
FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Dissertation in Informatik

Strengthened, Composable, and Quantifiable
Software Integrity Protection

Mohsen Ahmadvand

FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Lehrstuhl IV - Software and Systems Engineering

Strengthened, Composable, and
Quantifiable Software Integrity

Protection

Mohsen Ahmadvand

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr.-Ing. Georg Carle

Prüfer der Dissertation:

1. Prof. Dr. Alexander Pretschner

2. Prof. Dr. Bjorn De Sutter

Die Dissertation wurde am 18.11.2020 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 09.03.2021 angenommen.

München, den 7. Juni 2021 Mohsen Ahmadvand

Acknowledgments

I want to express my gratitude to my advisor, Prof. Alexander Pretschner, for his continu-
ous encouragement and guidance throughout this venture. Alex, you were kind, honest,
open, and very helpful to me. I want to thank Prof. Bjorn De Sutter (my second advisor)
for his guide and support. Bjorn, your feedback and support helped me very much when I
was very frustrated with my experiments. I want to thank Dr. Sebastian Banescu for his
valuable feedback and help throughout my doctoral studies. My greatest appreciations
go to my industrial research partners, Keith Ball, Dr. Antoine Scemama, and Hans Strack-
Zimmermann, for their exceptional support. Folks, I was so lucky to have the chance to
work with you. My sincerest gratitude goes to my friends, Tonya, Arash, Sergey, Alei,
Amjad, Afshin, and my family.

vii

Zusammenfassung

Man-At-The-End (MATE)-Angreifer sind allmächtige Gegner, gegen die es bislang keine
universelle Gegenmaßnahme gibt. So gehört der Schutz der Programmintegrität zu den
herausforderndsten Problemen im Zusammenhang mit MATE-Angreifern. In der Literatur
ist ein breites Spektrum von Schutzmaßnahmen beschrieben, von denen jede einzelne
die Widerstandsfähigkeit gegen bestimmte Angriffe auf spezielle Funktionalitäten von
Programmen erhöht. In dieser Arbeit führen wir zunächst eine umfassende Studie durch,
um verschiedene Integritätsschutz Systeme in der Literatur zu vergleichen und ihre Stärken
und Schwächen zu bestimmen. Auf Basis der Ergebnisse unserer Studie schlagen wir neue
Abwehrmechanismen und Kombinationen von Schutzmaßnahmen vor, um die Sicher-
heit und Anwendbarkeit dieser Konzepte zu verbessern. Obwohl das Zusammensetzen
von Schutzmaßnahmen (im Gegensatz zur isolierten Anwendung) die Sicherheit intuitiv
erhöhen kann, erzeugen diese Kombinationen neue Schwierigkeiten, deren Lösungsansatz
ein nicht triviales Problem darstellt. Das Auflösen von Konflikten zwischen den Schutz-
mechanismen und die Suche nach optimalen Kombinationsmöglichkeiten stellen die Kern-
probleme beim Zusammensetzen der Schutzmaßnahmen dar. In dieser Arbeit bewältigen
wir diese Probleme, indem wir sie auf ein ganzzahliges, lineares Optimierungsproblem
übertragen. Wir entwickeln einen Bezugsrahmen (sip-shaker) für das Zusammenstellen von
Schutzmechanismen, der ein konfliktfreies Ineinandergreifen garantiert und gleichzeitig
auf höhere Sicherheit und geringen, zusätzlich benötigten Aufwand optimiert. Um unsere
Schutzmechanismen und Zusammenstellungen zu bewerten, führen wir Leistungs- und
Sicherheitsanalysen mit Hilfe eines Datensatzes von Programmen aus der realen Welt durch
(MiBench- und Kommandozeilen-Spiele). Da Konzepte zum Integritätsschutz lediglich die
Angriffe erschweren, anstatt sie vollständig zu verhindern, ist es von entscheidender Bedeu-
tung, die Widerstandsfähigkeit dieser Schutzmaßnahmen abzuschätzen. Der letzte Teil der
Arbeit beschäftigt sich mit der Abschätzung der Widerstandsfähigkeit zusammengesetzter
Schutzmaßnahmen gegen automatisierte Angriffe, die dem aktuellen Stand der Technik ent-
sprechen. Um die Widerstandsfähigkeit zu quantifizieren, schlagen wir eine Abschätzung
über zwei neuen Metriken vor: Lokalisierbarkeit (also die Wahrscheinlichkeit, Schutzmecha-
nismen zu finden) und Überwindbarkeit (also die geschätzte Anzahl der Angriffsschritte
um die Schutzmechanismen zu deaktivieren). Die Messgröße der Überwindbarkeit bietet
ein Instrument, das stärkere Zusammenstellungen bevorzugt, die eine höhere Anzahl von
Änderungen am Programmcode durch den Angreifer erfordern. Um die Lokalisierbarkeit
von Schutzmaßnahmen zu beschreiben, entwickeln und vergleichen wir Lokalisierungs-
angriffe, die auf maschinellem Lernen und Programmspur-Analyse basieren, gegen die
Zusammenstellungen von Techniken des Integritätsschutzes sowie der Obfuskation.

ix

Abstract

Man-At-The-End (MATE) attackers are almighty adversaries against whom no silver-
bullet countermeasure exists. Protecting program’s integrity is amongst the challenging
problems in the context of MATE attackers. A wide range of hardening measures was pro-
posed in the literature, each of which adding resilience against certain attacks on particular
assets of programs. In this thesis, we first conduct a comprehensive study to benchmark
different integrity protection schemes in the literature to identify their strengths and short-
comings. Based on the outcome of the study, we propose new defenses and combinations
(compositions) of protections to improve the security and applicability of schemes. Al-
though composing protections (rather than applying them single-handedly) can intuitively
improve the security, addressing induced challenges is a nontrivial problem. Resolving pro-
tection conflicts and finding optimal compositions are two perplexing steps in the protection
composition. In this thesis, we tackle the composition problem by transferring it to an ILP
optimization problem. We develop a composition framework (sip-shaker) that guarantees a
conflict-free composition while optimizing for security and overhead. To evaluate our pro-
tections and compositions, we conduct performance and security evaluations using a data
set of real-world programs (MiBench, and CLI games). Since integrity protection schemes
harden against the attacks rather than completely neutralize them, it is vital to estimate
how resilient the protections are against attacks. As the last part of the thesis, we set to
estimate the resilience of composed protection against state-of-the-art automated attacks.
We propose to quantify the resilience as a conjecture of two novel metrics: localizability (the
probability of finding protections) and defeatability (the estimated attack steps to disable
protections). The defeatability metric provides a means for favoring stronger compositions
with a higher number of imposed patches on the attacker. To characterize the localizability
of protections, we develop and benchmark machine-learning and taint-based localization
attacks on compositions of integrity checking techniques and obfuscations.

xi

Outline of the Thesis

CHAPTER 1: INTRODUCTION

This chapter presents an introduction to the topic and the fundamental issues addressed by
this thesis. It discusses ideas, goals, and limitations of this work. The content of Section 1.2
(the motivating case study) was taken from a previously published work [9] co-authered by
the thesis author.

CHAPTER 2: TAXONOMY

After surveying the literature, we analyzed and further classified the reviewed articles.
This chapter presents the outcome of our analysis encompassing a taxonomy for integrity
protection, analysis of various correlations within the taxonomy, and, finally, identification
of gaps in the literature. Parts of this chapter were previously publishd in a work [9]
co-authored by the thesis author.

CHAPTER 3: PRACTICAL INTEGRITY PROTECTION WITH OBLIVIOUS HASHING

This chapter presents practical enhancements corresponding to fundamental problems
of the Oblivious Hashing integrity protection technique, namely coverage, and input
dependency. The entire content of this chapter was previously published in work co-
authored by the thesis author [5].

CHAPTER 4: VIRTUALIZED SELF-CHECKSUMMING

In this chapter, we present a novel approach to address the problems of self-checksumming
integrity protection concerning applicability and composability. This chapter was previously
published in a work [7] co-authored by the thesis author.

CHAPTER 5: COMPOSITION FRAMEWORK

This chapter presents the design and implementation of our software integrity protection
composition framework. The content of the chapter was previously published in work [8]
co-authored by the thesis’s author.

CHAPTER 6: RESILIENCE

In this chapter, we present a methodology along with two metrics to estimate the resilience
of (composed) integrity protection techniques. The resistance is captured as a conjecture of
localizability and defeatability of protections w.r.t known automated attacks.

CHAPTER 7: CONCLUSIONS

This chapter presents the conclusions, lessons learned, future work, and the limitations of
this thesis.

xiii

APPENDIX A: BRIEF SUMMARIES OF SELECTED RELATED WORK

This chapter presents brief summaries of selected related work in the field of software
integrity protection. This survey is the basis upon which we build a taxonomy for software
integrity protection techniques.

APPENDIX B: REPRODUCIBILITY HANDBOOK

We made the entire protection toolchain, datasets, and scripts open source. This chapter
capture the links, scripts, and manuals on how to run the experiments that were conducted
throughout the thesis.

N.B.: Multiple chapters of this dissertation are based on different publications authored or co-
authored by the author of this dissertation. Such publications are mentioned in the short descriptions
above. Due to the obvious content overlapping, quotes from such publications within the respective
chapters are not marked explicitly. Bear in mind that the thesis author has the “lead author” role in
all such publications.

xiv

Contents

Acknowledgements vii

Zusammenfassung ix

Abstract xi

Outline of the Thesis xiii

Contents xv

I. Introduction and Structured Related Work 1

1. Introduction 3
1.1. Context . 3
1.2. Motivating Case Study . 5
1.3. Problem Statement . 7
1.4. Purpose of the Study . 8
1.5. Research questions . 9
1.6. Gaps . 9
1.7. Research Design . 10

1.7.1. Taxonomy . 10
1.7.2. Scheme Enhancements . 10
1.7.3. Composition . 12
1.7.4. Quantification . 12

1.8. Contributions . 13
1.9. Assumptions, Limitations, and Scope . 13
1.10. Structure . 14

2. Taxonomy 15
2.1. Overview . 15
2.2. Introduction . 15
2.3. Proposed Taxonomy . 18

2.3.1. System . 19
2.3.2. Attack . 23
2.3.3. Defense . 26

xv

Contents

2.3.4. View dependencies . 31
2.4. Applying the proposed taxonomy . 33
2.5. Observation and Analysis . 33

2.5.1. Asset protection in different representations 33
2.5.2. MATE attack mitigation on different asset representations 38
2.5.3. Defense integration to program lifecycle 43
2.5.4. Correlation of transformation lifecycle and protection overhead . . . 49
2.5.5. Check and Monitor representation . 50
2.5.6. Monitoring representation correlation with protection level (enforce-

ment level) . 51
2.5.7. Hardening vs. reverse engineering attacks and tools 52
2.5.8. Resilience against known attacks . 53

2.6. Related Work . 55
2.6.1. Existing Classifications . 56
2.6.2. Comparison of schemes and surveys 58

2.7. Conclusions . 58

II. Software Integrity Protection Enhancements 61

3. Practical Integrity Protection with Oblivious Hashing 63
3.1. Introduction . 63
3.2. Background & Related work . 64

3.2.1. Software integrity protection . 64
3.2.2. Nondeterministic code detection . 65

3.3. Design . 66
3.3.1. Segregation of input data/control-flow dependent instructions . . . 67
3.3.2. Short Range Oblivious Hashing (SROH) 68
3.3.3. Data-Dependent Instructions (DDIs) 70
3.3.4. Intertwined protection . 72

3.4. A full example of OH+SROH utilization . 72
3.5. Implementation . 74

3.5.1. Protection process . 74
3.5.2. Input dependency detection . 74
3.5.3. Oblivious hashing (OH) . 75
3.5.4. Short Range Oblivious Hashing (SROH) 75
3.5.5. Self-checksumming (SC) . 76
3.5.6. Response mechanism . 76

3.6. Evaluation . 76
3.6.1. Dataset . 76
3.6.2. Preparation . 77
3.6.3. Coverage . 77

xvi

Contents

3.6.4. Performance analysis . 78
3.6.5. Security analysis . 79

3.7. Discussion . 82
3.7.1. Coverage . 82
3.7.2. Implicit protection with OH/SROH 83
3.7.3. Performance . 83

3.8. Conclusions . 84

4. Virtualized Self-Checksumming 85
4.1. Introduction . 85
4.2. Background and Related Work . 86

4.2.1. Virtualization Obfuscation (VO) . 86
4.2.2. Self-Checksumming (SC) . 86
4.2.3. Combining Virtualization and Integrity Protection 87

4.3. Design . 88
4.3.1. High-level Architecture . 88
4.3.2. Detailed Design . 88
4.3.3. Optimization . 93

4.4. Evaluation . 94
4.4.1. Dataset . 95
4.4.2. Coverage . 95
4.4.3. Performance . 95
4.4.4. Security . 98

4.5. Discussion . 102
4.5.1. Protection Coverage . 102
4.5.2. Performance vs. Security . 102
4.5.3. Security . 104

4.6. Limitations . 104
4.6.1. Unsupported Instructions . 104
4.6.2. VM Restrictions . 104

4.7. Conclusions . 105

III. Software Integrity Protection Composition 107

5. Composition Framework 109
5.1. Introduction . 109
5.2. Background and Related Work . 110

5.2.1. Integrity Protection Schemes . 110
5.2.2. Composition of Protections . 112
5.2.3. Protection Optimization . 113

xvii

Contents

5.3. Requirements . 113
5.3.1. Conflict Detection . 113

5.4. Design . 115
5.4.1. Running Example . 115
5.4.2. High level Process . 115
5.4.3. Protection Manifest . 116
5.4.4. Constraints . 117
5.4.5. Defense Graph . 119
5.4.6. Conflicts and Conflict Handling . 121
5.4.7. Optimization . 121
5.4.8. Order of Protections . 123

5.5. Implementation . 123
5.6. Evaluation . 124

5.6.1. Dataset . 125
5.6.2. Configuration of Testbed . 125
5.6.3. Coverage Optimization . 125
5.6.4. Performance . 126
5.6.5. Security Analysis . 128

5.7. Threats to Validity . 129
5.8. Conclusions . 130

IV. Software Integrity Protection Resilience Quantification 131

6. Resilience 133
6.1. Introduction . 133
6.2. Background and Related Work . 134

6.2.1. Attacker Model . 134
6.2.2. Protection Quantification and Metrics 135
6.2.3. Empirical Evaluations . 135

6.3. Methodology . 136
6.3.1. Localizability . 137
6.3.2. Defeatability . 138
6.3.3. Methodology Summary . 138

6.4. Attacks . 139
6.4.1. Pattern Matching . 139
6.4.2. Machine Learning . 139
6.4.3. Tainting . 139
6.4.4. Symbolic Execution . 140
6.4.5. Code Tampering . 140
6.4.6. Circumvention . 140

xviii

Contents

6.5. Defenses . 140
6.5.1. Integrity Checking . 140
6.5.2. Obfuscation . 141
6.5.3. Hardening Transformation . 141

6.6. Metrics . 141
6.6.1. Localization Quantification . 142
6.6.2. Defeatability Quantification . 142
6.6.3. Resilience . 143

6.7. Evaluation . 143
6.7.1. Test Programs . 144
6.7.2. Integrity Checking Localizability . 144
6.7.3. Integrity Checking Defeatability . 149
6.7.4. Resilience . 150
6.7.5. Attack Defense Relation Table . 150
6.7.6. A Complete Example of the Proposed Resilience Quantification . . . 150

6.8. Discussion . 153
6.8.1. ML-Based Localization Attack . 153
6.8.2. Defeatability . 155

6.9. Threats to Validity . 156
6.10. Conclusions . 156

V. Conclusions & Future Work 159

7. Conclusions 161
7.1. Research Findings . 161
7.2. Recap of the Research Gaps and Contributions 164

7.2.1. Gaps . 164
7.2.2. Contributions . 164

7.3. Results and Lessons Learned . 165
7.4. Limitations . 167

7.4.1. Correctness . 167
7.4.2. Prototype Implementation . 167
7.4.3. Data sets . 168
7.4.4. Automated Attacks . 168
7.4.5. Side Channels . 168
7.4.6. Resilience Quantification . 168

7.5. Future Work . 168
7.5.1. Additional Integrity Protections . 169
7.5.2. Controlled Human-Based MATE Attacks 169
7.5.3. Formal Proofs . 169
7.5.4. Fusion with Hardware-Based Protection 169

xix

Contents

Bibliography 171

A. Brief Summaries of Selected Related Work 191
A.1. Overview . 191
A.2. Survey of papers . 191
A.3. Summary . 218

B. Reproducibility Handbook 219
B.1. Data sets . 219
B.2. Source Code . 219

B.2.1. C++ Dependencies (Libraries to Link) 220
B.2.2. Python Dependencies (Libraries to be installed via pip) 220
B.2.3. Utility Passes . 221
B.2.4. Protection Passes . 221
B.2.5. ILP-Based Composition Framework 222
B.2.6. Machine-Learning-Based Localization 222

B.3. Docker Files . 222
B.4. Execution Manual . 223

Index 225

List of Figures 225

List of Listings 227

List of Tables 229

xx

Part I.

Introduction and Structured Related
Work

1

1. Introduction

This chapter presents an introduction to the topic and the fundamental issues ad-
dressed by this thesis. It discusses ideas, goals, and limitations of this work. The
content of Section 1.2 (the motivating case study) was taken from a previously
published work [9] co-authered by the thesis author.

1.1. Context

We live in a digital era; software systems surround us. We rely on these systems in almost all
aspects of our lives. An increasing number of everyday objects exceedingly start to acquire
the prefix of smart-, which refers to a broader range of functionalities enabled by a growing
layer of software. Smart houses give remote control over household appliances to the
owners. Voice-activated smart speakers and virtual AI assistants execute audio commands.
On-demand TVs and streaming services (e.g., Netflix and Spotify) load proprietary data to
clients’ devices.

Advances in software technology have enabled software vendors to deliver more complex
systems to web and mobile users. Consequently, advanced proprietary algorithms land in
client applications more than before. Instant messaging and social media have introduced
new forms of interactions (e.g., Snapchat supports strict retention policies, and reports
screenshots to the message publishers). Online multiplayer games have enormous user
bases (e.g., 125 million users played the Fortnite game in 2019)1. Users trust in applications
with their private data and bank credentials. Besides conventional online banking applica-
tions and in-game purchases, crypto wallets are persisting tokens worth of thousands of
dollars in client devices.

Some goods, such as cars, offer on-demand premium service activation. In this model,
users can opt-in for or opt-out of premium services after the initial purchase. That is,
depending on the purchased license, parts of the software components are activated or
deactivated.

The current trend in software utilization has countless benefits for users and enormous
profits for software vendors. IT companies are among the most profitable businesses in 21st
century. Users benefit from a wider range of innovative software solutions. Companies
develop solutions and rapidly deliver their products to users.

1https://techsprobe.com/top-10-most-popular-online-games-of-2019-most-played-games/

3

1. Introduction

The software solutions are delivered to users as either executable programs for their
devices or web applications rendered in their browsers. In both cases users get access to
all or parts of programs artifacts (binaries, files, scripts, and libraries). The exposure of
artifacts gives rise to several forms of conflict of interest between the involved entities. The
conflicts include users vs. vendors, vendors vs. vendors, and users vs. users. Some users
may attempt to get illegitimate access to the proprietary data accessible via applications.
Similarly, users may seek ways to circumvent the licensing mechanism in applications to,
for instance, get premium features for free. These two cases indicate exemplary ways in
which users can act against vendors.

On the other hand, given the access to the artifacts, some rogue vendors may attempt to
reverse engineer advanced IP algorithms developed by their competitors. The consequences
of a successful extraction of an IP algorithm can potentially cost a vendor their business.

Users may have incentives to impose unauthorized modifications on a software. Obtain-
ing advantages over other users of the software is a common motive. Such actions can harm
other users that can readily backfire on the software owners causing immense reputation
damages. Some Snapchat users may wish to secretly take screenshots from other users’
posts. Players of online multiplayer games may want to gain dishonest advantages over
other players by modifying a specific behavior of the game. Malicious users may attempt
to steal crypto tokens from other users’ digital wallets. These three cases present samples
in which users’ interest conflicts with other users. Insufficient or improper mitigations of
threats of the like can hurt the user base and lead to substantial financial losses for a com-
pany. Therefore, it is an essential responsibility of companies to take protective measures
against likely perpetrators.

Software misuse harms are not limited to IP, users’ privacy, or financial loss. Nowadays,
critical infrastructures such as power plant systems depend on sensors and their software to
stay functional. Thousands of sensors supply traffic control and transportation scheduling
systems with the necessary data to make optimal decisions. Perpetrators with various
motives, ranging from terrorism and sabotage to outrageous retaliations, can potentially
attempt to alter the intended behavior of the systems putting human lives in danger.

The common denominator in all the reviewed threats is the inevitable exposure of
software artifacts to untrustworthy users. The access shall be granted to such users as it
is, in some cases, necessary to run the software on their commodities. This situation falls
within an attacker model referred to as Man-At-The-End (MATE). MATE leaves us with
no choice but to seek measures to fortify software. In this thesis, we seek to find effective
means to protect software systems against MATE attackers.

To battle tampering attacks, academia and industry have considered trusted hardware.
Intel SGX [69], ARM TrustZone [141] are examples of such hardware that provide a degree
of integrity protection. At the time that we are writing this thesis, IoT devices and sensors
seem to be still far from having such hardware [60]. The existing hardware comes with a
set of limitations. Besides side-channel attacks [35, 91, 120], for programs to benefit from
these technologies, practitioners need to partition their programs into trusted and untrusted
regions. Interactions between the two partitions impose expensive context switches and

4

1. Introduction

License serverLicense server
Data provider
 (encryption)
Data provider
 (encryption)

Identity providerIdentity providerProprietary
data

License checker

Data provider (decryption)

Stream viewer (external library)

Encrypted data

End user

MATE

End user

MATE

Execute

Usage policies

Figure 1.1.: Architecture of a example DRM system to lend proprietary content.

therefore need to be minimized. That is, coping with the problem of context switches
raises challenges in terms of performance and security [125]. Contents of secure partitions
are limited as the program code dealing with inputs and outputs (system calls) has to
reside in the untrusted region inevitably. The interface to the trusted partition needs to be
protected as well. For this purpose, adding an extra layer of protection using software-based
approaches appears to be a viable option. We believe that software-based protections are
and will be relevant until the mentioned problems are solved. That is why we focus on
software-based integrity protection in this thesis.

1.2. Motivating Case Study

In this section, we present a simplified digital rights management (DRM) system as a
motivating example for the thesis. DRM enables authors to protect their proprietary digital
data while sharing them with other people. To do so, DRM enforces a set of usage policies at
the user end (client-side) that limits what users can actually do with the protected content.

The goal of our sample DRM system is to enable secure lending of proprietary content
to end-users. For the sake of simplicity, we assume that two usage policies are employed
in this system: users can lease a protected media (digital content) i) for a certain period of
time or ii) for a particular number of views.

The system, as depicted in Figure 1.1, is comprised of two compartments: a server (which

5

1. Introduction

Access
protected
content

Extract
from

viewer

Dump
fragments

Assemble
fragments

Decrypt
to lift

Obtain
Key

Obtain
files

Fool
license
checker

Reset
usage

variables

Tamper
with
logic

attack node
disjunctive refinement
conjunctive refinement

Figure 1.2.: Attack tree capturing potential MATE attacks on the sample DRM system.

runs on trusted commodity2) and a client (which runs on untrusted commodity and hence
is exposed to MATE attacks). On the server side, three components, viz. license server,
data provider (encryption) and proprietary data, are collaborating to deliver
the desired functionality. On the client side, three components, viz. license checker,
data provider (decryption) and stream viewer, are handling user requests.

The license server is in charge of generating usage policies according to the pur-
chased license by the users. It sends usage policies to client applications. The data
provider and proprietary database work closely together. The data provider
retrieves the requested protected content from the database and encrypts them with client
keys. Instead of providing one encrypted file, the data provider breaks each file into chunks
(fragments) and then encrypts them.

On the client-side, the license checker enforces the policies that are specified by the
license server. That is, the license checker tracks the date of expiry and the number
of views. As soon as the limit is met, the restriction is applied, for instance, by removing
the protected content. The data provider decrypts the fragmented content in memory and
continuously feeds them to the stream viewer. In this way, the complete file is never
exposed as a whole on the client-side.

The entire system is developed by the Sample DRM company, except for the stream viewer.
As stated in the figure, the stream viewer is an external library, for which Sample DRM only
has access to the compiled binaries.

Threats. In this system, the protected content is transmitted to the client machines on
which end-users have full control over program execution. This immediately gives rise to
MATE attacks. In Figure 1.2 we present a set of potential threats from MATE attackers in
form of an attack tree [117].

Starting from the root node, a perpetrator’s goal is to use the protected content without
the restriction which was specified in the usage policy. For this purpose, she has three
options: extract fragments of the data from the stream viewer, exfiltrate the content by
decrypting it, or circumvent the license checker or modify the policy.

2For the sake of simplicity, we assume servers are secured against MATE attacks. In reality, servers are
susceptible to MATE attacks just like clients’ machines; MATE attacks on servers fall under the category of
insiders [6].

6

1. Introduction

Extracting protected content from the viewer requires the attacker to dump memory
fragments and later reassemble them. She can (among other possible attacks) tamper with
the viewer to perform this malicious activity automatically. Consequently, an attacker can
manipulate the viewer to dump and merge decrypted content behind the scene until the
entire file is extracted.

Exfiltrating the content by decrypting requires the attacker to obtain the clientprivate key
as well as encrypted contents. Since the data provider (decryption) (which is located at the
client side) has access to this key, it can be targeted by reverse engineering attacks first to
locate the key and subsequently to extract it.

Circumventing the license checker is yet another way to use the protected content illegiti-
mately. The license checker is effectively in charge of verifying the usage policies on access
requests. Attackers can manipulate the usage policy, i.e., the usage variables for the number
of views and expiry date. If the perpetrator manages to manipulate them, then the DRM
protection is defeated. Furthermore, they can tamper with the license checking logic, for
instance, to accept any license as valid regardless of the actual validity of the license.

The threats mentioned above are a representative set of MATE threats manifestation
of which can lead to the disclosure of DRM’s proprietary contents. Whether attackers
perpetuate modifications in the client software or not draws a definite line between the
attacks. In our threat analysis, extraction and decryption attacks may require no changes in
the software. However, fooling the license checker requires the attacker to tamper with the
DRM client. In this thesis, we concentrate on attacks that include software tampering.

1.3. Problem Statement

MATE refers to a class of adversaries whose access to the software execution environment
grants them mighty power to monitor, disrupt, and tamper with the running programs [139].
Consequences of such actions could range from bypassing license checks [15], cheating in
games [79], to compromising critical infrastructures [109, 158]. With the growing depen-
dence of our infrastructure on software systems and the emergence of IoT in our daily life,
the need for protecting software integrity is no longer only a matter of IP protection but
also a threat to our safety.

Against MATE attackers, there exists no silver-bullet countermeasure. As mentioned
earlier, besides technical problems (partitioning, interface vulnerability, side channels, and
vendor-specific development expenses) hardware-based protections are not yet available
on plenty of computing devices. Theoretically-secure schemes such as indistinguishability
obfuscation [86] are still considered to be impractical [18]. This is perplexing as practical
software integrity protection (SIP) measures can only raise the bar against attackers [5, 9, 19,
22, 47]. That is, given enough time, resources, equipment, and skills, attackers eventually
win [72]. However, hardening measures, in some use cases, can potentially cause enough
trouble for attackers such that defeating the protection becomes very challenging, which is
economically no longer attractive [45].

7

1. Introduction

In the past two decades, numerous software protections were proposed in the literature.
Each measure essentially aims at thwarting a particular type of attack(s). In other words,
they add protections on certain integrity assets whereby mounting certain attacks becomes
relatively (as opposed to no protections) harder. These assets include, but are not limited
to, the program’s code (logic), control flow, sensitive data (e.g., hardcoded rates in a smart
meter program), etc. [9]. However, for attackers often successfully mounting a single attack
is sufficient to undermine assets, i.e., “security is no stronger than its weakest link”.

Not only protections fall short of providing a comprehensive protection but also how
good they protect integrity assets (how hard it is to defeat them) is unknown. Despite the
existence of a multitude of protection schemes, we are not aware of a comprehensive study
that compares the advantages and disadvantages of these schemes. No holistic study was
done to measure the effectiveness of such schemes. As a direct consequence, it is impossible
to quantify the security of protection techniques. Inadequate (or lack thereof) integrity
protection could lead to severe breaches in systems. Given that the effectiveness of integrity
protection techniques is unknown, MATE attacks remain a significant threat to the security
of systems. Given that software integrity protection is the defense we consider in this thesis
against MATE, we set to characterize those schemes.

Research Problem. How good are software integrity protection techniques?

1.4. Purpose of the Study

Despite the existence of a multitude of protection methods, we believe the offered security,
advantages and disadvantages, practicality, and limitations of the protections are unclear.
Some disadvantages or limitations can potentially render protections impractical. Further-
more, a majority of prior research work focused on applying a single protection scheme.
Practitioners often utilize a range of protections concurrently to maximize the offered pro-
tection. Simultaneously, academics tend to have an opaque feeling that SW-based SIP is
problematic/useless because all known schemes have somehow been broken in the past.
We argue that there are similar and complementary (side channels; applicability, e.g., in IoT)
problems for HW-based techniques. The purpose of security is not full 100% protection–
but rather to raise the bar. And this requires understanding how good/resilient specific
schemes, and their combinations, are. The applicability, amenability, and further usage
constraints of combined protections come with their advantages and disadvantages.

In this thesis, we strive to enhance the security of software systems against MATE
tampering attacks. Notwithstanding the impossibility of unconquerable defenses, we aim
to raise the bar to the degree that imposes the highest toll on perpetrators.

To achieve our purpose, we set our objectives to i) exploring efficient and secure constructs
to protect software integrity; and ii) building a unified method to assess the strength of
protections. Besides exploring novel composition approaches, we intend to thoroughly
study the extent to which protections can benefit from compositions.

8

1. Introduction

1.5. Research questions

The general question we are aiming to answer is:

Research question. Which security guarantees at which cost could software integrity protection
schemes offer against automated MATE attackers?

We derive the following subquestions from our general research question:

RQ1 Which aspects of software integrity protection techniques are security-relevant?

RQ2 How do integrity protection techniques mitigate attacks?

RQ3 What are the shortcomings of the existing protection schemes?

RQ4 How can we improve protection schemes aiming for enhanced security?

RQ5 How can we compose protections to mitigate a wider range of attacks?

RQ6 How to quantify the resilience of individual and composed protection techniques?

1.6. Gaps

Sections 2.6, 3.2, 4.2, 5.2 and 6.2 give an overview of the related work; we see the gaps in
the literature as outlined:

G1 Relevant attacks, the advantages, and disadvantages (trade-offs) of SIP techniques in
mitigating different attacks were not analyzed with a set of unified criteria previously
(addressing RQ1);

G2 The actual security guarantees (resilience) and performance bounds of some protection
schemes are unknown (addressing RQ2);

G3 Some well-known protection schemes come with practical shortcomings and hence
inadequate or ineffective to be used in practice (addressing RQ3 and RQ4);

G4 Despite the existence of plenty of hardening measures to address particular attacks,
effective approaches to compose integrity protections (i.e., lower overhead and higher
security) were not addressed in the literature (addressing RQ5);

G5 How good SIP techniques are, in terms of the actual imposed time and cost on
adversaries’ end, was not previously studied (addressing RQ6); and

G6 Studying protection schemes’ practicality and effectiveness is strikingly hard as there
exists very limited3 public implementation of integrity protections (prerequisite for
addressing RQ2-RQ6)

3There exist some open source software protection tools. O-LLVM (https://github.com/
obfuscator-llvm/obfuscator) and ASPIRE (https://aspire-fp7.eu/) are two well-known
projects. Nonetheless, O-LLVM authors did not open source their tamperproofing technique

9

https://github.com/obfuscator-llvm/obfuscator
https://github.com/obfuscator-llvm/obfuscator
https://aspire-fp7.eu/

1. Introduction

1.7. Research Design

We research four directions to fill up the identified gaps in the literature: i) survey, analyze,
and classify the existing protections in the literature (G1 and G2); ii) identify the shortcom-
ings of the current protections and subsequently propose enhancements (G3); iii) explore
novel approaches to combine protections and advance efficient protection composition tech-
niques (G4); and iv) research and develop measures to quantify the security of (composed)
protection schemes (G5). We briefly discuss the delta between state of the art and this thesis
for each of the directions.

1.7.1. Taxonomy

To classify protections, Collberg et al. used natural science and human history to derive a
set of 11 different defense primitives [64]. These primitives focus on defense concepts rather
than security guarantees. Similarly, [134, 135, 186] proposed classifications with a rather
frail emphasis on software integrity protection. Akhunzada et al. studied MATE attackers
from the motives perspective [10]. The main gap here is the lack of a comprehensive
classification and analysis of software integrity protection schemes. To bridge the gap, we
conduct a literature survey and subsequently construct a taxonomy for software integrity
protection techniques.

In our survey, we identified four prominent protection schemes, namely Self-Checksumming
(SC), Oblivious Hashing (OH), Call Stack Integrity Verification (CSIV), and Result Checking
(RC), with high potential applicability to a wide range of integrity protection problems.
The original papers came with limited evaluations. Consequently, we are unable to study
the effectiveness of those protections, which is a gap in the literature (G2). Therefore, we
implement the mentioned protections. Since the LLVM ecosystem comes with powerful pro-
gram analysis features and significantly improves the portability, we develop the selected
protections as compiler transformation passes in LLVM.

1.7.2. Scheme Enhancements

We conduct empirical evaluations on the protections and thereby identify a set of security
as well as applicability (coverage) problems. We research and propose enhancements
for SC and OH. Let us briefly describe how these protections operate before stating the
limitations/enhancements.

Self-checksumming (SC) is a software protection technique that allows programs to
detect changes in their binary representation and memory using so-called guards [47]. Upon
detections, SC may call a response mechanism, for example, aborting the execution or self-
repair. SC operates by injecting a set of guards that hash the desired (sensitive) segments
of program code in memory (at runtime) and verify that they match to expected values.
Consequently, if perpetrators tamper with the program code using certain techniques, SC
guards can detect them. Once inconsistencies are detected, a response mechanism is triggered

10

1. Introduction

which carries out a punishing action [139], e.g., by injecting a fault into the stack that
eventually causes a crash in the application. SC guards can further be hardened by a set of
interconnected guards that protect each other [47].

Lifted Self-Checksumming

The SC checks have to be executed at runtime. When checks take place locally (i.e., no remote
verifier), the expected hash values need to be pre-computed and, after compilation, inserted
into the executable. Not only does this approach require knowledge of the underlying
system’s architecture, it also mandates a post-patching step to put these expected checksums
(hashes) into predefined places. Patching binaries is an extremely tedious and error-prone
process [22]. This process also limits the use of other obfuscation techniques, as one needs to
maintain a set of placeholders (i.e. contiguous sequences of 4 or 8 bytes in the code segment)
for the pre-computed checksums at known offsets in the executable. Applying obfuscation
would likely change the offsets and contiguous layout of the placeholders.

To eliminate this post-patching step, we leverage the compiler framework LLVM [119] to
implement self-checksumming atop virtualized instructions. For this, we also implement
virtualization obfuscation. LLVM already implements backends for different system archi-
tectures, which removes the required architecture knowledge and post-patching. Applying
the guards at a higher abstraction level removes the post-compilation patching process at
the binary level entirely. We bypass the pathing process by first applying virtualization
obfuscation [87] and then adding the guards in the custom interpreter bytecode.

Practical Oblivious Hashing

OH captures evidence of the program execution by computing a trace hash over the values
stored in memory corresponding to arbitrary read and write accesses in a program. These
hash values are then matched with expected ones during execution. The expected values
have to be precomputed and stored in the programs upon distribution. Simply put, OH
checks the execution effects in memory, as opposed to checking the code itself. Therefore, it
is harder to identify (stealthy) or trick (resilient) OH in contrast to SC.

Although OH is a more appealing protection measure in principle, it is unable to protect
input-dependent program traces, for instance, memory accesses with values dependent on
user-input or environment variables. The limitation is mainly because hashing such traces
results in different hashes for different program executions.

An effective strategy to cope with nondeterminism requires addressing two challenges
- i) how to automatically extract deterministic program segments, and ii) how to protect
non-deterministic ones. The second problem is more striking as a large portion of program
traces are expected to be input-dependent. For instance, only 0.5% of program instructions
evaluated in [5] are deterministic. In this thesis, we design and develop novel techniques to
cope with the mentioned limitation of OH to build more robust protection.

11

1. Introduction

1.7.3. Composition

Composing protection is a viable option to enhance the resilience of protections. The reason
being that a “well” composed protection may force attackers to defeat a multitude of pro-
tections, some of which may reside in cross-checking network of checkers. A composition
of protections intuitively adds resilience to the protection.

However, it turned out that composing protection is nontrivial due to the potential raise
of conflicts and trade-offs that users need carefully reconcile. To the best of our knowledge,
the existing techniques in the literature [167, 170] make conservative assumptions as to
whether protection schemes are composable or not. More importantly, the conflicts and
security-performance trade-offs were not thoroughly studied. We design and develop a
composition framework that optimizes the composed protection yielding better resilience
and smaller overheads.

1.7.4. Quantification

After reviewing the literature on the security of protections, we conclude that security is
comprised of two factors: i) the difficulty of localizing protections (localizability) and ii) the
difficulty of defeating/disabling/bypassing protections (defeatability).

Localizability

SIP routines are generally injected into programs of interest via a range of tools including
source code rewriters, compiler passes, linkers, and instrumentations. These tools leave
recognizable patterns in the protected binaries that could potentially expose protection
routines [9]. To mitigate pattern-based attacks, we inevitably have to utilize diversification
obfuscation [25] on protection guards. How effectively such diversified guards can counter
pattern-based attacks appears to be a research gap. We aim to measure the effectiveness of
obfuscation in countering pattern-based attacks on integrity protection guards. We base
our study on guards that are generated by our SIP-toolchain4 (namely, CSIV [2], SC [47],
OH [49] and SROH [5] protection techniques). We expect that the primitive pattern-based
attacks (to a great extent) fail to recognize obfuscated guards. We utilize machine learning
techniques to localize the protection guards hardened by combinations of obfuscations.
Furthermore, we set to measure the effectiveness of taint-based attacks [150] in localizing
combinations of protections.

Defeatability

Quantifying protection defeatability (ease of bypassing) is rather challenging. The difficulty
lies in the extended attack vector that enables MATE attackers to mount their attacks on
protections. The perpetrators’ expertise is another important dimension that one has to

4https://github.com/tum-i22/sip-toolchain

12

1. Introduction

consider in the quantification of the defeatability. In this thesis, due to the lack of access to a
pool of skilled hackers, we set to come up with a metric to rather approximate the difficulty
of bypassing protections. We are interested in ranking combinations of protections based
on the imposed work to disarm entangled protections. To this end, we propose a metric
that approximates an attacker’s effort in terms of the number of required modifications
(patches) for combinations of protections.

1.8. Contributions

C1 We close the G1 gap by proposing a taxonomy for software integrity protection
capturing advantages and disadvantages, constraints, shortcomings, and security
guarantees of different protections (refer to [9]).

C2 To address G2, we benchmark protection techniques w.r.t. security, performance using
datasets of real-world programs (refer to [5, 7, 8]).

C3 We fill the G3 gap by proposing novel protection extensions and combinations (refer
to [5, 7, 22]) to enhance the security and resilience of protections;

C4 Aiming for holistic protection (G4), we propose a generic technique for effective (i.e.,
conflict-free and optimized for better performance) protection composition (refer to
[8]);

C5 To address G5, we propose a quantification methodology to estimate the resilience
of protections (refer to [?]). As part of our methodology we make the following
contributions:

C5.1. Empirically evaluate the stealth of protections against pattern-based, taint-based,
and machine-learning-based attacks; and

C5.2. Propose a metric to estimate the required modification effort from adversaries in
defeating protections;

C6 We open source all the developed SIPs, composition framework, and evaluation
benchmarks to support the reproducibility of results and thereby address G6 (available
at https://github.com/tum-i22/sip-toolchain).

1.9. Assumptions, Limitations, and Scope

Physical and Side Channel Attacks

MATE attackers with physical access to the machines can mount side channels and physical
attacks. These attacks, although very related to the problem at hand, require a whole
different line of defense, i.e., more associated with the field of hardware security. Therefore,
we consider side-channel and physical attacks out of the scope of this thesis.

13

https://github.com/tum-i22/sip-toolchain

1. Introduction

Human Attackers

MATE attackers usually refer to the human attackers. Given attackers’ ingenuity, it is
challenging (if not impossible) to evaluate the resilience of protections against actual human
actors. The difficulty stems from the scarcity of a reliable number of skilled professionals
who are willing to participate in the research. Moreover, a universally accepted basis is
needed to estimate the level of expertise of such participants. We do not have access to such
professionals nor are aware of an agreement to measure attackers’ skills. Therefore, we are
unable to conduct human-oriented experiments. Instead, we resort to automated attacks
based on the literature.

Hardware-Assisted Protection

Due to the unavailability of the trusted hardware in plenty of machines, partitioning prob-
lems, and trusted partitions’ interface vulnerability we focus on software-based protections.
It is worthwhile to emphasize that software-based protections can potentially mitigate
attacks on trusted partitions’ interfaces.

1.10. Structure

Chapter 2 presents a taxonomy for integrity protection techniques. In Chapter 3, we
introduce our enhancements to the Oblivious Hashing protection. Chapter 4 presents
our proposed virtualized self-checksumming protection. In Chapter 5, we present our
protection composition framework. Chapter 6 covers our technique for quantifying the
resilience of protections. We conclude this thesis and discuss future work in Chapter 7.
Appendix A provides brief summaries of selected related work. Besides, in Appendix B,
we cover notes on the reproducibility of the results.

14

2. Taxonomy

After surveying the literature, we analyzed and further classified the reviewed
articles. This chapter presents the outcome of our analysis encompassing a
taxonomy for integrity protection, analysis of various correlations within the
taxonomy, and, finally, identification of gaps in the literature. Parts of this
chapter were previously publishd in a work [9] co-authored by the thesis author.

2.1. Overview

Since the seminal work of Aucsmith [15], a great deal of research effort has been devoted
to fight MATE attacks, and many protection schemes were designed by both academia
and industry. Advances in trusted hardware, such as TPM and Intel SGX, have also
enabled researchers to utilize such technologies for additional protection. Despite the
introduction of various protection schemes, there is no comprehensive comparison study
that points out advantages and disadvantages of different schemes. Constraints of different
schemes and their applicability in various industrial settings have not been studied. More
importantly, except for some partial classifications, to the best of our knowledge, there is
no taxonomy of integrity protection techniques. These limitations have left practitioners
in doubt about effectiveness and applicability of such schemes to their infrastructure. In
this chapter, we propose a taxonomy that captures protection processes by encompassing
system, defense and attack perspectives. Later, we carry out a survey and map reviewed
papers on our taxonomy. Finally, we correlate different dimensions of the taxonomy and
discuss observations along with research gaps in the field.

2.2. Introduction

MATE attackers have direct access to the host on which the program is being executed. In
most cases, there is no limitation whatsoever on what they can control or manipulate on the
host. In effect, a user who installs an application on their machine has all controls over the
computation unit. In this setting, perpetrators can inspect programs’ execution flow and
tamper with anything in program binaries or during runtime, which in turn, enable them
to extract confidential data, subvert critical operations and fiddle with the input or output
data. Cheating in games, defeating license checks, stealing proprietary data, displaying
extra ads in browsers are typical examples of MATE attacks.

15

2. Taxonomy

Attacker goals and motives While there are different goals that MATE attackers may
pursue, we particularly focus on attacks violating software integrity; other attacker goals
are out of our scope.

Reputation, financial gains, sabotage, and terrorism are non-exhaustive motivations for
attackers to target the integrity of software systems. Disabling a license check is a classic
example of MATE attacks in which perpetrators can potentially affect the software vendor’s
revenue, for instance, by publicly releasing a patch for popular software. Adversaries may
harm a company’s reputation by manipulating program behavior, for instance, to show
inappropriate ads. Perpetrators may further target the safety and security of critical systems.
Corresponding consequences of attacks on a nuclear power plant system could be dire.
Akhundzada et al. [10] elaborate on MATE attacker motives in more detail.

Local attacks Local attackers normally have the full privilege on the software system as
well as physical access to the hardware. Such attackers can readily tamper with softwares
at any stage (at rest, in-memory and in-execution). Moreover, they could potentially load a
malicious kernel driver to bypass security mechanisms employed by software. For instance,
[177, 182] present two attacks to defeat protection schemes on a modified Linux kernel.
Physical access to the host has the same effect. It enables attackers to tamper with systems’
hardware and/or configurations. [85] shows that perpetrators can install a malicious
hardware to disclose confidential data.

Remote attacks MATE attackers do not necessarily require physical access to the system
of interest. Many harmful attacks can be carried out remotely. This type of attacks is known
as Remote-Man-At-The-End (RMATE) [59]. In this model, attackers need to either remote
access the target system or deploy their attacks by tricking end-users. For example, Banescu
et al. [19, 22] discuss two RMATE attacks on Google Chromium that were carried out by
deployed malicious payloads into the Google Chromium browser. These payloads (in the
form of plugins) alter the browser’s original behavior to execute malicious activities, e.g.,
showing extra adds or collecting user information.

Intruders are another type of attackers that are very similar to RMATE attackers. Intruders
penetrate software systems normally through their public interfaces (e.g., websites) to find
vulnerabilities. A successful exploit may enable them to tamper with the system’s integrity,
e.g., by materializing a buffer overflow or SQL injections. While RMATE attacks have much
in common with intruders, the main difference lies in the access privilege that RMATE
attackers posses before and to manifest their attacks. Simply put, RMATE attacks exclude
exploiting vulnerabilities and hence starts by a granted access to the host or a program that
it contains. Nevertheless, an intruder (after successfully compromising the security) can
carry out RMATE attacks. Therefore, the borderline between the two is blurry.

Further attack types Another realization of MATE attacks is through repackaged soft-
ware [128]. In this attack, perpetrators obtain software bundles (normally popular ones) and

16

2. Taxonomy

modify them with malicious codes to create counterfeit versions. Later, this repackaged
software is shipped to software hubs to be installed by victims. Since malicious operations
are normally dormant, counterfeit software appears to be the same as the original ones to
end-users. That is, they can remain on user devices for a while and eventually harm their
assets, for instance, by deleting user files after three hours of program usage. Nevertheless,
attackers first need to get users to install repackaged software. However, it does not seem to
be an obstacle for attackers: a recent study has shown that 77% of the popular applications
available on Google play store, a trusted software repository for Android application, have
repackaged versions [129].

Targeted malware is another form of MATE attacks in which sophisticated malware is
designed to violate a particular system’s integrity. Stuxnet [109] is a malware that manipu-
lated programmable logic controllers’ code, causing severe damage to the Iranian nuclear
program. ProjectSauron [110] is another example of targeted malware where governmental
sensitive information was covertly collected and subsequently transmitted to the attacker’s
server.

In light of these threats, researching, developing, and deploying protection mechanisms
against MATE attackers is of paramount importance. In particular, the integrity of software
demands protection.

Approaches to protect software integrity Generally, integrity protection refers to mecha-
nisms that protect the logic and data of particular software. Integrity protection is a part
of the Software Protection field, which is also known as tamperproofing. Collberg defines
tamper-proofing as “[a way] to ensure that [a program] executes as intended, even in the
presence of an adversary who tries to disrupt, monitor, or change the execution” [58].

At a high level, integrity protection techniques are comprised of two main mechanisms:
monitor and response. The monitor mechanism detects inconsistencies by monitoring
the system’s invariants at a particular representation. The response mechanism engages
upon noticing divergence form the known good state of the system and reacts in a way
punishing to the attacker [61]. In the case of repackaged software and RMATE attacks, these
reactions will be limited to terminating the process, informing users about the violation of
integrity or notifying a home server (phoning home).

Unlike cryptographic protocols, protection schemes against MATE fail to provide hard
security guarantees, e.g., by the difficulty of solving a a computationally complex problem
such as the discrete logarithm in a secure multiplicative group [148]. Dedic et al. [72] argue
that there is no tamper-resistant method that resists against polynomial-time adversaries.
It means all the protection schemes, given enough time and resources, are eventually
defeated by attackers. However, protection schemes can raise the bar against perpetrators
by increasing the cost and effort needed to violate system integrity. The introduced cost and
effort are often sufficient to mitigate RMATE, repackaged software, or targeted malware.
However, we are not aware of any studies that qualify protection resilience thoroughly.

Tamperproofing is commonly used in combination with obfuscation [66] software pro-

17

2. Taxonomy

tection technique. Obfuscation aims to reduce the understandability of adversaries by
complicating programs. In contrast to tamperproofing, obfuscation remains unaware of the
program modifications. Moreover, tamperproofing can detect the occurrence of tampering
attacks and respond to such attacks in a way punishing to actors [61].

Advances in hardware security have positively impacted integrity protection research.
Trusted Platform Module (TPM) (https://trustedcomputinggroup.org/) is an ap-
proach in which software protection meets hardware security [137, 140]. TPM is a tamper-
resilient micro-controller designed to carry out securely sensitive operations, such as secure
boot, encryption, attestation, random number generation, etc.

Recently, Intel has also been working on secure hardware modules. Their Software Guard
Extensions (SGX), introduced in 2015, are finding their way in academic research [26].

Gap Despite a multitude of protection schemes that mitigate certain attacks on different
system assets, we are not aware of a comprehensive study that compares the advantages and
disadvantages of these schemes. No holistic study was done to measure the completeness
and effectiveness of such schemes. How these schemes operate and what components they
are comprised of not identified nor plotted in context.

Current classifications lack the level of detail required to evaluate and select schemes
by practitioners. We are not aware of any classification beyond what was proposed by
Collberg et al. [61, Chapter 7]. In effect, classifications were done only at an abstract level,
i.e., monitor and response mechanisms. While integrity protection schemes comprise far
more components and impact various parts of the system, they introduce unique constraints
that may become completely inapplicable in certain application contexts. These limitations
have left practitioners in doubt about the effectiveness and applicability of such schemes to
their infrastructure.

Contribution We propose a taxonomy encompassing system, defense, and attack views
and extract relevant criteria in each view. These three views aim at capturing a holistic
view of protection mechanisms. The system view captures the components of interest of
the system to protect. The defense view elaborates on the characteristics of the defense
mechanism. The attack view draws the attacker model and resilience of the schemes to
certain attacks.

We evaluate our taxonomy by mapping over 54 reviewed research papers and discuss
their advantages and disadvantages. We further correlate different dimensions of our
taxonomy and discuss insightful observations concerning security, resilience, performance,
applicability, and usage constraints in practice.

2.3. Proposed Taxonomy

Current classifications of integrity protection techniques lack a level of the detail that is
required by practitioners to evaluate and select schemes. To the best of our knowledge,

18

https://trustedcomputinggroup.org/

2. Taxonomy

the existing classifications remain abstract, i.e., merely describing monitor and response
mechanisms. However, integrity protection schemes comprise far more components and
impact various parts of the system. For example, they may introduce unique constraints
which make them inapplicable in certain application contexts. Such limitations have left
practitioners in doubt about the effectiveness and applicability of integrity protection
schemes to their infrastructure.

This section proposes a taxonomy for software integrity protection techniques that pro-
vide a holistic classification and thereby facilitates the usage of protection schemes in
different contexts. We build the taxonomy based on the protection process that a user
follows when striving to protect a program’s integrity. This process starts with identify-
ing system assets and continues with the identification of possible attacks and defense
mechanisms.

As a consequence, our taxonomy is comprised of three dimensions: (i) a system view, (ii)
an attack view and (iii) a defense view. The system view describes the system as a whole and
the encapsulated assets, granularity, and representations in different program life-cycles. It
is the integrity of the assets that ought to be protected. Examples include license checkers
and, in our DRM example scenario, data providers. The attack view captures actions that
perpetrators may carry out to undermine the integrity of the assets above. For example,
Figure 1.2 showed that tampering with the logic of license checker could harm system
assets. Finally, the defense view encompasses mechanisms to prevent or detect attacks
on different representations of the assets. For instance, we can utilize logic protection
measures to mitigate the risk of tampering attacks on license checker. Unlike attacks,
defense mechanisms may have implications on the system life-cycle since they may alter a
system in various ways, e.g., performance, integration, and incident handling.

In building the taxonomy, we noticed strong dependencies between the elements within
and across the three dimensions. Because such relations are widely captured using class
diagrams [37, 103], we make use of UML class diagrams [153] to model and depict such
relations. Concretely, our model uses association, inheritance, aggregation and composition
relations with the same meaning as defined in the UML specification. Association indicates
two elements are related. Simply put, one can access an attribute or a method of the other.
Aggregation depicts the part-of relationship between two elements. Inheritance expresses
specialization of a particular element, while composition represents the set of elements that
compose a specific piece. In the following, we first introduce the taxonomy along with a few
examples. Then, we discuss the dependencies between different views. Later, Section 2.4
maps related literature to the classified attack and defense mechanisms.

2.3.1. System

The system dimension captures the characteristics of the system to be protected. This dimen-
sion is comprised of asset, lifecycle activity, representation and granularity
main classes along with some more specific subclasses for each class. In the following, we
first describe these main classes, their relation and then elaborate on each of them and their

19

2. Taxonomy

subclasses. Figure 2.1 presents the system view of the taxonomy.
Asset is the core class of this view as it captures the elements whose integrity need to

be protected against attacks. In our taxonomy, assets include behavior and data the
tampering of which may harm system users or software producers. Tampering with the
license checking behavior and manipulating usage count variables data (number of views
and expiry date) in the sample DRM are examples of behavior and data assets, respectively.
Lifecycle activities capture the different stages that a program undergoes in its

lifecycle. Depending on the stage of a program, assets have different representations.
Simply put, assets are exposed and presented in different representations from program
source code all the way to the program code pages in the main memory. Each of these
stages have access to different representation of the assets, however. That is, particular asset
representations are only available in particular lifecycle activities.

An asset can have various granularities. Granularities correspond to different ab-
straction levels, e.g. a license check may correspond to a source code C function along with
its set of statements, or, more fine-grained, a basic block within one function.

1. Integrity assets include valuable data or sensitive behavior(s) of the system, tampering
with which renders the system’s security defeated.

a) Data refers to any sensitive information that is produced or processed by the
application. Application input, configuration and database files are examples
of such data assets. For instance, in the sample DRM, usage count variables are
data assets.

b) Behavior is the effect of program execution. Similar to tampering with data,
subverting an application’s behavior (logic) can have obnoxious consequences.
For instance, in the sample DRM, stream viewing decrypted fragments as well
as license checking are behavioral assets.

2. Representation. Assets can have multiple representations, viz. static, in-memory and
in-execution, depending on the program state from start to finish.

a) Static captures assets when they are at rest, i.e. stored on disk. These assets
representations are accessible via the file system.

b) In-memory represents assets in memory, i.e. RAM or virtual memory. Process
memory captures this representation which includes code and data invariants of
processes.

c) In-execution captures tangible effects of assets during execution. Trace and
hardware counters are subclasses of the in-execution representation. Meanwhile,
trace has a subclass that comes with timing data, i.e. timed trace.

3. Granularity. Assets have different scales and levels of detail that vary from an in-
struction to the entire application. For example, a license check is usually represented
as a function whereas control flow integrity depends on a large set of branching
instructions in the application.

20

2. Taxonomy

Asset

Lifecycle activity

Representation

Granularity

Data

Behaviour

Precompile

Compile

Link

Load

Run

Static

In-memory

In-execution

Instruction

Basic block

Function

Application

Code inv.

Data inv.

HW counters

Trace Timed trace

Slice

Figure 2.1.: System view dimension of the taxonomy depicting the system main classes as
well as subclasses and their relations.

a) Instruction. A single instruction is evaluated as security critical.

b) Basic block (BB). A set of consecutive instructions with exactly one entry point
and one exit point.

c) Slice. A set of consequential instructions scattered in a program, e.g. the branch-
ing instructions that dictate the control flow of a program.

d) Function. A complete function, e.g. licenceCheck(), is the goal of protection.

e) Application. The entire application or library is supposed to be protected, i.e.
the entire program is security critical. For instance, a power plants controller
application is in its entirety sensitive.

4. Lifecycle. The lifecycle indicates a series of different states that each program under-
goes from development all the way to execution, viz. pre-compile, compile, post-compile,
link, load and run. Every program has to go through these activities strictly in the
mentioned order in order to eventually get executed. However, if a program is not

21

2. Taxonomy

developed in-house, i.e. source codes are not at hand, the first two activities (pre-
compile and compile) are out of reach on the protector side, as these activities require
access to source codes.

As depicted in the system view (Figure 2.1) by association links, the first four states
(pre-compile, compile, post-compile and link) deal with the static representation of
the assets. The last two states (load and run) are concerned with both the in-memory
and in-execution representations. In the following we describe these states:

a) Pre-compile. This is the state in which a program’s artifact, which are repre-
sented statically, e.g. in the form of application source code and other bindings
such as testing, database and setup scripts, etc, are delivered. Source-level
transformations could be triggered at this stage to add protection routines.

b) Compile. In this stage, a compiler transforms the program’s (static) source
code into the targeted machine code. It runs several passes starting from lexical
analysis and finishing with binary generation. Additional protection passes can
be integrated into the compiler pipeline.

c) Post-compile. After compilation, static program artifacts are transformed into
executable binaries or libraries. Since the source code is no longer available in
this phase, protection schemes operating at this level have to utilize disassem-
bler tools to recover a representation (normally in assembly language) of the
application on which they could carry out protection transformations.

d) Link. Refers to the state in which a linker obtains a set of static compiler-
generated artifacts, combines them into a single binary and relocates address
layout accordingly. Protections in this phase not only could carry out transfor-
mation on the program and all its (static) dependencies, but can also mediate
(and potentially secure) the process of binary combination and address space
management.

e) Load. This is the stage in which the loader (i.e. provided by OS) loads a previ-
ously combined executable into the memory, resolves dynamic dependencies
and finally carries out the required address relocations. Unlike the previous
states, this state deals with both the in-memory and in-execution representations
of assets. More importantly, it is visited every time a program is subject to execu-
tion. Therefore, load time protection transformations can turn protection into
a running target to render attacker’s previous knowledge about the protection
irrelevant. Loader transformations, apart from being executed on every program
start, can also verify (and potentially protect) dynamically linked dependencies.

f) Run. This stage begins as soon as the loader triggers the program’s entry point
instructions and lasts until the program is terminated. Run also operates at the
in-memory and in-execution representations of the assets. Moreover, the run

0Except for dynamic dependencies.

22

2. Taxonomy

Disassembler

Discovery AttackReverse engineeringTools Attacker

Debugger Tracer Emulator
Binary

patching
Proc. mem.

patching
Runtime data
manipulation

Call
interposition

Control flow
hijacking

Pattern
matching

Taint analysis
Graph-based

analysis
Symbolic
execution

No root

Figure 2.2.: Attack view dimension of the taxonomy showing the attack main classes, sub-
classes and relations.

state can constantly mutate a program to alter off-board or on-board protections.
Although at runtime dynamic dependencies are already resolved, still a pro-
tection mechanism can authenticate the loaded dependencies and decide upon
unloading or reloading them.

The system view captures critical elements along with their various representation in
the system that attacker have interest in undermining their integrity. Both the attack
and defense views are applied on a system and hence the system view is the base of the
taxonomy. In the following, we first elaborate on the attack view aiming for identifying
potential threats and techniques to violate system integrity assets. Later on we discuss the
defense view that provides means to mitigate or raise the bar against identified threats
(from the attack view) and common attack tools.

2.3.2. Attack

The attack dimension expands over the attacker view, encompassing high-level attacks,
tools and their relation to other dimensions of the taxonomy, viz. system view and defense
view. As depicted in Figure 2.2, the attack view is comprised of the Attacker, Reverse
engineering, Tools, Discovery and Attack main classes. Attacker represent the
perpetrator whose goal is to harm system assets by violating system integrity. To do so,
attackers use reverse engineering techniques. Reverse engineering is a process in which an
attacker utilizes (offensive) tools to discover assets and possibly protection mechanisms.
The process normally ends with manifestation of a concrete attack that harms system
integrity after defeating protection measures (if any).

In the following, we discuss each main class of the attack view in more details along with
their subclasses.

23

2. Taxonomy

1. Reverse engineering (RE). RE is located at the heart of the attack view. It encompasses
attack, attacker, discovery and tools. RE aims at harming system assets.

2. Attack. Tampering attacks themselves can have multiple forms (inheritance) based
on which representation of the assets they are applied to. Attacks are carried out on a
representation of the assets, thus there is a dependency between attacks and system
representations. In the following, we elaborate on different attacks on different asset
representations.

a) Binary patching. A successful exploit at the file system level can tamper with
the static representation of the assets.

b) Process memory patching. An exploit at the program level or OS level may
enable attackers to directly tamper with the process memory.

c) Runtime data manipulation. Similar to memory patching, program or OS level
compromises can enable an attacker to tamper with the program’s dynamic data
that includes the input to a program, the produced output by a program. The
runtime data is allocated in system stack and heap.

d) Call interposition. Once a system is compromised, attackers may, for instance,
intercept system calls to inject malicious behavior. Call interpositions are out of
the scope of software protection, they rather fall under infrastructure security.
For this reason, we did not include them in our paper survey. But we still believe
it is a potential threat to software integrity and hence should be listed in the
taxonomy.

e) Control flow hijacking. Calls and branches define the execution flow of the
program. Attackers target the program control flow in a wide range of attacks
(e.g. return-oriented programming [162] and buffer overflows).

3. Discovery. In order for attackers to violate the integrity of a protected system they
need to identify assets or protection routines in a given representation of a program.
We name this phase the discovery phase. This implies a relation between the system
representation and discovery.

Banescu et. al [20] formulated attacks as search problems (e.g. identifying protection
guards in the application can be formulated as a search problem). To the best of our
knowledge, no study has addressed the difficulty of discovering protection techniques.
In our survey, however, we found four techniques that are commonly referred in the lit-
erature, viz. pattern matching, taint analysis, graph based analysis
and finally symbolic execution. Therefore, we resort to these four common
approaches in discovering protection measures.

a) Pattern matching. Manually analyzing a large and complex program is labor
and resource intensive. Therefore, normally attackers try to identify and defeat
protection mechanism by employing automated attacks based on pattern match-
ing, using for example grep. Pattern matching is not limited to search for strings,

24

2. Taxonomy

it also can search for properties of an artifact (e.g., entropy). Such attacks are
plausible if and when an application commits to the usage of a recognizable
pattern in their protection. Note that pattern matching can be applied on all
representations.

b) Taint analysis. Tainting analysis is a technique in which the influence of a
particular input on program instructions can be examined. This tool can facilitate
the detection of protection routines for perpetrators. For instance, taint analysis
can help attackers to find the connection between check and response functions
by following the influence of check variables on response instructions [150].

c) Graph based analysis. A protected program can be represented as a graph in
which basic blocks are the graph nodes and jumps express edges. Dedic et al. in
[72] argue that in most cases protection nodes are weakly connected as opposed
to the other nodes and hence easier to detect.

d) Symbolic execution. Enables adversaries to see which inputs to the program
triggers the execution of which part of the program. Since the program is
actually being executed to discover execution paths, nothing can remain unseen
for symbolic execution engines as long as the constrain solver is successful. This
unique feature of symbolic execution can enable attackers to visit all hidden
(obfuscated/encrypted/dynamically loaded or generated) instructions of the
protection scheme.

4. Tools. An attacker can utilize a set of tools to support reverse engineering activity, e.g.
to carry out attacks or to identify assets or defense measures in place. To the best of
our knowledge, the resilience of different schemes against reverse engineering tools
has not been studied. Therefore, in our taxonomy we made a set of assumptions to
decide whether to mark a scheme resilient against a particular tool or not. We will
discuss these assumptions with substantial details in Section 2.5.7. In the following
we discuss some generic tools that reverse engineers normally use.

a) Disassembler. An attacker may utilizes dissembler to disassemble a binary
potentially to analyze the protection logic.

b) Debugger. Another tool that enables the attacker to monitor the execution of a
program in a slow paced sequential manner. In this attack, debugger can access
or alter any runtime data.

c) Tracer. Analyzing program’s execution traces could potentially reveal protection
mechanism. This becomes more useful when a program employs obfuscation/en-
cryption to hide its logic. However, the traces can reveal the executed instruction
(after decryption and de-obfuscation). In this event, attackers may employ more
intelligent analysis to defeat a stealthy protection.

d) Emulator. Attackers can employ emulators to study program execution in a lab
manner. All system calls and executed instruction can be closely monitored and

25

2. Taxonomy

thus deepen the knowledge of the program internals. With the help of snapshots,
steps could be reversed to recover from faulty states, which in turn facilitates the
attack.

5. Attacker. The actor who carries out disrupting actions to violate the integrity of
the system is the attacker. When classifying attackers, distinguishing RMATE and
MATE attackers, although appealing, is out of reach. The reason being that the two
have very much in common, the main difference is the physical access that MATE
attackers possess. Therefore, we classify our attackers to two groups: attackers with
root privileges and attackers without root privileges. This is indicated with no root title
(corresponding to attackers without root accesses) in our taxonomy in Table 2.2.

The attack view captures potential threats along with the tools and techniques that
attackers can use to violate system integrity. The same attacks could be used by adversaries
to circumvent or even defeat protection mechanisms as well. Therefore, in order for defense
mechanisms to be effective, it is crucial that they resist against attacks and tools.

2.3.3. Defense

This dimension can be seen as the bridge between the system and attack dimensions. It
serves as the core of the taxonomy by capturing the activities in which system assets are
protected using a set of measures against potential threats. As can be seen in Figure 2.3,
the defense dimension is comprised of four main classes: measure, protection level,
trust anchor and overhead.

The measure refers to a method that is employed to mitigate integrity attacks on programs.
Protection level indicates the level of abstraction at which protection is employed.

Trust anchor specifies whether the measure relies on any root of trust, e.g. trusted
hardware, or not. Finally, the overhead reports on the performance impact of a measure on
the system.

1. Measure. A protection measure is the foundation of the protection activity. It can be
done either completely locally (i.e. a program verifies its own integrity) or remotely
(i.e. a trusted party remotely attests integrity). The inheritance relation between the
measure, local and remote verification stands for this matter. Each measure itself is com-
posed of five distinctive actions: transform, monitor, check, response and harden. These
classes, although pursuing different objectives, contribute in protection a program. In
the following, we describe the role of each action in the protection process.

a) Transform. This action applies transformations on representations of assets. As
mentioned earlier, these transformations can be carried out at different program
lifecycle depending on the targeted representation and the artifact at hand. This
indicates a link between the transform and lifecycle activity.

26

2. Taxonomy

Measure

Trust anchor Protection levelOverhead

Monitor Response Transformation Check Hardening Cyclic checks

Mutation

Code
concealment

Cloning

Layered
interpretation

Hash chain

Local

Remote

Hypervisor
External

proc.
Self-checkFair Medium High N/A TPM SGX OtherSoftware

State
inspection

Introspection

Proactive Reactive

Manual Automatic

Checksum Signature Equation
Majority

vote
Access
control

Dongle

Figure 2.3.: Defense view capturing the main classes, subclasses and relations of the defense
dimension.

b) Monitor. This component can actively inspect different representations of the
system assets. Obviously, this component has to have a access to the system,
otherwise it cannot audit anything. Hence, there is a tight binding between
monitoring and representation. For monitoring system representations there are
two approaches that are widely used in the literature, viz. introspection and
state inspection.

i. Introspection monitors a set of static invariant properties of a program, e.g.
code blocks, to detect tampering attacks.

ii. State inspection monitors the result/effect of the execution of a program,
e.g. function return values, to reason about its integrity.

c) Check. This component provides a mean to reason about the collected data by
the monitor element, and decide whether assets are compromised or not. The
output of this component, based on the employed technique, could be a binary
(Yes/No) or accompanied with a confidence number. In the following we discuss
the checking mechanisms that are commonly used in protection schemes.

i. Checksum. We classify any mathematical operation that converts large block
of data into compact values, which is ideal for comparisons, as checksum
based techniques. CRC32 and hash functions fall under this category of
checking mechanism.

27

2. Taxonomy

ii. Signature. This refers to a cryptographic protocol for integrity verification
by means of verifying the digital signature of artifacts.

iii. Equation. The result of a mathematical equation evaluation (with program
runtime features) defines whether program integrity was violated or not.

iv. Majority vote. A set of functionally equivalent components disjointly carry
out a computation and then collectively decide upon the integrity of the
outcome.

v. Access control. A policy enforcement point beyond the control of the pro-
gram and (possibly) attacker mediates the access to the critical resources.

d) Response. Based on the check component’s decision, the response component
reacts in a punishing way to attackers. This reaction could vary from process
termination, performance degradation, or even attempting to recover compro-
mised assets. Technically speaking, there are two classes of response mechanism:
proactive and reactive.

i. Proactive. Schemes utilizing this class of response act intrusively. That is,
upon the report of integrity violating, immediate actions are taken to prevent
attacks.

ii. Reactive. In some cases less intrusive and stealthier responses are desirable.
In this model of schemes, the detection of integrity violation does not result
in obvious reactions such as program terminations. A reactive response may,
for instance, silently report on the violation without making the attacker or
user realize.

e) Harden. Since the measure itself can be subject to attacks, a consolidation
technique is employed by the measure. For example a simple routine (say
monitor()) that is solely responsible for auditing program state can easily get
manipulated by an attacker. The same goes for response mechanisms. An open
termination of the program as a response to tampers only adds a weak security.

Thus, it is crucial to add strength to protection measure using hardening tech-
niques. Hardening aims to impede discovery process and thus raises the bar
against attacks. This directly relates to the discovery and attack activities in the
attacker view.

The hardening can be seen as adding a hard problem for the attacker to solve.
This does not necessarily have to be a np − complete problem, in some cases
even a quadratic one will cause enough trouble for attackers and exhausts their
resources, specially when the attacker is forced to manually solve the problem.
For instance when an automated pattern matching fails to defeat the mechanism,
attackers are doomed to manually analyze a large portion of the code, which, in
turn, presumably deteriorates their success rates. In our literature review, we

28

2. Taxonomy

have identified six different hardening techniques that are commonly used by
integrity protection measures. We discuss these techniques as follows.

i. Cyclic checks. In this model, protection is strengthened by using a network
of overlapping protection nodes. Therefore, a particular asset (representa-
tion) may get inspected by more than one checker. In some variation of the
cyclic checks, the checkers themselves are also protected by the very same
mean.

ii. Mutation. Defeating a protection technique normally is the result of a
process in which an attacker first has to acquire necessary knowledge about
the scheme and its hardening problem, and then, utilizing the knowledge
to break the protection. To this end, mutation techniques try to render
attacker’s prior knowledge irrelevant by frequently evolving the protection
scheme.

iii. Code concealment. In scheme analysis, attackers often start with the pro-
gram’s binary code and base their studies on it. Code concealment tries to
impede this process by concealing a particular representation of the code.
Nonetheless, program instructions have to get translated into legitimate
machine code right before the execution. The later this translation occurs,
the more an attacker is troubled. Some approaches tend to flush translated
instructions after execution, such that, at no point in time, the attacker gets
a chance to glance over to the entire application code at once. Program
obfuscation and encryption are examples of this technique.

iv. Cloning. Multiple copies of sensitive parts are shipped in the application
and at runtime a random predicate defines which clone shall be executed.
This enables the protection scheme to remain partially functional even after
successful attacks. In Section 2.5.8 we will discuss this measure in the context
of concrete attacks.

v. Layered Interpretation. To utilize layered protection a program have to
be run within an emulator or a virtual machine. Some schemes entirely
virtualized the target application, while others virtualize some parts of the
application. This technique enables employment of protection measures
at a higher level of abstraction. Since programs has to be run by the host
(hypervisor/emulator), they can be verified before execution and executed
only if they pass the verifications.

vi. Hash Chain. Evolving keys and hash chain assures past events cannot
be forged or forgotten. This technique is widely utilized to maintain an
unforgeable evidence of the system state.

2. Trust anchor. In an abstract sense, this criterion specifies whether the scheme is
entirely implemented in software or it is assisted by a trusted hardware module.

29

2. Taxonomy

Hardware based approaches are generally assumed to be harder and more costly
to circumvent, due to the required equipments and knowledge at the attacker end.
On the other hand, hardware based schemes add more cost, to acquire the required
modules, for each client. In the following we discuss different trust anchors.

a) Software. Indicates that the scheme security is purely based on software harden-
ing mechanisms without any trusted hardware whatsoever.

b) Dongle. Refers to hardware keys that could be used to store small chunks of
data (e.g. keys) or program with more resilience against tampering attacks. None
of the reviewed schemes in our survey utilizes dongles. Thus, we exclude it from
our further classifications. However, according to [147] dongles are popular in
practice.

c) TPM. Trusted platform module is a quite mature hardware chip that is used by
plenty of hardware assisted integrity protection schemes.

d) SGX. Intel Software guard extension (SGX) offers dynamic process isolation to
mitigate runtime integrity attacks.

e) Other. An indicator for reliance on hardware modules other than the explicitly
stated ones.

3. Protection level. Indicates the enforcement of a protection scheme. It can happen
(stated with inheritance relation) in three different abstraction levels:

a) Self check. This level is also known as internal protection in which a protection
scheme is integrated into the program to be protected. Simply put, this process
is in charge of carrying out its own integrity verifications and further decisions
about how to react to compromises. Applying this technique to a distributed
architecture adds more resilience. Mainly because the protection schemes react
disjointly, a single point of failure is prevented. On the negative side, however,
all the decisions are solely based on the state of the program-to-protect, thereby
these decisions may lack contextual information.

b) External process. A dedicated process, Integrity Protection Process (IPP), moni-
tors protected programs and responds accordingly. Unlike self-check approaches,
IPP can combine multiple sources of contextual information to improve reason-
ing and thus responses. Also, it enables a mean for high level policy enforcement.
These features, in turn, enhance both security and usability of a protection mea-
sure. However, there are two drawbacks in this model: a) it is challenging to
capture the actual state of the programs via an external process, e.g. a malicious
program can forge good states for IPP, and b) granted the high permission level
of IPP, it can become a critical component to attack; single points of failure.

c) Hypervisor. Protection is a part of a hypervisor logic. This entails that all
processes are being virtualized and executed on top of the security hypervisor.
The current state of the industry highly advocates this model. The hypervisor,

30

2. Taxonomy

in contrast to external process, does not have the problem of state forgery, as it
(in theory) can capture all stealthy actions. Nevertheless, the problem of single
point of failure remains as a concern.

4. Overhead. Performance overhead is an important aspect of integrity protection
schemes. Practitioners indeed need an estimation of the overhead on their services.
However, a great deal of the protection schemes have not been throughly evaluated,
so performance bounds are unknown. We classified performance bounds into four
classes as follows.

a) Fair(0 < overhead < 100%).

b) Medium(101% < overhead < 200%).

c) High(overhead > 201%).

d) N/A. This class represents schemes with lack of experiment results or unjustifi-
able numbers due to limited experiments.

The defense view elaborates on techniques to protect integrity against attacks along
with implications of such protections on system. Hence defense acts as a bridge between
system and attack views. Moreover, defense view can be seen as a classification for integrity
protection techniques, which can facilitate scheme selection by users.

2.3.4. View dependencies

Previously, we discussed all the three views of the taxonomy, their classes and dependencies
in each view. In this section we provide an overview of the dependencies between the
classes from different views. The high-level overview of these dependencies is depicted in
Figure 2.4.

In the system view (in the middle), an association between the representation and asset
(”Contains”) expresses the fact that system assets are exposed in different representations.

In the attacker view (on the right), the support of the tools in the whole process of
reverse engineering is expressed by the link between the tools and reverse engineering
(the ”Supports” link). Attackers are the actor to execute an attack, this is also highlighted
by an association between attacker and attack. The asset identification, which is the first
objective of attackers, is depicted in form of the association between the discovery and
representation classes (the ”Identifies assets” association). The second objective of attackers,
after identifying assets, is to tamper with the representation of interest. This is captured by
the link between the attack and representation (captioned with ”Tampers with”).

The defense view (on the left) abstractly captures the defense process. A protection
measure may rely on a trust anchor for additional strength, which is shown with the link
captioned with ”Strengthens”. In order to enable protection, a measure needs to transform a
representation of the system in one (or more) of the life cycle activities. This is illustrated by
the association between the measure and life cycle activity (”Transforms”). Once a protection

31

2. Taxonomy

Asset

Lifecycle activity

Representation

Granularity

Measure

Discovery

AttackTrust anchor

Identifies
asset

Transforms

Protection level

Reverse engineering

Tools

Attacker

Overhead
Monitors

Impedes

Strengthens

Affects

Tampers with

Identifies

Support

Tampers with

Executes

Contains

Mitigates
 or raises the bar

Figure 2.4.: The high-level overview of the taxonomy showing the main classes of the
defense, system and attack views along with their relations.

measure is in place, one (or multiple) representation of a system is actively or passively
monitored, the ”Monitors” association between the measure and representation shows this
relation. Protection measures could potentially affect system performance and introduce
overheads, which is shown with the ”affects” link between the overhead and life cycle
activity. Protection measures based on their hardening measure and response mechanism
impede asset discovery and mitigate or raise the bar against attacks. The ”Impedes” link
from the measure to discovery (in the attack view) and ”Mitigates or raises the bar” between
the measure and attack depict these two interrelations. However, protection measure is not
the end of the game for attackers. They can target the protection mechanism itself, discover
its logic and disable its protection. The ”Identifies” link between the discovery and measure
as well as ”Tampers with” between the attack and measure captures this matter.

In this context, the resilience of protections can be approximated by two means: i)
the degree to which defenses impede discovery (localization) attacks (mainly through
obfuscations), and ii) the difficulty of overcoming protections on adversaries. Later in this
thesis, we propose two metrics to approximate the resilience as a conjecture of localizability
and defeatability in Chapter 6.

At this point we have covered all the three views of the taxonomy and their interrelations.
For a complete view, Table 2.1 depicts the entire taxonomy. To support readability, for each
element of the taxonomy we give an example in the context of sample DRM system. All

32

2. Taxonomy

the examples relate to the DRM system and thus we avoid repeating the context in each
example.

2.4. Applying the proposed taxonomy

We conducted a survey on integrity protection and tamper resistant techniques for software
systems. This by no means is exhaustive, but we believe it serves as a representative of
different techniques in the literature. Table 2.2 demonstrates the mapped literature on the
proposed taxonomy.

Since there is no single research work that analyzes the resilience of protection schemes
against MATE tools and discovery methods, we were not able to directly map the reviewed
works to these criteria (in the attack dimension). To address this limitation, in the Sec-
tions 2.5.7 and 2.5.8 we reason about schemes’ resilience based on their hardening methods.
This enables us to first understand the role of hardening measures in the resilience of
schemes and subsequently to complete the mapping. The space limitation hinders detailed
discussion of the reviewed schemes. Instead, in the next section we correlate various aspects
of the reviewed literature and discuss our findings.

2.5. Observation and Analysis

As part of our analysis we correlate interesting elements in the taxonomy from different
views and discuss our findings. These correlations are those that we particularly find
interesting for practitioners.

However, there are far more possible correlations that one can carry out. To address this
concern, we published a web-based tool that enables end users to correlate any arbitrary pair
of elements from different dimensions. The tool is accessible at http://www22.in.tum.
de/tools/integrity-taxonomy/. In the following we report on the dependencies of
the taxonomy dimensions.

2.5.1. Asset protection in different representations

We defined integrity as a property of software that applies to both data and behavior. From
the user perspective, it is a daunting task to find protection schemes that protect data
and/or logic at a particular representation.

Signature verification is one of the techniques that users commonly utilize to protect
integrity. The static signature verification is natively supported by almost all operating
systems. These schemes are rather a non-preventive security measure to protect users, but
not softwares. Clearly, this does not match the MATE attacker model, where the user is also
the attacker.

Besides, these techniques have two shortcomings: (i) their security relies on operating
system settings, which could be easily manipulated, and (ii) they suffer from the Time

33

http://www22.in.tum.de/tools/integrity-taxonomy/
http://www22.in.tum.de/tools/integrity-taxonomy/

2. Taxonomy

Table 2.1.: Software integrity protection taxonomy along with examples in the context of
the sample DRM.

Sy
st

em
vi

ew

A
ss

et
s Behavior There are some sensitive logics that need to be integrity protected, e.g. license checker routine and stream viewer

Data Usage variables need to be protected against manipulation attacks. Otherwise, attackers can readily circumvent the
usage policies

D&B The usage variables and any routine that has deals with these variables, in this case content provider, need to be
protected

R
ep

re
se

nt
at

io
n

Static Malware or attacker may tamper with the DRM binaries to carry out their attacks

M
em

. Code invar. The static shape of the license checker code blocks in the memory is a target to attack for attackers
Data invar. Usage count variables in memory are the targets of tampering attacks

Ex
e.

Trace Tampering attacks causes identifiable changes in the program traces. For instance, dumping decrypted fragments
in the stream viewer introduces additional calls in the trace

Timed trace Tampering with program routine will alter the program response time. For instance disabling license check routine
by simply returning true could introduce new timing bounds

HW counters Hardware performance counters capture some technical details about the executing routine, such as number of
branches, indirect calls and etc. Tampering with the license checker inevitably affects these numbers.

G
ra

nu
la

ri
ty

Instructions All the individual instructions that access clientprivate key need to be protected
BB The basic block in which license checking takes place need to be protected
Function The licenseChecker() and getExpiryDate() methods need to be protected
Slice The chain of instructions that read from or write to the usage count variables need to be protected
Application The entire stream viewer component (application) need to be protected

Li
fe

cy
cl

e
a.

Pre-compile License checker and data provider can be protected at the source code level
Compile License checker and data provider can be protected at the compiler level
Post-compile Stream viewer can only be protected in a post-compile process, because it is an external library
Load Every time the license checker is loaded in the memory a (new) protection is applied
Run The license checker routine is updated on the fly (during execution)

A
tt

ac
k

vi
ew

R
ev

er
se

en
gi

ne
er

in
g

To
ol

s

Disassembly Attackers may disassemble the DRM client to understand the logic
Debugger Attackers could inspect the license checking control flow using a debugger

Tracer Attackers could deepen their knowledge about the fragmented decryption in the stream viewer by dumping a
trace of the program

Emulator An emulator could be utilized to facilitate program analysis

D
is

co
ve

ry

Taint analysis Attacker can use tainting analysis to detect the checks that enforce usage policies
Sym. exec. Symbolic execution could be utilized to find instances of usage variables for which the program delivers the

protected contents
Memory split Attackers could execute memory split attack to defeat self-checksumming based protections
Patt. Match. Attackers could use pattern matching to detect license checks, protection routines and usage policy enforcement

points

A
tt

ac
k

Binary Attackers can tamper with the program executables at rest
Proc. mem. Attackers could leverge in-memory patching to carry out their attacks
Run. data Program input and output data is under control of the attackers.
Ctrl flow Attackers can subvert program control flow to for instance decrypt content without license check

D
ef

en
se

vi
ew

M
ea

s. Local The DRM client is fully in charge of the integrity protection
Remote Security state of the DRM client is to be reported to the main server

M
on

. State inspection Monitor and check the results of the program execution
Introspection Read code pages of the license checker compare it to a known value

R
es

p.

Proactive Any detected attack raises the alarm and a delayed or an immediate punishing response is triggered
Reactive All accesses to the protected content (genuine or forged) is permitted, however, the server is notified about the

violation of the usage policies in a postmortem verification. Server can add such users into a blacklist or file a
lawsuit against them

Tr
an

s. Manual Protectors have to execute manual tasks in the course of protecting a program, for instance, by developing
non-trivial clones for the license checker

Automatic The protection transformation requires a limited user intervention and hence it is to a great extent automatic

C
he

ck

Checksum A checksum is computed over the code blocks of the license check
Signature Signature of the components are verified at runtime
Equation eval Access data forms a set of verifiable equation, e.g. total number of accesses is less than total number of views

specified in the usage policy
Majority vote License checker is cloned and executed simultaneously by different threads/processes. Afterwards, a majority vote

decides whether the license is valid or not
Access control All access requests need to pass through a master node which securely enforces usage policies

H
ar

de
ni

ng

Cyclic checks A network of integrity checkers collectively prevent software manipulation
Mutation The license checker code blocks are constantly modified at runtime to mitigate passive attacks
Code conceal. The License checker code is encrypted and only decrypted at runtime
Cloning The license checker is duplicated and every time at runtime a randomly chosen clone is executed
Layered interp. The client application utilizes a random instruction set that can only be executed on a custom secure virtual

machine
Hash chain Usage event logs are securely chained to maintain an unforgeable evidence of the system usage. Such information

could be used in postmortem verifications

O
ve

rh
ea

d Fair Target clients have limited computation resources and thus a low overhead is desired
Medium Target clients have fairly good computation resources
High Sensitive parts of the program shall be protected strictly, high overheads are tolerated
N/A No information about overhead constraints

T.
an

ch
or TPM Client systems do have a TPM chip

SGX Client systems support Intel SGX
Other Other trusted modules are decided to be used, e.g. a custom-built hardware
Software The protection is completely software based

Pr
ot

.L
vl

. Internal The client application is in charge of verifying its own integrity
External A dedicated integrity protecting process frequently verifies the integrity of client applications
Hypervisor A secure hypervisor is shipped with the client installation bundle. The client application can only be executed

using the provided hypervisor

34

2. Taxonomy

Table 2.2.: Applied taxonomy on the surveyed literature.

PaperID

Sy
st

em
vi

ew
A

tt
ac

k
vi

ew
D

ef
en

se
vi

ew

A
ss

et
s

R
ep

re
se

nt
at

io
n

G
ra

nu
la

ri
ty

Li
fe

cy
cl

e
ac

ti
vi

ty

No root

A
tt

ac
k

M
ea

s.
M

on
.

R
es

p.
Tr

an
s.

C
he

ck
H

ar
de

ni
ng

O
ve

rh
ea

d
Tr

us
ta

nc
ho

r
Pr

ot
.l

vl
.

Behavior

Data

Data and behav.

Static

In
m

em
.

In
ex

ec
.

Instructions

BB

Function

Slice

Application

Pre-compile

Compile

Post-compile

Load

Run

Binary

Process memory

Runtime data

Control flow

Local

Remote

State inspection

Introspection

Proactive

Reactive

Manual

Automatic

Checksum

Signature

Equation eval

Majority vote

Access control

Cyclic checks

Mutation

conceal.

Cloning

Layered inter.

Hash chain

Fair

Medium

High

N/A

TPM

SGX

Other

Software

Internal

External

Hypervisor

Code shape

Data shape

Trace

Timed trace

HW counters

[2
]

x
x

x
x

x
x

x
x

x
x

x
x

x

[1
5]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

[1
9]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

[2
2]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[2
6]

x
x

x
x

x
x

x
X

x
x

x
x

x
x

x
x

x

[3
1]

x
x

x
x

x
x

x
x

x
x

x

[3
4]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

[4
1]

x
x

x
x

x
x

x
x

x
x

x
x

x

[4
2]

x
x

x
x

x
x

x
x

x
x

x
x

x

[4
3]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[4
7]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[4
9]

x
x

x
x

x
x

x
x

x
x

x
x

x

[5
5]

x
x

x
x

x
x

x
x

x
x

x
x

x

[6
5]

x
x

x
x

x
x

x
x

x
x

x
x

[7
2]

x
x

x
x

x
x

x
x

x
x

x
x

[7
3]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[7
4]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

[8
2]

x
x

x
x

x
x

x
x

x
x

x

[8
3]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[8
7]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[8
8]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

[9
7]

x
x

x
x

x
x

x
x

x
x

x
x

x

[9
8]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[9
9]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[1
00

]
x

x
x

x
x

x
x

x
x

x
x

x
x

[1
01

]
x

x
x

x
x

x
x

x
x

x
x

x
x

[1
02

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

[1
04

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x

[1
05

]
x

x
x

x
x

x
x

x
x

x
x

x
x

[1
08

]
x

x
x

x
x

x
x

x
x

x
x

x

[1
12

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[1
14

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x

[1
15

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

[1
18

]
x

x
x

x
x

x
x

x
x

x
x

x

[1
31

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x

[1
32

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x

[1
33

]
x

x
x

x
x

x
x

x
x

x
x

x

[1
37

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

[1
40

]
x

x
x

x
x

x
x

x
x

x
x

x
x

[1
44

]
x

x
x

x
x

x
x

x
x

x
x

x

[1
45

]
x

x
x

x
x

x
x

x
x

x
x

x
x

[1
46

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x

[1
49

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x

[1
61

]
x

x
x

x
x

x
x

x
x

x
x

x

[1
64

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x

[1
69

]
x

x
x

x
x

x
x

x
x

x
x

x
x

[1
71

]
x

x
x

x
x

x
x

x
x

x
x

x
x

[1
80

]
x

x
x

x
x

x
x

x
x

x
x

x
x

[1
89

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[5
0]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[5
1]

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[1
74

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

[1
87

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

[1
90

]
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

35

2. Taxonomy

of Check–Time of Use (ToCToU) limitation in which signatures are verified on the static
representation of programs upon execution, while many attacks (including in-memory
patching) could potentially occur after execution is started. [106] reported that over 60% of
attacks published by CERT were either buffer overflows or of ToCToU attacks.

Due to the aforementioned limitations, the static signature verification is not an optimal
technique as it fails to protect other asset representations during execution.

A natural question that may come to ones mind is why protection for a certain repre-
sentation instead of protecting assets in all the representations. The answer is threefold.
First, attackers might not have the right privileges on some representations, e.g. accessing
in-execution representation of processes requires root privilege, except when attackers find
a way to inject their attacks into the program of interest. Reasonably, to avoid unnecessary
overhead we aim to protect the representations that are at risk. Second, some risks might be
acceptable for a certain use case, e.g. in IoT programs naively protecting static representa-
tion of a program might be sufficient, given that runtime protection imposes unacceptable
overhead. Finally, 100% protection of assets in all representations is technically infeasible.
Therefore, to shed light on this concern, we correlate software integrity assets to different
representations in order to identify corresponding protection schemes.

The desired correlation is depicted in Table 2.3. In the following we discuss the relevant
schemes according to their asset-to-protect.

Table 2.3.: The correlation between the integrity asset protection and representation.
Integrity assets

Behavior Data Data and behavior

R
ep

re
se

nt
at

io
n

Static [73] [72] [146] [171] [65] [114] [43] [140] -
Code inv. [50] [174] [187] [190] [74] [97] [131] [34] [137]

[22] [105] [87] [104] [47] [149] [15] [164] [88]
[115] [180] [189] [26]

[74] [34] [26] [74] [34] [26]

Data inv. [98] [108] [41] [169] [112]
[83] [42]

-

HWC [132] [187] [164] - -
Timed trc. [133] [100] [161] [164] [101] - -
Trace [51] [99] [2] [49] [102] [118] [31] [19] -

Behavior protection schemes

As the correlation suggests, a majority of behavior protection schemes with a total number of
22 [15, 22, 26, 34, 47, 50, 74, 87, 88, 97, 104, 105, 115, 131, 137, 149, 164, 174, 180, 187, 189, 190]
target the code invariants representation in their protection mechanism.

Meanwhile, [98] referred to the shape (invariants) of computed data to reason about the
behavior integrity. [132, 164] took hardware performance counters (e.g. the number of
indirect calls and elapsed times) into account to evaluate programs’ integrity.[187] used
Physically Unclonable Functions in combination with self-checksumming to bind software
to specific hardware.

36

2. Taxonomy

Some efforts were found in the literature to raise the bar against program manipulation
when programs are at rest (binary). [43, 73, 171] are examples of hardening binaries by
statically analyzing them and subsequently adding resilience against tampering attacks.
[72] rather presented a theoretical concept to design more resilient integrity protection
schemes. [65, 114, 146] proposed techniques to protect program binaries after distribution.

In order to manifest some tampering attacks, attackers inevitably need to change, inject
or reorder instructions. In this situation, the order in which program instructions are being
executed along with the data that they read from or write to, i.e. a program trace, is a source
of knowledge to detect such attacks. This information could be extracted form a program’s
execution trace. [49, 99] incorporated memory accesses and branching conditions in the
program trace into a hash variable to later match it against the expected trace hash. [102]
passively verified the execution traces that are reflected into log records. [118] duplicated
sensitive regions in the program to add more resilience to attacks by forcing perpetrators
to tamper with all clones of sensitive codes. [51] embedded the control flow branching
conditions into an artificial neural network model to conceal and at the same time protect
the control flow integrity. The correlation also indicates that timing analysis (timed trace)
is utilized in [2, 31, 100, 101, 132, 133, 161, 164] to verify integrity of the program behavior.
The assumption in the mentioned schemes is that a certain untampered routine expresses
identifiable execution time characteristics.

Data protection schemes

Tampering with a program’s data can enable attackers to manifest integrity violating attacks.
The simplest way to do so is by attaching a debugger and subverting the program flow, for
instance, by flipping a register’s value. As the correlation suggests, several schemes protect
the program’s data integrity. [108] introduced a hash-chain alike concept for data integrity
with the help of a semi trusted entity. [169] equipped system data flow analyzer nodes
and routed the traffic to them for integrity analysis. [83] proposed to duplicate sensitive
processes and compared their computed values based on a majority vote scheme. [42] used
data flow graph to verify whether the application conforms to the genuine data flow model
at runtime. [112] collected data invariants in a program and verified them at runtime. [49]
computed a cumulative hash of memory accesses at the instruction level to form a hash
trace of the program execution.

Data and behavior protection schemes

Protecting data and behavior together might be a more appealing option when the program
to protect possesses both sensitive data and logic. In our survey, we found three schemes
that aim for data and logic protection. [74] proposed a technique in which a program’s
logic as well as data are isolated from external processes by a secure hypervisor. They also
designed a process to encrypt data before persistence, so that the data is never exposed to
adversaries in plain text. [34] in addition to logic and data isolation, introduced a secure

37

2. Taxonomy

inter-process data propagation in a (nearly) real time manner. [26] designed a fully isolated
execution environment for the process as a whole on Intel SGX hardware commodity. All
the three schemes rely on trusted hardware.

The presented correlation singles out relevant schemes for protecting different integrity
assets (behavior, data and data and behavior) in different representations. This facilitates
the scheme selection based on the assets and representations at the user end.

2.5.2. MATE attack mitigation on different asset representations

A program possesses different representations depending on its state, viz. static, in-memory
and in-execution. Each of theses representations are subject to tampering attacks. Protec-
tions on representations closer to the time of use (i.e. execution) could prevent or detect a
wider range of tampering attacks. That is, the static representation of a program is implicitly
protected, if the very same program utilizes in-memory protections.

In this chapter, we limit our adversary model, regardless of how attacks are executed,
to four generic attack goals: binary patching, process memory patching, runtime data
modification and control flow hijacking. Constrained by their permissions, attackers can
choose different program representations as their attack targets.

In this correlation we aim to identify protection techniques that mitigate the aforemen-
tioned generic attacks on different representations. For this purpose, we relate represen-
tations in the system view to attacks in the attack view. This is depicted in Table 2.4. We
discuss our findings classified by attacks, viz. binary, control flow and process memory as
follows.

Table 2.4.: Defense mechanisms against tampering attacks for different (asset) representa-
tions.

Representation
Code inv. Data inv. HWC Static Timed

trace
Trace

Ta
m

pe
ri

ng
at

ta
ck

s

Binary - - - [140] [73] [72] [171]
[65] [114] [43]

- -

Control flow - - [132] - - [51] [19] [2] [99]
[144] [49] [102]
[118] [145] [31]

Process memory [50] [174] [187]
[190] [74] [97] [131]
[34] [137] [22] [105]
[87] [104] [47] [149]
[15] [164] [88] [115]
[180] [189] [26]

- [164]
[187]

[146] [100]
[164]
[101]

-

Runtime data - [108] [41]
[169] [98]
[112] [83]
[42]

- - - [19] [49]

38

2. Taxonomy

Binary

Static manipulation (aka static patching) targets a program while it is at rest (prior to execu-
tion). To prevent these sort of attacks the surveyed literature suggests static representation
verification as well as a set of hardening measures to raise the bar against tampering attacks
in the host. Note that we do not include signature verifications supported by operating
systems, as they do not target MATE attackers. In the following we review the schemes that
protect the static representation of programs.

Static representation verification [114] and [73] proposed remote file integrity protection
using file system hashing. The main difference lies in the fact that the latter initiates the
hash with a remote challenge. However, this technique can easily be defeated if the attacker
keeps a copy of the genuine files just for the sake of hash computations.

Hardening measures Neisse et al. [140] suggested to plug (hardware-assisted) configura-
tion trackers in the system to monitor modifications on the file system. All modifications
are then signed by a TPM within the host and then reported to a third party verifier to judge
about the maliciousness of the actions.

[43] designed a protection scheme to defend against dependency injecting and tampers
with the update scripts in a system by utilizing dynamic signature verification and system
call interposition in the kernel. They argued these two can mitigate the persistence of
a compromise in the system. Meanwhile, [72] proposed to strongly connect integrity
protection code with the normal program control flow and discussed theoretical complexity
using a graph based game.

To add resilience against dynamic attacks such as buffer overflows in the static represen-
tation, [171] proposed an efficient means to detect potential integrity pitfalls in a distributed
system by first merging all network wired nodes into a unified control flow graph, so called
Distributed Control Flow Graph DCFG and then running a static analyzer to find all user-input
reachable buffer overflows. In their way, intuitively, pitfalls can be identified with less false
positives as opposed to analyzing each node individually.

Collberg et. al in [65] proposed to protect client programs’ integrity by forcing constant
and frequent updates. In their approach, a trusted server constantly uses software diversifi-
cation techniques to change a server’s method signatures, which in turn coerces the client
to update all the program artifacts right after each mutation.

Control flow

As the correlation suggests, there are two representations that were utilized to prevent a
program’s control flow manipulation, viz. HW counters and traces.

Hardware performance counters were used in [132] to reason about the program’s control
flow integrity based on performance factors such as the number of calls and the elapsed

39

2. Taxonomy

time on each branch.
The trace representation was used by 10 protection schemes. These schemes are listed as

follows. Banescu et al. in [19] proposed a technique to ensure only genuine internal calls
can access assets. This is done via a runtime integrity monitoring that traces stack’s return
addresses and compare them to a white list of call traces. Stack inspection works well for
synchronous calls, however, due to the incomplete trace information, trigger and forget
calls cannot be handled in this way. To cope with asynchronous calls, caller threads are
verified using a Message Authentication Code (MAC mechanism).
Abadi et al. in [2] proposed a scheme to protect the integrity of programs’ control flow by
injecting a set of caller reachability assertions in the beginning of program branches.

Chen et al. in [49] proposed to compute a checksum over a program’s execution trace
by hashing its assignment and branching instructions. These hashes are later verified at
desired locations in the protected program. Similarly, [99] proposed to compute a hash
over a program’s assignments and executed branches. These hashes later are used to
dynamically jump to the right memory locations. Mismatches in hashes crash a program
as they potentially cause jumps to illegitimate addresses. Dynamic jumps are created by
the mean of interleaving multiple basic blocks in super blocks with multiple entry and exit
points. In effect, the hash values determine which entry/exit points the program shall take
at runtime.

To capture an unforgeable evidence of the traversed program’s control flow, Jin et al. in
[102] proposed a protection mechanism based on secure logging (forward integrity). Their
scheme is detective. That is, tampering attacks are detected in a postmortem analysis after
they took place. [118] mitigated call graph manipulation by utilizing opaque predicates
to randomly switch between a set of nontrivial clones of sensitive program logic (input
by human experts). [145] designed a mitigation for ROP attacks by monitoring branching
behavior and size of fragments executed before each branch. [31] proposed a mechanism in
which a program-to-protect subscribes to an external process which dictates the genuine
control flow of the application. The external process can be protected by other expensive
integrity protections without introducing extensive overhead on the main application. [51]
designed a protection scheme that uses a neural network model to calculate the destination
block of protected branching conditions.

Process memory

Protecting process memory based on code invariants is the most common approach in the
literature. In the following, we briefly introduce different schemes based on this technique.

Self-encryption is a defense mechanism utilized by a number of protection schemes. Auc-
smith [15] proposed a scheme that utilizes code block encryption and signature matching to
mitigate tampering attacks on process memory. The author refers to the integrity checking
codes as Integrity Verification Kernel (IVK). These IVKs, for better stealth, are interleaved
with the program functionality. Using this technique, the entire application code except for
the starting block is encrypted. From the memory layout of each executed block a key is

40

2. Taxonomy

derived which can decrypt the next block. [180] is another encryption based protection in
which the key to decrypt the next basic block is derived from a chain of hashes of previous
blocks. Thus, tampering with blocks breaks the chain and results in an unrecoverable
program. [149] applied the self-encryption with re-encryption after each invocation to
protect Android intermediate code. Protected programs using this scheme, however, cannot
use reflection nor host service contracts (otherwise unreachable) due to the code encryption.
[174, 190] resorted to code encryption aided by trusted hardware to protect the sensitive
code in the memory.

Self-hashing is another mechanism that is employed by a number of process memory
protection schemes. [164] used reflection to obtain program codes at runtime. Program
codes are subsequently verified using a hash function. In addition to hash verification, HW
counters are also utilized to increase the resilience. Chang and Atallah in [47] proposed
a software protection technique that builds up a network of compact protection blocks
(aka Guards) that along with performing integrity checking of the application blocks (basic
blocks) can also verify other protection guards. These protection guards, provided that
an untampered version of the code is available, can potentially heal the tampered regions
of the program. [22] proposed a technique that utilizes a network of cyclic checkers with
multiple hash functions to prevent memory tampering attacks. This scheme can cope with
the relocation problem in binaries and hence it protects instructions that contain absolute
addresses. To the best of our knowledge, this scheme is the only self-checksumming
protection measure whose source code is publicly available. [97] proposed a check and
fix protection scheme that utilizes a set of linear testers that compute a hash over certain
regions in the process memory. Upon mismatch detection correctors attempt to heal the
tampered program.

[87] proposed a technique combining cyclic checks and self-encryption. In this scheme,
first cyclic guards are injected and then the entire program is encrypted. An emulator is
shipped with the program which can decrypt and eventually execute it. The decryption key
is shipped into the binary using white-box cryptography, so attackers can not easily extract
it from the program. [88] did a similar protection with the difference of using virtualization
obfuscation instead of self-encryption. In addition to that, a set of self-checking guards
are generated on the fly to protect the dynamically translated program in the cache. [104]
applied control flow flattening obfuscation transformation in combination with self-hashing
protection guards. In their scheme, random intervals of a program are checked using CRC32
checksums.

[131] used constant mutation at runtime so that the same memory address is used for
multiple code and data blocks in one execution.

Secure hypervisor is used by some protection mechanisms to protect the process memory.
[74, 190] used secure hypervisors to verify code pages of the protected programs. [115]
proposed a measure that utilizes a secure emulator, code singing and encryption. First
programs code blocks are signed and encrypted. Later, the secure emulator can decrypt and

0https://github.com/google/syzygy/tree/integrity

41

2. Taxonomy

execute the genuine code blocks. [189] proposed a hypervisor monitoring tool called VMI to
introspect the memory of running virtual machines. VMI has to, however, be executed with
root permission on the host. [34] aimed for integrity protection in IoT devices by proposing
a concept of secure (tamper resistant) tasks enabled by a trusted hardware. Furthermore,
a secure interprocess communication protocol is also designed. In order to pass a secure
message, a source process loads the message m and destination id, did, into CPU registers
and then triggers a secure IPC interrupt. The interrupt eventually makes m along with the
sid accessible for destination process/task. [137] proposed a hardware assisted hypervisor
that enables users to define their custom integrity routines. Similarly, [105] proposed to
equip hosts with custom attestation and measurement probes to detect violation of integrity.

[26] proposed a technique to use SGX secure enclaves to place the entire application in
isolated containers. This prevents attackers form runtime process memory manipulations.

Static protection to isolate process memory was done in [146]. Their goal was to ensure
genuine geolocation information by starting the service in a lightweight hypervisor which
is secured by a TPM.

Timed traces are another representation which was used to build protection schemes.
In effect, [100, 101] based their schemes completely on timing analysis to verify process
memory. In this approach, once the attestation is launched, all active memory contents are
copied to the flash memory. Then, the verifier sends a random seed that the attestation client
uses for proof of computation. At different check-points the verifier sends further seeds
and defines the memory addresses that need to be incorporated in the proof computation.
Meanwhile, timing analysis could be used as an additional source of information. For
instance, [164] used reflection as its core of integrity protection, but also utilized timing
analysis for additional hardening.

Runtime data

To protect runtime data, data invariants and trace representations were utilized by the
reviewed protection schemes. The correlation indicates that 7 schemes operate based on
the data shape representation. [108] relied on an authenticated data structure (Merkle
tree) to enable users to verify correctness and freshness of the access control policies and
user data. [41] used a combination of static analyzer and memory analyzer to detect data
tampering that leads to kernel exploits. [169] used SDN to route data to an extra node to
verify network data integrity. [98] proposed to utilize a set of checkers are added to the
program to check return values of the sensitive functions. Inputs for these checkers are
generated using symbolic execution. [83], similar to [98], proposed to feed the return values
of a given service to a set of clones and have a majority vote based scheme to decide upon
integrity of the service. [112] proposed to first run a program using the Daikon tool [76] to
capture dynamic data invariants. From these invariants later a set of guards are generated
and injected into the program of interest. At runtime these invariant should hold, otherwise
response function is triggered. [42] proposed a technique which uses data flow graph to
build a data model. At runtime the conformance of the application data flow to the model

42

2. Taxonomy

is frequently verified.

Trace representation was used in two protection schemes to authenticate data integrity.
[19] utilized white box cryptography to protect the integrity of a configuration file in the
Chromium browser. A white box proxy enables Chromium to sign and verify genuine
configuration files. While attackers have difficulties extracting the key from white box
crypto, they might be able to subvert the execution flow and misuse the proxy to sign
malicious configuration files. Therefore, this scheme authenticates any call to the proxy.
[49] incorporated a selected set of memory references into hash variables. The constant
program data can be protected using this measure. However, incorporating input data will
make it impossible to precompute expected hashes, due to nondeterminism in programs.

In this correlation we identified and discussed the different schemes to mitigate particular
MATE attacks, viz. binary, control flow, process memory and runtime data manipulations,
at different representations. Amongst the reviewed schemes only [171] targeted distributed
systems. This work, however, focused on adding resilience to the static representation
against buffer overflows. All the other reviewed schemes focused on protecting assets
in a centralized application, which might be in contact with a remote server. However,
these schemes clearly fall short in protecting a software system that is comprised of a set of
distributed nodes, communicating over network. Protecting program representations in a
distributed architecture appears to be a major gap.

2.5.3. Defense integration to program lifecycle

Each defense comes with a mean in which monitoring probes are hooked, connections
to response algorithm are established and hardening is applied. In a defense mechanism
Transformation is the component that employs protection in a program by applying necessary
modifications. Transformations may target different stages of a program varying from
source codes to executable binaries. This will impose some constraints on the applicability
of defenses to different contexts. For instance, one may have no access to the source code
for a third party component. That is, for such cases, all the defenses based on source code
transformations become irrelevant. The stream viewer in the DRM sample is an example of
such components.

In addition to the constrains imposed by lifecycle activities, program representations on
which protections are applied impose further constrains. For instance, monitoring memory
can impose intolerable overheads in IoT devices. Therefore, it is of major importance to
identify integration constraints of protection schemes in different application contexts.
To capture this concern, we analyze the correlation between transformation target and
system representation. Table 2.5 illustrates the outcome of this correlation. We discuss the
correlation by iterating over lifecycle activities as follows.

43

2. Taxonomy

Table 2.5.: Defense mechanisms for different (asset) representations and their correlation to
program lifecycles.

Representation
Static Code inv. Data inv. HWC Trace Timed

trace

Li
fe

cy
cl

e

Pre-compile - [74] [164] [50] [174]
[187] [190]

[108] [41] [98]
[112] [42]

[164] [19] [102] [118] [51] [164]

Compile [171] [104] - - [49] -
Post-compile [73] [146] [114] [43] [97] [34] [137] [22]

[87] [47] [105] [149]
[15] [88] [115] [180]
[189] [26]

[83] [132] [2] [99] [144] [145] [133]
[100]
[161]
[101]

Load - [88] - - - -
Run [65] [131] - - - -

Pre-compile

In the following we have a closer look at the schemes that operate on the source code level
and discuss their correlation to the asset representations.

Code invariants

[164] proposed a scheme for remote verification of integrity protection. The idea is to
retrieve a program’s code shape using reflection and subsequently computing a hash over
it. This hash is then reported to the remote party. These reflection calls are injected into the
program source code.

[74] proposed a scheme that requires developers to generate integrity manifests for all
programs-to-protect. Integrity manifest contain program measurements and a unique
program identity. These manifests need to be shipped to a secure hypervisor which follows
the measurements to evaluate the integrity of programs at runtime.

[50, 174] proposed protections aided by Intel SGX. Both schemes place the guards within
the security enclave to harden their schemes. [187] combined self-checksumming with
physically unclonable functions to add further resilience to their protection. [190] proposed
a hypervisor-based protection that acts as an emulator for encrypted code.

Data invariants

According to the correlation outcome there are four schemes that operate on data shape to
verify software integrity. We will discuss these schemes, focusing on their integrability to
systems. Data invariants verification is the technique that is used in [112]. In order to capture
these invariants, the Daikon tool is utilized, which requires programs to be instrumented and
subsequently executed. Afterwards, in the protection phase, these invariants are verified by
a set of protection guards.

[108] proposed a mechanism to protect program inputs using a set of data integrity
polices specified by users. These policies are enforced by the mean of an authenticated data

44

2. Taxonomy

structure [136].
In order to protect program functionality at runtime, [98] proposed a scheme for C#

programs in which return values of program functions are tested in a network of cyclic
checks. To construct checkers, the PEX symbolic execution tool [172] is used. PEX generates
test cases (input-output pairs) for the functions of interest. Checkers are generated based
on the test cases. They invoke a protected function with the test’s input arguments and
subsequently match the output of the function with the expected result of the test case.

Conversely, [41] designed a scheme that inspects kernel’s dynamic data to detect tam-
pering attacks. They claim that their scheme can protect up to 99% of such attacks on
kernel.

Trace

The following schemes rely on trace data to evaluate program integrity. Given that log
records intrinsically capture enough information about the executed trace, [102] based their
scheme on recovering a program trace from its logs. In this scheme program code needs
to be augmented with a comprehensive logging mechanism. A hash chain mechanism is
utilized to preserve the forward security properties. The logs are supposed to be verified by
a trusted external entity Since attackers cannot forge logs, the verifier can detect malicious
activities during verifications. [118] proposed a scheme which aims at diversifying pro-
gram’s execution trace by randomly executing non-trivial clones of the sensitive functions.
The downside is that all the non-trivial clones have to manually be implemented. [19]
aimed at defeating control-flow hijackers by a set of stack trace introspection guards. These
guards are injected in the prologue of sensitive functions in the source code. [51] proposed
to train a neural network model of the program branch evaluations for a selective set of
branching conditions. In this way, the attacker can see the trained model, but never sees the
plain branching conditions.

Compile

Compiler level protection could potentially generate far more optimized protection routines
thanks to built-in optimizations. Despite the benefits, compiler-based protections require
access to the source code. Also, compiler transformations will target a specific compiler and
hence restrict the choice of compilers at the user end.

Furthermore, since compiler optimization passes are oblivious to protections imple-
mented, they could potentially break them and thus cause false alarms in protected pro-
grams. For instance, some compilers utilize enhanced memory caching by block reordering.
This relocates program blocks after protection is laid out and hence breaks the hash checks
in self-checksumming based protections, resulting in false alarms [22].

In our survey we only found three compiler based protections. Junod et al. [104] im-
plemented a scheme that aims at protecting code shape by a combination of control flow

45

2. Taxonomy

flattening and tampering protection in a compiler pass (implemented in the LLVM infras-
tructure). On the negative side, no evaluation results on the tamper resistance overhead
were published in this work. In an effort for securing distributed programs against buffer
overflow exploits, [171] proposed a LLVM based analysis tool that combines the CFG of all
individual programs to construct a distributed CFG. The distributed CFG is to improve the
accuracy of vulnerability detection. Oblivious hashing [49] is another scheme that is imple-
mented in abstract syntax trees. It operates on in-execution representation to authenticate
program trace. In this transformation, program assignments and branching conditions are
reflected in a hash variable that serves as a trace hash. Later, this hash could be verified at
any desired point in the program.

Load

In our survey, we only found one research work that transforms program instructions at
load time. Ghosh et al. in [88] proposed a tamperproofing technique on top of instruction
virtualization obfuscation1. In this scheme, a mechanism was designed to protect translated
instructions (code invariants) within the emulator in a program by safeguarding them using
a network of checkers (similar to [47]) along with frequent cache flushes.

Run

Transforming applications at runtime is another option. These transformations render
adversaries’ knowledge obsolete by turning the protection into a moving target. In this
setting, attackers have a limited time before the next mutation takes place, and hence
their success rates deteriorate. Collberg et al. [65] proposed a scheme for client-server
applications in which the server API is constantly mutated using diversification obfuscation
techniques, forcing clients to update frequently. Assuming that the server is secure, attackers
have a limited time to carry out reverse engineering attacks on client applications (static).
Soon after the server API is mutated, client applications have to be updated to reflect API
usage changes, which renders attackers knowledge obsolete.

The downside of this scheme, however, is the obligation of having the server and the
clients constantly connected to receive highly frequent updates

Similarly, [131] proposed a tamper resistant scheme based on dynamic code mutation in
which program’s data and code in the process memory are regularly relocated such that
code and data memory cells are indistinguishable. That is, a particular memory cell (which
is allocated for the process memory) serves both data and code during the course of an
execution. Dynamic code mutation aims for keeping the code unreadable until execution
time. Therefore, we classified this scheme as code invariants protector.

1It is a technique in which program instructions are randomized such that only the shipped emulator can
execute them [12]

46

2. Taxonomy

The basic assumptions in this technique are that reverse engineering (and hence tamper-
ing with programs) is harder a) when program code and data are indistinguishable, and b)
when there is no fixed mapping between instruction and memory cells so that the same
memory region is used by multiple code blocks at a course of execution.

The general observation is that runtime transformations are technically much more
challenging to implement, which justifies the limited number of schemes in this category.

Post-compile

Post compilation transformation operates at the binary level. That is, compiled programs
and libraries, without presence of their source code, can be protected. Because of their appli-
cability on majority of product line, plenty of schemes utilize post-compile transformation.
In fact, we found protection schemes for all the system representations which carry out
their transformations in a post-compile process. In the following, we elaborate on these
schemes classified by their target representations.

Code invariants

Schemes that protect the code invariants (introspection) in a post-compilation transfor-
mation process are listed in the following. To protect integrity of Android applications
[149] proposed a self-encrypting scheme that operates on the intermediate representation
of Android programs, i.e. Dalvik executable files. Although the key is shipped with
the program, this scheme adds resilience against tampering attacks. [22] applied self-
checksumming transformation on windows portable executable (PE) binaries. [47] used
cyclic network of checkers with repairers to recover tampered blocks to protect WIN32
(DLL and EXE) binaries. Similarly, [97] protected binaries based on self-checksumming
technique. [34, 105, 115, 137, 189] proposed schemes that operate at the hypervisor level to
protect program binaries. [26] used an isolation supported by Intel SGX to place the entire
applications inside protected enclaves and protect them from attackers. [15, 87, 115, 180]
proposed to encrypt program binaries in order to protect it. [88] designed a method that
transforms program binary into a random instruction set to carry out protection.

Data invariants

We identified two schemes that protect data integrity in after compilation. In the scheme
proposed by [83] multiple clones of a program are simultaneously executed to detect
instances that diverge from the majority of the clones. Malone et al. in [132] proposed
a scheme that has two phases: calibration and protection. In the first phase a program is
executed while hardware performance counter (HPC) values are continuously collected. A
mathematical tool is then utilized to identify hidden relations among the gathered data in
form of equations, which essentially captures the effect of genuine execution of the program
on HPC. Finally, a set of guards are injected in the program to evaluate those equations

47

2. Taxonomy

at different intervals. However, both Windows and Linux operating systems prohibit any
access to HPC instructions in user-mode. This essentially requires applications to invoke a
kernel call to read HPC values at runtime, which opens the door for call interceptions.

Static (file)

To protect the integrity of static files checksum based techniques were proposed in the liter-
ature. [114] introduced a tool to verify signatures of a large number of binaries on a system.
[73] enabled a remote verifier to compute and verify checksums of static files residing on a
server. In this model, the verifier sends a challenge with which the server has to initialize
checksum variables. To protect operating system static services [43] proposed a technique
to guarantee the integrity of standard operating system application by safeguarding core
software package providers.

As a mean to protect specific services in a system, [146] developed a genuine geolocation
provider service that is enclosed in a statically secured lightweight hypervisor.

Timed trace

[133, 161] are two consecutive schemes that authenticated the integrity of legacy systems (no
multi core CPU) by measuring the time differences between genuine and forged execution
of programs (timed traces). Similarly, [100, 101] also relied on timing analysis to detect
malicious behaviors in remote programs. In these schemes, the verifier requests a checksum
over certain regions of the process memory (memory printing) and at the same time
measures the elapsed time. The checksum value and timing analysis enables the verifier to
reason about integrity of the system. Nevertheless, during the memory printing process the
system must stop functioning, otherwise the timing data will be inconsistent.

Trace

Trace representation is utilized by a set of protection schemes to protect control flow in-
tegrity. Abadi et. al in [2] proposed a scheme in which the integrity of control flow is verified
by a simple token matching scheme. For this purpose, before every jump instruction a
unique token is pushed into the stack. Subsequently, at all destinations (jump targets) a
predicate is added to verify the token which should have been previously added to the
stack. [99] leveraged invariant instruction length on x86 architecture to design a scheme
with which tampering leads to an inevitable crash at runtime. [145] verified branching
patterns to detect ROP attacks at the Windows 7 kernel, which can transparently protect all
executing applications without any modification in them.

In the correlation of transformation lifecycle and protected representations, we classified
schemes based on their representation-to-protect and their applicability on different pro-
gram lifecycles. Our results indicates a gap in compiler based, load and run time protection

48

2. Taxonomy

schemes.

2.5.4. Correlation of transformation lifecycle and protection overhead

Another interesting direction to look into is the influence of the transformation lifecycle
on the overhead of schemes. Compiler-level transformations leverage optimization passes
in the compilation pipe line. Naturally, applying transformation at compiler-level should
impose less overhead in comparison to post-compile transformation schemes. Mainly
because binary level modifications occur at the end of the build pipe line, where no further
optimizations are carried out. To capture this view we correlate overhead classes with the
transformation lifecycles that is presented in Table 2.6. We map our surveyed papers on 4
classes of overhead indicators, viz. N/A, Fair, Medium and High.

Table 2.6.: The correlation between the transformation lifecycle and overhead.
Lifecycle

Pre-compile Compile Post-compile Load Run

O
ve

rh
ea

d

Fair [74] [112] - [2] [132] [55] [146] [137] [144] [87] [161]
[88] [145] [189] [26]

[88] [65]

Medium [19] [102] [174]
[187] [190]

- [82] [22] [180] [101] - [131]

High [108] [171] [99] [34] [100] [47] [149] - -
N/A [118] [41] [164] [98]

[42] [51] [50]
[49] [104] [73] [97] [133] [15] [115] [83] [114] [43] - -

Fair

As can be seen in Table 2.6, a majority of schemes with fair overhead are directly applied on
the binaries, i.e. post-compile transformation. Precisely speaking, [88] with 10% overhead
(in addition to the virtualization overhead which is reported to be about 30%) from the load
category, [74, 112] with 8-10% overhead from the pre-compile category, and [65] with 4-23%
overhead from the run category.

Medium

In our survey we identified 9 schemes with a medium overhead. In post-compile category
[82] with 128%, [22] with 134% for non-CPU intensive applications and [180] with 107% are
classified as schemes with a medium overhead. In the pre-compile category, [174], [187],
[190], [19], and [102] are in the medium class. In the run category, [131] with an overhead of
107% (for a program with 70 protected basic blocks) falls under this overhead class.

High

In the high overhead class, we found 7 schemes for pre-compile and post-compile trans-
formation activities. [108] imposes 5x slowdowns on reads and 8x slowdowns on writes.

49

2. Taxonomy

Similarly, [149] introduces an overhead of 500%, [99] and [34] both are reported to impose
3x slowdown in protected applications. [171] utilizes an algorithm with complexity of
O(N2 + 2N).

N/A

We mapped all the schemes without performance evaluations or insufficient results into
this class. A major problem with the performance evaluation of the reviewed protection
schemes is lack of comprehensiveness. Thus, we are incapable of estimating the overhead
of over 18 protection schemes. Surprisingly, the two compiler-level protection schemes
[49, 104] also fall under this category.

This correlation once again shows that there is a gap in benchmarking protection schemes.
To the extent that from our results we cannot approve nor reject the hypothesis that compiler-
level transformations perform better.

We would like to emphasize here that this classification is just an estimation based on the
authors’ claim on the efficiency of their proposed schemes. Therefore, depending on what
dataset was used in the evaluation process by the authors, the overhead might differ. A fair
evaluation would be to use a constant dataset to measure overhead of different schemes.

Unfortunately, this is not possible due to two reasons. First, to the best of our knowl-
edge, very few of the reviewed schemes were made open source. Secondly, even if the
source codes were available we would not be able to compare their performance without
further classifications. Because these schemes are designed for different operating systems
and different representations. Thus, they need to be clustered technologically and then
evaluated.

2.5.5. Check and Monitor representation

Protection schemes, as stated earlier, operate on a particular representation of the assets.
This implies a sort of monitoring mechanism on the representation of interest. The collected
data (in the monitoring process) need to be analyzed and ultimately verified by the scheme’s
Check compartment. Studying the different check methods for verifying different asset
representations is particularly interesting. Table 2.7 depicts the correlation of check and
representation items. Based on this correlation we report on different check methods that
were used in the literature as follows.

Code invariants

Expectedly, the majority of code shape verifiers with a total number of 13 use checksum
based techniques, which also includes hash functions In addition to checksums, [15, 115]
employed signature matching as a secondary measure for tamper detection. [26, 34] main-
tained code invariants security by enforcing access control at a trusted hardware level.

50

2. Taxonomy

Data invariants

In order to check the data shape, 3 schemes [83, 98, 169] used majority vote principle. On
the other hand, [112, 132] used equation system to verify the integrity.

Hardware counters

[132, 165] used hardware performance counters in their checking mechanism.

Timed trace

[100, 101, 133, 161] computed a checksum alike routine and measure the elapsed time.

Table 2.7.: The correlation of the representation and check mechanism.
Asset representation

Static Code inv. Data inv. HWC Timed trace Trace

C
he

ck
m

ec
ha

ni
sm Access control - [34] [26] [50] [174] - - - [19]

[145]
Checksum [140] [73] [50] [187] [190] [74]

[97] [137] [22] [105]
[104] [47] [149]
[15] [88] [115] [180]
[189]

- - [133] [100] [161]
[101]

[102]

Equation eval - - [112] [132] - -
Majority vote [72] - [169] [98] [83] - - [102]

Signature [114] [43] [15] [115] - - - [102]
[51]

The correlation between checking mechanism in different protection schemes suggests
that checksumming is the most used technique for integrity verification. Other checking
measures such as signature verification, access control, equation evaluation and majority
votes are equally unpopular.

2.5.6. Monitoring representation correlation with protection level (enforcement
level)

In this subsection we are aiming to find out which representations could be monitored at
which protection level. For this matter, we correlate protection level and representation in
Table 2.8. Since we are interested in identifying the possibility of monitoring representations
at different levels, we only indicate the number of citations instead of citing the references.

The correlation indicates that both the internal and external protection levels have no
limitations on monitoring system representations, with the exception of traces which were
not targeted by any of external protectors in the reviewed literature.

Furthermore, the correlation shows a gap in the hypervisor-based protection techniques
in which none of the data shape, hardware counters and traces were used in the reviewed

51

2. Taxonomy

Table 2.8.: The correlation of the Representation and protection level.
Static Code invariants Data invariants HW counters Timed trace Trace

Internal 2 13 3 1 - 8
External 5 5 4 1 5 2
Hypervisor 1 5 - - - -

schemes. It is not clear whether this is due to a technical limitation of hypervisors or simply
a research gap. Further studies should be conducted to address this gap.

2.5.7. Hardening vs. reverse engineering attacks and tools

Attacks perhaps are the least studied (and published) part of the integrity protection
schemes. This is due to two main factors: a) plenty of security measures in industrial
protection schemes such as Themida and VMProtect are not publicly disclosed, which
in turn, has left researcher without enough knowledge about their security. b) Breaking
schemes is unethical as it opens the gate for the attackers to compromise system’s security.
For example, the CIA Vault7 windows file sharing exploit has led to WannaCry ransomware
which infected 213,000 windows machines in 112 countries [16].

Due to the lack of comprehensive research on attacks on integrity protection schemes,
evaluating their security against various attacks is impossible. Therefore, as an initial step
towards analyzing the security of these schemes, we made assumptions regarding the
resilience of protection schemes against different attacks. In the following we state our
assumptions:

1. Disassembler: code concealment and layered interpretation hardening measures
hinder disassembly. Code concealment techniques commonly affect the correctness of
static disassemblers [126].

2. Debugger: in a strict sense only schemes that directly utilize anti-debugger measures
impede debug based attacks. These technique are, however, ad-hoc [3]. In this work,
we consider hardening measures that impose some difficulties on the ability of de-
bugging programs as counter debug measures. Cyclic checks, layered protection and
mutation are the three hardening measures that we believe impede debug based at-
tacks. Cyclic checks confuse attackers and exhaust their resources. Layered protection
complicates the program execution flow and thus has an impact on the effectiveness of
debugging. Mutation-based techniques renders debug knowledge useless after each
mutation. Furthermore, SGX protected application cannot be debugged in production.

3. Tracer: enable attackers to monitor what instructions are actually being executed
by the program. With the help of this tool, attackers could effectively bypass code
concealment and virtualization as program instructions have to be translated and
eventually executed. This is the point that a tracer can dump the plain instructions.

52

2. Taxonomy

Table 2.9.: MATE tools resilience in the reviewed schemes.
Disassembler Debugger Tracer
[15, 19, 22, 51, 131,
149, 174, 180, 190]

[22, 26, 34, 47, 50, 55, 74, 82, 87, 88, 98, 104,
115, 131, 137, 174, 189, 190]

[26, 50, 65, 88, 99,
118, 131, 174, 187,
189, 190]

Nevertheless, frequent program mutation renders captured data useless. Furthermore,
code clones are normally harder to capture using a tracer and thus it hinders tracer
based attacks. Intel SGX isolation, by design, resist against tracers.

4. Emulator: enables adversaries to analyze protected programs in a revertible and
side-effect free environment. In effect, this defeats response mechanism and gives
unlimited attempts to attackers. Beside anti-emulation measures, which are again ad-
hoc, only hardware based security appears to impede emulators. However, emulation
on its own does not break an scheme, as attackers have to utilize other tools to detect
and ultimately defeat the protection. Simply put, emulation acts as a facilitator for
attacks. Therefore, we exclude emulator resilience from our analysis.

With the given assumption we have classified the reviewed literature based on their
hardening measures. Table 2.9 represents the mapping between different schemes and their
resilience to MATE Tools.

2.5.8. Resilience against known attacks

As mentioned earlier, the security of integrity protection schemes has not been thoroughly
evaluated, due to the obscurity and lack of access to the resources. This has led to very few
attempts on breaking such schemes.

To the best of our knowledge, three generic attacks on integrity protection schemes were
published, two technical attacks and one conceptual work for manifesting attacks. In the
following we discuss these attacks and map them to the hardening measures that could
potentially address them.

1. Pattern matching: There is no paper on pattern matching attacks on different protec-
tions schemes. Additionally, most of the articles consider obfuscation as the golden
hammer against pattern matching and entropy measurements. Unfortunately, we
cannot evaluate the resilience of the reviewed schemes against pattern matching as
their source code is not available. Therefore, we do not consider this attack in the
mapping process.

2. Memory split: Wurster et al. in [182] proposed an attack to defeat self-hashing
protection schemes by redirecting self-reads to an untampered version of the program
loaded in a different memory address. For this purpose, they modified the kernel to

53

2. Taxonomy

establish two distinct memory pipelines for self-read and instruction fetch (execution).
In this setting, the execution pipeline can readily be tampered with by attackers and
self-reads remain unaware of such modifications.

To address this generic attack, Giffin et al. in [89] proposed self-modifying code
defense mechanism. The idea is to add a token to the program code at runtime
and verify it accordingly. Dynamically generated tokens can detect redirection of
self-memory reads in the protected processes.

Self-modifying code, despite its effectiveness in thwarting memory split attacks,
opens the door for other integrity violating attacks. The reason being that enabling
self-modification requires flagging writable memory pages as executable pages in
the program. This raises the concerns about code injection attacks [11], in which
maliciously prepared memory blocks could potentially get executed.

This attack only applies to introspection based techniques, i.e. techniques in which
a program’s code blocks have to be read at runtime. Thus, state inspection based
techniques are resilience against memory split attack. In addition to that, self mutating
protection schemes express the same effect as the defense that was proposed by [11].
All in all, our survey shows state inspection based and mutation based techniques
mitigate the memory split attack.

3. Taint analysis to detect self-checksumming: Qiu et al. in [150] proposed a technique
to detect self-checksumming guards in programs. Their attack relies on the fact
that these class of protections forces a protected program to read its own memory
at runtime. This obligation enabled them to utilize dynamic information flows in
detection of self checksumming guards and check conditions (which trigger the
response mechanism). Technically speaking, their approach captures a trace of the
program (using Intel Pin) and then searches for a value X which is tainted by self
memory values (backward taint analysis) and then detects those Xs that are used in a
condition (forward taint analysis).

This attack appears to be the ultimate attack on self-checking protection schemes
as it can in theory detect all checks in a given program. However, tracing medium
to large sized programs will generate massive trace logs that have to be analyzed.
[22] reported analyzing a small trace (captured in 10 minutes) of Google Chromium
using the tainting technique requires a long time in which only 1% of the traces were
analyzed in a day.

Since this attack relies on a Tracer tool (Intel Pin), we can mark schemes that resist
against tracer as resilient to the attack presented in [150]. Needless to say that larger
programs, due to the complexity of the backward and forward taint analysis, in
general cannot be targeted by this attack in a reasonable time.

1Intel pin is a dynamic program instrumentation tool

54

2. Taxonomy

Table 2.10.: Resilient schemes against the two known technical attacks.
Taint based attack Memory split attack
[26, 50, 65, 88, 99,
118, 131, 174, 189]

[2, 19, 31, 34, 41, 42, 49, 65, 83, 88, 98, 99, 100, 101, 102, 108, 112,
131, 132, 133, 137, 144, 145, 161, 164, 169, 171, 174]

4. Graph based analysis: Dedic et al. in [72] indicate that flow graph analysis such
as pattern matching and connectivity analysis (given that checker nodes are weakly
connected to other graph nodes in a program) can help defeat the existing protection
schemes. They developed a graph based game to formally present these attacks.

Against these attacks, they proposed three design principles, viz. strongly connected
checks, distributed checks and threshold detection schemes, that can significantly harden
the identification and disabling of a tamper protection technique. Strongly connected
checks requires checkers to be strongly connected to other nodes of the program.
Distributed checks refers to a network of checkers which an attacker has to disable
them all in order to successfully tamper with an application. Threshold detection
schemes suggests to call a response function only when a k number of checks failed.
This prevents attackers from sequentially detecting checkers in the program.

This work can be seen as a conceptual work with no actual implementation of the
defenses or attacks. It would be interesting to employ the suggested measures and
carry out the attack to verify their claim. None of the reviewed schemes appears to
utilize all the defenses together. Therefore, it might be the case that in theory all of
the schemes are defeated by the graph based attack. Since this attack has not been
implemented in practice, we rather leave it for further evaluations.

In Table 2.10 we map the schemes that resist against the two practical attacks.

2.6. Related Work

The closest and yet distant research to our work is ASPIRE (www.aspire-fp7.eu) project.
It is a project funded by European Union for software protection. ASPIRE is designed to
facilitate software protection by introducing a reference architecture for protection schemes.
Conformance to this architecture enables practitioners to compose a chain of protections si-
multaneously, which offers more resilience [170]. Data hiding, code hiding, tamperproofing,
remote attestation and renewability are the core protection principles that are addressed in
ASPIRE.

ASPIRE introduces a security policy language expressed by annotations. To protect a
program using this framework, end-users have to annotate programs with their desired
security properties. A compiler tool chain is designed which analyzes these annotations
and carries out necessary protection steps. To do so, the tool chain comes with three

55

www.aspire-fp7.eu

2. Taxonomy

components: a source code transformation engine powered by TXL [68], a set of routines
to link external protection schemes compatible with standard compilers (LLVM and gcc),
and a link-time binary rewriting infrastructure for post-compilation protections powered
by Diablo (http://diablo.elis.ugent.be/). All these enable rapid development
of protection tools which could be used by different programs in a customizable and yet
composable manner.

The ASPIRE framework focuses on a technical architecture for design and employment
of a wide range of protection mechanisms (not only integrity protection). However, both
the programs to protect and the protection schemes have to conform to the requirements of
the tool chain. Specifically, the source code (in C/C++ language) of programs is mandatory.
Furthermore, constraints of each scheme need to be specified in its manifest. The framework
uses these manifests to report potential conflicts to users based on which they can identify
and subsequently single out conflicting measures.

The ASPIRE project has not provided a taxonomy of integrity protection schemes and
does not include comparison of different schemes. In fact, the outcome of this work can
contribute in extending the ASPIRE architecture to accommodate a wider range of integrity
protection schemes, namely by means of introducing new requirements for the annotation
language (such as desired resilience against certain attacks), and extensions for the support
of further protection schemes (such as hypervisor based and hardware assisted ones).

To the best of our knowledge, our work is the first taxonomy of integrity protection
schemes. Therefore, reviewing existing taxonomies was not an option for us. Instead, we
reviewed scheme classifications and surveys on integrity protection. In the following we
report on the reviewed publications.

2.6.1. Existing Classifications

Mavrogiannopoulos et al. in [134] propose a taxonomy for self-modifying obfuscation
techniques, which essentially is based on the concept of mutation.

Collberg et al. in [58] classify integrity protection techniques into four main categories:
self-checking, self-modifying, layered interpretation and remote tamper-proofing. In a similar effort,
Bryant et al. [38] classify tamper resistant systems into 6 categories, viz. hardware assisted,
encryption, obfuscation, watermarking, fingerprinting and guarding. Considering the fact
that watermarking on its own does not contribute to integrity protection, we exclude it from
our analysis. Guarding also fits the self-checking category, thus it can be omitted. Likewise
encryption is a substance of self-modifying primitive. After we resolved the conflicts, we
study the structure of the five remaining categories of integrity protection techniques as
follows.

Self-checking. This refers to a technique in which self-unaware programs are transformed
into somewhat self-conscious equivalent versions. The transformation is done via equipping
programs with a set of monitoring probes (checkers/testers), that monitor some authentic
features of the target program, along with a group of assertions, who compare probe results

56

http://diablo.elis.ugent.be/

2. Taxonomy

to the corresponding known expected values and take appropriate actions against tampering
attacks.

Depending on which features of a program are being monitored, self-checking itself has
two subcategories: Introspection and State Inspection. The former exercises the shape of a
program, for instance code blocks, whereas the latter is after monitoring the program’s
execution effects, for example the sum of a program’s constant variables. Among the two,
state inspection is more appealing because, unlike the introspection, it reflects the actual
execution of a program, and thus it is harder to counterfeit. However, monitoring dynamic
properties of a program is more difficult compared to the static code shape verification.

Self-modifying. Turning a program into a running target by mutating it at runtime is
the idea behind self-modifying techniques. The majority of schemes that are based on
this technique use encryption as the mean to mutate and ultimately to protect a program.
However, there are some schemes that use instruction re-ordering, instead of encryption, to
mutate the program.

Mavrogiannopoulos et al. in [134] define four main criteria in their proposed taxonomy
for self-modifying obfuscation techniques: concealment (the size of program slices that
are being modified at each mutation interval), encoding (the technique that is used to
mutate the code, e.g. instruction reordering or encryption), visibility (whether the code is
entirely or partially protected) and exposure (whether the actual code is permanently or
temporarily obtainable at runtime). Nevertheless, in a more recent survey, virtualization
was also proposed as a relevant technique in [186], but we rather consider virtualization as
a subcategory of layered interpretation techniques.

Sasirekha et al. in [135] review 11 software protection techniques. Their research confirms
the trade off between and security and performance for all the reviewed schemes based on
which they suggested compiler-level protection as possible direction for further research.
However, their work lacks any classification of techniques.

Layered interpretation. In this approach a program’s instructions are replaced with a set
of seemingly random byte codes. These codes can only be executed with a program specific
emulator that is normally shipped with the program itself. Tampering with the program
byte code may result in unrecognized byte code in the emulator and may eventually causes
failures. However, some techniques (for instance [115]) perform integrity verifications at the
emulator prior to executions. In general, layered interpretation techniques add resilience
against static program analysis attacks. To the best of our knowledge, there is also no
published taxonomy on layered interpretation protection methods.

Remote tamper-proofing. Protection schemes that enables a software systems to be veri-
fied externally fall under this category. In an abstract sense, remote tamper proofing has
very much in common with remote attestation concept. Since remote attestation is a vast field

57

2. Taxonomy

of research that deserve a taxonomy on its own, its classification falls out of the scope of
this work.

2.6.2. Comparison of schemes and surveys

Dedic et al. in [72] define distributed check and threshold based detection as significant resilience
improver factors in integrity protection schemes. They use a graph based game and
theoretically prove the enhanced complexity of the scheme with the aforementioned factors.
From this work two interesting features are extracted: detection and response algorithms.

In an effort for security classification and unification of protection notation, Collberg et al.
after defining a notation, use natural science and human history to derive a set of 11 unique
defense primitives in [64]. These primitives state the defense concepts rather than security
guarantees.

In an effort for MATE attack classification, Akhunzada et al. in [10] study different types
and motives behind these attacks. As another outcome of their work, they stressed that
performance factor is one of the main pain points of protection techniques. However, it
appears that no study tackled this matter and there is a lack of a benchmark for protection
schemes [10]. The focus of their work is not the techniques-to-protect themselves, but rather
the attackers. Consequently, the security guarantees are not studied.

The main gap here is lack of a holistic view software protection process. The process itself
is not well defined, business requirements are not elicited, constraints are not studied, and
more importantly, security guarantees that different schemes offer are not studied.

2.7. Conclusions

MATE attackers have successfully executed serious integrity attacks far beyond disabling
license checks in software system, to the extent that the safety and security of users is at
stake.

Software integrity protection offers a wide range of techniques to mitigate a variety of
MATE attacks. Despite the existence of different protection schemes to mitigate certain at-
tacks on different system assets, there is no comprehensive study that compares advantages
and disadvantages of these schemes. No holistic study was done to measure completeness
and more importantly effectiveness of such schemes in different industrial contexts.

In this work, we therefore presented a taxonomy for software integrity protection which
is based on the protection process. This process starts by identifying integrity assets in the
system along with their exposure in different asset representations throughout the program
lifecycle. These steps are captured in the system view, which is the first dimension of our
taxonomy. In the next dimension, the attack view, potential threats to assets’ integrity are
analyzed and desirable protections against particular attacks and tools are singled out. Then,
the defense dimension sheds light on different techniques to satisfy the desired protection
level for assets at different representations. This dimension also serves as a classification

58

2. Taxonomy

for integrity protection techniques by introducing 8 unique criteria for comparison, viz.
protection level, trust anchor, overhead, monitor, check, response, transformation and
hardening. To support the understandability of the taxonomy we used a fictional DRM case
study and mapped it to the taxonomy elements.

We also evaluated our taxonomy by mapping over 49 research articles in the field of
integrity protection. From the mapped articles we correlated different elements in the
taxonomy to address practical concerns with protection schemes, and to identify research
gaps.

In the correlation of assets and representations on which protections are applied we
identified relevant schemes for protecting different integrity assets (behavior, data and data
and behavior). This facilitates the scheme selection based on the assets and representations
at the user end. A major gap was identified in protecting integrity of distributed software
systems.

In MATE vs. representation correlation we have shown different schemes that mitigate
different MATE attacks, viz. binary, control flow, process memory and runtime data, at
different asset representations.

In the correlation of transformation lifecycle and protected representations, we classified
schemes based on their representation-to-protect and their applicability on different pro-
gram lifecycles. Our results indicates a gap in compiler based, load and run time protection
schemes.

To study the impact of the transformation lifecycle on the protection overhead, we cor-
related transformation lifecycles and scheme overheads. Despite the general belief that
compiler based protection should perform better, our results suggest that post-compilation
transformations perform quite optimal. Nevertheless, we were unable to verify the perfor-
mance of compiler based protections due to lack of benchmark results. We believe the lack
of reliable benchmark data as well as a benchmarking infrastructure is a significant gap
in software integrity protection. This is due to the fact that only implementation of a few
protection schemes were made public, for instance in self-checking schemes only [22] has
published their source code. Thus, evaluating their performance, without re-implementing
them, is infeasible.

The correlation between checking mechanism in different protection schemes suggests
that checksumming is the most used technique for integrity verification. Other checking
measures are equally unpopular. The correlation of representation and protection level
shows a gap in hypervisor based protections.

Another major gap in the literature is to analyze resilience of protection schemes against
attacks. Based on our classification data we evaluated the resilience of reviewed schemes
against MATE tools and known attacks on integrity protections. In the resilience against
MATE tools analysis, we proposed a set of assumptions for declaring whether a scheme
resists again a certain MATE tool or not. The assumptions are based on the hardening
techniques that are used by protection schemes. These assumptions were then used to
classify schemes based on resilience against MATE tools.

In the last correlation we analyzed the resilience of reviewed schemes against known

59

2. Taxonomy

attacks on protection schemes. Our Survey indicated that there is a gap in studying the
resilience of protection schemes against pattern matching attacks. This is again due to
a lack of any benchmark of different techniques whatsoever. Regarding memory split
and taint based attacks, we first identified hardening measures that impedes such attacks.
Subsequently, we marked schemes as resilient to memory split and taint based attacks
according to their hardening measures.

All in all, a big gap in integrity protection research is the lack of a benchmark of per-
formance and security guarantees, both of which require a dataset of integrity protection
mechanisms.

Limitation: Our taxonomy emphasizes the defense mechanisms, as the number of pub-
lished attacks on integrity protections is incomparably fewer than published defenses.
Mapping concrete attacks will be a good extension to our taxonomy.

Although we included some research papers on infrastructural security, our analysis’s
main focus was application-level integrity protection. In reality, there are plenty of ways
in the infrastructure that adversaries can potentially exploit. Such exploits could lead to
circumvention of defense mechanisms and a potential violation of the application integrity.
For instance, one major class of attacks that we did not cover is prevention of call hooking
attacks [1]. Another interesting direction is to map infrastructural integrity protection
measures and known attacks on them to the taxonomy.

60

Part II.

Software Integrity Protection
Enhancements

61

3. Practical Integrity Protection with
Oblivious Hashing

This chapter presents practical enhancements corresponding to fundamental
problems of the Oblivious Hashing integrity protection technique, namely cover-
age, and input dependency. The entire content of this chapter was previously
published in work co-authored by the thesis author [5].

3.1. Introduction

Chen et al. proposed a stealthy protection technique (Oblivious Hashing (OH)) that neither
relies on reading process memory nor is deceptable by the memory piping trick [49]. OH
captures evidence of the actual execution of programs by computing a trace hash over the
values stored in memory corresponding to arbitrary read and write accesses in a program.
These hash values are then matched with expected ones during execution. The expected
values have to be precomputed and stored in the programs upon distribution. Simply
put, OH checks the execution effects in memory, as opposed to checking the code itself.
Therefore, it is harder to identify (stealthy) or trick (resilient) OH than SC. Better stealth
and resilience makes OH a better protection technique than SC.

Although OH is hence a more appealing protection measure in principle, it is unable to
protect nondeterministic program traces, i.e., memory accesses with values dependent on
user-input or environment variables. This is mainly because hashing such traces results in
different hashes for different program executions. To remove any nondeterminism from
trace hashes, [48] proposed a technique in which all variables in traces are canceled out
by enforcing a reversible commutative function (e.g., addition) as the hash function. This,
however, enables attackers to patch variables to any desired value, given that the modified
value will be hashed and subsequently canceled out by the protection.

Gap. An effective strategy to cope with nondeterminism requires addressing two chal-
lenges - i) how to automatically extract deterministic program segments, and ii) how to
protect nondeterministic ones. The second problem is more striking as a large portion of
program traces are expected to be nondeterministic. For instance, only 13% of program
instructions evaluated in [159] are deterministic. This percentage is far less for the programs
in our dataset: a mere median of 0.5% as shown in Table 3.1. More importantly, to the

63

3. Practical Integrity Protection with Oblivious Hashing

best of our knowledge, no comprehensive study was done on the security, resilience and
overheads of OH on real-world programs.

Contributions. We turn OH into a practical integrity protection technique. We i) develop
a method for an automated detection of data and control flow dependent instructions in
programs; ii) propose the short range oblivious hashing (SROH) technique as an extension
to OH enabling protection of instructions residing in nondeterministic branches; iii) utilize
a complementary self-checksumming-based technique to protect data dependent segments;
iv) further harden the complementary protection by intertwining it with OH; v) enable
OH to implicitly protect (nondeterministic) data dependent instructions; vi) employ our
protection scheme on a dataset of 29 real-world applications to evaluate the security as
well as the induced overheads; and finally viii) open source our cross-platform protection
framework prototype written in LLVM.

3.2. Background & Related work

3.2.1. Software integrity protection

Protection schemes are comprised of three parts - i) check, ii) respond, and iii) harden [9].
Checking activities monitor a particular set of properties of a program to ensure that they
conform to a known good state. Response activities react when the current state differs from
the good state by, for instance, covertly terminating the program [64]. Hardening refers to a
set of techniques that are used to add resilience to the check and response routines, making
them harder to find or disable.

Authenticating accesses to sensitive data is one of the goals in integrity protection.
Banescu et al. [19] proposed an access proxy that authenticates legitimate modifications on
sensitive data. Legitimacy of such modifications are verified by means of authenticating the
control flow and subsequently signing the data using a white-box HMAC [184]. Similarly,
[31] proposed a scheme that introduces a light-weight secondary process for verifying the
program control flow integrity. Such techniques primarily detect tampering attacks on the
control flow. Consequently, attackers can arbitrarily manipulate the logic in a program as
long as the control flow is preserved.

In order to ensure code integrity, a number of schemes such as [14, 149, 179] have been
proposed. These impede tampering attacks by encrypting the code in a way such that only
a genuine execution could decrypt the code and subsequently execute it, which is enforced
by a trace-sensitive key derivation technique. However, the program has to eventually get
decrypted in order to be executed. Therefore, well-timed memory dumps could defeat the
protection.

State inspection is another type of integrity protection in which dedicated program
invariants are verified. Ibrahim et al. [98] utilized a set of checkers to verify return values of
the sensitive functions for arbitrary inputs as invariants. Their approach works for pure
functions only as opposed to other protections. Andriesse et al. [13] used Return-Oriented

64

3. Practical Integrity Protection with Oblivious Hashing

Programming gadgets to craft stealthy checkers. These checkers are bootstrapped with
a simulated buffer-overflow attack. However, shipping a program with buffer-overflow
vulnerabilities may open the door to other attacks. Moreover, anti-ROP techniques such
as [145, 191] may prevent the execution of such verifiers. The hash of code segments (also
known as self-checking) is another example of invariants that was used by a multitude of
schemes [22, 47, 87, 88, 97]. Self-checking techniques, however, are unaware of the program
execution environment and thus vulnerable to the memory split attack [183]. Moreover,
they introduce atypical behavior (self-memory access) in programs, which in turn may
make them vulnerable to the taint-based attack [150].

Another property of the program that can potentially counter tampering attacks is
execution time, which was used by Jakobsson et al. [100, 101] to detect compromises. Pioneer
[161] and Conquer [133] used the same idea to protect legacy systems. The mathematical
relations among hardware performance counters were used as a clue of tampering attacks by
Malone et al. [132]. All these schemes are greatly system-specific which requires individual
tailoring for every execution host.

Oblivious hashing (OH) [49, 99] combines the deterministic memory values referenced
by instructions in a program’s execution trace by means of hashing. Given that these
values are invariant for different runs, OH can verify the computed hashes in various
parts of the program. This technique offers in-execution protection without introducing
odd behaviors such as code segment accesses. Therefore, it is more appealing to use in
practice than SC. Despite the benefits, OH falls short in protecting instructions working
with nondeterministic data, which we tackle in this work.

3.2.2. Nondeterministic code detection

Detection of instructions that receive (or depend on) input/state in applications is challeng-
ing. Such inputs need not necessarily be entered by users. System state data (e.g., date and
time, CPU heat measurements) have the same effect. We will use the term “nondeterministic
data” throughout this chapter for data that is provided by the environment or user and that
can vary across different executions.

Inconsistent hashes primarily occur when a program p processes some inputs and/or
responds to some environmental states that influence OH computations. The influence can
be in two forms: either an input (state) is directly incorporated into hashes or it contributes
to a branch condition.

A naive idea to detect input-independent instructions is to run the program of interest
with all possible inputs/states and identify the intersection of all executions [49]. However,
running programs with all possible inputs/states, considering the changes over time and
program size, does not scale. Moreover, with a manual procedure, the accuracy of results
may decline.

To cope with this issue in a more systematic manner, we need to distinguish between two
types of nondeterminism: i) data dependency which captures instructions where at least one
of their operands depends on nondeterministic data, and ii) control-flow dependency which

65

3. Practical Integrity Protection with Oblivious Hashing

includes instructions in branches with a condition that depends on nondeterministic data.

There are multiple techniques that could potentially be used to single out nondeterminis-
tic instructions:

Information flow analysis. This is a technique that tracks data propagation (from
sources) to any function of interest (sinks), e.g. standard output [168]. The difficulty
of using the existing information flow analysis tools is on the one hand in specifying all
the sinks in a program. In addition, here our objective is to identify all the (intermediate)
instructions, the operands of which are either tainted with nondeterministic data or the
execution branch of which depends on such data. However, information flow analysis
addresses whether tainted data flowed into arbitrary (unsafe) functions or not, and thus
cannot directly be used to identify nondeterministic instructions.

Program slicing. Program slicing identifies a set of instructions (slice) that may affect
(backward slicing) or be affected by (forward slicing) the values of arbitrary variables
at a given point of time [173]. In order to filter nondeterministic instructions (short for:
instructions that depend on nondeterministic input), one can use (forward) slicing to
compute those instructions that may be affected by input data. This, however, requires
marking all the input variables in a program, for all of which slicing needs to be undertaken.
Moreover, slicing does not segregate data and control-flow dependencies, which is necessary
for our protection scheme.

User-input dependency detection. Dependence graphs capture dependency relations
(both data and control-flow) among program instructions. Given the dependence graphs,
identifying instructions that depend on nondeterministic data is solvable by a graph reach-
ability analysis. We found two techniques for this sort of analyses [159, 163]. The technique
proposed by Scholz et al. [159] also takes the call-site dependency status (of a function) into
consideration in its so-called call-sensitive analysis, which in turn makes it the best candidate
for our nondeterminism detection. However, their tool is not publicly available1, which is
the reason we had to re-implement it from scratch.

3.3. Design

Throughout this section, we use a sample electricity meter application as our running
example, which uses varying rates depending on the time of day. The meter in Listing 3.1
charges users twice the rate for peak hours, half the rate for off-peak hours, and the normal
rate for holidays and non-peak hours. The sensor calls the meterUsageCycle function on
an hourly basis to report consumptions (*kwMinute argument) in kilowatt minutes, their
count (size), and the period of usage (rate argument).

1We contacted the authors on May 4, 2017 asking for a copy of their code, but we have not yet received a reply.

66

3. Practical Integrity Protection with Oblivious Hashing

Listing 3.1 Fictional electricity meter application with varying rates

1 enum period {Peak, OffPeak, Normal};

2 float computeUsage(float *kwMinute, int size, enum period rate){

3 float usage = 0; //III

4 for(int i=0;i<size;i++){ //DDI

5 float rating = 1.0; //DII|CFDI

6 if(rate == Peak){ //DDI

7 rating = 2.0; //DII|CFDI

8 } else if(rate == OffPeak){ //DDI

9 rating = 0.5; //DII|CFDI

10 }

11 usage += kwMinute[i]*rating; //DDI

12 }

13 return usage; //DDI

14 }

15 ...

16 meterUsageCycle(float *kwMinute, int size, enum period rate){

17 kwHour = 0; //III

18 if(isHoliday()){ //DDI

19 enum period normalRate = Normal; //DII|CFDI

20 kwHour = computeUsage(kwMinute, size, normalRate); //DDI|CFDI

21 } else {

22 kwHour = computeUsage(kwMinute, size, rate); //DDI|CFDI

23 }

24 ...

25 }

3.3.1. Segregation of input data/control-flow dependent instructions

Our protection requires identifying all values that are tainted (from any input sources)
with nondeterministic data (data-dependent) as well as branches whose execution relies
on such data (control-flow dependent). As discussed in Section 3.2.2, the problem of
nondeterministic behavior identification essentially is a reachability problem in graphs.
Therefore, we base our segregation technique on the call-sensitive user-input dependency
detection technique [159]. Because a detailed discussion of the analysis is out of the scope
of this work, in the following we abstractly discuss the high-level idea only and refer to the
original publication [159] for details.

The first step is to construct dependency graphs [80] for a given program. Nodes are
program instructions and edges indicate data and control-flow dependencies among them.

67

3. Practical Integrity Protection with Oblivious Hashing

Else.if.OffPeak

T F

OffPeak

rating=0.5

Peak

rating=2.0

If

T F

Loop.cond

i < size

T F
Loop.end

ret usage

Loop.end

ret usage

Loop.inc

i++

Loop.inc

i++

If.End

usage += kwMinute[i]*rating

If.End

usage += kwMinute[i]*rating

Entry

usage=0

Entry

usage=0

rate=1.0

(a) computeUsage’s CFG
representation

Else.if.OffPeak

h2,h3

Peak

h1

If

h1,h2,h3,h4

OffPeak

h3

If.End

h4

P1 P2

P3

P3
P4

Entry

h0

Entry

h0

P0

(b) computeUsage’s
paths

P1
P2

P3

P3

If.End

verify(h4, e4)

If.End

verify(h4, e4)

Else.if.OffPeak

hash(h2,rate!=Peak)

verify(h2, e2)

Else.if.OffPeak

hash(h2,rate!=Peak)

verify(h2, e2)

P4

Peak

hash(h1,rate==Peak)

hash(h1,rating)

verify(h1,e1)

Peak

hash(h1,rate==Peak)

hash(h1,rating)

verify(h1,e1)

OffPeak

hash(h3,rate==OffPeak)

hash(h3,rating)

verify(h3, e3)

OffPeak

hash(h3,rate==OffPeak)

hash(h3,rating)

verify(h3, e3)

If

h1,h2,h3,h4=randomTokens

hash(h4, rating)

If

h1,h2,h3,h4=randomTokens

hash(h4, rating)

P0

Entry

h0=randomToken

hash(h0,usage)

verify(h0,e0)

Entry

h0=randomToken

hash(h0,usage)

verify(h0,e0)

(c) computeUsage’s short
range hashes & verifica-
tions

Figure 3.1.: Applying SROH to the computeUsage function of the sample electricity meter
program

That is, assignments yield data dependency edges while calls and branches yield control
flow edges. The location where functions are called (call site) together with the arguments
that are actually passed to them affect the input dependency of their instructions. To
adequately propagate call-site dependencies, a strongly connected component analysis is
run on the program call graph. Then, multiple dependence graphs are constructed for each
strongly connected component. These graphs are then analyzed (in a reverse topological
order) to propagate dependencies, starting from functions that are called at the bottom of
the call graph. The outcome of the analysis indicates data and control-flow dependencies.
In Listing 3.1, comments indicate the input dependency of instructions: III, DII, DDI and
CFDI denote input-independent (both data and control flow), data-independent, data-
dependent, and control-flow dependent instructions, respectively. III instructions can
directly be protected using OH, e.g., the right-hand operands of the assignments at lines 3
and 17 in our sample program (Listing 3.1). Clearly, hashing memory references of both
DDI and CFDI yields different hashes for different inputs.

3.3.2. Short Range Oblivious Hashing (SROH)

To enhance the explicit protection of OH, we propose a novel Short Range Oblivious Hashing
(SROH) mechanism to cover nondeterministic control flows by OH. As seen above, hashing
both DDIs and CFDIs may lead to inconsistent hash values. The incorporation of data-
dependent variables into hashes yields unverifiable hashes. Similarly, covering instructions
in input-dependent branches by OH may lead to two types of inconsistent hashes for

68

3. Practical Integrity Protection with Oblivious Hashing

different nondeterministic values: i) the expected hash cannot be precomputed because
nondeterministic values lead to the execution of different branches, and ii) the expected
hash cannot be computed as a result of taking some branches for an indefinite number of
times depending on nondeterministic values.

To cope with these issues, we propose the SROH technique comprised of a path-specific
set of hash variables and a tailored verification. Our technique can protect DIIs residing
in nondeterministic branches. Moreover, it captures a holistic control flow integrity by
reflecting the evaluation results of nondeterministic branches in its hashes. The idea is to
realize OH using distinct hash variables for every ordered sequence of basic blocks (OSBB)
that are strictly executed in the identified order, in every execution. That is, for a given block
in the sequence, all the preceding blocks are necessarily executed before reaching the block.
Another requirement is that hashes, in such sequences, are verified in one of the blocks
within the sequence—conveniently, the last block. Of course, some blocks may appear in
multiple sequences. Such blocks in the intersection of multiple sequences contain multiple
hashes, and thus verifications.

The SROH technique effectively addresses the two aforementioned issues with hashing
input dependent branches because - i) hashes are computed in the scope of identified
sequences and, therefore, not taking a branch does not affect the expected hashes, and ii)
the verification of hashes takes place within the identified sequences, and thus the number
of times a branch is taken does not corrupt hashes.

We use two strategies for loops—input-dependent and input-independent, depending on
whether a loop (condition) is input-dependent. Our SROH technique consists of four steps.

Step i. OSBB discovery. Dominator tree relationships [121] can be utilized to identify
sequences of basic blocks that have the desired property, i.e., immediate dominance, from a
control flow graph (CFG). We construct OSBBs at the granularity of functions; however, the
same idea can be applied at the program module level.

Input-independent loops, the looping condition of which does not rely on any nondeter-
ministic input, do not require any specific action. Input-dependent loops, however, need
to be handled differently. Since the number of iterations of an input-dependent loop is
determined by (nondeterministic) inputs, hashing loop-variant instructions—the value
changes of which are propagated to other loop iterations—leads to inconsistent hashes.
We ensure hash consistencies for such loops by abstracting their (indefinite) number of
iterations. That is, we only consider their (loop) bodies; and, subsequently, loop condition,
iteration and end blocks are excluded from OSBB computations. Moreover, we require
every OSBB to end immediately before an input-dependent loop begins.

As an example, we apply the discovery technique on the computeUsage function of
our sample program, whose CFG representation is depicted in Figure 3.1a. Figure 3.1b
illustrates the identified OSBBs, namely P0: Entry, P1: If→ Peak, P2: If→ Else.if.OffPeak,
P3: If → Else.if.OffPeak → OffPeak, and P4: If → If.End. Nodes indicate program basic
blocks while edges capture the order in which those blocks are executed. Since OSBBs for
input-dependent loops start from the beginning of loops, in Figure 3.1b the Entry block is
treated as a standalone OSBB, and hence not as a part of the loop sequences.

69

3. Practical Integrity Protection with Oblivious Hashing

Step ii. Distinct hash variables. Next, we create a distinct hash variable for every
identified OSBB in its first block. These hash variables are used to protect the instructions
residing in the basic blocks of a particular OSBB, which we refer to as available hash
variables in the block. In our computeUsage example (Figure 3.1b), we identify five paths
and therefore create five hash variables, h0, h1, h2, h3, h4. These hash variables are further
mapped to the basic blocks to clearly indicate the available variables in each block. Some
blocks (e.g., If and Else.if.OffPeak blocks in Figure 3.1b) are in common between different
sequences and thus can have multiple available hash variables, one per each sequence
that pass through them. In such blocks, SROH can randomly utilize a random subset of
available variables, or all of them.

Step iii. Hash verifications. In this step, all the DII|CFDIs are protected by hash variables
that correspond to their OSBB. That is, DDIs as well as loop-variant instructions within
input-dependent loops are skipped. In the case of input-independent loops, loop variants
can also be covered as long as they are data-independent. Furthermore, to reflect the control
flow of the program into available hashes of each block, we incorporate the evaluation
result of branching conditions.

After incorporating instructions into hashes, we need to ensure that OSBB-specific hashes
match expected values. However, the verification of hashes with instructions that were not
previously executed results in false alarms. For example, in Figure 3.1b verifying h1 in the
If.End block will raise a false alarm if the Peak block is not executed before. Hence, each
block can only verify those hash variables that are available in it. Figure 3.1c demonstrates
the OSBB-specific hashing and verifications for the computeUsage function.

Step iv. Precomputing expected values. All expected hashes (e0, e1, e2, e3 and e4) have to
be precomputed and adjusted in protected programs before shipping them. One way to
achieve this is by triggering the protected branches, for instance using targeted symbolic
execution [130] in a monitor mode to capture the expected values. Alternatively, we can
precompute OSBB hashes by slicing and further emulating instructions that are involved
in the hash computation of each OSBB. A standalone emulation of paths is possible as no
DDIs are protected in paths. We use the emulation-based approach as it performs faster
than symbolic execution.

In Section 3.4, we present a full utilization of SROH together with OH on the electricity
meter program for which SROH increases the instruction coverage of OH from 13% (2
instructions) to 66% (10 instructions).

3.3.3. Data-Dependent Instructions (DDIs)

For a resilient protection scheme, in addition to protecting III (by OH) and DII|CFDI (by
SROH), we need to also protect DDIs. For instance, in our electricity meter example in
Listing 3.1, line 11 indicates an unprotected DDI that computes the actual usage. Similarly,
the isHoliday function plays an important role in the usage computation by enforcing
the holiday tariff. These program segments can be seen as sensitive operations in our
smart meter program that are, nonetheless, left unprotected because of their dependency

70

3. Practical Integrity Protection with Oblivious Hashing

on nondeterministic data, e.g., system time and data provided by the meter’s sensors.

Our evaluation in Section 3.6 confirms that such instructions constitute a high percentage
of program instructions. Hence, failing to protect them enables perpetrators to violate
system integrity despite the added (partial) protection.

We hence propose to use a complementary protection technique for those instructions
that OH/SROH cannot protect. Unlike OH, such an integrity protection technique must be
unaffected by nondeterministic input. We refer to this layer of protection as data dependent
protector (DDP). Since SC protection monitors program code, not the execution, it is not
affected by any input data. Therefore, we can use it to build the DDP layer. Applying the
DDP protection to our sample program enables us to cover both the isHoliday function
and the DDIs in the computeUsage function.

We base our DDP on self-checksumming protections similar to those discussed in [22, 47].
Our DDP is comprised of protection guards, ideal hash functions, a response mechanism, and a
hardening method:

Protection guards. Code hashes are computed by a set of overlapping guards, each of
which is dedicated to a consecutive set of DDIs. These guards are seeded with offset and size
of those instructions of the program in memory. Hash functions are then utilized to hash
the machine code bytes residing between offset and offset+size into an accumulator variable.

Ideal hash functions. The hash function itself need not have properties of a crypto-
graphic hash function, e.g. collision-resistance is not as important in this context. Instead, it
is crucial that the utilized hash function is stealthy and fast. A stealthy hash function must
have a covert computation routine as well as low entropy outcomes. Since the expected
hashes have to be incorporated into the binary, using cryptographic hash functions entails
incorporating high entropy expected values. Linear time attacks can find such values and
potentially their guards as well [54]. Therefore, we resort to a simple XOR hash function.

Response mechanism. In case of mismatches, a covert response mechanism is triggered
by the respective guard. Based on the nature of a protected program, this response may vary
from performance degradation, temporally delayed termination or a signal to a command
& control server [47, 58, 64]. In some cases, no intrusive response whatsoever is desired;
instead an evidence of violation of integrity shall be maintained for postmortem analyses.
In our scheme, we leave the response routine itself completely configurable/customizable
to meet different program requirements.

Hardening method. As a hardening measure, we craft a network of interconnected
guards; i.e., there are guards that protect other guards, possibly in a cyclic manner [22].
Under the assumption that guards are diversified, i.e., do not syntactically resemble each
other too much, in order to counter pattern matching attacks, one factor in measuring the
difficulty of tampering with guarded segments is the number of guards that need to be
defeated by attackers. This is known as the connectivity of a protection network [47]. Higher
connectivities increase the resilience, but harm performance (more checks takes more time).
In our protection, we let users define their desired connectivity via a parameter.

71

3. Practical Integrity Protection with Oblivious Hashing

3.3.4. Intertwined protection

For additional resilience, we intertwine the DDP layer with the OH layer. A direct con-
sequence of interleaving the two is an added resilience against tampering attacks on
self-checksumming guards. In Section 3.6.5, we discuss the security enhancements in detail.

The idea is to have OH/SROH protect SC guards, which can also be seen as the implicit
protection of nondeterministic segments by OH. The protection incorporates all (invariant)
attributes of guards (i.e. offset, size, and expected hash) into OH/SROH hashes, possibly
with the exception of the DDP’s computed hashes, if one desires to mitigate taint-based
attacks, see Section 3.6.5. This works because self-checksumming guards do not depend on
inputs: they compute hashes over certain process memory blocks and compare them with
expected values, which remain unchanged, independent of the program inputs. Listing 3.2
illustrates this layered protection. For simplicity’s sake, in our example we demonstrate the
response mechanism as a function call (i.e. response()). This is rather easy for attackers
to detect and subsequently disable such calls. In reality a set of covert and diversified
response routines shall be utilized.

Listing 3.2 Fictional electricity meter application with varying rates

1 ...

2 OH_hash(OH_hash_var, offset);

3 OH_hash(OH_hash_var, size);

4 OH_hash(OH_hash_var, SC_expected_hash);

5 SC_computed_hash = SC_hash(offset, size);

6 if(SC_computed_hash!=SC_expected_hash){

7 response();//tampering detected

8 }

9 ...

10 OH_assert(OH_hash_var, OH_expected_hash)

It is worth noting that SC guards that reside in input-dependent branches in principle
cannot be covered by OH. However, because of our SROH extension, OH can protect
control-flow dependent branches, and thus all the SC guards.

3.4. A full example of OH+SROH utilization

We carry out our transformations in the LLVM IR representation. However, for the sake of
clarity, we demonstrate our protection (OH+SROH) on the electricity meter sample program
in C. Listing 3.3 presents the applied protection on the sample program.

72

3. Practical Integrity Protection with Oblivious Hashing

Listing 3.3 Snippet of the fictional electricity meter application after the utilization of
OH+SROH

1 enum period {Peak, OffPeak, Normal};

2 float computeUsage(float *kwMinute, int size, enum period rate){

3 long h0 = <random token>;

4 float usage = 0; //III

5 OH_hash(OH_hash_var, usage)

6 SROH_hash(h0, usage)

7 SROH_verify(h0, <expected value>)

8 for(int i=0;i<size;i++){ //DDI

9 long h1 = <random token>, h2=<random token>,

10 h3 = <random token>, h4 = <random token>;

11 float rating = 1.0; //DII|CFDI

12 SROH_hash(h4, rating);

13 if(t= rate == Peak, SROH_hash(h1, t), t){ //DDI

14 rating = 2.0; //DII|CFDI

15 SROH_hash(h1,rating);

16 SROH_verify(h1, <expected_value>)

17 } else if (t= rate != Peak, SROH_hash(h2, t), t){

18 //dummy if clause capturing the missing branch in the high-level representation

19 SROH_verify(h2, <expected_value>)

20 } else if(t = rate == OffPeak, SROH_hash(h2,t), t){ //DDI

21 rating = 0.5; //DII|CFDI

22 SROH_hash(h3,rating);

23 SROH_verify(h3, <expected value>)

24 }

25 SROH_verify(h4, <expected_value>)

26 usage += kwMinute[i]*rating; //DDI

27 }

28 return usage; //DDI

29 }

30 OH_hash_var = <random token>

31 meterUsageCycle(float *kwMinute, int size, enum period rate){

32 kwHour = 0; //III

33 OH_hash(OH_hash_var,kwHour);

34 long h0 = <random token>, h1=<random_token>;

35 if(t = isHoliday(), SROH_hash(h0,t), t){ //DDI

36 enum period normalRate = Normal; //DII|CFDI

37 SROH_hash(h0,normalRate);

38 kwHour = computeUsage(kwMinute, size, normalRate);//DDI|CFDI

39 SROH_verify(h0, <expected_value>)

40 } else if (t= !isHoliday(), SROH_hash(h1,t), t){ //DDI

41 SROH_hash(h1,normalRate);

42 kwHour = computeUsage(kwMinute, size, rate); //DDI|CFDI

43 SROH_verify(h1, <expected_value>)

44 }

45 OH_verify(OH_hash_var, <expected value>)

46 }

73

3. Practical Integrity Protection with Oblivious Hashing

3.5. Implementation

We implemented the entire protection tool chain for LLVM 6.0, aiming for a cross-platform
protection. Our entire tool-chain is publicly available at https://github.com/tum-i22/
sip-oblivious-hashing. In this section, we briefly discuss some highlights of our pro-
totype.

3.5.1. Protection process

The process takes as input the program that we wish to protect. To limit the scope of the
protection application, a set of sensitive functions can be specified in the configuration,
for instance, to induce less performance overhead. If such functions are provided to the
protection tool, all protections (OH, SROH, SC) are applied to them only, with the exception
of some additional functions that are picked by SC to satisfy the desired connectivity level
(see Section 3.5.5). Additionally, users can provide their desired response routine to the
tool chain. This could be easily extended to supply a set of diversified and covert response
routines.

Next, the program is analyzed to identify data and control-flow dependencies. This
information is required in all subsequent steps. The program is then subjected to the SC
pass, where a set of interconnected SC guards is created to protect DDIs.

An OH transformation pass then protects the SC guards and the application’s IIIs. The
former accomplishes part of intertwining OH and SC. That is, SC guards residing in input
independent segments get protected by OH. SROH further extends the OH coverage by
protecting DII|CFDIs. It effectively covers the remaining SC guards and thus completes the
process of intertwining OH and SC.

The SC-Post-Patching process then adjusts SC guards accordingly (see Section 3.5.5).
Finally, the OH-Post-Patching process runs the binary and makes the final adjustments
by fixing expected hashes in the OH and SROH guards (see Section 3.5.3). The outcome of
the process is a protected binary in which its DDIs and IIIs as well as the newly created SC
code is protected.

3.5.2. Input dependency detection

Our analysis pass, besides identifying input dependencies, distinguishes between data and
control flow dependencies. This is necessary for the implementation of OH, SROH, and
even SC.

The analyzer relies on function definitions to identify sources of input dependencies.
This is problematic as many functions may come with no definitions, e.g., call sites of
external functions. In such cases, the analyzer makes conservative assumptions, i.e. marks
instructions as input-dependent if it cannot prove otherwise. The same holds true for
the converse situation, if a local function is passed as a callback argument to an external
function. In this case, we miss the external caller’s input dependency information.

74

https://github.com/tum-i22/sip-oblivious-hashing
https://github.com/tum-i22/sip-oblivious-hashing

3. Practical Integrity Protection with Oblivious Hashing

To cope with these limitations, users can fine tune these assumptions in configuration
files. Such files primarily contain information about the input dependency of external
functions and call-back arguments. Users will have to create them once, but may use them
repeatedly for different programs that are based on the same protected code base.

3.5.3. Oblivious hashing (OH)

Our OH prototype has a parametrized number of hash variables which are then randomly
used throughout the program. We also implemented two different hash functions (XOR
and CRC32) to be randomly utilized, which can easily be extended.

To realize OH, we create hash calls with hashable instructions/values to available hash
functions and incorporate outcomes into hash variables randomly. We consider the CMP,
Load, Store, Call, GetElementPtr and Return LLVM instructions as our hash-
able candidates. To incorporate the CMP, Load, GetElementPtr and Store instruc-
tions, we hash their right-hand-side operands. For Call instructions, we take both argu-
ments and return values. Return instructions are protected by incorporating their operand
(return value) into hashes.

Bear in mind that we ensure consistent hashes by skipping all instructions and operands
that are DDI or CFDI. These instructions are marked by the input dependency analysis.

After each hash call, OH places a verification guard that checks if the value of the hash
variable matches an expected value.

Statically precomputing expected hashes may require backtracking a chain of values in
the program. We instead resort to placeholders that will later be patched by a dynamic
patcher. That is, the OH pass leaves expected hashes to be filled later by a patcher.

Since OH only is applicable in deterministic program regions, running a program with any
given input should execute all its checks. Exploiting this characteristic of OH, we developed
a debugger-based patcher that replaces placeholders with expected hashes according to
computed values. We refer to this dynamic patcher as the OH-Post-Patching process.

3.5.4. Short Range Oblivious Hashing (SROH)

As discussed in Section 3.3.2, in order to realize SROH, we need to implement path discovery,
distinct hash variables, hash verification and precomputation of expected values.

LLVM natively supports both dominance tree generation for functions as well as loop
block detection. We exploited these features to compute individual short range paths for
all the functions with control-flow dependency. The number of paths yields the number of
required distinct hash variables.

SROH skips all DDIs in all paths. Within each short range path, we utilize our OH
protection (see Section 3.5.3), with an enforced usage of the available hash variables in
blocks. We also use LLVM’s loop analysis along with a reachability analysis to detect
loop-invariant instructions that can be incorporated into hashes within input-dependent
loops.

75

3. Practical Integrity Protection with Oblivious Hashing

It is important to ensure that the verifications of each path are strictly carried out in the
blocks of that path only. The situation is slightly different for loops. Since input-independent
loops incorporate loop-variants in their hashes, having verifications in the loop body entails
supporting a set of expected values, instead of a single value. In our prototype, we solve
this problem by verifying short range hashes of input-independent loops only in the loop
end block.

Finally, we need to adjust verifications with the expected hash values. For this purpose,
we use either of the LLVM interpreter (lli) or program slicing to emulate sliced instruc-
tions [163] in each path individually. Thereafter, we patch verifications with the correct
expected hash values.

3.5.5. Self-checksumming (SC)

Since OH together with SROH is capable of protecting IIIs as well as DII|CFDIs, we desire
to apply SC strictly to data-dependent segments of a program. This positively impacts the
overhead of protections, without harming overall coverage.

The SC pass injects guards into the intermediate representation of a program according
to the constructed protection network. These guards check if a function in memory hashes
to an expected value. However, guard details (the beginning address of functions, their
sizes, and expected hashes) can only be known after compilation. Therefore, in the pass,
instead of the exact values we use a set of placeholders. Later, a post-compilation process
(SC-Post-Patching) adjusts protected binaries with correct values of addresses, sizes, and
expected hashes.

3.5.6. Response mechanism

Our response to any tampering is a covert termination by corrupting stack frames. This
could be replaced with any desirable response mechanism by providing the desired behav-
ior to the tool chain. The tool can easily be extended to support a set of diversified response
mechanisms for better resilience.

3.6. Evaluation

In this section, we evaluate the efficiency as well as the effectiveness (coverage and security)
of the proposed protection tool chain.

3.6.1. Dataset

To evaluate our protection, we use a subset of 26 programs in the MiBench dataset [93],
which is a representative embedded benchmark suite comprising 33 programs. The rea-
son for our restriction to the subset of 26 programs is crashes in the external library dg
(https://github.com/mchalupa/dg) that we use to carry out tasks such as pointer

76

https://github.com/mchalupa/dg

3. Practical Integrity Protection with Oblivious Hashing

and argument reachability analyses. We expect these issues to be fixed in the future. We
also include 3 open source games gathered from Github, namely tetris, 2048, and snake.

Table 3.1 reports on various details of the programs in our dataset (LLVM Insts. column
represents the number of instructions in LLVM). We employed our input dependency
analyzer to compute the percentage of input-independent (III%), input-dependent (DDI%+
CFDI%), and finally data-independent (DII%) instructions. DII, in addition to III, also
captures CFDI. III indicates the potential coverage of OH, while DII captures the same for
SROH. However, besides non-hashable instructions, SROH inevitably has to skip loop-
variants as well as instructions tainted by input-dependent arguments.

3.6.2. Preparation

To measure the impact of protection on a subset of program instructions, we repeat our
experiments for random combinations of 10%, 25%, 50% and 100% of the program functions
that we aim to protect. This mimics the user’s specification of the sensitive functions to
protect. For each program, we select twenty random function combinations of the afore-
mentioned percentages and report the average values. We set the SC connectivity
level=1 constant throughout the experiment, i.e., there is one checker for each sensitive
function. Since SC networks of checkers are randomly generated, we repeat the SC pro-
tection three times for the same combination of functions. Applying the protection for
each program with different combinations and repetition of SC protection results in 240
variations of protections: 20 combinations of functions × 4 coverage percentages (10, 25, 50,
100) × 3 random SC networks. In the case of 100% coverage, we repeat the SC protection
twenty instead of three times, because the 20 combinations of functions are all identical. All
experiments were executed on a bare-metal machine with 16 GB of RAM and Intel Core i7
CPU running Linux 16.4.

3.6.3. Coverage

We are, firstly, interested in the coverage of each of the protection measures, i.e., how
many instructions are protected by which measure. We report on the ratio of instructions
protected by each of the OH and SROH primitives. We also measure the basic block
coverage of these protections. Any block that contains at least one protected instruction
is reported as a protected block. This is relative to the overall program, independent of
whether we do 10, 25, 50, and 100 protections. According to our experiments, SC can
protect all the instructions that OH/SROH fall short to protect. Table 3.1 reflects the
following coverage values corresponding to our evaluation: the total number of basic
blocks in programs (Blocks); the ratio of SROH protected blocks (SROHB%); the ratio of
OH protected blocks (OHB%); the number of invariant-loop (unprotected) blocks (LB); the
number and percentage of OH protected instructions (OH); the number and percentage of
SROH protected instructions (SROH); the number of skipped instructions (SI) by SROH
due to: incomplete (pointer) analysis, non-hashable instruction, loop-variant instruction,

77

3. Practical Integrity Protection with Oblivious Hashing

Program In
st

ru
ct

io
ns

II
I%

D
D

I+
C

FD
I%

D
II

%

O
H

I

SR
O

H
I

O
H

I%

SR
O

H
I%

O
H

I%
+

SR
O

H
I%

SI SR
O

H
D

D
I

Bl
oc

ks

LB O
H

B%

SR
O

H
B%

O
H

B
%
+

SR
O

H
B

%

qsort small 92 2.2 97.8 17.4 2 2 2.2 2.2 4.3 12 0 17 5 5.9 11.8 17.7
qsort large 147 1.4 98.6 10.9 2 6 1.4 4.1 5.4 12 4 19 5 5.3 26.3 31.6
crc 147 2 98 14.3 2 7 1.4 4.8 6.1 16 4 19 4 5.3 31.6 36.9
dijkstra small 323 19.5 80.5 42.4 56 10 17.3 3.1 20.4 81 10 51 7 41.2 35.3 76.5
dijkstra large 323 19.5 80.5 42.4 56 10 17.3 3.1 20.4 81 10 51 7 41.2 35.3 76.5
rawcaudio 418 0.5 99.5 12.9 1 28 0.2 6.7 6.9 47 22 63 5 1.6 44.4 46
rawdaudio 418 0.5 99.5 12.9 1 23 0.2 5.5 5.7 48 18 63 5 1.6 38.1 39.7
basicmath small 532 49.4 50.6 51.7 176 0 33.1 0 33.1 99 0 62 12 67.7 0 67.7
tetris 629 20.7 79.3 44.7 33 65 5.2 10.3 15.6 207 24 108 19 12 53.7 65.7
basicmath large 643 49.3 50.7 52.4 222 0 34.5 0 34.5 115 0 82 20 61 0 61
sha 657 0.3 99.7 23.4 2 58 0.3 8.8 9.1 100 6 56 8 3.6 67.9 71.5
bitcnts 664 0.5 99.5 9.9 3 11 0.5 1.7 2.1 60 8 69 9 1.4 15.9 17.3
fft 742 0.3 99.7 18.5 2 27 0.3 3.6 3.9 126 18 87 24 1.1 52.9 54
2048 game 749 0.9 99.1 35.4 4 115 0.5 15.4 15.9 180 34 124 12 0.8 72.6 73.4
search large 827 10.2 89.8 26.5 55 0 6.7 0 6.7 164 0 147 6 10.9 2 12.9
search small 827 10.2 89.8 26.5 55 0 6.7 0 6.7 164 0 147 6 10.9 2 12.9
snake 1065 2.8 97.2 23.3 14 92 1.3 8.6 10 178 36 148 19 5.4 73.6 79
patricia 1087 0.2 99.8 12.1 2 42 0.2 3.9 4 128 40 149 18 0.7 46.3 47
bf 3607 0.1 99.9 5 4 74 0.1 2.1 2.2 137 34 129 16 0.8 48.8 49.6
rijndael 5866 0.2 99.8 3.9 7 84 0.1 1.4 1.6 188 52 147 32 1.4 68 69.4
say 6859 0.3 99.7 18.6 12 591 0.2 8.6 8.8 1124 450 1026 159 0.5 67.1 67.6
susan 12656 0.1 99.9 5.6 12 588 0.1 4.6 4.7 602 498 698 104 0.1 77.2 77.3
ispell 13545 0 100 19.8 2 1580 0 11.7 11.7 2432 1328 2628 501 0 74.4 74.4
toast 13930 0 100 11.4 1 845 0 6.1 6.1 1334 594 1342 128 0.1 74.5 74.6
djpeg 52708 0.3 99.7 14 66 531 0.1 1 1.1 7168 384 5419 135 0.5 12.9 13.4
tiffdither 53162 0.1 99.9 13.7 8 1499 0 2.8 2.8 7028 1246 6855 170 0 30.1 30.1
tiff2bw 53463 0.1 99.9 13.7 5 1491 0 2.8 2.8 7046 1240 6882 187 0 29.8 29.8
cjpeg 54837 0.2 99.8 13.4 43 519 0.1 0.9 1 7177 366 5615 138 0.3 11.8 12.1
tiffmedian 55708 0.1 99.9 13.6 6 1619 0 2.9 2.9 7293 1340 7184 280 0 31.7 31.7

Mean µ 11608 6.6 93.4 21 29.4 342 4.5 4.4 8.8 1494.7 267.8 1358.2 70.4 9.7 39.2 48.9
Median 827 0.5 99.5 14.3 6 58 0.3 3.1 6.1 164 24 129 18 1.4 35.3 49.6
Std.Dev. σ 19744.1 13.2 13.2 13.6 51 531.8 9.2 3.8 8.6 2625.8 442 2376.6 108.8 18.1 25.1 23.5

Table 3.1.: Block and instruction coverage reports of OH and SROH protections. The III col-
umn describes the percentage of instructions effectively protected by OH; the DII
column describes the percentage of instructions in principle protectable by SROH.
Median increase in instruction coverage from OH to OH+SROH is by factor
6.1%/0.3%≈20; increase in median block coverage is by factor 49.6%/1.4%≈35.

argument reachable instruction; and the number of instructions in data-dependent branches
protected by SROH (SROHDDI). Note DII=SROHI+SI-SROHDDI.

3.6.4. Performance analysis

Secondly, we are interested in the runtime and static overheads.

78

3. Practical Integrity Protection with Oblivious Hashing

Runtime overhead

The dg library takes very long time (and crashes after a few runs) to complete its pointer
analysis for tiff2bw, tiffdither and tiffmedian programs. This makes it impossible to generate
protected versions for these programs. Also, ispell runs improperly as one of the provided
input files (the dictionary) is apparently corrupted. Therefore, we excluded them from our
performance analysis and also from Figure 3.2.

The protected binaries were each executed 100 times with the same inputs, in order
to measure the runtime overhead and to weed out random factors. For programs with
required input at runtime, e.g. games, we pipe the inputs by hooking system calls such as
getchar. The baseline is computed by averaging 100 runs of the unprotected programs,
which received identical execution parameters as their protected counterparts. Figure 3.2
illustrates the mean and standard deviation of the performance overhead of the protected
programs in our experiment. One can see that some programs such as “crc” have a very
low overhead (under 2%), while many others have a higher overhead (over between 32%
and 64%). Moreover, the overhead generally increases with the coverage percentage of
protected code. The irregularities are due to randomness in the implementation of the
protection.

The form of the network of checkers plays an important role in the performance overhead
of the protected binaries. That is, the overhead (of the protected binary) may vary, based
on how hot the segments containing SC checkers are. For instance, if a function that is
called frequently happens to carry out SC checks, this will cause a significant performance
degradation. The large overhead variance on different instances (see the error bars in
Figure 3.2) of the same program confirms the role of the checkers’ locality.

Protection time

The protection process takes 30.16 seconds on average for our programs in the dataset. This
time includes the input dependency analysis (12.12), SC (0.0019), SROH+OH (15.40), and
the two post patching routines (2.61+0.29).

3.6.5. Security analysis

Thirdly, we are interested in the security of our scheme. One way to evaluate the security
is to randomly tamper with protected programs and measure the detection rate. The
assumption in such random attacks is that perpetrators possess no knowledge about the
protection mechanism. However, we should assume that adversaries are fully aware of the
internals of our protection scheme. To capture the attacker’s possible actions, we hence
decided to instead use the attack-defense-tree notation [117] as depicted in Figure 3.3 and
refer an additional analysis with random tampering to future work. The ultimate goal
of perpetrators is to tamper with sensitive code/data in a program, which is the root of
our attack tree. They can do so if they manage to disable OH guards which are guarding the

79

3. Practical Integrity Protection with Oblivious Hashing

20
48 bm
-l

bm
-s bf

bit
cn

ts
cjp

eg crc
dk

str
a-l

dk
str

a-s
djp

eg fft
pa

tri
cia

qs
rt-

l
qs

rt-
s

ca
ud

io
da

ud
io

rijn
da

el sa
y

src
h-

l
src

h-
s

sh
a

sn
ak

e
su

sa
n

te
tri

s
to

as
t

2 2

21

24

27

210
Ov

er
he

ad
 in

 p
er

ce
nt

ag
e

10% 25% 50% 100%

Figure 3.2.: Performance measurements using OH+SROH+SC for four (10%, 25%, 50%,
and 100%) coverage levels. OH/SROH runtime overhead is depicted by black-
margined bars, additional SC runtime overhead is shown with stacked bars
with gray margins. Bars with no black margins indicate protected programs
with negligible OH/SROH overheads.

Tamper with sensitive code

5.5.1. Disable OH/SROH protecting sensitive code 5.5.2. Disable SC guards protecting sensitive code 5.5.3. Disable response

1.a. Find hash calls & patch them

with the expected values
1.b. Remove assert calls

2.a. Disable

intertwined OH guards
2.b. Defeat SC

b.i. Split

attack

b.ii. Taint

analysis

attack

2.c. Patch SC

guards

c.ii. Patch &

preserve

hashes

c.iv. Just-in-

time patch

and repair

c.iii. Modify

hash functions to

always return

the correct

values

c.i.

Pattern

matching

 a.i.

Pattern

matching

a.ii. Taint

hash

variables

a.iii. Use

debugger to

obtain correct

hashes

b.ii. Taint

hash

variables

b.iii. Remove

branches

depending on

hashes

b.i.

Pattern

matching

Diversification

obfuscation

Opaque

predicates
Anti-

debugging

Blend protection

with the logic

Increase the cost

of taint analyses

Requiring kernel patching

prohibits a mass

deployment

Utilize multiple

hash functions

Diversification

obfuscation

Increase

connectivity level

Defense node

Attack node

Disjunctive refinement

Corresponding defense

Figure 3.3.: An attack-tree-based security analysis of the proposed protection scheme.

sensitive code, disable SC guards and/or disable the response mechanism.

Disable SROH/OH guards protecting sensitive code

To defeat OH protection attackers need to 1.a. find hash calls & patch them with expected values
or 1.b. remove all asserts which verify the computed hashes. To replace calls to hash functions
with expected values they first need to find these hash calls in the binary. a.i. Pattern
matching and a.ii. Tainting hash variables are two techniques that an attacker may utilize. If
hash calls in a protected binary follow recognizable patterns, attackers can quickly identify
hash call sites. To raise the bar against such attacks, we suggest to resort to diversification
obfuscation techniques, e.g. instruction(s) substitution [56]. Attackers can utilize taint
analyzers [150] to backtrack involved instructions in hash computations. This, however,
requires attackers to identify hash variables in the binary first, which is obviously harder.

80

3. Practical Integrity Protection with Oblivious Hashing

One way to raise the bar against taint analysis is to extend the search space, for instance, by
introducing a massive number of bogus data dependencies on hash variables using opaque
predicates [62].

Another possibility is to a.iii. attach a debugger (on an untampered version of the program)
and record expected values on each hash call site. Then, these expected values will be
patched in the binary. However, attackers would need to identify all OH hash call sites.
Therefore, such call sites must utilize strong obfuscations to prevent pattern matching.
Another possibility is to add resilience against debuggers (dynamic analyzers). For instance,
the anti debugger technique proposed by Abrath et al. [3] can add more resilience.

1.b. Removing assert calls is another possibility for attackers to potentially circumvent the
protection. Again, they can utilize b.i. pattern matching and/or b.ii. taint analysis to achieve
this goal, for which the aforementioned hardening measures apply. Another attack is to
b.iii. remove all the branches that rely on computed hashes. For additional resilience, we can
further blend the program logic with the protection, e.g., the execution flow can depend on
the computed hash values, similar to the technique presented in [47].

Disable SC guards

Adversaries may opt to defeat SC guards if the sensitive code of interest resides in an
SC-protected segment. Three sub-attacks can materialize here - 2.a. Disabling intertwined
OH guards, 2.b. Defeating SC and 2.c. Patching SC guards.

2.a. Disabling intertwined OH guards. As all the SC guards are additionally protected
by OH/SROH protection. Disabling the intertwined protection boils down to attacking
OH/SROH guards (see Section 3.6.5).

2.b. Defeating SC. There are two known attacks on self-checksumming based techniques:
b.i. memory split [183] and b.ii. taint analysis [150]. The former requires a modification of
the OS kernel, which potentially prohibits the massive deployment of tampered programs.
However, the latter can potentially defeat our entire protection if SC hashes taint our
OH/SROH hashes. The reason is that the taint-based attack can in theory identify all the
branching conditions that are tainted by the parts of the process memory that contains
the program’s code. This not only includes SC guards but also OH/SROH guards. To
mitigate this attack, we can ensure that SC’s computed hashes (over process memory) are
never incorporated into OH/SROH hashes, and instead OH/SROH covers the routine that
computes such hashes. Also, we must place OH/SROH guards spatially distant from SC
guards, otherwise a scan near detected SC guards may reveal the overlapping OH/SROH
guard(s). This adds resilience against tampering attacks targeting SC guard arguments,
hash and response routines. However, even with these measures, the taint-based attack
can still detect SC’s branching condition. Given that the taint tracking process of the attack
is computationally very expensive [22], carefully crafting programs to increase the cost of
such taint analyses could potentially render the attack impractical. For instance, one could
introduce a large number of (side-effect-free) read/write operations from/to SC variables.

2.c. Patch SC guards. In order to disable SC guards attackers could use c.i. pattern matching

81

3. Practical Integrity Protection with Oblivious Hashing

(already addressed in 1.a.i), c.ii. patch and preserve hashes, c.iii. modify hash functions to always
return the expected values and c.iv. just in-time patch & repair attacks.

c.ii. Patch and preserve hashes. Since the hash function that is used by SC is not collision-free,
it is possible that attackers manage to patch some instructions in a way that hashes remain
unchanged. To mitigate this threat, we can utilize a multitude of overlapping hash functions
similar to those proposed in [22]. Another option on the x86 architecture is to interleave
program blocks such that tampering with protected blocks affects other blocks [99].

c.iii. Modify hash functions to always return the expected values. Attackers can make hash
functions to always return the correct value, if they manage to relate a guard’s branching
condition (containing an expected hash) to the underlying hash function that computes
hashes. To tackle this attack, we shall utilize diversification obfuscation on instructions that
evaluate hash results [25, 56].

c.iv. Just-in-time patch and repair. Another possibility for attackers is to patch a protected
segment and fix it before it is checked. Increasing the connectivity level raises the bar
against this attack.

Disable response

Finally, attackers can target the response mechanism itself, for instance, by using pattern
matching or taint analysis. For example, an immediate termination after tamper detection
could be traced back to the protection guards. For this purpose, covert responses like those
discussed in [47, 58, 64] could be utilized.

It is worthwhile to note that the resilience of our protection guards (both SC and OH/S-
ROH) as well as their response routines heavily relies on obfuscation. Therefore, we believe
further empirical studies need to be conducted to measure the effectiveness of the applied
obfuscation techniques on our protection scheme.

3.7. Discussion

3.7.1. Coverage

The potential coverage of OH is limited by the number of instructions that deterministically
process—constant—data for all program inputs (III). Our programs contain a median of
only 0.5% IIIs (µ=6.6%, σ =13.1%), which severely limits the application of OH. In fact,
we observed a median instruction coverage of only 0.3% (µ=4.5%, σ=9.2%) for OH. Given
that instructions with no data dependency on nondeterministic data constitute a median
of 14.3% (µ=21%, σ =13.6%) (see DII% column in Table 3.1) in our dataset, SROH has
the potential to improve coverage of protected instructions. This is, however, limited by
factors such as hashable instructions, incomplete analysis results and argument reachable
variables. Our SROH added a median instruction coverage of 3.1% (µ=4.4%, σ=3.8%). This
is an increase w.r.t. pure OH protection by a median factor of 20. It is worth noting that our
prototypical input dependency analyzer relies on conservative pointer as well as reachability

82

3. Practical Integrity Protection with Oblivious Hashing

analyses provided by the dg tool. More advanced pointer analysis techniques (such as those
presented in [168]) can potentially enhance the coverage. Despite the immediate benefits,
we see the extension of the analysis tool beyond the scope of this work, given that all the
presented protection techniques remain unchanged.

Regarding block coverage, SROH yields even more encouraging results. Our experiments
show that SROH yields a median additional block coverage of 35.3%. When contrasted
with the median block coverage of 1.4% for OH alone, this corresponds to an increase of the
number of protected block by a factor of 35.

Of course, the external validity of our results is limited by the programs in our dataset.

3.7.2. Implicit protection with OH/SROH

Apart from the protection coverage that SROH offers, it has another major benefit on
the security of the system. SROH enables us to cover all the SC guards regardless of the
branches in which they reside. This coverage makes it harder to tamper with such guards
and thus turns our scheme into a more resilient measure (see Section 3.6.5). Whether
taint-based attacks can help identify, and subsequently disable, OH/SROH guards for SC
guards, depends on the efficiency of this attack in practice (see Section 3.6.5 and [22]). Our
experiments confirm that all the SC-protected segments benefit from the implicit protection
of SROH/OH.

3.7.3. Performance

For the bf, bm (both large and small), cjpeg, patricia, qsrt (both large and small) programs,
a significant portion of the overhead stems from SC protection, as shown in Figure 3.2.
This can be mitigated if resilience of the protection is less important than performance,
by simply not applying SC to those parts of the code that are deemed less critical. In
case of programs like dijkstra (large and small), djpeg, rijndael, say, search (large and
small) and sha, we observe a higher overhead being imposed by OH/SROH. We believe
that SROH hash verifications (asserts) in the loop body of such programs are the main
reason behind the slowdowns. Employing the composed protection (SC+OH/SROH) on
CPU-intensive programs (particularly with a high number of instructions located in loops)
inevitably imposes high overheads. Therefore, to better analyze overheads, we shall make
a distinction between computationally expensive and computationally cheap programs. It
is fair to mention that most of (if not all) MiBench programs are rather computationally
expensive and hence our results tend to capture a worst case scenario.

We consider bf, dijkstra (both), patricia, rawaudio (both), basicmath (both), search (both),
bitcnts, fft, rijndael, say, sha, and toast as computationally expensive programs, and consider
the rest as computationally less expensive. For the computationally less expensive programs,
our experiments indicate acceptable overheads (median of 17.6% (µ=25%, σ=23%) and 29.7%
(µ=35%, σ=21%)) for a partial protection of 10% and 25%, respectively. The 50% protection
induces higher slowdowns of 37.1% (µ=39%, σ=22%). A full protection imposes an overhead

83

3. Practical Integrity Protection with Oblivious Hashing

of 52% (µ=62%, σ=49%). Note that the large variance is due to the nature of the protected
programs.

Although the application of resilient protection on CPU-intensive programs yields a
high overhead, we believe these overheads are acceptable for non-CPU-intensive programs.
For instance, 10, 25, 50, and 100 protection coverages impose no noticeable slowdowns in
the games in our dataset (namely tetris, 2048, snake). Therefore, whether the overhead
is acceptable or not depends on the specific program at hand. For instance, commonly
checked program parts include license checks which usually are not CPU intensive.

3.8. Conclusions

We have designed, implemented, and evaluated an end-to-end tool chain for practical
integrity protection with oblivious hashing and self-checksumming. In order to protect
input-data dependent instructions, we proposed SROH as a technique for protecting input
dependent control flows by localizing hash computations.

We evaluated our proposed protection with 29 real-world programs, 26 of which are
taken from the MiBench dataset, plus 3 open source games. In this sample set of programs,
increased the median of protected instructions by a factor of 20 and the median of pro-
tected blocks by a factor of 35 (SROH+OH when compared to OH only). The remaining
instructions were protected by a complementary self-checksumming technique hardened
by a network of checkers. We then showed how to interleave both protection mechanisms,
aiming for a more resilient protection.

Our results indicate that the imposed overhead is 52% with a complete protection (for
non-CPU-intensive programs). However, in real use cases it is often necessary to protect
only a subset of the program (i.e. sensitive functions). This, we argue, makes our protection
a practical scheme.

84

4. Virtualized Self-Checksumming

In this chapter, we present a novel approach to address the problems of self-
checksumming integrity protection concerning applicability and composability.
This chapter was previously published in a work [7] co-authored by the thesis
author.

4.1. Introduction

Self-checksumming (SC) enables programs to detect changes in their process memory using
so called guards [47]. Upon detections, SC calls a response mechanism. However, since
these checks have to be executed at runtime, the expected checksum values need to be pre-
computed and, after compilation, inserted into the executable. Not only does this approach
require knowledge of the underlying system’s architecture, it also mandates a post-patching
step to put these expected checksums (hashes) into predefined places. This is an extremely
tedious and error-prone process [22]. This process also limits the use of other obfuscation
techniques, as one needs to maintain a set of placeholders (i.e. contiguous sequences of 4
or 8 bytes in the code segment) for the pre-computed checksums at known offsets in the
executable. Applying obfuscation would likely change the offsets and contiguous layout of
the placeholders.

To eliminate this post-patching step, we leverage the compiler framework LLVM [119] to
implement self-checksumming atop virtualized instructions. For this, we also implement
virtualization obfuscation. LLVM already implements backends for different system archi-
tectures, which removes the required architecture knowledge and post-patching. Applying
the guards at a higher abstraction level removes the post-patching process at binary level
entirely. This is achieved by first applying virtualization obfuscation [87] and then adding
the guards in the custom interpreter bytecode.

Contributions. This work makes the following contributions:

• A novel design for combining self-checksumming and virtualization obfuscation
(Section 4.3).

• A performance evaluation of the implementation, using a dataset of 24 real-world
programs (Section 4.4).

• An attack-tree based security analysis of the design and implementation (Section 4.4).

85

4. Virtualized Self-Checksumming

The rest of this chapter is organized as follows. Section 4.2 presents the necessary back-
ground knowledge for this chapter and related work. Section 4.5 discusses performance and
security tradeoffs. Section 4.6 presents the limitations of this approach and implementation.
Finally, the conclusions are presented in Section 4.7.

4.2. Background and Related Work

In this section we first present the two essential parts of our approach, i.e. virtualization
obfuscation and self-checksumming. Afterwards, we present related work about combining
the two techniques.

4.2.1. Virtualization Obfuscation (VO)

VO’s primary goal is to transform a program’s control flow to a semantically equivalent,
yet less comprehensible version. Given a program, this technique lifts all instructions to
a new, random Instruction Set Architecture (ISA). Thereafter, an interpreter specific to the
newly generated ISA is created. Lifted code along with the interpreter are what the end
user receives.

The interpreter’s job is to fetch, decode and dispatch execution to the original instructions’
handler. Each handler emulates the original instructions’ behavior. Furthermore, all program
memory allocations are done via a virtual memory (VM). A virtual program counter (VPC)
keeps track of the last executed instruction at runtime. This obfuscation technique can
be applied at different representations of programs such as source code [57] or binary
level [126]. The level at which the technique is applied plays an important role in its
composability with other protections. To the best of our knowledge, there is no publicly
available implementation of VO as a compiler pass particularly in LLVM.

VO intuitively reduces the comprehensibility of protected programs for attackers. VO can
resists automated attacks imposing additional cost [12, 21, 44] at the perpetrator’s end. For
instance, the utilization of opaque predicates [62] or range dividers [20] can significantly
hamper attacks based on symbolic execution [156].

4.2.2. Self-Checksumming (SC)

Self-checksumming is a software tamper-proofing technique [47]. The idea is to equip
a software with a set of interconnected guards. Each of these guards carries out hash
calculations over the code segment (in the process memory) during runtime to detect
potential code manipulations. Guards need to be pre-seeded with the expected hash values
of the code that they are protecting. Upon detection of code tampering (i.e. hash mismatch),
a response mechanism is triggered [139].

Since all calculations are done at runtime over the binary (machine code), the expected
hashes can only be known after compilation of programs. That is, if an SC protection is to

86

4. Virtualized Self-Checksumming

be developed as a compiler pass, the expected hashes need to be adjusted once the binary
representation of the program is finalized. For this purpose usually placeholders along
with post-patching mechanisms are utilized [4]. Alternatively, a backend pass (similar to
the one described in [104]) can be used to adjust placeholders.

Both of the mentioned adjustment approaches have a tight dependency on the underlying
architecture. That is, the adjustment shall be tailored for each and every architecture for
which the binary is compiled. The architectural dependency imposes extra cost in terms of
development and maintenance of protections.

Furthermore, SC guards are susceptible to pattern matching attacks [4, 9, 22]. Therefore,
without proper utilization of obfuscations, SC is rather easily identifiable, and perhaps de-
featable. However, obfuscation inherently alters the syntactical representation of programs.
SC imposes two limitations on the application of obfuscations: i) the placeholders need to be
preserved (not obfuscated); otherwise, some adjustments may fail; and (ii) applying further
obfuscations (after SC hashes are adjusted) could break SC guards (as expected hashes may
no longer hold). These setbacks may result in having no obfuscation on overlapping guards
and expected hash values (placeholders before adjustments), which negatively impacts the
resilience of SC. Consequently, the composability of SC with other protections is heavily
limited, and thus, the overall security. In this chapter, we propose a technique to overcome
the identified drawbacks and to fix the composability problem of SC.

4.2.3. Combining Virtualization and Integrity Protection

Since our proposal is based on combining VO and SC, we reviewed existing literature on
protection schemes that use VO to add resilience to their schemes.

Ghosh et al. [87] proposed a protection technique that combines process virtualization
(comparable to VO), encryption, and self-checksumming. In their technique, program
instructions together with their protection guards are encrypted and subsequently shipped
into the binary. The decryption key is also placed in the binary but protected using white-
box cryptography [53]. The process virtualization is rather used as a proxy to decrypt
protected instructions. Since the SC protection is directly applied on the instructions,
utilizing further protections (after the application of SC) could break the SC protection. In
another similar work Ghosh et al. [88] used SC to protect dynamically generated (cached)
instructions of the virtualized programs.

Gan et al. [82] proposed a technique that uses protected virtual machines acting as the
root of trust. Several hardening techniques including white-box cryptography, obfuscations,
etc. are also utilized to protect the virtual machine. The authors indicate such a virtual
machine can be relied on to carry out integrity checks.

In contrast to the related work, our proposal rather aims at improving composability of
protections and removing architectural dependencies and thus reducing costs.

87

4. Virtualized Self-Checksumming

4.3. Design

In this section we present the architecture of our approach, the design decisions and the
reasoning behind them. We end this section describing the optimizations that were added
to the design.

4.3.1. High-level Architecture

The architecture of a protected program using our technique is presented in Figure 4.1.
Every program utilizes its own Random (Virtual) Instruction Set Architecture (RISA). The
RISA (depicted in the top-left corner of Figure 4.1), is a volatile data structure capturing a
set of random instruction mnemonics and their actual semantics. The RISA only exists at
the time of transformation and it is discarded afterwards. The RISA is created sequentially
while visiting program instructions.

Our technique can be applied on either the entire application or a subset of its functions.
Users can annotate the desired functions with a sensitive tag. By iterating over instructions
(of annotated functions) a Virtual Program Array (VPA) containing the translation of
the original instruction to the new RISA is created (top-right of Figure 4.1). That is, if an
instruction does not have an equivalent mnemonic in RISA, a corresponding mnemonic and
a reference to its semantics are inserted into RISA. Next, all memory accesses (constants,
variables and registers) are altered to use a sequential Virtual Memory (VM), which is
depicted in the middle-left side of Figure 4.1. In addition to mnemonics, which are captured
as random opcodes, the VPA keeps a reference to the indexes at which corresponding data
of instructions are persisted in the VM.

At this stage, self-checksumming guards according to the specified protection require-
ments are injected into the VPA (center of Figure 4.1). Guards, similar to the original
program instructions, use the VM to carry out their calculations and subsequently verifi-
cations. Simply put, the computed hash as well as the expected hash values are stored in
and retrieved from the VM. It is important to note that SC guards protect the VPA; i.e. they
compute hashes over the VPA (not the original program instructions).

For the lifted instructions to be executable an Interpreter is needed (bottom of Fig-
ure 4.1). The Interpreter fetches instructions from the VPA. It decodes the RISA’s semantic of
mnemonics to execute the fetched instructions. Within the interpreter a Virtual Program
Counter (VPC) keeps track of the last executed instruction (see middle-right part of Fig-
ure 4.1).

4.3.2. Detailed Design

This section presents several architectural components from Section 4.3.1, and their inner
workings in more detail.

88

4. Virtualized Self-Checksumming

Figure 4.1.: Solution’s high level architecture

Random Instruction Set Architecture (RISA)

The RISA is a program/function specific contract comprised of Opcode, Operand(s), and
Semantics. The opcode, in essence, captures mnemonics of the RISA. Opcodes are randomly
generated 16-bit integers. Operands refer to indexes in the VM where either the input or
output of the computation should be “retrieved from” or “stored to”.

Virtual Memory (VM)

The VM holds all operands needed by the translated instructions. Values are stored con-
tiguously, and accessed by index. As types are known beforehand, we can deterministically
compute the amount of elements we need to read or write upon load and store operations,
respectively. To do so, we simply set a pointer to the index corresponding to the “beginning
of” and “operand of” interest followed with a cast to the known type. After dereferencing
this pointer, the value can be used by the interpreter. Persisting changes to VM values
includes splitting the data into chunks of 8-bit integer values.

Virtual Program Array (VPA)

The VPA is a static array containing the lifted instructions. As we are using an interpreter
per-function (see section 4.3.2), each function has its own VPA and its checksum can be
verified by any other function in the same module. In the case of a control-flow changing
instruction the next VPC value is provided in the bytecode, which the interpreter will assign
to the VPC. Since we are using 16-bit integers as Opcode, all elements in VPA are 16-bit
integers. This includes indexes to the VM. The VPA is a constant, global array. This allows
any function to calculate the hash of any other virtualized function. Being declared as
constant in LLVM also means we cannot generate code that modifies the array at runtime.

The decoded instruction’s result will be written back into the VM to be used by subse-
quent instructions. The VM is allocated on the heap. When handling an instruction that

89

4. Virtualized Self-Checksumming

returns execution to the caller, we clean up the allocated memory before returning (also see
Section 4.6.2).

Instruction Lifting and Translation

In our design, we generate an interpreter for each virtualized function. Function level
virtualization enables us to maintain the program’s original function symbols and thus no
linking problem will be incurred. As our solution is implemented as a transformation pass
based on LLVM, the maximum number of instructions we have to translate in our VO is
limited by the maximum of instructions in LLVM, i.e. 58 distinct instructions. PHINode is
the only instruction that we cannot directly translate. To cope with PHINode instructions,
we resort to LLVM’s reg2mem pass yielding replacement of PHINodes with correspond-
ing allocations, load and store instructions. Exceptions are not supported in the current
implementation (see Section 4.6.1).

Based on the user’s list of sensitive functions, we sequentially virtualize each one indi-
vidually. The virtualization step first iterates over all instructions in the current function.
For each instruction visited, we generate a random 16-bit integer value to be used as the
opcode. If an instruction of this type has already been added, (granted that operands’ types
match) we reuse that instruction’s opcode. Next, for each operand, we add the value to VM
and append the index to the VPA. For instructions that change the control flow, such as
branch instructions, we append a placeholder instead.

After all instructions have been visited, we iterate over the translated instructions and,
for instructions that change the control flow, replace the placeholders with correct indices
of the branch destinations. Despite the flat nature of the VPA, we can still translate branch
instructions. Given that LLVM branch instructions point to target basic blocks, we need to
translate the target to an index in the VPA. The index should refer to the first instruction of
the original destination block in the VPA. This is as simple as assigning the target instruction
index to the VPC. Such assignments mimic jumps in programs.

For conditional branches, the situation is slightly different. Each conditional branch
has two destinations depending on whether the condition holds true or false. Therefore,
we need to translate both target blocks to their corresponding indexes in the VPA and
subsequently set the VPC accordingly. The branch translation step needs to be done after
all instructions have been virtualized to guarantee that the index is correct. Otherwise, we
might not find the correct instruction, if it has not yet been virtualized.

After all instructions have been virtualized, we add the current function with its hash
to a temporary list. This list is later used while crafting SC checkers (see Section 4.3.2).
If the current function is a checker (dictated by the randomly created network of check-
ers Section 4.3.2), we insert a guard for each checkee at random locations into the VPA of
the function.

90

4. Virtualized Self-Checksumming

Interpreter

An interpreter is generated for each individual function. Interpreter generation starts with
allocating a VM and storing all needed constant values and function arguments into it. The
VPC is initialized to zero. Next, a loop is added, which fetches the next instruction, decodes
it and dispatches execution to the corresponding handler. The interpreter starts with the
instruction at index zero, and then increments the VPC by one for each fetched opcode from
the VPA. In case of control-flow changing instructions, the VPC is set to indexes of target
destinations in the VPA.

The main body of the interpreter is in fact a switch statement that takes the current opcode
as an argument. Each case in the switch body corresponds to a distinct opcode in the RISA.
Cases are handlers of virtualized instructions. Handlers contain code that emulates the
original instruction(s). This involves loading operands from the VM, executing the decoded
instruction, and writing the result back into the VM.

Several instructions coded with the same opcode in the program will end up using the
same handler. In addition to reducing the binary size, reusing these handlers has several
advantages. For one, there is no one-to-one mapping of handler and original instruction.
This also implies that if an attacker wants to change how one specific instruction is handled,
for example changing a jump destination, it will result in side-effects at different locations
of the function. Therefore, it is intuitively harder to tamper with the program control-flow
or, generally, instructions.

Using function-level virtualization has the advantage that once a function’s interpreter
has been successfully reverse engineered, the attacker cannot transfer this knowledge
to the other functions; instead, each function’s interpreter has to be reverse engineered
individually. Moreover, having virtualization at the level of functions yields a simpler
linking process.

Since the ret (return instruction in LLVM IR) can be emulated in the function-level
virtualization, passing the return values between functions becomes trivial. However, a
module-level interpreter would need to read and write the return values from a shared
memory, which entails addressing challenges such as race conditions and memory management
issues.

In our design, the default case of the interpreter’s switch statement will invoke the
response mechanism. That is we treat invalid opcodes as well as VPC issues as tampering
attacks.

Self-Checksumming Guards

One way to tamper with the program behavior is to manipulate VPA values. Our self-
checksumming protection utilizes a set of code snippets, referred to as guards, that verifies
the VPA values of different (virtualized) functions. In a nutshell, a guard hashes a function’s
VPA to ensure that it matches the expected value at different intervals during program
execution.

91

4. Virtualized Self-Checksumming

SC protection is added after virtualization. Guards obtain a unique opcode similar to
other instructions. Each guard has a target function (checkee) as well as an expected hash
value. That is, for every guard opcode in VPA there exists two operands in VM. Another
memory slot is reserved in VM for the runtime hash value of guards. During program
execution, upon fetching a guard opcode the interpreter loads the address of the target
function’s (checkee’s) VPA along with the expected hash from VM. For the given target
VPA a cumulative byte-by-byte hash is computed that is persisted in the preserved runtime
hash in VM. The runtime hash is subsequently matched with the expected hash. In case
of mismatches the response mechanism is triggered. Bear in mind that depending on the
desired protection configuration (see Section 4.3.2) more than one guard might be injected
into the VPA of a given function.

As per the hash function, we use the binary XOR operator which comes with two clear
benefits. First, the operation occurs quite often in normal programs, e.g. to clear a register
value. So, it offers a higher stealth. Second, XOR is fast as it requires only a single operation
on many X86 processors [81]. Nonetheless, our implementation can easily be extended to
use different hash functions, if needed.

Guards Connectivity

If a guard in function A checks the code of function B, then we call function A the checker
and function B the checkee. Connectivity refers to the number of checkers per each sensitive
function. In the generated network, this is given by the number of incoming edges to
a (sensitive) node. Since in our implementation we do not support cyclic checks, the
connectivity is restricted by the number of functions in the module.

Network of Checkers

We generate a random network of checkers in the form of a directed acyclic graph. For each
function in the sensitive set, we pick a number of functions equal to the desired connectivity
to be checkers to the function of interest. In cases where the desired connectivity value is
simply not achievable, for example because it is higher than the number of functions in the
module, our pass will use the highest possible connectivity. This results in each sensitive
function being checked by all other non-sensitive functions in the module.

Response Mechanism

Hash mismatches in our solution are redirected to the default case in the interpreter’s switch
statement. The response mechanism in our solution is straight-forward termination of the
process by calling the C library function abort. This can be extended to use a stealthier
response (such as stack pollution) or a multitude of them, one of which is randomly selected
at runtime. Since the intrusiveness and hostility of the response mechanism depend on the

92

4. Virtualized Self-Checksumming

use case (e.g. termination is not an options in browsers [19]), we let the users of the tool
develop their desired responses.

4.3.3. Optimization

The machine code that will be generated by our scheme is likely to be quite inefficient.
The switch statement can, in the worst case (with no reuse of handlers), get as large as the
number of instructions of the original function. This results in a multitude of comparisons
and conditional branches. In some cases, the value that is used in the switch has to be
compared against each case value until a match is found. Therefore, the generated code, in
the worst case, has to iterate through plenty of cases and compare them to the given opcode
value. Only on a match, will it jump to the specified block. Thereafter the same routine is
repeated until no more instructions are left in the function’s VPA.

It is noteworthy to mention that some compilers reduce the number of comparisons by
translating switch statements to indirect jumps through jump tables [29]. This optimization
can improve the performance at the cost of adding a multitude of jumps in the program
binary.

Despite handler reuses and indirect jumps, the performance impact particularly for in-
structions within loops can be significantly high. To cope with this limitation, we extend
our interpreter to support indirect threading [24]. This optimization enables directly con-
necting the handlers with each other, instead of having to iterate through the switch cases.
The cornerstone of this technique is to compute the successor handler for each handler.
Afterward, a direct jump to the successor is placed at the end of handlers. If there exists
more than one successor for a given handler, we compute the list of possible targets and
insert an indirect branch. Listing 4.1 illustrates (using pseudo-code) how the control-flow
looks like after applying this optimization. Note the goto instructions at the end of each
handler.

In LLVM, indirect branches require a list of possible destinations and an address to jump
to. While we can statically determine the list of destinations, we only know the correct
addresses during execution. Not only are the actual addresses not calculated at the point of
our pass, we are also using the handler for more than one instruction, so we also have more
than one successor and need to account for multiple addresses. Since each instruction by
itself only has one successor, we can simply use an index into the list of possible destinations
and resolve the correct destination address at runtime. This is shown in listing 4.1 on lines
8 and 9.

Despite the potential performance improvements, we believe the optimization negatively
impacts the security of the protection. Connecting the handlers with each other also makes
the resulting control flow more linear. Linear control flows makes the resulting machine
code easier to analyze both for a human and static analysis tools. As a switch in machine
code is nothing more than a sequence of comparisons and conditional jumps, symbolic
execution tools quickly run into path explosion problems. Linear control flow for a human
makes the sequence of executed instructions more intuitive than a series of comparisons

93

4. Virtualized Self-Checksumming

Listing 4.1 A simple demonstration of an interpreter utilizing the indirect threading opti-
mization

1 int some_func() {

2 uint8_t *DataArray = ...; // store constants and function params

3 uint64_t PC = 0; // program counter

4 goto handler_1;

5 handler_1: // this handler is being reused

6 handle_op_1();

7 PC += ...;

8 next = CodeArray[PC]; // dynamically determine next handler

9 goto handlers[next];

10 handler_2:

11 handle_op_2();

12 PC += ...;

13 goto handler_3;

14 ...

15 }

and conditional jumps. Furthermore, the handlers without reuse can readily be spotted by
attackers.

Therefore, we keep this optimization optional, to be used in cases where large over-
heads are not tolerable. In the remainder of this chapter we refer to the unoptimized
implementation as the secure implementation.

4.4. Evaluation

In this section we conduct a set of experiments to measure the performance and to evaluate
the security of our proposed scheme. As pointed out earlier, our optimization is set to
enhance the performance. However, the actual performance improvement as well as
security implications of the optimized approach are rather unknown. Throughout this
section we run our evaluations on both approaches to precisely capture advantages and
disadvantages of each approach.

94

4. Virtualized Self-Checksumming

4.4.1. Dataset

To carry out our evaluations we use a subset of 22 programs from the MiBench suite [93]
along with three open source CLI games, namely tetris1, snake2, and 20483, summing
up to a total of 25 programs. It is worthwhile to mention that technical difficulties in
compiling some MiBench programs to a single LLVM IR bitcode file (e.g. use of a mix
of assembly and c code) forced us to exclude them from our evaluations. The first four
columns in Table 4.1 show details (#Instruction: number of instructions, #Function: number
of functions, and #Block: number of basic blocks in LLVM IR) for each program in our
dataset.

4.4.2. Coverage

The goal of this experiment is to determine the effectiveness of the protection scheme. One
way is to measure the protection coverage. Coverage of protection in this case refers to the
number of instructions that are virtualized as well as the number of instructions (in the
VPA) that are protected by SC guards.

We generated a set of protected binaries (VO+SC) with a function coverage of 100%. A
coverage of 100% indicates that the protection deems all the program instructions as security
sensitive and thus tries to protect them all. Since the checkers of SC guards are randomly
selected, we repeat the binary generation 20 times to weed out potential noises yielding a
total of 480 programs, 20 × 24 (programs). Bear in mind that utilizing optimizations has no
impact on the coverage of SC. Columns #Prot. Inst. and Prot. Inst.% of Table 4.1 capture the
number and percentage of SC protected instructions, respectively. Section 4.5.1 discusses
the impact of the protection coverage on the scheme security.

4.4.3. Performance

The goal of this experiment is to measure the overhead of the added protection in both
secure and optimized modes. We intend to capture the actual overhead of VO in both
modes. Then, we repeat the same set of experiments for the combination between VO
and SC. This way of measurement enables us to single out the overhead of each scheme
separately.

To measure the impact of our protection, we generate protected binaries with a range of
partial protections (i.e. 10%, 20%, and 50% of functions) as well as a complete protection
(i.e. 100% of functions). For every protection level we generate 20 random combinations of
functions to be deemed as sensitive. Thereafter, if the SC protection is enabled, we generate
10 protected programs for each combination to weed out the noise of SC’s random network
of checker creation. That is, for the VO+SC benchmarks we end up with 800 (20 [function

1https://github.com/troglobit/tetris
2https://github.com/troglobit/snake
3https://github.com/cuadue/2048_game

95

https://github.com/troglobit/tetris
https://github.com/troglobit/snake
https://github.com/cuadue/2048_game

4. Virtualized Self-Checksumming

Program #I
ns

t.

#F
un

ct
io

n

#B
lo

ck

#P
ro

t.
In

st
.

Pr
ot

.I
ns

t.
%

qsort s 107 2 18 74 69
crc 152 4 20 135 89
qsort l 166 2 22 128 77
dijkstra l 338 6 59 304 90
dijkstra s 338 6 59 304 90
rawcaudio 437 3 78 389 89
rawdaudio 437 3 78 389 89
basicmath s 538 5 63 186 35
basicmath l 649 5 83 186 29
sha 666 8 57 619 93
tetris 669 13 129 564 84
bitcnts 705 15 82 669 95
fft 760 7 91 483 64
2048 803 17 146 699 87
search l 873 10 159 741 85
search s 873 10 159 741 85
snake 1124 13 172 1071 95
patricia 1201 6 169 867 72
bf 3667 8 168 3383 92
rijndael 5924 7 147 5074 86
say 7447 75 1302 7135 96
susan 12996 19 916 12760 98
toast 15374 94 1542 15268 99
djpeg 54496 379 6518 53204 98
cjpeg 56735 391 6788 55396 98
Mean 6699.00 44.32 761.00 6430.76 83
Median 760.00 8.00 129.00 669.00 89
Std 15253.74 104.82 1817.06 14937.38 18

Table 4.1.: Protection coverage of instructions including the network of checkers using SC
atop VO (Prot. Inst.% column)

combinations] × 4 [protection levels] × 10 [network of checkers]) protected instances for
each mode (secure and optimized). However, when only VO is applied we generate 80
(20× 4) protected instances per mode. It is noteworthy that we set connectivity=2 for

96

4. Virtualized Self-Checksumming

Figure 4.2.: Overhead of VO vs. VO+SC protection in the secure mode; the gray-margined
bars capture VO+SC protection while the black-margined bars depict VO pro-
tection results

SC throughout our experiments. That is, every sensitive functions is checked by 2 other
functions, if enough functions are available in the module.

We use benchexec4 [30] to precisely measure the performance of our programs before
and after applying protections. We run each program 100 times with the exact same
inputs and measure the overhead. For games we pipe in constant input by intercepting
the necessary library calls (e.g. getch). According to our experiments all the protected
programs execute correctly with respect to the provided inputs.

Secure Mode

Figure 4.2 illustrates the overhead of VO as well as VO+SC in the secure mode . The average
overhead of VO (applied single handed) is 89.34%, 314.95%, 445.41%, and 1018.46% for
protection levels of 10, 25, 50 and 100, respectively. When VO and SC are combined the
average overhead rounds to 109.74%, 193.64%, 468.72%, and 1055.51% for protection levels
of 10, 25, 50 and 100, respectively. Note that the average of VO+SC overheads for the 25%
protection level are smaller than the corresponding overheads when only VO is applied.
We believe this is due to the randomness of function selections, the frequency of check
executions, and potential LLVM optimizations.

4https://github.com/sosy-lab/benchexec

97

https://github.com/sosy-lab/benchexec

4. Virtualized Self-Checksumming

Figure 4.3.: Overhead of VO vs. VO+SC in the optimized mode; the gray-margined bars
capture VO+SC protection while the black-margined bars depict VO protection
results

Optimized Mode

In this section we report on the average overhead of our protection in the optimized
mode. Figure 4.3 captures the results of our experiments. In sum, the induced overhead
for VO-only is 48.27%, 151.59%, 231.65%, and 458.42% for protection levels of 10, 25, 50
and 100, respectively. For VO+SC protection, the captured results indicate an average
overhead of 32.64%, 150.54%, 231.65%, and 501.04% for protection levels of 10, 25, 50 and
100, respectively.

It it noteworthy to mention that some protected (VO+SC) instances (in both secure and
optimized modes) perform better than the unprotected version (VO only). We investigated
those binaries manually but were not able to find any problems in them. They appear to
benefit much more from the LLVM optimizations compared to other protected binaries.

4.4.4. Security

We analyze threats to the security of our protection from three perspectives: threats to SC
protection, threats to VO, and threats to the combined protection. The utilization of secure
or optimized approaches naturally impacts the protection level. Since our optimization is
merely applied on the interpreter of VO, the other components are not impacted. Therefore,
we make a distinction between the two approaches only in the security analysis of VO.

98

4. Virtualized Self-Checksumming

Figure 4.4.: Attacks on SC depicted in the form of attack tree notation [22]

Threats to SC protection

Disabling the self-checksumming is one way to tamper with a protected program. Figure 4.4
represents attacks on SC protection [22] in the form of an attack tree. Dashed lines and solid
lines stand for disjunction and conjunction refinements. The following paragraphs describe
each of the nodes at depth one in more detail.

Disable Checkers An attacker may disable the checkers for the targeted function. The
first difficulty in this case is identifying all guards in functions that are checkers. If attackers
successfully identify such checkers, they still might need to identify checkers covering the
target checkers (overlapping guards). Since we utilize VO at the function level, attackers
have to analyze and reverse engineer the interpreters of all checkers individually. Therefore,
the complexity and the amount of work needed for a successful attack is considerably
higher.

Qiu et al. [150] present a generic approach for defeating SC protection using taint analysis.
However, as also pointed out by the authors, such attacks fail to affect our protection due
to the utilization of VO. Their attack identifies the verification of SC hashes (conditional
branch) in a given program. Thanks to VO multiple branches (not only SC verifications)
may reuse the same handler rendering the attack ineffective.

It is worthwhile to mention that we consider attacks that require a modification in the OS
(such as [183]) limited for mass distributions and therefore less critical.

Disable Response Mechanism Disabling the response function is unlikely to be success-
ful, but possible. After detecting a hash mismatch, the interpreter/guard branches to a
specific handler and calls the abort function. If an attacker were to disable this function
call, the program will likely run into a segmentation fault or, at the very least, undefined
behavior. Mainly because the value of VPC in such cases is not properly set.

Completely removing the call to the response function from the handler or changing the
jump address after the comparison of hash values are considered as an attack against the
interpreter. These attacks are explained in section 4.4.4.

99

4. Virtualized Self-Checksumming

Patch Code Bytes & Preserve Checksum VO tends to significantly hinder this attack. For
machine code it is possible to find a sequence of instructions that perform a useful task,
while hashing to the same expected hash. However, the fact that the changes need to go
through the interpreter further limits the range of possibilities.

Patch Hash Function An attacker can modify the hash function to always return the
correct value for the current checkee. The actual hash value is stored in the function
VM. Therefore, reverse engineering VO, particularly the interpreter’s accesses to VM,
is a prerequisite for the success of such attacks. To find the correct location where the
precomputed checksum is stored, it is also necessary to reverse engineer the interpreter,
which we discuss in the following section.

Threats to VO

It is important to make a distinction between the approaches (namely optimized and secure)
when discussing threats to VO. The optimized approach (without further hardening) stands
worse chances against attacks. Mainly because VPC is replaced with direct jumps to the
next block(s). This on the one hand enhances the performance. On the other hand, the
optimization eases the control flow recovery of the obfuscated code using static analysis.
Utilizing resilient opaque predicates can enhance this situation. We believe the rest of
security analysis remains indifferent for both approaches. Therefore, we refer to both
approaches as VO in the remainder of this section.

Attacks on VO can be classified into two categories: i) generic attacks on VO; and ii)
manual attacks on the interpreter.

Generic attacks on VO Table 4.2 summarizes a few state-of-the-art attacks on VO along
with their advantages and disadvantages.

The approach by Kinder [116] requires knowledge about the VPC used in the interpreter.
They assume there exists a function to reliably detect the storage location of the VPC.
After our transformation (in the program binary representation) we cannot reliably make
assumptions about the location of the VPC. Compiling with different levels of optimizations
(e.g. -O3) might reserve a register value for it, but it might also end up being written to and
loaded from memory.

Coogan et al. [67] propose to use taint analysis in order to identify the relevant instruc-
tions, i.e. instructions that affect the values of program outputs in a system trace. This
approach is able to identify and remove interpreter instructions from traces. However, it
does not remove the SC guards. Moreover, the output of this approach is a simplified trace
for each different input, which does not tell the attacker how to identify and disable the SC
guards from the protected program.

Yadegari et al. [188] significantly improve the attack by Coogan et al., by more advanced
trace simplification techniques, symbolic execution and recombining the simplified traces

100

4. Virtualized Self-Checksumming

Kinder [116] Coogan [67] Yadegari [188] Salwan [156]

Attack
Type

SA1 TA2 bit-level TA2
SA1 & TA2,
formula simpl.,
code simpl.

Attacker
Goal

approx.
data values

significant
trace

CFG extract
original code

Output
CFG
and invariants

simpl. trace simpl. CFG simpl. code

Drawback
assumptions
on interpreter
structure

equation
to CFG
conversion

large
input space

path explosion,
symb. reasoning

1 Static Analysis
2 Taint Analysis

Table 4.2.: Known attacks on virtualization obfuscation [21, 156]

into a simplified control flow graph (CFG). The drawback of this approach is the large input
space that the protected program may accept as input, because in order to reconstruct an
accurate CFG, all possible paths in the code must be exercised first. Even if this is achieved,
the attacker still has to detect and remove the SC guards, which requires significant effort
overall.

Salwan et al. [156] developed a novel approach to defeat VO by combining taint analysis,
symbolic execution and code simplification. Compared with known attacks that target
the control-flow graph, the output of their script 5 is expected to be a clean devirtualized
executable. Their technique also symbolizes the VPC. We were unable to successfully
use their tool against executables protected with our protection, due to an error during
execution. We have already reported the bug but have not yet heard back from the authors.
Nevertheless, we believe that attacking our approach will run into the path explosion
problem for the real-world programs in our dataset.

Attacks on the Interpreter In addition to known attacks against VO, it is also possible
to attack the interpreter itself without reverse engineering the executed bytecode. In
the executable, it is possible to change the jump address of a specific block to another
location. This can happen in functions with few branches, where the handler for the branch
instruction is not reused. We try to mitigate this by reusing handlers and thus increasing
side effects when a handler has been tampered with. Changing the address of a jump
will then be changed for all branches using this specific handler. This effect can further be
increased by adding opaque predicates, generating even more branches and increasing the
number of instructions using the same handler.

5https://github.com/JonathanSalwan/Tigress_protection

101

https://github.com/JonathanSalwan/Tigress_protection

4. Virtualized Self-Checksumming

Identifying a handler that is only used by a single instruction in a function not being
checked seems to be one of the most promising attack scenarios. However, this means that
the instruction is not a sensitive instruction and may not be useful for the attacker to tamper
with.

In general, the interpreter can be hardened by other protection techniques like any other
piece of software. This is also one of the main reasons we have decided to implement our
solution using LLVM: to increase the composability with other, existing software protection
techniques.

Threats to the Combined Protection

As mentioned in section 4.4.4, attacking SC requires reverse engineering the virtualization
obfuscation. SC is implemented on top of VO and thus protected by it. Changing opcodes in
the generated bytecode can be identified by having SC guards in place. We can conclude that
it is necessary to first reverse engineer our VO, in order to defeat SC guards. Ignoring these
protections and attacking the interpreter itself, as outlined earlier generates side-effects
across each function due to the reuse of handlers.

4.5. Discussion

This section discusses tradeoffs between the performance and the security of our approach.
We conclude this section by discussing how the security of our approach could be improved.

4.5.1. Protection Coverage

Our results confirm that our implementation is capable of virtualizing all instructions in
the given programs. The SC protection on top of VO is capable of protecting a large portion
of instructions (a median of 89%) including the network of checkers. Some instructions
however were left unprotected. Our investigations indicate that such instructions reside
either in the root of the network of checkers or in the nodes with no incoming edges. Since
we do not support cycles, some nodes might be left unprotected. Bear in mind that we
can easily achieve 100% coverage over the original program instructions by not checking
the guards themselves to avoid cycles. We believe not checking guards downgrades the
resilience of the protection. Nonetheless, supporting cycles is a matter of engineering
efforts.

4.5.2. Performance vs. Security

As with every software protection, there is a trade off between performance and security.
Adding security, for example in the case of our secure interpreter, results in additional code
to be executed. The extent to which added protections impact the performance depends on
various factors such as the number of comparisons, loops, etc.

102

4. Virtualized Self-Checksumming

As showed in the performance evaluation 4.4.3, our secure implementation yields on
average an overhead of 1055.51%. Being ≈ 10x slower than the unprotected executable
is on the upper end of worst case performances for regular interpreters. However, this
approach is also hard for symbolic execution engines to analyze, due to path explosion.
An important remark here is the low overhead that SC protection, with a connectivity of 2
checkers per checkee, imposes on the protected binaries. For the 25% protection level the
VO+SC protected binaries outperformed VO-protected binaries. As pointed out earlier, the
randomness of the network of checkers appears to be the cause of this phenomenon. It is
worth mentioning, that the interpreter in this solution has no optimizations whatsoever
applied to it.

Further research needs to be conducted to develop and subsequently utilize a set of
potential optimizations that do not downgrade security.

The optimized implementation, which utilized indirect threading in the interpreter,
resulted in far more efficient protected binaries. Our results indicate an approximate
decrease of ≈ 50% in the overhead of protection. More importantly, in the optimized mode,
the contribution of SC protection to the overhead is significantly decreased. That is, in 10,
25, and 50% protection levels SC did not impose any extra overhead but overheads dropped.
However, one can not conclude that utilizing SC yields better performance as other factors
such as randomness of checkers and LLVM optimizations need to be taken into account. For
the 100% protection level SC constitutes only ≈ 43% of the protection overhead (501.04%
VO+SC - 458.42% VO only). It appears that LLVM manages to significantly optimize the
SC protection. A large portion of the reported overheads stem from LLVM’s inability to
optimize VO. The use of VM introduces a complexity in the framework’s analysis as it
transforms direct variable accesses into dynamic array lookups. This makes it difficult for
LLVM to analyze control and data flow and thus hinders further native optimizations in
IR. Besides, the VM itself imposes indirect accesses by storing and subsequently retrieving
values from memory instead of registers, which substantially slows down the execution. In
the case of the secure version, the switch statement is translated to multiple comparison
and jump instructions, which decreases the effectiveness of the branch prediction. As the
value to switch over is loaded dynamically, this can not be improved by static analysis nor
compiler optimizations. Instruction prefetching in these cases is also impacted due to the
number of jump instructions generated by the switch statement.

We believe as the optimization removes the switch statement and connects each handler
with its successors, it becomes easier for LLVM to analyze and run additional optimizations.
Despite the performance gain, the indirect threading optimization makes the generated
code easier for a human to analyze. Removing the switch also reduces the amount of
possible paths allowing more efficient symbolic execution based attacks.

Lastly, the introduced performance overheads heavily depend on the nature of the
program to protect. The structure of the program’s call graph, number of nested loops, and
the degree of IO dependency play important roles in the overall overhead of the protection.

103

4. Virtualized Self-Checksumming

4.5.3. Security

By using a switch statement to dispatch all opcodes, we were able to force symbolic
execution engines to run into the problem of path explosions. Even if the original program
did not contain many different paths, after transformation every case in the switch statement
corresponds to one path. The highest possible number of cases in the generated switch
statement is equal to the number of instructions in the original function. This happens
when we cannot reuse a single handler. Usually, certain instructions appear more than
once, for example to load a value. We try to reuse as many handlers as we can to increase
side-effects of attacking the interpreter (see Section 4.4.4). This heavily depends on the
structure of the original module, for example the number of instructions in functions. The
amount of possible paths can be further increased by introducing opaque predicates [78] in
our interpreter.

Our protection can fall short when an attacker can identify a handler that is neither
reused, nor protected by SC. Supporting cyclic checks in SC can mitigate this kind of attack.
One great benefit of our approach is that any type of LLVM-based software protection can
be employed on top or before our transformation to increase the resilience of the protection.

4.6. Limitations

This section presents limitations of our approach and implementation. Several of these
limitations can be overcome and we plan to address them in future work.

4.6.1. Unsupported Instructions

There are a few Windows-specific instructions regarding exception-handling that we do not
support. This is in part due to the fact that Windows does not allow for loadable modules,
and our infrastructure is almost exclusively based on *nix. Since our pass is loaded via
LLVM’s opt tool, we would need to integrate the pass into LLVM’s internal optimization
pipeline. Doing so increases development time significantly, because every change made
to the pass results in having to rebuild a lot of LLVM’s tools. We have decided to move
support for Windows to future work.

4.6.2. VM Restrictions

Calling free on VM can be problematic, when exceptions are involved. This is a well-
known source of memory leaks. If a called function were to throw an exception that is not
caught, the VM will never be cleaned up. In C++, this is typically solved with a technique
called RAII [151], but we do not have access to this in LLVM IR. Therefore, in these special
cases, our implementation is leaking the memory of the VM. This is an issue that we hope
to resolve in future work.

104

4. Virtualized Self-Checksumming

There are instructions in LLVM that require their operands to be constant, meaning they
have to be known at compile time. Consequently, we are unable to load those dynamically
from the VM. An example for this is the intrinsic LLVM memcpy function. Two of its
parameters, alignment and volatile, are required to be constant. Due to the fact that values
loaded from the VM at runtime are not constant, in these cases we reuse the original
instruction’s operands.

Another restriction of using a VM is that we cannot add global variables to it. Since all
of our generated instructions operate solely on the VM, we would not assign to the global
variable. Calling another function that depends on the updated value would change the
program’s behavior. This could, in theory, be solved by updating both the global variable,
as well as the VM. However, calling a function that updates the global variable would
require us to update the value in the VM. This requires performing non-trivial control flow
analysis to determine read and write accesses to the global variable. A simple solution to
this issue is to not add global variables to the VM, but instead simply use the global variable
itself.

4.7. Conclusions

We designed, implemented and evaluated an LLVM-based protection that effectively com-
bines virtualization obfuscation (VO) and self-checksumming (SC). Our approach removes
the need for binary post-patching of SC pre-computed hash (checksum) values. As a direct
consequence, SC is completely architecture-agnostic and better yet, fully composable with
other protection techniques. More importantly, our SC scheme benefits from the hardening
added by VO and thus exhibits a higher resilience.

Regarding VO, we presented and later evaluated two implementations, namely secure and
optimized. We conducted a set of performance as well as security evaluations, where a set of
25 real-world programs (MiBench and CLI games) were used. The secure version stands
better chances against symbolic execution attacks. However, it imposes an average overhead
of ≈10x for full protection (i.e. 100% of instructions are protected), of binaries. In contrast,
the optimized version imposes an average overhead of 5x for the same protection level. The
SC protection itself imposes only 43% overhead for full protection with a connectivity of
two. We believe such overheads are acceptable when protection is applied on a subset of
sensitive segments of programs (e.g. license checking).

In the security evaluation we discussed attacks on SC and VO. Possible mitigations were
also explained in our evaluations. Since our solution adds SC on top of VO, an attacker has
to first break the obfuscation, in order to be able to attack SC. To the best of our knowledge,
there exists no tool that can automatically carry out such attacks. Therefore, a combination
of tools need to be manually applied by attackers to break the scheme.

As future work we plan on implementing cyclic checks for SC. Another interesting area
is to further investigate means to optimize VO without (or with less) security sacrifices.

105

Part III.

Software Integrity Protection
Composition

107

5. Composition Framework

This chapter presents the design and implementation of our software integrity
protection composition framework. The content of the chapter was previously
published in work [8] co-authored by the thesis’s author.

5.1. Introduction

One way to achieve a higher degree of resilience against a wider range of attacks is to
utilize a multitude of protections simultaneously. We refer to this process as composition of
protections in the remainder of this document. Composing protections not only mitigates
more attacks but also forms multi-layer defenses, which protect each other and are hence
harder to be defeated by perpetrators. However, due to the brittle nature of integrity
protection schemes, composing such protections is an open problem in literature. On
the one hand, composing oblivious hashing (OH) [49] and self-checksumming (SC) [22]
could lead to a cyclic dependency between the two and ultimately could produce faulty
binaries (we discuss different conflicts in detail later in Section 5.3). On the other hand, non-
cyclic dependencies are desired because code segments that are directly and/or indirectly
checked (protected) by multiple integrity checks are more resilient to code patching attacks.
Furthermore, protections have different capabilities when it comes to protecting program
assets. For instance, OH is unable to protect nondeterministic program segments, while
SC does not have such a restriction [5]. Moreover, the locality of the checks can have a
huge impact on the imposed overhead [40]. Simply put, carrying out expensive checks
in frequently executed code segments can induce large overheads. Therefore, deciding
upon where and how to apply different protections in the given program can severely
impact security and performance of the protected programs. To sum it up, we believe
composing a range of protection techniques can strengthen the software resilience against
MATE attackers.

Problem. Naively composing protections is ineffective and can potentially lead to con-
flicts, which can severely limit the application and coverage of protections.

Gaps. To the best of our knowledge (see Section 5.2), the gaps in literature are:

• The potential conflicts arising from composing protection schemes were not thor-
oughly studied;

109

5. Composition Framework

• The reviewed literature makes conservative assumptions as to whether protection
schemes are composable or not, i.e. conflicts are prevented by forbidding the compo-
sition rather than handling them upon composition; and

• The existing compositions do not offer a concrete optimization methodology for better
performance and security w.r.t. the program at hand.

Contributions. This chapter closes the aforementioned gaps by:

• Identifying three representative types of conflicts in the integrity protection composi-
tion (see Section 5.3);

• Proposing a graph-based technique for protection composition, enabling the detection
and handling of the conflicts at the program level (see Section 5.4);

• Utilizing ILP to optimize the composition for better performance and security w.r.t. the
program at hand (see Section 5.4);

• Implementing the proposed technique as an (open source) end-to-end framework for
a conflict-free composition of protection schemes (see Section 5.5);

• Empirically evaluating the effectiveness and efficiency of the proposed technique
using a set of real-world programs (see Section 5.6);

Section 5.7 describes threats to validity. Section 5.8 presents conclusions and ideas for future
work.

5.2. Background and Related Work

This chapter contributes to two areas: software protection composition and protection opti-
mization. To introduce the area of software protection, we first review a set of representative
integrity protection techniques that not only motivate the whole idea of the composition
but are also used in our empirical evaluations.

5.2.1. Integrity Protection Schemes

Self-checksumming (SC)

SC [22, 47, 87, 88, 104] operates by injecting a set of guards that hash or checksum the
desired (sensitive) segments of program code in memory (at runtime) and verify that the
hashes match to expected values. Because the expected values can only be known after
compilation a set of placeholders are used during compilation. An adjustment process
is executed after compilation, to patch the placeholders with the actual expected values.
Consequently, if perpetrators tamper with the program code, the guards can detect them.
Once inconsistencies are detected, a response mechanism is triggered [139], e.g. by injecting a

110

5. Composition Framework

fault into the stack that eventually causes a crash in the application. SC guards can further
be hardened interconnecting them such that they protect each other [47]. SC guards add
atypical behavior to a program, i.e. the self memory access, which exposes the guards
to taint-based attacks [150]. SC is also susceptible to the memory split attacks [183]. One
advantage is that SC is capable of protecting any program segment with no restriction
whatsoever.

Oblivious Hashing (OH) and Short Range Oblivious Hashing (SROH)

OH computes hashes of the program’s execution trace (including memory values), by incor-
porating the memory reference of instructions at runtime [49] and subsequently verifying
them (i.e. matching them to expected values) at random intervals. One way to adjust
expected values is to resort to a technique similar to the SC post-patching technique [5].

OH captures the effect of the program execution, not its actual code and thus cannot be
deceived by attacks such as the memory split attack. However, OH can only be applied
to deterministic segments of a program, which are executed for any given input. This
restriction severely limits the application of OH to only small parts of programs. SROH [5]
partially removes this restriction by extending the coverage of OH to constant data residing
in nondeterministic branches as well as all the branching conditions. The input-data-
dependent instructions in a program cannot be covered by SROH nonetheless.

Call Stack Integrity Verification (CSIV)

CSIV aims to guard the access to sensitive functions in a given program [19]. That is, only
authentic sequences of calls can reach such functions. Any attempts to illegitimately jump
to them triggers a response mechanism. To do so, a shadow stack can be created in which
all (or part of) function calls on the path to sensitive functions are reflected into a hash
variable. This can be achieved in two steps: i) accumulatively hashing random tokens [2] in
functions leading to a sensitive function; and ii) verifying the expected hashes in sensitive
functions. As opposed to SC and OH which protect the code bytes, respectively execution
memory, CSIV only protects the intended control flow.

Code Mobility (CM)

CM aims at thwarting reverse engineering by mitigating static and dynamic analyses [77].
It partitions a given program into a client part and server part. CM moves the sensitive
code to the server section and places corresponding calls to the server in the client. The
server upon request delivers the sensitive code in pieces. This limits the amount of the code
that an attacker can get access to at once. CM imposes a constant connection between client
and server.

111

5. Composition Framework

The Need for Obfuscation

When it comes to integrity protection schemes obfuscation is no longer an additional
layer of protection but a must. The reason being that protection guards are commonly
injected into programs by instrumentation techniques. As a direct consequence, they end
up having the same syntactical resemblance. This makes them extremely vulnerable to
pattern-matching attacks. Plenty of proposed schemes unanimously agree on the gravity
of applying obfuscation to protections [9]. Theoretically speaking, applying obfuscation
shall not cause a conflict in protections. However, the application of obfuscation in practice
could lead to failures, particularly in the adjustment processes (see Section 5.3.1).

5.2.2. Composition of Protections

The problem of protection composition is comprised of two subproblems: (1) deciding on the
order in which transformations shall be applied and (2) deciding upon which program segments shall
be protected with which protections to avoid conflicts while maximizing security and minimizing the
cost. We discuss each of these problems in the following paragraphs.

Computing the optimal order of protections is equivalent to the problem of phase ordering
in optimizing compilers and hence is undecidable [176]. Since the amenability of protection
to each other can be known upfront, we need not to compute an optimal order of protections.
Instead, we resort to a set of heuristics as we discuss in Section 5.4.8.

The problem of applying which protections on which segments of the given program was
studied in the context of software obfuscation. Heffner et al. [96] proposed a technique for
composing obfuscation transformation by encoding dependency relations among transfor-
mations in a probabilistic Finite State Automaton (FSA). The probabilities capture different
metrics as to which obfuscation is more desired to be applied. The composition is then
achieved by a random walk on the FSA. Similarly, Liu et al. [127] presented a technique that
uses an iterative search-based algorithm to identify an optimal sequence of obfuscations
over particular partitions of a given program. Guelton et al. [92] identified a set of arising
conflicts amongst obfuscations provided in two open source engines (namely Tigress and O-
LLVM) and clang optimization passes. Su et al. [167] proposed the design of a composition
technique using Petri nets and inhibitor arcs to compute a sequence in which protections
should be applied, in order to avoid conflicts, to a program. However, as we show in this
chapter the type of conflicts and metrics presented for obfuscation are not transferable to
the software integrity protection composition problem.

ASPIRE project (https://aspire-fp7.eu/) is a framework that enables chaining of
integrity protection techniques. Nonetheless, not all of the protections can be composed
due to the potential rise of conflicts [185]. For instance, in their tool chain, code mobility
and static remote-attestation shall not be utilized simultaneously. Such preventions are
hard coded in the framework within the tool configurations. In this work, we aim to utilize
potentially conflicting protections at the same time by detecting and further handling such
conflicts. Furthermore, we optimize both conflict handling, i.e. the decision on which

112

https://aspire-fp7.eu/

5. Composition Framework

protection shall be removed from a conflicting segment, and locality of protections in the
program for better performance and security (coverage) of a protected program. To achieve
these goals, we model our composition problem as a graph problem and subsequently use
ILP to optimally solve it. Our transition from expressing nodes and their relations in a
graph to an ILP problem is inspired by the techniques introduced by Boulle et al. [33] and
Wrighton et al. [181].

5.2.3. Protection Optimization

Performance (Overhead)

The locality of the guards that carry out the checks plays an important role in the imposed
overhead. That is, if guards are placed in very frequently executed code (also called “hot
code”), e.g. code inside nested loops, the overhead is potentially high. Cappert et al. [40]
proposed a metric to measure the hotness of a function based on its call frequency captured
in a dynamic profiling analysis. In their protection, they favor colder functions as checkers
in an attempt to induce less overhead. In this work, we analyze code hotness at a lower
level, namely basic blocks, along with other factors to optimize the locality of checkers of
different types.

Security (Coverage)

An important metric in measuring the security of protection schemes is their connectiv-
ity [72, 87, 88] that captures the number of unique guards that protect a particular program
element (instruction, basic blocks, function, etc). Understandably, achieving higher connec-
tivity entails having more guards which (in-)directly check other guards, yielding larger
overheads. In this work, we aim at reaching a desired connectivity level, while minimizing
the overhead. Since composed protections can potentially protect each others’ guards, we
propose a new metric as implicit coverage that captures the program elements guards of
which are protected by other guards, i.e. indirect checking.

5.3. Requirements

5.3.1. Conflict Detection

To understand the arising conflicts when combining protections, we attempted to apply
the protection schemes described in Section 5.2.1, in various orders on a representative
dataset of programs. In this section, we briefly report on the conflicts that we encountered
in our naive composition attempts. From the identified conflicts we then derive a set of
requirements for our composition framework.

113

5. Composition Framework

OH and SC

Both OH and SC use the concept of hashing and verification. OH hashes memory references,
while SC hashes the process memory corresponding to a range of instructions, basic blocks
or functions, at runtime. One can apply each of these schemes once or multiple times in
arbitrary orders. Both schemes require a finalization step (post-patching) in which the
expected hash values are adjusted in the protected binary. When OH and SC protected
segments cyclically overlap, the adjustment of OH hashes invalidates previously computed
SC hashes and vice versa. Consequently, binaries containing such conflicts would trigger
false tamper-detection alarms. This conflict in essence can occur between any pair of
overlapping schemes that rely on a post-patching step.

One solution for this conflict is to resort to cross-protection placeholders (pivot bytes) like
those presented in [22] to adjust values without invalidating others. However, the pivot
bytes themselves can not be protected by any of the composed protections and thus they
remain at risk of tampering attacks. Alternatively, we could keep cycles intact by resorting
to commutative (reversible) hash functions, which are intuitively easier to be defeated by
attackers. Therefore, we rather want to detect and subsequently prevent such cyclic conflicts
in our composition. Simply put, deterministic finalization order is the first requirement of our
system.

SC/OH and CM

Chaining CM with SC yields a different kind of conflict. CM mobilizes protected functions
to a server from which they are retrieved only when needed and cached in a random
memory address, such that the attacker does not know where to find the function. Since the
actual location of the mobilized functions shall be unpredictable, SC guards will be unable
to find such functions at runtime, hence SC cannot protect CM protected functions. To
avoid this type of conflict, SC needs to mark protectee segments in the code such that they
cannot be removed from the code by the CM protection. Conflicts of such can be detected
by safely tracing reference changes. Unlike SC, OH needs not to know the address of mobilized
functions. Applying CM on OH-protected functions as well as the inverse case impose no
conflicts.

Obfuscation and SC/OH

Obfuscation protects the confidentiality of data, logic and the location of code in many
protection schemes. Without obfuscation plenty of protection measures can readily be
defeated by pattern matching. Obfuscation can conflict with protections, too. If it is
applied after inserting the SC and/or OH guards, but before the final adjustments (when
SC and/or OH are utilized), it may change the resemblance of placeholders introducing
faults in post-patching steps. If obfuscation is applied after final adjustments, it can break
SC checks as hash and length of obfuscated blocks may differ from what SC guards expect.

114

5. Composition Framework

Syntactical changes of basic blocks, their location, and lengths cause conflicts in composition
of obfuscation with schemes that rely on syntactical values. In our system, we are in need
of a safe value change tracing mechanism to prevent such conflicts. In other words, we need
to mark certain pieces of code as unobfuscatable.

It is worthwhile to state that the identified conflicts are a complete set of possible conflicts
for the given set of protections. That is, any other composition of the mentioned protections
does not cause conflicts.

5.4. Design

5.4.1. Running Example

To illustrate our design and improve readability, we use a fictional vehicle mileage counter
program (Listing 5.1) as our running example throughout this section. The program has two
global variables: RotationCount and MILEAGE. The onWheelRotationCompleted
function is an event handler that is triggered on every complete wheel rotation. After 100
rotations, a mile is added to the car’s mileage counter, which is an increase-only variable.
The MILEAGE is merely altered in the incrementMileage function. In this example
perpetrators aim to undermine the integrity of the mileage counter.

Listing 5.1 Fictional car mileage counter program

1 int RotationCount = 0, MILEAGE = 0;

2 void onWheelRotationCompleted() {

3 RotationCount += 1;

4 if(RotationCount >= 100) {

5 incrementMilage();

6 RotationCount = 0;

7 }

8 }

9 int incrementMileage() {

10 MILEAGE += 1;

11 return MILEAGE;

12 }

5.4.2. High level Process

To achieve low coupling amongst the different protections and the composition transforma-
tion, each protection transformation stays completely unaware of the composition taking
place in the framework. However, we do not want protection transformations altering the

115

5. Composition Framework

program-to-protect in one go, because conflicts might need to be settled before actually
applying protections. To achieve this goal, we refactor transformations into two-step trans-
formations. In the first step, the transformation generates a set of proposals as to which
segments it can protect in the given program (regardless of other protections that might
be part of the composition). Additionally, each protection submits a set of constraints
(Section 5.4.4) defining under which assumptions the protection will function properly. The
second step, carries out the transformation for the requested proposals on demand. In order
to be composable, all the protections need to be refactored to comply with this two-step
transformation requirement.

Our composition framework executes the first step of protection transformations and
collects their protection proposals as well as their constraints. The collected proposals and
constraints are then merged to form protection manifests (Section 5.4.3). Subsequently, the
created manifests are projected on a defense graph (Section 5.4.5) upon which conflict analysis
(Section 5.4.6) and optimizations (Section 5.4.7) are performed.

A possible outcome of applying SC, SROH, and CSIV protections on the running example
is illustrated in Listing 5.2. In the following sections we will explain how this outcome has
been obtained using our composition framework.

5.4.3. Protection Manifest

A Protection Manifest is a data structure comprising of a protection guard, a set of instructions
protected by that guard, and constraints under which the protection behaves as intended.
Simply put, manifests reflect how and where the protection is going to be applied on the
code. Each protection technique like SC, OH/SROH, and CSIV proposes a multitude of
manifests in the first step of a two-step transformation.

Figure 5.1 depicts 12 protection manifests output by our approach on the running example
from Listing 5.1. Note that manifest m12 is the same as manifest m9, but they are placed in
different functions. The name of each manifest includes the protection technique acronym
and optionally an appended ordinal number for the sake of unique names. Inside the
rectables representing manifests we see one or more lines prefixed by “P”(indicating the
protected instructions) and/or “C” (indicating the constraints, described in Section 5.4.4).
SC and CSIV protections create stand-alone manifests, while OH and SROH protections
represent each guard as a dependent pair of hash and verify manifests. The verify manifests
do not contain any “P”, just “C”, because they are verifying the “P” from hash manifests.
This split of verify and hash manifests, facilitates the cyclic dependency analysis of manifests.
Each manifest keeps a reference to the protection instructions, which are not included in
Figure 5.1 due to space limitations. As a direct consequence, our composition framework,
can easily decide to drop a manifest (e.g. due to an arising conflict) resulting in the removal
of the corresponding guard instructions.

116

5. Composition Framework

Listing 5.2 Protected fictional car mileage counter program, note that all protections are
applied at the LLVM IR level, however for the sake of simplicity our snippet is presented at
the source code level

1 int RotationCount, MILEAGE = 0;

2 long G = <random token>; //OH hash variable

3 void onWheelRotationCompleted(){

4 long h1 = <random token>;

5 //overlapping SC and OH protection

6 long computedSCHash=

7 SC_hash(t=<AddIncrementMileage>,OH_hash(G,t), t),

8 (t=<SizeIncrementMileage>, OH_hash(G,t),t);

9 //overlapping SC and OH protection

10 SC_verify(computedSCHash, (t=<expected_SC_value>, OH_hash(G,t), t));

11 RotationCount += (t=1, OH_hash(G,t),t);

12 if(t= RotationCount >= 100, SROH_hash(h1,t),t) {

13 CSIV_Register();

14 m = milageIncrement();

15 RotationCount = (t=0, SROH_hash(h1,t),t);

16 SROH_verify(h1, <expected_h1_value>);

17 }

18 }

19 int incrementMileage(){

20 CSIV_Register();

21 CSIV_Verify(); //Sensitive funcions include a control flow verification

22 MILEAGE += (t=1,OH_hash(G,t),t);

23 OH_verify(G,<expected_oh_value>);

24 G = <token> //the same token as in line 2

25 return MILEAGE;

26 }

5.4.4. Constraints

As pointed out earlier, different protections can be applied individually to a program.
However, each technique may yield different types of conflicts, if composed. To be able to
cope with those conflicts, we resort to a set of protection constraints, which are bundled up
in the manifests (indicated by “C:” in Figure 5.1). Constraints are a set of rules that each
protection scheme adds to their manifests. That is, protections will work as intended if
and only if all the constraints are satisfied throughout the composition process. Having
protection schemes specifying constraints in their manifests yields better encapsulation as
the composition itself need not to hold any scheme related knowledge.

117

5. Composition Framework

m1: SC

P: increamentMileage()
C:
1. onWheelRotation() depends on
increamentMileage()

2. incrementMileage() is present
3. Address(incrementMileage) and
Size(incrementMileage) are
preserved

m1: SC

P: increamentMileage()
C:
1. onWheelRotation() depends on
increamentMileage()

2. incrementMileage() is present
3. Address(incrementMileage) and
Size(incrementMileage) are
preserved

m2: OH-hash0

P: Address(incrementMileage)
C:
1. G depends on

Address(incrementMileage)
2. G depends on OH-hash(...)

m2: OH-hash0

P: Address(incrementMileage)
C:
1. G depends on

Address(incrementMileage)
2. G depends on OH-hash(...)

m3: OH-hash1

P: Size(incrementMileage)
C:
1. G depends on

Size(incrementMileage)
2. G depends on OH-hash(...)

m3: OH-hash1

P: Size(incrementMileage)
C:
1. G depends on

Size(incrementMileage)
2. G depends on OH-hash(...)

m11: OH-hash4

P: MILEAGE+=1
C:
1. G depends on +=1

2. G depends on OH-hash(...)

m11: OH-hash4

P: MILEAGE+=1
C:
1. G depends on +=1

2. G depends on OH-hash(...)

m4: OH-hash2

P: expected-SC-value
C:
1. G depends on expected-SC-value

2. G depends on OH-hash(...)

m4: OH-hash2

P: expected-SC-value
C:
1. G depends on expected-SC-value

2. G depends on OH-hash(...)

m5: OH-hash3

P: RotationCount+=1
C:
1. G depends on +=1

2. G depends on OH-hash(...)

m5: OH-hash3

P: RotationCount+=1
C:
1. G depends on +=1

2. G depends on OH-hash(...)

m9: OH-verify (also m12)

C:

1. oh-verify(...) depends on G
2. oh-verify(…) depends on

expectedOHValue

3. oh-verify(…) present at least
one of OH-hash0..OH-hash4
4. expected-oh-value is preserved

m9: OH-verify (also m12)

C:

1. oh-verify(...) depends on G
2. oh-verify(…) depends on

expectedOHValue

3. oh-verify(…) present at least
one of OH-hash0..OH-hash4
4. expected-oh-value is preserved

m6: SROH-hash0

P: RotationCount >= 100
C:

1. h1 depends on RotationCount
>= 100
2. h1 depends on SROH-hash(...)

m6: SROH-hash0

P: RotationCount >= 100
C:

1. h1 depends on RotationCount
>= 100
2. h1 depends on SROH-hash(...)

m7: SROH-hash1

P: RotationCount = 0
C:

1. h1 depends on RotationCount=0
2. h1 depends on SROH-hash(...)

m7: SROH-hash1

P: RotationCount = 0
C:

1. h1 depends on RotationCount=0
2. h1 depends on SROH-hash(...)

m8: SROH-verify

C:
1. sroh-verify(...) depends on
RotationCount=0

2. oh-verify(…) depends on

RotationCount >= 100
3. oh-verify(…) present at least
one of SROH-hash0..SROH-hash1
4. expected-h1-value is preserved

m8: SROH-verify

C:
1. sroh-verify(...) depends on
RotationCount=0

2. oh-verify(…) depends on

RotationCount >= 100
3. oh-verify(…) present at least
one of SROH-hash0..SROH-hash1
4. expected-h1-value is preserved

m0: CSIV0

P: onWheelRotation()

m0: CSIV0

P: onWheelRotation()

m10: CSIV1

P: incrementMileage()

m10: CSIV1

P: incrementMileage()

Figure 5.1.: Generated protection manifests for the example program; P and C refer to
protected segments (instruction/function) and constraints, respectively

In our framework, we define three types of constraints, which directly correspond to the
three requirements introduced in Section 5.3.1:

1. Order constraints between manifest mA, and manifest mB , denote that mA can only be
finalized after mB . For example, in the m1:SC manifest from Figure 5.1, c1 indicates
that onWheelRotation depends on incrementMileage and therefore the latter
has to be finalized before. In a broader sense, we use the order constraints to capture
dependency relationships between protection and program instructions. OH/SROH
hash manifests use the very constraint to capture the dependency of their hash vari-
ables to hashed instructions.

2. Preserve constraints indicate that the value of certain marked instructions shall not
change. As depicted in Figure 5.1 preserve constraints are used by both SC and

118

5. Composition Framework

OH/SROH verify manifests to mark their placeholders as unmodifiable.

3. Present constraints between mA and mB denotes that mA can only exist if mB is
present in the program. SC manifests mark their protectee functions with the present
constraint so they stay in the binary, e.g. incrementMileage is marked with such
constraint in our example. We use another variation of the present constraint to
capture the relation between split OH/SROH hash and verify manifests. Hashes
that are not verified are effectively useless as they add no protection. To prevent
the existence of hash manifests without the corresponding verify manifests, we use
present constraints such that verification manifests have to choose n ≥ 1 out of the
total number of relevant hash manifests.

5.4.5. Defense Graph

To enable automated composition of protections, we first need an abstract representation
of: protection guards, protected segments, and the overlaps between protections. Casting
protection guards, their corresponding protectees, and constraints into a unified repre-
sentation aids detection of conflicts. Moreover, such a representation supports reasoning
about the resilience of the composed protections, for instance, by measuring the number
of guards that protect other guards. Additionally, the representation needs to be flexible
enough to accommodate further information about program at hand. Profiling information
about program basic blocks can support optimization decisions regarding the location of
protection guards.

We propose to use a graph-based representation as it effectively meets all our needs. The
composition pass populates the graph from the proposed manifests and protection protectee
relations between program sub-structures and protections. Since protections are applied at
different level of granularity (e.g. SC is applied at the function level, while OH/SROH is
employed at the instruction level) graph nodes can refer to functions, instructions, or mani-
fests. Solid black arcs represent dependency (order) constraints. Dashed arcs represent present
contraints over multiple elements, i.e. constraints comprised of two or more elements are
translated to arcs between their corresponding nodes in the graph. Whilst, constraints over
single elements (namely preserve and present constraints) are added to their corresponding
nodes as attributes. It is important to bear in mind that constraints are transitive. That is, if
a function has incoming/outgoing arcs, all of its instructions will inherit the same relation
(arcs). Figure 5.2 depicts a simplified graph for the running example. The gray arcs capture
the transitive arcs, i.e. inherited dependency relations from functions to their instructions.
For the sake of brevity, we omitted arcs that are deemed to be less interesting. As illustrated
in the figure the SC manifest leverages from an additional protection by three OH hash
manifests (namely OH hash0, OH hash1, and OH hash2).

We extend our graph nodes with a set of properties to accommodate for all the necessary
meta data. For example, <ExecFreq(N)> where N refers to the execution frequency of

119

5. Composition Framework

incrementMileage
<Present>

onWheelRotation

m1: SC

e0

m2: OH_hash0
Address(IncrementMileage)

<Preserved><ExecFreq(100)>

m3: OH_hash1
Size(IncrementMileage)

<Preserved><ExecFreq(100)>

m4: OH_hash2
ExpectedSCValue

<Preserved><ExecFreq(100)>

G

m12: OH_verify1
<ExecFreq(1)>

m5: OH_hash3
RotationCount+=1
<ExecFreq(100)>

m11: OH_hash4
MILEAGE+=1

<ExecFreq(1)>

m6: SROH_hash0
RotationCount >= 100

<ExecFreq(100)>

m7: SROH_hash1
RotationCount = 0

<ExecFreq(1)>

h1

e1

m8: SROH_verify
<ExecFreq(1)>

 *..1

`

*..1

m9: OH_verify0
<ExecFreq(100)>

*..1

m10: CSIV1
<ExecFreq(1)>

m0: CSIV0
<ExecFreq(100)>

Figure 5.2.: Defense graph for the manifests of the example program; node attributes are
depicted in the form of <Attribute>; Manifests are shown as sharp-edged
rectangles while program instructions (G and h1) are shown as round-edged
rectangles.

the block in which the manifest resides. We collect such data by profiling binaries and
subsequently normalizing them.

120

5. Composition Framework

5.4.6. Conflicts and Conflict Handling

Depending on the way that manifests are composed, order and/or present constraints
may hold true or false values. When these types of constrains are false, the corresponding
manifests are not applied for protecting the program. However, preserve constraints must
conserve segments from modifications, which is important to be honored by the obfuscation
passes. Therefore, no selection of manifests violates preserve constraints. Manifests carrying
present constraints can only be selected if and only if their required manifests are selected as
well.

Honoring order constraints requires a delicate detection technique as a set of order
constraints can collectively result in ambiguities. For example, assume the defense graph:
mA→mB →mC →mA, where→ denotes the order constraint indicating that the left-hand
manifest must be applied before the right-hand manifest. In the this example, a cyclic
dependency materializes that renders the finalization order of the manifests impossible.
That is, finalizing in any order results in invalidation of already finalized nodes. In the
defense graph from Figure 5.2, the transitive edge e0 together with e1 form a cycle. Our
strategy is to break cycles by removing one or more manifests in the cycle. However,
our framework needs to detect cycles in the first place. To efficiently detect cycles in the
defense graph, we utilize the strongly connected component (SCC) analysis proposed
by Nuutila [142]. After cycle detection, there is more than one solution to the manifest
removal problem. One out of all the manifests contributing to a cycle may randomly
be removed, which would break the cycle. Since manifests in the graph correspond to
protection mechanisms, the decision as to which manifest shall be removed entails different
security and performance trade-offs. To balance those trade-offs, we are in need of a set of
security as well as performance metrics. Therefore, we resort to a set of metrics to measure
the impact of each manifest on the security and performance overhead. To find an optimal
solution, we employ ILP to handle conflicts as described in Section 5.4.7.

5.4.7. Optimization

Our goal is to minimize the overhead of protections while attaining a set of security
requirements (i.e. explicit and implicit coverage of protections). Running protection passes
yields a set of candidate manifests, Mcandidates : {m0,m1, ...,mn}, where n corresponds to
the total number of protection manifests, and mi ∈ {0, 1} for 0 ≤ i ≤ n. Precisely put, our
goal is to select a subset of manifests, i.e. a concrete assignment of each mi ∈Mcandidates,
which satisfies our security requirements with the minimum possible overhead.

Security Requirements

For every manifest, the composition pass calculates the values for the following metrics: (1)
explicit instruction coverage, which measures the instructions explicitly protected by manifests
and (2) explicit block coverage, which measures the basic blocks explicitly protected by

121

5. Composition Framework

manifests. Thereupon, desired security constraints can be written in the form of inequalities:∑n
i=1 Pjmi

≥ Dj or
∑n

i=1 Pjmi
≤ Dj , where 0 ≤ j ≤ p; p, Pj , and Dj correspond to the

total number of scores computed for manifests, the jth score of a manifest, and the desired
value for the score of interest, respectively. For example, m1:SC will be assigned with
explicit instruction coverage of 6 (lines of code in incrementMileage), and explicit block
coverage of 1 (there is only one basic block in incrementMileage). This generic inequality
can be used to have constraints over any metric value of manifests, except for the implicit
coverage metrics (both block and instruction).

Implicit coverage rather depends on two (or more) manifests: a protector and a protectee.
Therefore, it is impossible to measure the implicit coverage of a manifest without prior
knowledge of other selected manifests in the solution. For instance, m2, m3, and m4 are
implicitly protecting the incrementMileage function as they protect the guard (m1:SC)
that is protecting that function. However, their implicit coverage is equivalent to the
explicit coverage of m1 if and only if m1 is selected in the final solution, otherwise it
is 0. Furthermore, there could exist multiple arcs implicitly protecting the same set of
instructions. For example, there are three OH hash manifests (m2, m3 and m4) that are
implicitly protecting m1. To precisely calculate the implicit coverage, we need to detect
duplicates and subsequently consider them in our computation.

To detect duplicates, we introduce two sets of binary auxiliary variables: ei,j and f0, ..., fn,
where 0 ≤ i, j ≤ n and n corresponds to the total number of manifests. Every ei,j ∈ {0, 1}
indicates whether there exists an arc between mi and mj in the defense graph or not. It
is important to note that an arc (ei,j) can only exist if and only if both of its manifests (mi

and mj) are present in the solution. We formulate the desired relation by introducing a
constraint such as 0 ≤ mi + mj − 2ei,j ≤ 1 for all arcs. To deal with possible duplicate
arcs, we ensure that every manifest’s implicit coverage is counted only once for all the
duplicate arcs. For this purpose, we first constrain auxiliary variables fi as a disjunction
of arcs to mi, i.e. Ei = {ej,k|i = k}, 0 ≤ |Ei| × fi −

∑Ei
c=ej,i

c ≤ 1. Note that Ei is a list
capturing all arcs ending in mi (sink). In our runinng example, for m1 three duplicate
arcs exist: e2,1, e3,1 and e4,1, which are not visible in Figure 5.2, because m2, m3 and m4

protect m1’s guard code. This yields a constraint such as 0 ≤ 3× f1 − e2,1 − e3,1 − e4,1 ≤ 1.
Subsequently, for a precise calculation we use fi as mi’s coefficient for the implicit coverage,
i.e.

∑n
0 fi× implicit(mi) ≤ K. Note that the implicit(mi) function can either return the size

of implicitly protected instructions or blocks by mi. At this point we can compute solutions
with the desired implicit coverage by setting K to the value of interest.

Conflict Constraints

We formulate our 3 protection constraints in the form of inequalities. To break a cycle, an
arc, from the set of arcs taking part in the cycle, needs to be removed. We can formulate
this as

∑C
i=1mi ≤ C − 1, where C denotes the count of manifests in a cycle. In our example,

m1, G, and m12 form a cyclic conflict. A corresponding avoid-cycle constraint will limit the

122

5. Composition Framework

solver’s choice to either of m1 or m12 manifests. Since the objective function is subject to
other security as well as performance constraints, the manifest with the least contribution
to the desired properties will be removed.

For every set of manifests that form a cycle, we add the afore mentioned conflict constraint
to the set. Since the SCC analysis may fail to detect all cycles, we reanalyze the outcome
of the optimization to identify further (sub-)cycles. All the newly identified cycles are
repeatedly added as constraints to the system till no more cycles are detected.

For present constraints, we add a constraint mi ≤ mj , where i is the index of the manifest
that cannot exist without the manifest at the index j. It turns out that preserve constraints do
not impose any limitations on the choice of manifests as they are rather restrictions on the
utilization of obfuscation on preserved placeholders. Therefore, we exclude them from our
optimization process.

5.4.8. Order of Protections

Some protections can protect the guards of other protections. In such cases, a layered
protection is recommended. The instructions explicitly protected by the protectee guards
are implicitly protected by the protector guards. To defeat such chained guards, attackers
may need to find and disable various guards of different types, which intuitively hardens
the composed protection. Such chains of protections can only materialize when protections
are applied in particular orders. Therefore, the order in which protections are applied is
important.

We believe OH shall be applied after SC as SC guards can benefit from the additional
protections of OH [5]. Both SC and OH can protect CSIV guards, while only OH can cover
CM protected functions. Precisely put, the order of protection is SC→ OH/SROH→ CSIV
→ CM. It is worth noting that all obfuscations should be applied after integrity protection
passes, but before finalizations, to maximize their coverage over integrity protection guards.

An interesting take is that protections can be applied multiple times. In such cases, guards
can potentially have a higher number of overlaps. Although our design supports a multiple
application of schemes, we consider it out of the scope of this work.

5.5. Implementation

All the mentioned protection schemes have an LLVM-based open source implementation.
For compatibility and portability reasons, we also decided to develop our composition
framework in LLVM. Our entire tool chain is open source (see ??).

Figure 5.3 illustrates the modules in our framework along with their relation to protection
and LLVM modules. The green boxes indicate the newly developed modules in the the
system. Our optimizations are implemented as LLVM transformation modules. Protection
passes (CSIV, CM, SC, and OH/SROH) are first executed which results in a set of manifests.
The existing protection passes (CSIV, CM, SC, and OH/SROH) were re-factored to to

123

5. Composition Framework

C, C++,
Objective-C,
Switf, Rust

Compiler Frontend

LLVM Intermediate
Representation (IR)

Optimizer LLVM IR (optimized) Native Binary

Compiler Backend

CSIV CM SC OH/SROH

Update
Placeholders

Composition Framework Obfuscation

Software Protections

Manifests Protection Graph Conflict Detection ILP Optimzation

Profiler Heuristics

Ordered Manifests

Figure 5.3.: Module representation of our solution in LLVM framework; green boxes distin-
guish composition modules from LLVM and protection modules.

support the two-step transformation according to Section 5.4.2. It is worthwhile to mention
that supporting further protections in our framework is rather straightforward. To do so, a
protection pass needs to be refactored to conform to our framework’s two-step propose and
apply interfaces.

The composition pass collects the generated manifests from which it populates a defense
graph. We use the lemon graph library (https://lemon.cs.elte.hu), due to its perfor-
mance and flexibility, to build our defense graph with specialized arcs and nodes. Thereafter,
a set of ILP constraints from present and order manifest-constraints are generated. Further
security requirements are also added to the problem space in the form of integer linear
constraints. We use glpk library (https://www.gnu.org/software/glpk/) to solve
the linear problem. Once the optimal solution is found (if security constraints are satisfiable),
a conflict handling pass is engaged that remove all the manifests which are not selected by
the solver. The last step is to define the finalization order of the manifests. This is important
as the correctness of the post patching step relies on this order. In our framework we unified
the adjustment step to follow the reverse topological patching order to avoid inconsistencies
in placeholders.

5.6. Evaluation

In our evaluation, we run experiments to measure the security as well as performance of
our composition. For performance, we benchmark the protection overhead for different cov-
erage levels. Moreover, we conduct an experiment in which we compare our composition
optimization to a benchmark in the literature. Regarding security, we measure protection
coverage and we perform a threat analysis using attack trees.

124

https://lemon.cs.elte.hu
https://www.gnu.org/software/glpk/

5. Composition Framework

5.6.1. Dataset

To evaluate effectiveness and efficiency of our solution, we carry out a set of empirical
experiments on a dataset comprised of 25 real-world programs; 22 of these programs
are taken from the MiBench dataset [93], which is a representative embedded bench-
mark comprised of 33 programs. It is worthwhile to mention that we cannot benchmark
11 out of the 33 programs from MiBench 10 of which is due to failures and extremely
slow computations in the external pointer analysis library that SROH scheme uses [5].
The 11th program (i.e. ispell) appears to be faulty [5]. The other three programs in
our dataset are open-source games snake (https://github.com/troglobit/snake),
tetris (https://github.com/troglobit/tetris) and 2048 (https://github.
com/cuadue/2048_game) taken from GitHub.

Generating protected instances for six particular programs, namely cjpeg, djpeg, say,
susan, tetris and toast, forced us to adopt a different tool. The solver that we use in
our toolchain (i.e. glpk) takes more than 5 minutes to find solutions for some problems. It
becomes problematic when programs contain a large number of conflicting manifests due
to subcycles. In such cases the composition is repeated until no cycles are detected. For the
mentioned programs the number of cycles (and subcycles) and thus the repetitions exceeds
1000 times, which makes it impractical to generate all binaries. To cope with this problem,
in the generation of protected instances of the aforementioned programs, we utilize the
commercial Gurobi solver (http://www.gurobi.com/) under a free academic license.

5.6.2. Configuration of Testbed

All performance measurements are recorded on a machine with an Intel i7-6700k processor
and 32 GB of memory running the Ubuntu 18.04 LTS operating system. For all the experi-
ments, we use constant parameters for the SC pass (connectivity=1) and default parameters
for other protections, namely OH, SROH, CSIV and CM.

5.6.3. Coverage Optimization

In this evaluation we intend to measure the effectiveness of our ILP-based optimization
on the coverage of the composition. The goal is to achieve higher coverage results with
lower overheads. For this purpose, we base our analysis on two types of coverage, namely
explicit and implicit. The former captures the ratio of protected instructions by the composed
protections. The latter, however, represents the ratio of protected instructions, the guards
of which are also protected by other guard(s). Since there exist no benchmark of the
composition of our protections of interest (i.e. SC, CSIV, OH/SROH, CM), we build a
baseline from our dataset. For this purpose, we use the maximum possible manifests as the
baseline of our evaluation. In this mode, the composition is steered to select all manifests
that yield no conflicts in the programs. We then collect the explicit and implicit coverage
values achieved by the composition for every program in the the dataset. These values

125

https://github.com/troglobit/snake
https://github.com/troglobit/tetris
https://github.com/cuadue/2048_game
https://github.com/cuadue/2048_game
http://www.gurobi.com/

5. Composition Framework

capture the maximum attainable coverages. Subsequently, we feed those coverage values
as constraints (requirements) and set the solver to find solutions with (possibly) lower
overheads.

Table 5.1 presents the experiment results; LLVM Inst. count, Manifest all, Explicit, and
Implicit, Overhead% median, Manifest after, and Decrease% median columns denote number
of program instructions in LLVM IR, maximum number of applicable manifests, explicit
instruction coverage, implicit instruction coverage, median of the actual overhead (after
execution), number of manifests after optimization, and percentage of the decrease over
the median, respectively. It is worthwhile to mention that the implicit/explicit instruction
coverage may be larger than the total number of instructions. This is due to the fact that we
include protection instructions (guards) in our coverage calculations.

The five columns following the program name column capture the results of the max-
imum manifest protection (i.e. the baseline). The other three columns starting from the
Manifest after capture the results corresponding to the ILP optimization aiming for minimiz-
ing the overhead while attaining the same explicit and implicit coverages as the baseline
(maximum security).

Our experiments indicate that our optimization yields an overhead decrease of 38.9% on
average.

5.6.4. Performance

In the performance evaluations, we are interested in measuring the performance improve-
ments of the optimized composition as opposed to no-optimizations. One way to conduct
this experiment is to use randomly selected manifests as a baseline. Our results indicate
that the presented optimization technique unsurprisingly beats such a baseline. How-
ever, we believe random selection is unrealistic. In practice, compositions rather use some
heuristics [5].

In order to capture possible improvements, we resort to a heuristic-based composition of
SC and OH/SROH (presented in [5]) as our baseline. Our aim is to measure the overhead
difference between the optimized composition versus the heuristic one. For this purpose,
similar to the previous experiment, we feed their coverage values as constraints to our
framework. Thereafter, we use the optimization to minimize the overhead.

To obtain comparable results, we follow their partial protection methodology in which
combinations of 10%, 25%, 50%, and 100% are protected. Each coverage level indicates the
percentage of program functions that must be protected by the composition framework.
To weed out the noise from our measurements, for each coverage level we generate 20
random combinations of functions. Our setup yields 4000 protected binaries in total, 2000
(= 25 × 4 × 20) protected instances for the baseline and 2000 instances as the optimized-
protected binaries.

To measure runtime overheads, we run each instance 100 times with the exact same input
to the protected and unprotected instances of a program. For the programs in which user
input is required, we pipe constant inputs by intercepting library/system calls.

126

5. Composition Framework

Max Manifest (all possible protection) Min Overhead

pr
og

ra
m

LL
V

M
In

st
.c

ou
nt

M
an

if
es

ta
ll

Ex
pl

ic
it

Im
pl

ic
it

O
ve

rh
ea

d%
m

ed
ia

n

M
an

if
es

ta
ft

er

O
ve

rh
ea

d%
m

ed
ia

n

D
ec

re
as

e%
m

ed
ia

n

qsort s 92 37 143 133 117.38 29 107.29 8.59
crc 147 105 569 561 12101.88 100 11454.04 5.35
qsort l 147 35 120 110 109.91 27 99.46 9.50
djkstra l 323 376 1490 1480 10155.87 370 7733.33 23.85
djkstra s 323 376 1490 1480 7424.65 370 3373.06 54.57
caudio 418 111 1578 1571 128.24 106 104.91 18.20
daudio 418 105 1556 1549 131.75 100 86.90 34.04
bm s 532 384 1284 1216 484.69 353 190.75 60.64
tetris 629 847 761 539 861.10 280 94.41 89.04
bm l 643 489 1395 1319 221.63 408 202.76 8.51
sha 657 1855 5752 5744 2581.26 1849 2401.35 6.97
bitcnts 664 157 1803 1793 1558.30 150 966.02 38.01
fft 742 431 2896 2885 2074.47 399 897.10 56.76
2048 749 677 3109 3094 345.51 592 288.95 16.37
srch l 827 259 2254 2229 497.44 245 451.20 9.30
srch s 827 259 2254 2229 203.45 245 97.69 51.98
snake 1065 1826 6726 6719 52.17 1815 49.57 4.99
patricia 1087 431 2827 2814 1290.82 297 812.04 37.09
bf 3607 280 5489 5471 1558.30 210 473.18 69.63
rijndael 5866 418 7292 7269 316.90 345 88.12 72.19
say 6859 28148 10020 7902 30536.44 2698 4593.18 84.96
susan 12656 101599 6315 5088 9634.79 1513 2933.76 69.55
toast 13930 91387 13294 11501 17598.29 2215 3344.37 81.00
djpeg 52708 4358 23055 0 11427.80 1533 8534.31 25.32
cjpeg 54837 4560 23109 0 17394.82 1507 11101.80 36.18
Mean 6430.12 9580.40 2289.26 2987.84 5152.31 710.24 2419.18 38.90
Median 742.00 418.00 1578.00 1793.00 1290.82 353.00 473.18 36.18
Std.Dev 14730.39 26786.87 1859.21 2960.85 7714.51 784.68 3546.48 28.04

Table 5.1.: Overhead decrease of optimized solutions with maximized attainable protections
(explicit and implicit coverage) with minimized overhead; columns 2-6 corre-
spond to the maximum possible protection (applicable manifests) while columns
7-9 capture the results of optimized solutions

127

5. Composition Framework

20
48 bf

bit
cn

ts
bm

-l
bm

-s
ca

ud
io

cjp
eg crc

da
ud

io
djp

eg
dk

str
a-l

dk
str

a-s fft
pa

tri
cia

qs
rt-

l
qs

rt-
s

rijn
da

el sa
y

sh
a

sn
ak

e
src

h-
l

src
h-

s
su

sa
n

te
tri

s
to

as
t

2

8

32

128

512

2048

8192

Ov
er

he
ad

 in
 p

er
ce

nt
ag

e
10% 25% 50% 100%

Figure 5.4.: Performance comparison of compositions of SC and OH/SROH using heuristic-
based approach vs. our optimization technique for partial protections of 10%,
25%, 50%, and 100% of program instructions; the gray-margined stacked bars
capture the average overhead of the heuristic-based approach, while the black-
margined bars represent the same numbers corresponding to our technique

Figure 5.4 illustrates the average overhead of the composed protection for different
coverage levels. The black-margined bars represent the average overhead induced by our
composition optimization technique. The gray-margined bars behind the black-margined
bars, represent the average overhead of the heuristic-based compositions. Our results
show that our technique on average induces 31.20%, 41.77%, 68.93% and 226.98% overhead
for coverage levels of 10, 25, 50 and 100% as opposed to 86.53%, 166.85%, 351.48% and
1270.96% (respectively) that is induced by the heuristic approach in [5]. Our optimization
yields a five-fold decrease in the overhead in the case of 100% protection. It is noteworthy
that our optimization fails to outperform the heuristic approach for some programs (or
coverage levels). Such cases indicate that there simply is no room for improvements with
the requested coverage constraints.

It is important to note that preventing conflicts was one of our main goals in this work.
Since a majority of conflicts yield corrupted binaries, proper execution of the protected
programs adds confidence to the correctness of our approach. In our experiments all the
protected binaries executed correctly (i.e. no crashes or false alarms were detected) for the
given set of inputs.

5.6.5. Security Analysis

To evaluate the security of the composed protections, one has two options: i) injecting
random faults (tampering) and measuring detection rates per each scheme; and ii) using

128

5. Composition Framework

attack-defense tree notation to capture the steps that an attacker has to take in order to
defeat the protection. The assumption in the former is that perpetrators have no knowledge
about the protection measure. Subsequently, the goal is to measure what ratio of the random
attacks can be detected, which is unrealistic due to 2 reasons. Firstly, attackers do possess
or acquire knowledge about the protection techniques and thus random fault injection
does not reflect the behavior of attackers in real life, as indicated in user studies [45].
Secondly, coverage metrics capture the percentage of protected instructions by each scheme.
Simply put, we already know which instructions are left unprotected or protected with
weaker protections. Therefore, one can already know which random faults are going to go
unnoticed depending on the location where they are injected.

For the sake of simplicity, in our security evaluation we use a fictional program so-called
cool that comes with a license check (LC) function. The goal of the attacker is to use the
program without any usage limitations imposed by the LC. The cool program in various
execution traces consults the LC. Any suspicion to violation of integrity, will be entertained
with a stealthy program termination. Now let us assume that the cool program is protected
using our protection composition framework. Figure 5.5 captures the steps that an attacker
needs to successfully undertake in order to defeat the protected LC.

The root of the attack tree is defeat LC. Our attacker has 3 means to achieve this goal: i)
tamper with the LC code, e.g. to have a license which is always valid; ii) tamper with the
callsites (usages) of LC function such that, for instance, they call a forged function instead of
LC; iii) subverting the program control flow to completely bypass the LC. All three require
the attacker to first identify the LC function and/or its callsites in the protected program.
The identification of the LC can be hardened by utilizing obfuscation techniques such as
CM.

To tamper with the logic of LC, the attacker (in addition to finding LC in the first place)
may need to defeat SC and OH guards protecting LC. This, however, requires to detect SC
and OH guards in the program. Since SC and OH guards are very amenable, it is more
difficult to tackle them one by one ([5] discusses the difficulty of this task in depth). These
guards are further hardened by obfuscation techniques that are applied on top of them.

Tampering with the LC callsites potentially includes detection and disabling of OH/S-
ROH/SC/CM protections in the program. The detection is further hardened by means of
applied obfuscations.

To protect the integrity of the control flow, our composition utilizes CSIV protection.
For an attacker to defeat the CSIV protection, it is first necessary to identify CSIV guards.
Subsequently, the attacker needs to defeat all the potential overlapping SC/OH/SROH/CM
protections.

5.7. Threats to Validity

Although we have integrated the most representative integrity protections in our frame-
work, we may have overlooked some conflicting dependency between these protection

129

5. Composition Framework

Defeat LC

Tamper with

the LC logic

Attack node

Disjunctive refinement

Conjunctive refinement

Tamper with

LC callsites

Subvert CF to

bypass LC

Identify SC guards

Identify OH/SROH

guards

Defeat SC guards

Defeat OH/SROH

guards

Defeat SC/OH/

SROH/CM guards

Identify CSIV

guards

Defeat CSIV

guards

Defeat

overlapping OH/

SROH guards

Defeat

overlapping OH/

SROH guards

Figure 5.5.: Security analysis of the composed protection of SC, OH/SROH, and CSIV using
attack tree notation

schemes. Therefore, we are only confident with the scope of the evaluated schemes. Adding
further constraints may be needed for full correctness. We believe the graph-based repre-
sentation is sufficient for the detection of conflicts between protection schemes.

The performance optimizations are based on the hotness of the code blocks w.r.t. the
constant inputs that were passed to the programs in the dataset. Further inputs, for instance,
generated using symbolic execution, can be generated for the programs in an effort to visit
more representative performance profile of the program after protection.

5.8. Conclusions

Composing protections introduces layers of guards that if chosen and placed wisely can
form an interconnected network of protection. This forces attackers to defeat multiple types
of protection to mount their attacks, which adds more resilience to the entire protection.
Conflicts amongst protection and catering for the program at hand are two problems of
the software protection composition. In this work with the help of a defense graph and
integer linear programming, we presented a technique that not only handles conflicts
but also composes protections in a way that layered protections are formed. We further
optimized the protection w.r.t. the program at hand for better performance and security.
Our evaluation results on a dataset of 25 real-world programs indicate that our composition
framework decreases the average overhead of selected composed protections by 38.9%
while providing the maximum security (coverage). Furthermore, our approach yields a
five-fold decrease on the average overhead in comparison to the relevant heuristic-based
approach.

130

Part IV.

Software Integrity Protection
Resilience Quantification

131

6. Resilience

In this chapter, we present a methodology along with two metrics to estimate
the resilience of (composed) integrity protection techniques. The resistance is
captured as a conjecture of localizability and defeatability of protections w.r.t
known automated attacks.

6.1. Introduction

Software Protection encompasses a variety of protections including integrity checking, ob-
fuscation, and hardening (e.g., anti-debugging [3]) measures. Depending on the use case a
composition of SP protections should be utilized to mitigate potential attacks [8]. Since
protections are part of the program, they are subject to attacks themselves. Perpetrators
can try to localize and then defeat integrity checking routines, just like any other logic in
protected programs. Applying obfuscation can i) introduce software diversity leading to
syntactical dissimilarity amongst various usages of the same protection routines throughout
the program [5]; and ii) impair the comprehensibility of the program and hence harden
against reverse engineering attacks [17].

Intuitively, a combination of obfuscations raises the bar for a MATE more than using
such code transformations individually. However, to the best of our knowledge, prior work
has not determined which combination of obfuscations is suited for integrity protections,
and how reliable the protection is. The impact of obfuscations in delaying localization of
integrity protections via pattern matching or machine learning is unknown.

Furthermore, some attacks (e.g., taint-based) may not scale in a practical sense. It is
essential to identify which obfuscations add more computational complexity for such
practical attacks.

Problem. Given that integrity checking (together with obfuscations and hardening)
techniques can only postpone the inevitable breach in the system, it is crucial to estimate
how high the bar is set for perpetrators. Without a way to measure the resilience of
protections, estimating the risk is subjective, and the claims on the security offered by
integrity protection are merely speculations.

Research questions. RQ1: How can we estimate the resilience of integrity protection
measures? RQ2: How do obfuscation and other hardening measures impact the resilience?

Challenge. The MATE’s ingenuity coupled with unlimited access to the host on which
the program is executed, hinder a complete enumeration of all possible attacks.

133

6. Resilience

Idea. In this work we confine the analysis to a catalog of automated attacks and their
corresponding defenses, similar to [23]. We believe the degree of defenses’ effectiveness
against automated attacks can capture a first-order proxy quantifying resilience. Since any
such catalog will be incomplete in the beginning, we open-source our catalogs and enable
extensions through pull requests from the community. Nonetheless, the automated attacks
and defenses currently in our catalogs represent the state-of-the-art.

Gaps. Section 6.2 captures related work. We identified the following gaps in the literature:

• No previous study was done on how resistant state-of-the-art integrity protections are
against automated attacks (i.e. pattern-based, machine-learning-based, and taint-based
attacks);

• The impact of obfuscation on the resilience of integrity protections was not previously
studied;

• There exists no methodology to evaluate the resilience of composed protections at the
function level and at the program level.

Contributions. This chapter closes the above gaps by:

• proposing an empirical evaluation methodology of resilience, agnostic to the techniques
used to protect programs and the automated attacks applied to such programs;

• proposing a machine-learning-based measure to localize integrity protections even when
combined with obfuscations;

• proposing a metric (Estimated Patch Steps) to capture the effort needed for (a first-order
proxy of) patching protections;
• proposing a resilience metric as the fusion of localizability and defeatability of protections;
• empirically evaluating the effectiveness of state-of-the-art attacks (viz. pattern-based,

machine-learning-based, and taint-based) in localizing protections on the MiBench data
set;

Section 6.3 discusses the methodology. In Sections 6.4 to 6.6 we present attacks, defenses,
and metrics of our methodology. Section 6.7 captures our evaluations. Section 6.8 discusses
our results. Section 6.9 describes threats to validity. Section 6.10 presents conclusions and
ideas for future work.

6.2. Background and Related Work

6.2.1. Attacker Model

We assume that our attackers possess full knowledge about the internals of the potentially
utilized protections, but we believe they do not necessarily know which ones in which
order are used. Assuming that attackers do not possess knowledge about the internals of
protections would mean that we rely on security by obscurity.

134

6. Resilience

6.2.2. Protection Quantification and Metrics

Schrittwieser et al. [160] conducted a survey to study the effectiveness of obfuscations
against published de-obfuscation attacks. Their survey gathers and classifies attacks on
obfuscations into four categories, namely pattern matching, automated static and dynamic
analysis, and human-assisted analysis, that are utilized to locate code fragments in obfus-
cated programs. Thereafter, they analytically estimate the strength of obfuscation techniques
w.r.t. the gathered attacks.

Ahmadvand et al. presented two coverage metrics, explicit and implicit coverage, which
are used in selecting integrity protections in their composition framework called sip-
shaker [8]. Explicit coverage refers to the ratio of program instructions that are directly
protected. Implicit coverage captures the ratio of instructions whose guards are protected
by other guards, i.e., they are indirectly protected by guards that protect their immediate
protections. Their framework and benchmarks focus on coverage metrics as the security
criteria.

Ghosh et al. [88], Chang and Atallah [47] used the connectivity metric as a way to tweak
their protections to reconcile security and overhead. Myles and Jin [138] proposed a set
of metrics to quantify the capability of integrity protections that are primarily built upon
coverage metrics. We use similar coverage metrics in our evaluations. However, coverage
metrics on their own do not capture the resilience of protections, as some attacks [150, 183]
are not affected by the protection coverage.

Kanzaki et al. [107] developed a technique to identify obfuscated code fragments in a
given program. Their technique can potentially be used as a metric to flag poorly obfuscated
code. In this work, we obfuscate the entire program (not only the protected fragments),
and thus identifying obfuscated fragments does not help the perpetrators in detecting
protections. Banescu et al. [20] formulated deobfuscation as a search problem for which
symbolic execution is utilized to reach to particular obfuscated statements in the program.
The time needed by symbolic execution to successfully attack programs was then used as a
metric to quantify the resilience of obfuscation techniques against automated attacks.

The presented techniques from the literature aim to quantify the resilience of software
protections by measuring the offered security. We believe such metrics do contribute to
estimating the security of software protections but fail to capture the actual resilience against
automated attacks on integrity protections.

6.2.3. Empirical Evaluations

Ceccato et al. [45, 46] presented an empirical study on how attackers (professional as well as
amateur pen testers) conduct their attacks on real programs. Their work sheds light on the
steps that attackers take to analyze, identify, and craft necessary tools, as well as circumvent
and undo protections. In this work, we take a different perspective. Instead of human
attackers, we aim at characterizing protections by empirically studying the resilience to
known automated attacks.

135

6. Resilience

Garba and Favaro [84] developed a framework to de-obfuscate (simplify) obfuscated code
using compiler optimizations in combination with a SMT solver. Their benchmarks indicate
compelling results in the area of de-obfuscation. Their work can be seen as a potential
extension to our attack catalog.

Salem and Banescu [154] utilized machine learning to classify obfuscation techniques.
In their technique, learners pick up the patterns of four obfuscation techniques (control
flow flattening, instruction substitution, bogus control flow, and virtualization) in training
and later effectively detect them in programs. Similarly, Tofighi-Shirazi et al. developed
a machine learning-based opaque predicate obfuscation detection [63, 175]. Ben-Nun
et al., Chen and Monperrus show promising techniques for source code embedding [28, 52].
However, our attackers of interest (MATE) do not have access to the source code of programs
but their binaries. Therefore, we do not use these embeddings in our experiments.

To capture the relation between obfuscations and attacks, Kelly et al. [111] measured the ef-
fectiveness of six diversification obfuscations against two classes of remote attacker exploits
(e.g., buffer overflows) provided in the Cyber Grand Challenge (https://www.darpa.
mil/program/cyber-grand-challenge). They obfuscated the programs given in the
challenge and studied which combinations of obfuscations generate less exploitable pro-
grams than others. Their attacker model does not match our MATE attacker model.

Ding et al. [75] proposed a technique to detect code clones using the lexical-semantic
relationships that tends to learn robust patterns of semantically equivalent code, despite
obfuscations and optimizations, in the assembly representation.

To the best of our knowledge, no previous studies address all our identified gaps. How-
ever, they provide puzzle pieces as to how the resilience of obfuscations should be measured.
The presented related work inspires our experiments, but in addition to related work, we
provide new attacks, metrics, and experimental results.

6.3. Methodology

Our goal is to characterize the resilience of state-of-the-art integrity protection techniques
in combination with other SP techniques against known automated attacks, in order to
facilitate selecting the strongest protection combination for a given protection target. We
consider two roles in our methodology: attacker and defender. The defender aims at counter-
ing, impeding, or delaying attacks. To quantify resilience, we refine the battle between the
defender and the attacker into two hypothetically disjoint fronts, localize and defeat. In the
localization battle, the attacker wants to distinguish the protection logic from program logic.
The defender employs countermeasures to make the detection as hard as possible. The
defeat battle generally requires the localization battle to be successful. The attacker actively
changes the behavior of the program, e.g., by patching the code. A patch is defined as
a sequence of bytes that are overwritten by the MATE in order to neutralize exactly one
integrity check (guard) and maintain the same input-output behaviour of the original pro-
gram. The defender attempts to raise the bar by introducing layers of protection (e.g., cyclic

136

https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge

6. Resilience

checks) to checkers and the response mechanisms. Through our methodology, we enable
the defender to estimate the resilience of their protections. Figure 6.1 depicts our evaluation
methodology. The left box in the figure captures our catalog of automated attacks. The
right box depicts the defense catalog. The middle box shows the metrics used to measure
the effectiveness of attacks (localizability and defeatability).

Figure 6.1.: Integrity protection resilience evaluation methodology encompassing attack, de-
fense, and metric catalogs along with the their relation to the localize and defeat
battlefronts; the attack categories containing automated attacks are underlined

Metric Catalog Defense CatalogAttack Catalog

Code Tampering

Pattern Matching

Machine Learning

Tainting

Symbolic Execution

Circumvention

Attack Catalog

Code Tampering

Pattern Matching

Machine Learning

Tainting

Symbolic Execution

Circumvention

Obfuscation

Instruction

Substitution

Bogus Control

Flow

Control Flow

Flattening
Virtualization

Localize

Protection

Defeat

Protection

Hardening

Anti Debug Inlining

Integrity Checking

Self-checksumming

Oblivious Hashing (OH)/Short Range OH

Call Stack Integrity Verification

Defeatability

Qualification

Localization

Quantification

Resilience

Composition

We consider three living catalogs in our methodology: attack, defense, and metric. These
catalogs are meant to be maintained and extended as new attacks, defenses, and metrics are
discovered. The attack catalog captures automated techniques that the attacker utilizes in
either or both battles. The defense catalog includes measures that the defender applies to
resist attacks. The metric catalog provides means to measure the effectiveness of attacks
vs. defenses.

We empirically benchmark the effectiveness of different permutations of attacks and
defenses in the catalog, on a representative set of programs. Our ultimate goal is to
characterize the resilience as a conjecture of two values: localizability and defeatability.

6.3.1. Localizability

We define localizability as the probability of successfully identifying integrity checking
routines in programs. Localizability also is a property of protections and combinations of
protections (i.e., integrity checking scheme together with obfuscation permutations). Our
idea is that localizability w.r.t. certain attacks can be pre-computed for a representative
set of programs. Henceforth, these values can be generalized and subsequently reused to

137

6. Resilience

estimate the localizability of the same protections in other programs that are comparable
to the representative programs. Simply put, identical compositions of integrity checking
techniques with identical combinations of obfuscations are expected to have comparable
localizability scores and are less dependent of the individual program they protect.

6.3.2. Defeatability

We define the generic term of “defeatability” as the effort needed to break protections.
Specifically, we are after quantifying two aspects: i) the number of patches that the attacker
has to perform to defeat protections successfully; and ii) the effort needed for each of
the patches. While we can quantify the number of required patches, the involved effort
remains hard to quantify objectively. It is challenging to automate defeat attacks without
committing to unrealistic assumptions. A minor tweak of the code can render automated
patching attacks defeated. Factors such as the type of response mechanism(s), the degree
of intertwinement of the response(s) with the program logic, attackers’ skills, the size
of programs, and the employed hardening techniques (e.g., emulation detections, code
packing, and debug/trace preventions) can significantly affect the difficulty of patches.
Most of these factors (particularly response mechanisms) are very use-case specific. We
consider quantifying such defeatability factors, despite their pertinence, beyond the reach
of this thesis. Therefore, we settle for the number of patches as a first-order approximation
of defeatability.

The number of required patches is affected by the applicability of protections on different
segments of a particular program. Some protections cannot protect certain parts of pro-
grams, e.g., oblivious hashing can only be applied to input independent instructions [5].
Specific applications of protections have a direct impact on the formation of layers of protec-
tions of different types, as well as their overlaps. Such layers and overlapping protections
affect the number of required patches. Multi-layered and cross-checking protections are
expected to have higher defeatability scores. In this work, higher defeatability scores indicate
a higher number of required patches and thus more resilience against MATE attackers.

6.3.3. Methodology Summary

To sum up, our methodology for resilience quantification takes the defenders’ perspective.
The method includes the use of large sample data sets for computing localizability scores
that are less dependent of a program P that we want to protect. We suggest updating
these scores when new sample programs are available, when there are further protection
or hardening mechanisms, and when there are new attacks. The method then suggests
updating defeatability scores for P .

138

6. Resilience

6.4. Attacks

The attack catalog comprises six categories. When possible, we develop automated attacks
for each of these categories. To honor the attacker model in Section 6.2.1, we use our
knowledge about the internals of protections in the development of attack instantiations.
Simply put, our attacks target potential shortcomings of protections.

6.4.1. Pattern Matching

Attackers can use recognizable patterns in protected programs to detect integrity checking
guards (or responses). At first, we assume integrity checking techniques do not utilize
obfuscations. With this assumption in mind, attackers can develop detection patterns for
every integrity checking technique in our defense catalog. They can use syntactical as
well as structural features to detect protection signatures. However, to mimic a realistic
attack environment, in our benchmarks, no hardcoded names nor addresses will be used as
signatures. We provide further details of these attacks in Section 6.7.2.

6.4.2. Machine Learning

Obfuscation is an immediate remedy to pattern-based attacks. It makes pattern identi-
fication harder. Identifying protection patterns and subsequently handcrafting matcher
for them fail to scale, given the number of possible obfuscation permutations. Machine
Learning is a tool used in the literature to automate the pattern identification on obfuscated
code [75, 154].

We develop a machine-learning-based attack for detecting integrity checking schemes
hardened with obfuscations as an instantiation of this category of attacks. Our goal is to
localize integrity checking guards at the granularity of basic blocks in protected programs.
To this end, we fuse three machine learning approaches: term frequency-inverse docu-
ment frequency (TFIDF) [155] and neural networks on syntactical features; the GraphSage
algorithm [95] for the structural features. We provide further details in the evaluation
section.

6.4.3. Tainting

Analyzing relations amongst instructions can help identify structural patterns in integrity
protections [9]. For instance, the response mechanism is usually triggered when a specific
variable is set in the program [150]. Performing taint analysis can potentially reveal in-
structions contributing to tamper detections. For this category of attacks, we instantiate
the attack proposed by Qiu et al. [150]. The attack targets the SC protection. It relies on
program traces on which a set of forwarding and backward taint analyses are undertaken,
leading to the localization of SC checks. We utilize (develop) the exact attack to measure
the resilience of the SC protection (with other defenses) against taint-based attacks. Since

139

6. Resilience

this attack operates on the program traces, we study the impact of two trace polluting
obfuscations (namely, control flow flattening and virtualization) on the attack effectiveness.

6.4.4. Symbolic Execution

Attackers can use symbolic execution to lift code to a higher abstraction on which localiza-
tion attacks (e.g., pattern matching) can be more effective as it abstracts away from syntactic
differences [116, 152, 156, 188]. A good candidate for this class of attacks is the symbolic
de-virtualization technique proposed by Salwan et al. [156]. However, due to difficulties
in the symbolic execution of system calls used by the programs in our data sets, we were
unable to use their tool. We believe employing symbolic attacks is independent of the rest
of the attacks. That is, attackers can first use symbolic execution and subsequently proceed
with attacks on integrity protection. Hence, we exclude symbolic attacks from our empirical
evaluations.

6.4.5. Code Tampering

This category refers to the actual patching attacks. As pointed out earlier, we do not attempt
to automate patching attacks as simple code tweaks can break such attacks. In this work,
we consider such attacks to be done manually.

6.4.6. Circumvention

This class of attacks can be seen as the side-channel equivalent class of attacks against
software-based protection. There exist some attacks (more might be discovered) that can
potentially defeat protections with no localization whatsoever of their guards [183]. There is
not much we could do in terms of resilience characterization for such attacks. The mitigation
of such techniques typically includes employing another layer of protection (see how [131]
mitigates [183]). We urge defenders to beware of such attacks and to seek measures to
mitigate them continuously.

6.5. Defenses

6.5.1. Integrity Checking

We include 4 representative schemes in our analysis, namely self-checksumming (SC) [22,
47], oblivious hashing (OH) [49], short range oblivious hashing (SROH) [5], and call stack
integrity verification (CSIV) [8, 19]. We always apply OH and SROH together for better
protections and refer to them as one scheme OH/SROH in the remainder of this chapter.

140

6. Resilience

6.5.2. Obfuscation

We instantiate four obfuscation transformations for the obfuscation category of the defense
catalog. For the first three techniques, namely instruction substitution (IS), bogus control
flow (BC), and control flow flattening (CFF), we use the implementation provided by Junod
et al. [104]. In the case of virtualization (Virt), we use the transformation provided in [7].

IS

is a technique in which particular instruction sequences are replaced with relatively compli-
cated yet semantically equivalent sequences.

BC

reduces the comprehensibility of programs by introducing structural complexity in the form
of adding bogus blocks. The program’s control flow remains the same as the unobfuscated
version by preventing the control from taking bogus paths using opaque predicates.

CFF

also aims at introducing structural complexity (and diversity) by unfolding nested branch-
ing conditions into a single conditional branch.

Virt

lifts program instructions into a random instruction set architecture (ISA) execution of
which is only made possible via a specially tailored interpreter. Virtualization introduces
structural as well as functional complexity in the obfuscated programs.

6.5.3. Hardening Transformation

Defenders typically use further hardening measures such as anti-debugging [3], dynamic
code encryption [15, 87, 180], anti-symbolic [20, 143], runtime packing, etc. Hardening
transformations can increase the difficulty of both localization and defeat attacks. Hardening
measures’ effectiveness can be evaluated similarly to the obfuscations. Benchmarking
hardening measures falls beyond the focus of this thesis.

6.6. Metrics

We instantiate three metrics, one per category plus one combined metric for capturing
resilience. We interpret localizability as a property of the applied protection mechanisms—
and not the individual program under consideration—that can be empirically determined
using existing data sets. Defeatability is a property of the individual program under

141

6. Resilience

consideration because, in general, there will be varying numbers of protections of relevant
fragments of the program.

6.6.1. Localization Quantification

The f-measure captures the detection accuracy by means of a harmonic average of precision
and recall. Under the assumption that recognizable patterns proportionally increase the lo-
calizability, the ratio of protections with identifiable patterns essentially yields localizability
of protections. Therefore, we resort to the f-measure metric to quantify the recognizability of
protection patterns in protected programs. This localization metric is dependent on, and
hence relative to, the considered attack techniques.

6.6.2. Defeatability Quantification

In estimating defeatability, it is important to understand that the defeatability may differ
for different segments of the same program. Intuitively, a function protected by a range of
different protections exhibits higher defeatability (i.e., harder to defeat) than a function with
only one or no guards. Therefore, we need to quantify the defeatability for every sensitive
segment in the program individually, which we will denote by segmental defeatability, and
subsequently aggregate them to capture a collective defeatability score.

We pick the function level as the smallest unit (segment) in the program for which we
calculate a defeatability score. The function defeatability is calculated based on the number
of protections, their types, and the order in which they are applied to a program.

Estimated Patch Steps (EPS). Attackers are required to disable tamper detections or their
response (a.k.a. reaction) to tamper with the original program code or data. The required
steps depend on how protections are chained together and hence shall be computed for
every program individually. Estimated Patch Steps (EPS) captures the number of alteration
steps that attackers need to take to achieve their goal. EPS corresponds to the number of
guards or responses that need to be circumvented. That is, if another guard protects the
guard protecting a segment, the EPS number shall capture this.

Remember that the effort needed in each attack step entirely depends on the difficulty
of disabling the targeted guards or their response mechanisms. To calculate the EPS for a
given program, we use the defense graph [8] in which nodes correspond to the protection
guards and protected segments. At the same time, edges indicate protection relations
between guards and program segments. For estimating defeatability, we need to compute
the number of distinct edges that directly or indirectly contribute to the protection of each
guard and each original program code fragment. Direct contributions can be translated
to all edges from immediate adjacent nodes of a guard. Indirect contributions refer to any
edge that is on a path to any edge with direct contribution to the protection of a particular
node. We define EPS (u) as

∑
u6=v |d(u, v)|, where u corresponds to a protection guard

while d(u, v) is the set of (acyclic) paths (edges) between u and v nodes computed using the
Dijkstra algorithm (d).

142

6. Resilience

Weighted EPS. Although EPS captures the number of steps, the actual difficulty of a
defeat largely depends on the difficulty of disabling the employed response mechanisms.
That difficulty varies considerably from one response mechanism to another. A simple
program termination response can be defeated more easily than stealthy stack manipulation.
Therefore, it is beneficial to let defenders estimate the difficulty of disabling their use of
case-specific response mechanisms a priori. This estimation is done by assigning a value
between 1 and∞; higher values indicate greater difficulty.

To take into account the effort, we assign weights to edges according to the difficulty of
defeat. For example, with the weighted metric experts may weigh a particular implementa-
tion of SC guards lower than a variation of response utilized in OH protections. We assign
a default weight of 1 to all protection guards with no explicit weight assignments. Bear in
mind that edge weights d(u, v) are intrinsically taken into account in the path computations.

Once the EPS value of each node (guard) is computed, we need to map the nodes’ EPSs
to a desired granularity level as segments. Remember that we consider functions as the
granularity of interest. Assuming acyclic dependencies only, let EPS (f) =

∑
u∈p(f) EPS (u),

where f is the function of interest; N is the set of all protection nodes; p(f) = {x ∈ N |
target(x) = f} where target(x) returns the function of the segment that is protected by
node x.

6.6.3. Resilience

To capture resilience at the program level, we need to aggregate localizability and de-
featability of functions (segments). Due to the diversity of obfuscated protections, the
localizabilities (probabilities) of functions are roughly independent of each other. Therefore,
we multiply the localizability of functions for an aggregate localizability value. In the case
of defeatability, we compute an average over functions’ scores. We define the resilience
score of a program π as a pair consisting of the product f-measure for localizability and
the average EPS defeatability: res(π) = 〈

∏
f∈π loc(f),

1
|{f |f∈π}| ·

∑
f∈π EPS (f)〉, where loc

returns a localizability f-score of the given function based on the applied obfuscations. Bear
in mind that localizability for different permutations of defenses is calculated once for the
representative programs in our data set. From the defender’s perspective, we now want to
estimate the localizability of one concrete program π. Because we take the defender’s perspec-
tive, we know which obfuscations were applied to which function, and can thus look up
the respective localizability scores in a table that we provide in Section 6.7. Localizability
values only need to be updated and recomputed as new defenses, or attacks are discovered.
However, the EPSs need to be computed for each program individually.

6.7. Evaluation

IIn this section, we undertake a set of experiments to evaluate the effectiveness of attacks
against a combination of defenses.

143

6. Resilience

6.7.1. Test Programs

We use a subset of 22 programs from the MiBench data set [93], the simple data set [154]
containing 40 programs, and three open-source CLI games, namely tetris, snake, and 2048,
totaling 65 programs. In the remainder of this chapter, whenever we refer to the MiBench
data set, the three games are included as well. We were unable to use all the samples
from the MiBench data set due to failures in the external analysis tools that are required by
OH/SROH protection [5].

6.7.2. Integrity Checking Localizability

Our objective here is to quantify the ease of localizing protections. Previously, we de-
scribed two attacks, namely pattern-based attacks, and machine-learning-based attacks
(see Section 6.4) that adversaries can potentially mount on protections in order to lo-
calize them. Since our methodology is from the perspective of the defender, we use
LLVM IR as the representation on which we conduct our evaluations. The availabil-
ity of precise static analysis in LLVM is the reason behind our decision to use IR in-
stead of the assembly representation. In reality attackers might be able to retrieve (parts
of) the IR using tools such as remill (github.com/lifting-bits/remill), mcsema
(github.com/trailofbits/mcsema), and reopt (github.com/GaloisInc/reopt).

To measure the effectiveness of localization attacks, we resort to the f-measure metric (see
Section 6.6.1). From our experiments, we noticed that compositions of integrity checking
techniques do not impact the localization of these techniques. That is, composing integrity
checking techniques did not cause any significant difference in the detection effectiveness of
their guards in protected programs. Therefore, we do not compose different integrity check-
ing techniques in the pattern-based, as well as machine-learning-based attacks evaluations
presented in the following subsections.

Pattern-Based

We develop signature-based attacks against SC, OH/SROH, and CSIV. To simulate a real-
world environment, we do not use variable names or function names. This is mainly
because a simple obfuscation pass can break such detection techniques rendering our
pattern-based attack defeated. We mainly use instruction sequences that are commonly
used by protections.

Pattern-Matching Data set. For this experiment, we generate three protected instances
(SC, OH/SROH, and CSIV) of each program in the test set amounting to 195 programs.

Attacks. We are able to develop pattern matchings for all the protections due to their
obvious footprints in the programs. We mount the pattern attacks on the pattern matching
data set and subsequently compute the average localization effectiveness by means of the
f-measure metric for each protection. Our experiment indicates an f-measure of 100%,
93.5%, and 100% for SC, OH/SROH, and CSIV, respectively.

144

github.com/lifting-bits/remill
github.com/trailofbits/mcsema
github.com/GaloisInc/reopt

6. Resilience

Machine Learning

In this experiment, our objective is to estimate the localizability of integrity checking
techniques when used in combination with obfuscations. We use protected programs in
LLVM IR bitcode format as input artifacts to the machine learning attack. This experiment
includes SC, OH/SROH, and CSIV protections.

Machine Learning Data sets. For this purpose, we experiment with the simple and
MiBench data sets separately. The reason that we do not combine the sets is to study
the impact of data set size on the effectiveness of classifications. We generate distinct
protected-obfuscated data sets, one per each order-sensitive permutation of obfuscations,
namely IS, BC, and CFF, yielding 16 combinations (including no obfuscations, i.e., None).
Throughout our experiments, we realized that the default obfuscation configuration fails
to substantially affect ML classifications in the case of MiBench. Consequently, we extend
our obfuscation permutations with more aggressive configurations for the MiBench data
set. IS and CFF can be applied multiple times according to an input parameter (the default
value is one). In the case of BC, a probability value between 1-100 (the default is 30)
can be set via an input parameter. We benchmark values between 2-10 for IS and CFF
obfuscations, and 40, 60, 100 for BC. However, due to space limitations, we only report
on 25 configurations with the highest impact on the effectiveness values amounting to 41
(16+25) distinct protected-obfuscated data sets of MiBench.

Each uniquely obfuscated data set contains (obfuscated) basic block samples of all pro-
grams (in the MiBench or simple data set) with four flavors of protections: No-Protection,
SC, OH/SROH, and CSIV. It is important to reiterate that integrity checking logics are
rather constant regardless of the program to which they are applied. Obfuscations are the
primary source of diversity in the samples. The left column of the two tables in Table 6.1
and Table 6.2 capture the number of samples (DS) for the MiBench and simple data sets.
The obfuscation parameters are denoted as subscript values.

Feature Engineering. We incorporate the syntactical and structural properties of the
programs into our features. Syntactical patterns refer to the syntactic resemblance of
instructions corresponding to the protection of interest. Structural patterns refer to similar
constructs (i.e., call-graph, control flow, and data flow) of two distinct programs protected
with the same set of protections.

For the syntactical features, we utilize TFIDF on the LLVM IR representation of program
basic blocks. Before generating the corpus, documents (IR of binaries) undergo a cleaning
process in which constant values, variable and register identifiers, and alignments are
removed. The TFIDF features are then mapped on the corresponding basic blocks. Each
basic block is assigned with two labels based on the integrity checking measure it contains
along with a concatenation of utilized obfuscations.

SC guards reside in one logical basic block. However, OH, SROH, and CSIV guards
will be split into multiple basic blocks. Preceding blocks undertake hashing into the hash
variables of SROH/OH guards or the shadow stack variable of CSIV guards. Nevertheless,
one block will be in charge of matching the calculated values against the expected values.

145

6. Resilience

We consider the block with the branching condition as the target of our localization.
As per structural features, we collect an ensemble of control flow graph (CFG), inter-

procedural (explicit and implicit) dependency [39], and strongly connected components
(SCC) [142] relations. Each block obtains a unique identifier and gets translated to a
graph node. Syntactical features (TFIDF values) are mapped on the nodes, too. Structural
features are then introduced as relations amongst the nodes (blocks). We run LLVM’s
native static analyses on the protected programs to capture CFG and SCC relations. Each
relation amongst the blocks is translated to an arc between the respective nodes on the
graph. For dependencies, we use the SVF tool to capture instructions’ data and control
flow relations [168]. Instructions’ relations are then lifted to their blocks. That is, if two
instructions from two disjoint blocks have a dependency relation, we lift the relation to
their blocks and subsequently to their corresponding nodes on the graph.

Configuration. We use distinct classifiers for each data set of programs. This setting en-
tails that attackers need to use the corresponding classifier to the obfuscation permutations
that are utilized by the protected programs. From a practical perspective, we assume that
attackers can use several trained models to localize protections. Alternatively, attackers can
first predict the obfuscations applied in the binary (e.g., using techniques similar to [154])
and subsequently use the corresponding model to localize checkers.

We use the StellarGraph library and set the number of epochs to 40 [70]. Our classifiers
are set to optimize for maximum categorical accuracy and a minimum loss (categorical
cross-entropy). We train and test our classifiers in 10-fold cross-validation in which we use
80% of blocks for training, and 20% for validation measurements.

Results. Table 6.1 illustrates the effectiveness of our classifiers on the MiBench data
set for each integrity checking technique per obfuscation configurations. The results of
No-Protection classifiers, which are omitted due to space limitations, indicate an average
f-measure of 99.19% (σ=0.16%). Table 6.2 presents the localization results corresponding
to the simple data set. The results confirm that particular configurations of obfuscations
cause more difficulties than others for the learners. When the number of samples is small
(in the case of the simple data set), ML performs worse than comparable configurations
with more samples. For example, BC+IS+CFF brings the f-measure of SC down to 10.71%
for the simple data set (Table 6.2), while the same value is 82.54% for MiBench (Table 6.1).
More importantly, supported by our experiments, we can favor configurations with lower
f-measures over others. Our results indicate that BC(100)+IS+CFF, BC(100)+IS(2)+CFF(2),
and BC+IS+CFF best obstruct SC, SROH/OH, and CSIV classifications.

Taint-Based Attacks

In the case of SC protection, attackers can also use the taint-based attack to localize
guards [150]. Here our objective is to measure the effectiveness of the taint attack in
terms of detection rate (f-measure) as well as scalability. Since this attack operates on the
program traces, we experiment with the impact of trace pollutions (i.e., trace size) on the
attack time (scalability). As mentioned previously, we use CFF and Virt obfuscations as

146

6. Resilience

Table 6.1.: ML-based attack effectiveness in localizing integrity checking measures; the sub-
script values (2, 40, and 100) indicate the parameter passed to the corresponding
transformations; DS, FM, and σ denote the number of (basic block) samples in
the data set, the average f-measure over the 10-fold validations, and the standard
deviations of different folds, respectively

SC OH/SROH CSIV
Obfuscation DS FM σ FM σ FM σ

None 95112 99.99% 0.02% 98.57% 0.80% 97.94% 2.31%
BC 266365 99.88% 0.09% 88.00% 5.35% 95.95% 3.74%
BC+CFF 454834 80.03% 9.21% 32.27% 18.25% 19.11% 19.99%
BC+CFF+IS 454944 87.32% 4.05% 38.08% 13.50% 12.29% 6.00%
BC+CFF2 454126 85.30% 8.07% 43.15% 15.73% 21.71% 17.20%
BC+CFF2+IS2 455252 84.29% 8.27% 33.69% 14.96% 15.49% 13.52%
BC+IS 267236 99.84% 0.11% 83.58% 8.67% 96.12% 3.36%
BC+IS+CFF 453426 82.54% 8.68% 32.33% 18.85% 8.48% 8.99%
BC+IS2+CFF2 455475 82.05% 6.19% 6.26% 6.33% 0.84% 0.62%
BC100 646318 99.87% 0.19% 82.53% 13.32% 97.37% 3.41%
BC100+CFF 895135 76.38% 9.91% 7.26% 8.48% 16.19% 11.67%
BC100+CFF+IS 895135 82.39% 4.78% 9.95% 11.17% 13.91% 15.74%
BC100+IS 646318 99.91% 0.10% 86.82% 6.88% 97.44% 3.03%
BC100+IS+CFF 895135 64.28% 13.30% 7.20% 7.10% 12.62% 10.46%
BC40 322074 99.83% 0.13% 88.10% 5.85% 96.29% 3.39%
BC40+CFF 518117 85.08% 6.77% 33.61% 17.76% 15.89% 11.03%
BC40+CFF+IS 518063 87.01% 6.80% 28.03% 10.08% 15.72% 13.93%
BC40+IS 321260 99.67% 0.27% 84.80% 8.22% 95.84% 4.39%
BC40+IS+CFF 517582 79.01% 8.26% 23.35% 17.45% 13.71% 13.74%
CFF 255851 95.62% 2.09% 64.22% 17.13% 62.36% 10.00%
CFF+BC 730627 95.02% 3.39% 74.25% 8.12% 64.04% 8.10%
CFF+BC+IS 726230 91.15% 6.79% 68.89% 11.83% 60.66% 5.83%
CFF+BC100 1783514 95.69% 2.06% 87.34% 6.55% 83.13% 5.43%
CFF+BC100+IS 1783514 96.90% 1.59% 86.06% 5.86% 84.70% 4.78%
CFF+BC40 882526 94.80% 2.24% 71.59% 8.89% 67.37% 7.79%
CFF+BC40+IS 877958 95.17% 1.23% 72.30% 7.45% 67.49% 7.68%
CFF+IS 255851 95.72% 4.21% 64.45% 13.27% 44.19% 23.51%
CFF+IS+BC 728632 92.42% 5.23% 73.34% 9.13% 67.13% 5.21%
CFF+IS+BC100 1783514 96.50% 2.35% 82.16% 8.39% 81.49% 7.54%
CFF+IS+BC40 880624 95.07% 2.12% 72.49% 12.18% 68.82% 5.46%
IS 95112 99.97% 0.07% 98.72% 0.73% 98.72% 1.15%
IS+BC 266290 99.89% 0.09% 85.41% 5.23% 94.48% 4.96%
IS+BC+CFF 455058 90.07% 3.80% 34.55% 13.74% 18.06% 11.68%
IS+BC100 646318 99.82% 0.26% 86.62% 5.62% 98.20% 1.83%
IS+BC100+CFF 895135 71.90% 12.82% 7.48% 5.05% 15.84% 16.47%
IS+BC40 320527 99.81% 0.14% 86.34% 6.73% 95.90% 4.06%
IS+BC40+CFF 517787 83.79% 12.69% 35.37% 13.49% 18.54% 14.09%
IS+CFF 255851 95.83% 2.37% 69.20% 12.39% 49.56% 21.44%
IS+CFF+BC 730069 94.01% 3.03% 65.73% 13.72% 64.20% 7.99%
IS+CFF+BC100 1783514 94.74% 3.37% 82.35% 9.11% 81.21% 5.65%
IS+CFF+BC40 884683 93.52% 4.21% 62.63% 16.16% 66.84% 7.73%

147

6. Resilience

Table 6.2.: Machine-learning-based attack effectiveness in localizing SC, OH/SROH, and
CSIV on different combinations of IS, BC, and CFF obfuscations for the simple
data set; DS denotes the number of samples in the data set; FM captures the
average f-measure over the 10-fold validations; σ denotes the standard deviations
of different folds

Integrity Checking Measures
No-Protection SC OH/SROH CSIV

DS FM σ FM σ FM σ FM σ

O
bf

us
ca

ti
on

C
om

po
si

ti
on

s

None 10808 99.72% 0.15% 99.94% 0.18% 96.91% 2.43% 97.19% 3.14%
BC 30166 99.41% 0.20% 99.26% 0.73% 81.75% 5.35% 93.34% 4.72%
BC+CFF 52443 97.92% 0.09% 15.31% 15.47% 19.86% 10.72% 7.84% 0.00%
BC+CFF+IS 51866 97.96% 0.09% 26.36% 16.40% 18.66% 12.33% nan nan
BC+IS 30419 99.32% 0.21% 98.62% 0.86% 80.29% 6.45% 90.56% 5.91%
BC+IS+CFF 51718 97.87% 0.05% 10.71% 10.49% nan nan 18.18% 0.00%
CFF 29468 98.13% 0.47% 69.57% 28.21% 36.47% 9.23% nan nan
CFF+BC 83319 98.98% 0.18% 49.42% 25.03% 50.59% 10.83% 21.48% 9.41%
CFF+BC+IS 84362 98.96% 0.20% 49.14% 23.02% 47.81% 19.00% 10.84% 7.65%
CFF+IS 29468 98.22% 0.46% 72.70% 25.74% 45.02% 17.76% nan nan
CFF+IS+BC 83462 98.99% 0.11% 49.27% 21.11% 51.21% 10.12% 16.42% 9.21%
IS 10808 99.68% 0.27% 99.76% 0.54% 97.21% 1.53% 95.36% 8.89%
IS+BC 30254 99.39% 0.23% 99.41% 0.70% 82.28% 6.92% 90.72% 7.01%
IS+BC+CFF 51849 97.86% 0.15% 13.39% 13.15% 10.09% 0.72% nan nan
IS+CFF 29468 98.02% 0.27% 69.54% 20.99% 43.95% 13.22% 2.70% 2.70%
IS+CFF+BC 84526 99.03% 0.15% 52.32% 22.98% 49.44% 16.09% 11.53% 6.87%

trace polluting measures due to their impact on the trace size.

Taint Data Set. For the sake of this experiment, we generate two sets of protected
programs: SC-protected, SC-protected-CFF-trace-polluted, and SC-protected-Virt-trace-
polluted binaries from the test program set. We limit the application of both of the CFF and
Virt to SC checks and 20% of other program functions. Note that the larger application of
these techniques leads to extremely large traces for which we are unable to perform the taint
analysis. We use DynamoRIO to capture one trace for each program in the set with constant
inputs. Subsequently, we use Triton [71] to mount the taint-based attack introduced in
Section 6.4 on the captured traces of the MiBench data set programs. In our experiment, we
limit the trace size ≈ 370 GB and set the analysis time to 80 hours.

Results. We measure the trace size and attack time of the experiment for each program
separately. Table 6.3 presents the results of the taint-based attack. According to our results,
the attack successfully localizes all SC checks (FM=100%) for both Vanilla SC and SC+CFF20
configurations. Clearly, CFF does not mitigate the risk (except for the basicmath l program).
Nonetheless, attack times are significantly increased, which could potentially render the
attack impractical for large programs. The attack fails to properly localize protection in
many cases when virtualization is applied (Section 6.8.1 elaborates further).

148

6. Resilience

Table 6.3.: Taint-based localization effectiveness experiment; Insts., TS, AT, CFF20, Virt20
denote the number of LLVM instructions in the original programs (unprotected),
the trace size (MB), the attack time in seconds, CFF on SC checks and 20% of
other functions, and Virt on SC checks and 20% of other functions, respectively;
N/A indicate failure of the attack or analysis

Vanilla SC SC+CFF20 SC+Virt20
Program Insts. TS AT TS AT TS AT
qsort s 92 5 37.4 13 76.8 8063 36648.8
crc 147 1 15.9 4 30.3 385 1744.6
qsort l 147 3 25.0 5 35.6 2922 13671.9
dijkstra l 323 3062 16791.6 35219 177031.4 374961 N/A
dijkstra s 323 650 3594.7 9822 49734.6 374606 N/A
caudio 418 0.1 7.4 0.1 7.8 10 53.7
daudio 418 0.1 10.5 0.1 14.9 10 53.6
bmath s 532 494 2893.0 846 4621.4 203943 N/A
tetris 629 43 276.1 250 1319.2 7669 34660.6
bmath l 643 13850 N/A 20699 N/A 374952 N/A
sha 657 201 1324.8 575 3317.6 258373 N/A
bitcnts 664 4 30.8 14 76.7 11212 51833.8
fft 742 272 1573.9 533 2894.9 61581 283411.3
2048 749 33 211.7 67 375.1 21156 99059.3
search l 827 60 378.8 360 1844.8 35972 165931.4
search s 827 3 23.0 24 130.2 1565 7240.7
snake 1065 25 160.3 57 312.3 1111 5131.0
patricia 1087 958 5951.6 2567 14365.4 374978 N/A
bf 3607 4 32.2 9 59.2 37730 N/A
rijndael 5866 280 1816.9 511 2984.4 374952 N/A
say 6859 225 1593.0 1200 9486.3 25078 115695.1
susan 12656 450 2795.4 5259 26623.3 225351 5401.1
toast 13930 291 1736.7 485 2778.2 170259 N/A
djpeg 52708 84 539.5 86 535.0 174 N/A
cjpeg 54837 334 2094.5 3773 19544.6 69202 N/A
Mean 6430.1 853.3 1756.6 3295.1 13258.3 120648.6 35675.5
Median 742.0 84.0 378.8 360.0 1582.0 35972.0 1744.6
Std 14730.4 2778.2 3460.5 8025.5 36739.4 149939.9 69840.5

6.7.3. Integrity Checking Defeatability

In this section, our objective is to qualify the difficulty of disabling protections. In a realistic
scenario, often enough attackers have to first identify the protections. Thereafter, they
mount their attacks to alter or disable a certain behavior in the program of interest.

In this experiment, our objective is to measure the impact of different composition of
protections on the segmental or overall defeatability of a program. To estimate the defeat
difficulty, we resort to the EPS metric we presented in Section 6.6.2. Composing protections

149

6. Resilience

is a non-trivial task [8]. To generate reliable and different compositions of protections, we
resort to the sip-shaker composition framework. The sip-shaker framework utilizes
an ILP solver to compose protections according to desired requirements. The framework
comes with three baked-in modes for protection compositions: namely max-manifest, max-
explicit, and max-implicit [8]. The max-manifest mode applies all possible protections.
The max-explicit and max-implicit devise compositions that yield maximum explicit and
maximum implicit coverages, respectively. Data Set. For the sake of this experiment, we
generate three instances, one for each mode of the composition, of each program in the
Mibench data set. We utilize SC, OH/SROH, and CSIV protections to increase the chances
of forming protection chains. Having such chains in protected programs enables us to
study the impact on the EPS metric. We define the order of protection applications as
SC→CSIV→OH/SROH to ensure the formation of protection chains.

Results. We compute the EPS score at the level of functions for each program in the data
set. Table 6.4 presents the median, mean, and standard deviation of the EPS score for the
programs in the MiBench data set. One immediate benefit of this experiment is that the
defender can quantify and subsequently compare the estimated steps that attackers need to
take to defeat different compositions of protections. The results indicate that the EPS metric
deems max-manifest configurations harder to defeat than other coverage related metrics.
We elaborate further on the results in Section 3.7.

6.7.4. Resilience

The previous experiments provide the information that we need to compile a relation
matrix. The fuse of results corresponding to the pattern-based attacks (Section 6.7.2),
machine-learning-based attacks (Table 6.1), and taint-based attacks (Table 6.3) captures the
resilience of different protections (i.e., the relations amongst protection and defenses).

6.7.5. Attack Defense Relation Table

The fuse of results corresponding to the pattern-based attacks (Section 6.7.2), machine-
learning-based attacks (Table 6.1), and taint-based attacks (Table 6.3) captures the resilience
of different protections (i.e., the relations amongst protection and defenses). Table 6.5
captures the compiled relation matrix.

6.7.6. A Complete Example of the Proposed Resilience Quantification

In this section, we use one of the programs in the MiBench data set (qsort l) to demon-
strate how practitioners can apply our methodology to firstly pick best protections and
subsequently quantify the actual resilience of their protected programs.

As per obfuscations, we utilize the best combinations according to our localizability
experiments (see Table 6.1). That is, we choose combinations of BC+IS2+CFF2 to obfuscate
OH/SROH and CSIV protections, and BC100+IS+CFF to obfuscate SC protection. After

150

6. Resilience

Table 6.4.: EPS metric mean (M), median (Mdn), and standard deviation (σ) for the three dif-
ferent composition of protections: max-manifest, max-explicit, and max-implicit;
#P, E, I denote the number of protections (manifests) in the solution, explicit, and
implicit protection coverages, respectively

M
ax

-m
an

if
es

t
D

ef
ea

ta
bi

li
ty

M
ax

-e
xp

li
ci

t
D

ef
ea

ta
bi

li
ty

M
ax

-i
m

pl
ic

it
D

ef
ea

ta
bi

li
ty

Pr
og

ra
m

E
I

#P
M

M
dn

σ
I

#P
M

M
dn

σ
E

#P
M

M
dn

σ

qs
or

t
s

91
86

23
14

.2
6

19
.4

6
86

19
11

6
13

.0
8

87
13

6.
2

6
3.

71
cr

c
36

8
36

5
56

13
.1

1
9

9.
11

36
5

55
12

.6
7

9
8.

60
36

6
53

11
.7

8
9

8.
09

qs
or

t
l

76
71

22
21

.3
3

6
22

.4
71

18
16

6
14

.8
5

72
12

8
6

3.
56

di
jk

st
ra

l
67

3
66

8
12

3
22

.4
20

13
.8

7
66

8
12

1
21

.8
7

20
12

.9
6

66
9

11
6

20
.5

3
20

11
.9

di
jk

st
ra

s
67

3
66

8
12

3
22

.4
20

13
.8

7
66

8
12

1
21

.8
7

20
12

.9
6

66
9

11
6

20
.5

3
20

11
.9

ca
ud

io
12

47
12

45
11

5
12

.3
8

11
.5

8.
45

12
45

11
4

12
.2

3
11

.5
8.

4
12

46
11

3
12

.0
8

10
.5

8.
42

da
ud

io
11

97
11

95
99

11
.1

5
10

.5
5.

97
11

95
98

11
10

.5
5.

87
11

96
97

10
.8

5
9.

5
5.

87
bm

at
h

s
85

2
78

7
25

5
44

11
.5

12
9.

65
78

7
22

8
38

11
.5

10
5

78
8

16
4

23
.7

8
11

.5
46

.9
5

te
tr

is
35

90
35

67
11

62
91

.0
8

58
92

.2
7

35
67

11
53

90
.1

5
58

91
.5

4
35

86
11

43
86

.4
4

55
91

.2
1

bm
at

h
l

97
4

90
1

37
4

58
.3

2
15

19
7.

25
90

1
29

7
44

.3
2

15
13

3.
23

90
2

22
5

31
.2

3
15

73
.5

6
sh

a
22

90
22

87
59

9
90

.8
2

47
14

1.
89

22
87

59
7

90
.0

9
47

14
2.

20
22

88
59

4
89

47
14

2.
74

bi
tc

nt
s

13
89

13
83

13
4

14
.2

9
11

13
.2

7
13

83
12

4
13

11
6.

59
13

84
11

7
12

.1
11

3.
19

ff
t

21
10

21
04

26
2

17
.2

1
10

27
.5

1
21

04
22

9
14

.0
7

10
10

.3
4

21
05

21
9

13
.1

2
10

8.
37

20
48

24
46

24
36

66
2

42
.5

6
26

68
.6

9
24

36
58

1
33

.5
6

26
29

.7
6

24
37

56
9

32
.2

2
26

28
.2

8
se

ar
ch

l
18

15
17

95
18

1
11

.4
8

8
21

.3
17

95
17

1
10

.6
5

8
15

.8
3

17
96

15
2

9.
06

8
6.

65
se

ar
ch

s
18

15
17

95
18

1
11

.4
8

8
21

.3
17

95
17

1
10

.6
5

8
15

.8
3

17
96

15
2

9.
06

8
6.

65
sn

ak
e

34
08

34
06

80
0

48
.2

9
14

88
.8

34
06

79
3

47
.2

9
14

88
.7

2
34

07
79

2
47

.1
4

14
88

.7
4

pa
tr

ic
ia

16
41

16
32

39
1

61
.4

1
19

13
8.

85
16

32
25

5
29

.4
1

19
29

.5
4

16
33

24
3

26
.5

9
17

28
.6

7
bf

50
70

50
57

28
2

15
.7

8
46

.2
8

50
57

21
6

10
.8

1
8

12
.2

2
50

58
20

0
9.

63
8

6.
93

ri
jn

da
el

70
79

70
61

48
8

45
.5

4
27

72
.4

6
70

61
41

9
35

.6
8

27
29

.4
4

70
62

39
6

32
.3

9
27

23
.9

0
sa

y
32

91
2

32
90

0
83

89
11

6.
21

10
0

11
5.

14
32

90
0

83
84

11
3.

18
97

11
5.

14
32

90
9

83
75

11
3.

04
97

11
5.

16
su

sa
n

32
31

3
32

28
5

61
12

14
0.

73
83

15
7.

8
32

28
5

61
02

13
7.

54
80

15
7.

52
32

31
1

60
91

13
7.

25
80

15
7.

15
to

as
t

61
48

1
61

47
3

16
93

1
22

5.
94

13
5

30
1.

86
61

47
3

16
92

1
22

2.
83

13
2

30
1.

92
61

47
9

16
91

8
22

2.
79

13
2

30
1.

94
dj

pe
g

90
78

9
90

77
0

62
82

37
.7

5
28

32
.9

5
90

77
0

62
58

34
.6

5
25

32
.3

8
90

78
6

62
56

34
.6

4
25

32
.3

4
cj

pe
g

93
84

3
93

82
4

64
66

26
.7

7
18

38
.1

6
93

82
4

64
53

23
.7

2
15

37
.9

5
93

83
9

64
50

23
.7

1
15

37
.9

M
ea

n
14

00
6

13
99

0
20

20
48

.6
6

28
.3

8
71

.9
4

13
99

0
19

96
44

.2
5

27
.7

8
57

.2
7

13
99

5
19

83
41

.7
3

27
.5

50
.1

5
M

ed
ia

n
18

15
17

95
28

2
26

.7
7

15
38

.1
6

17
95

22
9

23
.7

2
15

29
.4

4
17

96
21

9
23

.7
1

15
23

.9
St

d
σ

27
52

7
27

52
6

39
65

50
.9

4
32

.6
5

73
.4

2
27

52
6

39
70

50
.7

5
31

.8
1

70
.5

27
53

0
39

74
51

.3
8

31
.7

7
69

.4
6

151

6. Resilience

Table 6.5.: Attack-defense relation table capturing the degree of difficulty inflicted by de-
fenses against attacks on integrity checking protections; numeric cell values
of pattern matching, machine learning, and tainting correspond to the attacks
effectiveness (f-measure) in localizations of hardened integrity checks; Xand X
denote susceptibility and tolerance to attacks; grayed out cells represent irrele-
vant configurations

Defenses Attacks
In

te
gr

it
y

C
he

ck
in

g

O
bf

us
ca

ti
on

/
H

ar
de

ni
ng

Pa
tt

er
n

M
at

ch
in

g

M
ac

hi
ne

Le
ar

ni
ng

Ta
in

ti
ng

Sy
m

bo
lic

Ex
ec

ut
io

n

M
em

or
y

Sp
lit

SC

None 100% 100% 100% X
BC100+CFF 76% X
IS+BC100+CFF 72% X
BC100+IS+CFF 64% X
BC+IS2+CFF2 82% X
CFF 96% 100% X
Virt X X X
Self-modifying code X

OH/
SROH

None 94% 99%
BC100+CFF 73%
IS+BC100+CFF 7%
BC100+IS+CFF 7%
BC+IS2+CFF2 6%

CSIV

None 100% 98%
BC100+CFF 16%
IS+BC100+CFF 16%
BC100+IS+CFF 13%
BC+IS2+CFF2 1%

deciding upon obfuscations, we feed them to sip-shaker (see Section 6.7.3) to synthesize
a maximum-protection compositions of SC, OH/SROH, and CSIV protections combined
with the specified obfuscations. The qsort l program has only one function (main).
Since the SC protection needs at least two functions to be applied, sip-shaker utilizes
a basic function splitting transformation yielding three functions, namely main, main0,
and main1. The list of the applied protections (manifests) are presented in Table 6.6. We
assign a unique id to each protection manifest (see the Id column in Table 6.6). Figure 6.2
presents the defense graph of the composition capturing the relations amongst manifests.
Node Ids in the graph correspond to the manifest Ids in Table 6.6. Note that graph nodes
with no relations are omitted to improve readability. We then compute the EPS score for
each of the nodes in the graph. Defeatability (EPS) and localizability (f-measure) scores of
each node are annotated on the graph nodes as tuples of (f-measure, EPS). For the protected
program we then compute the aggregate defeatability and localizability scores (as presented
in Section 6.6.3) capturing the actual resilience (〈 aggregate EPS , aggregate f-measure 〉) of

152

6. Resilience

the applied protections. That is, res(qsrot l) = 〈21.33, 8.72E − 27〉.

Table 6.6.: List of all protection manifests applied to qsort l; note that SC operates at
the function level and thus we apply function splitting transformation, which
breaks the main function into 3 functions (main, main0, main1), to improve the
protection coverage

Id Protection EPS FM Protecting
Function

0 SC 4 64.2% main0
1 SC 4 64.2% main1
2 SC 2 64.2% main0
3 CSIV 1 0.84% main
4 CSIV 3 0.84% main0
5 CSIV 5 0.84% main1
6 OH/SROH 1 6.26% main
7 OH/SROH 1 6.26% main
8 OH/SROH 1 6.26% main
9 OH/SROH 1 6.26% main
10 OH/SROH 1 6.26% main
11 OH/SROH 1 6.26% main
12 OH/SROH 1 6.26% main
13 OH/SROH 1 6.26% main
14 OH/SROH 1 6.26% main
15 OH/SROH 1 6.26% main
16 OH/SROH 3 6.26% main0
17 OH/SROH 3 6.26% main0
18 OH/SROH 1 6.26% main0
19 OH/SROH 1 6.26% main
20 OH/SROH 1 6.26% main
21 OH/SROH 1 6.26% main

6.8. Discussion

6.8.1. ML-Based Localization Attack

We would like to reiterate that we fuse structural features such as data/control flow de-
pendencies, strongly connected components, and control flow graphs. We believe the
effectiveness of ML-based attacks is due to the vulnerability of the obfuscation passes
available in the O-LLVM framework to structural pattern extractions. In fact, according

153

6. Resilience

Figure 6.2.: Defense graph of the qsort l program with the maximum protection compo-
sition of SC, OH/SROH, and CSIV

5

main1: [CSIV] (0.84, 5)

5

main1: [CSIV] (0.84, 5)

16

main0: [SROH] (6.26, 3)

16

main0: [SROH] (6.26, 3)

6

main: [OH] (6.26,1)

6

main: [OH] (6.26,1)

0

main0: [SC] (64.2, 4)

0

main0: [SC] (64.2, 4)

4

main0: [CSIV] (0.84, 3)

4

main0: [CSIV] (0.84, 3)

17

main0: [SROH] (6.26, 3)

17

main0: [SROH] (6.26, 3)

2

main: [SC] (64.2, 2)

2

main: [SC] (64.2, 2)

1

main0: [SC] (64.2, 4)

1

main0: [SC] (64.2, 4)

to further experiments we performed, plain TFIDF-based features demonstrated average
effectiveness (f-measure) of 30%.

Interestingly, concealing SC checks in protected programs is far harder than OH/SROH
and CSIV protections for both simple and MiBench data sets. We believe this is because SC
guards have more code than OH/SROH and CSIV guards, leaving more significant finger-
prints in the program blocks. Our results confirm that picking up such large fingerprints is
easier for the learners while withstanding applied obfuscations. Nevertheless, it appears
that the two obfuscation compositions of BC100+IS+CFF (64.28%; Table 6.1) and BC+IS+CFF
(10.71%; Table 6.2) induce the highest difficulties on the ML-based attacks for the MiBench
and simple data sets, respectively. Based on the results from both data sets, we conclude
that the combination of BC(100)+IS+CFF impairs localization attacks on SC protection best.

An insight of the ML-based attack results is the impact of the data set size on the ef-
fectiveness of SC localizations. There is a clear difference between the MiBench data set,
which contains large programs, and the Simple data set results in terms of the SC detection
efficacies. The reason, we believe, is a combination of obfuscations deficiency in their
offered diversity together with the larger number of block samples that MiBench data set
provides in the training process. We argue the high effectiveness of the simpler obfuscation
compositions for the simple data set supports the very idea. For instance, IS+CFF yields an
f-score of 2.7% for CSIV in the case of the simple data set while the corresponding value for
the MiBench data set is 49.56%. Our experiments with the MiBench and Simple data sets
indicate that the combinations of BC+IS2+CFF2 and IS+BC+CFF best suit OH/SROH and
CSIV, respectively.

154

6. Resilience

Taint-Based Attack on SC

In the case of SC protection, an alternative to the ML-based attack is to mount the taint-based
attack. Our experiment (Table 6.3) confirms that without trace pollutions (obfuscations), the
attack successfully localizes all the SC checks in all programs, except for the basicmath l
program. It appears that taint analysis fails to converge for the mentioned program within
the given time frame (i.e., 80 hours). Applying CFF exhibit average trace size increase and
average taint attack time by 3.9x (3295.1/853.3) and 7.5x (13258.3/1756.6), respectively. The
same values show growth of 141.4x (120648.6/853.3) and 20.3x (35675.5/1756.6) in the case
of Virt application.

Despite the bloated analysis and attack time, CFF (when applied to the 20% of the program
besides the checks) is unable to mitigate the taint-based attack against the programs in our
data set. One observation here is that for some programs (rows with AT value of N/A), the
taint analysis fails to converge in the given time bound when Virt is utilized. This is due to
the introduction of extensive taint poisoning inflicted by the virtual machine instruction
fetch and execution model. Nevertheless, the failures do not mean virtualization is a silver
bullet. Attackers need to first de-obfuscate virtualization (for instance, using [156]) and
then run their trace-based attacks. We would have liked to use Salwan et al.’s script [156] to
simulate these attacks. However, it is mainly designed to recover hash functions and thus
cannot be applied to our binaries.

6.8.2. Defeatability

The EPS score provides a way first-order proxy to quantify the difficulty of defeating
protections based on the number of imposed patches on attackers. A higher EPS value
indicates a better quality of protection compositions. We argue compositions shall favor
solutions with the maximum EPS. As the EPS value increases, localization attacks recall
needing to increase substantially. For a given segment with EPS score of N, attackers need
to localize all the N protections; otherwise, the attack will fail. Simply put, when the EPS
score is high, the localization attack has to have considerably higher f-scores. Note that we
capture the relation between localizability and defeatability in the resilience metric.

Nevertheless, the EPS value by —no means— translates to the attack effort. Our investi-
gations confirm that IS, BC, and CFF obfuscations have no impact on the defeatability of
the protections. This is mainly because our protection guards boil down to a comparison
instruction in which the expected value is verified. This can be further hardened by hiding
such comparison instructions using more advanced obfuscations. Alternatively, compar-
isons can be replaced with more robust reactions, for instance, by intertwining the checks
with the program logic. Instead of comparing values, the calculated hashes can be used
in the calculation of jump addresses in protected programs [47]. That is, the degree of the
entanglement of the response mechanism in the program logic has a significant impact
on the actual effort. The weighted EPS can enable defenders to approximate the effort by
assigning difficulty coefficients to protections. However, we do acknowledge that coming

155

6. Resilience

up with characteristic coefficients is quite tricky. This calls for further research.

6.9. Threats to Validity

In this work, we split the attacker’s effort into two hypothetically disjoint tasks: localizability
and defeatability. We emphasize that such a split is merely for the sake of classification and
subsequent mapping of attacks and defenses. In reality, the two are tightly coupled. Harder
localizability often implies higher defeatability and vice versa.

Localizability is computed on the basis of the f-measure on our data set of programs. This
value may not generalize for programs of different nature (and for practicality reasons, we
relied on a medium-size size set of benchmark programs with results that may naturally
be different for larger sets). That is, the f-measure can potentially be worse or better
for programs with logics similar to the protection guards. For instance, a program with
extensive operations on constant data can be hit by a large number of false positives in
the OH/SROH classification. In Table 6.1 we reported on f-score, standard deviation
and median of classifications. We argue high f-scores with low standard deviations show
both good and robust classifications. High f-scores with high standard deviations can be
interpreted as frail classifiers or partially effective obfuscations. That is, some programs
have better obfuscation amenability and hence lower f-scores. Conversely, some programs
or (segments of) appear to be classified more effectively. Another possible explanation is a
weak classification.

The proposed EPS metric captures defeatability for acyclic protections. In our work,
all the reviewed protections, as well as the compositions, preserve the acyclicity property.
Therefore, we believe the acyclic EPS metric suffices our needs, but this may not be the case
for other protections.

6.10. Conclusions

Measuring the resilience of combinations of software protection transformations is crucial
for risk analysis. Without a way to estimate the difficulty of attacking protections, the degree
of trust in the system is unknown. To answer our 1st research question (RQ1), we propose
a methodology that quantifies the resilience of software integrity protections combined
with obfuscation and other hardening transformations, as a conjecture of localizability
and defeatability of protections. We conducted empirical evaluations, ranging pattern
matching, taint-based, and machine-learning-based attacks, to measure the effectiveness
of defenses approximating the localizability of protections. To answer our 2nd research
question (RQ2), our results showed which obfuscations hide which integrity protections
best for the representative data sets of programs. We also proposed a metric called Estimated
Patch Steps (EPS) to estimate the number of patches that compositions of protections impose
on attackers offering a first-order proxy of the defeatability of protections.

156

6. Resilience

One direction for future work is to develop tailored obfuscations against machine-
learning-based localizations. Regarding defeatability, we need further research to quantify
the effort of patching attacks. A quantification metric must be developed to assign difficulty
coefficients to each protection according to the entanglement of response mechanisms in
the program logic. Another future work direction is verifying the external validity of the
defeatability and localizability metrics in hacking contests (e.g., CTFs).

157

Part V.

Conclusions & Future Work

159

7. Conclusions

This chapter presents the conclusions, lessons learned, future work, and the
limitations of this thesis.

7.1. Research Findings

We started this thesis to answer the main research question of “Which security guarantees at
which cost could software integrity protection schemes offer against automated MATE attackers?”
To answer the main research question, we further refined it into a set of subquestions. In
this section, we elaborate on the answers to each subquestion.

RQ1 Which aspects of software integrity protection techniques are security-relevant?
In Appendix A, we surveyed the literature and further performed an in-depth anal-
ysis of the reviewed papers. The outcome of the analysis (captured as a taxonomy
in Chapter 2) indicates two main categories of integrity assets, namely data and be-
havior. Attacks on integrity (breaches) tend to target either of or both of these assets
in systems. We proposed a unified set of criteria comprised of four main categories,
namely measure, protection level, trust anchor, and overhead, to classify integrity protec-
tion techniques in the defense dimension of our proposed taxonomy. The measure
category is comprised of eight subcategories: monitor, response, transformation, check,
hardening, remote, and local. We refined each of these subcategories with two to six
further specialized sub-subcategories. We mapped the protection literature to our
defense dimension and identified the criteria that contribute to the mitigation of each
attack via a collection of correlation analyses. Among the captured criteria, hardening,
monitor, and response appear to have the highest impact on the security of the protec-
tions. Another indirectly related criterion is overhead. That is, we may not be able to
use a secure scheme with a high overhead in a device with limited computational
resources. Since the imposed overhead by protections is a dominant factor in the appli-
cability of schemes in various use cases, we also looked into the execution overheads
by classifying reviewed papers according to three levels of overhead classes, namely
fair, medium, and high, corresponding to ≤ 100%, between 100% and 200%, and ≥
200%, respectively. Papers with no performance benchmarks as well as questionable
evaluations were marked with N/A labels. We believe these criteria provide a unified
basis for qualification of the security of integrity protection techniques.

161

7. Conclusions

RQ2 How do integrity protection techniques mitigate attacks?
To answer this question, we reviewed and further mapped the protection schemes in
the literature to the kind of attack (namely, binary patching, control flow subverting,
process memory patching, and runtime data manipulation) that they aim to mitigate.
Section 2.5.2 provides a precise mapping of the desired attacks to mitigate and the
relevant protection schemes. Schemes use a combination of hardening measures and
static code representations to safeguard the program binaries. A majority of defenses
use code invariants verifications to protect against process memory tampering attacks.
Data invariants and traces are two conventional means to defend against runtime
data manipulation attacks. The literature indicates that trace-based verifications can
effectively raise the bar against attacks on the program control flow [2, 19, 31, 49, 51,
99, 102, 118, 144, 145].

We also gathered published attacks on the protection schemes (see Section 2.5.8) and
thereby analyzed the security of the protections against known attacks.

RQ3 What are the shortcomings of the existing protection schemes?
Amongst the reviewed protections Chapter 2, we identified self-checksumming and
oblivious hashing as two prominent protections. We then performed an in-depth anal-
ysis on each of these schemes in Chapters 3 and 4. We proposed three main metrics
for analyzing shortcomings of schemes: applicability, coverage, and resilience. We found
both schemes (SC and OH) to have deficiencies. As we pointed out in Chapter 3, OH
requires users to segregate input independent instructions from other program in-
structions manually. We believe manual segregation of instructions is labor-intensive
and thus comes with a substantial applicability problem. Moreover, the number
of input-independent instructions are critically limited in programs (less than 1%
in our data set). Therefore, the effortful task of segregating instructions, at its best,
can protect an insignificant set of program instructions. That is, low coverage is a
fundamental problem in OH. On the bright side, OH exhibits acceptable resilience
to known attacks. Unlike OH, SC comes with almost no coverage constraints (see
Chapter 4). The protector instead regulates the coverage. That is, the user can de-
cide which portions of the programs shall be protected. Nevertheless, SC comes
with severe composability constraints (applicability) as well as susceptibility to the
trace-based [150] and memory split [177, 183] attacks.

RQ4 How can we improve protection schemes aiming for enhanced security?
Concerning OH (Chapter 3), we first implemented a tool for the input dependency
analysis based on graph reachability analysis. This tool enabled us to automate the
OH protection fully. Second, we proposed Short Range Oblivious Hashing to extend
the protection coverage to all branching conditions and instructions with control
flow dependency on the input. Besides the 20 and 35 fold increases in the instruc-
tion and block coverages, respectively, the SROH extension provisions fully-fledged
control-flow integrity protection. Integral SC guards then protect the remainder of the

162

7. Conclusions

instructions (i.e., input-data-dependent instructions). We also introduce another layer
of protection by having OH and SROH guards to verify SC guards. The extended
layer adds resilience against attacks on SC, imposing more effort on the adversaries.

We then gave heed to enhancing SC protection. Improved security is one immediate
benefit of building intertwined protection with OH. That is, when we utilize the
layered protection (SC and OH), attackers have to defeat OH protections in addition
to SC guards. However, detecting SC remains somewhat feasible as SC guards leave
recognizable tainting patterns in the program trace. Moreover, the post patching
step of SC protection severely limits applications of additional protections. Without
adequate applications of other protections, particularly obfuscations, detecting SC
guards might become even trivial, e.g., using pattern matching. In Chapter 4, we
proposed an SC protection atop virtualization obfuscation. The proposed VirtSC has
two major advantages. First, it requires no post-patching step and hence remarkably
facilitates the application of other protections (enhanced composability). Second,
virtualization obfuscation blows the program trace hardening against taint and trace-
based attacks.

RQ5 How can we compose protections to mitigate a wider range of attacks?
While the idea of composing protection at first appeared to be trivial, the task quickly
became rather complicated. Simultaneously applying certain protections on the
same program segment may lead to conflicts among protections triggering false
tampering alerts. More importantly, the decision of utilizing which protection on each
segment can have a notable impact on the resilience as well as the runtime overhead of
protection compositions. The bottom line is that we have to optimally decide on which
protection shall protect which segments of a program. In Chapter 5, we proposed an
ILP-based optimization system to find optimal compositions of protection for a given
program. Besides the coverage metric, we proposed a novel implicit coverage metric
that captures the degree of overlaps and cross checks that composed protections form
together. We formulated the composition problem as an ILP problem with objective
functions of minimizing overhead, maximizing (explicit) coverage, and maximizing
implicit coverage. Our optimization technique yielded overhead decreases of 39% and
500% for maximum protection (coverage) and (compared to) state of the art heuristics,
respectively.

RQ6 How to quantify the resilience of individual and composed protection techniques?
In Chapter 6, we proposed a methodology for estimating the resilience of protections
against automated attacks. We took the perspective of defenders who aim to quantify
the trouble that attackers shall endure to be able to break protections. The methodol-
ogy suggests splitting the ongoing battle between attackers and defenders into two
hypothetically disjoint fronts: localizability and defeatability. Various automated
attacks are then mapped to each of these battlefronts. On the defender side, relevant
defenses are considered against each of the attacks. Our methodology suggests cap-

163

7. Conclusions

turing the effectiveness of attacks on defenses (or vice versa) as the actual resilience of
protections. For localizability attacks, we considered f-measure as our effectiveness
metric, while for defeatability attacks, we proposed a novel metric (EDS) that captures
the steps attackers must take to defeat protections.

Overall Conclusion. One goal of this thesis was to explore efficient and secure constructs
to protect software integrity. We achieved this goal by proposing various enhancements [5,
7] as well as a composition framework [8] for integrity protection techniques. The other goal
was to build a unified method for assessing the strength of protections. We accomplished
this goal with our quantification methodology (see Chapter 6). All in all, we met all the
goals we set for this thesis.

7.2. Recap of the Research Gaps and Contributions

7.2.1. Gaps

In the previous chapters, we discussed the related work and identified gaps. Here we
briefly reiterate over the research gaps:

G1 Lack of a set of unified criteria to analyze software-based integrity protection schemes;

G2 Unknown security guarantees and performance bounds of protection schemes;

G3 Severe shortcomings in two well-known protection schemes, namely, oblivious hash-
ing and self-checksumming;

G4 Nonexistence of effective integrity protection compositions;

G5 Existence of no means to quantify the resilience of protections; and

G6 Limited publicly-available implementations of protection schemes

7.2.2. Contributions

C1 Regarding G1, we proposed a taxonomy for software integrity protection capturing
advantages and disadvantages, constraints, shortcomings, and security guarantees of
different protections (refer to [9]);

C2 Throughout the thesis, we benchmarked integrity protection schemes w.r.t. security,
performance using datasets of real-world programs to close G2 (refer to [5, 7, 8]);

C3 Proposed a novel extension so-called Short Range Oblivious Hashing to address the
coverage problem of the vanilla oblivious hashing; and proposed a self-checksumming
protection atop virtualization to enhance the composability of protections closing G3
(refer to [5, 7]);

164

7. Conclusions

C4 To close G4, proposed and evaluated an ILP-based optimization framework that
guarantees a conflict-free and optimized composition of protections yielding a 5-fold
decrease in overhead compared to the heuristic-based compositions (refer to [8]);

C5 To address G5, we propose a quantification methodology to estimate the resilience of
protections via metrics surrogating the localizability and defeatability of combinations
of protections (refer to Chapter 6); and

C6 Open sourced all the developed protections, composition framework, and evaluation
benchmarks to support the reproducibility of results and thereby address G6 (available
at https://github.com/tum-i22/sip-toolchain).

7.3. Results and Lessons Learned

In this section, we highlight interesting results and lessons learned throughout the thesis.

• Taxonomy of software integrity protection built around a representative protec-
tion process
We proposed a taxonomy encompassing three dimensions: system, defense, and
attack. The system dimension captures assets and their exposure in various lifecycles
of a system. The attack dimension captures threats and hints on the desired protection
requirements. The defense dimension provides a technical catalog of protections cap-
turing characteristics of protections, attacks each scheme can mitigate, and potential
overheads on the system.

• Self-checksumming is the most used technique for integrity protection
In the analysis of the literature (Section 2.5.5), we found out that self-checksumming
(self-hashing) is the prominent technique for checking the integrity of programs in
literature.

• The vanilla OH has significant practical drawbacks with a barely 1% program cov-
erage
OH cannot protect input-dependent instructions. Our analysis confirmed that a
substantial portion of program instructions directly or indirectly depend on input
values.

• The existing static analysis tools (as is) cannot single out input-dependent instruc-
tions After attempting to segregate input dependent instruction using the existing
tools, we realized for the existing open source projects cannot directly meet our re-
quirements. Our needs included input flow detection from system and library calls
with no sink and source specifications whatsoever, distinctions of data and control
flow dependencies, and propagations of dependencies at the module level (inter-
procedural) instead of functions only. These requirements led us to implement an
analysis tool from scratch.

165

https://github.com/tum-i22/sip-toolchain

7. Conclusions

• Our SROH extension increases instruction and block coverages by factors of 20
and 35
Our SROH technique enables protecting data-independent instructions that reside in
data-dependent branches of programs.

• SROH enhances the amenability of OH to SC (and other protections)
SROH can protect all branching conditions in programs regardless of their input
dependency. Consequently, all the branching conditions added by other protections
can potentially be protected by SROH. Complete control-flow integrity protection is
another benefit of SROH.

• The composition of OH/SROH and SC constitutes a protection mechanism with
tolerable performance overheads
The combination of OH/SROH and SC with networks of checkers constituted an
overhead of 52% for non-CPU intensive programs in our data set. Although the
overhead can be very high for some programs, e.g., programs with nested loops,
we argued the construct could have acceptable overhead when preferably parts of
programs (deemed as sensitive) need to be protected instead of entire programs.

• The conventional SC protection comes with atypical memory accesses and poor
composability
Reading and subsequently hashing the code segment is a sign that could potentially
give SC guards away. Moreover, hashing the code segment requires a post patching
step to adjust the expected hash values after the binary is compiled.

• VirtSC removes the obvious code segment accesses as well as the post patching
step
The proposed VirtSC scheme moves the checksumming to the level of virtualized
code instead of the program code segment. Consequently, apparent self-memory
reads no longer hamper the stealth of the protection. Moreover, the virtualized code
is available upon transformations, and thus hashes can be calculated directly (i.e., no
post-patching whatsoever).

• Indirect threading optimization can yield a five-fold decrease in the overhead
VirtSC
The emulator of our VirtSC protection imposes a high execution overhead, most of
which is solely about the logic of the emulator itself than the protection. We observed
that applying emulator optimization, such as indirect threading, can boost the perfor-
mance up to 500%. However, this optimization yields fewer branch reuses, which can
ease attacks on the emulator. Further research needs to be done on security-preserving
optimization techniques.

• The problem of optimal protection composition can be formulated as an ILP opti-
mization problem

166

7. Conclusions

We proposed that an optimal protection composition shall address two problems: (i)
deciding on the order in which transformations shall be applied; and (ii) deciding
upon which program segments shall be protected with which protections to avoid
conflicts while maximizing security and minimizing the cost. We then formulated
both problems as subjecting constraints in an ILP optimization problem. In our exper-
iments, we noticed that the GLPK solver takes more than an hour to find solutions
for six large programs in our data set. However, the Gurobi solver finds optimal
composition solutions for those large programs in less than a second. Therefore, it is
crucial to utilize adequate solvers for larger compositions.

7.4. Limitations

We discussed the limitations of each part of the thesis in their corresponding chapters. Here
we briefly reiterate over general limitations of the thesis.

7.4.1. Correctness

We did not provide formal proofs for our proposed protections (SROH and VirtSC) and
ILP-based composition. We implemented the input dependency tool based on the proposed
approach by Scholz et al. [159]. We carried out tests and manual inspections. Despite our
best efforts in tests, potential pitfalls or bugs in the implementations are possible.

7.4.2. Prototype Implementation

We implemented our tools in LLVM 6.0. In theory, our protections should work for any
program that is lifted to LLVM-IR. However, we have not tested our tools with programs
beyond simple and MiBench data sets. Both OH/SROH and SC protection implementations
only contain the post-patching procedures for x86 Linux Executable formats (i.e., standard
ELF). Extending the post patcher for other architectures is merely a matter of engineering
efforts.

The CSIV protection verifies the program traces to sensitive functions. We used LLVM
native program call graph analysis to explore all legitimate paths to sensitive functions. The
analysis can potentially overlook indirect calls or callback functions. A user of CSIV has to
cater for such cases manually. Moreover, the legitimate traces are stored in a text file located
next to the protected binary. In practice, such information needs to be securely stored in
the binary using white-box cryptography. Pure implementation efforts can address both of
these limitations.

Our implementation of the input dependency analyzer makes conservative assumptions
about the dependency of program pointers on the input. This ensures that OH/SROH never
hashes any input dependent values, and thus hash consistencies are guaranteed. On the flip
side, our analysis pass can, in the worst case, misclassify some input-independent pointers.
We consider a precise static program dependency analysis to be a gap in the literature.

167

7. Conclusions

7.4.3. Data sets

All the reported results are based upon our sample C programs. We used the MiBench data
set, the sample data set, and three open-source games. A majority of these programs are
CPU-intensive and thus tend to capture a worst-case scenario. That is, we expect better
results with less CPU-intensive programs. Nevertheless, we believe conducting experiments
on programs with real integrity constraints (such as DRMs) is a better way of studying
protections’ impact. Unfortunately, we did not have access to such programs. Application
to MiBench may lead to results that are not representative of real DRM programs, because
we don’t know what would be a relevant asset to protect. The other obvious concern is, of
course, that the MiBench program results may not be representative of all other programs.
However, if we don’t focus on DRM programs, even then, we don’t know if the findings for
MiBench generalize or to what they generalize.

7.4.4. Automated Attacks

In our security analyses, we considered automated attacks. This may not generalize for a
human MATE attacker. We believe human ingenuity, together with the extended attack
surface in the MATE case, makes it extremely hard to study the actual security of protections.
It is worth mentioning that our study’s limitations are in line with the constraints of other
work in the literature and other prototype software.

7.4.5. Side Channels

In this work, we did not study the feasibility of side-channel attacks on the proposed
schemes.

7.4.6. Resilience Quantification

Regarding the resilience quantification methodology, we do acknowledge that our metrics
rather capture an approximation of the localizability and defeatability. In the case of
defeatability’s metric (Estimated Patch Steps), we don’t know if the abstract number of
steps corresponds to any real-world efforts. In Chapter 6, we discussed the limitations of
our resilience quantification methodology in detail.

7.5. Future Work

We provided a detailed discussion of possible directions for future work in each chapter of
this thesis. In this section, we provide a summary of possible ventures for future work.

168

7. Conclusions

7.5.1. Additional Integrity Protections

In our experiments, we only included four integrity protection schemes. All these schemes
operate locally. It would be useful to include further protections, particularly remote-based
protections.

7.5.2. Controlled Human-Based MATE Attacks

A valuable addition to our experiments is human-based attacks. To do so, we first need to
develop a basis to measure the degree of expertise of attackers objectively. Then, we need to
conduct experiments to study the resilience of protections in a controlled environment. Such
experiments need to be repeated for various combinations of protections with professional
attackers. It would be interesting to empirically study aspects such as the time to break,
the number of defeated protections, and resistant protections with human attackers. In this
thesis, we did not manage to conduct such experiments due to a multitude of reasons: i)
it isn’t easy o find people with such skill-sets; ii) hiring such people was well beyond our
research budget; and iii) even if we had managed to find and hire such specialists, it would
have been hard to argue why such results generalize.

7.5.3. Formal Proofs

Verifying the correctness of the proposed protection schemes as well as the ILP-based
composition appears as a good future work.

7.5.4. Fusion with Hardware-Based Protection

With the current trend in hardware-based security, it would be interesting to combine
software and hardware protections, and understand the provided guarantees. Another
exciting venture is to integrate hardware-based protection into the composition framework.

169

Bibliography

[1] A Survey on Function and System Call Hooking Approaches. Journal of Hardware and
Systems Security, 1(2):114–136, 2017. ISSN 2509-3436. doi: 10.1007/s41635-017-0013-2.
URL https://doi.org/10.1007/s41635-017-0013-2.

[2] Martı́n Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. Control-flow integrity.
In Proceedings of the 12th ACM conference on Computer and communications security,
pages 340–353. ACM, 2005.

[3] Bert Abrath, Bart Coppens, Stijn Volckaert, Joris Wijnant, and Bjorn De Sutter. Tightly-
coupled self-debugging software protection. In Proceedings of the 6th Workshop on
Software Security, Protection, and Reverse Engineering, SSPREW ’16, pages 7:1–7:10, New
York, NY, USA, 2016. ACM, ACM. ISBN 978-1-4503-4841-6. doi: 10.1145/3015135.
3015142.

[4] Mohsen Ahmadvand, Anahit Hayrapetyan, Sebastian Banescu, and Alexander
Pretschner. Practical integrity protection with oblivious hashing. In Proceedings
of the 34th Annual Computer Security Applications Conference, pages 40–52. ACM, 2018.

[5] Mohsen Ahmadvand, Anahit Hayrapetyan, Sebastian Banescu, and Alexander
Pretschner. Practical integrity protection with oblivious hashing. In Proceedings of the
34th Annual Computer Security Applications Conference, ACSAC ’18, pages 40–52, New
York, NY, USA, 2018. ACM. ISBN 978-1-4503-6569-7. doi: 10.1145/3274694.3274732.

[6] Mohsen Ahmadvand, Alexander Pretschner, Keith Ball, and Daniel Eyring. Integrity
protection against insiders in microservice-based infrastructures: From threats to
a security framework. In Workshop on Microservices: Science and Engineering (MSE),
STAF’2018, Toulouse, France, 2018. doi: 10.1007/978-3-030-04771-9 43.

[7] Mohsen Ahmadvand, Daniel Below, Sebastian Banescu, and Alexander Pretschner.
Virtsc: Combining virtualization obfuscation with self-checksumming. In Proceedings
of the 3rd ACM Workshop on Software Protection, SPRO’19, pages 53–63, New York, NY,
USA, 2019. ACM. ISBN 978-1-4503-6835-3. doi: 10.1145/3338503.3357723.

[8] Mohsen Ahmadvand, Dennis Fischer, and Sebastian Banescu. Sip shaker: Software
integrity protection composition. In Proceedings of the 35th Annual Computer Security
Applications Conference, ACSAC ’19, pages 203–214, New York, NY, USA, 2019. Associ-
ation for Computing Machinery. ISBN 9781450376280. doi: 10.1145/3359789.3359848.

171

https://doi.org/10.1007/s41635-017-0013-2

Bibliography

[9] Mohsen Ahmadvand, Alexander Pretschner, and Florian Kelbert. Chapter eight -
a taxonomy of software integrity protection techniques. In Atif M. Memon, editor,
Advances in Computers, volume 112 of Advances in Computers, pages 413–486. Elsevier,
2019. doi: 10.1016/bs.adcom.2017.12.007. URL http://www.sciencedirect.
com/science/article/pii/S0065245817300591.

[10] Adnan Akhunzada, Mehdi Sookhak, Nor Badrul Anuar, Abdullah Gani, Ejaz Ahmed,
Muhammad Shiraz, Steven Furnell, Amir Hayat, and Muhammad Khurram Khan.
Man-at-the-end attacks: Analysis, taxonomy, human aspects, motivation and future
directions. Journal of Network and Computer Applications, 48:44–57, 2015.

[11] Periklis Akritidis, Cristian Cadar, Costin Raiciu, Manuel Costa, and Miguel Castro.
Preventing memory error exploits with wit. In Security and Privacy, 2008. SP 2008.
IEEE Symposium on, pages 263–277. IEEE, 2008.

[12] Bertrand Anckaert, Mariusz Jakubowski, and Ramarathnam Venkatesan. Proteus:
virtualization for diversified tamper-resistance. In Proceedings of the ACM workshop on
Digital rights management, pages 47–58. ACM, 2006.

[13] Dennis Andriesse, Herbert Bos, and Asia Slowinska. Parallax: Implicit code integrity
verification using return-oriented programming. In Dependable Systems and Networks
(DSN), 2015 45th Annual IEEE/IFIP International Conference on, pages 125–135. IEEE,
2015.

[14] David Aucsmith. Tamper resistant software: An implementation. Proceedings of
the First International Workshop on Information Hiding, pages 317–333, 1996. doi:
10.1007/3-540-61996-8 49. URL http://link.springer.com/chapter/10.
1007/3-540-61996-8{_}49.

[15] David Aucsmith. Tamper resistant software: An implementation. In International
Workshop on Information Hiding, pages 317–333. Springer, 1996. ISBN 3-540-61996-8.
doi: 10.1007/3-540-61996-8 49. URL http://link.springer.com/chapter/
10.1007/3-540-61996-8{_}49.

[16] Avast Lab. Wannacry ransomware, 2017. URL https://blog.avast.com/
ransomware-that-infected-telefonica-and-nhs-hospitals-is-spreading-aggressively-with-over-50000-attacks-so-far-today.

[17] Sebastian Banescu and Alexander Pretschner. A tutorial on software obfuscation. In
Atif M. Memon, editor, Advances in Computers, volume 108 of Advances in Computers,
pages 283–353. Elsevier, 2018. doi: 10.1016/bs.adcom.2017.09.004. URL http://
www.sciencedirect.com/science/article/pii/S0065245817300499.

[18] Sebastian Banescu, Martı́n Ochoa, Nils Kunze, and Alexander Pretschner. Idea:
Benchmarking indistinguishability obfuscation–a candidate implementation. In
International Symposium on Engineering Secure Software and Systems, pages 149–156.
Springer, 2015. doi: 10.1007/978-3-319-15618-7 12.

172

http://www.sciencedirect.com/science/article/pii/S0065245817300591
http://www.sciencedirect.com/science/article/pii/S0065245817300591
http://link.springer.com/chapter/10.1007/3-540-61996-8{_}49
http://link.springer.com/chapter/10.1007/3-540-61996-8{_}49
http://link.springer.com/chapter/10.1007/3-540-61996-8{_}49
http://link.springer.com/chapter/10.1007/3-540-61996-8{_}49
https://blog.avast.com/ransomware-that-infected-telefonica-and-nhs-hospitals-is-spreading-aggressively-with-over-50000-attacks-so-far-today
https://blog.avast.com/ransomware-that-infected-telefonica-and-nhs-hospitals-is-spreading-aggressively-with-over-50000-attacks-so-far-today
http://www.sciencedirect.com/science/article/pii/S0065245817300499
http://www.sciencedirect.com/science/article/pii/S0065245817300499

Bibliography

[19] Sebastian Banescu, Alexander Pretschner, Dominic Battré, Stéfano Cazzulani, Robert
Shield, and Greg Thompson. Software-based protection against changeware. In
Proceedings of the 5th ACM Conference on Data and Application Security and Privacy,
pages 231–242. ACM, 2015.

[20] Sebastian Banescu, Christian Collberg, Vijay Ganesh, Zack Newsham, and Alexander
Pretschner. Code obfuscation against symbolic execution attacks. In Proceedings
of the 32Nd Annual Conference on Computer Security Applications, ACSAC ’16, pages
189–200, New York, NY, USA, 2016. ACM, ACM. ISBN 978-1-4503-4771-6. doi:
10.1145/2991079.2991114.

[21] Sebastian Banescu, Ciprian Lucaci, Benjamin Krämer, and Alexander Pretschner.
Vot4cs: A virtualization obfuscation tool for c#. In Proceedings of the 2016 ACM
Workshop on Software PROtection, SPRO ’16, pages 39–49, New York, NY, USA, 2016.
ACM, ACM. ISBN 978-1-4503-4576-7. doi: 10.1145/2995306.2995312.

[22] Sebastian Banescu, Mohsen Ahmadvand, Alexander Pretschner, Robert Shield, and
Chris Hamilton. Detecting patching of executables without system calls. In Gail-Joon
Ahn, Alexander Pretschner, and Gabriel Ghinita, editors, Proceedings of the Seventh
ACM on Conference on Data and Application Security and Privacy, pages 185–196. ACM,
The Association for Computing Machinery, 2017. ISBN 978-1-4503-4523-1/17/03. doi:
10.1145/3029806.3029835.

[23] Sebastian-Emilian Banescu. Characterizing the Strength of Software Obfuscation Against
Automated Attacks. PhD thesis, Technische Universität München, 2017.

[24] UC Santa Barbara. Interpretation and interpreter optimization, 2018. URL https:
//www.cs.ucsb.edu/˜cs263/lectures/interp.pdf.

[25] Benoit Baudry and Martin Monperrus. The multiple facets of software diversity:
Recent developments in year 2000 and beyond. ACM Computing Surveys (CSUR), 48
(1):16, 2015. doi: 10.1145/2807593.

[26] Andrew Baumann, Marcus Peinado, and Galen Hunt. Shielding applications from an
untrusted cloud with haven. ACM Transactions on Computer Systems (TOCS), 33(3):8,
2015.

[27] Georg Becker. Merkle signature schemes, merkle trees and their cryptanalysis. Online
im Internet:http://imperia. rz.rub.de, 9085, 2008.

[28] Tal Ben-Nun, Alice Shoshana Jakobovits, and Torsten Hoefler. Neural code com-
prehension: A learnable representation of code semantics. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in
Neural Information Processing Systems 31, pages 3588–3600. Curran Associates, Inc.,
2018.

173

https://www.cs.ucsb.edu/~cs263/lectures/interp.pdf
https://www.cs.ucsb.edu/~cs263/lectures/interp.pdf

Bibliography

[29] Robert L Bernstein. Producing good code for the case statement. Software: Practice
and Experience, 15(10):1021–1024, 1985.

[30] Dirk Beyer. Reliable and reproducible competition results with benchexec and wit-
nesses (report on sv-comp 2016). In International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, pages 887–904. Springer, 2016.

[31] Brian Blietz and Akhilesh Tyagi. Software tamper resistance through dynamic pro-
gram monitoring. Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), 3919 LNCS:146–163, 2006.
ISSN 1611-3349. doi: 10.1007/11787952 12.

[32] Guido Bologna and Yoichi Hayashi. A Comparison Study on Rule Extraction from
Neural Network Ensembles, Boosted Shallow Trees, and SVMs. Applied Computational
Intelligence and Soft Computing, 2018:4084850, 2018. ISSN 1687-9724. doi: 10.1155/
2018/4084850. URL https://doi.org/10.1155/2018/4084850.

[33] Marc Boulle. Compact mathematical formulation for graph partitioning. Optimization
and Engineering, 5(3):315–333, 2004.

[34] Ferdinand Brasser, Brahim El Mahjoub, Ahmad-Reza Sadeghi, Christian Wachs-
mann, and Patrick Koeberl. Tytan: tiny trust anchor for tiny devices. In 2015 52nd
ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6. IEEE, 2015.

[35] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan Cap-
kun, and Ahmad-Reza Sadeghi. Software grand exposure: Sgx cache attacks are
practical. arXiv preprint arXiv:1702.07521, page 33, 2017.

[36] Ernie Brickell, Jan Camenisch, and Liqun Chen. Direct anonymous attestation. In
Proceedings of the 11th ACM conference on Computer and communications security, pages
132–145, 2004. doi: 10.1145/1030083.1030103.

[37] Saartje Brockmans, Raphael Volz, Andreas Eberhart, and Peter Löffler. Visual model-
ing of owl dl ontologies using uml. In International Semantic Web Conference, volume
3298, pages 198–213. Springer, 2004.

[38] ED Bryant, Mikhail J Atallah, and MR Stytz. A survey of anti-tamper technologies.
CrossTalk: The J. Defense Softw. Engin, 17(11):12–16, November 2004.

[39] Michael Burke and Ron Cytron. Interprocedural dependence analysis and paral-
lelization. In Proceedings of the 1986 SIGPLAN Symposium on Compiler Construction,
SIGPLAN ’86, pages 162–175, New York, NY, USA, 1986. ACM. ISBN 0-89791-197-0.
doi: 10.1145/12276.13328.

174

https://doi.org/10.1155/2018/4084850

Bibliography

[40] Jan Cappaert, Bart Preneel, Bertrand Anckaert, Matias Madou, and Koen De Boss-
chere. Towards tamper resistant code encryption: Practice and experience. In Interna-
tional Conference on Information Security Practice and Experience, pages 86–100. Springer,
2008.

[41] Martim Carbone, Weidong Cui, Marcus Peinado, Long Lu, and Wenke Lee. Mapping
Kernel Objects to Enable Systematic Integrity Checking. Analysis, pages 555–565,
2009.

[42] Miguel Castro, Manuel Costa, and Tim Harris. Securing software by enforcing
data-flow integrity. Proceedings of the 7th symposium on Operating systems design and
implementation, pages 147–160, 2006. URL http://dl.acm.org/citation.cfm?
id=1298455.1298470$\delimiter"026E90F$nhttp://www.usenix.org/
event/osdi06/tech/full{_}papers/castro/castro{_}html/.

[43] Luigi Catuogno and Ivan Visconti. A format-independent architecture for run-time
integrity checking of executable code. In International Conference on Security in Com-
munication Networks, pages 219–233. Springer, 2002.

[44] Joshua Cazalas, J Todd McDonald, Todd R Andel, and Natalia Stakhanova. Probing
the limits of virtualized software protection. In Proceedings of the 4th Program Protection
and Reverse Engineering Workshop, page 5. ACM, 2014.

[45] Mariano Ceccato, Paolo Tonella, Cataldo Basile, Bart Coppens, Bjorn De Sutter, Paolo
Falcarin, and Marco Torchiano. How professional hackers understand protected code
while performing attack tasks. In Program Comprehension (ICPC), 2017 IEEE/ACM 25th
International Conference on, pages 154–164. IEEE, 2017. doi: 10.1109/icpc.2017.2.

[46] Mariano Ceccato, Paolo Tonella, Cataldo Basile, Paolo Falcarin, Marco Torchiano,
Bart Coppens, and Bjorn De Sutter. Understanding the behaviour of hackers while
performing attack tasks in a professional setting and in a public challenge. Empirical
Software Engineering, 24(1):240–286, February 2019. ISSN 1573-7616. doi: 10.1007/
s10664-018-9625-6.

[47] Hoi Chang and Mikhail J Atallah. Protecting software code by guards. In ACM
Workshop on Digital Rights Management, pages 160–175. Springer, 2001.

[48] Hsiang-Yang Chen, Ting-Wei Hou, and Chun-Liang Lin. Tamper-proofing basis path
by using oblivious hashing on java. SIGPLAN Not., 42(2):9–16, February 2007. ISSN
0362-1340. doi: 10.1145/1241761.1241762.

[49] Yuqun Chen, Ramarathnam Venkatesan, Matthew Cary, Ruoming Pang, Saurabh
Sinha, and Mariusz H Jakubowski. Oblivious hashing: A stealthy software integrity
verification primitive. In International Workshop on Information Hiding, pages 400–414.
Springer, 2002.

175

http://dl.acm.org/citation.cfm?id=1298455.1298470$\delimiter "026E90F $nhttp://www.usenix.org/event/osdi06/tech/full{_}papers/castro/castro{_}html/
http://dl.acm.org/citation.cfm?id=1298455.1298470$\delimiter "026E90F $nhttp://www.usenix.org/event/osdi06/tech/full{_}papers/castro/castro{_}html/
http://dl.acm.org/citation.cfm?id=1298455.1298470$\delimiter "026E90F $nhttp://www.usenix.org/event/osdi06/tech/full{_}papers/castro/castro{_}html/

Bibliography

[50] Zhe Chen, Chunfu Jia, Tongtong Lv, and Tong Li. Harden tamper-proofing to combat
mate attack. In Jaideep Vaidya and Jin Li, editors, Algorithms and Architectures for
Parallel Processing, pages 98–108, Cham, 2018. Springer International Publishing. ISBN
978-3-030-05063-4.

[51] Zhe Chen, Zhi Wang, and Chunfu Jia. Semantic-integrated software watermarking
with tamper-proofing. Multimedia Tools and Applications, 77(9):11159–11178, 2018.
ISSN 1573-7721. doi: 10.1007/s11042-017-5373-7. URL https://doi.org/10.
1007/s11042-017-5373-7.

[52] Zimin Chen and Martin Monperrus. A literature study of embeddings on source
code. arXiv preprint arXiv:1904.03061, 2019.

[53] Stanley Chow, Philip Eisen, Harold Johnson, and Paul C Van Oorschot. White-box
cryptography and an aes implementation. In International Workshop on Selected Areas
in Cryptography, pages 250–270. Springer, 2002.

[54] Stanley Chow, Philip Eisen, Harold Johnson, and Paul C. Van Oorschot. White-box
cryptography and an aes implementation. In Kaisa Nyberg and Howard Heys, editors,
Selected Areas in Cryptography, pages 250–270, Berlin, Heidelberg, 2003. Springer Berlin
Heidelberg. ISBN 978-3-540-36492-4.

[55] Mihai Christodorescu, Reiner Sailer, Douglas Lee Schales, Daniele Sgandurra, and
Diego Zamboni. Cloud security is not (just) virtualization security: a short paper. In
Proceedings of the 2009 ACM workshop on Cloud computing security, pages 97–102. ACM,
2009.

[56] Frederick B Cohen. Operating system protection through program evolution. Com-
puters & Security, 12(6):565–584, 1993.

[57] C Collberg, S Martin, J Myers, and B Zimmerman. The tigress diversifying c virtual-
izer, 2015.

[58] C. S. Collberg and C. Thomborson. Watermarking, tamper-proofing, and obfuscation -
tools for software protection. IEEE Transactions on Software Engineering, 28(8):735–746,
2002.

[59] Christian Collberg. Defending against remote man-at-the-end attacks, 2017. URL
https://www2.cs.arizona.edu/projects/focal/security/project1.
html.

[60] Christian Collberg. Code obfuscation: Why is this still a thing? In Proceedings of
the Eighth ACM Conference on Data and Application Security and Privacy, CODASPY
’18, pages 173–174, New York, NY, USA, 2018. ACM. ISBN 978-1-4503-5632-9. doi:
10.1145/3176258.3176342.

176

https://doi.org/10.1007/s11042-017-5373-7
https://doi.org/10.1007/s11042-017-5373-7
https://www2.cs.arizona.edu/projects/focal/security/project1.html
https://www2.cs.arizona.edu/projects/focal/security/project1.html

Bibliography

[61] Christian Collberg and Jasvir Nagra. Surreptitious software: obfuscation, watermarking,
and tamperproofing for software protection. Addison-Wesley Professional, 1st edition,
2009. ISBN 0321549252, 9780321549259.

[62] Christian Collberg, Clark Thomborson, and Douglas Low. Manufacturing cheap,
resilient, and stealthy opaque constructs. In Proceedings of the 25th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 184–196. ACM, 1998.

[63] Christian Collberg, Clark Thomborson, and Douglas Low. Manufacturing cheap,
resilient, and stealthy opaque constructs. In Proceedings of the 25th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’98, pages 184–196,
New York, NY, USA, 1998. ACM. ISBN 0-89791-979-3. doi: 10.1145/268946.268962.

[64] Christian Collberg, Jasvir Nagra, and Fei-Yue Wang. Surreptitious software: Models
from biology and history. In International Conference on Mathematical Methods, Models,
and Architectures for Computer Network Security, pages 1–21. Springer, 2007.

[65] Christian Collberg, Sam Martin, Jonathan Myers, and Jasvir Nagra. Distributed
application tamper detection via continuous software updates. In Proceedings of the
28th Annual Computer Security Applications Conference, pages 319–328. ACM, 2012.

[66] Christian S. Collberg and Clark Thomborson. Watermarking, tamper-proofing, and
obfuscation-tools for software protection. IEEE Transactions on software engineering, 28
(8):735–746, 2002.

[67] Kevin Coogan, Gen Lu, and Saumya Debray. Deobfuscation of virtualization-
obfuscated software: a semantics-based approach. In Proceedings of the 18th ACM
conference on Computer and communications security, pages 275–284. ACM, 2011.

[68] James R Cordy. Txl-a language for programming language tools and applications.
Electronic notes in theoretical computer science, 110:3–31, 2004.

[69] Victor Costan and Srinivas Devadas. Intel sgx explained. IACR Cryptology ePrint
Archive, 2016:86, 2016.

[70] CSIRO’s Data61. Stellargraph machine learning library. https://github.com/
stellargraph/stellargraph, 2018.

[71] R. David, S. Bardin, T. D. Ta, L. Mounier, J. Feist, M. Potet, and J. Marion. Binsec/se:
A dynamic symbolic execution toolkit for binary-level analysis. In 2016 IEEE 23rd
International Conference on Software Analysis, Evolution, and Reengineering (SANER),
volume 1, pages 653–656, March 2016. doi: 10.1109/SANER.2016.43.

[72] Nenad Dedić, Mariusz Jakubowski, and Ramarathnam Venkatesan. A graph game
model for software tamper protection. In International Workshop on Information Hiding,
pages 80–95. Springer, 2007.

177

https://github.com/stellargraph/stellargraph
https://github.com/stellargraph/stellargraph

Bibliography

[73] Yves Deswarte, Jean-Jacques Quisquater, and Ayda Saı̈dane. Remote integrity check-
ing. In Integrity and internal control in information systems VI, pages 1–11. Springer,
2004.

[74] Prashant Dewan, David Durham, Hormuzd Khosravi, Men Long, and Gayathri
Nagabhushan. A hypervisor-based system for protecting software runtime memory
and persistent storage. In Proceedings of the 2008 Spring Simulation Multiconference,
SpringSim ’08, page 828–835, San Diego, CA, USA, 2008. Society for Computer Simu-
lation International, Society for Computer Simulation International. ISBN 1565553195.

[75] Steven H. H. Ding, Benjamin C. M. Fung, and Philippe Charland. Asm2vec: Boosting
static representation robustness for binary clone search against code obfuscation and
compiler optimization. 2019 IEEE Symposium on Security and Privacy (SP), pages
472–489, 2019.

[76] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos Pacheco,
Matthew S. Tschantz, and Chen Xiao. The Daikon system for dynamic detection
of likely invariants. Science of Computer Programming, 69(1-3):35–45, 2007. ISSN
0167-6423. doi: 10.1016/j.scico.2007.01.015.

[77] Paolo Falcarin, Stefano Di Carlo, Alessandro Cabutto, Nicola Garazzino, and Davide
Barberis. Exploiting code mobility for dynamic binary obfuscation. In Internet Security
(WorldCIS), 2011 World Congress on, pages 114–120. IEEE, 2011.

[78] Rafael Fedler, Sebastian Banescu, and Alexander Pretschner. Isa2r: Improving soft-
ware attack and analysis resilience via compiler-level software diversity. In Interna-
tional Conference on Computer Safety, Reliability, and Security, pages 362–371. Springer,
2014.

[79] Wu-chang Feng, Ed Kaiser, and Travis Schluessler. Stealth measurements for cheat
detection in on-line games. In Proceedings of the 7th ACM SIGCOMM Workshop on
Network and System Support for Games, pages 15–20. ACM, 2008. doi: 10.1145/1517494.
1517497.

[80] Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren. The program dependence graph
and its use in optimization. ACM Transactions on Programming Languages and Systems
(TOPLAS), 9(3):319–349, 1987.

[81] Agner Fog. Instruction tables: Lists of instruction latencies, throughputs and micro-
operation breakdowns for intel, amd and via cpus, 2018. URL https://www.agner.
org/optimize/instruction_tables.pdf.

[82] J. Gan, R. Kok, P. Kohli, Y. Ding, and B. Mah. Using virtual machine protections to
enhance whitebox cryptography. In Software Protection (SPRO), 2015 IEEE/ACM 1st
International Workshop on, pages 17–23, May 2015. doi: 10.1109/SPRO.2015.12.

178

https://www.agner.org/optimize/instruction_tables.pdf
https://www.agner.org/optimize/instruction_tables.pdf

Bibliography

[83] Z. Gao, N. Desalvo, P. D. Khoa, S. H. Kim, L. Xu, W. W. Ro, R. M. Verma, and W. Shi.
Integrity protection for big data processing with dynamic redundancy computation.
In Autonomic Computing (ICAC), 2015 IEEE International Conference on, pages 159–160,
July 2015. doi: 10.1109/ICAC.2015.34.

[84] Peter Garba and Matteo Favaro. Saturn - software deobfuscation framework based
on llvm. In Proceedings of the 3rd ACM Workshop on Software Protection, SPRO ’19,
pages 27–38, New York, NY, USA, 2019. Association for Computing Machinery. ISBN
9781450368353. doi: 10.1145/3338503.3357721.

[85] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum, and Dan Boneh. Terra: A
virtual machine-based platform for trusted computing. In ACM SIGOPS Operating
Systems Review, volume 37, pages 193–206. ACM, 2003.

[86] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. SIAM Journal on Computing, 45(3):882–929, 2016. doi: 10.1137/14095772x.

[87] Sudeep Ghosh, Jason D Hiser, and Jack W Davidson. A secure and robust ap-
proach to software tamper resistance. In International Workshop on Information
Hiding, volume 6387 LNCS, pages 33–47. Springer, 2010. ISBN 364216434X. doi:
10.1007/978-3-642-16435-4 3.

[88] Sudeep Ghosh, Jason Hiser, and Jack W Davidson. Software protection for
dynamically-generated code. In Proceedings of the 2nd ACM SIGPLAN Program Protec-
tion and Reverse Engineering Workshop, PPREW ’13, page 1, New York, NY, USA, 2013.
ACM, ACM. ISBN 978-1-4503-1857-0. doi: 10.1145/2430553.2430554.

[89] Jonathon T Giffin, Mihai Christodorescu, and Louis Kruger. Strengthening soft-
ware self-checksumming via self-modifying code. In 21st Annual Computer Security
Applications Conference (ACSAC’05), pages 10–pp. IEEE, 2005.

[90] Kenneth Goldman, Reiner Sailer, Dimitrios Pendarakis, and Deepa Srinivasan. Scal-
able integrity monitoring in virtualized environments. In Proceedings of the fifth ACM
workshop on Scalable trusted computing, pages 73–78. ACM, 2010.

[91] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Müller. Cache at-
tacks on intel sgx. In Proceedings of the 10th European Workshop on Systems Security,
EuroSec’17, pages 2:1–2:6, New York, NY, USA, 2017. ACM, ACM. ISBN 978-1-4503-
4935-2. doi: 10.1145/3065913.3065915.

[92] Serge Guelton, Adrien Guinet, Pierrick Brunet, Juan Manuel Martinez Caamaño,
Fabien Dagnat, and Nicolas Szlifierski. [research paper] combining obfuscation and
optimizations in the real world. 2018 IEEE 18th International Working Conference on
Source Code Analysis and Manipulation (SCAM), pages 24–33, 2018.

179

Bibliography

[93] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.
Brown. Mibench: A free, commercially representative embedded benchmark suite.
In Proceedings of the Fourth Annual IEEE International Workshop on Workload Char-
acterization. WWC-4 (Cat. No.01EX538), pages 3–14. IEEE, December 2001. doi:
10.1109/WWC.2001.990739.

[94] Vivek Haldar, Deepak Chandra, and Michael Franz. Semantic remote attestation: a
virtual machine directed approach to trusted computing. In USENIX Virtual Machine
Research and Technology Symposium, volume 2004, 2004.

[95] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning
on large graphs. In Proceedings of the 31st International Conference on Neural Infor-
mation Processing Systems, NIPS’17, pages 1025–1035, USA, 2017. Curran Associates
Inc. ISBN 978-1-5108-6096-4. URL http://dl.acm.org/citation.cfm?id=
3294771.3294869.

[96] Kelly Heffner and Christian Collberg. The obfuscation executive. In International
Conference on Information Security, pages 428–440. Springer, 2004.

[97] Bill Horne, Lesley Matheson, Casey Sheehan, and Robert Tarjan. Dynamic Self-
Checking Techniques for Improved Tamper Resistance. Security and Privacy in Digital
Rights Management, pages 141–159, 2002. doi: 10.1007/3-540-47870-1 9. URL http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.13.3308.

[98] Amjad Ibrahim and Sebastian Banescu. Stins4cs: A state inspection tool for c. In
Proceedings of the 2016 ACM Workshop on Software PROtection, pages 61–71. ACM, 2016.

[99] Matthias Jacob, Mariusz H Jakubowski, and Ramarathnam Venkatesan. Towards inte-
gral binary execution: Implementing oblivious hashing using overlapped instruction
encodings. In Proceedings of the 9th workshop on Multimedia & security, pages 129–140.
ACM, 2007.

[100] Markus Jakobsson and Karl-Anders Johansson. Retroactive detection of malware
with applications to mobile platforms. In Proceedings of the 5th USENIX Conference
on Hot Topics in Security, HotSec’10, pages 1–13, Berkeley, CA, USA, 2010. USENIX
Association.

[101] Markus Jakobsson and Karl-Anders Johansson. Practical and secure software-based
attestation. In Lightweight Security & Privacy: Devices, Protocols and Applications
(LightSec), 2011 Workshop on, pages 1–9. IEEE, 2011.

[102] Hongxia Jin and Jeffery Lotspiech. Forensic analysis for tamper resistant software.
In Software Reliability Engineering, 2003. ISSRE 2003. 14th International Symposium on,
pages 133–142. IEEE, 2003.

180

http://dl.acm.org/citation.cfm?id=3294771.3294869
http://dl.acm.org/citation.cfm?id=3294771.3294869
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.13.3308
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.13.3308

Bibliography

[103] Pontus Johnson, Alexandre Vernotte, Mathias Ekstedt, and Robert Lagerström.
pwnpr3d: an attack-graph-driven probabilistic threat-modeling approach. In Avail-
ability, Reliability and Security (ARES), 2016 11th International Conference on, pages
278–283. IEEE, 2016.

[104] Pascal Junod, Julien Rinaldini, Johan Wehrli, and Julie Michielin. Obfuscator-llvm:
software protection for the masses. In Brecht Wyseur, editor, Proceedings of the 1st
International Workshop on Software Protection, pages 3–9. IEEE Press, IEEE, 2015. doi:
10.1109/SPRO.2015.10.

[105] Teemu Kanstrén, Sami Lehtonen, Reijo Savola, Hilkka Kukkohovi, and Kimmo
Hätönen. Architecture for high confidence cloud security monitoring. In Cloud
Engineering (IC2E), 2015 IEEE International Conference on, pages 195–200. IEEE, 2015.

[106] Arun K Kanuparthi, Mohamed Zahran, and Ramesh Karri. Architecture support for
dynamic integrity checking. IEEE Transactions on Information Forensics and Security, 7
(1):321–332, 2012.

[107] Yuichiro Kanzaki, Clark Thomborson, Akito Monden, and Christian Collberg. Pin-
pointing and hiding surprising fragments in an obfuscated program. In Pro-
ceedings of the 5th Program Protection and Reverse Engineering Workshop, PPREW-5,
pages 8:1–8:9, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3642-0. doi:
10.1145/2843859.2843862.

[108] Nikolaos Karapanos, Alexandros Filios, Raluca Ada Popa, and Srdjan Capkun. Verena:
End-to-end integrity protection for web applications. In Proceedings of the 37th IEEE
Symposium on Security and Privacy (IEEE S&P), 2016.

[109] Stamatis Karnouskos. Stuxnet worm impact on industrial cyber-physical system
security. In IECON 2011-37th Annual Conference on IEEE Industrial Electronics Society,
pages 4490–4494. IEEE, 2011. doi: 10.1109/iecon.2011.6120048.

[110] Kaspersky Lab. Projectsauron: top level cyber-espionage platform covertly extracts
encrypted government comms, 2017. URL https://securelist.com/75533/
faq-the-projectsauron-apt/.

[111] D. Kelly, C. Wellons, J. Coffman, and A. Gearhart. Automatically validating the effec-
tiveness of software diversity schemes. In 2019 49th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks Supplemental Volume (DSN-S), pages
1–2, June 2019. doi: 10.1109/DSN-S.2019.00006.

[112] Chongkyung Kil. Remote Attestation to Dynamic System Properties: Towards Pro-
viding Complete System Integrity Evidence. IEEE/IFIP International Conference on
Dependable Systems & Networks, pages 115–124, 2009.

181

https://securelist.com/75533/faq-the-projectsauron-apt/
https://securelist.com/75533/faq-the-projectsauron-apt/

Bibliography

[113] Chongkyung Kil, Emre Can Sezer, Peng Ning, and Xiaolan Zhang. Automated secu-
rity debugging using program structural constraints. In Computer Security Applications
Conference, 2007. ACSAC 2007. Twenty-Third Annual, pages 453–462. IEEE, 2007.

[114] Gene H Kim and Eugene H Spafford. Experiences with tripwire: Using integrity
checkers for intrusion detection. 1994.

[115] William B Kimball and Rusty O Baldwin. Emulation-based software protection,
October 2012. US Patent 8,285,987.

[116] Johannes Kinder. Towards static analysis of virtualization-obfuscated binaries. In
Reverse Engineering (WCRE), 2012 19th Working Conference on, pages 61–70. IEEE, 2012.

[117] Barbara Kordy, Piotr Kordy, Sjouke Mauw, and Patrick Schweitzer. Adtool: secu-
rity analysis with attack–defense trees. In Kaustubh Joshi, Markus Siegle, Mariëlle
Stoelinga, and Pedro R. D’Argenio, editors, International Conference on Quantitative
Evaluation of Systems, pages 173–176, Berlin, Heidelberg, 2013. Springer, Springer
Berlin Heidelberg. ISBN 978-3-642-40196-1.

[118] Aniket Kulkarni and Ravindra Metta. A new code obfuscation scheme for software
protection. In Service Oriented System Engineering (SOSE), 2014 IEEE 8th International
Symposium on, pages 409–414. IEEE, 2014.

[119] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong pro-
gram analysis & transformation. In Proceedings of the international symposium on Code
generation and optimization: feedback-directed and runtime optimization, page 75. IEEE
Computer Society, 2004.

[120] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Mar-
cus Peinado. Inferring fine-grained control flow inside sgx enclaves with branch
shadowing. In 26th USENIX Security Symposium, USENIX Security, pages 16–18, 2017.

[121] Thomas Lengauer and Robert Endre Tarjan. A fast algorithm for finding dominators
in a flowgraph. ACM Trans. Program. Lang. Syst., 1(1):121–141, January 1979. ISSN
0164-0925. doi: 10.1145/357062.357071.

[122] Thomas Lengauer and Robert Endre Tarjan. A fast algorithm for finding dominators
in a flowgraph. ACM Transactions on Programming Languages and Systems (TOPLAS), 1
(1):121–141, 1979.

[123] Feifei Li, Marios Hadjieleftheriou, George Kollios, and Leonid Reyzin. Authenticated
index structures for aggregation queries. ACM Transactions on Information and System
Security (TISSEC), 13(4):32, 2010.

[124] Jinyuan Li, Maxwell Krohn, David Mazières, and Dennis Shasha. Secure untrusted
data repository (sundr). In Proceedings of the 6th Conference on Symposium on Operating

182

Bibliography

Systems Design & Implementation - Volume 6, OSDI’04, page 9, USA, 2004. USENIX
Association.

[125] Joshua Lind, Christian Priebe, Divya Muthukumaran, Dan O’Keeffe, Pierre-Louis
Aublin, Florian Kelbert, Tobias Reiher, David Goltzsche, David Eyers, Rüdiger
Kapitza, et al. Glamdring: Automatic application partitioning for intel {SGX}. In
2017 {USENIX} Annual Technical Conference ({USENIX}{ATC} 17), pages 285–298,
2017.

[126] Cullen Linn and Saumya Debray. Obfuscation of executable code to improve resis-
tance to static disassembly. In Proceedings of the 10th ACM conference on Computer and
communications security, pages 290–299. ACM, 2003.

[127] Han Liu, Chengnian Sun, Zhendong Su, Yu Jiang, Ming Gu, and Jiaguang Sun.
Stochastic optimization of program obfuscation. In Proceedings of the 39th International
Conference on Software Engineering, ICSE ’17, pages 221–231, Piscataway, NJ, USA, 2017.
IEEE Press. ISBN 978-1-5386-3868-2. doi: 10.1109/ICSE.2017.28.

[128] Lannan Luo, Yu Fu, Dinghao Wu, Sencun Zhu, and Peng Liu. Repackage-proofing
android apps. In Dependable Systems and Networks (DSN), 2016 46th Annual IEEE/IFIP
International Conference on, pages 550–561. IEEE, 2016.

[129] Symphony Luo and Peter Yan. Fake apps: Feigning legitimacy. Technical report,
Trend Micro, 2014. URL http://www.trendmicro.de/cloud-content/us/
pdfs/security-intelligence/white-papers/wp-fake-apps.pdf.

[130] Kin-Keung Ma, Khoo Yit Phang, Jeffrey S. Foster, and Michael Hicks. Directed
symbolic execution. In Eran Yahav, editor, Static Analysis, pages 95–111, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg. ISBN 978-3-642-23702-7.

[131] Matias Madou, Bertrand Anckaert, Patrick Moseley, Saumya Debray, Bjorn De Sutter,
and Koen De Bosschere. Software protection through dynamic code mutation. In
International Workshop on Information Security Applications, pages 194–206. Springer,
2005.

[132] Corey Malone, Mohamed Zahran, and Ramesh Karri. Are Hardware Performance
Counters a Cost Effective Way for Integrity Checking of Programs. Proceedings of the
sixth ACM workshop on Scalable trusted computing - STC ’11, page 71, 2011. ISSN 1543-
7221. doi: 10.1145/2046582.2046596. URL http://www.scopus.com/inward/
record.url?eid=2-s2.0-80755143408{&}partnerID=40{&}md5=
ad5db1f8e5c0131a2a17f457ba1b0497$\delimiter"026E90F$nhttp:
//dl.acm.org/citation.cfm?doid=2046582.2046596.

[133] Lorenzo Martignoni, Roberto Paleari, and Danilo Bruschi. Conqueror: Tamper-proof
code execution on legacy systems. Lecture Notes in Computer Science (including subseries

183

http://www.trendmicro.de/cloud-content/us/pdfs/security-intelligence/white-papers/wp-fake-apps.pdf
http://www.trendmicro.de/cloud-content/us/pdfs/security-intelligence/white-papers/wp-fake-apps.pdf
http://www.scopus.com/inward/record.url?eid=2-s2.0-80755143408{&}partnerID=40{&}md5=ad5db1f8e5c0131a2a17f457ba1b0497$\delimiter "026E90F $nhttp://dl.acm.org/citation.cfm?doid=2046582.2046596
http://www.scopus.com/inward/record.url?eid=2-s2.0-80755143408{&}partnerID=40{&}md5=ad5db1f8e5c0131a2a17f457ba1b0497$\delimiter "026E90F $nhttp://dl.acm.org/citation.cfm?doid=2046582.2046596
http://www.scopus.com/inward/record.url?eid=2-s2.0-80755143408{&}partnerID=40{&}md5=ad5db1f8e5c0131a2a17f457ba1b0497$\delimiter "026E90F $nhttp://dl.acm.org/citation.cfm?doid=2046582.2046596
http://www.scopus.com/inward/record.url?eid=2-s2.0-80755143408{&}partnerID=40{&}md5=ad5db1f8e5c0131a2a17f457ba1b0497$\delimiter "026E90F $nhttp://dl.acm.org/citation.cfm?doid=2046582.2046596

Bibliography

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6201 LNCS:
21–40, 2010. doi: 10.1007/978-3-642-14215-4 2.

[134] Nikos Mavrogiannopoulos, Nessim Kisserli, and Bart Preneel. A taxonomy of self-
modifying code for obfuscation. Computers & Security, 30(8):679–691, 2011.

[135] Jan M. Memon, Asma Khan, Amber Baig, and Asadullah Shah. A study of software
protection techniques. In Tarek Sobh, editor, Innovations and Advanced Techniques in
Computer and Information Sciences and Engineering, pages 249–253, Dordrecht, 2007.
Springer Netherlands. ISBN 978-1-4020-6268-1.

[136] Ralph C. Merkle. A digital signature based on a conventional encryption function. In
Carl Pomerance, editor, Advances in Cryptology — CRYPTO ’87, pages 369–378, Berlin,
Heidelberg, 1988. Springer Berlin Heidelberg. ISBN 978-3-540-48184-3.

[137] Benoı̂t Morgan, Eric Alata, Vincent Nicomette, Mohamed Kaâniche, and Guillaume
Averlant. Design and implementation of a hardware assisted security architecture
for software integrity monitoring. In Dependable Computing (PRDC), 2015 IEEE 21st
Pacific Rim International Symposium on, pages 189–198. IEEE, 2015.

[138] Gideon Myles and Hongxia Jin. A metric-based scheme for evaluating tamper
resistant software systems. In Kai Rannenberg, Vijay Varadharajan, and Christian
Weber, editors, IFIP International Information Security Conference, pages 187–202, Berlin,
Heidelberg, 2010. Springer, Springer Berlin Heidelberg. ISBN 978-3-642-15257-3.

[139] Jasvir Nagra and Christian Collberg. Surreptitious Software: Obfuscation, Watermarking,
and Tamperproofing for Software Protection: Obfuscation, Watermarking, and Tamperproof-
ing for Software Protection. Pearson Education, 2009.

[140] Ricardo Neisse, Dominik Holling, and Alexander Pretschner. Implementing trust in
cloud infrastructures. In Proceedings of the 2011 11th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing, pages 524–533. IEEE Computer Society, 2011.

[141] B. Ngabonziza, D. Martin, A. Bailey, H. Cho, and S. Martin. Trustzone explained:
Architectural features and use cases. In 2016 IEEE 2nd International Conference on
Collaboration and Internet Computing (CIC), pages 445–451, November 2016. doi:
10.1109/CIC.2016.065.

[142] Esko Nuutila and Eljas Soisalon-Soininen. On finding the strongly connected compo-
nents in a directed graph. Inf. Process. Lett., 49(1):9–14, 1994.

[143] Mathilde Ollivier, Sébastien Bardin, Richard Bonichon, and Jean-Yves Marion. How
to kill symbolic deobfuscation for free (or: Unleashing the potential of path-oriented
protections). In Proceedings of the 35th Annual Computer Security Applications Conference,
ACSAC ’19, page 177–189, New York, NY, USA, 2019. Association for Computing

184

Bibliography

Machinery. ISBN 9781450376280. doi: 10.1145/3359789.3359812. URL https://
doi.org/10.1145/3359789.3359812.

[144] Vasilis Pappas, Michalis Polychronakis, and Angelos D Keromytis. Smashing the
gadgets: Hindering return-oriented programming using in-place code randomization.
In 2012 IEEE Symposium on Security and Privacy, pages 601–615. IEEE, 2012.

[145] Vasilis Pappas, Michalis Polychronakis, and Angelos D Keromytis. Transparent
rop exploit mitigation using indirect branch tracing. In Presented as part of the 22nd
USENIX Security Symposium (USENIX Security 13), pages 447–462, 2013.

[146] Sungjin Park, Jae Nam Yoon, Cheoloh Kang, Kyong Hoon Kim, and Taisook Han.
Tgvisor: A tiny hypervisor-based trusted geolocation framework for mobile cloud
clients. In Mobile Cloud Computing, Services, and Engineering (MobileCloud), 2015 3rd
IEEE International Conference on, pages 99–108. IEEE, 2015.

[147] U. Piazzalunga, P. Salvaneschi, F. Balducci, P. Jacomuzzi, and C. Moroncelli. Security
strength measurement for dongle-protected software. IEEE Security Privacy, 5(6):
32–40, November 2007. ISSN 1540-7993. doi: 10.1109/MSP.2007.176.

[148] Stephen Pohlig and Martin Hellman. An improved algorithm for computing log-
arithms over GF(2) and its cryptographic significance. Information Theory, IEEE
Transactions on, 24(1):106–110, 1978.

[149] M. Protsenko, S. Kreuter, and T. MÃŒller. Dynamic self-protection and tamper-
proofing for android apps using native code. In Availability, Reliability and Secu-
rity (ARES), 2015 10th International Conference on, pages 129–138, August 2015. doi:
10.1109/ARES.2015.98.

[150] Jing Qiu, Babak Yadegari, Brian Johannesmeyer, Saumya Debray, and Xiaohong
Su. Identifying and understanding self-checksumming defenses in software. In
Proceedings of the 5th ACM Conference on Data and Application Security and Privacy,
pages 207–218. ACM, 2015.

[151] CPP Reference. RAII resource acquisition is initialization. https://en.
cppreference.com/w/cpp/language/raii/ CPP Reference, 2018. Accessed:
2018-09-06.

[152] Rolf Rolles. Unpacking virtualization obfuscators. In 3rd USENIX Workshop on
Offensive Technologies.(WOOT), 2009.

[153] James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified modeling language reference
manual, the. Pearson Higher Education, 2004.

[154] Aleieldin Salem and Sebastian Banescu. Metadata recovery from obfuscated pro-
grams using machine learning. In Proceedings of the 6th Workshop on Software Security,

185

https://doi.org/10.1145/3359789.3359812
https://doi.org/10.1145/3359789.3359812
https://en.cppreference.com/w/cpp/language/raii/
https://en.cppreference.com/w/cpp/language/raii/

Bibliography

Protection, and Reverse Engineering, SSPREW ’16, page 1, New York, NY, USA, 2016.
ACM, ACM. ISBN 978-1-4503-4841-6. doi: 10.1145/3015135.3015136.

[155] Gerald Salton and Christopher Buckley. Term-weighting approaches in automatic
text retrieval. Information Processing and Management, 24(5):513–523, 1988. ISSN 0306-
4573. doi: 10.1016/0306-4573(88)90021-0. URL http://www.sciencedirect.
com/science/article/pii/0306457388900210.

[156] Jonathan Salwan, Sébastien Bardin, and Marie-Laure Potet. Symbolic deobfuscation:
From virtualized code back to the original. In International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment, pages 372–392. Springer, 2018.

[157] Michael Schmidt and Hod Lipson. Distilling free-form natural laws from experimental
data. science, 324(5923):81–85, 2009.

[158] Bruce Schneier. Story of the greek wiretapping scandal, 2007. URL https://
www.schneier.com/blog/archives/2007/07/story_of_the_gr_1.html.
https://www.schneier.com/blog/archives/2007/07/story_of_the_
gr_1.html/.

[159] B. Scholz, C. Zhang, and C. Cifuentes. User-input dependence analysis via graph
reachability. In 2008 Eighth IEEE International Working Conference on Source Code
Analysis and Manipulation, pages 25–34, 2008.

[160] Sebastian Schrittwieser, Stefan Katzenbeisser, Johannes Kinder, Georg Merzdovnik,
and Edgar Weippl. Protecting software through obfuscation: Can it keep pace with
progress in code analysis? ACM Comput. Surv., 49(1), April 2016. ISSN 0360-0300. doi:
10.1145/2886012.

[161] Arvind Seshadri, Mark Luk, Elaine Shi, Adrian Perrig, Leendert van Doorn, and
Pradeep Khosla. Pioneer: Verifying Code Integrity and Enforcing Untampered Code
Execution on Legacy Systems. ACM SIGOPS Operating Systems Review, 2005. ISSN
0163-5980. doi: 10.1145/1095809.1095812. URL http://dl.acm.org/citation.
cfm?id=1095809.1095812.

[162] Hovav Shacham, E Buchanan, R Roemer, and S Savage. Return-oriented program-
ming: Exploits without code injection. Black Hat USA Briefings (August 2008), 2008.

[163] Jiri Slaby, Jan Strejček, and Marek Trtı́k. Symbiotic: Synergy of instrumentation,
slicing, and symbolic execution. In Nir Piterman and Scott A. Smolka, editors, Tools
and Algorithms for the Construction and Analysis of Systems, pages 630–632, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg. ISBN 978-3-642-36742-7.

[164] Diomidis Spinellis. Reflection as a mechanism for software integrity verification.
ACM Transactions on Information and System Security, 3(1):51–62, 2000. ISSN 1094-9224.
doi: 10.1145/353323.353383.

186

http://www.sciencedirect.com/science/article/pii/0306457388900210
http://www.sciencedirect.com/science/article/pii/0306457388900210
https://www.schneier.com/blog/archives/2007/07/story_of_the_gr_1.html
https://www.schneier.com/blog/archives/2007/07/story_of_the_gr_1.html
https://www.schneier.com/blog/archives/2007/07/story_of_the_gr_1.html/
https://www.schneier.com/blog/archives/2007/07/story_of_the_gr_1.html/
http://dl.acm.org/citation.cfm?id=1095809.1095812
http://dl.acm.org/citation.cfm?id=1095809.1095812

Bibliography

[165] Diomidis Spinellis. Reflection as a mechanism for software integrity verification.
ACM Transactions on Information and System Security (TISSEC), 3(1):51–62, 2000.

[166] Amitabh Srivastava, Andrew Edwards, and Hoi Vo. Vulcan: Binary transformation in
a distributed environment. Technical report, technical report msr-tr-2001-50, microsoft
research, 2001.

[167] Q. Su, F. He, N. Wu, and Z. Lin. A method for construction of software protection
technology application sequence based on petri net with inhibitor arcs. IEEE Access,
6:11988–12000, 2018. ISSN 2169-3536. doi: 10.1109/ACCESS.2018.2812764.

[168] Yulei Sui and Jingling Xue. Svf: Interprocedural static value-flow analysis in llvm.
In Proceedings of the 25th International Conference on Compiler Construction, CC 2016,
pages 265–266, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4241-4. doi:
10.1145/2892208.2892235.

[169] Yuqiong Sun, Susanta Nanda, and Trent Jaeger. Security-as-a-service for
microservices-based cloud applications. In 2015 IEEE 7th International Conference
on Cloud Computing Technology and Science (CloudCom), pages 50–57. IEEE, 2015.

[170] B. De Sutter, P. Falcarin, B. Wyseur, C. Basile, M. Ceccato, J. DAnnoville, and M. Zunke.
A reference architecture for software protection. In 2016 13th Working IEEE/IFIP
Conference on Software Architecture (WICSA), pages 291–294, April 2016. doi: 10.1109/
WICSA.2016.43.

[171] Fernando A Teixeira, Gustavo V Machado, Fernando MQ Pereira, Hao Chi Wong,
José Nogueira, and Leonardo B Oliveira. Siot: securing the internet of things through
distributed system analysis. In Proceedings of the 14th International Conference on
Information Processing in Sensor Networks, pages 310–321. ACM, 2015.

[172] Nikolai Tillmann and Peli de Halleux. Pex - white box test generation for .net. In
Proc. of Tests and Proofs (TAP’08), volume 4966, pages 134–153, Prato, Italy, April
2008. Springer Verlag. URL https://www.microsoft.com/en-us/research/
publication/pex-white-box-test-generation-for-net/.

[173] Frank Tip. A survey of program slicing techniques. Technical report, Amsterdam,
The Netherlands, The Netherlands, 1994.

[174] Flavio Toffalini, Martı́n Ochoa, Jun Sun, and Jianying Zhou. Careful-packing: A
practical and scalable anti-tampering software protection enforced by trusted com-
puting. In Proceedings of the Ninth ACM Conference on Data and Application Security
and Privacy, CODASPY ’19, page 231–242, New York, NY, USA, 2019. Association for
Computing Machinery. ISBN 9781450360999. doi: 10.1145/3292006.3300029. URL
https://doi.org/10.1145/3292006.3300029.

187

https://www.microsoft.com/en-us/research/publication/pex-white-box-test-generation-for-net/
https://www.microsoft.com/en-us/research/publication/pex-white-box-test-generation-for-net/
https://doi.org/10.1145/3292006.3300029

Bibliography

[175] Ramtine Tofighi-Shirazi, Irina-Mariuca Asavoae, Philippe Elbaz-Vincent, and Thanh-
Ha Le. Defeating opaque predicates statically through machine learning and binary
analysis. In Proceedings of the 3rd ACM Workshop on Software Protection, SPRO’19,
page 3–14, New York, NY, USA, 2019. Association for Computing Machinery. ISBN
9781450368353. doi: 10.1145/3338503.3357719.

[176] Sid-Ahmed-Ali Touati and Denis Barthou. On the decidability of phase ordering
problem in optimizing compilation. In Proceedings of the 3rd conference on Computing
frontiers, pages 147–156. ACM, 2006.

[177] Paul C Van Oorschot, Anil Somayaji, and Glenn Wurster. Hardware-assisted circum-
vention of self-hashing software tamper resistance. IEEE Transactions on Dependable
and Secure Computing, 2(2):82–92, 2005.

[178] Michael Velten and Frederic Stumpf. Secure and privacy-aware multiplexing of
hardware-protected tpm integrity measurements among virtual machines. In Inter-
national Conference on Information Security and Cryptology, pages 324–336. Springer,
2012.

[179] Chenxi Wang, Jack Davidson, Jonathan Hill, and John Knight. Protection of software-
based survivability mechanisms. In Dependable Systems and Networks, 2001. DSN 2001.
International Conference on, pages 193–202. IEEE, 2001.

[180] Ping Wang, Seok-kyu Kang, and Kwangjo Kim. Tamper Resistant Software Through
Dynamic Integrity Checking. In Proc. Symp. on Cyptography and Information Security
(SCIS 05), 2005. ISBN 8242866627.

[181] Michael G Wrighton and André M DeHon. Sat-based optimal hypergraph partitioning
with replication. In Proceedings of the 2006 Asia and South Pacific Design Automation
Conference, pages 789–795. IEEE Press, 2006.

[182] Glenn Wurster, P. C. Van Oorschot, and Anil Somayaji. A generic attack on
checksumming-based software tamper resistance. Proceedings - IEEE Symposium
on Security and Privacy, pages 127–135, 2005. ISSN 1081-6011. doi: 10.1109/SP.2005.2.

[183] Glenn Wurster, P. C. Van Oorschot, and Anil Somayaji. A generic attack on
checksumming-based software tamper resistance. Proceedings - IEEE Symposium
on Security and Privacy, pages 127–135, 2005. ISSN 1081-6011. doi: 10.1109/SP.2005.2.

[184] Brecht Wyseur. White-Box Cryptography, pages 1386–1387. Springer US, Boston, MA,
2011. ISBN 978-1-4419-5906-5. doi: 10.1007/978-1-4419-5906-5 627.

[185] Brecht Wyseur and Bjorn De Sutter. D1.04 Reference Architecture.
2014. URL https://aspire-fp7.eu/sites/default/files/D1.
04-ASPIRE-Reference-Architecture-v2.1.pdf.

188

https://aspire-fp7.eu/sites/default/files/D1.04-ASPIRE-Reference-Architecture-v2.1.pdf
https://aspire-fp7.eu/sites/default/files/D1.04-ASPIRE-Reference-Architecture-v2.1.pdf

Bibliography

[186] Mi Xianya, Zhang Yi, Wang Baosheng, and Tang Yong. A survey of software pro-
tection methods based on self-modifying code. In Computational Intelligence and
Communication Networks (CICN), 2015 International Conference on, pages 589–593. IEEE,
2015.

[187] W. Xiong, A. Schaller, S. Katzenbeisser, and J. Szefer. Software protection using
dynamic pufs. IEEE Transactions on Information Forensics and Security, 15:2053–2068,
2020.

[188] Babak Yadegari, Brian Johannesmeyer, Ben Whitely, and Saumya Debray. A generic
approach to automatic deobfuscation of executable code. In 2015 IEEE Symposium on
Security and Privacy (SP), pages 674–691. IEEE, 2015.

[189] Fangzhou Yao, Read Sprabery, and Roy H Campbell. Cryptvmi: a flexible and
encrypted virtual machine introspection system in the cloud. In Proceedings of the 2nd
international workshop on Security in cloud computing, pages 11–18. ACM, 2014.

[190] Raz Ben Yehuda and N. Zaidenberg. Protection against reverse engineering in arm.
International Journal of Information Security, 19:39–51, 2019.

[191] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant, D. Song, and W. Zou.
Practical control flow integrity and randomization for binary executables. In 2013
IEEE Symposium on Security and Privacy, pages 559–573, May 2013. doi: 10.1109/SP.
2013.44.

189

A. Brief Summaries of Selected Related Work

This chapter presents brief summaries of selected related work in the field of
software integrity protection. This survey is the basis upon which we build a
taxonomy for software integrity protection techniques.

A.1. Overview

We conduct a literature survey to review state of the art in the field of software integrity
protection. When applicable, we bear a critical analysis of the papers in a separate paragraph
prefixed with “Remarks”. For some articles, we propose potential improvements in an
“Idea” paragraph. Please note that our review was closed on October 1st, 2020.

A.2. Survey of papers

• Integrity Verification Kernel & Interlocking Trust Mechanism [15]
This approach, being one of the oldest and the most cited integrity protection tech-
niques, utilizes code block encryption and signature matching to mitigate tampering
attempts. The author refers to the integrity checking codes as Integrity Verification
Kernel (IVK). These IVKs, for better stealth, are interleaved with the program function-
ality. Using this technique, the entire application code except for the starting block is
encrypted in a way that only valid (untampered) execution paths can decrypt their
next block. The decryption key of each block is obtained from the trace leading to it.
A pseudo-random generator generates a key from the trace hash. Furthermore, each
block has to re-encrypt its caller (decryptor), so that at a time only one block is in plain
text. Reencryptions make dynamic program analysis more difficult for an adversary.

Another security measure in this approach is a system-wide security service so-called
Interlocking Trust Mechanism (ITK). ITK verifies the integrity of IVKs in the system. A
set of IVKs protects ITM’s integrity.

Remarks: The paper comes with no performance evaluations, so the upper-bound
of the overhead is not clear. It is not wrong to assume large overheads due to the
constant encryption and decryption at runtime. Also, it is not clear how multiple
paths to a block (traces) could lead to a consistent decryption key.

191

A. Brief Summaries of Selected Related Work

• Use of Hardware Performance Counters (HPC) [132]
In this approach, a program is protected in two phases. In phase one, the program
is executed and based on the hardware performance counters, static information
about event function calls, number of branches, floating points, IO, and number of
instructions are recorded.

Later on, using Eurequa (a mathematical tool) [157] hidden relations between pre-
viously captured data are discovered and stored. In phase two (at runtime), the
captured values (in the magnitude of kilobytes) are compared to new event values
and evaluated using the captured mathematic relations. Since the captured values
may differ from one run to another, a threshold is introduced. Only if the relations
with a certain threshold at runtime do not hold, the program’s integrity is assumed to
be violated. In their experiments, they set the threshold value to 5%. Their evaluation
results indicated an overhead of 10%.

This approach can be seen as a complement for TPM based techniques in which
only the integrity files are secured but not the runtime. In such cases, the expected
mathematical relations can be secured using the TPM.

Remarks: Setting the threshold value is critical because a considerable threshold
value may fail to detect a substantial number of tampering attacks. On the other
hand, a small number may issue false alarms. Another significant limitation is this
technique cannot be used in a multitasking environment, which severely limits the
applications of the method.

• Dynamic Program Monitoring [31]
In this work, the authors proposed a tamper detection technique based on Control
Flow Integrity (CFI) using two processes. A primary process (P) and a monitoring
process (M). The two collaborate. The communication is applied to the target program
at compile time (implemented in GCC) in which P is modified such that it reports
its control flow to M at runtime. M has to be aware of the correct control flow and
respond to the reports accordingly. That information is also at compile time shipped
into M. The authors recommend protecting M intensive tamper-proofing techniques.
Since M is a compact application, it introduces less performance overhead as opposed
to intensively protecting P.

Idea: a possible direction I see here is to apply a similar technique but with the help
of SGX. M will reside inside the enclave, so it is tamper protected.

Remarks: The attackers can forge the control flow reports to M. Such forges can be
quite easy as there is no integrity protection on the P side.

• Dynamic Kernel Integrity Checking [41]
In this work, a method is proposed to inspect up to 99% of kernel’s dynamic data and
detect malicious tampering attempts. They evaluated their technique against nine
existing kernel malware, all of which were detected successfully. Main features are a)

192

A. Brief Summaries of Selected Related Work

apply inter-procedural points b) resolve type ambiguity c) recognize dynamic array
boundaries. The technique leverages static code analysis for initiation and memory
analysis for detection.

• Data flow integrity [42]
This work puts its focus on the input data to prevent well-known attacks such as
buffer-over-flow and the like. The assumption here is to assure the input data will
not corrupt memory, and subsequently, the attack is prevented. This work targets
category one attacks. This method instruments the running process and verifies the
data flow using a (previously captured) data model at runtime. Static analysis is used
to capture the data flow graph.

• Reflection for Software Integrity Verification [164]
This work relies on an external (trusted) entity to verify software integrity. The idea is
to retrieve the program’s state using reflection and report it to a trusted party who can
verify it. To improve tamper resistance, they proposed to exchange CPU performance
counters of the state preparation period along with the actual state values.

Remarks: One obvious attack is to keep an untouched version of the application in
the memory next to the tampered version and compute all hash computations to the
good version. The authors suggested using memory expansion and timing as possible
countermeasures.

• Dynamic self-checking [97]
In this work, the authors proposed a dynamic self-checksumming technique that
utilizes a collection of testers to verify random intervals in the executable code pages.
The testers are added to the post compilation process. Their approach only handles
linear checks so, and no circular checks are supported. In this event, an interval is
checked only by one block. A 32bit space is added outside basic blocks as the corrector
that tries to fix the hash values in the patch process. The patch process is part of the
software watermarking after-installation process.

• Oblivious Hashing [49]
OH refers to a dynamic tamper resistance mechanism that (instead of code bytes)
incorporates instructions, memory access, initial code counter, and memory values
and computes a hash over them. The term oblivious refers to the fact that adversaries
are oblivious to the fact that programs are computing hashes at runtime. In this work,
they implemented OH at a higher level of representation instead of binary-level object
code. The reason is that, in their case, low-level code injection requires maintaining a
hash value in a particular register. This quickly becomes problematic because we need
to keep pushing and popping the corresponding register value. This, in turn, eases the
detection of hash variables for adversaries. Therefore, to maintain the correctness of
the application, speed up the instrumentation, and leverage from compiler interleav-
ing hash code with the program code through optimization and benefiting from the

193

A. Brief Summaries of Selected Related Work

machine-independent protection method, they injected the hashing into the syntax
tree during the compilation process. They implemented hashing in C Intermediate
Language (CIL). Assignments, expressions, and control flows are used as program
features for hash computations. In the intermediate level, expressions are transformed
to a comma operator (e.g. a = exp is transformed to a = (t = exp, hash(t), t)). Control
flows are verified by adding one or two hashing instruction in the basic blocks.

As another application of oblivious hashing, the authors proposed to use their tech-
nique as a remote authentication means between a client and a server. They argue
such verification provides more reliable guarantees compared to remote static code
checksumming. This approach, although promising, comes with major limitations.
Using this technique, we can only hash a fixed portion of the code that is input agnos-
tic. Otherwise, with different runs of the program, the hash values will be different,
and thus we cannot verify the application behavior. To cope with this limitation,
they suggest running multiple test cases to capture deterministic parts of the code.
Remarks: In general, It is tedious to use oblivious hashing as a means for tamper
resisting software. Because of three reasons: i) pre-computation of the correct hashes
is hard, ii) the protection highly depends on the path coverage, and iii) large por-
tions of programs depends on nondeterminism (i.e., they are input dependent) and
thus cannot be protected. Another possible attack against this scheme might be to
identify the verification instructions and to patch them in the binary. If a matching
pattern could be recognized by the attacker, this can be done without any effect on
the program execution.

• Oblivious Hashing Using Overlapped Instructions [99]
In this method, an initialized hash value is continuously updated with the program
assignments and branch transfers. At various points, the hash value is verified at
runtime. They continuously keep rehashing a given value with a previously initialized
hash variable. In the case of branches, the same thing is done with a unique basic
block id. The main contribution lies in the two overlapping technique for stealth
improvement that are introduced and discussed in technical details, namely interleaved
basic blocks and Instruction outlining.

Interleaved basic blocks technique combines a set of basic blocks into one single so-
called super block with multiple entries and exit points. Within the superblock, a set of
cleverly chosen absurd instructions (exploiting x86 architecture’s variable instruction
size) are injected into the binary. These instructions are kept isolated from the correct
(untampered with) execution routine using opaque predicates, which are known to be
hard to be detected by static analyzers. If the bogus instructions are cleverly selected,
two main benefits are gained: i) they can manage to fool disassembler and make
reverse engineering harder [126], and ii) any tampering attempts potentially trigger
faulty instructions in an interleaved control flow and eventually a cause crash in the
execution.

194

A. Brief Summaries of Selected Related Work

The instruction outlining approach attempts to makes the tampering attacks harder
by creating multiple dependencies between different control flow branches. In effect,
common instructions within a code block or the entire application are outlined (op-
posite to in-lining code in C) so that minor tampering with attempts would affect
multiple disjoint execution branches. Their experiments indicate an overhead of 300%.

• Host Runtime Integrity Checking [43]
This technique attempts to guarantee the integrity of the standard operating system
applications. A compromise-free system is tough to have due to the vulnerabilities
white-hat hackers report daily. In this work, the authors emphasize that the window
of time from detection of a vulnerability until a patch is installed may allow the
attackers to persist their breach by modifications at the system level. Rootkits and
code modification are the first groups of attacks to permanently persist a breach.
Another approach is to inject malicious libraries into executable binaries dynamically.
In the Unix system, some features of the OS are provided in the form of Python or
Perl scripts, e.g., remote package installer. A malicious modification of these scripts
may enable an adversary to keep the system infected for a more extended period. In
this type of attack, after a successful compromise, the host might not be able to detect
modifications in the system. For example a rootkited OS may selectively hide system
states information retrieved by ls or ifconfig commands.

This scheme assures ELF and script files’ integrity via runtime checking. As a pre-
requisite, a trusted authority has to sign all packages. OS will be modified to verify
signatures of each downloaded library before attempting to install them. For exe-
cutable scripts, three kernel-level verifications are implemented, namely elfsign,
scriptsign and verify. The verification is initiated whenever a file is loaded
into memory at the kernel level. For libraries, this is handled by hooking uselib
and dlopen system calls. ELF signature verification is capable of verifying program
dynamic dependencies (using a recursive approach). The signing keys are handled
using a key management component reachable by an in-kernel API call. Key manage-
ment supports multiple keys, at verification time the right key is retrieved by a key-id
meta-data appended/prepended to files.

Remarks: The performance of this approach firmly depends on the executable charac-
teristics, e.g., the number of dynamic libraries dependencies. Since their experiment
results are not comprehensive, it is difficult to judge the performance overhead.

• Virtual Machine Introspection [55]
This method focuses on dynamic integrity checking for virtual machines, which are
commonly used in cloud computing. The authors introduce a mechanism for the
integrity checking of a guest VM from a virtual machine monitor (VMM) without
requiring VMs to go through a secure boot process. Although the work claims to
be OS agnostic protection approach, on the contradictory, this technique requires
that all supported operating systems to be examined in a so-called lab phase. In the

195

A. Brief Summaries of Selected Related Work

lab phase, a white list of benign applications along with their signature is generated.
Furthermore, the tool maintains a dataset of up-to-date malware. This dataset serves
as a blacklist and compliments the previously captured white list data. At runtime,
first, the OS is detected (using the lab data), and then its state is verified using both
whitelist and blacklist data. The verification is done with the help of an uncompromis-
able (assumption) hypervisor and a set of unbreakable (assumption) security virtual
machines. Unfortunately, these two assumptions are hard to hold true in practice.
Speaking of technicalities, they did not address how the randomized access memory
layout is regarded at runtime. Given that on each run application’s memory address
may change, how are the memory addresses of the known applications detected at
runtime? They reported an overhead of 2% in their performance evaluations.

Remarks: Whitelisting, at its best, can only verify signatures of the stored binaries. It
immediately becomes ineffective when only the program is tampered with dynam-
ically. Likewise, the blacklisting approach cannot detect all malware for the same
reason that anti-virus applications failed so far.

• Remote Integrity Checking [73]
Internet-facing servers are always dealing with the risk of being infected by malware,
thus the integrity protecting such servers is crucial. In this work, the goal is to enable
a verifier to test the integrity of files residing on a remote server. For this purpose, a
simple solution might be to reset the servers using a secure boot and verify system
integrity according to expected hash values. Such a technique is impractical as it
causes downtime. An alternative is to verify the integrity of files remotely through an
integrity checking agent. However, it is risky to rely on such calculations as the agent
itself is susceptible to modifications. Adversaries can potentially alter the agent such
that it always reports good hash values. A countermeasure is to use a challenge-based
protocol in which a randomly-generated challenge needs to be incorporated in hash
computations. This forces the verifier to keep a copy of all files or to compute the
hash for a set of prepared challenges. Under the assumption that the attacker will
not know the possible challenges, she always has to compute the value using the
untampered file. However, a challenge-based approach can also be defeated if the
attacker maintains both tampered and untampered version of all files and respond to
challenges using the unchanged data. The authors suggest this sort of activity can
be detected by a specially tuned intrusion detection system. Clearly, for an efficient
precomputed challenge list, the following equation needs to hold:

|precomputedchallenges| × verificationinterval ≥ serverlifetime

The authors, in the second part of their work, introduce a Diffie-Hellman-based
protocol for remote verifications in which they user file fingerprints as secrets.

Remarks: Given that the attacker can know the file fingerprint (the secret), we do not
see any benefit of their Diffie-Hellman based verification.

196

A. Brief Summaries of Selected Related Work

• Tamper-proofing using control flow flattening [104]
This approach develops control flow flattening obfuscation technique equipped with
a tamper-resistance mechanism based on LLVM toolchain1. Control flow flattening is
a technique that makes control graph analysis harder by merging all code branches
into a broad switch case statement. Their approach consists of two main functions,
namely check() and respond(). The former one is responsible for computing a checksum
over code regions, whereas the latter one decide whether the calculated value matches
the expected result or not. In their article, they state that a random slice of the basic
block byte code is hashed at runtime. It is not clear if such slices include absolute
addresses or not, this is important because if they do include them, then each instance
of the application may change the hash values thanks to the address space layout
randomization.

To accelerate the hashing process, on Intel x86 architecture, the hardware supported
CRC32 instruction is used.

In this method, the respond() function is implicitly implemented in which all check-
sums are incorporated in the switch case of the control flow flattening mechanism
such that any tampering attempts would break the control flow of the application.

• Remote Attestation For Dynamic Properties [112]
This work stresses that static attestation has limitations given that the object’s behavior
can be modified at runtime (e.g., buffer overflow). Therefore, static verification is
insufficient for integrity protection. However, attesting dynamic properties of a
program is challenging because i) there are a wide range of dynamic properties that
need to be monitored (heap, stack and the like), ii) good (untampered) dynamic
states may revisit a variety of values over time. Therefore, an approach is needed to
verify volatile states periodically. This work extends the TPM-based static integrity
checking model with a dynamic monitoring tool. A trusted entity is still needed to be
plugged to the system and request the integrity measures periodically. TPM protects
the monitoring tools. The tool monitors two dynamic features: structural integrity and
global data. Automatic security vulnerability detection in C programs uses structural
integrity features [113]. Safety-critical systems flag inconsistencies in the global data
as undesired states, e.g., NASA used it to detect problematic states [76]. To add
runtime integrity, a program has to go through a dynamic property collection using
static and dynamic analysis. The structural constraints are identified by static analysis
and focus on identifying dynamic memory mutation patterns. For example, memory
allocated in the heap memory using malloc should be linked together. Global data
constraints are captured using dynamic analysis and data invariant analysis using
the Daikon tool [76]. To capture such invariants, they execute programs multiple
times (aiming for 100% coverage). Afterward, both data invariants and structural
constraints are fed into the monitoring tool.

1a software compiler suite, www.llvm.org

197

www.llvm.org

A. Brief Summaries of Selected Related Work

At runtime, the monitoring tool (which is implemented as a Linux Loadable Kernel
Module), upon system calls asserts, the data invariants and dynamic memory structure
with some optimization tricks. For instance, memory-related constraints are verified
when relevant system calls are triggered. Dynamic objects within constructor and
destructor are only verified before the main function gets executed.

Upon any detection of integrity violation, the monitoring tool updates TPM’s PCR8
with violation evidence. Later on, when the trusted entity inquires, these violation
lists, along with the up-to-date system measurements are sent back.

The authors evaluated their technique using a set of applications that are known
to have dynamic vulnerabilities. After plugging the integrity monitoring tool, they
compromised the known vulnerability. According to their results, the tool managed
to detect 100% of attacks with zero false positives. They reported an overhead of 8%.

• File System Integrity Checking [114]
This paper implements the Tripwire tool that starts with collecting integrity measures
upon a filesystem. Subsequently, it monitors the files, their properties, and reports any
deviations to dedicated administrators. The tool comes with a possibility to configure
the monitoring process fine-grained, e.g., to ignore certain inoffensive modifications
in the file system.

Remarks: The success of this is highly dependent on the time when the integrity
measures are collected, if the system at that time is already infected, then Tripwire
may start with a faulty state. The system assumes that the sys admin is trustworthy,
and falls short of protecting the tool itself from malicious modifications.

• Dynamic Self-Protection for Android [149]
This work reports on an implementation of a self-encrypting code for Android appli-
cation that performs at the intermediate level, i.e., between loading the native code
and the application code. The authors used Soot (a framework for native Android
code analysis and transformation) F-Droid (an open-source android repository) and
Mandelbrot map and 0xbench to develop and evaluate their technique. They reported
a performance overhead of ≈500%.

Remarks: Besides the significant overheads, the approach suffers from three limi-
tations: i) reflection is not supported, i.e., functions that use reflections cannot be
protected; ii) after the protection, service provider contracts are suppressed and thus
no longer available due to the encryption; and iii) the protection takes place at the
java dex files, and therefore, the native byte code is not protected.

• StIns4CS: A State Inspection Tool for C# [98]
The goal of this work is to verify software integrity by exercising its functionality at
runtime continuously. The protection process consists of two phases: preparation and
monitoring. In the preparation phase, using symbolic execution (the PEX tool) a set of
possible inputs and expected outputs for different functions are generated. However,

198

A. Brief Summaries of Selected Related Work

users (developers) can specify which functions they wish to protect via annotations.
The preference is respected in the preparation phase. Once the input and expected
outputs are generated the program code base (functions that are to be protected)
is augmented with runtime assertions. Assertions verify the program returns the
expected output for the given input. These assertions are not to be confused with
conditions, but rather, they call the protected function with the given input and assure
the expected value is returned. Assertions are placed in a way such that they form a
network together. Like that, they can cover each other, and so patches can be detected
circularly. This approach can produce tamper-resistance software against static and
dynamic patches. However, performance downgrades depend on the size of the
protection networks.

Remarks: Checkers execute parts of the program. Triggering functions with side
effects may change the program logic. Consequently, the proposed protection can
strictly protect program functions with no side effects (i.e., pure functions) can be
protected.

• Software Protection Through Dynamic Code Mutation [131]
This work aims to protect software against reverse engineering attacks by a dynamic
code obfuscation technique. Dynamic code mutation attempts to keep the code
unreadable until right before execution. After execution, the scheme re-mutates the
code for better protection. The underlying assumption is that reverse engineering is
more difficult when i) program code and data are indistinguishable, and ii) there is
no fixed mapping between instructions and their residing memory such that multiple
code blocks use the same memory regions. The idea in this paper is to modify a
program at runtime continually such that memory analysis becomes ineffective. Code
blocks are transformed into obfuscated template-like regions filled with random
instructions. A system component so-called edit script can only decode such templates.
The edit script component contains the necessary information needed to transform an
obfuscated block into a plain code block. However, another component, build engine,
undertakes the transformations. Once the build engine transforms the code into the
executable code, two types of dynamic mutations one-pass and cluster-based are
applied. The one-pass mutation maps an edit script on a single code region, whereas
the cluster-based mutation alters the control flow graph on the fly.

One likely threat to the scheme is that the attacker reverse engineers the edit script
and the build engine. If those components are static, an adversary can learn all the
necessary information to break the obfuscation and recover the code. The scheme
utilizes opaque predicates to prolong such reversing efforts.

Remarks: Due to the constant relocation of the addresses, this technique cannot
be used for dynamic libraries and multi-threaded applications. We also anticipate
significant overheads stemming from continuous mutations.

• Tamper Resistance Using Multi-block Hashing [180]

199

A. Brief Summaries of Selected Related Work

The authors in this protection method propose to encrypt every basic block by deriving
a key from the hash of the preceding blocks. In contrast to typical checksumming
methods, in this scheme, there is no need for verification of the expected hashes by
the verifiers. Instead, each block, if untampered, can be used to derive a key that can
decrypt the next block. Since without protections, the program cannot be executed,
attackers cannot only remove the protection logic. Any tampering attempt will change
the hash of the block and will affect the derived key. With a faulty key, the block will
be decrypted to a set of junk instruction that will change the program behavior and
eventually terminates the execution. Their experiment results on the gzip application
indicate an overhead of 107% overhead with 70 encrypted blocks.

Remarks: There exists blocks reachable from various paths. Each path could lead to
the derivation of a different key. The presented approach does not discuss how blocks
with multiple entry points can be protected such that decryption from all possible
execution paths remains intact. Also, when ASLR is enabled, it is not clear how the
program can find out the address where external libraries are loaded.

• Software Protection using Guards [47]
In this work, the authors proposed a software protection technique for WIN32 (DLL
and EXE) applications. The idea is to build up a network of compact protection
blocks (aka Guards) that, along with performing integrity checking of the application
blocks (basic blocks), also verify their peer guards. The guards constitute a protection
network, each protecting parts of the program as well as other guards. The guards can
also attempt to heal the tampered with code regions. Since the guards are connected,
an attacker has to disable all interconnected nodes to circumvent the protection
successfully, which provides a higher level of security.

In addition to being protected by other guards, each guard should utilize obfuscation
techniques for syntactical resemblance ramification. Otherwise, a simple attack can
disable all blocks, for example, using pattern matching. Their evaluation results show
tolerable overheads. Overheads entirely depend on the number of guards and the
circularity degree. Triggering a vast network of protections can impose high costs.

• Hardware-Assisted Software Integrity Checking [137]
They proposed hardware-aided integrity protection comprised of two main com-
ponents: trusted hardware and security hypervisor. In this work, program-specific
integrity checks are supposed to be input by the user, and the security hypervisor
is in charge of carrying them out. The integrity of the hypervisor itself is verified
using the external trusted hardware. In addition to that, it is assumed that the trusted
hardware has access to the host’s memory and can perform environmental attestation
on demand. For this purpose, the hypervisor has to run at the highest privilege level.
Authors claim if malware were to downgrade the hypervisor’s privilege, two prob-
lems would arise: i) some instructions cannot be executed in downgraded privilege
(e.g., retrieving the CPUID) ii) the performance of their assertions noticeably suffers

200

A. Brief Summaries of Selected Related Work

when executed with lower privileges so that a simple timing analysis can detect it.

Remarks: The work comes with no empirical evidence.

• Pioneer: Verifying Code Integrity and Enforcing Untampered Code Execution on
Legacy Systems [161]
This work presents an entirely software-based tamper-proofing technique. In this
technique, a remote verifier can attest the integrity of a particular application and
verify its execution. The protocol is initiated with a nonce that is sent by the server
based on which the client is ought to compute a hash of the sensitive code blocks,
including the verification protocol itself. This nonce will prevent the client from
preparing the hash values before the server request. The general assumption is
that the remote verifier has a holistic knowledge about the client host, including
hardware latency and computation power. This knowledge enables the verifier to
perform timing analysis (with a certain threshold) and decide whether an application
is genuine or not. Furthermore, clients during the verification shall not communicate
with any other hosts so that the outsourcing attack can be prevented. For the same
reason, this approach does not apply to clients with multiple cores. Otherwise,
additional cores can be utilized to compute the correct hash values in an acceptable
time interval.

The authors have implemented their approach and reported an overhead of 4-5%.

Remarks: Full knowledge of the client configuration is a privacy issue. This approach,
due to its inapplicability on multi-core CPUs, is quite impractical for today’s context.
Moreover, the requirement to shut the entire system down during the verification has
severe usability problems. This work is also known to be vulnerable to virtualization
attacks [133].

• Conqueror: Software-Based Remote Attestation for Legacy Systems [133]
This approach presents a static and dynamic tamper-resistance protection purely
software-based. Their attestation protocol receives an entirely new random verifi-
cation routine (encrypted and obfuscated) on each attestation try. They (based on
empirical results) claim their approach is resistant against disassembly and hardware
supported hypervisor-based attack. This work claims to beat Pioneer attestation [161],
which is known to be vulnerable to hash forging and virtualization attacks.

Remarks: Conqueror has two limitations: i) it only works on single thread execution
mode, because attackers can utilize a secondary core to calculate expected hash values;
and ii) it is unusable when the goal is to verify a guest host with a trusted hypervisor,
because Conqueror, by default, considers hypervisor as a sign of an attack.

• Tamper Proofing Using Encryption, Guards and Process-level Virtualization [87]
This work proposes a combination of checksumming guards, encryption, and visual-
ization techniques to protect software.

201

A. Brief Summaries of Selected Related Work

At first, using a probabilistic model and based on the user’s desired protection level,
a set of cyclic protection guards [47] are injected into the binary. These guards later
assure the integrity of their protection targets. Afterward, the application’s basic
blocks, along with their guards, are encrypted, and the encryption key is obscurely
placed inside the binary. The key retrieval by an attacker is assumed to be hard
guaranteed by the white-box cryptography approach [53]. Then, an emulator is
shipped into the binary. The emulator is capable of decrypting the cipher code blocks.
That is, each instruction to be executed needs to be fetched, decrypted, and executed
by the emulator. To improve the performance, the emulator preserves a cache of the
most recent blocks. However, to harden the dynamic analysis attacks, this cache is
periodically flushed. The emulator itself utilizes cyclic guard protection. The only
difference is that neither the emulator nor the protection guards are encrypted (the
starting point has to be in plain-text). The paper explains some heuristics for an
optimal number of protection guards for the desired coverage. This work omits
some technical details, e.g., it is not clear how the application guards can verify the
integrity of basic blocks that are yet to be decrypted. On the positive side, they
implemented their technique and carried out experiments using the SPEC2000 suite.
Besides the performance overhead, they evaluated two additional characteristics: i)
the connectivity of the bytes that indicates the number of checks on each program
byte and ii) the average time delay between a tampering attempt and its detection.
According to their results, this technique introduces an overhead of 35% (21% of
which being the overhead of the visualization itself). This number, however, is closely
tied to the amount of the protection guards and the length of the protected blocks.
Concerning the connectivity, 80% of the code bytes are protected by at least four
checks. Also, their results showed that the average time between tampering attacks
and detections is ≈3.5 seconds.

Remarks: They do not discuss the potential impact of ASLR on the protection. A
dedicated attack can gradually extract the complete binary in plain-text by constantly
dumping the emulator’s cache. Although the authors point out that their approach
is resistant against the separation of code read and execution pipelines [182], it does
not include the VM itself. Precisely, with the assumption of access to the kernel,
an attacker can manage to rout emulator’s checksums (which are in plain-text) and
subsequently disable the cache flushing function.

• White-box AES within Secured Virtual Machines [82]
This paper proposes a technique for building a virtual machine acting as the root of
trust using white-box AES. Several hardening techniques are also utilized to protect
the VM. Emulator and debugger detection approaches along with various obfuscation
techniques at different levels (from source code to the actual machine code) are
employed to thwart static and dynamic analyses. Additionally, to prevent replacement
attacks, the secure VM can be bound to the host devices using hardware and software
fingerprinting.

202

A. Brief Summaries of Selected Related Work

As an application of this technique, a system (as a commercial tool) has been im-
plemented that enables general-purpose secure computation (e.g., license checks,
authentication verifier and the like) with the help of the embedded VM for mobile
clients, namely Android and iOS.

Remarks: The role of white-box AES in protecting the VM is unclear. In their evalu-
ation, they reported an overhead of 128%. This number seems to be acceptable for
highly secure and not so frequently used functions(e.g., license check). Nevertheless,
they do not indicate precise obfuscation settings nor benchmarked applications.

• Distributed Tamper Detection Via Continuous Software Updates [65]
The goal of this work is to authenticate client applications by a trusted server remotely.
The scheme employs a continuous software diversification technique in which clients
are forced to receive frequent updates so that by the time that an active attacker
manages to tamper with the client application, it becomes outdated. This technique
applies to contexts in which the client and server continually remain connected so
that changes can continuously get pushed to the client. They reported 4% to 23%
overhead depending on the required frequency of the updates.

Remarks: Trusted server resembles a single point of failure. Additionally, this ap-
proach does not provide any robust integrity verification of the clients. Instead, it
makes the code hard for the attacker to understand.

• Trusted Computing for Real-time Embedded Devices [34]
In this work, the general idea is to design a secure premise that is suitable to be used in
embedded devices with real-time requirements. The secure boot is a primary security
cornerstone of their approach. Furthermore, the authors propose two types of tasks
in this system: i) normal tasks that are accessible by the OS; and ii) secure tasks that
are isolated from the OS and other tasks. Besides the complete isolation, a secure
task comes with three main features: i) secure inter-process communication (IPC), ii)
secure storage and iii) attestation.

The sourcing process loads message m and destination id, did into CPU registers, and
then triggers a secure IPC interrupt. The interrupt ultimately makes m along with the
sid accessible for destination process/task. The secure storage feature is a usage of the
IPC in which for any given task, a counterpart storage task is initiated. A task-specific
key additionally encrypts all communication. The security layer is implemented
with the help of EA-MPU. EA-MPU is a hardware-based memory access control that
manages task isolation and interrupts handling. The work was implemented on the
Intel Siskiyou Peak and FreeRTOS operating system. Interestingly, although some
primitives are briefly introduced (e.g., the key derivation), the paper falls short in
defining the remote attestation protocol. It is not clear in their evaluation results
whether the remote attestation overhead was considered or not. Their results indicate
overheads of 300%, 60%, and 30% for secure task creation, context saving, and context

203

A. Brief Summaries of Selected Related Work

restoration, respectively. They conclude their system is acceptably efficient to be used
by real-time embedded devices.

Remarks: The security assumption is that the adversary is not inside the system. Thus,
the system remains secure as long as attackers fail to compromise EA-MPU based
access control system.

• Integrity Protection for Big Data [83]
A typical Big data architecture (e.g., STORM) comprises a set of computation nodes
(workers) that attempt to achieve optimal data processing. In this work, the authors
propose a simple approach for process integrity checking by duplicating the com-
putation work so that a malicious node could be detected upon the occurrence of
inconsistencies. A set of trusted controller nodes manages the distribution of dupli-
cated work and later on detects mismatches. Controllers maintain a reputation history
of the nodes based on their computation mismatches. Later on, this reputation record
enables the controllers to take actions against compromised nodes.

They report on an acceptable overhead yet odd for their approach. It seems the results
are somehow, in some cases, outperform the baseline (i.e., no protection).

Remarks: Their assumption about trusted controllers is pretty unrealistic; the same
threats against worker nodes apply to controller nodes as well. And thus, this tech-
nique needs to be enhanced with trusted computing protection measures. Utilizing
trusted hardware introduces additional overheads. Furthermore, in the current set-
ting, worker nodes can attempt to bypass controller alarm by colluding or predicting
”good results.”

• Trusted Geolocation Service [146]
In some applications (e.g., GovCloud), servers must verify their clients’ locations and
vice versa genuinely. However, without a sophisticated protocol, this geographical
information can potentially be forged. In this paper, the trusted geolocation problem is
tackled using a Trusted Geolocation Server (TGS), a cloud agent, and a tiny hypervisor
(XMHF) equipped with a TPM. The tiny hypervisor is self-contained and (without
the need for an OS and TPM drivers). The hypervisor can directly communicate with
the TPM. Their adversary model counts for the network (i.e., man-in-the-middle)
and malicious operating system attacks. They claim their system is secure provided
that i) the hypervisor is secure (no exploitable vulnerabilities) and ii) the GPS device
is genuine. The authors have implemented their method and reported an average
overhead of 8.3%.

Remarks: the security of this approach is built upon the idea that hypervisor cannot
be dynamically tampered with. However, in practice, this requirement is almost
impossible to be attained.

• Architecture for High Confidence Cloud Computing [105]
Migrating to cloud increases security risks due to a lack of control over data and

204

A. Brief Summaries of Selected Related Work

infrastructure. In this setting, cloud providers can readily violate users’ privacy. In
this paper, an approach is proposed to bring confidence in the cloud infrastructures.
The method comprises a TPM, a set of attestation probes, a collection of measurement
probes, and a monitoring framework. Each physical node must acquire a TPM. The
attestation and measurement probes ensure the integrity of the system services and
their states at various intervals. The monitoring service reports any inconsistencies
to the users. It is noteworthy that this approach supports virtualized environments
since via virtual TPM [90, 178]. In the elastic cloud, VMs can be relocated to different
physical nodes. This operation can potentially put the system at risk. The proposed
scheme utilizes a host identifier in the attestation flow to ensure the system integrity
in such relocations. To tolerate faults, instead of conservatively rejecting services that
fail to attest themselves, a concept of confidence level is introduced. The idea is to
have different levels of trust instead of rejecting or accepting measurement results in
a binary manner.

Remarks: The monitoring framework runs inside the cloud provider. This enables
the provider to forge results or to avoid reporting compromises. The work provides
no comprehensive security analysis. The work is rather conceptual and does not come
with any implementation or evaluations.

Idea: Keeping the monitoring framework inside the infrastructure makes the rea-
soning about good states (hash values) easier than pushing them outside. Maybe
the trusted entity (outside cloud provider) could only attest the monitoring service
instead of attesting all internal services and their measurements.

• Tamper Resistance Using Nontrivial Code Cloning [118]
The goal here is to prevent man-at-the-end (MATE) attacks. For this purpose, they
introduce a new obfuscation technique that while being labor-intensive (additional
development efforts) can harden reverse-engineering attacks. Since this technique can
only be applied to the sensitive part of the application (e.g., license checks), it remains
usable w.r.t costs.

Their technique is comprised of four steps: i) logical code fragmentation in which de-
velopers split a sensitive functionality (e.g., license check) into logical fragments;
ii) nontrivial fragment clone generation in which developers implement functionally
equivalent but structurally dissimilar clones for sensitive fragments (targetting static
program analysis); iii) linking random clone fragments to deliver a diverse and yet
semantically equavalent functionality at runtime (targetting dynamic program analy-
sis), iv) add further resilience by further obfuscations in which depending on the desired
security further obfuscation techniques are utilized.

This approach introduces a high complexity for dynamic attacks in which KN paths
need to be discovered, N is the number of logical fragments, and K is the number of
clones per fragment.

They implemented their approach on a toy program and reported evaluation results.

205

A. Brief Summaries of Selected Related Work

Remarks: Developing nontrivial code clones is a daunting task. Furthermore, per-
formance may suffer when less efficient fragments constitute a function. Another
foreseeable problem is the risk of race conditions due to the nondeterministic execu-
tion times of different fragment clones.

• Security IoT using Distributed System Analysis [171]
Securing IoT devices is crucial because these devices are more used than ever before.
Due to their close interaction with humans, any compromises can potentially endan-
ger the user’s life. To cope with limited memory and reduce power consumption, IoT
applications are normally developed using C/C++ that are not safe languages. There-
fore, out of bound errors are very probable attacks. However, in the context of IoT, the
regular bound checking has a high toll on the performance. The authors reported a
70% slowdown and an average additional memory usage of 200%. Such bound checks
should only be applied to the user reachable data to avoid unnecessary slowdowns.
In a distributed system identifying instructions whose data might be affected by
the user input is more challenging. To this end, the authors proposed an approach
for abstracting communication between nodes and generating a holistic view of the
system (as a standalone application). For this purpose, they introduced Distributed
Control Flow Graph DCFG and Distributed Data Flow Graph DDFG to improve static
analysis. In this way, intuitively, the out of bound errors can be identified with less
false positives as opposed to individually analyzing each node. They implemented
their technique in the LLVM ecosystem(https://code.google.com/p/ecosoc).

Idea: similar approach can be applied to microservices to detect security vulnerabili-
ties with less false positives.

Remarks: this approach has a complexity in the order of O = N2 + 2N .

• CryptVMI: Virtual Machine Introspection System in Cloud [189]
Virtualization enables cloud providers to utilize hardware resources more efficiently
by sharing them among various clients with a degree of isolation. In this setting, a
rogue virtual machine may bypass the sandboxing and affect other running virtual
machines. It is harder to detect such breaches by traditional intrusion detection
systems. This paper proposed a Virtual Machine Introspection (VMI) technique that
inspects memory, CPU registers, and running processes of the running VMs. VMI
must reside on every physical node with the root permission. The assumption is that
insiders have no root access, and thus, they fail to access VMI. Once VMI is installed
on the host, using a VMI Library, it can query the state of the running VMs. All
requests and responses are encrypted with the users’ key. The authors implemented
a proof of concept using open stack and XEN hypervisor. Their evaluation results
indicate insignificant overheads.

Remarks: The VMI itself can become a target for attacks because it has access to all
VMs states, including their processes. Running VMI as root in a public cloud is very

206

https://code.google.com/p/ecosoc

A. Brief Summaries of Selected Related Work

dangerous and unlikely to be adopted by cloud providers. The assumption that no
one has root access is also unrealistic.

• End-to-End Integrity Protection for Web Applications [108]
This paper argues vulnerable web applications enables attackers to tamper with user’s
data, computation results, or even access control policies. Therefore, a website can
only fulfill end-to-end integrity by assuring access control enforcement, correctness,
completeness, and freshness of its operations. To this end, Verena enables application
developers to define a set of integrity policies that later can be verified at the user’s
browser. Their protocol comprises a client, a main server that serves requests, a trusted
Identity Provider (IDP) that maintains users’ public keys, and finally, a semi-trusted
hash server. Semi trusted here means it retains from any collude with the main server,
and the assumption is that it cannot be compromised at the same time with the main
server. In the beginning, developers have to specify a set of integrity policies at the
development time. These policies consist of the group of authorized users so-called
trusted context and a set of authorized operations. Besides the plain read, the system
supports projection, and aggregation operations are supported. Each trusted context
later forms a custom Authenticated Data Structure (ADS) that is based on Merkle trees
[27] and authenticated index structures [123].

Only users within a trusted context can write into their corresponding ADSs and they
have to sign their requests. IDP is responsible for providing users’ public keys to
all entities. Upon write requests, users must recompute the root of the target ADS
and sign it with their private key. Those values are sent to the hash server for further
references. This root computation and signature are necessary to provide freshness to
other users.

To prevent forking attacks [124], users first request the root hash value that must be
signed by the hash server private key. In addition to the hash of the root node, the hash
server maintains the public key of the last user who modified the file and a counter
that indicates the total number of updates (version). This additional information will
prevent the main server from serving an older state of the ADS, aka the snapshot attack.
The authors implemented their approach and reported efficiency of the CRUD +
Aggregations methods, all of which being in the magnitude of milliseconds. However,
throughput overheads are quite large, 5x on reads, whereas 8x on writes.

Idea: this can be generalized for a logging mechanism for microservices. To improve
IDP a certificate transparency protocol can be employed on users’ public keys.

Remarks: The trust assumption is that at a time only one of the hash server or
main server can be compromised. Furthermore, it is not clear how access control
mechanisms are enforced. Although the emphasis is on the detection of tampering
attempts, the paper falls short in securing the access that can cause data losses.
Another problematic trust anchor is the IDP that can potentially be compromised and
result in unnoticed tampering attacks.

207

A. Brief Summaries of Selected Related Work

• Hypervisor-based System for Protecting Software Runtime Memory [74]
A malicious OS kernel, by having the highest privilege, can potentially access any
program’s memory through the linear address space. TPM based attestation, although
raising the bar, fail to secure the system completely. The counterexample is a runtime
compromise in the kernel due to a vulnerability (after the secure boot). From this
point on, a malicious kernel or a compromised driver can forge state hashes and
manage to unseal the TPM’s secure storage. Additionally, once the system is securely
booted, any software can ask TPM for unsealing a blob of encrypted data. Simply put,
there is no software-level authentication involved. This work is aiming to enhance this
model to protect the application’s runtime and conceal application’s sensitive data by
authenticating the integrity of processes. For this purpose, a lightweight hypervisor
(securely initiated with the help of a TPM) is designed to isolate applications’ memory
from any other processes, including the kernel. The hypervisor resides between the
hardware and the OS. It prevents any illegitimate memory access requests and enables
authenticated sensitive sealing/unsealing at the application level.

Their architecture comprises three components (all residing in the hypervisor): In-
tegrity Measurement Module (IMM), Memory Protection Module (MMP) and Secure Vault
Module (SVM). At the development time, developers generate integrity manifests for
all protected programs. Integrity manifest contains program measurements along
with a unique program identity. These manifests need to be shipped with the hypervi-
sor.

At runtime, after OS initialized the protected program, it registers itself with IMM.
IMM verifies the integrity of the loaded program (according to the program manifest)
and records its memory address bounds.

From hereon, MMP assures that program address bounds are only accessible by the
program itself and no other processes. The hypervisor moves the program page tables
to unaccessible shadow page tables. MMP also guarantees the protected memory
pages are only accessible via valid program entry points.

SVM provides authenticated sensitive data locking/unlocking features for the pro-
tected application. When an application requests for data sealing, its unique identity
(in its manifest) is concatenated the sensitive data and encrypted using AES-GCM.
The encryption key resides inside TPM. Likewise, when a protected program request
for decrypting its sensitive blob, its identifier will be matched against the id in the
sealed data. If it matches, then the sensitive data will be moved to the protected
memory of the program.

They have implemented their approach and reported promising performance results.
Registration call (when the program is loaded) is the most substantial overhead with
an average of 227 microseconds.

Remarks: The hypervisor is vulnerable to attacks just like other programs. Another
pitfall is the sealing key that resides inside the hypervisor. So, a successful attack can

208

A. Brief Summaries of Selected Related Work

reveal all programs’ locked data. Also, a useful program usually uses system libraries.
This approach fails to provide any protection for system libraries. Vulnerabilities in the
protected application, such as buffer overflows, can potentially lead to compromises.

• Timing Based Malware Detecting in Active Memory [100]
This work proposes a software-based attestation to detect malware in the active
memory of mobile devices using the memory-printing technique. The attestation
relies on the fact that a clean (malware-free) an attestee can compute the challenges
in a time-bound that is known to the verifier. In this approach, once the attestation
is launched, all active memory contents are copied to the flash memory. Then, the
verifier sends a random seed that the attestation client uses for proof computation.
At different checkpoints, the verifier sends further seeds and defines the memory
addresses that need to be incorporated in the proof computation. The authors claim
since the hardware configuration is known to the verifier, it can estimate a reliable
computation timing. Any attempt by the malware to prepare the results by interfering
with the attestation or by outsourcing the computation will cause additional latency,
and thus it will be detected by the verifier.

The authors reported that the entire attestation process takes less than a minute.
However, they, in their follow-up work [101], have improved the efficiency of their
algorithm so it can be used in devices with large memory space.

Remarks: The approach causes substantial downtime in service delivery.

• Forensic Analysis for Tamper Resistant Software [102]
This paper proposes a software integrity protection based on event logs. The authors
indicate that reverse engineering attacks are inevitable. However, they argue such
attacks can be pro-actively detected, given that there exists a regular connection be-
tween clients and servers. The idea is to maintain a secure audit trail of the integrity
checks in the application that cannot be forged by the attacker. Here the main desired
security property is forward security. It indicates that once the attacker compromised
the system, he cannot forge the recorded event logs due to key evolving cryptography
that was used in the records. In this work three different secure audit trait techniques
are proposed: i) key progression independent of log values, ii) key progression depen-
dent of log values and iii) key progression dependent on the number of evolutions
and independent of log values. They have implemented their approach and reported
acceptable overhead in both logging and verification processes.

Remarks: The logging mechanism itself can be attacked by the hacker. The big secu-
rity assumption is that a hacker starts the process of reverse engineering without the
knowledge of a logging mechanism in the system. While he can simply learn that log-
ging is the cornerstone of the integrity checking and forge good log states regardless
of the current state of the program. Furthermore, the key evolution independent of
log values may enable an attacker to forge a known good key value along with the
corresponding number of evolutions to trick the integrity verification process.

209

A. Brief Summaries of Selected Related Work

• Emulation based Software Protection [115]
This technical report proposed an emulator-based software protection technique. In
this method, the attacker is assumed to have access to the guest only. That means
the emulator itself is somehow protected. The basic idea is to encrypt the program
code such that it can only be decrypted and later on executed at the emulator level
(which is assumed to be out of the attacker access). They also proposed a signature-
based approach that applies HMAC verification before attempting to decrypt the code
blocks.

Idea: If we isolate the emulator from the attacker and only allow him to access the
emulated application only, then it is intuitively harder for the attacker to compromise
the system. Because i) the internal behavior of the emulator is unknown and ii) the
instructions of the emulated application are unreadable (due to the encryption or
transformations). To do so, one can build a hypervisor that acts as an emulator of its
guest OSes.

Remarks: if the attacker gets hands on the emulator itself, the system security will be
at stake.

• Control-flow integrity [2]
Subverting a program’s execution follow may end in severe exploits in the system.
This work presented a robust but straightforward technique to defeat Control Flow
Graph (CFG) tampering attacks. Such attacks stem from the shared channel between
data and control in systems. An attacker may manage to alter a CFG maliciously and,
for instance, to jump in the middle of a function to form an exploit. The proposed
approach protects the integrity of control flow by enforcing block authentication at
the beginning of blocks. They assign unique ids to caller and callee basic blocks so
that every call is augmented by a calleeid. Before executing a callee, its id is verified
according to the requested id (similar to a token). Consequently, all destinations are
authenticated with their unique block id. All required modifications, adding unique
ids and authentication enforcement routines, are done at a binary instrumentation
and machine code rewriting process. For this purpose, the Vulcan tool [166] is used.

They have implemented their proposal and reported an overhead of 16%.

Remarks: This approach is only effective when the attacker resides outside the system.
Against MATE attacks, this approach provides no guarantees. In addition to that, not
all low-level attacks require tampering with control flows, for instance, this method
cannot resist string formatting attacks. Another limitation is that the application,
including all its code blocks, must be instrumented to assign block ids and to prepend
authentication routines. Some programs may leverage dynamic code generation or
modification (encryption). This approach fails to support such settings.

Idea: The same concept can be applied to provide distributed control-flow integrity.
The other work [171] has proposed a method for distributed control-flow integrity, so
the only missing part is to assign unique ids and to implement enforcement routines.

210

A. Brief Summaries of Selected Related Work

However, it is not clear what the attacks that this approach is aiming to prevent them
are?

• Protection Against Changeware [19]
This work touches upon an interesting and reoccurring problem that goes hand in
hand with program non-repudiation. The context problem points to the lack of
process-level authentication upon any asset access/modification. This arises from the
permission model in operating systems, i.e., user-centric rather than process-centric.
This enabled specifically designed malware to surreptitiously change programs’ assets,
e.g., its data or configurations, in a way that this modification benefits the attackers.
Browser hijackers are a perfect example of such modifications in which, for instance,
the default search engine is replaced with a malicious one.

The primary assumption is that OS is trustworthy and remains genuine throughout
the entire process. Another assumption is that an attacker (in this case a malware)
under no circumstances obtains root privilege.

The idea in this work is to prevent illegitimate changes to program assets. For this
purpose, one has to assure the followings: i) Assets are protected from external modi-
fications. This is ensured using Whitebox cryptography [53] so the key is concealed
within the application. Whitebox crypto guarantees the difficulty of key retrieval from
the binary. Additionally, software diversification techniques are utilized to harden
key retrieval; and ii) only genuine internal calls can modify assets. This is done via
a runtime integrity monitoring that traces stack’s return addresses and compares
them to known good call traces. This works well for synchronous calls; however,
trigger and forget calls remain out of the monitoring sight. To cope with asynchronous
calls, which lead to incomplete trace information, caller threads are verified using a
Message Authentication Code (MAC).

The authors designed their protection method as a measure for Google Chromium.
Driven from the use case, they reasoned that diversifying the entire browser code
raises issues in software updates and bug fixings. Therefore, they developed the pro-
tection as a standalone application so-called WBCrypto equipped with diversification
and white-box AES implementation. At runtime, when a call is made to access assets,
WBCrypto acts as a proxy. The integrity of the caller at WBCrypto is evaluated by
injecting required instructions into the caller.

The authors implemented this work and reported 130x, 120x and 137x slowdown for
AES-128, AES-192, and AES-256, respectively, Since the calls to configuration changes
is rarely taking place, such an overhead is acceptable for this specific use case.

Remarks: This approach only works for operating systems that allow injection from
a process to another one. Linux operating system does not permit such injections.
Also, the reported overhead is quite high, which is mainly due to the white-box
cryptography.

211

A. Brief Summaries of Selected Related Work

• A graph game model for software tamper protection [72]
This paper, while acknowledging there is no ultimate tamper resistance method that
resists against polynomial-time adversaries, proposes a set of design ideas that can
significantly harden the identification and disabling of a tamper protection technique:
distributed checks and threshold detection scheme. Distributed checks refer to a network
of checkers that attackers need to disable to tamper with an application successfully.
These checks must blend well in the program logic. The threshold detection scheme
introduces straightforward protection against step by step disable of checks. In this
response model, the tamper detection will only call the respond function if after k
number of checks fail. Their proposed protection scheme comprises four steps: i)
clone sensitive codes so to avoid single point of failure; ii) transform program’s flow
graph so that it’s execution resembles a random traverse; iii) blend checkers into
the application; and iv) transform flow graph such that k tampering check failures
triggers the response function.

Remarks: The presented work comes with no implementation or evaluations.

• Software Protection for Dynamically-Generated Code [88]
Virtualization is a technique in which a specific instruction set is mapped on a set of
random instructions. In software protection, this mapping can be used to complicate
software analysis on the attacker’s end. There are two type of virtualization: system-
level and process-level. The former provides an entire system stack from hardware all
the way to the OS and applications. The latter, however, enables the very same thing
at a process within a running system.

Process-level virtualization, aka dynamic binary translation (DBT), is widely used by
the software protection community as protection primitive. In this approach, first, a
set of new instructions (typically random) is generated. Then, a binary is translated
into the new instruction set. To be able to run the application, it has to be translated
to the host instruction set at runtime. This is the responsibility of the emulator, aka
PVM, that is shipped with the application.

For better performance, DBT techniques commonly utilize caching, for instance,
to avoid translating hot regions of the application more than once. However, this
can potentially enable attackers to tamper with the cached code and subvert the
execution at runtime. This paper proposed a tamper-proofing technique for the
translated cached program blocks. The idea is to add a network of self-checksumming
guards similar to [47] (referred to as knots by the authors) at the translation phase.
The protection utilizes some randomness in the generation of networks as well as
knots’ instructions to make the analysis more difficult. For instruction obfuscation,
they used a prepared database that is loaded with a bunch of syntactically different
but semantically equivalent protection instructions. This will raise the bar against
dynamic tampering attacks. Their implementation introduced, on average, 10%
overhead on the SPEC2000 benchmark. This does not reflect the overhead that is

212

A. Brief Summaries of Selected Related Work

introduced by process-level virtualization itself. The virtualization tool that was used
by them, Strata, reported 30% slowdowns. So, all in all, 40% overhead is anticipated.

• Bona Fide [140]
From the end-user perspective, it might be sufficient to be aware of suspicious con-
figuration modification by the cloud providers rather than strongly preserving the
confidentiality and integrity of the data. To this end, this paper proposed a scheme
for change detection and continuous remote attestation with the help of a third party.
The system informs users as soon as a potential malicious behavior from the cloud
provider is noticed. BonaFides system is capable of monitoring undesired commands,
binary execution, and hardware configuration changes on the system.

In this approach, Cloud Certifier, exterior to the cloud provider, along with the In-
frastructure Provider equipped with a TPM, sets up a configuration enforcement and
configuration change monitor. On the cloud certifier, Storage Service keeps track,
logs all activities, of the service provider configuration changes, and upon change
detection, decides whether the incident is legitimate or not. On the infrastructure
provider, mainly three components are collaborating: Attestation Service (AS), Integrity
Measurement Engine (IME) and TPM. AS acts as an intermediate between the certifier
and provider. It inquiries the demanded configuration from the certifier then redirects
them to IME. The latter keeps observing redirected configuration list, upon change
detection informs AS.

The integrity of AS itself is guaranteed using TPM, which is signed by a trusted
certificate authority. Infrastructure provider has to securely boot the host so that TPM
captures platform configuration hashes including attestation modules to its platform
configuration registers.

Remarks: This technique relies on the attestation and thus is known to be problem-
atic [94]. Although attestation informs the verifier about the system’s configuration, it
is challenging for the verifier to accept the configuration. Because acceptable configu-
rations have to be updated with every software/hardware change in the system.

Revealing the user’s machine configuration is violating the privacy as the certifier
learns everything about the host literally. For this problem, the Trusted Computing
Group has developed a new paradigm to remove the third-party certifier, which
results in the direct anonymous attestation [36].

Furthermore, in software configurations case, attestation only considers the binary
hash, while in practice, some problems may appear during execution, such as buffer
overflows.

• Repackage-proofing Android Apps [128]
In this paper, integrity protection is utilized to thwart repackaging attacks in Android
applications.

213

A. Brief Summaries of Selected Related Work

Repackaging refers to an attack in which attackers malevolently modify (for instance,
to show more ads or to profile users) a well-known App and redistribute it on App
Stores. This has two downsides. Firstly, it harms the App developer revenue as well
as reputation. Secondly, it violates end-users privacy and security.

Each Android has to be signed by the private key of the developer (who owns the
App). Since attackers won’t have access to this private key, they have to resign Apps
after repackaging them using different key-pairs than the original ones. This paper
has built upon this limitation on the attacker side.

Contributions are Stochastic Stealthy Network of checkers, secure communication
channel using R object, and stealthy (temporally disjoint) response model. A checker
is split into smaller chunks that are blended into a program function while preserving
the order of execution. To preserve the order, the basic dominator blocks of a function
are identified [122]. Subsequently, the checker chunks are injected into the basic blocks
in the order of dominators.

The idea is to inject a network of checkers (referred to as Stochastic Stealthy Network)
at development time into Apps, These checkers (which are diversified using various
obfuscation techniques) verify the public key of the signing authority (which is
retrievable via Android runtime) to ensure it matches the original developer key. To
add resilience against pattern matching, the public key is not verified as a whole, but
each checker verifies a smaller subset of the key. The authors have not specified how
large these intervals are.

Upon mismatch detection, a signal is published to the response mechanism. The
communication medium is via the Android.R, which is responsible for the id of UI
elements. Simply put, checkers modify the id of an R field (using reflection), which is
actively read by responders. The authors argue this medium has high resilience.

They designed a custom response mechanism that messes up the application UI.
Suggestions are to add random text to labels, modify integer values, and object
attributes.

To reduce the overhead, they used fuzzers (using Monkey and Traceview tools) to
identify hot code regions in a given program to protect. These regions are marked not
to be used for injecting checkers.

Four apps are used to carry out performance evaluation. First, 1000 random user
events are generated (using monkey). And then, these events are fed to both protected
and unprotected apps. They reported an overhead of 8-12%

For the security evaluation, they have used human attackers to measure their success
rate as well as carried out a thorough security evaluation. Their scheme is vulnerable
to hijacking vtable attacks, while they state other attacks, including taint analysis, were
not successful.

Remarks: Public key is a high entropy data, so it should be easy to detect them in the

214

A. Brief Summaries of Selected Related Work

code. One can simply monitor modifications on R element values at runtime to detect
the checkers. Furthermore, taint analysis based attacks similar to [150] could lead the
attacker to checkers and responses.

• Transparent ROP Exploit Mitigation Using Indirect Branch Tracing [145]
In this paper, a protection mechanism is proposed to mitigate ROP-based attacks at
the kernel level. That is, programs need not be instrumented and protected, but rather
the kernel is responsible for mitigating such attacks. The protection relies on two
measures. For direct branches, the ret instruction must not violate the call site, i.e.,
the instruction before each ret address must conform to the executed call. In indirect
branches, a chain of shortcode fragments (potentially gadgets) within a threshold of
10 indicates an ROP attack. While i is simple to implement, i seems to be challenging.
However, it turned out that CPU has an LBR register that maintains up to 16 indirect
branches. They state that all ROP attacks have to eventually invoke a system call to
carry out a meaningful attack. Based on this assumption, the check could take place
right before the execution of system calls. Their performance evaluations indicate an
overhead between 4-8%.

• Haven: SGX in Cloud [26]
Haven is a shielding method to secure legacy systems leveraging Intel’s Software
Guard Extension (SGX). In this approach, they place the entire legacy binary inside the
protected enclaves. To protect system calls, they have also developed a secure version
of Windows 8 libraries such as threads, scheduling, virtual memory and file system.
This effort is mainly to cope with the enclave’s security level. They have implemented
their technique and reported an overhead between 31% to 54% depending on the
application.

• Harden Tamper-Proofing to Combat MATE Attack [50]
This work sets to secure the self-checksumming (SC) guards via Intel SGX. To this
end, they propose a design comprised of three compartments: non-enclave part,
enclave part, and sealed addresses table. In the non-enclave part sits the original
program augmented with SC calls. Such calls transfer the execution to the code
residing in the enclave (containing the SC guard). Since the actual program resides
outside the enclave, the SC guard must read from the non-enclave compartment. The
checksum function of the guard disguises the target memory addresses by reading
extra random memories. The target addresses (checksum intervals) are shipped as an
SGX-sealed auxiliary file with the binary. It is worthwhile to mention that attackers
cannot read the content of SGX-sealed files. The SC guard within the enclave reads the
target addresses from the file upon program start and accesses them (along with other
random memories) upon checks. Later the guard calculates the checksum on the target
addresses and discards the random read values. The protection is implemented in
C++ and is tuned to inject eight guards in each program. They conduct a performance
evaluation on five benchmarks (out of 12) from the SPECint-2006 dataset. It is not

215

A. Brief Summaries of Selected Related Work

clear why seven other benchmarks were excluded. The imposed overhead appears to
be constant for the number of calls and accessed memory cells.

Remarks: The assumption is that if attackers cannot guess which addresses are
checked, the trick of setting patched memories to legit values before tamper detection
calls will not work. There might be cases in which attackers do not necessarily need to
know the checked addresses to bypass the protection. One simple solution would be
to revert all patched instructions upon calls to tamper detection. It is often enough to
patch a branching condition to coerce the intended malicious behavior (e.g., to bypass
a license check). Given that the number of patched instructions are generally-speaking
limited, the imposed overhead of reverting memory values is rather low. Therefore, it
is likely that attackers bypass the protection by resorting to a well-timed patch and
revert strategy.

• Semantic-integrated software watermarking with tamper-proofing [51]
This paper proposes a control-flow-based watermarking technique that comes with
built-in tamper detection. The core idea is to apply a control-flow obfuscation trans-
formation that embeds branching conditions into an artificial neural network model.
The authors argue recovering a program’s control flow in their scheme is equivalent
to extracting rules from artificial neural networks, which is assumed to be NP-hard.
The model receives the branch variables and information on the previously executed
program blocks (trace) as inputs. The model effectively evaluates the branching
conditions by spitting out each branch’s destination addresses based on the inputs.
Since the models are trained with both variables and traces, any modifications leading
to changes in the traces cause miscalculation of the addresses (yielding potential
program terminations). That is, the scheme realizes an oblivious hashing alike trace
protection. In the protected program, all branching conditions are replaced with calls
to a function consulting the model to compute destination blocks’ address, followed
with an unconditional jump to the addresses. The authors implemented their scheme
in C++ and evaluated it using five programs from the SPECint-2006 benchmark. Their
performance evaluations indicate a low overhead. However, the authors strictly
protected 16 branches in each application.

Remarks: It is unclear why the authors apply the technique to 16 branches and not
all the branches in each program. The overhead can significantly differ if they protect
all program branches. The rule extraction from models seems to be a problem in the
context of a particular class of models, such as Multilayer Perceptrons (MLPs) [32].
Dynamic analysis can still be problematic as calculated addresses can be recorded
and subsequently used to replace the calls to the model.

• Careful-Packing: A Practical and Scalable Anti-Tampering Software Protection en-
forced by Trusted Computing [174]
This paper proposes a tamper detection technique aided by Intel SGX. The goal is
to extend the security guarantees of enclave-protected code regions to the codes

216

A. Brief Summaries of Selected Related Work

residing outside enclaves. The proposed technique combines software packing and
self-checksumming to achieve their goal. In their work, sensitive code regions are
shipped encrypted (AES-GCM) to the end-users. A backend server, upon installation,
provisions the corresponding cryptographic key. Such sensitive regions are enclosed
with decrypt (prologue) and encrypt (epilogue) calls to the enclave in the protected
application. The decrypt function checks the integrity and, if valid, subsequently
decrypts the section right before executing the code. On the other hand, the encrypt
function re-encrypt the section to raise the bar against dynamic analysis. Upon calls
to the trusted enclave, a self-checking mechanism randomly verifies previously de-
classified sensitive sections to detect post decryption tampering attacks. The packing
has the benefit of enforcing calls to the trusted enclave, mitigating disengaging the
trusted component. The very same construct is leveraged to broadcast heartbeats
containing tampering reports to a trusted third-party server. The authors demon-
strated the resilience of the technique to a just-in-time patch and repair attack. They
evaluated their approach using a self-made activity monitor tool (which is meant to
detect malicious insiders). The induced overhead is estimated to be 5.7% on average.

Remarks: The utilization of packing hardens dynamic analysis, but cannot counter
well-timed patch and reverts. The just-in-time patch and repair attack experiment
seems to randomly attempt to patch and revert bytes, which is, according to the
authors, always detected by the guards. It would be interesting to simulate a real-
world attack by targeting a set of sensitive instructions (e.g., the patch and revert of a
critical branching condition) in the experiment.

• Software Protection Using Dynamic PUFs [187]
This work combines self-checksumming with Physically Unclonable Functions (PUF)
to constitute a tamper protection technique that binds applications to specific hard-
ware. Through a trusted software interface, the protected program queries PUFs.
Since the PUF queries are time-bound, modifications in the protected application that
yields timing differences (larger than a certain threshold) are detected. A set of cross-
checking self-checksumming guards protect the sensitive code as well as the PUF
queries. The PUF queries’ results are used to determine the next function’s address
in the control flow (referred to as call graph scrambling). Similarly, PUF values can
be used to manipulate program registers such as stack pointer to introduce a fault in
the execution upon tamper detections (referred to as register value scrambling). The
protection is implemented as an instrumentation tool written in Python for the LLVM
bitcode format (IR). The authors used a set of self-implemented sample programs
(mainly utilizing AES the algorithm) to evaluate their technique’s runtime overhead.
The experiments indicate an average overhead of 48%.

Remarks: The authors presume that the Dynamic PUF interface is trusted.

• Protection against reverse engineering in ARM [190]
This work proposes a software packing technique for the ARM architecture to conceal

217

A. Brief Summaries of Selected Related Work

the code by resorting to encryption. The authors seek a solution that does not rely
on the ARM TrustZone due to what they refer to as vendor lock-in problems. The
answer comprises code encryption and a secure hypervisor that acts as an emulator
for the encrypted code. The paper details ARM specific considerations regarding
the CPU privilege model and the memory management security considerations. The
authors used an FFT program to conduct their overhead experiments indicating high
overheads on first runs (before caching the decrypted code) followed with insignificant
overheads.

A.3. Summary

In this chapter, we summarized 51 papers in the field of integrity protection. We discussed
potential improvements and shortcomings of the reviewed articles.

218

B. Reproducibility Handbook

We made the entire protection toolchain, datasets, and scripts open source. This
chapter capture the links, scripts, and manuals on how to run the experiments
that were conducted throughout the thesis.

We developed our toolchain in the LLVM ecosystem. That is, we have implemented
our protections and the composition framework as LLVM transformation passes. All the
passes are written in LLVM 6.0. The simplest way to reproduce our results is to use the
docker file provided for each part of the thesis (see Appendix B.3). It is worthwhile to note
that the publications corresponding to Chapters 3 and 5 ([4, 8]) have undergone artifact
evaluations 1 and subsequently been awarded with ACM Reusable and ACM Functional
badges.

B.1. Data sets

We mainly used the MiBench data set [93] to evaluate the runtime overhead of our pro-
tection passes. In our machine learning experiments, we used the simple data set [154]
in addition to the MiBench data set to conduct our localization attacks. We compiled all
these programs to LLVM bitcode format (BC) and used them in our experiments. The
bitcode files of the simple and MiBench data sets can be found at https://github.
com/mr-ma/composition-sip-eval/tree/smwyg/simple-dataset, and https:
//github.com/mr-ma/composition-sip-eval/tree/smwyg/mibench-dataset,
respectively.

B.2. Source Code

The LLVM parts are written in C++ version 17. We do use Python 2.7 and Python 3.3 in
our experiment scripts. We have tested our implementations on Ubuntu 18.04 and Ubuntu
18.10.

1https://www.acm.org/publications/policies/artifact-review-badging

219

https://github.com/mr-ma/composition-sip-eval/tree/smwyg/simple-dataset
https://github.com/mr-ma/composition-sip-eval/tree/smwyg/simple-dataset
https://github.com/mr-ma/composition-sip-eval/tree/smwyg/mibench-dataset
https://github.com/mr-ma/composition-sip-eval/tree/smwyg/mibench-dataset
https://www.acm.org/publications/policies/artifact-review-badging

B. Reproducibility Handbook

B.2.1. C++ Dependencies (Libraries to Link)

DG

We used the dg library (https://github.com/mchalupa/dg) to compute pointer de-
pendencies in the alias analysis of programs. We forked the dg library to accommo-
date minor fixes for the programs of our data sets. Our fork is reachable at https:
//github.com/tum-i22/dg.

Lemon Graph

We made use of the lemon library (http://lemon.cs.elte.hu/pub/sources/lemon-1.
3.1.tar.gz) in our implementation of the defense graph in the composition framework.

GLPK

For our ILP optimization, we used the GNU Linear Programming Kit (GLPK). For larger pro-
grams, we used the Gurobi solver (https://www.gurobi.com/) under a free academic
license.

SVF

Static Value-Flow Analysis Framework for Source Code (https://github.com/SVF-tools/
SVF) is used to capture a feature vector of the data and control flow dependencies of the
program basic blocks. We adopted the build script in our forked repository available at
https://github.com/anahitH/SVF.

B.2.2. Python Dependencies (Libraries to be installed via pip)

We need the following pip libraries in our toolchain:

• r2pipe (Radare2 must be installed as well)

• numpy

• scipy

• argparse

• pandas

• benchexec==1.16

• pypandoc

• gensim==3.8.1

220

https://github.com/mchalupa/dg
https://github.com/tum-i22/dg
https://github.com/tum-i22/dg
http://lemon.cs.elte.hu/pub/sources/lemon-1.3.1.tar.gz
http://lemon.cs.elte.hu/pub/sources/lemon-1.3.1.tar.gz
https://www.gurobi.com/
https://github.com/SVF-tools/SVF
https://github.com/SVF-tools/SVF
https://github.com/anahitH/SVF

B. Reproducibility Handbook

• sklearn

• tabulate

• tensorflow==2.1.0

• stellargraph==0.10.0

• keras==2.3.1

• tensorflow-cpu==2.1.0

• tables

B.2.3. Utility Passes

The utility passes are needed by the protection passes. These passes are implemented in
C++/LLVM.

Function Filter

We use the function filter pass to apply partial protections using function names on sample
programs. The pass is available at:
https://github.com/mr-ma/composition-function-filter.git

Inter-Procedural Program Input Dependency Analyzer

The input dependency pass segregates program instructions into data-independent, input-
dependent, and control-flow-dependent instructions. The source code of the input depen-
dency analyzer is available at:
https://github.com/mr-ma/composition-input-dependency-analyzer.git

Program Dependence Graph

This pass generates precise data flow and control flow dependencies of program instructions.
We used this pass to capture a feature vector of program dependencies for our machine-
learning-based attacks. The program dependence graph source code is reachable at https:
//github.com/mr-ma/program-dependence-graph.git.

B.2.4. Protection Passes

Throughout this thesis we prototyped five integrity protection techniques, namely Self-
Checksumming (SC), Oblivious Hashing (OH), Short Range Oblivious Hashing (SROH),
Call Stack Integrity Verification (CSIV), and Virtualized Self-Checksumming (VirtSC). The
link for each of the protection passes are given below.

221

https://github.com/mr-ma/composition-function-filter.git
https://github.com/mr-ma/composition-input-dependency-analyzer.git
https://github.com/mr-ma/program-dependence-graph.git
https://github.com/mr-ma/program-dependence-graph.git

B. Reproducibility Handbook

1. SC
https://github.com/mr-ma/composition-self-checksumming.git

2. (SR) OH
https://github.com/mr-ma/composition-sip-oblivious-hashing.git

3. CSIV
https://github.com/mr-ma/composition-sip-control-flow-integrity.
git

4. VirtSC
https://gitlab.lrz.de/ga93jun/sc-virt (only accessible to TUM students/staff
with invitations)

B.2.5. ILP-Based Composition Framework

The framework is written as a set of LLVM passes. The composition framework is available
at:
https://github.com/mr-ma/composition-framework.git

B.2.6. Machine-Learning-Based Localization

Our machine-learning-based attack is written in python and is publicly available at:
https://github.com/mr-ma/sip-ml

B.3. Docker Files

We recommend using the provided docker files to install and configure the required depen-
dencies properly. The link to the docker file for each chapter with reproducible results is
given below.

1. Chapter 3
https://github.com/tum-i22/sip-oblivious-hashing/tree/acsac/docker/
Dockerfile

2. Chapter 5
https://github.com/mr-ma/sip-shaker-artifact/blob/master/Dockerfile

3. Chapter 6
https://github.com/mr-ma/smwyg-artifact/blob/master/Dockerfile

Please note that we do not provide a dockerized approach for the experiments of Chapter 4.
Due to IP problems we are unable to disclose the code publicly.

222

https://github.com/mr-ma/composition-self-checksumming.git
https://github.com/mr-ma/composition-sip-oblivious-hashing.git
https://github.com/mr-ma/composition-sip-control-flow-integrity.git
https://github.com/mr-ma/composition-sip-control-flow-integrity.git
https://gitlab.lrz.de/ga93jun/sc-virt
https://github.com/mr-ma/composition-framework.git
https://github.com/mr-ma/sip-ml
https://github.com/tum-i22/sip-oblivious-hashing/tree/acsac/docker/Dockerfile
https://github.com/tum-i22/sip-oblivious-hashing/tree/acsac/docker/Dockerfile
https://github.com/mr-ma/sip-shaker-artifact/blob/master/Dockerfile
https://github.com/mr-ma/smwyg-artifact/blob/master/Dockerfile

B. Reproducibility Handbook

B.4. Execution Manual

After building the docker images based on the provided docker files, run a container and
re-run the desired experiments according to the manual provided for each chapter.

1. Chapter 3
https://github.com/tum-i22/sip-oblivious-hashing/blob/acsac/README.
md

2. Chapter 5
https://github.com/mr-ma/sip-shaker-artifact/blob/master/README.
md

3. Chapter 6
https://github.com/mr-ma/smwyg-artifact/blob/master/README.md

223

https://github.com/tum-i22/sip-oblivious-hashing/blob/acsac/README.md
https://github.com/tum-i22/sip-oblivious-hashing/blob/acsac/README.md
https://github.com/mr-ma/sip-shaker-artifact/blob/master/README.md
https://github.com/mr-ma/sip-shaker-artifact/blob/master/README.md
https://github.com/mr-ma/smwyg-artifact/blob/master/README.md

List of Figures

1.1. Architecture of a example DRM system to lend proprietary content. 5
1.2. Attack tree capturing potential MATE attacks on the sample DRM system. . 6

2.1. System view dimension of the taxonomy depicting the system main classes
as well as subclasses and their relations. 21

2.2. Attack view dimension of the taxonomy showing the attack main classes,
subclasses and relations. 23

2.3. Defense view capturing the main classes, subclasses and relations of the
defense dimension. 27

2.4. The high-level overview of the taxonomy showing the main classes of the
defense, system and attack views along with their relations. 32

3.1. Applying SROH to the computeUsage function of the sample electricity
meter program . 68

3.2. Performance measurements using OH+SROH+SC for four (10%, 25%, 50%,
and 100%) coverage levels. OH/SROH runtime overhead is depicted by
black-margined bars, additional SC runtime overhead is shown with stacked
bars with gray margins. Bars with no black margins indicate protected
programs with negligible OH/SROH overheads. 80

3.3. An attack-tree-based security analysis of the proposed protection scheme. . 80

4.1. Solution’s high level architecture . 89
4.2. Overhead of VO vs. VO+SC protection in the secure mode; the gray-

margined bars capture VO+SC protection while the black-margined bars
depict VO protection results . 97

4.3. Overhead of VO vs. VO+SC in the optimized mode; the gray-margined
bars capture VO+SC protection while the black-margined bars depict VO
protection results . 98

4.4. Attacks on SC depicted in the form of attack tree notation [22] 99

5.1. Generated protection manifests for the example program; P and C refer to
protected segments (instruction/function) and constraints, respectively . . 118

5.2. Defense graph for the manifests of the example program; node attributes are
depicted in the form of <Attribute>; Manifests are shown as sharp-edged
rectangles while program instructions (G and h1) are shown as round-edged
rectangles. 120

225

List of Figures

5.3. Module representation of our solution in LLVM framework; green boxes
distinguish composition modules from LLVM and protection modules. . . . 124

5.4. Performance comparison of compositions of SC and OH/SROH using heuristic-
based approach vs. our optimization technique for partial protections of 10%,
25%, 50%, and 100% of program instructions; the gray-margined stacked
bars capture the average overhead of the heuristic-based approach, while
the black-margined bars represent the same numbers corresponding to our
technique . 128

5.5. Security analysis of the composed protection of SC, OH/SROH, and CSIV
using attack tree notation . 130

6.1. Integrity protection resilience evaluation methodology encompassing attack,
defense, and metric catalogs along with the their relation to the localize and
defeat battlefronts; the attack categories containing automated attacks are
underlined . 137

6.2. Defense graph of the qsort l program with the maximum protection com-
position of SC, OH/SROH, and CSIV . 154

226

List of Listings

3.1. Fictional electricity meter application with varying rates 67
3.2. Fictional electricity meter application with varying rates 72
3.3. Snippet of the fictional electricity meter application after the utilization of

OH+SROH . 73

4.1. A simple demonstration of an interpreter utilizing the indirect threading
optimization . 94

5.1. Fictional car mileage counter program . 115
5.2. Protected fictional car mileage counter program, note that all protections are

applied at the LLVM IR level, however for the sake of simplicity our snippet
is presented at the source code level . 117

227

List of Tables

2.1. Software integrity protection taxonomy along with examples in the context
of the sample DRM. 34

2.2. Applied taxonomy on the surveyed literature. 35
2.3. The correlation between the integrity asset protection and representation. . 36
2.4. Defense mechanisms against tampering attacks for different (asset) represen-

tations. 38
2.5. Defense mechanisms for different (asset) representations and their correlation

to program lifecycles. 44
2.6. The correlation between the transformation lifecycle and overhead. 49
2.7. The correlation of the representation and check mechanism. 51
2.8. The correlation of the Representation and protection level. 52
2.9. MATE tools resilience in the reviewed schemes. 53
2.10. Resilient schemes against the two known technical attacks. 55

3.1. Block and instruction coverage reports of OH and SROH protections. The
III column describes the percentage of instructions effectively protected by
OH; the DII column describes the percentage of instructions in principle
protectable by SROH. Median increase in instruction coverage from OH to
OH+SROH is by factor 6.1%/0.3%≈20; increase in median block coverage is
by factor 49.6%/1.4%≈35. 78

4.1. Protection coverage of instructions including the network of checkers using
SC atop VO (Prot. Inst.% column) . 96

4.2. Known attacks on virtualization obfuscation [21, 156] 101

5.1. Overhead decrease of optimized solutions with maximized attainable pro-
tections (explicit and implicit coverage) with minimized overhead; columns
2-6 correspond to the maximum possible protection (applicable manifests)
while columns 7-9 capture the results of optimized solutions 127

6.1. ML-based attack effectiveness in localizing integrity checking measures; the
subscript values (2, 40, and 100) indicate the parameter passed to the corre-
sponding transformations; DS, FM, and σ denote the number of (basic block)
samples in the data set, the average f-measure over the 10-fold validations,
and the standard deviations of different folds, respectively 147

229

List of Tables

6.2. Machine-learning-based attack effectiveness in localizing SC, OH/SROH,
and CSIV on different combinations of IS, BC, and CFF obfuscations for
the simple data set; DS denotes the number of samples in the data set; FM
captures the average f-measure over the 10-fold validations; σ denotes the
standard deviations of different folds . 148

6.3. Taint-based localization effectiveness experiment; Insts., TS, AT, CFF20,
Virt20 denote the number of LLVM instructions in the original programs
(unprotected), the trace size (MB), the attack time in seconds, CFF on SC
checks and 20% of other functions, and Virt on SC checks and 20% of other
functions, respectively; N/A indicate failure of the attack or analysis 149

6.4. EPS metric mean (M), median (Mdn), and standard deviation (σ) for the
three different composition of protections: max-manifest, max-explicit, and
max-implicit; #P, E, I denote the number of protections (manifests) in the
solution, explicit, and implicit protection coverages, respectively 151

6.5. Attack-defense relation table capturing the degree of difficulty inflicted by de-
fenses against attacks on integrity checking protections; numeric cell values
of pattern matching, machine learning, and tainting correspond to the attacks
effectiveness (f-measure) in localizations of hardened integrity checks; Xand
X denote susceptibility and tolerance to attacks; grayed out cells represent
irrelevant configurations . 152

6.6. List of all protection manifests applied to qsort l; note that SC operates
at the function level and thus we apply function splitting transformation,
which breaks the main function into 3 functions (main, main0, main1), to
improve the protection coverage . 153

230

	Acknowledgements
	Zusammenfassung
	Abstract
	Outline of the Thesis
	Contents
	I Introduction and Structured Related Work
	1 Introduction
	1.1 Context
	1.2 Motivating Case Study
	1.3 Problem Statement
	1.4 Purpose of the Study
	1.5 Research questions
	1.6 Gaps
	1.7 Research Design
	1.7.1 Taxonomy
	1.7.2 Scheme Enhancements
	1.7.3 Composition
	1.7.4 Quantification

	1.8 Contributions
	1.9 Assumptions, Limitations, and Scope
	1.10 Structure

	2 Taxonomy
	2.1 Overview
	2.2 Introduction
	2.3 Proposed Taxonomy
	2.3.1 System
	2.3.2 Attack
	2.3.3 Defense
	2.3.4 View dependencies

	2.4 Applying the proposed taxonomy
	2.5 Observation and Analysis
	2.5.1 Asset protection in different representations
	2.5.2 MATE attack mitigation on different asset representations
	2.5.3 Defense integration to program lifecycle
	2.5.4 Correlation of transformation lifecycle and protection overhead
	2.5.5 Check and Monitor representation
	2.5.6 Monitoring representation correlation with protection level (enforcement level)
	2.5.7 Hardening vs. reverse engineering attacks and tools
	2.5.8 Resilience against known attacks

	2.6 Related Work
	2.6.1 Existing Classifications
	2.6.2 Comparison of schemes and surveys

	2.7 Conclusions

	II Software Integrity Protection Enhancements
	3 Practical Integrity Protection with Oblivious Hashing
	3.1 Introduction
	3.2 Background & Related work
	3.2.1 Software integrity protection
	3.2.2 Nondeterministic code detection

	3.3 Design
	3.3.1 Segregation of input data/control-flow dependent instructions
	3.3.2 Short Range Oblivious Hashing (SROH)
	3.3.3 Data-Dependent Instructions (DDIs)
	3.3.4 Intertwined protection

	3.4 A full example of OH+SROH utilization
	3.5 Implementation
	3.5.1 Protection process
	3.5.2 Input dependency detection
	3.5.3 Oblivious hashing (OH)
	3.5.4 Short Range Oblivious Hashing (SROH)
	3.5.5 Self-checksumming (SC)
	3.5.6 Response mechanism

	3.6 Evaluation
	3.6.1 Dataset
	3.6.2 Preparation
	3.6.3 Coverage
	3.6.4 Performance analysis
	3.6.5 Security analysis

	3.7 Discussion
	3.7.1 Coverage
	3.7.2 Implicit protection with OH/SROH
	3.7.3 Performance

	3.8 Conclusions

	4 Virtualized Self-Checksumming
	4.1 Introduction
	4.2 Background and Related Work
	4.2.1 Virtualization Obfuscation (VO)
	4.2.2 Self-Checksumming (SC)
	4.2.3 Combining Virtualization and Integrity Protection

	4.3 Design
	4.3.1 High-level Architecture
	4.3.2 Detailed Design
	4.3.3 Optimization

	4.4 Evaluation
	4.4.1 Dataset
	4.4.2 Coverage
	4.4.3 Performance
	4.4.4 Security

	4.5 Discussion
	4.5.1 Protection Coverage
	4.5.2 Performance vs. Security
	4.5.3 Security

	4.6 Limitations
	4.6.1 Unsupported Instructions
	4.6.2 VM Restrictions

	4.7 Conclusions

	III Software Integrity Protection Composition
	5 Composition Framework
	5.1 Introduction
	5.2 Background and Related Work
	5.2.1 Integrity Protection Schemes
	5.2.2 Composition of Protections
	5.2.3 Protection Optimization

	5.3 Requirements
	5.3.1 Conflict Detection

	5.4 Design
	5.4.1 Running Example
	5.4.2 High level Process
	5.4.3 Protection Manifest
	5.4.4 Constraints
	5.4.5 Defense Graph
	5.4.6 Conflicts and Conflict Handling
	5.4.7 Optimization
	5.4.8 Order of Protections

	5.5 Implementation
	5.6 Evaluation
	5.6.1 Dataset
	5.6.2 Configuration of Testbed
	5.6.3 Coverage Optimization
	5.6.4 Performance
	5.6.5 Security Analysis

	5.7 Threats to Validity
	5.8 Conclusions

	IV Software Integrity Protection Resilience Quantification
	6 Resilience
	6.1 Introduction
	6.2 Background and Related Work
	6.2.1 Attacker Model
	6.2.2 Protection Quantification and Metrics
	6.2.3 Empirical Evaluations

	6.3 Methodology
	6.3.1 Localizability
	6.3.2 Defeatability
	6.3.3 Methodology Summary

	6.4 Attacks
	6.4.1 Pattern Matching
	6.4.2 Machine Learning
	6.4.3 Tainting
	6.4.4 Symbolic Execution
	6.4.5 Code Tampering
	6.4.6 Circumvention

	6.5 Defenses
	6.5.1 Integrity Checking
	6.5.2 Obfuscation
	6.5.3 Hardening Transformation

	6.6 Metrics
	6.6.1 Localization Quantification
	6.6.2 Defeatability Quantification
	6.6.3 Resilience

	6.7 Evaluation
	6.7.1 Test Programs
	6.7.2 Integrity Checking Localizability
	6.7.3 Integrity Checking Defeatability
	6.7.4 Resilience
	6.7.5 Attack Defense Relation Table
	6.7.6 A Complete Example of the Proposed Resilience Quantification

	6.8 Discussion
	6.8.1 ML-Based Localization Attack
	6.8.2 Defeatability

	6.9 Threats to Validity
	6.10 Conclusions

	V Conclusions & Future Work
	7 Conclusions
	7.1 Research Findings
	7.2 Recap of the Research Gaps and Contributions
	7.2.1 Gaps
	7.2.2 Contributions

	7.3 Results and Lessons Learned
	7.4 Limitations
	7.4.1 Correctness
	7.4.2 Prototype Implementation
	7.4.3 Data sets
	7.4.4 Automated Attacks
	7.4.5 Side Channels
	7.4.6 Resilience Quantification

	7.5 Future Work
	7.5.1 Additional Integrity Protections
	7.5.2 Controlled Human-Based MATE Attacks
	7.5.3 Formal Proofs
	7.5.4 Fusion with Hardware-Based Protection

	Bibliography
	A Brief Summaries of Selected Related Work
	A.1 Overview
	A.2 Survey of papers
	A.3 Summary

	B Reproducibility Handbook
	B.1 Data sets
	B.2 Source Code
	B.2.1 C++ Dependencies (Libraries to Link)
	B.2.2 Python Dependencies (Libraries to be installed via pip)
	B.2.3 Utility Passes
	B.2.4 Protection Passes
	B.2.5 ILP-Based Composition Framework
	B.2.6 Machine-Learning-Based Localization

	B.3 Docker Files
	B.4 Execution Manual

	Index
	List of Figures
	List of Listings
	List of Tables

