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In this short note, we highlight the sensitivity of the HLL-type Riemann solver with 
respect to the choice of signal speed estimates and demonstrate a major deficiency of 
the arithmetic-average estimate. The investigation of two essential Riemann problems and 
a classical bow shock simulation reveals that inherent inconsistencies of the arithmetic-
average estimate may lead to unexpected behavior and erroneous results.
© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The development of computationally cheap but nevertheless stable and accurate approximations of the Riemann problem 
is crucial for the success of Godunov-type methods [1] in computational fluid dynamics. In combination with high-order 
discretizations, such as WENO schemes [2], these approximate-flux solvers have become popular nowadays for the simula-
tion of complex multi-scale flow problems, e.g. shock interactions with phase interfaces or turbulent flows [3]. In particular, 
Roe and HLL-type Riemann solvers are applied in various state-of-the-art compressible flow solvers due to their favorable 
low numerical dissipation [4–6]. Common for such solvers is the need for proper estimations of the wave signal speeds. An 
overview of the topic can be found in [3]. In this short note, we highlight the sensitivity of the HLL-type Riemann solver 
with respect to the choice of signal speed estimates and demonstrate a major deficiency of the arithmetic-average estimate, 
which has become increasingly popular in recent publications [7–10].

In their fundamental work, Harten, Lax and van Leer [5] proposed design principles for simple but nevertheless robust 
approximate Riemann solvers where left and right states are linked through one or two intermediate states separated by 
waves. They did not propose actual estimates of the essential signal speeds for their approximations. They stated, however, 
that the estimates for the left- and right-going wave speed have to be lower, respectively upper bounds of the physical 
wave speeds. The popular HLL and HLLC Riemann approximations result from the combination of these design principles 
with suitable signal speed estimates as proposed by different authors [11,12,6,13,14].

Both Davis [11] and Einfeldt [12] simultaneously developed signal speed estimates for the HLL approximation. Besides 
the simple but rarely applied estimates SL = uL − cL and S R = uR + cR , Davis also proposed
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S Davis
L = min(uL − cL, uR − cR), S Davis

R = max(uL + cL, uR + cR) (1)

for the minimum signal speed SL and the maximum signal speed S R with direct application of the left and right velocity u
and speed of sound c. Instead, Einfeldt defines the generalized formulation

ĉ2 = cL
2 · √ρL + c2

R · √ρR√
ρL + √

ρR
+ 1

2

√
ρL

√
ρR(√

ρL + √
ρR

)2 (uR − uL)
2 , (2)

and the Roe average

û = uL · √ρL + uR · √ρR√
ρL + √

ρR
(3)

to determine the final signal speed estimates SL = û − ĉ and S R = û + ĉ as proposed in [12]. A blend of Davis’ approach and 
Einfeldt estimates delivers slightly improved estimates given by

S Einf eldt
L = min(uL − cL, û − ĉ), S Einf eldt

R = max(uR + cR , û + ĉ) (4)

which will be denoted ‘Einfeldt estimates’ for simplicity in the remainder of the paper. Batten et al. [13] proposed similar 
estimates to Eq. (4) with the only difference being that ĉ is determined by the original Roe average instead of the generalized 
formulation of Einfeldt (2). The contact wave was reconstructed by Toro et al. [6] resulting in the HLLC approximate Riemann 
solver that covers all physical waves governed by the Euler equations. Moreover, the authors [6] suggested to determine the 
signal speeds from the constant intermediate pressure p∗ instead of calculating them directly. p∗ is approximated under the 
assumption that both nonlinear waves are rarefaction waves. Afterwards, the exact wave relations are applied to determine 
the signal speed estimates. Finally, Batten et al. [13] proposed an estimate for the velocity of the contact speed in the form 
of

S∗ = pR − pL + ρLuL (SL − uL) − ρR uR (S R − uR)

ρL (SL − uL) − ρR (S R − uR)
, (5)

which follows directly from the acoustic wave speed estimates SL and S R , and left and right primitive states. Guermond and 
Popov [14] were the first to develop signal speed estimates that fulfill the essential boundedness criterion of Harten et al. 
[5]. They proposed both a direct and a more accurate iterative method to determine bounds for the physical wave speeds. 
Recently, Toro et al. [15] performed a detailed investigation on the boundedness of various signal speed estimates, where 
they showed that most established estimates do not bound the physical wave speeds in general. Furthermore, they provided 
new bound estimates for the fastest wave speeds. In recent publications [7–10], the accurate but computationally expensive 
Einfeldt signal speed estimate is more and more replaced by the simple arithmetic-average estimate with û = 1

2 (uL + uR)

and ĉ = 1
2 (cL + cR). This selection is reported to deliver results that are close to the ones obtained with the original Ein-

feldt estimate for a broad range of cases. However, the reasoning is highly empirical for strong shocks since a theoretical 
foundation is only given for sufficiently weak shocks, as remarked by Einfeldt [12]. Indeed, it can be easily shown that the 
arithmetic-average signal speed estimate contradicts to fundamental assumptions of the underlying Riemann approxima-
tion. In the following section, this will be demonstrated in detail for a simple moving shock wave and a steady shock wave. 
The application of the arithmetic average is particularly problematic for bow shock simulations as shown in detail in the 
third section. Additionally, a replacement of the original “if” statements by sign functions within the HLLC formulation is 
discussed. The latter implementation might (almost) completely hide the misbehavior of the arithmetic average.

2. Discussion of signal speed estimates for simple Rankine-Hugoniot shock conditions

First, the described signal speed estimates connected to the HLLC approximation are evaluated for a simple moving shock 
wave. This special case frequently appears in practical simulations, e.g. after initialization. In this example, we use a fixed 
pre-shock state with the primitive variables ρR = 1.0, v R = 0 and pR = 1.0. The left state of the shock is varied along the 
Hugoniot locus. In Fig. 1, the resulting left (dashed) and right (solid) nonlinear signal speed estimates, and the estimate for 
the contact velocity (dotted) using Eq. (5) are plotted together with the exact shock speed (bold) for moderate and high 
Mach numbers ranging from 1.01 to 4 and 1.01 to 20, respectively.

In the following, we analyze the resulting HLLC flux given by Toro et al. [6] in the form

FH LLC =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

FL if SL ≥ 0,

F∗L = FL + SL · (U∗L − UL) if SL < 0 ∩ S∗ ≥ 0,

F∗R = FR + S R · (U∗R − UR) if S R > 0 ∩ S∗ ≤ 0,

FR if S R ≤ 0,

(6)

for the different signal speed estimates.
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Fig. 1. Signal speed estimates for the HLL(C) approximation evaluated for a simple right-traveling shock wave for different Mach numbers (solid: right; 
dotted: contact; dashed: left).

Fig. 2. Signal speed estimates for the HLL(C) approximation evaluated for a simple steady shock wave for different Mach numbers (solid: right; dotted: 
contact; dashed: left).

A supersonic condition with all signal speeds above zero is predicted for Mach numbers larger than ∼2.1 for the Toro 
estimate [6], ∼3.5 for the Einfeldt estimate (Eq. (4)-(2)), ∼3.6 for the arithmetic-average estimate and never for the Davis 
estimate (Eq. (1)). Below these values, the HLLC flux (6) is always given by F∗L since S∗ > 0 holds true for all Mach numbers 
and all considered signal speed estimates. Note that S Arithmetic

L and S Einf eldt
L yield nearly identical results.

Although S R does not directly affect the final flux estimation in this particular case, it is nevertheless interesting to study 
the differences among the described types of estimates. For moderate Mach numbers, the estimate of Davis considerably 
overestimates the physical wave speeds, whereas both the estimate of Einfeldt and Toro are only slightly larger. For Ma >
6.7, the estimate of Toro predicts the largest right-travelling wave speed, while the estimate of Einfeldt still is close to the 
physical value. In contrast, the arithmetic-average estimate for S R systematically underestimates the physical wave speed, 
and therefore it violates the boundedness criterion of Harten et al. [5]. Moreover, the incorrect nonlinear signal speed 
estimates lead to an incorrect approximation of the contact velocity. In consequence, S R even falls below the estimate for 
the contact velocity for Ma > 3.3, which is in contradiction to the fundamental assumption S L < S∗ < S R [11,12]. However, 
due to the construction of HLLC this flaw does not affect the resulting flux for simple moving waves. Note, that for S L < 0
the left flux FL is used, and for SL > 0 the intermediate flux F∗L is used as S∗ > 0 for any estimate. Since most practical 
scenarios consist of such simple moving waves, where the contact wave direction and the flow direction are identical, it can 
be explained why results obtained with the arithmetic average are often similar to ones obtained with the Einfeldt estimate 
despite the poor estimate S Arithmetic

R . However, in the following we show that is cannot be relied upon.
The same procedure is applied to a steady shock problem with the fixed pre-shock conditions ρL = 1.0, uL = √

γ · Ma
and pL = 1.0. Post-shock states are obtained from the Rankine-Hugoniot jump condition for varying Mach numbers. The 
resulting signal speed estimates are shown in Fig. 2.

A similar qualitative behavior with switched left and right states as compared to the previous case can be observed. 
Arithmetic-average and Einfeldt estimates for S R are almost identical. However, as S∗ is still strictly positive, now the devi-
ations in SL directly affect the approximate flux. Again, the physical shock speed is not captured by the arithmetic-average 
estimate, and SL < S∗ < S R is violated. Moreover, this estimate leads to a pure supersonic flux selection independently of 
the Mach number, whereas all other estimates predict a subsonic case. The Einfeldt estimate again is close to the physical 
wave speed.
3
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Fig. 3. Supersonic flow around cylinder for different HLLC flux formulations: color pressure map (blue= 1.0 to red= 550) at t = 0.05 resolved with 160 cells 
per diameter.

3. Effect on bow shock calculations

After the discussion of the specific Riemann problems, the adverse effect of the arithmetic-average estimate is now 
demonstrated for a classical test case, the supersonic flow around a cylinder. The setup and numerical scheme is chosen 
identical to [16] with a free-stream Mach number of 20. A classical fifth-order WENO scheme [2] has been applied combined 
with a third-order, explicit, strong stability-preserving time integration [17] using a CFL number of 0.4. The maximum time 
step is determined by

�t = CC F L ·
[

max
i,k

( |ui,k| + ci,k

�x

)
+ max

i,k

( |vi,k| + ci,k

�y

)]−1

(7)

with u, v being the velocity components, c being the speed of sound and �x, �y being the cell dimensions. The simulation 
has been performed up to a final time of t = 0.5, where a fully developed bow shock is observed. The resulting pressure 
field is shown in Fig. 3(a) and Fig. 3(b) for the HLLC flux with both the arithmetic-average and the Einfeldt estimate. The 
application of the former leads to a blocking behavior during the built-up process of the bow shock combined with a 
massive overshoot in pressure and density in the cells along the shock. A similar behavior including the blocking at the 
bow shock front can be observed when the HLL flux is combined with arithmetic-average estimates (not shown here). The 
application of the Einfeldt estimate delivers results as described in literature with minor disturbances behind the shock 
front [16].

A compact formulation of the HLLC flux (6) using the sign function is given e.g. in [18] and reads

FH LLC =1 + sign(S∗)
2

[
FL + S− (U∗L − UL)

]+
1 − sign(S∗)

2

[
FR + S+ (U∗R − UR)

]
,

(8)

with S− = min(SL, 0) and S+ = max(S R , 0).
Interestingly, the failure of the arithmetic-average estimate is almost completely hidden when the sign formulation is 

applied, see Fig. 3(c), where the arithmetic-average estimate was used in combination with the compact formulation (8). 
This can be explained by a subtle change in the sequence of algorithmic decisions. The classical formulation first evaluates 
SL > 0 and immediately chooses the supersonic case if this holds true independently of S∗ , whereas the sign formulation 
first evaluates S∗ . If SL < S∗ < S R is valid, this change in the sequence of decisions will not lead to a different result. How-
ever, during the built-up process the contact-wave speed for the arithmetic-average estimate is negative, which is correct 
since the forming bow shock travels upstream towards the steady-state position, while the arithmetic-average estimate for 
4
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SL is positive. In this case, the sign formulation nevertheless detects the correct right part, and happens to ignore the super-
sonic nonlinear arithmetic-average estimate. The classical formulation reproduces the incorrect supersonic case. A detailed 
investigation reveals that there are still minor overshoots in density and pressure at the tip of the bow shock also for the 
sign formulation as shown in Fig. 3(d). When the Einfeldt estimate is applied, the results for both flux formulations are 
always identical and no overshoot can be observed, see Fig. 3(e).

This example demonstrates that the described shortcomings of the arithmetic-average estimate can lead to unexpected 
consequences and wrong results that can be efficiently avoided by the application of mathematically consistent estimates.

4. Conclusion

We have shown in detail that the arithmetic-average estimate may deliver comparable results as the Einfeldt estimate for 
situations with simple moving shock waves that are dominant in most practical simulations, but may also lead to extremely 
poor prediction of nonlinear signal speeds for some specific cases, such as bow shocks. As a consequence of the erroneous 
nonlinear estimates evaluated in Eq. (5), principle assumptions of the underlying HLL-type solver, such as SL < S∗ < S R

are violated by the arithmetic average. Moreover, this fundamental flaw may be hidden by an algorithmic reformulation 
of the original HLLC Riemann solver, which makes errors due to inaccurate signal speed estimates particularity hard to 
detect and may lead to unexpected behavior. In contrast to the Einfeldt estimate, both Davis and Toro estimates significantly 
overestimate signal speeds for strong shocks, which may lead to an increased numerical dissipation. Due to the mentioned 
facts, we recommend to avoid the arithmetic-average estimate wherever possible, and to apply classical, well-established 
estimates instead.
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