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Abstract

Skin endows us, humans, with the capability to interact with our surroundings. Skin, with

its millions of tactile receptors on the large area of the human body surface, provides, with

the sense of touch, essential feedback. The feedback that allows us, humans, to control the

way we physically interact with surroundings, with objects, with other living beings. Despite

the skin’s importance to provide feedback for interactions, few autonomous machines are

equipped with the sense of touch. This is mainly due to the challenge to efficiently handle a

high amount of multi-modal tactile information that the huge number of distributed sensors in

a large-area electronic skin system produces. This thesis introduces novel methods based

on biologically plausible principles to efficiently handle tactile information and realize efficient

large-area electronic skin (e-skin). These methods employ the efficient principle of handling

information according to its novelty. In the novelty-driven large-area e-skin, information is

only sensed, transmitted, and computed when the information is new. The novelty-driven

system gains its efficiency by a significant reduction of transmission rates and demands on

computational power without dropping important information. The advantage of the novelty-

driven approach presented in this thesis is hardware independence, efficiency, scalability,

applicability to existing e-skins, and effectiveness in very complex systems. Starting from

the biologically plausible principle of novelty, this thesis homogenizes the different descrip-

tions and points of view from different research fields. This leads to a formal and consistent

theory and foundations, forming the fundamentals for novelty-driven systems. These fun-

damentals allow for the correct design and optimal parameterization of novelty detectors for

the e-skin’s sensors to optimize for sensitivity, transmission rate, minimizing encoding errors,

and noise. Furthermore, they lead to a model for extrapolating the computational demand

of novelty-driven e-skin systems. Additionally, design methods for the systematic realiza-

tion of the novelty-driven approach in existing e-skins and standard computer systems were

developed in this thesis. The subsequent realization of these designs in an e-skin system

with more than 10 000 multi-modal tactile sensors validates their feasibility. The experimental

evaluation of the large-area e-skin system presented in this thesis demonstrates the efficiency

of the novelty-driven approach in e-skin systems. The approach significantly boosts perfor-

mance by reducing transmission rates and computational demands. This improvement, for

the first time, allows the effective handling of tactile information of a large-area e-skin with

more than 10 000 sensors. Providing the feedback of large contact areas, the integration of

novelty-driven large-area e-skin in robotic systems shows its efficiency and effectiveness in

complex reactive control algorithms for physical interactions. Furthermore, experiments with

a humanoid robot demonstrate the system’s efficiency to scale, whereby previous approaches

failed, allowing very challenging utilization of large-area e-skin in whole-body controllers.
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Kurzfassung

Haut verleiht uns Menschen die Fähigkeit, mit ihrer Umgebung zu interagieren. Mit ihren Mil-

lionen taktilen Rezeptoren auf der gesamten Oberfläche des menschlichen Körpers stellt sie

über den Tastsinn unverzichtbare Feedbackinformationen zur Verfügung. Dieses Feedback

gibt den Menschen die Möglichkeit, den Kontakt mit der Umgebung, mit Objekten und ande-

ren Lebewesen zu steuern. Trotz dieser wichtigen Funktion der Haut, bei Interaktionen ein

Feedback zu liefern, sind nur wenige autonome Maschinen, wie z.B. Roboter, mit einem ver-

gleichbaren Tastsinn ausgestattet. Dies liegt hauptsächlich in der großen Herausforderung,

die umfangreichen taktilen Informationen, die von einer großen Anzahl verteilter Sensoren

eines großflächigen, elektronischen Hautsystems erzeugt werden, effizient zu verarbeiten.

Diese Dissertation stellt deshalb neuartige, auf biologisch plausiblen Prinzipien beruhende

Methoden vor, um taktile Informationen effizient zu verarbeiten und um eine effiziente, groß-

flächige elektronische Haut (E-Skin) zu realisieren. Diese Methoden nutzen das effiziente

Prinzip, Informationen nur entsprechend ihrem Neuheitsgrad zu behandeln. In einer von der

Neuheit der Information gesteuerten, großflächigen E-Skin wird eine Information nur erkannt,

übermittelt und weiter verarbeitet, wenn sie sich geändert hat und es sich somit um eine neue

Information handelt. Das neuheitsgesteuerte System erzielt seine Effizienz durch eine erheb-

liche Reduzierung der Übertragungsrate und der zur Verarbeitung erforderlichen Rechenlei-

stung. Die Vorteile, der in dieser Dissertation vorgestellten neuheitsgesteuerten Verfahren

sind die Unabhängigkeit von der Hardware, die Effizienz, die Skalierbarkeit, die Anwendbar-

keit bei vorhandenen E-Skins, sowie die Effektivität in sehr komplexen Systemen. Ausgehend

vom biologisch plausiblen Prinzip, Informationen entsprechend ihrer Neuheit zu behandeln,

vereinheitlicht die Dissertation unterschiedliche Beschreibungen und Sichtweisen verschie-

dener betroffener Forschungsgebiete. Daraus entstehen eine konsistente Theorie und kon-

zeptuelle Grundlagen, welche die Basis für neuheitsgesteuerte Systeme bilden. Diese Grund-

lagen ermöglichen das richtige Design und eine optimale Parametrisierung von Neuheitsde-

tektoren für die E-Skin Sensoren, um dadurch die Empfindlichkeit, die Übertragungsrate,

die Minimierung von Kodierungsfehlern und das Rauschen zu optimieren. Darüber hinaus

wird aus diesen Grundlagen ein Modell zur Ermittlung des Rechenbedarfs neuheitsgesteuer-

te E-Skin Systeme abgeleitet. Zusätzlich werden in dieser Dissertation Designmethoden für

die systematische Umsetzung der neuheitsgesteuerten Vorgehensweise bei vorhandenen

E-Skins und Standardcomputersystemen entwickelt. Die anschließende Realisierung dieser

Designs in einem E-Skin System mit über 10 000 multimodalen taktilen Sensoren bestätigt

deren Umsetzbarkeit. Eine experimentelle Beurteilung des in dieser Dissertation präsentier-

ten, großflächigen E-Skin Systems beweist die Effizienz des neuheitsgesteuerten Verfahrens

in E-Skin Systemen. Dieser Ansatz steigert die Leistung des Systems deutlich durch reduzier-

te Übertragungsraten und gesenkte Anforderungen an die Rechenleistung. Die erzielte Ver-

besserung ermöglicht zum ersten Mal die effektive Verarbeitung taktiler Informationen einer

großflächigen E-Skin mit mehr als 10 000 Sensoren. Mit der Bereitstellung von Feedback aus

großen Kontaktbereichen zeigt die Integration der neuheitsgesteuerten, großflächigen E-Skin
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in Robotersystemen ihre Effizienz und Effektivität in komplexen, reaktiven Steuerungsalgo-

rithmen für Interaktionen. Darüber hinaus verdeutlichen Experimente mit einem humanoiden

Roboter die Effizienz des Systems für Größenordnungen, bei denen vorhergehende Ansätze

gescheitert sind, wodurch sehr anspruchsvolle Anwendungen großflächiger E-Skin Systeme

für Ganzkörpersteuerungen möglich sind.
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1. Introduction

1.1. Motivation

The sense of touch plays an essential role in our daily life. While most people immediately

understand how dependent we humans are on perceiving our world using our eyes, ears,

nose, and tongue, people often forget about their sense of touch and its importance in our

everyday life. The sense of touch endows us with the ability to perceive and control our con-

tacts with our surroundings, other living beings, and objects. It provides us with essential

feedback – feedback on contact structure (soft/hard, smooth/rough), contact force (magni-

tude/directions), contact shapes, contact temperature, contact friction (slippery/sticky), that

is, feedback on contacts which make interactions secure. This feedback lets us safely master

insecure, slippery, and fragile contacts. It prevents us from hurting ourselves, other people,

or damaging objects. It is surprising how much we humans depend on interaction and how

many benefits the sense of touch provides us.

For example, walking is a process where we continuously interact with the floor, a process

that highly depends on the tactile feedback describing when and how we touch the floor.

Without this essential feedback, the process of walking is very insecure. We would tread too

hard or misjudge the reliability of the tread and slip. Other examples for interactions are the

lifting and carrying of bulky objects, sitting on a chair, climbing up a wall, or negotiating in

narrow spaces. The sense of touch is the key to all these interactions. It provides feedback

on where and how contacts happen such that physical interactions succeed and are safe.

The sense of touch is increasingly important for machines when they are fully autonomous

or when interactions are not directly observable by the human operator, for instance, in tele-

operation. A human remotely operating a robot arm requires feedback on the location, force,

shape, and area of contacts to achieve purposeful interactions. A machine or robot au-

tonomously negotiating its way in a corridor requires similar feedback for controlling its inter-

actions with objects, machines, surroundings, and humans. For the same reasons as we hu-

mans require the sense of touch, machines realizing increasingly complex and autonomous

behaviors require it to safely and purposefully interact with their surroundings, allowing them

to coexist, collaborate, and support us, humans.

Large-area tactile sensing, which provides machines with tactile feedback for the large areas

of their surface, and enables them to implement effective controlled reactions to contacts on

their surface, has not been achieved so far. Endowing machines with the sense of touch

is challenging and has been a research topic for decades [64, 34, 35]. The challenges are

connected to the fact that the sense of touch is, in contrast to our other senses, a multi-

modal and distributed sense. For instance, our auditory and visual senses are localized in
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our ears and eyes, the sense of touch, however, is distributed throughout the whole body.

We humans employ around five million cutaneous receptors [32], that is tactile sensors, in

around 2 m2 [111] of skin, and connected to around 1.1 M nerve fibers [54]. The sheer

amount of multi-modal sensors and their huge amount of information to transmit and process

renders the realization of a comparable system for machines challenging. The distributed

nature of the sensor system further complicates wiring and robustness, simply due to the

spatial extension of the system. Robustness is additionally impacted by the skin’s wear in its

continuous physical interaction with the environment.

Recent advances in realizing the sense of touch for machines succeeded in solving or miti-

gating most of the encountered challenges [89, 134, 117, 112, 6, 91, 109]. Electronic skin (e-

skin) systems emerged successfully covering larger areas, mitigating wiring, robustness, and

deployment issues with modularity, and solving the issue of localizing thousands of sensors

with self-organization. These e-skin systems successfully provided machines – and robots in

particular – with the tactile feedback required for purposeful physical interactions. All e-skin

systems so far focused on addressing the scalability of tactile sensing. The challenge of ade-

quately handling a large amount of tactile information in large-area e-skin systems is not yet

solved. Currently, tactile information handling does not scale due to computational efficiency

deficits and limitations in computational power. Some works [28, 26, 84, 12] started to ad-

dress this challenge but lack a systematic approach and concept that specifically address the

complex system and constraints of a large-area e-skin. The lack of a method for systemati-

cally, efficiently, and flexibly handling the tactile information of a large-area e-skin so far limits

its successful utilization, especially where machines require tactile feedback of large contact

areas to realize physical interactions. This lack contributes to the fact that tactile sensing is

yet not as established and widely utilized in machines as auditory or visual sensing.

One promising and increasingly prominent way to elevate the efficiency of information han-

dling in technical systems is the novelty-driven approach. A novelty-driven system divides

information into two categories. In novel information, that is essential and leads to a new

system state, and in the information that repeats a known system state and is redundant in

time. A novelty-driven system only acts on novel information. It is driven by it. The gain

in efficiency of the novelty-driven approach lies predominantly in the fact that a system im-

plementing it only transmits and processes information when it is strictly necessary and is

inactive in all the other cases.

The concept of the novelty-driven approach emerged in the two different research fields of

bio-inspired engineering [90, 22, 130, 86, 120, 31, 87, 121, 68, 51, 122, 28, 14, 67, 88,

95, 123, 118, 11, 12, 110, 38, 113] and energy-efficient signal processing [114, 97, 99].

Both fields developed realizations for novelty-driven systems and proved their effectiveness

in sensing and computing.
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As will be demonstrated in this thesis, the novelty-driven approach constitutes a very promis-

ing method for eventually realizing an efficient information handling system for large-area

e-skin. In fact, the homogenization of the findings for novelty-driven systems of both fields

will lead to efficient yet flexible and effective information handling for e-skin systems. Be-

cause, when flexibility allows for hardware independence and seamless system integration,

the novelty-driven approach can boost the performance of existing e-skin systems and em-

ploy standard computing systems. A flexible, efficient, and rapidly deployable novelty-driven

system tailored for e-skin will constitute a substantial contribution to the eventual realization

of e-skin systems for effective large-area interactions. By substantiating these concepts to

a general approach for e-skin systems, followed by its practical realization and experimental

validation, this thesis significantly contributes to the advancement of large-area e-skin sys-

tems that will endow machines with human-like whole-body tactile interaction capabilities.
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1.2. Challenges

The distributed nature of the sense of touch poses many challenges [64, 34, 35] that are

particularly eminent when realizing a large-area e-skin with a large number of distributed

multi-modal sensors in large areas. Challenges, such as robustness and reliability, deploya-

bility, wiring, and localization received a considerable amount of attention [131, 91, 109, 40].

Nevertheless, so far, none of the existing e-skins provide a systematic and efficient solution

for the challenge of handling the large amount of tactile information they produce. Tactile infor-

mation is multi-modal and has a complex structure that is neither spatially static nor aligned to

flat matrices. Hence, standard information handling approaches cause high demand for com-

munication bandwidth and computational power when handling tactile information to provide

real-time feedback. For this reason, the feedback of current e-skin systems is often limited to

body-parts rather than whole bodies [2, 40] or limited in spatial or temporal resolution [112,

70, 10]. Current e-skin systems yet have to prove their effectiveness in large-area tactile

interaction where machines react to large-area contacts of many kinds without human super-

vision. Addressing the following challenges will lead to an efficient large-area e-skin system

that will endow machines with human-like whole-body tactile interaction capabilities.

A Need to Formalize an Efficient Information Handling Method for Large-Area E-Skin

Standard information handling approaches cause high demand for communication bandwidth

and computational power when handling tactile information. However, both resources are lim-

ited in distributed and autonomous systems. Solutions and mitigations that enable large-area

sensing resolve to specific system characteristics (serial communication, low wire count, ro-

bust connections, low bit rates per wire due to physical conditions). These characteristics

constrain feasible transmission bandwidths. Furthermore, effective e-skin couples with the

autonomy of the system, but autonomous systems constrain computational and electrical

power. A machine/system that achieves safe interaction with e-skin, but is too bulky to oper-

ate, is not effective. Thus, it is not feasible to solve the issue of handling tactile information

by increasing communication bandwidth and computational power with the area of the e-skin.

Instead, this issue results in the challenge of devising an efficient method for handling the tac-

tile information of large-area e-skin. First, this method would have to reduce communication

bandwidths and the computational demand for the handling of tactile information. Addition-

ally, this method would have to comply with the existing solutions that enable the realization

of distributed e-skin systems. The challenge of devising such a method also incorporates the

difficulty of formalizing its fundamentals. Foremost, these fundamentals would have to pro-

vide the theoretical basis for correct designs and optimal parameterizations to ensure efficient

realizations of the method. Furthermore, these fundamentals would be essential to evaluate

the efficiency of the method, which is difficult. In this case, the fundamentals would have to

provide the theory for the optimal design of experimental protocols and the analysis of their

results. Another challenge of the fundamentals is that they would also have to connect to

signal and control theory, such that correct comparisons to standard methods will be possi-

ble. Furthermore, it is challenging to extrapolate evaluation results for larger e-skins when
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the sensing areas and the number of sensors increase further. Such an extrapolation would

require models that the fundamentals of the devised method have to support.

To Realize Flexible Information Handling for Large-Area E-Skin Systems The flexible

realization of the devised efficient information handling method for large-area e-skin is of

paramount importance but challenging. The realization of the method in real e-skin systems

is difficult but required to validate the method’s correctness and feasibility and to confirm its

efficiency with evaluations. The major challenge for realizing the method lies in devising a

flexible design that allows for the very difficult integration of the method in existing e-skin

and computer systems. This integration is critical since then, the realization of the designs

would be practically applicable, and the method would lead immediately to efficient solutions,

without the need to create e-skins from scratch, and without the need to transform the whole

system to comply with the novel method. Another challenge is that a flexible design has to

provide efficient interfaces that allow for combining the new method with standard clock-driven

systems and algorithms. These interfaces would have to allow for using standard sampled

sensors (clock-driven sensors) and connecting them to the more efficient communication

protocol of the devised method. Such interfaces are difficult to realize, but they would allow

the method to be realizable within existing e-skins. Similarly, the interfaces would have to

allow for using the tactile feedback provided by the method’s efficient information handling

mechanisms in standard clock-driven algorithms, which is also challenging but would facilitate

the method’s integration in complex systems.

To Determine the Realization of Efficient Tactile Information Handling in Complex Sys-

tems Realizing efficient information handling in complex systems to process and react to

the feedback of large-area e-skin is very challenging. While a novel flexible method might

boost the performance of large-area e-skin and the efficiency of handling the tactile feedback

it provides, the algorithms and calculations that consume the feedback would still impose

significant limitations. These limitations would prevent the scalability of systems that depend

on large-area tactile feedback and would thus curtail physical interactions to body-parts or

constrain temporal resolution similar to previous approaches. Therefore, one challenge an

efficient method for efficient large-area e-skin has to solve is providing efficient interfaces to

standard clock-driven algorithms. Then, the overall interaction system would at least profit

from the efficiency gain of the e-skin system. Nevertheless, standard clock-driven algorithms

processing tactile feedback will still not scale when their demand for computational power

increases proportionally with the size of contact areas or the number of tactile sensors, which

unfortunately is true for many algorithms. This issue is particularly challenging, but, to ensure

the effectiveness of the proposed method for e-skins, it has to be solved or mitigated. Solving

this issue either breaks down into the challenge of transforming standard clock-driven algo-

rithms to completely comply with the efficient information handling method for the e-skin or

into the challenge of exploiting the efficient representation of tactile information in calculations

without transforming the whole algorithm.
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1.3. Contributions

This thesis contributes a systematic, efficient, and effective solution for the very challenging

task of handling tactile information in large-area e-skin systems. The solution is inspired

by biology, feasible to realize in existing e-skin and computer systems, and allows for the

seamless integration in complex systems. For the first time, this solution enables tactile-

driven large-area physical interactions and tactile-driven whole-body control.

A Systematic Approach for Efficient Information Handling in Large-Area E-Skin This

thesis devises the biologically plausible principle of novelty-driven systems as the ideal method

to solve the challenge of efficiently handling tactile information in large-area e-skin systems.

Therefore, this thesis contributes a homogenized view of novelty-driven systems that fuses

bio-inspired, neuromorphic interpretations with those from the perspective of information and

control theory. The contributed homogenized view of novelty-driven systems result in mu-

tual fundamentals that provide the theoretical background for the novelty-driven method this

thesis utilizes for efficient e-skin systems. This thesis employs these fundamentals to devise

correct and optimal designs for implementing the novelty-driven approach in existing e-skin

and computer systems. This thesis contributes designs for detecting novelty, for novelty-

driven communication, and novelty-driven information handling such that all designs comply

with the requirements of large-area e-skin and standard computer systems. In these designs,

the fundamentals allow for optimizing the sensitivity, transmission rate, and minimizing en-

coding errors and noise. Furthermore, these fundamentals allow this thesis to contribute new

insights for novelty detectors regarding the interdependencies between their sensitivity, en-

coding error, system bandwidth, signal bandwidth, and the standard deviation of the noise.

The fundamentals additionally provide insights that have the potential to lead to more so-

phisticated novelty detectors with enhanced robustness and error correction features. The

fundamentals this thesis contributes for novelty detectors also takes realizations in electronic

circuits into account. This consideration allows this thesis to propose a new realization of a

hybrid novelty detector that merges the advantages of continuous novelty detectors with those

of the hardware-independent novelty-driven communication protocol that this thesis utilizes.

Furthermore, exploiting the fundamentals of its novelty-driven method, this thesis contributes

a CPU usage model that describes the relationship between the event rate in a novelty-driven

e-skin and the computational load the handling of these events causes. This model allows for

understanding the behavior of the realized novelty-driven system and thus for extrapolating

computational loads for larger e-skin systems.

A Realization of Flexible Information Handling for Large-Area E-Skin Systems This

thesis solves the challenge of realizing flexible and efficient information handling in large-

area e-skin systems. This thesis implements its methods and designs for efficient information

handling in an existing e-skin system and thus contributes a novelty-driven large-area e-

skin. By doing so, this thesis demonstrates that its flexible, novelty-driven design is feasible
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and correct. To empirically prove the efficiency of its novelty-driven approach and designs,

this thesis contributes a comprehensive evaluation for e-skin systems. These evaluations

consider the dependency of novelty-driven systems on stimulus shapes in their experimen-

tal protocols. This thesis exploits the evaluation results to contribute a procedure that opti-

mizes the event communication protocol in cases where e-skin systems require fixed packet

sizes. This thesis can demonstrate that the contributed procedure succeeds in minimizing

communication overheads. Furthermore, the evaluation results, together with the devised

extrapolation models, allow this thesis to empirically prove the scalability and efficiency of

its novelty-driven approach for large-area e-skins. To solve the challenge of flexible informa-

tion handling, this thesis contributes efficient interfaces from clock-driven systems (standard

systems) to novelty-driven systems and from novelty-driven systems to clock-driven systems.

Furthermore, all the designs this thesis contributes to realize novelty-driven information han-

dling are general and hardware-independent. The contributed designs emphasize minimal

prior requirements that do not clash with the solutions of existing e-skins and that allow im-

plementations on standard computer systems. This implementation flexibility, combined with

the interfaces to standard clock-driven sensors and clock-driven algorithms, allows for realiz-

ing the novelty-driven approach in existing e-skins and integrating tactile feedback in complex

clock-driven systems.

This thesis solves the challenge of realizing flexible and efficient information handling in large-

area e-skin well beyond the scale of existing e-skin systems. This thesis contributes, for the

first time, a large-area e-skin with more than 10 000 multi-modal tactile sensors. This realiza-

tion validates the correctness and feasibility of this thesis’ approach beyond existing scales

for large-area e-skin systems. Furthermore, its subsequent evaluation demonstrates, that this

thesis’ approach for the first time allows for the perceptual handling of tactile information of

more than 10 000 sensors where all previous approaches failed.

A Realization of Efficient Tactile Information Handling in Complex Control Systems

This thesis contributes solutions to realize efficient tactile information handling in complex

systems, and in particular, to the very challenging integration of large-area tactile feedback in

robotic systems. To achieve desired behaviors in their physical interactions, these robot sys-

tems have to fuse tactile information with proprioceptive information to motor actions. One

solution this thesis contributes is the hybrid event-driven reactive contact control system. This

system utilizes the tactile feedback of a novelty-driven e-skin in its clock-driven control algo-

rithm. This thesis successfully realizes this system demonstrating its feasibility and efficiency

without negative effects on control performance. Thus, the novelty-driven e-skin succeeds in

providing tactile feedback to complex systems, even when the algorithms consuming it are

still clock-driven, underlining the flexibility and immediate applicability of this thesis approach.

Furthermore, this thesis contributes a novel concept to distribute the computationally expen-

sive calculations of reactive contact controllers. Thereby, this thesis succeeds in removing

any limitations on the contact area and the total number of tactile sensors from reactive con-

tact control. This unique approach allows the clock-driven reactive control system to scale
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with the number of tactile sensors whereby all previous approaches failed. To realize the dis-

tributed calculations on platforms with very limited computational power (for instance, without

Floating Point Units (FPUs)), this thesis contributes general optimizations for the efficient

computation of forward kinematics and joint torques. These optimizations are general and

thus allow for faster calculations of tactile-driven reactions on any hardware, improving the

scalability of reactive contact control algorithms for larger numbers of tactile sensors. More-

over, this thesis contributes strategies that further improve the scalability and efficiency of

tactile-driven reactive contact control. For one, these strategies exploit the efficient prop-

erties of novelty-driven information to improve clock-driven algorithms. Or, these strategies

exploit the mechanisms of the novelty-driven approach to convert clock-driven algorithms to

equivalent novelty-driven algorithms with superior performance characteristics. This thesis

successfully validates these strategies, and evaluations prove their efficiency. The strategies

for the efficient integration of novelty-driven tactile feedback in clock-driven reactive contact

control significantly contribute to the feasibility of tactile-driven whole-body control. This the-

sis demonstrates this feasibility with the integration of the novelty-driven large-area e-skin

system (with more than 10 000 sensors) in an autonomous humanoid robot. This integra-

tion allows this thesis to demonstrate whole-body tactile interactions with a humanoid robot

that have previously not been possible. For instance in applications, where tactile feedback

enables whole-body interaction with a humanoid robot that balances. Or in the locomotion

of a humanoid robot, where tactile information allows for obstacle avoidance. Or in realizing

tactile-driven leader-follower interactions, as they occur in human-robot dancing.

All in all, the contributions of this thesis, realize, for the first time, efficient large-area tactile

feedback allowing for novel applications of large-area e-skin whereby all previous approaches

failed. Thereby, this work will hopefully positively impact a novel trend where increasingly

more autonomous machines successfully exploit the sense of touch and thus improve their

physical interaction capabilities with their surroundings.
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1.4. Thesis Outline

This thesis consists of six chapters.

Chapter 2 – Background & Related Work This chapter introduces the neuroscientific view

of the sense of touch, the engineering challenges of e-skin systems. It furthermore introduces

the information handling system from the perspectives of neuromorphic engineering, signal

processing, and information theory, and novelty-driven systems. Eventually, a comparative

study determines the most flexible and applicable for realizing the novelty-driven principle for

large-area e-skins.

Chapter 3 – Fundamental Elements of the Event-Driven Approach This chapter presents

the homogenized fundamentals of novelty-driven systems. It presents the theory for the cor-

rect design and optimal parameterization of novelty detectors for the e-skin’s sensors, the

model for the computational demand of novelty-driven e-skin systems, and the foundations

for evaluating the performance of novelty-driven e-skin systems.

Chapter 4 – Realizing an Event-Driven Large-Area Skin System This chapter presents

the design, realization, and experimental validation and evaluation of the efficient novelty-

driven large-area e-skin. The experiments demonstrate the feasibility of e-skin systems with

more than 10 000 multi-modal tactile sensors.

Chapter 5 – Realization and Validation in Applications This chapter presents very com-

plex systems that utilize the feedback of large-area contacts. It presents the effective and

efficient integrations of the novelty-driven large-area e-skin in robotic systems and their vali-

dation and evaluation in experimental setups. Further experiments with the large-area e-skin

on a humanoid robot demonstrate the e-skins effectiveness in the very challenging utilization

of large-area tactile feedback in whole-body controllers.

Chapter 6 – Conclusion This chapter summarizes the thesis in a final conclusion and

provides an outlook for future steps.
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2. Background & Related Work

This chapter presents the background, foundations, and related works connected to novelty-

driven large-area e-skin systems. It presents and addresses related research topics such as

the neuroscience of the sense of touch, the engineering of large-area tactile sensing, and

standard and bio-inspired information handling systems. The presented literature provides

the reader with an overview of the covered fields and consolidates different views on the

concepts and terminology relevant to this thesis.

The development of e-skin is chiefly motivated and inspired by the human sense of touch. In-

sights from neuroscience, such as the tuning of tactile receptors to specific stimulus features,

the early structuring of information and representation in tactile images of the self, or the

neural encoding of information, reflect in the realizations of e-skin systems. They furthermore

provide the foundations for the bio-inspired novelty-driven approach, this thesis proposes for

large-area e-skin systems.

The structure of this chapter is as follows. First, Section 2.1 briefly introduces and describes

the sense of touch with a particular focus on the neuroscientific insights relevant to this the-

sis. The definition and description of large-area e-skin follow in Section 2.2. This section

relates large-area e-skin to the sense of touch, surveys existing approaches for e-skins, and

summarizes the challenges of large-area e-skins. The efficient handling of tactile information

is still a significant challenge that this thesis addresses. Therefore, Section 2.3 continues

with a description of information handling systems to introduce the topic and establish con-

nections to standard signal processing theory and biologically inspired information handling.

Novelty-Driven Systems (NDSs) are a subgroup of the biologically inspired Event-Driven Sys-

tems (EDSs). The section introduces both information handling systems and establishes a

connection to standard signal processing theory. Therefore, it additionally introduces Clock-

Driven Systems (CDSs). CDSs implement information handling according to standard signal

processing theory. Afterward, Section 2.4 introduces and describes different existing ap-

proaches for NDSs and their implementation. With the comparison of these novelty-driven

approaches, this section subsequently assesses their applicability in large-area e-skin. This

assessment results in the selection of an NDS implementation that suits best for this the-

sis’s objective to tailor an efficient novelty-driven approach for realizing efficient large-area

e-skin.
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2.1. Neuroscientific Insights into the Sense of Touch

The human sense of touch efficiently perceives complex contact features throughout the

whole surface of the body and conveys the acquired information to the brain [54, 1, 119].

Neuroscience delivers valuable insights into the biological mechanisms involved in sensing,

encoding, and transmission. These insights, for instance, encompass efficient sensing, ef-

ficient and sparse information representation, and the early structuring of information. They

and play a critical role in the process of developing bio-inspired principles (Section 2.3.1) that

improve the efficiency of technical systems, for instance, e-skin (Section 2.2). The following

sections briefly summarize the notable mechanisms in the sense of touch’s pathway, which is

from the peripheral skin receptors to the central nervous system and the brain.

2.1.1. Skin Receptors are Tuned to Sense Specific Stimulus Features
The sense of touch employs specialized receptors for sensing mechanical, thermal, and nox-

ious (potentially dangerous/destructive) stimuli [53, 1, 127, 54, 55, 128]. These receptors

are tuned to sense specific stimulus features that focus on deciphering distinct pieces of

contact/object properties. The dominant stimulus features are normal pressure (Merkel cell

receptors [53, 55, 1]), horizontal motions and slip (Meissner corpuscle receptors [53, 55, 1]),

vibrations (Pacinian corpuscle receptors [55, 1]), stretch (Ruffini endings [55, 1]), and prox-

imity/approach (tylotrich-hair receptors [55, 1]). Figure 1 depicts the two kinds of skins found

in humans and the location of these receptors.

Hairy skin

Pacinian
corpuscle

Glabrous skin

Vibration

Free nerve
ending

Meissner's
corpuscle

Merkel disk
receptor
Force

Ruffini
ending
Deformation

Epidermis

Dermis

Force change

Subcutis

Hair receptor
Light touch and
pre-touch

Epidermal
ridge

Temperature

Peripheral
nerve bundle

Figure 1 The two types of Human Skin. Right: The glabrous (hair-less) skin. Left: the hairy skin. Adapted from [55, 1].

The work presented in Section 2.1 was in part published in:
Bergner, F., Dean-Leon, E., Cheng, G., “Design and Realization of an Efficient Large-Area Event-Driven E-
Skin”. In: Sensors 20.7 (2020), p. 1965, and
Bergner, F., Cheng, G., “Sensory Systems for Robotic Applications – Making sense of the world”. In: ed. by
Ravinder S. Dahiya, Oliver Ozioko, and Gordon Cheng. The Institution of Engineering and Technology, 2020,
Submitted. Chap. Neuromorphic Principles for Large-Scale Robot Skin.
Copyright permissions: see Appendix D.
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The receptors’ stimulus feature selectivity is influenced by the skin receptors’ location in the

different dermal layers, by the deployment pattern, and by mechanical filter mechanisms. The

receptors’ selectivity separates complex multi-modal stimuli to simple distinct uni-modal stim-

ulus features, allowing for the encoding of complex tactile information and selective attention.

Peripheral axons connect these tactile receptors to the nerve cell bodies in the dorsal root

ganglion next to the spinal cord [54, 1, 58, 13, 119], forming together the tactile part of the

peripheral somatosensory system (Section 2.1.4).

2.1.2. Skin Receptors Transduce Stimulus Features to Binary Action
Potentials

The representation and conveyance of information in biology follow schemes quite different

from the principles utilized in technical systems. The representation in biology could neither

be described as analog nor digital. Biology uses binary action potentials, often also termed

spikes or events, to represent and convey information between neurons [72]. Action potentials

alone convey only a very limited amount of information. Action potentials in nerve fibers are

either present or not. They do not convey any additional information, for instance, in their

shape or amplitude. Information in biology is encoded in the spatio-temporal activity patterns

in massively parallel nerve bundles or populations of neurons [55, 128] (Section 2.1.3).

The specialized skin receptors (Section 2.1.1) apply different functional principles to trans-

duce stimulus features of different modalities to action potentials. Nevertheless, the final step

of all transduction chains is similar for all types of skin receptors. Stimulus features either

directly or indirectly gate ion-channels in the terminals of peripheral nerve fibers [133, 54].

The influx of ions into the peripheral axons of the dorsal root ganglion neurons depolarizes

these neurons and eventually creates action potentials/spikes [53, 54]. Therefore, the gener-

ation of novel sensory information encoded in action potentials takes place at the periphery,

at the receptor level, allowing for efficient novelty-driven encoding at the earliest stages, be-

fore conveying information to the higher processing layers in the Central Nervous System

(CNS).

Action potentials travel through nerve fibers completely asynchronously without any strict

relation to a clock, as it would be the case in synchronous systems. This asynchronism

allows for very high temporal precision since the occurrence time of the action potentials

is time continuous. The propagation speeds and transmission rates of action potentials in

nerve fibers depend on their myelination and diameter [133, 54]. The transmission of action

potentials can reach rates up to 1000 times per second. Thus, since an action potential is

binary, this rate compares to a rate of 1 kbit/s.

2.1.3. Skin Information is Encoded by Different Neural Codes
The information representation in biology, the neural codes, explain how action potentials en-

code information. Biologically inspired, event-driven systems (Section 2.3.1) replicate these

principles to encode information to their events in a similar way. Therefore, this section pro-
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vides the reader with an overview of the known neural codes. NDSs, as a special type of

EDSs, are principally drawn from the principle of temporal codes.

Information in biology is conveyed and represented by spatio-temporal activity patterns in

bundles of nerve fibers and populations of neurons [55, 128]. These neural codes employ

a set of different information representation principles, which are: 1) type code, 2) spatial

code, 3) rate code, 4) temporal code, and 5) latency code [139, 55, 128]. All these principles

show that biology uses structure and time, that is spatio-temporal features, to encode and

represent information. Although there has been a long debate if biology employs rate coding

or temporal coding [39, 139], the nervous system employs both.

The type and spatial neural codes exploit structure for encoding information. Nerve fibers of

a peripheral neuron only innervate receptors of one particular type and consequently apply

the type code. That is, the nerve fiber itself encodes the type of the stimulus feature. Spatially

distributed populations of receptors of the same type can encode spatial information through

activity patterns [128]. These populations apply the spatial code. The sense of touch exten-

sively employs these spatial codes for Merkel cell and Meissner corpuscle receptors [128, 53,

56, 55]. The spatial codes encode information in the spatial relations between nerve fibers,

which is in the distance between nerve fibers. Therefore, biological systems have to keep

the ordered structure, which is the somatotopic order (Section 2.1.4), in ascending bundles

of nerve fibers (nerves).

Rate codes exploit the time to encode intensities by proportionally modulating spike rates.

Receptors employing rate codes, such as the Merkel cell receptors and the Ruffini endings in

the sense of touch, are innervated by Slowly Adapting (SA) nerve fibers [128, 53, 56, 55].

Temporal codes also exploit time and encode information in the temporal sequence of spikes.

Receptors employing temporal codes are innervated by Rapidly Adapting (RA) nerve fibers.

Meissner corpuscle receptors and Pacinian corpuscle receptors are innervated by RA nerve

fibers [54, 1]. RA nerve fibers, and respectively the receptors they innervate, are exclusively

sensitive to stimulus feature changes and encode the exact time of each change.

The latency coding scheme combines spatial and temporal information [128]. There, the

relative spike arrival time in the population of neurons encodes moving stimulus features by

employing the latency coding scheme.

2.1.4. Skin Information Ascends Somatotopically Ordered
Throughout all its parts, the somatosensory system maintains the somatotopic order of the

conveyed and relayed information, that is, the order of its nerve fibers and nerve cells reflects

the relative spatial structure of its receptors [54, 1]. Ascending along the spinal cord via

relay centers in the medulla and thalamus towards the primary somatosensory cortex (S1),

the somatosensory system assembles somatotopically ordered information of different body
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parts to a comprehensive sensory representation of the whole body, the homunculus [54, 1,

4, 119].

The two dominant principles in the biological sense of touch are the decomposition of com-

plex contact features of physical interactions to simple uni-modal stimulus features, and the

maintenance and assembly of relative spatial information. These two principles significantly

impacted the development of large-area e-skin systems [34, 33, 37] (Section 2.2). Further-

more, the insights of the neural encoding principles significantly impacted the development of

efficient biologically inspired information handling systems (Section 2.3).

2.1.5. Human Skin in Large-Areas
An in-depth study of the sense of touch reveals its fundamental differences in comparison to

humans’ other senses. These differences break down to two facts:

1. The sense of touch is a highly distributed sense. The sense of touch spreads out its

five million cutaneous receptors [32] (mechanoreceptors, thermoreceptors, nocicep-

tors) through the whole body in large areas up to around 2 m2 [111]. Then, it conveys

its tactile information through around 1.1 million ascending nerve fibers [54] to the so-

matosensory cortex. In contrast to the sense of touch, vision is a very concentrated

sense. The human eye accommodates approximately 137 million receptors (130 mil-

lion rods and 6.5 million cones per retina) [129] and approximately one million nerve

fibers [73] in an area of around 1100 mm2. Hence, the sensing area of the human skin

is around 1000 times larger than the sensing area of both eyes. In this sense, the term

large-scale attributes to large resolutions in vision and to large-areas in tactile sensing.

2. The sense of touch acquires its information through physical contacts. In contrast to

vision or audition, which protects their receptors against physical contacts, the sense of

touch depends on these contacts with the environment to acquire information. Tactile

receptors cannot acquire tactile information through distant observations – they need

to access the information in the area of contact.

Along with the sensing and information handling principles of Section 2.1, the distributed

nature and the dependency on physical contacts of the sense of touch profoundly impact

how the sense of touch organizes sensing in biology [74]. These insights gathered from the

sense of touch lead to the formulation of guidelines for the effective design of electronic skin

(e-skin) [34, 36, 37].
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2.2. Large-Area E-Skin

The sense of touch plays an essential role in our lives. It allows us to interact and to control

our contacts with our surroundings. The sense of touch not only allows us to characterize

and evaluate contacts, but it also allows us to locate them. It provides us with a tactile image

of our interactions with the world.

The human brain represents this tactile image in the somatosensory cortex. There, it com-

bines proprioceptive information with cutaneous information and assembles an internal model.

This internal model, the homunculus, associates the postural information of the body with the

spatial location and tactile information of the skin receptors [119, 4] (Section 2.1.4).

The following sections present existing realizations of electronic skin (e-skin) and explain the

encountered challenges and their solutions and mitigations. Furthermore, they highlight the

absence of a solution for handling the information of large-area e-skin.

2.2.1. Large-Area E-Skin Systems
The developments of e-skin focus on two different kinds of skins, similar to the two found in

humans [1, 55] (Section 2.1.1, Figure 1). One skin is mainly located in the inner sides of the

hands and the soles of the feet, while the other skin covers the remaining parts of the body.

The skin on the hands and feet covers small regions and targets very high spatial resolu-

tion, supersensitive sensing, shear-force, and vibration sensing, and slip detection [1]. Thus,

e-skin targeting this kind of skin deemphasizes the challenges of distributed sensing and

focuses on high sensing density and the challenges connected with supporting physical con-

tacts. The works of [138, 49, 79] develop fingertip e-skins which aim for high-density tactile

sensing.

The skin covering large areas of the body emphasizes the distributed nature of the sense

of touch. While large area skin may slightly deemphasize high spatial resolution, it has to

specifically focus on efficient and feasible methods to deploy, connect, and determine the

poses (location and orientation in 3D space) of a large number of spatially distributed tactile

sensors over large areas. These e-skin systems are Large-Area Skin Systems (LASSs).

Realizing LASSs has been the topic of research in the last decade. Researchers focused

on different approaches towards scalable multi-modal e-skin systems suited for large-area

applications.

The work presented in Section 2.2 was in part published in:
Bergner, F., Dean-Leon, E., Guadarrama-Olvera, J. R., Cheng, G., “Evaluation of a Large Scale Event Driven
Robot Skin”. In: IEEE Robotics and Automation Letters 4.4 (2019), pp. 4247–4254, and
Bergner, F., Dean-Leon, E., Cheng, G., “Design and Realization of an Efficient Large-Area Event-Driven E-
Skin”. In: Sensors 20.7 (2020), p. 1965.
Copyright permissions: see Appendix D.
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The early work of [30, 89] utilizes arrays of IR based proximity sensors (80 sensors in total)

on a robot arm. The authors feed the acquired tactile proximity information into a planner

such that the robot can avoid obstacles in real-time. The work demonstrates the feasibility of

tactile feedback in the implementation of physical interactions and motivated the development

of larger, multi-modal e-skins.

The work of [134] introduces a flexible, bendable and stretchable matrix of pressure and

temperature sensors as conformable e-skin. The authors demonstrate the feasibility of man-

ufacturing such an e-skin up-to a size of 12×12 (144 sensors). The authors of [136] present

another flexible e-skin that employs matrices of force sensors. The authors [117] improve the

deployability of flexible tactile sensor matrices through modularization and enabling simple

customization (the e-skin can be cut into shape).

To overcome the main drawbacks of sensor matrices, namely the high number of wires and

the susceptibility to row-/column-wise failures, modular solutions for e-skin have emerged.

These systems combine tactile sensors covering a specific predefined area in a module.

Modular systems have been introduced in the following works.

The RI-MAN robot [112] employs five tactile sensing modules (two per arm, one on the chest).

Each module embeds an 8×8 force sensor matrix. The e-skin utilizes in total 320 force sen-

sors. Similarly, the ARMAR-III robot [6] utilizes modules that employ force sensor matrices on

the robot’s shoulders and arms. The TWENDY-ONE robot [70] achieves a more complete cov-

erage with force sensors distributed in its hands (2×241 sensors), in its arms (2×54 sensors),

and its trunk (26 sensors). The sensing density of these systems is low and concentrated in

the modules.

E-skins building upon similar, exchangeable sensing modules further advanced modularity,

deployment flexibility, robustness, and scalability. This approach resulted in larger e-skin

systems that are presented in the following.

The work of [25] introduced the e-skin, RoboSkin. This e-skin utilizes skin modules with a

triangular shape. Each skin module employs 12 capacitive force sensors. The assembly

of these triangular skin modules forms the e-skin that can cover arbitrary surfaces. This

modular approach allows great deployment flexibility, an effective reduction of wires, and

the containment of failures. The works of [131, 91] demonstrate that the modular approach

of RoboSkin e-skin allows for the full coverage of robots. These works demonstrate the

feasibility of large-area e-skin by successfully covering a Nao robot with 200 force sensors

[131] and an iCub robot with 2000 force sensors [91].

Nevertheless, the RobotSkin e-skin only employs one sensor modality (normal force) and

hinges on the complex localization of the tactile sensors [24, 47, 3]. Furthermore, this e-skin

utilizes a query-based readout system [10] and a query-based middleware that organizes and
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represents tactile information [144]. A query-based information handling system is inefficient,

exhibits large latencies, and does not scale. In a query-based system, the system has to ask

for the information of each sensor. The system has to continuously loop serially through all

sensors, request each sensor value, and wait for the answer. The communication latency for

each sensor doubles, and the overall latency scales with the number of sensors.

Mittendorfer et al. [101, 100, 109] introduced a significantly improved modular e-skin with

hexagonally shaped multi-modal sensing modules. Each module employs up-to nine sen-

sors that sense force, distance, temperature, and vibration [101, 103]. The advantage of

this e-skin, in comparison to all previous works, is its capability to self-organize its sensing

modules. The self-organization eases deployment and allows for robustness, flexibility, and

self-localization. The e-skin can automatically determine the locations of its modules and re-

construct the 3D surface it covers [102]. Furthermore, the e-skin transmits tactile information

with a predefined sample rate of up-to 250 Hz. Thus, the information handling system does

not have to query information. The e-skin provides the information with a defined sample rate.

The capability to self-organize, to self-localize, and to provide information without queries al-

low this e-skin to scale. This e-skin addresses most of the challenges of distributed e-skin

systems. It has been successfully deployed on robots with up-to 300 skin modules (2700

multi-modal sensors) [109, 40].

So far, all these works addressing LASSs solely focus on the scalability of sensing. But they

do not address the significant challenge to handle a large amount of tactile information the

upscaling of sensing induces. The lack of a systematic approach to tackle this challenge

explains why LASSs are not yet as widely utilized as other sensing systems, for instance,

auditory or visual. This lack also explains why the tactile feedback of LASSs is often limited to

interactions with body parts rather than whole bodies [2, 40], or limited in spatial or temporal

resolution [112, 70, 10].

2.2.2. Challenges of Large-Area E-Skin
This section consolidates the specific and most notable challenges encountered when de-

signing and realizing LASSs [34, 36, 35, 37, 109]. The subsequent Section 2.2.3 then

presents how previous works addressed these challenges.

2.2.2.1 Reliability and Robustness

Mechanical interactions stress and wear on a physical system. The standard method to pro-

tect these systems against these effects is caging and protecting fragile parts while keeping

the spatial extension as compact as possible. Ensuring reliability and providing robustness

is a non-trivial task in LASSs since these systems are highly distributed and have to endure

physical contacts.
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2.2.2.2 Deployability and Wiring

Distributing thousands of tactile sensors throughout the body and wiring them to supply the

sensors with power and low latency connections is challenging. Deploying and wiring the

sense of touch strictly requires a systematic approach. A large number of discrete sen-

sors are infeasible to place and connect one-by-one without a systematic concept. The time

required to set up the system would be impractical and the maintenance time consuming,

error-prone, and complex.

2.2.2.3 Localization

The coupling between sensing and locating a stimulus, that is, determining of its pose (posi-

tion and orientation) with respect to a point of reference, is of paramount importance in vision

as well as in touch. Body surfaces covered with skin are three dimensional and not com-

pletely rigid. Additionally, an actuated body changes the relative positions between its body

parts and thus the positions between the skin sensors. Consequently, the identification of skin

sensor locations with respect to a body part exhibits a complex challenge, even if the sensors

have been systematically deployed. Manually assigning the poses of thousands of sensors

can become infeasible, and a LASS could benefit from automated methods to acquire the

location of its sensors.

2.2.2.4 Low-Latency and Efficiency

Sensing systems need to provide and represent information with low-latency and enable ef-

ficient information handling in order to realize fast system responses. Ensuring low-latency

and efficient information handling becomes more challenging with an increasing number of

sensors and is particularly challenging in LASSs [35]. In visual or tactile applications, sens-

ing systems have to handle a large amount of information (> 10 MB/s) within short periods

(< 10 ms). High-speed connections between sensors and information handling systems are

feasible in concentrated systems, for example, cameras. However, they are hard to realize

in distributed systems with many connections over long, varying distances. Long-distance

connections and high bandwidths increase the influences of noise, crosstalk, reflection, and

distortion. All these effects contribute to the loss of signals and failures in the power distribu-

tion. That is, signal and power integrity are harder to maintain when distance and bandwidth

increase. Thus, low-latency connections between the distributed tactile sensors, and han-

dling a large amount of tactile information are both demanding challenges in LASSs. For

example, as it has been shown, an e-skin system can handle, with one computer, around

300 sensor modules with 2700 sensors sampled at 250 Hz [109, 40, 16]. This information

handling approach is not feasible for a larger number of sensor modules, for instance, 1260,

as demonstrated in [20].
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2.2.3. Key Principles for Large-Area E-Skin
The tackling of the challenges summarized in Section 2.2.2 requires a systematic approach.

Solutions targeting only one particular challenge might completely contradict or hinder so-

lutions targeting the other ones. Recent progress in realizing e-skin systems revealed that

following the bio-inspired principles of modularity and self-organization within a system ap-

proach contributes towards solving and mitigating the first five challenges (reliability, robust-

ness, deployability, wiring, and localization) of LASSs [25, 109]. The following sections briefly

summarize the impacts of these two principles and their limitations towards solving/mitigating

the challenges of low-latency and efficiency.

2.2.3.1 Modularity of Sensing Elements

Modularity breaks down a complex system into smaller, less complicated, and exchange-

able modules [25, 109]. The simpler a module, the lower the number of points-of-failure

is. Modules allow the containment of errors and the introduction of redundancy, enhancing

the robustness of systems. A system divided into exchangeable and modular parts is bet-

ter to maintain, is more flexible, and easier to deploy. A modular system is changeable and

customizable, thus optimizable for specific deployment scenarios. Structuring modules into

hierarchical entities (e.g., skin patches) further simplifies the deployment of a large number

of modules. A module can deploy a set of components or other modules, rather than each

component or module on its own. Modularity significantly contributes to the deployability of a

system.

2.2.3.2 Self-Organization of Communication and Structure

A system that is not only modular but additionally self-organizing significantly contributes to

the feasibility of large systems with thousands of modules. Self-organizing modules can form

networks with short-distance connections between neighbors rather than requiring long point-

to-point connections between each module and a hub. A meshed network of modules sim-

plifies the wiring challenge while it introduces at the same time connection redundancy that

enhances the robustness of the system [109]. Self-organizing modules are also instrumental

to automatically determine the structure of the deployed e-skin and the spatial distribution of

its sensors. They allow for a feasible solution for the infeasible task to manually determine the

poses of thousands of tactile sensors [102]. Dynamic network routing can further enhance

the robustness of a self-organizing network of modules. This dynamic routing allows for the

automatic on-line reshaping of communication trees in meshed networks to handle broken

connections or unbalanced communication loads without the need to restart the system [8].
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2.2.3.3 Limitations of Modularity and Self-Organization

Systems of self-organizing modules rely on modules with local processing capabilities. Be-

sides realizing self-organization, these local processing capabilities can be exploited to filter

[109] or fuse information [18] in the modules, reducing the computational load at the higher

processing layers. However, the concepts of modularity and self-organization cannot directly

contribute to realizing efficient information handling in large-area e-skin with low latency.
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2.3. Information Handling Systems

Complex systems, artificial or biological, combine sensation, communication, processing, and

actuation to achieve desired system behaviors; they need to handle information. Handling

information not only refers to processing information, but furthermore addresses the complete

information flow in a perception-action loop [52] or a system control loop, that is, acquiring,

transmitting, processing, and acting on information [72]. In this sense, achieving the desired

system behavior fundamentally depends on the fast, efficient, and loss-less representation,

processing, and exchange of information.

Up to date, most technical systems are clock-driven and handle the information strictly follow-

ing the Nyquist-Shannon sampling theorem (Section 2.3.2). Clock-Driven Systems (CDSs)

have been successfully applied in many different applications such as the high-speed preci-

sion motor control in hard drives [143], control of robot arms [65], and many more. These

systems not only prove that CDSs provide viable solutions, they usually achieve excellent

performance [143, 65].

Nevertheless, CDSs that require fast reaction times in real-time applications depend on high-

bandwidth information resulting in high sample rates. For example, the high-speed precision

motor control in hard drives responds within 150 µs, that is, its sample rate is 7.7 kHz [143].

High sample rates only marginally impact systems that handle a limited amount of informa-

tion of a few sensors, for example, the position control of electrical motors. However, when

systems have to handle a large amount of information with high sample rates, for instance, in

tactile sensing or vision, their realization may become challenging or even infeasible.

The following works depict the challenges in such systems. The work of [69] introduced real-

time high-performance attention in color video streams. To realize their system, the authors

had to distribute the processing to nine computers. The work of [93] introduced distributed

real-time processing for humanoid robots to provide the large amount of computation power

required in perception, planning, and control. Two computers embedded in the robot could

not provide enough computation power. The work of [5] introduced real-time feature tracking

on small vision-guided unmanned vehicles. The authors had to implement their algorithm

in a specialized high-performance hardware implementation in a Field Programmable Gate

Array (FPGA) to meet the complex constraints in size and performance. The work of [57]

demonstrate a real-time system for visual processing optimized for Central Processing Units

(CPUs) rather than Graphics Processing Units (GPUs) or FPGAs, avoiding the demand for

high power, space, and hardware customizations. The complexity and challenges of handling

the information of large-area e-skin have been discussed in [34] and addressed in [9, 144].

The work presented in Section 2.3 was in part published in:
Bergner, F., Dean-Leon, E., Cheng, G., “Design and Realization of an Efficient Large-Area Event-Driven E-
Skin”. In: Sensors 20.7 (2020), p. 1965.
Copyright permissions: see Appendix D.
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The current approaches do not scale, have large latency, and a high demand on computation

power.

Thus, the challenge of handling a large amount of information with high sample rates emerges

in systems that need to react fast to the input of many sensors. As all these works demon-

strated, CDSs have to employ very performant transmission and computing systems with

severe demands on power and space to handle a large amount of information with low la-

tency. While power and space mainly cause financial and environmental disadvantages in

stationary systems, both factors tremendously impact systems in mobile applications, for in-

stance in distributed low power sensor networks [114, 97], in autonomous embedded vision

[5, 57], and in autonomous robotics [93].

The depicted limitations of traditional approaches in applications that need to handle a large

amount of information within short periods triggered the development of spike-based bio-

inspired and neuromorphic systems. These systems mirror the incredibly high information

handling efficiency of biological systems [74]. Some principles of these bio-inspired systems

might contribute to the development of efficient information handling in large-area e-skin.

The following sections focus on introducing bio-inspired information handling (Section 2.3.1),

and presenting the definition and characteristics of CDSs (Section 2.3.2), and NDSs and

EDSs (Section 2.3.3). These sections provide the background for the subsequent comparison

of implementations for bio-inspired information handling regarding their applicability in LASS

(Section 2.4).

2.3.1. Bio-Inspired Information Handling
The works of [90, 22] had been among the first that introduced event-driven information

handling (Section 2.3.3) in bio-inspired neuromorphic systems more than two decades ago.

Event-driven information handling systems employ spike-based information representation

principles in sensing, communication, and processing [87, 88, 11]. These spike-based rep-

resentations resemble the representations in biology which employ action potentials (Section

2.1.2) and neural codes (Section 2.1.3) [87].

Event-driven neuromorphic systems report significant improvements in efficiency and speed

[87, 88]. That is, the systems require less power and handle information with higher temporal

resolution and less latency. The following works document this efficiency.

Event-driven neuromorphic sensors transduce audio [130], visual [86, 120, 121, 122], and

force signals [28] to event trains and achieve temporal resolutions and latencies that have

previously not been possible with sample-based sensors (clock-driven sensors). The event-

driven implementations for representation and communication demonstrate encoding and

transmission efficiency in [90, 22]. Event-driven algorithms for visual processing [14, 118]

are feasible and reduce computational costs. For instance, the work of [31] presented a
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high-speed vision controlled pencil balancer to emphasize the low latencies possible in event-

driven systems. Many works presented approaches towards efficient event-driven computing.

These systems employ specialized hardware that mix analog and digital circuits [68, 95, 123,

110, 113], or network specialized computational units [51, 67, 38]. Despite these systems’ ef-

ficiency and scalability, the dependency on specialized hardware and software currently limit

their applicability in complex systems and complicate system integration and maintenance.

Novelty-driven systems (NDSs) are a subgroup of event-driven systems (EDSs). Novelty-

driven systems focus on two bio-inspired principles that significantly contribute to the effi-

ciency and speed in event-driven systems. First, novelty-driven systems simplify the concept

of neural codes in spike-based systems to the principle of novelty-driven information handling,

that is, only novel information in the form of events drives the whole system. This simplified

principle is still biologically inspired. Even employing different coding principles, the activ-

ity in the populations of neurons is usually triggered (or inhibited) by the arrival of stimuli.

This principle is particularly true for the afferents of sensory neurons. Their peripheral axons

only generate action potentials when their receptors register stimuli and are otherwise silent,

regardless of the neural code they utilize for conveying information [72, 55]. Second, novelty-

driven systems discard rate coding. Focusing on the sparsity aspect of spiking neural net-

works allows for exploiting their capabilities for temporal redundancy reduction and saliency

enhancement. Both capabilities, temporal redundancy reduction, and saliency, significantly

contribute to a system’s efficiency since the system has to handle less information.

Novelty-driven systems especially proved their efficiency in the very complex and compu-

tationally expensive real-time processing of visual information [31, 14, 118]. The dynamic

vision sensors of [86, 120, 121, 122] particularly focus on the sparse coding of novel visual

information in events.

2.3.2. Clock-Driven Systems
This section defines clock-driven systems and presents their theory.

Standard time-discrete systems follow the Nyquist-Shannon sampling theorem that defines

constraints for the lossless conversion of time-continuous signals to time-discrete signals.

The Nyquist-Shannon sampling theorem [132] states that any bandwidth-limited time-contin-

uous signal x(t) with t ∈ R can be represented by a time-discrete signal x(tk) with tk = k Ts

and k ∈ Z as long as the sampling frequency fs surpasses the bandwidth B of x(t) by at

least a factor of two:

fs > 2B. (2.1)

Consequently, time-discrete systems ensure that a clock with at least a frequency of fs drives

the information handling such that the constraint of the Nyquist-Shannon sampling theorem

is fulfilled at all times and information loss is zero through all stages of the system. These
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systems are termed Clock-Driven Systems (CDSs). Standard computing systems are CDSs

and usually either implement the von Neumann [115] or the Harvard architecture [135].

2.3.3. Event-Driven Systems
This section defines event-driven systems and presents their connection to standard signal

processing theory. Existing work on the implementations of event-driven systems and their

applicability in large-area e-skin will follow afterward in Section 2.4.

Within the scope of this thesis, Event-Driven Systems (EDSs) refer to the subgroup of Novelty-

Driven Systems (NDSs). In contrast to the general group of spike-based neuromorphic sys-

tems (Section 2.3.1), which use all neural coding principles (Section 2.1.3), NDSs focus on

sparse information representation, that is, neural time coding, and follow the idea that only

novel information should drive a system. Novelty-driven sensing, in particular, has been ad-

dressed in vision [86, 120, 122] and force sensing [27].

Novelty-driven systems relate very well to one core statement in information theory [132]. In

many applications, following the guideline of the Nyquist-Shannon sampling theorem, that is,

realizing CDSs, results in a stream of samples containing a large amount of uncontrolled re-

dundant information. Temporally redundant information is especially apparent when the sys-

tem continuously samples the same value. Systems can avoid temporal redundancy when

they only handle novel information, that is, when they are only active when sensors regis-

ter activity. Shannon’s information entropy and his source coding theorem formally describe

the information rate of information sources, and thus how much information, or respectively

redundancy, a signal contains [132]. The information entropy H(X) evaluates the probabil-

ities P(xi) of symbols xi, which encode the information produced by the information source

x(t)

H(X) = −
n∑
i=1

P(xi) log2 P(xi) (2.2)

and is measured in bits. Thus, if an information source x(t) continuously emits the same sig-

nal level, then all probabilities P(xi) beside one are zero, and the information entropy H(X)

is zero. Consequently, the signal does not contain information, and repeatedly sampling it

only produces uncontrolled redundancy and wastes resources. On the other hand, if x(t) is

continuously changing, then the probabilities P(xi) are more distributed, and the information

entropy H(X) is well beyond zero. Thus, sensors that register substantial changes in x(t)

produce a considerable amount of information.

In summary, novelty corresponds to activity, whereby changes express it. Thus systems, that

are driven by novelty and where events solely express novel information avoid uncontrolled

temporal redundancy throughout all stages. These systems gain efficiency because events

represent information more sparsely, and the system has to transmit and process less.
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2.4. Comparative Survey of Event Representations and Protocols

This section surveys the most notable approaches towards Event-Driven Systems (EDSs)

(Section 2.3.3), namely the neuromorphic Address-Event-Representation (AER) [90, 22], the

Send-on-Delta Principle (SoDP) [114, 97, 99], and, more recently, the Asynchronous En-

coded Skin (ACES) [85]. These EDSs have been used in applications with e-skin [28, 12,

85], supporting their effectiveness and efficiency. However, none of these event-driven e-

skin approaches fully consider the implications and challenges of effective deployment over

large areas and its eventual system integration (Section 2.2). They either lack the flexibility

and modularity for the distributed deployment of sensors [28, 12], or they lack an efficient

interface to standard computer systems [85], whereby they obstruct system integration.

The subsequent study first introduces the different event-driven approaches and then dis-

cusses their applicability towards realizing an effective novelty-driven event handling system

for LASSs.

2.4.1. Address Event Representation (AER)
The Address-Event-Representation (AER) [90, 22] is one of the first bio-inspired systems

developed for representing and conveying events in technical systems. Originally, AER has

been developed for the communication between spiking artificial neurons in VLSI ICs (Very

Large Scale Integrated Circuits) [90, 22] and rigorously takes advantage of high-speed digital

asynchronous parallel bus systems that are readily available on such devices. AER realizes

event-driven point-to-point connections between event generators and consumers. But in-

stead of encoding the information source by individually wiring each event generator to an

event consumer, as nature does, the AER employs addresses to identify sources and time-

multiplexes these addresses onto a common asynchronous parallel bus. A valid address on

this bus represents an event and this address identifies the event generator of that event. The

AER exploits the superior communication speed of technical systems per wire in integrated

systems (> 100 MBit/s) in comparison to nerve fibers (≈ 1 kBit/s) to reduce the number of

wires and still achieve a comparably high temporal resolution. Besides the address bus, the

AER employs a request and an acknowledge line to realize a self-timed bus arbitration mech-

anism that avoids any clock resynchronization. AER represents events through addresses.

To convey information, AER event generators can employ encoding principles that are similar

to neural codes. The AER can encode the type of events in additional address lines such

that an AER event generator can create change events, events that indicate an increase or

decrease of the observed signal (up and down events), respectively [86, 120]. To encode ab-

solute values instead of increments, AER event generators can employ low and high events

where the time between these two events represents the encoded value [121].

The work presented in Section 2.4 was in part published in:
Bergner, F., Dean-Leon, E., Cheng, G., “Design and Realization of an Efficient Large-Area Event-Driven E-
Skin”. In: Sensors 20.7 (2020), p. 1965.
Copyright permissions: see Appendix D.
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More recent research introduced serial AER [126] to reduce the wiring complexity in more

distributed EDSs [12]. Serial AER packs the event address into a datagram on a serial bus,

which reduces the number of wires at the cost of reducing the temporal resolution.

The AER is an established bio-inspired protocol for representing and transferring events and

could successfully demonstrate its use in auditory [130], visual [86, 120], and force [28] sens-

ing applications and in event-driven processing hardware such as SpiNNacker [51], TrueNorth

(IBM) [67], BrainScaleS [95], ROLLS [123], DYNAP [110], Loihi (Intel) [38], and BrainDrop

[113].

2.4.2. Send-on-Delta Principle (SoDP)
The Send-on-Delta Principle (SoDP) [114, 97, 99] is a hybrid system that exploits standard

digital hardware to realize EDSs. The SoDP has been first proposed for efficiently reduc-

ing the number of transmissions in wireless, battery-powered, and widely distributed sensors

networks [114, 97]. In these application scenarios, the reduction of the number of transmis-

sions is essential to increase the lifetime of the distributed sensors. SoDP systems employ

time-discrete digital change detectors, that can even be implemented in software, to trigger

the creation of events. The SoDP represents events by packets (event packets) transported

in asynchronous arbitrated networks. An event packet usually contains the ID of its infor-

mation source and the absolute value of the signal at its creation time. Similar to the AER,

the presence of an event packet signifies the availability of novel information and drives the

information handling of the system. Since the SoDP not only conveys the information source

but also the magnitude of the signal, the bit rate of SoDP events is higher than the bit rate of

AER events. As a consequence, the temporal resolution of SoDP systems is lower than that

of AER systems when both systems employ the same transmission rate. Nevertheless, de-

coding the information of SoDP events is by far less complex than for AER events whenever

an application enforces clock-driven information, for example, in low-level control of closed

hardware/software systems, such as in robots. Furthermore, SoDP systems do not require

specialized hardware and are realizable with off-the-shelf sensors and well-established infor-

mation transport layers [114, 97]. Thus, if CDSs possess the flexibility to modify their informa-

tion handling procedures, and if they can employ asynchronous transmission and processing

capabilities, then these systems can be turned into EDSs without the need for any hardware

modifications.

The SoDP provides good flexibility and availability for realizing low cost and scalable event-

driven applications [114]. However, the hardware of SoDP systems is clock-driven such that

SoDP cannot reach the temporal precision and energy efficiency of systems that employ

event-driven neuromorphic hardware.
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2.4.3. Asynchronous Encoded Skin (ACES)
The Asynchronous Encoded Skin (ACES) [85] is an event-driven hardware system that has

been recently proposed to realize a neuro-inspired artificial nervous system. The ACES im-

plements a many-to-one protocol for transmitting and representing events. Rather than time-

multiplexing events to a shared transportation medium, such as in the AER or SoDP, the

ACES fuses events as pulse signatures onto one single shared wire. A pulse signature is

a sequence of pulses within a constant time window, where the relative timing of the pulses

encodes the signature. Similar to the addresses in AER and the IDs in SoDP, the pulse

signature identifies the information source and represents the event. Interestingly, the ACES

manages to fuse these pulse signatures on one single wire without applying time-multiplexing

or requiring an arbitration method. The ACES superimposes all pulse signatures by apply-

ing a logical OR operation on the pulses. To minimize the probability that pulse signatures

cannot be separated, the set of pulse signatures has to have minimal auto-correlation and

cross-correlation. Theoretically, ACES could support up to 138 000 information sources per

wire, when a pulse signature has a time window of 1 ms, consists of 10 pulses, and each

pulse lasts for 100 ns [85]. In such a setup, ACES events have a latency of at least 1 ms

when employing up and down events, or respectively a latency of at least 2 ms when employ-

ing low and high events for time-coding absolute values [85]. However, the temporal precision

of ACES is very high (in the range of the pulse length) since no arbitration mechanisms impair

the temporal precision with non-deterministic uncertainties in delay, which correlate with the

utilization of a shared communication medium. Additionally, since the ACES event transmis-

sion is arbitration-less, connection redundancy could be introduced by adding wires, as long

as the propagation speed and the reflection of high-speed connections do not degrade the

transmission quality. While the hardware for encoding and representing events in ACES has

low complexity, acquiring a set of pulse signatures is more demanding, and the demerging

of ACES events is very complex. An ACES event demerger has to repeatedly correlate the

currently observed pulse pattern of superimposed events with all pulse signatures of the set.

Therefore, the ACES event demerger has to keep a history of received pulses, which matches

the length of a pulse signature. To preserve the temporal information of the events, the de-

merger has to perform this correlation continuously for each potential event in parallel within

the time length of a pulse. For the example numbers mentioned earlier, the demerger would

at least have to perform continuously 138 000 correlations with a bit length of 100 000 bit (as-

suming a pulse can be represented by one bit) within 100 ns. The ACES event decoder is

clearly not event-driven since the decoding has to be driven by the pulse time, and the infor-

mation in the superimposed pulse stream is not salient. Nevertheless, the demerged events

can drive information handling in subsequent stages.
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2.4.4. Comparative Study of Representations and Protocols
The following study analyzes the characteristics of the previously introduced event represen-

tations and protocols to assess their applicability in Large-Area Skin Systems (LASSs). The

ideal approach towards an EDS for LASSs solves the remaining challenge of latency and

efficiency without obstructing existing solutions and mitigations for robustness, deployability,

wiring complexity, and sensor poses (Section 2.2.2). Therefore, the EDS should support the

central principles of modularity and self-organization (Section 2.2.3).

Table 1 summarizes the relevant properties of existing implementations for EDSs. The table

additionally contains the properties of nerve bundles and CDSs to provide the biological and

standard technical references for comparisons.
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System Connections Bandwidth Arbitration Representation Encoding Decoding Bit Rate Latency Temporal
Precision

Nerve Bundle
[133, 54]

thousands of
nerve fibers

low,
≤ 1 kEvents/s per fiber

none binary action potential (1 bit)
asynchronous events

neural codes complex very low medium extremely
high

Clock-Driven
Section 2.3.2

few,
serial bus

very high,
> 10 MSamples/s

standard network routing,
time-multiplexed,
flexible

samples / packets of samples
(many bits)
synchronous stream

absolute
values

none continuously
very high

medium/
high

low

AER
[90, 22]

many,
parallel bus

high,
∼ 100 MEvents/s

complex handshaking,
time-multiplexed,
inflexible

address (address bits)
asynchronous events

neural codes complex low low high

Serial AER
[126]

few,
serial bus

high,
∼ 5 MEvents/s

complex handshaking,
time-multiplexed,
inflexible

serialized address
asynchronous events

neural codes complex low higher
than
AER

lower
than AER

ACES
[85]

1 wire,
upto 138k sources

low,
∼ 1 kEvents/s

none pulse signature
asynchronous events

neural codes very complex,
not event-driven

low medium very high

SoDP
[114, 97, 99]

few,
serial bus

medium,
> 1.5 MEvents/s

standard network routing,
time-multiplexed,
flexible

event packet (sample bits)
asynchronous events

absolute
values

simple medium low medium

Table 1 Comparison of different information encoding, representation, and transmission systems. The first row provides the biological reference, and the second row the stand technical one. Besides the first
row, all other rows present electronic systems.
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The connection, bandwidth, and arbitration of EDSs have a significant impact on the sys-

tem’s flexibility and performance. The ideal EDS for LASSs is flexible. That is, it does not

depend on specific hardware and its components (for instance, sensors, connections, event

consumers) can be easily added, removed, and exchanged. Then, the system is modu-

lar. Additionally, the distributed character of LASSs and the required robustness ask for an

EDS with a small number of wires in connections and a communication protocol support-

ing self-organization and dynamic routing. At the same time, the ideal EDS fully supports

the event-driven mechanism, which delivers the required gain in efficiency and latency. Fur-

thermore, the ideal EDS encodes information with a low encoding/decoding complexity. A

low encoding/decoding complexity significantly contributes to the application flexibility of the

LASS. It allows for efficient bridges between clock-driven and event-driven systems that are

required in many applications utilizing LASSs.

As Table 1 depicts, neither of the existing EDSs (AER, SoDP, and ACES) fulfills all these

characteristics for the optimal integration of the event-driven approach in LASSs. The AER

and ACES provide excellent performance with very low bit rates in communication and high

temporal precision. However, their encoding/decoding complexity is high and impedes the

efficiency of the required interfaces to clock-driven systems in LASSs. Furthermore, both

systems require special hardware and thus hinge on overall deployment. The systems addi-

tionally obstruct the LASS’s methods for robustness, wiring, and self-organization. The lower

performance of the SoDP (especially regarding bit rate and temporal precision) in compar-

ison to AER and ACES is more than compensated by its flexibility, low encoding/decoding

complexity, and hardware independence. The overall performance of SoDP is well beyond

CDSs such that a significant performance gain of the resulting event-driven LASSs can be

expected. The clear advantage of SoDP lies in its great flexibility. It does not depend on

specific hardware and can thus exploit standard hardware for the rapid realization of complex

but yet efficient EDSs.

In summary, SoDP emerges as the most suitable EDS towards tackling all the challenges

of LASSs. It has the potential for realizing an event-driven LASS capable to efficiently and

effectively handle its large amount of tactile information in complex systems in real-time.
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2.5. Summary

The human sense of touch inspired the development of various realizations of e-skin systems.

These e-skin systems successfully proved their usefulness in various applications, such as

grasping and physical interaction. Up to now, implementations and applications of e-skin

systems are limited to rather small areas, that is body parts, for instance, arms. This limita-

tion is not because these e-skin systems lack scalability regarding their sensing capabilities.

These systems rather lack a systematic approach to efficiently and effectively handle a large

amount of tactile information in real-time. On the other hand, works targeting other sensing

modalities such as vision successfully reported a significant boost of performance when im-

plementing bio-inspired approaches that allow for the event-driven handling of information.

However, the distributed nature of large-area tactile sensing so far limited the effective real-

ization of event-driven large-area e-skin systems, and thus large-area physical interactions

building upon tactile feedback. Nevertheless, the survey of the most prominent event-driven

approaches and their implementations presented in this chapter identified the flexible and

hardware-independent SoDP as a good candidate to eventually turn standard clock-driven

e-skin systems to efficient event-driven large-area e-skin systems.
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3. Fundamental Elements of the Event-Driven
Approach

This chapter presents the three essential elements of the event-driven approach: i) event

generation (Section 3.1): generating events for event-driven systems by the means of nov-

elty detectors; ii) event representation and communication (Section 3.2): representing and

conveying information by events in event-driven communication systems; and iii) event-driven

information handling (Section 3.3): handling information in systems such that they are driven

by novelty rather than the clock. These three elements provide the fundamentals of the

makeup of this thesis. Figure 2 provides an example of information flow and highlights the

differences in representing information in Clock-Driven Systems (CDSs) and in Event-Driven

Systems (EDSs).

(a) Clock-driven systems sample signals x(t) with constant time intervals Ts. Information in clock-driven systems is
represented by the samples x(tk) = x(kTs).

(b) Event-driven systems detect changes δ in monitored signals x(t). Between two events the value of x(t) changed at most
by δ. The generated events could be tagged with type information such as ON/OFF. Here, ON events represent an increase by
δ and OFF events an decrease by δ.

Figure 2 Information as it is represented in clock-driven systems (Figure 2a) and event-driven systems (Figure 2b).
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This chapter provides the theoretical basis for developing and validating the event-driven

approach towards large-area e-skin systems that are to be presented in the upcoming chap-

ters.
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3.1. Event Generation / Event-Driven Sensing

This section’s focus is on novelty-driven event generation, which bases on change detectors.

Change detectors detect novelty in signals and couple system activity with the information

rate of information sources, see Section 2.3.3. This section provides the theoretical basis for

the correct design and optimal parameterization of novelty detectors for the e-skin’s sensors

to optimize for sensitivity, transmission rate, minimizing encoding errors, and noise.

First, Section 3.1.1 introduces the theory of and formalisms for change detectors. Then,

Section 3.1.2 details different general approaches to implementing change detectors. After

that, Section 3.1.3 provides the theory for estimating the event rates of change detectors

and connects the findings to signal processing theory. This theory results in descriptions

that relate the signal shape and system properties to event rates. The outcomes of Section

3.1.3 leads to insights in the sensitivity of change detectors (Section 3.1.4), the conversion

error of change detectors (Section 3.1.5), and the influence of noise (Section 3.1.6). Combin-

ing all these results lead to guidelines to correctly parameterize change detectors for event

generators (Section 3.1.7).

3.1.1. The Theory of Change Detectors
This section presents novelty detection, that is, on the procedure and formalisms to decide

when signals, for example, of sensors, provide valuable information. Since the amount of

information a signal provides correlates with the magnitude and frequency of its changes,

see Section 2.3.3, a novelty detector is a change detector that triggers activity, or respectively

the generation of events. Novelty-Driven Systems (NDSs) and change detectors have been

introduced in two different points of view: 1) in the bio-inspired neuromorphic point of view

[90, 22, 130, 86, 120, 88, 121, 28], and 2) in the information and control theory point of view

[114, 97, 99].

These introductions of change detectors in both fields lead to similar formalisms. Neuromor-

phic systems [86, 120, 121, 122, 26] use time- and range-continuous change detectors to

convert signals x(t) to events ei. The change detectors of the other field [114, 97, 99], with

more focus on information and control theory, use time-discrete change detectors to convert

sampled signals x(tk) with a sample rate of fs = 1/Ts at time instances tk = k Ts, k ∈ Z to

events ei.

The work presented in Section 3.1.1 was in part published in:
Bergner, F., Dean-Leon, E., Cheng, G., “Design and Realization of an Efficient Large-Area Event-Driven E-
Skin”. In: Sensors 20.7 (2020), p. 1965.
Copyright permissions: see Appendix D.
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3.1.1.1 Continuous Change Detectors

Continuous change detectors monitor a signal x(t) and track the change of this signal until

the accumulated change exceeds a predefined threshold δ. Therefore, the change detector

integrates the derivative ẋ(t) of the input signal x(t) until the integration reaches or passes

the threshold δ

δ ≤

∣∣∣∣∣
∫ t

ti−1

ẋ(t) dt

∣∣∣∣∣ ⇐⇒ ei at t = ti = t(ei)︸ ︷︷ ︸
event generation

(3.1)

at time instance t = ti. At the time instance ti, the information of the monitored signal is

classified as novel and the change detector triggers the creation of an event ei that contains

this novel information. The more precise the occurrence time ti of the event matches with

the time instance of the actual signal change, the higher the temporal precision of the event

generator is. Thus, any non-deterministic or non-constant delay between the actual signal

change and the occurrence of the event reduces the temporal precision. Considering the

properties of Riemann integrals∫ b

a
f(t) dt = lim

∆t→0

n∑
i=1

f(ti)∆t (3.2)

with

∆t =
b− a
n

, ti = a+
∆t

2
n (3.3)

and the definition of the arithmetic average of a function

[
f(t)

]b
a

= lim
∆t→0

1

n

n∑
i=1

f(ti) (3.4)

we can derive a relationship between an integral of a signal f(t) and its average f(t) in an

interval t ∈ [a, b]:

[
f(t)

]b
a

=
1

b− a

∫ b

a
f(t) dt. (3.5)

Combining Equations (3.1) and (3.5) yields

δ ≤
∣∣∣∣[ẋ(t)

]t
ti−1

∣∣∣∣ · (t− ti−1). (3.6)

Therefore, one could observe that the change detector evaluates the accumulated average

change of the input signal since the occurrence of the last event ei−1 at time instance ti−1.

With

ẋi =
[
ẋ(t)

]t
ti−1

=
1

t− ti−1

∫ t

ti−1

ẋ(t) dt =
x(t)− x(ti−1)

t− ti−1
(3.7)
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Equation (3.1) further simplifies to:

δ ≤ |x(t)− x(ti−1)| ⇐⇒ ei at t = ti (3.8)

or respectively

δ ≤ |x(t(ei))− x(t(ei−1))| (3.9)

Thus, a change detector in fact triggers the creation of events whenever the difference be-

tween the signal x(ti−1) that caused the last event ei−1 and the currently monitored input

x(t) exceeds a specified limit δ. Because the continuous change detector can trigger events

at any time, its temporal resolution is only limited by the bandwidth of the system that im-

plements it. As a result, a continuous change detector can theoretically achieve an almost

infinite equivalent sampling rate.

3.1.1.2 Discrete Change Detectors

Discrete change detectors monitor the samples x(tk) with tk = k Ts, k ∈ Z of a continuous

signal x(t). The underlying principle for detecting changes is similar to the continuous change

detector (Section 3.1.1.1). A discrete change detector also integrates the derivative x(tk) of

the sampled input signal x(tk). But in contrast to the continuous detector, the integration

process is digital and clock-driven. The integration continues until it passes the threshold

δ

δ ≤

∣∣∣∣∣
∫ tk

tKi−1

ẋ(t) dt

∣∣∣∣∣ ⇐⇒ ei at tk = tKi with k = Ki︸ ︷︷ ︸
event generation

(3.10)

at time instance tk = tKi or respectively at the sample k = Ki. At time instance tKi , the

sample is classified as novel and the change detector triggers the creation of an event ei.

Similarly to Equation (3.5), we can derive a time-discrete relationship between the average

and the integral of a signal

[
f(t)

]tK2

tK1

=
1

tK2 − tK1

∫ tK2

tK1

f(t) dt =
1

tK2 − tK1

K2∑
l=K1

f(tl)Ts

=
1

K2 −K1

K2∑
l=K1

f(tl), (3.11)

which combined with Equation (3.10) leads to

δ ≤
∣∣∣∣[ẋ(t)

]tk
tKi−1

∣∣∣∣ · (tk − tKi−1). (3.12)
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With

ẋi =
[
ẋ(t)

]tk
tKi−1

=
1

tk − tKi−1

∫ tk

tKi−1

ẋ(t) dt =
x(tk)− x(tKi−1)

tk − tKi−1

(3.13)

Equation (3.10) then simplifies to:

δ ≤
∣∣x(tk)− x(tKi−1)

∣∣ ⇐⇒ ei at tk = tKi with k = Ki (3.14)

or respectively

δ ≤ |x(t(ei))− x(t(ei−1))| (3.15)

which is identical to Equation (3.9) of the continuous change detector. Thus, the discrete

change detector has to remember the signal sample x(tKi−1) of the previous event ei−1

and compare it to the current sample x(tk). Then, at the time when the absolute difference

between these two samples exceeds the threshold, the change detector triggers the creation

of the event ei and updates the memory with the current sample. In comparison, discrete

change detectors naturally exhibit a lower temporal resolution than their analog counterparts

and consume more power since the monitoring is clock-driven. The temporal resolution of

discrete change detectors is limited by the sampling rate of the digital system. Nevertheless,

discrete change detectors do not require special analog circuits and allow for integrations in

existing systems, for instance, in the microcontrollers that sample sensors.

3.1.1.3 Change Detectors as Supervisors of Predictors

This section provides a new point of view on change detectors that allows deriving advanced

event encoding schemes and has the potential to lead to more sophisticated event generators

with enhanced robustness and error correction features.

In general, a change detector can be interpreted as a supervisor that ensures that the error

between the input signal x(tk) and its prediction x̂(tk) is below a specified limit δ [137, 98].

This interpretation allows for generalizing the change detection rule of (3.15) to:

δ ≤ |x(tk)− x̂(tk)| ⇐⇒ ei at tk = tKi︸ ︷︷ ︸
event generation

(3.16)

The change detector produces a new event ei at time tKi whenever the error between predic-

tion and the actual signal exceeds δ. A good choice for a predictor x̂(tk) may be a n-th-order

Taylor approximation of the signal x(t) that is evaluated at the time instance tKi−1 of the

previous event ei−1 with L = Ki−1 [137, 98]:

x̂(tk) =

n∑
l=1

x(l)(tL)

l!
(tk − tL) (3.17)
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The zero-order/constant, first-order/linear, and second-order/quadratic predictors are

x̂const(tk) = x(tL) (3.18)

x̂lin(tk) = x(tL) + ẋ(tL) (tk − tL) (3.19)

x̂quad(tk) = x(tL) + ẋ(tL) (tk − tL) + 0.5 ẍ(tL) (tk − tL)2 (3.20)

with the following Euler approximations for the derivatives:

ẋ(tL) ≈ x(tL)− x(tL−1)

Ts
(3.21)

ẍ(tL) ≈ x(tL)− 2x(tL−1) + x(tL−2)

T 2
s

. (3.22)

Substituting k with l = k − L such that l = 0 when k = L, that is at the time instance of the

previous event ei−1, yields

x̂const(tL+l) = a (3.23)

x̂lin(tL+l) = a+ b l (3.24)

x̂quad(tL+l) = a+ b l + 0.5 c l2 (3.25)

with:

a = x(tL) (3.26)

b = x(tL)− x(tL−1) (3.27)

c = x(tL)− 2x(tL−1) + x(tL−2). (3.28)

The predictors can be written in recursive form

x̂const(tl) = a (3.29)

x̂lin(tl) = x̂lin(tl−1) + b (3.30)

x̂quad(tl) = 2 x̂quad(tl−1)− x̂quad(tl−2) + c (3.31)

with the following initializations at l = 0:

x̂lin(tl=0) = x(tL) (3.32)

x̂quad(tl=0) = x(tL) (3.33)

x̂quad(tl=−1) = 0.5x(tL) + 0.5x(tL−2) (3.34)

The interesting observation that one can take from this point of view is that the continuous

change detector and its discrete counterparts are change detectors that use a zero-order

prediction. Thus, these change detectors can also be seen in the following way: the change

detector assumes/predicts that the input signal x(t) will not change, and when the error of

this assumption becomes larger than δ, then an update is required and an event is generated.

Respectively, a change detector with a first-order predictor assumes that the input signal x(t)
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will continue with the signal’s slope at the time of the previous event, and a change detector

with a second-order predictor that x(t) will continue with the signal’s curvature at the time

of the previous event. The higher order predictors add more context to events by assuming

more complex underlying models that rely on more history. Higher order predictors produce

less activity but need to transmit more values per activity, that is one value for zero-order,

two for first-order, and three for second-order predictors. However, on average, higher order

predictors transfer less information [137]. Therefore, the reduction in activity outweighs the

larger number of values to transmit. The encoding of context into event sequences, following

also different regimes, is discussed with additional examples in Section 3.2.1.

Interpreting change detectors as supervisors of predictors has a large potential for the devel-

opment of novel change detectors that reach beyond the capabilities of zero-order predictors.

For example, a more sophisticated predictor might predict the decay of a signal such that

even if events are lost in communication the event decoder will eventually settle down to the

most probable constant value. Another predictor could use the slope to create additional

events on important transitions such that intended information redundancy can mitigate the

effects of loss in situations that are highly important for system stability.

3.1.2. Realizing Change Detectors
While the previous section provided the theoretical background for continuous and discrete

change detectors, this section outlines different approaches for their realization in electronic

circuits. First, an analog circuit for a continuous change detector is introduced (in Section

3.1.2.1). This circuit is often applied in novelty-driven neuromorphic systems that mimic neu-

ral codes and neural computing principles [90, 22, 130, 86, 120, 88, 121, 28]. Second, a

digital circuit for a discrete change detector is presented (in Section 3.1.2.2). This change de-

tector finds its application in the field of energy efficient-sensing, signal processing, and con-

trol from the information and control theory point of view [114, 97, 99]. Section 3.1.2.3 goes

beyond these two approaches and proposes a hybrid change detector with analog and dig-

ital circuits. The hybrid change detector merges the advantages of the previously presented

approaches and provides a suitable asynchronous change detector for the Send-on-Delta

Principle (SoDP) event protocol.

3.1.2.1 Analog/Continuous Change Detectors

Analog change detectors implement the event generation rule of Equation (3.1) employing

analog circuits for the differentiation stage, the integration stage, and the absolute compari-

son stage, see Figure 3. These analog change detectors have been used in novelty driven

neuromorphic system in the works of [90, 22, 130, 86, 120, 88, 121, 28].
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Figure 3 The analog change detector realizes the continuous change detection rule of Equation (3.1). The change detector
only employs analog circuits to detect novelty. Two comparators implement the absolute comparison to the event threshold δ
and trigger up or down pulses when the monitored input signal x(t) increased or decreased by δ. The voltage Vin represents
x(t) and the voltage Vδ the threshold δ. The asynchronous logic resets the integrator on the detection of a change. It also
creates an activity pulse while the type signal encodes the type of the activity: logic 1 for an increase by δ and logic 0 for a
decrease δ.

It is important to note that the analog change detector implements the original Equation (3.1)

for change detectors rather than the resulting Equation (3.9). This selection results from the

fact that a differentiator and an integrator (Equation (3.1)) are much easier to implement in

analog circuits than a memory and a subtraction (Equation (3.9)).

The analog change detector is completely asynchronous and thus does not rely on a system

clock in any of its stages. Its circuit directly converts the analog input signal Vin into activ-

ity pulses and a signal encoding the type of activity. The type encodes if the input signal

increased or decreased by δ. Through its asynchronous nature, the analog change detec-

tor reaches a high temporal resolution. Its system bandwidth fB is only limited by its analog

components and the round trip time from the integrator, to the comparators back to the reset

line of the integrator. For instance, the work of [86] reports for their vision sensor a temporal

resolution of 15 µs (effectively 66.7 kHz). However, the analog change detector provides only

differential information and absolute information has to be reconstructed from the up/down ac-

tivity. This reconstruction from differential information is challenging for two reasons, namely:

1) initialization, and 2) drift. Initialization is challenging when the input signal cannot be as-

sumed to be zero and drift occurs when activity pules are lost in unreliable communications.

Drift may also occur when the input signal violates the bandwidth limitations of the change

detector, which will be discussed in detail in Section 3.1.3.2.

3.1.2.2 Digital/Discrete Change Detectors

Digital change detectors implement the event generation rule of Equation (3.15) employing

an Analog-Digital Converter (ADC) and digital circuits for memory, the absolute difference,

and the inequality, see Figure 4.
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Figure 4 The digital change detector realizes the discrete change detection rule of Equation (3.15). The change detector first
converts the time-continuous analog signal to time-discrete quantized samples x(tk). These samples are continuously
evaluated in a logical circuit that computes the absolute difference between the current sample x(tk) and the sample of the
previously reported change event x(tKi−1

) that is stored in the memory x. When this logic detects a change, it creates a
pulse that triggers through a different logic block the update of the memory, the activity pulse, and the output of the sample
x(tKi

). x(tKi
) is the sample that triggered the activity.

The updates of the digital change detector are driven by the samples of the ADC and thus

by the sampling clock. The system bandwidth is limited by the sampling clock. Furthermore,

the sample values x(tk) are not continuous since they are discretized by the ADC. The digital

system can only operate on discretized values. Thus, the temporal resolution of the digital

change detector is limited by the sample rate of the ADC, and the sensitivity is limited by the

quantization resolution of the ADC. However, the digital change detector provides absolute

values along activity pulses and thus avoids the challenges of initialization and drift as found

in analog change detectors (see Section 3.1.2.1).

3.1.2.3 Hybrid Change Detectors

This section proposes a hybrid change detector that combines elements of analog change

detectors with elements of digital change detectors to circumvent the bandwidth limitations

of the ADC and the differential property of the analog change detector. The hybrid change

detector uses the analog change detector to take advantage of its superior change detection

capabilities, which include its capability to rapidly convert analog signals to digital activity and

type information (increase/decrease). Rather than directly generating up/down events, the hy-

brid change detector performs local digital integration through the means of an asynchronous

counter (see Figure 5).
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ADC

Figure 5 A hybrid change detector consists of an analog change detector and asynchronous digital circuits to locally convert
activity driven differential information to offset compensated absolute values. These absolute values are quantized with the
resolution of the analog change detector, that is δ, see also Figure 2b. The offset compensation logic comprises a tightly
coupled successive approximation ADC (green box) that provides initial values and feedback for drift compensation. The
application of low bandwidth ADCs is suitable without any immediate impacts on the system bandwidth of the hybrid change
detector. A less tightly coupled but simpler Sigma-Delta ADC is also suitable at the cost of a slower and less flexible
compensation response. The logic provides an activity pulse and the absolute value x(ti) of the input signal.

The analog change detector converters the input voltage Vin to activity pulses and differential

information. Thus, novelty can drive the integration of the differential information provided

by the analog change detector to absolute values. A supervising logic incorporating a low

bandwidth ADC provides initial values and feedback to compensate integration offsets.

Overall, the hybrid change detector operates asynchronously and provides absolute values

along activity pluses. It provides higher temporal resolution than the digital change detector

and can be combined with the SoDP event protocol. The option to utilize a low bandwidth

Sigma-Delta ADC has great potential to reduce the circuit complexity of the hybrid change

detector in comparison with its digital counter part. It is expected that this reduced circuit

complexity combined with novelty-driven activity will contribute to increased energy efficiency

in hybrid change detectors.

3.1.3. Estimating Event Rates
The focus of this section is the estimation of event rates in novelty-driven systems. Therefore,

this section analyses the impacts of different factors on the rate of events originating from

change detectors. Furthermore, this section links novelty-driven systems to signal processing

theory by presenting their relations to signal and system bandwidth. The insights gathered

in this section provide the basis for the subsequent investigations that analyze the impacts of

sensitivity (Section 3.1.4), conversion error (Section 3.1.5), and noise (Section 3.1.6) on the

event rate. All together deliver the foundations for the correct and optimal parameterization of

change detectors, that is, event generators in Section 3.1.7.
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Section 2.3.3 described that novelty-driven event generators directly correlate the event rate

fe with the information rate H(X) of the sensor or an input signal x(t):

fe ∝ H(X). (3.35)

While the Equations (3.9) and (3.15) of the continuous and discrete change detectors respec-

tively clearly describe the conditions when events are generated, it is not straight forward to

determine the event rate of a given input signal x(t). However, to correctly parameterize

change detectors, the influence factors on the event rate need to be investigated. A cor-

rect parameterization determines the optimal event threshold for the best possible compro-

mise between low event rates, high sensitivity, low encoding errors, and low susceptibility to

noise.

The investigation of influence factors on the event rate of change detectors starts in Sec-

tion 3.1.3.1, which presents a relationship between the slope of the input signal, the event

threshold, and the event rate. Then, Section 3.1.3.2 relates the fundamentals of signal the-

ory, namely system bandwidth, and the signal bandwidth, to the maximum signal change

between events and the upper bounds for event rates.

3.1.3.1 The Fundamentals of Estimating Event Rates

This section presents the influence of the input signal x(t) and the event threshold δ on the

overall average event rate fe of a change detector. The resulting relationship has been first

introduced in the work of [96].

The average event rate fe describes the number of events that occur per time interval. There-

fore, it is defined by:

fe =
n∑n

i=1 Te,i

=
n

Te

(3.36)

where Te = tn − t0 is the time that passed till the occurrence of the n-th event en, or respec-

tively, the sum of all the time intervals Te,i

Te,i = ti − ti−1 = t(ei)− t(ei−1) (3.37)

between events. The event generation rule defines a relationship between the event threshold

δ, the absolute average slope
∣∣ẋi∣∣ of the input signal x(t) between events, and the time Te,i

The work presented in Section 3.1.3.1 was in part published in:
Bergner, F., Dean-Leon, E., Cheng, G., “Design and Realization of an Efficient Large-Area Event-Driven E-
Skin”. In: Sensors 20.7 (2020), p. 1965.
Copyright permissions: see Appendix D.
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between events in Equations (3.6) and (3.12), or more generally

δ ≤
∣∣ẋi∣∣ Te,i . (3.38)

Summing up all these inequalities leads to an estimate for n events

n δ ≤
n∑
i=1

∣∣ẋi∣∣Te,i ⇔ n ≤ 1

δ

n∑
i=1

∣∣ẋi∣∣Te,i. (3.39)

We combine Equation (3.36) and (3.39) and get

fe ≤
1

δTe

n∑
i=1

∣∣ẋi∣∣Te,i =
1

δTe

n∑
i=1

∣∣∣∣∣
∫ ti

ti−1

ẋ(t) dt

∣∣∣∣∣ . (3.40)

Exploiting the triangle inequality, that is,

n∑
i=1

∣∣∣∣∣
∫ ti

ti−1

ẋ(t) dt

∣∣∣∣∣ ≤
n∑
i=1

∫ ti

ti−1

|ẋ(t)| dt =

∫ tn

t0

|ẋ(t)| dt (3.41)

the estimation of Equation (3.40) further simplifies to [96]

fe ≤
1

δTe

∫ tn

t0

|ẋ(t)| dt. (3.42)

With the Equation (3.5) for the average of signals, this Equation (3.42) yields

fe ≤
1

δ
|ẋ(t)| . (3.43)

The resulting estimation of the average event rate fe in Equation (3.43) bases on two conser-

vative assumptions such that, in reality, fe can be considered as the upper bound for average

event rates. First, the triangle inequality presented in Equation (3.41) expresses a conser-

vative assumption. The average of the absolute slope |ẋ(t)| overestimates the sum of the

absolute averages of slopes between events

|ẋ(t)| ≥
n∑
i=1

∣∣ẋi∣∣ , (3.44)

whenever the slope ẋ(t) changes its sign between events. Second, the system bandwidth fB,

or respectively the sample rate fs, limit the time between events Te,i (Equation (3.38)). If the

average slope
∣∣ẋi∣∣ exceeds the limit defined by the bandwidth of the system fB, that is

∣∣ẋi∣∣ > δ fB, (3.45)

then Te,i is underestimated. Thus, fe is then overestimated.
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According to Equation (3.43), the average event rate fe inversely correlates with the threshold

δ:

fe ∝ 1/δ. (3.46)

under the condition that the input profile x(t) is identical.

3.1.3.2 The Limiting Factor of Bandwidth and Sample Rate

The previous section demonstrated that the event rate fe is tightly coupled to the average

slope |ẋ(t)| of the monitored signal x(t) and the event threshold δ, see Equation (3.43). Fur-

thermore, the sampling rate fs limits the event rate fe, see Equation (3.38) and (3.45). This

limitation of the event rate leads to additional errors. The signal x(t) could have changed

by more than δ between two samples, or respectively, events. Therefore, it is worthwhile to

investigate whether Band-Width Limited Systems (BWLSs) impose limits on event rates and

event encoding errors. BWLSs are insofar relevant since all practical systems are bandwidth

limited [71, 80, 63]. Even sampled systems relate to BWLSs via the Shannon-Nyquist The-

orem. Thus, findings for BWLSs would lead to results for both, time continuous and time

discrete event-driven systems.

A BWLS’s behavior is comparable to a low-pass filter since signal frequencies beyond its

effective bandwidth are damped to virtually zero. Figures 6, 7, and 8 respectively depict

the step response, the impulse response, and the gain in the frequency domain of an ideal

low-pass filter.

Figure 6 The step response of the ideal low pass filter with a cutoff frequency of fc = 3 kHz. The maximum slope is
max(dy(t)/dt) = ωc/π.
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Figure 7 The impulse response of the ideal low pass filter with a cutoff frequency of fc = 3 kHz.

Figure 8 The gain of the ideal low pass filter with a cutoff frequency of fc = 3 kHz.

Since the step response of a filter

y(t) = h(t) ∗ u(t) =

∫ t

0
h(t) dt (3.47)

just describes the integral of its impulse response, its impulse response analogically de-

scribes the derivative of its step response

ẏ(t) =
d

dt
y(t) = h(t) ∗ δ(t) = h(t). (3.48)

Thus, the maximum slope max(|ẋ(t)|) of an ideal BWLS with a signal range of x(t) ∈ [0, xmax]

is

max(|ẋ(t)|) =
ωc

π
xmax = 2 fc xmax = 2 fB xmax (3.49)

where fc is the cutoff frequency of the ideal low-pass filter, or respectively, the bandwidth fB
of the system. While this relationship already provides insights on how the system bandwidth
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limits the maximum possible slope of a signal, ideal low-pass filters are non-causal and do

not exist in real systems. It would be interesting to know how the relationship between system

bandwidth and maximum slope changes for real systems. Figures 9, 10, and 11 compare the

step response, impulse response and gain of Butterworth filters of orders one, two, and ten

with the ideal low-pass filter.

Figure 9 The step responses of the ideal low-pass filter and of Butterworth filters of order 1, 2, and 10. All filters implement a
cutoff frequency of fc = 3 kHz.

Figure 10 The impulse responses of the ideal low-pass filter and of Butterworth filters of order 1, 2, and 10. All filters
implement a cutoff frequency of fc = 3 kHz.
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Figure 11 The gain of the ideal low-pass filter and of Butterworth filters of order 1, 2, and 10. All filters implement a cutoff
frequency of fc = 3 kHz.

We observe that the range between the worst-case maximum slope (first-order filter) and the

best-case maximum slope of the step response range from ωc to ωc/π, see Figure 10. The

maximum slope of the step response of the second-order filter (namely ωc e−π/4 ≈ 1.43ωc/π)

is already close to the best-case, while the tenth-order filter practically matches the base-

case. The more realistic but less narrow filters, or respectively system bandwidths, account

for the larger maximum slopes since higher frequencies are not instantly attenuated.

The relationship between system bandwidth and maximum slope enables us to derive rela-

tionships between system bandwidth, maximum event rate, resolution, and error bounds. The

system bandwidth and the resulting maximum signal slope couples to the event threshold δ

and the inter-event time Te,i via Equation (3.38).

The first implication is that the time between events Te,i is bounded by the system bandwidth

fB. The change detector cannot react faster than the response time of the system, that is the

event rate fe is bounded by the system bandwidth fB

fe ≤ fB. (3.50)

Since the system bandwidth fB equals the sampling rate fs in sampled systems, the event

rate is analogically bounded by

fe ≤ fs. (3.51)

The second implication is that the maximum observable slope max(|ẋ(t)|) of a signal x(t)

entering the change detector is determined by the bandwidth fB,x of this signal. The upper

bound of fB,x is naturally half the system bandwidth (Shannon-Nyquist) of the change de-
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tector. Thus, considering that in the worst case the average slope
∣∣ẋi∣∣ between two events

equals max(|ẋ(t)|) and that the time between events Te,i is bounded by fB,x, see Equations

(3.38) and (3.50), we get a lower bound δmin for the event threshold δ

δ ≥ δmin =
max(|ẋ(t)|)

fB
. (3.52)

Assuming that the signal x(t) is ideally bandwidth limited (ideal low pass filter) the lower

bound for the absolute change δmin between events is

δ ≥ δmin =
2 fB,x (xmax − xmin)

fB
(3.53)

where xmin and xmax are the lower and upper bounds of the signal x(t) ∈ [xmin, xmax].

Equation (3.52) describes that the system bandwidth impacts the lower bound of the event

threshold. When this lower bound is held, the average absolute change between events is at

most δ. When the lower bound is violated, the change between events is larger than δ in the

cases where the system bandwidth limits the change detector.

The lower bound for the absolute change between events, and with it, the choice of the event

threshold δ impacts the sensitivity and the encoding error of the change detector. Both these

properties will be discussed in the following sections. Nevertheless, the derived relationship

already indicates that the system bandwidth fB, the bandwidth fB,x of the input signal x(t),

and its range impact both, the sensitivity and the encoding error of the change detector.

In summary, the event rate fe is tightly coupled with the event threshold δ and the profile of

the input signal x(t). The event rate fe correlates to the information rate via the absolute

average slope
∣∣ẋi∣∣. Furthermore, the system bandwidth fB and the signal bandwidth fB,x

define the upper bound of the event rate fe and the lower bound δmin for the change of the

signal between events.

3.1.4. Sensitivity of Change Detectors
The sensitivity of a sensing system defines the number of quantization levels the change of a

signal includes. These quantization levels are often termed ticks. For example, an ADC with

Nticks quantization levels and a voltage range of V (N) ∈ [0, Vmax] maps N ticks to a voltage

V (N) with

V (N) =
Vmax

Nticks

N. (3.54)

Then, the sensitivity Sadc(V ) of the ADC is defined by

Sadc(V ) =

∣∣∣∣dNdV
∣∣∣∣ =

Nticks

Vmax

[ticks/V] (3.55)
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and describes how many ticks encode one Volt. Since the ADC uses linear quantization, the

sensitivity is constant and independent of V . In general, the sensitivity of a signal x(N) is

defined by

S(x) =

∣∣∣∣dNdx
∣∣∣∣ (3.56)

and vice versa, the resolution R(x) is defined by

R(x) =
1

S(x)
. (3.57)

The resolution then describes how many units a tick encodes. To detect small changes of

x(t), the sensitivity should be maximized and the resolution be minimized.

For change detectors, the event threshold δ defines the change of the signal x(t) between

two events, see Equations (3.9) and (3.15). Assuming that the quantization resolution of a

discrete change detector (e.g. the resolution of the employed ADC) is lower than δ, then the

sensitivity of the change detector is, in general, dominated by δ.

If the input signal x(t) of a change detector is in the range x(t) ∈ [xmin, xmax] and we target

a resolution R(x) = Rx, then the event threshold δ is defined by

Rx =
xmax − xmin

Nticks

=
Nticks δ

Nticks

= δ . (3.58)

Since the sensitivity directly depends on the event threshold δ, maximizing the sensitivity

competes with minimizing the event rate fe. Furthermore, the best possible sensitivity is

bounded by δmin and thus by the system bandwidth fB and the signal bandwidth fB,x. In

the following section we will additionally see that the sensitivity is tightly coupled with the

encoding error.

3.1.5. Conversion Error of Change Detectors
The maximum error between the signal x(t) monitored by the change detector and the signal

encoded by the events is set by the maximum difference that can occur between two events.

The update condition of the change detector, Equations (3.9) and (3.15), describes this dif-

ference. A novel event containing the current value of the signal x(t) is not generated until

the difference of x(t) to the value of the last event x(t(ei−1)) is not at least δ. Thus, the

conversion error ε directly relates to the event threshold δ. The error ε between x(t) and the

signal encoded by events is at most

εmax = δ. (3.59)
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However, this relation only holds if δ ≥ δmin. This lower bound is set by Equation (3.52)

through the relationship between the maximum average absolute slope (limited by the band-

width of the signal) and the system bandwidth fB. If the signal bandwidth fB,x of x(t) is too

large in comparison to the system bandwidth fB, then the condition δ ≥ δmin might no longer

be fulfilled. Then, for δ < δmin the error εmax will be larger than δ whenever

∣∣ẋi∣∣ > δ fB (3.60)

that is, when the absolute average slope of x(t) is larger than the product of event threshold

and the system bandwidth of the event generator.

Consequently, the sensitivity and the encoding error are both directly determined by the event

threshold δ. A smaller δ results in a higher sensitivity S and a smaller encoding error ε, but

causes higher event rates fe. The direct dependency of the error on δ only holds for δ ≥ δmin.

That is a fact that has to be considered when decreasing δ to improve the sensitivity and to

reduce the encoding error. In the case that δmin severely impacts sensitivity and the encoding

error, the adjustment of fB,x can be considered or, if possible, the process or the sampling

rate could be improved to increase the system bandwidth fB.

3.1.6. The Influence of Noise on the Event Rate
This section analyzes the impact of noise on the event rate of change detectors. Ideally,

a change detector only creates events when it detects sufficient change in the input signal

x(t). Unfortunately, any input signal is superimposed with noise. This noise also generates

changes that could trigger the generation of events. Events generated by noise are undesir-

able and a good parameterization of the change detector should minimize their occurrence.

Therefore, this section investigates the dependency of the change detector’s parameters on

the properties of noise.

Noise z(t) superimposes the actual stimulus s(t) such that the input signal x(t) of a change

detector composes of:

x(t) = s(t) + z(t). (3.61)

Thus, noise impacts the event generation, and some events will be caused by noise rather

than by the change of the stimulus. Assuming Additive White Gaussian Noise (AWGN), then

z(t) is white noise with a normal distribution, an expected value µN of zero, and a variance of

Var(Z) = σ2
N, thus

Z ∼ N (0, σ2
N) (3.62)

The work presented in Section 3.1.6 was in part published in:
Bergner, F., Dean-Leon, E., Cheng, G., “Design and Realization of an Efficient Large-Area Event-Driven E-
Skin”. In: Sensors 20.7 (2020), p. 1965.
Copyright permissions: see Appendix D.
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In this case, since z(t) is normally distributed, 68% of its values zi (evaluations of its random

variable Z) would deviate from zero at most by σN, 95% at most by 2σN, and 99.7% at most

3σN. These deviations are changes that the event generator converts to events. Thus, the

standard deviation σN of the additive noise impacts the selection of the event threshold δ

(Figure 12). For example, an event threshold δ ≥ 3σN will reduce the impact of noise by

99.7%, since 99.7% of the changes in x(t) caused by noise will not surpass the threshold

δ.

Figure 12 The probability density function ϕ(x) for the normal distribution X ∼ N (0, 1) with σN = 1. In this example, the
threshold δ is set to σN. Then, P (|X| ≤ δ) = 68 % of the noise would be canceled (green area), and P (|X| > δ) = 32 %
would trigger events (red area).

The average rate of events fe,N solely caused by noise (the stimulus s(t) is assumed to be

constant) is then defined by

fe,N(fB) =


[
1− erf

(
0.5
√

2
)]

fB for δ = σN[
1− erf

(√
2
)]

fB for δ = 2σN[
1− erf

(
3
2

√
2
)]

fB for δ = 3σN

(3.63)

or approximately by

fe,N(fB) ≈


0.31731 fB for δ = σN

0.045500 fB for δ = 2σN

0.0026998 fB for δ = 3σN

, (3.64)

where fB is the system bandwidth of the change detector. For the time discrete change

detector, fB is the sampling rate fs. The function erf(·) is the standard Gauss error function

defined by

erf(x) =
2√
π

∫ x

0
e−t

2
dt. (3.65)
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Consequently, the noise in the monitored signal x(t) sets a lower bound for the event thresh-

old δ since noise should ideally create only very few events. This lower bound is defined by

the properties of the additive noise, that is σN. Furthermore, the event rate caused by noise

scales linearly with the system bandwidth fB. Thus, a faster system will generate more events

caused by noise.

3.1.7. Parameterizing Event Generators
The previous sections presented different properties such as event rate, sensitivity, encoding

error, and noise resilience and related them to the parameters and system properties of

change detectors. All these properties are relevant and impact the performance of the event

generators that employ change detectors for detecting novelty. Event generators should be

parameterized and designed such that the event rate stays as low as possible (ideally the

event generators do not generate any events when the monitored input signal is constant), the

sensitivity is maximized, the encoding error minimized, and the impact of noise is neglectable.

These goals compete with each other since parameters that are optimal for low event rates

hinge on sensitivity and encoding error. Furthermore, noise enforces a trade-off between

sensitivity and events solely caused by noise. The most important parameter for determining

event generators is the event threshold δ. The event threshold not only determines how

much novelty is required to trigger the next event, it is also tightly coupled to sensitivity,

encoding errors, and noise. The system parameters signal bandwidth, system bandwidth (or

respectively sample rate), indirectly impact the event threshold through imposing bounds on

the maximum event rate and the minimum event threshold, see Section 3.1.3.2.

The analysis of all these factors towards determining the best compromise leads to the fol-

lowing guidelines for tuning the event threshold δ:

1. When the encoding error ε should be lower than εmax, then choose δ < εmax

2. When the error ε has to be bounded by εmax, then choose δmin ≤ δ < εmax

3. When the sensitivity requires to detect changes down to a minimal change ∆min,

then choose δ < ∆min

4. When the idle event rate fe,idle, that is, the event rate for x(t) = const., or re-

spectively, the noise event rate fe,N has to be smaller than 1% of fB, then choose

δ > 3σN

5. When the overall average event rate fe is too high, then

a. Increase δ at the cost of reducing the sensitivity and increasing the encod-

ing error

The work presented in Section 3.1.7 was in part published in:
Bergner, F., Dean-Leon, E., Cheng, G., “Design and Realization of an Efficient Large-Area Event-Driven E-
Skin”. In: Sensors 20.7 (2020), p. 1965.
Copyright permissions: see Appendix D.
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b. Decrease fB at the cost of reducing the temporal precision

6. Similar to the signal-to-noise ratio (SNR), the σN of the noise source defines the

performance limits of the event generator, and thus, has to be kept as small as

possible.
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3.2. Event Representation and Communication Protocols

After the presentation of the generation of events in the previous Section 3.1, this section

focuses on the representation of events (Section 3.2.1) and protocols for their communication

(Section 3.2.2).

3.2.1. Event Representation
The event generators discussed in the previous section focused on novelty detection in mon-

itored signals or sensory stimuli. They employ change detectors that trigger activity when

novelty has been detected. Activity alone can not convey or represent information. Codes

have to be employed. Inspired by the neural codes found in nature (see Chapter 2), tech-

nical systems can utilize different encoding schemes to convey information through events.

In the following, we first discuss the different kinds of information events need to be able to

encode before we detail some of the prominent event encoding schemes applied in technical

systems.

In general, events need to encode

• the time of occurrence,

• the source/location,

• the type, and

• the magnitude

of information. While the activity, or more precisely, the presence of an event already encodes

the time of occurrence of information, its source, type, and magnitude have to be encoded by

different means.

A technical system can represent an event by an activity token. In its simplest form, an activity

token is just a pulse in a wire, similar to an action potential in a nerve fiber. The pulse then

represents the event, and the presence and absence of the pulse encodes the presence

and absence of the event. Similarly, the occurrence of the pulse in the wire encodes the

occurrence time of the event.

Since technical systems can implement much higher transmission rates per wire with up to

several Gbit/s in comparison to the approximately 1 kbit/s per nerve fiber in biology, technical

systems may time-multiplex activity tokens to share a common wire. This reduces the num-

ber of wires without affecting the performance of the system, a very desirable feature since

wires have many penalties in technical systems and are hard to realize when their number

increases.
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When several information sources feed activity tokens into the same wire, then these tokens

have to be distinguishable, they have to encode their source of origin. This can be achieved

in two ways: 1) Rather than by a one-bit token, the event is represented by a multi-bit serial

datagram, or 2) The activity token is represented by a bit code in several parallel wires. The

serial datagram for an activity token of option 1) requires only one wire but occupies the

shared wire for N different sources for M = dlog2(N)e bit intervals. The parallel activity

token of option 2) occupies each of its parallel wires only for the time interval of one bit, but

requires for N different sources M = dlog2(N)e wires. Either way, if the bit rate of a wire is

by a factor F higher than the temporal resolution required, then the wire could be shared by

F/M sources. Each source is then identified by an M -bit identifier, that is the source ID.

Additional information, for instance, type and magnitude, can similarly be encoded into the

activity tokens of the events with the penalty of demanding additional transmission capacity,

either through occupying the shared wire for a longer time with longer serial datagrams (option

1) or through additional wires in the parallel bus (option 2).

Neural codes in the brain encode information by context, which is spatial-temporal patterns.

Similar principles (with emphasis on temporal patterns since spacial information is already en-

coded by source IDs) can be exploited in technical systems to encode magnitude information.

Therefore, two or more events of the same information source together encode magnitude

information.

For instance, on and off events e↑ and e↓ could encode that the monitored signal increased or

decreased by δ. Then, the activity token of the event only needs one additional bit to encode

the type of the event. Thus, if a system uses Ms-bit for source IDs and Mv-bit for magnitudes,

then on/off events have a higher encoding efficiency when

Mv > 1 (3.66)

which is always the case. To reconstruct the magnitude, the event decoder increases/de-

creases the last memorized magnitude by δ according to the type of the event. Thus, encod-

ing/decoding magnitudes by on/off events have a low complexity while the gain of encoding

efficiency is substantial. The downsides of the on/off encoding scheme are initialization and

drift. The event decoder only receives differences. Thus, if the absolute value is not known,

e.g. cannot be assumed to be zero when having been inactive for a longer time, then the

magnitude can not be reset and the magnitudes reported by the event decoder will show a

constant offset with respect to the real signal. The reconstructed signal of the event decoder

also drifts. These drifts are caused by the loss of events or when the encoding error is not δ,

for example, when the event generator gets bounded by its system bandwidth whenever the

monitored signal’s slope is too large or the event threshold is too small, see Section 3.1.5.

The on/off event encoding scheme has been successfully applied in the event-driven sensing

systems of [86, 28].
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Rather than encoding the signal magnitude into bits, the magnitude can be also encoded as

time. Therefore, the event generator creates two events for each detected change. The low

event eL occurs on the detection of the change and thus encodes the time of occurrence and

the information source. The high event eH occurs after the low event such that the time

TLH,i = t(eH,i)− t(eL,i) (3.67)

between low and high events correlates to the magnitude x(ti) at ti = t(eL,i)

x(ti) ∝ TLH,i. (3.68)

The encoding efficiency of low/high events is better than encoding magnitudes to single ac-

tivity tokens when

2 (Ms + 1) < Ms + Mv (3.69)

which simplifies to

Ms + 2 < Mv. (3.70)

The encoding efficiency of low/high events always surpasses events encoding the magnitude

in their activity tokens when the event generator is time continuous and range continuous. In

this case, given that the events are conveyed with a high enough temporal precision, low/high

events encode magnitudes with approximately continuous precision. A comparable precision

can not be reached by magnitudes encoded with Mv-bit. The downsides of the low/high event

encoding scheme are the complex decoding and the high demands on temporal precision.

The low/high event encoding scheme has been successfully applied in the event-driven vision

sensing systems of [122].

3.2.2. Communication Protocols for Events
The previous section depicted the encoding of information in events and their representation

in activity tokens. This section focuses now on communication protocols to convey these ac-

tivity tokens, that is, the events. Communication protocols for events have to comply with two

key aspects to ensure the efficient communication of events and the event-driven mechanism

in event-driven systems. The protocol has to ensure

1. the efficient, fast, and non-complex arbitration of events onto shared communi-

cation buses, and

2. the asynchronous conveyance of information.

As discussed in the previous Section 3.2.1, the technical system requires an arbitration to fully

take advantage of faster communication capabilities. Both the fast arbitration and the asyn-

chronous communication ensure that the communication protocol preserves the occurrence
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time of the events. With that, the communication protocol preserves the time information

encoded in the events, and it ensures that activity drives the communication and can trigger

the handling of information in the following stages of the event-driven information handling

system.

Communication protocols for events can achieve the required characteristics in two differ-

ent ways. First, the communication protocol can be fully realized in specifically customized

asynchronous hardware with a hardware arbiter and an asynchronous communication bus

for events. Then, the activity is arbitrated through a handshaking protocol. Second, the

communication protocol can be realized with standardized communication buses and asyn-

chronous software protocols. The former approach appeals with superior performance but

often hinges on flexibility and complex arbitration. The latter approach wins over with flexibil-

ity, standardized, and hardware-independent arbitration at the cost of reduced performance

and less timing precision.

The following two sections present the two most prominent communication protocols for

events and detail their properties regarding arbitration and asynchronous information con-

veyance. Both protocols have been introduced in Chapter 2 and the focus lies now on the

aspects relevant for this section.

3.2.2.1 Address-Event-Representation (AER) Protocol

The AER (see Figure 13) represents events by activity tokens on a parallel and more recently

also a serial asynchronous hardware bus [90, 22, 126].

Figure 13a provides a conceptual overview of AER. N event sources 1, . . . , N , e.g. sensory

event generators, produce events. Each of these sources has an exclusive connection to

the address encoder. The address encoder arbitrates the activity of these N connections

employing a fair arbitration scheme (e.g. round-robin) and time-multiplexing such that the

events of N sources can be represented by events on a common asynchronous, parallel

AER bus. The events of N sources can be represented by M -bit addresses. Thus, the AER

can reduce the number of wires by a factor N/M . The address decoder de-multiplexes AER

events back to events in connections 1, . . . , N . After that, just as before, the connection itself

encodes the source of the events.

Figure 13b concretizes the arbitration and its self-timed handshaking scheme. The whole

protocol is driven by events. The event source decides when an event is sent. Thus, the

information is not synchronized to any clock or requested by the receiver. The conveyance of

an event follows a four-phase handshaking cycle as depicted in Figure 13c. First, a source

requests the arbitration of an event through a request line (REQ). Then, the arbiter (address

encoder/decoder) acknowledges the request through the acknowledge line (ACK). Finally,

the event source releases the request after which the arbiter releases the acknowledgement,
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and the cycle finishes. One of these cycles represents the timeline/pulse, or respectively, the

activity token of an event, while the address bus encodes the source of the event.

Figure 13d depicts the protocol for serial AER replacing the parallel bus between address

encoder and decoder [126]. In serial AER the event is serialized into an event datagram

using only one pair of differential wires (LVDS). The datagram uses a start bit S, M address

bits, and a parity bit P. In contrast to parallel AER, the datagram itself represents the activity

token through its format. The start and end of the token are defined by the start and end of

the datagram.

Address
Encoder

Address
DecoderAER Bus

(a) Conceptional overview. The address encoder maps N inputs to addresses of length M . The address decoder maps the
addresses back to N outputs.

Address
Encoder

Address
DecoderAER Bus

(b) Self-Timed transmission. The source requests to send and the receiver acknowledges the request.

addr
ADDR

REQ

ACK

1.

2.

3.

4.

Event

(c) Parallel AER. The address is transmitted on a
parallel bus. The request and acknowledge signals
define the validity of the activity token (event).

LVDS addrS P

Event

(d) Serial AER. The address is serialized into a
datagram with a start bit and a parity bit.

Figure 13 The Address-Event-Representation Protocol. All figures are adopted from [90, 22, 126].

The AER protocol realizes fast and efficient arbitration of events to a common communi-

cation bus. The communication bandwidth is only limited by the bandwidth of the bus and

Efficient Realization of Large-Area E-Skin based on Biologically Plausible Principles 59



the handshaking cycle time, or respectively, the datagram length. Events are represented

and communicated asynchronously. Thus, the protocol provides a high temporal resolution.

However, the arbitration is complex and not flexible. The protocol requires additional commu-

nication lines, and event sources and sinks cannot be easily added or removed. Furthermore,

the AER protocol relies on customized hardware which additionally hinges on flexibility.

3.2.2.2 Send-on-Delta Principle (SoDP) Protocol

The SoDP is a protocol for communicating events that are completely hardware independent

[114, 97, 99]. The SoDP represents events by packets on an asynchronous communication

interface (see Figure 14). The arbitration is handled by the protocol of the communication

interface.

Figure 14a provides an overview of the various ways to establish event-driven communication

channels between information sources and sinks through links employing the SoDP protocol.

If multiple sources share a common communication interface, then an arbiter implements a

fair sharing of the bus between the information sources. Packets representing events and

containing their information, thus termed event packets, are queued, scheduled (e.g. round-

robin), and finally placed on the common bus. Similar to the events in AER, the event packets

are self-timed and are produced by the event sources (e.g. event generators) and thus drive

the communication. The occurrence of an event packet encodes the occurrence time of

the event it represents. The labels (i), (ii), (iii) in Figure 14a depict different event sources

1, . . . , N . An event source could be a clock-driven information source connected to an event

generator that produces event packets (i), an information-driven sensor with an interrupt line

connected to an event generator (ii), or event-driven sensors or algorithms that produce event

packets (iii). The SoDP decoder de-multiplexes the shared bus to single-ended SoDP chan-

nels or to sinks that are clock-driven (v) or request information at their own rate (iv).

The activity token of an event packet is represented by its datagram, see Figure 14b. The

start/end of the datagram represents the borders of the event’s activity token. The event

packet at least encodes the ID of the information source and usually also the magnitude and

the type of information into its payload. The frame of the event packet datagram is usually

defined by a header to mark the start of the datagram, the payload containing the information

to convey, the Error Correction Code (ECC) to increase the robustness of the payload against

errors, and the End of Frame (EOF) to mark its end.
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clk
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data 1

(i)

(ii)

(iii)
NN id

data

(iv)

(v)

(a) Conceptional overview. The arbiter maps N inputs to a common bus. The decoder maps the datagrams back to N
outputs.

header id payload ECC EOFSoDP Bus

Event

(b) Representation of an SoDP event as a datagram containing a header, a source id, a payload, an error correction code, and
an end-of-packet token.

Figure 14 The Send-on-Delta Principle: (a) Overview, (b) SoDP Event Datagram.

The SoDP protocol realizes fast and non-complex arbitration exploiting standard communi-

cation protocols for asynchronous interfaces. Its hardware independency allows for its great

flexibility. Events are represented and communicated asynchronously enabling the SoDP

protocol to realize event-driven communication, even between non-event-driven sources and

sinks. This flexibility has to be paid by a reduced encoding efficiency. The SoDP protocol re-

lies on existing non-specialized communication interfaces and protocols (e.g. User Datagram

Protocol (UDP)). Thus, the temporal resolution of the SoDP is lower than in the case of AER

and is usually not sufficient to encode information in the context between events, for instance,

in the timing between events. Magnitude, type, and source ID information are stored in the

payload of the event packets, increasing the number of bits per event.
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3.3. Event-Driven Information Handling

The previous two sections, Sections 3.1 and 3.2, focused on generating event-driven infor-

mation, and on representing and conveying event-driven information. However, complex sys-

tems, artificial or biological, additionally process information and generate actions to achieve

desired system behaviors. The complete information flow in a perception-action loop [52] or

a system control loop, that is, acquiring, transmitting, processing, and acting on information

[72], describes the process of handling information.

This section now focuses on the missing part of processing/acting and introduces the the-

ory and dominant principles for creating systems in which novel information represented by

events drives computations and reactions. These principles contrast to clock-driven computa-

tions and reactions where updates are dictated by a system clock. Section 3.3.1 summarizes

these principles while Section 3.3.2 derives and evaluates a model that estimates the result-

ing efficiency gain of event-driven computations and reactions.

3.3.1. Event Handling – Activity on Demand
To achieve a complete event-driven system, that is an event-driven information handling sys-

tem, processing and reactions need to be driven by events. From the information theory point

of view, algorithms and computations realizing reactional behaviors actually should only have

to compute updates and trigger actuation when novel information is available. This novel

information could, for instance, be a changing system state (internal information) or sensory

feedback (external information). In this context, a system, that is neither changing its internal

state (e.g. damping a motion until it gets stationary), nor receiving novel sensory inputs, is

stationary/idle. A stationary system does not need to process information and is thus inac-

tive.

A system in a clock-driven setup can be stationary but still, compute updates with an infor-

mation rate of zero. The clock dictates the computation of updates whether they are strictly

necessary or not. That is, a stationary clock-driven system demands network bandwidth and

processing power without computing a new result/reaction.

Contrarily, an event-driven system is only active when it is not stationary. The updates of

its underlying algorithms are triggered by events that may originate externally (sensory feed-

back) or internally (internal state changes). Thus, event-driven processing and actions require

implementations that can realize activity on demand. The computations and actions should

rest/sleep until novel information requires the computation of an update.

From these insights, we expect that event-driven information processing consumes less power

and reduces computation demands, because the event-driven system is, on average, less ac-

tive and executes fewer computations. Similar to the fact that the event rate linearly relates to

the transmission bandwidth occupied in communications, we expect that the event rate also
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linearly relates to demands on computational power, that is

bc ∝ fp = fe (3.71)

where bc is the transmission bandwidth in bit/s, fp the event packet rate in packet/s, and fe

the event rate in event/s, and

finstr ∝ fp = fe (3.72)

where finstr is the computational load in Instructions Per Second (IPS).

Chapter 2 introduced related work that addresses the implementation of the discussed event-

driven communication and processing principles. Chapter 4 will introduce the implementation

of event-driven information handling in Large-Area Skin Systems (LASSs), and particularly

how event-driven systems can be realized on standard computing systems (Section 4.2).

Both, Chapters 4 and 5 will validate the effectiveness of event-driven information handling.

3.3.2. Event Handling – Processing
Following the discussion of Section 3.3.1, it seems plausible that the processing demands

in terms of CPU usage or computation time u increase linearly with the number of packets

(events)

u ∝ fp. (3.73)

Event-Driven systems would already profit from such a directly proportional relationship since

their reduction of the transmission rate would directly and proportionally impact their process-

ing demands in information handling. That is, a reduction of the transmission rate would result

in an equal reduction of computational load.

However, the experimentation in Chapter 4 indicates that the relation between CPU usage

and packet rate (directly correlates to transmission rate) is better than linear, that it is ap-

proximately logarithmic. This finding would imply that the investigated processing algorithm

is more efficient when processing more information per instance of time.

To better understand this behavior, this thesis introduces a realistic CPU usage model that

accounts for the queuing of information, the inter-scheduling delay of threads, the setup time

for resuming threads, and the processing time per packet. If this model fits well with the

measurements of the real system, then the increase of efficiency for larger packet rates is

accounted for by the virtual reduction of the setup time per packet through queuing.
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3.3.2.1 CPU Usage Model

The model assumes that a thread processing a packet causes two types of CPU usage. First,

a computation time ts is spent to resume the thread. Then, a computation time tp is spent

to process the packet. While the setup time ts is spent once, when the thread reenters the

running state, the packet processing time tp is spent for each processed packet. Thus, when

each packet is processed immediately before the next packet arrives, then the CPU usage

per packet is defined by

du

dp
= ts + tp (3.74)

where p denotes the number of packets. During this condition, the model employs a queue

with a length of one.

The model furthermore assumes that the scheduler does not immediately resume a thread

that has just been suspended (fair scheduling, e.g. round-robin). This assumption is valid

since the scheduler has to fairly share computation time between threads. This turnaround/-

idle time tI, until a thread is rescheduled, in combination with ts and tp, defines the packet

rate fp,b beyond which the queue length q is, in average, larger than one:

fp,b =
1

ts + tp + tI
(3.75)

with

q ≤ 1 for fp ≤ fp,b and

q > 1 for fp > fp,b. (3.76)

As long as the thread processes more packets per second than packets arrive, the queue

length stabilizes such that the packet rate fp equals the packet processing rate. This condition

leads to the following relationship

ts + tp q + tI = q
1

fp
. (3.77)

That is, the time that passed between resuming the process twice equals the time it took to

accumulate q packets in the queue when packets arrive with a rate of fp. This relationship

leads to a formula for the average queue length with a dependency on the packet rate

q(fp) =
ts + tI

1/fp + tp
. (3.78)
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Furthermore, the CPU usage per packet for queue lengths greater than one can be computed

with

du

dp
= ts + tp q = q

1

fp
− tI (3.79)

which with Equation (3.78) leads to

du

dp
=

1

fp

[
1−

tI
ts + tI

(
1− tp

)]
. (3.80)

Thus, with the results of Equations (3.74) and (3.80) we can calculate the CPU usage per

second with the dependency on the packet rate

u(fp) =


(
ts + tp

)
fp if fp ≤ fp,b

1− tI
ts+tI

(
1− tp fp

)
if fp > fp,b

. (3.81)

The packet rate fp,s, where the system will saturate with u(fp,s) = 1, is defined by

fp,s =
1

tp
(3.82)

and is thus only dependent on the time needed to process one packet.

Figures 15, 16, and 17 depict the different effects of the parameters of the CPU usage

model

pu =
(

ts tp tI

)>
(3.83)

where we assume

pu =
(

16 16 150
)>

µs. (3.84)
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Figure 15 Decreasing/Increasing ts only slightly impacts fp,b but significantly influences the slope of the CPU usage for
fp ≤ fp,b. A larger ts induces a larger slope. The model has been parameterized with pu as defined in (3.84).

Figure 16 Similar to ts, see Figure 15, decreasing/increasing tp only slightly impacts fp,b but significantly influences the slope
of the CPU usage. Additionally, tp severely impacts fp,s. A larger tp decreases fp,s. The model has been parameterized with
pu as defined in (3.84).

Figure 17 Decreasing/Increasing tI mainly impacts fp,b. A larger tI decreases fp,b that is, packets are queued earlier. The
model has been parameterized with pu as defined in (3.84).
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Figure 18 visualizes the queue length of the model. Here, we set the limit of the queue qmax

to 500 packets. According to the model, q would reach infinity at fp = fp,s. The presented

model is only valid until the maximum queue length qmax is reached. After that, the relation

assumed in Equation (3.77) is no longer valid. In reality, the accuracy of the model will

deteriorate even before qmax is reached since other effects that are not modeled will gain

influence and dominate the behavior. For example, the scheduler could increase the priority

of the process because it has a high demand for computational power, or the CPU could

boost the execution for short intervals. The scheduler could even execute the process without

performing further context switches. These effects would delay the saturation of the queue

and push the measured CPU usage below the expected values predicted by the model.

Figure 18 Queue length q of the model in number of packets. The queue length is limited to the maximum queue length qmax.
The model has been parameterized with pu as defined in (3.84).

3.3.2.2 CPU Usage Model – Validation

The presented CPU usage model can be validated with the results that have been obtained

in experiments with a real event-driven Large-Area Skin System (LASS), see Chapter 4. The

measured CPU usage for various packet rates can be drawn on to fit the CPU usage model,

see Figures 19 and 20. The parameters pu of the models have been obtained by employing

non-linear least square fitting. For the clock-driven system the results are

pu,d =
(

15.6 14.1 156
)>

µs (3.85)

and for the event-driven system

pu,e =
(

11.2 12.4 142
)>

µs. (3.86)

The parameters lie within reasonable ranges that could be expected in normal computer

systems and the differences between the clock-driven and the event-driven operation modes

are small. The model indicates that the event-driven system has a slightly better performance
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than its clock-driven counterpart. The results reliably indicate that the model describes the

phenomenons of the real system sufficiently well.

Figure 19 The model fits the statistical results for the skin driver program running in clock-driven mode on the robot H1. More
information on the experiment can be found in Section 4.6.

Figure 20 The model fits the statistical results for the skin driver program running in event-driven mode on the robot H1. More
information on the experiment can be found in Section 4.6.

3.3.2.3 CPU Usage Model – Limitations

Naturally, the proposed CPU usage model can only account for the dominant effects within

specific operational conditions of a very complex and dynamic system with many stochastic

disturbances. The model describes the system behavior well up to a CPU usage level of

around 80%. Above this level, effects that are not modeled, such as queue saturation, packet

loss, jitter, temperature, scheduling accuracy, and the competition between threads, will gain

influence and deteriorate the accuracy of the model.

In summary, the presented CPU usage model describes the relationship between CPU usage

and packet rate with good accuracy in real systems for a wide range of packet rates. The

model fits well to support the evaluations of real experimental measurements (in Chapter 4)
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and provides insights to explain the counter-intuitive effect that processing packets and thus

events gets more efficient for larger packet/event rates.
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3.4. Summary

This chapter outlined the working principles of change detectors that are used in event-

generators to detect novelty and generate events. The theoretical analysis of these principles

led to insights into how system parameters, such as the event threshold, and the signal and

system bandwidth, influence and limit the performance of event generators. This resulted in

guidelines for the effective parameterization of change detectors in event generators.

Event generators consist of a change detector, an event encoder, and an event transmitter.

The theory of event representation and communication, which centered around activity tokens

and context, and communication protocols for activity tokens, provide the background for

designing effective event encoders and transmitters, completing the fundamentals for event

generators.

The presented principle of activity on demand, which is the core of event-driven information

handling, explained the potential efficiency gain in event-driven systems. Network bandwidth

and CPU usage emerged as promising indicators for their evaluation. Additionally, the in-

troduction of a CPU usage model for event-driven systems in standard computer systems

indicated the expected behavior between the number of events per second and the CPU

usage demanded in event-driven information processing.

This chapter set the stage for designing an efficient novelty-driven approach for LASSs that

is the objective of this thesis, and for the subsequent comprehensive evaluation of realized

LASSs that empirically proves the efficiency and effectiveness of this thesis’ approach.
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4. Realizing an Event-Driven Large-Area Skin
System

This chapter demonstrates that the initial idea of tailoring the novelty-driven approach to

Large-Area Skin Systems (LASSs) is feasible and leads to the realization of efficient LASSs,

which is the central theme of this thesis.

This chapter first draws on Chapters 2 and 3 to tailor the novelty-driven approach to a design

that is suitable for LASSs (Section 4.1 and 4.2). Chapter 2 delivers the basis for the design

in terms of design constraints for LASSs and a suitable implementation of an Event-Driven

System (EDS). Chapter 3 provides the theoretical background for efficient designs.

Then, this chapter validates the feasibility and correctness of the determined design by real-

izing it in a real LASS (Section 4.3). The realized e-skin incorporates a very large number of

multi-modal tactile sensors (more than 10 000 sensors).

In the last step, this chapter empirically evaluates and assesses the design and realization of

the LASS (Sections 4.4 to 4.7). The results demonstrate the efficiency of this thesis’ novelty-

driven approach for LASSs with a significant boost in performance. Event-driven LASSs are

feasible, efficient, and, for the first time, enable the effective handling of tactile information in

a large-area e-skin with more than 10 000 sensors.

The results of this chapter contribute a significant part to the objective of realizing efficient

large-area e-skin with the capability to provide the tactile feedback of large-area contacts

in physical interaction. The validation of the realized LASS’s effectiveness for large-area

feedback in large-scale applications follows in Chapter 5.
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4.1. Event-Driven Sensing for Efficient Large Area Skin

This section presents the designs to realize event-driven sensing (as outlined in Section 3.1)

for e-skin systems. Therefore, this section first introduces the approach and the expected

efficiency gain (Section 4.1.1). Then, it presents further details for designing event genera-

tion in the exchangeable modules (elements with multi-modal sensors and local processing

capabilities) of modular e-skin systems (Section 4.1.2).

4.1.1. Event-Driven Sensing in Large-Area Skin
This section focuses on the actual realization of LASSs considering the collected insights of

Chapters 2 and 3. As pointed out in Chapter 2, modularity, self-organization, and bio-inspired

event-driven information handling may significantly contribute to tackling the challenges of

LASSs, and Chapter 3 has delivered the theory behind the event-driven approach. This

chapter incorporates both results in the designs it devises.

4.1.1.1 Realizing Event-Driven Sensing in Large-Area Skin

S1
S2

S3
S4

module

S1
S2

S3
S4

PC

LED
Proximity Normal Force

TemperatureAcceleration

Port 1Port 2

Port 3Port 4

14 mm

Micro-

Controller

Conceptualization Realization

Figure 21 Conceptualization: Each sensor module/skin cell employs different sensors (e.g., S1, . . . , S4) and a microcontroller
(µC) for local processing capabilities. The modules are inter-connected, form a network of modules, and provide a bidirectional
communication path between each module and the information handling system, for example, a computer (PC). Realization:
One skin cell of an e-skin system [109], more details in Section 4.3.

Self-organizing and modular e-skin systems tackle most of the challenges of LASSs. There-

fore, a LASS should group sensors into smart modules. Within this thesis, a module is re-

ferred to as a smart module when the module provides local processing capabilities and when

a group of modules can distributedly organize themselves into a robust network of commu-

nicating modules, see Section 2.2.3 and Figure 21. The local processing capabilities (e.g.,

microcontrollers) of these smart modules implement the self-organizing network capabilities

in the network of modules. The realization of such a modular and self-organizing skin system

then only lacks the information handling efficiency to effectively scale up to LASSs.

The work presented in Section 4.1 was in part published in:
Bergner, F., Dean-Leon, E., Cheng, G., “Design and Realization of an Efficient Large-Area Event-Driven E-
Skin”. In: Sensors 20.7 (2020), p. 1965.
Copyright permissions: see Appendix D.
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Introducing event-driven sensing and information handling to a modular and self-organizing

e-skin system can extensively improve its efficiency. Therefore, Section 2.4 determined the

Send-on-Delta Principle (SoDP) as the event representation and communication protocol that

suits best for this purpose. The realization of this event-driven e-skin requires event-driven

sensing at the level of the modules, and event-driven communication between modules and

higher-level information handling. By exploiting their local processing capabilities, the mod-

ules can realize both requirements and implement event generators following the principles

of the event-driven approach (as presented in Section 3.1).

Such a modular event generator, that is, a event generator in the module of an e-skin, pro-

duces SoDP events that are packets in the communication network of the modules. The

self-organizing network of the modular e-skin can consequently convey these event pack-

ets similar to the packets of a Clock-Driven System (CDS), as long as the network allows

asynchronous communication. Most standard communication systems, for instance, RS232/-

Universal Asynchronous Receiver Transmitter (UART) or Ethernet/User Datagram Protocol

(UDP), fulfill this requirement. Section 4.2 will further elaborate on the realization of efficient

event-driven information handling in the higher layers.

4.1.1.2 Event-Driven Sensing increases the Efficiency of Large-Area Skin

Event-driven sensing will significantly reduce the networking and processing load in e-skin in

comparison to clock-driven e-skin.

A clock-driven e-skin continuously induces high information handling loads. These loads Ld

scale linearly with the sampling frequency fs and the number of sensors ns:

Ld ∝ fs ns. (4.1)

Contrarily, event-driven e-skins only require transmission bandwidth and processing power

when they are active, that is, when they handle events. These loads depend on the event rate

fe

Le ∝ fe (4.2)

and can be approximated by the number of activated sensors na that register novel informa-

tion

Le
∝∼ na (4.3)

or more concretely by the shape of the stimuli xa(t) these sensors register:

Le ∝
na∑
a

|ẋa(t)|. (4.4)
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An ideal event-driven e-skin system would not create and handle events when its sensors

do not register stimuli with novel information. Therefore, its event rate fe would be zero. In

the worst case, all sensors are activated and stimulated with maximum information rate. The

event rate fe then reaches the cumulative sample rate of a CDS

fe = fs ns, (4.5)

when utilizing discrete event generators in compound architectures, for example, SoDP. The

event rate could even surpass that limit in systems employing neuromorphic event-driven

sensors, since these sensors usually achieve higher bandwidths than clock-driven sensors

[86, 120]. However, for e-skin systems, especially LASSs, the worst case is very improbable.

Touch stimuli are usually localized at spots on the body, and it is hard to stimulate the whole

body with a non-constant profile for longer periods. Even covering the LASS of a robot with

a cloth and moving this cloth to create additional stimuli can by far not reach the excitation

levels necessary to deteriorate the performance of the EDS to that of a CDS [20] (Section

4.6). Consequently, the event rate of an event-driven e-skin

fe � fs ns (4.6)

is on average much lower than the cumulative sample rate of a clock-driven e-skin.

In summary, realizing event-driven information handling in LASSs will definitely improve their

information handling efficiency and will thus contribute to render these systems feasible to

operate in real-world applications. This postulated effectiveness will be further investigated

and validated in Sections 4.4, 4.5, and 4.6, and in Chapter 5.

4.1.2. Modular Event Generation for Large-Area Skin
Modular event generation requires the design of event generators in the smart modules of a

LASS (Section 4.1.1). Therefore, a modular event generator realizes a time-discrete change

detector for each of the module’s sensors, see Figure 22, to convert clock-driven sensor

samples to events.

The event generator of a module (Figure 22) samples a sensor and compares the current

sensor value x(tk) with the sensor value x(tKi−1) of the previous event ei−1. Whenever the

absolute difference between the current sensor value and the value of the last event is larger

than δ, then the change detector triggers the generation of a new event ei (Equation (3.14)).

The event generator represents events according to the SoDP. The event packet generator

takes these events and creates and transmits an event packet for each event. Event packets

contain an ID to identify the sensor and the sensor value x(tKi) that triggered the creation

of the event/event packet. Modules that employ more than one sensor need to implement an

event generator for each sensor l but can share the packet generator.
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Figure 22 A networked module/skin cell with local processing capabilities (see Figure 21), can realize an event generator and
an event packet generator representing events according to the SoDP. A sensor with an ID is sampled and its value x(tk) is
compared with the value x(tKi−1

) of the previous event ei−1. When the absolute difference is below δ, then the next sample
is acquired, otherwise, a new event ei is generated with a sensor value x(tKi

). The event packet generator creates an event
packet containing the ID of the sensor and the sensor value x(tKi

). The red background indicates components that are strictly
clock-driven and the green background components that are event-driven.

The spatial distribution of the sensors in a module is close and the temporal resolution of

the clock-driven sensors is limited by their sampling rate. Thus, the probability that several

sensors (of different modalities) in a module are excited at the same time is high. This proba-

bility leads to an optimal number of sensors per packet generator that eventually reduces the

overhead of event packets. This optimal number will be further analyzed in the experimental

validation of Section 4.4.6.

Events occurring at the same time can share one common event packet, see Figure 23. Shar-

ing the event packet reduces the overhead of the packet frame that is then only required once

instead of for each event. An event packet containing several events of a module encodes

the information as depicted on the right side of Figure 23. That is, the payload of the event

packet is ei = (ID , mask , x1, . . . , xl).

Figure 23 depicts event and packet generators within one module, realizing a modular event

generator with sensors sharing event packets. Event packets of a module identify the module

by a module ID, and sensors by a mask. The sensor values xl(tKil ) follow the mask field in

the packet.
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Figure 23 Modules/skin cells employing several sensors need one event generator EGl per sensor Sl. To reduce the
overhead of sending an event packet for each sensor of a module, the module can stack events eil occurring at the same time
tKi1

= · · · = tKil
into one event packet ei. This event packet contains then the module ID to identify the module, a mask to

identify the sensor, and the sensor values xl(tKil
) of the events eil .

The event packets of a modular event generator change in size according to the number of

events occurring at the same time. While network protocols usually support packets with

dynamic sizes, some may require a predefined fixed packet size. In the case of a fixed packet

size, a good trade-off has to determine the optimal packet size that minimizes overhead. This

trade-off is a compromise between the overhead of sending several small packets when not

all events fit into one packet and the overhead of sending partially empty packets when only

one event occurs. Section 4.4.6 will further analyze this trade-off.

In the following, the implementation presented in Section 4.3.3 will validate the presented

design for modular event generation, and Sections 4.4, 4.5 and 4.6 will evaluate its effective-

ness.
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4.2. Event-Driven Information Handling for Large-Area Skin

This section presents the designs for realizing event-driven information handling for LASSs

on standard computing systems without the need for specialized hardware. These designs

allow for very flexible event-driven implementations in complex systems. These designs thus

significantly contribute to this thesis’ objective to realize efficient large-area tactile feedback

in complex systems allowing machines to implement, for the first time, effective physical in-

teractions with large-area contacts.

Section 4.2.1 details the realization of asynchronous computation on-demand in standard

computing systems, a key element of event-driven information handling. Then, Section 4.2.2

presents the design of effective interfaces to efficiently exchange information between event-

driven LASSs and clock-driven information consumers.

4.2.1. Event-Driven Information Handling on Standard Computing Systems
An event-driven LASS not only relies on event-driven sensing in its deployed e-skin, see

Section 4.1, it also heavily relies on the handling of its information at higher processing lay-

ers, see Figure 24. Specialized bio-inspired event-driven computing systems with massively

parallel computing capabilities are emerging [51, 67, 95, 123, 110, 38, 113], but require spe-

cial hardware. While these systems provide very good performance, the bridging to CDSs,

for example when connecting an event-driven system to a standard robot platform, requires

complex algorithms and specialized hardware to decode events and provide information to

the CDS. Therefore, this thesis proposes to employ the SoDP on standard computing sys-

tems to provide a more flexible and practical realization of event-driven information handling

for LASSs – eliminating the needs for specialized hardware.
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Figure 24 The Event-driven information handlers exploit the Signaled-Wakeup principle (Appendix B). The fd are file
descriptors, while the sd are socket descriptors. The processes are denoted with P and the threads with T. The Process P2
contains a CDS and employs an event decoder to bridge from the event-driven to a clock-driven system. The endpoints (EP)
between skin patches and interfaces refer to the realization of extended modularity in the interfaces (Appendix A, Figure 80).

The work presented in Section 4.2 was in part published in:
Bergner, F., Dean-Leon, E., Cheng, G., “Design and Realization of an Efficient Large-Area Event-Driven E-
Skin”. In: Sensors 20.7 (2020), p. 1965.
Copyright permissions: see Appendix D.
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Standard computing systems utilize multi-core processors and multi-thread capable Operat-

ing Systems (OSs). These OSs schedule concurrent tasks by pausing the execution of a

task (preemption) and resuming the execution of another task. In this way, tasks can share

computation time and, as long as the switching between tasks is faster than their required

reaction time, these operating systems effectively realize processing that is virtually concur-

rent and asynchronous. Multi-core systems improve concurrency since several computations

can physically take place at the same time. OSs handle the fair splitting of computation

time (timeslices) between tasks (processes and threads), ensuring that tasks respond as re-

quested. To increase the efficiency of scheduling, tasks can yield their computation time and

ask the operating system to resume on the occurrence of a signal. The yielding and resuming

on the occurrence of a signal [75] is referred to as Signaled-Wakeup Principle (SWP), see

Appendix B. This principle, combined with multi-threaded programs, allows us to realize an

event-driven information handling system on standard computing systems. The implemen-

tation presented in this thesis is realized on a Linux standard OS (Section 4.3). The imple-

mentation could further profit from a real-time kernel with reduced latencies. The principles

for realizing event-driven information handling on standard computing systems are available

on many operating systems (e.g., Windows, Mac OS), thus, the implementation is not strictly

limited to the Linux OS.

The resulting event-driven system consists of event generators and event consumers, see

Figure 24. Event generators can be located inside and outside the computing system. Section

4.2.1.1 discusses their connection to the signals of an OS and Section 4.2.1.2 presents the

design of event consumers.

4.2.1.1 Connecting Event Generators

Event generators have to trigger the signals (e.g., file/socket descriptors) of the operating

system to exploit the Signaled-Wakeup Principle (SWP) for realizing event-driven informa-

tion handling in standard computing systems. Then, the OS can wakeup and resume the

computation of event consumers when new events arrive.

Event generators and event consumers may reside on different hardware, for example, the

event generators of a large-area event-driven skin reside in the modules of the e-skin system

and thus outside the computing system, see Figure 24. These external SoDP event genera-

tors, see Section 4.1.2, create event packets that are immediately sent to the communication

network and forwarded to the information handling system. Most operating systems connect

the arrival of network packets directly to signals (fd /sd), see Figure 24, such that the events

of an external event generator eventually trigger the signals of the operating system.

Event generators residing inside the computing system may connect to the signals of the

operating system (fd /sd), and thus connect to event consumers, in two manners. Threads

that share the same process can use file descriptors (fd) to connect to event generators, see
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process P3 in Figure 24. There, thread T1 (event generator) is connected to thread T2 (event

consumer) via the file descriptor fd. Threads that are attributed to different processes can

connect and share information through the local virtual network, see processes P3 and P4 in

Figure 24. There, thread T1 (event generator) of process P3 is connected to thread T1 (event

consumer) of process P4 via the socket descriptor sd.

4.2.1.2 Event Consumers—Event-Driven Programs

Event consumers are event-driven programs that handle information on the arrival of new

events. Therefore, event consumers have to wait for events and stay inactive until events

arrived. During their inactivity, event consumers pause their computations and yield the time-

slices of all their threads. They then resume on the arrival of events. The yielding and

resuming of threads are most efficient when triggered by the signals of the operating system.

Therefore, event consumers have to connect to these signals (see Section 4.2.1.1) and utilize

the SWP to wait until a signal is triggered. As a result, the event consumers become only

active and handle information when novel information arrives. After handling the novel infor-

mation, the event consumers may, as a result, create new events that wakeup other event

consumers. Thread 1 of the process P3 in Figure 24 depicts such an event consumer.

Event dispatchers can ease the realization of event consumers. Event dispatchers wait for

the activity of OS signals and then call the appropriate callback functions (event handlers)

associated with the activity of an OS signal (event), see Figure 25. In this setup, the handling

of events takes place in callback functions. Event dispatchers can additionally implement

event queues to increase the processing efficiency of agglomerated events, that are, events

that occurred almost at the same time.

emit

Event

Queue

Slots
Event

Messenger
Signal

Event Dispatcher

sd

callbacksevents

signaled
 wake-up

event
call

Socket

Notifier

events

Dispatcher Thread

Event

Handler
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Figure 25 An event dispatcher combined with the signal-slot principle facilitates the connection of event generators and
consumers within processes. An event handler implementing the Signaled-Wakeup Principle (SWP) dispatches events on their
occurrence and drives the processing of events in the event consumer. This architecture allows multi-threaded signal-slot
connections and eases the development of event generators and consumers.

4.2.2. Event Decoding
Event decoders realize the interface between the event-driven information handling system

of a LASS and CDSs. At first glance, decoding events is not reasonable at all. However,

event decoding can be seen as a compromise to utilize clock-driven algorithms that have
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not been adapted yet for event-driven applications. Especially real-time low-level control for

actuation in robots is often provided by third parties and cannot be easily modified. In general,

guaranteeing the stability of the controllers depends on the theory that assumes that the

Nyquist-Shannon sampling theorem is fulfilled at all times. This issue is addressed in event-

driven control [99] that for itself is an emerging new research field. Nevertheless, up to the

near future, EDSs will need to be combined with CDSs, and interfaces between both systems

will be required. The interface from CDSs to EDSs is the event generator discussed in Section

4.1. The interface from EDSs to CDSs is the event decoder that will be detailed in this

section.

4.2.2.1 Realizing Event Decoders

The realization of an event decoder has to provide a synchronous interface for accessing in-

formation that is updated on the arrival of new events, see Figure 26. This thesis proposes to

realize the domain crossing from event-driven to CDSs by providing two completely different

interfaces to a shared memory block. The event-driven interface employs the decoder to de-

code events to keys and values, then utilizes a fast mapping mechanism (Section 4.2.2.3) to

lookup the memory index of a key. The key, the event decoder decodes of an event, depends

on the implementation and the type of the event. The key could be the event ID, identify-

ing the sensor where the event originated, or the module ID, identifying the module where

the event emerged. The decoder could also combine the module ID with the sensor mask

and compute the global ID of the sensor, see Figure 23. After mapping the key to an in-

dex, the event decoder stores the decoded value in the correct memory location (see Figure

26). Section 4.2.2.3 details the selection of a fast mapping mechanism for event decoders.

The clock-driven interface, on the other hand, provides access to the shared memory block.

Since the event decoder stores the information in a contiguous memory block, clock-driven

algorithms can access and re-sample information at any time and loop through all memory

locations with low performance penalties.

decoder index
0:

1:

n:

memory

event decoder

events

key

index

index
value

clock-driven algorithm

key index

store

look-up
index value

retrieve

look-up

Figure 26 The event decoder provides an interface to transfer information from the event-driven domain (green background) to
the clock-driven domain (red background).
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Section 4.3.4 follows the presented design of event decoders in the realization of an event-

driven LASS, and Chapter 5 demonstrates the effectiveness of this event decoder in systems

that combine an event-driven LASS with clock-driven control algorithms.

4.2.2.2 Efficiency of Hybrid Event-Driven Systems

Hybrid event-driven systems containing clock-driven and event-driven components outper-

form pure CDSs. The overhead of the event decoder is comparable to the packet decoding

in pure CDSs, which also requires the mapping from module IDs to indexes. Actually, on

average, the event decoder outperforms the packet decoder of CDSs since its decoding and

mapping resides in the event-driven domain, which is less active than the clock-driven do-

main. Consequently, even if all event consumers are clock-driven, an event-driven e-skin

system outperforms a pure CDS, as demonstrated in our evaluation in Section 5.1.

4.2.2.3 Fast Mapping Mechanisms

The fast mapping between event IDs and memory indexes can be realized with associative

arrays. Associative arrays realize a fast mapping of keys (IDs) to values (indexes) and can

employ different mapping techniques [94, 76] such as direct addressing, self-balancing lin-

ear search trees, and hash tables, see Table 2. These mapping techniques exhibit different

advantages and disadvantages, which are listed in Table 2.

Data Structure Avg. Search WC. Search Memory

Direct Addressing O(1) O(1) 2m

Self-Balancing Binary Search Tree O(log n) O(log n) n

Hash Table O(1) O(n) n

Table 2 The average and worst case (WC) search complexity, and the memory requirements for n elements with m bit keys.

Direct addressing is the fastest possible mapping at the cost of high memory demands.

Since the address space for event keys is huge (event keys are usually grouped in meaningful

subspaces) but only sparsely occupied, direct addressing is not a suitable option for LASSs.

Self-balancing binary search trees (SBBSTs) require much less memory space than direct

addressing and offer a constant lookup complexity that depends on the height of the tree, see

Table 2. Consequently, SBBSTs provide fast mapping for small sets of keys (less than 1000).

A lookup in a map with 1000 keys, for example, has only the complexity of 11 comparisons.

Efficient Realization of Large-Area E-Skin based on Biologically Plausible Principles 81



Hash tables provide, on average, a better lookup complexity than SBBSTs. However, finding

a good hash function is essential to avoid collisions, that is, the hash function maps two or

more keys to the same bucket (set of indexes). In the worst case, all keys are mapped to the

same bucket and the lookup complexity collapses to the performance of sequential searching,

see Table 2. Thus, the definition of a good hash function depends on the distribution of keys,

and if this distribution is known in advance, then the worst case can be avoided. Hash tables

provide a good mapping performance for large key sets but are less suitable for small key sets,

where the overhead of the hash function and the accessing of scattered memory significantly

reduces its lookup performance.

In summary, event decoders in LASSs with up to 1000 modules/keys should employ SBBSTs,

since the minor lookup complexity advantage of hash tables cannot justify the disadvantage

of finding a good hash function and the penalty of scattered memory. Nevertheless, event

decoders in LASSs with ten-thousands of modules will significantly profit from hash tables.
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4.3. A Large-Area Event-Driven E-Skin System

This section introduces the e-skin system that was developed at the Institute for Cognitive

Systems (ICS), Technical University of Munich (TUM). This thesis utilizes this e-skin as a

basis for realizing its efficient event-driven designs for LASSs.

Since starting its development in the year 2010, the e-skin project evolved from developing the

hardware of the skin modules, that is, the skin cells [101], to an e-skin system that encloses

a self-organizing multi-modal sensing network of skin cells [101, 106, 109], an algorithm

to self-calibrate the locations of its sensors [102], and multiple robot calibration algorithms

for sensory-motor mappings [104, 107, 108, 109]. Even before introducing the event-driven

approach [21, 16], this e-skin system proved its effectiveness in complex applications with

real-time robot control for human-robot interaction [109, 45, 40].

Despite this e-skin system’s unique capability to self-organize, which results in robustness,

flexibility, self-localization, and scalability, the system lacks a systematic and scalable ap-

proach to handle a large amount of tactile information – an implication that the upscaling of

the e-skin sensing area causes. This lack still limits the e-skin’s capabilities for large-area

feedback. This lack also explains why, in general, tactile feedback of LASSs is often lim-

ited to interactions with body parts rather than whole bodies, or limited in spatial or temporal

resolution.

This thesis’ objective is to overcome this issue with the realization of an efficient large-area

e-skin by introducing the event-driven approach to e-skin systems. Therefore, this section

presents the embedding of the event-driven approach (Chapter 3, and Sections 4.1 and 4.2)

into this e-skin system. This integration will elevate this e-skin’s capabilities from applications

with a couple of hundreds of skin cells to thousands of skin cells. The initial modular e-skin

system provides the ideal basis for realizing the event-driven designs presented in Sections

4.1 and 4.2.

The following sections first present the initial e-skin system, continue with enhancements to

improve scalability, and then present the integration of the event-driven approach. Afterward,

Section 4.3.4 introduces the e-skin systems that this thesis utilizes for validation, evaluation,

and efficiency assessments. Then, Section 4.3.5 introduces the performance indicators this

thesis employs for evaluations.

4.3.1. A Modularized Multi-Modal E-Skin
The core of the e-skin system [101, 106, 109] is its skin cells. They are the smart modules

and form the basis of the LASS, see Section 4.1.1.1. The following sections present these

skin cells, their sensing capabilities, and how they exploit modularity to achieve robustness

and flexibility.
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4.3.1.1 A Skin Cell – Smart Sensing Modules

A skin cell is the smallest element of the e-skin system. Its first version has been introduced

in [101]. Since then, the hardware has been revised to the version presented in Figure 27,

[106, 109]. The hardware version has not changed since [106, 109] but the firmware of the

skin cell has been continuously improved, optimized, and modularized.

LED
Proximity Normal Force

TemperatureAcceleration

Port 1Port 2

Port 3Port 4

14 mm

Micro-

Controller

Figure 27 One skin cell of the e-skin system [106, 109]. The hardware has not changed since [106]. The red skin cells are of
the last production cycle and have been deployed in large-area, see Figure 30.

A skin cell is hexagonally shaped. The hexagonal shape [105] serves mainly two purposes:

First, in contrast to triangles, hexagons border to neighbors always by an edge and not by

corners. Wired connections are only possible via edges. Thus a hexagon can connect to all

neighbors, allowing for meshed connections rather than connection trees. Second, similar to

triangles, hexagons can tessellate surfaces, an important feature since an assembly of skin

cells should be able to cover surfaces without gaps. Additionally, the regular pattern of skin

cells on surfaces supports the self-localization of skin cells on surfaces within the 3D surface

reconstruction algorithm of [102].

The skin cell is the smart sensing module of the e-skin system. All skin cells are identical.

They employ the same set of sensors and have the same set of capabilities. The top side of

a skin cell mainly allocates its sensors: Three capacitive normal force sensors, one optical

proximity sensor, a three-axis accelerometer, and two temperature sensors, see Figure 27.

The bottom side of a skin cell accommodates a programmable microcontroller with a 16-

bit Reduced Instruction Set Computer (RISC) architecture, and four serial communication

ports (UART). The microcontroller provides local processing capabilities that combined with

modularity and decentralized algorithms [101, 109] realize smart modules as referred to in

Section 4.1.1.1.

4.3.1.2 Multi-Modal Sensing – Complex Tactile Information

Each skin cell integrates the same set of sensors perceiving cutaneous (tactile) stimuli from

the environment. A skin cell of the e-skin system is rather a sensor platform than a sensor
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or a collection of sensors. A skin cell is not limited to the sensors introduced in [101, 106,

109] and newer hardware revisions might use different sets of sensors further enhancing the

sensing capabilities of the e-skin system.

The sensors of the skin cell are used to sense different modalities, they sense different physi-

cal measures of contacts, similar to the specialized receptors in nature (Section 2.1). The 3D

accelerometer senses vibrations and net-linear accelerations, the three force sensors mea-

sure normal contact forces, the proximity sensor measures distances to close objects, and

the temperature sensors measure thermal contact properties. In sum, the sensors on the

skin cells provide multi-modal contact and pre-contact information.

The sensors of the skin cell are clock-driven sensors. Their sampling rate can be collectively

changed to 0 Hz, 62.5 Hz, 125 Hz, and 250 Hz. A sampling rate of 0 Hz refers to an idle

skin cell, that is, a skin cell that does not send any information, neither data packets in the

clock-driven, nor event packets in the event-driven operation mode.

4.3.1.3 Modularization – Robustness & Flexibility

The modular e-skin, with its skin cells, realizes a robust and flexible system. It achieves ro-

bustness through connection redundancy and self-organization [109]. Each skin cell is con-

nected to up to four neighbor cells and together they build up a meshed network of skin cells

with multiple redundant paths for communication and power. If one connection fails, then a

redundant connection can take over. A self-organizing algorithm finds connections and com-

munication paths between skin cells when the e-skin system is started and initialized [109].

Communication paths (communication trees) are automatically built such that each skin cell

receives information (downstream) from the centralized coordinator, usually a computer, and

can send information back (upstream). Since these communication paths are built during

every startup cycle of the system, the system automatically avoids broken connections. More

recently, a dynamic routing algorithm [7, 8] enhancing the self-organization of the skin cells

was introduced. This algorithm balances the communication trees, and re-routes commu-

nication paths on the occurrence of connection failures on-line, in real-time, even when the

system is already in operation.

The e-skin system achieves flexibility through the combination of modularity and self-orga-

nization. Modularity allows attaching, removing skin cells, or changing the structure of the

network of skin cells by adding or removing wires with little effort. The self-organization of

the network of skin cells then automatically finds new communication paths. Furthermore,

the in-system re-programmability of the skin cells, when they are already assembled to large

networks, enables great development flexibility. The ability to change the firmware of the

skin cells allows the exploitation of their local processing capabilities for specific needs, e.g.

implementing event generators (Section 4.3.3) or distributively computed algorithms (Section

5.2).
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4.3.2. Towards Large-Area E-Skin – From Cells to Patches to Networks
The previous section introduced the modular skin cells and explained that connected skin

cells form redundant, meshed, and self-organized networks. In the following, the structural

organization of large networks of skin cells and their links to generic high-speed networks of

computer systems is presented.

4.3.2.1 Skin Patches – Directly Connected Skin Cells

A skin patch is formed of skin cells that are tessellated into hexagonal grids, directly con-

nected via Flex-Printed Circuit Board (PCB) connectors, and covered with a silicone protec-

tion layer, see Figure 28.
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Figure 28 Skin cells directly connected to each other and tessellated into a hexagonal grid form a skin patch.

Skin cells are connected via ports, see Figure 27. Port one (P1) of a skin cell is connected

to port four (P4) of another skin cell and respectively port two (P2) to port three (P3). These

ports provide bi-directional serial communication interfaces (UART) and power.

A skin cell is identified by a unique ID in the network of skin cells, that is the skin cell network.

This ID is automatically assigned during the self-organizing startup sequence of the e-skin

network [109]. Storing this ID into the non-volatile memory of the skin cell ensures that

once an ID is assigned, it no longer changes. IDs allow to map information to its origin

(upstream) or send commands to specific skin cells (downstream). When combining the

IDs of the neighbors of a skin cell with their port number (1 to 4), this neighbor information

provides the 2D structure/shape of a skin patch.
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In the skin cell network, information is passed on by forwarding fixed size datagram/packets

from skin cell to skin cell along the self-organized communication tree. A packet in the skin

cell network has a constant size of 20 B (Bytes). The skin cells exploit the Direct Memory

Accesss (DMAs) channels of their microcontrollers to efficiently route packets, and thus, the

skin cells cannot operate with changing packet sizes. A 20 B packet with an Interpacket Gap

(IPG) of 10 µs occupies 240 bit on the 4 Mbit/s UART communication bus.

The size of a skin patch, that is, the number of skin cells a skin patch can contain, is limited

by the communication bandwidth and the power it is supplied with. Assuming that a UART

connection can be utilized to its physical limit of 4 Mbit/s, and that the skin patch supports the

maximum clock-driven sample rate of 250 Hz, then one UART connection can support up to

66 skin cells.

4.3.2.2 The Skin Cell Network – Network of Skin Patches

The skin cell network describes the self-organized network of skin cells where all skin cells

are connected to each other by UART connections and exchange 20 B packets (240 bit on

the bus). The skin cell network not only spans between skin cells in a skin patch but also

between patches, where effectively skin cells of the skin patches are connected by longer

cables. Similar to the network in skin patches, the size of skin cell networks spanning in a

network of skin patches is only limited by the provided communication bandwidth and power.

A network of skin patches has to include at least enough inter skin patch connections to

collectively support the number of skin cells. More connections improve redundancy. If the

connection redundancy between skin patches is large enough, then the network can also

compensate for the loss of inter skin patch connections. An example of a skin cell network

can be found in Appendix A, Figure 79.

4.3.2.3 Tactile Section Units – Bridge to Generic High Speed Networks

The protocol of the skin cell network, see Sections 4.3.2.1 and 4.3.2.2, is a highly customized

protocol optimized for efficiency in inter skin cell communication. Furthermore, the communi-

cation capacity of 4 Mbit UART connections is limited to at most 66 skin cells (1.6 kpacket/s).

These barriers can be overcome by introducing interfaces that translate packets between the

skin cell network and standardized high speed communication protocols. The e-skin system

uses interfaces, coined Tactile Section Units (TSUs), that bridge the skin cell network to Eth-

ernet networks and convert skin packets to standard UDP packets and vice versa (Appendix

A). A 1 Gbit/s Ethernet connection can theoretically provide the communication bandwidth for

up to 6242 skin cells (1.56 Mpacket/s).
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4.3.3. Embedding the Event-Driven Operation Mode
This section presents the embedding of this thesis’ event-driven design for e-skin (Section

4.1) in the previously presented modular e-skin. The skin cells of this e-skin provide the re-

quired local processing capabilities. Furthermore, the e-skin’s ability to perform in-system

firmware updates allow for embedding the event-driven approach in existing and already de-

ployed skin systems. After embedding the event-driven approach, the skin cells support two

operation modes: The clock-driven operation mode of the initial skin system [101, 109], and

the novel event-driven operation mode [21, 16].

Embedding the event-driven mode requires the definition of an event packet, an event gen-

erator (Section 4.1.2), and an event unpacker. Analog to the data packets that convey the

information of all the sensors of a skin cell, the event packets convey the events of a skin cell.

The size of packets in the skin cell network is fixed to 20 B (Section 4.3.2.1). An event packet

thus can utilize 20 B to store the ID of the skin cell, the event type mask, and the values of

six events, see Figure 29. The event type mask encodes which of the skin cell’s sensors

triggered an event. Since only six event values fit into an event packet, the event type mask

also encodes if the packet is the first containing the first six events, or the second containing

the remaining events. The different structure of the event packet, with an event type mask

and a generic storage space for 16 bit values, reduces its information encoding density in

comparison to the standard data packet used in the clock-driven mode. Noticeably, based on

the validation of the event-driven system (Section 4.4), rarely more than three events occur

at the same time. A skin cell will seldom have to send two packets because events occurred

on all the sensors at the same time.

Byte 1 Data Packet Header

Byte 2 - 3 Cell ID (14 bit)

Byte 4 - 19 9 Sensor Values (104 bit)

Byte 20 End of Packet (EOF)

(a) The format of a skin data packet as used in the
clock-driven operation mode

Byte 1 Event Packet Header

Byte 2 - 3 Cell ID (14 bit)

Byte 4 - 5 Event Type Mask (9 bit + 1 bit)

9 bit→ 9 Event Types for 9 Sensors

1 bit→ Packet ID (Packet 1 or 2)

Byte 6 - 19 6 × 16 bit values for 6 events

Byte 20 End of Packet (EOF)

(b) The format of a skin event packet as used in the
event-driven operation mode

Figure 29 The format of a data and an event packet in the skin cell network.

The event generation Algorithm 1 implements Figures 22 and 23 of the modular event gener-

ator introduced in Section 4.1.2 in the skin cells’ firmware.

The work presented in Section 4.3.3 was in part published in:
Bergner, F., Dean-Leon, E., Cheng, G., “Event-based signaling for large-scale artificial robotic skin - Realization
and performance evaluation”. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
Daejeon, Korea, 2016, pp. 4918–4924.
Copyright permissions: see Appendix D.
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Algorithm 1 Event Generation
1: values_prev := 0

2: loop
3: update values
4: if mode == CLOCK_DRIVEN then
5: create data packet of values
6: send data packet
7: continue
8: end if
9: values_diff := | values − values_prev |

10: event_mask := 0

11: for s = 1 to 9 do
12: if values_diff [s] > values_thresh[s] then
13: set bit for s in event_mask
14: values_prev [s] := values[s]

15: end if
16: end for
17: if any s of event_mask is enabled then
18: create event packet
19: send event packet
20: end if
21: end loop

The firmware of the skin cell utilizes a data structure values that stores the sensor values of

the skin cell. First, the storage values_prev for the previously reported event values of the

sensors is initialized to zero (Line 1). The infinite sensor monitoring loop is entered. First, the

values structure is updated with the sampled sensor data. Then, if the skin cell is operating

in clock-driven mode, a data packet containing the information of values is created and sent.

The algorithm continues at Line 2. If the skin cell is operating in event-driven mode, then

the block between Lines 4 and 8 is skipped. Then, the algorithm proceeds in Line 9 with

computing the absolute difference between the values of the last reported events and the

current sensor values. Before checking if an event threshold of a sensor has been passed

(Line 12), the event type mask for novel events is reset to zero (Line 10). The block of Line

11 to Line 16 checks for each sensor if an event occurred. If this is the case, then the sensor

is marked in the event type mask (Line 13) and the sensor’s value is updated in the container

for previous event values (Line 14). If a sensor is enabled in the event-driven operation mode

and if it is marked in the event type mask, then an event packet is created and sent (Lines 17

to 20). An event packet only contains events of enabled sensors.

Algorithm 2 describes how to unpack event packets in the computer system. Unpacking is the

process of extracting the individual events of a skin cell form an event packet. The Algorithm

implements the unpacking following the event-driven processing of information as depicted in

Section 4.2.
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Algorithm 2 Event Unpacking
1: loop
2: select sd
3: fill event_packet_queue
4: for each event packet in event_packet_queue do
5: get event_mask
6: get cell_id
7: for each bit in event_mask do
8: get event_type
9: get event_value

10: create event e

11: append e to event_list
12: end for
13: end for
14: publish event_list
15: end loop

The event packet unpacking thread yields its context until at least one UDP packet (event

packet) arrives (Line 2). Then, the event packet queue is filled (Line 3). Afterward, each

event packet is unpacked (Lines 4 to 13). Therefore, the unpacker decodes the event type

and value (Lines 8 and 9) of each event from the event type mask of the packet (Lines 7 to 12).

The events are created containing the skin cell ID, the event type, and the event value (Line

10), and appended to the list of events (Line 11). Eventually, the list of events is published

(Line 14). The publishing triggers a post-processing step that signals the event handlers, or

respectively the consumer threads.

4.3.4. Large-Area E-Skin on Robots – Validation on Complex Systems
This section presents the large-area e-skin systems that this thesis uses for validating and

evaluating its designs for efficient event-driven LASSs. The selected e-skin systems are

deployed on robots. Robots are complex systems, and an e-skin on a robot allows for eval-

uating the very challenging integration of large-area tactile feedback in a complete real-time

perception-action loop. These evaluations can provide empirical evidence that this thesis’

event-driven approach is successful in delivering tactile feedback of large contact areas to

control algorithms that enable large-area physical interactions in machines/robots.

4.3.4.1 Large-Area Deployments of E-Skin

This thesis focuses on two LASSs deployed on two different robots, see Figure 30. One LASS

is deployed on an Univeral Robots (UR) robot arm (UR5) [42], and one is deployed on the

large surface area of the humanoid robot H1 [29, 20]. This section focuses on introducing

these e-skin systems. The subsequent sections of this chapter use these systems to validate

and evaluate the efficiency of this thesis’ event-driven approach and designs in real e-skin

systems.
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Figure 30 The two Large-Area Skin Systems (LASSs) used as experimental platforms for validation and evaluation.

Furthermore, the robot platforms of these two e-skin systems are suitable for validating and

evaluating the e-skins and their event-driven approach in physical human-robot interactions

where they provide large-area tactile feedback in the control algorithms of the robots. That is

the focus of Chapter 5. Chapter 5 then introduces the required details of the robots.

The e-skin on the UR5 robot arm covers the robot’s lower and upper arm (Figure 30). The

e-skin employs 253 skin cells in two skin patches (two groups of directly connected skin cells,

see Section 4.3.2.1). One skin patch covers the upper arm (143 skin cells) and one the

lower arm (110 skin cells). In total, the e-skin covers an area of 0.17 m2 with 2024 multi-

modal tactile sensors. The two skin patches are connected to the robot’s computer via four

cables and one interface (Tactile Section Unit (TSU), Section 4.3.2.3). Table 3 summarizes

the structure of the e-skin. Furthermore, Table 4 presents the nominal packet rates and the

communication bandwidth in the Ethernet connection to the computer system, both for the

e-skin in clock-driven mode.

TSU Acronym # Patches # Cells

Right Arm RA 2 253

Table 3 The e-skin on one UR5 robot arm. Two patches contain 253 skin cells and connect to one Tactile Section Unit (TSU).
The Tactile Section Unit (TSU) is almost utilized to its capacity and the setup provides only limited cable redundancy.

Sample Rate [Hz] Packet Rate [kpacket/s] Bandwidth [Mbit/s]

62.5 15.812 10.375

125 31.625 20.750

250 63.250 41.500

Table 4 The nominal packet rates and bandwidths for 253 skin cells for the different sample rates. The nominal bandwidth in
the Ethernet network considers UDP packets on the wire that have a size of 86 B, or respectively, 688 bit. For more information
on packet sizes, see Section 4.3.2 and Appendix A.
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The subsequent sections utilize this e-skin on the UR5 robot arm as the platform for the

early proof of concept validations. The e-skin is distributed in a large area but still contains

a moderate number of tactile sensors and induces manageable communication bandwidths.

Thus, a standard clock-driven e-skin system can handle the tactile feedback of this e-skin

[109, 40] whereby the system allows for direct comparisons between clock-driven and event-

driven systems. These direct comparisons provide a reliable basis for consistent performance

evaluations in the following sections.

The e-skin on the humanoid robot H1 covers its arms, legs, hands, feet, torso, and hip (Figure

30). The e-skin covers the body of the humanoid robot almost completely. The e-skin employs

1260 skin cells in 47 skin patches. Table 5 summarizes the number of skin patches per

body part. For instance, two skin patches cover the upper arm and five skin patches the

lower arm. In total, the large-area e-skin covers an area of 0.87 m2 with 10 080 multi-modal

tactile sensors. The 47 skin patches are connected to the robots’s computer via 12 interfaces

(Tactile Section Unit Satellite (TSU-S), Section 4.3.2.3). Table 5 summarizes the structure of

the e-skin. Furthermore, Table 6 presents the nominal packet rates and the communication

bandwidth in the Ethernet connection to the computer system, both for the e-skin in clock-

driven mode.

Tactile Section Unit Satellite (TSU-S) Acronym # Patches # Cells TSU-S Acronym # Patches # Cells

Right Upper Arm RUA 2 47 Left Upper Arm LUA 2 47

Right Lower Arm RLA 5 151 Left Lower Arm LLA 5 151

Right Torso RT 4 87 Left Torso LT 4 88

Right Flank RF 4 154 Left Flank LF 3 114

Right Upper Leg RUL 5 108 Left Upper Leg LUL 5 109

Right Lower Leg RLL 4 102 Left Lower Leg LLL 4 102

Table 5 The e-skin on the limbs and torso of H1. 47 patches contain in total 1260 skin cells. The patches are connected to 12
TSU-Ss. The TSU-Ss provide connection redundancy and body-part-wise modularity.

Sample Rate [Hz] Packet Rate [kpacket/s] Bandwidth [Mbit/s]

62.5 78.750 51.670

125 157.50 103.34

250 315.00 206.68

Table 6 The nominal packet rates and bandwidths for 1260 skin cells for the different sample rates. The nominal bandwidth in
the Ethernet network considers UDP packets on the wire which have a size of 86 B or respectively 688 bit. For more
information on packet sizes, see Section 4.3.2 and Appendix A.

The high nominal communication bandwidths (up-to 206.68 Mbit/s for a sample rate of 250 Hz)

emphasize the importance of this thesis’ event-driven approach for realizing an efficient large-

area e-skin. In the standard clock-driven operation mode, this e-skin system can no longer

handle its tactile information [20] (Section 4.6). After the validation and evaluation of the

event-driven approach for efficient LASSs with the e-skin on the UR5 robot arm, the large-

area e-skin on the humanoid robot H1 serves as the ideal platform to confirm the obtained
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results with a truly LASS with more than 10 000 sensors. The e-skin on H1 furthermore

covers large areas of H1 such that this humanoid robot is the ideal platform to implement

previously infeasible and very demanding physical whole-body interactions that utilize the

large-area feedback of the event-driven e-skin (Chapter 5). Overall, H1, with its large-area

e-skin, is the perfect platform to emphasize the impacts of this thesis. The platform is suitable

to investigate if the event-driven large-area e-skin succeeds in supporting the implementa-

tions of whole-body interactions on a humanoid robot with tactile feedback whereby standard

clock-driven approaches fail.

4.3.4.2 A Flexible Information Handling System for Complex Applications

The e-skin system handles tactile information on standard computing platforms. The infor-

mation handling system that has been developed can fully support the clock-driven and the

event-driven operation mode of the e-skin system. The system architecture follows the design

descriptions of Section 4.2.1 and exploits the threading and signaling capabilities of modern

Operating Systems (OSs) to realize Event-Driven Systems (EDSs) on standard computer

hardware. Furthermore, the architecture is modular easing development with reusable func-

tional blocks and ensuring their flexible interchangeability. The realized information handling

system allows for complex system integrations, for instance, in robotic platforms such as the

6-DOF UR5 robot arm and the humanoid robot H1. Appendix C presents further implemen-

tation details.

4.3.5. Performance Indicators – Definition and Measurement
The validation of the event-driven approach bases on a consistent and comprehensive per-

formance analysis comparing clock-driven setups with hybrid or event-driven counterparts.

First, the comparison between these systems is only consistent when the system achieves the

same or comparable results. That is, the error between the clock-driven and the event-driven

information is small, and the controllers consuming clock-driven or event-driven information

exhibit the same behavior/reaction. In order to validate the effectiveness of comparable sys-

tems in clock- and event-driven, or hybrid operation, two performance indicators are used:

1) the CPU usage, and 2) the packet rate. A limited low packet rate is essential for a stable

communication in skin cell networks. Furthermore, a low CPU usage on the computer sys-

tem that handles tactile information improves scalability and enables compact autonomous

applications such as mobile robots with tactile sensing capabilities, prostheses, or smart ob-

jects.

The work presented in Section 4.3.5 was in part published in:
Bergner, F., Dean-Leon, E., Cheng, G., “Event-based signaling for large-scale artificial robotic skin - Realization
and performance evaluation”. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
Daejeon, Korea, 2016, pp. 4918–4924, and
Bergner, F., Dean-Leon, E., Guadarrama-Olvera, J. R., Cheng, G., “Evaluation of a Large Scale Event Driven
Robot Skin”. In: IEEE Robotics and Automation Letters 4.4 (2019), pp. 4247–4254.
Copyright permissions: see Appendix D.
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4.3.5.1 Performance Indicators and their Dependencies

The packet rate is closely related to the CPU usage generated by handling and consuming

information. In CDSs, all processing is dictated by the sample rate. Furthermore, since

acquiring one sample of the skin cell’s sensors equals to one skin cell packet, the packet

rate directly correlates to the sample rate in CDSs, see Figure 31. Thus, for CDSs, a higher

sample rate, results in higher packet rates, and a higher CPU usage.

CPU Usage

Sample Rate Event Rate

Event ThresholdAbs. Avg. Slope

Sample Rate Noise

Experiment Application

Packet Rate

Stimulus

Figure 31 Performance indicator dependency tree.

In EDSs communication and processing is triggered by the arrival of events. Thus, the event

rate relates to the event packet rate and the CPU usage. The event rate itself depends on

many factors, as has been detailed in Section 3.1. The event rate is directly influenced by the

selection of the event threshold δ and the absolute average slope
∣∣ẋi∣∣ of the stimulus signal

x(t). That is, in contrast to CDSs, the tactile experiment/application itself will influence the

performance indicators in EDSs. Thus, to ensure the comparability to CDSs, the experimental

design has to cover the full range of realistic event rates that could occur in the application.

Besides the stimulus shape, noise and sampling rate have an indirect influence on the event

rate. A higher sampling rate increases the event detection rate by increasing the system

bandwidth, and a higher noise level increases the number of events triggered by noise.

4.3.5.2 The Packet Rate Indicator

The packet rate indicator measures the number of packets the computer receives from the

e-skin. It considers all received packets before they are potentially dropped by a saturated

Operating System (OS) or by subsequent processing steps. Thus, this indicator can account

for packets lost in the skin cell network or the interfaces (TSU, TSU-S, and TSU-LB, Section

4.3.2.3), especially when the measured packet rate is significantly smaller than the nominal
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packet rate in clock-driven mode. The nominal packet rate fp in clock-driven mode is defined

by the sampling rate fs and the number of skin cells n

fp = n fs. (4.7)

The nominal packet rates of the e-skin systems used for validation can be found in Tables 4

and 6, and in Section 4.3.4.1.

4.3.5.3 The CPU Usage Indicator of the Skin Driver

The CPU usage indicator of the skin driver considers the CPU usage demanded for unpacking

the skin packets in the skin driver and forwarding the information to consumers. In the clock-

driven operation mode, the indicator takes into account the unpacking of data packets and

in the event-driven mode, respectively, the unpacking of event packets. In a hybrid setup,

where the skin operates in event-driven mode and the skin driver provides information to

clock-driven consumers, the CPU usage indicator additionally includes the event decoder

(Appendix C, Figures 81 and 82).

The unpacking of packets and the resulting CPU usage can be described by a CPU usage

model. The theoretical background for this model has been introduced in Section 3.3.2.1

and will be validated with real measurements in Sections 4.5 and 4.6. The complexity of

unpacking a data packet or an event packet can be assumed to be almost identical.

4.3.5.4 The CPU Usage Indicator of Information Consumers

The CPU usage indicator of information consumers, both clock-driven and event-driven, con-

sider the CPU usage of the whole process. Unlike the skin driver, the consumers usually have

a linear processing pipeline without special branches for the clock-driven or the event-driven

mode. The process is either completely clock-driven, or event-driven. In a hybrid setup, the

process is still clock-driven, and the communication link to the skin driver is identical, whether

the e-skin operates in the clock-driven or the event-driven mode (Appendix C, Figure 81). The

difference lies in the information passed in the communication link. Since these differences

are agnostic to the internals of the consumer process, it is sufficient to monitor only the CPU

usage of the whole process.

4.3.5.5 The Total CPU Usage Indicator

The total CPU usage indicator sums up the CPU usage of all executed processes. This

indicator naturally includes the CPU usage generated by the information handling system of

the e-skin, its performance monitors for all indicators, and the CPU usage of the OS. The total
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CPU usage indicator depicts the amount of processing capacities that are consumed. It also

indicates when the system saturates.

4.3.5.6 The Packet Drops Indicator

The packet drops indicator quantifies the number of packets the OS drops in the communi-

cation link between the network card and the skin driver. Sparse packet drops indicate that

the skin driver couldn’t handle a burst of skin packets, while continuous packet drops indicate

that the OS couldn’t assign enough computation time to the skin driver. In the latter case,

either the OS or the skin driver was saturated. The system OS is saturated when the total

CPU usage indicator approaches its physical maximum (number of CPUs times 100 %), and

the skin driver is saturated when its packet unpacking thread reaches 100 %.

4.3.5.7 Measuring Performance Indicators

To monitor the performance indicators during experiments, monitoring applications were cre-

ated. These applications read pseudo files in the Linux /proc and /sys file system to gather

information for the packet rate, the packet drops, and the CPU usage indicators for the skin

drivers and consumers. The total CPU usage indicator uses information of the turbostat ap-

plication for Intel CPUs. The turbostat application additionally provides information on CPU

temperature, CPU power, and CPU frequency. The communication traffic in Robot Operating

System (ROS) communication links is acquired by utilizing the packet capture library pcap.

The monitoring applications are connected to ROS such that the measured performance

indicator values can be recorded next to other values such as tactile information, information

computed by consumers, information of controllers, or information of robots. All recordings

are timestamped to ease synchronization in the evaluation process.
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4.4. Effectiveness of Event Generation

This section presents the general validation of this thesis’ event-driven approach that aims to

significantly improve the efficiency of the tactile feedback provided by Large-Area Skin Sys-

tems (LASSs). The presented efficiency analysis collects experimental tactile information of

an e-skin in clock-driven operation and subsequently generates events off-line. The integra-

tion of the event-driven operation mode into the e-skin system follows later in Section 4.3.3.

Overall, this section provides first evidence on the efficiency of the event-driven approach in

LASSs and delivers the insights that later ensure the optimal realization of the approach in

the e-skin. This section presents the validation and evaluations as follows.

First, Section 4.4.1 describes the experimental setup and the acquisition of the experimental

data. Then, Section 4.4.2 analyzes noise profiles that, according to Section 3.1.6, provide

a first reference for event thresholds that minimize the contribution of noise to event rates.

Afterward, Section 4.4.3 analyzes the encoding error of events. It furthermore assesses

event rates for different stimulation profiles and event thresholds. Together, the results of this

analysis provide the references for selecting event thresholds that minimize the encoding error

for a wide range of realistic stimulus profiles. Reflecting on the acquired results, Section 4.4.4

discusses the best compromise of good event thresholds for the e-skin’s sensors. Therefore,

it follows the parameterization guidelines of Section 3.1.7. Employing these event thresholds,

Section 4.4.5 presents the resulting event rates for different tactile stimulations on an e-skin.

These results additionally present how often events of different sensors of a skin cell occur

at the same time. Drawing from these results, Section 4.4.6 determines the optimal event

packet size that minimizes overhead in transmission.

The work presented in Section 4.4 was in part published in:
Bergner, F., Mittendorfer, P., Dean-Leon, E., Cheng, G., “Event-based signaling for reducing required data
rates and processing power in a large-scale artificial robotic skin”. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE. Hamburg, Germany, 2015, pp. 2124–2129.
Copyright permissions: see Appendix D.
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4.4.1. Experimental Setup and Protocol – Off-line Event Generation
The analysis in the following sections bases on the clock-driven raw sensor data acquisition

of 253 skin cells mounted on a UR5 robot arm of Univeral Robots (UR), see illustration in

Figure 32.

2          Skin Patches

253      Skin Cells

2,024   Multi-Modal Sensors

Figure 32 An UR5 robot arm covered with e-skin. The high-resolution temperature sensor is not deployed in this setup and the
skin cells report a constant value for this sensor. Different stimulus profiles are applied to investigate the improvement of the
transmission rate in the event-driven mode for various scenarios between the best case and the worst case.

To gather an appropriate data basis for the different investigations of this analysis, this thesis

designed experiments that focus on generating multi-modal tactile stimuli representative for

a wide range of applications. The experiments target stimulations that are components of

realistic interactions, such as stroking, punching, teasing, and motion stimuli of a moving

robot arm. Furthermore, the absence of external stimuli in an idle system provides insights

on noise. An idle (resting) system represents the best case for Event-Driven Systems (EDSs)

since an optimal EDS should not create any events when the information rate of its sensors

is zero (Section 3.1). The measurements will show that a trade-off between sensitivity and

noise prevents an event rate of zero in real systems.

In each experiment, the system collects the raw sensor values of all skin cells in clock-driven

mode with a sampling frequency fs of 62.5 Hz for around 20 s. Then, the collected samples

are imported and analyzed in Matlab. The off-line evaluation in Matlab also comprises the

event generators and the event decoders as introduced in Sections 4.1.2 and 4.2.2. The

event generator computes the events and the event decoder reconstructs the original signal

from these events.
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4.4.2. Distribution of Differences – Noise Distributions and Event Thresholds
Sections 3.1.6 and 3.1.7 presented the relation between noise and event thresholds. An op-

timal parameterization of the event threshold considers the distribution of the Additive White

Gaussian Noise (AWGN) to minimize the number of events triggered by noise, see Equa-

tion (3.63). This section presents the acquisition of these noise distributions for the e-skin’s

sensors on the experimental platform.

The signal x(t) of one of the skin cell’s sensors composes of the stimulus s(t) and the addi-

tive noise (AWGN) z(t), see Equation (3.61). The noise z(t) is normally distributed with an

expected value µZ of zero and a variance Var(Z) = σ2
Z, see Equation (3.62). The stochastic

process is a time-series

{Xt} = {St}+ Z, (4.8)

where {St} is the stochastic process of the stimulus and Z is the random variable of the

noise.

The sensor values of all skin cells on the UR5 robot arm are acquired in clock-driven mode

(Section 4.4.1) with a sample frequency fs of 62.5 Hz for 20 s. The robot arm is not moving

and the skin is not stimulated, that is the skin system is considered idle. In this case, the

stochastic process {St} of the stimulus is a constant offset ξ. Then, the stochastic process

of a sensor is

{Xt} = Z + ξ (4.9)

and thus stationary. The noise described by the random variable Z is identical for all sensors

and not correlated.

The evaluation focuses on the general noise distribution for particular sensor modalities.

Therefore, the evaluation combines the realizations Z of one specific sensor, for instance,

the force sensor S1, for all 253 skin cells. The combination of realizations then not only ac-

counts for noise but also for stochastic uncertainties in the group of sensors. However, before

combining the realizations Z, the constant offset ξ, which is different for each skin cell, has

to be compensated.

To simplify the combination and to avoid determining ξ for each of the nine sensors for all

skin cells (in total 2277 offsets ξ for 253 skin cells), the distribution of differences rather than

the distribution of compensated realizations were analyzed. Therefore, the difference ∆t of

consecutive samples is computed by

∆t = Xt −Xt−1 = Zt − Zt−1 (4.10)
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such that the ξ of a sensor is compensated by the difference. Employing the properties of

independent random variables, the expected value µ∆ is then zero, and the variance σ2
∆ =

σ2
Z + σ2

Z = 2σ2
Z.

The resulting distributions of differences ∆ for the skin cells’ nine sensors are depicted in

Figure 33. The determined standard deviations deliver first indications for event thresholds

that minimize noise (Section 3.1.6). The following sections will refine these indications to

optimal thresholds.
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(a) Probability density function of the
distribution of differences for the
acceleration ax along the x-axis.

(b) Probability density function of the
distribution of differences for the
acceleration ay along the y-axis.

(c) Probability density function of the
distribution of differences for the
acceleration az along the z-axis.

(d) Probability density function of the
distribution of differences for the
proximity sensor.

(e) Probability density function of the
distribution of differences for the
temperature sensor (low sensitivity).

(f) Probability density function of the
distribution of differences for the
temperature sensor (high sensitivity).

(g) Probability density function of the
distribution of differences for the force
Fz,1 of sensor 1.

(h) Probability density function of the
distribution of differences for the force
Fz,2 of sensor 2.

(i) Probability density function of the
distribution of differences for the force
Fz,3 of sensor 3.

Figure 33 Distribution of differences ∆ of the skin cells’ nine sensors (the high-resolution temperature sensor is not deployed
and reports a constant value) for 253 idle (resting) skin cells sampled at 62.5 Hz for 20 s. The accelerometer, the proximity
sensor, and the temperature sensor have wider distributions, thus are affected more by noise. These sensors will require
larger event thresholds δ than the force sensors. The values of the proximity sensor and the force sensors are normalized, that
is, proximity and force measurements range from 0.0 to 1.0. Proximity sensor values represent closeness, where 1.0 equals to
a distance of zero. The force values range from no force at 0.0 to the maximum at 1.0 (collapsing force cell, the insulated
capacitor plates touch each other).
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4.4.3. Stimulation Profiles – Transmission Rates and Encoding Errors
This section presents the results of the experimental evaluations that analyze the transmis-

sion rates and reconstruction errors of signals xe(t) conveyed by events. Therefore, the

evaluation determines the transmission rate reduction ratio pft
and the relative reconstruction

error pRMSE. The reduction ratio relates the transmission rate of the event-driven signal xe(t)

to the transmission rate of its clock-driven counterpart xc(t), and the relative reconstruction

error computes the error between these two signals. Both, the transmission rate and the er-

ror, depend on the sensor input signal x(t). Therefore, the evaluation not only considers their

dependency on different event thresholds δ, but also considers different stimulus profiles, see

Table 7.

Stimulus Description

Resting The skin system is idle and no stimuli are occurring. The robot arm

is not moving and the skin is not touched.

Slowly Moving The skin system is not touched but the robot arm is slowly moving

along a defined trajectory.

Swiftly Moving The skin system is not touched but the robot arm is swiftly moving

along the same trajectory as defined in the Slowly Moving experi-

ment.

Hammering Hammering with a fist on the base of the robot arm. The impacts’

impulses and vibrations travel along the robot arm. The robot arm is

holding a defined position and moves only because of the impacts.

Stroking Stroking the robot arm with multiple hands continuously generates

tactile changes throughout the whole surface of the skin. The robot

arm is holding a defined position and does not move.

Pushing Forcefully moving the robot arm by pushing it repeatedly with a fist.

The robot arm moves into the pushed direction.

Sinusoidal Force

Profile

The skin cell is placed in a force test stand similar to [102]. The skin

cell is probed with a force of 3 N and a sinusoidal force profile with a

frequency of 5 Hz or 30 Hz. The skin cell only moves because of the

force impacts and vibrations.

Feather Teasing Tickling a skin cell with a feather. The robot arm is holding a defined

position and does not move.

Table 7 Different stimulus profiles with the focus to create changes in specific sensing modalities. Creating temperature
changes requires complex experimental setups and is thus not considered. The experimental platform is not equipped with
high sensitivity temperature sensors. Furthermore, the response of the standard temperature sensor is very slow (fB < 1 Hz).
Thus, the event rate of this temperature is also very low.
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The reduction ratios pft
of the sensors are computed by

pft =
fe
fs

(4.11)

where fe denotes the event rate of the sensor and fs the sample rate of the clock-driven

reference. The relative reconstruction error pRMSE of a sensor signal encoded in events is

computed by the relative Root Mean Square Error (RMSE) between the reconstructed signal

xe(t) and the raw signal xc(t)

pRMSE(xe, xc) =

√
1
n

∑n
k=1 [xe(tk)− xc(tk)]

2

xmax − xmin

(4.12)

where k = 1, 2, . . . , n are the sample indexes of the signals xc and xe. The signals have a

range of xc, xe ∈ [xmin, xmax].

Figures 34, 35, and 36 respectively depict the results for one selected acceleration, force,

and proximity sensor of one representative skin cell. The Figure 35 for the force sensor also

contains the results of a skin cell in the force test stand.

Acceleration Sensor

(a) The transmission rate reduction ratio pft
for one axis of the accelerometer.

(b) The relative RMSE pRMSE for one axis of the accelerometer.

Figure 34 The transmission rate reduction ratio and the relative error for one axis of the accelerometer of one representative
skin cell. The sensor values are sampled at 62.5 Hz.
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Force Sensor

(a) The transmission rate reduction ratio pft
for one force sensor.

(b) The relative RMSE pRMSE for one force sensor.

Figure 35 The transmission rate reduction ratio and the relative error for one force sensor of one representative skin cell. The
sensor values are sampled at 62.5 Hz. The plot additionally contains the results for a skin cell in the force test stand that
generates sinusoidal force profiles. The force sensor values are normalized to the range 0.0 to 1.0 where 1.0 represents
maximum force.

Proximity Sensor

(a) The transmission rate reduction ratio pft
for the proximity sensor.

(b) The relative RMSE pRMSE for the proximity sensor.

Figure 36 The transmission rate reduction ratio and the relative error for the proximity sensor of one representative skin cell.
The sensor values are sampled at 62.5 Hz. The plot additionally contains the results for a skin cell tickled with a feather. The
proximity sensor values are normalized to the range 0.0 to 1.0 where 1.0 represents zero distance. The proximity values
represent closeness.
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4.4.4. Event Threshold Tuning
This section takes the results of Sections 4.4.2 and 4.4.3 and follows the guidelines of Section

3.1.7 to determine the event thresholds δ for each sensor modality such that these thresholds

achieve a good compromise between a low idle event rate (noise), a small encoding error,

and a high reduction ratio for transmission rates.

Figures 34, 35, and 36 show that an event threshold above the standard deviation of the noise

(see Figure 33) indeed significantly reduces the idle event rate of the resting system (Table

7). Such a threshold also reduces the event rates of more intense stimulus profiles while the

encoding error stays low (below 0.5 %). Larger event thresholds further reduce event rates

but at the cost of a higher encoding error and reduced sensitivity. Thus, the best trade-off for

the event thresholds of the investigated e-skin system lies around the standard deviation of

the noise. Table 8 depicts the selected event thresholds.

Acceleration Force Proximity Temperature

δ 0.02 0.001 0.0001 0.5

Table 8 Selected event thresholds for the different modalities of the e-skin. The acceleration is in g, the force, and proximity
thresholds are normalized (they range from 0.0 to 1.0), and the temperature is in ◦C.

4.4.5. Stimulation Profiles – Activity Ratios and Event Rates
This section evaluates the activity ratios of the skin cells’ sensors, the activity of the skin cells,

and the number of active sensors within a skin cell for different stimulation profiles (Table 7).

These activity ratios compare the event rate in the event-driven mode with the sample rates

in the clock-driven mode. The ratios and the event activity patterns within a skin cell provide

insights into the reduction of transmission rates of the event-driven e-skin and the number of

events that occur at the same time.

The stimulations used for this evaluation (slowly moving, swiftly moving, hammering, and

stroking) target the skin cell’s different sensing modalities with the objective to uniformly stim-

ulate as many skin cells as possible. The stimulation profiles slowly moving to hammering

mostly target the acceleration sensors while stroking targets the force and proximity sen-

sors.

The raw sensor values are captured and processed according to Section 4.4.3. The off-line

event generators use the event thresholds of Table 8.

A sensor of a skin cell is active when it provides a sample or an event. In clock-driven mode,

a sensor l is continuously active for each sample and all the sensors together accumulate

As,c activity states at time t

Ac,l = nsc fs t (4.13)
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where nsc is the number of skin cells, and fs the sampling time. In the event-driven mode, the

sensors accumulate Ae,l activity states

Ae,l =

nsc∑
i=1

∑
k

αi,l(tk) (4.14)

with the sensor activity αi,l

αi,l(tk) =

1 if event e on sensor l of skin cell i at tk

0 otherwise
. (4.15)

The activity ratio pA,l for a sensor l of an e-skin with nsc skin cells with respect to the clock-

driven reference is then

pA,l =
Ae,l

Ac,l

=

∑nsc
i=1

∑
k αi,l(tk)

nsc fs t
. (4.16)

The results of these activity ratios pA,l for the skin cells’ nine sensors are depicted in Table

9.

Sensor Resting Slowly Moving Swiftly Moving Hammering Stroking

Acceleration x 9.90 % 46.6 % 68.3 % 49.3 % 13.1 %

Acceleration y 9.27 % 43.2 % 65.2 % 48.2 % 13.0 %

Acceleration z 9.29 % 45.9 % 68.2 % 48.6 % 12.0 %

Proximity 6.51 % 6.98 % 7.54 % 9.73 % 14.6 %

Temperature 1 3.17 % 3.37 % 4.57 % 3.74 % 2.45 %

Temperature 2 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %

Force 1 0.00 % 0.00 % 0.00 % 0.00 % 0.517 %

Force 2 0.00 % 0.00 % 0.00 % 0.00 % 0.518 %

Force 3 0.00 % 0.00 % 0.00 % 0.00 % 0.403 %

Table 9 Activity ratios of the nine sensors of 253 skin cells. In event-driven mode, the sensors are rarely all active at the same
time. The activities in the different modalities heavily depend on the stimulus.

A skin cell is active when at least one of its sensors is active. In the clock-driven mode a skin

cell is active for each sample. The accumulated skin cell activity states at time t are thus

Ac,sc = nsc fs t. (4.17)

In the event-driven mode, the accumulated skin cell activity states are

Ae,sc =

nsc∑
i=1

∑
k

αi(tk) (4.18)
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with the skin cell activity αi

αi(tk) =

1 if event e on skin cell i at tk

0 otherwise
. (4.19)

The activity ratio pA for nsc skin cells with respect to the clock-driven reference is then

pA =
Ae,sc

Ac,sc

=

∑nsc
i=1

∑
k αi(tk)

nsc fs t
. (4.20)

These activity ratios are depicted in Table 10.

Resting Slowly Moving Swiftly Moving Hammering Stroking

Active Cells 32.9 % 80.0 % 90.1 % 77.2 % 43.9 %

Table 10 Activity ratios of 253 skin cells. If all events fit into one event packet, then the event-driven mode is expected to
reduce the transmission rates by at least 9.9 % (worst case) and at most by 67.1 %.

To compute the ratio of a specific number nas of active sensors per skin cell, first their accu-

mulated activities are determined by

Ae,sc(nas) =

nsc∑
i=1

∑
k

αi(tk,nas) (4.21)

with the skin cell activity αi for nas active sensors (events at time tk)

αi(tk,nas) =

1 if events e for nas sensors on skin cell i at tk

0 otherwise
. (4.22)

Then, the ratio for skin cells with nas active sensors is

pA(nas) =
Ae,sc

Ac,sc

=

∑nsc
i=1

∑
k αi(tk,nas)

nsc fs t
(4.23)

and thus the sum of all of these ratios pA(nas) is

pA =

9∑
l=1

pA(l). (4.24)

Table 11 summarizes the results for these ratios.
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nas Resting Slowly Moving Swiftly Moving Hammering Stroking

1 28.0 % 33.0 % 16.6 % 25.0 % 33.4 %

2 4.52 % 29.5 % 28.7 % 25.4 % 8.64 %

3 0.350 % 15.9 % 39.6 % 23.5 % 1.38 %

4 0.0131 % 1.57 % 5.08 % 3.16 % 0.283 %

5 0.00 % 0.0285 % 0.157 % 0.101 % 0.0865 %

6 0.00 % 0.00 % 0.00 % 0.00 % 0.0286 %

7 0.00 % 0.00 % 0.00 % 0.00 % 0.00159 %

8 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %

9 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %

Active Cells 32.9 % 80.0 % 90.1 % 77.2 % 43.9 %

Table 11 The activity ratios for a specific number sensors that are active at the same time.

In summary, the off-line evaluation shows that when all events fit into one event packet, then

the event-driven mode is expected to reduce the transmission rates by at least 9.9 % (worst

case) and at most by 67.1 % (best case). Furthermore, the activity ratios for a specific number

of sensors that are active at the same time indicate that rarely all sensors of a skin cell

generate events at the same time. Thus, smaller event packets might, on average, improve

the reduction of transmission rates by reducing overhead.

4.4.6. Optimal Event Packet Size
This section analyzes the results presented in Section 4.4.5 to determine the optimal event

packet size. The packet size in the skin cell network is fixed (Section 4.3.2.1) and cannot

change dynamically to fit to the number of events to transmit. Therefore, the optimal packet

size is a trade-off that, on average, minimizes the overhead. Overhead occurs when an event

packet contains fewer events than it could transport, or when multiple event packets have

to be sent because several events occurred at the same time and did not fit into one event

packet. Thus, to minimize overhead, the event packet must neither be too small nor too big.

Assuming that an event packet can fit in worst case all the events of the skin cell’s sensors,

then the ratio between the event packet rate and the data packet rate of the clock-driven

system will match with the ratios of the active skin cells of Table 10. The improvement would

be at least 9.9 % (worst case) and at most by 67.1 % (best case). An optimal event packet

size will improve these ratios since events only rarely occur for all sensors at the same time,

see Table 11.

In the following, we investigate the reduction ratios for different packet sizes. Despite this sec-

tion’s focus on optimizing the event packet size for skin cells with nine sensors, the presented

approach is not limited to these specific skin cells. An e-skin system with fewer or more than

nine sensors per skin cell requires the analysis of the activation of its sensors that would
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lead to results similar to ones presented in Table 10. Then, from this point on, the following

analysis of this section only differs in the packet size and the number of sensors.

Table 12 presents the size of event packets in bytes that fit up to nine events into one packet.

ne 1 2 3 4 5 6 7 8 9

sp,e(ne) 7 9 10 12 14 15 17 18 20

sp,e,ts(ne) 10 12 13 15 17 18 20 21 22

Table 12 Event packet sizes in bytes for fitting up to nine events into one packet. sp,e is the packet size in bytes without
timestamps and sp,e,ts with timestamps. ne denotes the maximum number of events that fit into one packet. Timestamps are
assumed to require 21 bit.

The table additionally presents the packet sizes in bytes for event packets containing 21 bit

time stamps.

The reduction ratio of the transmission rate pft
computes then by

pft =
np,e(ne)

np,d

sp,e(ne)

sp,d

(4.25)

where np,e is the number of event packets, np,d the number of data packets in clock-driven

mode, sp,e the size of the event packets, and sp,d the size of the data packets.

The number of event packets np,e depends on the number of events ne that an event packet

can fit and the number of events that occur at the same time, and can be computed by

np,e(ne) =
9∑
l=1

Ae,sc(l)

⌈
l

ne

⌉
. (4.26)

Ae,sc(l) defined by Equation (4.21) is the accumulated activity of skin cells that have l sensors

generating events at the same time and is multiplied by the number of event packets that are

required to contain these l events. The sum of all evaluation for one to nine events occurring

at the same time represent the number of event packets.

The results of the reduction ratio pft
are depicted in Table 13 and Figure 37.
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Resting Slowly Moving Swiftly Moving Hammering Stroking

Without Time Stamps

1 event/packet 13.35 % 51.13 % 74.84 % 55.86 % 19.80 %

2 events/packet 14.96 % 43.87 % 60.79 % 46.85 % 20.59 %

3 events/packet 16.45 % 40.78 % 47.69 % 40.24 % 22.13 %

4 events/packet 19.73 % 48.00 % 54.18 % 46.39 % 26.38 %

5 events/packet 23.02 % 55.98 % 63.09 % 54.05 % 30.89 %

6 events/packet 24.66 % 59.98 % 67.61 % 57.91 % 32.89 %

7 events/packet 27.95 % 67.98 % 76.62 % 65.63 % 37.28 %

8 events/packet 29.59 % 71.97 % 81.13 % 69.49 % 39.47 %

9 events/packet 32.88 % 79.97 % 90.14 % 77.21 % 43.86 %

With Time Stamps

1 event/packet 19.07 % 73.04 % 106.9 % 79.80 % 28.30 %

2 events/packet 19.95 % 58.49 % 81.05 % 62.47 % 27.45 %

3 events/packet 21.38 % 53.02 % 62.00 % 52.31 % 28.77 %

4 events/packet 24.66 % 60.00 % 67.72 % 57.98 % 32.98 %

5 events/packet 27.95 % 67.98 % 76.62 % 65.63 % 37.30 %

6 events/packet 29.59 % 71.97 % 81.13 % 69.49 % 39.47 %

7 events/packet 32.88 % 79.97 % 90.14 % 77.21 % 43.86 %

8 events/packet 34.52 % 83.97 % 94.65 % 81.07 % 46.05 %

9 events/packet 37.81 % 91.97 % 103.7 % 88.79 % 50.43 %

Table 13 Transmission rate ratios for different event packet sizes with respect to the clock-driven reference. The ratios are
lowest for packets that fit three events.

Figure 37 Transmission rate ratios versus the number of events that fit into one packet. The solid lines refer to event packets
without timestamps and the dashed lines refer to packets with timestamps.
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An event packet with an optimal size fits three events. That result is reasonable since activity

on the three axes of the accelerometer or the three force sensors is highly correlated (Table

11). The optimal event packet size improves the reduction ratio in general. The ratio improves

for a heavily stimulated system from 90.1 % to 47.69 % or respectively to 62.0 % when times-

tamps are employed. When the system rests, the optimal packet size improves the ratio from

32.9 % to 16.45 % or respectively to 21.38 %.
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4.5. Effectiveness of Event-Driven Skin Systems

This section presents the evaluation of the fully implemented event-driven approach, that this

thesis introduces for efficient Large-Area Skin Systems (LASSs). The implementation of the

event-driven approach in the modular e-skin system followed the descriptions of Sections 4.3

and 4.3.3. Thus, the e-skin system to evaluate supports the event-driven and the clock-driven

operation modes, which eases the analysis since one e-skin system can provide the exper-

imental data for the event-driven approach and the clock-driven reference. The evaluation

compares the transmission rate of the event-driven e-skin and its demand for computational

power with their clock-driven references. These comparisons deliver reduction ratios for the

event-driven system in comparison to the clock-driven reference. The analysis of these ra-

tios then allows for assessing the performance gain of the event-driven e-skin, which delivers

the empirical proof for the efficiency of this thesis’ approach in real e-skin systems. The

subsequent validation of the CPU usage model introduced in Section 3.3.2 with the measure-

ments of the real e-skin delivers the basis for extrapolating the performance assessment of

the event-driven approach. These extrapolations, combined with the performance evaluation

of the implemented event-driven e-skin system, provide the empirical proof that this thesis’

approach renders LASSs possible and that it delivers significant improvements for efficiency.

Both results indicate the scalability of information handling and the effectiveness of tactile

large-area feedback for event-driven LASSs.

This section presents the evaluation as follows. First, Section 4.5.1 introduces the experi-

mental setup. Then, Section 4.5.2 presents the reduction ratios of the e-skin’s transmission

rate. Afterward, Section 4.5.3 analyzes the relation between transmission rates and CPU

usage and connects it to the CPU usage model to extrapolate the demand for computational

power in Section 4.5.5. Furthermore, Section 4.5.4 analyses the experimental data and ex-

trapolates the event packet rates for larger e-skin systems. Together, Sections 4.5.4 and

4.5.5 deliver a first comprehensive impression on the scalability of the event-driven approach

towards LASSs. This impression delivers empiric support that LASSs, as realized in Section

4.6, are feasible.

4.5.1. Experimental Setup and Protocol – Fully Integrated Event Generation
This section uses the same experimental platform as presented in Section 4.4. However,

in contrast to Section 4.4, the event-driven approach is now fully integrated into the e-skin’s

253 skin cells, and all experimental data is collected on-line. All performed experiments are

introduced in Table 14.

The work presented in Section 4.5 was in part published in:
Bergner, F., Dean-Leon, E., Cheng, G., “Event-based signaling for large-scale artificial robotic skin - Realization
and performance evaluation”. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
Daejeon, Korea, 2016, pp. 4918–4924.
Copyright permissions: see Appendix D.
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Experiment Description

Idle The robot is not moving and the skin is not stimulated.

Stroking Upper

Arm

The upper arm skin of the robot is stroked by one person. The robot

arm is inactive and not moving.

Stroking Arm The upper and lower arm skin of the robot is stroked by two persons.

The robot arm is inactive and not moving.

Hammering The skin is not touched but one person hammers on the end effector

of the robot arm. The robot arm is inactive and not moving.

Moving Arm The skin is not touched. The robot arm is active and moving.

Reactive Control The robot arm is controlled by the skin. Touching the skin results in

arm movements.

Table 14 Overview and description of experiments.

In addition to the experiments that target to stimulate the different tactile modalities of the

e-skin similar to Section 4.4, the reactive control experiment utilizes the e-skin system’s tac-

tile feedback in real-time to realize a contact avoidance (kinesthetic) controller [45]. Tactile

interaction controllers will be explained and validated in Chapter 5. Here, the reactive control

is solely a tool to additionally evaluate the e-skin system for interactions that generate tactile

and motion stimuli.

The listed experiments generate stimuli that are representative and realistic in physical inter-

actions and enclose the best and the worst case. Each experiment was performed for around

10 s with different sample rates in clock-driven and event-driven operation modes. During the

execution of the experiments, the experimenters applied the stimuli as uniformly and contin-

uously as possible. Thus, the collected data can be averaged in the evaluation. The event

generators of the skin cells utilize the optimized event thresholds of Table 8 (Section 4.4.4).

4.5.2. Event Rates and Reduction Ratio
Table 15 presents the average event rates per skin cell for the different modalities. Its last

column presents the average event packet rate per skin cell. Each entry of the table contains

also the ratio of the respective rate in the event-driven mode compared to their baselines in

the clock-driven mode. A ratio of 100 % describes that the respective rate in event-driven

mode equals the rate in clock-driven mode. Then, the transmission rate reduction of the

event-driven system is zero.
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Experiment Acceleration Force Proximity Temperature Packet Rate

Idle 1.23 (0.33 %) 0.21 (0.17 %) 4.17 (3.33 %) 0.15 (0.12 %) 5.71 (4.57 %)

Stroking Upper Arm 9.33 (2.49 %) 1.95 (1.56 %) 17.9 (14.3 %) 0.20 (0.16 %) 25.2 (20.1 %)

Stroking Arm 14.6 (3.90 %) 3.09 (2.47 %) 26.2 (21.0 %) 0.20 (0.16 %) 37.3 (29.9 %)

Hammering 137 (36.6 %) 0.57 (0.46 %) 5.69 (4.55 %) 0.29 (0.23 %) 89.6 (71.7 %)

Moving Arm 174 (46.6 %) 1.85 (1.49 %) 4.65 (3.72 %) 0.36 (0.29 %) 95.8 (76.6 %)

Reactive Control 86 (22.9 %) 3.66 (2.93 %) 8.60 (6.88 %) 0.27 (0.22 %) 64.7 (51.8 %)

Table 15 The average event rate per skin cell and the ratio between the event rate and the baseline activity related to the
sampling frequency in the clock-driven operation mode (in brackets). The baseline is, for example, three times the sampling
frequency for acceleration and force sensors. The packet rate is the average event packet rate per skin cell per second and the
ratio describes the ratio of the event packet rate with respect to the data packet rate in clock-driven mode. The sample rate of
the sensors is 125 Hz. The colored fields highlight the dominant modalities of an experiment.

For all experiments, the event-driven e-skin shows good reductions for packet rates. In the

best case (idle) the ratio is 4.57 %, that is the Event-Driven System (EDS) reduces the packet

rate by 95.43 %. In the worst case (moving arm), the reduction is still 76.6 %. The representa-

tive tactile interaction example (reactive control) shows a good ratio of 51.8 %, which implies

a reduction of the packet rate by 48.2 %.

4.5.3. CPU Usage Model
This section investigates the relation between two performance indicators (Section 4.3.5)

that are the packet rate and the CPU usage to unpack these packets. The CPU usage is

expected to increase for higher packet rates (Section 3.3.1). Furthermore, identical packet

rates in clock- or event-driven mode are expected to cause approximately the same CPU

usage (Section 4.2.2.2).

Plotting the CPU usage u of all the experiments against the packet rate fp, Figure 38a reveals

that the relationship is approximately logarithmic

u(fp) = a · log(b · fp + 1) (4.27)

where the parameters a and b can be determined via curve fitting. The table in Figure 38b

summarizes these parameters for data and event packets.
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(a) The CPU usage models and measurements against the packet rate fp. The solid lines represent the models, and the
crosses the measurements. The relation between CPU usage and packet rate is approximately identical for both operation
modes with a small advantage for the event-driven mode for higher packet rates.

Mode a b R2

Clock-Driven 45.52 5.453 · 10−5 0.9993

Event-Driven 32.65 1.239 · 10−4 0.9969

(b) The model parameters for both operation modes. The last column contains the fitting accuracies of the parameters.

Figure 38 The CPU usage versus the packet rate and the model parameters. The CPU usage here denotes the CPU usage of
one of the eight cores of an Intel Core i7 4770 CPU. The data points are acquired by conducting the experiments listed in Table
14.

The logarithmic relationship indicates that handling data and event packets is more efficient

for higher packet rates. Section 3.3.2 introduced a comprehensive CPU model. This model

indeed explains that the overhead of resuming the packet handling in the skin driver process

reduces for higher packet rates. The comprehensive CPU model and the logarithmic approx-

imation agree well, where the logarithmic model better describes the relation for high CPU

usages. Overall, the logarithmic CPU model has high fitting accuracy and is a simple mathe-

matic function. Therefore, the model poses an ideal basis for the CPU usage extrapolation of

Section 4.5.5.

4.5.4. Event Packet Rate Extrapolation
This section extrapolates the event packet rate for larger e-skin systems. Therefore, it investi-

gates the relationship between the event packet rate fp, the experiment, and the sample rate

fs. The relationship between stimulation intensity, sample rate, and the resulting event packet

rate is expected to be better than linear. In the worst case, the event packet rate equals

the sample rate (or respectively the data packet rate in clock-driven mode). In this case, the

performance of the event-driven e-skin falls back to the performance of clock-driven e-skin.

Figure 39a depicts the packet rate fp of the experiments against the sample rate fs. Exper-

iments with a higher stimulation intensity, such as the moving arm experiment, have a high
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packet rate close to the linear boundary. Experiments with lower stimulation intensities have

low packet rates, and the relationship is better than linear.

(a) The packet rate models and measurements against the sample rate fs. The solid lines represent the models, and the
crosses the measurements.

Experiment / Model Mode a b R2

Reference Clock-Driven 1.0 − −

Actual Clock-Driven 0.9435 − 0.9971

Idle Event-Driven 243.8846 2.248 · 10−4 0.9651

Stroking Upper Arm Event-Driven 85.0385 3.215 · 10−3 0.9764

Stroking Arm Event-Driven 74.2308 6.154 · 10−3 0.9732

Hammering Event-Driven 330.2692 2.512 · 10−3 0.9888

Moving Arm Event-Driven 1.214 · 107 1.687 · 10−5 0.9983

(b) The model parameters for the clock- and event-driven operation modes. The last column contains the fitting accuracies of
the parameters.

Figure 39 The packet rate per skin cell in packets per second against the sample rate of the skin cell’s sensors. The reference
and the actual packet rates describe the data packets rates of the system in clock-driven mode. The other packet rates are
event packet rates of the corresponding experiments, e.g. reactive control. The data packet rate of the system in clock-driven
mode is not dependent on the experiment.

The model for data packet rates in clock-driven operation mode is linear

fp,c(fs) = a · nsc · fs (4.28)
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where nsc denotes the number of skin cells, and a a scaling factor. For the ideal reference,

a is one. In the real system, a compensates the difference between expected and actual

sampling frequency.

The model for event packet rates is approximately logarithmic

fp,e(fs) = a · nsc · log(b · fs + 1) (4.29)

where the parameters a and b are different for each experiment. All parameters are deter-

mined via curve fitting and are listed in the table of Figure 39b.

The results indicate that the performance edge of the event-driven e-skin increases for higher

sample rates.

4.5.5. CPU Usage Extrapolation
This section combines the results of Sections 4.5.3 and 4.5.4 to extrapolate the CPU usage for

larger skin systems. Therefore, we combine the CPU model with the model for extrapolating

packet rates

u(fs,nsc) = u(fp(fs,nsc)). (4.30)

First, we fix the number of skin cells nsc to 260 and 500 skin cells, and plot the extrapolated

CPU usage u against the sample rate fs. Then, we fix the sample rate fs to 62.5 Hz and

250 Hz. The results are depicted in Figures 40 and 41.
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260 Skin Cells

(a) The CPU usage extrapolation for 260 skin cells against the sample rate fs. In the worst case, the event-driven e-skin
outperforms the clock-driven one for sample rates greater than 185 Hz.

500 Skin Cells

(b) The CPU usage extrapolation for 500 skin cells against the sample rate fs. In the worst case, the event-driven e-skin
outperforms the clock-driven one for sample rates greater than 100 Hz.

Figure 40 The CPU usage extrapolation against the sample rate. The gray bars are the worst-case bounds for the sample
rate, after which the event-driven e-skin is better than its clock-driven reference.
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62.5 Hz

(a) The CPU usage extrapolation for a sample rate of 62.5 Hz against the number of skin cells nsc. In the worst case, the
event-driven e-skin outperforms the clock-driven one for more than 702 skin cells.

250 Hz

(b) The CPU usage extrapolation for a sample rate of 250 Hz against the number of skin cells nsc. In the worst case, the
event-driven e-skin outperforms the clock-driven one for more than 190 skin cells.

Figure 41 The CPU usage extrapolation against the number of skin cells. The gray bars are the worst-case bounds for the
number of skin cells, after which the event-driven e-skin is better than its clock-driven reference.

The extrapolation results show that the event-driven e-skin outperforms the clock-driven ref-

erence for higher sample rates and more skin cells. The gray bars in the figures indicate the

lower bounds for the number of skin cells and the sample rate. As long as the number of skin

cells and the sample rate stay above these bounds, the event-driven e-skin shows superior

performance, even in the worst case. Nevertheless, in most cases, the event-driven e-skin

outperforms the clock-driven e-skin well below these lower bounds. In the worst-case sce-

nario, with 260 skin cells at 250 Hz, the event-driven e-skin shows a reduction of the packet

rate by 21.2 % and of the CPU usage by 2.72 %. For the higher number of 5000 skin cells,

Efficient Realization of Large-Area E-Skin based on Biologically Plausible Principles 119



these reductions improve to 21.2 % and 17.46 % respectively. Table 16 lists some ratios for

the extrapolated worst-case performance indicators.

Mode Number of Skin Cells Sample Rate Packet Rate Ratio CPU Usage Ratio

Clock-Driven − − 100% 100%

Event-Driven 500 62.5 Hz 79.4% 104%

Event-Driven 500 100 Hz 78.7% 100%

Event-Driven 500 500 Hz 78.4% 88.1%

Event-Driven 100 250 Hz 78.8% 107%

Event-Driven 190 250 Hz 78.8% 100%

Event-Driven 260 250 Hz 78.8% 97.2%

Event-Driven 5000 250 Hz 78.8% 82.54%

Table 16 Worst case CPU usage extrapolations for different numbers of skin cells and sample rates. The packet rate and the
CPU usage ratios are ratios with respect to clock-driven references.

The presented extrapolations provide a first impression on the performance of the event-

driven approach in LASSs and its potential to render LASSs feasible. However, these extrap-

olations base on empirical models and, of course, cannot account for all system character-

istics that will impact the performance of real LASSs. For instance, the CPU usage model

does not consider saturation and packet loss. The extended evaluation of a real LASS in Sec-

tion 4.6 indeed shows that saturation and packet loss have a large impact on performance,

especially in the clock-driven operation mode.
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4.6. Evaluation of a Large-Area Event-Driven Skin System

This section demonstrates the feasibility of this thesis’ event-driven approach for Large-Area

Skin Systems (LASSs) by evaluating its implementation in a modular, event-driven large-

area e-skin. This e-skin integrates more than 10 000 multi-modal sensors in 1260 skin cells

distributed on the body surface of a humanoid robot (Section 4.3). The detailed evaluation of

the implemented large-area e-skin refines the performance models of the previous sections

with the experimental data of a larger e-skin system, and proves the efficiency of this thesis’

approach in a real LASS. Furthermore, the evaluation of experiments with intensive large-

area stimulations demonstrates the event-driven e-skin’s capability to effectively handle and

provide large-area tactile feedback. In the clock-driven operation mode, the same large-

area e-skin lacks this capability. There, the evaluations show that the information handling

system saturates, and information is continuously lost. This saturation and information loss

results in delays and discontinuities, which both severely deteriorate the clock-driven e-skin’s

capability to provide effective tactile feedback. Therefore, this section not only evidences that

this thesis’ event-driven approach is effective and efficient in the realization of a LASS. It also

demonstrates that the efficiency of this thesis’ approach is strictly required to realize a LASS

with the capability to provide real-time feedback for large-area contacts. The actual utilization

of this feedback for realizing physical interactions and the validation of their effectiveness will

follow in Chapter 5.

This section presents the evaluations as follows. First, Section 4.6.1 introduces the experi-

mental setup. Then, Section 4.6.2 presents the refined CPU usage model of the LASS. After

that, Section 4.6.3 introduces the CPU usage models for multiple skin drivers and compares

the models to the real measurements. Section 4.6.4 assesses the measurements and mod-

els and determines the operation zones of the LASS, that is, the ranges of packet rates,

where the LASS operates optimally or where the system performance degrades because of

saturation and packet loss. Then, Section 4.6.5 presents performance extrapolations to even

larger e-skin systems. Finally, Section 4.6.6 presents a worst-case experiment with an inten-

sive large-area stimulation and assesses the effectiveness of the implemented event-driven

LASS.

4.6.1. Experimental Setup and Protocol – Event-Driven Large Area E-Skin
Figure 42 illustrates the LASS of the humanoid robot H1 that this section evaluates. Sec-

tion 4.3 has presented its detailed description along with the definition of the performance

indicators for its evaluation.

The work presented in Section 4.6 was in part published in:
Bergner, F., Dean-Leon, E., Guadarrama-Olvera, J. R., Cheng, G., “Evaluation of a Large Scale Event Driven
Robot Skin”. In: IEEE Robotics and Automation Letters 4.4 (2019), pp. 4247–4254.
Copyright permissions: see Appendix D.
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Skin Patch

Skin Cell

47          Skin Patches

1,260     Skin Cells

10,080   Multi-Modal Sensors

Figure 42 The humanoid robot H1 covered with e-skin. The high-resolution temperature sensor is not deployed. Additionally,
acceleration events are deactivated. The robot produces vibrations that have not been compensated yet. The evaluation thus
focuses on the tactile force, proximity, and temperature stimuli.

The change of the experimental platform from the UR5 robot arm (Sections 4.4 and 4.5)

to the robot H1 requires the adjustment of the event thresholds because the noise profiles

change with the experimental platform. The tuning of the event thresholds follows the same

procedure as in the previous sections. Table 17 lists the results.

Modality Proximity Force Temperature

Threshold 0.005 0.02 0.5

Table 17 The selected event thresholds for the different modalities of the e-skin. The force and proximity thresholds are
normalized, and the temperature is in ◦C. The event thresholds are adjusted to the new system and are thus different from the
ones introduced in Table 8. The noise profiles of the accelerometers are not determined yet. The H1 robot produces vibrations
that are not adequately filtered yet.

The evaluations base themselves on two sets of experiments. One set to model, evaluate,

and extrapolate the performance of the LASS in Sections 4.6.2 to 4.6.5. The other set to com-

pare the event-driven with the clock-driven operation mode in a whole-body tactile perception

task (Section 4.6.6). In total, more than 90 experiments allow for presenting the results with

their stochastic significance. Each presented data point in the following figures and tables

results from the statistical analysis of at least ten experiments.

4.6.2. CPU Usage Model
The CPU usage model describes the relationship between the packet rate of the e-skin and

the demanded CPU usage for handling its packets. This relationship depends on the com-

puter system that realizes the information handling. Ideally, the model should be valid for

different computer systems with a small change of parameters that reflect the distinct prop-

erties of the computer systems. Therefore, this section determines the parameters for the

e-skin system of H1 and assesses the results in comparison to the e-skin system on the UR5

robot arm presented in Section 4.5.3. In the following, the refined CPU usage model serves
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two purposes. First, the CPU usage model allows for assessing and extrapolating the perfor-

mance of the evaluated e-skin system. Second, the CPU usage model allows for deciding if

the packet handling process saturates or not (Section 4.6.3).

Figure 43 presents the relationship between packet rate and CPU usage for one of the 12 skin

driver processes (RLA, see Table 5 in Section 4.3.4.1) of H1’s LASS. Different packet rates

result from changing the number of skin cells and their sample rate. To realize a constant

packet rate (on average) in the event-driven mode, the event thresholds are lowered such that

the skin cells continuously generate event packets. These packets result from noise. Figure

43 additionally presents the measurements and models of the e-skin on the UR5 robot arm

to allow for comparisons.

UR5 Robot Arm (260 skin cells, CD)

UR5 Robot Arm (260 skin cells, ED)

H1 (1260 skin cells, CD)

H1, CD, mean

H1, ED, mean

H1, CD, std

H1, ED, std

Figure 43 The CPU usage against the packet rate. The figure contains measurements and models for the skin system
evaluated in Section 4.5.3 and the LASS of H1. The measurements of the LASS are attached with their stochastic
significance. The clock-driven measurements and models are denoted with CD and the event-driven ones with ED. The
shadow depicts their variance (std) and the crosses their expected values (mean). The model fitted to the clock-driven
measurements of the LASS can be utilized as upper bound.

Figure 43 shows that the logarithmic model introduced in Section 4.5.3 is also valid for the

LASS on H1. Additionally, the figure underlines that, despite the different computer systems

and the different operation modes, the CPU usage per transmission rate is approximately the

same for all measured configurations. Furthermore, the model for H1’s e-skin in the clock-

driven operation mode

u(fp) = 40.22 log(8.698 · 10−5fp + 1) (4.31)

represents the upper bound for all measurements, including the ones of the previous section.

Therefore, this model represents the ideal baseline model for all the following performance

evaluations. There, the baseline model delivers the upper bound results for assessments and

extrapolations of the CPU usage.
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4.6.3. CPU Usage Model for Multiple Processes
The LASS on H1 employs a total of 12 interfaces (TSU-S, see Section 4.3.4) connected

to H1’s computer system. The computer system executes one process (a skin driver) per

interface, thus 12 processes concurrently. Therefore, to evaluate the LASS of H1, the CPU

usage model of one process (Section 4.6.2) has to be extended to multiple processes. The

CPU usage of multiple processes is the sum of the CPU usage of individual processes

utotal(fp) =
∑
i

ui(fp,i). (4.32)

The CPU usage model is valid until the whole PC is saturated, the skin driver is saturated, or

the system drops packets. In these cases, the measured CPU usage falls below the estimated

CPU usage of the model since it cannot increase further (saturation) or decreases because

of information loss.

Figure 44a depicts the CPU usage models for multiple skin drivers (solid lines) and their

corresponding real measurements (crosses for means, and shadows for standard deviations).

The total CPU usage of the system is depicted in Figure 44b. Figure 45 contains two CPU

usage models for 12 skin drivers. Similar to the other models, the light blue model assumes

balanced packet rates for all skin drivers, i.e. each of the 12 skin drivers receives 1/12 of the

total packet rate. The dark blue model/measurement considers the unbalanced packets rates

as found in the e-skin on H1, where each driver is connected to a different number of skin

cells (Table 5 in Section 4.3.4.1).
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(a) The measurements and the models for the CPU usage for different numbers of skin drivers. The differences between
measured values and the model indicate saturation and packet loss.
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(b) The measured CPU usage of the whole OS. The measurements include the CPU usage of the evaluation system. The
operating system starts to saturate with a CPU usage of around 700 %. The physical limit of the eight-core system (4 cores +
HT (Hyper Threading, Intel)) is 800 %.

Figure 44 The CPU usage for the 12 skin drivers and the CPU usage of the total system. The former includes the CPU usage
models as defined in Equations (4.31) and (4.32). A significant difference between measurement and model indicates a
saturated system that drops packets. The CPU usage measurements of the system provide additional information to decide if
the saturation occurs in the skin driver process or if the operating system is saturated. The colored background indicates the
good/bad operation zones of the 12 skin driver configuration. The specified numbers of skin cells in event-driven mode
empirically assume (Section 4.5) that skin cells in the event-driven mode generate, on average, only one third of the packet
rate of skin cells operating in the clock-driven mode. The blue background encloses the operation zone of the LASS for the
experiment presented in Section 4.6.6.
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Comparing the different performance indicators in Figures 44 and 45, one can observe that

the model for the CPU usage differs significantly from the observed CPU usage when the

model’s constraints are violated. The system is either saturated or drops packets. This ob-

servation leads to the definition of operations zones in Section 4.6.4.
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Figure 45 The CPU usage of 12 skin drivers and the dropped packets per second. The dropped packets indicator is explained
in detail in Section 4.3.5.6.

4.6.4. Operation Zones of the Large-Area Skin System
The background in Figures 44 and 45 marks the different operation zones of the fully operat-

ing LASS on H1 with 12 skin drivers and 1260 skin cells (Section 4.6.1). The vertical light blue

line indicates the border between zones with zero/non-zero packet drops. The line divides the

figures into two parts with the good operation zone on the left (zero packet drops) and with

the bad operation zone on the right (packet drops). The thick red squares in Figures 44 and

45 accentuate the operation points of the system in clock-driven mode with the sample rates

of 62.5 Hz, 125 Hz, and 250 Hz. Only one of these operation points (62.5 Hz) lies in the good

operation zone. Still, in this operation point, the LASS continuously induces a high CPU us-

age (close to the saturation of the whole computer). The other two operation points (125 Hz,

and 250 Hz) lie within the bad operation zone. These two operation points are not feasible.

The blue operation zones on the very left side of Figures 44 and 45 depict the operation area

of the LASS in event-driven mode for the experiment presented in Section 4.6.6. The sensors

of the skin cells sample with 250 Hz. The experiment incorporates an intensive stimulation of
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large skin areas. However, the operation points of the system in the event-driven mode stay

most of the time on the very left in the dark blue zone and they thus induce only low CPU

usage. Some peak stimulations occasionally move a few operation points into the light blue

zone. These peak CPU usages have only a minor impact and their effect on the performance

of the system is neglectable.

4.6.5. Extrapolation towards Larger Skin Systems
The CPU usage models introduced in Sections 4.6.2 and 4.6.3, and their validation with real

measurements can be exploited to extrapolate the CPU usage for larger packet rates. Figure

46 depicts these extrapolations.
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Figure 46 The comparative extrapolation for higher packet rates with a LASS operating in clock-driven and event-driven mode.

The estimated number of skin cells for the LASS operating in the event-driven mode bases

on empirical results (Section 4.5). Skin cells in event-driven mode generate, on average, only

one-third of the packet rate of skin cells operating in the clock-driven mode. The total CPU

usage increases with the number of skin drivers, see Figure 46. This fact displays the need

to trade-off between CPU usage and the modularity. However, the CPU usage model does

not reflect that a real skin driver cannot be utilized up to its physical limit of 100 %. Depending

on the overall CPU usage of the system, the skin driver will saturate before reaching 100 %.

Thus, the LASS only properly scales with increasing the number of skin drivers. Then, the

LASS can exploit the multi-threading capabilities of computer systems and scale with the

number of CPU cores. This capability fits well with the current trend in technology to increase

the number of CPU cores in computer systems.

4.6.6. Effectiveness of the Large-Area Deployment
This section presents a comparison of the performance of the LASS in the clock-driven and

the event-driven modes. Therefore, a whole-body tactile perception experiment was con-

ducted as depicted in Figure 47. For both modes, the sensors sample at 250 Hz.
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In the clock-driven mode, the CPU usage, packet rate, and packet loss are continuously very

high during all stages of the experiment. Contrarily, in the event-driven mode, the CPU usage

and packet rate are low when no tactile stimuli are present and tractable when many tactile

stimuli (up to 680 active skin cells) are present. In the event-driven mode, the system only

once lost 80 packages. That loss is by far lower than 0.1 % of all captured packets. The

results of Figure 47 are supported by the statistical evaluation of the experimental stages

in Table 18. In any case, Figure 47 clearly evidences that the only feasible way to utilize

the evaluated LASS in applications that require feedback is operating it in the event-driven

mode.

Event-Driven Mode

(3) (4) (5)(1)

Clock-Driven Mode

(2)

Figure 47 The whole-body tactile perception experiment to compare the performance of LASS in the clock-driven and
event-driven operation mode. (1) We repeatedly touch the robot on its torso, mainly generating proximity and force stimuli in
the interaction area. (2) We cover H1 with a cloth, generating many proximity stimuli in a large number of skin cells. (3) We
move the cloth, again generating many proximity stimuli. (4) We touch H1 indirectly by touching the cloth, generating force,
and proximity stimuli in the interaction area. (5) We uncover H1, generating proximity stimuli. The stochastic significance of the
results can be found in Table 18. Please note that the scale of the network traffic and the CPU usage is significantly lower in
the event-driven mode than in the clock-driven mode.
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Experiment Stage 1 (CD) 3 (CD) 4 (CD) 1 (ED) 3 (ED) 4 (ED)

CPU in % 260.656 (2.79748) 258.942 (4.40611) 261.59 (4.04644) 40.3544 (0.520806) 100.445 (1.59067) 64.1453 (2.41937)

Network traffic in packets/s 310,241 (366.196) 310,191 (328.908) 310,276 (257.035) 11,594.9 (76.2378) 34,221.6 (754.492) 19,407.4 (1,039.42)

Active cells 131.838 (3.52125) 591.409 (23.0707) 686.341 (23.3716) 136.236 (2.42389) 574.274 (13.4872) 666.372 (11.1482)

Dropped packets / s 82,233 (2,450.49) 84,203.4 ( 3015.49) 81,268 (3,526.51) 0 (0) 0 (0) 0.008 (0.0252982)

Table 18 Statistical evaluation of the experiment depicted in Figure 47. CD denotes the clock-driven mode and ED the
event-driven mode. The table contains the averages/expected values for stages 1, 3, and 4 for all conducted experiments (10
trails per mode). The standard deviations are denoted in the brackets. Since we cannot feasibly repeat the experiments in
exactly the same manner, we average the measurements of stages 1, 3, and 4 for each conduced experiment. Evaluating the
stochastic processes of stages 2 and 5 is not feasible.

The results demonstrate the superior performance of the event-driven LASS. In the clock-

driven mode, the LASS continuously produces 315 000 packet/s, while in the event-driven

mode the system at most produces 40 000 packet/s (13 %). The CPU usage reduces from

continuously 270 % to at most 100 % (37 %). In the clock-driven mode, the computer drops

on average 80 000 packet/s (25 % of all packets), while in event-driven mode, the package

loss is practically neglectable (< 0.1 %). The efficiency of the event-driven LASS enables its

complete on-board integration into a humanoid robot without the need for additional external

power or processing capabilities.
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4.7. Summary

This chapter presented the design and realization of this thesis’ event-driven approach for

LASSs with subsequent empirical assessments and evaluations validating its efficiency and

effectiveness. The design and realization utilized the event-driven approach (Chapter 3) to

solve the challenge of efficiently handling information in LASSs. The performance evaluations

and assessments evidenced the efficiency of the realized event-driven design allowing for the

scale-up of existing e-skin systems to LASSs that can provide low-latency feedback while

being computationally efficient. The design of the event-driven information handling system

for standard computers not only provides the efficiency to scale the LASS, but it also provides

the flexibility to enhance existing skin systems without further hardware modifications.

The feasibility of the proposed event-driven sensing and event-driven information handling

were demonstrated by their successful implementation on an existing e-skin system. Fur-

thermore, the designs successfully elevated the e-skin to an effective LASS. Table 19 lists

the challenges of LASSs, the designs and realizations that contributed to their solution or

mitigation, and the designs’ impacts on improving the implemented e-skin system. The con-

tributions of this chapter are highlighted in green.

The subsequent evaluation of the implemented LASS on two experimental platforms evi-

denced the effectiveness of the presented designs. Figure 48 summarizes the obtained re-

sults. The event-driven approach reduces the network traffic by 94 % and the CPU usage of

tactile perception by 81 %. The LASS can only effectively operate in event-driven mode. In

clock-driven mode, the LASS loses continuously 25 % of the tactile information while the loss

in event-driven mode is practically neglectable.

This chapter evaluated the designs of the LASS in implementations with experiments focusing

on tactile information, which is on perception. The subsequent Chapter 5 will proceed beyond

perception and will validate the LASS in applications that act on tactile information.
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Challenges Designs/Realizations Impacts/Results (UR5 + H1)

Reliability/Robustness (C-1) • modules: hexagonally shaped skin cells
• local processing capabilities at skin cells
• redundant meshed network of skin cells
• dynamic routing

• upto N+3 redundancy in skin patches
• automatic online failure recovery within less than 50 ms

Deployability (C-2) • hierarchical modular structure (cells, pat-
ches, segments)

• self-organizing network

• no manual construction of communication trees
• flexible addition/removal of modules (cells, patches, segments)
• eased deployment of:

– UR5: 2 patches instead of 253 cells (2,024 sensors)
– H1: 47 patches in 12 segments instead of 1260 cells

(10,080 sensors)

Wiring (C-3) • hierarchical modular structure
• modular interfaces

• huge reduction of wire count by a factor > 50
• reduction of connections from:

– UR5: 253 (2,024) point-to-point to 4 patch connections
– H1: 1260 (10,080) point-to-point to 12 interface connections

Sensor Localization (C-4) • 2D information of self-organized modular
structure

• rotation measurement between cells
• automatic 3D surface reconstruction of

patches

• automatic self-calibration of relative sensor locations
• huge reduction of manual localization tasks by a factor > 80
• manual/semi-automatic localization of:

– UR5: 2 patches instead of 253 cells (2,024 sensors)
– H1: 47 patches instead of 1260 cells (10,080 sensors)

Efficient Information Handling (C-5, C-6) • modular SoDP with event generators in skin
cells

• efficient event decoders to bridge to
clock-driven algorithms

• event-driven information handling framework
exploiting the asynchronous scheduling
capabilities of standard operating systems

• the system scales well from 253 to 1260 cells
• EDS is the key for information handling in LSSSs:

– loss-less information handling (H1: 25% loss when clock-
driven)

– effective reduction of the data rate by around 90%
– efficient information handing: computational load reduced by

around 60%

Table 19 Challenges, designs, and their impacts on scalable Large-Area Skin Systems (LASS). The contributions of this chapter are highlighted in green.
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UR5 H1

2           Patches

253       Skin Cells

2,024    Sensors

47          Patches

1,260     Skin Cells

10,080   Sensors

Patch

Skin Cell

(a) Skin on the UR5 robot arm and the humanoid robot H1.

Robot Network Traffic Clock-Driven Event-Driven Reduction

UR5
Idle 1.0 MB/s 0.0024 MB/s 99.76%

Interaction (peak) 1.0 MB/s 0.0791 MB/s 92.09%

H1
Idle 19.2 MB/s 0.0146 MB/s 99.924%

Interaction (peak) 19.2 MB/s 2.4414 MB/s 87.284%

Average 94%

(b) Network traffic.

Robot Information Loss Clock-Driven Event-Driven

UR5 (saturated system) 0% 0%

H1 25% 0%

(c) Information loss in a saturated system.

Robot CPU Usage (Perception Module) Clock-Driven Event-Driven Reduction

UR5
Idle 95% 5.5% 94%

Interaction (peak) 95% 25% 74%

H1
Idle 270% 10% 96%

Interaction (peak) 270% 100% 63%

Average 81%

(d) CPU Usage in the perception module.

Figure 48 Overview of the network traffic and CPU usage of perception on the two evaluated experimental setups. The UR5
robot arm’s sensors sample with 125 Hz and H1’s with 250 Hz. The idle e-skin system does not register any tactile interactions.
Any interaction with the e-skin generates information rate peaks that mirror event rate peaks and thus lead to peaks in the
network traffic or the CPU usage. The tactile interactions varied during our experimental setups. We ensure the comparability
in this overview by focusing on the measured peaks and treating them as worst case measurements. 100 % CPU usage
equals the saturation of one CPU core in HT mode. The CPU usages measured in the clock-driven setup of H1 are lower than
expected since the information handling system is totally saturated and can not assign more CPU time to the perceptive
information handling. The CDS of H1 effectively handles 25 % less information than required since 25 % of the information is
lost.
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5. Realization and Validation in Applications

This chapter presents the effectiveness of the event-driven Large-Area Skin System (LASS)

in the very challenging task of providing large-area tactile feedback in complex systems.

While the previous chapters presented the design, realization, and evaluation of event-driven

LASSs, this chapter demonstrates that LASSs implementing this thesis’ approach can pro-

vide the tactile feedback for previously infeasible whole-body interactions.

To this end, this chapter presents the successful integration of the event-driven LASS in

robotic systems, which not only validates the effectiveness of this thesis’ approach in complex

systems but which also delivers insights and general methods for efficient integrations.

This chapter collects and analyzes in total four methods: i) Hybrid event-driven systems, that

efficiently connect event-driven e-skin with standard clock-driven control algorithms (Sec-

tion 5.1); ii) The decentralization of computations, that distributedly process tactile feedback

(Section 5.2); iii) The exploitation of event-driven information, that increases the efficiency

of clock-driven algorithms (Section 5.3); and iv) The transformation of clock-driven to event-

driven control algorithms, that increases the efficiency of the algorithms (Section 5.3).

Through these four methods, this thesis provides the foundation for the effective utilization of

large-area tactile feedback in complex systems (Section 5.4) whereby previous approaches

failed.
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5.1. Hybrid Event-Driven Systems

This section presents the integration of the event-driven e-skin with clock-driven control to

evaluate the effectiveness and efficiency of hybrid event-driven systems. Hybrid event-driven

systems ensure the flexibility and applicability of the approaches presented in this thesis

since they represent the successful and efficient integration of large-area event-driven e-skin

systems in existing complex clock-driven systems without the need for further modifications.

The importance of hybrid event-driven systems lies in the fact that many algorithms in com-

plex systems, for instance, controllers, are still clock-driven. Especially real-time low-level

control for actuation is often provided by third parties and cannot be modified. Furthermore,

the stability of controllers depends on the theory that the Nyquist-Shannon sampling theorem

is fulfilled at all times (Section 4.2.2). Control in event-driven systems is for itself an emerging

new research field [99], and up to the near future, Event-Driven Systems (EDSs) will need to

be combined with Clock-Driven Systems (CDSs).

One way to demonstrate the effectiveness of this thesis’ event-driven approach for LASSs is to

show that clock-driven algorithms can efficiently utilize their event-driven feedback. This sec-

tion validates this effectiveness by implementing a perception/action loop where a robot arm

reacts to tactile stimuli (Section 5.1.1). The clock-driven control algorithm fuses tactile feed-

back with proprioceptive robot information to motor actions (Section 5.1.2). The subsequent

performance evaluation (CPU usage of perception and control, and latency) compares the

hybrid event-driven system with respect to a purely clock-driven reference (Section 5.1.3).

The results presented in this chapter demonstrate that the hybrid event-driven system profits

from its event-driven components and is more efficient than a clock-driven system. Thus, the

combination of event-driven LASSs with complex clock-driven systems is effective, and the

overall hybrid event-driven system is more efficient than its clock-driven counterpart. Both

results empirically prove the effectiveness and efficiency of this thesis’ approach in complex

systems.
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5.1.1. Experimental Setup and Protocol – Hybrid Event-Driven Systems
The experimental platform is the UR5 robot arm covered with 253 skin cells as shown in

Figure 49. In contrast to the previous experiments presented in Chapter 4 that focused on

tactile sensing, this experimental setup incorporates controllers implementing reactions to

tactile interactions. In event-driven mode, the optimal event thresholds of Table 8, determined

in Section 4.4.4, were used. Figure 49 depicts the implemented perception-action loop.

Reactive Contact
Control

Gravity 
Compensation

Robot Control

Joint Position
Control

Carthesian Position
Control

Torque Resolver

clock-driven

clock-driven

clock-driven

clock-driven

Perception

Action

125 Hz (8 ms)

500 Hz 
(2 ms)

500 Hz (2 ms)

500 Hz (2 ms)

500 Hz (2 ms)

event-driven

Figure 49 The controller block fuses tactile with proprioceptive information. The reactive contact controller is combined with
several other controllers to achieve a desired control behavior, e.g. a compliant behavior. The motor actions are generated
with joint torques τ . The torque resolver [40, 44] transforms the resulting joint torque τ cmd to joint position qcmd or joint
velocity commands q̇cmd.

The control block consists of two types of controllers: controllers only operating with pro-

prioceptive information (joint positions q and velocities q̇), and controllers fusing tactile with

proprioceptive information. The former are controllers such as Gravity Compensation Con-

trol, Joint Position Control, and Cartesian Position Control, and the latter are multi-modal

controllers, such as Reactive Contact Control [45, 40, 44], see Table 20.
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Controller Description

Gravity Compensation Control This controller compensates for the effects of gravity such that forces

produced by the gravitational acceleration do not affect the robot arm.

Joint Position Control This controller controls the position of the robot arm in the joint space,

that is, it forces the robot arm to reach a desired joint position qd ∈
RDOF.

Cartesian Position Control This controller controls the position of the robot arm in the Cartesian

space, that is, it forces the robot arm to reach a desired position

pd ∈ R3.

Reactive Contact Control This controller fuses proprioceptive with tactile information and gen-

erates reactions according to the tactile feedback, that is, it forces

the robot arm to avoid contacts.

Table 20 Overview and description of controllers [45, 40, 44]. The controllers can be combined to achieve desired behaviors,
for instance, contact avoidance, or active compliance.

Section 5.1.2 will detail how the Reactive Contact Control fuses proprioceptive information

with tactile information to motor commands.

All controllers encode their motor actions in joint torques τ , which are the desired torques

commanded to the joints’ motors to achieve the desired system behavior (e.g. compensate

gravity, reach a desired position, avoid a contact, etc.). Joint torques do not require coordinate

frames, and thus, behaviors can be superimposed by adding and weighting their respective

joint torque contributions. When a robot supports joint torque commands, then the sum of

the joint torques can be directly sent to the robot as a control command. Since the UR5 robot

arm only supports position and velocity commands, a torque resolver first converts the joint

torque commands τ cmd to position qcmd or velocity commands q̇cmd [45, 40, 44].

The controllers of the experimental setup are executed in a real-time loop with an update rate

of 500 Hz1, or respectively, with a cycle time Tctrl of 2 ms. A velocity interface to the UR5

robot arm was employed and velocity commands were sent with an update rate of 125 Hz.

The experiments are conducted both in the clock-driven setup (Figure 50a) providing the

ground truth information, and in the hybrid setup (Figure 50b). Additional information regard-

ing the implementation of the hybrid event-driven information handling system is presented

in Appendix C, Figure 81. In the hybrid setup, the skin driver operates in event-driven mode.

The controller always operates in the clock-driven mode. The communication between the

event-driven skin driver and the clock-driven controller is update-driven (Appendix C), that is,

the communication only contains the data structures of the skin cells that need to be updated.

Therefore, in the hybrid setup, less CPU usage is expected in the controller process.

1 The closed loop dynamics use a virtual dynamic model which requires a fast update frequency, in this case 500
Hz. It is noticeable that slower frequencies lead to instabilities.
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(a) The clock-driven reference system.
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(b) The hybrid system with the event-driven skin driver and the clock-driven controller. The communication between the skin
driver and the controller is update-driven (Appendix C).

Figure 50 The clock-driven reference and the hybrid system. ETH denotes the Ethernet connection of the communication
interface to the e-skin. Additional information regarding the implementation of the hybrid event-driven information handling
system is presented in Appendix C.

The experimental evaluation analyzes the performance indicators (Section 4.3.5) and the re-

sponsiveness of the system. Therefore, a total of 30 experiments were performed as depicted

in Figure 51.

The experiments have to be performed as similar as possible to acquire comparable informa-

tion. First, in Stage 1, touch is made on a resting robot arm. With the applied force, the robot

moves away to avoid the contact (Stage 1 to Stage 2). Once touching the robot stopped

(Stage 2), the robot continues its movement (due to its natural dynamics, e.g. interia and

friction), but slows down (Stage 2 to Stage 3). Finally, the robot arm moves back to its initial

position (for instance, in Stage 4).

The controller of the experiments implements a compliant behavior and combines Gravity

Compensation Control, Reactive Contact Control, and Joint Position Control (Figure 49).
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Stage 1 Stage 2 Stage 3 Stage 4

Figure 51 The experiment for evaluating the hybrid event-driven system. The experiment is carried out five times for each
operation mode (clock-driven/event-driven) and for each sample rate (62.5 Hz/125 Hz/250 Hz). Stage 1: The robot arm is
touched. The number of active skin cells αsc increases. The robot arm starts to move and avoids the contact q̇1 > 0. Stage 2:
The contact ceased. The number of active skin cells decreases. The movement slows down (q̇1 decreases). Stage 3: The
robot arm is no longer touched. The number of active skin cells is zero. The movement stops and changes its direction q̇1 < 0.
Stage 4: The robot arm moves back to its original position yielding a compliant behavior.

The experiments are conducted with a human in the loop. Therefore, to minimize the effects

between small differences in our experimental trials, each experiment was carried out five

times to allow for stochastic evaluations. Six different experiments were performed for the

three different sample rates of the skin cells’ sensors (62.5 Hz, 125 Hz, and 250 Hz) with the

skin driver operating in clock-driven or event-driven mode.

5.1.2. Reactive Contact Control – From Tactile Stimuli to Motor Commands
This section describes the fusion of tactile stimuli provided by the e-skin with proprioceptive

information provided by the robot. This fusion is mapped to motor commands that realize ap-

propriate reactions for tactile interactions. The mapping of tactile stimuli to motor commands

requires structural information, which is the locations (position and orientation) of the tactile

sensors with respect to the limbs of the robot, and the structural arrangement of the robot

limbs (the robot kinematics). This structural information can be automatically provided by the

e-skin system [102, 107, 45, 29]. The e-skin can automatically localize its skin cells on 3D

surfaces, and self-exploration or minimal external information can contribute to the automatic

acquisition of sensory-motor mappings [107].
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In the following, a step by step presentation of the transformation of tactile stimuli to virtual

forces (Section 5.1.2.1) and the mapping of these forces to joint torques (Section 5.1.2.2)

is given. Algorithm 4, presents the skin cell wise computation of skin torques (Section

5.1.2.3).

5.1.2.1 Virtual Forces – From Tactile Stimuli to Forces

The skin cells i detect external normal forces along their own z-axes. A virtual force Fz,i ∈
R for each skin cell i is computed by fusing the three normalized capacitive forces Fc =∑3

l=1 Fc,l with the normalized proximity value Fp, see Algorithm 3 [40, 17].

Algorithm 3 Calculate Fz for Fc and Fp

1: Fc :=
∑3

l=1 Fc,l

2: if Fc < Fc,th then
3: Fc := 0

4: end if
5: if Fp < Fp,th then
6: Fp := 0

7: end if
8: Fz := βc Fc + βp Fp

9: if Fz < Fz,th then
10: Fz := 0

11: else
12: αsc := αsc + 1

13: end if

Both, Fc and Fp range from zero to one. Zero denotes zero force, or respectively, maximum

distance, and one denotes maximum force, or respectively, zero distance. The fusion of

pre-contact (proximity) and contact (force) information is weighted with positive gains βc and

βp ∈ R and thresholded by Fc,th, Fp,th, and Fz,th. All contributions below these thresholds

are set to zero. These thresholds cancel noise. All thresholds for computing the virtual force

are determined heuristically and are the result of a trade-off between noise and reactiveness

to small forces.

A skin cell i that contributes a virtual force Fz,i > 0 is an active skin cell with αi = 1. The

number of active skin cells αsc (Figure 51) is the sum of all active skin cells:

αsc =
∑
i

αi. (5.1)

The number of active skin cells can be used, for instance, to compute the contact pressure

[62].
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5.1.2.2 Skin Joint Torques – Fusing Tactile and Proprioceptive Information

The reactive contact controller fuses tactile information provided by the e-skin (virtual force

Fz,i, Section 5.1.2.1) with proprioceptive information provided by the robot arm (joint posi-

tions q and velocities q̇) to desired joint torques τ . The fusion requires a mapping of the

virtual force Fz,i of a skin cell i to its appropriate joint torque τ i. The sum of the joint torque

contributions of all skin cells i

τ skin =
∑
i

τ i (5.2)

leads to the skin joint torque τ skin. This joint torque represents the motor command for the

resulting reaction to the tactile contact.

The mapping of virtual forces to joint torques is obtained by applying the principle of virtual

work [40]. An external wrench wi ∈ R6 exerted on a skin cell i contributes to torques τl ∈ R
in joints l = 1, . . . , k, see Figure 52.

l

Figure 52 Kinematic chain from skin cell i on active joint k to the base frame of the robot 0.

The torques τl in the rest of the joints l = k + 1, . . . ,DOF are zero. Thus, the joint torque

contribution τ i ∈ RDOF of skin cell i is

τ i =
[
τ1 · · · τk 0 · · · 0

]>
∈ RDOF (5.3)

where DOF denotes the robot’s degrees of freedom. The UR5 robot arm of the experimental

setup (Section 5.1.1) employs six revolute joints and has thus six DOF.

The joints 1, . . . , k actuated by the wrench wi of a skin cell i are termed active joints since

the wrench causes joint torques greater than zero in these joints. All the other joints (l > k)

are then not actuated since the wrench does not cause joint torques in these joints.

The wrench wi is the external wrench sensed by skin cell i and is composed of

wi =
[
0 0 Fz,i 0 0 0

]>
∈ R6. (5.4)
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The skin cells only sense forces aligned to their z-axes (Normal Forces, Section 5.1.2.1), thus

the wrench wi only contains that contribution.

The mapping from wrenches wi to torques τ i is resolved by computing the transposed Jaco-

bians J>i (q) of the skin cells i applying the principle of virtual work:

τ i = J>i (q) w0 i (5.5)

The wrench w0 i is the wrench of the skin cell i with respect to the robot base coordinate

frame 0 and is computed by

w0 i =


Rk0 zk i Fz,i

0

0

0

 ∈ R6 (5.6)

where Rk0 denotes the orientation of the coordinate frame of joint k with respect to the coor-

dinate frame 0. zk i ∈ R3 is the z-axis of the coordinate frame of skin cell i with respect to the

coordinate frame of joint k, that is, zk i = Rik

[
0 0 1

]>
.

The Jacobian Ji(q) of a skin cell i can be determined geometrically by applying the laws of

physics for mapping linear and angular velocities ẋ and ω to joint velocities q̇. For revolute

joints, this Jacobian has the form:

Ji(q) =

 z0 0 × [ t0 i − t0 0] . . . z0 l−1 ×
[

t0 i − t0 l−1

]
0 . . . 0

z0 0 . . . z0 l−1 0 . . . 0

 ∈ R6×DOF (5.7)

In general, the l-th column of Ji, that is,

jl,i(q) =

[
z0 l−1 ×

(
t0 i − t0 l−1

)
z0 l−1

]
∈ R6 (5.8)

corresponds to a joint l. Thus, the joint torque τl,i ∈ R of a joint l, when a skin cell i is

mounted on a robot limb actuated by a joint k (Figure 52), is computed by

τl,i(q) =

j>l,i(q) w0 i ∈ R if l ≤ k

0 otherwise
. (5.9)

With Equation (5.6), τl,i simplifies to

τl,i(q) = Jl,i(q) Fz,i ∈ R (5.10)

where

Jl,i(q) =
[

z0 l−1 ×
(

t0 i − t0 l−1

)]>
Rk0 zk i ∈ R. (5.11)
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The vector z0 l−1 ∈ R3 is the z-axis of the coordinate frame l − 1 of joint l − 1 and t0 i ∈ R3

is the origin of the coordinate frame of skin cell i, both with respect to the base coordinate

frame 0. The transformation from joint l to the base coordinate frame 0 is defined by the

homogeneous transformation matrix Tl0 ∈ R4×4. This matrix contains the axes x, y, and z

and the origin t of the coordinate frame of joint l with respect to the base coordinate frame

0:

Tl0 (q) =

 Rl0 t0 l

0> 1

 =

 x0 l y0 l z0 l t0 l

0 0 0 1

 ∈ R4×4 (5.12)

Therefore, computing the joint torque τ i of a skin cell i requires the following homogeneous

transformation matrices (Figure 52, and Equation (5.10)):

• the forward kinematics from the base coordinate frame 0 to the coordinate frame

of joint k: Tl0 (q) for l ≤ k, and

• the static transformation of skin cell i with respect to the coordinate frame of joint

k: Tik ,

where joint k directly actuates the limb where a skin cell is mounted on, see Figure 52.

The skin system is able to self-calibrate [102, 107] and automatically determines the static

transformations Tik of skin cells i with respect to the joint k. This was proposed by Mittendor-

fer et al. since manually obtaining Tik for hundreds of skin cells is not feasible. The capability

to self-calibrate is an essential element that was employed in this thesis to implement reactive

contact control.

5.1.2.3 Skin Torque Computation – Skin Cell-wise Computation

The general descriptions of Sections 5.1.2.1 and 5.1.2.2 lead to a skin cell wise procedure

that transforms the virtual external forces Fz,i for each skin cell to its corresponding reactive

contact motor command τi. The sum of all these contributions (Equation 5.2) result in the

global motor command τskin. Algorithm 4 summarizes this procedure.
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Algorithm 4 Skin cell wise skin joint torque calculation

1: update Tl0 (q) ∀l ∈ 1, . . . , DOF

2: τ skin := 0

3: for all skin cells i do
4: calculate Fz,i according to Algorithm 3
5: if not Fz,i > 0 then
6: continue
7: end if
8: get joint k for skin cell i
9: extract Rk0 from Tk0 (q)

10: extract zk i and tk i from Tik

11: calculate w0 i according to Equation (5.6)

12: t0 i := Tk0 (q) tk i

13: calculate JT
i (q)

14: τ i := JT
i (q) w0 i

15: τ skin := τ skin + τ i

16: end for

Overall, the calculation of joint torques τ i is computationally expensive. Especially, Lines 13

and 14 are expensive (the calculation of the Jacobian and the skin joint torques). However,

the thresholding of the virtual force Fz,i in Line 5 greatly reduces the computational costs.

Rather than calculating the joint torque τ i for each skin cell i, in total nsc times, the expen-

sive computations are reduced to the number of active skin cells αsc ≤ nsc [40, 17]. The

computation of joint torques will be further improved in Sections 5.2 and 5.3.

5.1.3. Performance Evaluation of a Hybrid Event-Driven System
To validate the efficiency gain of hybrid event-driven systems (Section 4.2.2.2) in compari-

son to purely CDSs, the performance indicators presented in Section 4.3.5 are employed.

Particularly, focusing on the packet rate and the CPU usage (Section 5.1.3.1), this section

provides evidence for the hybrid event-driven system’s effectiveness. Additionally, this sec-

tion analyzes the controller response and latency to ensure comparable control performance.

An efficiency gain in handling information is only valid when the control performance is equal

or better to the clock-driven counterpart.

5.1.3.1 Packet Rate and CPU Usage

The measurements of the packet rate, the CPU usage of the skin driver, the CPU usage of

the control thread, and the CPU usage of the control process are depicted in Figures 53, 54,

and 55, respectively, for a sample rate of 62.5 Hz, 125 Hz, and 250 Hz. The top row of each of

these figures presents the measurements of the clock-driven setup, and the bottom row the

measurements of the hybrid setup.
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Skin Driver (CD)

(a) The network traffic in the skin cell network.
The skin is in clock-driven mode.

Skin Driver (CD)

(b) The CPU usage of the skin driver in
clock-driven mode.

Control Thread (CD Skin)

(c) The CPU usage of the controller thread. The
skin is in clock-driven mode.

Control Total (CD Skin)

(d) The total CPU usage of the controller. The
skin is in clock-driven mode.

Skin Driver (ED)

(e) The network traffic in the skin cell network.
The skin is in event-driven mode.

Skin Driver (ED)

(f) The CPU usage of the skin driver in
event-driven mode.

Control Thread (ED Skin)

(g) The CPU usage of the controller thread. The
skin is in event-driven mode.

Control Total (ED Skin)

(h) The total CPU usage of the controller. The
skin is in event-driven mode.

Figure 53 The CPU usage and network traffic for a skin sample rate of 62.5 Hz. Top row: The skin is in clock-driven (CD) mode. Bottom row: The skin is in event-driven (ED) mode. All figures contain, as a
reference, the number of active cells αsc computed by the skin driver. The solid lines represent the mean, the shadows the standard deviation. The gray lines represent the measurements. The plots show the
clear advantage of using EDSs.
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Skin Driver (CD)

(a) The network traffic in the skin cell network.
The skin is in clock-driven mode.

Skin Driver (CD)

(b) The CPU usage of the skin driver in
clock-driven mode.

Control Thread (CD Skin)

(c) The CPU usage of the controller thread. The
skin is in clock-driven mode.

Control Total (CD Skin)

(d) The total CPU usage of the controller. The
skin is in clock-driven mode.

Skin Driver (ED)

(e) The network traffic in the skin cell network.
The skin is in event-driven mode.

Skin Driver (ED)

(f) The CPU usage of the skin driver in
event-driven mode.

Control Thread (ED Skin)

(g) The CPU usage of the controller thread. The
skin is in event-driven mode.

Control Total (ED Skin)

(h) The total CPU usage of the controller. The
skin is in event-driven mode.

Figure 54 The CPU usage and network traffic for a skin sample rate of 125 Hz. Top row: The skin is in clock-driven (CD) mode. Bottom row: The skin is in event-driven (ED) mode. All figures contain, as a
reference, the number of active cells αsc computed by the skin driver. The solid lines represent the mean, the shadows the standard deviation. The gray lines represent the measurements. The plots show the
clear advantage of using EDSs.
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Skin Driver (CD)

(a) The network traffic in the skin cell network.
The skin is in clock-driven mode.

Skin Driver (CD)

(b) The CPU usage of the skin driver in
clock-driven mode.

Control Thread (CD Skin)

(c) The CPU usage of the controller thread. The
skin is in clock-driven mode.

Control Total (CD Skin)

(d) The total CPU usage of the controller. The
skin is in clock-driven mode.

Skin Driver (ED)

(e) The network traffic in the skin cell network.
The skin is in event-driven mode.

Skin Driver (ED)

(f) The CPU usage of the skin driver in
event-driven mode.

Control Thread (ED Skin)

(g) The CPU usage of the controller thread. The
skin is in event-driven mode.

Control Total (ED Skin)

(h) The total CPU usage of the controller. The
skin is in event-driven mode.

Figure 55 The CPU usage and network traffic for a skin sample rate of 250 Hz. Top row: The skin is in clock-driven (CD) mode. Bottom row: The skin is in event-driven (ED) mode. All figures contain, as a
reference, the number of active cells αsc computed by the skin driver. The solid lines represent the mean, the shadows the standard deviation. The gray lines represent the measurements. The plots show the
clear advantage of using EDSs.
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Table 21 summarizes the idle and peak packet rates for around 23 active skin cells when the

skin operates in event-driven mode (Figures 53e, 54e, and 55e), and the constant packet

rates when the skin operates in clock-driven mode (Figures 53a, 54a, and 55a). The signif-

icant reduction ratio of the packet rates in event-driven mode to around 33 % matches our

expectations and the results presented in Chapter 4. Figures 53e, 54e, and 55e also depict

that the change of the total number of active skin cells αsc coincides with the peaks in the

packet rate. This behavior is expected since the event rate, and thus the packet rate, corre-

lates with the information rate of the tactile interaction (Sections 2.3.3, 3.1.3, and 4.1.1.2).

Packet Rate [packet/s] ED Idle ED Peak Clock-Driven

62.5 Hz 1,700 (10.6 %) 3,100 (19.3 %) 16,100 (16,250 @ 260 skin cells2)

125 Hz 7,300 (23 %) 9,700 (30 %) 31,700 (32,500 @ 260 skin cells)

250 Hz 19,700 (33.2 %) 24,200 (40.8 %) 59,300 (65,000 @ 260 skin cells)

Table 21 The measured packet rates of skin packets received by the computer system for a sampling rate of 62.5 Hz, 125 Hz,
and 250 Hz. Columns two and three present the packet rates when the skin driver operates in event-driven (ED) mode. The
idle packet rate represents the packet rate when the skin is not touched. The peak packet rate represents the highest packet
rate measured during the tactile interaction. The ratios in the brackets relate these packets rates with respect to the measured
packet rates when the skin driver is in clock-driven mode. The numbers in brackets after the packet rates for the clock-driven
mode denote the expected packet rates in this mode. The small differences between measured and expected packet rates for
62.5 Hz and 125 Hz result from the small variances for the skin cells’ sample rates. The packet drop is zero. The difference for
250 Hz partially results from packet drops (Figure 56).

The computer system only drops packets when the skin system operates in clock-driven mode

with a sample rate of 250 Hz. In this setup, the system loses constantly around 50 packet/s,

see Figure 56. In comparison to the total packet rate, the loss is around 0.08 %, which is still

low. The system operates close to its saturation, nevertheless, the information loss will only

have a minor impact on the performance of the system. The evaluation in Section 5.1.3.2 will

show no significant impact of packet loss. Thus, for this scenario, the e-skin system can be

used in both modes.

2 The robot arm is covered with 253 skin cells (Section 5.1.1). However 260 skin cells are connected to the skin
driver. These seven additional skin cells are not used in the control but their information is processed by the
skin driver.
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Packet Drops (CD)

(a) The packet drop rate fp of the system with the skin driver
in clock-driven (CD) mode.

Packet Drops (ED)

(b) The packet drop rate fp of the system with the skin driver
in event-driven (ED) mode.

Figure 56 The packet drop rate of the system. First, for the skin driver in clock-driven mode, then in event-driven mode. The
sample rate of the e-skin is 250 Hz. The packet drop rate is zero for 62.5 Hz and 125 Hz. All figures contain, as a reference, the
number of active cells αsc computed by the skin driver (red). The solid lines (blue/red) represent the mean, the shadows (light
blue/light red) the standard deviation. The gray lines represent the measurements of the different experimental trials.

Table 22 summarizes the idle and peak CPU usage of the skin driver in event-driven mode

(Figures 53f, 54f, and 55f), and the constant CPU usage in clock-driven mode (Figures 53b,

54b, and 55b). Throughout all conditions, the CPU usage is significantly lower in event-

driven mode. Similar to the packet rates, the peaks of the CPU usage in the event-driven

mode coincide with the maximum change of the number of active skin cells. As expected

(Sections 3.3.1 and 4.1.1.2) the EDS requests computation time on demand, and the CPU

usage changes according to the number of skin packets/events.

Skin Driver CPU Usage [%] ED Idle ED Peak Clock-Driven

62.5 Hz 17 (21.3 %) 28 (35 %) 80

125 Hz 43 (39.1 %) 55 (50 %) 110

250 Hz 95 (63.3 %) 110 (73.3 %) 150

Table 22 The CPU usage of the skin driver including the additional CPU usage to operate the ROS interface (Appendix C,
Figure 82) for the connection to the controller ROS node. Columns two and three present the idle and peak CPU usage of the
skin driver in event-driven (ED) mode. The system is idle when the skin is not touched (the number of active skin cells is zero).
The ratios in the brackets are with respect to the measured CPU usages in clock-driven mode. Overall, the event-driven mode
significantly reduces the computational load in the skin driver.

The CPU usage of the control thread, that is the thread that executes all control algorithms

depicted in Figure 49, is shown in Figures 53c, 54c, and 55c for the purely clock-driven

system, and in Figures 53g, 54g, and 55g for the hybrid event-driven system. As expected,

the CPU usage is similar throughout all operation modes and sample rates. The control

algorithm is exactly the same for all conditions. The sample rate of the skin, or respectively,

the amount of information provided by the skin driver, has no impact on the CPU usage of the

controller thread. Tactile information is processed and provided by other background threads
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of the controller process. When the number of active skin cells is zero, the controller thread

only processes proprioceptive information with a constant computational complexity. Then

the CPU usage settles at around 45 %. The CPU usage increases with the number of active

skin cells (Algorithm 4) and reaches a peak of around 65 %.

The CPU usage of the control process is the sum of the CPU usage of all its threads. This

CPU usage thus also includes the CPU usage demanded by the background threads that

provide tactile information to the controller thread. Table 23 summarizes the idle and the

peak CPU usage of the controller process for all operation modes and sample rates (Figures

53d, 54d, and 55d for the clock-driven system, and Figures 53h, 54h, and 55h for the hybrid

event-driven system). Overall, the hybrid event-driven system profits from the redundancy

reduction in the update-driven information stream between the skin driver and the controller

(Figure 50). However, the positive effect decreases for higher sampling rates. The CPU

usage for 250 Hz is practically the same for both systems. Furthermore, the CPU usage

does not increase significantly in the clock-driven system when doubling or quadrupling the

sample rate. This missing increase indicates that the background threads handling the tactile

information before passing it to the controller thread saturate. The CPU usage in the hybrid

event-driven system increases for higher sampling rates. Nevertheless, the numbers indicate

that the hybrid event-driven system is also close to saturation for a sampling rate of 250 Hz.

It is expected that the saturation impacts the responsiveness of the controller, which will be

further investigated in Section 5.1.3.2.

Controller CPU Usage [%] CDS Idle CDS Peak HS Idle HS Peak

62.5 Hz 180 200 82 (45.6 %) 122 (61.0 %)

125 Hz 164 190 135 (82.3 %) 166 (87.4 %)

250 Hz 174 200 166 (95.4 %) 194 (97.0 %)

Table 23 The CPU usage of the controller process, that is the sum of CPU usage of all its threads. Columns two and three
present the idle and peak CPU usage for the Clock-Driven System (CDS), and the last two columns respectively for the hybrid
event-driven system (HS). Overall, the hybrid event-driven system profits from the redundancy reduction in the update-driven
information stream between the skin driver and the controller (Figure 50). The positive effect decreases for higher sampling
rates. The CPU usage for 250 Hz is practically the same for both systems.

Tables 24, 25, and 26 respectively summarize the performance gain in total CPU usage for

62.5 Hz, 125 Hz, and 250 Hz. The gain is significant for 62.5 Hz and deteriorates to barely

noticeable for higher frequencies. As discussed before, this effect is mainly caused by the

saturation of the data handling in the controller.
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CPU Usage @ 62.5 Hz CD Idle CD Peak ED/H Idle ED/H Peak

Skin Driver 80 % 80 % 17 % 28 %

Controller 180 % 200 % 82 % 122 %

Total 260 % 280 % 99 % 150 %

Ratio 100 % 100 % 38 % 54 %

Table 24 The CPU usage of the skin driver and the controller with the skin sampling at 62.5 Hz. CD and ED denote the
clock-driven and the event-driven operation modes. H stands for the hybrid event-driven system and refers to the clock-driven
the controller.

CPU Usage @ 125 Hz CD Idle CD Peak ED/H Idle ED/H Peak

Skin Driver 110 % 110 % 43 % 55 %

Controller 164 % 190 % 135 % 166 %

Total 274 % 300 % 178 % 221 %

Ratio 100 % 100 % 65 % 74 %

Table 25 The CPU usage of the skin driver and the controller with the skin sampling at 125 Hz. CD and ED denote the
clock-driven and the event-driven operation modes. H stands for the hybrid event-driven system and refers to the clock-driven
the controller.

CPU Usage @ 250 Hz CD Idle CD Peak ED/H Idle ED/H Peak

Skin Driver 150 % 150 % 95 % 110 %

Controller 174 % 200 % 166 % 194 %

Total 324 % 350 % 273 % 304 %

Ratio 100 % 100 % 84 % 94 %

Table 26 The CPU usage of the skin driver and the controller with the skin sampling at 250 Hz. CD and ED denote the
clock-driven and the event-driven operation modes. H stands for the hybrid event-driven system and refers to the clock-driven
the controller.

5.1.3.2 Controller Response & System Latency

The measurements of the number of active skin cells, the joint torque, and the joint velocity

are depicted in Figures 57, 58, and 59, respectively, for a sample rate of 62.5 Hz, 125 Hz, and

250 Hz. The top row in each of these figures presents and compares the measurements of

the clock-driven and the hybrid event-driven system. The bottom row presents the respective

close-ups in a smaller time interval.
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(a) The number of active skin cells αsc,ctrl computed by the
controller.

(b) The joint torque τ1 of joint one (shoulder joint). (c) The joint velocity q̇1 of joint one (shoulder joint).

Active Skin Cells

(d) Zoom in with the number of active skin cells in the range
t ∈ [1.5, 3.5].

Joint Torque

(e) Zoom in with the joint torque in the range t ∈ [1.5, 3.5].

Joint Velocity

(f) Zoom in with the joint velocity in the range t ∈ [1.5, 3.5].

Figure 57 The comparison of the number of active skin cells, the joint torque, and the resulting joint velocity for a skin sample rate of 62.5 Hz in the clock-driven and the hybrid event-driven system. The
clock-driven system is denoted by the subscript c and the hybrid event-driven system respectively by h. Top row: Overview with the signals in the full range. Bottom row: Zoom in with the signals in the range
t ∈ [1.5, 3.5] s. All figures contain, as a reference, the number of active skin cells αsc computed by the skin driver. The solid lines represent the mean, the shadows the standard deviation.
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(a) The number of active skin cells αsc,ctrl computed by the
controller.

(b) The joint torque τ1 of joint one (shoulder joint). (c) The joint velocity q̇1 of joint one (shoulder joint).

Active Skin Cells

(d) Zoom in with the number of active skin cells in the range
t ∈ [1.5, 3.5].

Joint Torque

(e) Zoom in with the joint torque in the range t ∈ [1.5, 3.5].

Joint Velocity

(f) Zoom in with the joint velocity in the range t ∈ [1.5, 3.5].

Figure 58 The comparison of the number of active skin cells, the joint torque, and the resulting joint velocity for a skin sample rate of 125 Hz in the clock-driven and the hybrid event-driven system. The
clock-driven system is denoted by the subscript c and the hybrid event-driven system respectively by h. Top row: Overview with the signals in the full range. Bottom row: Zoom in with the signals in the range
t ∈ [1.5, 3.5] s. All figures contain, as a reference, the number of active skin cells αsc computed by the skin driver. The solid lines represent the mean, the shadows the standard deviation.
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(a) The number of active skin cells αsc,ctrl computed by the
controller.

(b) The joint torque τ1 of joint one (shoulder joint). (c) The joint velocity q̇1 of joint one (shoulder joint).

Active Skin Cells

(d) Zoom in with the number of active skin cells in the range
t ∈ [1.5, 3.5].

Joint Torque

(e) Zoom in with the joint torque in the range t ∈ [1.5, 3.5].

Joint Velocity

(f) Zoom in with the joint velocity in the range t ∈ [1.5, 3.5].

Figure 59 The comparison of the number of active skin cells, the joint torque, and the resulting joint velocity for a skin sample rate of 250 Hz in the clock-driven and the hybrid event-driven system. The
clock-driven system is denoted by the subscript c and the hybrid event-driven system respectively by h. Top row: Overview with the signals in the full range. Bottom row: Zoom in with the signals in the range
t ∈ [1.5, 3.5] s. All figures contain, as a reference, the number of active skin cells αsc computed by the skin driver. The solid lines represent the mean, the shadows the standard deviation.
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Figures 57a, 58a, and 59a present the number of active skin cells αsc. These numbers are

either computed by the skin driver (αc,sc and αh,sc) or by the controller (αc,sc,ctrl and αh,sc,ctrl),

in both cases, according to Algorithm 3. The subscript c denotes the clock-driven system

and the subscript h respectively the hybrid event-driven system. The delay ∆tα between the

flanks of αsc and αsc,ctrl represents the delay of tactile information between the skin driver

and the controller. Table 27 summarizes these delays for the different operation modes and

sampling frequencies.

Delay [ms] @ 62.5 Hz ∆tα = tαsc,ctrl
− tαsc

∆tact,ctrl = tq̇1
− tαsc,ctrl

∆tact = tq̇1
− tαsc

Clock-Driven System 330 (71) 501 (37) 831 (109)

Hybrid ED System 174 (130) 474 (95) 649 (225)

Delay [ms] @ 125 Hz ∆tα = tαsc,ctrl
− tαsc

∆tact,ctrl = tq̇1
− tαsc,ctrl

∆tact = tq̇1
− tαsc

Clock-Driven System 247 (22) 536 (45) 782 (66)

Hybrid ED System 243 (52) 550 (112) 793 (164)

Delay [ms] @ 250 Hz ∆tα = tαsc,ctrl
− tαsc

∆tact,ctrl = tq̇1
− tαsc,ctrl

∆tact = tq̇1
− tαsc

Clock-Driven System 244 (30) 536 (105) 780 (136)

Hybrid ED System 240 (77) 503 (54) 742 (131)

Table 27 The delays between the skin driver and the controller ( ∆tα), between the active skin cell flank at the controller and
the joint velocity flank (∆tact,ctrl), and between the skin driver and the controller reaction (∆tact). All the respective flanks are
depicted in Figures 57 to 59. The delays of the hybrid event-driven (ED) system are lower than in the clock-driven system for
the sample rates 62.5 Hz and 250 Hz, and comparable for 125 Hz. The numbers in brackets denote the standard deviation of
the presented results.

At first glance, the delays ∆tα between the skin driver and the controller seem to be, with

a value of around 250 ms, rather large. These delays do not depend on the sampling fre-

quency of the e-skin. Therefore, the saturation of the information handling system in the

control process can not explain the absolute delay. The results of Section 5.1.3.1 only indi-

cate saturation in the clock-driven system, but the delays are large for all operation modes

and sampling rates. The reason for these large delays is the different active skin cell com-

putation in the skin driver and the controller. The skin driver employs lower thresholds than

the controller and thus its flanks start earlier. If there is indeed a constant delay between skin

driver and controller then both, rising and falling flanks, would be shifted. This is clearly not

the case in Figures 57a, 58a, and 59a. The falling flanks practically occur at the same time,

thus indicating that the delay in the communication between the skin driver and the controller

is practically zero.

In contrast to the absolute delays, the assessment of relative delays between different opera-

tion modes is more significant. The relative delays ∆tα are similar for the different operation

modes and sample rates. The only exception is the hybrid event-driven system with the skin

operating at 62.5 Hz. Under these conditions, the hybrid event-driven system shows a sig-
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nificantly lower delay. Overall, the hybrid event-driven system shows a slightly smaller delay,

and the combination of the event-driven e-skin system with a clock-driven controller has no

negative effects on the system delay.

The joint torques and velocities are presented in Figures 57b, 58b, and 59b, and receptively

in Figures 57c, 58c, and 59c. Throughout all operation modes and sample rates, the mea-

surements prove a good similarity, ensuring the comparability between all operation modes

and sample rates. All small differences in the shapes of the signals lie within the stochastic

certainty and result from the uncertainties in the human robot interaction (Section 5.1.1). The

delay ∆tact,ctrl between the active skin cell flank and the joint velocity flank is comparable for

all experiments with a slight advantage for the hybrid event-driven system. The slow reac-

tion of the robot is chosen by design with the user defined parameters of the virtual dynamic

model. For capturing comparable measurements, slow robot reactions leading to determinis-

tically controllable human robot interactions were targeted. When the robot is too fast for the

human, the human would have to practice to keep up with the fast reactions of the robot. Nev-

ertheless, the robot motion can be tuned to faster reactions and has proven its performance

in other experimental setups [44, 29].

Here, the presented results prove that the hybrid event-driven system has no negative impacts

on control performance. Actually, the hybrid system slightly improves the control performance

with lower latencies that result in faster control reactions. The systems are comparable in all

operation modes while hybrid event-driven systems significantly lower the demands on CPU

usage and network traffic.
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5.2. Contact-Driven Distributed Control Computation

This section presents a novel method to reduce the high computational demand in clock-

driven reactive control algorithms that depend on large-area tactile feedback (Section 5.1).

As presented in the previous section, reactive contact controllers transform tactile interac-

tion sensed by the e-skin to joint torques, that is, to robot arm reactions. Therefore, control

algorithms that feasibly scale with the tactile feedback are essential for realizing large-area

interactions with efficient LASSs.

The importance of reactive torque control for contact-driven kinesthetic robot behaviors has

first been pointed out by the works of [59, 92]. These works employ force/torque sensors

to sense contacts. Later, to overcome the contact localization problem in multi-contact sce-

narios, reactive contact controllers using e-skin have been introduced in the works of [142,

50, 23, 116, 109, 40]. Reactive contact controllers processing tactile information of e-skin

have a high demand for computational power that increases with the number of active skin

cells (Algorithm 4, Section 5.1.2.3) and the Degrees Of Freedom (DOF) of the robot. To deal

with the high computation load in systems with many DOF, the work of [141] introduced an

efficient asynchronous algorithm for computing their forward kinematics.

To overcome the limited scalability of tactile feedback in clock-driven control, this thesis pro-

poses to distribute the computation of skin joint torques (Algorithm 4) required for reactive

contact control to the smart skin cells of the e-skin system. The proposed distribution im-

mediately removes the expensive computation of skin joint torques from the control cycle,

relaxing the limit on the maximum number of active skin cells before violating real-time con-

straints. To our best knowledge, the distributed computation of skin joint torques has not been

fully addressed in other works.

The realization of the distributed skin joint torque computation is contact-driven, that is the

joint torques are computed and forwarded to the central control system when the skin cells

are active (Algorithm 3, Section 5.1.2.1).

This section is structured as follows. First, Section 5.2.1 introduces the experimental setup.

Then, Section 5.2.2 details the realization of the distributed skin joint torque computation.

Section 5.2.3 presents our experimental results.

The work presented in Section 5.2 was in part published in:
Bergner, F., Dean-Leon, E., Cheng, G., “Efficient Distributed Torque Computation for Large Scale Robot
Skin”. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid, Spain, 2018,
pp. 1593–1599.
Copyright permissions: see Appendix D.
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5.2.1. Experimental Setup – Distributed Control Computation
The experimental platform is the same as in Sections 4.4.1, 4.5.1, and 5.1.1. The UR5 robot

arm is covered with 253 skin cells, see Figure 60. The e-skin is integrated in a perception-

action loop with a clock-driven controller, similar to the setup presented in Section 5.1.1,

Figure 49. But in contrast to the previous setup, the reactive contact control presented in

Algorithm 4 is now distributedly implemented in the skin cells. The local microcontrollers of

the skin cells perform the fusion of tactile and proprioceptive information to motor commands

τ i. Together with the multi-modal tactile information, the skin cells of this setup also send

their computed control contribution τ i, that the controller process on the computer eventually

fuses to the final commanded joint torque τ cmd.

Gravity 
Compensation

Robot Control

Joint Position
Control

Carthesian Position
Control

Torque Resolver

clock-driven

clock-driven

contact-driven

clock-driven

Reactive Contact
Control

125 Hz

62.5 Hz

contact-driven

500 Hz

500 Hz

500 Hz

Action

Perception

Figure 60 The reactive contact controller that fuses the tactile Fz,i with proprioceptive information q to motor commands τ i.
This controller is distributedly implemented in the skin cells rather than in the controller process (Figure 49).

The experiments performed to validate the effectiveness of the approach does not need to

be repeatable. Instead, the joint torques τ skin,dstb computed by the e-skin on-line can be

directly compared with the reference joint torques τ skin computed in the controller process.

For the reference computation of τ skin, the reactive contact controller presented in Section

5.1 is used.

The controller is configured to realize a kinesthetic behavior in the joint space. Therefore,

it combines the gravity compensation calculated on the computer with the reactive contact

control realized in the skin cells. The robot arm is touched by the human and moves away

from the detected contacts. Thus, the robot arm can be kinesthetically guided to desired
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positions. The controller sends joint positions q to the skin cells with an update rate of fq =

62.5 Hz and receives the sum of all skin joint torques τ skin,dstb. The computation of the skin

joint torques is contact-driven and the results of active skin cells are sent with the same rate.

The reactive contact controller supports two modes:

1. Use τ skin,dstb and compute τ skin in parallel, and

2. Use τ skin,dstb.

The first mode was used to compare the joint torque τ skin,dstb computed by the e-skin with

the reference τskin calculated in the computer. The second mode is used to measure and

evaluate the reduction of computation time in the control loop when τ skin is not computed. In

both modes, τ skin,dstb is used to control the robot. During the experiments, a touch on the

robot arm would kinesthetically move it in the joint space.

5.2.2. Distributed Skin Joint Torque Computation
The following sections explain step by step the distribution and realization of Algorithm 4 in the

microcontrollers of the skin cells. The algorithm is adjusted to increase computation efficiency

and meet the requirements of the microcontrollers’ limited computation capabilities.

5.2.2.1 The General Computation Principle

Each skin cell exploits its microcontroller and computes its own skin joint torque contribution

τ i. This decentralized computation of skin joint torques τ i on skin cells i requires the following

steps:

1. Provide the static transformation Tik between the skin cell i and the joint k

2. Receive the most recent joint positions q ∈ RDOF

3. Compute the forward kinematics to the skin cell i, thus Tl0 (q) ∀ l ≤ k

4. Compute the virtual force Fz,i (Algorithm 3)

5. Compute the components τl,i of τ i (Equation (5.10))

6. Send the joint torques τ i from the skin cells to the reactive contact controller.

This distributed computation of skin joint torques was realized for the UR5 robot arm with

six DOF (Section 5.2.1). The computational power of the skin cell’s microcontrollers is very

limited (16 Mega Instructions Per Second (MIPS), 16 bit architecture, no Floating Point Unit

(FPU)), thus, the optimization of the implementation for this specific robot arm was needed.

Nevertheless, this optimization does not limit the generality of the approach. The same or

similar optimizations apply to other robot arms.
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5.2.2.2 Fixed Point Arithmetic

The skin cells’ microcontrollers use a 16 bit architecture without an FPU. Using floating-point

arithmetic on this microcontroller is infeasible because even simple floating-point operations,

such as sums and products, translate to hundreds of assembly instructions causing large

delays. In order to achieve fast computations on this microcontroller, all arithmetic operations

are realized with fixed point numbers with 32 bit and 16 bit precision. Fixed point numbers

reserve one bit to realize negative numbers with the two’s complement and employ the re-

maining bits for integer and fraction. The Q notation for fixed point numbers is used. A

Q1.14 number uses bit 15 as sign bit, bit 14 for the integer part, and bits 13 to 0 for the

fractional part. A Q1.14 number can represent numbers in [−2, 2[ with a constant precision

of 2−14 = 6.1035 · 10−5. Additions and multiplications of fixed point numbers map to integer

additions and multiplications. To add fixed point numbers, both numbers must have the same

number of fractional bits. While additions preserve the number of fractional bits, multiplica-

tions change it. The number of fractional bits can easily be adjusted by using shift operations.

As long as arithmetic operations have a limited dynamic range, fixed point arithmetic can pro-

vide good accuracy and enable fast operations on architectures without an FPU. Additions

and multiplications of fixed point numbers only require few assembly instructions.

5.2.2.3 Storing the Skin Cell Poses into the Skin Cells

The distributed computation of the skin joint torque τ i of a skin cell i requires the static

transformation Tik (Section 5.2.2.1, Algorithm 4). The skin cell firmware is extended (Section

4.3.1.3) with an interface to store the transformation Tik with Q1.14 into the microcontroller’s

non-volatile flash memory. Since the locations of all skin cells are different, the transforma-

tions Tik are also different for all skin cells i. The skin cells also store the ID of the robot joint

k, which is the robot joint directly connected to the limb where skin cell i is mounted (Figure

52). The transformation Tik , which is the static transformation from skin cell i to joint k, is

determined using a 3D self-calibration algorithm given by [102, 44, 29]. This process is done

only once and the values are stored in the skin cell until a re-calibration process is needed,

for instance, when a skin cell changes its location.

5.2.2.4 Fast Trigonometric Functions

Fast and precise sine and cosine functions are essential for updating the forward kinematics

fast and with sufficient precision. The homogeneous transformation matrix Tll−1 (ql) of joint l

with respect to joint l− 1 contains a rotation matrix Rll−1 (ql) ∈ R3×3 and a translation vector

tl−1 l ∈ R3:
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Tll−1 (ql) =

 Rll−1 (ql) tl−1 l

0> 1

 ∈ R4×4 (5.13)

All the transformations Tll−1 (ql) between joints of the kinematic chain contain sin(ql) = sl
and cos(ql) = cl in Rll−1

3. In the worst case, for a skin cell i actuated by joint k = 6, the

microcontroller has to compute six different sines and cosines.

Sine/cosine functions can be approximated by polynomials, Look-Up-Tables (LUTs) with in-

terpolation, Taylor series, or the Coordinate Rotation Digital Computer (CORDIC) algorithm

[140]. LUTs require memory and are slow since memory access is slow. Taylor series ap-

proximations are inaccurate since an infinite series is truncated and the special properties of

the sine/cosine functions are lost. The CORDIC algorithm uses only shift and addition opera-

tions but is slow in architectures where shift, addition, and multiplication operations have the

same cost since the algorithm only converges linearly.

Thus, to get fast and precise fixed point results for sine/cosine operations, the approximation

of the sin(x) is done with a 5-th order polynomial in the interval x ∈ [−π
2 ,

π
2 [. Simplifying the

computation and notation, we transform coordinates and substitute x by z:

z :=
x

0.5 π
. (5.14)

The transformation normalizes angular input arguments x in radians. The sine function sin(z)

has a period of z = 2 k:

sin(z) = sin(z ± 2 k) ∀k ∈ Z. (5.15)

The sine function is an odd function, thus all parameters of the 5-th order polynomial con-

nected to even powers are zero:

p5(z) = a z − b z3 + c z5 (5.16)

ṗ5(z) = a− 3 b z2 + 5 c z4 (5.17)

The appropriate parameters are determined with three conditionals that define the behavior

of the polynomial on its boundaries and preserve the unique properties of a sine function:

p5(z = 1)
!

= 1 ṗ5(z = 1)
!

= 0 ṗ5(z = 0)
!

=
π

2
(5.18)

where the symbol !
= denotes the condition and means that the left side has to be equal to

the right. Solving this equation system with three unknown parameters and three conditions

3 By definition Rll−1 are relative orientations represented by basic rotations around the axes x, y, or z. Therefore,
each Rll−1 contains one sine and one cosine.
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results into the following parameters:

a =
π

2
, b = π − 5

2
, and c =

π

2
− 3

2
. (5.19)

The simplified approximation of sin(z) for z ∈ [−1, 1[ is thus:

sin(z) ≈ sin5,p(z) ∀z ∈ [−1, 1[

sin5,p(z) = 0.5z
(
π − z2

[
(2π − 5)− z2 (π − 3)

])
. (5.20)

The sine function is a periodic function. Thus, the approximation of Equation (5.20) can be

extended for general z ∈ R. Changing the fixed point precision of z from Qm.f to Q1.14 or

respectively to Q1.30, maps, in a modulo-4-like operation, all z ∈ R to the interval z ∈ [−2, 2[.

For this interval, the sine function can be approximated in the following way:

sin5(z) =


sin5,p(2− z) if z ∈ [−2,−1[

sin5,p(z) if z ∈ [−1, 1[

sin5,p(2− z) if z ∈ [1, 2[

. (5.21)

This approximation of the sine function is fast and only uses 20 assembly instructions. Its

realization on the microcontroller takes fixed point numbers ofQ1.14 as argument and returns

fixed point numbers in Q1.14. The approximation of the cosine is then:

cos5(z) = sin5(z + 1). (5.22)

The mean error for y = sin5(z) with z and y in Q3.12 is 6.7 · 10−4 which is acceptably low for

the application domain.

5.2.2.5 Fast Forward Kinematics

The forward kinematics for a skin cell i actuated by joint k computes as follows:

Tk0 (q1, q2, . . . , qk) = T1
0 (q1) T2

1 (q2) · · · Tkk−1 (qk). (5.23)

Multiplying two 4× 4 matrices AB = C results in:

cij =

4∑
k=1

aik bkj , (5.24)

an operation that has an arithmetic complexity of 64 mul + 48 add. In the worst case, for

k = 6, the arithmetic complexity of updating the forward kinematics is five times a 4 × 4

matrix multiplication resulting in 320 mul + 240 add. Only computing the rotation matrix

Rk0 , the arithmetic complexity reduces to five times a 3 × 3 matrix multiplication, which is

Efficient Realization of Large-Area E-Skin based on Biologically Plausible Principles 161



135 mul + 90 add. However, only computing Rk0 is not sufficient to compute the skin joint

torque τ i. Equation (5.10) also requires the projections pi,l−1,0, that is the projection of t0 i

over t0 l−1 with respect to the base coordinate frame 0:

pi,l−1,0 = t0 i − t0 l−1. (5.25)

The first index i denotes the coordinate frame of t0 i, the second index l − 1 the coordinate

frame of t0 l−1, and the last index the common base coordinate frame 0.

At first glance, this requires the computation of Ti0 which induces one additional 4 × 4 ma-

trix multiplication resulting in 384 mul + 288 add. However, the projection pi,l−1,0 can be

computed much more efficiently by

pi,l−1,0 = Rl−1
0 tl−1 i

= Rl−1
0

(
Rkl−1 tk i + tl−1 k

)
= Rk0 tk i + Rl−1

0 tl−1 k

= pi,k,0 + pk,l−1,0. (5.26)

The projection pi,k,0 is needed for the computation of all the components τl,i of τ i and the

projection pk,l−1,0 can be computed by

pk,l−1,0 =
k−1∑

m=l−1

Rm0 tm m+1 ∀l ≤ k. (5.27)

All the required rotation matrices Rm0 are determined when computing Rk0 . In the worst

case for k = 6, the computation of pk,l−1,0 requires six times a matrix-vector multiplication

(9 mul+6 add) and five times a vector addition (0 mul+3 add). This results in 54 mul+51 add.

In summary, the computation of

Rk0 → 135 mul + 90 add

pi,0,0 → 63 mul + 78 add

Rk0 zk i → 9 mul + 6 add (5.28)

results in 207 mul+174 add. In comparison to computing Ti0 which needs 384 mul+288 add,

the exploitation of the projection properties reduce the number of multiplications by 48 % and

the number of additions by 40 %.

The number of multiplications and additions in the final realization on the microcontroller

can be further reduced by reusing sums and products in the different processing steps. The

kinematics for k = 6 using the formulas of Equation (5.28) results in 66 mul+26 add, reducing

the final number of multiplications by 80 % and the number of additions by 85 %.
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5.2.2.6 Joint Torque Computation and Propagation

The skin cells receive the joint positions of the robot q ∈ R6 as a broadcast message with

a constant update rate fq. q has six components qi, i = 1, . . . , 6 which are trimmed and

transformed into the z representation (Equation (5.14)), that is

q = (qi) ∈ R6 with qi ∈ [−2, 2[. (5.29)

These six joint positions qi are encoded inQ1.14 and fit into one single skin packet. The ability

to use broadcast messages and to pack q into one packet limits the transmission overhead

in the down-link (computer-to-skin cell) enabling high update rates fq.

When a skin cell i receives a new q, it immediately starts to update Jl,i(q) using Equations

(5.10), (5.26), and (5.27). The realization of these equations on the skin cell is optimized such

that only what is necessary is computed and, if possible, intermediate results are reused. In

the worst case, for k = 6, these computations enfold six computations of Jl,i(q) with a total

arithmetic complexity of

(Jl,i)→ 103 mul + 57 add + 6 sin + 6 cos (5.30)

and require around 1096 assembly instructions. Thus, with 16 MIPS, updating (Jl,i) ∈ R6

takes in worst case 68.5 µs.

The skin cells compute the virtual force Fz,i implementing Algorithm 3. The final computation

of τ i = (Jl,i) Fz,i is only performed when the skin cell is active. The skin joint torque τ i ∈ R6

of a skin cell i uses a fixed point precision of Q3.12 and can be packed into one single skin

packet. The skin joint torque τ i is only sent to the computer (up-link) when the skin cell is

active. This limits the transmission overhead in the up-link.

Joint torques τ i do not have a frame of reference and can be added up as shown in Equation

(5.2). To exploit this important property, each skin cell i adds the skin joint torques τ skin,n of

its neighbors to its own skin joint torque τ i before passing the result τ skin,i to the next skin

cell as depicted in Figure 61, that is

τ skin,i = τ i +
∑
n

τ skin,n ∈ R6

n ∈ {neighbors of skin cell i}. (5.31)
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Figure 61 Propagating the sums of skin joint torques.

In order to allow for the higher numbers of the sums, the fixed point precision for τ skin,i

was reduced to Q7.8. Naturally, the propagation and summing of joint torques reduce the

transmission rate in the up-link further at the cost of a slight decrease of precision in the final

skin joint torque τ skin.

The presented efficient approach for computing skin joint torques demonstrated the feasibility

to distribute these computations to the skin cell’s microcontrollers with very limited computa-

tional power. While the presentation focused on the optimal realization for the given hardware,

the presented principles and optimizations are not limited to this specific hardware. The ef-

ficient approximation of sines and cosines, the optimized computation of the kinematics and

joint torques, and the strategy to reuse computations can be applied to any hardware platform

where they would immediately improve computational efficiency. For instance, more powerful

computational hardware could then gain computation time for other tasks, or could compute

the joint torques for more sensors.

5.2.3. Experimental Validation
The following sections compare the accuracy of the distributedly computed skin joint torque

with the one computed in the controller process on the computer, and analyze the obtained

efficiency gain of the new approach in the control loop.

5.2.3.1 Accuracy of the Skin Joint Torque

Figure 62 compares the skin joint torques τ skin = (τl) computed by the controller process on

the computer with the skin joint torques τ skin,dstb = (τdstb,l) computed by the skin cells. The

resulting reaction of the controller can be seen in Figure 63.
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Reference OFFReference ON

Figure 62 The comparison of the skin joint torque τ skin,dstb = (τdstb,l) computed on the skin cells with joint torques
τ skin = (τl) computed in the real-time control loop on the computer. The reference computation of τ skin is performed on the
left side (before t = 5.7 s), and switched off on the right side. The joint torques depicted on the left are practically identical.
The mean absolute error of τdstb with respect to τ is 0.0054 N m and the error of τdstb,add is 0.0356 N m. The plot
additionally depicts the number of active skin cells αsc.

Reference OFFReference ON

Figure 63 The joint velocities q̇ resulting from the skin joint torque τ skin,dstb computed on the skin cells, and the number of
active skin cells αsc.
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Up to the time t = 5.7 s, the controller computes τ skin and receives τ skin,dstb (left side in

Figures 62 and 63). Visually, there is no difference between these two joint torques. The

average error for all experiments is 0.0054 N m for the non-summed up τ i in Q3.12 and

0.0356 N m for the summed up τ i in Q7.8. This error is neglectable for standard industrial

robots, such as the one used in the experiments.

5.2.3.2 Computational Cost in the Real-Time Control Loop

Figure 64 presents the total cycle time Ttotal of the real-time control loop. The control loop

runs at 500 Hz (Section 5.1.1), therefore, if the total cycle time crosses the border of 2 ms,

then the controller breaks its real-time constraint.

Reference OFFReference ON

Figure 64 The cycle times in ms when using the distributedly computed skin joint torque τ skin,dstb. The reference
computation of τ skin is performed on the left side (before t = 5.7 s), and switched off on the right side. Tskin is the delay in
the real-time control loop when computing the skin joint torque τ skin. The cycle time Ttotal of the controller drops when
switching to the distributed computation in the skin cells (switching off the reference computation of τ skin). T skin,0 is the
average time for computing τ skin when the number of active skin cells αsc is zero (for a total number of nsc = 253 skin cells).

The cycle time of the reactive skin controller Tskin is part of the total cycle time Ttotal and

T skin,0 is the average of Tskin under the condition that the number of active skin cells αsc

is zero. The drop of both, Ttotal and Tskin at t = 5.7 s clearly indicates the switching to the

distributed computation of the skin joint torques τ skin,dstb. Tskin drops to zero and the total

cycle time Ttotal reduces to more or less 0.2 ms. Most notably Ttotal is now independent of

the number of active skin cells αsc, which has been not possible if the computing of τ skin is

within the control loop. This is because, whenever the τ skin is computed within the control
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loop, Tskin will depend on the number of skin cells nsc and also on the number of active skin

cells αsc.

5.2.3.3 Relationship between the Number of Skin Cells and the Cycle Time

The cycle time Tskin of a reactive skin controller, that computes τ skin in the real-time loop,

depends on the total number of skin cells nsc. Even if there are no active skin cells, Tskin

increases linearly with the total number of skin cells nsc, see Figure 65.

Figure 65 The cycle time Tskin of the reactive contact controller computing τ skin in the case that the number of active skin
cells αsc is zero. The linear approximation takes the number of samples ns as weight.

The linear approximation for this relationship is

Tskin(nsc) = 0.827 · 10−6 s nsc + 0.01073 · 10−3 s (5.32)

with a fitting accuracy of 99.95 %. The linear approximation is weighted with the number of

samples. The dependency of Tskin on the number of cells is the result of traversing the sensor

values of the skin cells in memory in order to detect active cells. For a control rate of 500 Hz

and a cycle time of 0.2 ms for the other parts of the controller (Figure 64), the theoretical limit

for the total number of skin cells nsc is 2160 skin cells. However, activating only one of these

2160 skin cells would then break the real-time constraint for 500 Hz.

5.2.3.4 Relationship between Number of Active Cells and the Cycle Time

The cycle time Tskin of a reactive contact controller that computes τ skin in the real-time loop

additionally depends on the number of active skin cells αsc as depicted in Figure 66.
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Figure 66 The dependency between the number of active skin cells αsc and the cycle time Tskin for skin joint torques
computed by the controller in the real-time loop for a total of 253 skin cells. The linear approximation takes the number of
samples ns as weight.

The linear approximation for the relationship between cycle time and number of active skin

cells with the number of samples as weight is

Tskin(αsc) = 0.798 · 10−6 s αsc + 0.2 · 10−3 s (5.33)

with a fitting accuracy of 93.9 %. Combining Equations (5.32) and (5.33) results in

Tskin(αsc,nsc) = 0.798 · 10−6 s αsc

+ 0.827 · 10−6 s nsc

+ 0.01073 · 10−3 s (5.34)

Under the assumption that the maximum number of active skin cells is max(αsc) ≤ 100, the

limit for the total number of skin cells when computing τ skin in the control loop, is nsc = 2067

skin cells. The real-time constraint would be broken for more skin cells, or respectively, for

more active skin cells.

The distributed computation of skin joint torques at the skin cells presented here is efficient,

feasible, accurate, and applicable on a real robotic system. This approach successfully re-

moves the delay of fusing tactile with proprioceptive information to motor actions from the

control loop. Removing this delay not only relaxes the demand to fulfill real-time constraints.

More importantly, it also removes any upper bounds for the maximum number of active skin

cells or the total number of skin cells in reactive contact control.
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5.3. Event-Driven Reactive Contact Control

Sections 5.1 and 5.2 introduced the clock-driven reactive contact control. That is a controller

that fuses tactile with proprioceptive information to motor actions. Both presented approaches

successfully improve the overall performance of the control system. First by improving the

system that provides tactile information to the controller. Second by decentralizing the fusion

of tactile and proprioceptive to motor commands. These two contributions do not yet exploit

the efficient event-driven representation of tactile information, or the event-driven approach

in the reactive control algorithm itself. However, the successful exploitation of both is ex-

pected to contribute to more efficient clock- and event-driven control algorithms with lower

demands on computational power, improving the feasibility of large-area interaction, which is

one objective of this thesis. This section confirms these expectations. It contributes effective

methods for clock-driven algorithms that utilize event-driven tactile information to avoid the in-

efficient search for tactile saliency in large data sets, and a fully event-driven reactive control

algorithm.

To this end, Section 5.3.2 presents the analytical approach that splits the standard reactive

control algorithm of Section 5.1 according to its proprioceptive and tactile input modalities.

This approach additionally removes all redundant calculations. The resulting improved calcu-

lations contribute to the novel and more efficient clock-driven algorithm presented in Section

5.3.3, and the novel event-driven algorithm presented in Section 5.3.4. Only tactile and pro-

prioceptive events drive the computation in the event-driven algorithm. The effectiveness of

both of these novel reactive control algorithms is validated and evaluated by an experimen-

tal study in Section 5.3.5. The results evidence a significant improvement in the system’s

performance.

The work presented in Section 5.3 was in part published in:
Bergner, F., Dean-Leon, E., Cheng, G., “Efficient Event-Driven Reactive Control for Large Scale Robot Skin”.
In: IEEE International Conference on Robotics and Automation (ICRA). Singapore, Singapore, 2017, pp. 394–
400.
Copyright permissions: see Appendix D.
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5.3.1. Experimental Setup – Event-Driven Reactive Contact Control
The reactive contact controller presented in this section realizes two operation modes, the

clock-driven and the event-driven mode. Similar to the previous sections, the controller is

evaluated with the UR5 robot arm that is covered with 253 skin cells. Figure 67 depicts the

implemented action-perception loop with the reactive contact control either in event-driven or

clock-driven operation mode.

Reactive Contact
Control

Gravity 
Compensation

Robot Control

Joint Position
Control

Carthesian Position
Control

Torque Resolver

clock-driven

clock-driven

event-driven (clock-driven)

clock-driven

Perception

Action

125 Hz (8 ms)

500 Hz 
(2 ms)

500 Hz (2 ms)

500 Hz (2 ms)

Figure 67 The controller block fuses tactile with proprioceptive information. The event-driven reactive contact controller is
combined with several other controllers to achieve a desired control behavior, e.g. a compliant behavior. The motor actions are
generated with joint torques τ . The torque resolver [40, 44] transforms the resulting joint torque τ cmd to joint position qcmd or
joint velocity commands q̇cmd.

In contrast to the previous evaluations, the detailed and comprehensive performance evalua-

tion of the novel event-driven controller requires a tactile interaction that is exactly repeatable.

Then, the controller processes similar tactile and proprioceptive input information and thus

computes similar reactions in the clock-driven operation mode with clock-driven algorithms

and in the event-driven operation mode with event-driven algorithms. Thus, repeatable tactile

interactions allow for the direct comparison of the event-driven controller with its clock-driven

reference.

The stochastic evaluation of similar tactile human-robot interactions, as performed in the pre-

vious Section 5.1, is not feasible. Since the evaluated algorithms are different, it would not be

possible to separate the differences caused by the uncertain human interaction from the dif-

ferences caused by the clock- and event-driven algorithms. Therefore, the tactile interaction

was controlled by employing robot-robot interaction, see Figure 68.
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Controlled Tactile

Interaction

Event-Driven Reactive 

Contact Control

Position Control

Figure 68 The novel event-driven controller is evaluated with a repeatable robot-robot interaction where one UR5 arm is
position-controlled, and the other one reacts to contacts. Here, the controlled interaction is executed by the two UR5 robot
arms of the robot TOMM [42, 29]. The left UR5 robot arm holds a paper towel in a gripper, which is used in the experiment to
push the right UR5 robot arm that reacts to contacts – it tries to avoid the contact and moves to the right.

In the robot-robot interaction, another UR5 robot arm moves along a predefined trajectory and

touches the lower arm of the reactive UR5 robot arm with a paper towel. The high movement

precision of the UR5 arms allow for the exact repeatability of the tactile interaction.

For the experiments, the e-skin and the reactive controller were either executed in the clock-

driven mode or the event-driven mode (Figure 69). In event-driven mode, the e-skin uses the

event thresholds with improved noise canceling (Table 17). The sample rate of the e-skin is

62.5 Hz in both operation modes.
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(a) The clock-driven reference system.
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(b) The event-driven reactive contact controller with the event-driven skin driver.

Figure 69 The clock-driven reference and the event-driven system for the evaluated reactive contact control. ETH denotes the
Ethernet connection of the communication interface to the e-skin.

5.3.2. Modality Separated Skin Joint Torque Computation
As presented in Section 5.1.2, the joint torque contribution τ i of a skin cell i either computes

by a matrix vector multiplication (Equation (5.5)) or component-wise (Equation (5.10)). This

section now focuses on the optimization of Equation (5.10) by removing redundant computa-

tions and splitting the computations according to their dependency on joint positions q, static

transformations, and the virtual forces Fz,i of the skin cells (Algorithm 3).

According to Equation (5.9), the l-th component of τ i for a skin cell i on joint k (Figure 52)

computes by

τl,i(q) = j>l,i(q) w0 i

=
[

z0 l−1 ×
(

t0 i − t0 l−1

)]>
Rk0 zk i Fz,i (5.35)

and can be rearranged to

τl,i(q) =
([

t0 i − t0 l−1

]> [
z0 l−1

]>
×

)
Rk0 zk i Fz,i

=
[
Al,i(q)− Bl,i(q)

]
Fz,i (5.36)
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with

Al,i(q) = t>0 i

[
z0 l−1

]>
× Rk0 zk i

= t̄>k i Tk >
0

[
z̄0 l−1

]>
× Tk0 ẑk i

= t̄>k i Sl,k(q) ẑk i (5.37)

and

Bl,i(q) = t>0 l−1

[
z0 l−1

]>
× Rk0 zk i

= t̄>k l−1

[
z̄0 l−1

]>
× Tk0 ẑk i

= t>l,k(q) ẑk i. (5.38)

The formulas Sl,k(q) ∈ R4×4 and t>l,k(q) ∈ R4 of Equations (5.37) and (5.38) depend on the

active joint k and the joint position q. Since these formulas do not depend on the skin cell i

they only have to be computed once on the update of q for each k ≤ kmax. kmax is the joint

that has an active skin cell with the longest kinematic chain to the base coordinate frame 0

(Figure 52). ẑk i ∈ R4 and t̄k i ∈ R4 are extracted from the static transformation Tik (analog

Equation (5.12)) and are different for each skin cell i. Nevertheless, since they are static,

they only need to be acquired once during the 3D surface calibration of the skin [102, 107]

(Section 5.1.2.2). The bar above vectors indicate that these vectors have been extended to

their homogeneous representation and the hat respectively that a zero has been appended

for example:

t̄k i =

[
tk i

1

]
(5.39)

and

ẑk i =

[
zk i

0

]
. (5.40)

The cross-product matrix operator [·]× is defined by

[a]× =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 ∈ R3×3 (5.41)

with a ∈ R3, or respectively, for ā ∈ R4 by

[ā]× =


0 −a3 a2 0

a3 0 −a1 0

−a2 a1 0 0

0 0 0 1

 ∈ R4×4. (5.42)
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The cross-product matrix operator [·]× produces a skew symmetric matrix. Thus, the calcu-

lation of Sl,k(q) and t>l,k(q) further simplifies to

Sl,k(q) = Tk >
0

[
z̄0 l−1

]>
× Tk0 (5.43)

=


0 a b c

−a 0 d e

−b −d 0 f

−c −e −f 1


a = ( x0 k × y0 k)

> z0 l−1 b = ( x0 k × z0 k)
> z0 l−1

c = ( x0 k × t0 k)
> z0 l−1 d = ( y0 k × z0 k)

> z0 l−1

e = ( y0 k × t0 k)
> z0 l−1 f = ( z0 k × t0 k)

> z0 l−1

and

t>l,k(q) = t̄>k l−1

[
z̄0 l−1

]>
× Tk0 (5.44)

=
(
ā b̄ c̄ d̄

)
ā = x>0 k

(
z0 l−1 × t0 l−1

)
b̄ = y>0 k

(
z0 l−1 × t0 l−1

)
c̄ = z>0 k

(
z0 l−1 × t0 l−1

)
d̄ = t>0 k

(
z0 l−1 × t0 l−1

)
+ 1

where x0 k, y0 k, and z0 k are extracted from the transformation Tk0 (Equation (5.12)). Analog,

z0 l−1 and t0 l−1 are extracted from Tl−1
0 . Taking Equations (5.43) and (5.44), Al,i(q) and

Bl,i(q) of Equations (5.37) and (5.44) can be analytically expanded. Then, their results can

be ordered and re-factorized employing the permutation rules of the triple product expansion

of the cross-product. All the entries of Sl,k(q) and t>l,k(q) are such triple products. The

ordering and re-factorization reduce the redundant calculations caused by the extended skew

symmetric matrix Sl,k(q) with the following results:

Al,i(q) = ( zk i × tk i)
>

 d−b
a

− z>k i

ce
f

 (5.45)

= z>0 l−1

[
Ak0 (q) ( zk i × tk i)− Bk0 (q) zk i

]
= z>0 l−1

[
Ak0 (q) ck i − Bk0 (q) zk i

]
= z>0 l−1 c0 i(q)
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and

Bl,i(q) = z>k i Rk >
0

(
zk l−1 × tk l−1

)
(5.46)

= z>0 r,i(q) c0 l−1(q)

with

c0 i(q) = Ak0 ck i − Bk0 zk i ∈ R3 (5.47)

Ak0 (q) =
(

z0 k × y0 k x0 k × z0 k y0 k × x0 k

)
∈ R3×3 (5.48)

Bk0 (q) =
(

x0 k × t0 k y0 k × t0 k z0 k × t0 k

)
∈ R3×3 (5.49)

ck i = zk i × tk i ∈ R3 (5.50)

z0 r,i(q) = Rk0 zk i ∈ R3 (5.51)

Rk0 (q) =
(

x0 k y0 k z0 k

)
∈ R3×3 (5.52)

c0 l−1(q) = z0 l−1 × t0 l−1 ∈ R3. (5.53)

Thus, the components τl,i of τ i of a skin cell i compute by

τl,i(q) = Jl,i(q) Fz,i (5.54)

=
[
Al,i(q)− Bl,i(q)

]
Fz,i

=
[

z>0 l−1(q) c0 i(q)− z>0 r,i(q) c0 l−1(q)
]

Fz,i.

From Equations (5.47) to (5.53) we observe that computing Equation (5.54) splits into three

types of equations:

1. Equations (5.48), (5.49), (5.52), and (5.53) colored in red, and depending on k

and q have to be calculated only once per active joint k,

2. Equation (5.50), colored in green and depending on i, is static and does not

change, but has to be provided for each skin cell i, and

3. Equations (5.47) and (5.51), colored in blue and depending on the former two

types (1. and 2.), must be computed for each active skin cell and for each change

of q.

The Equations of type 1 only depend on terms of the robot kinematics, namely the axes x0 l,

y0 l, and z0 l and the translations t0 l of the joints’ coordinate frames l up to joint k. Thus, these

equations are only updated when the robot state changes, that is when the joint positions q

change. The Equations of type 3 combine joint information with skin cell specific information

and are updated when the skin cell i is active and when the joint positions q change.
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The presented component-wise computation of skin joint torques for the reactive contact

control serves two purposes:

1. The reduction of redundant computations enhances the efficiency of the expen-

sive computation of skin joint torques for both operations modes of the controller

(clock-driven and event-driven).

2. The separation of computations according to their dependency on joint position

updates and the current skin cell i prepares the algorithm for the realization of

event-driven computations.

5.3.3. Optimized Reactive Contact Control – Clock-Driven Mode
Exploiting the improvements on the computation of τ i introduced in Section 5.3.2, an opti-

mized reactive contact controller operating in clock-driven mode is developed. Rather than

looping in each control cycle through all skin cells, as in the skin cell-wise joint torque com-

putation (Algorithm 4), Algorithm 5 is employed.

Algorithm 5 Update Fz,i for a skin cell data packet

1: get skin cell ID , Fc, and Fp from data packet (Figure 29a)
2: map ID to index i
3: calculate Fz,i according to Algorithm 3
4: if Fz,i > 0 then
5: mark skin cell i as active
6: end if

Algorithm 5 (update-driven virtual force computation) is executed whenever the controller

receives a new skin cell data packet containing the normalized sensor values and the skin

cell ID. When executed, the update-driven virtual force computation first maps the skin cell ID

to the corresponding skin cell index i and then updates the virtual force Fz,i in the controller

memory. When Fz,i is greater than zero, then the skin cell is marked as active. The update-

driven virtual force computation (Algorithm 5) reduces the number of executions of the virtual

force computation (Algorithm 3) to the sample rate/update rate of the skin cells rather than

the control loop rate. Furthermore, the update-driven virtual force computation reduces the

complexity of searching active skin cells in the control loop. Thus, the update-driven virtual

force computation alone is expected to significantly increase the performance of the controller

in comparison to the skin cell-wise joint torque computation (Algorithm 4).

Algorithm 6 presents the optimized computation of the skin joint torque τ skin, that is the sum

of all contributions τ i of active skin cells i.
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Algorithm 6 Update τ skin for a joint position q

1: τ skin := 0

2: update Tl0 (q) ∀l ∈ 1, 2, . . . , DOF

3: calculate c0 l−1(q) ∀l ∈ 1, 2, . . . , DOF

4: calculate Ak0 (q) ∀k ∈ 1, 2, . . . , DOF

5: calculate Bk0 (q) ∀k ∈ 1, 2, . . . , DOF

6: for all active skin cells i do
7: get joint k for skin cell i
8: calculate τl,i(q) := Jl,i(q) Fz,i ∀l ≤ k
9: compose τl,i to τ i

10: τ skin := τ + τ i

11: end for

The optimized skin joint torque computation (Algorithm 6) is executed in the control loop of

the reactive contact controller. First, the optimized skin joint torque computation updates

the kinematic chain Tl0 (q) according to the new joint position q. Then, it calculates the

joint torque τ i for each active skin cell. The optimized skin joint torque computation is a

major improvement in comparison to the skin cell-wise joint torque computation (Algorithm 4)

since:

1. The algorithm pre-computes common terms once in Line 3 to Line 5 and then

re-uses them in Line 9.

2. The algorithm loops (Line 6) only over the set of active skin cells rather than over

all skin cells, αsc ≤ nsc.

The update-driven virtual force computation (Algorithm 5) and the optimized skin joint torque

computation (Algorithm 6) are expected to contribute a significant performance increase in

comparison to the skin cell-wise joint torque computation (Algorithm 4), which will be validated

in Section 5.3.5.
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5.3.4. Event-Driven Reactive Contact Control
The realization of event-driven reactive contact control utilizes two algorithms that are driven

by different information sources and compute skin joint torques τ i:

1. Algorithm 7 is driven by the tactile events of the event-driven e-skin system. This

algorithm computes the virtual force, creates virtual force events, determines the

joints with active skin cells, and computes the skin joint torque of active skin cells.

2. Algorithm 8 is driven by proprioceptive information. Therefore, this algorithm

creates joint position events, and subsequently computes the skin joint torque of

active skin cells.

The tactile-driven skin joint torque computation (Algorithm 7) is executed on the arrival of

a force event or a proximity event. Then, it computes the virtual force Fz,i employing Al-

gorithm 3. After that, the tactile-driven skin joint torque computation implements an event

generator (Equation (3.14)) for virtual force events. When a virtual force event is generated,

then the algorithm proceeds with its computations. When the joint k of the skin cell i be-

comes active, that is when the active skin cell is on a joint k that up to now has not had any

active skin cells, then the algorithm updates the active joint list K, the joint kmax that is active

and has the longest kinematic chain, and the common pre-computations Ak0 (q), Bk0 (q), and

c0 l−1(q). When the joint k becomes inactive, then k is removed from the list of active joints.

Eventually, the tactile-driven skin joint torque computation updates τ i and τ skin exploiting the

shared pre-computations.

The tactile-driven skin joint torque computation (Algorithm 7) is a significant improvement

to the skin cell-wise joint torque computation (Algorithm 4). Furthermore, the tactile-driven

skin joint torque computation substantially improves its optimized clock-driven counterparts

(the update-driven virtual force computation (Algorithm 5), and the optimized skin joint torque

computation (Algorithm 6)) since:

1. Algorithm 7 is only active and computes virtual forces Fz,i when there is novel

tactile information (force/proximity events).

2. Algorithm 7 only triggers the computation of joint torques τ i when Fz,i changes

significantly (virtual force events).

3. Algorithm 7 only triggers the pre-computation of the shared terms when they are

required (active joints and active skin cells).

4. Algorithm 7 only triggers the pre-computation of the shared terms on the arrival

of virtual force events (and joint position events (Algorithm 8)).

5. Algorithm 7 exploits the pre-computed shared terms for the optimized computa-

tion of τ i.
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Algorithm 7 Update Fz,i and τ skin for a skin cell event

1: if not force event and not proximity event then
2: return
3: end if
4: get skin cell ID from event
5: map ID to i
6: if force event then
7: Fc,i := value of event
8: end if
9: if proximity event then

10: Fp,i := value of event
11: end if
12: calculate Fz,temp,i according to Algorithm 3
13: if

∣∣Fz,i − Fz,temp,i

∣∣ < Fz,e,th then
14: return
15: end if
16: Fz,i := Fz,temp,i

17: get joint k for skin cell i
18: if joint k becomes active then
19: add k to active joint list K
20: ktemp := kmax

21: update kmax

22: for l in ktemp to kmax do
23: update c0 l−1(q)

24: end for
25: update Ak0 (q), Bk0 (q)

26: end if
27: if joint k becomes inactive then
28: update kmax

29: remove k from active joint list K
30: end if
31: τ skin := τ skin − τ i

32: τ i := 0

33: if Fz,i > 0 then
34: calculate τl,i(q) := Jl,i(q) Fz,i ∀l ≤ k
35: compose τl,i to τ i

36: end if
37: τ skin := τ skin + τ i

The proprioceptive-driven skin joint torque computation (Algorithm 8) is executed in the con-

trol loop of the reactive contact controller. It only executes the joint position event generator

(Equation (3.14)) with the update rate of the control loop. The joint position event generator

does not generate events for the components of q, it rather generates one event containing all

the components of q as soon as one of its components ql surpasses the scalar joint position

threshold qe,th. In the case of a joint position event, the algorithm updates the kinematic chain
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Tl0 (q), the shared terms Ak0 (q), Bk0 (q), and c0 l−1(q), and the joint torques τ i of all active

skin cells i.

Algorithm 8 Update τ skin for a joint position q

1: flag := false
2: for l ∈ 1, 2, . . . , DOF do
3: if

∣∣∣qmem,l − ql

∣∣∣ > qe,th then
4: flag := true
5: break
6: end if
7: end for
8: if not flag then
9: return τ

10: end if
11: qmem := q

12: update Tl0 (q) ∀l ∈ 1, . . . , DOF

13: calculate c0 l−1(q) ∀l ∈ 1, . . . , kmax

14: calculate Ak0 (q) ∀k ∈ K
15: calculate Bk0 (q) ∀k ∈ K
16: for all active skin cells i do
17: τ skin := τ skin − τ i

18: calculate τl,i(q) := Jl,i(q) Fz,i ∀l ≤ k
19: compose τl,i to τ i

20: τ skin := τ skin + τ i

21: end for

The proprioceptive-driven skin joint torque computation (Algorithm 8) is a significant im-

provement to the skin cell-wise joint torque computation (Algorithm 4). Furthermore, the

proprioceptive-driven skin joint torque computation substantially improves its optimized clock-

driven counterparts (the update-driven virtual force computation (Algorithm 5), and the opti-

mized skin joint torque computation (Algorithm 6)) since:

1. Algorithm 8 is only active and computes the kinematics and the shared terms

when there is novel proprioceptive information (joint position events).

2. Algorithm 8 only triggers the pre-computation of the shared terms when they are

required (active joints and active skin cells).

3. Algorithm 8 only triggers the computation of joint torques τ i when q changes

significantly (joint position events).

4. Algorithm 8 only triggers the computation of joint torques τ i for active skin cells.

5. Algorithm 8 exploits the pre-computed shared terms for the optimized computa-

tion of τ i.
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Overall, the presented event-driven algorithms for reactive contact control (the tactile- and

proprioceptive-driven skin joint torque computations, Algorithms 7 and 8) constitute a sig-

nificant performance increase in comparison to the previously presented clock-driven ap-

proaches (the skin cell-wise joint torque computation (Algorithm 4) and the optimized skin joint

torque computation (Algorithms 5 and 6). The event-driven reactive contact controller’s im-

proved performance emerges from its novelty-driven computations (tactile- and proprioceptive-

driven) and its avoidance of redundant computations, both reducing the total number of com-

putations. The validation follows in Section 5.3.5.

The event-driven reactive contact controller extends this thesis efficient event-driven ap-

proach for large-area e-skin. It takes the approach from purely perceptive tactile systems

to reactive contact control systems, whereby it removes the bottlenecks of clock-driven large-

area contact control (Section 5.1) and allows for large-area tactile interactions. Furthermore,

the presented strategies, for instance the update-driven virtual force computation, constitute

a basis for improving the performance of complex clock-driven control algorithms depending

on large-area tactile feedback (Section 5.4).
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5.3.5. Experimental Validation
The following sections present the experimental results and evaluate the performance of

the event-driven system with the e-skin and the controller in event-driven operation mode in

comparison with its clock-driven counter part (e-skin and controller in clock-driven operation

mode).

5.3.5.1 Comparability of Experiments and Controllers

The comprehensive performance evaluation of the new event-driven control algorithm re-

quires a tactile interaction experiment that is reliably comparable and repeatable. The perfor-

mance improvements of the event-driven system are only valid if the controller, or respectively,

the system performance does not deteriorate. As presented in Section 5.3.1, the control of

tactile interaction with a robot-robot interaction is used for the evaluation. This interaction

consists in a total of six phases (Figures 70 to 72, and Table 28):

(1) The controller is idle, that is the right arm robot is not moving and not touched.

The joint positions and tactile sensations are constant (do not change). Besides

noise, there are no tactile and no joint position events.

(2) The tactile interaction with the robot arm starts. The tactile stimulation has not

crossed its thresholds yet. There are no active skin cells, no skin joint torques

are computed, and the skin joint torque is zero. The robot arm is not moving.

(3) The tactile interaction has enough intensity and there are active skin cells. The

controller computes skin joint torques and the robot arm starts to respond to the

interaction. The robot arm starts to move away from the contact area and avoids

the contact.

(4) The tactile interaction’s intensity decreases. The number of active skin cells

decreases as does the number of skin joint torques the controller computes. The

robot arm continues to respond to the contact by avoiding it.

(5) The tactile interaction with the robot arm is about to finish. The tactile stimulation

falls below the thresholds and the number of active skin cells is zero. No skin

joint torques are computed and the skin joint torque is zero. The joint velocities

decrease (friction). The robot arm still moves because of its dynamics (inertia).

(6) The robot arm is no longer touched and the skin is idle. The movement of the

robot arm slows down (friction).

Table 28 summarizes the system’s states throughout these six phases.
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Phase Mode Network Traffic Active Skin Cells Active Joints

(1) Clock-Driven yes no no

(2) Clock-Driven yes no yes

(3) Clock-Driven yes yes yes

(4) Clock-Driven yes yes yes

(5) Clock-Driven yes no yes

(6) Clock-Driven yes no yes

(1) Event-Driven no no no

(2) Event-Driven yes no no

(3) Event-Driven yes yes yes

(4) Event-Driven yes yes yes

(5) Event-Driven yes no yes

(6) Event-Driven no no yes

Table 28 The system’s state throughout the different experimental phases for the clock-driven and the event-driven operation
mode. The network traffic addresses the traffic between e-skin and skin driver, and between skin-driver and controller. The
number of active skin cells is computed according to Algorithm 3, and the joints are active when the robot arm moves (there
are joint position events in the event-driven mode).

Figure 70 presents the total virtual force Fz =
∑

i Fz,i for all skin cells i and its sub-components

of the skin cells’ capacitive force and proximity sensors for both operation modes of the sys-

tem. The similarity of the respective forces readings in clock- and event-driven mode prove, 1)

the similarity of the tactile interaction, and 2) the similarity of the encoded tactile information.

Thus, the experimental setup is valid since it ensures the comparability of the measurements

when performing the experiment in clock- and event-driven modes. Furthermore, the similar-

ity of the tactile information proves that the encoding error in event-driven mode is neglectable

despite the mode’s large reduction of network traffic.
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Virtual Force
(1) (2) (3) (4) (5) (6)

(a) The various forces in the full range.

Virtual Force
(1) (2) (3) (4)

(b) The zoom-in to the interval t ∈ [0.5, 1.5] s.

Figure 70 The total virtual force Fz, the capacitive force Fcap, and the proximity force Fprox. The subscripts c and e denote
the clock-driven, or respectively, the event-driven operation mode. Thanks to the repeatable interaction and the neglectable
encoding error of the event-driven system, the traces of the respective forces are practically identical. All forces are normalized
(Section 5.1.2.1).

Figure 71 presents the joint velocities of the robot arm when it reacts to the tactile interac-

tion. The respective velocities are practically identical for both operation modes. Thus, the

clock- and event-driven controllers deliver the same result allowing for the comparison of their

performance with respect to the CPU usage and network traffic indicators (Section 4.3.5).
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Figure 71 The joint velocities q̇ of the robot arm. The subscripts c and e denote the clock-driven, or respectively, the
event-driven operation mode. The trajectories are practically identical for both operation modes proving the comparability of
the controllers.

In summary, the controllers operate on identical tactile information and deliver identical reac-

tions in both operation modes. The clock- and event-driven systems are comparable without

the restriction of any kind. This direct comparability allows for the subsequent evaluation of

the different controllers.

5.3.5.2 Controller Performance

Figure 72 depicts the CPU usage and the network traffic for the skin driver and the controller.

The figure’s first row presents measurements for the clock-driven system. The second row

presents the measurements for the event-driven system. The measurements for the idle

system (experiment phase (1)) and the peak measurements are summarized in Tables 29

and 30.

Network Traffic CD Idle CD Peak ED Idle ED Peak

Skin Driver 1 MB/s 1 MB/s 2.5 kB/s 80 kB/s

Controller 2.25 MB/s 2.25 MB/s 5.6 kB/s 180 kB/s

Ratio 100 % 100 % 0.24 % 7.8 %

Table 29 The network traffic of the skin information for the system and its components in the clock-driven (CD) and the
event-driven (ED) operation mode. The network traffic of the controller is 2.25 times larger than for the skin driver because of
the messaging overhead in ROS (Appendix C).
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Skin Driver

(a) The network traffic Rb (blue) and the CPU usage u (red) of the skin driver in clock-driven mode.

(1) (2) (3) (4) (5) (6)

Control

(b) The network traffic Rb (blue) and the CPU usage u (red) of the controller in clock-driven mode.

(1) (2) (3) (4) (5) (6)

Skin Driver

(c) The network traffic Rb (blue) and the CPU usage u (red) of the skin driver in event-driven mode.

(1) (2) (3) (4) (5) (6)

Control

(d) The network traffic Rb (blue) and the CPU usage u (red) of the controller in event-driven mode.

Figure 72 The network traffic Rb and the CPU usage u for the skin driver and the controller. The first row presents the measurements for the clock-driven system and the second row for the event-driven system.
The network traffic of the skin driver is the network traffic in the Ethernet connection to the e-skin, and the network traffic of the controller is the network traffic in the ROS connection to the skin driver (Appendix
C). The CPU usage of the skin driver and the controller are measured in the same way as in Section 5.1.1. Thus, they are comparable with Figures 53b and 53f, and respectively with Figures 53d and 53h.
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CPU Usage CD Idle CD Peak ED Idle ED Peak

Skin Driver 95 % 95 % 5.5 % 25 %

Controller 99 % 103 % 36.5 % 41.6 %

Total 194 % 198 % 42 % 66.6 %

Ratio 100 % 100 % 22 % 34 %

Table 30 The CPU usage for the system and its components in the clock-driven (CD) and the event-driven (ED) operation
modes.

Overall, the event-driven controller demonstrates a significant reduction of network traffic and

CPU usage. The total reduction ratio of the CPU usage of the event-driven system is 78 % in

the best case and 66 % in the worst case.

Table 31 summarizes the results for the standard controller introduced in Section 5.1 with the

optimized controller of this section. In the clock-driven mode, the optimized controller sig-

nificantly requires less CPU usage when it is idle, this is only 99 % in comparison to 180 %.

This result demonstrates the effectiveness of Algorithm 5 (update-driven virtual force compu-

tation) since when it is idle, the controller mainly updates skin information in its memory and

computes and monitors the number of active skin cells.

System CPU Usage CD Idle CD Peak ED/H Idle ED/H Peak

Standard Controller 180 % 200 % 82 % 122 %

Total 260 % 280 % 99 % 150 %

Ratio 100 % 100 % 38 % 54 %

Optimized Controller 99 % 103 % 36.5 % 41.6 %

Total 194 % 198 % 42 % 66.6 %

Ratio 100 % 100 % 22 % 34 %

Table 31 The total CPU usage for the standard system of Section 5.1 in clock-driven (CD) and hybrid (H) operation mode, and
the total CPU usage for the optimized system of this section in clock-driven and event-driven (ED) operation mode. Despite
their different experimental setups, the measurements of both systems are roughly comparable. The number of active skin
cells is the same. Thus the number of skin joint torques τ i to compute are the same and with that the increase in the peak
measurements are comparable. The idle measurements of the controllers in clock-driven mode indicate the efficiency of
monitoring the number of active skin cells.

Furthermore, comparing the peak CPU usages of both controllers in clock-driven mode,

which is 103 % versus 200 %, proves the effectiveness of Algorithm 6 (optimized skin joint

torque computation) and the optimized controller. The peak measurements indicate an in-

crease of the number of active skin cells and thus in the number of skin joint torques τ i to

compute. Since the number of active skin cells is the same in both experimental setups,

a higher increase towards the peaks of CPU usage indicates that more CPU usage is de-

manded per active skin cell. With an increase of 20 % of the standard controller versus the
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4 % of the optimized controller, the optimized controller consumes significantly less CPU us-

age per active skin cell.

Comparing the total CPU usages of all systems, the completely event-driven system pre-

sented in this section demonstrates its superiority with significant improvements. Not only

does it show better ratios than the hybrid system, but the absolute CPU usages are also

significantly lower, both for idle and peak readings. The reduction is more than two times in

comparison to the hybrid event-driven system and more than four times in comparison to the

standard clock-driven controller.

In summary, the presented optimized algorithms for computing skin joint torques in clock- and

event-driven mode result in major performance improvements. The event-driven approach not

only proves its effectiveness in processing tactile information in the stages before control, but

it also underlines its potential in control algorithms. Event-driven control algorithms effectively

reduce the number of computationally expensive computations, thus hugely reduce their CPU

usage. Thus, the event-driven approach of this thesis is not only effective for large-area tactile

perception, but it also allows for the efficiency in reactive large-area contact control, whereby

it significantly mitigates the limitations of clock-driven large-area contact control.
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5.4. Event-Driven Large-Area Skin System & Whole Body Control
of an Autonomous Humanoid Robot

This section demonstrates that this thesis’ event-driven LASS can scale-up to provide effec-

tive multi-modal tactile feedback for even highly complex control systems, such as the control

of autonomous humanoid robots. As already pointed out in Section 4.6, a LASS such as de-

ployed on the humanoid robot, H1, can only effectively work in event-driven operation mode.

The clock-driven mode is not feasible. Furthermore, Section 5.1 showed that combining

event-driven e-skin with standard clock-driven control is effective, and Section 5.3 demon-

strated that clock-driven control algorithms can be optimized for event-driven tactile feed-

back. Altogether, these outcomes significantly contributed to the feasible utilization of LASSs

in many advanced applications with very complex control systems. Section 5.4.2 briefly de-

scribes these applications and emphasizes the contribution of the event-driven LASS. All the

presented systems have been published and used the autonomous humanoid robot, H1, as

the experimental platform (Section 5.4.1). These all demonstrate the scalability of the ap-

proach presented in this thesis.

5.4.1. Event-Driven Large-Area E-Skin and the Humanoid Robot H1
This section briefly introduces the experimental platform, the humanoid robot, H1, for the

works presented in Section 5.4.2. Since the following presentations focus more on H1 as a

whole, rather than only on its large-area e-skin (Sections 4.3.4 and 4.6), this section summa-

rizes its complete system.

Figure 73 depicts the humanoid robot H1 [29, 20] with the event-driven LASS. H1, embeds

two computers, a battery, and has 30 actuators, which is 30 DOF. H1 is self-sufficient, that

is, all computations are performed on the robot in its embedded computer systems, and all

its systems are powered by its onboard battery. One computer is dedicated to acquiring the

e-skin’s tactile information and one for controlling the 30 joints. The robot’s battery powers its

actuators, its computers, and the deployed e-skin.
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Figure 73 The humanoid robot, H1, and the deployed event-driven e-skin system [29, 20]. The self-sufficient robot employs
two computers, 30 actuators, and a battery. Its battery powers all systems, and all computations are performed on the robot’s
computers. The battery has a capacity of 1.2 kW h. The e-skin system with all its components consumes around 86 W. More
details on the e-skin system can be found in Section 4.3.4.

Realizing effective controllers for H1 is a challenging task, in particular when a controller

requires tactile feedback. Both, controllers and e-skin, have a high demand for computational

power, which is a limited resource in self-sufficient robots such as H1. The works presented

in Section 5.4.2 not only demonstrate the effectiveness of event-driven e-skin systems in

complex control systems such as H1. These works actually provide strong evidence that the

contributions of this thesis, in particular the efficiency of the event-driven information handling

for e-skin (Section 4.6) and the optimal exploitation of event-driven information in control

(Section 5.3), deliver for the first time feasible large-area tactile feedback in very complex

control architectures.

5.4.2. Event-Driven Large-Area E-Skin and Complex Control Systems
Figures 74 and 75 summarize the work this thesis contributed to [41]. The complex con-

trol system realizes whole-body active compliance control with a hierarchical control regime.

The hierarchical controller fuses possibly antagonistic control goals resolving their priority to

generate a consistent control behavior. For instance, the humanoid robot’s first priority is

to balance such that it does not fall. When the redundancy in actuation allows additional

movements (e.g. some joints are currently not required for balancing) the controller concur-

rently executes controllers with lower priority, for instance a tactile-driven active compliance

controller.
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Figure 74 The whole-body active compliance controller [41]. The primary control task is to balance the robot such that it does
not fall. The hierarchical controller concurrently executes control tasks with lower priority, e.g. the tactile-driven active
compliance controller. As a result the robot balances and at the same time reacts to tactile interactions.

Figure 75 The whole-body active compliance controller [41]. The event-driven skin system and the optimized tactile-driven
active compliance controller can handle a large number of active skin cells.

The work [62] depicted in Figure 76 extends the whole-body control hierarchy with a pressure-

driven compliance controller. The pressure-driven compliance controller not only considers

contact forces but also contact areas. That is, the robot reacts faster and stronger to large

forces in small areas than it reacts to small forces in large-areas.
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Figure 76 The pressure-driven compliance controller [62]. The event-driven skin system and the optimized tactile-driven active
compliance controller can handle a large number of active skin cells.

The following up works of [61, 60] and [77, 78], depicted in Figures 77 and 78, exploit the

event-driven LASS in the complex field of humanoid locomotion and the fusion of humanoid

locomotion with interaction, for instance in obstacle discrimination and avoidance in the foot-

fall [61, 60] and dance with a human [77, 78].

Figure 77 The skin-driven obstacle avoidance in humanoid locomotion [61, 60]. The skin enables the robot to detect obstacles
in the footfall that can not be detected by other sensors, for instance, Force-Torque (FT) sensors.
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Figure 78 The leader-follower control framework for complex tactile interactions during humanoid locomotion [77, 78]. The
LASS supports the framework with feature reach whole-body contact information.

This thesis’ contributions, in the form of the efficient large-area e-skin system (Section 4.3),

and the optimized processing of event-driven skin information in clock-driven control (Section

5.3.3) had a significant impact on the feasibility of tactile large-area feedback in all these

presented works [41, 62, 61, 60, 77, 78]. The standard clock-driven approach for LASSs is not

effective for perceptional tasks and fails to provide tactile feedback in control. Furthermore,

early experiments in [41] revealed that the inefficient looping through all 1260 skin cells in

clock-driven control (without the optimization provided by Algorithm 5) is not feasible, even in

a hybrid event-driven system with an event-driven LASS. The controller continuously broke its

real-time constraints and became unstable. Optimizations exploiting the event-driven tactile

feedback were strictly required to solve this issue.

In summary, this thesis significantly contributed to the previously infeasible and very demand-

ing applications of LASS in whole-body controllers.
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5.5. Summary

This chapter presented the realization and validation of applications that exploit the tactile

information of LASSs and generate appropriate reactions and behaviors. The presented sys-

tems implement a reactive behavior to tactile interactions and form a perception-action loop.

The fundamental principle of event-driven systems, which is to drive the handling of informa-

tion on demand (Section 3.3), plays also a central role in computationally expensive control

algorithms. As evidenced with the results of Section 5.2, the supported number of active skin

cells and the number of all skin cells is limited by the efficiency of the control algorithm and the

real-time constraints of the controller. A more efficient control algorithm can support larger

skin systems and larger contact areas. The comparative results of Sections 5.1 and 5.3, and

the experience collected in realizing tactile whole-body control (Section 5.4) evidence the ef-

fectiveness of this thesis’ event-driven approach. They even demonstrate that clock-driven

controllers implementing large-area tactile interaction have to exploit the nature of the event-

driven tactile information to increase efficiency by avoiding unnecessary computations and

to eventually meet the real-time constraints. Optimized hybrid event-driven systems signifi-

cantly boost performance as far as by a factor of two and enable previously infeasible tactile

control architectures. Purely event-driven tactile control systems require the deep analysis

of control algorithms to transform them from clock-driven to event-driven computations. Nev-

ertheless, the analysis of an optimized event-driven reactive contact controller (Section 5.3)

demonstrates a tremendous performance improvement up to a factor of four.

Overall, this chapter presented approaches for integrating and utilizing the tactile feedback

of event-driven large-area e-skin in very complex control systems that, for the first time, led

to tactile-driven whole-body interactions with large contact areas. This thesis’ event-driven

approach for large-area e-skins, together with the presented efficient integration methods,

contribute the required boost in computational performance. Both, this thesis’ efficient event-

driven approach for e-skins, and its effective, efficient, and flexible integration methods in

complex systems, allow systems that rely on tactile feedback to scale, whereby previous

approaches failed.
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6. Conclusion

6.1. Summary and Conclusions

This thesis presented novel methods based on biologically plausible principles to efficiently

handle the large amount of tactile information arising in large-area e-skin. Chapter 1 intro-

duced the motivations and challenges of realizing efficient e-skins that can eventually endow

machines with human-like whole-body tactile interaction capabilities, along with the contri-

butions of this thesis. Then, Chapter 2 provided the background and connection to related

works. This chapter introduced the neuroscientific view of the sense of touch, and the engi-

neering challenges e-skin systems needed to mitigate or solve. Furthermore, it presented the

information handling system from the perspectives of neuromorphic engineering, signal pro-

cessing, and information theory, and novelty-driven systems. The eventual comparative study

of existing event representations and protocols determined the most flexible and applicable

approach for realizing the novelty-driven principle for large-area e-skins. Chapter 3 drew from

this background and homogenized the fundamentals of novelty-driven systems. These fun-

damentals delivered the theory for the correct design and optimal parameterization of novelty

detectors for the e-skin’s sensors to optimize for sensitivity, transmission rate, and to mini-

mize encoding errors and noise. The theory actually delivered a novel tuning guideline for the

correct parameterization of tactile event generators. Another outcome of these fundamentals

was a model for the computational demand of novelty-driven e-skin systems. This model

later allowed for the extrapolation of evaluation results to larger e-skin systems. Furthermore,

the fundamentals provided the foundations for comparing the performance of novelty-driven

e-skin systems with standard clock-driven reference systems. This comparability has been

essential in the evaluations of the approaches taken in this thesis. Then, Chapter 4 presented

the design methods developed for the systematic realization of the novelty-driven approach in

existing e-skins and computer systems. This chapter subsequently demonstrated the realiza-

tion of the designs in an e-skin system with more than 10 000 multi-modal tactile sensors. The

realization validated the feasibility of the designs. The experimental evaluation that followed

additionally demonstrated the efficiency of the novelty-driven approach in e-skin systems.

The evaluation evidenced a significant boost in performance that constituted a large reduc-

tion of transmission rates and computational demands. This improvement demonstrated, for

the first time, the effective handling of tactile information in a large-area e-skin with more

than 10 000 sensors. Eventually, Chapter 5 presented very complex systems that utilize the

feedback of large-area contacts. The successful integration of the novelty-driven large-area

e-skin in robotic systems demonstrated its efficiency and effectiveness in complex reactive

control algorithms for interactions. These integrations additionally delivered general methods

for the efficient connection of novelty-driven e-skin with standard clock-driven control algo-

rithms (hybrid event-driven systems), the efficient exploitation of novelty-driven information in

clock-driven algorithms, and the transformation of clock-driven to event-driven control algo-
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rithms. Altogether, these methods provided the foundations for experiments with a humanoid

robot utilizing whole-body tactile feedback. The experiments demonstrated the system’s effi-

ciency to scale, whereby previous approaches failed, allowing very challenging utilization of

large-area e-skin in whole-body controllers.

This thesis will have a long lasting impact on the design, integration, and information handling

of large-area e-skin systems. Three key contributions achieve this impact.

A Systematic Approach for Efficient Information Handling in Large-Area E-Skin This

thesis contributes a systematic approach for realizing efficient information handling in large-

area e-skin. The contributed approach is biologically plausible and enables novelty-driven

e-skin systems. The approach improves the information handling efficiency in large-area

e-skins significantly. This thesis also contributes the fundamentals for its approach. These

fundamentals provide the theoretical basis for efficient novelty-driven designs, comprehensive

evaluations, and well-founded extrapolations for larger e-skin systems. Furthermore, this

thesis contributes homogeneous fundamentals for novelty-driven systems that will hopefully

foster the exchange between the field of neuromorphic engineering and the field of signal

and control theory. This exchange will lead to faster novelty-driven algorithms for standard

computer systems, and to more applications and better integrations of neuromorphic systems

in complex systems, for instant, humanoid robots.

A Realization of Flexible Information Handling for Large-Area E-Skin Systems This

thesis contributes flexible, novelty-driven, and hardware-independent designs that lead to

rapid integrations in existing e-skin systems and connections to complex calculations that rely

on tactile feedback. These designs immediately boost performance by lowering demands on

communication bandwidth and computational power. Furthermore, this thesis contributes the

realization of its designs in a large-area e-skin system with more than 10 000 multi-modal

tactile sensors. This e-skin system is capable of providing effective tactile feedback at this

scale, where all previous approaches failed. With this contribution, this thesis will impact the

design of future large-area e-skins that will provide higher spatio-temporal resolutions, larger

sensing areas, and higher coverage factors.

A Realization of Efficient Tactile Information Handling in Complex Control Systems

This thesis contributes efficient methods for integrating the tactile feedback of large-area e-

skin systems in complex control algorithms, for instance, in reactive contact control. Thereby

this thesis significantly contributes to the realization of previously infeasible tactile-driven

whole-body interactions. The integration methods, this thesis contributes, remove previous

limitations for contact areas and temporal resolutions in the feedback of large-area e-skin.

With the successful realization of these methods, this thesis demonstrates the feasibility of

realizing whole-body control in a humanoid robot covered with large-area e-skin. This whole-

body control is capable to react to the tactile feedback of an e-skin with more than 10 000

sensors, whereby all previous approaches failed.
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Overall, this thesis contributes, for the first time, efficient large-area tactile feedback allowing

for novel applications of large-area e-skin whereby all previous approaches failed. Thereby,

this thesis will hopefully positively impact a novel trend, where increasingly more autonomous

machines successfully exploit the sense of touch and thus improve their physical interaction

capabilities with their surroundings.

6.2. Outlook

This thesis contributed to the advancement of large-area e-skin systems for human-like whole-

body tactile interaction capabilities, which opens up new perspectives with the potential to

further elevate the scalability of large-area e-skin systems. Three directions are particularly

promising, these are: 1) Improving the robustness of the event representation can contribute

to counter the rise of communication uncertainties in increasingly large systems, 2) The shap-

ing of tactile densities to fit the requirements of tactile interaction in specific regions can con-

tribute to increase the size of covered areas and improve interaction performance, 3) Shape

changing e-skin can improve conformity to complex surfaces with high curvatures or non-rigid

support contributing to increase the overall covered surface area.

Event Shaping targets to improve the robustness of event representations. Improved ro-

bustness can contribute to improving the scalability of very large e-skin systems that inher-

ently have higher communication uncertainties caused by longer wires, more interfering com-

ponents, and more points of failure. The idea for realizing event shaping emerges from ob-

servations in nature. We, humans, register the absence of sensory information by a feeling

of numbness. However, then how can we differentiate between an absence of novel informa-

tion and absence caused by a loss in communication? A probable answer, therefore, could

be controlled redundancy. For instance, the information consumer could expect or predict

specific patterns, and if these expectations or predictions are not met then information has

been lost. Drawing from the interpretation of novelty detection in Section 3.1.1.3 as super-

visors of predictors, more robust event creation schemes could be devised to add controlled

redundancy to the stream of events.

Tactile Density Shaping targets to improve the scalability of e-skin by deployment patterns

that reflect the spatial acuity required in different skin regions. Human skin realizes this idea

and shapes the deployment density of its tactile sensors according to the requirements to

distinguish the location and shape of contact points in different areas [55]. The density is

highest in the fingertips and the lips, and lowest on our back. An e-skin’s skin cells (Section

4.3.1.1) could be shrunk to better fit varying applications. Smaller skin cells increase the

spatial acuity and allow for covering surfaces with higher curvature. Thus, the sensing density

would improve and more surfaces would be feasible to be covered with e-skin. The vision is

a network of skin cells (Section 4.3.2) with interchangeable skin cells of different sizes. So

far, tactile density shaping has not been feasible due to the lack of an approach for efficiently
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handling information in e-skin with larger numbers of sensors. This thesis’ efficient novelty-

driven approach for large-area e-skin now renders the investigation of tactile density shaping

possible.

Shape Changing E-Skin addresses the challenges to advance from flexible to stretch-

able large-area e-skin without obstructing the approaches and strategies that mitigate and

solve the challenges of large-area e-skins. Among these, the approach that enables the

self-localization of tactile sensors is of particular importance [100, 102]. A stretchable large-

area e-skin with the capability to self-localize its tactile sensors would not only increase the

e-skin’s conformability, but it would also, for the first time, allow to directly differ between con-

tact forces and stretch and measure them at the same time in large-areas without the need to

solve complex computational models for materials and sensing. The sensing and localization

of large-area contacts on deformable surfaces would enable many novel applications, for in-

stance in soft robotics, wearables, and smart objects. Investigations in this direction have so

far been limited due to the larger number of sensors involved. This thesis’ approach for effi-

cient information handling in large-area e-skin now supports investigations in this direction.
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A. E-Skin Interfaces

The e-skin system presented in this thesis (Section 4.3) uses interfaces that bridge the skin

cell network to Ethernet networks and convert skin packets to standard UDP packets and vice

versa.

The first generation of interfaces are referred to as the Tactile Section Units (TSUs) [101, 109],

see Figure 79. One TSU interfaces between 5 UART connections and one 1 Gbit/s Ethernet

connection and can power up to 300 skin cells (8.3 kpacket/s). Thus, instead of 5 UART

connection one Ethernet cable plus power can support 300 skin cells. Multiple TSUs can be

connected to the same 1 Gbit/s Ethernet network via standard Ethernet switches allowing for

great flexibility when scaling up to large-area networks with several hundreds of skin cells.

P3

P2

P2

P4
P4 P4

P2
P1

P2

P3 P4 P5

P4

P3

TSU

Skin Cell Network

Computer

Switch

UART - 4 MBit/s

ETH - 1 GBit/s5 UART Ports

Figure 79 Tactile Section Unit (TSU) with network of skin cells.

The second generation of interfaces enhances the TSUs with focus on improving modularity,

merging connections, and providing power closer to the skin patches. The TSUs are too bulky

to be placed close to the skin patches. The most practical setup demands long connections

between skin patches and TSUs since the TSUs are placed close to the computer system

that acquires and consumes the information of the e-skin. This setup exhibits two major

drawbacks. First, the setup requires many long cables that are susceptible to damages and

require a lot of space. Second, the power lines in the cables demand low impedance to avoid

voltage drops in the low voltage (5 V) power distribution system of the skin cell network. Often

setups with long cables and large networks lead to instabilities due to large voltage drops and

insufficiently powered skin cells. Solving these issues, the second generation of interfaces

divide the functionalities of a TSU to a Tactile Section Unit Logic Box (TSU-LB) that is shared

by up to four Tactile Section Unit Satellites (TSU-Ss) [20], see Figure 80.
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Figure 80 Tactile Section Unit Satellite (TSU-S) and Tactile Section Unit Logic Box (TSU-LB) with network of skin cells.

A TSU-S locally converts a high supply voltage of up to 60 V to the lower supply voltage of

the skin cell network. Furthermore, the TSU-S bundles the high voltage power line and six

UART connections to one single cable. The TSU-Ss are slim enough to be placed next to the

skin patches, effectively reducing the number of cables from the distributed skin patches to

the centralized computer by a factor of six. The higher supply voltage mitigates voltage drops

in long cables and increases the stability of large skin cell networks. The Tactile Section Unit

Logic Box (TSU-LB) provides the logic to interface between four TSU-Ss and a 1 Gbit/s Eth-

ernet connection. A single TSU-LB effectively provides a interface to 24 UART connections,

or respectively to at least 1.400 skin cells (400 kpacket/s).

Ethernet networks and UDP packets are standards and supported by many computer sys-

tems, easing the access to information provided by the e-skin system. The price of providing

information in a generalized protocol is overhead. A UDP packet containing the 20 B of a

packet in the skin cell network occupies 62 B in the Ethernet frame, and 86 B (24 B in addition

for the preamble, the start of frame delimiter, the CRC checksum, and the IPG) on the Eth-

ernet bus. A 1 Gbit/s Ethernet connection can thus theoretically provide the communication

bandwidth for up to 6242 skin cells (1.56 Mpacket/s).
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B. Requesting and Yielding Computation Time

Programs, whether they are clock- or event-driven, often run in conditions where they have

to wait. They need to wait until information is available or can be forwarded to the next stage.

Clock-driven programs may need to wait to synchronize to a desired sampling rate, while

event-driven programs may need to sleep until novel information arrives. Ideally, all programs

should wait in such a way that the operating system can switch context, that is, pause the

current task and schedule another process/thread as soon as a program enters a waiting

condition. In this way no computation time is wasted while waiting. Programs can usually

wait in three different ways, by

1. Busy-Waiting,

2. Timed-Waiting, and

3. Signaled-Wakeup.

Busy-Waiting, often also called active waiting or polling, describes a program that waits for a

condition/flag, by repeatedly reading it until it is true, see Algorithm 9.

Algorithm 9 Busy-Waiting
1: while flag == false do
2: # do nothing, waste time
3: end while

The thread executing this program never notifies the operating system that it is waiting and

that it could yield its allotted timeslice for other, more important tasks. Actually, a thread

that never yields is considered as greedy, since the operating system assigns this thread

as much computation time as possible and the thread consumes all of it, if needed or not.

A greedy thread never stops before it consumed its timeslice. Busy-Waiting is wasting the

limited resource computation time, is thus extremely inefficient, and should be avoided.

Timed-Waiting is more efficient, since the thread notifies the operating system how long it

can manage without computation time. In contrast to Busy-Waiting, Timed-Waiting checks

the flag/condition with a rate defined by the sleep time Ts, rather than checking it as fast as

possible, see Algorithm 10.

The work presented in Appendix B was in part published in:
Bergner, F., Dean-Leon, E., Cheng, G., “Design and Realization of an Efficient Large-Area Event-Driven E-
Skin”. In: Sensors 20.7 (2020), p. 1965.
Copyright permissions: see Appendix D.
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Algorithm 10 Timed-Waiting
1: while flag == false do
2: sleep(Ts) # yield and reschedule after Ts
3: end while

The sleep function yields the timeslice of the thread and defines the time when it is scheduled

next. Timed-Waiting is not wasting computation time and is an efficient waiting principle for

clock-driven programs with a defined sampling frequency.

Signaled-Wakeup is realized in programs that wait for signals of the operating system rather

than for flags. These signals can be defined and triggered by other processes/threads, or

are provided by the operating system. The operating system can provide signals that are

triggered by hardware interrupts, for example, the arrival of network packets, and so forth.

Exploiting the Signaled-Wakeup principle in programs is even more efficient than Timed-

Waiting. Employing Signaled-Wakeup, a thread yields and notifies the operating system that

it is waiting for a signal, see Algorithm 11.

Algorithm 11 Signaled-Wakeup
1: # do something
2: select(signal) # yield and reschedule on signal
3: # continue

Rather than repeatedly reassigning timeslices for the program to read a flag, or check a condi-

tion, as in Timed-Waiting, the operating system only returns to the thread on the occurrence

of the signal. Obviously, the proper exploitation of the Signaled-Wakeup principle enables

us to realize fast event-driven information handling in standard computing systems with low

waiting overhead.
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C. Event-Driven E-Skin Software Framework

This thesis’ implementation of a flexible and modular information handling system for large-

area e-skins follows the design descriptions of Section 4.2.1. The software architecture builds

upon the ROS middleware and the Qt software framework. ROS not only eases the integra-

tion of e-skin in robotic systems, ROS also provides a standardized communication protocol

that eases information exchange between processes (nodes in ROS terminology). The com-

munication protocol bases on socket connections which match well with the signaling princi-

ples required in event-driven communication as depicted in Section 4.2.1. Thus, exploiting

ROS provides the software system for the e-skin with modularity, an interface to robots, and

event capable inter-process communication. Additionally, the Qt software framework provides

a sophisticated and high performance event messaging system for inter-thread communica-

tion with event dispatchers. These features of Qt provide the necessary support for imple-

menting event-driven programs within the processes of our e-skin software framework.

The e-skin software architecture implements and provides the modules for the event-driven

information handling system as depicted in Figure 24 of Section 4.2.1. Each module is a sep-

arate process (ROS node) and all modules communicate via the ROS communication system

(topics, services). The system incorporates skin driver processes, and clock-driven or event-

driven information consumer processes, see Figure 81. Information consumer processes

are visualization programs, control programs, information extraction programs for higher-level

information, etc.

Process, ROS Node

Skin Driver Consumer

Processes connected in ROS

Process, ROS Node

clock-driven

clock-driven

clock-driven

Topic
Data Stream
of Samples

ETH
Data Packets
UDP 

Skin Driver

(a) E-Skin in clock-driven operation mode.
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of Updates

ETH
Event Packets
UDP 

Consumer

Process, ROS Node

event-driven

Topic
Event Stream

Processes connected in ROS

Skin Driver

Skin Driver

(b) E-Skin in event-driven operation mode. Hybrid and event-driven setups.

Figure 81 The e-skin information handling system on the computer. The processes (ROS nodes) are connected utilizing the
inter-process messaging system of ROS.

The skin driver processes bridge between the peripheral e-skin system with its skin cells and

communication interfaces (TSU,TSU-S,TSU-LB) and the information handling system on the

computer. The e-skin system employs one skin driver for each TSU or TSU-S. For example,

the e-skin system on H1 presented in Section 4.3.4.1 employs 12 skin driver processes. The

assignment of one skin driver per TSU or TSU-S not only improves modularity (on H1, a TSU-

S is associated to a body part, see Table 5), it also distributes computational load, avoiding

the saturation of threads.

A skin driver processes contains several functional blocks, see Figure 82. The packet un-

packer block unpacks the data packets or, respectively, the event packets sent by the skin

cells. For event packets the packet unpacker implements Algorithm 2. Data packets are de-

compressed and the sensor values are stored along with the ID of the skin cell into a skin cell

values data structure. Event packets are unpacked to event data structures that contain the

ID of the skin cell, the value of the sensor, and the type of the sensor.
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Figure 82 The functional block of a skin driver process. The skin driver bridges between the e-skin and the consumer
processes and operates either in clock-driven or event-driven mode. The skin driver provides a communication link for hybrid
systems where the skin driver is event-driven and the consumer is clock-driven.

The event decoder block converts events to skin cell value data structures for clock-driven

data consumers, following the design of the event decoder presented in Figure 26 of Section

4.2.2. The implemented event decoder keeps a skin cell value data structure of each skin cell

in memory. An arriving event updates the sensor value in memory according to the skin cell

ID and the sensor type of the event. The event decoder block forwards a complete skin cell

value data structure whenever at least one of its values is updated by an event.

The ROS interface blocks provide access to the information stream of events and skin cell

data. The event stream contains the event data structures provided by the packet unpacker.

The data stream contains the skin cell value data structures either originating directly from

the packet unpacker or, when the e-skin is operating in event-driven mode, from the event

decoder. In clock-driven mode, the data stream is clock-driven and in event-driven mode the

data stream is update-driven, that is, it only contains the skin cell value data structures that

need to be updated (sample rate/event update) in the memory of the clock-driven consumers.

Through the update-driven data stream, hybrid event-driven systems can partially profit from

the event-driven approach up to the clock-driven consumer, as demonstrated in Section 5.1.
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D. Copyright Permissions

Figure 83 Copyright permissions for [21], Bergner et al. 2015.
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Figure 84 Copyright permissions for [16], Bergner et al. 2016.
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Figure 85 Copyright permissions for [17], Bergner et al. 2017.
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Figure 86 Copyright permissions for [18], Bergner et al. 2018.
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Figure 87 Copyright permissions for [20], Bergner et al. 2019.
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