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We report progress toward computing the heavy quark momentum diffusion coefficient from the
correlator of two chromoelectric fields attached to a Polyakov loop in pure SU(3) gauge theory. Using a
multilevel algorithm and tree-level improvement, we study the behavior of the diffusion coefficient as a
function of temperature in the wide range 1.1 < T=Tc < 104 in order to compare it to perturbative
expansions at high temperature. We find that within errors, the lattice results are remarkably compatible
with the next-to-leading-order perturbative result.
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I. INTRODUCTION

The matter produced in heavy ion collisions can be
described as a nearly ideal fluid; see Ref. [1] for a recent
review. Because of the high energy density, the created
matter is deconfined and can be characterized as a strongly
coupled quark-gluon plasma (sQGP) [2,3]. One recently
realized interesting feature of the quark-gluon plasma is the
fact that heavy quarks participate in the collective behavior;
see Ref. [4] for a recent review. This is interesting for the
following reason: The relaxation time of heavy quarks is
expected to be ∼ðM=TÞtlightrel , withM being the heavy quark
mass, T being the temperature, and tlightrel being the relax-
ation time of the bulk (light) degrees of freedom in sQGP.
The lifetime of the hot medium created in heavy ion
collisions is about 5–10 fm. Since the collectivity in the
heavy quark sector implies that the relaxation time of
the heavy quark is much shorter than the lifetime of the
medium despite the enhancement factor of M=T, this in
turn means that the relaxation time of the bulk degrees

of freedom is very short, thus further corroborating the
strongly coupled nature of the matter produced in heavy ion
collisions.
Because the relaxation time of heavy quarks is much

larger than the relaxation time of light degrees of freedom,
the dynamics of heavy quarks can be understood in terms of
Langevin equations [5]. The drag coefficient η and the
heavy quark momentum diffusion coefficient κ that enter
into the Langevin equations describe the interaction of
the heavy quarks with the medium and are connected by the
Einstein relation η ¼ κ=ð2MTÞ in thermal equilibrium. The
heavy quark diffusion coefficient has been calculated in
perturbation theory at leading order (LO) [5,6], as well as at
next-to-leading order (NLO) [7]. The NLO correction is
very large, thus calling into question the validity of the
perturbative expansion. Analytic calculations for strong
coupling are available only for supersymmetric Yang-Mills
theories [8,9]. Therefore, lattice QCD calculations for the
heavy quark diffusion coefficient are needed.
It is well known, however, that lattice calculations of the

transport coefficients are very difficult. To obtain the trans-
port coefficients, one has to reconstruct the spectral func-
tions from the appropriate Euclidean-time correlation
functions. At low energies, ω, the spectral function has a
peak, called the transport peak, and thewidth of the transport
peak defines the transport coefficient. Thus, one needs a
reliable determination of the width of the transport peak in
order to obtain the transport coefficient from lattice QCD
calculations, which is difficult [10,11]. In the case of heavy
quarks, this is even more challenging, because the width of
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the transport peak is inversely proportional to the heavy
quarkmass.Moreover, Euclidean-time correlators are rather
insensitive to small widths [11–16]. Recently the problem of
heavy quark diffusion has also been studied out of equilib-
rium with real-time lattice simulations in Refs. [17,18].
Moreover, the heavy quark momentum diffusion coefficient
is a crucial parameter entering the evolution equations
describing the out-of-equilibrium dynamics of heavy quar-
konium in sQGP [19–21].
The above difficulty in the determination of the heavy

quark diffusion coefficient can be circumvented by using an
effective field theory approach. Namely, by integrating out
the heavy quark fields, one can relate the heavy quark
diffusion coefficient to the correlator of the chromoelectric
field strength [22]. The corresponding spectral function does
not have a transport peak, and the small-ω behavior is
smoothly connected to the UV behavior of the spectral
function [22]. The heavy quark diffusion coefficient is given
by the intercept of the spectral function at ω ¼ 0, and no
determination of the width of the transport peak is needed.
Lattice calculations of κ along these lines have been carried
out in the SU(3) gauge theory in the deconfined phase—i.e.,
for purely gluonic plasma [23–27]. The correlator of the
chromoelectric field strength is very noisy, making the lattice
calculations extremely challenging. To deal with this prob-
lem, it is mandatory to use noise-reducing techniques such as
the multilevel algorithm by Lüscher and Weisz [28]. This
algorithm is based on the locality of the action and therefore
is only available for the pure gauge theory. This is the reason
why the calculations of the heavy quark diffusion coefficient
are performed in the SU(3) gauge theory. Another challenge
in the determination of the heavy quark diffusion coefficient
is the reconstruction of the spectral function from the
Euclidean-time correlation function. The above lattice stud-
ies used a simple parametrization of the spectral function to
extract κ. One has to explore the sensitivity of the results on
the parametrization of the spectral function. More generally,
one has to understand to what extent the Euclidean-time
correlation function of the chromoelectric field strength is
sensitive to the small-ω behavior of the corresponding
spectral function.
At sufficiently high temperatures, the perturbative cal-

culations of the heavy quark diffusion coefficient should be
adequate. This suggests that κ=T3 should decrease from
large values at temperatures close to the transition temper-
ature to smaller values when the temperature is increasing.
It would be interesting to see if contacts between the lattice
and the perturbative calculations can be made for the heavy
quark diffusion coefficient, as has already been done for
the equation of state [29], quark number susceptibilities
[30,31], and static correlation functions [32–34]. If such
contacts can be established, these would validate the
methodology used in the lattice extraction of κ. Previous
lattice studies focused on a narrow temperature region [25]
or only considered a single value of the temperature [26].

In Ref. [25], no significant temperature dependence of κ=T3

was found. Large temperatures are needed in the lattice
studies to establish the temperature dependence of κ=T3.
The temperature dependence of κ=T3 is also important for
phenomenology, as with a constant value of κ=T3 it is
impossible to explain simultaneously the elliptic flow
parameter, v2, for heavy quarks and the nuclear modifica-
tion factor [4]. Furthermore, the spectral function of the
chromoelectric field strength correlator is known at NLO
[35]. Using this NLO result at high ω, one can constrain the
functional form of the spectral function used in the analysis
of the lattice correlator.
The aim of this paper is to study the correlator of the

chromoelectric field strength in a wide temperature range in
order to make contact with weak coupling calculations of
the Euclidean correlation function up to NLO in the
spectral function, and also to constrain the temperature
dependence of κ.
The rest of the paper is organized as follows: In the next

section, we go through the procedure of calculating the
Euclidean correlator of the chromoelectric field strength on
the lattice. The spectral function of the chromoelectric
correlator and its relation to κ is discussed in Sec, III. There
we also review the perturbative results for this spectral
function. The short-time behavior of the chromoelectric
correlator and its proper normalization is clarified in
Sec. IV. In Sec. V, we discuss how to model the spectral
functions of the chromoelectric correlator and to extract the
value of κ from the lattice results. Finally, Sec. VI contains
our conclusions.

II. LATTICE RESULTS FOR THE
CHROMOELECTRIC CORRELATOR

For a heavy quark of mass M ≫ πT, the heavy quark
effective theory (HQEFT) provides a method of calculating
the heavy quark diffusion coefficient in the heavy quark
limit by relating it to a chromoelectric correlator in
Euclidean time [9,22]:

GEðτÞ ¼ −
X3
i¼1

hReTr½Uð1=T; τÞEiðτ; 0ÞUðτ; 0ÞEið0; 0Þ�i
3hReTrUð1=T; 0Þi ;

ð1Þ
where T is the temperature, Uðτ1; τ2Þ is the temporal
Wilson line between τ1 and τ2, and the chromoelectric
field, in which the coupling has been absorbed Ei ≡ gEi, is
discretized on the lattice as [22]

Eiðx; τÞ ¼ Uiðx; τÞU4ðxþ î; τÞ −U4ðx; τÞUiðxþ 4̂Þ: ð2Þ

This discretization is expected to be the least sensitive to
ultraviolet effects [22].
To calculate the discretized chromoelectric correlator

defined above on the lattice, we use the standard Wilson

BRAMBILLA, LEINO, PETRECZKY, and VAIRO PHYS. REV. D 102, 074503 (2020)

074503-2



gauge action and the multilevel algorithm [28]. We con-
sider N3

s × Nt lattices and vary the temperature in a wide
range T ¼ 1.1Tc–10

4Tc by varying the lattice gauge
coupling β ¼ 6=g20. Here Tc is the deconfinement phase
transition temperature. We use Nt ¼ 12, 16, 20, and 24 at
each temperature to check for lattice spacing effects and
perform the continuum extrapolation. In this study we use
Ns ¼ 48, except for Nt ¼ 12 lattices, where multiple
spatial volumes are used to check for finite-volume effects.
To set the temperature scale as well as the lattice spacing,

we use the gradient flow parameter t0 [36] and the value
Tc

ffiffiffiffi
t0

p ¼ 0.2489ð14Þ [37]. We use the result of Ref. [37] to
relate the temperature scale or the lattice spacing to β. The
parameters of the lattice calculations, including the statistics,
are given in Table I. In the simulations with the multilevel
algorithm, we divide the lattice into four sublattices and
update each sublattice 2000 times to evaluate the chromo-
electric correlator on a singlegauge configuration.Weuse the
simulation program developed in a prior study [25].

In order to obtain the heavy quark diffusion coefficient,
the lattice chromoelectric correlator needs to be renormal-
ized and then extrapolated to the continuum.1 The renorm-
alization coefficient ZEðβÞ≡ ZEðg20Þ of the chromoelectric
correlator in the case of the Wilson gauge action has been
calculated at one loop [38]:

Z1−loop
E ¼ 1þ 0.1377185690942757ð4Þg20: ð3Þ

We will use this one-loop correction in the present study.
However, we expect that the one-loop result for ZE is not
precise enough. As will be clear from the results of the lattice
calculations, this is indeed the case. The perturbative error in
ZEðβÞ affects both its absolute value for fixed β and its β
dependence. For the continuum extrapolation, it is important
to estimate the uncertainty in the β dependence of the
renormalization constant. The error in the absolute value of
ZE could be corrected after the continuum extrapolation is
done by introducing an additional multiplicative factor.
We will postpone the discussion of this multiplicative factor
to Sec. IV. To estimate the error in the β dependence of ZE,
we consider the tadpole improved result for ZE, namely
Ztad
E ¼ 1=u0, with u0 being the plaquette expectation value

[25]. The difference in the β dependence of Ztad
E and Z1−loop

E
can be used as an estimate of the error of the β dependence
of ZE. Therefore, at each temperature we consider the
variation in Z1−loop

E · u0 in the β range that corresponds to
Nt ¼ 12–24 as an estimate of the systematic errors in ZE for
bare gauge couplings in that range.
The chromoelectric correlator decays rapidly with

increasing τ. This feature can be understood from the
leading-order (tree-level) result [22]:

GLO
E ðτÞ
g2CF

≡Gnorm
E ðτÞ¼ π2T4

�
cos2ðπτTÞ
sin4ðπτTÞ þ

1

3sin2ðπτTÞ
�
; ð4Þ

where CF ¼ 4=3 is the Casimir of the fundamental repre-
sentation of SU(3). In Fig. 1, we show ZEGE=Gnorm

E for
different temperatures calculated on the largest, 483 × 24
lattice. We see a significant temperature dependence in this
ratio. Also shown in the figure are the numerical results for
the lowest temperature, T ¼ 1.1Tc, calculated for different
Nt. As one can see from the figure, the cutoff (Nt)
dependence is significant even for relatively large values
of τT. We expect that the cutoff dependence increases with
decreasing τT, except when τ is of the order of the lattice
spacing, because the cutoff dependence of ZEGE=Gnorm

E is
proportional to ða=τÞ2. We see that our lattice data follow

TABLE I. Parameters of the lattice calculations.

T=Tc Nt × N3
s β Nconf

1.1 12 × 483 6.407 1350
16 × 483 6.621 2623
20 × 483 6.795 2035
24 × 483 6.940 2535

1.5 12 × 483 6.639 1801
12 × 323 6.639 1557
12 × 242 6.639 1000
16 × 483 6.872 2778
20 × 483 7.044 2081
24 × 483 7.192 2496

2.2 12 × 483 6.940 1535

3 12 × 483 7.193 1579
16 × 483 7.432 1553
20 × 483 7.620 1401
24 × 483 7.774 1663

6 12 × 483 7.774 1587
16 × 483 8.019 1556
20 × 483 8.211 1258
24 × 483 8.367 1430

10 12 × 483 8.211 1807
12 × 323 8.211 1737
12 × 243 8.211 1000
16 × 483 8.458 2769
20 × 483 8.651 2073
24 × 483 8.808 2423

10000 12 × 483 14.194 1039
16 × 483 14.443 1157
20 × 483 14.635 1139
24 × 483 14.792 1375

20000 12 × 483 14.792 1948

1We will use the notation GE for both the lattice and the
continuum version of the chromoelectric correlator to keep the
notation simple. It should be clear from the context which one we
are referring to. We will use different notations for the continuum
and the lattice version of the chromoelectric correlator only when
it is absolutely necessary.
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this expectation for τT > 0.2. This observation is important
for estimating the reliability of the continuum extrapola-
tions. A similar Nt dependence is observed at other
temperatures.
In order to reduce discretization errors, we turn to a tree-

level improvement procedure [39,40], where the leading-
order results in the continuum [Eq. (4)] and the lattice
perturbation theory are matched. The LO lattice perturba-
tion theory gives [24]

GLO;lat
E ðτÞ
g2CF

¼
Z

π

−π

d3q
ð2πÞ3

q̃2eq̄Ntð1−τTÞ þ q̃2eq̄NtτT

3a4ðeq̄Nt − 1Þ sinhðq̄Þ ; ð5Þ

where

q̄ ¼ 2arsinhðq̃=2Þ; ð6Þ

q̃2 ¼
X3
i¼1

4 sin2ðqi=2Þ: ð7Þ

The improved distance τ̄ is then defined so that
GLO

E ðτ̄Þ ¼ GLO;lat
E ðτÞ. In Fig. 2, we show our results for

ZEG
imp
E ðτÞ=Gnorm

E ¼ ZEGEðτ̄Þ=Gnorm
E . From the figure, we

can observe that after the tree-level improvement, the
ratio ZEGE=Gnorm

E appears monotonically increasing with
increasing τT and has a decreasing slope as a function of
temperature. At the highest temperature, T ¼ 104Tc, we
see a nearly horizontal τ-independent line. Moreover, we
observe a large reduction of cutoff effects for all temper-
atures when tree-level improvement is used. As an exam-
ple, we show this reduction at the bottom of Fig. 2 for the
lowest temperature, T ¼ 1.1Tc. A similar reduction in the
Nt dependence is seen at other temperatures. Due to its
impact, we will use the tree-level improvement for the
rest of this paper, and therefore, unless otherwise indi-
cated, drop the overline from τ̄ and the superscript “imp”
from Gimp

E .
The normalized chromoelectric correlator shown in

Fig. 2 has a significant τ dependence. We conclude that

FIG. 1. The chromoelectric field correlator from Eq. (1) nor-
malized with Eq. (4). Top: all measured temperatures for
Nt ¼ 24. Bottom: all measured temporal extents Nt for the
smallest temperature.

FIG. 2. The chromoelectric field correlator from Eq. (1) nor-
malized with Eq. (4) and tree-level-improved with Eq. (5). Top:
all measured temperatures for the biggest Nt ¼ 24. Bottom: all
measured temporal extents Nt for the smallest temperature.
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the LO perturbative result does not capture the key features
of the chromoelectric correlator. Only at the highest
temperature, T ¼ 104Tc, is the τ dependence of the
correlator well described by the leading-order result.
One may wonder whether the observed behavior of the
normalized chromoelectric correlator is due to thermal
effects that are not present at leading order, like the physics
of the heavy quark transport, or is due to higher-order
effects at zero temperature. In order to answer this question,
we show our lattice results in Fig. 3 as a function of τ in
physical units rather than a function of τT. This figure
shows that the ratio of the chromoelectric correlator to the
free theory result is largely temperature independent,
implying that the chromoelectric correlator is dominated
by the vacuum part of the spectral function. It thus becomes
even more important to quantify the temperature depend-
ence of the chromoelectric correlator. This can be done by
considering the following ratio of the normalized correlator
at a fixed value of β, but at two temperatures corresponding
to temporal extents Nt and 2Nt. Lattice artifacts are
canceled out in the double ratio:

R2ðNtÞ ¼
GEðNt; βÞ
Gnorm

E ðNtÞ
=
GEð2Nt; βÞ
Gnorm

E ð2NtÞ
: ð8Þ

Furthermore, if the LO result is a good approximation of
the correlator and κ=T3 is temperature independent, R2ðNtÞ
should be 1 and independent of the temperature, while the
temperature dependence of κ=T3 will make this ratio
different from 1 and also temperature dependent. The
amount by which R2ðNtÞ deviates from 1 also depends
on the value of κ=T3: small values of κ=T3 will result only
in small deviations of R2ðNtÞ from 1. Our results for R2ðNtÞ
are shown in Fig. 4. At the highest temperature, the double
ratio is consistent with 1 within errors, perhaps not
surprisingly, as at high temperatures the temperature
dependence of κ=T3 is expected to be logarithmic, and

thus rather mild. At lower temperatures, however, we see
deviations from 1 in the double ratio at the few-percent
level, which increase with decreasing temperature and
increasing τT. On the other hand, for τT < 0.2, the double
ratio is close to 1, implying that there the correlator is
dominated by the T ¼ 0 part of the spectral function. In
any case, thermal effects in the chromoelectric correlator,
which encode the value of κ, are small, at the level of a
few percent. This fact implies that extracting κ from
lattice determinations of the chromoelectric correlator is
challenging.
Before extracting the heavy quark diffusion coefficient,

we need to address finite-volume effects and perform the
continuum extrapolation of ZEGE. Most of our calculations
have been performed using Ns ¼ 48. To check for finite-
volume effects for Nt ¼ 12, we have performed calcula-
tions using spatial sizes N3

s ¼ 243; 323; 483 at two temper-
atures, T ¼ 1.5Tc and T ¼ 10Tc. The smallest spatial
volume here corresponds to the aspect ratio Ns=Nt ¼ 2.
The detailed study of finite-volume effects is discussed in
Appendix A. We find that the finite-volume effects are
small, considerably smaller than other sources of error
down to the aspect ratio Ns=Nt ¼ 2. Therefore, at the
current level of precision, using a Ns ¼ 48 lattice is
sufficient even for Nt ¼ 24.
Next, we perform the continuum extrapolations of ZEGE.

The systematic errors in the renormalization constant
estimated above are combined with the statistical errors
of the chromoelectric correlator before performing the
continuum extrapolation. In the interval 0.1 ≤ τT ≤ 0.45,
we have a sufficient number of data points to perform the
continuum extrapolations. We first interpolate the data for
each Nt in τT using ninth-order polynomials to estimate
ZEGE at common τT values. We perform linear extrapo-
lations in 1=N2

t ¼ ðaTÞ2 of ZEGE at these τT values using
lattices with Nt ¼ 16, 20, and 24. As an example, we show
the continuum extrapolation for selected values of τT in

FIG. 3. The data of Fig. 2 in physical units.
FIG. 4. The ratio [Eq. (8)] of simulations with the same β at
different temperatures with Nt ¼ 12.
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Fig. 5. One can see that the Nt ¼ 12 data do not lie in the
1=N2

t scaling region. Therefore, we also perform extrap-
olations to Nt ¼ 12 data with a ðaTÞ4 term included. The
difference between these continuum extrapolations is used
as an estimate of the systematic error of the continuum
result. The slope of the a2 dependence is increasing with
decreasing τT, as can be seen from Fig. 5. This is expected;
the cutoff effects are larger at smaller τT. However, at the
smallest value, τT ¼ 0.1, the slope of the a2 dependence
becomes smaller again contrary to expectations. We take
this as an indication that the cutoff effects in this region
cannot be described by a simple a2 or a2 þ a4. As shown in

Appendix A, the slope of the a2 dependence increases
monotonically only till τT ≥ 0.175. Therefore, we consider
the continuum extrapolation to be reliable only for
τT ≥ 0.175. For an additional cross-check, we also perform
the continuum extrapolation of the lattice data without
tree-level improvement. This is discussed in Appendix A,
where further details of the continuum extrapolations can
be found.
The continuum-extrapolated chromoelectric correlator

normalized by Gnorm
E is shown in Fig. 6 for all temperatures

as a function of τT. The continuum-extrapolated results
share the general features of the tree-level-improved results
at nonzero lattice spacing in terms of τ and temperature
dependence. In particular, we see a strong dependence on
τT, except for the highest temperature, indicating that the
leading-order result does not capture the τT dependence of
GE. We will try to understand these features of the
correlator in the next sections.

III. SPECTRAL FUNCTIONS AND DIFFUSION
COEFFICIENT IN PERTURBATION THEORY

In order to determine the heavy quark diffusion coef-
ficient κ from the chromoelectric correlator GE, one has to
use the relation between this correlator and the spectral
function ρðω; TÞ:

GEðτÞ ¼
Z

∞

0

dω
π

ρðω; TÞKðω; τTÞ; ð9Þ

where

Kðω; τTÞ ¼ cosh ðωT ðτT − 1
2
ÞÞ

sinhð ω
2TÞ

:

The heavy quark diffusion coefficient is determined in
terms of ρ through the Kubo formula [41]:

κ≡ lim
ω→0

2Tρðω; TÞ
ω

: ð10Þ

At the leading order of the perturbation theory, the
spectral function is given by [22]

ρLOðω; TÞ ¼ g2ðμωÞCFω
3

6π
; ð11Þ

where the coupling has been evaluated at the scale μω. We
use the five-loop running coupling constant in this work
[42]. At LO, the scale μω is arbitrary. A natural choice
is μsimple

ω ¼ maxðω; πTÞ [26]. The LO spectral function
[Eq. (11)] gives κ ¼ 0.
At NLO, the perturbative calculation of ρðω; TÞ needs

hard thermal loop (HTL) resummation for ω≲mE, withmE

FIG. 5. The continuum extrapolation. The lines represent the fit
performed with the three largest Nt’s at temperature T ¼ 1.1Tc at
different values of τT, shown with different colors. The fitted line
is extrapolated to 0 and to 1=122 to show the quality of the fit
compared to points at those locations. The point at zero includes
the systematic error coming from the inclusion of the smallest
lattice.

FIG. 6. The continuum extrapolation for all temperatures as a
function of τT.
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being the LO Debye mass: mE ¼ ffiffiffiffiffiffiffiffiffiffiffi
Nc=3

p
gT in the pure

gauge theory. The full NLO result of ρðω; TÞ has been
calculated in Ref. [35]. The NLO spectral function provides
the LO nonvanishing result for κ:

κLO

T3
¼ g4CFNc

18π

�
ln
2T
mE

þ ξ

�
; ð12Þ

where ξ ¼ 1
2
− γE þ ζ0ð2Þ

ζð2Þ ≃ −0.64718. For ω≳ T, there is

no need for resummation when calculating the spectral
function at NLO; the naive (nonresummed) NLO result for
ρðω; TÞ in the pure gauge case reads

ρnaiveðω;TÞ

¼ g2CFω
3

6π

�
1þ g2

ð4πÞ2
�
Nc

�
11

3
ln

μ2ω
4ω2

þ149

9
−
8π2

3

���

þg2CF

6π

g2

2π2

�
Nc

Z
∞

0

dqnBðqÞ
�
ðq2þ2ω2Þ ln

				qþω

q−ω

				
þqω

�
ln
jq2−ω2j

ω2
−1

�

þω4

q
P

�
1

qþω
ln
qþω

ω
þ 1

q−ω
ln

ω

jq−ωj
���

; ð13Þ

where nBðqÞ ¼ ðexpðq=TÞ − 1Þ−1 is the Bose-Einstein
distribution, P takes the principal value, and g2≡
g2ðμωÞ. The first line of Eq. (13) gives the NLO T ¼ 0
contribution, and the subsequent lines carry the thermal
effects. For the NLO ρðω; TÞ, μω may be set such that the
NLO T ¼ 0 contribution vanishes [35]:

lnðμωÞ ¼ lnð2ωÞ þ ð24π2 − 149Þ
66

; ð14Þ

and the T ¼ 0 part of Eq. (13) reduces to Eq. (11). This is a
convenient choice of scale forω ≫ T. For ω ∼ T or smaller,
a convenient choice of scale was proposed in Ref. [43]:

lnðμωÞ ¼ lnð4πTÞ − γE −
1

22
; ð15Þ

in the pure gauge case. We switch between these two scales
when they become equal at ω ≃ 0.8903T [35].
The heavy quark diffusion coefficient has been calcu-

lated at NLO, and the result reads [7]

κNLO

T3
¼ g4CFNc

18π

�
ln
2T
mE

þ ξþ 2.3302
mE

T

�
: ð16Þ

The NLO result for κ cannot be replicated from currently
known spectral functions, as that would require ρðω; TÞ to
be available at NNLO, which it is not. Both the LO and
NLO results for κ are obtained under the weak coupling
assumption mE ≪ T. This condition, however, is not

satisfied for most of the temperatures of interest. As a
consequence, one obtains an unphysical behavior at LO—
i.e., that κ becomes negative for T < 103Tc.
One can also calculate κ using the kinetic theory. The

corresponding expression reads [7,44]

κLO ¼ g4CF

12π3

Z
∞

0

q2dq
Z

2q

0

p3dp
ðp2 þ Π00Þ2

× NcnBðqÞð1þ nBðqÞÞ
�
2 −

p2

q2
þ p4

4q4

�
: ð17Þ

If we do not expand the temporal gluon self-energy,
Π00ðpÞ, which is formally of order g2, the above expression
contains higher-order contributions to κ as well. Therefore,
the above expression can be considered as the resummed
leading-order result. The temporal gluon self-energy
depends on the gauge choice. For small momenta, it can
be expanded as

Π00ðpÞ ¼ m2
E −

Nc

4
g2Tpþ…: ð18Þ

The first two terms in this expansion are gauge indepen-
dent. We can take either the first term or the first and second
terms in the above expression and evaluate the integral in
Eq. (17) numerically. Only keeping the first term in the
above expression for Π00 already leads to a positive result,
while keeping the second term as well leads to an enhance-
ment of the κ value. We present all the different perturbative
results for κ as a function of temperature in Fig. 7. The scale
of the coupling is the one defined in Eq. (15).
At the highest temperature considered in this study,

T ¼ 104Tc, we expect that the NLO result can provide
some guidance on the properties of the spectral function
and on the τ dependence of the chromoelectric correlator.
Therefore, in Fig. 8 we show different versions of the
NLO spectral function, including the zero-temperature
one. The full NLO spectral function can be described well
by the simple κLOω=ð2TÞ form for ω < 0.02T, while it

FIG. 7. Perturbative estimates of κ for the pure gauge theory as
a function of temperature calculated at LO and NLO, as well as
using the resummed leading-order expression [Eq. (17)].
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approximately agrees with the T ¼ 0 result for ω > 2T.
The full NLO result and the naive (unresummed) NLO
result agree for ω > 0.6T. At small ω, the naive NLO result
is logarithmically divergent. This divergence cancels
against contributions coming from the scale mE in the
resummed expression. We can model the spectral function
by smoothly matching the κLOω=ð2TÞ behavior at small ω
with the zero-temperature spectral function at large ω. We
call this the perturbative step form. It is also shown in Fig. 8
by the blue dotted line. By using the NLO spectral function
evaluated for μ ¼ μω, we can calculate the corresponding
chromoelectric correlator, which is shown in Fig. 9.
Varying the renormalizarion scale by a factor of 2 around
μω leads only to very small changes of the correlator,
roughly corresponding to the width of the line in Fig. 9. We
also calculate the chromoelectric correlator corresponding
to the perturbative step form. The resulting correlator is
indistinguishable from the one obtained using the NLO
spectral function. This means that the additional structures
in the spectral function in the region 0.02 < ω=T < 0.6
play no significant role when it comes to the correlator. We
have also considered a perturbative step model using κNLO.
While using the NLO result for κ significantly enhances the
spectral function in the low-ω, region it only leads to a
0.2% enhancement of the chromoelectric correlator com-
pared to the one obtained using κLO. Thus, the correlator is
not sensitive to the small-ω part of the spectral function at
the highest temperatures. At lower temperatures, κ=T3 gets
larger, and the contribution of the low-ω part of the spectral
functions is more prominent. Therefore, it is at lower
temperatures that the value of κ can be constrained by
accurate calculations of the chromoelectric correlator.
While at T ¼ 104Tc, one may expect the resummed

NLO result to provide an adequate description of the

spectral function, this is not expected at lower temperatures,
because, as pointed out above, numerically mE > T. In
particular, for T < 103Tc, the resummed spectral function
turns negative at some point in the region ω < T, thus
implying that the resummed perturbative result is not
applicable in this ω range. In Sec. V, we will discuss the
implications of this finding.
In Fig. 9, we also show the continuum limit of the

chromoelectric correlator at the high temperature T ¼
104Tc for comparison. The continuum-extrapolated lattice
result of the chromoelectric correlator has the same shape
as the NLO calculation. We note, however, that our
continuum data differ from the perturbative curve by a
factor 1.2, which indicates that the renormalization constant
is not accurate. If we normalize the above lattice result to
the correlator obtained from the NLO spectral function
discussed above at τT ¼ 0.19, we find that the two agree
within errors.

IV. SHORT-TIME BEHAVIOR OF THE LATTICE
RESULTS ON THE ELECTRIC CORRELATOR

The continuum results of GE normalized by Gnorm
E show

significant dependence on τ. The analysis in Sec. II implies
that this cannot be caused by thermal effects (cf. Figs. 3
and 4). The LO result does not take into account the effect
of the running of the gauge coupling, and this could be the
reason why GLO

E , or equivalently Gnorm
E (which is the same

up to a multiplicative factor), does not capture the τ
dependence of the chromoelectric correlator. Therefore,
as an alternative normalization, we consider a correlator
obtained from Eq. (9) using the zero-temperature NLO

FIG. 8. The perturbative spectral functions ρðω; TÞ at T ¼
104Tc for different orders of perturbation theory. The dotted lines
on the left indicate the perturbative estimates of κ given by
Eqs. (12) (LO) and (16) (NLO).

FIG. 9. The chromoelectric correlator at T ¼ 104Tc calculated
from the NLO spectral function (orange band) and the perturba-
tive step form of the spectral function (green band). The orange
band completely overlaps with the green band, and it is hardly
distinguishable from it. The errors for both orange and green
bands come from varying the scale by a factor of 2. In blue, we
show the continuum limit of the T ¼ 104Tc lattice data.
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result for the spectral function with a running coupling
constant evaluated at scale μω given by Eqs. (14) and (15).
We label the corresponding correlator as GNLOþ

E . The
numerical results for GE=G

NLOþ
E are shown in Fig. 10.

We see that this ratio increases less with increasing τ. We
expect that for small enough τT, one would see a plateau in
GE=G

NLOþ
E . This is not the case, however, because the

continuum extrapolation is not reliable for τT < 0.17, and
for larger τT there are some small thermal effects. On the
other hand, given the uncertainties, we could still fit
GE=G

NLOþ
E with a constant for 0.17 ≤ τT ≤ 0.19. This

indicates that GNLOþ
E captures the τ dependence of the

chromoelectric correlator obtained on the lattice much
better. However, even at the smallest τ, the ratio GE=
GNLOþ

E is different from 1. This is most likely due to the fact
that the one-loop result is not accurate for ZE. As shown in
the previous section, even for the highest temperature,
T ¼ 104Tc, the NLO result is lower by a factor of 1.2, as
seen in Fig. 9, although its τ dependence agrees well with
the continuum-extrapolated lattice data. Therefore, we
introduce an additional normalization factor, CN, by nor-
malizing the ratio GE=G

NLOþ
E to 1 at τT ¼ 0.19. To check

the uncertainty of CN due to the choice of the normalization
point, we also consider τT ¼ 0.175 as a possible normali-
zation point. Furthermore, we vary the scale μω by a factor

of 2 around the optimal value when evaluating CN. The
numerical values of CN are shown in Table II for different
temperatures. The dependence on the normalization point is
shown in the systematic error and is of the same order as the
scale dependence. The additional normalization constant
CN decreases with increasing temperature. This is due to
the fact that the β range used in the evaluation of the lattice
correlator is increasing with increasing temperature, and the
one-loop result is more reliable at large-β values. We will
normalize GE=G

NLOþ
E with CN given in Table II before

comparing with the model spectral functions used for the
extraction of κ.

V. MODELING THE SPECTRAL FUNCTION
AND DETERMINATION OF κ

To obtain the heavy quark diffusion coefficient from the
continuum-extrapolated lattice results, we need to assume
some model for the spectral function. We will use the NLO
results on the spectral function as well as κ to guide us in
this process. We also need to consider how sensitive the
Euclidean-time chromoelectric correlator is to the spectral
function in different ω regions. From the previous sections,
it is clear that GE is dominated by the large-ω part of the
spectral function, and thermal effects in the spectral
function contribute at the level of a few percent to the
correlator.
It is reasonable to assume that at large enough ω,

perturbation theory is reliable even if the condition
mE ≪ T is not satisfied. This is because for large-ω HTL,
resummation is not important, as will be detailed later.
Certainly, at zero temperature the perturbative calculation
of ρðω; TÞ is reliable for ω ≫ ΛQCD. Therefore, we assume
that for ω > ωUV, the spectral function is given by
ρUVðω; TÞ, which is calculated perturbatively. On the other
hand, for sufficiently small ω, the spectral function is
given by

ρIRðω; TÞ ¼ ωκ

2T
; ð19Þ

andwe can assume that ρðω; TÞ ¼ ρIRðω; TÞ forω < ωIR. In
the regionωIR < ω < ωUV, the form of the spectral function
is not known, in general, and this lack of knowledge will
generate an uncertainty in the determination of κ. Based on
these considerations, we adopt the following procedure to
estimate κ:
(1) For a given value of κ, we construct the model

spectral function that is given by the NLO result at
high energy, ω > ωUV, and by Eq. (19) at low
energy, ω < ωIR.

(2) For intermediate ω, namely ωIR ≤ ω ≤ ωUV, we
consider various forms of the spectral function
such that the total spectral function is smooth, as
described below.

FIG. 10. Continuum extrapolation for all temperatures as a
function of τT.

TABLE II. Normalization factor CN for three different renorm-
alization scales (rows) and for each measured temperature
(columns) at τT ¼ 0.19.

Tc

μ 1.1 1.5 3 6 10 104

0.5μω 1.82(5) 1.74(5) 1.61(3) 1.52(3) 1.47(2) 1.20(1)
1μω 1.81(5) 1.73(5) 1.60(3) 1.51(3) 1.46(2) 1.20(1)
2μω 1.84(5) 1.76(5) 1.62(3) 1.53(3) 1.48(2) 1.20(1)
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(3) We match the continuum-extrapolated lattice result
for the chromoelectric correlator to the correlator
obtained from the model spectral function at small
τT and adjust the value of κ to obtain the best
description of the lattice result. We take care that τT
is not too small, so that the procedure is not affected
by lattice artifacts.

(4) We estimate the uncertainties due to modeling the
spectral function for ωIR ≤ ω ≤ ωUV, due to the
normalization point in τT, and due to the choice of
the renormalization scale in the NLO result.

We consider two possible forms of the spectral functions
that are continuous and are based on simple interpolations
between the small-ω (IR) region and the large-ω (UV)
region:

ρlineðω; TÞ
¼ ρIRðω; TÞθðωIR − ωÞ

þ
�
ρIRðω; TÞ − ρUVðω; TÞ

ωIR − ωUV ðω − ωIRÞ þ ρIRðω; TÞ
�

× θðω − ωIRÞθðωUV − ωÞ þ ρUVðω; TÞθðω − ωUVÞ
ð20Þ

and

ρstepðω; TÞ ¼ ρIRðω; TÞθðΛ − ωÞ þ ρUVT¼0ðω; TÞθðω − ΛÞ:
ð21Þ

The latter case corresponds to ωIR ¼ ωUV ¼ Λ, and the
value of Λ is self-consistently determined by the continuity
of the spectral function for a given κ. Thus, this model
depends only on κ. In the former case, additional consid-
erations are needed to fix ωIR and ωUV, which are described
below. We will refer to these two forms as the line model
and the step model, respectively.
The NLO result for the spectral function naturally

interpolates between the IR and UV regions, but it is not
reliable for small ω even at the highest temperature, as
discussed in Sec. III. However, it can provide some
guidance on how to choose ωIR and ωUV. As mentioned
above, for ω > T, HTL resummation may not be important,
and the naive and resummed NLO result for the spectral
function should agree. As discussed in Appendix B, the
resummed and naive NLO results for the spectral function
agree well for ω > 2.2T. Furthermore, the thermal con-
tribution to ρðω; TÞ is about the same for ω > 2.2T at the
lowest and the highest temperatures when normalized by
ωT2. This indicates that the perturbative calculations are
reliable for these values of ω. Therefore, we choose
ωUV ¼ 2.2T. At the highest temperatures, the resummed
NLO result is well described by the linear form given by
Eq. (19) with κ ¼ κLO for ω < 0.02T. Therefore, ωIR ¼
0.01T appears to be a reasonable choice. The NLO result

for κ is significantly larger than the LO result, implying that
the spectral function at low ω is also larger and therefore
will match ρUVðω; TÞ at larger ω. We find that ρIRðω; TÞ
and ρUVðω; TÞ are equal at around ω ¼ 0.4T. Therefore,

FIG. 11. The shapes of different spectral function models
ρðω; TÞ at (from top to bottom) T ¼ 1.1Tc, T ¼ 6Tc, and
T ¼ 104Tc. The arguments of ρline in square brackets stand
for ½ωIR;ωUV�.
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besides ωIR ¼ 0.01T, we will also use ωIR ¼ 0.4T and
ωIR ¼ 1T in our analysis.
In Fig. 11, we show the spectral functions obtained from

Eqs. (20) and (21), assuming κ ¼ κNLO in ρstep and ρline, and
three different ωIR’s at three representative temperatures,
T ¼ 1.1Tc; 6Tc, and 104Tc. From the figure, we see that at
the lowest temperature, the ρstepðω; TÞ model matches the
UV behavior at larger ω without the dip around ω ∼ T of
the ρlineðω; TÞ model. The ρline form with ωIR ¼ 0.01T and
ρstep provide upper and lower bounds for the spectral
function at T ¼ 1.1Tc. The picture is the same for T ¼
1.5Tc and T ¼ 3Tc. At T ¼ 6Tc, all forms of the spectral
functions provide nearly identical results. At the highest
two temperatures, the possible choices of the spectral
functions are limited by ρline with ωIR ¼ 0.01T and
ωIR ¼ T.
Using the models for the spectral functions described

above, we have calculated the corresponding Euclidean-
time chromoelectric correlators for different values of κ and
compared these with the continuum-extrapolated lattice
results at each temperature to estimate the heavy quark
diffusion coefficient. As discussed in the previous section,
the continuum-extrapolated lattice results need an addi-
tional renormalization because the one-loop renormaliza-
tion constant, ZE, is not accurate. Therefore, we have
matched the correlator obtained from the model spectral
function to the continuum-extrapolated lattice data at
τT ¼ 0.19. The resulting multiplicative constants CN are
slightly different from those shown in Table II. This is
because the correlators obtained from the model spectral
functions are slightly different from GNLOþ

E at τT ¼ 0.19
due to the thermal contribution. We demonstrate this
procedure in Appendix B for different model spectral
functions. Different forms give different values of κ, and
this is the dominant source of systematic error in the
determination of κ. We have also studied the dependence of
κ on the choice of the normalization point in τ and the
choice of the renormalization scale. Choosing the normali-
zation point in the range 0.17 ≤ τT ≤ 0.19 leads to an

8% variation in the resulting κ. Varying the renormalization
scale by a factor of 2 results in a similar variation.
Putting everything together, we obtain the following

estimates for the heavy quark diffusion coefficient from the
analysis:

1.91 <
κ

T3
< 5.4 for T ¼ 1.1Tc; ð22Þ

1.31 <
κ

T3
< 3.64 for T ¼ 1.5Tc; ð23Þ

0.63 <
κ

T3
< 2.20 for T ¼ 3Tc; ð24Þ

0.43 <
κ

T3
< 1.05 for T ¼ 6Tc; ð25Þ

0 <
κ

T3
< 0.72 for T ¼ 10Tc; ð26Þ

0 <
κ

T3
< 0.10 for T ¼ 104Tc; ð27Þ

although one should be reminded that, as discussed at the
end of Sec. III, the lattice data are weakly sensitive to κ at
the highest temperature. The dominant uncertainty in the
above result comes from the form of the spectral function
used in the analysis and the uncertainty of the continuum-
extrapolated lattice results.
We compare our result on κ with the results of other

lattice studies [13,23–26] in terms of the spatial diffusion
coefficient Ds, which is given by the relation κ=T3 ¼
2=ðDsTÞ, in the temperature range Tc–3Tc. This is shown
in Fig. 12. We see that our results agree well with the other
lattice determinations, with the exception of the one in
Ref. [13] that is based on charmonium correlators. This is
likely due to the fact that the determination of Ds from the
quarkonium correlators is not accurate, since the width of
the transport peak is difficult to determine [11,12].

FIG. 12. Our results compared to existing lattice studies. The
shaded band shows the perturbative behavior [Eq. (16)] and the
effect of the scale μω being varied by a factor of 2.

FIG. 13. Temperature dependence of our results compared to
the NLO result. The shaded bands include the errors coming from
varying the scale by a factor of 2. The blue band also includes the
statistical error.
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The temperature dependence of the heavy quark diffu-
sion coefficient in the entire temperature region is shown in
Fig. 13. We clearly see the temperature dependence of
κ3=T. The κ obtained on the lattice is not incompatible
with the NLO result given the large errors. Inspired by this,
we fit the temperature dependence of the lattice result
by modeling it on Eq. (16) but keeping the coefficient of
mE=T as a free parameter C. From the fit, we obtain
C ¼ 3.81ð1.33Þ, which is larger than the NLO perturbative
result C ≈ 2.3302.
We note that our result is significantly larger than the

simple holographic estimate [45]: 2πDsT ¼ 1. However,
more recent holographic estimates [46] are close to our
results. Finally, comparing with more experimental quan-
tities, we note that our result for Ds at the lowest temper-
ature is in agreement with the calculations of D [47] and B̄
[48] mesons propagating in a medium of light hadrons,
which find 2πDsT ∼ 5 for T ≈ Tc, but much smaller than an
earlier pion gas study [49] that found 2πDsT ≈ 17 for
T ≈ Tc. Experimental determinations of the D-meson
azimuthal anisotropy coefficient ν2 at ALICE [50] and
STAR [51] estimate at T ≈ Tc that κ=T3 ≈ 1.8–8.38 and
κ=T3 ≈ 1.05–6.28, respectively. These are in agreement
with our findings. All these experimental determinations
include mass-dependent contributions, while our determi-
nation of κ is in the heavy quark limit. Therefore, the two
should agree up to 1=m corrections.

VI. CONCLUSIONS

In this paper, we have studied the chromoelectric
correlator GE at finite temperature on the lattice with the
aim of extracting the heavy quark diffusion coefficient κ.
The calculations have been performed in quenched QCD
[SU(3) gauge theory] in order to obtain small statistical
errors with the help of the multilevel algorithm. We have
studied the dependence of the chromoelectric correlator on
the Euclidean time, τ, in a wide temperature range in order
to enable the comparison with weak coupling results. It
turned out that the τ dependence of the electric correlator is
poorly captured by the leading-order result. Going beyond
the leading-order result and incorporating the effect of the
running coupling in the corresponding spectral function
results in a correlation function GNLOþ

E that can capture the
τ dependence of the lattice result much better.
To fully describe the τ dependence of GE calculated on

the lattice, the effect of κ encoded in the low-ω part of the
chromoelectric spectral function has to be considered. At
high ω, we have used forms of the spectral function that are
motivated by the next-to-leading-order perturbative results.
Fitting the lattice results on GE, we have obtained values of
κ at different temperatures. We observe that the sensitivity
of the chromoelectric correlator to κ is small, varying
from a few percent at the lowest temperatures to the
subpercent level at the highest temperatures. This finding

is corroborated by a model-independent analysis of the
chromoelectric correlator, cf. Figs. 3 and 4. It is this small
sensitivity that makes the lattice determination of κ quite
challenging. Our main result is summarized in Fig. 13,
which shows the temperature dependence of the heavy
quark diffusion coefficient. For T < 2Tc, our results agree
with other lattice determinations, while at higher temper-
atures, they appear consistent with the NLO result.
One of the shortcomings of the present analysis is the use

of the one-loop result for the renormalization constant, ZE,
which, as we argued, is not reliable. The use of tadpole-
improved one-loop perturbation theory will not help, since
it will make ZE even larger, while in order to achieve
agreement of the lattice and NLO results at small τ, we need
a smaller ZE than the one-loop result. Clearly, a non-
perturbative renormalization procedure will be needed, but
this is beyond the scope of the present paper.
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APPENDIX A: INFINITE-VOLUME LIMIT AND
CONTINUUM EXTRAPOLATION

To check to what extent using lattices with an aspect ratio
Ns=Nt smaller than 4 leads to visible finite-volume effects,
we have performed calculations at two temperatures, T ¼
1.5Tc and T ¼ 10Tc, on N3

s × 12 lattices with Ns ¼ 24, 32,
and 48. The numerical results are shown in Fig. 14 for some
representative values of τT. As one can see from the figure,
the finite-volume effects are small. We have also attempted
to perform an infinite-volume extrapolation by fitting the
lattice results with a 1=N3

s form. The corresponding fits are
shown in the figure as lines and bands together with the
infinite-volume result. It is clear from the figure that
the differences between the infinite-volume result and
the lattice results with different Ns values are of the order
of the statistical errors. Therefore, the use of Ns ¼ 48 is
justified.
As discussed in the main text, to obtain the continuum

result for the chromoelectric correlator, we first perform the
interpolation in τT, and then for each value of τT we
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perform the continuum extrapolation using the a=N2
t form

withoutNt ¼ 12 data, or using the a=N2
t þ b=N4

t form with
Nt ¼ 12 data included (a and b are fit constants). We have
demonstrated this procedure in Fig. 5 for T ¼ 1.1Tc.

In Fig. 15, we show this procedure for other temperatures:
T ¼ 1.5Tc, 3.0Tc, 6Tc, and T ¼ 104Tc. We do not show
the analysis for 10Tc, as it looks similar to the one for
T ¼ 104Tc. From the figure, we see that the slope of the

FIG. 14. Finite-volume effects for several τT values presented with different colors at T ¼ 1.5Tc (left) and T ¼ 10Tc (right). The lines
and bands correspond to the 1=N2

s fits and their uncertainties.

FIG. 15. The continuum extrapolation of the chromoelectric correlator for T ¼ 1.5Tc and T ¼ 3.0Tc (top panels) and for T ¼ 6.0Tc

and T ¼ 104Tc (bottom panels). The filled symbols and solid bands correspond to the extrapolation of the tree-level-improved lattice
data, while the open symbols and patterned bands correspond to the extrapolations of the lattice data without tree-level improvement.
The different colors correspond to different τT values.
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1=N2
t dependence increases with decreasing τT as

expected, since the cutoff dependence is larger for smaller
τT. But for the smallest τT, we do not see this tendency. To
understand the situation better, we show the coefficient of
the 1=N2

t term in the continuum extrapolation as a function
of τT in Fig. 16. The coefficient of the 1=N2

t term decreases
monotonically as τT decreases. For this coefficient, the
minimum of the absolute value is reached at τT ¼ 0.32
instead of at the largest available τT. Note, however, that
this is somewhat accidental, as the coefficient changes sign
around this value of τT. Also, the errors for 0.3 < τ < 0.4
are quite large. More importantly for us, the absolute value
of the coefficient increases when we decrease τT from 0.3
to 0.175, and then either flattens off or decreases if τT is
further decreased. We take this as an indication that the
continuum limit is not reliable for τT < 0.175. We also
perform continuum extrapolations using lattice data with-
out tree-level improvement, and the corresponding results
are also shown in Fig. 15 as open symbols. In this case,
the continuum limit is always approached from above.

The continuum-extrapolated result from tree-level-
improved lattice data and the unimproved lattice data agree
within errors for τT ≥ 0.25. In the absence of tree-level
improvement, the continuum extrapolations for smaller τT
are not reliable.

APPENDIX B: MODELING OF THE SPECTRAL
FUNCTION AND κ DETERMINATION

In order to understand the main features of the pertur-
bative spectral function corresponding to the chromoelec-
tric correlator at NLO, in Fig. 17 we show the quantity
2ðρðω; TÞ − ρðωÞNLOT¼0 Þ=ðωT2Þ calculated with and without
HTL resummation at the lowest and highest temperatures.
The plotted quantity gives κ in the ω → 0 limit. The naive
(unresummed) result is logarithmically divergent at small
ω. On the other hand, for ω > 2.2T, the resummed and
the naive results agree well. This indicates that the
NLO calculation is valid in this ω range. We also see
that for 2.2 < ω=T < 10, the naive and resummed NLO

FIG. 16. The coefficient of the 1=N2
t dependence as a function of τ for T ¼ 1.5Tc (left) and T ¼ 10Tc (right).

FIG. 17. The NLO T ¼ 0 spectral function subtracted from different models or perturbative curves at T ¼ 1.1Tc (left) and T ¼ 104Tc
(right). See the text for further specifications.
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expressions are negative, and their shapes are independent
of the temperature.
In Fig. 17, we also show the two model spectral functions

(line model and step model), where we use κ ¼ 2.75T3 for
the lowest temperature and κ ¼ 0.088T3 for the highest one.
At the lowest temperature, the step model has a larger finite-
temperature part than the linear model, while at the highest
temperature, the opposite is true. The two models also have
somewhat different UVbehavior. The stepmodel ismatched
to the zero-temperature spectral function and thus ignores
the thermal correction in the region 2.2 < ω=T < 10, while
the line model incorporates this. The two models thus allow
us to extract κ using a set of reasonable assumptions about
the large-ω behavior of the spectral function.
We match the chromoelectric correlator,Gmodel

E , obtained
from the above model spectral functions at τT ¼ 0.19 to the
continuum-extrapolated lattice result to find the optimal

value of κ. We demonstrate this procedure in Fig. 18, where
we show the continuum lattice result for the lowest and the
highest temperatures divided by the corresponding Gmodel

E .
For a given spectral function and the appropriately chosen κ,
this ratio should be close to 1. Since the errors of the
continuum-extrapolated lattice result are sizable, we get a
range of κ that is compatiblewith the lattice result. In Fig. 18,
we show the results for κ ¼ 2.75T3 and κ ¼ 0.05T3, and for
T ¼ 1.1Tc and T ¼ 104Tc, respectively. These κ values are
chosen to be in themiddle of the quoted ranges [see Eqs. (22)
and (27)]. At the lowest temperature for the given κ, the step
form and the line form seem to be on the opposite side
compared to the lattice result, while at the highest temper-
ature, the step form clearly gives a better description of the
lattice data on average. We see that the optimal value of κ
strongly depends on the assumed form, especially at high
temperatures.
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