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Abstract. Laser scanners provide amostly geometric representation, but further details can be collected
by analysing the recording setup. While the recording configuration is needed in post-processing,
it is generally not passed on to the engineers as most scans are created by surveyors and handled
by subcontractors. This disconnection between the consumer and the creator can be observed by
the fact, that most laser scanned point clouds include intensity information. In day to day use, the
intensity information serves as a substitute for colour as it provides contrasts between different objects
in the recording. However, from the technical perspective the intensity is the result of the recording
device interacting with the surface. This interaction should not be used for automation as different
recording setups may result in different interactions and outcomes. Facing this problem, we propose
a mechanism to enrich terrestrial laser scans by recreating original scan parameters and further
converting the intensity to reflectivity - a sole property of the recorded surface.

1. Introduction

Modern workflows for urban redevelopment, redesign and construction in existing context are
based on construction plans and surveys. While surveys do not provide design information or
internal specifications, they capture the current state of the area and provide a unified representation.
As full geometric models can be abstracted, recent survey techniques promote point clouds
instead of control networks as a preferred way for data acquisition. These recordings provide
high precision, accuracy and resolution and are a starting point for numerous investigations.
Investigations, that can be performed before decisions on new designs need to be finalized.
Exploring different variants and clearing issues early, can lead to more efficient building design
and better-informed decisions. Ultimately, this results in cost and time savings.

While point clouds can be recorded with different devices, the current gold standard for precise
measurements is the terrestrial laser scanner (TLS). Mobile laser scanner (MLS) have advantages
in coverage and recording speed, but the recording complexity is much higher and precise
control points are needed. A control network is an additional step with the recording complexity
of a full TLS scan. With an increasing market for TLS surveys, the number of data formats
and standards for encoding have prospered, making switches between software and vendors
obnoxiously difficult. The interface between different contractors is often the reason for data loss
in point clouds. If attributes are not requested and paid by the first contractor, later contractors
will receive incomplete point clouds. In many recorded datasets, filters such as voxel grids, have
been applied to reduce the load on systems and are steps in the post processing. Nonetheless,
automatic remodelling and quality assessment tools might use all information to achieve the best
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possible results. Re-engineering of information may be of particular interest for the numerous
buildings that were recorded in the past years. These legacy point clouds do not contain needed
information as they were neither needed nor requested during the time.

The focus of this research are material properties of the underlying construction. Each material
has a distinct reflection signature that can be partially measured by the laser scanner as it is
encoded in the intensity (Allmen, 1987). With the correct positioning of the scanner, parts of
the material properties can be estimated. However, as the positions of the scanners often are
not encoded and lost after merging multiple scans to a single point cloud, the lack of scanning
positions needs to be addressed first. Therefore, we will present our approach to recover TLS
positions and assign all points to their source. In a second step, the reflectivity of the material is
calculated. The developed algorithms are benchmarked using datasets consisting of artificial and
real-world examples.

2. Related Work

2.1 Terrestrial Laser Scanner

Laser scanners illuminate a target with a concurrent beam and measure the time of flight to
deduce the distance. TLSs consist of a mirror with two degrees of freedom that redirects the
beam (see Figure 1), in different angles. The mirror tilts step by step providing an up-down-shift
using primary axis i and a rotation using the secondary axis \. The resolution of the scanner
relates to the number of positions of the mirror during the recording and can be described by
defining the horizontal- and vertical line resolution. The resulting point pattern resembles ripples
in water (see Figure 1).

The scanner is controlling the mirror with a fixed angular resolution. As a result, the point density
decrease if an object is farther away. Aside from the distance measurement, determined by the
speed of light, scanners usually record the signal strength known as intensity. Since TLSs record
from fixed positions, obstructed elements are not recorded. This behaviour is similar to a point
light source. To avoid shadows, multiple aligned scans are combined to a single dataset by using
targets that are captured from multiple positions. Merging multiple scans blurs the radial density
behaviour. Hot-spots occur close to the scanner pose and objects that are recorded by all scanners
are represented with elevated density. New methods propose an adaptive scanning process, to
generate a more even distribution based the recording distance (Li et al., 2019).

2.2 Intensity, Reflectivity & Accuracy

Merging multiple scans into a single point cloud has severe consequences for the intensity
information. The intensity is mostly affected by the recording distance, the angle of incidence,
and the reflectivity of the material. Therefore, intensity information can be considered a property
of the recording vector rather than a property of the recorded point. The intensity is usually
stored in dimensionless values that depend of the manufacturer of the scanner. Typical values are
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Figure 1: (a) TLS System. The scanner records in a spherical coordinate system. In post processing, all points are
translated to global space. (b) Simulation of a Laser Scan. Colours reflect the density of the scan. With increasing
distance, the distance between the horizontal and vertical lines is increasing (Bechtold and B. Höfle, 2016).
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described by the radar equation (Jelalian, 1992; Kaasalainen et al., 2011):

%A =
%C�

2
A

4V2C︸︷︷︸
=2>=BC0=C

f

cA4
(1)

where:
%C is the transmitted
%A the received power.
�A is the aperture of the scanner,
A the distance to the measured point
f the corss-section backscatter
|p − pos| and VC the width of the beam.

Under the assumption that the scan parameters were not changed during the scan, we can introduce
a constant parameter 2B20=. Since f is proportional to the area cA2 and the incident angle U, the
relation can be simplified further:

d =
A2 %A

2B20= 2>B(U)
(2)

The incident angle U can be determined using the surface normal and the recording angle. Based
on different surface properties this simple model can be extended to include diffuse and specular
reflections (Pfeifer et al., 2007). A benchmark of different reflection models was done by Bolkas
(2019) who recommends the Torrance-Sparrow model in combination with the Trowbridge-Reitz
distribution (Trowbridge and Reitz, 1975).

If the scanner position is known, such information can be leveraged for multiple applications:
(1) Analysis of range precision (Pawłowicz, 2018; Schmitz et al., 2019); (2) Classification of
materials(Voegtle, Schwab, and Landes, 2008); (3) Segmentation of point clouds (Bernhard Höfle
and Pfeifer, 2007; Levashev, 2019); (4) Filtering & Compression (Eickeler and Borrmann, 2019;
Han et al., 2017).
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2.3 Edge Detection

Isolating and categorizing points is one of the major tasks in point cloud processing. In images,
edges can be detected using the Sobel or Canny edge detection algorithms. For point clouds
with a comparable row and column structure (e.g. depth maps), these algorithms have both been
successfully implemented (Choi, Trevor, and Christensen, 2013). Known as organized points
clouds, these image-like structures resemble the recording of sensors such as RGB-D cameras or
single TLS frames.

If point clouds are sparse and randomly ordered, different approaches need to be taken (Hackel,
Wegner, and Schindler, 2016; Weber, Hahmann, and Hagen, 2011). One of the main components
of many contour detectors is the use of a principle component analysis and the resulting
eigenvalues (_1, _2, _3).

2.4 Shape Detection in Point Clouds

Another important task is searching and identifying objects. Two general approaches are the
Random Sample Consensus (RANSAC) and the Hough Transformation.

RANSAC. The algorithm is based on creating random subsets of points, fitting and testing them
against a given model (Lazebnik, 2009; Strutz, 2016). If the deviation, usually root mean squared
(RMS) error, is lower than our confidence interval the current set of samples are part of the
identified model. Normally the consensus samples are retested and improved iteratively. Because
the algorithm is evaluating many different combinations of points, it is known to be a robust and
noise resistant method for identifying objects in images and point clouds.

Hough Transform. Another way of fitting a model into a set of samples is the Hough Transfor-
mation (HT) (Lazebnik, 2009). The underlying data is transformed to a Hough Domain, where
each features of the model is parametrized and intersects in a single point. The intersection
represents one set of correct parameters. The search space is dependent on the number of free
parameters of the model. An example for a HT is shown in Figure 2.

For line detection usually the Hesse normal form is used A = G cos \ + H sin \ and the search
parameters is \ (Duda and Hart, 1972). The intersection of all considered points in the A, \-space
indicate the parameters of a line. Multiple intersections indicate multiple lines, however the
certainty of the line existence decreases as the “intersection to sample ratio” lowers.

During the implementation of the HT, the parameter space is discretized. Each sample in the
dataset is mapped to the discrete parameter space and added to an accumulator. The accumulator
can be thought of as bucket that collects votes on the discretized parameters. For each possible
parameter, the model is evaluated and stored in that bucket. After processing all samples, the
accumulator will have collected the most certain locations of the model occurring.

Ellipse Hough Transform. The concept of the HT can be used to identify circles and ellipses.
For circles, the search space consists of 3 dimensions (G, H, A), hence the accumulator is also
of 3 dimensions. This makes choosing the appropriate grid size complicated. One approach is
separating the accumulator for each search parameter (Yuen, Princen, et al., 1989).

Extending the search to ellipses, the number of dimensions increases to 5 (Hassanein et al., 2015).
Different approaches have been made to reduce the size of the accumulator. Yuen, Illingworth,
and Kittler (1988) proposed a multi-stage approach, where the centre is identified independently
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Figure 2: (a) Line Fitting. Points Samples of two lines. Both lines are exposed to noise. The drawn lines are the
result of the Hough Transformation. (b) Hough Space. Each sample point votes on possible angles. The votes
gather on two prominent line parameters (intersections).

from the remaining parameters. A more recent approach is the evaluation of point combinations
to reduce dimensions. Similar to the RANSAC, the algorithm selects a subset of 3 samples to
vote for possible ellipses. The accumulator is left to be purely 1-dimensional (Xie and Ji, 2012).

Hough Transformation in 3D. Some approaches have been made to adapt the HT into 3D space.
One major concern is the isolation of points of interest. Some HT variants for plane and line
detection in point clouds exists (Hulik et al., 2014; Khoshelham, 2007; Leeuwen, Coops, and
Wulder, 2010; Rabbani and Heuvel, 2005). Generalized 3D curves on surfaces where detected
by Torrente, Biasotti, and Falcidieno (2018). Most approaches use projections to handle the
increasing complexity of 3D.

3. Methodology

Our approach to increase the value of a legacy laser scans consists of three main steps:
(1) Detecting all TLSs recording positions; (2) Associate all points to their origin TLS; (3)
Calculate the reflectivity with a chosen model (see Figure 3).

The only conditions posed upon the input data is that the points of the recordings where not
affected by position altering filters (e.g. voxel grid).

TLS localisa�on

Edge Detection Incident Angle

point associa�on reflec�fity model

Projection

Ellipse Fit

Reflectifiy

Scanline 
Detection

Figure 3: Process of Enrichment. The process starts with a non-destructive filtered point cloud. The main process
is separated in three parts: analyse, associate, calculate. First, we start the process by identifying contours of interest.
We then project the reduced point cloud to the ground and find the centre of recording. In our second step we sort the
points based on the recording centres and refine the search. Lastly, we enrich the data by calculating the reflectivity.
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3.1 TLS Localisation

The first stage of our analysis is the search for the recording positions. Each scanner has a minimal
scanning angle \<8= where the tripod is located. In general, surveyors set up the scanner with a
spirit level, which results in true horizontal and vertical scan lines. With these two boundary
conditions the lowest scan line is typical circular shape on the ground. This circle has a high
density due the low distance and is separable from other scan lines. Issues during detection of
that circle will occur, if the soil has a gradient or is uneven. The projection of a circle on a sloped
ground will form an ellipse. This is also true if the scanner was not set up correctly and the head
is tilted.

Edge Detection. Since laser scans are very dense, we need to isolate characteristic shapes in the
point cloud before running any parametrization. For effective filtering, a cascade of filters is
applied on the second eigenvalue. Based on this eigenvalue evaluations the points with higher
_2 are culled and outliers are removed based on the mean distance (SOR). We then repeat this
step until the change of the mean nearest neighbour radius falls under a specific threshold. This
approach isolates edges with high densities and strong _2 such as the ellipses (see Figure 4).

Figure 4: EdgeDetection. The animation shows the applied cascade of filters; |: _2 based filtering; outlier removal :|.
The shown example is executed and visualized in CloudCompare (CloudCompare, 2020).

Ellipse Hough Transform. After isolating the edges of possible ellipses, these points are
projected to the XY-Plane e.g. the bottom of the bounding box. Following this projection, the
2D space is transferred to the Hough Space by applying an elliptic HT. We have chosen the HT
over any RANSAC implementation as it promises a higher resistance to noise (Jacobs, Weiss,
and Dolan, 2013). With multiple scan positions, the ground beneath the tripod is recorded by
other scanners and exhibits varying densities.

After testing different approaches for ellipse detection, we decided to use the variant of Xie and
Ji (2012) as it performed best in testing and was safe to implement. The chosen algorithm has a
worst-case runtime behaviour of O(=3) and the discretization grid should be rather coarse. If a
selected pair reaches the required votes, during calculation, all points belonging to this subset are
removed from the global set, reducing the size of calculations for the next ellipse.

After all ellipses are identified, two things are verified: Are the recordings parallel to the XY-Plane
and does the assumption hold that the Z-axis is aligned with the gravity vector. If both are correct,
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no further corrections are needed. If the XY-Plane is not parallel to the recording plane, the point
cloud needs to be projected into the scanner’s projected base. This base can be abstracted from
the ellipse parameters. In contrast, if all recording planes are parallel to each other but not to the
XY-Plane of the scan, we assume to have a non-aligned system. This system can be transformed
into a common recording system using any scanners elliptic shape.

Ellipse Refinement. Good performing TLS work with trifling angles increments for \ and i,
resulting in small differences between the recorded vertical and horizontal lines. The centre of
the ellipse is only as accurate as the discretization of the search space, and cannot be considered
accurate enough. Hence refinement is needed. After identifying the TLS pose and the ellipse
parameters, the original point cloud is transformed into the scanners system (only if needed) and
projected to the XY-Plane (2D projection). For each scanner, a grid of 7G7 is placed around the
identified centre (see Figure 5) and lines are identified with a secondary Hough Transform. This
times the search is performed with a sufficient big sample size (we used 10 000 points) and has
limited search space as the only unknown parameter is the position in the grid. This process of
refinement is repeated multiple time with a bisected grid size and increasing minimal distance
of the samples. This refinement is repeated until the voting will not determine a clear winner
among the grid candidates. The grid cell selected from the previous iteration is considered the
most probable TLS location.

θ3

θ0

Figure 5: (a) Refinement. The initial location is selected based on the elliptic Hough Transform (orange & black).
A grid is placed for further refinement. After refinement, the new centre is selected (blue & grey). This process is
repeated on finer grid until no grid cell has the majority of votes. (b) Point Association. Each point is part of a
vertical scan line. All angles are evaluated, and the greatest common divisor is selected.

3.2 Point Assignment

The assignment of points to a scanner is straight forward. The vector of the scan centre to the
point is formed and vectors with similar angles i are detected. If enough points are found, they
are assigned to the current scanner. To speed up the process we use a polar grid. After all points
have been assigned to a TLS position, the \ is used to identify singularities. For each point i
and \ are unique and representative. Furthermore, the greatest common divisor should be the
scanners parameter Δi.

The greatest common divisor is calculated in steps of .05 ◦. We calculate and collect i for
all points and analyse the separated sets (see Figure 5). Under the assumption that scanners
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increment with constant steps size, we check the value with a confidence interval. The line is
constructed as:

i = ΔiG − <8=(i) (3)

where x is the array of steps taken.

If points exceed the confidence interval, they are removed from the current scanner. We end up
with 3 classes of points: assigned, wrongly assigned, unclassified. Wrongly classified points can
be retested to fit into other TLS poses. Unclassified points are recording glitches reflecting wrong
positions. These points could be reclassified using intensity similarities between their nearest
neighbours of different scanners. However, the measurement is not to be trusted.

3.3 Reflectivity Model

As a follow-up to the point assignment, we can calculate the reflectivity. We use the model
described in Equation 2. We are creating normals by evaluating patches formed by the nearest
neighbours. If the scanners use negative intensity values, the range is shifted to the positive
range. Since we cannot estimate %A from the point cloud data alone, we are left with two possible
options: (1) Use the intensity values which will result in a corrected but non-normalized scan;
(2) Use surface with known reflectivity values such as targets to calibrate.

4. Results

For verification we use artificial and real-world data: (1) The artificial data was created with
Helios applied on an inner city 3D model (Bechtold and B. Höfle, 2016). The simulation resulted
in two sets, featuring a one and a three TLS position survey. The materials were not defined,
resulting in no useful intensity information. The resulting circles of the scanners were close to
5m in diameter. (2) The real-world test data is snipped of an ongoing construction site which
was recorded with a Leica HDS6100 in 2018. The construction site featured overall 8 positions
where 3 are in possible range of the selected area. The dataset consists of the properties G, H, I, 8
and was exported from Leica’s Cyclone. During the recording, some equipment was moved and
was only recorded by a single scan pose. The measured major axis was 1.3m.

4.1 TLS Detection

To benchmark our TLS detection, we measured the performance of each step individually. We
were able to isolate the scanner ellipses in all data sets. For the artificial set, the contour search
is visualized in the animation Figure 4). The filtering was concluded after 10 iterations for the
single scanner, 12 for the three scanner and only 7 for the real dataset. However, the number of
points was reduced to 2.5 % for the artificial data and <1% for the real-world data (see Figure 6.
The difference is due the different density settings of the scanner, and the fixed number of nearest
neighbours considered by the outlier filter.

Despite our effective isolation of the edge detection, the calculation is intensive. Both of our test
datasets provide close to perfect circular shapes, which simplified the process as there was no
need for further transformations. The results of the ellipse fit can be seen in Table 1. The centre
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Figure 6: (a) Contour Isolation. The contours are overlaid (black) to the original real-world point cloud. Aside
from the ellipse, only the edge to the cobbles is remaining. (b) TLS Ellipse Fit. The image shows the birds-eye
view on the reduced point cloud in Figure 4. The ellipse was fitted, and the scanner position determined (green).
The ellipse formed a perfect circle (red).

Table 1: Initial Ellipse Fit. For the real-world data, the points are measured with manual accuracy.

Scanner original [m] detected [m] ΔG [<<] ΔH[<<] ΔA<B[<<]

1 14.17 -9.57 14.14 -9.57 26 4 26.3
2 8.95 23.14 8.93 23.12 20 16 25.6
3 42.22 -6.92 42.21 -6.93 6 5 7.8
real 51.09 48.06 50.11 48.08 23 19 29.8

of the scanner could be determined with very good accuracy for our artificial dataset as the initial
ellipse fit provided an accuracy <27mm.

4.2 Point Assignment & Reflectivity model

As the noise levels in the artificial dataset are low compared to the real-world example, we were
able to assign all points with high confidence. Due the order or processing and the real-world
thresholds, few point were assigned to the wrong scanner. The reflectivity was calculated and
within expected margins of the standard material. However, it showed outliers at the edges of the
dataset. We assume this is due to the low-density settings of the dataset, introducing artefacts in
the surface normals. For the real-world dataset, the calculations are still ongoing and will be
presented at the conference.

5. Conclusion & Outlook

This paper combined specific Edge Filtering, Hough Transforms, Refinement Search and statistical
methods to iteratively retrace the original recording positions. The TLS postilions were localized
with good accuracy and further scan parameters, such as the line resolution and the recording
angles, could be derived. With the reacquired meta-information, we assigned each point to
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the origin, which enabled further processing on secondary properties. As a showcase, we
implemented a simple reflectivity model and were able to re-evaluate the intensity and resolve
the dependency between the recording setup and the point cloud: The scan intensities were
renormalized and transformed to position independent values. We further showed, that the given
approach is suited for the revaluation of legacy laser scans. The newly obtained information can
be used to improve filtering, segmentation, and general point cloud processing.

Additionally to our findings, the concept should be extended with an advanced reflectivity model
and a smart classification scheme for materials and surfaces. Material estimations are desired
to improve Scan2Bim applications, and filtering. Extending this topic further, the inclusion of
colour into the material classifiers will merge another layer of information.

Considering the presented approach, we want to mention that further datasets should be evaluated
and benchmarked. Additionally, the evaluation of shading angles and a stochastic surface
segmentation model should be implemented. This model may be used to identify fine grained
contours and could also be used to re-evaluate outliers. This would create a closed loop system
for analysis and increase the robustness compared to the current isolated approach.
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