Detector for Non-Intrusive Load Monitoring

Reference: D. Jorde, M. Kahl, and H.-A. Jacobsen. “MEED: An Unsupervised Multi-
Environment Event Detector for Non-Intrusive Load Monitoring.” In: 2019 IEEE Inter-
national Conference on Communications, Control, and Computing Technologies for Smart
Grids (SmartGridComm). 2019, pp. 1–6. doi: 10.1109/SmartGridComm.2019.
8909729

Full-text version enclosed: Appendix B

Summary: The fundamental step of high-sampling-rate NILM is the detection of state-
transitions of appliances and components. Enabled by accurate detection, various appli-
cations, such as appliance classi�cation and energy disaggregation, can be implemented.
Existing algorithms for detecting such events rely on expert made pre-de�ned rules
and patterns to detect relevant signal segments. These algorithms are customised to
speci�c environments, preventing them from generalising well to other environments
without manually adapting them. We overcome this limitation by introducing a new
unsupervised, multi-environment event detector (MEED). At its heart, the algorithm
applies a two-step procedure to detect the events with high-precision in time. In the
�rst step, the cumulative sum of a window of the current signal is fed to a denoising
autoencoder. As the events are rare by nature compared to non-event segments, the model
parameters are �ne-tuned to reconstruct non-event windows. Based on this, we use an
automatically determined threshold on the reconstruction error to detect event windows.
In the second step of MEED, we apply a peak-detection procedure to precisely locate
the events. We compare our approach to two state-of-the-art algorithms on the o�ce-
environment BLOND and the residential BLUED dataset. We outperform the existing
algorithms on both environments with respect to the recall and precision metric while
training MEED fully unsupervised. In particular, no manual adaption of the algorithm is
necessary. We release all models and code to facilitate reproducibility.

Author’s contributions: Conceived, developed, and implemented the approach. De-
vised optimisations. Conducted analysis and experimental evaluation. Wrote the paper.
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3.3. EVENT DETECTION FOR ENERGY CONSUMPTION MONITORING

3.3 EventDetection for EnergyConsumptionMonitor-
ing

Reference: D. Jorde and H.-A. Jacobsen. “Event Detection for Energy Consumption
Monitoring.” In: IEEE Transactions on Sustainable Computing (2020), pp. 1–1. doi: 10.
1109/TSUSC.2020.3012066

Full-text version enclosed: Appendix C

Summary: In the �eld of NILM, various approaches for detecting relevant signal seg-
ments and events have been proposed. As there is no uni�ed standard for evaluating
these algorithms, many are evaluated on non-public datasets and according to unclear
criteria, making them hard to compare. We conduct an extensive literature review on
the existing state of the art in event detection for high-sampling-rate NILM approaches.
In particular, we categorise the relevant publications with respect to the approaches
proposed and the evaluation methods applied. Consequently, we are able to identify
several publications that can be compared to each other when carefully investigating the
datasets and evaluation methods used. Besides, we also list all approaches that are hard
to compare to each other.

Based on this literature review, we select four state-of-the-art algorithms to perform
an algorithmic benchmark. We re-implement these approaches as no publicly available
source code exists. We evaluate the approaches on two publicly available, heterogeneous
datasets from di�erent environments, namely the BLUED and the BLOND dataset. Fur-
thermore, we compare the four algorithms with our recently proposed fully unsupervised,
multi-environment event detector (MEED), showing that MEED improves the existing
state of the art with respect to both precision and recall.

Author’s contributions: Conceived, developed, and implemented the algorithms and
the benchmark. Performed literature review. Conducted analysis and experimental
evaluation. Wrote the paper.
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3.4 ElectricalApplianceClassi�cationusingDeepCon-
volutionalNeuralNetworks onHigh FrequencyCur-
rent Measurements

Reference: D. Jorde, T. Kriechbaumer, and H.-A. Jacobsen. “Electrical Appliance
Classi�cation using Deep Convolutional Neural Networks on High Frequency Current
Measurements.” In: 2018 IEEE International Conference on Communications, Control,
and Computing Technologies for Smart Grids (SmartGridComm). 2018, pp. 1–6. doi:
10.1109/SmartGridComm.2018.8587452

Full-text version enclosed: Appendix D

Summary: Appliance Identi�cation is the central step in the NILM analysis pipeline
that extracts the appliance level signal information that various applications, such as
energy disaggregation and occupancy detection, directly rely on. We propose a new
approach that can directly be used on raw high-dimensional electrical signals to perform
the classi�cation task. Traditional approaches for appliance classi�cation on NILM are
built based on hand-crafted features to identify the devices. Studies have shown that the
ideal feature sets for identifying electrical appliances are speci�c to the type of appliance
that is investigated. Consequently, experts need to manually develop and select features,
tailored to the appliance composition of the respective setting. We overcome this by
proposing a NN architecture that automatically extracts a suitable representation from
the raw signals. The NN consists of one-dimensional convolutional and corresponding
pooling layers. In addition to the algorithm, we propose two data augmentation methods
to increase the training dataset size, to overcome the issue of small datasets in the �eld. We
evaluate our approach on two publicly-available datasets, namely WHITED and PLAID,
and achieve F1-scores of 1 and 0.69 respectively without manual feature engineering.

Author’s contributions: Conceived, developed, and implemented the approach. De-
vised optimisations. Conducted analysis and experimental evaluation. Wrote the paper.
The approach is based on the author’s master thesis, entitled "Identi�cation of Individual
Electronic Appliances in High Frequency Energy Data using an Arti�cial Neural Network
Approach" (submitted on the 12.03.2018 at the Technical University of Munich).
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4

Discussion

In this chapter, we discuss our contributions and �ndings in the larger context of research
on NILM techniques for analysing electrical signals.

On industrial NILM NILM was originally developed to provide detailed energy
breakdowns based on the disaggregation of the electrical mains power consumption of
private households [1, 6, 7]. Over the years, researchers transferred the methods to other
domains, such as individual industrial components [43], monitoring o�ce buildings [8],
monitoring elderly people by detecting occupancy in houses [28], and monitoring the
condition of naval vassals [3]. Fundamental for developing algorithms for these domains
is the availability of adequate datasets. Without publicly available datasets, in particular,
when the source code of the algorithm is also not available, comparing algorithms
becomes challenging and prone to errors. Already 25 years ago, researchers applied NILM
techniques to industrial components [43], but the main focus remained with residential
households. Recently, the interest in industrial applications increased, and Suzuki et
al. [11] showed the applicability of NILM algorithms to monitor industrial equipment.
The dataset the authors used to evaluate their approach is not publicly available. There
are two publicly available datasets containing electrical signals of industrial components
to the best of our knowledge, the laboratory-measured industrial load of appliance
characteristic dataset (LILACD) [10] dataset and the one by Martins et al. [9]. The �rst
dataset comprises several industrial components, such as, for example, motors, that
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are measured isolated and when being activate simultaneously. The LILAC dataset is
recorded under laboratory conditions, and the switching-patterns of the components
does not follow a dedicated process pattern. Instead, the components are activated
systematically to cover di�erent combinations of them [10, 44]. The dataset is measured
at high-sampling-rates and contains 1302 samples. The second industrial dataset was
published by Martins et al. [9]. The authors used smart metering hardware to record
the electrical energy consumption of a poultry feed factory in Brazil. In this factory,
pellets of ration for poultry are produced based on corn and soybeans [9]. The dataset
includes electrical components of heavy-machinery from the factory, namely pelletisers,
exhaust fans and double pole contactors [9]. The smart meters output the measured
signal parameters once per second, which is low-frequency according to the previous
de�nition. Using this dataset, the authors show the disaggregation of the consumption of
the heavy-machinery with a neural network-based approach [9]. In the larger context of
monitoring the conditions of machinery as non-invasive as possible, Suzuki et al. [11] and
Lindahl et al. [3] have shown the usefulness of NILM techniques. Despite this, there is no
extensive dataset with industrial electrical components that are activated to manufacture
products according to dedicated patterns publicly available. In particular, there is no
dataset that is sampled at high rates and that provides an extensive ground-truth of
electrical events, manufactured products, and implemented maintenance actions of a
closed system that is suited for benchmarking algorithms. With the CREAM dataset,
we have released such a dataset to overcome the aforementioned issues and to further
facilitate research on industrial applications of NILM algorithms. In addition to the use
case of condition monitoring, the CREAM dataset provides 370600 labelled electrical
events, making it the largest dataset in the �eld to be used for evaluating event detection
algorithms.

On reproducibility in NILM Event detection is fundamental for all high-sampling-
rate NILM applications to separate relevant signal segments from irrelevant ones. In
our literature review [22], we categorise the existing approaches for high-sampling-rate
electrical signals. Hence, we provide the �rst extensive overview of such algorithms in
the �eld. We �nd several critical problems that need to be overcome to further improve
the existing state of the art. First, the evaluation procedures for event detection need
to be uni�ed. Besides the use of di�erent metrics, one can observe that commonly
used metrics, such as confusion matrix based ones, are not computed in a uniform way.

32



4. DISCUSSION

Researchers need to communicate evaluation methods and potential tolerance levels for
computing true positive events more clearly. To make our approach reproducible and
comparable with future work, we have publicly released all source code, in particular,
also the evaluation functions. In addition to the evaluation procedures themselves,
many approaches are evaluated on small and non-public datasets, making a comparison
between the approaches di�cult [22]. Furthermore, there is no publicly-available code
base for state-of-the-art event detection algorithms in the �eld. Hence, we have publicly
released all re-implemented algorithms and our MEED event detector to facilitate the
reproducible in the �eld. The problem of evaluating event detection algorithms is also
discussed in other publications, such as, in the paper by Pereira et al. [35]. The authors
empirically explore 23 performance metrics for event detection algorithms. The authors
conclude that domain-speci�c metrics are dataset dependent, making it hard to use them
in cross-dataset evaluations. Furthermore, Pereira et al. state that it is important to
clearly highlight the trade-o� between the classical machine learning-based metrics that
are based on the confusion matrix, such as recall, precision and F-measures [35]. This
particularly concerns recall and precision, as detectors that are optimised with respect to
either of them have a di�erent focus while potentially achieving similar F-scores [35]. In
both publications on event detection, we discuss this and the drawbacks of focusing on
either precision or recall. In general, we agree with Pereira et al. [35] that new metrics
are necessary to benchmark event detection algorithms. If such metrics become available,
public source code and datasets are fundamental for evaluating new approaches against
the existing state of the art with respect to the new metrics.

On the generalisability of NILM With our event detection approach MEED, we
present an event detector that can be used in multiple environments for NILM without
the need for manual adaptions of the algorithms with respect to the setting [23]. Recently,
researcher such as, for example, Kahl et al. [45] evaluated NILM algorithms across multiple-
datasets to show their performance independent of speci�c datasets. The researchers
aim to overcome the common practice of the �eld, namely the evaluation of algorithms
on isolated datasets, and, thus, on speci�c appliance compositions. By introducing an
event detector that can be used in multiple environments, such as residential and o�ce
ones, we similarly aim to overcome the issue of algorithms that are only developed for
speci�c settings and appliance compositions. Besides the lack of generalisability between
environments, NILM algorithms, such as, for appliance identi�cation, rely on feature sets
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that are dependent on the appliances used, as shown in the feature study by Kahl et al. [2].
We introduce an approach based on convolutional neural networks to circumvent manual
feature engineering by automatically extracting a good representation from the raw,
high-dimensional waveforms [24]. Neural networks are well suited for representation
learning [21]. Thus, they also gained popularity in the �eld of NILM, as a number of
publications relying on neural networks and the state-of-the-art results they achieve
are indicating [39, 41, 42, 46, 47, 48, 49]. The increasing adoption of neural network
approaches, similar to the ones in this dissertation, promises new advances in NILM, in
particular, regarding the ability of the algorithms to generalise between datasets and
environments.
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5

Conclusions

NILM algorithms harvest insights from electrical signals without intrusively attaching
sensors to each consumer. The NILM analysis pipeline for high-sampling-rate data
comprises multiple steps, with event detection and appliance (component) identi�cation
being the fundamental ones. This thesis presented multiple advancements along the
analysis pipeline, in particular, a new industrial component dataset, a new event detection
algorithm, a survey and extensive benchmark of the existing state of the art in event
detection for NILM, and a new appliance identi�cation algorithm. The algorithms
developed in this dissertation reduce manual interference by a domain expert and alleviate
the e�ort of adapting them when being used in multiple, heterogeneous environments.

With the new dataset for condition monitoring on electrical signals, namely the CREAM
dataset, we provide an extensive ground-truth for high-sampling-rate, industrial electrical
signals. CREAM is the �rst publicly available dataset that enables the evaluation of
NILM based condition monitoring algorithms. For doing so, the dataset provides 370600
expert labelled electrical events, information on the components responsible for these
events, and relevant manufacturing-related labels, such as products manufactured and
maintenance actions taken. In order to provide such a dataset, we have selected two
di�erent industrial-grade co�eemakers that closely resemble a manufacturing process
with electrical components, while being a closed and fully controllable system. By creating
and re�ning labels for this dataset, we provide full transparency on the components used,
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the products created, and the maintenance actions taken for both co�eemakers. We have
added a second co�eemaker to the dataset, as it further enables the implementation of
comparative benchmarks. With the intention to facilitate reproducibility and to enable
researchers to extend the dataset if needed, we have publicly released all related source
code and tools.

The fundamental step of the NILM analysis pipeline is event detection. We improve
the current state of the art and further contribute an extensive literature review with
algorithm implementations to the �eld in this thesis. First, we introduce MEED, a new
multi-environment event detection algorithm that can be used fully unsupervised in
contrast to the existing approaches. The algorithm can be used in di�erent environments,
such as o�ces spaces and residential houses, without the need for manually adapting the
algorithm to the respective setting. We compare MEED to two re-implemented state-of-
the-art algorithms on two publicly available datasets, outperforming them with respect to
the recall and precision metrics. A two-step procedure lies at the heart of the algorithm,
with the �rst step being a window-based denoising autoencoder to detect event windows,
and the second step being a peak-detection algorithm for precisely allocating the events
in time.

Furthermore, we contribute to the �eld of event detection by providing a comprehensive
overview and categorisation of the existing state of the art in NILM. Based on this
overview, we identify research gaps and select four state-of-the-art algorithms to re-
implement them. Subsequently, we evaluate these algorithms against our MEED algorithm
on two publicly available datasets. By releasing the source code of the algorithms and
the evaluation to the public, we aim to provide a reusable library for evaluating new
algorithms.

Appliance identi�cation is the step following the detection of events in the electrical signal.
The output of the appliance identi�cation algorithms is the identi�cation of the electrical
consumer that is responsible for a certain event. Traditionally, manually engineered
features are computed for a window around the event that captures the state of the
appliance responsible for the event. These hand-crafted appliance signatures are custom-
tailored to speci�c appliance types and settings. Thus, they require interference by domain
experts. We introduce a new approach that uses the raw voltage and current waveform
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5. CONCLUSIONS

to extract a suitable representation and perform the classi�cation task automatically. We
overcome the challenge of the high-dimensional input and the comparatively small dataset
sizes by introducing two data-augmentation techniques. By evaluating the approach on
two publicly available datasets, namely the WHITED and the PLAID dataset, we achieve
state-of-the-art results while avoiding manual feature engineering.

In the course of our work, we have identi�ed several aspects that may be targeted in
future work. We think that pursuing the following research directions has the potential
to further promote the �eld of NILM and the adaption of the algorithms in the industry:

More focus on applications other than energy disaggregation Energy disaggre-
gation, in particular, on low-sampling-rate data has matured to a certain extend. The
past research has mainly focused on energy disaggregation, while other application
areas, such as occupancy detection and monitoring the conditions of industrial electrical
equipment, were not pursued as much. Recent publications have shown the potential
of NILM, in particular, for analysing industrial equipment, in a non-invasive way [11].
Thus, NILM research on other applications areas is promising.

More datasets from di�erent domains Most of the existing datasets for NILM are
acquired at residential households. Only recently, a few datasets from other domains,
such as, for example, o�ce ones have been released. To further pursue the adaption of
NILM techniques in other application areas, more publicly-available datasets from other
domains are necessary to develop and evaluate the corresponding algorithms.

Uni�cation of themethods for evaluating event detectionmethods While there
are e�orts to unify the evaluation metrics and methods for event detection algorithms in
NILM, the publications in the �eld still use heterogeneous evaluation approaches. Using
common metrics, or even a common code-based for evaluating high-sampling-rate event
detection methods for NILM bears the chance to further advance the �eld.

More usage of publicly available datasets and source code Similar to the uni�ca-
tion of the methods for evaluating event detection algorithms, the increasing usage of
publicly-available datasets for evaluating the algorithms enables new ways to reproduce
the research and to compare new algorithms with existing ones. Furthermore, only a few
source code repositories for corresponding publications on NILM exist currently. Most of
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the code released is on low-sampling-rate NILM, such as the NILM toolkit (NILMTK) [50].
More publicly-available source code would enable more transparent benchmarks with
new algorithms, analogous to the use of public data.

Moving away from the standalone claim of NILM Most of the existing work on
NILM focuses on the standalone usage of NILM algorithms for energy disaggregation
and other applications and does not seize side-channel information, despite such features
being mentioned in various publications [1, 51]. We are convinced that, in particular
in an industrial setting, other sensor information than electrical signals can be used to
improve the insights into machine conditions. Electrical signals deliver a straightforward,
non-invasive mean for collecting information on machinery, but under certain conditions,
intrusive sensors can be applicable and improve the results of NILM.
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Glossary

ADC analog-digital-converter

AI Arti�cial Intelligence

BLOND Building-Level O�ce eNvironment Dataset

BLUED Building Level fUlly-labeled dataset for Electricity Disaggregation

CNN Convolutional Neural Network

cot current-over-time

CREAM Co�eemakeR Electrical Activity Measurements

FCNN Fully-Connected Neural Network

FN False Negative

FP False Positive

LSTM Long Short-Term Memory

MEDAL Mobile Energy Data Acquisition Laboratory

MEED Multi-Environment Event Detector

NILM Non-Intrusive Load Monitoring

NILMTK Non-Intrusive Load Monitoring Toolkit

NN Neural Network
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Glossary

oer odd-even-harmonics ratio

PC personal computer

PLAID Plug-Level Appliance Identi�cation Dataset

rms root-mean-square

RNN Recurrent Neural Network

roi region-of-interest

SCP Switching-Continuity-Principle

TN True Negative

TP True Positive

WHITED Worldwide Household and Industry Transient Energy Dataset
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Abstract

Monitoring the internal conditions of a machine is essential to increase
its production efficiency and to reduce energy waste. Non-intrusive con-
dition monitoring techniques, such as analysing electrical signals, provide
insights by disaggregating a composite signal of a machine as a whole
into the individual components to determine their states. Developing
and evaluating new algorithms for condition monitoring and maintenance-
related analysis tasks require a fully-labelled dataset for a machine, which
comprises standard industrial components that are triggered following a
typical manufacturing process to produce goods. For this purpose, we
introduce CREAM, a component level electrical measurement dataset for
two industrial-grade coffeemakers, simulating industrial processes. The
dataset contains continuous voltage and current measurements provided
at 6,400 samples per second, as well as the product and maintenance-
related event labels, such as 370,600 expert-labelled component-level elec-
trical events, 1,734 product ones and 3,646 maintenance ones. CREAM
provides fully-labelled ground-truth to establish a benchmark and compar-
ative studies of manufacturing-related analysis in a controlled and trans-
parent environment.

Background & Summary
Recent advances in artificial intelligence and the increasing implementation of
modern cyber-physical systems in the manufacturing industry constitute the
backbone of a new industrial revolution [1]. The monitoring of current con-
ditions and internal states of industrial machines is fundamental to increase
the production and energy efficiency [3]. The placement of sensors, to obtain
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detailed information about the behaviour of the machine’s individual compo-
nents, is fundamental in the condition monitoring (CM) process [3]. Instead of
intrusively measuring each component of a machine individually, an aggregated
signal for multiple components can be considered. In a subsequent step, algo-
rithms to extract the per-component information from an aggregate signal can
be applied. Such an approach can allow for avoiding invasive interference that
causes various problems, such as high costs associated with sensor implemen-
tation and warranty issues. Initially developed to provide feedback on energy
consumption in residential environments, non-intrusive load monitoring (NILM)
is widely used for other purposes, such as CM [4, 5]. NILM algorithms can be
used to disaggregate power signals measured at the electrical mains of a build-
ing into the individual appliances [6, 7]. By implementing sensors, such as Hall
Effect current ones, electrical signals of a machine or appliance can be measured
in a non-intrusive manner [5]. Sampling the voltage and current signals at high
rates is necessary to identify individual components when many other compo-
nents are concurrently activated and to enable differentiation between smaller
ones [9]. To the best of our knowledge, there are two public datasets containing
the data on electrical measurements of industrial-like machinery. Both of them
have drawbacks, such as being either sampled at low rates [10] or comprising
only individual appliances from a laboratory environment [11]. The first dataset
contains electrical parameters of a poultry feed factory, recorded for a duration
of 111 days. The smart meters at the factory sample the data internally at
8000 sps, but send out the down-sampled electrical features once per second.
This dataset provides insights into the energy consumption of a factory using
NILM techniques for energy disaggregation. The machine components in this
factory produce pellets of ration for poultry by processing corn or soybeans.
The dataset comprises two pelletisers, two double-pole contactors, two exhaust
fans and two milling machines. All appliances measured are horizontal motors
[10]. In the second dataset, electrical signals for fifteen residential and industrial
electrical components were sampled at 50,000 sps in a laboratory environment.
However, the utilised devices were not activated according to a dedicated pat-
tern, for example, such as a production process, and no complementary infor-
mation about conditions of components is provided [11]. In addition to these
two datasets, several other datasets containing sensor measurements for CM
concerning individual components were established [12, 13, 14]. These datasets
contain information about the isolated components using a dedicated sensor
infrastructure to obtain various parameters. The milling dataset by Agogino
and Goebel [12], for example, provides records on the wear of the milling in-
sert of a milling machine, recorded at different speeds, feeds and depth of cut
[12]. Some of the datasets provide additional information about detected faults
of components, such as, for example, a hydraulic test rig [14]. In particular,
in this dataset, measurements on the condition of hydraulic components in a
primary working and a secondary cooling-filtration circuit are presented [14].
The sensor data includes features such as, for example, pressure, motor power,
temperature, and vibration, measured at least once per second. The dataset in-
cludes component-specific failure information. The failure information for each
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component is structured hierarchically, from full functionality to failure of the
component [14].

To construct a dataset that would enable the evaluation of algorithms for
non-invasive CM, event detection, and other manufacturing-related analysis
tasks, we formulated the following requirements. First, a considered machine
had to execute an industrial process, including typical electrical components
that are used in manufacturing, triggered following dedicated process patterns.
Second, the environment and the machine had to be fully-controllable to avoid
any unknown external interference. Third, the machine had to be equipped with
sensors to record reliable ground-truth for events caused by components. We
focused on the events related to the fabricated products and performed main-
tenance actions. Following these requirements, we selected two distinct fully-
automated, industrial-level coffeemakers to construct the proposed coffeemaker
electrical activity measurement (CREAM) dataset, to enable individual ma-
chine analysis and comparative studies between the coffeemakers. We provide
high-resolution continuous measurements of the voltage and current signals of
the coffeemakers acquired at 6,400 sps. During signal acquisition, the machines
produced eight different product types, each following a unique internal process.
Furthermore, we provide 370,600 expert-labelled electrical events, triggered by
the machine components. In addition, CREAM contains the labels for the three
main components of the coffeemakers, namely the respective heaters, pumps,
and motors of the milling plants. The data are marked with the product and
maintenance labels, containing the information about the fabricated products
and performed maintenance actions. Therefore, the resulting dataset can be
considered as a source for a wide variety of tasks, such as CM, product analysis,
and maintenance prediction.

Methods
We constructed the CREAM dataset based on the previously defined require-
ments. For the JURA GIGA X8, the information accumulated in the dataset
was recorded for a period from 23 August 2018 to 8 October 2018. We recorded
the JURA GIGA X8 dataset for sixteen hours every day, except for the last one,
8 October 2018, that was measured for eight hours. The data for the JURA
GIGA X9 was recorded for 20 days, starting from 22 December 2018, for 15
hours per day. The daily data acquisition time frames were chosen to cover the
main periods the coffeemakers were activated. For both coffeemakers, the data
acquisition process was divided into three sub-steps, that apply equally to both
machines. The data acquisition setup is shown in Figure 1. First, we sampled
the voltage and current signals of each coffeemaker at 6,400 sps. To execute this
step, we utilised a custom measurement device for high-sampling rate plug-level
appliance recordings to achieve this, namely, the mobile energy data acquisition
laboratory (MEDAL) measurement unit [15]. Simultaneously, we extracted the
product and maintenance-related event logs from a serial port of the coffeemaker
using a single-board personal computer (PC). As the methodology described in
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the following is meant to apply generically to other scenarios, we refer to the
types of coffee the coffeemakers produce as products. Lastly, three experts la-
belled the electrical component events and refined the automatically generated
product and maintenance logs. In the next section, we provide general infor-
mation about the considered coffeemakers, such as their individual components,
the production processes, and other relevant characteristics.

MEDAL

Raspberry Pi 

Voltage and current signals
(6400 sps)

Maintenance and product event logs
(one minute granularity)

Labelling 
Procedure

Figure 1: Data collection architecture. The setup consists of the MEDAL
unit for measuring the voltage and current signals and the Raspberry Pi for
pulling the maintenance and product event logs with a one-minute resolution
from the serial ports of the coffeemakers. Afterwards, we applied the three-step
labelling procedure, as shown in Figure 2.

Domain knowledge
We measured the voltage and current consumed by two different professional
coffeemakers, the Jura Giga X8 Professional [16] and the Jura Giga X9 Pro-
fessional, and combined them with the hand-labelled components and machine-
generated event-logs. Below, we describe the domain knowledge and archi-
tecture useful to interpret the generated data, based on the official technical
description and the components of the machines. Concerning the general pro-
duction approach, pre-defined processes trigger the individual components of
the machine for brewing a requested coffee product. First, a grinder is launched
to grind pre-roasted beans and feeds the ground coffee to the brewing unit.
Second, if not already pre-heated, heating units are utilised to heat the water
or to produce steam for the requested coffee product. The water or steam is
then pressed through the brewing unit, which controls the water flow through
the ground coffee. A dedicated steam or a water pump moves steam or water
through the machine. Then, the brewing unit presses water through the cof-
fee to extract the ingredients, such as caffeine and oils, from coffee. After the
brewing unit, the brewed coffee flows into a drinking container and is output
from the coffeemaker. The brewing unit then pushes the residual coffee into
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the coffee tray. Depending on a particular coffee product, intermediary steps
such as heating milk and producing milk foam, are executed. The Jura Giga
X8 has two thermal heating blocks. Therefore, steam required to produce milk
foam and hot water is generated simultaneously. In contrast, the Jura Giga
X9 has one additional thermal heating block and an additional pump, to speed
up the production process, especially for hot water [17]. In addition to the de-
scribed brewing process, the coffeemakers have other maintenance programmes
to ensure the long-term functionality of the machines and to speed-up the brew-
ing process. These maintenance processes involve various actions, such as, for
example, regular cleaning and descaling the coffee and milk systems.

Each coffeemaker is comprised of several major components and a variety of
small ones. The main components involved in the production process are pumps,
thermal heating blocks, and ceramic grinding modules, as listed in Table 1. The
selection of the main components was performed according to the feasibility of
detecting them visually in the electrical signal by the human experts. Therefore,
the other components included in the coffeemakers, such as, for example, lights,
valves, a touchscreen, and a drainage motor, were excluded from consideration
due to their small power consumption or more complex power usage patterns.

Component X8 X9 Characteristics Power
water pump 1x 2x 15 Bar pressure 65 W
steam pump 1x 1x 15 Bar 28 W

thermal heater 2x 3x - 1,080 W
grinding motor 2x 2x DC motor 26 W - 236 W

Table 1: Main components of the coffeemaker. The list outlines the main
components, key characteristics, and their energy consumption.

The Jura GIGA X8 is composed of two grinders, one for espresso beans
and one for coffee ones, launched depending on a requested product. Each of
the grinders is powered by a directed current (DC) motor. The motor energy
usage depends on the speed it is running at. Therefore, its power consump-
tion is within a specific range, as outlined in Table 1. Furthermore, thermal
heating blocks are employed to produce hot water and steam when the machine
generates a product or when the built-in pre-heating controller launches the
heating process. In this way, the coffee-making process is sped up, as heating
water to the required temperature is time-consuming. Hot water and steam are
transported through the machine using the corresponding pumps. At the end of
the process, water is pressed through the brewing unit. The timing and energy
consumption for these components varied according to particular products and
settings of the machine. As previously mentioned, the Jura GIGA X9 has three
thermal heating blocks and three pumps to speed up the production process.

The entire Jura Giga X8 coffeemaker has a nominal capacity of 2,700 W
and a standby power consumption of approximately 0.5 W when operating it at
the base-frequency of 50 Hz [16]. The Jura Giga X9 differs, as is has a nominal
capacity of 2,300 W, while having the same standby power consumption [17].
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Voltage and current monitoring
A single MEDAL measurement unit was used to collect the voltage and cur-
rent signals [15]. MEDAL comprises an off-the-shelf power strip, a voltage,
and a current sensor, as well as an embedded single-board PC for processing
recorded measurements. The MEDAL system was initially developed to record
a long-term office environment dataset for energy disaggregation [8]. Therefore,
it complies with the high-requirements concerning data quality and long-term
continuous recording. Each MEDAL unit has six sockets available, enabling it
to measure six devices simultaneously. The data for each coffeemaker was col-
lected independently and sequentially. Hence, we describe the setup exemplary
for one of the coffeemakers in the following. We used two sockets to monitor the
coffeemaker. The coffeemaker was plugged-into one socket (socket 1), and the
other socket (socket 6) was used to record the background-noise generated by the
measurement device. In this way, we facilitate noise filtering for users. Socket
1 was explicitly designed for measuring high-power devices (up to 3,600 W). In
the case of exceeding this limit, the recorded signal is limited to the maximum
value, while keeping the operation electrically safe. The measurement unit itself
consumes 5 W.

A hall effect-based sensor from the Allegro ACS712 family recorded an inde-
pendent current signal for each of the sockets. Furthermore, one voltage signal
was recorded for each coffeemaker. The MEDAL’s sampler board is used to
digitise the analogue signal and to transmit the data via USB connection to
the single-board PC, a Raspberry Pi 3. Here, seven independent single-channel
analogue digital converters (ADC) MCP3201 with a 12-bit resolution are used
[18]. Despite utilising independent ADCs, MEDAL samples the signals simulta-
neously, coordinated by an ATmega324PA microcontroller. The recorded data
were stored on a SSD hard-drive connected to the MEDAL via USB.

MEDAL is capable of recording the signals with a high temporal resolution
without introducing data losses and gaps, which allows capturing the voltage
and current signals at 6,400 sps. These high sampling rates enable extracting
the frequency-domain related features for various analytical purposes [9].

Product and maintenance events
In addition to recording electrical signals, we collected the product and mainte-
nance event logs that were automatically generated by the coffeemakers and read
out over the serial maintenance ports of the machines. We used the setup and
the information described in the coffeemaker reengineering project repository
and documentation provided by the company Q42 [19]. For each coffeemaker,
a Raspberry Pi microcontroller was connected to the serial maintenance port,
using its receiver and transmitter pins to establish an 8-N-1 serial connection.
Then, the events were extracted from each coffeemaker’s internal EEPROM us-
ing the reverse-engineered codes provided in the repository and stored on the
SSD hard-drive. The raw events generated by the machines were marked by
timestamps with a one-minute time resolution and were created after or close
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to the completion of an event.

Name Milling Plant Milk Two X8 | X9
cappuccino espresso Yes Yes | Yes

coffee coffee No Yes | Yes
espresso espresso No Yes | Yes

hot_water - - -
latte_macchiato espresso Yes Yes | Yes

white_coffee espresso Yes Yes | -
ristretto espresso No Yes | Yes

espresso_macchiato espresso Yes Yes | Yes

Table 2: The list of fabricated products of both coffeemakers. The
products have different production processes depending on the involvement of
a type of a milling plant and the usage of milk. Some products can be pro-
duced simultaneously, as indicated by the column Two for both coffeemakers
respectively.

While measuring electrical signals, eight different products were produced by
the two coffeemakers. In addition to producing these products, the coffeemakers
were capable of providing a wide variety of other hot water and milk-based
products. The products mentioned in the dataset are listed in Table 2. We
omitted the products that were not produced when data collection was enabled.

The product considered indicates which components were utilised during the
preparations process. When attempting to separate the behaviour of compo-
nents that are built-in into the coffeemakers multiple times, such as grinding
modules, the product information was analysed to identify the particular com-
ponent involved. In addition to the product events listed in Table 2, we also
recorded maintenance-related events, as listed in Table 3. Certain events were
triggered to request a user to perform maintenance activities, such as, for ex-
ample, to rinse the milk system. Other events refereed to the executed action,
such as, for example, the machines rinsing the milk system. The Type column
in Table 3 indicates whether an event is an alert for action (typeP) or an action
executed by the machines (type A). Both event types could be considered to ex-
tract and predict the maintenance-related information from the electrical data,
as they described the current state of the system. To illustrate this, we consider
the following example. When rinsing milk or the coffee system, water is pumped
through the respective pipes to remove the remains of the coffee making pro-
cess. The RinseMilkSystem and RinseCoffeeSystem activities can be launched
either automatically by the coffee maker or manually by a user after the Clean-
MilkSystem or Time2Clean alerts appeared on the screen. In contrast to using
water for rinsing the system, the CleanMilkSystem alert requests a user to insert
a cleaning agent into the machine. The standard procedure is to perform this
task daily. The Clean alert requires the following actions from the user: the drip
tray and the ground coffee container have to be removed and emptied. Then, a
cleaning agent has to be used to clean the whole system. The coffeemakers can
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Name Description Type
MillingPlantEspresso Grinding espresso beans A
MillingPlantCoffee Grinding coffee beans A
CleanMilkSystem Cleaning the milk system P
RinseMilkSystem Rinsing the milk system A

Time2Clean Alert: Clean the coffee system P
RinseCoffeeSystem Rinsing the coffee system A

Clean Clean the whole system A/P
Time2Descale Descale the whole system A/P

Table 3: Maintenance-related events of both coffeemakers. The list
represents all maintenance-related events in the dataset and their purpose.

not be used before the completion of the cleaning process, which takes approx-
imately 20 minutes. Similarly, the Time2Descale alert requests a user to add a
descaling tablet into the water and to run the descaling programme that takes
approximately 50 minutes [16, 17].

Labelling procedure
The behaviour of electrical components was captured in the voltage and cur-
rent signals recorded by the MEDAL unit. The electrical signals were marked
according to three sets of labels aiming to facilitate a wide variety of supervised
and unsupervised analysis techniques. We have defined an electrical event for
both coffeemakers individually, based on the key characteristics the acquired
signals exhibit. For the Jura GIGA X8, an electrical event was defined as an
increase in the current signal equal to approximately one ampere that lasted
over a time frame of at least 1 s. In order to capture all significant events, there
can be slight deviations from the event definition, as the data exhibits some
variation that we also captured in the labelling process. In contrast, the Jura
GIGA X9 generated a vast amount of patterns with a shorter duration. Hence,
to capture this behaviour, we have created two sets of electrical event labels
for the Jura GIGA X9. The first set contains electrical events lasting over a
time frame of at least 1 s, similar to the component events of the Jura GIGA
X8, to enable comparative studies with the other coffeemaker. The second set
of component events of the Jura GIGA X9 extends the first one with events
lasting at least 0.1 s. Thus, we have labelled 92,449 electrical events for the
Jura GIGA X8. For the second coffeemaker, we have created 278,151 electrical
events, including the 44,219 events labelled with a minimum duration of 1 s.

Among all registered electrical events, we created a subset that contained
the expert-labelled information about the individual main components that
had triggered these events. Furthermore, the two sets of the maintenance and
product-related events that were automatically generated by the coffeemakers
were specified for each of the coffeemakers individually. Due to the aforemen-
tioned granularity of one minute, these events were manually refined to match
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the associated electrical signals as precisely as possible. The three sets of la-
bels were constructed by applying a three-step labelling procedure conducted
by three human experts, as outlined in Figure 2. The experts involved in the
labelling procedure own a university degree in computer science and have vast
experience in signal processing and machine learning, making them suitable for
the task. We have ensured a consistent labelling of events by definition the key
characteristics, as explained above, and by using example events from the data
to guide the experts. The labelling tools allow for high precision labelling of the
time series data, as shown in Figure 3. To reduce human labelling bias and to
reduce errors, all events were peer-reviewed.

Figure 2: Three-step labelling procedure. The red, vertical lines denote the
labels added at the respective step. In Step 1, the electrical events are labelled.
In Step 2, events are assigned to the respective initiating component. In Step 3,
the product and maintenance events registered with the one-minute granularity
are precisely allocated in time.

In the first step, we hand-labelled the electrical events that were triggered
by the main electricity consumers in the coffeemaker. For this purpose, we de-
veloped a labelling tool, that enabled the experts to inspect signal segments
and mark potential events visually. The labelling procedure was established ac-
cording to the previously stated event definition. Furthermore, an event had to
exhibit a significant and re-emerging pattern. After completion of the labelling
procedure by two of the experts, all generated labels were revised and corrected
by the third expert. The vast amount of events could be used to develop and
benchmark event detection algorithms on a high number of samples, in contrast
to the existing datasets.

In a second step, we assigned a subset of the labelled events to the corre-
sponding main component, as listed in Table 1, that had caused these events
to occur. In this way, we aimed to facilitate the development of supervised ma-
chine learning algorithms requiring prior labelling to identify main components
in the coffeemakers. Two of the main components, grinding motors and thermal
heating blocks, are installed multiple times in the coffeemakers. In the labelling
process, we were unable to distinguish the components of the same type visually
certainly. Therefore, we summarised the main components from Table 1 accord-
ing to the three following classes: heater, millingplant, and pump. The precision
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Figure 3: Labelling tool for step 3 of the labelling procedure.

ceramic disc grinding modules of the milling plants are powered by one motor
each. The signals corresponding to these demonstrate a characteristically sharp
spike after being switched on when a motor is initially accelerated. Afterwards,
the amplitude slowly decreases when the motors settle into their steady-state.
The grinder motors are the most prominent components in the coffeemakers, be-
ing clearly visible in the current signal. We considered the MillingPlantEspresso
and MillingPlantCoffee events from the maintenance events list to obtain iso-
lated milling events for the labelling process. After selecting a random subset
from these events, the human experts manually labelled it using the labelling
tool. For the heater events, we used the signals recorded on Saturdays. On these
days, no products were generated, and no maintenance tasks were executed by
the machines, as the locations where the coffeemakers were placed at were not
occupied during weekends. Despite that, the machines were not switched off
completely, and the installed pre-heating system periodically initiated the heat-
ing procedure to remain prepared for future provisioning. Therefore, we could
observe the isolated heating events on these days, which facilitated labelling
a larger sample of heater signals for the ground-truth. The labelling of pumps
was performed using the hot_water product events, as they involved no usage of
grinders that infer with the pumping process. The heater components involved
in the hot_water process could be visually separated by the experts, as they
steadily consumed the same amount of energy.

In the last step of the labelling procedure, depicted in Figure 3, we manually
refined the automatically generated product and maintenance event timestamps.
The machine-generated timestamps had a one-minute resolution in time and
marked the completion of a given procedure. Therefore, we plotted the signals
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enhanced with the labels from Step 2. The human experts then manually spec-
ified the start and end timestamps for a considered event by investigating the
signal in the window of interest around the automatically generated timestamp.
All labelling tools are available in the provided repository [21].

Code availability
The source files for the data collection using the MEDAL measurement units
is available in the BLOND data repository [20]. For completion, we have also
added these files to the CREAM repository [21] in the data_collection folder.
This repository contains all the scripts used for the technical validation of the
measurement hardware capabilities. The code to reproduce the extraction of
the product and maintenance events through the serial maintenance ports of the
coffeemakers is available in the coffeemaker project repository provided by Q42
[19]. We implemented the data processing, labelling tools, and utility functions
in Python 3. The labelling tools were implemented in three Jupyter Notebooks,
one corresponding to each step of the labelling pipeline. The individual source
files are available in the CREAM repository [21]. All labelling steps can be fully
reproduced and extended if necessary, using the supplied tools. Furthermore,
we provide the utility class containing all necessary functions for loading and
pre-processing the signals.

Known issues
The signals measured using the MEDAL system may introduce a slight direct
current bias, occurring due to changes in the DC reference voltage and the use
of a unipolar ADC. Appropriate signal calibration and filtering, as shown in
the CREAM repository [21], can be applied to correct this issue during pre-
processing [8]. Furthermore, the events represented in the CREAM dataset are
imbalanced, as shown in Table 4 for the Jura GIGA X8 and in Table 5 for the
Jura GIGA X9. When evaluating the performance of algorithms on the dataset,
it is necessary to adjust for this bias by applying appropriate techniques for the
imbalanced data, such as oversampling.

In addition, it should be noted that due to customisation possibilities and due
to unexpected user behaviour, such as aborting the coffee-making process, the
event durations may vary, as shown in Table 4 and Table 5. This heterogeneity
needs to be considered in the analysis, as the intra-class variance is high; namely,
the signals for samples corresponding to the same type of event can deviate
between each other.

The obtained voltage and current signals acquired are the aggregate ones
corresponding to the individual component activities. Therefore, in the analysis,
it is necessary to consider overlapping activities, such as heating and activating
a milling plant.
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Event type Samples Mean Standard deviation
cappuccino 521 50.26 3.51

coffee 361 29.43 3.24
espresso 313 23.43 3.08

hot_water 157 24.16 6.33
latte_macchiato 109 46.10 8.40

white_coffee 10 29.86 0.94
ristretto 3 21.29 1.99

espresso_macchiato 2 37.79 1.06
MillingPlantEspresso 1316 4.53 1.65
MillingPlantCoffee 1008 4.99 1.93
RinseMilkSystem 418 17.04 2.01
CleanMilkSystem 47 49.44 6.86

Time2Clean 47 2.56 7.67
RinseCoffeeSystem 22 76.50 28.54

Clean 9 106.75 10.51
Time2Descale 1 0.53 0

Table 4: Statistics of the product and maintenance event durations
of the Jura GIGA X8 . The list shows the mean and standard deviation of
event durations of the product and maintenance events produced by the Jura
GIGA X8.

Event type Samples Mean Standard deviation
cappuccino 95 36.20 20.10
espresso 58 18.26 8.54
coffee 47 24.91 12.12

hot_water 43 47.19 57.52
latte_macchiato 14 53.68 41.13

espresso_macchiato 1 36.19 0
MillingPlantEspresso 392 2.40 1.12
MillingPlantCoffee 209 2.34 1.03
RinseMilkSystem 117 8.73 11.14
CleanMilkSystem 20 24.08 23.34

Time2Descale 15 1.28 1.02
Time2Clean 14 1.03 0.82

RinseCoffeeSystem 8 15.70 16.394
Clean 3 154.00 55.31

Table 5: Statistics of the product and maintenance event durations
of the Jura GIGA X9 . The list shows the mean and standard deviation of
event durations of the product and maintenance events produced by the Jura
GIGA X9.
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Data Records
The CREAM [21] dataset contains the three measured signals generated by each
of the coffeemakers: the voltage, current and background-noise signal registered
by a socket in the MEDAL measurement unit. Furthermore, it comprises the
labels of electrical components, as well as the information about the product
and maintenance events. The dataset is divided into two subfolders, one for the
Jura GIGA X8 and one for the Jura GIGA X9 respectively.

Data files
All signals were sampled with 6,400 samples per second at the mains frequency
of 50 Hz. The signals obtained from the sensor input were stored as-is: in
particular, no dedicated pre-processing of the raw signals was performed to
ensure unbiased analysis of the data. In the CREAM repository, we provide
examples of possible pre-processing steps [21]. The dataset was structured with
respect to the individual days of recording so that one subfolder contains the
data files for each day in the data acquisition process. The raw data and the
metadata were stored in HDF5 files. The utilised data formats and the metadata
are similar to the ones used in the BLOND office environment dataset, as the
MEDAL hardware was used in the latter as well.

Functionality to process this type of file is available in a variety of open-
source and commercially available tools, making them easily accessible [8]. Into
each of the HDF5 files, we embedded the corresponding file metadata in the
form of HDF5 attributes that could be accessed either directly in the file root or
in a specific HDF5-dataset, as described in Table 6. The value types of the data
are either short integer, floating point or ASCII-encoded byte strings. Parts of
the metadata information is also encoded in the file names, for example, coffee-
maker-2018-08-23T07-00-03.783395T+0200-0000001.hdf5 : The first sample of
this file was recorded approximately at 07:00 23 October 2018, with a time zone
offset of 2 hours. Furthermore, each file within a day has a sequence number,
such as the sequence number 1, as represented in the example file name. The
sequence number uniquely identifies the file order within a particular day. All
timestamps in CREAM, in particular, the ones from the labels and from the
data recordings, are synchronised. In the CREAM repository, we provide the
examples for handling timestamps and time zone information [21]. Each HDF5
file contains one hour of data, and each day of CREAM, except the last one,
contains sixteen HDF5 files, with the first file starting at approximately 06:00,
and the last file ending at 22:00, covering the usual working hours. No daylight
saving time transitions or leap seconds have occurred during the process of
recording. Therefore, one can fully rely on the timestamps provided in the
data. The MEDAL units automatically create the one hour file chunks, while
measuring the electrical signals without interruptions at 6,400 sps.
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Path Attribute Description
/ name Name of the measurement unit
/ first_trigger_id Internal trigger number to detect gaps
/ last_trigger_id Internal trigger number to detect gaps
/ sequence day-internal sequence number
/ frequency nominal samples per second
/ year Year of this file
/ month Month of this file
/ day Day of this file
/ hours Hours of first sample
/ minutes Minutes of first sample
/ seconds Seconds of first sample
/ microseconds Microseconds of first sample
/ timezone Timezone offset

/<dataset> calibration_factor Factor for signal calibration
/<dataset> removed_offset Removed DC-offset

Table 6: HDF5 file metadata. The metadata attributes are accessible via
a HDF5-attribute-path. All physical values are provided in base units (Volt,
Ampere, Hertz), and the timestamp information refers to the first sample in
the respective data file. The <dataset> placeholder can be either voltage, cur-
rent1 for the coffeemaker’s current from socket 1, or current6 for the socket 6
background-noise current.

Labels
The labels resulting from the labelling procedure represented in Figure 2 are
stored as comma-separated value (csv) files in the sub folder of the respec-
tive coffeemaker. All label timestamps have the following format: year -month-
day hours:minutes:seconds.microseconds+timezone. The electrical component
events are stored in the component_events.csv file for the Jura GIGA X8, as
described in Table 7. In contrast, there are two component event files in the the
Jura GIGA X9 subfolder, one for the previously defined minimum duration of
the electrical events. The 1 s events are stored in the component_events_coarse
CSV file and the 0.1 s events in the component_events_fine CSV file. The fine-
grained events of the Jura GIGA X9 can be matched with the corresponding
coarse events, using the ID column of the label files. The events are either
turn-on (On) or switch-off (Off ) events. The On / Off information was deter-
mined automatically, by comparing the mean power in a 0.1 s window before
the event and 0.1 s after the event occurs. If the mean power before the event
is lower than afterwards, we labelled the event to be an On event. On the other
hand, Off events exhibit a drop in power in between the pre-event and the
post-event window. As stated before, we assigned one of the three components
(heater, millingplant, or pump) to a subset of the events. The events without a
component label are declared as unlabeled in the respective column.
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Column Description
Filename File name containing the event

Timestamp Event timestamp
Amplitude Current value (ampere) of event

Event_Type On or Off event
ID Unique event identifier, sequentially numbered

Component Name of event invoking component

Table 7: Description of the component events files. Columns of the files
containing the electrical component timestamps and supplementary informa-
tion, such as the amplitude of the current drawn.

Column Description
Start_Timestamp Start time of event
End_Timestamp End time of event

Automatic_Timestamp Original automatically generated timestamp
Event_Type Product name or maintenance activity

Event_Duration_Seconds Seconds between start and end timestamp
Date Format: year -month-day

Table 8: Description of the product and maintenance event files.
Columns of the product_events.csv and maintenance_events.csv files. The files
contain the timestamps of the start and end of each event, resulting from the
refinement in Step 3 of the labelling process.

The refined product and maintenance events are stored in the respective .csv
files. These files have the same column structure, as shown in Table 8.

The Event_Type column represents the product events from Table 2 or the
maintenance events from Table 3, respectively. The timestamps in the Au-
tomatic_Timestamp column correspond to the one-minute granularity times-
tamps that were automatically generated by the machines.

The refined automatic timestamps from Step 3 of the labelling procedure, as
stated in the corresponding description before, are stored in the Start_Timestamp
and End_Timestamp columns. As a result of using the coffeemakers in an of-
fice building, its energy patterns differ considerably between working and non-
working days. Therefore, we include an additional CSV-file for each coffeemaker,
namely, the day_information.csv, to provide this information, as shown in Ta-
ble 9.

In addition to the labels that were generated as a result of the labelling pro-
cedure, we also include the raw label files of the product and maintenance events
automatically generated by the coffeemakers in the raw_coffee_maker_logs
subfolders. These files contain the one-minute granularity timestamp, and the
columns named Activity corresponding to the maintenance events or Product
for the product events, accordingly.
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Column Description
Date Format: year -month-day

WorkingDay True if working day, False if not
Weekday Day of the week

Table 9: Description of the day and date information files. Columns of
the day_information.csv files that contain the information about working days
in Germany and the weekday information for all days in the dataset, for each
of the coffeemakers.

Technical Validation

Signal acquisition
The data collection capabilities of the MEDAL system were thoroughly evalu-
ated concerning the long term measurements presented in the BLOND dataset.
In the following subsection, we describe the major characteristics of the hard-
ware technical validation. Additional details can be found in the corresponding
data descriptor of the BLOND dataset [8]. We applied the same data sanity
checks as the ones implemented for the BLOND dataset collection. The data
acquisition unit was used to perform the checks aiming to detect continuity
and transmission errors [8]. Furthermore, each file created during a day has
a unique sequence number to detect gaps in recordings. To perform offline
verification, each HDF5 file included two trigger IDs in its metadata, as pre-
sented in Table 6, aiming to ensure a continuous and uninterrupted signal. No
discontinuities were presented in CREAM, according to the utilised sequence
numbers. MEDAL recorded the signals with the fixed nominal sampling rate
of 6,400 sps. The actual sampling rate could differ from the nominal one due
to minor deviations corresponding to the MEDAL’s internal oscillator that was
used to control the ADC conversion [8]. Based on the analysis conducted for
the BLOND dataset [20], we analysed the average sampling rate in the data
obtained per day. The results of the analysis were in-line with the ones pub-
lished for the BLOND dataset, indicating that concerning CREAM, the actual
sampling rate did not differ from the nominal one. Furthermore, we performed
additional sanity checks per file, implemented on the basis of the ones outlined
for BLOND. We checked the dataset for completeness, considering the expected
number of samples per file, the number of files, and the number of days in
the dataset. The analysis results confirmed that no gaps were presented in the
dataset, and the data for all days in the considered period were recorded appro-
priately. The nominal mains frequency of the electrical network was 50 Hz. We
estimated the actual mains frequency based on the voltage signal by selecting
the strongest bin in a fast Fourier transform. Deviations from the nominal fre-
quency could indicate malfunctions of the ADC [8]. However, no difference in
the frequency was observed. In addition, we implemented the checks to control
multiple parameters of the voltage, and current signals, such as the root mean
squared (RMS) values. The parameters and their corresponding thresholds are
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Parameter � Value range of �

Voltage RMS 210 <= � <= 240
Voltage mean 0 <= |�| <= 5

Voltage crest factor 1.2 <= � <= 1.6
Voltage value range � >= 2000
Voltage bandwidth � >= 50
Voltage minimum �300 <= � <= �355
Voltage maximum 300 <= � <= 355

Current RMS 0 <= � <= 16
Current mean 0 <= |�| <= 1

Current crest factor � >= 1.2

Table 10: Validated voltage and current parameters. Based on the tech-
nical validation performed for the MEDAL units in the BLOND dataset [8], we
validated the signal with respect to the parameters listed in this table. The
parameter � needs to be within the specified value range to pass the validation.

provided in Table 10. The parameters were checked for both current and voltage
signal, and as a result, we observed that the tests were passed successfully for all
files. In addition to these checks, we validated whether the signals contained flat
regions with individual periods consisting only of constant values. The scripts
to reproduce the data sanity checks are provided in the CREAM repository [21],
in the technical_validation subfolder.

Label validation
We applied several measures to ensure the appropriate labelling quality through-
out all steps of the labelling procedure, as outlined in Figure 2. The main val-
idation component was a double-review of all labelled events. Therefore, all
event labels were at least checked by two experts independently. In the case
of errors or inaccuracies, the labels were corrected by the reviewer. During the
initial labelling, examples of existing event types were provided to guide the
experts through the process. We established the labelling notebooks to prevent
labelling errors by introducing pre-labelled event examples to the experts. The
electrical event labels from Step 1 are uniformly distributed over the day, and
no gaps exist, as shown in Figure 4 for both coffeemakers.

In Step 2 of the labelling process, we assigned each component a subset
of the corresponding electrical events. Figure 5 represents the mean instan-
taneous power consumed by every component, grouped by the corresponding
coffeemaker. Due to imbalance in the number of labelled components, we sub-
sampled 100 of them to obtain comparable values. The characteristics of the
components differ between the two coffeemakers. The components of the Jura
GIGA X9 are often triggered simultaneously, as the uniform distribution of the
instantaneous power consumed shows. This raises the demand for energy disag-
gregation algorithms to filter out the individual components from overlapping

(c) Author's version of the accepted (15.10.2020) and soon to be published article:  
CREAM, a component level coffeemaker electrical activity measurement dataset, 
Scientific Data, Springer Nature



Figure 4: Daily distribution of electrical events. The upper figure shows
the scaled event distribution of the Jura GIGA X8, whereas the bottom one
visualises the event distribution of the Jura GIGA X9. Accumulated over all
days in the dataset, the distribution of events is balanced with peaks in the
morning and after lunch, as expected in the office environment.

signal segments. In contrast, most of the labelled the component patterns in
the Jura GIGA X8 exhibit a uniform power consumption pattern, except for
a few outliers. Similar to the Jura GIGA X9, deviations from the mean occur
when the components are activated simultaneously with the other active ones.
Consequently, the signals from individual components superimpose each other.
When analysing the duration of the refined product and maintenance events

Figure 5: Mean instantaneous power consumed by each main compo-
nent. We computed the power for a subset of 100 samples per component to
address the class imbalance. The first row of the figure contains the components
of the Jura GIGA X8 and the second one the ones of the Jura GIGA X9. For
the Jura GIGA X8, each component has a clear peak power corresponding to
the consumption of the majority of events, whereas the Jura GIGA X9 exhibits
more uniform characteristics.

of the Jura GIGA X8 obtained at Step 3 of the labelling process, one can see
in Table 4 that most of them have a small variation and are labelled with a
uniform length in time. In comparison, the duration of the events created by
the Jura GIGA X9 exhibit a higher variation. The deviations can be observed
due to various reasons, such as changes in the coffeemaker settings, processes
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1 import h5py
2

3 f i l e_path = " f i l e p a th_o f_ in t e r e s t " # data l o c a t i o n
4

5 # Open the f i l e
6 with h5py . F i l e ( f i l e_path , ’ r ’ , d r i v e r=’ core ’ ) as f :
7

8 """
9 Extract the s i g n a l .

10 The f i l e conta in s the " current1 " co f f eemaker channel , the "
cur rent6 " no i s e channel , and the " vo l tage " data .

11 """
12 s i g n a l = f [ " cur rent1 " ] [ : ]
13

14 """
15 Extract the metadata a t t r i b u t e s .
16 The " c a l i b r a t i o n_ f a c t o r " a t t r i b u t e can be rep laced by any

another one .
17 """
18 c a l i b r a t i o n_ f a c t o r = f [ name ] . a t t r s [ " c a l i b r a t i o n_ f a c t o r " ]

Listing 1: Exemplary usage of the h5py python library for extracting
the electrical signals of the coffeemakers and the metadata from
the HDF5 data files. In the CREAM repository [21], we provide pre-built
functions for reading and processing the full dataset.

that differ between the coffeemakers or diverging user behaviour. The labelling
procedure itself was precise, as confirmed by visual inspection.

Usage Notes
In the CREAM repository [21], we provide the code to reproduce the dataset
establishment and the examples that can be used to facilitate the usage of the
dataset. The code is provided in the source_code folder. All source code is
implemented in Python 3. The recorded electrical signals are stored in files
in the format of HDF5 files. The HDF5 format is supported by most of the
scientific computing libraries, such as Python (h5py/numpy/scipy), MATLAB
(h5read), and R (rhdf5). The code snippet in Listing 1 shows the usage of the
h5py python library for extracting the data.

We provide the relevant metadata in HDF5 attributes within the individual
files and the respective filenames, as documented in Table 6. While creating the
HDF5 files, we have used the following widely supported filters: gzip compres-
sion, shuffle to improve the compression ratio, and Fletcher to add checksums
to prevent the data from being corrupted. The repository contains examples of
loading and pre-processing the CREAM data. Furthermore, we provide the la-
belling tools utilised to produce the labels, as outlined in Figure 2 and as shown
in 3. Therefore, the created labels can be reproduced independently. Moreover,
the set of existing labels can be extended if necessary. In CREAM, we provide
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the raw measurements to avoid any bias caused by data pre-processing. Despite
that, we recommend applying two pre-processing steps for most of the potential
analysis techniques. First, we recommend to calibrate the signals according to
the calibration factors provided in the file metadata (see Table 6). Second, we
suggest removing any DC-bias by subtracting the mean offset from each mains-
cycle in the signal. We provide the implementations for both pre-processing
steps in the repository, according to the instructions outlined in the BLOND
repository [20].
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Abstract—The accurate detection of transitions between ap-
pliance states in electrical signals is the fundamental step that
numerous energy conserving applications, such as Non-Intrusive
Load Monitoring, rely on. So far, domain experts define rules
and patterns to detect changes of appliance states and to extract
detailed consumption information of individual appliances subse-
quently. Such event detectors are specifically designed for certain
environments and need to be tediously adapted for new ones, as
they require in-depth expert knowledge of the environment. To
overcome this limitation, we propose a new unsupervised, multi-
environment event detector, called MEED, that is based on a
bidirectional recurrent denoising autoencoder. The performance
of MEED is evaluated by comparing it to two state-of-the-art
algorithms on two publicly available datasets from different
environments. The results show that MEED improves the current
state of the art and outperforms the reference algorithms on
a residential (BLUED) and an office environment (BLOND)
dataset while being trained and used fully unsupervised in the
heterogeneous environments.

I. INTRODUCTION

One of the challenges humanity is facing nowadays is the
depletion of natural energy resources, while the overall energy
demand keeps increasing, especially the demand for electrical
energy [1]. For this reason, researchers are striving to find
solutions to improve the way limited energy resources are
used. By making both industrial and residential consumers
aware of their detailed electricity consumption, one aims to
reduce the waste of energy [2]. Several surveys indicate that
appliance-level information can reduce energy consumption
by raising consumer awareness [3]. The consumption of indi-
vidual appliances can be acquired using Non-Intrusive Load
Monitoring (NILM) methods with a low-cost single-sensor
approach to record an aggregated signal, measured only at the
mains of a building or industrial plant [2]. After extracting
relevant signal segments using an event detection algorithm,
the appliances that had caused the events can be identified and
the signal can be decomposed into the individual appliances.
Besides using appliance-level information to save energy, it
enables other applications, such as detecting malfunctions in
appliances to reduce maintenance costs [2].

Most of the electrical data used in NILM is collected by
smart meters, which usually sample the signals at a low rate
(< 1 kHz). As a result, only some of the major devices can
be detected [2]. Data that are sampled using higher rates
increase the probability for successful NILM [4] and allow
to detect more devices, especially low consumption ones [2].

Although high-sampling-rate data contains a high amount of
information, most machine learning algorithms can not be
used on it as they suffer from the curse-of-dimensionality
caused by the sampling rate [5]. Hence, it is necessary to
reliably extract relevant segments from the overall signal,
i.e., appliance-state transitions, that can be used to identify
appliance-level behavior.

In the past, researchers focused on methods for low-
sampling-rate data, driven by the high costs (for metering, stor-
age, and processing) associated with the acquisition of high-
sampling-rate data. As there is an evident lack of methods and
because of the advantages of high-sampling-rate data, we focus
on this domain. Detecting events and distinguishing them from
signal noise is particularly challenging and prone to errors. So
far, researchers focused mainly on residential buildings and
their appliances. Thus, there are multiple residential datasets
publicly available [6]. Recent work also investigates industrial
and office settings and new datasets are published [7].

Existing event detection algorithms exhibit one important
disadvantage: Most rely on customized, expert-made event
definitions. This prohibits such approaches to generalize well
to a setting they were not designed for. Subsequently, the
hyperparameters and the algorithms themselves need to be
tediously fine-tuned for being used in a new setting.

The main contribution of this paper is to present a new
multi-environment event detector (MEED) that does not rely
on a dedicated event definition while being trained and used
fully unsupervised. Hence, MEED can be used in different
environments without the need to preset additional hyperpa-
rameters, enabling new possibilities for NILM and energy-
related applications in general. Furthermore, MEED detects
events more reliable than the existing state of the art, inducing
fewer errors into subsequent analysis steps. We compare
MEED with two state-of-the-art algorithms on two publicly
available datasets from different environments. By doing so,
we improve the current state of the art on the residential
BLUED [6] and the office environment BLOND [7] datasets.

The rest of the paper is organized as follows: In Section II
we give an overview on event detection in NILM and relevant
metrics. Section III summarizes related work, followed by the
description of MEED in Section IV. Subsequently, we detail
our experimental setup in Section V and discuss the corre-
sponding results in Section VI. Section VII then concludes
this paper.
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II. BACKGROUND

Based on the foundational work on energy disaggregation
by George Hart [8], multiple new algorithms that use events
to extract relevant signal segments have been proposed.

A. Event Detection

As the majority of researchers use different, specific defi-
nitions of events that reduce their capability to generalize to
new settings, we use a general event definition. In particular,
we define events to be transitions between states of individual
appliances. Event detection algorithms can be divided into
ones using supervised- and unsupervised learning, depending
on the use of labeled data during training (supervised) or
not (unsupervised). Supervised algorithms are less flexible in
tasks like event detection than unsupervised algorithms, as they
are highly dependent on the event definition used. Thus, we
propose an unsupervised event detector.

Another possibility to classify event detection methods
are the three categories introduced by Anderson et al. [9],
namely Expert Heuristics (EH), Probabilistic Models (PM),
and Matched-Filters (MF). Rule-based approaches, including
simple threshold-based ones, and methods using machine
learning are considered to be EH, whereas approaches using
statistical metrics to determine events belong to the PM
category. MF approaches match learned event masks with the
signal to detect events [9].

B. Metrics

The following commonly used metrics are based on the
scores of the confusion matrix, namely the amount of records
that are True Positive (TP), False Positive (FP), True Negative
(TN), and False Negative (FN).

precision =
TP

TP + FP
recall =

TP
TP + FN

FPR =
FP

FP + TN
FPP =

FP
TP + FN

F1-Score =
2 ⇥ recall ⇥ precision

recall + precision

Another common metric is the True Positive Percentage (TPP),
which is defined as TP

E = TP
TP+FN [9]. As this is equal to the

recall metric, we omitted the TPP in our evaluation. It is of
particular importance to define how the single scores of the
confusion matrix are computed to ensure the comparability
of the results [10]. Ground truth events are often generated
by human experts, and thus can be imprecise with respect to
their exact location in time. Hence, it is common to define a
tolerance limit ⌧ for the matching of detected edet and ground
truth events egt [10]–[12]. A detected event edet is a TP if
there exists a ground truth event within an interval of ±⌧ , i.e.,
if 9egt : edet � ⌧  egt  edet + ⌧ .

III. RELATED WORK

In the following, we summarize the current state of the
art in event detection in NILM on high-sampling-rate data
and identify gaps. The essential characteristics of the related

algorithms are listed in Table I, with the scores being rounded
to the second decimal digit. In case the exact value for a par-
ticular metric is unclear from the publication, we declared the
result to be approximate (⇡). We further categorize the related
work according to the following criteria. The ”Setting” column
indicates the environment the algorithms are designed for and
evaluated in, namely Residential (R) or Industrial (I) envi-
ronments. The cross-validation criterion (CV) reports whether
cross-validation was used in the evaluation, as suggested by
Makonin and Popowich [25] to improve the reliability of the
results. Most of the publications exhibit no information about
the tolerance limit ⌧ used to calculate the metrics. Hence, the
scores can not be directly, but only approximately, compared.

Valovage and Gini introduce a PM [11] that relies on a
Bayesian detection method at its core. The algorithm tries to
partition the signal into run sequences, followed by declaring
the transitions between such sequences as events.

Pereira [12] introduces another PM. The algorithm makes
use of a log likelihood ratio detector to estimate a detection
statistic. The algorithm then searches the signal for extreme
values to determine events.

In contrast to the other PM, Wild et al. [17] use a kernel
Fisher discriminate analysis to detect start and end times of
event and non-event segments in a supervised way.

Alcala et al. [13] use the signal’s envelop of the normalized
current and voltage RMS values and a threshold to detect
events. Another approach using the signal’s envelope is based
on a Hilbert Transform [14]. It further applies an average and
a derivative filter to obtain a set of spikes to detect transitions.

The algorithm proposed by de Baets et al. [15] transforms
the signal into the frequency domain and applies a threshold
on the computed Cepstrum components to detect events.

As part of an unsupervised NILM system, Barsim et al. [16]
developed a three-step unsupervised event detection algorithm.
First, they separate steady and transient states by apply-
ing the mean-shift clustering algorithm to logarithmized real
and reactive power values. Afterward, they use expectation-
maximization clustering and Gaussian mixture models to
detect the time limits of the events. In the last step, the
algorithm verifies the detected events according to expert-
defined constraints for the specific setting.

The approach by Trung et al. [20] makes use of the cumu-
lative sum statistics (CUMSUM) and an adaptive threshold to
detect the start and the end of the transient segments in the
signal. Furthermore, Zhu et al. [22] use CUMSUM to detect
events in a residential setting.

In contrast to methods designed for residential settings,
Cox et al. [24] use the voltage distortion to detect events in
industrial data.

Yang et al. [23] compare an EH and a goodness-of-fit (GOF)
event detector, concluding that the latter performs better.

Barsim and Yang [18] use the unsupervised DBSCAN clus-
tering algorithm. Zheng et al. [19] also show the applicability
of DBSCAN to detect events. The clustering algorithm detects
various appliance states and their transitions before they are
post-processed with dedicated thresholds on power and time to
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TABLE I
RELATED WORK (ACRONYMS ARE EXPLAINED IN THE TEXT)

Ref. Learning Setting Type Dataset CV Recall Precision FPR FPP F1-Score Limit ⌧

[11] Unsup. R PM BLUED A | B No - - - - ⇡ 0.98 | ⇡ 0.80 2 s
[12] Unsup. R PM BLUED A | B No - - - - ⇡ 0.96 | ⇡ 0.72 1 s

REDD No - - - - ⇡ 0.80 -
[13] Unsup. R EH BLUED A | B No 0.94 | 0.88 - 0.88e-3 | 0.12 - - -
[14] Unsup. R EH REDD subset No 0.93 - 0 0 - -
[15] Sup. R EH BLUED A | B Var. - - - - 0.98 | 0.80 -
[16] Unsup. R EH BLUED A | B No 0.99 | ⇡ 0.70 - - ⇡ 0.55 | ⇡ 0.09 - -
[17] Sup. R PM BLUED A | B No 0.99 | 0.86 0.99 | 0.92 - - 0.99 | 0.89 -
[18] Unsup. R EH BLUED A | B No 0.97 | 0.68 0.99 | 0.93 - 0.78e-2 | 0.49e-1 0.98 | 0.79 -
[19] Unsup. R EH BLUED A | B No 0.99 | 0.88 - 0.99 | 0.69 0.71e-2 | 0.4 0.99 | 0.77 3 s
[20] Unsup. R EH REDD subset No 0.94 - - - - -
[21] Unsup. R PM Non Public - - - - - - -
[22] Unsup. R EH Non Public - - - - - - -
[23] Unsup. R PM, EH Non Public - - - - - - -
[24] Unsup. I EH Non Public - - - - - - -

filter out duplicates and FPs. For its transparent evaluation and
its state-of-the-art performance on BLUED, we have selected
the latter approach as one of the two algorithms to benchmark
the performance of MEED.

In addition to the first reference algorithm, we have selected
the GOF based approach by Jin et al. [21] as it has multiple
advantages over other probabilistic event detectors, despite
not being evaluated on a public dataset. In contrast to other
algorithms, this GOF approach provides a guideline for the
selection of the event window hyperparameter and a closed
form for the decision threshold. Furthermore, the authors
show the superiority of their algorithm over the widely used
generalized log likelihood detector [21].

Based on the related work, the base requirements for MEED
are as follows: MEED has to be designed independent of any
specific event definition, allowing it to generalize better, even
to different settings. Furthermore, this multi-environment event
detector has to identify events unsupervised to avoid the need
for costly human labeled events.

IV. EVENT DETECTION APPROACH

Based on the introduced requirements, we design a new
window-based EH event detector. MEED applies a two-step
process to the pre-processed input data to detect events, as
shown in Figure 1. The first step is based on the mean-squared
reconstruction error (MSE) of the signal window, which is
computed by an autoencoder. Subsequently, we apply a peak
detection algorithm to find the exact timestamps within the
windows that exceed an absolute MSE value.

A. Data Pre-Processing

One of the features that is used in multiple event detection
methods is CUMSUM [20], [22] as it has shown to reveal
trends and changes in time-series data successfully. Small
fluctuations are suppressed in CUMSUM, while substantial
changes in the data are revealed. The input to the first step of
MEED is the CUMSUM of the five-period root-mean-square
(RMS) of the current signal. The CUMSUM at time ti is
computed by accumulating the deviations of the RMS values

from the window’s mean value for all t  ti. Therefore,
CUMSUM reveals trends in the signal, while suppressing
small fluctuations. During training, we scale the CUMSUM
input signal to a value range between �1 and 1.

B. Coarse Event Detection Autoencoder

The first step of MEED is to apply a denoising autoencoder
to the input windows. In doing so, we seize the rarity of events
to build a model that can detect signal windows that contain
transitions. A similar idea is used to solve classical anomaly
detection tasks, as presented in the summary on this topic
by Chandola et al. [26]. The authors present several methods
to identify unexpected events. One of these methods applies a
neural network, in particular, an autoencoder, to learn a hidden
representation h of the input x to reveal events [26].

Autoencoders are neural networks that are typically used
in representation learning tasks. They consist of an encoder
h = f(x) and a decoder function r = g(h) [5]. As events are
rare compared to non-events, they constitute the minority class,
making it hard for the model to learn a proper event representa-
tion h. Instead, the model learns to represent and reconstruct
the non-event majority class. Hence, a large reconstruction
error is produced when the model faces a deviation from nor-
mal behavior, i.e., an event. MEED’s hyperparameter settings
can generalize well between environments, as events rarely
occur in all electrical environments. Denoising autoencoders,
a special case of the general autoencoder, minimize a loss
function L(x, g(f(ex))), while trying to reconstruct the input
x from intentionally corrupted input data ex. The corrupted
input ex is obtained by adding white Gaussian noise (µ = 0,
� = 0.25) to x.

Each of the three hidden layers of MEED are bidirectional
long short-term memory (LSTM) cells that have shown to
be able to learn long term dependencies and patterns from
sequential data [5]. Briefly, a LSTM cell is a memory cell
with non-linear gating units (it, ot, ft and ct) that control its
information flow, as summarized in the following equations,
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Fig. 1. MEED Architecture, with step 1 (the coarse detection autoencoder) and step 2 (the fine-grained event timestamp detector)

with sig being the logistic sigmoid, tanh the hyperbolic
tangent function, and � the element-wise product [5]:

ft = sig(Wfxt + Ufht�1 + bf )

it = sig(Wixt + Uiht�1 + bi)

ot = sig(Woxt + Uoht�1 + bo)

ct = ft � ct�1 + it � tanh(Wcxt + Ucht�1 + bc)

ht = ot � tanh(ct)

The input window to MEED has a fixed size, thus, we use
bidirectional LSTMs to make use of future context information
to improve the overall performance [27], as depicted in the
autoencoder step in Figure 1. The bidirectional networks
consist of one LSTM to process the data in the forward
direction, i.e., from the beginning of the window to the end,
and one separate LSTM to do so in the opposite direction [27].
The outputs of both directions are concatenated into a single
output to compute the MSE to optimize the network. On top
of the LSTM layers, the linear output layer ensures that the in-
and output have the same dimensionality. We evaluated several
hyperparameters and different architectural components using
a grid search on the training data, resulting in the final optimal
settings shown in Table II.

TABLE II
AUTOENCODER HYPERPARAMETERS, IMPLEMENTED WITH KERAS [28]

Parameter Value Parameter Value

learning rate 0.001 LSTM 1 cell size 216
optimizer Adam [29] LSTM 2 cell size 108
initializer Glorot uniform [30] LSTM 3 cell size 216

merge mode concatenate window size 10 s

C. Fine-Grained Event Timestamp Detector

In case the coarse event detector determines an input
window to be an event window, i.e., the reconstruction error
threshold is exceeded, we apply the fine-grained detection
procedure to determine the exact number and timestamps in
the window. The algorithm aims to detect significant state-
changes, while supressing ones that are caused by noise. We
compute the RMS values over five periods of the raw input
signal. Then, we convert the RMS signal into a binary one,
setting values higher than the mean of the values to 1 and

the smaller ones to 0. Afterward, all transitions between the
binary values are determined. We use two hyperparameters
to distinguish between relevant and noise related transitions,
namely the min time and the fluctuation threshold pa-
rameter. The first one is used to ensure a minimum time
between transitions. In particular, consecutive transitions are
suppressed that belong to the same event, therefore it is set
to a value of 2. The latter parameter filters out events that are
caused by noise in the standardized signal. It suppresses small
fluctuations that amount to an RMS value smaller than 1.

V. DATASETS AND EXPERIMENTAL SETUP

We evaluated our approach on two distinct publicly avail-
able datasets from a residential and an office environment.
Furthermore, we compare our algorithm to the re-implemented
approaches by Jin et al. [21] and Zheng et al. [19]. We
use cross-validation to evaluate all algorithms. In the coarse
detection step, we selected a threshold on the MSE of 2,
guided by the reconstruction errors produced during training.
In general, a wide range of thresholds is feasible, as non-event
windows produce MSE errors close to zero, while events result
in high errors.

For the evaluation, we set the tolerance limit for the cal-
culation of the performance metrics to ⌧ = 1 s, as proposed
by Pereira [12], ensuring a minimum precision in time that
is necessary for the majority of the NILM algorithms. The
first dataset we used, namely BLUED, contains the voltage
and current, sampled at 12 kHz, of a house with a two-
phase connection [6]. The first phase (Phase A), has only a
few devices attached to it, producing over-optimistic detection
results [12]. Phase B, on the other hand, resembles the actual
consumption of typical households, as it contains more diverse
devices and a higher, more realistic noise level than Phase
A. Consequently, we use Phase B to obtain a performance
benchmark in a realistic setting. The BLUED dataset contains
a few minutes of corrupted data, reducing the number of events
for Phase B by 4 to 1574. In particular, the events on 26.10
from 01:22:00 to 01:24:00 are removed. As BLUED is divided
into 16 folders, we apply 16-fold cross-validation with one day
allocated for training in each iteration.

Additionally, we use an office environment dataset, namely
BLOND [7]. The aggregated electrical signals are sampled at
50 kHz, making BLOND the only publicly available office
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dataset that is sampled with high frequency. The appliance
composition in office environments is substantially different
from the one in households, as they contain more devices
like, for example, laptops that induce noise into the signals.
The results are 5-fold cross-validated, with the first five days of
November 2016 being used for training and the subsequent ten
days used for testing. BLOND is the only office environment
dataset that is publicly available, but as it does not provide
ground truth labels, we sampled a subset of the detected
events for each approach separately to calculate the TPs
and FPs and thus the precision to compare the algorithms.
The appropriate sample size n is determined by assuming a
binomial probability distribution for the TPs and FPs, using
a Wilson score interval to estimate n [31]. We use the scores
of MEED on the BLUED dataset as a prior guideline for the
success probability p of the distribution. We expect the number
of the TPs to be slightly lower, due to the noise level of the
BLOND dataset. Hence, we account for this by subtracting 0.1
from p. The sample size is then calculated using an ↵ value of
0.1 and a confidence interval with a conservative width of 0.4
around the estimate for p. This results in a minimum sample
size per day of n = 10 for MEED, of n = 13 for the EH by
Zheng et al. [19], and of n = 14 for the PM by Jin et al. [21].

VI. EXPERIMENTAL RESULTS

The following results are obtained by running the input
windows through the coarse event detection autoencoder and
the fine-grained timestamp detector that constitute MEED. The
cross-validated results of the detection performance bench-
mark on BLUED are shown in Figure 2, with MEED clearly
outperforming the other algorithms. Furthermore, Figure 2
shows that the cross-validation scores are within a narrow
range for all algorithms, hence the influence of the individual
training folds in BLUED is limited.

TABLE III
MEAN SCORES ACHIEVED ON BLUED PHASE B, WITH ⌧ = 1 s

Algorithm F1-Score Recall Precision FPR FPP

MEED 0.75 0.69 0.83 0.03e-3 0.14
Jin et al. [21] 0.51 0.87 0.36 0.04e-2 1.55

Zheng et al. [19] 0.51 0.41 0.69 0.046e-3 0.18

Averaging the scores over the folds of the cross-validation,
one obtains a stable result for the overall performance of the
algorithms, as shown in Table III. The autoencoder clearly
outperforms the two reference algorithms with regard to the
F1-Score. The algorithm by Zheng et al. [19] performs worse
compared to the results presented in the original paper. This
can be explained by the use of a different tolerance limit ⌧ .
When using ⌧ = 3 s, like Zheng et al. [19] in the original
paper, MEED achieves an F1-Score of 0.79, hence, also
outperforming the F1-Score that is reported by Zheng et al.
[19]. The scores achieved show that MEED is more resilient
to noise than the two reference algorithms, resulting in higher
overall precision. The PM by Jin et al. [21] achieves a higher
recall, but at the cost of a high amount of FP events. When
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Fig. 2. Cross-validated F1-Scores for the algorithms of Zheng et al. [19], Jin
et al. [21] and MEED on BLUED Phase B

trading off precision against recall, precision should be favored
as FP events propagate through the entire analytical pipeline
of NILM, leading to problems in the subsequent steps. In
this context, missing out single events is not as severe as
detecting multiple FPs. Regarding the FPs that MEED detected
on BLUED, the majority of them corresponds in fact to true
events that are not labeled accordingly in the data. Despite
the use of BLUED as the de-facto standard dataset for the
evaluation of event detection algorithms, one can see that the
ground truth has some flaws, as also claimed by Zheng et
al. [19]. As there are no labels for the BLOND dataset, our
sampling procedure only allows us to compute the TP and FP
events, thus, no F1-Score can be calculated. Looking at the
results on the BLOND dataset in Table IV, one has to account
for human labeling bias and the uncertainty caused by the
sampling process. Despite this, MEED achieves a precision
that significantly outperforms the other two algorithms on all
three channels (1, 2, 3) of BLOND.

TABLE IV
BEST SCORES ACHIEVED ON BLOND, WITH ⌧ = 1 s

TP FP Precision
Algorithm 1 2 3 1 2 3 1 2 3

MEED 86.8 69 89.6 64.4 41.6 46 0.58 0.62 0.66
Jin et al. [21] 53.6 39.2 80 138.4 113.4 116 0.28 0.26 0.40

Zheng et al. [19] 49 31 60 126 68 69 0.28 0.31 0.47

The amount of samples differs between the channels and
the algorithms, as some of the evaluation days are no work
days. Due to the low activity on such days, the number of
detected events is smaller than the sample size n per day,
resulting in an overall lower amount of samples. The variation
of the scores between the MEED models as shown in Figure 3
indicates that an intelligent selection of typical work days for
training can improve the model performance. In conclusion,
one can see that MEED detected events with high precision
in both settings. Consequently, MEED substantially reduces
the amount of FPs that are induced into the analysis pipeline,
while reliably detecting the majority of the events.
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VII. CONCLUSION

We propose MEED, a new multi-environment event detec-
tor, that does not rely on a dedicated event definition and
that generalizes well to different environments without the
need to adapt the model. In contrast to the present state of
the art, MEED requires no dedicated expert knowledge about
the environment it is used in. We compare MEED, a fully
unsupervised bidirectional recurrent denoising autoencoder, to
two reference event detectors on a residential (BLUED) and
an office environment dataset (BLOND). In doing so, MEED
achieves state of the art results with an F1-Score of 0.75 on
BLUED and clearly outperforms the reference algorithms on
BLOND, while using a tolerance limit of one second.
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Abstract—The accurate detection of appliance state transitions in electrical signals is fundamental for numerous energy-conserving
applications. We present an extensive overview and categorization of the current state in event detection on high-sampling-rate signals.
Existing approaches are designed for specific environments and need to be tediously adapted for new ones. Thus, we propose an
unsupervised, multi-environment event detector, outperforming four state-of-the-art algorithms on two heterogeneous public datasets.
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1 INTRODUCTION

ONE of the challenges humanity is facing nowadays
is the depletion of natural energy resources, while

the overall energy demand keeps increasing, especially the
demand for electrical energy [1]. For this reason, researchers
are striving to find solutions to improve the way limited
energy resources are used. By making both industrial and
residential consumers aware of their detailed electricity con-
sumption, one aims to reduce the waste of energy and build
more sustainable electrical applications [2]. Several surveys
indicate that appliance-level information can reduce energy
consumption by raising consumer awareness [3] and enable
a variety of sustainable smart city applications for energy
savings [4]. The consumption of individual appliances can
be acquired using Non-Intrusive Load Monitoring (NILM)
methods with a low-cost single-sensor approach to record
an aggregated signal, measured only at the mains of an
entity, such as a building or a composite device [2]. After
extracting relevant signal segments using an event detection
algorithm, the appliances that had caused the events can
be identified, and the signal can be decomposed into the
individual appliances. Most of the electrical data used in
NILM is collected by smart meters, which usually sample
the signals at a low rate (< 1 kHz). As a result, only
some of the major devices can be detected [2]. Data that
are sampled using higher rates increase the probability for
successful NILM [5] and allow to detect more devices [2].
Due to problems arising with high sampling rates, such
as the curse-of-dimensionality for machine learning algo-
rithms [6] and the amount of data to store and process,
online applications must pre-process the data by reliably
extracting relevant segments, i.e., appliance-state transitions
[7]. By only sending segments over the network, one can
enable smart city applications, while overcoming infras-
tructural problems due to the amount of communication
in large-scale Internet of Things settings [8]. In the past,
researchers focused on low-sampling-rate data, driven by
the high costs (for metering, storage, and processing) asso-
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ciated with the acquisition of high-sampling-rate data. As
there is an evident lack of methods, and because of the
advantages of high-sampling-rate data, we focus on this
domain. Detecting events and distinguishing them from
signal noise is particularly challenging and prone to errors.
So far, researchers focused mainly on residential buildings
and their appliances. Thus, there are multiple residential
datasets publicly available [9]. Recent work investigates
industrial and office settings, and new datasets containing
measurements of computational equipment are published
[10]. Existing event detection algorithms exhibit one impor-
tant disadvantage: Most rely on customized, expert-made
event definitions. This prohibits such approaches from being
able to generalize well to a setting they were not designed
for. Subsequently, the algorithms need to be tediously fine-
tuned for being used in a new setting.

The main contributions of this paper are as follows: First,
we present the current state of the art in event detection for
energy consumption monitoring with NILM, based on an
extensive literature review. In a comprehensive overview,
we facilitate algorithm comparison by reporting all relevant
metrics and by categorizing existent approaches based on
key-characteristics. Second, we present, based on our previ-
ous work [11], the state-of-the-art, multi-environment event
detector (MEED) that does not rely on a dedicated event
definition while being trained and used fully unsupervised.
Hence, MEED can be used in different environments with
an automatically determined decision hyperparameter, en-
abling new possibilities for NILM and energy-related ap-
plications in general. Third, we conduct an extensive bench-
mark test of the current state of the art by implementing four
algorithms and by evaluating them compared to MEED on
two publicly available datasets from different environments.
We are publicly releasing all source code, all models, and
the parametrization for all algorithms used in this paper in
a publicly available repository [12]. By doing so, we provide
the first and most comprehensive implementation of high-
sampling-rate event detection algorithms in the field.

The rest of the paper is organized as follows: In Section
2 we give an overview on event detection in NILM and rel-
evant metrics. Section 3 summarizes related work, followed
by the description of MEED in Section 4. Subsequently, we
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detail our experimental setup in Section 5 and discuss the
corresponding results in Section 6. Section 7 then concludes
this paper.

2 BACKGROUND

Based on the edge detection algorithm for NILM introduced
in 1992 by George Hart [13], a variety of new algorithms that
use events to extract relevant signal segments have been
proposed.

2.1 Event Detection

As most researchers use different, specific definitions of
events that reduce their capability to generalize to new
settings, we use a general event definition. In particular, we
define events to be transitions between states of individ-
ual appliances. Event detection algorithms can be divided
into ones using supervised- and unsupervised-learning, de-
pending on the use of labeled data during training (su-
pervised) or not (unsupervised). Algorithms relying on a
small number of labeled samples and a large number of
unlabeled samples are considered to be semi-supervised.
Supervised and semi-supervised algorithms are less flexible
in tasks like event detection than unsupervised algorithms,
as they are dependent on the event definition used for
labeling. Thus, we propose an unsupervised event detector.
Another possibility to classify event detection methods is
the three categories introduced by Anderson et al. [14],
namely Expert Heuristics (EH), Probabilistic Models (PM),
and Matched-Filters (MF). Rule-based approaches, includ-
ing simple threshold-based ones, and methods using ma-
chine learning, are considered to be EH, whereas approaches
using statistical metrics to determine events belong to the
PM category. Algorithms that match previously learned
event masks with the signal to detect events are considered
to be MF approaches [14].

2.2 Metrics

The following commonly used metrics are based on the
scores of the confusion matrix, namely the amount of
records that are True Positive (TP), False Positive (FP), True
Negative (TN), and False Negative (FN).

precision =
TP

TP + FP
recall =

TP
TP + FN

FPP =
FP

TP + FN
F1-Score =

2 ⇥ recall ⇥ precision
recall + precision

Metrics based on TN scores are omitted, because of the
absence of a uniform definition of true non-events, as they
can occur any time no event exists. Another metric that is
commonly used in the NILM literature is the True Positive
Percentage (TPP), which is defined as TP

E = TP
TP+FN [14]. As

this is equal to the recall metric, we omitted the TPP in
our evaluation. It is of particular importance to define how
the single scores of the confusion matrix are computed to
ensure the comparability of the results [15]. Ground truth
events are often generated by human experts, and thus can
be imprecise with respect to their exact location in time.

Hence, it is common to define a tolerance limit ⌧ for the
matching of detected events edet and ground truth events
egt [15], [16], [17]. A detected event edet is a TP if there
exists a ground truth event within an interval of ±⌧ , i.e., if
9egt : edet � ⌧  egt  edet + ⌧ .

3 RELATED WORK

In the following, we summarize the current state of the
art in event detection in NILM on high-sampling-rate data
and identify gaps. To ease the comparison of different
algorithms, we have categorized the related literature into
approaches that use complete, or clearly defined subsets
of public datasets and into works that use non-public, or
undefined subsets of public data to evaluate their results.
Based on this, publications falling into the first category are
listed in Table 1, and publications from the latter category
are gathered in Table 2. We only list approaches that have
been evaluated on real-world data. The essential characteris-
tics of the related algorithms are listed in these tables, with
the scores being rounded to the second decimal digit. In
case the exact value for a particular metric is unclear from
the publication, we declared the result to be approximate
(⇡). The algorithms make use of either supervised- (sup.) or
unsupervised-learning (unsup.) techniques. To the best of
our knowledge, there are no semi-supervised event detec-
tion approaches for high-sampling-rate NILM, in contrast
to several publications on low-sampling-rate data, such as
the one by Yang et al. [49] and Li et al. [50]. We further
categorize the related work according to the following
criteria. The ”Setting” column indicates the environment
the algorithms are designed for and evaluated in, namely
Residential (R) or Industrial (I) environments. The cross-
validation (CV) criterion reports whether CV was used in
the evaluation, as suggested by Makonin and Popowich
[51] to improve the reliability of the results. Most of the
publications exhibit no information about the tolerance limit
⌧ used to calculate the metrics. Hence, the scores can only
be compared approximately and indirectly.

In the following, the publications listed in Table 1 are
further detailed, as they share common characteristics in
their evaluations, making them comparable. Valovage and
Gini introduce a PM [16] that relies on a Bayesian detection
method at its core. The algorithm tries to partition the signal
into run sequences, followed by declaring the transitions be-
tween such sequences as events. Pereira [17] introduces an-
other PM. The algorithm makes use of a log-likelihood ratio
detector to estimate a detection statistic. The algorithm then
searches the signal for extreme values to determine events.
In contrast to other PM, Wild et al. [22] use a kernel Fisher
discriminate analysis to detect start and end times of events
in a supervised way. Alcala et al. [18] use the signal’s enve-
lope of the normalized current and voltage RMS values and
a threshold to detect events. Another approach using the
signal’s envelope is based on a Hilbert Transform [19]. It fur-
ther applies an average and a derivative filter to obtain a set
of spikes to detect transitions. The algorithm proposed by
de Baets et al. [20] transforms the signal into the frequency
domain and applies a threshold on the computed Cepstrum
components. A different frequency domain based feature is
introduced by Held et al. [26]. The authors represent the
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TABLE 1
Comparable Related Work (abbreviations are explained in the text)

Ref. Learning Setting Type Dataset CV Recall Precision FPP F1-Score Limit ⌧

[16] unsup. R PM BLUED A | B No - - - ⇡ 0.98 | ⇡ 0.80 2 s
[17] unsup. R PM BLUED A | B No - - - ⇡ 0.96 | ⇡ 0.72 1 s

REDD No - - - ⇡ 0.80 -
[18] unsup. R EH BLUED A | B No 0.94 | 0.88 - - - -
[19] unsup. R EH REDD subset No 0.93 - 0 - -
[20] sup. R EH BLUED A | B Var. - - - 0.98 | 0.80 -
[21] unsup. R PM BLUED A | B Var. - - - ⇡ 0.98 | ⇡ 0.80 -
[22] sup. R PM BLUED A | B No 0.99 | 0.86 0.99 | 0.92 - 0.99 | 0.89 -
[23] unsup. R EH BLUED A | B No 0.97 | 0.68 0.99 | 0.93 0.78e-2 | 0.49e-1 0.98 | 0.79 -
[24] unsup. R EH BLUED A | B No 0.99 | 0.88 - 0.71e-2 | 0.4 0.99 | 0.77 3 s
[25] unsup. R EH REDD subset No 0.94 - - - -
[26] unsup. R EH BLUED A | B No 1 | 0.94 0.99 | 0.95 - 0.99 | 0,94 -
[27] unsup. R EH BLUED A No 0.94 - 0.79e-2 - -

TABLE 2
Not directly comparable Related Work (abbreviations are explained in the text)

Ref. Learning Setting Type Dataset CV Recall Precision FPP F1-Score Limit ⌧

[28] sup. R EH BLUED A | B sampled 1:4 No 0.98 | 0.98 0.95 | 0.92 0.05e-1 | 0.09 0.96 | 0.95 -
[29] unsup. R EH | PM 3 appliances No - 0.21 - - -
[30] unsup. R PM REDD subset No - - - - -
[31] unsup. R EH 6 appliances No - - - - -
[32] sup. I MF 4 appliances No - - - - -
[33] sup. I MF 4 appliances No - - - - -
[34] unsup. R EH 4 appliances No - - - - -
[35] unsup. R EH BLUED subset | simulated No - - - - -
[36] unsup. R PM 3 residential units No 0.99 - 0.09e-1 - -
[37] unsup. R PM 10 appliances No 0.73 0.76 0.23 - 3 samples
[38] unsup. I EH 4 appliances No - - - - -
[39] unsup. R EH 6 homes No - - - - -
[40] unsup. R EH 15 appliances No 0.89 - - - -
[41] unsup. R EH 5 appliances No - - - - -
[42] unsup. R EH REDD subset No - - - - -
[43] unsup. R PM, EH REDD subset No - - - - -
[44] unsup. R EH 8 appliances No 0.96 1 0 0.98 -
[45] unsup. R PM 29 appliances No - - - - -
[46] unsup. I EH 14 appliances No - - - - -
[47] unsup. R EH | PM 4 appliances No - - - - -
[48] unsup. I EH 7 appliances No - - - 0.83 -

signal by applying a frequency invariant transformation to
obtain a signal representation that emphasizes non-periodic,
pulse-shaped components to detect events. The authors fine-
tune the six hyper-parameters of the algorithm by running
an optimization algorithm over the full evaluation dataset.
As no separated test set is used for the evaluation, the
algorithm’s parameters overfit the data, and the evaluation
scores do not resemble a real-world setting. The approach
by Trung et al. [25] makes use of the cumulative sum
statistics (CUMSUM) and an adaptive threshold to detect
the start and the end of the transient segments in the signal.
Furthermore, Zhu et al. use CUMSUM to detect events in
a residential setting. In contrast to methods designed for
residential settings, Cox et al. [38] use the voltage distortion
of industrial data. Yang et al. [43] compare an EH and a
goodness-of-fit (GOF) event detector, concluding that the
latter performs better. An enhanced GOF approach, based
on a chi-square test statistic, is introduced by Baets et al.
[21]. In their work on event detection, Barsim and Yang
[23] introduce three algorithm agnostic event models, that
oppose different generic constraints on events. The authors
evaluate their approach using the unsupervised DBSCAN

clustering algorithm. We have implemented this approach
because of its performance and well-defined event model
to benchmark MEED. As many event detection algorithms
suffer from false positives, Lu and Li introduce a hybrid
approach, consisting of a threshold-based base algorithm
to detect events and two additional ones to filter out false
events [27]. Zheng et al. [24] also show the applicability of
DBSCAN to detect events. The algorithm clusters appliance
states and transitions before they are post-processed with
dedicated thresholds on power and time to filter out du-
plicates and FPs. For its transparent evaluation and state-
of-the-art performance on BLUED, we have selected this
algorithm for the benchmark.

Despite the comparability issues, we have selected two
distinguished algorithms from Table 2 to benchmark our
approach. The first algorithm is the GOF based approach
by Jin et al. [36] as it has multiple advantages over other
probabilistic event detectors, despite not being evaluated
on a public dataset. In contrast to other algorithms, this
GOF approach provides a guideline for the event window
hyperparameter and a closed form for the decision thresh-
old. Furthermore, the authors show the superiority of their
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algorithm over the widely used generalized log-likelihood
detector [36]. Besides this PM event detector, we have
selected a fast and straightforward, but well-performing
technique by Liu et al. [35] that is based on a median filter
and a ripple mitigation algorithm to separate meaningful
events from other fluctuations in the signal [35].

The following base requirements for MEED are derived
from the related work presented: MEED has to be designed
independent of any specific event definition, allowing it to
generalize better, even to different settings. Furthermore,
this multi-environment event detector has to identify events
unsupervised, without the need for user-defined decision
hyperparameters. By doing so, one avoids costly human
labelling of events and interventions. In contrast to existing
unsupervised event detectors, MEED’s decision hyperpa-
rameter is determined automatically.

4 EVENT DETECTION APPROACH

Based on the introduced requirements, we design a new
window-based EH event detector. MEED applies a two-step
process to the pre-processed input data to detect events, as
shown in Figure 1. The first step is based on the mean-
squared reconstruction error (MSE) of the window, which is
computed by an autoencoder model. Subsequently, we ap-
ply a peak detection algorithm to find the exact timestamps
within the windows that exceed an absolute MSE value.

4.1 Data Pre-Processing
One of the features that are used in multiple event detection
methods is CUMSUM [25], [44], as it has shown to reveal
trends and changes in time-series data successfully. Small
fluctuations are suppressed in CUMSUM, while substantial
changes in the data are revealed. The input to the first step
of MEED is the CUMSUM of the five-period root-mean-
square (RMS) of the current signal. The CUMSUM at time
ti is computed by accumulating the deviations of the RMS
values from the window’s mean value for all t  ti. During
training, we scale to values between �1 and 1.

4.2 Coarse Event Detection Autoencoder
The first step of MEED is to apply a denoising autoencoder
to the input. In doing so, we seize the rarity of events
to build a model that can detect windows that contain
transitions. A similar idea is used to solve classical anomaly
detection tasks, as presented in the summary on this topic
by Chandola et al. [52]. The authors present several meth-
ods to identify events. One of these methods applies a
neural network, in particular, an autoencoder, to learn a
hidden representation h of the input x to reveal events [52].
Autoencoders are typically used in representation learning
tasks. They consist of an encoder h = f(x) and a decoder
function r = g(h) [6]. As events are rare compared to non-
events, they constitute the minority class, making it hard
for the model to learn a proper event representation h.
Instead, the model learns to represent and reconstruct the
non-event majority class. Hence, a large reconstruction error
is produced when the model faces a deviation from normal
behavior, i.e., an event. MEED’s hyperparameter settings
can generalize well between environments, as events rarely

occur in electrical environments. Denoising autoencoders,
a special case of the general autoencoder, minimize a loss
function L(x, g(f(ex))), while trying to reconstruct the input
x from intentionally corrupted input data ex. The corrupted
input ex is obtained by adding white Gaussian noise (µ = 0,
� = 0.25) to x. Each of the three hidden layers of MEED
is a bidirectional long short-term memory (LSTM) cell that
has shown to be able to learn long term dependencies
and patterns from sequential data [6]. Briefly, a LSTM cell
consists of gating units (it, ot, ft and ct) that control its
information flow, as summarized in the following equations,
with sig being the logistic sigmoid, tanh the hyperbolic
tangent function, and � the element-wise product [6]:

ft = sig(Wfxt + Ufht�1 + bf )

it = sig(Wixt + Uiht�1 + bi)

ot = sig(Woxt + Uoht�1 + bo)

ct = ft � ct�1 + it � tanh(Wcxt + Ucht�1 + bc)

ht = ot � tanh(ct)

The input window to MEED has a fixed size, thus, we use
bidirectional LSTMs to make use of future context informa-
tion to improve the overall performance [53], as depicted
in the autoencoder architecture in step one in Figure 1. The
bidirectional networks consist of one LSTM to process the
data in the forward direction, i.e., from the beginning of the
window to the end, and one separate LSTM to do so in the
opposite direction [53]. The parameters of the forward and
the backward LSTMs are not shared, but the outputs of both
directions are concatenated into a single output to compute
the MSE to optimize the network during training. Each of
the three autoencoder components, namely, the encoding,
the embedding and the decoding layer, are represented by
a bidirectional LSTM. On top of the LSTM cells, the linear
output layer ensures that the in- and output have the same
dimensionality. We evaluated several training hyperparam-
eters and different architectural components using a grid
search on the training data, resulting in the final optimal
settings shown in Table 3.

TABLE 3
Autoencoder Hyperparameters, implemented with Keras [54]

Parameter Value Parameter Value

learning rate 0.001 LSTM 1 cell size 216
optimizer Adam [55] LSTM 2 cell size 108
initializer Glorot uniform [56] LSTM 3 cell size 216

merge mode concatenate window size 10 s

4.3 Fine-Grained Event Timestamp Detector

In case the coarse event detector determines an input win-
dow to be an event window, i.e., the reconstruction error
threshold is exceeded, we apply the fine-grained detection
procedure to determine the exact number and timestamps in
the window. We compute the RMS values over five periods
of the raw input signal. Then, we convert the RMS signal
into a binary one, setting values higher than the mean of the
values to 1 and the smaller ones to 0, revealing significant
peaks in the window. Relevant and noise-related transitions
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Fig. 1. MEED architecture, with step 1 (the coarse event detection autoencoder) and step 2 (the fine-grained event timestamp detector)

are distinguished by suppressing small fluctuations that
do not amount to an RMS value greater than 1 and by
ensuring a minimum event time of 2 samples, i.e., filtering
out consecutive samples that belong to the same event.

5 EXPERIMENTAL SETUP

We evaluated our approach on two distinct publicly avail-
able datasets from a residential and an office environment.
Furthermore, we compare our algorithm to the four re-
implemented approaches by Jin et al. [36], Zheng et al. [24],
Liu et al. [35] and Barsim et al. [23]. We use CV to evaluate
all algorithms. In the coarse detection step, the threshold
on the reconstruction error is set to be the MSE produced
at the end of the training. For the following experiments,
we have rounded the average of the last 10 MSE values
after training the model on one day of data (BLOND) or
half a day (BLUED), leading to a threshold of 2 for both
cases. In general, a wide range of thresholds is feasible, as
non-event windows produce MSE errors close to zero, while
events result in high errors. For the evaluation, we set the
tolerance limit for the calculation of the performance metrics
to ⌧ = 1 s, as proposed by Pereira [17], ensuring a minimum
precision in time that is necessary for the majority of NILM
algorithms.

5.1 Datasets
The first of the two datasets we used, namely BLUED,
contains the voltage and current, sampled at 12 kHz, of
a house with a two-phase connection [9]. The first phase
(Phase A), has only a few devices attached to it, producing
over-optimistic detection results, as also claimed by Pereira
[17]. Phase B, on the other hand, resembles the actual
consumption of typical households. It contains more diverse
devices and a higher, more realistic noise level than Phase
A. Consequently, we use Phase B to obtain a performance
benchmark in a realistic setting. The majority of the events in
Phase B occur when other appliances are running simultane-
ously, making the dataset challenging. The BLUED dataset
contains corrupted data, reducing the number of events for
Phase B by 4 to 1574. In particular, the events on 26.10 from
01:22:00 to 01:24:00 are removed. As BLUED is divided into
16 folders, we apply a 16-fold CV with one day allocated for
training in each iteration. Additionally, we use an office and
computational equipment dataset, namely BLOND [10]. The
electrical signals are sampled at 50 kHz, making BLOND

the only publicly available office dataset that is sampled
with high frequency. The appliance composition in offices
is substantially different from the one in households, as
they contain more devices such as, for example, laptops
that induce noise into the signal. The results are 5-fold
cross-validated, with the first five days of November 2016
being used for training and the subsequent ten days for
testing. As BLOND does not provide ground truth labels, we
sampled a subset of the detected events for each approach to
calculate the TPs and FPs and thus the precision to compare
the algorithms. The sample size n is estimated assuming a
binomial probability distribution for the TPs and FPs, using
a Wilson score interval [57]. We use the scores of MEED on
BLUED as a prior guideline for the success probability p of
the distribution and calculate n using an ↵ value of 0.1 and
a confidence interval with a conservative width of 0.4. Thus,
for each of the five algorithms n is as follows: MEED n = 10,
Jin et al. [36] n = 14, Zheng et al. [24] n = 13, Liu et al. [35]
n = 12, and Barsim et al. [23] n = 9. The sampled events
are then expert labeled, using the ground truth provided in
BLOND.

5.2 Reference Algorithms and Implementation

In the following, we will provide short descriptions of the
algorithms used to benchmark MEED in our evaluation.
The original papers and our source code of the algorithms
can be consulted for additional details. The implemented
algorithms and the settings for the hyperparameters used to
conduct the experiments are provided in a publicly available
repository [12]. The repository [12] also contains all trained
models and the code for MEED. We encourage researchers
to use the algorithms and the score function we provide to
evaluate their approaches.

In their PM, Jin et al. [36] formulate the event detection
problem as a binary hypothesis test. The authors compare
the data distribution in a pre-event window to the one in a
detection window. If the distributions are not equal, i.e., the
null hypothesis can be rejected, an event is detected. This is
done by using a chi-squared based threshold. The authors
further introduce an estimate for the window size parameter
[36]. Zheng et al. use the DBSCAN clustering algorithm to
detect the transitions between steady states in the active
power and RMS current signal. The transitions found are
then post-processed by applying two preset thresholds to
separate meaningful events from random fluctuations [24].
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In contrast to the other algorithms, Liu et al. [35] solely
rely on basic signal processing techniques, namely, a median
filter and a ripple mitigation filter. The ripple mitigation
filter computes the delta of consecutive power samples over
multiple ranges around each data point. The authors then
compute an absolute power delta curve by only keeping the
highest, absolute power delta values around each sample.
Therefore small ripples in the signal are filtered, and mean-
ingful differences in the power consumption remain. Subse-
quently, a fixed threshold is applied to these absolute power
delta values to detect events [35]. As the other algorithms
oppose some constraints on consecutive detected events and
apply additional post-processing, we do so accordingly for
the one by Liu et al. [35], as we assume the authors have
done the same. We do so, by filtering out consecutive events
that are detected within a second of a positive detection

Besides applying the DBSCAN algorithm, Barsim et al.
[23] introduce three formal event definitions with different
constraints on what to consider an event. These constraints
oppose criteria on the individual clusters from the DBSCAN
and define a loss-function for the overall clustering struc-
ture. When a clustering fulfills the event model and the loss
is below a certain threshold, an event is detected. Afterward,
post-processing is applied to find more stable steady and
transient-state regions in the signal.

6 EXPERIMENTAL RESULTS

The following results are obtained by running the input win-
dows through the coarse event detection autoencoder and
the fine-grained timestamp detector that constitute MEED.
When averaging the scores over the cross-validation, one
obtains a stable result for the overall performance of the
algorithms, as shown in Table 4 for the BLUED dataset. The
scores of the CV on BLUED are within a narrow range for all
algorithms. Hence, the influence of the individual training
folds in BLUED is limited.

TABLE 4
Mean Scores achieved on BLUED Phase B, with ⌧ = 1 s

Algorithm F1-Score Recall Precision FPP

MEED 0.75 0.69 0.83 0.14
Jin et al. [36] 0.51 0.87 0.36 1.55

Zheng et al. [24] 0.51 0.41 0.69 0.18
Liu et al. [35] 0.53 0.91 0.38 1.5

Barsim et al. [23] 0.31 0.18 0.95 0.95

MEED clearly outperforms the four reference algorithms
with regard to the F1-Score, as shown in Table 4. The two
deviations in the performance of the re-implemented refer-
ence algorithms, compared to the original papers, can be ex-
plained by the nonavailability of necessary hyperparameter
configurations and by the use of different tolerance limits ⌧ .
First, the recall of the algorithm by Barsim et al. [23] is higher
(0.68) than in our experiments for the BLUED dataset. This
can be explained by the strong influence of the publicly non-
available decision threshold for the loss function of the algo-
rithm. As we could not determine the exact configurations,
we have conducted an extensive grid search ourselves to
optimize the hyperparameters of the reference algorithms.
We have included all detailed configurations into the code

repository [12]. Second, the scores of the algorithm by Zheng
et al. [24] deviate because of their use of a different tolerance
limit of ⌧ = 3 s. When adopting this tolerance limit in
our experiments, MEED achieves an F1-Score of 0.79, hence
outperforming the original F1-Score reported by Zheng et al.
[24] on the BLUED dataset. The algorithm by Liu et al. [35]
achieves a higher recall, but at the cost of a high amount of
FP events. On the other hand, the algorithm by Barsim et al.
achieves a higher precision score than MEED, while missing
most of the actual events. When trading off precision against
recall, precision should be favored as FP events propagate
through the entire analytical pipeline of NILM, leading to
problems in the subsequent steps. Despite this, a minimum
recall has to be ensured, as missing the majority of events
prohibits applications relying on their accurate detection
from working. While having a substantially high precision
score, the results of MEED are the most balanced ones,
resulting in the highest F1-Score. Regarding the FPs that
MEED detected on BLUED, the majority of them correspond
in fact to true events that are not labeled accordingly in the
data. Despite the use of BLUED as the de-facto standard
dataset for the evaluation of event detectors, one can see that
the ground truth has some flaws, as also claimed by Zheng
et al. [24]. Besides measuring the detection performance
based on the F1-Score, we empirically determined the time-
efficiency of the algorithms, as shown in Figure 2. The
results show that by using the DBSCAN algorithm twice, in
a forward- and a backward-pass, the algorithm by Barsim
et al. [23], is significantly slower than the other algorithms.
The fastest technique is proposed by Jin et al. [36]. It has to
be noted, though, that all algorithms perform near real-time
as they only require processing times of up to 1.306 s for
every 10 s of the high-sampling-rate BLUED dataset.

Fig. 2. Empirical time-efficiency of MEED and the algorithms of Jin et
al. [36], Zheng et al. [24], Li et al. [35] and Barsim et al. [23] on BLUED
Phase B. The measurements represent the time required for each of
the algorithms to process 10 s of the BLUED dataset, measured on a
machine with two Intel Xeon E5-2630 v3 8x@2.4GHz processors and
16GB RAM.

As there are no labels for the BLOND dataset, our sam-
pling procedure only allows us to compute the TP and FP
events, thus, no F1-Score can be calculated. Looking at the
results on the BLOND dataset in Table 5, one has to account
for human labeling bias and uncertainty caused by the
sampling process. Despite this, MEED achieves a precision
that significantly outperforms the other four algorithms on
all three channels (1, 2, 3) of BLOND.
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TABLE 5
Best Scores achieved on BLOND, with ⌧ = 1 s

TP FP Precision
Algorithm 1 2 3 1 2 3 1 2 3

MEED 86.8 69 89.6 64.4 41.6 46 0.58 0.62 0.66
Jin et al. [36] 53.6 39.2 80 138.4 113.4 116 0.28 0.26 0.40

Zheng et al. [24] 49 31 60 126 68 69 0.28 0.31 0.47
Liu et al. [35] 52 32 79 129 71 88 0.29 0.31 0.47

Barsim et al. [23] 32 17 35 68 59 65 0.32 0.22 0.35

The amount of samples differs between channels and
algorithms, as some days are not workdays. Due to the
low activity on such days, the number of detected events
is smaller than the sample size n per day, resulting in an
overall lower amount of samples. The variation in the cross-
validated scores of MEED, as shown in Figure 3, indicates
that an intelligent selection of typical workdays for training
can further improve the model performance. In conclusion,
one can see that MEED detected events with high precision
in both settings. MEED substantially reduces the amount
of FPs that are induced into the analysis pipeline, while
reliably detecting events at fast speed.

Fig. 3. Precision scores (CV) of MEED and the algorithms of Jin et al.
[36], Zheng et al. [24], Li et al. [35], and Barsim et al. [23] on BLOND

7 CONCLUSION

We propose MEED, a new multi-environment event detector
for energy consumption monitoring, that does not rely on
a dedicated event definition and that generalizes well to
different environments without the need to adapt the model.
In contrast to the present state of the art, MEED requires
no dedicated expert knowledge about the environment
it is used in. We compare MEED, a fully unsupervised
bidirectional recurrent denoising autoencoder, to four re-
implemented reference algorithms on a residential dataset
(BLUED) and an office environment dataset (BLOND). In
doing so, MEED achieves state of the art results with a
cross-validated F1-Score of 0.75 on BLUED and clearly out-
performs the reference algorithms on BLOND, while using
a tolerance limit of one second.
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Abstract—Monitoring the energy demand of appliances can
raise consumer awareness and therefore reduce energy consump-
tion. Using a single-point measurement of mains energy consump-
tion can keep costs and hardware complexity to a minimum. This
data stream of raw voltage and current measurements can be
used in machine learning tasks to extract information. We apply
Deep Convolutional Neural Networks on an electrical appliance
classification task, using raw high frequency start up events from
two datasets. We further present Data Augmentation techniques
to improve the model performance and evaluate different data
normalization techniques. We achieve a perfect classification on
WHITED and a F1-Score of 0.69 on PLAID.

I. INTRODUCTION

Researchers are striving to find solutions to reduce the total
energy consumption, due to climatic change and the increasing
energy demand of both industrial and residential consumers.
By making consumers aware of their detailed energy con-
sumption it is possible to achieve significant energy savings.
Energy consumption data from electrical appliances can be
recorded and analyzed to provide appropriate feedback to the
consumers and the utilities [1], [2]. Other applications are
motivated by the insights from performing such analysis: non-
invasive monitoring of elderly people [3], anomaly detection
of malfunctioning devices to reduce maintenance costs [4],
or condition monitoring on naval vessels [5]. The required
information to enable such applications can be derived by
monitoring the electric appliances. One major approach is
Non-Intrusive Load Monitoring (NILM). It aims to use aggre-
gated electrical signals, for example, measured at the electrical
mains of a building. NILM is a step-wise process and one of its
major steps is to identify individual appliances from the volt-
age and current signals. The appliance identification problem
is particularly challenging and therefore still not sufficiently
solved [2], [6]. Past research focused mainly on residential
areas and their appliances, which resulted in multiple public
datasets of their measured electrical signals [7], [8].

Smart Meters are the most widespread devices to record
such aggregated data, usually at a low sampling rate (⇠ 1 Hz)
[4]. Low frequency data provides only enough information to
identify some of the major appliances, making it challenging
to identify multiple, smaller ones at the same time [4]. With
higher sampling rates, it is possible to distinguish even such
appliances. Most of the ongoing research is dealing with

low frequency data from Smart Meters due to their growing
deployment rate. There is a clear lack of methods for the
high frequency domain [9]. Methods using datasets that are
sampled with a frequency of 1 Hz or less are considered as
low frequency methods according to [10]. We do not take low
frequency data into account, due to the previously described
limitations. Subsequently, approaches using datasets with a
higher sampling frequency are considered as high frequency
methods. In order to identify single appliances and to disag-
gregate loads, most methods use manually derived appliance
signatures as features for various supervised machine learning
classifiers [2], [9]. Such features require extensive domain
knowledge and are dependent on different appliance types [9].

The main contribution of this paper is to investigate the
usage of the raw, high resolution current signal in order
to classify individual appliances with Deep Convolutional
Neural Networks (DCNN). It is valid to assume the switching
continuity principle because of the high sampling rate of
the measurements [11] and therefore to use datasets that
treat the appliance measurements isolated from one another.
We compare our DCNN classification approach to the state
of the art approaches using handcrafted (manually-derived)
features. Furthermore, we investigate multiple Data Augmen-
tation (DA) techniques to improve the performance of the
appliance identification classifier. Besides this, we investigate
different standardization and scaling methods to normalize
the data. Our classifier is designed to distinguish between
multiple appliance types. We use publicly available high fre-
quency energy datasets: WHITED [7] and PLAID [8]. These
datasets already provide a clean signal trace with annotated
device labels suitable for machine learning. Datasets with
long-term measurements, such as BLOND [12] or UK-DALE
[13], do not provide this level of ground truth granularity.
The evaluation considers multiple DCNN architectures and
hyperparameter configurations.

The rest of the paper is organized as follows: In Section
II, related work is presented. In Section III, we present the
DA and the normalization techniques together with our model
architecture. Section IV presents the experimental setup, fol-
lowed by the evaluation of the experiments in Section V.
Section VI then concludes this paper.
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II. RELATED WORK

Appliance identification, a subtask of energy disaggregation,
can be modeled as a typical machine learning classification
problem. Most of the machine learning techniques rely on
using pre-computed sets of features, i.e., individual appliance
signatures, to distinguish between appliances [9]. Frequently
applied algorithms are Hidden Markov Models [14]–[16],
Support Vector Machines [17], [18], and k-Nearest Neigbors
[9], [17]. Besides these algorithms, Artificial Neural Networks
(ANN) are increasingly applied on the problem, due to their
success in other research fields. They are applied to both low
[19], [20] and high frequency datasets [21], [22]. When look-
ing at the high frequency domain, most of the works propose
simple, fully-connected feedforward neural networks for resi-
dential settings [23]–[28]. Apart from fully-connected ANNs,
Baets et al. [22] proposed a DCNN for identifying different
appliances using VI-trajectory-based appliance signatures. On
the other hand, several authors have applied Recurrent Neural
Networks (RNNs) on low frequency data to both energy
disaggregation [19], [29], [30] and appliance identification
[20], [31] with great success, yet high frequency data have not
been extensively tested with RNNs. The lack of methods using
RNNs in the high frequency domain can be explained by the
high computational requirements for high-dimensional (high
frequency) input data. Even in the low frequency domain,
some works in NILM rely on first using convolutional layers
to down-sample the input signal and to detect features before
applying recurrent layers to it [19], [29]. Besides the different
algorithms that are applied to the task, no approach directly
uses the raw signal to perform the appliance classification to
the best of our knowledge. Studies have shown that different
appliances and system settings require different appliance sig-
natures [9]. Using a high frequency signal, without dropping
information by pre-processing it extensively, promises to allow
to distinguish between multiple, even smaller appliances [4]. In
general, ANNs and in particular DCNNs, are able to efficiently
process high dimensional data and to automatically extract
meaningful features from it [32]. Problems in other research
fields, especially in audio related tasks, exhibit a structure
that is similar to the one of the appliance identification
problem. In [33], the authors successfully used DCNNs to
recognize environmental sounds, supporting the idea to also
apply DCNNs to distinguish different appliance types. They
propose a DCNN architecture which is able to handle long
input sequences, containing up to 32000 data points. The input
sequences we use for the appliance identification task exhibit
a similar length to the data used in the audio related task [33].
Roos et al. [34] manually derived an appliance hierarchy, using
the appliances’ inherit electrical components and behaviour.
Furthermore, the authors claim that a hierarchical classification
approach is likely to enhance the identification capabilities
of a classifier. DCNNs are designed to automatically extract
hierarchical features while performing the classification task
[32]. Therefore, it seems possible that DCNNs can make use of
the hierarchy of the appliance types to efficiently perform the

classification task. The manually designed appliance hierarchy
supports the claim to deliver state of the art results on the
identification problem.

III. APPLIANCE IDENTIFICATION APPROACH

Our classification approach and the experiments we devel-
oped are designed based on the following main design princi-
ples: Raw Input and Flexibility. To fulfill the first requirement,
as little pre-processing as possible should be applied on the
data. Therefore, only minimal normalization and scaling of the
raw input signal is to be used. For the Flexibility requirement,
the chosen model needs to be flexible with respect to new
appliances. In order to being able to compare the results to
the ones obtained in [9], we used the same datasets and
input sizes. Only the current signal is used as an input to
the DCNNs in the following, because it exhibits most of the
information necessary to perform the identification task [9].
Both datasets are comparatively small with high dimensional
samples, resulting in a particular hard classification problem
[32]. To overcome this issue, the number of samples is
increased by applying two Data Augmentation techniques to
both datasets and the architecture of the DCNN is designed
to learn hierarchical features while gradually down-sampling
the input signal. By doing this, the network learns a lower
dimensional feature representation that is used as an appliance
signature in the identification task.

A. Data Pre-Processing

We only apply a minimum amount of pre-processing to
the raw current signal and we evaluate three pre-processing
techniques and their influence on classification performance.
Furthermore, we evaluated the performance when applying
no pre-processing at all to the input signal. Applying some
pre-processing to the data is motivated by the circumstance
that neural networks usually benefit from a standardized input
[32]. The first technique we applied, is a z-score normalization
to adjust the input to have zero mean and unit variance by
applying:

xnorm =
x � µ

�

To estimate the standard deviation �, we take the standard
deviation over all samples in the dataset. In addition to this,
we take the mean of each appliance window to estimate
the expected value µ for the normalization. This is a small
variation to the procedure proposed by [19], that has shown to
produce more normalized input signals. Instead of normalizing
the signal, we also only scaled the input by using two different
min-max scaling procedures. Therefore, we evaluated scaling
the data into two value ranges, i.e., [0, +1] and [�1, +1]
respectively. The transformation to the first interval is given
by

xscaled =
x � min(x)

max(x) � min(x)
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In order to scale the data into the second interval, we used the
formula below.

xscaled = 2 ⇥ x � min(x)

max(x) � min(x)
� 1

Besides the presented techniques, we also evaluated the clas-
sifier without transforming the input data at all. In contrast
to other approaches like [22], no down-sampling is applied
before feeding the data into the classifier.

B. Data Augmentation

One of the challenges in applying Deep Learning models
to NILM datasets like WHITED and PLAID is the small
number of samples per class. Collecting sub-metered data
usually requires a high effort and special metering devices
[35], especially when sampling at high frequencies [4]. In
order to support the training of neural networks, the number
of samples can be increased. In addition to this, training the
classifier with augmented data has a regularization effect on
the model, helping it to generalize better to new samples
[32]. Special care must be given to DA transformations to
avoid changing the class of the sample. In order to increase
the dataset size by an order of magnitude, we applied two
transformations to the samples:

1) Phase Shift: Shift the activation window by one phase.
2) Half-Phase Flip: Shift the activation window by a half-

phase and flip the signal, i.e., change the signs.
A phase shift increases the time in-variance, whereas a half-
phase flip increases the flexibility of the classifier to variations
in the signal. Figure 1 shows the DA process. First, the original
window is shifted one phase to the left to generate a sample.
Afterwards, the signal is shifted by a half-phase and the signs
of the measurement points are inverted.

C. Model Architecture

Appliance identification can be modelled as a multi-class
classifications problem, where each instance gets assigned
exactly one out of many possible classes. To increase the
flexibility of the classifier and to facilitate parallel training and
inference, we reformulated the multi-class problem into mul-
tiple binary ones for an One-versus-All (OvA) approach. We
trained one binary classifier per appliance type and aggregated
the results afterwards. This results in n classifiers for the n
appliance types we want to distinguish, with the nth

i classifier’s
positive output belonging to appliance class ci 2 C. Each of
the binary classifiers outputs two probabilities, one for the
positive and one for the negative class (i.e., all other classes).
In the aggregation step we then take the highest positive
probability over all classifiers and assign it to the particular
sample. If, for each classifier, the negative class probability is
higher then the positive one, we assign the sample to a ”none”
class. Using a ”none” class allows us to group and further
investigate samples which are unknown to the classifier. As
appliance identification is one of the base steps for a lot of
applications, miss-classifications can have a huge effect on
the whole process. The conservative treatment of samples for

which the network is uncertain about helps to detect problems
early in the analytical pipeline. Each binary classifier is a
fully DCNN with the following architectural components: The
non-linearities we used in the hidden layers of the networks
are Rectified Linear Units (ReLU). Furthermore, we chose
to use the Nesterov Accelerated Gradient optimizer, with a
momentum weight of 0.9 [36]. For parameter initialization we
used a Glorot initializer [37]. Works like [33], [38] have shown
how one can learn useful features from high-dimensional input
signals by gradually down-sampling the input when it passes
through the network. To prevent the network from overfit-
ting the data, we used L2-regularization and early stopping.
Motivated by the findings of Dai et al. [33] on the similar
audio classification tasks, we used large receptive fields in
the convolutional layers and multiple pooling layers to handle
the input. We then designed three DCNN architectures and
evaluated them (Table I). Some of the hyperparameters differ
slightly between the datasets due to the different size of the
input vectors. The notation for the convolutional layers is as
follows: (filter,kernel,stride) x number. For the pooling layers,
we denoted the kernel and the stride we used.

To obtain variations of the base architecture we stacked
different amounts of convolutional layers on one another.
Besides this, we evaluated multiple hyperparameters (e.g.,
stride and kernel sizes) to obtain a configuration that produces
the best results over all binary classifiers. All the pooling
and the convolutional layers use same zero-padding, except
the Avg-Pooling layer, which uses valid padding. It takes the
average value of every feature map at the end and produces,
after flattening the output, a one-dimensional representation for
the appliances. We apply the softmax function at the end of the
pipeline to condition the output signal. The cost function we
use is the cross-entropy cost function. When building multiple
binary classifiers, the distribution of the class labels in the
training data becomes highly imbalanced. For each classifier
ni the amount of data for the class ci is much smaller then the
count of samples labelled with the negative class. Many real-
world datasets are highly imbalanced, therefore a lot of solu-
tions have been proposed by researchers from different fields
[39]. This extrinsic between-class-imbalance can be solved by
various methods, one type being cost-sensitive approaches.
In general, one uses a cost matrix to assign different cost
values to the classes in order to adjust for the imbalance. In
the binary case, one typically uses two values Cost(Maj,Min)
and Cost(Min,Maj), with the first being the cost to classify
one sample from the minority class as a majority one and the
latter one exactly the other way round. To prevent imbalances,
we assigned a higher cost to miss-classifying minority class
samples, i.e., Cost(Maj,Min) > Cost(Min,Maj) [39]. In [40] the
authors evaluated multiple cost-sensitive approaches for neural
network classifiers. Among the proposed ones, we decided to
choose an approach that aims to adapt the network output by
assigning class specific costs because of its simplicity. The
factor we used to scale the outputs stems from the relative
class imbalance, i.e. we use the proportion of minority class
to majority class samples.
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Fig. 1. Augmentation techniques applied to the activation window of a vacuum from PLAID [8]

TABLE I
BASIC DCNN ARCHITECTURES FOR WHITED AND PLAID

WHITED PLAID
DCNN4 DCNN5 DCNN6 DCNN4 DCNN5 DCNN6

Input Layer 22050 15000
Convolutional Layer (64, 80, 2) x 1 (64, 80, 2) x 1
Max-Pooling Layer 5, 5 3, 3
Convolutional Layer (64, 3, 1) x 1 (64, 3, 1) x 2 (64, 3, 1) x 2 (64, 2, 1) x 1 (64, 2, 1) x 2 (64, 2, 1) x 2
Max-Pooling Layer 3, 3 4, 4
Convolutional Layer (128, 3, 1) x 1 (128, 3, 1) x 1 (128, 3, 1) x 2 (128, 3, 1) x 1 (128, 3, 1) x 1 (128, 3, 1) x 2
Max-Pooling Layer 5, 5 5, 5
Convolutional Layer (256,3,1) (256,3,1)
Max-Pooling Layer 2, 2 5, 5
Avg-Pooling Layer 49, 1 25, 1
Softmax-Output Layer 2 2

IV. EXPERIMENTAL METHODOLOGY

We conducted several experiments to select the best per-
forming DCNN architecture and hyperparameter settings and
to evaluate the pre-processing and DA techniques. For model
selection, we trained three binary classifiers on three rep-
resentative appliances. We then used the results from these
experiments to train one DCNN per appliance type in the
dataset. To compare the performance of our models to the
ones using handcrafted features, we adapted the experimental
setup from an extensive feature study by Kahl et al. [9].

A. Datasets

The DCNNs are trained on start-up events of WHITED
[7] and PLAID [8]. Both datasets are sampled with high
frequencies: WHITED with 44.1 kHz [7] and PLAID with 30
kHz [8]. Similar to [9] we further adapted the 500ms activation
window size and used subsets of the two datasets. This acti-
vation window size results in input vectors containing 22050
measurement points for WHITED and 15000 for PLAID.
For WHITED, we used a typical household subset with 27
appliance types. PLAID on the opposite contains multiple
models per appliance type. We used all of the 11 appliance
types in the dataset. Therefore, we trained 27 binary classifiers
for WHITED and 11 for PLAID. To increase the sample
sizes of the datasets, we applied the previously described Data
Augmentation techniques. We first applied the Phase Shift four
times and afterwards the Half-Phase Flip transformation to
each sample. This results in a 10 factor increase of the amount

of data. For the experiments, we split the data into 80% for
training and divided the remaining data into equal parts for
validation and testings.

B. Metrics

To evaluate the performance of the appliance classifiers, we
apply the commonly used F1-Score. The F1-Score is based on
using the amount of True Positives (TP), False Positives (FP),
True Negatives (TN), and False Negatives (FN). The F1-Score
is defined as follows:

F1-Score =
2 ⇥ recall ⇥ precision

recall + precision

precision =
TP

TP + FP
recall =

TP

TP + FN

To compute the performance over all appliance models for
a given architectural configuration, we take the non-weighted
average score over all appliances and compute a macro F1-
Score. We do not report the Accuracy metric, because it can
be deceiving in settings with highly imbalanced data [39].

V. EXPERIMENTAL RESULTS

Looking at the results of the experiments for both datasets,
one can see that the effect of the normalization procedures
and the model architectures are highly dataset dependent. For
the final model, we selected the model configuration that
performs best over all appliance modes to obtain a general
setting. Another approach is to select different configurations
for the individual binary models, possibly leading to better
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classification results. We chose the first approach, because
it generalizes better and requires less human interference.
The best F1-Scores for the respective datasets and model
architectures are shown in Table II. For WHITED, the DCNN4

TABLE II
BEST F1-SCORES ON THE AUGMENTED DATASETS

Dataset Metric DCNN4 DCNN5 DCNN6

WHITED F1-Score 1 0.91 0.59
PLAID F1-Score 0.65 0.69 0.58

architecture turned out to perform best on the augmented
data without normalizing it, using the corresponding hyper-
parameter configurations in Table III. The kernel and filter
size parameters alter the respective values in the first layer of
the architecture and subsequently the upper layers according
to the base architecture (Table I). The model configurations

TABLE III
HYPERPARAMETER CONFIGURATIONS FOR THE BEST MODELS

Model Learning Rate Batch Size Kernel Filter

WHITED DCNN4 0.01 25 80 64
PLAID DCNN5 0.01 40 126 128

with a high learning rate and a small batch size performed
best for both datasets. When looking at the normalization
methods we applied, one can see that the z-normalization
and applying no normalization clearly outperformed both min-
max scaling approaches. We chose to apply no normalization
in the final model instead of using z-normalization, because
it follows the declared minimal pre-processing approach and
preserves all information in the raw data. The best model
achieved a macro F1-Score of 1 (Figure 2). Over all parameter
configurations, the models on the augmented data have a
higher average F1-Score compared to the models trained on
the non-augmented data. Despite this, some configurations still
achieved a F1-Score of 1, even on the non-augmented data.
The best performing approach in [9] also achieves a macro F1-
Score of 1, but requires extensive feature engineering to do so.
For PLAID, the best model, our DCNN5 model, achieved a
macro F1-Score of 0.69 (Figure 3). For both of the confusion
matrices it has to be noted that the ”none” class is omitted from
the results, because the information is intrinsically contained
in the matrices. In contrast to the results on WHITED, the min-
max scaling outperforms the other normalization techniques,
followed by applying no normalization to the data. The effect
of the Data Augmentation techniques is significant over all
architectures. The best DCNN4 architecture achieved a F1-
Score of 0.65 on the augmented data and only a score of
0.28 on the non-augmented one. The other classifiers showed
similar results, further supporting the effect of the proposed
Data Augmentation techniques. When comparing the results
to the ones by Kahl et al. on PLAID [9], one sees that our
approach is outperformed. The authors’ handcrafted feature
based k-Nearest Neighbor approach achieved a macro F1-

Fig. 2. Confusion Matrix of the DCNN4 architecture on WHITED

Fig. 3. Confusion Matrix of the DCNN5 architecture on PLAID

Score of 0.89 [9]. Despite this, our experiments clearly showed
the feasibility of using the raw current signal as an input to
perform the classification task.

VI. CONCLUSIONS

In this paper, we developed Deep Convolutional Neural
Networks to identify electrical appliances from raw, high
frequency activation events. The results show that by applying
Data Augmentation techniques and by carefully selecting
among different pre-processing techniques, we achieved state
of the art results on WHITED and good ones on PLAID. We
performed as well as classifiers based on extensive feature
engineering on WHITED, and showed the feasibility of our
approach on PLAID. Our approach has the advantage that no
explicit feature engineering by a domain expert is necessary.
Different appliance types require different sets of features to
identify them [9] and therefore significant feature engineering
by a domain expert. Our approach circumvents this, because it
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provides a generic approach to the problem. This is particularly
useful in volatile settings with a lot of different appliances.
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