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ABSTRACT

We present a joint strong lensing and stellar dynamical framework for future time-delay
cosmography purposes. Based on a pixelated source reconstruction and the axisymmetric
Jeans equations, we are capable of constraining cosmological distances and hence the current
expansion rate of the Universe (H)) to the few per cent level per lens, when high signal-to-
noise integral field unit (IFU) observations from the next generation of telescopes become
available. For illustrating the power of this method, we mock up IFU stellar kinematic data of
the prominent lens system RXJ1131—1231, given the specifications of the James Webb Space
Telescope. Our analysis shows that the time-delay distance (D) can be constrained with
3.1 per cent uncertainty at best, if future IFU stellar kinematics are included in the fit and if
the set of candidate model parametrizations contains the true lens potential. These constraints
would translate to a 3.2 percent precision measurement on Hy in flat ACDM cosmology
from the single lens RXJ1131—1231, and can be expected to yield an Hj, measure with
<2.0 per cent uncertainty, if similar gains in precision can be reached for two additional lens
systems. Moreover, the angular diameter distance (Dy) to RXJ1131—1231 can be constrained
with 2.4 per cent precision, providing two distance measurements from a single lens system,
which is extremely powerful to further constrain the matter density (£2;,). The measurement
accuracy of Dy, however, is highly sensitive to any systematics in the measurement of the
stellar kinematics. For both distance measurements, we strongly advise to probe a large set of
physically motivated lens potentials in the future, to minimize the systematic errors associated
with the lens mass parametrization.

Key words: gravitational lensing: strong—galaxies: individual —galaxies: kinematics and
dynamics —distance scale.

the abundance of various elements in the Universe. As powerful

1 INTRODUCTION as this model is, however, it has been constantly facing challenges.

According to our standard cosmological model, we live in a flat,
cold, dark matter, and dark energy dominated Universe (ACDM).
While little is yet known about the nature of dark matter and
dark energy, our standard cosmological model — anchored mainly
through measurements of anisotropies in the Cosmic Microwave
Background (CMB; de Bernardis et al. 2000; Hanany et al. 2000;
Bennett et al. 2003) — has been well established and provides an
accurate description of e.g. the large-scale structure formation and
distribution (see; Springel, Frenk & White 2006, for a review) and
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On small scales, the well-known ‘core-cusp’ issue (Moore 1994;
McGaugh & de Blok 1998) as well as the ‘Missing Satellites
Problem’ (Kauffmann, White & Guiderdoni 1993; Klypin et al.
1999; Moore et al. 1999; Boylan-Kolchin, Bullock & Kaplinghat
2011) are stubbornly defying predictions from cosmological N-
body simulations within the ACDM framework. Certainly, some
of the disagreements can be attributed to observational effects (van
den Bosch et al. 2000), underlying modelling assumptions (Evans,
An & Walker 2009) and our ignorance of the small-scale physics and
baryonic feedback processes and interactions (Oh et al. 2011). But,
while more recent studies claim to solve some of the small-scale
discrepancies, by thoroughly accounting for e.g. star formation,
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supernovae feedback (e.g. Zolotov et al. 2012; Madau, Shen &
Governato 2014; Tollet et al. 2016) and environmental impact such
as ram pressure and tidal stripping (e.g. Brooks et al. 2013; Dutton
et al. 2016; Sawala et al. 2016), similar discrepancies between
theory and observations also arise at large scales. After making
assumptions for a handful of parameters, such as spatial flatness
and a constant dark energy equation of state of —1 (corresponding
to the cosmological constant A), the standard cosmological model
provides stringent constraints for the expansion rate of the Universe
H, through observations of the CMB (Planck Collaboration VI
2018), which appears to be at odds with local measurements based
on Cepheids and Type Ia Supernovae (Riess et al. 2018a, b, 2019).
Especially the latter has been of particular interest lately. Given
the significant 4.40 (i.e. ~9.8 percent) discrepancy between the
most recent measurements from both the Planck Collaboration
and the Cepheid distance ladder, this result is either interpreted
as corroborating evidence for a non-standard cosmological model
(e.g. Lusso et al. 2019) or claimed to be part of unknown systematic
effects that are not properly accounted for (e.g. Shanks, Hogarth &
Metcalfe 2019). Naturally, relaxing our assumption about spatial
flatness, a constant dark energy equation of state (i.e. not fixed to
—1 that corresponds to the cosmological constant A) or increasing
the number of relativistic species would allow us to reconcile both
measurements. But, before such drastic conclusions are drawn,
independent measurements of Hy should be carried out, if feasible,
to test for possibly unknown systematics in any single method and
to assess the need for physics beyond the standard model.

Time-delay cosmography (TDC; Refsdal 1964) provides a
methodologically independent tool for measuring H to the per cent
level (see recent reviews by, e.g. Treu & Marshall 2016; Suyu et al.
2018). By means of a multiply imaged, time-variable background
source and an accurate description of the foreground lens mass
distribution, the time-delay distance (Dx,) can be inferred, which
is inversely proportional to the Hubble—Lemaitre constant Hy. The
technique has long been plagued by poor time-delay measurements,
invalid assumptions about the lens mass profile, and systematic
errors. However, it has been demonstrated that exhaustive studies
of lensed quasars with exquisite light curves allow the measurement
of H, for a single system with an accuracy of ~ 7 percent (Suyu
et al. 2010, 2013). In addition, it was shown that TDC leads to
tight constraints on other cosmological parameters, competing with
those from contemporary Baryon Acoustic Peak studies, when each
probe is combined with the CMB (Suyu et al. 2013).

In light of the aforementioned discrepancy between the current
best cosmological probes, TDC has gained momentum and the
HOLiCOW! (H, Lenses in COSMOGRAIL’s Wellspring) program
has been initiated, which aims at measuring Hy with better than
3.5 percent precision and accuracy (Suyu et al. 2017). As part
of these efforts, complementary data sets consisting of (i) high-
cadence and long-baseline monitoring of quasar light curves, mostly
through COSMOGRAIL,? (ii) high-spatially resolved photometric
observations of the foreground lenses, lensed background quasars,
and quasar hosts, (iii) wide-field photometric and spectroscopic
observations of the lens’ environments, and (iv) stellar kinematic
data of the foreground lenses have been obtained. Each of these
ingredients are crucial to break the inherent modelling degeneracies,
i.e. the mass-sheet degeneracy (MSD; Falco, Gorenstein & Shapiro

'Hy Lenses in COSMOGRAIL’s Wellspring; http:/www.hOlicow.org/
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1985), in strong lensing studies and to reliably pin down the time-
delay distance and hence the Hubble-Lemaitre constant in a single
system. As of now, HOLiCOW reports a 3.0 per cent measurement
of Hy in flat LCDM, based on a joint analysis of 6 strong lensing
systems (Suyu et al. 2010, 2014; Bonvin et al. 2017; Wong et al.
2017; Birrer et al. 2019; Chen et al. 2019; Rusu et al. 2019;
Wong et al. 2019). Yet, it is noteworthy that an H, measurement
which is comparable in precision with the best available probes (i.e.
~?2 per cent) would still require the combination of almost a dozen
lenses (Shajib, Treu & Agnello 2018). Accordingly, a measurement
with 1 per cent precision —a value that is considered as being highly
beneficial for any Stage III and IV cosmological study to further
constrain the dark energy equation of state (Weinberg et al. 2013)
— would not be available until 40 such measurements have been
carried out with similar precision.

Given these numbers and forecasts, a truly competitive TDC
probe would greatly benefit from a much improved accuracy and
precision for each lens study. In particular, three sources of uncer-
tainty have been identified as the biggest contributors to the total
time-delay distance error budget, (i) the time delays, (ii) the mass
along the line of sight (LOS), and (iii) the lens mass parametrization.
Assuming that future time delays can be measured to the per cent
level — based on long-baseline optical monitoring campaigns and
new curve-shifting algorithms (Tewes, Courbin & Meylan 2013a)
— any time-delay cosmological probe that aims at obtaining an
accuracy and precision of 1-2 per cent in the near future, will have
to drastically improve their estimate of the external convergence
(kext) associated with LOS mass distributions and lift the modelling
degeneracy due to different lens mass parametrizations.

Interestingly, McCully et al. (2017) developed a new framework
to model LOS mass distributions efficiently and quantified the
environmental effects through realistic simulations of lens fields.
By reconstructing the 3D mass distribution of strong-lens sightlines,
they obtain constraints on k. that are consistent with those
from statistical approaches of combining galaxy number density
observations with N-body simulations (Hilbert et al. 2007, 2009;
Collett et al. 2013; Suyu et al. 2014), but with a four times narrower
distribution which yields much stronger priors on k. (Which affects
Hj linearly). Progress in reducing the uncertainty in the lens mass
parametrization, on the other hand, has been moderate. Stellar
kinematic data of the foreground lens are now commonly employed
to break the MSD and to align the time-delay distance measurements
when e.g. a Navarro-Frank-White (NFW; Navarro, Frenk & White
1996, 1997) or power-law profile are adopted for the lens mass
model. But, follow-up kinematic observations from adaptive-optics
(AO) assisted ground-based facilities struggle to go beyond a single
aperture-averaged velocity dispersion measurement, due to the
difficulty in separating the bright quasar light from the foreground
lens galaxy and the faintness of the lens itself. As a consequence, the
final precision on Hy is currently limited to ~7 per cent from a single
lens system. Moreover, time-delay studies employing kinematic
data assume a spherical mass model for recovering the aperture-
averaged stellar velocity dispersion, whereas the strong lensing
mass model is of elliptical or even triaxial nature, and are thus
not fully self-consistent. Whether this assumption introduces a bias
in the inferred time-delay distances also remains to be seen.

To drastically improve the precision and accuracy of a single
lens study, more flexible dynamical models along with both high-
spatially resolved observations that map the 2D stellar kinematics
in great detail and sufficient signal-to-noise (S/N) to reliably extract
the kinematic moments across the entire field-of-view (FOV) are
necessary. The next generation of telescopes — such as the James
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Webb Space Telescope (JWST), the Thirty Meter Telescope (TMT),
and the European Extremely Large Telescope (E-ELT)—will provide
the required improvement in sensitivity and resolution. The aim of
this paper is to present a fully self-consistent, physically motivated
modelling machinery for TDC, that will be capable of exploiting
this data set to its full potential. Given the specifications of JWST,
we will create mock stellar kinematics and, based on a joint strong
lensing and stellar dynamical analysis, forecast the cosmological
constraints from future space- and ground-based telescope obser-
vations.

The paper is organized as follows. In Section 2, we cover the
strong lensing and stellar dynamical theory and formalism. Section 3
will be used to present the already available HST observations,
time delays, and mock future stellar kinematics of the prominent
strong lens configuration RXJ1131—1231. We model the data of
RXJ1131—1231 within a Bayesian framework in Section 4, show
the probability density function (PDF) for its time-delay distance
and lens distance (Dy) and discuss possible sources of uncertainty.
The inference of the cosmological parameters is carried out in
Section 5 and finally followed by a summary in Section 6.

Throughout this paper, we adopt a standard cosmological model
with Hy = 82.5km s~ Mpc™', a matter density of Q,, = 0.27, and
a dark energy density of 2, = 0.73, where our particular choice
for Hy = 82.5kms~' Mpc~lis driven by the time-delay distance
measurements of RXJ1131—1231 in Suyu et al. (2014).

2 THEORY

2.1 Historical context

Strong gravitational lensing and stellar dynamics are powerful
tracers of their underlying gravitational potential. Being subject
to the MSD (in lensing) and mass-anisotropy degeneracy (in stellar
dynamics), however, it has been quickly realized that a combination
of both would be capable of lifting their inherent modelling degen-
eracies, while providing even tighter constraints for the respective
mass models of any given system (Grogin & Narayan 1996;
Romanowsky & Kochanek 1999; Koopmans 2004). Early imple-
mentations of joint strong lensing and stellar dynamical models can
also be found in Koopmans & Treu (2002) and Treu & Koopmans
(2002b), where strong lensing and stellar kinematic data have been
utilized to infer the internal mass distribution and dark matter
content of intermediate-redshift (z < 1) galaxies (Koopmans &
Treu 2003; Treu & Koopmans 2004), culminating in the SLACS
survey (Bolton et al. 2006). These early studies mainly relied on
HST imaging and (aperture averaged) spectroscopic data within the
effective radius, while adopting spherical Jeans models. Ultimately,
this approach has also been commonly applied for cosmological
purposes (Treu & Koopmans 2002a; Koopmans et al. 2003), to
break the mass profile degeneracies in the lensing-only models.
With the advent of integral field spectroscopy and further re-
finement in lens (e.g. Blandford, Surpi & Kundi¢ 2001; Warren &
Dye 2003; Koopmans 2005) and dynamical modelling machineries
(e.g. Cretton et al. 1999; Cappellari 2008), the joint analysis has
been expanded to cover valuable information from the extended
Einstein rings and 2D kinematics, while employing pixelated source
reconstruction and more sophisticated two-integral (Barnabe &
Koopmans 2007; Barnabe et al. 2009, 2011) and three-integral
dynamical models (van de Ven et al. 2010; Barnabe et al. 2012).
Whereas the earliest implementations treated the subject in an
inconsistent manner, fully decoupling the strong lensing and stellar
kinematic data by, e.g. adopting elliptical and spherical mass models

Cosmographic forecasts with JWST 4785

respectively and making simplistic assumptions about the orbital
anisotropy profile (Osipkov 1979; Merritt 1985b,a), later models
have been capable to remedy most of these shortcomings by treating
the subject within a fully self-consistent (van de Ven et al. 2010)
and statistically meaningful (Barnabe et al. 2012) framework. Here,
we build on the work by van de Ven et al. (2010) and Barnabe et al.
(2012), by extending the machinery to include time-delay data for
cosmological purposes. Moreover, even with the next generation
of ground- and space-based stellar kinematic data, the likelihood
functions will be swamped by the lensing information, which is
why we make use of the Bayesian Information Criterion (BIC;
Schwarz 1978) as a statistical tool to further break degeneracies in
future TDC studies.

Our joint strong lensing and stellar dynamical modelling
machinery relies on a pixelated source fitting algorithm and the
solutions of the Jeans equations in axisymmetric lens geometry,
which are embedded in a Bayesian framework. For brevity, we
refer the reader to Suyu et al. (2006, 2010, 2013) and Cappellari
(2008), which cover in detail the theory and application of each to
real observational data. Here, we confine ourselves to a description
of the main formalisms, following the strong lensing and stellar
dynamical framework developed and formulated in Schneider
(1985), Schneider, Ehlers & Falco (1992), Blandford & Narayan
(1986), and Binney & Tremaine (1987).

2.2 Time-delay strong lensing

In any strong lens configuration with a time-variable background
source, an excess time delay
(1 +z4) DqD;

ds

10, p) = ¢, B) (H
will be observed. Here, 6 is the angular image position, B the
corresponding source position, z4 the lens redshift, D4, D, and Dy
the angular diameter distance to the lens, the source, and between
the lens and source respectively, and

@ — By

PR wL(é)] )

¢, B) = [
the Fermat potential. The difference in the light propagation time
at image position 6 with respect to the non-lensed case can
therefore be attributed to the first and second term in the Fermat
potential, which represent the geometric excess path-length and the
gravitational time delay of the lens potential ’lfL(é) respectively,
and a combination of cosmological distances which are generally
referred to as the time-delay distance

DD
Dds '

With Dy, being inversely proportional to Hy, equation (1) can be
rewritten as

. 1 - -
10, B) x H #, B), )

Dpy = (1+2z4)

3

i.e. the excess time delay can be used as a cosmological probe, if
the form of the lens potential is sufficiently well known. However,
since t(é, B) itself cannot be measured, we rely on relative time
delays

1 S o -
Mty =t =1y o o [0 B) — 900, B )

between multiple images i and j, with e.g. quadruply imaged systems
naturally providing more constraints than doubly lensed sources.
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Given the observables é; and At;, the lens potential ¥, and the
source position E need to be modelled accurately to infer Hy. A
major drawback of this inference, though, is the MSD? (Falco et al.
1985). For illustration purposes, we assume a transformation of the

lens potential i of the form
I - R
YL (0) = 5 |61 +5 6 +co+ (1 = 2) Y(O), (0)

where A, ¢o, and s are constant scalars and vectors respectively.
Moreover, the projected matter density p,p is related to its gravita-
tional potential via Poisson’s equation

Vz'(//L = 47'[Gp2[) = 2«k, (7)
where
S(Dyb
‘= (Dqf) @)
2:cril
is the projected dimensionless surface mass density (SMD) and
c? Dy
= 9
ent 4G DdDds ( )

the critical SMD, that is used to discriminate between the weak (k
< 1) and strong lensing regime (k¥ = 1). According to equations (6)
and (7), any transformation wm(é) of 1//L(§) will translate into a
transformed source position

B=0-21p—5 (10)
and a dimensionless SMD of the form
6= A+ (1= 1) k(). an

That is, as A, cg, and § only change the position and scaling
of the source, which by itself is not directly observable, the
above transformation essentially implies that any transformation
of the lens potential (and hence of the dimensionless lens SMD)
will be compensated by a corresponding scaling in the source
plane, leaving many observables invariant under the transformation.
Unfortunately, however, D 5, does not belong to this set of invariants.
Being highly susceptible to the MSD, D,, will also be scaled as
follows

DZ‘Odel
_ t
)

At 12)
with D9%! being the model time-delay distance (without account-
ing for the mass-sheet-transformation parameter A in equation 11),
and any cosmological inference based on strong lensing alone is
therefore fundamentally limited by our ignorance of A.

Since lensing is sensitive to all mass along the LOS, including
small and large-scale structures in the projected vicinity which can
contribute to the SMD at the lens location, the MSD is inherently
linked to this external convergence (ke ). In fact, the MSD stems
from the degeneracy between « .y and the normalization of the lens
potential (but see Schneider & Sluse 2013, for a critical discussion).
Consequently, equation (12) reduces to

del
D
(1 - cht) '

where D, is the true time-delay distance to the specific sightline
of the lens, after accounting for the MSD. In contrast to A, though,

Dy = 13)

3 A special case of the Source-Position Transformation (Schneider & Sluse
2014; Unruh, Schneider & Sluse 2017).
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Kexe has the benefit of not simply being an arbitrary scaling of
the lens potential, but being observationally and/or numerically
assessable via photometric and spectroscopic observations of the
lens environment (Fassnacht et al. 2006; Momcheva et al. 2006;
Rusu et al. 2017; Sluse et al. 2017) as well as ray-tracing methods
through e.g. the Millennium Simulations (Hilbert et al. 2007, 2009;
Greene et al. 2013; Collett et al. 2013) and weak lensing (Tihhonova
et al. 2018). Whereas early attempts to quantify ke, have been
only moderately successful, yielding external convergences that
can affect the final measurement of Hy by 5 percent and more,
more recent studies indicate that the distribution and impact of k ey
can be drastically reduced when e.g. sightlines are not significantly
overdense (Greene et al. 2013; Rusu et al. 2017) or individual lens
fields are modelled (McCully et al. 2017).

Nonetheless, other means are needed to effectively break the
MSD, and to reliably measure Dx,. This is particularly evident
from equations (4) and (7). Assuming, for instance, a simple power-
law profile for the 3D density distribution (i.e. p3p(F) o< r~7), the
lens potential becomes ¥ oc 72~ 7. Any uncertainty in the slope
of the mass density will thus translate into an uncertainty on the
inferred time-delay distance (Da, o ﬁ), To constrain y, methods
have been developed to make use of the spatially extended lensed
images of the source galaxy, i.e. the active galactic nuclei (AGNs)
host galaxy in the case of time-delay lenses (e.g. Warren & Dye
2003; Suyu et al. 2006; Dye et al. 2008; Birrer, Amara & Refregier
2015). In this work, we follow the work of Suyu et al. (2006, 2013)
for the lens modelling by describing the AGN host galaxy surface
brightness on a grid of pixels, and the lens mass distribution with
parametrized profiles. In addition, stellar kinematics of the lens
galaxy are employed, which provide an independent assessment of
the lens potential at different radii, further breaking lens mass model
degeneracies for constraining D ;.

2.3 Axisymmetric Jeans modelling

The dynamical state of a system of particles is fully described by its
distribution function (DF) f (X, v) > 0, with particle positions X and
velocities v. In the case that these particles are collisionless, interact
purely via gravitational forces, and are embedded in background
potential ¥ p that is smooth in time and space, the time evolution of
the DF is subject to the Collisionless Boltzmann Equation (CBE)
(Binney & Tremaine 1987)

0f ~ f oy df
EJF;”’BT,-_i*._O’ (14)

which basically postulates a conservation of the phase-space den-
sity. Yet, as the phase-space distribution is not accessible for objects
beyond our Galaxy, where only bulk motions and positions of
stars along specific LOSs are observed, the CBE is impractical
for real observational purposes. In fact, any real world application
of the CBE would require a more practical formalism, incorporating
kinematic moments which are more easily measurable via line
profile shifts and widths. This can be achieved by multiplying
the CBE with powers of the velocity moment and subsequent
integration over velocity space. Further, rewriting the CBE in
terms of the cylindrical coordinate system (R, z, ¢) and under the
assumption of axial symmetry, we obtain the two Jeans equations
(Jeans 1922; Binney & Tremaine 1987)

vl —vl  a(vok d (vugv; a
Rovvg  d(wi)  00WRD) 0¥

15
R oR 9z oR (15)
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R 9z R 0z

where v(X) = f f d3V is the zeroth velocity moment and tracer
density of the gravitational potential ¥p.*
Given the four unknown second-order velocity moments v? =
L [ fv}d*v; and D05 = [v;v; fd*v, the Jeans equations do not
have a unique solution. In practice, assumptions about the shape
and alignment of the velocity ellipsoid are made to simplify
equations (15) and (16). These usually include the alignment of the
velocity ellipsoid with the cylindrical coordinate system (i.e. vz v, =
0) and a flattening in the meridional plane, i.e. B, =1 — v?/ vy
(Binney 1980; Binney & Mamon 1982; Binney & Tremaine 1987),
which yield the more commonly seen form
B-vv2 —vug N 3(B.vv2) _ Y an
R oR oR
2
olves) __, 2 (18)
0z 0z
These equations now link a mass and tracer density to three intrinsic
second-order velocity moments which, in turn, can be used to obtain
a projected second-order velocity moment along the LOS

-
Yios = v, y)/

+ 12 cosi — TxDL sin¢sin(2i)]dz’ = v +02 (19

vR sin? ¢+ % cos ¢) sin i

Here, x and y are the Cartesian coordinates on the plane of
the sky, z the coordinate along the LOS, i the inclination angle,
1 the observed surface brightness (SB) — in contrast to v, which
represents the (deprojected) intrinsic luminosity density — cos¢ =
X/R (where x and R*> = x> 4 y? denote the intrinsic coordinate axis
and cylindrical radius) and v and o the observed mean LOS velocity
and velocity dispersion (with Vs = v/v2 4 02).

The assumptions for the shape and alignment of the velocity
ellipsoid have been found to be a good description of the internal dy-
namical structure of fast-rotating (Emsellem et al. 2007) early-type
galaxies (ETGs; Cappellari et al. 2007). Hence, the axisymmetric
Jeans equations provide a decent fit to the observed kinematics and
are usually in agreement with constraints that are obtained via more
sophisticated orbit-based dynamical models. However, the Jeans
equations do not make use of the higher-order kinematic moments,
which contain valuable information regarding the intrinsic shapes
of galaxies. This is most prominent for massive, slow-rotating and
pressure supported ETGs, where generally worse fits are obtained as
the assumption of axial symmetry also breaks down (Li et al. 2018).
In principle, the Jeans equations can be extended to triaxial systems,
consisting of three equations and six second-order moments, but the
set of solutions still contains unphysical DFs (f < 0) (van de Ven
etal. 2003). We proceed with these caveats in mind and note that the
validity of the axisymmetric Jeans equations needs to be evaluated
on a case by case basis, especially for the purposes of precision
cosmology, where we aim to constrain the mass profile and hence
time-delay distances to the per cent level.

When constructing axisymmetric Jeans models, the intrinsic lu-
minosity density is obtained by deprojecting the observed SB distri-
bution. For this, we make use of a Multi-Gaussian Expansion (MGE)
(Monnet, Bacon & Emsellem 1992; Emsellem, Monnet & Bacon

44rp is the 3D gravitational potential, in contrast to 1/ which denotes the
2D lens potential.
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1994; Cappellari 2002). In brief, the distribution is parametrized
by a set of 2D Gaussians, such that the SB can be written as

2
o)
4;

where 1 is the peak SB, o the dispersion along the projected major
axis, and ¢ the apparent flattening of each Gaussian. In an oblate
axisymmetric case, the inclination i is the only free viewing angle
required to perform the deprojection. The deprojection is not unique
(Rybicki 1987), unless the galaxy is viewed edge-on, but konus den-
sities which project to zero SB have been found to be of little effect
for SB distributions of realistic (elliptical) galaxies (van den Bosch
1997). If a deprojectable (i.e. cos?i < qmm, with gmin being the axial
ratio of the flattest Gaussian in the fit) inclination i has been chosen,
the intrinsic luminosity density in cylindrical coordinates reads as

sy, 1 2, 2
W(R,z) = Z [—2 (R +
V2ra; ‘1/ 20] 4q;

’ .
qiz—coszz

N
) 1
u(x',y)=">" o, exp [— 257
J

j=1

; @D

where o; =0} and g; = now denote the intrinsic
dispersion and flattening of the Gaussians. Simple (mass-follows-
light) models can easily be constructed by linking the tracer density
v to the mass density p via a mass-to-light ratio (M/L) for the
individual Gaussians (Y;). The MGE is particularly handy here,
as the gravitational potential can then be obtained by means of a
simple, 1D integral

2GYv !
Yp,j(R,2) = —m ; /0 Fj(u)du (22)
with
u? 2 Z 1
T = exp [—zo—;z (R * Q_;m)ﬂ 9w @9

and Q%(u) =1—-(1- q_?) u?.

2.4 Joint formalism and Bayesian inference

We start our joint formalism with the strong lensing part. Given
the image positions 6 of the AGN and AGN host, a lens potential
YL will be adopted, which relates the AGN and AGN host source
positions to those in the image plane via the lens equation

6 =F—Vy0) = f - a@), (24)
where &(5) is the scaled deflection angle.

We describe the source intensity distribution on a grid of pixels
with values s (vector with dimension N, the number of source

pixels), which is related to the observed intensity value of the image
plane d via

d="Ffs+n. (25)

Here, d is a vector with length N4 (the number of image pixels) and
n the noise in the data. f represents the lensing operator (a matrix of
dimension Ny x Ns), which contains information regarding the lens
potential and observational effects — such as telescope point spread
function (PSF) — and which is constrained by the extended image

SFor the dynamical modelling part, we make use of publicly available Python
implementations of JAM (JAMPY; Cappellari 2008) and MGEfit (MGEFIT;
Cappellari 2002), online available via https://www-astro.physics.ox.ac.uk
/~mxc/software/.
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positions and intensities as well as the relative time delays between
the individual AGN images. In general, lens potentials for which
the deflection angles &(5) (and hence the lensing operator f) can be
obtained analytically and/or with only moderate numerical effort are
adopted, and the goodness-of-fit for a particular model is defined as

1 (di — dim)* (aj —ajm)*
i xexp |- | 30Tk 5
; Ud.i O,

j a,j

_ 2
+ Z (A 2Atk.m) H 26)
k

GAt,k

In the above equation, d; represents the image pixel intensities, d; m
the modelled image pixel intensities and o4 ; the corresponding
pixel uncertainties. Whereas the first term in equation (26)
represents the fit to the image intensity distribution, the second and
third terms account for the x 2 contribution from fitting in particular
to the AGN positions (g;) and their relative time delays (Af). A
best-fitting model is usually quickly obtained by minimizing the
cost function in equation (26), when the parameters of interest
are few. However, since we are interested in inferring credible
confidence intervals for all parameters of interest, we perform an
analysis within the framework of Bayesian statistics.

For simplicity, let us assume that the strong lens configuration
is well parametrized by a softened power-law elliptical mass
distribution (SPEMD; Barkana 1998) with SMD

2 2qn/2-1
K = [; +§°} ,
Ez

27

with ¢2 = x2 4 y?/¢%, where E is a normalization factor, 7 the
power-law index, ¢ the core radius, and g the observed flattening
with the x -axis being aligned with the projected galaxy major axis.
According to Bayes’ theorem, the posterior PDF for this lensing-
only model — with the set of parameters 7|, = {E, n, {., ¢, @} and
data sets d, = {d;, a;, At} —is given by

likelihood
e
Pr(tildL) o< Pu(di|tL) PL(to), (28)
——

prior

where the log likelihood corresponds to equation (26) (log P o
—x£/2), after marginalizing over the source intensity pixel param-
eters s; Suyu & Halkola 2010) and w comprises a set of remaining
variables, such as D%l k..., and the position angle (PA) of the
projected SPEMD on the plane of the sky (we measure counter-
clockwise from the x -axis to the y -axis). Once (non-)informative
priors for 71 have been chosen, the marginalized posterior PDF for
a parameter of interest can be obtained by integrating the joint
(lensing-only) PDF over all nuisance parameters. Similarly, the
dynamics-only posterior PDF

Pp(tpldp) ¢ Pp(dp|t) Pp(Tp) (29)

can easily be obtained by means of the dynamics-only likelihood

—\ 2
) 1 (Vrms,l - \/ v]%OS,l,m)
Xp =eXp | —> Z 5 . (30)

1 UVrms,l

Note that 7 # 7p. Unlike the lensing data, the dynamics are
insensitive to e.g. kex, While depending explicitly on additional
parameters, such as B, and Dy. In the case of a joint lensing and
dynamics model, the joint prior is simply a union of both 7p =
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{7L, tp} and the lensing and dynamics posterior PDF reads as

Pip(tipldip) o« Pp(dipltip) Pip(tip)
= P.(d|tp) Pp(dpltip) Pp(tip), 31

given the independence of both data sets.

The exploration of the parameter space and adequate sampling
of the joint lensing and dynamics posterior PDF is carried out by
means of the affine-invariant ensemble sampler EMCEE (Foreman-
Mackey et al. 2013). Starting points are obtained by first carrying
out a pre-annealing process, in order to avoid low probability
modes of the multiparameter space, and initializing the walkers
of the sampler such that they sample well the prior probability
distribution. At each step, i.e. at each parameter combination that
is probed by the walkers, the lensing likelihood in equation (26)
will be evaluated. Secondary products of this evaluation are the
dimensionless SMD (equation 8) and SB distribution, which are
then transformed into a physical mass and luminosity density
profile, before being parametrized by a MGE (equations 20 and
21) to allow for a straightforward, analytical calculation of the lens
potential according to equation (22). Here, the critical SMD in
equation (9) has to be expressed in terms of Da;, Dg, and the lens
redshift zq4

2 model
c D}y 1

471G (1 = kew)(1 +20)Dg Dy’

crit = 32)
The SMD profile (as obtained from the lensing part) is multiplied
with (1 — k), in order to take into account any contribution from
the external convergence (see equation 11). As a consequence, K ex
cancels out in the mass density profile that is used in equations (17)
and (18), and we are thus insensitive to k. when using the
kinematic data. Note, however, that the absolute scaling of the lens
potential is fixed and the MSD broken when stellar kinematics
are included, which provide an independent measurement of the
lens potential. Moreover, as Dy itself is insensitive to the external
convergence along the LOS when inferred from kinematic and
lensing observations (Jee, Komatsu & Suyu 2015, and also noted
above), we have

Dq = Dy, (33)

After deprojection and adoption of an anisotropy parameter .,
the likelihood function in equation (30) can finally be evaluated.
In combination with 7y p, this yields the joint lensing & dynamics
posterior PDF in equation (31), where the marginalized distributions
can then be visualized by histograms with the most probable model
and the 1o uncertainties being approximated by the median and
16th and 84th percentiles of the distribution.

2.5 Bayesian information criterion

A large, flexible, and physically motivated set of light and mass
parametrizations is generally utilized to accurately model the fore-
ground lens. This approach is largely motivated by our ignorance of
the true underlying gravitational potential, which is tightly linked
to the excess time-delay (equation 5). Even if lens galaxies are
found to be well approximated by power-law density distributions
(Koopmans et al. 2006), the inferred time-delay distances can
differ significantly when compared to density distributions that
follow more closely e.g. a NFW profile. The discrepancy in D,
between different lens mass models can be partially alleviated by
including stellar kinematic information. However, the vast amount
of data from both lensing and future integral field unit (IFU) stellar
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kinematics should enable us to perform a model selection, by means
of the differences in their likelihood functions. To this end we will
make use of the BIC (Schwarz 1978), which is an approximation
to the Bayesian evidence® (see e.g. Raftery 1995, for a thorough
derivation) via

PLp(dip|M) = /PLD(dLD|Ma ) Prp(tip|M) doip
~ exp(—BIC/2), (34)

where M is a hypothesis (in our case a model with lensing and
dynamical parameters tp). Following Bayes’ theorem, the ratio of
posterior probabilities of two competing hypothesis M; and M,
are given by

Bayes factor

—_—~
Pip(M|dip) _ Pip(dipl M) Pp(My)
Pip(Myldip)  Pip(diplMa) Prp(Ms)
———— ——

posterior odds

(35)

prior odds

Accordingly, an approximation to the Bayes factor can be obtained
by means of equations (34) and (35). Here, in particular, we make
use of the BIC differences (ABIC = BIC; — BIC,) between model
M and M, with model parameters t1p, ; and 1 p,», Which yields

Pip(dip| M) _
Pip(dip| M)

That is, the approximation to the Bayes factor can readily be utilized
to assess the posterior odds, if the prior odds are assumed to be
equally probable. Given a larger set of models M ; with BIC values
BIC;, the posterior probability for a particular model i € j follows
as

exp(—ABIC/2). (36)

exp(—BIC;/2)
31 exp(~BIC;/2)’
which in turn can be used as a weighting scheme for model
averaging purposes, since according to the law of total probability,
>4 Pp(M;ldip) = 1.

The BIC is given by

Pp(M;ldip) = (37)

BIC = In(n)k — 2In(L). (38)

In the above equation, k represents the number of model parameters,
n the number of data points, and L the corresponding model
maximum likelihood. The BIC discerns between candidate models
by penalizing models of increased complexity (i.e. with higher
degrees freedom). The model maximum likelihood is given by
PL(dL|tL), Pp(dp|tp) or PLp(dip|TLp), depending on which data
set is fitted. Yet, owing to the MSD and the minuscule differences
in the likelihood function of different mass parametrizations when
modelling RXJ1131—-1231 (Suyu et al. 2014), the lensing-only
likelihood cannot be used to discriminate between models. Even
in a joint model, the likelihood would easily be dominated by the
large number of pixel intensities that are fitted in the lensing part,
which is why we will use the differences in the goodness of fit of
the IFU kinematics from our joint strong lensing & dynamics run,
to perform a proper weighting of our models according to the BIC.

%In practice, the BIC approximation performs well, despite an asymptotic
error of O(1). In cases where the data are of lower quality (i.e. with little
constraining power) the impact of the error can still be mitigated by choosing
appropriate priors, such that it becomes O(n~?), where n is the number of
data points (Kass & Wasserman 1995).
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We follow the approach of Birrer et al. (2019), where a weighting
scheme with respect to the minimal BIC is defined as

1 BICmin
kdw={ v = (39)

exp(—%) x > BICn.

This weighting scheme follows equation (37), after accounting for
the fact that the calculation of the denominator is cumbersome
in most realistic scenarios. Especially for modelling time-delay
lenses, where we rely on a relatively small subset of models,
which are physically motivated by e.g. hydrodynamical numerical
simulations (Navarro et al. 1996, 1997). Given its purpose of being a
normalizing factor, we approximate the weighting via equation (39),
while making sure that fgic is still bound by 1.

For a given model including the lens mass/light distribution,
PSF, AGN light, and AGN host galaxy surface brightness, the BIC
value of this model could be computed to rank it relative to other
models. We are particularly interested in comparing the lens mass
parametrization, and thus the changes in BIC due to different mass
parametrization. However, the BIC depends on also other modelling
choices/parameters, especially the number of surface brightness
pixels used to describe the AGN host galaxy, which introduces
an uncertainty on the BIC (see Suyu et al. 2013, where source
pixelization dominates the uncertainties in the BIC for a given form
of lens mass parametrization). Given finite computing resources
and thus a finite number of source intensity grids that we could
explore, we quantify the uncertainty on the BIC due to the source
grid pixelization effect by comparing the BIC values of a range
of source grids and estimating the scatter ogjc. To account for
the uncertainty in the BIC in weighting models, we follow Birrer
et al. (2019) and convolve fpic in equation (39) with a Gaussian of
variance o2, obtaining the new weights as

f];IC(x) = h(x, ogic) * feic(X), (40)

where

h(x, omic) = ———— exp (— - ) . 1)
V2ropic 2U§IC

Carrying out the convolution integral, we find an analytic expression
as follows

oy 2 Ly L (BCin = x
Jricx =575 T

V20p1c

! 1, 1
+ 5 exp EBICmin + g BIC — E.X

2BIC in 2o—=2
Erfc ( * %ic ~ X ) , 42)
23/ 20m1c
where the Erf and Erfc functions are defined as
Erf(z) = 2 [ exp (—1%) dt (43)
NZ '

and
Erfc(z) = 1 — Erf(z). (44)
3 DATA

In this section, we present real and mock observations of
RXJ1131—1231, which are used to infer future cosmological con-
straints by means of our joint strong lensing and stellar dynamical
analysis. We focus on RXJ1131—-1231, in particular, given that
it (i) is the brightest lens galaxy among the HOLiCOW base
sample, (ii) has the most precise time-delay measurements, with
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only 1.3 per cent uncertainty in the longest time delay, and (iii) has
plenty of ancillary data, which make it the most promising candidate
for future IFU observations.

Our data consist of HST imaging, precise time-delay measure-
ments, and mock JWST stellar kinematics. Rather than mocking
up JWST imaging along with JWST IFU data, we choose to rely
on the literature HST data instead. Even if JWST will be able
to acquire comparably high S/N observations with much shorter
exposure times, JWST NIR imaging will provide only a marginal
improvement over HST, given its slightly smaller nominal pixel size
of 0.03 arcsec per pixel and expected PSF FWHM of ~ 2 pixels.
More importantly, both HST and JWST are capable of obtaining
spatially resolved imaging with sufficient S/N for bright lenses, as in
the case of RXJ1131—1231, to reach the required precision of 0.02
for the total mass density power-law slope, such that the uncertainty
on the Fermat potential is already subdominant with respect to other
sources of uncertainty (Meng et al. 2015). Mocking up ground-
based AO imaging from future 30—40 m class telescopes would have
been a viable alternative for assessing the overall improvements
from both, next generation imaging and spectroscopy. However,
the move from HST to ground-based AO observations introduces
other sources of uncertainty, such as the recovery of the complex
PSF; given that current state-of-the-art analysis of AO images from
8-10m class telescopes yield distance constraints comparable to
those from HST (Chen et al. 2019), we adopt HST imaging for our
current study.

3.1 Imaging

HST Advanced Camera for Surveys (ACS) data of RXJ1131—1231
have been obtained as part of programme GO:9744 (PI:Kochanek).
The data set comprises imaging in the F8§14W and F555W filters,
where five exposures each have been taken with a total integration
time of 1980s. For the analysis, we give preference to the F§14W
imaging, given the fact that the stellar mass-to-light ratios become
a weaker function of the underlying stellar populations (Bell & de
Jong 2001; Cole et al. 2001). Moreover, the F814W data shows
a clearer separation between the AGN and the spatially extended
Einstein ring, whereas the FS55W filter is more difficult to model
due to diffraction spikes extending into the lensed arcs (but see
Birrer, Amara & Refregier 2016 for a joint modelling of both
bands).

The reduction and combination of the imaging data is performed
via the standard MULTIDRIZZLE pipeline (Fruchter & Hook 2002),
with charge transfer inefficiencies properly taken into account
by empirically tracing back the charge-coupled device (CCD)
detector readout mechanism and thus the initial charge distribution
(Anderson & Bedin 2010). The images are sky subtracted, corrected
for geometric and photometric distortions, and cosmic ray cleaned,
before drizzled on to a final science frame with 0.05 arcsec per pixel
resolution. Flux uncertainties for each pixel are obtained by adding
in quadrature Poisson noise from the source and background noise
from the sky and detector readout.

The final science frame is displayed in Fig. 1, where the centrally
located galaxy lenses the background AGN into a quadruple lens
configuration (A, B, C, and D). The background quasar host is a
spiral galaxy (Claeskens et al. 2006), which forms the extended
Einstein ring. Discovered by Sluse et al. (2003), spectroscopic
measurements of the foreground lens and background source yield
a redshift of zg = 0.295 and z; = 0.654 (Sluse et al. 2003,
2007), respectively. The foreground lens is further accompanied
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Figure 1. HST ACS F814W imaging cutout of RXJ1131—1231, illustrating
the prominent lens configuration with a quadruply imaged background
quasar (A, B, C, and D) and a nearby satellite (S). Spectroscopic mea-
surements locate the lens and quasar at redshift zg = 0.295 and z; = 0.658,
respectively. Overlaid is the JWST NIRSpec nominal FOV of 3 arcsec x
3 arcsec, within which we create mock stellar kinematics of the foreground
lens at 0.1 arcsec per pixel resolution. The FOV is oriented such that the
x-axis is aligned with the galaxy major axis.

by a satellite galaxy (S), which is assumed to be a dwarf elliptical
(Claeskens et al. 20006).

3.2 Time delays

Time-delay measurements of RXJ1131—1231 have been carried
out by means of a dedicated optical monitoring campaign within
the COSMOGRALIL program. Based on high-cadence (3 d) long-
baseline (9 + yr and more than 700 epochs) observations with
meter-class telescopes, and new curve-shifting techniques, Tewes
et al. (2013a) report time delays relative to image B of Aty =
0.7 £ 1.2d, Atcg = —04 £+ 1.5d, and Ampg = 914 + 1.2d,
with systematic errors already taken into account in the uncertainty
estimates. In general, the long-baseline measurements result in time
delays with ~3 per cent precision (Tewes et al. 2013b; Liao et al.
2015; Bonvin et al. 2016), and microlensing shifts in the time delays
(Tie & Kochanek 2018) are found to be negligible, given the long
time delay (Chen et al. 2018).

Given the above measurements, RXJ1131—1231 is particularly
suitable for TDC purposes. The background AGN is not only
quadruply imaged, providing three independent time-delay con-
straints, but the longest time delay yields an uncertainty of only
1.3 percent and forms a comparably low floor for any time-delay
distance measurement. While percent level precision of Ar is a
necessary condition for any TDC probe that aims to measure H
to the percent level in a single lens study, it is not sufficient.
Even though the time delay of RXJ1131—1231 is the smallest
contributor to the error budget in D,; (Suyu et al. 2013), the final
precision of ~7 per cent is still substantial and mostly dominated
by uncertainties in the LOS mass contribution and degeneracies in
the lens mass model.
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Figure 2. Left-hand panel: SB distribution of RXJ1131—1231 at JWST
NIRSpec resolution, which has been transformed into an S/N map. The
on-source integration time with NIRSpec has been tuned to achieve an S/N
of 60 in the central spaxel (~7h with the ETC V1.3). Given the relative
intensity distribution from a parametrized fit to its SB profile, the S/N for
all spaxels follows accordingly. Right-hand panel: binned NIRSpec map of
RXJ1131—1231 to a target S/N of 40 in each bin, to allow for a reliable
measurement of the stellar velocity moments across the entire FOV. For
simplification, we omitted the AGN images and satellite while mocking up
the observations.

3.3 IFU stellar kinematics

Spectroscopic observations of RXJ1131—1231 with state-of-the-
art instruments have, so far, only been able to yield a single stellar
velocity dispersion measurement (Suyu et al. 2013), due to the
faintness of the lens and difficulties in separating the bright quasar
light from the galaxy. Yet, future observatories, such as JWST
and E-ELT, will be capable of obtaining far more than a single
aperture averaged measurement of the stellar kinematics, due to
their improved sensitivity and resolution. In order to assess the
improvements in constraining Du,, when IFU data from JWST
become available, we have mocked up stellar kinematics based on
the specifications of JWST s near-infrared spectrograph (NIRSpec).
To this end, we have carried out a lensing-only fit to the imaging
data and time-delays of RXJ1131—1231, with a source resolution
of 64 x 64 pixels. The light model consists of four pseudo-
isothermal elliptical profiles (PIEMDs), which are used to mimic a
two-component Sérsic distribution (Dutton et al. 2011; Suyu et al.
2014). The mass model consists of a baryonic and non-baryonic
component, where the former is obtained by multiplying the light
profile with a constant stellar M/L and the latter is accounted for by
a NFW halo. The best-fitting model of this fit is then employed to
create a luminosity and mass density profile, and complemented by
a minimal set of random dynamical parameters, to create a mock
kinematic map of the second-order velocity moment according to
equation (19). Whereas the mock time-delay distance DY is
based on the best-fitting lensing-only model, the mock input lens
distance D°%! is obtained by adopting our standard cosmological
model in Section 1 with zg = 0.295 and z; = 0.654.

To simulate observational effects and to assess maps of different
quality, we spatially bin the map beforehand via an adaptive
spatial binning procedure (Cappellari & Copin 2003) to a target
S/N of 20, 40, and 60 respectively. Especially the latter two are
deemed more than sufficient to reliably extract the kinematics
across the entire FOV (Falcén-Barroso et al. 2017). The binning
is achieved by assuming an S/N in the central (brightest) pixel.
Given the parametrized SB distribution, and assuming a Poisson
noise dominated regime, the relative pixel intensities can then
be translated into a relative 2D S/N map, which is then binned
according to the above requirement (Fig. 2). The S/N in the central
pixel is obtained by means of JWST s exposure time calculator
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Table 1. Specifications of JWST s IFU mode for mock IFU
stellar kinematics of RXJ1131—1231.

JWST
Instrument NIRSpec
Pixel size 0.1 arcsec x 0.1 arcsec
Field-of-view 3arcsec x 3arcsec
PSF FWHM 0.08 arcsec
Filter G140H/F100LP
Resolving power ~2700

Note. The PSF size is the actual size we have used for
mocking and modelling purposes, and roughly 2 x larger
than the diffraction limited PSF FWHM. The mocked up
observations can be obtained with the respective filter com-
bination, which is selected such that it covers our target Ca 11
triplet stellar absorption features, given RXJ1131—1231’s
redshift of z = 0.295. The high resolution grating with
its resolving power corresponds to an instrumental velocity
dispersion of ~50kms~!, likely sufficient to yield reliable
measurements of the LOS velocity distribution across the
entire FOV.

(ETC V1.3), where we aimed for an S/N that is both high enough
to yield enough spatially resolved measurements and achievable
with reasonable on-source integration times. Our final data sets are
comprised of three different S/N combinations. A central S/N of
60 (or 100 or 30, respectively), with a target S/N of 40 (or 60 or
20, respectively) in each bin. The combination of the central and
target S/N levels are denoted as 60/40 (100/60 & 30/20) hereafter,
implying a binning scheme where the central S/N is e.g. chosen to
be 60 with a target S/N of 40 across all bins.

The mock kinematics cover a 3 arcsec x 3 arcsec FOV for JWST
at 0.1 arcsec per pixel resolution (see Table 1). This mimics a
single pointing with JWST, centred on the lens, where a small
cycle dither pattern with subarcsecond shifts can be carried out to
allow for identification and removal of cosmic rays and detector
defects. The FOV contains ~900 spaxels. In reality, however, the
number of useful spaxels (and hence the final number of bins) will
be smaller than the total number within the nominal FOV, due to
contamination from B, D, and S. These will be masked during the
fitting of the stellar spectra and extraction of the stellar kinematics.
The loss in spatial information, though, should be minimal given
the small PSF. Nonetheless, we will also probe a smaller FOV of
2 arcsec x2 arcsec, to quantify the changes in our cosmological
constraints when less data are available. This smaller FOV is
a conservative assumption and results in a considerable loss of
spatial information when compared to the nominal FOV of 3 arcsec
x 3 arcsec, but can be considered as a worst-case scenario, where
we aim to predict the minimal gain in our cosmological inference.
Note that these mock maps are created to harness the full power of
JWST’s IFU spectrograph and are in contrast to previous studies of
spatially resolved, but only radially averaged profiles of the velocity
dispersion (Shajib et al. 2018).

The kinematic data are convolved with a single Gaussian PSF
of size 2x the diffraction limit of JWST and has a full width at
half-maximum (FWHM) of 0.08 arcsec. In reality, more complex
shapes, that follow more closely e.g. a Moffat profile, can be
expected. But, we are not worried about the actual shape of the
real JWST observations, as any shape can also easily be adopted by
similarly expanding the PSF with a set of multiple Gaussians, to
cover e.g. the extended PSF wings. We add realistic errors to the
mock kinematics, where the error in each bin is derived by drawing
a random number from a Gaussian distribution with u = 0 and
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Figure 3. Mock IFU vfos maps of RXJ1131—-1231, at JWST NIRSpec resolution, for an S/N configuration of 60/40. First: mock kinematics without any
errors. The data are based on the best-fitting lensing-only model, complemented by a minimal set of random dynamical parameters. Second: mock kinematics

with random Gaussian errors. The error in each bin depends on its S/N and mock (vfos)l/ 2 value. This constitutes the TDEAL’ data set, without systematic

uncertainties in the kinematic measurements (due to e.g. stellar template mismatch). Third: correlated errors have been added to the noisy (vfos)l/ 2 map in the
second column, which results in a systematic floor of 2 per cent. Fourth: uncorrelated errors of 2 per cent have been adopted and added to the map in the third
column. This last column illustrates our final mock kinematics, which account for various sources of (systematic) uncertainties and observational difficulties
and which will be used throughout our analysis as our reference data set, labelled ‘FIDUCIAL’.

Osa = (Vog)'* x m (where (vgs ;)% is the mock (v7g)"/?
value at bin position / and (S/N); its corresponding S/N).” This
standard deviation is employed as our frue measurement error.
Moreover, correlated and uncorrelated uncertainties of 2 per cent
each have been added on top of the random Gaussian noise, to
account for observational errors that can arise due to e.g. stellar
template mismatches. The former simulates a systematic floor in
our mock data set, where we utilize the median (v{g)"/* x %
across all bins to offset all measurements by a constant value; the
latter follows the approach described above by adding again random

Gaussian noise with 1 = 0 and ouncor = (V05,)"/* X 35 to all bins
across the entire FOV. In summary, we have for each bin

12
2 —
(ULOS,data) -

where Svgy = Gaussian[0,0gyl, Sveor = 0.02 (v7og)!/%, and
SVuncorr = Gaussian[0,0 yneorr]- The IFU kinematic maps are shown
in Fig. 3, where the last column depicts our final mock data, which
includes all sources of uncertainty and is employed as our reference
data set throughout our joint analysis.

12
(UI%OS) + 8Uslat + (SUcorr + 5Uuncorrs (45)

4 ANALYSIS

We construct time-delay strong lensing and stellar dynamical
models within the axisymmetric Jeans formalism, as described in
Section 2, and make use of the high-resolution HST data, time
delays, and mock IFU stellar kinematic maps in Section 3.

4.1 Setup

To reliably constrain cosmological distances to the percent level,
we require flexible and accurate prescriptions of the underlying
lens mass distribution. In our joint modelling, we therefore make
use of observationally and theoretically motivated mass models.
In the case of RXJ1131—1231, this includes a SPEMD (which

"The signal and noise in an IFU spaxel is commonly defined as the median
flux and flux standard deviation across the spectral range. Here, we make
the assumption that the S/N scales inversely proportional with the errors of
our kinematic measurements (Emsellem et al. 2011).
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accounts for both the dark and luminous mass) and a COMPOSITE
mass model (Suyu et al. 2014), consisting of parametrized fits
to the baryonic and non-baryonic matter distribution. Here, the
baryonic mass is parametrized via four PIEMDs, which are used to
mimic a two-component Sérsic contribution, and a NFW dark halo,
and is therefore identical in nature with the mass model that has
been used to mock up the IFU kinematics in Section 3.3. Both
mass models have been shown to provide excellent fits to the
strong lensing data (Suyu et al. 2014), but an aperture averaged
stellar velocity dispersion measurement was essential to bring both
D, distributions into agreement. While the discrepancy could be
resolved by including stellar kinematic data, the precision and
accuracy is still limited, and this mass model degeneracy is the
main contributor to the error budget, which we aim to constrain
further by modelling the mock IFU data set.

For simplicity, we neglect the satellite when mocking up the
IFU map (Section 3) as well as during the modelling of the strong
lensing and stellar kinematic data. The satellite is small enough
to result in a loss of only a few spaxels, when being masked
during the extraction of the IFU kinematics. More importantly,
though, the satellite has a negligible effect for our mass model
and cosmological inference (Suyu et al. 2013), as it contributes as
little as 1 percent to the SMD at the lens location. Our analysis
relies on two separate mass models, as described above. The
modelling parameters for both mass parametrizations are presented
in Table 2, along with the dynamical modelling parameters, which
have also been used to mock up the kinematic data set. Note that
the PIEMDs (i.e. the Sérsic profiles) are fixed during the fitting
process. Fits to the SB distribution are carried out beforehand,
and the SB distribution is translated into a SMD profile by means
of a variable stellar M/L. Moreover, the PA and centroids of the
dark and luminous matter distribution in the COMPOSITE mass
model are fixed to the same value, to ensure that the projected
SMD can be deprojected to an intrinsically axisymmetric mass
distribution.

Our respective models include a total of nine variable parameters
with mostly uniform priors for both the SPEMD and COMPOSITE
mass models. These priors are weakly informative in a sense that
they are bound to ranges around the mock input value, where
we have used observationally motivated minimum and maximum
values for e.g. the anisotropy B, (e.g. Cappellari et al. 2007) and
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Table 2. Model parameters and priors for our joint strong lensing and dynamical models, including the cosmological distances,
the SPEMD, the COMPOSITE mass distribution, and the dynamical variables. The mock IFU data set is based on the best-
fitting COMPOSITE lensing-only model with a source resolution of 64 x 64 pixels and random values for the dynamical
parameters. The mock cosmological distances are based on the best-fitting lensing-only model for DA, and assuming Hy =
82.5kms™! Mpc™!, @ = 0.27, Q4 = 0.73, zg = 0.295, and z5 = 0.654 for determining Dg.

Description Parameters Mock input values Prior type Prior range
Distances

Model time-delay distance (Mpc) DX;’de' 1823.42 Flat [1000, 3000]
Model lens distance (Mpc) Dipodel 775.00 Flat [600, 1000]
SPEMD

Flattening q - Flat [0.2, 1.0]
Einstein radius (arcsec) (%) - Flat [0.01,2.0]
Power-law slope y/ - Flat [0.2, 0.8]
External shear strength Y ext - Flat [0.0, 0.2]
External shear position angle (°) Gext - Flat [0.0, 360.0]
COMPOSITE

Stellar M/L [Mo/Lo] T, 2.09 Flat [0.5, 2.5]
Flattening q 0.73 Flat [0.2, 1.0]
Einstein radius (arcsec) (%) 0.20 Flat [0.01,2.0]
Scale radius (arcsec) Ts 22.53 Gaussian [18.6, 2.6]
External shear strength Vext 0.08 Flat [0.0, 0.2]
External shear position angle (°) Gext 1.42 Flat [0.0, 360.0]
Dynamics

Anisotropy B: 0.15 Flat [—0.3,0.3]
Inclination (°) i 84.26 Flat [80.0, 90.0]

power-law slope y (e.g. Auger et al. 2010). The prior ranges are
sufficiently large to explore well the PDF, while still allowing for
a fast convergence. Note, though, that flat priors are not always
suitable for all parameters in the fit, as e.g. the intrinsic shape
distribution (and consequently the inclination under the assumption
of axisymmetry) is well known to be described by a Gaussian
profile (e.g. Weijmans et al. 2014). However, the inclination of
RXJ1131—-1231 is severely limited by the high flattening of the
second Sérsic in the fit to the SB distribution and, as a consequence,
we have employed a flat prior for the possible range of deprojections.
Moreover, the choice of our particular priors has been tested
extensively and found to be insignificant for the inference presented
in Section 4.2. Whereas this indicates that the data are indeed
powerful enough to draw credible conclusions from the posterior
distribution, irrespective of the prior choice, it cannot be considered
as evidence for ‘truly’ non-informative priors in the sense of e.g.
Jeffreys priors. We therefore advise to probe the impact of such
‘naive’ non-informative prior assumptions, as the posterior can be
highly susceptible to the prior choice in less constraining cases.
While the COMPOSITE model has an additional variable param-
eter (r), this parameter is not constrained at all, given that it lies
well beyond the coverage of the lensing and kinematic data. Using
a Gaussian prior instead (Gavazzi et al. 2007), the two mass models
(SPEMD and COMPOSITE) have effectively the same number of
free parameters. This number is significantly smaller than the total
number of variables in the final lens model of RXJ1131—1231
in Suyu et al. (2013). However, most of those variables have
a negligible effect on the key cosmological parameters, such as
Dy, and Dy, and we therefore adopt those optimized variables as
fixed values during the modelling process. The only exception with
respect to the optimized values in Suyu et al. (2014) is the PA of
the NFW halo and the SPEMD, which are now both aligned with
the SB distribution. As axial symmetry is a necessary condition for
the construction of the Jeans models, a vastly different PA would
violate our underlying modelling assumption. Source resolutions

of varying sizes, on the other hand, will be probed, given that
the parameter constraints show significant shifts depending on the
pixelization scheme for the AGN host galaxy surface brightness.
Besides the uncertainty due to different mass parametrizations, this
systematic uncertainty is, in fact, one of the biggest sources of
uncertainty for a given mass model, resulting in a distribution that
can be 2 — 3 x as wide as for a fixed source grid resolution (Suyu
et al. 2013). For each mass model, we will therefore examine eight
different source grid resolutions of 54 x 54, 56 x 56, 58 x 58,
60 x 60, 62 x 62, 64 x 64, 66 x 66, and 68 x 68 pixels. These
source grid resolutions are usually sufficient to achieve an adequate
x>, while stabilising the final modelling constraints towards a
common value. The source grid size is chosen such that it contains
the entire source intensity distribution, with the outermost source
grid pixels converging towards zero intensity values. Our final
lensing-only models will then equally weight the constraints from
models of different source grid resolutions and different lens mass
parametrizations (i.e. COMPOSITE and SPEMD), by combining the
individual Markov Chains. An equal weighting is applied in the
lensing-only case, since we are incapable of differentiating between
different models due to the MSD. In the case of a joint lensing and
dynamics run, however, a weighting scheme according to the BIC
will be applied, where the dynamical likelihood Pp(dp|tp) will be
utilized to perform a model selection.

4.2 Modelling

We visualize the results of our joint strong lensing and stellar
dynamical models in Figs 4 and 5, where we show the marginalized
ID PDFs for our main parameters of interest, i.e. D% and
D%l with an S/N of 60/40. The top panels display the constraints
from fits to the strong lensing and kinematic data with statistical
noise only (hereafter IDEAL, corresponding to the second panel
of Fig. 3), whereas the bottom panels show the results from fits to
the IFU stellar kinematics including various sources of uncertainty
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Figure 4. Top: marginalized PDF for Dg‘fdel, based on joint strong lensing
and stellar dynamical models, for the IDEAL data with statistical noise
only and an S/N of 60/40. The blue shaded region shows the PDF for
strong lensing-only models and a COMPOSITE mass distribution, including
six different source resolutions with equal weighting. The red shaded region
shows the corresponding PDF for strong lensing-only models with a SPEMD.
The grey shaded region shows the combined and BIC weighted constraints
from the joint run, including both mass parametrizations and all source
resolutions. Bottom: same as above, but for our FIDUCIAL kinematic data
set, including all sources of uncertainty. The vertical dashed line denotes
the best-fitting lensing-only value for the COMPOSITE mass model and a
source resolution of 64 x 64 pixels, which was used as input to mock up the
IFU kinematics.

(hereafter FIDUCIAL, corresponding to the fourth panel of Fig. 3).
The blue-shaded region displays the PDF for models with a
COMPOSITE mass distribution, the red shaded region for models
with a SPEMD, and the grey-shaded region the combined PDF from
both distributions when the IFU stellar kinematics are included in
the fit and a weighting according to the BIC is performed. Note that
the blue and red shaded region in Fig. 4 is the PDF from lensing-only
models. This is in contrast to Fig. 5, where these also include the stel-
lar kinematics, as the lensing-only models are insensitive to D°%!,

Both panels in Fig. 4 clearly show the discrepancy in the time-
delay distance, when different mass parametrizations are employed
to model the foreground lens, with a double peaked distribution.
Since these two models yield a comparable goodness of fit (a
manifestation of the MSD), both are equally plausible and an
equal weighting is applied in the lensing-only case. The combined
COMPOSITE and SPEMD PDF therefore results in a distribution
of 1835%%) Mpc (here, the 50th and 16th/84th percentiles of
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Figure 5. Top: marginalized PDF for D§°°®, based on joint strong lensing
and stellar dynamical models, for the IDEAL data with statistical noise only
and an S/N of 60/40. The blue shaded region shows the PDF for models with
a COMPOSITE mass distribution, including six different source resolutions
with equal weighting. The red shaded region shows the corresponding PDF
for models with a SPEMD. The grey shaded region shows the combined
and BIC weighted constraints from the joint run, including both mass
parametrizations and all source resolutions. Bottom: same as above, but
for our FIDUCTAL kinematic data set, including all sources of uncertainty.
The vertical dashed line denotes the mock lens distance as obtained from the
COMPOSITE mass model, a source resolution of 64 x 64 pixels, and under
the assumption of our chosen cosmology. All models include the stellar
kinematic data, as the lensing-only models are insensitive to D(‘i“"del alone.

the distribution rather than the mean and standard deviation of
a single Gaussian). The discrepancy in the time-delay distance
measurement can be resolved by including IFU stellar kinematics,
where the combined and weighted distributions converge towards
the common mock input value of 1823 Mpc. The 2D kinematics
clearly distinguish between both mass models, where the systematic
offsetin v? g is utilized to significantly downweight the contribution
from the SPEMD (Fig. 6). A Gaussian fit to the combined and
weighted COMPOSITE and SPEMD PDF with stellar kinematics
included (i.e. grey-shaded region) yields [u1, o1] = [1789 Mpc,
37Mpc] in the IDEAL case and [ug, og] = [1794 Mpc, 36 Mpc]
for our FIDUCIAL data set respectively. This time-delay distance
constraint is a considerable improvement in precision (2.0 per cent)
when compared to the lensing-only models (5.6 per cent), even when
systematic uncertainties in the stellar kinematics are generously
taken into account.

0202 Jequieoaq /( UO Jasn usyouan|y 18B)ISISAIUN 8YdsIuyoa | AQ 66.29.S/€8.v/v/S6T /o1 /Seiuw/wod dno olwapese//:sdny woi) papeojumoq



COMPOSITE SPEMD
-1.5 350
340
g 0.5 330 Tw
g 320 ¢
] 0.5 310~
300
1.5 290
-1.5 -0.5 0.5 1.5 -1.5 -0.5 0.5 1.5
arcsec arcsec
COMPOSITE Residuals SPEMD Residuals
-1.5 2
1
0.5
0
0.5
-1
1.5 -2
-1.5 -0.5 0.5 1.5 -1.5 -0.5 0.5 1.5
arcsec arcsec

Figure 6. Top: mock IFU stellar kinematics of RXJ1131—-1231 at JWST
NIRSpec resolution. The panels show the predicted vﬁos for the best-
fitting joint COMPOSITE and SPEMD model respectively, when fitting
to the FIDUCIAL data. Bottom: Residual map for the best-fitting joint
COMPOSITE and SPEMD model, normalized by the errors, showing the
goodness of fit on a bin-by-bin basis. The systematic UEOS offset in the
SPEMD models is used to perform an effective model selection according
to the BIC, and results in a significant downweighting of its corresponding
probabilities.

The improvement can be traced back to three effects, in particular,
(1) a smaller width of the PDF for individual mass parametrizations
with different source resolutions, (ii) a shift of the mean of the
distribution towards the true input time-delay distance, and (iii)
a drastic downweighting of models with a significantly worse
goodness of fit. In Fig 7, we illustrate the first two effects by
showing the PDFs from lensing-only and joint strong lensing and
stellar dynamical models. In both cases, we adopted a COMPOSITE
mass distribution and modelled with six different source resolutions.
The joint fit to the IFU stellar kinematics considerably reduces
the width of the combined PDF from different source resolutions,
effectively erasing the low probability wings from lensing-only
models in Fig. 4, while shifting the whole distribution towards the
input time-delay distance.

A joint fit with stellar kinematics of even higher S/N almost
perfectly recovers the input time-delay distance while reaching a
precision of 1.7 percent. In contrast, lower S/N kinematics yield
not only worse precision (of 2.5 per cent) but also worse accuracy,
where the time-delay distance is only recovered within 1.2¢. The
differences in the constraints for models of different S/N can
be attributed to the aforementioned three effects, which are less
prominent when the quality of the IFU kinematics degrades.

When it comes to the constraints for the lens distance Dg“"dd,
we observe a much tighter distribution for our reference S/N of
60/40. Fits to the data with statistical noise only recover remarkably
well the input lens distance of 775Mpc. A Gaussian fit to the
combined and weighted PDF from models with a COMPOSITE and
SPEMD yields [u1, o1] = [769 Mpc, 14 Mpc]. This is a 1.8 per cent
precision measurement for the secondary cosmological distance
we aim to infer. Yet, the distribution is clearly biased towards
lower distances for fits to our FIDUCIAL data set with [ug, 0F]
= [734Mpc, 13 Mpc], which is a consequence of the correlated
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Figure 7. Top: marginalized PDFs for Dg’dﬂ , based on strong lensing-only

models. The individual colours represent the PDFs for models with different
source resolutions and the same COMPOSITE mass parametrization for the
foreground lens mass distribution. The mean and standard deviation of the
combined PDFs (i.e. for all source resolutions and equal weighting) is given
in the legend. Bottom: same as above, but for joint strong lensing and stellar
dynamical models of the FIDUCIAL data, where systematic errors in the
measurement of the stellar kinematics are included. Information from IFU
data helps in reducing the width of the PDF for a given mass parametrization,
getting rid of the low probability wings, and shifts the mean towards the
mock input value (vertical dashed line) at a source resolution of 64 x 64
pixels.

noise and systematic floor we have added to (vZ,g)'/?> to mock
realistic observational errors. The bias is especially prominent for
models with a COMPOSITE mass distribution, where the joint
PDF across all source resolutions (with equal weighting) yields
a distribution with [, o] = [730 Mpc, 13 Mpc]. Keep in mind,
however, that the mock data has been created with a source
resolution of 64 x 64 pixels, which is at the edge of the joint
COMPOSITE PDF for both Dy, and Dy (see e.g. Fig. 7). Picking
a mock source resolution, and hence an input lens distance, which
is closer to the median of the joint PDF in the first place would
have partially alleviated this strong bias for our COMPOSITE mass
models. Despite our mock source resolution, we observe a similar
bias in the joint COMPOSITE and SPEMD PDF across all S/N.
Nonetheless, we are able to recover the true lens distance from
our joint COMPOSITE and SPEMD PDF within ~3c¢, even for
our highest S/N pick (with correlated and uncorrelated systematics
included), where the model uncertainties are the tightest. We also
observe that the D, constraints are overall preserved, irrespective
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of the various kinematic noise properties and realizations. This
is attributable to the fact that D4, is mainly anchored by the
lensing data and time-delay measurements. In contrast, information
regarding Dy is directly embedded in our mock stellar kinematics.
As a consequence, it is highly sensitive to any systematic changes
in the data. In fact, (v}og)"/? oc 1/(Dg)!/?. The median (vig)!/2
difference between the IDEAL and FIDUCIAL data across all bins
amounts to ~2.1 per cent, which perfectly explains the ~4 per cent
shift in the mean Dy between both distributions. We note that the
inference of Hy from the joint constraint of D,, and Dy depends
on the kinematic measurements, given the dependence of D4 on
kinematics (as illustrated in Section 5).

It is worth mentioning, that correlations between the various
parameters in the models will artificially inflate the model uncer-
tainties, since the multidimensional least-squares plane will have
more than one unique solution. In practice, this would imply
an overestimation of the confidence intervals reported here. We
can, however, rule out a high degree of correlation between the
various model parameters, as this would manifest itself in unstable
solutions with regard to small variations in the observations. The
latter is essentially probed by our various realizations of the mock
input data, which show that the solutions are generally stable
and recover the mock input values regardless of e.g. the noise
properties.

The final modelling results are summarized in Table 3, along
with our set of complementary models, which we have constructed
to assess uncertainties related to modelling (i) a smaller FOV,
(i) a miscalculation of the PSF size and (iii) a single aperture
measurement. Especially the latter has been carried out for direct
comparison with literature measurements from HOLiCOW, which
are based on a single aperture velocity dispersion.

4.3 Sources of uncertainty

To understand the impact of various sources of uncertainty, we
complement our FIDUCIAL (‘Full FOV’) models by fitting to
different data sets, by adopting different mass parametrizations
and by accounting for PSF mismatches. In all cases, the data have
been mocked up and modelled in the same manner as outlined in
Sections 3.3 and 4.1.

4.3.1 Field of view

In a first test, we fit to a smaller 2arcsec x 2 arcsec FOV. As
mentioned in Sections 3.3 and 4.1, we have omitted the satellite and
AGN images in the data construction and modelling phase. Clearly,
both will result in a loss of spatial information, as the affected
spaxels will have to be masked when measuring the kinematic
moments. In addition to contamination from nearby sources, spatial
information will also suffer due to the breakdown of a Poisson noise
dominated regime in the remote regions. It is hard to quantify this
loss beforehand, given that the final S/N in any given spaxel will be
a complex function of the noise properties of the detector, but we
try to mimic both effects by drastically reducing the FOV by almost
50 per cent. Keep in mind, however, that this does not translate to a
loss of 50 per cent of spatial information. The final number of bins
is still 56, compared to 78 for the nominal FOV, and a consequence
of the low S/N spaxels beyond ~1 arcsec being discarded, which
are otherwise massively binned to reach the target S/N.

The modelling results of this run are presented in Table 3, where
fits to the IDEAL (i.e. with statistical noise only) and FIDUCIAL
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Table 3. Cosmological distance constraints from strong lensing-only and
joint strong lensing and stellar dynamical models. The first column indicates
the model, mock error type, and S/N of the IFU stellar kinematics. Our
FIDUCIAL modelling results are summarized under ‘Full FOV’. Results
for models with a smaller 2 arcsec x 2 arcsec FOV, an overestimated PSF
and a single aperture measurement are denoted respectively. The latter three
have only been modelled for an S/N of 60/40, which we deem optimal
for future cosmological studies with JWST. The second column shows the
constraints for the model time-delay distance DZ;"M, when the combined
PDF is fitted by a normal distribution with mean © and standard deviation o.
In instances where the distribution is clearly bimodal, we quote the 50th and
16th/84th percentiles of the distribution. The third column shows the same
constraints for the model lens distance Dz‘“"del. The PDF in all cases but
the gNFW is the combined and BIC weighted PDF from COMPOSITE and
SPEMDs models, with six different source grid resolutions. In the lensing-
only case, an equal weighting of all models and source resolutions is applied
due to the MSD. The frue mock distances for creating the stellar kinematic
maps are indicated.

Model Dol (Mpc) D%l (Mpc)
True mock distances 1823 775
Lensing 1 8361'??6

Full FOV

Lensing and dynamics 1762 42 770 £ 18
IDEAL (30/20)

Lensing and dynamics 1767 + 42 742 £ 17
FIDUCIAL (30/20)

Lensing and dynamics 1789 £ 37 769 + 14
IDEAL (60/40)

Lensing and dynamics 1794 £ 36 734 £13
FIDUCIAL (60/40)

Lensing and dynamics 1817 £ 30 776 £ 12
IDEAL (100/60)

Lensing and dynamics 1825 £ 30 748 £ 12
FIDUCIAL (100/60)

SMALL FOV

Lensing and dynamics 1783 £ 42 756 £ 13
IDEAL (60/40)

Lensing and dynamics 1791 £ 42 732 £13
FIDUCIAL (60/40)

PSF

Lensing and dynamics 1790 £ 36 769 + 14
IDEAL (60/40)

Lensing and dynamics 1794 £ 36 734 £13
FIDUCIAL (60/40)

APERTURE

Lensing and dynamics 1836f?%6 757f%
IDEAL (60/40)

Lensing and dynamics 183675, 72619}
FIDUCIAL (60/40)

gNFW

Lensing and dynamics 1890 & 39 780 = 15
IDEAL (60/40)

Lensing and dynamics 1891 £ 39 761 £ 14
FIDUCIAL (60/40)

(i.e. with correlated and uncorrelated systematics) data are taken
into account for an S/N configuration of 60/40. As expected, the
constraints for D'X;’d51 [i, olipear = [1783 Mpc, 42 Mpc] & [u,
o lrpuciaL = [1791 Mpc, 42 Mpc] suffer and we obtain a precision
of 2.5 per cent, when compared to our reference ‘Full FOV’ models
with the same S/N, which has a precision of 2.1 per cent. While we
achieve a comparable precision for DF*®! with this smaller FOV,
it is noteworthy that the bias towards lower distances is slightly
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more pronounced [x, o JppuciaL = [732 Mpc, 13 Mpc], where the
true lens distance can now only be recovered within ~3.2¢0". These
findings urge us to aim for the deepest and highest S/N observations,
as any loss in quality (i.e. S/N) and/or quantity (i.e. FOV) of the
IFU stellar kinematics quickly diminishes any potential gain in the
cosmological distance measurements. This is most evident, when
we consider the extreme case of a single aperture measurement in
Section 4.3.3.

4.3.2 Point spread function

For the creation of the mock IFU stellar kinematics as well as
during the modelling phase, we convolve the predictions of the
axisymmetric Jeans equations with a PSF of 0.08 arcsec FWHM
size. This PSF is twice as large as the diffraction limit of JWST,
but a reasonable choice considering past applications and recent
simulations for the next generation of telescopes (Tecza 2011). In
contrast to state-of-the-art AO assisted instruments, this remarkable
angular separation is achieved by means of a significantly smaller,
flux dominating PSF core. The PSF will, however, be undersampled,
given NIRSpec’s pixel size, and a dithering strategy is vital to
achieve the nominal spatial resolution. Nonetheless, slight mis-
matches with the true PSF can be expected when measuring the
PSF size from real observations, and we account for this mismatch
by convolving the model predictions with a PSF that is roughly
10 per cent larger (i.e. ~0.09 arcsec).

Our PSF mismatch modelling results are again summarized
in Table 3. In light of the subpixel PSF size, the cosmological
distance constraints are stable across both error assumptions (i.e. for
statistical noise only and with correlated and uncorrelated errors on
top), yielding almost identical precision on both D! and podel,
We therefore omit probing models of different S/N and note that
our constraints are insensitive to minor deviations from the true PSF
size. Keep also in mind, that the correlation between individual bins
is minimal. Our PSF is of the order of JWST NIRSpec’s nominal
pixel size of 0.1 arcsec. Besides the most central bins, which consist
of individual spaxels, most kinematic measurements are essentially
independent, given that they are also considerably larger, even if we
assume a PSF which is 3 x as large as the diffraction limit.

4.3.3 Single aperture

Stellar kinematics are now commonly employed to break the
inherent modelling degeneracies in (time-delay) strong lensing
studies (e.g. Treu & Koopmans 2002b; Koopmans et al. 2003;
Treu & Koopmans 2004; Koopmans et al. 2006). Yet, due to the
faintness of the lens and difficulties in separating the bright quasar
light from the galaxy, even with state-of-the-art facilities, the data
are confined to a single aperture measurement of the stellar velocity
dispersion. Moreover, currently employed techniques utilizing this
kinematic information in strong lensing studies are usually not self-
consistent or physically too simple to capture the true complexity
of realistic lens galaxies. For instance, most implementations in
strong lensing studies assume elliptical lens mass models, but model
predictions for the stellar kinematics are based upon a spherically
symmetric mass distribution (e.g. Suyu et al. 2013; Jee et al. 2015;
Birrer et al. 2019). Similarly, simple assumptions for the velocity
anisotropy profile are made (Osipkov 1979; Merritt 1985b,a).

In order to assess the impact of using a single aperture measure-
ment on DT%land DTl under the aforementioned modelling
limitations, we mock up stellar kinematics of RXJ1131—-1231
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withina 0.8 arcsec x 0.8 arcsec FOV at JWST resolution, according
to the procedure outlined in Section 3.3. The kinematics are then
luminosity weighted to simulate a single aperture measurement of
v2 s In principle, we would have to split v7 g into two first-order
moments (Satoh 1980), defining the contribution of its ordered
versus random motions, for a straightforward comparison with a
stellar velocity dispersion measurement. For simplicity, however,
we assume that this massive elliptical lens is dispersion dominated
such that v} yg ~ o2 within our FOV.

Contrary to our previous models in this section, we now break
the self-consistency of our joint lensing and stellar dynamical
models. We run the axisymmetric Jeans models in the spherical
limit, by fixing the projected short- versus long-axial ratio of the
luminous and dark matter distribution to ¢ = 0.99. This is in line
with literature studies, where spherical Jeans models have been
employed for fitting the stellar velocity dispersion. For both the
COMPOSITE and SPEMD, the models can easily recover the single
aperture v, measurement of 325 £ 12 kms™!, yielding very
similar goodness of fit values across all source resolutions. Ergo,
the BIC is not capable of discerning between the two different mass
parametrizations, leaving the final distribution still double peaked
with DI%!= 18367, Mpc for our FIDUCIAL models (median
and 16th & 84th percentiles). The consequences of anchoring the
cosmological distance measurements in RXJ1131—1231 on a single
aperture velocity dispersion are most noticeable for DJ°%!, where
the 1D PDF is only loosely constrained, implying a precision
>10percent. This is smaller than the 18 percent found in Jee
et al. (2019), based on spherical Jeans models that fit the literature
stellar velocity dispersion of 323 + 20 kms™!, but the difference
is likely to be attributed to the smaller errors in our mock data.
Even though the precision on the distance measurements degrades
substantially with only a single aperture averaged second-order
velocity moment instead of a 2D kinematic map, the input distances
are recovered well within 1o, without obvious signs of bias despite
the spherical symmetry assumption employed here. This seems to be
counterintuitive when compared to our elliptical mass models (see
Table 3), which fit the 2D kinematics and can exhibit strong biases
(especially in Dy), but can be explained by two effects. First, the
single aperture measurement is simply a tracer of the enclosed mass,
in contrast to the 2D kinematics, which traces the spatially resolved
mass distribution in detail. Both the COMPOSITE and SPEMD are
capable of recovering the enclosed mass within the errors, with no
preference for either model. Given the relatively loose constraints
from the single anchor measurement in the single aperture case, the
corresponding errors in the cosmological distance inferences from
a single lens are sufficiently large to cover any potential bias. With
more lenses and thus a reduction in the uncertainty of global param-
eters (e.g. Hp), such a bias could then become significant relative
to the uncertainty and lifting the spherical assumption for the kine-
matics (as we have done previously) becomes important. Secondly,
RXJ113—1231 is quite roundish with a mean flattening for the light
profile and NFW halo of ~0.85 and ~0.75 respectively. Recovering
the input kinematics with axisymmetric Jeans models in the spher-
ically symmetric case is therefore feasible without introducing a
significant bias. This might change for highly flattened gravitational
lenses, which (however) are less likely to be found, given the fact
that the lensing cross-section increases with galaxy mass and the
most massive galaxies being quite roundish in projection.

We also emphasize that our assumption of a dispersion-
dominated lens within the single aperture FOV is unlikely to
introduce a significant bias in our inference. With any net streaming

MNRAS 493, 4783-4807 (2020)

020z Jaquieoa(] /0 UO JaSn Usyouan|y 18.lISISAIUN aYosiuyos | Aq 66/229/S/S8 /. /v/S61/a1o1e/Seluw/Wwod dno"olwapeoe//:sdiy Wolj Papeojumo(



4798  A. Yildirum, S. H. Suyu and A. Halkola

motions present, our mock V., data cannot be attributed to o
only. As a consequence, the true velocity dispersion must be
lower. Assuming, however, net streaming motions of e.g. 50 kms™!
within the 0.8 arcsec x 0.8 arcsec FOV,? results in a change of
only 4km s~! for o. Considering our mock Vs observations of
325 4 12kms~!, the change in o is thus well within the error bars.
We therefore conclude that our findings for models which employ
single aperture kinematics are likely to hold, unless the lens system
exhibits significant rotation or is highly flattened. It is worth noting,
however, that a single aperture measurement is less powerful in
lifting the MSD as a result, due to the minuscule differences also in
the kinematic x2.

4.3.4 Generalized NFW

In alast effort to quantify the systematic uncertainties in our models,
we adopt a generalized NFW profile (QNFW, Zhao 1996), where
the halo follows a density distribution according to
P0o

(Lyr (B

with pg = §. p. being a product of the characteristic density §. and
the critical density p, = 3H?/87 G at the time of halo formation,
halo scale radius ry, and density slope y. The use of a gNFW halo
is physically motivated by dissipational cosmological simulations,
where the dark halo reacts to an accumulation of the central
baryonic component via contraction (Blumenthal et al. 1986). More
importantly, though, a mass model with a halo of gNFW form will
allow us to better understand the systematics associated with a mass
model which is comparably close to the true lens mass distribution.
This is particularly interesting, given our general ignorance of the
true underlying mass distribution. To this end, we make use of a
gNFW halo with a Gaussian prior on the halo slope y with mean and
standard deviation 1.0 £ 0.1 (Mantz, Allen & Morris 2016), while
adopting the same priors for the remaining variables.

When employing the above density parametrization for the dark
halo, we obtain strong biases for the time-delay distance, whereas
the lens distance again is susceptible to any systematics in the
kinematic measurements. With D‘X;’de‘ [, olipear = [1890 Mpc,
39Mpc] & [u. olrpuciaL = [1891 Mpe, 39 Mpc] and D! [u,
olpeaL = [780Mpc, 15Mpc] & [u, olppucia = [761 Mpc,
14 Mpc], we achieve a 2.1 percent and 1.9 per cent precision mea-
surement for D! and D! respectively. However, the accuracy
for the time-delay distance measurement suffers significantly, with
D%l only being recovered within 2. This simple toy model
is another display of the MSD, where comparably good fits to
the lensing data are obtained while yielding significantly different
distance constraints. Only by means of the BIC due to (i) slightly
worse kinematic likelihoods of these models and (ii) an increase
in the model degrees of freedom,” can we break this degeneracy.

p(r) = (46)

8We assume low net streaming motions, since (i) the aperture FOV only
covers half the half-light radius of RXJ1131—1231, (ii) the contributions of
v are luminosity weighted, such that the contribution of the higher velocity
wings will be downweighted, and (iii) the increase of the lensing cross-
section increases with galaxy mass and the fact that the most massive
galaxies are found to be slow-rotating objects, with low v/o profiles (e.g.
Cappellari et al. 2007).

9Despite our Gaussian prior with mean y = 1.0, the models strongly
converge towards a much shallower density slope of y ~ 0.6. Models with
a flat prior of 0.5 < y < 1.5 yielded identical constraints. In contrast to the
scale radius ry, where we used a Gaussian prior as it is not constrained by
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Even if the contribution of the gNFW models to the final distance
constraints is non-negligible, in contrast to the SPEMD mass models
which have vanishing posterior weights (see Appendix A), the final
cosmological inference (see Section 5.2) is still vastly improved
when compared to the literature single aperture findings.

4.3.5 Other sources of uncertainty

Optimizing the likelihood function in equation (28), implicitly as-
sumes uncorrelated measurements in the lensing and kinematic data.
While this is a sensible assumption for the surface brightness and
line-of-sight velocity moments, the time delays between individual
pairs of images are correlated to some degree. To test for the impact
of covariances between the image pairs, we adopt and include
the covariance matrix of the time-delay errors into our models,
as measured and reported in Tewes et al. (2013b). From a single
test, based on our COMPOS I TE mass model with a source resolution
of 64 x 64 pixels and fitting to our FIDUCIAL data, we find no
differences (<1 percent) for the inferred cosmological distances
Dy, and Dy, which is not surprising given the weak correlations
in the measurement errors between individual image pairs (Tewes
et al. 2013b, fig. 8).

When constructing mass models of increased complexity, we
have knowingly omitted to probe models with e.g. a radially varying
stellar M/L. Despite mounting evidence for such an IMF induced
change (see e.g. van Dokkum & Conroy 2010; Martin-Navarro
et al. 2015; Conroy, van Dokkum & Villaume 2017), our dark halo
already already incorporates radial variations in the total M/L, albeit
with a different slope than the baryonic component. That is, the
increased model degrees of freedom in the gNFW profile allow us
to assess the implications for the cosmological distances, if the M/L
profile of the model differs from the data and vice versa. Considering
the findings in Section 4.3.4, even the slightest mismatches in the
M/L could have adverse consequences for the cosmological distance
measurements, while providing acceptable fits to the lensing-only
data. However, assuming that the family of mass models include
the rrue lens model (as is the case in this study), these will be
properly downweighted by the BIC. In any case, this convincingly
demonstrates the paramount importance of adopting a wide range of
plausible mass parametrizations for TDC purposes, as strong offsets
from the frue time-delay distance will be measured otherwise, even
if high-quality IFU kinematics are included in the fit.

5 COSMOLOGICAL FORECAST AND
DISCUSSION

We describe the cosmological constraints in flat ACDM using the
forecasted distance measurements from the last section for both the
IDEAL and FIDUCIAL lensing and dynamics models with an S/N
of 60/40. Our final inference is based on the ‘Full FOV’, ‘PSF’, and
‘geNFW’ models, given that these make use of the same data sets and
allow for a proper evaluation and comparison within the BIC. While
the former two models have been probed by both the COMPOSITE
and SPEMD mass models, the latter employs a generalized NFW
model, which allows us to include a wide range of systematic effects
related also to the lens mass parametrization. We also compare the
constraints from using the joint DA,~-Dy4 measurement, with that
from using only the marginalized D, measurement.

data, the halo slope is constrained and therefore constitutes an additional
degree of freedom in the gNFW models.
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Figure 8. Cosmological constraints from our joint strong lensing and stellar dynamical models of RXJ1131—1231, for flat ACDM with uniform priors on
Hy of [50,120] km s~} Mpc’l and Qp, of [0.05,0.5]. The magenta shaded contours show the 1, 2, and 30 confidence intervals for our FIDUCIAL models with
S/N of 60/40 (i.e. including correlated and uncorrelated systematic errors in the IFU stellar kinematics). The black points (lines) depict the mock input values
after accounting for a x¢x distribution with mean 0.05 and standard deviation of 0.01 (McCully et al. 2017). The blue shaded contours show the corresponding
constraints for our models with statistical noise only (i.e. without correlated and uncorrelated systematic errors). The green shaded contours are obtained from
our FIDUCIAL models with an S/N of 60/40 when k¢ is estimated from number counts along overdense lens LOSs (Suyu et al. 2014). Both Hy and D,
are recovered incredibly well in our FIDUCIAL models, with a precision of 3.2 percent and 3.1 per cent, respectively. While we can quote a precision of

2.4 percent on Dy, the recovered value is highly biased towards lower distances due to the systematic floor we have added to vfos, in order to mock real

observational errors.

5.1 Importance sampling with the forecasted distances

In order to obtain a cosmographic forecast, the first step is to get
the posterior probability distribution of the cosmological distance
measurements, accounting for systematic uncertainties. From the
lensing and dynamical modelling detailed in the previous section,
we have Markov chains containing the sampled D1%! and Djode!
parameters, for various models and set ups. For each data set, we
weight the various models (with different lensing mass parametriza-
tion and lensing source grid resolutions) using their BIC values
following equation (40), where we have estimated o gjc through the

scatter in BIC values from models that differ only in lensing source
resolutions (given that the source resolutions have a dominant effect
on the scatter). We then combine the weighted chains/models, and
fit the marginalized D7o%l- D! distribution with a multivariate
Gaussian to obtain P (DE;’“I, D‘d“‘JdEI |dy, dp).

To further account for the uncertainty due to the external
convergence from mass structures along the LOS, we use the
Kexe distribution from McCully et al. (2017), which is obtained
through a 3D reconstruction of the mass structures in the field of
RXJ1131—-1231. By reconstructing the mass distribution specific
to the RXJ1131—1231 sightline, the resulting k., distribution is
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substantially more precise compared to that obtained statistically
through galaxy number counts and numerical simulations in Suyu
et al. (2014). While the galaxy-number counts approach is thor-
oughly tested and robust (e.g. Greene et al. 2013; Rusu et al. 2017),
there is often a multitudes of sightlines with similar galaxy-number
counts with different x .y, giving rise to the scatter/uncertainty in
Kexi from this approach. By focusing on the environment of specific
lens, the new method developed by McCully et al. (2017) (see also
Collettetal. 2013) help reduce the scatter and uncertainty in « ¢y, and
we expect further developments/applications of this new method to
yield better constrained k. for lens systems in the future. In this
paper, we adopt and approximate the k .y from McCully et al. (2017)
as a Gaussian distribution with mean 0.05 and standard deviation of
0.01 (McCully, private communication), and we also consider the
Kext from the number counts (Suyu et al. 2014) for comparison.

With the posterior probability —distribution P (DN
Df{“’d51 |dv, dp), we can relate this to constraints on the cosmological
parameters in any background cosmology through importance
sampling (e.g. Lewis & Bridle 2002; Suyu et al. 2010). As an
illustration, we consider the constraints on H, specifically for
the flat ACDM cosmology, where we adopt uniform priors on
Hy between [50,120]kms~' Mpc~'and on the matter density
parameter 2, between [0.05,0.5]. We draw 107 samples in {Hy,
Qn}, and compute the corresponding Da, and Dy values given
the lens and source redshifts in flat ACDM. For each of these
samples, we also draw a value of k. from the ke distribution,
and scale the distances according to equations (13) and (33)
to obtain D! and DTl We finally weight the sample by
P(DRodel pmodel| gy | dpy). From the distribution of the weighted
samples, we obtain constraints on Hy and Q.

5.2 Forecasted H, constraint in flat ACDM

We show in Fig. 8 the cosmographic constraints for the FIDUCIAL
lensing and dynamical models with S/N of 60/40 (magenta). The
constraints with statistical errors only (blue) are comparable, though
slightly shifted in Dy towards the mock input value of 775 Mpc.
After including all sources of uncertainty, we expect to achieve
a measurement of Hy = 85.472% kms~! Mpc~!, with 3.2 per cent
precision (defined by the 50th, 16th and 84th percentile), by having
high-quality spatially resolved kinematic data from JWST. The
marginalized D, constraint is 1913fZ?Mpc, which is of similar
precision as Hy. Compared to the 6.6 percent uncertainty in D,
without spatially resolved kinematic data (Suyu et al. 2014), we are
reducing the systematic uncertainty by a factor of ~2. Even when
accounting for a more conservative k. distribution (Suyu et al.
2014), by ray tracing through overdense LOSs in the Millennium
Simulations (Springel et al. 2005), a measurement of Hy = 85.17%7
kms~'Mpc~! (i.e. with 3.3 percent precision) is within reach,
partly constrained by the assumption of flat ACDM, which restricts
the range of plausible Dy, and Dy values. That is, most of our
improved constraints (a factor of ~2 in precision or 3.3 per cent
respectively) stem from our mock 2D JWST kinematics, when
compared to the lensing-only case, with an additional improvement
of 0.1 percent, if the smaller scatter in the LOS convergence
(McCully et al. 2017) is taken into account.

With spatially resolved kinematics, we would also constrain
Dy to 74077, with 2.4 per cent uncertainty. This measurement is
substantially better than the ~18 per cent from the single-aperture
average velocity dispersion measurement (Jee et al. 2015, 2019),
yet biased towards lower values due to the systematic floor we
have added to the FIDUCIAL mock kinematics. Nonetheless, we
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Figure 9. Cosmological constraints from our joint strong lensing and stellar
dynamical models of RXJ1131—1231, for flat ACDM with uniform priors
on Hy of [50,120] km s~ Mpc~! and Qp,, of [0.05,0.5]. The magenta shaded
contours show the 1, 2, and 30 confidence intervals for our FIDUCIAL
models with S/N of 60/40 (i.e. including correlated and uncorrelated
systematic errors in the IFU stellar kinematics). The grey shaded contours
show the corresponding constraints for the marginalized DA, models, i.e.
effectively for lensing-only models. The different tilts in Hy—2y,, when
marginalized over D, and Dy, respectively, break some of the degeneracies.
The tight measurement of Dy from 2D kinematics complements the D,
measurement and leads to much improved constraints for the matter density.

recover the mock input lens distance within ~2¢ . To see whether Dy
helps to further constrain Hy, we repeat the cosmographic forecast
above using the marginalized probability distribution of D,,, i.e.
P(Dldy, dp, deny) = [dDgP(Dar, Daldy, dp, deny). With only
the marginalized D,,, the constraint on H, degrades slightly to
85.5733 (i.e. 4.0 percent uncertainty) for the FIDUCIAL model.
Note, however, that the marginalized D o, measurement is not totally
ignoring the distance information in Dy, as it has been used to
break the MSD in the first place. Moreover, the combination of two
distance measurements from a single lens provides not only tight
constraints on Hy, but adds significant constraining power also for
the matter density 2, (Fig. 9).

Given the low redshift of the lens galaxy in RXJ1131—-1231, Hj is
primarily constrained by D, in this case, but the tight constraint on
Dy would provide substantial constraints on cosmological models
beyond flat ACDM. For illustration, we show the cosmographic
constraints for flat wCDM cosmology in Fig. 10, where we focus
on our FIDUCIAL models with improved (McCully et al. 2017)
and conservative (Suyu et al. 2014) k. distributions. We note that
the prior range on DA, and Dy in the more general wCDM model is
substantially broader compared to flat ACDM; the conservative & qx
distribution thus leads to a wider D, distribution, in comparison
to the case of ACDM in Fig. 8. With w = —1.3570:5}, the time-
independent dark energy is only loosely constrained but, none the
less, comparable to the combined constraints from 3 single lenses
without 2D kinematic data. (Bonvin et al. 2017). Also, such a Dy
measurement would serve as a stringent anchor for the inverse
distance ladder approach for inferring H (Jee et al. 2019).
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Figure 10. Cosmological constraints from our joint strong lensing and stellar dynamical models of RXJ1131—1231, for flat wCDM with uniform priors on Hy
of [50,120] km s~ Mpc_l, Qp of [0.05,0.5] and w of [—2.5,0.5]. The magenta shaded contours show the 1, 2, and 3o confidence intervals for our FIDUCIAL
models with S/N of 60/40 (i.e. including correlated and uncorrelated systematic errors in the IFU stellar kinematics). The black points (lines) depict the mock
input values after accounting for a ke distribution with mean 0.05 and standard deviation of 0.01 (McCully et al. 2017). The green shaded contours are
obtained from our FIDUCIAL models with an S/N of 60/40 when k cx; is estimated from number counts along overdense lens LOSs (Suyu et al. 2014). Even if
w is only loosely constrained, given that DA, is mainly sensitive to Hy, the constraints from this single lens system yield similar precision as literature studies
of three lenses without IFU kinematics and provides a promising avenue for the exploration of models beyond ACDM.

Our forecasted constraints are essentially limited by the S/N
of the spatially resolved kinematic maps for breaking lens model
degeneracies. As shown in the previous section, higher S/N helps
to discriminate between the different mass parametrizations better
and hence provide tighter constraints on D,,, as the differences
in the goodness of fit (and thus in the BIC weighting) become
more prominent. For the case of S/N of 60/40 of the FIDUCIAL
model, the resulting Hy, would have an uncertainty of 2.4 per cent.
While this S/N can be achieved with reasonable observation times
(~ 6h), higher quality data to constrain H, further would be difficult
to obtain with JWST given the long integration time needed.
Future giant segmented mirror telescopes like the E-ELT and TMT,

however, could achieve an S/N > 100/60 within the same time,
owing to their ~5 — 6 x larger aperture.

6 SUMMARY AND OUTLOOK

In this paper, we presented a self-consistent joint strong lensing &
stellar dynamical modelling machinery for TDC purposes, which
employs a pixelated source reconstruction model and the solutions
of the Jeans equations in axial symmetry. Our analysis is carried out
within the framework of Bayesian statistics and suited, especially,
for the study of strong lens configurations for which IFU stellar
kinematic data will become available in the near future, by means
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of the next generation of ground- and space-based telescopes. To
assess the performance of the machinery and the expected gain in
the inference of cosmological distances and parameters, we mocked
up IFU observations of the prominent lens system RXJ1131—-1231,
at JWST NIRSpec resolution. RXJ1131—1231 was a particularly
natural choice for this study as it is the brightest known lens
galaxy for which precise time-delay measurements are already
available. The mock stellar kinematic map was based on the best-
fitting lensing-only mass model, with a dark and luminous matter
contribution, while making random assumptions about the orbital
anisotropy and viewing orientation. The mock lens distance has
been obtained by assuming a standard cosmological model with
Hy = 82.5 kms~! Mpc", Qmn = 0.27, Q5 = 0.73 and a lens and
source redshift of z4 = 0.295 and z, = 0.654, respectively.

With this suite of data, consisting of deep HST imaging, precise
time delays, and mock IFU stellar kinematics of various levels of
quality and including various sources of uncertainty, we constructed
joint strong lensing & stellar dynamical models. Our models relied
on two different mass parametrizations (COMPOSITE and SPEMD),
which have been shown to yield significantly different time-delay
distances when lensing-only fits are carried out (Suyu et al. 2014).
Given the vast amount of information from the spatially resolved
kinematics, we utilized the systematic differences in the predicted
second-order LOS velocities between the different models, to apply
a model selection according to the BIC. The main results of our
study can be summarized as follows:

(1) The models recover remarkably well our input time-delay
distance D, (<10), when high-quality IFU stellar kinematics (S/N
> 60/40) are available. This result is irrespective of the IFU stellar
kinematic errors (i.e. assuming purely statistical errors or with
correlated and uncorrelated systematics of 2 per cent each included).

(i1) The time-delay distance can only be recovered within 1.2¢0
or worse, when the S/N of the IFU kinematics degrades below that
of our reference 60/40 model.

(iii) The lens distance Dy is recovered in all cases within lo,
when purely statistical errors for the stellar kinematics are assumed.
But, a strong offset from the mock lens distance is observed, when
the stellar kinematics are systematically biased towards higher or
lower values. In these instances, the frue lens distance can only
be recovered within 30 or worse, depending on the systematic
offset of the data. Controlling the systematics in the measurement
of the stellar kinematics is therefore key for a reliable inference
of Dd.

(iv) The aforementioned results are valid for a 2D map, that
covers the LOS velocity distribution within a 3 arcsec x 3 arcsec
FOV (e.g. JWST NIRSpec nominal FOV). Modelling a smaller
2arcsec x 2arcsec FOV, to account for loss of spatial information
due to contamination from nearby objects, yields similar accuracy
but is less precise (A D!/ podel — 2 5 per cent). This highlights
the importance of deep and high-quality IFU data, as the gain in
the cosmological inference is easily diminished when less spatial
information is available.

(v) Small mismatches with the true kinematic PSF size have a
negligible impact on the final modelling constraints.

(vi) A single aperture stellar velocity dispersion is not very
effective in breaking the MSD in RXJ1131—-1231, yielding a
marginal improvement in precision for DT%%! over lensing-only
models. The constraints for D'%! suffer the most, with a precision
>11 per cent.

(vii) We achieve a 2.0 per cent precision measurement on D'o%!,
for our FIDUCIAL models with an S/N of 60/40 and including
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various sources of uncertainty while mocking up the IFU stellar
kinematics. Accounting for a wide range of additional sources
of systematic uncertainties, as sampled by our test models in
Section 4.2, this translates to a 3.1 per cent and 3.2 per cent precision
measurement on D,, and Hy, respectively, in flat ACDM.

(viii) A 2.4 percent precision measurement can be achieved
for Dy. Yet, this measurement is sensitive to the aforementioned
systematics in the stellar kinematics, since the constraints are mainly
anchored by the IFU data.

(ix) The constraints for D A,, Dy, and hence H, improve by a factor
of ~2, when high-quality IFU stellar kinematics are incorporated
in the fit. The improvement can be traced back to three effects in
particular, (i) a smaller width of the PDF for individual mass models
with different source resolutions, (ii) a shift of the mean of the
distribution towards the frue time-delay distance, and (iii) a drastic
downweighting of models with a significantly worse goodness of
fit, which is otherwise not feasible due to the MSD.

The increased flexibility of our models allows for a more realistic
modelling approach, while circumventing many of the assumptions
and limitations of literature time-delay studies. Yet, as the lensing
cross-section increases with mass, gravitational lenses are likely to
be massive elliptical galaxies, which have grown through numerous
violent minor and major merger encounters (Wellons et al. 2016). As
a consequence, lens galaxies are neither spherical nor elliptical. In
fact, recent studies strongly indicate that the most massive galaxies
are triaxial (Li et al. 2018), and modelling within an axisymmetric
framework might be equally inadequate. It is beyond the scope of
this paper to quantify the systematic uncertainties that can be traced
back to the violation of axial symmetry, but literature studies show
that the reconstructed dynamical masses can be underestimated
by as much as 50 per cent, depending on the viewing orientation
(Thomas et al. 2007). Taking into account the link between the
gravitational potential and the excess time delays, we advise against
amodelling within this framework if strong signatures of triaxiality,
such as isophotal twists or kinematically decoupled components, are
present.

The modelling machinery presented in this paper, along with
high-quality IFU data from future space- and ground-based tele-
scopes, provides a promising outlook for constraining cosmological
parameters to the few percent level from axisymmetric lenses.
Given our forecast for the single lens system RXJ1131—1231, an
H, measurement of <2.0 per cent precision could be within reach,
if similar gains in precision can be obtained for a total of three
lens systems. This would be an important boost in precision when
compared to the combination of three such lens systems without 2D
kinematic data (Bonvin et al. 2017) and comparable to the current
best cosmological probes. It is worth noting, however, that the stellar
kinematics have been mocked up by means of a COMPOSITE
mass model, which in turn was used to model the suite of data.
In reality, though, the set of candidate models is unlikely to contain
the true form of the lens potential. As the BIC only applies a relative
weighting scheme between all available models, the final accuracy
and precision of the cosmological inference heavily relies on an
adequate description of the true lens potential. In fact, even the
slightest deviations from the true lens potential, as demonstrated
by our gNFW models, can result in a biased inference of Hy, which
is in agreement with Sonnenfeld (2018), where a simple power-
law model was found to be insufficient to provide an unbiased
measurement of Hy in most cases. As a consequence, the study
presented here can only be regarded as a best-case scenario, and we
strongly encourage to probe a large set of flexible and physically
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motivated lens mass parametrizations with sufficient degrees of
freedom in the radial density profile, to minimize the systematic
errors associated with it.
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Data Model Source resolution ABIC Jfeic
Full FOV
Lensing and dynamics COMPOSITE 68 4.73 0.46
IDEAL (60/40) 66 7.35 0.23
64 2.00 0.76
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Table A1 - continued

Cosmographic forecasts with JWST 4805

Data Model Source resolution ABIC faic
Lensing and dynamics COMPOSITE 68 5.29 0.40
FIDUCIAL (60/40) 66 5.74 0.36
64 1.92 0.78
62 13.71 0.02
60 13.82 0.02
58 16.89 0.01
56 7.40 0.23
54 6.83 0.28

SPEMD 68 134.32 0.0

66 141.00 0.0

64 133.18 0.0

62 142.84 0.0

60 131.63 0.0

58 131.42 0.0

56 133.70 0.0

54 148.96 0.0

Table A2. Extended table covering the results from our joint strong lensing and stellar dynamical
models. The first column indicates the model, mock error type, and S/N of the mock JWST kinematics,
as explained in Sections 3 and 4. The second and third column displays the adopted mass model and
its corresponding source resolution. The fourth, fifth, and sixth column shows their respective BIC
values, BIC differences (with respect to the best model for a given data set and across all source
models and source resolutions) and their relative weights.

Data Model Source resolution ABIC faic
SMALL FOV
Lensing and dynamics COMPOSITE 68 3.46 0.63
IDEAL (60/40) 66 7.34 0.29
64 0.0 1.0
62 10.33 0.13
60 9.45 0.17
58 11.30 0.10
56 4.36 0.54
54 4.08 0.57
SPEMD 68 187.75 0.0
66 181.13 0.0
64 189.48 0.0
62 182.40 0.0
60 171.61 0.0
58 182.04 0.0
56 175.85 0.0
54 168.12 0.0
Lensing and dynamics COMPOSITE 68 5.66 0.57
FIDUCIAL (60/40) 66 8.77 0.36
64 0.0 1.0
62 12.32 0.20
60 13.67 0.15
58 17.96 0.06
56 6.69 0.49
54 5.94 0.55
SPEMD 68 218.30 0.0
66 213.94 0.0
64 232.53 0.0
62 214.91 0.0
60 205.51 0.0
58 223.16 0.0
56 212.28 0.0
54 194.51 0.0
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Table A3. Extended table covering the results from our joint strong lensing and stellar
dynamical models. The first column indicates the data and mock JWST data quality, as
explained in Section 3. The second and third column displays the adopted mass model
and its corresponding source resolution. The fourth, fifth, and sixth column shows their
respective BIC values, BIC differences (with respect to the best model for a given data set
and across all source models and source resolutions) and their relative weights.

Data Model Source resolution ABIC faic
PSF
Lensing and dynamics COMPOSITE 68 238 0.72
IDEAL (60/40) 66 573  0.36
64 0.0 1.0
62 9.09 0.14
60 10.31  0.09
58 1436 0.02
56 463 047
54 3.69  0.57
SPEMD 68 13390 0.0
66 139.07 0.0
64 13291 0.0
62 141.86 0.0
60 13192 0.0
58 131.39 0.0
56 13322 0.0
54 14998 0.0
Lensing and dynamics COMPOSITE 68 4.07 053
FIDUCIAL (60/40) 66 4.41 0.49
64 0.0 1.0
62 10.32 0.09
60 12.07  0.05
58 1524 0.01
56 6.65 0.29
54 491 0.44
SPEMD 68 140.07 0.0
66 146.79 0.0
64 138.68 0.0
62 148.67 0.0
60 137.23 0.0
58 138.06 0.0
56 139.04 0.0
54 155.05 0.0

Table A4. Extended table covering the results from our joint strong lensing and stellar
dynamical models. The first column indicates the model, mock error type, and S/N of the
mock JWST kinematics, as explained in Sections 3 and 4. The second and third column
displays the adopted mass model and its corresponding source resolution. The fourth, fifth,
and sixth column shows their respective BIC values, BIC differences (with respect to the
best model for a given data set and across all source models and source resolutions) and
their relative weights.

Data Model Source resolution ABIC faic
APERTURE
Lensing and dynamics COMPOSITE 68 0.00 1.0
IDEAL (60/40) 66 0.03 0.99
64 0.05 0.98
62 0.01 1.00
60 0.03 0.99
58 0.00 1.0
56 0.01 1.0
54 0.00 1.0
SPEMD 68 0.01 1.0
66 0.06 0.97
64 0.03 0.99
62 0.02 0.99
60 0.00 1.0
58 0.00 0.99
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Table A4 — continued

Cosmographic forecasts with JWST 4807

Data Model Source resolution ABIC faic
56 0.06 0.98
54 0.01 1.0
Lensing and Dynamics COMPOSITE 68 0.04 0.99
FIDUCIAL (60/40) 66 0.12 0.96
64 0.08 0.98
62 0.28 0.88
60 0.04 0.99
58 0.05 0.98
56 0.03 0.99
54 0.03 0.99
SPEMD 68 0.00 1.0
66 0.02 1.0
64 0.01 1.0
62 0.03 0.99
60 0.02 1.0
58 0.0 1.0
56 0.12 0.96
54 0.17 0.93

APPENDIX A: SUMMARY OF MODELS, BIC VALUES, AND POSTERIOR WEIGHTS

This paper has been typeset from a TEX/I&TEX file prepared by the author.
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