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Abstract
Most vehicle-gearboxes operating today are designed for a limited service-life. On the one hand, this creates significant
potential for decreasing cost and mass as well as reduction of the carbon-footprint. On the other hand, this causes a rising
risk of failure with increasing operating time of the machine. Especially if a failure can result in a high economic loss,
this fact creates a conflict of goals. On the one hand, the machine should only be maintained or replaced when necessary
and, on the other hand, the probability of a failure increases with longer operating times. Therefore, a method is desirable,
making it possible to predict the remaining service-life and state of health with as little effort as possible.
Centerpiece of gearboxes are the gears. A failure of these components usually causes the whole gearbox to fail. The
fatigue life analysis deals with the dimensioning of gears according to the expected loads and the required service-life.
Unfortunately, there is very little possibility to validate the technical design during operation, today. Hence, the goal of
this paper is to present a method, enabling the prediction of the remaining-service-life and state-of-health of gears during
operation. Within this method big-data and machine-learning approaches are used. The method is designed in a way,
enabling an easy transfer to other machine elements and kinds of machinery.

Methode für eine Cloud-basierte Restlebensdauerprognose für Fahrzeuggetriebe basierend auf
Big-Data-Analysen undMachine Learning

Zusammenfassung
Die meisten heutzutage eingesetzten Fahrzeuggetriebe sind für eine endliche Betriebsdauer ausgelegt. Dies eröffnet erheb-
liches Potential für Gewichts- und Kostenreduktion sowie Verbesserung der CO2-Bilanz. Jedoch ist der langfristige Betrieb
mit zunehmender Wahrscheinlichkeit eines Schadens verbunden. Insbesondere, wenn der Ausfall einen hohen wirtschaft-
lichen Schaden verursacht, entsteht hierdurch ein Zielkonflikt aus steigendem Ausfallrisiko und frühzeitiger Außerbetrieb-
setzung bzw. überhöhten Instandhaltungskosten. Um diesen Konflikt aufzulösen, ist eine Methodik wünschenswert, die es
ermöglicht, mit möglichst geringem Aufwand die verbleibende Lebensdauer und den aktuellen Gesundheitszustand eines
Fahrzeuggetriebes laufend abzuschätzen.
Die Kernkomponenten von Fahrzeuggetrieben sind die Zahnräder, deren Schaden meist zum Ausfall des gesamten Getriebes
führt. Die Betriebsfestigkeitsrechnung befasst sich seit Langem mit der Dimensionierung von Zahnrädern entsprechend
der zu erwartenden Belastungen und der geforderten Lebensdauer. Während des Betriebs ist es aber bisher kaum möglich,
die hierzu erforderlichen Annahmen zu überprüfen. Im Rahmen dieser Veröffentlichung wird eine Methode präsentiert,
die es ermöglicht, die Restlebensdauer und den Gesundheitszustand von Verzahnungen laufend während des Betriebs zu
prognostizieren. Hierbei werden Big-Data-Ansätze und Methoden der künstlichen Intelligenz verwendet. Das grundlegende
Konzept ist hierbei so ausgestaltet, dass eine Übertragung der Methode auf andere Maschinenelemente und Maschinenarten
gut möglich ist.
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1 Motivation

Transmissions are a key component of vehicle drive trains.
Cars, powered both, by electric and internal combustion en-
gine, trucks, trains and constructional and agricultural ma-
chinery would not work the usual way without gearboxes in
their drive trains. Over the last decades these components
have become more and more sophisticated and capable of
transferring more and more power, while at the same time
becoming even lighter and more compact. At the heart of
nearly every gearbox are the gears, realizing the transmis-
sion of the engine torque and reducing or increasing the
rotational speed of the engine.

Research institutions and development departments all
over the world are working on increasing the load carry-
ing capacity and the reliability of high performance gears.
Nevertheless, failures occur and can lead to a total loss
of drive. With increasing lifetime and millage this becomes
more and more likely, creating a conflict of goals especially
for owners of commercially used vehicles. On the one hand
the vehicle should only be maintained or replaced when
necessary and, on the other hand the increasing probability
of a failure, causing expensive downtime, creates a seri-
ous economic risk. Additionally, the ecological footprint
of a vehicle is increased unnecessarily if maintenance or
replacement takes place earlier than necessary. Therefore,
a method is desirable making it possible to constantly pre-
dict the remaining service-life of the gearbox considering
the actual operating conditions without taking the gearbox
apart or installing a lot of expensive equipment.

Usually gears used in vehicle transmissions are dimen-
sioned in a way that they only can withstand the operational
load for a certain amount of load cycles. This approach en-
ables a reduction of weight, size and cost of the transmis-
sion. To safely reach the calculated end of service-life the
occurring loads have to be within the predicted load spec-
trum and the strength of the gears has to be within the al-
lowed tolerance margin. Especially unconsidered overloads
and their effects are a large source of uncertainty.

Over the last couple of years more and more sensors have
been included in machinery of every kind. Utilizing the data
created by these sensors is a major part of the megatrend In-
dustry 4.0. Because of the increasing availability of modern
mobile networks, like 5G, it is possible to create a data con-
nection nearly everywhere. Today predictive maintenance is
using this data and connectivity to predict whether a ma-
chine needs to be maintained. Sometimes these methods
also make predictions about the remaining service-life, but
the high potential of the knowledge and methods of fatigue
life analysis is not utilized.

Modern vehicles, especially electric cars, are able to pro-
vide a lot of data regarding their drive train. For example,
an electric motor is able to deliver a signal of the out-

put torque at any given moment. Goal of this paper is to
present a method, which uses such data to estimate the state
of health and predict the remaining service-life of a vehi-
cle transmission, while utilizing the knowledge of fatigue
life analysis and including the potential of machine-learn-
ing and big data. This paper presents the whole concept in
an easy understandable and accessible way and does not
specify the method and its calculation in every detail. At
the beginning, the required knowledge about fatigue life
analysis is presented in a compact summary. Afterwards
the method is presented in four steps, where every of these
steps expands the concept up to the full remaining-service-
life-prediction.

2 State of the art

2.1 Fatigue life calculation of gears

Gears can fail due to numerous kinds of damage. Not all
of these damages can be analyzed with the methods of the
fatigue life analysis. Some damages like scuffing can occur
after just one load cycle under critical conditions. Other
damages like pitting and tooth root breakage are typical fa-
tigue failure mechanism and are usually caused by a high
number of load cycles and can be analyzed using the meth-
ods of the fatigue life analysis [11].

Usually gears in vehicle transmissions can only with-
stand the load occurring in operation for a limited amount
of load cycles. Especially the highest loads cannot be tol-
erated many times. To describe this load carrying capacity
the “Woehler” curve/S/N-curve (also known as “Woehler”
damage line) is often used. A typical “Woehler” curve/S/N-
curve is shown in Fig. 1. This graph shows how many load
cycles of one particular load can be tolerated at a certain
probability of failure. The “Woehler” curve/S/N-curve can
be divided up into three characteristic areas [10]:

� Loads higher than the static strength cannot be with-
stand for even one load cycle. If loads above the static
strength occur the gear fails immediately. (red zone in
Fig. 1—static strength)

� Loads lower than the endurance limit can be tolerated for
more load cycles then considered relevant for the use case
(usually between 106–108 load cycles for gears). (green
zone in Fig. 1—area of infinite life)

� Loads between these two zones can be tolerated for a lim-
ited amount of load cycles. The Woehler line has a nega-
tive slope in this area, because the amount of permissible
load cycles increases with decreasing load. (yellow zone
in Fig. 1—area of limited life)

To dimension gears according to the rules of fatigue
life analysis a load spectrum is required additionally to the
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Fig. 1 Typical “Woehler” curve/S/N-curve

“Woehler” curve/S/N-curve. Load spectra deliver the infor-
mation about the loads occurring during operation. These
usually divide up the whole range of occurring loads into
a certain amount of discrete levels. The load spectrum de-
livers the information how often a load of a certain level
will occur during the operation. An example for such a load
spectrum is shown in Fig. 2.

Damage accumulation hypotheses are used to connect
the load carrying capacity and the load spectrum [10]. These
predict how likely a damage is, when a certain load spec-
trum is applied to a gear. Linear damage accumulation hy-
potheses are most common for the herein considered use
case. These are based on the assumption, that every load
cycle of one load level is causing the same amount of dam-
age regardless of when it occurs. The linear hypotheses
calculate a partial damage sum for every load level and add
all these partial damage sums up to the damage sum. If this
damage sum exceeds a threshold a failure is likely to occur
for the considered probability of failure.

The simplest and most widely used linear damage accu-
mulation hypotheses is the “Miner-rule” [15]. This hypothe-
ses exist in the original, elementary and modified form ac-
cording to Miner-Haibach [10, 15]. The three variants differ
by the consideration of loads below the endurance limit.

Fig. 2 Example for a load spectrum

Fig. 3 Number of tolerable load cycles assumend by three different
damage accumulation hypotheses

It is known from experimental investigations [19] that
loads in the area of limited life (loads between the en-
durance limit and the static strength) can lead to a sig-
nificant reduction of the resulting endurance limit if tests
are continued at lower loads. If the decisive load spectrum
contains a significant number of loads above the endurance
limit, loads lower than original endurance limit can cause
damage to the gears and therefore should be considered in
the calculation of the damage-sum as well as the service-
life-prediction. The original form of the Miner-rule does
not take loads lower than the original endurance limit into
account. The other two forms apply a different weighing
for loads lower than the endurance limit. The elementary
form by Miner considers these loads with a higher im-
pact on the total damage than the modified form by Miner-
Haibach. Fig. 3 shows how the three hypotheses assume
the maximal endurable number of load cycles is develop-
ing over the load. Within the original form of the Miner-
rule the load-cycle-limit follows the “Woehler” curve/S/N-
curve and therefor assumes an unlimited number of toler-
able cycles for loads lower than the endurance limit. Both
other forms use different limits for loads lower than the
endurance limit.

A weak spot of linear damage accumulation hypotheses
is the fact, that they do not take the chronology of the
loads into account. Experimental investigation have shown
that the sequence of loads can have influence on the life
time. Hein [11] has shown that a pitting damage will occur
at a significantly higher damage sum if the loads where
applied with a more frequent mix of high and low loads.
Such effects cannot be taken into account by linear damage
accumulation hypotheses and therefor the accuracy of the
service-life-prediction based on those is limited.

There are different approaches in the fatigue life analysis
which address these issues, for example the methods of the
fracture mechanics [2] or nonlinear damage accumulation
hypotheses [18]. But these methods are linked to a signif-
icantly higher effort and often need a lot of very precise
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input data. Therefor these methods are not common to be
used for the fatigue life analysis of gears.

2.2 Condition monitoring and predictive
maintenance

The preceding section shortly summarized the basics of the
fatigue life analysis. Due to the increasing spread of sen-
sors in machinery more and more operation data is recorded
and approaches to monitor the condition of machine ele-
ments were developed. The analysis of this recorded data
can supply valuable information for the further operation.
Predictive maintenance utilizes this data to predict if a ma-
chine needs to be maintained in the nearby future. The goal
of this approach is to reduce downtime and decrease oper-
ating costs. Main emphasis of this methods is to analysis
the present data delivered by the sensors. At the moment
the evaluation of vibrations is widely used in this field [1,
7, 8]. But it is also possible to use different data, like the
transmission error, to evaluate the status of a gearbox [9].
These methods can be used without experimental investi-
gations upfront, if a sufficient amount of recorded data is
available. Commercial software tools offer the opportunity
to analyze such a data-base with machine-learning meth-
ods and to use the results to constantly monitor machinery
and predict whether it is healthy or requires maintenance
or replacement.

Vibration based monitoring of machinery is only able to
recognize damage if the damage already is causing a change
of the vibration. Especially for the monitoring of fatigue
damages this can be a challenge, because the damage can
grow without significant impact on the vibrations. To pre-
dict the remaining service-life of a gearbox with special
regard to fatigue failure modes, it is not sufficient to an-
alyze the current status. The history has also to be taken
into account. At the moment only very few publications
address a constant prediction of the remaining service-life
of gearboxes.

Publications by Foulard et al. [3–6] presented a method
using a signal of the input torque of a vehicle gearbox to
constantly estimate its state of damage. The remaining ser-
vice-life is also predicted with this approach. Linear dam-
age accumulation hypotheses are utilized for this prediction.
Therefor it is not possible to incorporate the chronology of
the loads. If a very high load or overload is occurring its
possible effects on the resulting endurance limit of the gears
cannot be taken into account. The whole presented approach
only focuses on one gearbox and does not analyze a whole
fleet of identical gearboxes, like within a fleet of electric
cars.

The following chapters will present a method for a re-
maining-service-life-prediction utilizing as much potential
of big-data, machine-learning and fatigue life analysis as

possible, while remaining as simple and cost efficient as
possible. The whole concept is meant to be a cloud-based
service. All calculations and analysis shall not take place
on the onboard systems of the vehicles. The vehicles only
send recorded sensor-data to a server farm and receive the
results of the calculation.

3 “Woehler” curve/S/N-curve, remaining life
line and state of health

In an electric car the wheels are driven by an electric mo-
tor. The output torque of this motor is usually transferred
through a gearbox before being delivered to the wheels. The
gearbox normally reduces the rotational speed and increases
the torque. This approach enables the use of a smaller motor
operating at a higher rotational speed. Usually the gearbox
uses spur gears to convert the torque and rotational speed.
This type of gears is known for its high efficiency, little
space requirement and economic production cost [16].

As presented in Sect. 3 these gears are usually designed
for a limited service-life. The “Woehler” curve/S/N-curve
is often used to describe this limited load carrying capacity.
With every load cycle the remaining load carrying capac-
ity is reduced. This happens during the operation up to the
moment when the gear fails. To visualize this change of
load carrying capacity the remaining life line is introduced
in this paper. This line starts out identical to the “Woehler”
curve/S/N-curve and describes the remaining load carry-
ing capacity of a certain pair of gears during their lifetime.
Fig. 4 shows a “Woehler” curve/S/N-curve and a remain-
ing life line after a certain operation-time. Because of the
already occurred loads the load carrying capacity described
by the remaining life line is lower than the one described
by the “Woehler” curve/S/N-curve.

The remaining load carrying capacity of the gears will
reduce during the operation until the moment when one of
the gears fails. The failure occurs when a higher load is
applied than the highest load that can be tolerated at the
given moment. The gap between the “Woehler” curve/S/N-
curve and the remaining life line can be interpreted as the

Fig. 4 “Woehler” curve/S/N-curve and remaining life line
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state of health of the gears. For a new gear both curves
are identical and the state of health is at 100%. During the
operation this gap will increase and the state of health will
decrease.

The remaining life line can be calculated using the
“Woehler” curve/S/N-curve as a starting point. Further-
more a signal is needed, which is characteristic for the load
of the gears. A possible signal is the input torque of the
gearbox. In an electric car this torque usually is equal to the
output torque of the electric motor, because no clutches or
torque-converters are used between the two. There are two
main-options to determine the torque driving the gearbox.
The simplest and most cost-effective approach is to use the
data of the power electronic to calculate the torque of the
motor. Based on the electric current passing through the
motor a signal of the torque can be created. This approach
has a limited accuracy and may not be able to detect every
peak of the torque. Therefor the state of health prediction
based on this signal will have a limited reliability. But in
the best-case scenario this approach will not generate any
extra cost, because the only requirements are data storage
space or an “always-online-ability” and computing power.

The second approach is to use a dedicated sensor to
measure the input torque of the gearbox. Such a sensor
can generate a very accurate signal of the input torque [6].
Of course, this approach requires space and generates cost.
Therefor it is only appropriate if the value of the knowledge
of the state of health prevails the arising cost. For example,
in a vehicle used for exceptional load transportation this
knowledge is very valuable and most certainly worth the
extra cost, because the gearbox of such a vehicle is usually
expensive and a failure would result in critical downtime or
even threat to the cargo or humans.

Through continuous analysis of the signal with a dam-
age accumulation hypothesis the remaining load carrying
capacity can be calculated and expressed as the remaining
life line. This calculation can be done using known damage
accumulation hypotheses or using machine learning tools.
To train methods like deep learning training data is required.
In the best case this data shall exist of the whole load-time-
record and the moment of failure. It is possible to generate
this data with experimental investigations or by using the
data recorded by a fleet of vehicles. This recorded data can
be spilt up into the one of gearboxes which already failed
and the one of gearboxes which are still operating. The data
of the failed ones can be used straight forward to determine
the load carrying capacity of the gears. Additionally, the
data of the gearboxes still operation can be used to increase
the accuracy of this prediction and determine the scattering
of the load carrying capacity more accurate. Here for the
data has to considered combined with the knowledge that
the gear can only fail due to more damage than already

Fig. 5 Dataflow for the state of health estimation

occurred and therefor at the moment represents a minimal
load carrying capacity.

The high potential of the machine learning approach is
the ability of deep learning to discover connections between
the failure and the occurring loads, which would not have
been considered by classic damage accumulation hypothe-
ses.

A very promising approach is the combination of both.
If there is very little data yet to train the deep learning
algorithms, it will be useful to apply the knowledge of the
fatigue life analysis to calculate the damage and predict
the state of health. This will usually be the case at the
beginning of the service life of certain type of gearbox.
With increasing millage and ongoing service life more and
more data will have be recorded for this type of gearbox.
Therefor the machine learning approach will be able to
increase in accuracy and adapted to this type of gearbox
and may deliver more accurate predictions compared to the
known methods.

The order of the single steps of such a prediction of the
state-of-health and the according data-flow of the presented
method is shown in Fig. 5. As example an electric car is
chosen. This example will be expanded over the course
of the following chapters up to the whole concept of the
remaining-service-life-prediction.

4 Adaptive “Woehler” curve/S/N-curve
utilizing big-data-analysis and machine
learning

“Woehler” curves/S/N-curves are usually the basis of ser-
vice-life calculations in the field of fatigue life analysis and
are created through experimental investigations. Usually
experimental investigations for the load carrying capacity
(Woehler-Tests) are carried out during the design process
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of the gearbox for the used materials. The “Woehler”
curve/S/N-curve used for the service-life-calculation is
based on those investigations [13]. During the manufac-
turing process of the gears a lot of parameters will be
within a certain margin of tolerance and will change over
the different produced batches, for example the hardness
of the surface. This can have effects on the load carrying
capacity [12]. These effects will not be considered within
the “Woehler” curve/S/N-curve and therefore not within
the service-life-calculation. Another uncertainty are the
operational conditions the gears will be used with. For
example the temperature, humidity or local characteristics,
like sea salt, may have an influence on the service-life of
the gears.

To account for all these factors within the design phase
of the gears is nearly impossible and would require a vast
amount of experimental investigations. Hence, a different
approach to consider these factors within a service-life-pre-
diction has to be utilized.

A lot of gears are not custom-made and therefor used in
a big amount of machinery. For example the gears used in
cars are a mass product and operating all over the world.
All these machines can be utilized as test racks for the
gears, if data about the occurring loads can be recorded
and it is possible to transfer this data to a central database.
The optimum solution would be a cloud computing based
approach. Today nearly every modern car has the ability to
connect to a mobile data network and to receive or send
data.

The load-record of the gears can be used to constantly
calculate the expected damage. The results of this can be
used to validate the “Woehler” curve/S/N-curve, as long as
a statistically relevant number of gears is monitored.

The damage can be calculated using a damage accumu-
lation hypothesis or a machine learning based approach (see
Sect. 4). In order to calculate the damage, the load record
sent by the vehicle has to be classified in load levels and
divided into load cycles. This data can then be used to cal-
culate the damage sum at any given moment. Additionally
to this damage sum the actual status of the gear has to be
known. The simplest case is to separate the gears into those
already failed and those still operating. With this informa-
tion it is possible to validate the “Woehler” curve/S/N-curve
or the permissible damage sum and eventually make ad-
justments to it. The “Woehler” curve/S/N-curve describes
the load carrying capacity of the gears. A damage accu-
mulation hypothesis predicts the failure of the gears after
a certain amount of damage occurred. This prediction is
based on the “Woehler” curve/S/N-curve and the occurring
loads. The failures will be distributed over a certain spread
of the damage sum. If the distribution of failures occurring
in reality dose not match with the distribution predicted
by the damage accumulation hypothesis, the load carry-

ing capacity is not represented correctly by the “Woehler”
curve/S/N-curve. For example, if failures are occurring at
damage sums at which the prediction is not expecting any
failures yet, the load carrying capacity is overestimated.
This system also works if the statistics of the prediction is
already expecting failures but the gears are still operating
without issue, then the load carrying capacity is underesti-
mated. In a final step the “Woehler” curve/S/N-curve can
be adjusted to fit better to the actual load carrying capacity
of the gears.

Within this process machine learning could open up a lot
of potential. The distribution of the damages over the dam-
age sum is normally described by mathematical probabil-
ity distributions like the Weibull distribution [14]. Machine
Learning could enable the analysis of this distribution with-
out using mathematical probability distributions. The algo-
rithms could learn the optimal distribution by simply ana-
lyzing the data. Therefor it could be possible to find an even
better fitting description of the distribution and use this to
make the service life prediction more accurate for future
product generations.

This system can be used in a way evaluating the load
carrying capacity of all monitored gears together. A more
powerful approach is to use big-data-methods and machine
learning to cluster the gears into groups and monitor these
groups separately.

Big-data-tools based on machine learning are able to an-
alyze a lot of data and find similarities, which would have
remained hidden to the human eye. Usually unsupervised
machine learning is used for such tasks. Unsupervised ma-
chine learning is generally used, if the data used to train the
methods is unlabeled. Unlabeled data refers to the fact that
the solution to the problem is unknown [17]. In the pre-
sented concept unknown solution refers to the fact, that the
criteria to cluster the data by is not known to the user, but
instead shall be found by the algorithms. Therefor the algo-
rithms are trained without knowing the result in advance.

For example, it can be useful to separate the gears ac-
cording to the height gradient of the roads they are oper-
ating on, according to the climate or by their production
batches. These groups can be monitored separately and the
“Woehler” curve/S/N-curve can be adjusted to represent the
load carrying capacity as accurate as possible. In this pre-
sented manner an adaptive “Woehler” curve/S/N-curve can
be created, which enables to predict the service-life of gears
more accurate. To evaluate the trained model for clustering
the data the results have to be checked by the user. Es-
pecially, the comparison of the quality of the results with
a calculation without the clustering is important. This en-
ables the user to decide whether the clustering approach
provides an increasing accuracy or if the analysis of the
whole data without clustering provides a better or similar
good prognosis.
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Fig. 6 Dataflow expanded
by the adaptive “Woehler”
curve/S/N-curve

Additionally, it is possible to combine the machine learn-
ing based clustering of the operating units with clustering
done by the user. This combination is often referred to as
scientific machine learning.

The data-flow for this adaptive “Woehler” curve/S/N-
curve is shown in Fig. 6. Within this figure the example
of the electric car used in Sect. 4 is taken up again and
expanded by the adaptive “Woehler” curve/S/N-curve.

5 Using big-data-analysis to increase the
validity of load spectra

The preceding chapters dealt with the load carrying ca-
pacity and a way to increase the validity of the “Woehler”
curve/S/N-curve, the used damage accumulation hypothesis
and the permissible damage sum. Additionally to the load
carrying capacity the operational loads have to be known
or predicted for a dimensioning according to the fatigue
life analysis and are required for a remaining-service-life-
prediction.

The loads are usually characterized via load spectra. To
generate load spectra accurately representing the actual op-
eration of the gears can be challenging. Using records of
the actual loads occurring in operation is common practice.
Such a load spectrum can be used for the dimensioning of
the gears.

How a customer is going to use a vehicle cannot be pre-
dicted with high reliability. Therefor it is not optimal to use
the original load spectrum to predict the remaining service-
life of a gear in operation. The recorded load-data used in
Sect. 5 to validate the “Woehler” curve/S/N-curve can also
be utilized to increase the accuracy of the load spectrum ap-
plied for the service-life prediction of the gears. Big-data-
methods can be used in a similar manner to Sect. 5. Clus-

tering the gears into groups with similar load characteristics
can be useful to predict the service-life more accurate. This
clustering can also be used for future developments. For
example it is conceivable to adjust the load carrying capac-
ity of a gearbox according to the costumer. This approach
can be useful for commercial customers and save money
and reduce expensive downtime. The dataflow for the clus-
tering and the individual load spectrum of each cluster is
shown in Fig. 7.

The presented method can be used to create an adaptive
load spectrum or many load spectra depending on the use
case. If only one adaptive load spectrum for all vehicles is
required, the clustering will not be applied due to the fact
that all vehicles are in the same cluster. In some cases, it
can be considered optimal to adapt the original load spec-
trum for every gearbox separately and in other case it may
be optimal to separate the gearboxes into groups with one
common load spectrum according to their operational char-
acteristics. This can be controlled by the number of clusters
used.

Fig. 8 shows the data flow for the adaptive load spectrum
integrated in the data flow of the preceding chapter. The
spectrum uses the original load spectrum as a starting point
and adjusts accordantly to the occurring loads. The adaptive
load spectrum will be put to use in the following chapter,
when the whole concept is shown.

6 Method for an online remaining-service-
life-prediction

The three preceding chapters presented elements of the con-
cept for a remaining-service-life-prediction. This chapter
unites all these steps to the whole concept. The prediction
of the remaining-service-life uses a damage accumulation
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Fig. 7 Dataflow for the cluster-
ing and analysis of the adaptive
load spectrum

Fig. 8 Dataflow expended by
the adaptive load spectrum

to calculate how much longer the gear will withstand the
loads occurring in operation. The data-flow for the whole
concept is shown in Fig. 9.

The remaining life line was introduced to describe the
load carrying capacity of the gear at any given moment of
its operational life. Therefor this line will be used in the
calculation of the remaining service-life. The adaptive load
spectrum was implemented to deliver more accurate infor-
mation about the loads occurring in operation, compared to

the load spectrum used for the dimensioning of the gear.
The adaptive load spectrum will be used within the remain-
ing-service-life-prediction for an accurate prediction of the
loads occurring in the further operation.

The calculation can be done with a classic damage ac-
cumulation hypothesis or based on a machine-learning ap-
proach similar to the one presented in Sect. 4. The output of
this calculation will be the number of load cycles tolerable
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Fig. 9 Data-flow for the remain-
ing-service-life-prediction

until the gear will fail. This number can be converted into
remaining service-time.

Important to consider for this method is the fact, that all
of these predictions are connected to a certain probability
of failure. This probability usually is one, ten or 50% in the
field of fatigue life analysis depending on the application
and the type of failure. For the remaining-service-life-pre-
diction the user has to decide which probability of failure is
the right one for his use case. For example, if a failure has
severe consequences a lower probability has to be chosen
as if the failure has nearly no direct consequences.

The presented approach shares some similarities with the
widely known approach of predictive maintenance. Within
this approach the need of maintenance and sometimes the
remaining service life is predicted. Predictive maintenance
usually focuses on the change of sensor-data. For exam-
ple, if the vibrations exceed a certain threshold or increase
significantly within a certain period of time, the algorithms
report a need for maintenance.

On the other hand, the method presented within this pa-
per focuses on the whole operational history of a gearbox.
This holistic analysis of the occurring loads is able to con-
sider loads which damaged the gears, but may have no
detectable influence on their operational behavior yet.

Of courses a combination of the both methods is con-
ceivable and may result in the most accurate prediction of
the state of health and the remaining service life.

7 Conclusion and outlook

This paper roughly presents a method for a remaining-ser-
vice-life-prediction for the gears of a vehicle-transmission,
but the method can similarly be applied to different ma-
chine elements and other machines, like a wind turbine for
example. The concept utilizes the relatively new potential
and opportunities created by machine-learning and big data
analysis. Also does the method not only focus on one sin-
gle machine, but analysis a whole fleet together and uses
knowledge only accessible through this holistic approach.

In the coming steps of the author’s research the single
elements of the calculation have to be specified and imple-
mented in detail. Especially the use of machine learning
requires the construction of a database with a lot of opera-
tional data of gears. For this, already existing research data
can be used as well as experimental investigations can be
conducted to create datasets.
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