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Abstract

In the last decades, several neutrino oscillation experiments reported results which are not
compatible with the 3-neutrino model and hint at the existence of light sterile neutrinos. To
test this hypothesis, a large number of short-baseline experiments is currently searching for
oscillations from active to sterile neutrinos. The present work encompasses two aspects of
the data analysis in the sterile neutrino search.
The first aspect is the data analysis of the SOX (Short distance neutrino Oscillations with
BoreXino) experiment. SOX planned to place an artificial 144Ce-ν̄e source underneath the
liquid scintillator detector Borexino, which is located at the LNGS underground laboratory.
The sterile neutrino signature would be the reduction of the detected antineutrino interaction
rate with an oscillatory pattern as a function of the neutrino energy and traveled distance.
The data selection of the antineutrinos was optimized to increase the expected sensitivity,
taking into account the expected signal, background, and systematic effects. A detection
efficiency of (93.0 ± 0.5)% was achieved for antineutrino signals, which is an improvement
of 10.8% in comparison to the previously-performed antineutrino analysis in Borexino. An-
alyzing Borexino data, the expected background was examined to 28.2+2.7

−4.2 events, resulting
to a signal-to-background ratio of ∼ 200 for a source activity of 100 kCi. SOX is sensitive
to oscillation amplitudes sin2(2θ) & 0.06 for mass splittings ∆m2 = 1 eV2 (sin2(2θ) & 0.09
for ∆m2 > 10 eV2) at the 95% CL, and can hence probe a large fraction of the preferred
parameter space of light sterile neutrinos. To further improve the sensitivity, a hardware
modification of the trigger system of Borexino was tested.
The second part analyzes the non-trivial statistical issues and the different applied analysis
methods of the current short-baseline experiments. Experiments in which a neutrino oscilla-
tion would enhance or reduce the neutrino interaction rate in the detector are both studied
using toy models. The dependency on the interaction rate and the neutrino energy spectrum
for exclusion and discovery scenarios are tested. The most-likely hypothesis for a specific
data set is typically given by a sterile neutrino signal, meaning that the maximum-likelihood
estimators are biased. The sensitivity and reconstructed confidence regions for a specific
data set change significantly for the different methods, where the discrepancy is especially
pronounced for a signal discovery. The differences could be traced back to the choice of the
alternative hypothesis in the test statistic and the assumptions on the asymptotic probability
distributions. In particular, Wilks’ theorem was found not to be valid and the probability
distributions of the test statistic need to be constructed via Monte Carlo techniques. As a
consequence, the significance of a signal is overestimated when Wilks’ theorem is applied.
The standardized analysis based on the most general alternative hypothesis proposed in the
frame of this work has found a large consensus in the sterile neutrino field and has been
endorsed by many experiments.





Zusammenfassung

Mehrere Neutrinooszillationsexperimente erzielten in den letzten Jahrzehnten Ergebnisse,
welche von dem 3-Neutrino-Modell abweichen und auf die Existenz leichter steriler Neutrinos
hinweisen. Um diese Hypothese zu testen, suchen zur Zeit eine Vielzahl an Experimenten nach
Oszillationen von aktiven zu sterilen Neutrinos auf kurzen Entfernungen. Die vorliegende
Arbeit behandelt zwei Themen zur Datenanalyse für die Suche nach sterilen Neutrinos.
Der erste Teil behandelt die Datenanalyse des SOX (Short distance neutrino Oscillations with
BoreXino) Experiments. SOX plante eine künstliche 144Ce-ν̄e Quelle unterhalb des Borexi-
no Detektors, welcher sich im LNGS Untergrundlabor befindet, zu platzieren. Die Signatur
eines sterilen Neutrinos wäre die Reduktion der detektierten Antineutrinointeraktionsrate
mit einem Oszillationsmuster in Abhängigkeit von Energie und Flugdistanz der Neutrinos.
Die Selektion der Antineutrinoereignisse wurde optimiert und somit die Sensitivität des Ex-
periments erhöht. Hierbei wurde das erwartete Neutrinosignal, Untergrundereignisse und
systematische Effekte miteinbezogen. Eine Detektionseffizienz von (93.0 ± 0.5)% wurde für
Antineutrinosignale erreicht, welches einer Verbesserung um 10.8% im Vergleich zur vorhe-
rigen durchgeführten Antineutrinoanalyse in Borexino entspricht. Durch eine Analyse von
Borexino-Daten wurde eine Untergrunderwartung von 28.2+2.7

−4.2 Ereignissen berechnet, wel-
ches bei einer Aktivität von 100 kCi zu einem Signal-zu-Untergrund Verhältnis von ∼ 200
führt. SOX is sensitiv auf Oszillationsamplituden sin2(2θ) & 0.06 für Massenunterschiede
∆m2 = 1 eV2 (sin2(2θ) & 0.09 für ∆m2 > 10 eV2) bei einem 95% Konfidenzniveau und
kann damit einen Großteil des bevorzugten Parameterbereichs steriler Neutrinos überprüfen.
Um die Sensitivität weiter zu verbessern, wurde eine Modifikation des Triggersystems von
Borexino getestet.
Im zweiten Teil werden die nicht-trivialen statistischen Aspekte und die unterschiedlichen
Analysemethoden der aktuellen Experimente zur Suche nach sterilen Neutrinos analysiert.
Experimente, in denen Neutrinooszillationen die Interaktionsrate im Detektor erhöhen oder
reduzieren würden, werden beide mit Hilfe von Monte Carlo-Modellen studiert. Die Ab-
hängigkeit der Interaktionsrate und des Neutrinoenergiespektrums für Ausschluss- und Ent-
deckungsszenarien werden getestet. Die wahrscheinlichste Hypothese für einen spezifischen
Datensatz ist üblicherweise durch ein Oszillationssignal gegeben. Dies bedeutet, dass die
Maximum-Likelihood-Schätzwerte verzerrt sind. Die Sensitivität und die rekonstruierten Kon-
fidenzregionen für einen speziellen Datensatz verändern sich signifikant für die unterschied-
lichen Analysemethoden. Hierbei ist die Diskrepanz besonders ausgeprägt, falls ein Signal
entdeckt wird. Die Unterschiede konnten auf die Wahl der alternativen Hypothese in der
Teststatistik und der Annahme der asymptotischen Wahrscheinlichkeitsverteilungen zurück-
geführt werden. Da das Wilks-Theorem seine Gültigkeit verliert und dessen Annahme die
Signifikanz von Signalen überschätzen würde, müssen die Wahrscheinlichkeitsverteilungen
der Teststatistiken mit Monte Carlo-Techniken erzeugt werden. Die Standardanalyse, welche
auf der allgemeinsten alternativen Hypothese basiert und im Rahmen dieser Arbeit vor-
geschlagen wurde, wurde von vielen Experimenten übernommen und stellt den derzeitigen
Konsens in der sterilen Neutrinosuche dar.
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1/3 2/3 

Family Young 

1/3 2/3 

Family Old 

+ +

Observer in park 

Both families like to go for a walk in the park. Today family Young is in the park, but the observer 
does not know this. Nevertheless, he likes to guess the family. However, as the observer’s field of view 
is limited, his guess depends on time. 

I’m faster 
than my 
grannies. 

t1 

t4 t3 

t2 
Aha, today 
it’s family 

Young! 

Yes, indeed 
it’s family 

Young! 

Hmm… now 
it looks 

more like 
family Old. 

 Well… I’m not 
so sure 

anymore, but 
I’m still in 

favor of family 
Young. 

Q: Observer, do you think it‘s Family Young? 

time 

strongly agree 

strongly disagree 

t1 t2 t3 t4 

Similarly, the three known neutrino families 
consist of three members with different phase 
velocities.  There exists therefore a chance, 
which depends on the traveled time, that the 
initial neutrino family is observed as a 
different neutrino family. This phenomenon is 
called neutrino oscillations. 

The above numbers correspond to ratios. However, the total number of family members is unknown. 

Family Oscillations 
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1 Neutrinos in the Standard Model
and beyond

Neutrinos are elementary, almost massless, and only weakly interacting particles. This en-
ables neutrinos to fly straight and, thus, to point back to their sources. Hence, with the
measurement of neutrinos the properties of their sources can be studied. In addition, given a
well-known neutrino source, the properties of the neutrinos themselves can be investigated.
The latter approach is the one used for the search of light sterile neutrinos which is the
subject of this thesis. Sterile neutrinos are hypothetical particles beyond the standard model
of particle physics (Section 1.1) and are introduced in Section 1.5. The search for light
sterile neutrinos (Section 1.5.5) is especially motivated by several experimental hints which
are described in Section 1.5.3. Before that, an overview of the neutrino properties including
neutrino oscillations, their sources, and the current status in neutrino physics is given in
Sections 1.1-1.4.

1.1 Neutrinos in the Standard Model

The standard model (SM) of particle physics describes the theory of strong, electromagnetic,
and weak interactions [1]. The discovery of the Higgs boson [2, 3] completed the list of
predicted elementary particles and confirmed the well-established SM yet another time.
Among these elementary particles neutrinos are the only fermions that can only interact
weakly. This implies they carry only the weak charge (weak isospin) and are colorless (not
coupling to the strong force), chargeless (not coupling to the electromagnetic force), and
massless (not coupling to the gravitational force). However, the latter has been disproven by
the observation of neutrino oscillations which will be discussed in the next section.
The weak interaction is mediated via the massive gauge bosons Z0 (mZ = 92GeV) and W±
(mW = 80GeV) leading to neutral current (NC) and charged current (CC) interactions, re-
spectively [1]. Since the decay width of the Z0-boson depends on the possible decay channels
and hence on the number of weakly interacting neutrinos, the number of so-called active neu-
trinos could be determined in e−e+ collisions at the large electron-positron collider (LEP) [4]
to

Nν = 2.984± 0.008. (1.1)

From this measurement follows that every additional neutrino must have either a mass larger
than mZ/2 or must not couple to the Z0-boson, i.e. be sterile.
These three neutrinos and antineutrinos (their antiparticles) appear in three families (flavors)
named after their corresponding charged lepton partner: ν̄e, ν̄µ, and ν̄τ . Each lepton family
carries its own lepton family number that is conserved in the weak interaction. Addition-
ally, the total lepton number is conserved given by the sum of the individual lepton family
numbers.



2 CHAPTER 1. NEUTRINOS IN THE STANDARD MODEL AND BEYOND

The weak interaction is special in the sense that only left-handed particles and right-handed
antiparticles can take part in it. The handiness describes the chirality of the fermions which is
connected to the weak isospin I. Left-handed and right-handed fermions carry a weak isospin
of I = 1/2 and I = 0, respectively. This maximal-parity violating theory was introduced
after the actual observation of parity violation of the weak interaction by Wu et al. [5].
Since neutrinos were thought to be massless1 at this time, one assumed that neutrinos have
a definite helicity which then equals the chirality. Finally, the helicity of neutrinos was
determined by the Goldhaber experiment to be left-handed [6]. Therefore, there are no
right-handed neutrinos and no left-handed antineutrinos defined in the SM.
The weak and electromagnetic forces can be unified and described in the electroweak theory
with a SU(2)L × U(1)R gauge group. The left-handed leptons form lepton doublets of the
weak isospin. The right-handed components of the charged leptons form singlets which carry
no weak isospin and are hence not taking part in the weak interaction [7]:

lepton doublets
(
νe
e

)
L

(
νµ
µ

)
L

(
ντ
τ

)
L

I = 1/2

charged lepton singlets eR µR τR I = 0

Although the SM is very successful, there is evidence for physics beyond the SM. The
observed neutrino oscillations are direct evidence for at least two neutrino masses being
different from zero. In addition, the lepton family number is not conserved during neutrino
propagation. The next section will discuss possible extensions of the SM to generate neutrino
masses and the phenomenology of neutrino oscillations.

1.2 Massive Neutrinos and Neutrino Oscillations

The masses of all elementary particles in the SM are produced via the Higgs mechanism [8].
However, in order to produce the masses of the neutrino via the Higgs mechanism, right-
handed neutrinos are required that are currently not present in the SM. To obtain right-
handed neutrinos, the SM needs to be extended by either right-handed neutrinos and, thus,
new particles. On the contrary, the SM can be extended by total lepton number violation
which allows that neutrinos are Majorana particles, i.e. neutrinos are their own antiparti-
cles. In the latter case, right-handed neutrinos can then be obtained through the charge-
conjugation transformation of the left-handed Majorana neutrinos.
The neutrino masses can then be generated via a Dirac or a Majorana mass term in the La-
grangian [9]. In both scenarios, the neutrino masses are produced when the flavor eigenstates
couple to the Higgs field. Hence, the mass terms are expressed in the flavor eigenstates that
generate a complex symmetric mass matrix M . To obtain an expression of the Lagrangian
in the mass eigenstates and the neutrino masses, the mass matrix is diagonalized via a uni-
tary transformation which is sketched in Figure 1.1. Thus, the weakly interacting flavor
eigenstates νe, νµ, ντ are a superposition of the mass eigenstates ν1, ν2, ν3 [1]:νeνµ

ντ

 = U

ν1
ν2
ν3

 (1.2)

The mass eigenstates ν1, ν2, ν3 have the respective mass eigenvalues m1,m2,m3 and describe
the propagation of the neutrinos in vacuum. The superposition of the mass eigenstates is

1No neutrino masses have been measured so far and the limits were about a million times smaller than the
mass of the lightest other particle, the electron.
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Lmass ∼
(
νe νµ ντ

)
R
M

νeνµ
ντ


L

+ h.c.

Lmass ∼
(
ν1 ν2 ν3

)
R

m1
m2

m3


ν1
ν2
ν3


L

+ h.c.

diagonalize complex symmetric mass
matrix M with unitary matrix U :
UTMU = diag(m1,m2,m3)

Figure 1.1: Simplified Scheme of the Neutrino Mass Generation for Three Neutrinos
The top box shows the Lagrangian mass term Lmass as a function of the flavor neutrino fields
να (α = e, µ, τ). The left(L)- and right(R)-handed flavor neutrino fields couple to the Higgs
field and generate the symmetric mass matrix M . The right-handed neutrinos can be either the
new (currently not in the SM) right-handed fields of Dirac neutrinos or the charge-conjugated
field of Majorana neutrinos. Through a unitary transformation U the mass matrix can be
diagonalized and the neutrino mass eigenstates νi (i = 1, 2, 3) with the respective neutrino
masses mi (i = 1, 2, 3) are obtained. The Lagrangian mass term is then expressed in the massive
neutrino fields (bottom box). Note that the notation in this illustration is extremely simplified.
An exact expression of the Lagrangian mass term can be found for example in Reference [9].

described by the unitary matrix that diagonalizes the mass term in the Lagrangian and is
called PMNS matrix [1]

U =

Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3


=

1 0 0
0 c23 s23
0 −s23 c23


 c13 0 s13e

−iδ

0 1 0
−s13e

−iδ 0 c13


 c12 s12 0
−s12 c12 0

0 0 1

 , (1.3)

where cij = cos θij and sij = sin θij with the rotation angle θij and i, j = 1, 2, 3. δ denotes
the Dirac CP-violating phase which is still unknown. In case that the neutrino is a Majorana
particle, the PMNS matrix contains two further CP-violating Majorana phases.
Given different neutrino masses mi, the wave functions of the mass eigenstates with the same
momentum propagate with different frequencies. The initial mass composition of one neutrino
flavor changes as the neutrino is moving through space and can lead to constructive or
destructive interference of the wave functions. Therefore, there is a probability that a neutrino
with its initial flavor α can change to another flavor β while propagating (α, β = e, µ, τ). This
phenomenon is called neutrino oscillations. The oscillation probability is a function of the
energy E and the traveled distance L of the neutrino and can often be approximated by the
two-flavor formalism [1]:

P (να → νβ) ≈
∣∣∣∣∣δαβ − sin2(2θij) · sin2

(
1.27 ·∆m2

ij [eV2] · L[m]
E[MeV]

)∣∣∣∣∣ . (1.4)

Here, the mixing angles θij (i, j = 1, 2, 3) are connected to the entries of the PMNS matrix
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via
sin2(θ12) = |Ue2|2

1− |Ue3|2
, sin2(θ13) = |Ue3|2 , sin2(θ23) = |Uµ3|2

1− |Ue3|2
, (1.5)

and ∆m2
ij = m2

i −m2
j denotes the mass splittings. Neutrino oscillations can only be observed,

if the mixing angles and the mass splittings are different from zero. The term sin2(2θij) in
Equation 1.4 represents the amplitude of the oscillation signal and ∆m2

ij the frequency of
the oscillation. Larger mass splittings result in larger oscillation frequencies and hence in
shorter distances between two oscillation maxima. This can be described by the oscillation
length [1]

(L[m]/E[MeV])osc ≈ 2.48/∆m2[eV2]. (1.6)
It has to be noted that neutrino oscillations can change in matter. This is described by the
so-called Mikheyev Smirnov Wolfenstein (MSW) effect [10–12]. Coherent forward scattering
off particles in matter results in an effective mass term that adds to the already existing one
in the Lagrangian. Given relative differences in the mass terms for different neutrino flavors,
the diagonalization matrix changes and can alter the neutrino oscillation probabilities.
The MSW effect is for example visible in the survival probability of solar neutrinos, where
the oscillation probability is enhanced above ∼ 3MeV compared to the one in vacuum (see
Figure 2.5). The above-mentioned relative difference in the mass terms is introduced, as
electron neutrinos can interact with electrons in the Sun not only via NC (as muon and tau
neutrinos do) but also via CC reactions. From the observation of the MSW effect for solar
neutrinos one concludes that m2 is larger than m1.

1.3 Neutrino Sources
An overview of the neutrino flux at Earth as a function of the energy for the individual neu-
trino sources is shown in Figure 1.2. With the recent observation of high-energy neutrinos
from the blazar2 TXS 0506+056 [15, 16], the third astrophysical source of neutrinos (in ad-
dition to the Sun and a core-collapse supernova) has been experimentally identified. Besides
that, geo neutrinos produced in the Earth and atmospheric neutrinos, which are secondary
particles produced from cosmic rays in the atmosphere, have been observed. Small neutrino
fluxes and/or too small/high neutrino energies prevent so far from the observation of the
residual natural neutrino sources, as for example the cosmic neutrino background (CNB)3,
the diffuse supernova background (DSNB), and cosmogenic neutrinos. A diffuse flux of high-
energy neutrinos (∼ 1015 eV) has been observed by the IceCube detector. However, their
origin has not yet been identified [18]. A recent review of the neutrino flux on Earth from
different sources can be found in Reference [13]. In the following, the natural and artifi-
cial neutrino sources that can be observed with the Borexino detector are discussed in more
detail.

1.3.1 Natural Sources

Solar Neutrinos

Solar neutrinos are the most abundant neutrino source on Earth which can also be observed.
When solar neutrinos are measured (for the experimental results with Borexino see Chap-
ter 2), the standard solar model (SSM) and the metallicity of the Sun can be tested [19,20].

2A blazar is a class of Active Galactic Nuclei (AGN) with a jet pointing towards the Earth [14].
3Cosmic neutrinos are relic particles from the Big Bang and were indirectly observed by cosmological

observations as the cosmic microwave background and the big bang nucleosynthesis [17].



1.3. NEUTRINO SOURCES 5

Figure 1.2: Neutrino Flux at Earth The neutrino flux is integrated over directions and
summed over flavors. The unit of the flux for mono energetic lines is given in cm−1s−1. A
solid (dashed/dotted) line represents neutrinos (antineutrinos). The cosmic neutrino background
(CNB) is shown for the assumed neutrino masses m1 = 0, m2 = 8.6meV, and m3 = 50meV,
where the two monochromatic lines correspond to m2 and m3. Big bang nucleosynthesis (BBN)
neutrinos are shown for neutron and tritium decay. Only the neutrino sources with a sufficiently
large flux in the energy range of (106−1015) eV could be directly measured so far. For a detailed
discussion of the individual components, see the figure’s Reference [13].

In addition, as the Sun is a relatively well-defined neutrino source, one can gain information
on the neutrino propagation (neutrino oscillations including matter effects) [21].
Solar (nuclear) neutrinos are electron neutrinos and are produced in fusion reactions in the
Sun, where the net reaction is

4p→4 He + 2e+ + 2νe. (1.7)

In this process an energy of 26.73MeV is released and the average energy value that is taken
away by the two neutrinos is only ∼ 0.6MeV [21]. A simple estimation of the neutrino flux
can be obtained by the ratio of the solar luminosity over the energy released per neutrino
production, corresponding to a solar neutrino flux of ∼ 6 · 1010 cm−2s−1 on Earth. Solar
neutrinos are produced via two processes, namely the pp-chain and the CNO-cycle, which
are both depicted in Figures 1.3 and 1.4. The pp-chain dominates the energy production
in the Sun with about 99%, while the CNO-cycle is expected to dominate in stars heavier
than 1.5 solar masses [19]. The calculated neutrino flux as a function of the energy based
on the SSM [22,23] is shown in Figure 1.5. Depending on the specific reaction, the different
neutrino species have a monoenergetic or a continuous energy spectrum up to ∼ 10MeV.
Solar neutrinos have been observed in several experiments using radiochemical, Cherenkov,
or liquid scintillator detectors [24–31]. Besides the pep-neutrinos, all solar neutrino species
could be measured with Borexino, which will be discussed in Chapter 2 [32, 33]. Moreover,
the measurements of solar neutrinos confirm the SSM and neutrino oscillations according to
the MSW-LMA4 solution.
Notice that the Sun produces in thermal processes (mainly plasmon decay, Compton process,
and electron bremsstrahlung) also neutrino pairs of all flavors with an energy in the keV-

4LMA stands for Large Mixing Angle [12].
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p+ p→ 2H + e+ + νe p+ p+ e− → 2H + νe

p+ 2H→ 3He + γ

3He + 3He→ 4He + 2p 3He + 4He→ 7Be + γ 3He + p→ 4He + e+ + νe

7Be + e− → 7Li + νe 7Be + p→ 8B + γ

7Li + p→ 4He + 4He 8B→ 4He + 4He + e+ + νe

pp pep

hep

7Be

8B

99.6% 0.4%

85%

15%

2× 10−5%

99.87% 0.13%

Figure 1.3: Scheme of the pp-chain The pp-chain is the dominant neutrino production
mechanism in the Sun. The reactions in which neutrinos with a continuous (monoenergetic)
spectrum are produced are indicated in light (dark) blue. The neutrinos are named after the
specific production reaction. The branching ratios are taken from [32].

12C + p→ 13N + γ 13N→ 13C + e+ + νe

15N + p→ 12C + 4He 13C + p→ 14N + γ

15O→ 15N + e+ + νe 14N + p→ 15O + γ

15N + p→ 16O + γ 17O + p→ 14N + 4He

16O + p→ 17F + γ 17F→ 17O + e+ + νe

99.96%

0.04%

Figure 1.4: Scheme of the CNO-cycle The CNO-cycle consists of two sub-cycles, where the
upper cycle dominates. The reactions in which neutrinos are produced are indicated in blue.
The branching ratios are taken from [32]. The CNO-cycle plays only a minor role in the Sun,
however, it is the main fusion process in heavier stars.

range (see Figure 1.2). However, these thermal solar neutrinos could not yet be observed and
no realistic detection potential exists at the moment [13].
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Figure 1.5: Solar Neutrino Spectrum in the SSM The neutrinos produced in the pp-
chain (CNO-cycle) are shown in black (blue). For the continuous spectra the flux is given in
units of cm−2s−1MeV−1, for the mono energetic spectra in cm−2s−1. The errors given on the
flux correspond to the theoretical ones. The figure is taken from Reference [34].

Geo Neutrinos

Geo neutrinos are mainly5 electron antineutrinos emitted in beta decays of the radioactive
isotopes, namely 40K and the decay chains of 238U, 235U, and 232Th, contained in the Earth.
The released energy during the radioactive decays is expected to make up more than 50%
of the total terrestrial heat [35]. Geo neutrinos reach energies up to 3.3MeV and have a flux
of the order of 106 cm−2s−1. Figure 1.6 shows the expected geo neutrino spectrum at the
Laboratori Nazionali del Gran Sasso (LNGS) in Italy.
As the exact flux depends on the composition of the Earth, geophysical models can be tested
with the measurement of geo neutrinos. Geo neutrinos from the 238U and 232Th decay chain
that are above the detection threshold of 1.8MeV of the inverse beta decay (IBD) have
been observed with Kamland [36] and Borexino (see Chapter 2). However, so far statistical
uncertainties dominate the observed results and prevent from a differentiation of geophysical
models.

Supernova Neutrinos

Amassive star explodes at the end of its life in a supernova while its core collapses to a neutron
star or a black hole. The density and temperature become so large in the collapsing core
that electron neutrinos are produced through electron capture on protons. These electron
neutrinos can only escape freely at the beginning of the stellar core collapse. When the density
of the stellar plasma becomes too high, the electron neutrinos interact with the infalling
matter billions of times and thermalize before they can escape the stellar medium. In these
interactions neutrinos and antineutrinos of all flavors are produced, where their mean energy
is about 10MeV. The supernova reaches neutrino luminosities up to ∼ 1053 erg/s. Note
that such a supernova neutrino signal lasts only for several seconds [37]. If the supernova is

5The isotope 40K undergoes with a probability of 10.7% electron capture and produces electron neutrinos
[35].
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Figure 1.6: Expected Geo Neutrino Flux at LNGS The individual geo neutrino contri-
butions and their sum from 40K and the decay chains of 238U and 232Th are shown. The geo
neutrino contributions are modeled for the Borexino site. The dashed line indicates the energy
threshold for the inverse beta decay detection reaction. Hence, geoneutrinos from 40K cannot
be observed. The figure is taken from [35].

close, the neutrino flux is high enough on Earth and can be detected with neutrino detectors.
This was the case for the supernova 1987A in the Large Magellanic Cloud with a distance of
∼ 50 kpc, where the time-integrated neutrino flux of the burst was determined to ∼ 1010 ν̄e
per cm2 [38–40]. The observation confirms the core-collapse supernova model and that the
produced neutrinos carry away a large fraction of the gravitational binding energy released in
the core collapse. Moreover, the measured energies of the detected ∼ 20 events are consistent
with the predicted thermal energy spectrum [37].
In addition to a single supernova, one expects the existence of the diffuse supernova back-
ground (DSNB), which is the integral neutrino signal of all past core-collapse supernova explo-
sions in the observable Universe. Due to the small flux of ∼ 102 per cm2s [41] and the low en-
ergy, it has not yet been observed. However, future large-scale experiments (as JUNO [42,43],
Superkamiokande/Hyperkamiokande [44, 45], DUNE [46, 47], and Theia [41]) might be able
to detect such a signal (for a comparison of the discovery potential see Ref [41, 48]). The
observation of future galactic supernovae as well as the DSNB could provide essential infor-
mation about the processes during core-collapse supernovae or the formation rates of neutron
stars and black holes (for a detailed review see Reference [49]).
Borexino is sensitive to a galactic supernova signal and is a member of the SuperNova
Early Warning System (SNEWS) [50]. An upper limit on the DSNB neutrino flux of
< 112.3 cm−2s−1 is reported at the 90% CL from Borexino in [51].

Atmospheric Neutrinos

Atmospheric neutrinos are secondary particles emitted in pion and kaon decays. These pions
and kaons are produced in interactions from primary cosmic rays with nucleons in the Earth’s
atmosphere. Their broad energy spectrum reaching from 0.1GeV to several TeV and their
wide range of baselines from 10 to about 1000 kilometers allow studying neutrino oscillations.
Atmospheric neutrinos are neutrinos as well as antineutrinos and appear in electron and muon
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flavor. Atmospheric neutrinos have been detected by a vast list of experiments [52–62], and
the first evidence of neutrino oscillations was reported in 1998 from the Super-Kamiokande
experiment using atmospheric neutrinos [58]. Atmospheric neutrinos were also observed in
Borexino [51,63]. As they can mimic an inverse beta decay signal (the main detection reaction
for electron antineutrinos), they contribute to the background for antineutrino searches (see
e.g. Reference [51]) and are the most critical background for the detection of the DSNB
signal [43].

1.3.2 Artificial Sources

Reactor

Nuclear reactors produce in nuclear fission processes of heavy isotopes, mainly 235U, 238U,
239Pu, and 241Pu, about 600 fission fragment isotopes. These subsequently produce electron
antineutrinos of up to ∼ 10MeV via beta decays [64]. The flux depends on the fuel compo-
sition and the thermal power of the reactor, whereby the flux of a reactor with a thermal
power of 1GW is about 2 · 1022 s−1 [1].
The uncertainty on the flux is rather large with up to several %, as the total flux consists
of about 10000 individual beta-decay branches, which complicates the flux prediction [64].
The neutrino flux is modeled in two ways, namely the conversion and ab initio method.
The current standard spectrum is derived by Huber und Mueller [65,66], which exploits the
conversion method. Here, the measured integrated beta spectra of 235U, 238U, 239Pu, and
241Pu are converted into the expected neutrino flux. The Huber-Mueller flux differs from
the experimental results in the total flux for about 5% (the so-called reactor antineutrino
anomaly [67], see Section 1.5.3) as well as in the spectral shape around ∼ 5MeV for about
10% [68–71]. On the contrary, ab initio calculations directly compute the neutrino flux as
the sum of the individual derived beta branches using fission yields and information from
nuclear databases [72].
Reactor neutrinos were the first neutrinos that have been detected in 1956 [73] and have
been widely used to measure neutrino oscillations [74–77]. Currently, reactor neutrinos are
the main neutrino source in experiments searching for sterile neutrinos at the eV-scale (see
Section 1.5.5). To counteract the neutrino flux uncertainties, a relative measurement of the
energy spectrum at different baselines is performed.
Since there are no nuclear reactors in Italy, the reactor neutrino rate is low at the LNGS.
However, reactor neutrinos are measured as the main background component for a geo neu-
trino analysis in Borexino (see for example [35]).

Accelerator Neutrinos

Accelerator neutrinos are produced in the decays of mesons that are in turn produced
when high-energy protons collide onto a target. Accelerator neutrinos are mainly muon
(anti-)neutrinos, as pions are the most abundant decay product. A directional neutrino
beam with the desired neutrino type can be achieved when the mesons are focused using
so-called magnetic horns. The mean energy of accelerator neutrinos lies in the GeV range.
The neutrino flux has large uncertainties of 5%-10%, mainly because of the uncertainties in
the hadron production cross sections [1].
Long- and short-baseline experiments have been looking for neutrino oscillations with a base-
line of several ∼ 100 km and ∼ 1 km, respectively. While the results from the long-baseline
experiments confirm the neutrino oscillations within the three-neutrino model [78–82], some
of the short-baseline experiments hint at the existence of a sterile neutrino in the eV-scale (see
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Table 1.1: Neutrino Oscillation Parameters. The parameters are obtained from a global fit
to solar, atmospheric, reactor, and accelerator data from July 2020 assuming three-flavor neutrino
oscillations. The values are given for normal (m1 < m2 < m3) and inverted (m3 < m1 < m2)
ordering, where l = 1 and l = 2, respectively. The values are taken from [85,89].

parameter best fit ±1σ
normal ordering inverted ordering

sin2 θ12 0.304+0.013
−0.012

sin2 θ23 0.573+0.016
−0.020 0.575+0.016

−0.019

sin2 θ13 0.02219+0.000062
−0.00063 0.02238+0.00063

−0.00062

∆m2
21[10−5 eV2] 7.42+0.21

−0.20∣∣∆m2
3l
∣∣ [10−3 eV2] 2.517+0.026

−0.028 −2.498+0.028
−0.028

δCP[°] 197+27
−24 282+26

−30

Section 1.5.3). New experiments searching for sterile neutrinos using accelerator neutrinos
are currently in preparation or already taking data (see Section 1.5.5).
Accelerator neutrinos from the CNGS (CERN Neutrinos to Gran Sasso) beam that were sent
to the closeby Opera experiment [80] could also be observed in Borexino [83].

1.4 Current Status and Open Questions
Detecting reactor, solar, atmospheric, and accelerator neutrinos with their different energies
at different baselines, the neutrino oscillation parameters could be measured (for a detailed
review see Reference [1]). The current status of the experimental values obtained from a
global fit is listed in Table 1.1. The experiments could measure the three mixing angles and
the two mass splittings with ∆m2

21 � |∆m2
31| ' |∆m2

32|. However, a small discrepancy of
1.4σ between solar and reactor experiments for ∆m2

21 exists [84], and the octant of δ23 is not
yet determined.
Neutrino oscillation experiments for which the oscillation probability can be approximated
with the two-flavor formula (see Equation 1.4) are not sensitive to the sign of ∆m2. In
contrast, three-flavor oscillations and matter effects can be used to determine the neutrino
mass ordering. While m2 > m1 is known from the observation of the MSW effect using solar
neutrinos, the neutrino mass ordering (normal: m1 < m2 < m3 or inverted: m3 < m1 < m2)
is still unknown. Current data slightly prefer the normal mass ordering [85]. The neutrino
mass ordering will be measured by experiments that perform either a precision spectral
measurement of the three-flavor oscillations in the reactor spectrum (JUNO [42]) or look for
the matter effects in the Earth of atmospheric and accelerator neutrinos (IceCube-PINGU
[86], KM3Net-ORCA [87], DUNE [46], Hyper-Kamiokande [44]).
Further, the value of the CP-violating phase δ is not determined yet. It can be reconstructed
by long-baseline accelerator experiments (T2K [88], NOνA [82], and future DUNE [46] and
Hyper-Kamiokande [44]) that look for a difference in the neutrino and antineutrino appear-
ance signal of muon to electron neutrinos. Present results hint at a CP violation at the 3σ
level, however, only if the inverted mass ordering is assumed [89].
The nature of the neutrino (Dirac or Majorana particle) is investigated in experiments that
look for the neutrinoless double-beta decay [90]. If this decay is observed, it can be deduced
that neutrinos are Majorana particles. In addition, the then existing Majorana phases that
are not observable in neutrino oscillation experiments could possibly be measured. The
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current experiments reach limits on the half-life of the neutrinoless double-beta decay of
∼ 1026 yr. This limit can be converted into an upper limit on the effective Majorana neutrino
mass (e.g. mββ < 79 − 180meV from Gerda [91], mββ < 61 − 165meV from KamLAND-
Zen [92], mββ < 93 − 286meV from EXO-200 [93], all at the at 90% CL) and hence into
an absolute value of the neutrino mass. The next-generation experiments start to probe the
effective Majorana neutrino mass region that is predicted for the inverted mass ordering [94].
Another way to measure the still unknown absolute neutrino mass is the precision spec-
troscopy of the beta-decay (e.g. KATRIN [95]) and electron-capture (e.g. ECHO [96]) spectra
close to the Q-value of the reactions. This is possible, as the Q-value is exactly reduced by
the incoherent sum of the neutrino masses mβ. The KATRIN experiment recently reported
an upper limit of mβ < 1.1 eV at the 90% CL [95].
A complementary indirect measurement for the absolute neutrino mass comes from cosmology
that can determine the sum of neutrino masses of those neutrinos that were relativistic in
the early Universe. The relativistic neutrinos add up to the energy density of radiation that
drives the expansion and temperature evolution of the early Universe. The number and
masses of relativistic neutrinos at that time affect, therefore, the signal that can be observed
in the Big Bang Nucleosynthesis (BBN), Cosmic Microwave Background (CMB), and the
Large Scale Structure (LSS). The current limit is ∑mν < 0.54 eV at the 95% CL [17]. It
has to be noted that this limit depends on the assumptions made in the cosmological model,
and a laboratory measurement is still mandatory.
After all, the current data agrees well with the three-neutrino model predicted by the SM.
However, a few experiments report results that are not compatible and hint at a sterile
neutrino at the eV-scale. Sterile neutrinos, which could also help to explain the unresolved
question of the generation of the neutrino masses, will be discussed in the next section.

1.5 Sterile Neutrinos

Sterile neutrinos are hypothetical right-handed neutrinos that are neutral lepton singlets
under the electroweak SU(2)L × U(1)R gauge group [7]. They hence carry no weak charge
(I = 0) and cannot take part in the weak interaction. However, as they are right-handed,
they can form a mass term in the Lagrangian together with the left-handed active neutrinos
and couple thus to the active neutrinos [97].
There are no theoretical limits on the number and on the mass of sterile neutrinos [97].
Therefore, experiments look for their existence at various mass scales: sterile neutrinos at
the meV scale could affect the oscillation signature of solar [98] and reactor neutrinos [99];
keV sterile neutrinos that could be a possible dark matter candidate are searched for in beta
decays [100]; fixed-target and high-energy collider experiments look for sterile neutrinos at
the ∼GeV-scale [101–103]. Besides that, a huge experimental effort is currently ongoing for
the search of eV sterile neutrinos which will be discussed in the following in more detail and
which are the only ones where experimental hints exist for.

1.5.1 Theoretical Motivation

Neutrinos are the only particles that appear solely with left-handed fields in the SM. Thus,
many theoretical models extend the SM by right-handed neutrinos which could then also
explain unresolved questions of particle physics and cosmology.
Sterile neutrinos can be involved in the neutrino mass generation and a sterile neutrino with
∼ 1015 GeV could explain at the same time the smallness of the neutrino mass via the so-called
”seesaw mechanism” [104–108]. Such a heavy sterile neutrino is naturally predicted by Grand
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Unified Theories (GUT) which are theoretical models that try to merge the electroweak
and the strong interactions in one theory. The see-saw mechanism works as sketched in
Figure 1.1, however, the neutrino flavor vector is extended by the sterile neutrino fields
(νe, νµ, ντ )→ (νe, νµ, ντ , νs1 , νs2 , ..., νsN ), where sN is the number of total sterile neutrinos [7,
97]. To ease the discussion, in the following one active νa and one sterile νs neutrino is
assumed, where νa is massless and νs carries the mass mM [8,109]. In this scenario, neutrinos
are Majorana particles and through the interaction with the Higgs field Majorana (mM ) and

Dirac6 (mD) mass terms are produced with the mass matrixM =
(

0 mD

mD mM

)
. Through the

diagonalization of the mass matrix a light νlight and a heavy νheavy neutrino mass eigenstate
are obtained with the masses mlight ≈

m2
D

mM
and mheavy ≈ mM , respectively. The resulting

mass eigenstates are superpositions of the flavor eigenstates (νlight ≈ νa+ mD
mM

νs and νheavy ≈
νs − mD

mM
νa) and hence have mixed properties of the flavor states. With mD � mM , the

almost pure active νlight carries a small mass and the massive νheavy can take part in the
weak interaction which, however, is strongly suppressed.
In order to explain three neutrino masses, at least three sterile neutrinos are needed, but not
all of them need to be very heavy. A popular model is the Neutrino Minimal Standard Model
(νMSM [110,111]) that can, in addition to the smallness of the neutrino masses, explain the
matter-antimatter asymmetry in the Universe [112] (two sterile neutrinos with mass ∼GeV)
and predict a dark matter candidate [113] (one sterile neutrino with mass ∼keV).
There are various variations of the seesaw mechanism that could also accompany a light
sterile neutrino at the eV-scale (see Reference [114] for an overview). Morever, light sterile
neutrinos can be embedded in other models, as for example the gravitational-anomaly mass
model that could at the same time also explain neutrino masses [115].

1.5.2 Sterile Neutrino Mixing

In the following, one additional sterile neutrino νs in the so-called (3+1) model [7, 97] is
assumed with a mass m4 at the eV scale and the corresponding mass eigenstate ν4. In this
model, neutrinos are generally Majorana particles. The flavor and mass eigenstates are then
correlated via an unitary 4× 4 mixing matrix [116]:

νe
νµ
ντ
νs

 =


Ue1 Ue2 Ue3 Ue4
Uµ1 Uµ2 Uµ3 Uµ4
Uτ1 Uτ2 Uτ3 Uτ4
Us1 Us2 Us3 Us4



ν1
ν2
ν3
ν4

 (1.8)

In addition to the PMNS matrix, three mixing angles, two Dirac CP-violating phases, and
one Majorana CP-violating phase exist. The sterile neutrino νs cannot be observed directly.
However, the active neutrinos contain a ν4 component that can affect neutrino oscillations.
The current neutrino oscillation data restricts the mixing with the non-standard massive
neutrino that must be mostly sterile, i.e.

|Ue4|2 � 1, |Uµ4|2 � 1, |Uτ4|2 � 1. (1.9)

Form4 � m1,m2,m3 and thus ∆m2
41 ≈ ∆m2

42 ≈ ∆m2
43 ∼1 eV2 and ∆m2

41 � ∆m2
32, ∆m2

41 �
∆m2

21, the neutrino oscillation probability can be expressed in the two-flavor approximation
6Dirac mass terms do not necessarily require Dirac neutrinos. Instead, only left- and right-handed neutrinos

are needed.
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(α, β = e, µ, τ):

P (να → νβ) ≈
∣∣∣∣∣δαβ − sin2(2θαβ) · sin2

(
1.27 ·∆m2

41[eV2] · L[m]
E[MeV]

)∣∣∣∣∣ , (1.10)

with
sin2(2θαβ) = 4 |Uα4|2

∣∣∣δαβ − |Uβ4|2
∣∣∣ . (1.11)

The mixing angles of appearance (α 6= β) and disappearance (α = β) experiments are
connected via

sin2(2θαβ) = 1
4 sin2(2θαα) sin2(2θββ). (1.12)

1.5.3 Experimental Hints for Sterile Neutrinos

Several experiments report results not compatible with the three-neutrino model which could
possibly be explained by a sterile neutrino with the mass at the eV scale. These so-called
anomalies are summarized in the following.

LSND and MiniBooNE Anomaly

The LSND experiment [117] was an accelerator experiment with a ν̄µ-beam with a few tens
of MeV energy. A liquid scintillator detector was placed at a distance of ∼ 30m (L/E ∼
1m/MeV) and an excess of ν̄e events at ∼ 3.8σ compared to the three-flavor neutrino os-
cillations was observed. This result could be explained by ν̄µ-ν̄e-oscillations enhanced by a
sterile neutrino with the mass splitting ∆m2

41 & 0.1 eV2 [97]. The similar KARMEN exper-
iment [118] with a baseline of ∼ 18m, however, could not observe such an excess. Due to
the lower statistics, KARMEN could only constrain but not exclude the preferred parameter
space by the LSND experiment. Therefore, the goal of the MiniBooNE experiment [119]
was to test the LSND anomaly. MiniBooNE is sensitive to both neutrino and antineutrino
channels (νµ-νe/ν̄µ-ν̄e) and covers the same L/E-range as LSND, whereas the energy and
baseline are by a factor of ten larger than for the LSND experiment (E ∼ GeV, L ∼ 540m).
The MiniBooNE data shows an excess in neutrino and antineutrino mode corresponding to
4.7σ [120]. Furthermore, the data is compatible with the LSND data and the combined anal-
ysis reaches a significance of 6.0σ. However, the excess is only present in the lowest energy
bins which is not fully compatible with the (3+1) model [97, 120]. With that ambiguous
result MiniBooNE can not give conclusive results on the LSND anomaly.

Reactor Antineutrino Anomaly

The reactor antineutrino anomaly (RAA) [67] describes an observed deficit of reactor neutri-
nos in comparison to the expectation for reactor experiments with baselines in between 6m
to 100m. The anomaly arose after the reevaluation of the reactor neutrino flux [65] which
lead to an increased expected neutrino flux of ∼ 5% [7]. The average ratio between experi-
mental and expected neutrino rate is R̄ = 0.933± 0.021 which corresponds to a significance
of ∼ 3.1σ [97]. The RAA could be explained by neutrino oscillations of reactor neutrinos
into sterile neutrinos with a mass splitting of ∆m2

41 & 0.5 eV2.7

7There exist some doubts on the RAA which are discussed in Chapter 13.
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Gallium Anomaly

In order to exclude unknown systematic errors for their radiochemical detectors, the solar
neutrino experiments GALLEX [26] and SAGE [25] exploited high-radioactive 37Ar and 51Cr
sources. Both isotopes decay via electron capture and produce electron neutrinos with an
energy of ∼ 800 keV. The electron neutrinos were detected via 71Ga(νe,e−)71Ge charged-
current reactions. The sources were placed near the center of the detectors with an average
baseline of ∼ 1m. Both experiments observed a smaller number of neutrino events than
expected, where the average ratio is R̄ = 0.84± 0.05. This corresponds to a 2.9σ deficit [97].
This discrepancy was confirmed by an independent measurement of the transition strengths
in 71Ge [121]. Similar to the RAA, such a signal could be explained by neutrino oscillations
to sterile neutrinos with a mass splitting of ∆m2

41 & 1 eV2.

1.5.4 Global Picture of Sterile Neutrinos in 2015

The compatibility of the global neutrino oscillation data with sterile neutrino models is
analyzed and constantly updated by various groups (e.g. [122–125]). In the following, the
results from Reference [122] are discussed which reflect the status before the current sterile
neutrino search program. The three-neutrino model and hence the absence of sterile neutrinos
is excluded at the ∼ 6σ level which, however, drops to only 2.6σ when the LSND data is
not taken into account. Hence, the strongest hint for sterile neutrinos comes from the LSND
anomaly. The goodness of fit in the (3+1) model decreases when the MiniBooNE data is
included in the global fit which is consistent with the fact that sterile neutrino oscillations
cannot describe the MiniBooNE data. Therefore, global fits are often performed without the
MiniBooNE data, as shown in Figure 1.7. The preferred parameter space is shown for the
oscillation parameters of muon neutrino to electron neutrino appearance (∆m2

41−sin2(2θeµ)),
electron (∆m2

41 − sin2(2θee)) or muon (∆m2
41 − sin2(2θµµ)) neutrino disappearance searches.

The global best-fit value for the mass splitting is ∼ 1.5 eV2 and for the oscillation amplitude
sin2(2θee) is ∼ 0.1. In addition, the allowed regions at the 3σ level using only disappearance
and appearance experiments are indicated. The overlap of these regions is small which shows
that appearance and disappearance data are in tension with each other. Moreover, the best-
fit value obtained from the appearance experiments is excluded by the disappearance data.
Given the experimental hints and the disagreement between appearance and disappearance
data, a large number of experiments have been developed over the last years. The next
section describes the experimental strategies and efforts in the light sterile neutrino search.

1.5.5 Experimental Strategies in the Sterile Neutrino Search

As sterile neutrinos do not participate in the weak interaction, they can only be detected
indirectly via their coupling to the active neutrinos. A large fraction of the experiments
looks for neutrino oscillations in appearance and disappearance experiments described by
Equation 1.10. Given a neutrino mass splitting of ∼ 1 eV2, the oscillation length is about
(L/E)osc ∼m/MeV. Therefore, the experiments are constructed to detect neutrinos with a
broad L/E range of O(m/MeV). The broad range is necessary to observe the oscillation
signature as a function of the neutrino energy and baseline which would be a smoking gun
signature for sterile neutrinos.
On the one hand, this can be realized with a neutrino source with an energy of O(1MeV)
(e.g. neutrinos from nuclear reactors or artificial sources). This energy leads to an oscillation
length in the baseline Losc with O(1m) that can be directly observed in a large enough
detector. On the other hand, having a broad energy spectrum of O(100MeV) as provided
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Figure 1.7: Global Picture of Light Sterile Neutrinos The colored area shows the allowed
parameter space using global oscillation data in a (3+1) model for the oscillation parameter
plane ∆m2

41 − sin2(2θµe), ∆m2
41 − sin2(2θee), and ∆m2

41 − sin2(2θµµ). The lines delimit the 3σ
confidence regions when only a subset of the global data is used (violet: νe disappearance data,
green: νµ disappearance data, red: disappearance data, blue: appearance data). The crosses
indicate the best-fit values. Comparing the preferred parameter region for appearance (blue) and
disappearance (red) data, shows the existing tension between both kind of experiments. The
figure is taken from [97].

with accelerator neutrinos, the oscillation signature is also visible in the energy spectrum
measured with a detector located at a baseline of O(100m). In order to observe the sought-
after oscillation signature, the distance between the detector to the neutrino source needs to
be in the same range as the oscillation length. Thus, these experiments place their detectors
close to the neutrino source and are called short-baseline (SBL) experiments.
Moreover, to observe the oscillation signature, the neutrino source must be compact and
the detector needs to be able to reconstruct the energy and the interaction position of the
neutrino. The deposited energy in the detector is often correlated with the initial neutrino
energy (e.g. by the detection through the IBD) or can be reconstructed from the energy and
direction of the outgoing particles produced in the neutrino interaction. If the energy cannot
be reconstructed, monoenergetic neutrino sources are used. To reconstruct the traveled
distance, the detector must be either capable of resolving the interaction position or consist of
several sub-detectors (or be movable). In appearance experiments using accelerator neutrinos
with an energy of O(100MeV), the baseline is L ∼ O(100m) and is hence much larger than
the source and the detector and can be assumed to be known.
Besides the SBL program, there exist other approaches to look for sterile neutrinos. For
example, sterile neutrinos could lead to an enhanced oscillation probability through matter
effects in the Earth. The IceCube experiment looks for such a signature using atmospheric
neutrinos [136]. Given a light sterile neutrino, the PMNS matrix would not be unitary. Hence,
tests of the unitarity of the PMNS matrix can be performed in the search for sterile neutri-
nos [137]. Moreover, a light sterile neutrino would affect the signature of the experiments
that can measure the absolute neutrino mass, i.e. precision spectroscopy of beta decay and
electron capture spectra [96, 138], neutrinoless double-beta decay experiments, and cosmol-
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ogy [17]. A review of the experimental searches can be found for example in Reference [116].
The current status of these complementary measurements is discussed in Chapter 13.
This thesis focuses on the sterile neutrino searches in SBL experiments. An overview of
these experiments and their experimental parameters is given in Table 1.2. It can be seen
that a large fraction of the experiments is using reactor and accelerator neutrinos to directly
test the reactor and LSND/MiniBooNE anomaly, respectively. In both cases, the neutrino
source is intense and high statistical data sets can be achieved. However, the neutrino fluxes
suffer from relatively large uncertainties which decrease the sensitivity of these experiments.
Therefore, these experiments typically compare the energy spectra measured at different
baselines directly to each other and perform in that way a flux-independent measurement.
On the contrary, neutrinos from artificial sources can be well characterized and hence are an
attractive alternative approach, even though the statistics are limited by the lifetime of the
source itself. The SOX [132] experiment was planned to use such an artificial neutrino source,
namely ν̄e from 144Ce, together with the well-characterized and low-background neutrino
detector Borexino. Moreover, using a Gallium radiochemical detector and a 51Cr source, the
BEST [131] experiment can directly probe the Gallium anomaly.

In summary, light sterile neutrinos are one of the current hot topics in the neutrino com-
munity. Hence, a vast number of SBL experiments are at the moment searching for these
new particles beyond the SM. The first part of this thesis discusses the data analysis of one
specific experiment, the SOX experiment, which is introduced in more detail in Chapter 2.
Further, Chapter 3 reviews statistical tools for the data analysis and gives an overview of
the applied statistical methods of the current SBL experiments. Motivated by the incoherent
picture of the presentation of their results, the second part of this thesis studies and compares
the statistical methods and issues of the SBL experiments.
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2 The Solar Neutrino Detector
Borexino and the SOX Project

In order to search for a sterile neutrino with a mass of about 1 eV, the distance between the
detector and a MeV-neutrino source needs to be in the range of ∼ 10m. One way is to exploit
an existing powerful nuclear research reactor with a neutrino flux of ∼ 1020 antineutrinos per
second and to build a small detector with a size of a few meters (for example STEREO [130]
or PROSPECT [128]). These reactor-based experiments reach total event numbers of more
than 105, however, they suffer from the large uncertainties on the neutrino flux. In contrast,
the SOX project [132] uses the existing large radio-pure Borexino detector (diameter of active
volume is 8.5m) and produces a well-characterized neutrino source. To achieve a sufficient
total event number of ∼ 104 events, the neutrino source needs to have a high activity of more
than 1015 Bq. Thus, the SOX project is a complementary approach in the sterile neutrino
search.
This chapter describes first the Borexino detector with its recently published results (Sec-
tion 2.1). Second, the SOX project with its planned 144Ce antineutrino source is summarized
in Section 2.2.

2.1 The Borexino Detector
The liquid scintillator detector Borexino has been developed to detect solar neutrinos in
real time, requiring a low energy threshold, a good energy and vertex resolution, and a low
concentration on radioactive impurities. At the moment, Borexino is the only detector with
such a low energy threshold of∼ 150 keV which can at the same time reconstruct the deposited
energy and the position of neutrino interactions. After a purification campaign in 2011, the
concentrations of 238U and 232Th in the detector’s center are smaller than 9.4 × 10−20 g/g
(95% CL) and 5.7 × 10−19 g/g (95% CL), respectively [139]. Borexino is taking data since
May 2007 and was able to, thanks to its unprecedented radio-purity, successfully measure
the full pp-chain and the CNO cycle of the Sun.
In the following, Sections 2.1.1-2.1.3 describe the Borexino detector, the reconstruction of the
inner vessel which contains the active scintillator volume, and the neutrino detection channels.
Finally, the backgrounds and recent results of Borexino are summarized in Section 2.1.4
and 2.1.5.

2.1.1 Detector Design and Source Location

The Borexino detector is located in hall C at the Laboratori Nazionali del Gran Sasso (LNGS)
in Italy under a rock overburden of 3800m.w.e. [141]. A schematic drawing of the setup is
shown in Figure 2.1. It is composed of two independent light detector systems, namely the
inner (ID) and the outer detector (OD), divided by a stainless steel sphere (SSS) with a radius
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Figure 2.1: Sketch of the Borexino Detector. The Borexino detector consists of two inde-
pendent light detectors which are divided by a stainless steel sphere. The inner detector contains
270 t of active liquid scintillator hold by a nylon vessel and surrounded by buffer material. For
the detection of the scintillation light it is instrumented with 2212 PMTs. The outer detector is
a water Cherenkov detector and acts as passive shielding and as active muon veto. The source
for SOX is located in a dedicated tunnel (see Figure 2.2) below two carbon steel plates that
reduce neutron and gamma background from the source. The figure is taken from [140].

of 6.85m. The ID is the main detector and observes the scintillation light produced in the
active medium. The active medium is a mixture of 270 t pseudocumene (PC,C6H3(CH3)3)
and the wavelength shifter PPO (C15H11NO) at a concentration of 1.5 g/l. It is contained
in a 125 µm nylon vessel at a nominal radius1 of 4.25m. The scintillation light with a peak
wave length of 360 nm is produced in the fast decay (∼ 3 ns) of excited PPO molecules
induced by an incident ionizing particle. Here, the incident ionizing particle excites first PC
molecules which in turn excite through a non-radiative energy transfer the PPO molecules.
2212 photomultiplier tubes (PMTs) mounted on the inner surface of the SSS collect the
scintillation light with a total optical coverage of ∼ 30%.
The 1024 t buffer mixture of PC and DMP (dimethylphytalate,C10H10O44) surrounds the
active medium and shields against external background. At the same time, the buffer mixture
prevents from the production of scintillation light by quenching it by a factor of ∼ 20. A
second nylon vessel at 5.5m separates the buffer into the inner (IB) and outer (OB) buffer.
Both vessels are held by nylon strings in the north and south pole of the detector and act in
addition as 222Rn barriers.
The ID can reconstruct the energy and position of an event, where the energy is obtained
from the total amount of measured scintillation light. The interaction point is deduced using
time-of-flight techniques and the arrival times of the scintillation photons. Borexino has a

1The exact shape of the so-called inner vessel varies from the designed sphere and is discussed in the next
section.
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Figure 2.2: Sketch of the Source Location. The source is located in a dedicated pit 8.51m
below the detector center and can be reached via a tunnel and an installed railway system. In
addition, the cleanroom, from which the tunnel can be accessed and in which the calorimetric
measurements are performed, is shown.

light yield of ∼ 104 photons/MeV and an attenuation length of ∼8m at 360 nm leading to an
energy resolution of 5% and a spatial resolution of ∼10 cm at 1MeV. The detector response
is unfortunately time dependent. Indeed, the number of active PMTs is decreasing due to
aging effects. At the planned start of SOX data taking at the end of 2017, approximately
1400 PMTs were still operational.
Details on the charged particle energy loss affect the light yield and the hit-time distri-
butions. This results into a reduced light yield for alpha particles. The quenching factor
of MeV-alpha particles is about a factor of ten higher than for electrons. Moreover, it is
possible to distinguish alpha particles from electrons and gammas by means of pulse shape
discrimination.
The OD with a diameter of 18m and a height of 16.9m is filled with 2100 t of ultra-pure
de-ionized water that acts as shielding and muon veto. The emitted Cherenkov light from
traversing muons is collected by 208 PMTs mounted on the outer surface of the SSS and the
floor of the water tank.
Since 2015 the Borexino detector is thermally insulated with material based on mineral wool.
Further, an active temperature control system was installed in January 2016 [33]. This
modification of the detector was necessary to reduce convection movements in the active
volume due to temperature variations in hall C.
The source position is 8.51m below the detector’s center in a dedicated tunnel of only 1m
height that has been already built at the time of the construction of Borexino. Two carbon
steel plates between the source and the detector with dimensions of 8m x 8m x 10 cm and
4m x 4m x 4 cm are present and shield against neutrons and gamma rays from the source.
The tunnel entrance can be accessed via a cleanroom and the source can be moved via a
railway system in the tunnel, which is sketched in Figure 2.2. As it is mandatory to avoid
any heat transfer from the source to the detector, the source is kept at a constant temperature
during data taking using a carefully controlled water cooling system. Moreover, the tunnel
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is continuously ventilated.

2.1.2 The Inner Vessel Shape and its Reconstruction

A hole in the inner vessel results in a leak of the scintillator of the inner vessel to the buffer
and deforms at the same time the vessel shape. The hole appeared in April 2008 and its
location was estimated to 26°< θ <37° and 225°< φ <270° [141]. To reduce the leak and
the buoyancy forces, the density difference between the buffer and the scintillator has been
reduced by lowering the DMP concentration in the buffer from 5 g/l to 2 g/l.
The time-dependent shape of the inner vessel can be reconstructed using the events from
radioactive contaminants of the inner vessel, mainly 210Bi, 40K, and 208Tl which is shown
in Figure 2.3. The resulting vessel shape is a function of the polar angle, where azimuthal
symmetry is assumed (see Figure A.7). To do so, data from three weeks are collected and
grouped for the polar angle. The radius for each polar angle is determined from a simulta-
neous fit of the radial and energy distributions using Monte Carlo (MC) simulations of the
three main impurities. The obtained data points for the radius as a function of the polar
angle are described with a combined function of a high-order polynomial, a Fourier series,
and a Gaussian distribution where the radius at the poles is fixed to 4.25m (for a detailed
description see References [35, 141]). This procedure allows to determine the vessel shape
with an uncertainty of 1% which corresponds to about 5 cm. The uncertainty of the vessel
shape is the main systematic source for the SOX experiment and is studied in Chapter 7.

Figure 2.3: Vessel Shape Reconstruction Number of events in a volume of 0.0016m3

selected for a time period of three weeks with an energy of (800 - 900) keV and |y|<0.5m. These
events are due to radioactive contaminants of the inner vessel and are used for the vessel shape
reconstruction. Due to a hole in the inner vessel and buoyancy forces, the shape of the inner
vessel deviates from the nominal vessel shape with a radius of 4.25m shown in gray. The figure
is taken from [35].
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2.1.3 Neutrino Detection Channels

Dependent on the neutrino type and its energy, neutrinos can be detected via different detec-
tion channels in liquid scintillators (see for example Table 2.1 in Reference [63]). In Borexino,
electron neutrinos are detected via elastic scattering and electron antineutrinos mainly via
the inverse beta decay (IBD). For both detection channels, the interaction is point-like as
the mean free path for the recoil/produced electrons/positrons is only a few centimeters. As
the produced scintillation light is in addition emitted isotropically, no directional information
can be measured with Borexino.

Elastic Neutrino Electron Scattering

Electron neutrinos scatter off electrons contained in the liquid scintillator

νe + e− → νe + e− (2.1)

via charged and neutral current interactions and transfer a part of their energy Eν to the
electrons. The maximum recoil energy T is given for a scattering angle of 180°

T ≤ 2E2
ν

me + 2Eν
, (2.2)

where me is the electron mass. The corresponding cross section is given by [142]:

dσ(Eν)
dT = 2G2

Fme

πE2
ν

[
A2E2

ν + B2(Eν − T )2 −ABmeT
]

(2.3)

where GF is the Fermi coupling constant. A und B are constants that depend on the weak
mixing angle θW . For electron neutrinos one obtains A = −0.5− sin2 θW und B = − sin2 θW .
Electron antineutrinos as well as muon/tau (anti-) neutrinos also interact via elastic scattering
off electrons, but only via neutral current interactions which leads to reduced cross sections
in comparison to electron neutrinos. The main detection channel for electron antineutrinos
is hence given by the IBD (cross section is about a factor of ten larger).

The Inverse Beta Decay

Antineutrinos interact mainly via the IBD with protons from the liquid scintillator

ν̄e + p→ e+ + n, (2.4)

which is sketched in Figure 2.4. As the neutron is much heavier than the positron, the
antineutrino transfers almost all its energy to the positron

Ekin(e+) ≈ Eν −QIBD, (2.5)

where QIBD = 1.806MeV is the energy threshold of the IBD [143]. The positron annihilates
with an electron and two 511 keV gamma rays are emitted. This process happens instantly
and provides the so-called prompt signal. The incident neutrino energy can be reconstructed
from the measured visible energy Evis:

Eν ≈ Evis + 0.784MeV. (2.6)

The neutron thermalizes and after the mean time of∼ 250 µs it is captured either on Hydrogen
(∼ 99%) or on Carbon (∼ 1%). The exited nuclei de-excite and produce a delayed signal
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Figure 2.4: Sketch of the Inverse Beta Decay ν̄e react via the IBD on protons and produce
a positron and a neutron. The positron annihilates instantly with an electron and its kinetic
energy is measured together with the one of the two annihilation gammas as a prompt signal. A
delayed signal is induced from the neutron which thermalizes and is captured mainly on protons
with a mean time of ∼ 250 µs. The deuteron de-excites and emits a detectable 2.2MeV gamma.
The figure is taken from [35].

by the emission of a 2.22MeV or 4.95MeV gamma ray, respectively. This coincidence of
the prompt and the delayed event in time and space reduces the background significantly in
electron antineutrino searches.
The cross section of the IBD is given in Reference [143]:

σν(Eν) ≈ peEe
(
Eν

MeV

)a(Eν)
· 10−43 cm2

MeV2 , (2.7)

where pe is the momentum of the electron and

a(Eν) = −0.07056 + 0.02018 ln(Eν/MeV)− 0.001953 ln3(Eν/MeV ).

2.1.4 Backgrounds in Borexino

From the beginning, the material used in the Borexino detector was selected and handled
with special care to reduce radio impurities as much as possible. Moreover, the scintillator
was purified several times [144] and an unprecedented radio purity could be achieved. The
contamination levels of 238U and 232Th are 9.4 × 10−20 g/g (95% CL) and 5.7 × 10−19 g/g
(95% CL), respectively which is about ten orders of magnitude lower than the one of natural
material on Earth [139].
In the following, an overview of the backgrounds for a neutrino search in Borexino is given (for
a detailed discussion see Reference [141]). In particular, the backgrounds for the detection
channel of elastic scattering is reviewed. The background expected for the IBD and thus
the SOX analysis are discussed in Chapter 6. The background in Borexino can be classified
into three categories: external background including contaminations on surfaces, internal
background, and cosmic muons and muon-induced background.

External Background

All sources of radioactivity which are located outside of the scintillator are defined as external
background. One example are radioactive contaminants in the glass of the PMTs (208Tl,
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214Bi, and 40K) and surface contaminants of the vessels (210Bi). The buffer and the two
vessels shield against external backgrounds and the external background is suppressed in the
center of the detector. Hence, due to the ability to resolve the interaction position only data
from the fiducial volume (FV) can be used for the analysis. The specific FV depends on the
type of analysis and will be optimized for SOX in Chapter 7.

Internal Background

Despite the high radio-purity of the detector materials used for Borexino, the scintillator still
contains residual internal contaminations. Among the components of the scintillator (mainly
Hydrogen and Carbon), the beta-decaying 14C is an irreducible background, as it is a long-
lived isotope with a lifetime of 5732 y. 14C is the main background component in Borexino
and its Q-value of 156 keV hence defines the energy threshold for the neutrino detection.
After 14C, 210Bi and 210Po are the most abundant background components in Borexino.
210Bi decays via beta decay with a mean lifetime of 7.23 days and a Q-value of 1160 keV into
210Po. 210Po is a mono-energetic alpha emitter at 5410 keV with a mean lifetime of 200 days.
Due to the strong quenching of alpha particles, the reconstructed energy is at ∼ 400 keV.
Both isotopes are daughters of the decay chain of the primordial isotope 238U and could be
technically determined by the fast 214Bi-214Po coincidence. However, both contaminations
are higher and out of secular equilibrium with the rest of the decay chain. One reason is the
contamination of the scintillator with the mother isotope 222Rn during detector operations
(for example during detector calibrations or scintillator purifications) that emanates from
the materials that are in contact with the scintillator. Moreover, convective motions in the
scintillator can bring the long-lived 210Po from the inner vessel in the center of the detector.
As 210Bi has a similar spectral shape as the solar CNO neutrinos, its determination is crucial
for the detection of the CNO neutrinos.
Another major background component is the beta-emitter 85Kr. 85Kr is contained in air and
could have mixed with the scintillator during the detector filling. It decays with a mean
lifetime of 15.4 years with an endpoint of 665 keV. The energy range is similar to the one of
solar 7Be neutrinos and is thus the main background for this analysis.

Cosmogenic Background

An additional background component are cosmogenic muons and muon-induced cosmogenic
background. The muon flux on the sea level is ∼ 6.5 · 105 µ/(m2·h) which is reduced by the
rock overburden of 3800m.w.e. by about six orders of magnitude. This corresponds to a
detectable rate of ∼ 4310 muons per day in Borexino [63]. The muons can through spalla-
tion processes on scintillator atoms produce neutrons, protons, and short-lived radioisotopes.
The dominant background source is 11C which is a β+-emitter with a Q-value of 960 keV
and a mean lifetime of 29.4min. Such a large lifetime makes the tagging of this background
component challenging. However, as 11C is produced in coincidence with a cosmogenic neu-
tron, a three-fold coincidence (TFC) of muon, neutron and 11C, can be used to suppress the
11C background. The rejection efficiency of the TFC is given by (92±4)% with a remaining
exposure of (64.28±0.01)% [139].

2.1.5 Physics Results with Borexino

With a measurement time of more than 13 years, Borexino has produced a huge list of
scientific results.2 Previously to Borexino, solar neutrinos could be measured by the radio-

2A list of all publications can be found on the Borexino website [145].
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chemical experiments (Homestake [24], SAGE [25], and GALLEX/GNO [26]) that have only
measured an integral neutrino flux above a certain energy threshold (O(100 keV)) or real-
time measurements with water Cherenkov detectors (Kamiokande/Super-Kamiokande [27]
and SNO [28]) that have an energy threshold of several MeV and are hence only accessible
to the high-energy solar neutrinos (8B and hep). Borexino is the first detector that can
perform a real-time measurement with a low energy threshold (∼ 150 keV). In the following,
the latest results of solar neutrinos, including the first detection of the CNO neutrinos, and
geo neutrinos are summarized.

Solar Neutrinos

A measurement of solar neutrinos does not only allow to probe the standard solar model
(SSM) and the metallicity of the Sun [146], but also to test neutrino properties and physics
beyond the standard model (SM).
In 2018, Borexino measured simultaneously all solar neutrinos which are produced in the pp-
chain [32]. Previously, the individual neutrino types of the pp-chain have been determined
individually which can be found in References [147–150]. The first direct evidence of CNO
neutrinos has been released recently [33].

Methods In the simultaneous measurement of the pp-chain, the analyses are divided into
three energy regions to treat the different backgrounds and systematics individually. First,
the pp, 7Be, and pep neutrinos are determined in the energy region of 0.19MeV-2.93MeV
with a simultaneous fit in energy, radial distribution, and a pulse shape parameter. The
latter is important to distinguish between β− and β+ particles and to handle the cosmogenic
11C background. As described in the previous section, 11C can be suppressed by the TFC-
technique. The fit is performed on the TFC-subtracted as well as on the TFC-tagged energy
spectrum. The TFC-subtracted energy spectrum and the fit of the individual neutrino and
background components are shown in Fig 2.5a. The 8B-rate is constrained to the result
that is obtained in the high-energy region and the CNO-rate to the expectation of the SSM.
The background rates are whenever possible measured independently and constrained in
the fit. Two fit techniques based on MC simulations and an analytical response function are
performed and produce consistent results. Second, 8B neutrinos are determined in the energy
region from 3.2MeV-16MeV with a fit of the radial distribution to separate the external
background from the uniform distributed 8B neutrinos3. Third, hep-neutrinos are analyzed in
a counting analysis in the energy region 11MeV-20MeV. As the measurement event number
is consistent with the expected background (mainly cosmogenic 11Be and 8B neutrinos), only
an upper limit for the hep-neutrino rate could be computed. Hence, hep-neutrinos are the
only solar neutrino species that are not yet observed.
The analysis performed for the CNO neutrinos [33, 151] is the same as the one described to
extract the pp, 7Be, and pep neutrinos. However, the similar energy spectrum of CNO, the
background 210Bi and the solar pep neutrinos lead to a correlation of these three components
in the fit. For a measurement of CNO it is hence mandatory to constrain the pep and
210Bi components. The pep component can be constrained within 1.4% using the known
solar luminosity and the ratio of the pp to pep neutrino rate. The main challenge is the
constraint on 210Bi, where the strategy is sketched in Figure 2.6. Thanks to the stabilization
of the temperature of the detector after thermal insulation and the installation of an active
temperature system, convective movements in the scintillator are reduced and an upper limit
on the 210Bi event number can be achieved. Due to the upper limit on 210Bi, a lower limit for

3In addition, the analysis is performed in two sub-energy regions. For a detailed description see Ref [32].
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a) b)

Figure 2.5: Solar Neutrino Measurement with Borexino a) Measured energy spectrum
after data selection in Borexino and the individual neutrino and background components ob-
tained from a multivariate fit. The solar neutrino species are colored in red, where the CNO and
8B contributions are fixed in the fit. b) Survival probability computed from the solar neutrino
fluxes measured with Borexino. The results agree well with the MSW-LMA prediction (light
red). The energies correspond to the average neutrino energies of the specific neutrino type.
Three values are obtained for the 8B-neutrinos, as three analyses with different energy regions
are performed. Both figures are taken from Reference [32].

CNO can be determined. The result is cross-checked with a simple rate analysis in the energy
window in which the CNO rate is maximized compared to the background (780 keV-885 keV).
A detailed discussion about these analyses, can be found in References [32,33,139,151,152].

Results The experimental results of the solar neutrino event numbers and the correspond-
ing fluxes are listed in Table 2.1. The experimental uncertainty of the 7Be flux is by a factor
of two smaller than the theoretical uncertainties. The low energy threshold of the 8B analysis
is the lowest energy threshold used so far with respect to other experiments and the result
agrees with the high-precision result from SuperKamiokande [153]. The CNO rate results
to 7.2+3.0

−1.7 cpd/100t and is thus discovered for the first time at the 5.0σ level. In addition,
the expected fluxes in the SSM for high (HZ) and low (LZ) solar metallicity are quoted in
Table 2.1. The solar metallicity denotes the abundance of elements heavier than Helium
and is a fundamental parameter for the determination of the physical properties of the Sun
and is so far only poorly understood [146]. The solar metallicity affects the solar neutrino
fluxes, mainly the CNO flux which differs about 40% for the HZ and LZ-SSM. The results
are compatible with the LZ and HZ metallically predictions from the SSM. However, the
data seems to favor the HZ model. Given a better constraint on 210Bi and a more precise
measurement on CNO, the solar metallicity could possibly be determined in the future.
Given the measured event numbers and the expected fluxes (assuming high metallicity), the
survival probability Pee can be determined as a function of the neutrino energy, which is shown
in Figure 2.5b. Borexino is the only experiment that can test the vacuum-dominated and
matter-dominated regime at the same time. The results agree with the MSW-LMA solution
and the vacuum-LMA solution is disfavored at a 98.2%CL. With that measurement, the
most precise measurement of the survival probability in the low energy region is achieved.
By possibly increasing the accuracy of the pep measurement or lowering the energy threshold
of the 8B analysis in the future4, the accuracy of the survival probability of the transition
region from the vacuum dominated to matter-dominated regime could be enhanced. With

4 The low energy threshold of the 8B analysis is currently limited by the 2.6MeV gamma from the 208Tl
background.
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(1): 210Pb cannot be observed directly, as the Q-value of 63.5keV is below the detection threshold of Borexino. (2): The lifetime of 210Bi is too short too 
reach the FV.(3): R(210PoS) stands for the 210Po events that are supported from internal 210Bi contamination. (4): Convective movements are due to the 
temperature variations in hall C, as for example seasonal variations. (5): R(210PoV) stands for the 210Po events that are supported from the vessel 
contamination. (6): The temperature of the detector is stabilized through its insulation and an active temperature control system. (7): The LPoF is 
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stable over time. (8): 210Pb is assumed to stick to the vessel, as 210Bi is uniformly distributed in the FV and stable over time.  

Figure 2.6: Sketch of the Strategy to Constrain the 210Bi-rate for the CNO Mea-
surement in Borexino Due to the similar spectral shape to the CNO spectrum, the correlated
210Bi-rate needs to be constrained for a measurement of CNO. The concentration of the alpha-
decaying daughter isotope 210Po can be determined via pulse shape discrimination techniques.
However, additional 210Po events are brought in from the vessel surface to the fiducial volume
through convective movements of the scintillator and secular equilibrium is not given. Borexino
has been stabilized through insulation and an active temperature control system. The reduced
convective movements allowed to set an upper limit on the 210Bi rate. For a detailed description
see References [151] and [33].

that, physics beyond the SM could be tested, such as a sterile neutrino imprint at the meV
scale [98].
From the Borexino measurement, the solar luminosity can be determined to L = 3.89+0.35

−0.42 ·
1033 erg/s which agrees with the one obtained from photon measurements [154]. On the one
hand, the agreement confirms the nuclear origin of the solar power and, on the other hand,
it shows that the Sun has been in thermodynamic equilibrium over at least ∼ 105 years.
This can be concluded from the fact that the neutrino measurement mirrors the current
luminosity. Instead, the photon measurement gives the luminosity of ∼ 105 years ago which
is the time needed by the photons (produced in the center) to reach the surface of the Sun.
One can further extract the relative intensity of the 3He-4He and 3He-3He fusion rates using
the measured fluxes of pp and 7Be neutrinos to

R = 2Φ(7Be)
Φ(pp)− Φ(7Be) = 0.178+0.027

−0.023 (2.8)

which agrees with the predicted values and confirms the SSM.
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Table 2.1: Borexino Results on Solar Neutrinos The measured rate and the respective
flux (using MSW-LMA predicted values) are listed in column two and three. The results are
compared to the SSM-prediction for high (HZ) and low (LZ) solar metallicity in the fourth
column. The results for pep neutrinos are obtained when CNO is constrained to HZ and LZ
expectations. The results are taken from [32] and [33].

ν source Rate [cpd/100 t] Flux [cm−2s−1] Flux SSM-Prediction [cm−2s−1]
pp 134± 10+6

−10 6.1± 0.5+0.3
−0.5 · 1010 5.98(1.0± 0.006) · 1010 (HZ)

6.03(1.0± 0.005) · 1010 (LZ)
7Be 48.3± 1.1+0.4

−0.7 4.99± 0.11+0.06
−0.08 · 109 4.93(1.0± 0.06) · 109 (HZ)

4.50(1.0± 0.06) · 109 (LZ)
pep (HZ) 2.43± 0.36+0.15

−0.22 1.27± 0.19+0.08
−0.12 · 108 1.44(1.0± 0.01) · 108 (HZ)

pep (LZ) 2.65± 0.36+0.15
−0.24 1.39± 0.19+0.08

−0.13 · 108 1.46(1.0± 0.009) · 108 (LZ)
8B 0.223+0.015+0.006

−0.016−0.006 5.68+0.39+0.03
−0.41−0.03 · 106 5.46(1.0± 0.12) · 106 (HZ)

4.50(1.0± 0.12) · 106 (LZ)
hep < 0.002 (90% CL) < 2.2 · 105 (90% CL) 7.98(1.0± 0.30) · 103 (HZ)

8.25(1.0± 0.12) · 103 (LZ)
CNO 7.2+3.0

−1.7 7.0+3.0
−2.0 · 108 4.88(1.0± 0.11) · 108 (HZ)

3.51(1.0± 0.10) · 108 (LZ)

Geo Neutrinos

Geo neutrinos are electron (anti-)neutrinos that are produced in radioactive decays from
the natural radioisotopes contained in the Earth: 238U, 235U, 232Th, and 40K (see Chap-
ter 1.3) [35]. The energy produced in these decays is referred to as radiogenic heat and
correlates to the number of produced geo neutrinos. Hence, with a measured geo neutrino
signal, one can deduce the radiogenic heat of the Earth. Especially, the radiogenic heat pro-
duction and the chemical composition in the different Earth layers can be studied with geo
neutrinos. In a simplified scheme, the Earth can be separated into the core, the mantle, and
the lithosphere. While the radiogenic heat in the lithosphere is relatively well known (and
one does not expect any contribution from the core), the contribution from the mantle has
large uncertainties and the geological models differ. The total terrestrial heat flux consists
mainly of the radiogenic heat plus the left-over heat from Earth creation that is released
during the cooling process of the Earth. Given a known radiogenic and total terrestrial heat
allows thus to learn about the thermal and dynamical evolution of the Earth.
Geoneutrinos are detected via the IBD in Borexino. This detection channel is unaccessible
to the 40K contributions as their energy is below the IBD threshold of 1.8MeV. The main
backgrounds are reactor neutrinos, however, Borexino profits from the fact that there are no
nuclear reactors in Italy. Geo neutrino measurements with Borexino are published in [35,
155–157], where the latest analysis in 2019 benefits from the preparation for the SOX analysis
partially developed in this thesis. The exposure of (1.29± 0.05) · 1032 protons × year could
be increased by a factor of two in comparison to the previous result from 2015 with an
increased precision from 24% to 18%. The geo neutrino signal is measured in a spectral
fit to 52.6+9.4

−8.6(stat)+2.7
−2.1(syst) which corresponds to 47.0+8.4

−7.7(stat)+2.4
−1.9(syst) TNU (Terrestrial

Neutrino Units). The obtained statistics of geo neutrinos are too small to be sensitive to the
chemical composition, particularly to the Th/U mass ratio. However, the results obtained
from an unconstrained and fixed Th/U mass ratio give compatible results, where the fixed
mass ratio corresponds to the one measured from chondritic meteorites [158, 159]. As the
signal from the lithosphere is known using geochemical and geophysical data [160], it can
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be constrained in the fit and the unknown signal from the mantle can be determined. The
mantle signal results to 21.2+9.5

−9.0(stat)+1.1
−0.9(syst) TNU which corresponds to a radiogenic heat

of 24.6+11.1
−10.4 TW. With an assumption of the contribution of 40K from the mantle and the

total radiogenic heat of the lithosphere, a total radiogenic heat of the Earth of 38.2+13.6
−12.7 TW

can be determined. This result corresponds to about 80% of the total terrestrial heat flux
and is in tension (∼ 2.4σ) with geological models that predict a low abundance of Thorium,
Uranium and Kalium in the mantle. With the measured geoneutrino signal, one can test also
the hypothesis of a georeactor at the Earth’s center. One can exclude at the 95% CL such a
georeactor with a power larger than 2.4TW. A similar analysis to the geo neutrino analysis
is performed in Chapter 6 which discusses the background for the SOX experiment.

2.2 The SOX Project: Short Baseline Neutrino Oscillations
with Borexino

The SOX project merges two experimental ideas described in Reference [132] and [133]. In
a first phase, a 144Ce-144Pr source which is an ν̄e-emitter is planned and is described in the
next section. In case of a positive sterile neutrino signal and to validate the result, a second
phase of the SOX project with a 51Cr νe-source is scheduled. The properties of the 51Cr
source are shortly discussed in the following. For more details and its sensitivity to sterile
neutrinos, see References [132,161].
51Cr decays via electron capture with a lifetime of 27.7 d and releases mono-energetic electron
neutrinos with an energy of 752.7 keV and 432.6 keV [162]. As νe are detected via elastic
scattering off electrons, the analysis with a 51Cr source is complementary to the 144Ce-144Pr
source. In comparison to an ν̄e-source and the IBD detection channel, the activity of a
νe-source needs to be larger as the cross section is smaller for the elastic neutrino electron
scattering. In addition, the background is larger due to the single scattered electron signal.
The main advantage for a 51Cr source is that the source emits mono-energetic νe and the
energy of the neutrinos is therefore well known. Moreover, the emitted energy per decay is also
well characterized which is important for the determination of the activity (see Section 2.2.2).
51Cr is produced by neutron irradiation inside a nuclear reactor via the process 50Cr(n,γ)51Cr.
An advantage is that an enriched 50Cr metal is available to the collaboration, however, the
production process is challenging and the feasibility for the activity of ∼ 500PBq was under
investigation [163]. Further challenging aspects are the short lifetime of the source which
requires a quick transportation of the source and allows only for a short measurement time.
In the following, the properties of the 144Ce-144Pr source and its characterization are discussed
in Section 2.2.1 and 2.2.2. The chapter closes with the expected signature for the SOX
experiment (Section 2.2.3).

2.2.1 The 144Ce - 144Pr Source

An intense search was performed to find the ideal isotope for a radioactive antineutrino
source [133]. A long life time for the production, transportation and the measurement itself
is needed, as well as a high Q-value to observe a high fraction above the energy threshold of
the IBD of 1.8MeV. 144Ce fulfills all the requirements by beta-decaying with a long half-life
of 250 d into 144Pr, which decays shortly (τPr = 17min) via another beta decay into the
stable 144Nd with a high QPr = 3MeV:

144Ce→ 144Pr + e− + νe (2.9)
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144Pr→ 144Nd + e− + νe (2.10)

A simplified decay scheme can be seen in Figure 2.7. 144Ce as well as 144Pr have three main
decay branches, where only the two main branches of 144Pr have an energy endpoint above
the IBD threshold and contribute hence to the SOX signal. With about 2% 144Pr decays into
an excited state of 144Nd, where high-energy gammas of 696 keV and 2186 keV are emitted
while relaxation. These gammas need to be shielded, especially the 2186 keV gamma line
that could, due to the similar energy, mimic the delayed signal of the IBD. The modeled
neutrino spectrum of all decay branches is shown in Figure 2.8. One drawback of the 144Ce-
144Pr source is that some of the beta transitions are classified as forbidden transitions that
complicate the theoretical modeling (see for example [165]) and increase the uncertainties on
the spectral shape.5 Thus, several experimental setups have been developed to measure the
spectral shape and are discussed in the next section.

144Ce
T1/2 = 284.9 d
Q = 318.6 keV

144Pr
T1/2 = 17.3min
Q = 2997.4 keV

144Nd

β−

0.010

0.011

0.979

2185.7 keV

696.5 keV

0 keV

1−

2+

0+

0−
0+ β−

γ

Figure 2.7: Simplified Scheme of 144Ce Decay. The main decay branches along with their
energies, branching ratios, and angular momenta and parity of the nuclear states are sketched.
The values are taken from Reference [164].

Another criterion for the selection of the ideal source is that the production of the source has
to be feasible and efficient. 144Ce can be extracted from spent nuclear fuel with relatively-
high fission yields of 5.5% and 3.7% from 235U and 239Pu per fission, respectively [133].
The Russian company ”Federal State Unitary Enterprise Mayak Production Association” can
extract 144Ce over several complex separation steps from spent nuclear fuel using displacement
complexing chromatography techniques (for the description of the individual processes see
Reference [133,167,168] and references therein). In the end, 4 kg of CeO2 are pressed with a
density of 2.5 g/cm3 and sealed into a stainless steel capsule of 150mm height and diameter
(see Figure 2.9a). The design of the capsule includes in addition copper disk radiators that
are responsible for the heat transfer in the source. Moreover, a free volume of ∼ 25% is taken
into account to ensure that the pressure in the capsule does not exceed 6 bar.6
A 19 cm thick W-alloy shield (see Figure 2.9b) with the demand to attenuate the emitted
gamma line of 2.185MeV by a factor of at least 3 ·107 has been produced at Xiamen Tungsten
Co. Ltd. in China. With a density of 18 g/cm3, the shielding weights ∼ 2.5 t.

5The classification of a beta decay depends on the change of total angular momenta and parity of the
mother and daughter nuclei (see for example Reference [166]). According to the selection rules, the three beta
decays from 144Ce and the main decay branch from 144Pr are first forbidden non-unique transitions. 144Pr
decays in addition into two excited states of 144Nd with an allowed and a first forbidden unique transition
releasing the gamma lines with 696.5 keV and 2185.7 keV respectively.

6 Four decays of 144Ce produce one molecule of gaseous O2 via the reaction: 4CeO2 → 2Pr2O3 + O2
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Figure 2.8: Modeled 144Ce-144Pr Neutrino Spectrum. The spectrum is modeled in Ref-
erence [165] and takes into account all beta branches from the 144Ce and 144Pr decay. The black
line indicates the threshold of the IBD detection reaction.

The source has been ordered with the following specifications. First, the activity ranges
between 100 and 150 kCi (3.7 and 5.5PBq). Second, the level of radio impurities needs to
be low to ensure, on the one hand, a safe source handling and to meet the radio protection
requirements and, on the other hand, to minimize systematic effects on the analysis (for
example to allow the determination of the activity). Hence, the ratio of the total thermal
power released by controllable radionuclide impurities to the thermal power of 144Ce needs
to be smaller than < 10−3 W/W. Moreover, the ratio of the activity of impurities that

a) b)

Figure 2.9: Source Capsule and Shielding. The source in form of CeO2 powder is pressed
into a sealed capsule (a) that consists of two stainless steel cylinders (diameter and height
of 15 cm) around three individual copper cylinders with additional copper radiator disks. The
tungsten-alloy shielding (b) ensures a thickness of at least 19 cm around the capsule. The schemes
are taken from [167].



2.2. THE SOX PROJECT: SHORT BASELINE NEUTRINO OSCILLATIONS WITH
BOREXINO 33

release gammas with an energy higher than 1MeV with respect to the 144Ce activity is
< 10−3 Bq/Bq. Due to LNGS restrictions, the maximum neutron flux has to be below 105 n/s,
such that the activity of the main neutron emitter 244Cm and 241Am is < 10−5 Bq/Bq and
< 5 · 10−3 Bq/Bq with respect to the activity of 144Ce. With the given requirements and
an activity of 150 kCi, the gamma and neutron dose is simulated to <8µSv/h and <5 nSv/h
at a distance of 1m [169]. The level of radio impurities of the 144Ce source is measured by
means of alpha, gamma, and mass spectroscopy at CEA Saclay using representative samples
of the source provided by PA Mayak. A detailed description of the preparation for these
measurements can be found in Reference [168]. Unfortunately, as these specifications could,
due to technical problems in the source production, not be achieved, the SOX project was
canceled.

2.2.2 Characterization of the Source

The characterization of the antineutrino source is a key ingredient of the experiment in order
to predict the expected signature. As the activity directly correlates with the expected event
number, it must be determined with high precision. The activity is determined via the power
Psource emitted by the source divided by the mean energy 〈E〉 released per 144Ce-144Pr decay.
Here, one assumes that all beta- and gamma-rays from the source are absorbed by the thick
enough shielding and add to Psource which can be determined from calorimetric measurements.
〈E〉 is the mean energy of all beta- and gamma-rays per decay and depends on the energy
spectra of all beta-decay branches of 144Ce and 144Pr which need to be determined precisely.
Moreover, the spectral shapes of the two main 144Pr-branches enter another two times in the
analysis. The fraction of the neutrino spectrum above the IBD threshold affects, on the one
hand, the expected event number, and, on the other hand, the expected energy spectrum
in SOX. The experimental effort to measure Psource and the spectral shape of the source is
summarized in the following.

Power Measurement

The power is measured before and after data taking in the cleanroom close to the source
position (see Figure 2.2), where the initial power emitted from a 100-150 kCi source is about
1 kW (∼ 215W/PBq) [133]. To determine the power with high precision, two redundant
thermal calorimeters have been developed. In both measurements, the power produced by
the source is transferred to a circulating water system and is determined by

Psource = ṁ · [h(p, Tout)− h(p, Tin)] + Ploss. (2.11)

Here ṁ is the water mass flow and h(p, T ) denotes the enthalpy of the water as a function
of the measured in- and outgoing values of the temperature and the pressure. The main
difference between the two setups is the water circuit: in the one setup (CEA) the whole
source and shielding are immersed in a water vessel, whereas in the second case (TUM-
Genova) a water line circulates in a copper heat exchanger which encompasses the shielding.
Heat losses (Ploss) through convection are minimized by operating the calorimeters in a
vacuum tank. Moreover, thermal radiation and conduction are reduced using super insulation
foils and a suspension structure with low thermal conductivity. A sketch of the TUM-Genova
calorimeter is shown in Figure 2.10. With this setup an accuracy of 0.02% on the power
measurement could be achieved exceeding the design goal of 1%. For a detailed description
see References [167,170].
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Figure 2.10: Crosssection of the TUM-Genova Calorimeter. The calorimeter measures
the total power released by the source by monitoring the mass flow, temperature, and pressure of
the circulating water in the copper heat exchanger. To minimize heat losses, the heat exchanger
is suspended on a hanging platform via ropes with a low thermal conductivity. Further, the
calorimeter contains two layers of super insulator foils and is operated in a vacuum tank. The
figure is taken from [167].

Spectral Shape Measurement

To reach the expected sensitivity of the experiment, the spectral shapes of all neutrino
branches need to be known. However, the most important decay branch is the main branch
of 144Pr which is a 0- to 0+ transition and hence classified as a unique first forbidden decay.
Such a type of decay has large theoretical uncertainties and the last measurements which
were performed decades ago disagree up to 10% [167].
The goal is to determine the shape factor7 with an absolute precision better than 0.03. Thus,
several experimental setups have been developed in order to reach this accuracy. The concept
of all measurements is similar: the energy of the electrons is measured and the neutrino energy
spectrum is obtained as the complementary one. As one is especially interested in the part
above the IBD threshold, the detectors need to be sensitive to small electron energies and
have a small energy threshold. Thus, dead layers of the detector need to be minimized. To
avoid backscattering and thus spectral distortions, several setups were designed with a 4Π-
acceptance. Moreover, as the lifetime of 144Pr is short and the separation of 144Pr from 144Ce
is challenging, the combined spectrum of 144Pr and 144Ce has to be typically measured and
the main branch of 144Pr has to be extracted. In addition, the gamma lines that are produced
with about ∼ 2% in the 144Pr decay can alter the spectrum. A second detector running in
coincidence that is responsible for gamma tagging can be used to select and measure a specific
decay branch into an excited state. On the other hand, a second detector which is running
in coincidence can be used to suppress background and to veto the gamma rays produced
from the source. The so-called TUM spectrometer uses such a technique which has been
worked on in this thesis together with Simon Appel and will be described in more detail in
the following. A complete list of the spectral measurements can be found in Reference [167].

7The energy spectrum can be expressed as a function of the shape factor b (see Chapter 7 and Ap-
pendix A.1).
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Spectral Measurements with the TUM Spectrometer The TUM spectrometer con-
sists of two detectors: a multi-wire chamber (MWC) and a plastic scintillator with a con-
nected PMT. The density of the gas (CF4, 1 bar) in the MWC is so low that gammas typically
do not interact within the MWC volume and provide no signal. On the contrary, electrons
do interact and, when operated in coincidence, gammas can be vetoed with an efficiency
larger than 99.5%. Therefore, the measured spectrum with the plastic scintillator plus the
connected PMT can be considered as a pure electron spectrum.
The TUM spectrometer is sketched in Figure 2.11. The setup was originally developed to
measure the spectrum of the fission products of 238U [171, 172] and was designed for an
energy region of 2MeV-7.5MeV. During the author’s Master’s thesis [161], the setup was
optimized in order to become more sensitive to the low energy region. Therefore, the source
position was moved directly above the MWC and the main path length of the electrons in
the gas was reduced from ∼ 10 cm to ∼ 1 cm. A picture of the source position can be seen
in Figure 2.12b. A detailed description of the detector setup and performance can be found
in References [161,171,172].
Preliminary measurements were performed at CEA, Saclay, where calibration sources and
a 144Ce sample were produced by the Laboratoire National Henri Becquerel. A picture
of the 144Ce sample can be seen in Figure 2.12a. The radioactive source is a small drop
of approximately 2mm × 2mm × 40 µm and is sealed in between two 18 µm thick mylar
foils. One critical point of the samples is, that the volume of the radioactive drop can
vary for each source. This can affect the backscattering of the electrons inside the source

MWC Detector pot 
 

Scintillator 

PMT 

Source 

Figure 2.11: Sketch of the TUM Spectrometer. The spectrometer consists of two de-
tectors: a plastic scintillator (BC404) attached to a PMT measures the energy spectrum of the
source and a MWC vetoes gamma rays emitted by the source. The source is placed on top of
the MWC with a distance of ∼ 1 cm.

a) b)

Figure 2.12: Picture of 144Ce Sample and Sample Holder of the TUM Spectrometer.
a) The 144Ce source is a small radioactive active area of ∼ 2mm diameter and sealed between
two mylar foils. b) The source is mounted in the source holder which is placed above the MWC.
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Figure 2.13: Preliminary Measurement of the 144Ce Spectrum. The measurement
obtained from the TUM spectrometer is shown in blue. The Geant4-based simulation is shown
in red and takes into account all beta transitions. For the main 144Pr branch the pure allowed
beta spectrum is assumed. The discrepancy at small energies can be not explained.

and needs to be taken into account in the analysis. While the main results are described
in the following, a complete description of the calibration measurements can be found in
Appendix A.1. Using mono energetic conversion electrons at 624 keV from a 137Cs source, an
energy resolution of 6% at this energy can be determined. Further, the energy threshold of
the spectrometer was determined to about 150 keV. Thanks to the coincident measurement
modus, the background for the measurement is small: the darknoise has a rate of 0.3Hz which
corresponds to 0.5% of the activity of the 144Ce sample (∼ 60Hz). The rate of accidental
coincidences was determined to be 9.5 ·10−3 times smaller than the rate of the 144Ce sample.
The measured energy spectrum of the 144Ce-144Pr sample can be seen in Figure 2.13 together
with a MC simulation based on Geant4 [173]. While the simulation shows good agreement for
high energies, the data observes more low energy events (<300 keV) than expected from the
MC simulations. The discrepancy between data and simulation could not be resolved. The
uncertainty of the source dimensions was studied by MC simulations and cannot cause such
a discrepancy. Further, the same discrepancy is observed for all calibration sources (90Sr,
36Cl, 137Cs) (see Appendix A.1) that do almost not emit gamma-lines. Hence, the additional
events in the data can also not be explained from scattered gamma-rays. In contrast, the
simulated energy deposition in the MWC agrees well with the measured spectrum (similar to
a Landau distribution) and the mean deposited energy of ∼ 7 keV matches the expectation
for minimizing ionizing particles [174] (see Appendix A.1).
It was also observed that the energy spectra are stable during the same data-taking run but
are not reproducible, especially in the low energy region for two different runs, i.e. when the
spectrometer is opened and closed between two runs. The instability can be seen in both
detectors, however, it is not present in the electronics of the data acquisition chain that was
tested independently with a pulser. The instability could not be explained but is most likely
due to the relative placement of the source between the MWC and the plastic scintillator.
Any deviation from a cylindrical setup in the source, the source holder, or the two detectors
could affect the energy depositions in the detector at low energies. Due to the cancelation
of the SOX project, the investigation of the systematic effects and the discrepancies between
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simulation and data was not investigated further.

2.2.3 Signature of Sterile Neutrinos in SOX

The expected signature for the SOX experiment as a function of the ratio of the reconstructed
distance and energy (L/E) can be seen in Figure 2.14. The spectral shape comes from the
individual spectral shapes of the distance and energy spectrum. While the distance spectrum
is given by the geometrical relation of the source and the detector, the energy spectrum is
mainly given by the product of the neutrino spectrum and the cross section for the IBD
(see Section 4). For a measurement time of 1.5 y, approximately 104 events are expected
for SOX. In the case of a light sterile neutrino, the electron antineutrino oscillates into the
sterile neutrino and the L/E spectrum is altered by the disappearance oscillation probability
given in Equation 1.10. Due to the small size of the source and the ability to reconstruct
the position and the energy, an oscillation pattern can be observed given a sterile neutrino
mass of ∼ 1 eV. Such an oscillation signature, which is especially visible in the ratio of the
oscillated (sterile neutrino) to un-oscillated (no sterile neutrino) L/E spectrum (see lower
panel of Figure 2.14), would be a smoking gun signature for the existence of a sterile neutrino.

Figure 2.14: Expected Signature in SOX The signature is shown as a function of distance
(L) over reconstructed energy (E) for a 125 kCi 144Ce source and different sterile neutrino masses.
On the top the total event number for a measurement time of 1.5 y is shown. On the bottom the
ratio of the event numbers of oscillation to no-oscillation hypothesis is depicted. An oscillation
signature is visible for ∆m2

41∼ 1 eV2. For larger masses (∼ 10 eV2) the detector resolution is
worse than the oscillation lengths and produces an averaged deficit in the event number. The
oscillations are damped for larger L/E values because of the worsening of the energy resolution
for smaller energies. The observation of such oscillations would be a smoking gun signature for
sterile neutrinos.
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With a larger sterile neutrino mass (&10 eV), the oscillation length becomes smaller than the
detector resolution and an average rate deficit can be observed. In order to observe the
averaged rate deficit, a precise knowledge of the activity as well as the detector volume is
mandatory. In contrast, if the mass of the sterile neutrino becomes too small (.0.1 eV),
the oscillation length becomes larger than the distance of the source to the detector and
the disappearance signature vanishes. The background is not indicated in Figure 2.14, as
it is too small to be visible. Indeed, due to the IBD reaction, the expected background is
negligible in comparison to the signal event number (see Chapter 6). Thus, SOX would be a
background-free experiment.

In summary, the SOX project could observe a sterile neutrino with a mass in the eV-scale
and with the artificial 144Ce-144Pr source it is a complementary experiment in the sterile neu-
trino search program. Unfortunately, the SOX project was canceled during the work of this
thesis. Nevertheless, the first part of this thesis covers the analysis preparation for the SOX
experiment, as this work is still of interest for current and future short-baseline experiments.
This work extends the previous existing feasibility studies and simplified analyses for SOX.
First, Chapter 4 describes the developed software to generate the expected signal and per-
form a sterile neutrino analysis. Second, the expected signal with the detector response and
detection efficiency is discussed in Chapter 5. The background for the SOX event sample is
investigated using existing Borexino data in Chapter 6. Systematic effects and their impact
on the sensitivity are studied in Chapter 7. The first part ends with the study of a hardware
modification, namely the trigger system, in order to minimize the systematical error on the
detection efficiency (Chapter 8).
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3 Questions in Data Analysis

This chapter introduces common data analysis methods applied in the high-energy physics
community, where the following questions are addressed: What are the most likely values for
my parameters of interest? (Section 3.1); Which parameter values are compatible with my
data? (Section 3.2); How significant is the signal? (Section 3.3); Which result can we expect
for the experiment? (Section 3.4); Is the data compatible with the model? (Section 3.5).
This chapter presents the basis for the following chapters and applies the notations of the
methods directly to the field of short-baseline experiments. In Section 3.6 an overview of
the different methods applied in current short-baseline experiments is given, which motivates
the work for the second part of this thesis. As only Frequentist-based methods are currently
used in short-baseline experiments, Bayesian methods are not discussed.

3.1 What are the Most Likely Values for the Parameters of
Interest?

In experimental physics, one wants to determine the unknown parameters of the model out
of the observed data. This can be done by comparing the observed with the expected data
using a likelihood function. These ingredients are described shortly in the following.

3.1.1 Observed and Expected Data

Observed Data

Short-baseline experiments reconstruct the distance and energy of their events (see Chap-
ter 1.5.5):

(Lrec,Erec) = {(Lrec, Erec)1, (Lrec, Erec)2, ..., (Lrec, Erec)n}, (3.1)

where n is the total number of observed events. Since n is typically large, the data is grouped
into distance and energy bins

Nobs = {Nobs
11 , Nobs

12 , Nobs
13 , ..., Nobs

kl }, (3.2)

where Nobs
ij = ∑n

m=1{(Lrec, Erec)m : Lrec ∈ bini ∪ Erec ∈ binj} is the observed number of
events in the i-th distance and j-th energy bin. The number of bins depends on the range
and the resolution of the experiments.

Expected Data and Model

The expected data is a function of the unknown parameters and, as a hypothesis is a statement
about the population parameters [175], a function of the hypothesis. One distinguishes
between the parameters of interest and nuisance parameters [176]. The parameters of interest
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are the new parameters of the physical model. Such parameters of interest are in a sterile
neutrino experiment assuming a (3+1) model the mixing angle sin2(2θ) and the mass splitting
∆m2 (see Chapter 1.5). Instead, nuisance parameters are unknown experimental parameters
that affect the expected data but are not of primary interest, as for example the neutrino
flux or the cross section. In the following, η denotes the vector of nuisance parameters. A
hypothesis is hence a function of the oscillation parameters and the nuisance parameters:

H(sin2(2θ),∆m2,η). (3.3)

The expected event number in each distance-energy bin ij is the sum of the expected neutrino
events depending on sin2(2θ) and ∆m2 and the expected background events:

N exp
ij (sin2(2θ),∆m2,η) = N exp

S (sin2(2θ),∆m2,η) · pdfSij(sin2(2θ),∆m2,η)
+N exp

B (η) · pdfBij (η), (3.4)

where N exp
S (sin2(2θ),∆m2,η) and N exp

B (η) are the total expected event numbers of neutrino
signal and background events. The probability distribution functions pdfSij(sin2(2θ),∆m2,η)
and pdfBij (η) are normalized and describe the spectral shapes of neutrino and background
events. To this end, each ingredient can depend on nuisance parameters.
The expected number of neutrino events is the product of the integral oscillation probability
Pint(sin2(2θ),∆m2) and the expected number of events without sterile neutrinos:

N exp
S (sin2(2θ),∆m2,η) = Pint(sin2(2θ),∆m2,η) ·NS(η). (3.5)

Here, Pint(sin2(2θ),∆m2) is integrated over the Lrec- and Erec- parameter range. NS(η)
incorporates further the properties from the source and the detector, as for example the
activity of the neutrino source, the cross section, or the detection efficiency.
The probability distribution functions and the expected event numbers have to be typically
determined via Monte Carlo (MC) simulations that take care of the particle interaction, the
propagation and the detection-related processes (see Chapter 4.1). A way to connect the
observed to the expected data can be obtained using a likelihood function which is described
in the following.

3.1.2 Likelihood Fit Function and Maximum Likelihood Estimator

The observed data is compared to the expected data using a likelihood function.1 The prob-
ability to observe Nobs events for N exp expected events is given by a Poisson distribution:
P(Nobs|N exp). The likelihood function is defined by the product of the independent Poisso-
nian probabilities for each bin [176]:

L(sin2(2θ),∆m2,η) =
∏
ij

P(Nobs
ij |N

exp
ij (sin2(2θ),∆m2,η)). (3.6)

Additional auxiliary measurements (ηobs) can constrain the value of the nuisance parameters
and therefore increase the sensitivity on the parameters of interest. For example, the activity
of the neutrino source can be determined via a calibration measurement or the background
rate can be determined via source-off measurements. The probability to observe ηobs, as-
suming the true parameter η and an uncertainty of ση in the auxiliary measurement, is given
by a Normal distribution N (ηobs|η, σ2

η), when the value of the nuisance parameter itself is
1Given large event numbers per bin, a χ2-function can be used (see Reference [176]).
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large. Since the measurements are independent of each other, a joint likelihood function can
be built [176]:

Ljoint(sin2(2θ),∆m2,η) = L(sin2(2θ),∆m2,η) ·
∏
ηi

N (ηobs
i |ηi, σ2

ηi). (3.7)

Given a specific data set, the most likely values of the free parameters are given by the
maximum of the likelihood function

Ljoint( ̂sin2(2θ), ∆̂m2, η̂) = max
sin2(2θ),∆m2,η

Ljoint(sin2(2θ),∆m2,η) (3.8)

and are called maximum likelihood estimators: ̂sin2(2θ), ∆̂m2, and η̂ = {η̂1, η̂2, ...} [176].
From the computational point of view, it is easier to minimize the negative log-likelihood
function (NLL): −2 lnLjoint( ̂sin2(2θ), ∆̂m2, η̂). Maximum likelihood estimators have some
desired properties, as they are for example asymptotically unbiased, meaning the expectation
value of the maximum likelihood estimator corresponds to the true value [176]. The distribu-
tion of the maximum likelihood estimators in sterile neutrino experiments will be discussed
in detail in Chapter 11.

3.2 Which Parameter Values are Compatible with the Data?
Additionally to the best-fit values, it is important to state the errors of the measured pa-
rameters. This is done by the construction of a confidence region. If the errors reach up or
down to the border of the allowed parameter space, the confidence region naturally results
in a limit. A confidence region contains by definition the true (but unknown) parameters
with a certain probability (e.g. 95%). Moreover, a confidence region depends on the specific
data and will change for a different data sample. Nevertheless, if an experiment would be
repeated many times, the true value would be contained by the confidence region with the
desired probability.
This non-trivial property (also called coverage) can be obtained by the inversion of a set of
hypothesis tests. To do so, the parameter of interest space is scanned with a fine raster.
For each parameter-raster point a hypothesis test is performed and the tested hypothesis
is accepted or rejected. The set of accepted hypotheses corresponds then to the confidence
region which is illustrated in Figure 3.1 [175]. This procedure will be discussed in more detail
in the following.

3.2.1 Hypothesis Test and Test Statistic

A hypothesis test defines the rule of accepting or rejecting a hypothesis in favor of an al-
ternative hypothesis. In general, one differentiates between a simple hypothesis, where all
parameters are fixed H(sin2(2θ) = x,∆m2 = y) and a composite hypothesis, e.g. a hypothesis
with free parameters H(sin2(2θ),∆m2). The hypothesis test is illustrated in Figure 3.2a and
consists of the following ingredients [175]:

• H0: null hypothesis (tested hypothesis). H0 is a simple hypothesis with the spe-
cific values sin2(2θ) = x and ∆m2 = y, where x and y are values from the de-
fined parameter space 0 ≤ x ≤ 1 and 0 ≤ y. In the presence of nuisance parame-
ters, the nuisance parameters are not fixed and the hypothesis is not exactly simple:
H0 : {sin2(2θ),∆m2,η : sin2(2θ) = x,∆m2 = y,η ∈ ηrange}, where ηrange is vector of
the defined parameter space for the nuisance parameters.
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Data
Nobs,ηobs

test H(x, y)
tobs
(x,y)

accept H(x, y):
tobs
(x,y) ≤ tc(x,y)

or reject H(x,y):
tobs
(x,y) > tc(x,y)

set of accepted
H(x, y) =̂
confidence

region in (x, y)

Repetition for each H(x = sin2(2θ), y = ∆m2)

Figure 3.1: Construction of a Two-Dimensional Confidence Region The confidence
region in (x, y) is the set of accepted hypotheses H(x, y) in a hypothesis test. To do so, a fine
grid in the parameter space of (x, y) is defined and each hypothesis H(x, y) is tested using the
test statistic t(x,y). The multidimensional observed data Nobs and possibly existing auxiliary
measurements ηobs can in that way be transformed to a one-dimensional number tobs

(x,y). De-
pending on how the observed test statistic value compares to the critical value tc(x,y), the tested
hypothesis is accepted or rejected.

• H1: alternative hypothesis. H1 is typically the complementary hypothesis to H0, namely
H1: {sin2(2θ),∆m2,η : 0 ≤ sin2(2θ) ≤ 1,∆m2 ≥ 0, sin2(2θ) 6= x,∆m2 6= y,η ∈ ηrange}
and hence a composite hypothesis. The union of H0 and H1 is the full physically allowed
parameter space.

• t: outcome of experiment. Typically a test statistic is defined that transforms the
multidimensional data to a real-valued and one-dimensional number. A standard test
statistic is the profile likelihood ratio that tests for a given data sample H0 versus H1:

t(x,y) = −2 ln
max
η
L(sin2(2θ) = x,∆m2 = y,η)

max
sin2(2θ),∆m2,η

L(sin2(2θ),∆m2,η) . (3.9)

The nominator is the maximum of the likelihood function (Equation 3.7) for the null
hypothesis and the denominator the maximum of the likelihood in the full parameter
space (union of H0 and H1). Small values of the profile likelihood ratio indicate good
agreement between the data and H0, large values instead disagreement. In the case,
when H0 and H1 are two simple hypotheses, the Neyman-Pearson lemma states that
a likelihood ratio test statistic maximizes the power of the test and is therefore the
optimal test statistic [176]. Another advantage of the profile likelihood ratio is that it
is approximately independent of the nuisance parameters [176].

• f
(
t(x,y)|(xtrue, ytrue)

)
: probability distribution function of t(x,y) when the hypothesis

H(sin2(2θ) = xtrue,∆m2 = ytrue) is true. When x = xtrue and y = ytrue, one calls the
probability distribution the null distribution, otherwise alternative distribution.

• α: test size, probability to reject H0, when it is actually true. This is also known as the
type-I error. The test size is defined previously to the analysis and chosen to be small
(e.g. 5%). This is particularly important for testing the no-oscillation hypothesis, since
rejecting it would result into a discovery (α is then reduced even further, for example
α = 0.27% for a 3σ level).

• tobs
(x,y): test statistic value for an observed data when the hypothesis H(x, y) is tested.

• tc(x,y): critical value. The critical value is calculated from the null distribution and the
test size:

∫∞
tc(x,y)

f
(
t(x,y)|(x, y)

)
= α.
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Figure 3.2: Connection of Hypothesis Test and Likelihood Function Illustration of a
a) hypothesis test: In a hypothesis test, the null hypothesis H0 is tested and either accepted
or rejected and the alternative hypothesis H1 is accepted. The null (alternative) distribution
is the probability distribution of the outcome or the test statistic t when H0 (H1) is true. The
critical value tc defines the decision rule and is chosen so that the probability to reject the null
hypothesis even though it is true is smaller than the test size. The power of a test is defined
as the integral under the alternative distribution above tc. b) test statistic as a function of the
parameter of interest for a specific data sample. A fine grid in the parameter of interest space
is defined and for each hypothesis a hypothesis test is performed (H0 changes for each test) and
a critical value exists (blue). As the test statistic is here defined via the negative log-likelihood
function normalized to its absolute minimum (profile likelihood ratio), the confidence region
corresponds to that parameter region with a profile likelihood value (black) smaller than the
critical value.

• decision rule: the tested hypothesis H(x, y) is rejected for tobs
(x,y) > tc(x,y), otherwise ac-

cepted. Similarly, one can compute the observed p-value: pobs
(x,y) =

∫∞
tobs
(x,y)

f
(
t(x,y)|(x, y)

)
and reject H(x, y) for pobs

(x,y) < α.

• power: probability to accept the alternative hypothesis H(xtrue, ytrue), when it is ac-
tually true. The power is computed via the integral of the alternative distribution:∫∞
tc(x,y)

f
(
t(x,y)|(xtrue, ytrue)

)
and is the complementary probability of the type-II error

(error of false acceptance). The higher the power of a test is, the higher the chance to
observe new physics becomes.

3.2.2 Inversion of a Hypothesis Test

To obtain a confidence region in the parameter space, a hypothesis test at each H(x, y) of the
previously defined raster is performed. The set of accepted hypotheses can be interpreted as
the confidence region. This is possible as the probability that the observed value falls into
the acceptance region is 1-α. As this is given for each hypothesis, the true value is accepted
with a probability of 1-α. Subsequently, the confidence region contains the true parameter
with the desired probability (e.g. 95% for α = 0.05).
The probability, how often the confidence region contains the true value, is called coverage.
The coverage must be fulfilled for each hypothesis. Given a coverage larger (smaller) than
the nominal value, it is called ”overcoverage” (”undercoverage”).
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With the inversion of the hypothesis test, the properties of the acceptance region are trans-
ferred to the confidence region. Further, the space of the alternative hypothesis defines the
space of the confidence region, for example a two-dimensional alternative hypothesis will
result into a two-dimensional confidence region [175].
Figure 3.2b shows the visualization of the construction of the confidence region, where the
connection to the likelihood function is depicted. This approach is equivalent to a Neyman-
Construction [176] with a likelihood-ratio test statistic that is also known as the Feldman-
Cousins approach [177].

3.2.3 Probability Distributions of the Test Statistic and Wilks’ Theorem

According to Wilks’ theorem [178], the null distributions of a profile likelihood test statistic
follow in the large sample limit asymptotically a chi-square distribution with the degrees of
freedom corresponding to the difference of the number of free parameters in H0 and H1. To
this end, the following regularity conditions have to be fulfilled [179]:

• H0 is true;

• the hypotheses are nested: H0 is contained in the hypotheses of the denominator in the
likelihood ratio;

• the parameters of interest of H0 are uniquely defined and are not at the borders of their
allowed parameter space;

• there are enough data and asymptotic approximations are valid.

If Wilks’ theorem can be applied, the critical values are the ones listed in Table 3.1. As
a key step in Wilks’ theorem, the maximum-likelihood estimators need to follow a normal
distribution. Obviously, this cannot be achieved for the oscillation parameter sin2(2θ) at the
parameter bound sin2(2θ) = 0. The validity of Wilks’ theorem in a sterile neutrino analysis
is tested in Chapter 11.
When the regularity conditions are not met, a MC construction of the probability distribution
has to be conducted. Figure 3.3 sketches the MC construction procedure. In order to
construct the probability distribution f

(
t(x,y)|(xtrue, ytrue)

)
, pseudo-data samples from the

assumed true hypothesis are generated. In this step, for each bin ij Nobs
ij are randomly drawn

from a Poissonian distribution with the expectation value N exp
ij . In addition, the auxiliary

measurements ηobs
i are drawn from a Gaussian distribution with mean ηexp

i and width σηi .
For the pseudo data samples the respective value of the test statistic is determined. From
the obtained distribution of the null hypothesis, the critical value can be calculated. As the
critical value has to be determined for each tested hypothesis, the MC construction has to
be performed for each hypothesis. Such a MC construction has by construction the proper
coverage but can be time-consuming.

Table 3.1: Critical Values based on Wilks’ Theorem The first column quotes the degrees
of freedom of the chi-square distribution, whereas the second column gives the critical value for
a 95% CL. The values are taken from [1].

degree of freedom critical value
1 3.84
2 5.99



3.3. HOW SIGNIFICANT IS A SIGNAL? 45

H(xtrue, ytrue,ηtrue)
generation of
pseudo data

pseudo data
Nobs,ηobs test H(x, y)

test statistic
t(x,y)

distribution
f(t(x,y)|(xtrue, ytrue))

y = ytrue, x = xtrue :
critical value tc(x,y)

y 6= ytrue, x 6= xtrue :
med[t(x,y)|(xtrue, ytrue)]

repeat 104 times

Figure 3.3: Generation of the Test Statistic Probability Distribution using MC Tech-
niques The scheme visualizes how the null and the alternative distributions can be approximated
assuming H(x, y) is tested and H(xtrue, ytrue,ηtrue) is true. A large number of pseudo data Nobs

including pseudo data for the auxiliary measurements ηobs is generated from H(xtrue, ytrue,ηtrue)
and the respective test statistic value for H(x, y) is computed. The critical value and/or the me-
dian value of the alternative distribution can then be determined from the distributions.

3.3 How Significant is a Signal?

The significance makes a statement about the compatibility of the data with the no-oscillation
hypothesis and is defined as the p-value for the no-oscillation hypothesis:

p =
∫ ∞
tobs
(0,0)

f(t(0,0)|(0, 0))dt(0,0). (3.10)

If the p-value is small, the probability that the no-oscillation hypothesis is true is small and
it is likely that one has discovered new physics. To claim a discovery, the significance must
be small, for example p = 0.27% for a 3σ level.
There are procedures which allow to approximately estimate the p-value without performing
a full MC construction. These procedures are described and tested for the sterile neutrino
search in Chapter 11.4.

3.4 Which Result can we Expect for an Experiment?

In addition to the observed confidence region, it is informative to compare it to the expected
outcome of the experiment. Hence, statistical fluctuations of the result can be observed.
Furthermore, before an experiment is built, it is important to study this expected reach.
Moreover, individual experimental parameters can be optimized to achieve the maximal
outcome of the experiment. In the following, the concept of the sensitivity and the Asimov
data set are introduced.



46 CHAPTER 3. QUESTIONS IN DATA ANALYSIS

(x,y)t

exclusion sensitivity

|(x,y))
(x,y)

f(t |(0,0))
(x,y)

f(t

c
(x,y)t ≡ |(0,0)]

(x,y)
med[t⇔sensitivity for all (x,y) 

test size
a)

(0,0)t

|(0,0))
(0,0)

f(t |(x,y))
(0,0)

f(t

c
(0,0)t ≡ |(x,y)]

(0,0)
med[t⇔sensitivity for all (x,y) 

test size
b)

discovery sensitivity

Figure 3.4: Illustration of Exclusion and the Discovery Sensitivity The exclusion sensi-
tivity (a) delimits the parameter space that can be rejected (i.e. test H(x, y)) if the no-oscillation
hypothesis is true. The discovery sensitivity (b) defines the parameter space that could be
observed if they were true, i.e. the no-oscillation hypothesis is rejected (and tested). Both sen-
sitivities are defined for that set of hypotheses with a power of 50%.

3.4.1 Sensitivity

The expected outcome is given by the sensitivity. One can distinguish between two sensitiv-
ities:

• exclusion sensitivity: The exclusion sensitivity delimits the parameter space that can
be excluded (rejected), when the no-oscillation hypothesis is true. The complementary
parameter region can also be interpreted as the median confidence region, if the no-
oscillation hypothesis is true. The exclusion sensitivity is obtained, when the median
of the alternative distribution with xtrue = 0 and ytrue = 0 is equal to the critical value.

• discovery sensitivity: The discovery sensitivity indicates the hypotheses that can be
discovered given they were true. In this construction, the tested hypothesis is always the
no-oscillation hypothesis and the true hypothesis varies. Equivalently, the hypotheses
that could be discovered have a median significance that is smaller than the test size.

Figure 3.4 illustrates the two types of sensitivities and their construction. In both cases, the
power of the hypothesis tests is 50% and one needs hence to determine the median of the
alternative distributions. On the one hand, one can always perform a MC construction as
previously described (see Figure 3.3). On the other hand, Wald [180] and Reference [181]
state that the alternative distribution follows asymptotically a non-central chi-square dis-
tribution with k degrees of freedom and the non-centrality parameter λ. The degrees of
freedom correspond - similar to Wilks’ theorem - to the number of extra parameters in the
alternative hypothesis in comparison to the null hypothesis. The non-centrality parameter
can be estimated using the Asimov data set.

3.4.2 Asimov Data Set

The Asimov data set is the representative data set for a given hypothesis [181]. In other
words, the Asimov data set is the data set without statistical fluctuations and corresponds to



3.5. IS THE DATA COMPATIBLE WITH THE FIT MODEL? 47

0 1 2 3 4 5 6 7 8
λnon-centrality parameter 

0

1

2

3

4

5

6

7

8

9

10

m
ed

ia
n

 = 1 (dof)ν
 = 2 (dof)ν

 = 1 (95% CL)νcritical value: 

 = 2 (95% CL)νcritical value: 

 - 1λ + ν

Figure 3.5: Median Value of Non-Central Chisquare Functions The median value is
shown for one and two degrees of freedom (ν) as a function of the non-centrality parameter
λ. The median values converge to λ + ν − 1 (black lines). Thus, if the asymptotic probability
distributions described by Wilks and Wald are valid, the sensitivity at the 95% CL is reached
for λ = 3.84 and λ = 4.95 for one and two degrees of freedom, respectively.

the expected event number: Nobs
A = N exp(xtrue, ytrue,ηtrue). The non-centrality parameter λ

is given by the value of the profile-likelihood ratio of the Asimov data set A(xtrue, ytrue) [181]:

t
A(xtrue,ytrue)
(x,y) = −2 ln

max
η
L(sin2(2θ) = x,∆m2 = y,η)

max
sin2(2θ),∆m2,η

L(sin2(2θ),∆m2,η) (3.11)

= −2 ln
max
η
L(sin2(2θ) = x,∆m2 = y,η)

L(sin2(2θ) = xtrue,∆m2 = ytrue,η = ηobs) , (3.12)

where ηobs = ηtrue. The median of the alternative distribution is of primary interest to
predict the sensitivity of an experiment. Figure 3.5 depicts the median as a function of the
non-centrality parameter λ for different degrees of freedom ν. The median converges for large
non-centrality parameters (region of critical value) to λ + ν − 1. Hence, the sensitivity for
ν = 1 is given, when the Asimov value of the test statistic corresponds to the critical value of
one degree of freedom using Wilks’ theorem (see Table 3.1). Further, for ν = 2 the sensitivity
is obtained for the hypotheses with tA(xtrue,ytrue)

(x,y) = 4.95.
The maximum-likelihood estimators must converge in the large data sample to a normal
distribution to apply this approximation. If the Asimov data set can be used in a sterile
neutrino analysis is discussed in Chapter 11.

3.5 Is the Data Compatible with the Fit Model?
An important piece of information is if the assumed model can indeed describe the data.
This can be done with a ”goodness-of-fit”-test. In the current sterile neutrino searches,
one assumes a (3+1) model. However, this model might be incomplete or even wrong
from the theoretical and/or experimental point of view. To test the specific model, one
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performs a hypothesis test, where the null hypothesis is the (3+1) model and the alter-
native hypothesis is any other model. To do so, one introduces a flexible alternative hy-
pothesis, in which the event numbers are adjustable for each bin. The alternative hy-
pothesis is given hence by H1 : {N exp,η : N exp ≥ 0,η ≥ 0} and the null hypothesis by
H0 : {N exp : N exp(sin2(2θ),∆m2,η)}, where N exp(sin2(2θ),∆m2,η) is defined in Equa-
tion 3.4.
The corresponding profile-likelihood ratio test for a specific data sample with Nobs and ηobs

is [176]:

tgof = −2 ln
max

sin2(2θ),∆m2,η
L(sin2(2θ),∆m2,η)

max
Nexp,η

L(N exp,η) = −2 ln L( ̂sin2(2θ), ∆̂m2, η̂)
L(N exp = Nobs.η = ηobs) , (3.13)

Here, the nominator is the maximum inside the null hypothesis. The denominator is the
maximum inside the alternative hypothesis, which is given when the expected event numbers
correspond exactly to the observed ones.
Similarly to a p-value, one can calculate how likely it is when the 3+1 model is true, to
observe the calculated tgof or even more extreme values:

pgof =
∫ ∞
tobs
gof

f(t(gof)|(3 + 1))dt(gof). (3.14)

According to Wilks’ theorem, assuming the (3+1) hypothesis is true and the regularity con-
ditions are fulfilled, the probability distribution f(t(gof)|(3 + 1)) follows asymptotically a
chi-square distribution with the degrees of freedom given by the difference of free parameters
in H1 and H0. When the likelihood function contains auxiliary measurement terms of the
nuisance parameters (see Equation 3.7), the degrees of freedom are given by the number
of data bins minus the number of the parameters of interest. Instead, when the auxiliary
measurement terms are absent in the likelihood function (see Equation 3.6), the alternative
hypothesis is given by H1 : {N exp : N exp ≥ 0}. Subsequently, the degrees of freedom are
further reduced by the number of nuisance parameters [182].
In comparison to a profile likelihood ratio test, a goodness-of-fit estimate can be already
obtained in a chi-square test by the minimum of the chi-square function itself [176]. This
is because, in the flexible alternative hypothesis model the minimum chi-square value of the
alternative hypothesis will always be zero. The validity of Wilks’ theorem in the goodness-
of-fit test will be discussed in Chapter 11.5.

3.6 Methods and Results of Current Short-Baseline Experi-
ments in 2018

Some of the current short-baseline experiments have already published first results. Table 3.2
lists the applied methods and results of these experiments. Note that only experiments where
the oscillation probability is given by the two-flavor oscillation formula (see Equation 1.10)
are selected. MiniBooNE and Neutrino-4 report a strong positive signal with a significance
of 6 × 10−7 and 3.5σ, respectively. However, their best-fit values disagree with each other
and the residual experiments cannot observe any signal and set hence exclusion limits on the
oscillation parameter space. The current results and how they compare to each other are
discussed in Chapter 13.
The table shows that the experiments use different statistical analysis approaches which
prevent from the direct comparison of their results. On the one hand, the test statistic
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Table 3.2: Results of Current Short-Baseline Experiments at the End of 2018. The
names of the experiments are listed in the first column. The second column gives the name of
the test statistic and the performed scan, where LR stands for likelihood ratio. The best-fit
values and the respective goodness of fit (gof) are given in the third to fifth column. Note
that the mixing angle of the appearance experiment MiniBooNE is not directly comparable to
the disappearance experiments (see Equation 1.12). The significance is quoted in column six,
where Neutrino-4 transfers the p-value to the corresponding σ-level. Whether the probability
distributions are constructed with Monte Carlo techniques is indicated in column seven.

experiment test statistic best-fit values gof significance MC
sin2(2θ) ∆m2[eV2] ∆χ2/dof

MiniBooNE [120] LR (global) 0.92 0.041 19.4/15.6 6× 10−7 yes
DANSS [126] Gaussian CLS 0.05 1.4 21.9/24 − no
NEOS [71] ∆χ2 (raster) 0.05 1.73 57.5/59 0.22 yes
Neutrino-4 [127] ∆χ2 (global) 0.38 7.26 17/17 3.5σ no
PROSPECT [128] ∆χ2 (global) 0.35 0.5 57.9/78 0.58 yes
STEREO [130] ∆χ2 (raster) − − − 0.34 yes

differs and the way how the confidence regions are constructed, and on the other hand, the
probability distributions functions of the test statistics are sometimes constructed with MC
techniques and sometimes not. In addition, not all experiments report the same values and
there is no consistent way in the presentation of the results.
It is worth mentioning that the reported best-fit values are all different from the no-oscillation
hypothesis. As it will be shown in Chapter 9, this is an intrinsic feature of the short-baseline
experiments and complicates the statistical analysis. This complication is one reason for the
different choice of the statistical approaches of the experiments.

Motivated by this incoherent situation, the second part of this thesis discusses the statistical
methods and issues in short-baseline experiments. The previous work from Reference [177]
and [183] is extended for a large set of experimental parameters (i.e. disappearance and
appearance experiments in a rate, shape and rate+shape analysis). Moreover, discovery and
exclusion scenarios are studied. Chapter 9 starts with the statistical issues in short-baseline
experiments including sensitivities, confidence regions, and maximum likelihood estimators.
Chapter 10 compares the currently-applied test statistics and their interpretations. The
validity of the asymptotic functions for the probability distributions of the test statistic is
investigated in Chapter 11.
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4 Development of the Analysis
Software

This chapter describes the analysis software of SOX, where a large fraction of it has been
developed in the frame of this thesis. The main output of the analysis software is a confi-
dence region in the oscillation parameter space for the SOX data sample. Moreover, using
the analysis software, the expected sensitivity of the SOX experiment accounting for the
experimental systematics can be determined. In contrast, before this thesis, the sensitivity
of SOX was estimated based on toy-Monte Carlo (MC) simulations assuming ideal detector
settings [132,133,161,165].
The individual components of the analysis chain are schematically shown in Figure 4.1. The
first step is to simulate the expected raw data which has the same format as the Borexino
raw data (see Section 4.1). Therefore, all the subsequent data processing can be applied in
the same way to MC and Borexino data. The inverse beta decay (IBD) events are selected
from the raw data using the bx-sox filter (see Section 4.2). The result of SOX is displayed
in a confidence region in the sin2(2θ)-∆m2-region that is obtained through the sox-stats
analysis framework (see Section 4.3). The chapter closes with the comparison of the expected
sensitivity obtained from the toy-MC simulations and the full analysis chain (see Section 4.4).

Monte Carlo
Simulation/
Data Taking

raw data

bx-sox filter
IBD

event sample

sox-stats
analysis

framework

confidence
region

Figure 4.1: Scheme of the Analysis Structure of SOX The individual components are
explained in the specific sections of this chapter.

4.1 Generation of the Expected Raw Data

In order to perform a sterile neutrino analysis, the expected signature as a function of the
oscillation parameters sin2(2θ) and ∆m2 has to be precisely known. The specific detector
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material and the status of the Borexino detector, such as the vessel shape and the number
of working (photomultiplier tubes) PMTs, are crucial to predict the expected signature. The
expected signature consists of the total event number and the probability distributions of the
spectral distributions (PDFs) which are described in the following.

4.1.1 Event Number

The total event number NIBD of IBD reactions within the inner vessel for a survival proba-
bility and detection efficiency of one can be determined analytically. Assuming a point-like
source, NIBD is given by

NIBD =
∫∫∫

A(t)
4πL2 · ρp · nν(E) · σ(E) · F (L,RIV(L)) dLdE dt, (4.1)

where the integrals are computed over the full ranges of traveled distance (L) and energy (E)
of the neutrinos, and the measurement time (t). Here, A(t) = A0 exp(− ln 2

T1/2
· t) is the activity

of the 144Ce-source with its half-life T1/2, ρp the proton density in the liquid scintillator,
nν(E) the neutrino energy spectrum of 144Pr, and σ(E) the cross section of the IBD reaction
(see Equation 2.7). F (L,RIV(L)) is the surface area of the spherical cap with radius L
centered at the source location that is contained within the inner vessel volume:

F (L,RIV(L)) = 2πL2 · (1− d2 + L2 −R2
IV(L)

2dL ). (4.2)

Figure 4.2 sketches the geometrical relation of the inner vessel to the source location. Since
the deformation of the inner vessel shape is cylindrical symmetric around the z-axis (see
Chapter 2), the vessel radius RIV can be expressed as a function of L. Given the small
source dimensions of the source (∼ 0.15m) in comparison to the detector dimensions, the
assumption of a point-like source is appropriate.
The expected event number N exp

S of reconstructed IBD events depends on the detection
efficiency ε for a given fiducial volume cut (FV) and the ratio τ of lifetime over measurement
time of the detector:

N exp
S = NIBD · ε(FV ) · τ. (4.3)

The detection efficiency is determined from Borexino MC simulations and is defined here
as the fraction of generated events in the whole inner vessel volume (Ntrue(IV )) that are
reconstructed in the fiducial volume (Nrec(FV ))

ε(FV ) = Nrec(FV )
Ntrue(IV ) . (4.4)

The lifetime of the detector is reduced in comparison to the total measurement time, i.e.
τ < 1, due to for example calibration runs, maintenance operations, and detector instabilities.
Moreover, software selection cuts (mainly the muon veto) further reduce the lifetime. The
Borexino MC simulation used to determine the detection efficiency as well as the spectral
distributions is described in the following.

4.1.2 Spectral Distribution

The expected spectrum from an antineutrino source is generated in two steps. First, the so-
called antineutrino generator developed in Reference [165] produces the distributions of the
true observables (e.g. Etrue and Ltrue) of the antineutrinos in the Borexino detector. Second,
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Figure 4.2: Scheme of the Computation of the Event Number The vessel shape which
is cylindrical symmetric around the z-axis is indicated in blue. RIV(L) denotes the radius of
the inner vessel and can be expressed as a function of L which is the travelled distance of the
neutrinos from the source. The distance between source and detector center is given by d. Using
the law of cosines, the angle θ is a function of d, L, and RIV(L) (not to scale).

the Borexino MC based on Geant4 [184] uses the output of the antineutrino generator and
simulates the reconstructed observables (e.g. Erec and Lrec).
The antineutrino generator takes into account the source position and geometry, and for
each antineutrino event the true start position is uniformly distributed within the source. A
possible interaction vertex is randomized within a sphere with the radius of the maximum
baseline centered around the true start point. The possible interaction vertex is only saved
when it appears inside the inner vessel of Borexino, where the specific vessel shape can be
defined. The true baseline Ltrue is then given by the difference of start and interaction vertex.
Etrue is randomly drawn from the convolution of the antineutrino spectrum emitted by the
144Ce source (see Figure 2.8) and the IBD cross section [143].
The Borexino MC is based on Geant4 [184] and starts at the true interaction vertex the
two products of the IBD reaction: a positron and a neutron. The kinetic energies and the
directions of the positron and the neutron follow from the kinematics of the IBD, where
Ee+ ≈ Eν +mpc

2 −mnc
2 and En . 5.4 keV for Eν = 3MeV [185]. The MC simulation takes

into account the full detector geometry and materials, and simulates the energy deposition
of the particles and the resulting scintillation photons. Further, the propagation of these
scintillation photons through the detector medium and the detection at the PMTs, including
the electronic signal processing, is simulated. In particular, the vessel shape and the number
of active PMTs, which are both unstable over the SOX data taking period, can be set to
a specific configuration. Therefore, by running MC simulations with the time-dependent
detector configurations, the time-dependent spectral distributions with the respective energy
and position resolution can be determined. The output of the MC has the same format as
the Borexino raw data. Hence, all further data processing and analysis can be performed in
the same way to MC and Borexino data.
Figure 4.3 shows the reconstructed and true spectra of the positrons for the energy and the
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Figure 4.3: Simulated Energy and Distance Distributions of SOX with the Borexino
MC The true (red) and reconstructed (blue) distributions are shown for (a) energy and (b)
distance, respectively. The true (reconstructed) distributions are the output of the antineutrino
generator (Borexino MC) using the detector configuration from October 2016 with the specific
deformed vessel shape. In comparison, the distributions for the assumed ideal detector settings
in the toy-MC sensitivity studies (spherical vessel, σL = 10 cm, σE = 5%/

√
E) are shown in

black. Note that the true and the reconstructed observables almost overlap in panel b).

distance. The detector settings correspond to the ones of October 2016 (see Figure A.7 for
the vessel shape). The energy spectrum is compared to the one used in the toy-MC sensitivity
studies. Here, a spectrum with 5% energy resolution at 1MeV, which is the resolution in
the innermost detector volume of Borexino, is assumed. As the resolution drops towards
larger radii (see Figure 5.2), the average energy resolution in the full active volume with the
Borexino MC is worse. In addition, the distance spectrum is compared to the one obtained
with a spherical vessel which is used in the toy-MC sensitivity studies. The spectrum with the
deformed vessel is shifted towards larger baselines. This is because of the balloon-like vessel
shape with more active volume in the northern hemisphere of the detector (see Figure 2.3).
Note that the deformation also affects the total expected event number, as the neutrino flux
decreases with the baseline.
Within this thesis, the MC samples were studied in detail to investigate the detector response
and the detection efficiency (see Chapter 5). Moreover, the proper functionality of the MC
simulation was tested and possible problems were identified.

4.2 Event Selection with the bx-sox Filter

The bx-sox filter has been developed during this thesis and is based on the existing bx-
antinu filter used in the previous geo neutrino analyses [155]. Two main improvements
are implemented to increase the statistics for the SOX event sample. First, the algorithm is
extended to search for double cluster events, i.e. events with a time difference ∆t < 16 µs, the
gate length of one data acquisition (DAQ) window. Second, a new muon veto is implemented
that differentiates between two different muon categories, increasing the life time by ∼ 10%.
In turn, the bx-sox filter was the basis for the latest geo neutrino analysis [35]. In the
following, the data selection cuts and the validation of the bx-sox filter are discussed.
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Table 4.1: Selection Cuts in the bx-sox Filter. The first and second row lists the selection
parameters and their definitions. The third row gives the specific cut, where the cut values are
optimized in Chapter 5 and listed in Table 5.1.

parameter definition cut comment
Ep energy of prompt event Emin

p < Ep < Emax
p

Ed energy of delayed event Emin,1
d < Ed < Emax,1

d or n-capture on H
Emin,2
d < Ed < Emax,2

d n-capture on C
∆t time difference between ∆tmin,1 < ∆t < ∆tmax,1 or 2 clusters/gate

prompt and delayed event ∆tmin,2 < ∆t < ∆tmax,2 1 cluster/gate
∆R spatial distance between ∆R < ∆Rmax

prompt and delayed event
mlp pulse shape discrimination mlp > mlpmin β-like events

parameter of delayed event
vd distance to vessel of prompt vd > vdmin

event
∆t(µint +n) vetoed time after µint + n ∆t(µint + n) > 2 s
∆t(µint−n) vetoed time after µint − n ∆t(µint − n) > 2ms
∆t(µext) vetoed time after µext ∆t(µext) > 2ms
multiplicity no event with E > Emin

p 2ms before, after, or in between
cut prompt and delayed event

4.2.1 Selection Cuts

An IBD event needs to fulfill the following requirements which are also summarized in Ta-
ble 4.1: The prompt and the delayed event have to trigger both the inner detector (tt1) and
not the outer detector (btb0).1 Thus, both events are not tagged as internal (µint) or ex-
ternal (µext) muons2. Further, muon-induced background is removed by the following muon
vetos: the prompt and the delayed event have to be at least 2 s after an internal muon, which
is followed by neutrons (µint + n), and 2ms after an internal muon, which is not followed
by neutrons (µint − n) or µext. The veto of 2ms is sufficient to suppress cosmogenic neu-
tron background (neutron capture time is ∼ 250 µs). The veto of 2 s suppresses most of the
muon-induced hadronic background (see Chapter 6). To distinguish between (µint + n) and
(µint − n), one searches for neutrons in the tt128-gate that is automatically issued after each
internal muon with a gate length of 1.6ms. If at least one neutron is found, the muon is
tagged as (µint +n). More details about the tt128 and the neutron identification can be found
in Ref [140].
Further, the following IBD selection cuts are applied3: the energy of the prompt (Ep) and the
delayed (Ed) event have to be reconstructed in the expected energy ranges. In addition, the
prompt and the delayed events need to be correlated in time (∆t) and space (∆R). A pulse
shape discrimination cut on the delayed event is applied to suppress background induced by
fast coincidences from the 238U or 232Th chain. Here, the so-called mlp parameter is used
to discriminate neutrons against alpha particles [35]. A fiducial volume cut is applied to the
reconstructed position of the prompt event. As the vessel shape is deformed, the fiducial
volume cut is performed in terms of the distance to the inner vessel (vd).

1A list of the trigger types in Borexino and their definitions can be found in Appendix A.2.
2The exact definition for the internal muon is called ”internal large” in Borexino and can be found in

Reference [35].
3The values of the selection cuts are optimized in Chapter 5 and listed in Table 5.1.
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Figure 4.4: Simulated Energy and Distance Distribution before and after the IBD
Event Selection with the bx-sox Filter. The distributions of the single prompt events are
selected with the MC information on the primary particle and are normalized to one. The filtered
events are selected with the bx-sox filter applying only a time cut (∆t<2000 µs) and normalized
to the event number of the single prompt events. The reduced integral in the distributions
of the filtered events comes mainly from the detection efficiency of the delayed event. The
energy distributions (a) are shown in logarithmic scale to visualize the second component at
high energies which can be traced back to the finite time resolution of the cluster algorithm (see
text).

The selected IBD candidate must be a clear coincidence of two events. As the Borexino gate
length is 16 µs long, several physical events (so-called clusters) can be reconstructed in the
same gate. A cluster is defined as an accumulation of detected scintillation photons (& 30)
within a short time period (. 1.5 µs), and is reconstructed from a software algorithm [141].
It is required that the prompt and the delayed event are the only reconstructed clusters in
the gate (#clusters = 1), unless the prompt and the delayed event appear in the same gate
(∆t < 16 µs and #clusters = 2). Further, a so-called multiplicity cut is applied. Hence, if
an event with an energy larger than the minimum energy of the prompt event appears 2ms
before the prompt event, 2ms after the delayed event, or in between the prompt and the
delayed event, the IBD candidate is rejected.
The energy and distance spectra obtained from the MC simulation after the event selec-
tion with the bx-sox filter is shown in Figure 4.4. In comparison, the spectra of the single
prompt events are shown which are selected with the MC information on the primary par-
ticle. The total event number is reduced in comparison to the spectra of the single prompt
events because of the detection efficiency of the IBD. Applying only an upper limit on the
time difference (∆t < 2000 µs), the detection efficiency results to ∼ 95% that can be mainly
explained due to the reduced detection efficiency of the neutrons close to the vessel border.
The energy distribution of the single prompt events features a second distribution beyond
the endpoint of the 144Pr spectrum (∼ 1300 p.e.) that does not appear in the bx-sox filtered
spectrum. For these events (∼ 0.2%), the delayed event follows too shortly after the prompt
event (∆t . 300 ns) and cannot be separated from the prompt event with the cluster algo-
rithm. The reconstructed energy is hence given by the sum of the energy of the prompt and
the delayed event.
The distributions of all selection parameters of the above filtered MC data sample is shown
in Figure 4.5. In addition, the selection cuts of the previous geo neutrino analysis are indi-
cated [155]. Chapter 5 discusses the improvement on the specific selection cut values in order
to enhance the detection efficiency and hence the sensitivity in SOX.
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Figure 4.5: Distributions of the IBD Selection Parameters The distributions are sim-
ulated from 1× 106 prompt and delayed events started in the whole inner vessel assuming the
detector configuration from October 2016. The IBD events are selected with the bx-sox filter
applying a minimal set of selection cuts (∆t<2000 µs). The dashed lines indicate the selection
cuts used in the previous geo neutrino analysis [155]. The improvements on this selection cuts
for the SOX analysis are discussed in Chapter 5.

4.2.2 Validation of the bx-sox Filter

The proper functionality of the bx-sox filter can be cross-checked using the saved information
on the primary particles in the MC simulation. The Borexino MC saves the prompt event
as an ν̄e (pdg = −12) and the delayed event as a neutron (pdg = 2112), where the particle
data group (pdg) identifiers are used [176]. An additional filter algorithm (mctruth filter)
is developed using the MC information to validate the bx-sox filter. To do so, IBD events
are selected that fulfill the required particle types of prompt and delayed event. Further,
both events produce enough scintillation light and are reconstructed as clusters. In both
IBD selections (bx-sox and mctruth) only ∆t<2000 µs is required and no further cuts on the
energies, ∆R, and the pulse shape are applied.
With this minimal set of selection cuts, 953325 events (bx-sox) and 953150 events (mctruth)
are found for the same MC data sample. The difference of 175 events can be explained by
14N(n,p)14C reactions that can appear on the nitrogen nuclei of the wavelength shifter PPO
[186]. For such reactions, the MC information saves a proton (pdg = 2212) for the particle
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Figure 4.6: Validation of the bx-sox Filter The energy of the delayed events from MC data
is shown for those IBD events which are selected with the bx-sox, but not with the mctruth
filter. The mctruth filter selects IBD events according to the saved particle type in the MC.
The shown events correspond to protons produced with a chance of 1.8× 10−2% in 14N(n,p)14C
reactions with an energy of 626 keV, where the reconstructed energy is quenched by a factor of
∼ 6.

type of the delayed event and are thus not selected with the mctruth filter. Figure 4.6 shows
the energy of the delayed events for these 14N(n,p)14C reactions, which correspond to protons
with an energy of 626 keV. As the scintillation light yield of protons is quenched, the energy
is reconstructed at ∼ 100 keV (50 p.e.). Therefore, as both filters give consistent results and
the difference in the selected event numbers is understood, the proper functionality of the
bx-sox filter could be demonstrated.

4.3 Construction of a Confidence Region with the sox-stats
Framework

sox-stats is a collection of C++ classes which provides interfaces and algorithms for the
statistical analysis of the SOX data. The basic version has been implemented by Matteo
Agostini. In the frame of this thesis, sox-stats has been extensively tested and modified to
study the systematic uncertainties and the optimization of the analysis. In the following, a
description of the basic version is given. The individual modifications are described in the
respective sections of Chapter 7.

4.3.1 Description of sox-stats

The outcome of sox-stats is the minimum of the negative log-likelihood function (−2 lnL)
in the sin 2(2θ) - ∆m2 - plane from which the confidence region at a specific confidence
level can be extracted. sox-stats is segmented in three different C++ objects that take
care of the generation of the expected data, the statistical model, and the scanning over the
likelihood space. The minimization of the negative log-likelihood function is performed using
the minimizer object from the m-stats package [187] which is based on Minuit [188]. A
scheme of the structure of these three objects with the input and output parameters can be
seen in Figure 4.7. These objects are described in more detail in the following.
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Figure 4.7: Scheme of the Statistical Analysis Framework for SOX (sox-stats) The
statistical framework is divided into three objects: the PDFBuilder, the Model, and the Profiler.
The specific input and output values are given on the left and right side, respectively. The
minimization of the negative log-likelihood function is performed with the Minimizer based on
Minuit from the external class package called m-stats [187].

1. The PDFBuilder

The output of the PDFBuilder are the normalized probability distribution functions
(pdfS(sin2(2θ),∆m2)) and the integral survival probability (Pint(sin2(2θ),∆m2)) for a
certain oscillation hypothesis H(sin2(2θ),∆m2). The data (Nobs) and the probability
distribution functions are represented by 2D histograms with bins (i, j) in reconstructed
energy (Erec) and distance (Lrec). For the generation of a specific probability distribution
function pdfS(sin2(2θ),∆m2) of a given hypothesis, a high statistic (106) MC simulation
sample of the no oscillation hypothesis is used (see Section 4.1). In order to speed up
the analysis, a light MC file is used as input for the PDFBuilder which is extracted from
the massive MC simulation using bx-sox and contains the necessary parameters for the
analysis that are mainly:

(a) true energy Etrue

(b) reconstructed energy Erec, i.e. normalized charge
(c) true distance Ltrue

(d) reconstructed distance Lrec

pdfS(sin2(2θ),∆m2) is constructed by looping over the events in the light tree (nMC) and
filling the reconstructed parameters (Lrec,Erec) in a 2D histogram, where the fill weights
correspond to the survival probability (Pee(Ltrue, Etrue| sin2(2θ),∆m2)) for the respec-
tive true parameters (Ltrue,Etrue) and oscillation parameters (sin2(2θ),∆m2) according
to Equation 1.10. Pint(sin2(2θ),∆m2) is given by the ratio of the sum of the individual
survival probabilities of all events in the light tree over nMC:

Pint(sin2(2θ),∆m2) = 1
nMC

nMC∑
i=0

Pee(Ltrue, Etrue| sin2(2θ),∆m2). (4.5)
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2. The Model
In the Model the parameters of interest, the nuisance parameters, and the likelihood
function are defined. The parameters of interest are sin2(2θ) and ∆m2. In the basic model
one nuisance parameter is defined, namely the total event number for the no oscillation
hypothesis NS which is constrained by the number of expected events (Nobs

S ) with the
uncertainty σNS . The likelihood function in a rate+shape analysis is given by (following
the notation from Chapter 3):

L(sin2(2θ),∆m2, NS) =
∏
ij

P(Nobs
ij |N

exp
ij (sin2(2θ),∆m2, NS)) · N (Nobs

S |NS , σ
2
NS

) (4.6)

with

N exp
ij (sin2(2θ),∆m2, NS) = N exp

S (sin2(2θ),∆m2, NS) · pdfSij(sin2(2θ),∆m2) (4.7)

and
N exp
S (sin2(2θ),∆m2, NS) = Pint(sin2(2θ),∆m2) ·NS . (4.8)

Instead, the likelihood function in a shape analysis is defined without the Gaussian con-
straint N (Nobs

S |NS , σ
2
NS

) on the total event number. In a rate analysis, the number of
bins in the data and the pdfS(sin2(2θ),∆m2) are set to one (i = j = 1).

3. The Profiler
A scan over the whole sin 2(2θ) - ∆m2 - plane (with uniform steps in the logarithmic
space) is performed and at each point −2 lnL(sin2(2θ),∆m2,η) is minimized with respect
to the nuisance parameters η, i.e. NS in the basic statistical model. The fit is executed
by the minimization class of the m-stats package [187]. After the scan, the negative log-
likelihood function is normalized for the absolute minimum to obtain the profile likelihood
ratio as defined in Equation 3.9. Besides the negative log-likelihood function, the Profiler
returns also the confidence region at a certain confidence level which is extracted with
Wilks’ theorem. If the data sample corresponds to the Asimov data set for the no-
oscillation hypothesis, the exclusion sensitivity is obtained (see Chapter 3).

Note that the exclusion sensitivities obtained with sox-stats are using the Asimov data set
and Wilks’ theorem. In the second part of this thesis (see Chapter 11) the difference to a
full MC construction is shown and discussed.

4.4 Sensitivity of the SOX Experiment

Figure 4.8 shows the sensitivity of SOX in a rate+shape analysis reconstructed from the full
analysis chain, which is denoted as ”real detector” in the following. In addition, the sensitivity
from toy-MC studies using ”ideal detector” settings is compared. The ideal detector assumes
a spherical vessel with 4.25m radius, an energy resolution of 5% at 1MeV, and a spatial
resolution of 10 cm (see Figure 4.3). Further, a detection efficiency of 100% is assumed.
The sensitivity of the real detector uses the full analysis chain described in this chapter.
Therefore, the expected data is generated with the Borexino MC assuming the vessel shape
and the detector settings from October 2016. Further, IBD events are selected using the
bx-sox filter with a minimal set of selection cuts (i.e. ∆t<2000 µs, no cuts on energy and
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Figure 4.8: Comparison of the Sensitivity Reconstructed from an Ideal and Real
Borexino Detector The ideal detector (black) assumes a spherical vessel shape and an energy
resolution of 5% at 1MeV and a vertex resolution of 10 cm. The real sensitivity (red) is obtained
with the whole analysis chain assuming a detector configuration from October 2016. The source
activity corresponds to 115 kCi and the uncertainty on the total event number is 1%. To visualize
the differences in the shape of the sensitivity, the real sensitivity is in addition also computed
for the same expected event number of the ideal detector (N=10000, black dashed line). The
overall sensitivity is reduced for the real sensitivity, as the expected event number drops due to
the detection efficiency (∼ 95%) and the deformed vessel shape. The allowed regions for sterile
neutrinos from a global analysis are added in gray. It has to be noted that the real sensitivity is
still too optimistic, as not all systematic effects are taken into account.

∆R). Both sensitivities are produced with the sox-stats framework applying no fiducial
volume cut to the data.
The expected event number for the no-oscillation hypothesis for the ideal experiment is
assumed to be 10000 events which corresponds to a source activity of∼ 115 kCi. The expected
event number is reduced in the real setup by 18.5% due to the deformed vessel shape and
the detection efficiency. In both analyses, an uncertainty of 1% on the total event number
is taken into account.
The shape of the sensitivity is similar in both cases, where it is maximal for ∆m2 ∼ 3.5 eV2.
At this ∆m2-value, the oscillation length is exactly twice the Lrec-value with the maximal ex-
pected event number Lmax at ∼ 8m (see Figure 4.4). Hence, as the first oscillation minimum
overlaps with the maximum in the expected event number, a large deficit in the expected
event number is observable and the sensitivity is large. For smaller ∆m2-values, the oscilla-
tion length becomes larger than the Lrec-range and an oscillation signal and the sensitivity
vanishes. In this mass regime (∆m2 . 2 eV2) the deficit in the event number and hence the
sensitivity is approximately proportional to the product sin2(2θ) × ∆m2. On the contrary,
for larger ∆m2-values (1 eV2 . ∆m2 . 10 eV2), the oscillation length becomes smaller than
the detector dimensions and an oscillation pattern is observable. For even larger ∆m2-values
(∆m2 & 10 eV2), the oscillation length becomes smaller than the detector resolution and the
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oscillation signature is washed out which leads to a constant rate deficit and hence constant
sensitivity in terms of sin2(2θ) (see also the expected signature in Figure 2.14).
The overall sensitivity for the real detector is reduced in comparison to the ideal detector
settings by ∼ 12% at ∆m2 = 2 eV2 which is mainly given due to the reduced expected
event number. In addition, the shape of the sensitivity curve slightly changes with the real
detector, which can be seen from the comparison of the sensitivities of the ideal and real
detector settings with the same expected event number (black solid and dashed line). The
sensitivity curve shifts towards smaller ∆m2-values for ∆m2 . 1 eV2, as the deformed vessel
shape shifts the Lrec-spectrum towards larger values for the real detector (see Figure 4.4).
Moreover, the energy and spatial resolution is worse in the real Borexino detector than in the
ideal assumptions. The ability to resolve small oscillation lengths is reduced in comparison
to the ideal settings which decreases the sensitivity for ∆m2 & 1 eV2. It has to be noted that
the shown sensitivity is too optimistic, as it does not take into account all systematic effects
and the full detection efficiency (see Chapter 7).

This chapter described the developed analysis software for SOX which is used in the following
chapters to characterize the Borexino detector and evaluate the systematic effects of SOX.
The bx-sox filter is used, on the one hand, to improve the selection cuts for the IBD and
determine its detection efficiency in Chapter 5. On the other hand, the expected background
for SOX is studied with the bx-sox filter in Chapter 6. Further, the systematic effects of
the SOX experiment and the final sensitivity projection are studied in Chapter 7 with the
sox-stats framework.
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5 Characterization of the Signal
and the Borexino Detector

In order to predict the expected signal of SOX and run a sterile neutrino analysis, the Borex-
ino detector needs to be well characterized. This chapter investigates the detector response
of the Borexino detector to SOX antineutrino events in Section 5.1. Section 5.2 discusses
the detection efficiency for SOX antineutrino events in the Borexino detector. Moreover, as
the sensitivity of SOX increases with the expected event number, possibilities to improve the
detection efficiency with respect to previous antineutrino analyses in Borexino are shown.

5.1 Detector Response
Borexino measures for each event the amount of scintillation light per photomultiplier tube
(PMT) and the respective arrival times, which allows to reconstruct the energy and the
position of the event. In the following, the expected energy and position reconstruction for
the SOX event sample is studied. Moreover, their systematic uncertainties are discussed
which are obtained from calibration measurements with radioactive sources [189].

5.1.1 Energy Reconstruction

In Borexino, three energy estimators Np, Nh, and Npe are defined, i.e. the number of PMTs
which detected at least one photon, the number of reconstructed hits of all PMTs1, and the
total measured charge of the PMTs expressed in the number of photoelectrons (p.e.) [141].
As the number of working PMTs is decreasing with the lifetime of Borexino, each estimator is
corrected for the time-dependent number of working PMTs and normalized to 2000 working
PMTs, such that an energy deposition of 1MeV constantly corresponds to ∼ 500 p.e.. For
large radii and/or high energies, i.e. in the case when the probability is high that a PMT can
detect more than a single scintillation photon, Npe gives better resolution than Np or Nh.
Thus, Npe maximizes the sensitivity of SOX and will be therefore the choice for the SOX
analysis.
The energy response is studied with the SOX Monte Carlo (MC) simulation2 (see Chapter 4)
assuming the expected energy and position distribution of SOX. From Figure 5.1 and Fig-
ure 5.2 it can be seen that the light yield and its resolution becomes worse for larger radii.
While the energy resolution reaches 5% for an energy of 2.2MeV in the detector center, it
decreases to 14% in the outer radial shells. The main reason for the worsening for larger
radii comes from the high fraction of inactive PMTs in the southern part of the detector,
leading to a decreasing light yield for smaller z-values. As the SOX source is located below

1The Borexino electronics of one PMT can resolve two signals for time differences larger than 80 ns [140].
2Unless otherwise stated, the SOX MC simulation assumes the Borexino detector configuration of October

2016 and generates 106 positrons and neutrons each within the inner vessel.
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Figure 5.1: SOX Energy Spectra as a Function of the Detector Position The energy
spectra for the prompt (a) and the delayed (b) event are obtained from SOX MC simulations
and are grouped into radial shells of the true IBD interaction position. The integral of the
distributions is normalized to one. The two peaks in the delayed spectra are due to the neutron
captures on Hydrogen and on Carbon and the low energy tail comes from a partial energy
deposition in the buffer.
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Figure 5.2: Energy and Position Resolution in the SOX Event Sample a) relative
energy resolution as a function of the true energy for different radial shells. b) absolute position
resolution as a function of the true radius for different energies. The results are obtained from
SOX MC simulations. The error bars account for the statistical errors only. For the innermost
detector volume and for the highest energies, the best resolutions are achieved.

the detector, the neutrino flux and the expected event number for SOX dominates in the
southern part of the detector. Thus, the SOX event sample features mainly the detector
response from this detector region. In addition, the energy scale decreases for large radii
close to the inner vessel (IV) border, where a fraction of the energy can be deposited in the
buffer and is quenched (see low energy tail in Figure 5.1).
The MC reproduces both the light yield and the resolution with a precision of ≤0.8% in
the detector center [184]. This is shown in Figure 5.3a which compares calibration data
of radioactive gamma sources with MC simulations. In addition, the energy response as
a function of the detector position has been studied with the 2.2MeV gamma line from
the 241Am-9Be source [184]. The relative agreement of the reconstructed energy is in the
detector center .2% and drops close to the IV border up to 4%, as depicted in Figure 5.3b.
This discrepancy can be most likely explained due to the uncertainties in the vessel shape
reconstruction.
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a) b)

Figure 5.3: Accuracy of the Energy Response Calibration data is compared to MC sim-
ulation data for a) gamma sources in the detector center and b) the 2.2MeV gamma line from
an 241Am-9Be source as a function of the detector position. The agreement in the detector
center is better than 0.8% (panel a) and decreases close to the vessel border probably due to
the uncertainty in the vessel shape reconstruction (panel b). Both plots are taken from [184].

5.1.2 Position Reconstruction

The position resolution of the reconstructed radius can be seen in Figure 5.2b for different
true energies and radial positions. While the resolution is almost independent on the detector
position, it worsens with a decreasing energy deposition. Hence, the position resolution is
∼ 9 cm and ∼ 14 cm for an energy of 2.2MeV and 1MeV, respectively. This behavior can be
well reproduced with calibration data (see for example Reference [189]).

A comparison of the reconstructed and nominal positions of the 214Po-α events from a 222Rn
calibration source shows an overall good agreement [189]. However, a bias in the z-coordinate
is present which is depicted in Figure 5.4. The so-called ”z-shift” is a function of the z-
coordinate itself and reaches up to ∼ 4 cm. The reason of the ”z-shift” is unexplained and
cannot be reproduced with MC simulations. The effect of this position shift on the sensitivity
of SOX will be studied in Chapter 7.

Figure 5.4: Position Reconstruction Shift Difference of the reconstructed and nominal
z-coordinate determined from 214Po-α events from a 222Rn calibration source. This bias is only
present in the z-coordinate and cannot be reproduced with MC simulations. The figure is taken
from Reference [189].
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5.2 Detection Efficiency

In the following, the detection efficiency for the SOX event sample is evaluated using MC
simulations. The SOX source emits electron antineutrinos which are detected via the inverse
beta decay (IBD) reaction in which positrons and neutrons are produced. Hence, first,
the single detection efficiencies of positrons (Section 5.2.1) and neutrons (Section 5.2.2) are
studied. In order to maximize the sensitivity of SOX, the selection cuts for IBD events
are optimized with respect to the previous antineutrino analysis in Borexino (Section 5.2.3).
In the last part, the resulting detection efficiency of the coincident IBD signal is discussed
(Section 5.2.4).

5.2.1 Detection Efficiency of Positrons

From 106 generated positrons assuming the SOX energy spectrum and a uniform distribution
within the IV, only eleven positrons are not detected with the MC simulation. These unde-
tected positrons are located very close to the IV border so that both annihilation gammas
can escape into the buffer medium. Given in addition a positron with a small kinetic energy,
only a small amount of scintillation light is produced that is below the detection threshold of
∼30 hits. Figure 5.5a shows the differential detection efficiency for the positrons as a func-
tion of the true vessel distance for different cuts on the reconstructed energy and the fiducial
volume (FV). A full detection efficiency is obtained in the detector center for positions with
a vessel distance of at least 0.4m. Close to the vessel border the annihilation gammas can
spill out into the buffer medium and a fraction of the deposited energy is quenched. The
closer the IV border, the higher is the chance for the gammas to spill out and the light yield
is decreased (see also Figure 5.1). Hence, increasing the minimum energy cut to 400 p.e. de-
creases the detection efficiency to 86% at the vessel border. Due to the position resolution,
some positrons are reconstructed outside the IV. At the vessel border the detection efficiency
is reduced by more than 50% when a FV cut of 0 cm to the IV is required.
Figure 5.5b shows the detection efficiency integrated over the FV as a function of the FV cut
for different minimum energy cuts. The integral detection efficiency is defined as the number
of events detected for a FV cut over the number of events started in the same volume3. Note
that the simulation generates only positrons within the IV. Hence the number of started
events for negative FV cuts (outside the IV) stays constant. 99.3% of the positrons started
in the IV are detected within a distance of 0.4m outside the IV for a minimum energy cut of
400 p.e.. Reducing the energy cut to 200 p.e. enlarges the detection efficiency to even more
than 99.9%. As the number of started events stays constant outside the IV, but the number
of detected events are reduced for a certain FV cut, the detection efficiency decreases to
96.5% at the vessel border for an energy cut of 400 p.e.. Thus, 2.8% from the events above
400 p.e. are reconstructed outside the IV. The integral detection efficiency increases for larger
FV cuts, as the differential detection efficiency increases as well towards the detector center
(see Figure 5.5a). Moreover, the detection efficiency increases further beyond the volume
with a constant differential detection efficiency (∼ 0.4m) because of the spherical detector
design and the position resolution which lead to a net inward shift.4 The variation of the
detection efficiency as a function of the minimum energy cut is largest (0.7%) without a FV

3This definition of the detection efficiency is the one used in the previous geo neutrino analysis [155]. The
detection efficiency expressed as the fraction of all started events which are detected for a specific FV cut is
shown in Figure 5.14 for the detection efficiency of the IBD.

4Given a spherical uniform distribution, the event number Ntrue is proportional to r2. Nrec denotes the
distribution of Ntrue smeared with the position resolution ∆r. The ratio Nrec/Ntrue is largest for r = 0 and
decreases for larger radii.
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Figure 5.5: Detection Efficiency of Positrons a) The differential detection efficiency is
shown as a function of the true vessel distance for different FV and minimum energy cuts. It is
defined as the fraction of started events at the specific vessel distance that are detected for the
given cuts. b) The integral detection efficiency is shown as a function of the FV cut for different
minimum energy cuts. It is defined as the number of events detected for the specific FV cut
over the number of events started in the same FV. The detection efficiencies are obtained from
106 positrons uniformly distributed in the IV with the energy distribution expected from SOX
events.

cut and vanishes for larger FV cuts, as both annihilation gammas are completely detected
within the active volume.
As the knowledge of the detection efficiency of positrons is mandatory for SOX and has not
been calibrated yet in Borexino, a dedicated positron source was studied in Reference [190].
A 68Ge-68Ga source is an optimal candidate as the mother isotope 68Ge has a long enough
lifetime of 270.95 d for transportation issues and decays via electron capture [191]. 68Ga
produces with a probability of 88.9% and a short half life of 67.8min positrons with energies
up to 1.9MeV that cover the whole energy range of the prompt event [191] (the residual
11.1% decay via electron capture). The 68Ge-68Ga source was planned to be deployed at
several positions in the detector with a focus close to the IV border.

5.2.2 Detection Efficiency of Neutrons

The overall detection efficiency behavior is similar for neutrons as for positrons. However,
in comparison to positrons, a full detection efficiency is reached for neutrons at larger vessel
distances at about 1m, which is visible in Figure 5.6a. This is due to the difference in the
mean path length of the positron and the neutron (including the de-excitation gamma). The
mean difference between the reconstructed position and the start position is about 2.4 times
larger for neutrons (38 cm) than for positrons (see Figure 5.7a). While positrons annihilate
close to the IBD reaction position and create two low energy gammas in the opposite direction,
the mean difference is only 16 cm which is only slightly larger than the position resolution.
Instead, neutrons need to thermalize before being captured and produce gammas with at
least 2.2MeV that have a path length of several tens of centimeters (the mean difference
from reconstructed to neutron capture position is 35 cm).
The large mean free path length allows the gammas to spill out in the buffer medium and
produce only a small amount of scintillation light that is below the detection threshold of
∼ 30 hits. This leads to a differential detection efficiency of 70% for neutrons started at the
vessel border even though no energy cut is applied. The integral detection efficiency without
an energy and a FV cut reaches 96.0%. The detection efficiency is shown as a function of the
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Figure 5.6: Detection Efficiency of Neutrons a) The differential detection efficiency is
shown as a function of the true vessel distance for different FV and minimum energy cuts.
b) The integral detection efficiency is given as a function of the minimum energy cut without
applying a FV cut. The results are obtained from 106 started neutrons uniformly distributed
in the IV. 4% of the started neutrons remain undetected as they spill out in the buffer and
produce a signal below the detection threshold.

minimum energy cut on the delayed event in Figure 5.6b. Applying a cut at 860 p.e., which
is the one used for the latest geo neutrino analysis, results in 91.6%. Hence, reducing the
minimum energy cut would allow to increase the statistics by up to 4.4% and would hence
increase the sensitivity of the experiment. The optimization of the energy cut is discussed
in the next section. Note that the detection efficiency of neutrons as well as the ones of
positrons depends on the exact vessel shape which is discussed in more detail at the end of
this chapter.

5.2.3 Optimization of the Selection Cuts for the Inverse Beta Decay

The latest geo neutrino analysis of Borexino (before the planned start of SOX) was performed
in 2015 and achieved a detection efficiency of 84.2% with a FV cut of 30 cm [155]. As the geo
neutrino event rate is < 10 events per year, the selection cuts need to be strict in order to
minimize the background for the analysis. However, the expected statistics of the SOX event
sample is about 104 events and the selection cuts can hence be released in order to maximize
the statistics and the sensitivity of the experiment. In the following, the optimization of
the selection cuts is discussed. First, the energy cuts for positron and neutron events are
studied. Second, the cut on the spatial and time difference is evaluated. Third, the pulse
shape discrimination cut on the neutrons is optimized.

Energy of Prompt and Delayed Event

In the latest geo neutrino analysis, the selection cut on the energy of the prompt and the
delayed event was set to Ep>408 p.e. and Ed=860 p.e.-1300 p.e., respectively.
The minimum energy cut for the energy of the prompt and the delayed event for the SOX
analysis is re-defined because of the following considerations:

• Detection Efficiency: the lower the energy cut the higher the detection efficiency be-
comes (see Figure 5.5, 5.6, and 5.12 in Section 5.2.1, 5.2.2, and 5.2.4, respectively);

• Uncertainty on Detection Efficiency: the uncertainty reduces for smaller energy cuts
(see Figure 5.12, 5.13 in Section 5.2.4, Figure 7.8 in Section 7.2.3, and Figure 8.10 in
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Section 8.3.1);

• Spill In Events: a fraction of the IBD reactions in the buffer are reconstructed in the
IV and contribute to the SOX data. Such spill in events produce typically a small
amount of scintillation light and can be removed from the data by a high energy cut
(see Figure 5.15 in Section 5.2.4);

• Background: the higher the energy cut the smaller the expected background events
become (see Figure 6.1 in Section 6.1);

• Sensitivity: given the behavior of the detection efficiency and the background, the
sensitivity increases for smaller energy cuts. This is mainly due to the larger expected
event number for the SOX event sample (see Figure A.5 and A.6 in Appendix A.3);

• Algorithm Performance: the performance of the position reconstruction and pulse shape
discrimination decreases for smaller energies (see Figure 8.2 in Section 8.1).

The cut value for the prompt event is set at 300 p.e., as the detection efficiency and sensitivity
stays almost constant for smaller values. To achieve a sufficient algorithm performance, a
conservative minimum energy cut of 200 p.e. is defined for the delayed event. The maximum
energy cut of the delayed event is extended to 3000 p.e. in order to detect also the neutrons
that get captured on Carbon with a probability of 1.1% and produce a 4.95MeV gamma [35].
A detailed discussion of the individual points is given in the referenced sections.

Spatial Distance

The distribution of ∆R, i.e. the reconstructed distance between the prompt and the delayed
event, is shown in Figure 5.7a. The mean distance is 42.1 cm which is only slightly higher
than the mean path length of the neutrons (see Section 5.2.2). The cut efficiency as a function
of the ∆Rmax cut parameter is depicted in Figure 5.7b which is defined as the fraction of
the reconstructed IBD coincidences with ∆R<∆Rmax. The cut efficiency can be increased
from 96.2% at 1m (which is the cut parameter from the latest geo neutrino analysis) to
99.4% at 1.5m. As the number of accidental background events increases with ∆Rmax (see
next chapter), the sensitivity of SOX is studied as a function of ∆Rmax. Figure 5.8a shows
the expected signal and background event number as a function of ∆Rmax. The background
event number is obtained from Borexino data, which is discussed in the next chapter. Both
event numbers increase with ∆Rmax. However, as the signal to background rate is about
200, the sensitivity improves still for larger ∆Rmax values. As the sensitivity improves only
marginally beyond 1.5m, the optimized ∆Rmax cut-value is set to 1.5m, where the sensitivity
is improved by about 1% compared to 1m, which is depicted in Figure 5.8b.

Time Difference

The distribution of the time difference ∆t between the prompt and the delayed event follows
an exponential function with the neutron capture time of 254.5± 1.8 µs [35]. With the cuts
of the previous geo neutrino analysis of ∆t = 20 µs - 1280 µs, the ∆t-cut efficiency is given
by 91.8%. Thus, using also the events with ∆t < 20 µs, the detection efficiency can be
enhanced. However, the minimum ∆t cut depends on the specific Borexino data acquisition
properties: the length of one data acquisition gate (called event) and the duration of one
physical event (called cluster). The hit-time distribution of one event with two clusters
is shown in Figure 5.9a. The gate length is set in Borexino to 16 µs, where the physical
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Figure 5.7: Spatial Distance Distributions and Cut Efficiency of ∆R a) The probability
distributions of the difference of the reconstructed positions of the prompt and delayed event to
the true IBD position and of ∆R is shown. b) The efficiency is shown as a function of the cut
parameter ∆R. The dashed lines indicate the re-defined cut-value and the one used in the latest
geo neutrino analysis.
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Figure 5.8: Optimization of the ∆R-cut a) The SOX and the background event numbers
are given as a function of the ∆R-cut value. The SOX event number assumes a total event
number of 104. The background event number is obtained from Borexino data selected for the
optimized cut values without a FV cut (see next chapter). b) The sensitivity is shown in terms
of the oscillation amplitude sin2(2θ) at ∆m2= 10 eV2. The sensitivity is computed as described
in Appendix A.5 and assumes an uncertainty in the signal and background event number of 1%
and 10%, respectively. The dashed line indicates the re-defined cut parameter.

event that issues the Borexino trigger is located 1 µs after the start of the gate. The cluster
algorithm searches for an accumulation of hits in a short time period, where only the hits
reconstructed in a cluster contribute to the energy estimators described at the beginning of
this chapter. To achieve a high efficiency in the pulse shape discrimination and observe the
full scintillation pulse, the length of the reconstructed cluster is pre-defined to 1.5 µs [141].
However, depending on the exact hit-time distribution, the duration can be smaller or larger
than the nominal length. Figure 5.9b shows the distribution of the cluster duration for
Borexino data in the energy range of SOX events (400 p.e. - 3000 p.e.), where the maximum
value is 1.52 µs. Even though the cluster algorithm is able to resolve two clusters with a
full efficiency already at a time difference of 0.55 µs (see Figure 5.10), ∆tmin,1 is set to the
maximum cluster duration of 1.52 µs to ensure an undistorted energy response.
Due to the data acquisition gate length of 16 µs and the following dead time of the data
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Figure 5.9: Event Structure and Cluster Duration a) Hit-time distribution of one Borex-
ino event (gate length ∼ 16 µs) with two clusters, where the time is shown with respect to
the trigger time. The energy and the duration of the first (second) cluster is reconstructed to
601 p.e.(436 p.e.) and 844 ns (1493 ns) respectively. b) The probability distribution of the cluster
duration is shown for Borexino events with an energy in the prompt and delayed energy window
(400p.e. - 3000p.e.). The duration reaches a maximum value of 1520 ns which defines thus the
∆tmin,1-cut value.

a) b)

Figure 5.10: Cut Efficiency of ∆t-cut The time difference between prompt and delayed event
(∆t) is shown for double cluster events (∆t<15 µs in panel a)) and single cluster (∆t>18 µs in
panel b)) events obtained from MC simulations. The distribution follows an exponential decay
with the neutron capture time of 254.5 µs [35]. In addition, the time difference of correlated
events (mainly 212Bi-212Po and 214Bi-214Po) recorded with Borexino is shown in red in arbitrary
units. These events show the dead time after an gate from 15 µs - 18 µs, which is not fully
implemented in the Borexino MC simulation. The dead time together with the cluster duration
(see Figure 5.9) define the optimized cut parameters of ∆t: 1.52 µs - 13.48 µs or 19 µs - 1280 µs
which yield a total cut efficiency of 96.7%.

acquisition system of ∼ 3 µs (see Figure 5.10), coincidences with ∆t: 13.48 µs - 19 µs are
excluded from the analysis. The first value is chosen in order to observe the full cluster of
the delayed event (i.e. 13.48 µs = 15 µs - 1.52 µs) and thus to ensure a full efficiency for the
pulse shape discrimination of the delayed event. In comparison to the latest geo neutrino
analysis, ∆tmin,2 could be lowered from 20 µs to 19 µs as the exchange of the Borexino trigger
board in May 2016 reduced the dead time after a data acquisition gate. The maximum time
difference ∆tmax,2 remains unchanged and is set to five times the neutron capture time, i.e.
1280 µs.
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In summary, ∆t is optimized to 1.52 µs - 13.48 µs or 19 µs - 1280 µs and the cut efficiency
of ∆t results into 96.7%. This value is enhanced by 4.9% in comparison to the latest geo
neutrino analysis, which is mainly due to the inclusion of the double cluster events (i.e. ∆t <
15 µs).

Pulse Shape Discrimination

The main background for IBD-like events are fast coincidences from the 232Th- and 238U-
chain (see Chapter 6). However, the delayed events in these fast coincidences are alpha
particles and can be discriminated from neutrons by means of pulse shape discrimination
techniques. The goal of the pulse shape discrimination is to achieve a high neutron accep-
tance while at the same time rejecting alphas with a large probability. In the latest geo
neutrino analysis, the gatti parameter was used. The gatti parameter is defined as the
weighted sum of the measured hit-time distribution, where the weights are defined as the
difference of the probabilities that a photoelectron is detected at a certain time given an
alpha or a beta particle over the sum of the two probabilities [141]. In the meantime, the
new pulse shape discrimination parameter multi-layer perceptron (mlp) has been developed
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Figure 5.11: Performance of the gatti and mlp Parameter Panel e and f show the probabil-
ity distributions of the pulse shape parameters for neutrons (MC simulation) and alpha particles
(214Po data during purification campaign [141]). The neutrons are selected with a minimum
energy cut of 200 p.e. and the 214Po events by the fast coincidence with 214Bi (energy(214Bi):
200 p.e.-1800 p.e., energy(214Po): 200 p.e.-500 p.e., ∆t: 20 µs-944 µs, ∆R< 1m), where no FV cut
is applied to both. Panel a and b (c and d) show the fraction of neutrons (alphas) accepted as a
function of the pulse shape parameter cut (gatti<gattimax and mlp>mlpmin). The dashed lines
indicate the cut values used in the latest geo-neutrino analysis (gatti) and the optimized value
for the SOX analysis (mlp).
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which is based on machine learning techniques and uses 13 characterizing input variables
that are computed from the hit-time distribution of one event [192]. The performance of
the pulse shape discrimination parameters is shown in Figure 5.11. The neutron acceptance
is studied with simulated neutrons uniformly distributed in the whole IV. The rejection of
alpha particles is studied with 214Po data that has been selected by the fast coincidence with
214Bi. The probability distributions of the gatti parameter follow almost Gaussian distri-
butions, where for beta (alpha) particles the mean value is negative (positive). While the
distributions of the gatti parameter partially overlap, the distributions of the mlp parameter
are well separated (mlp is ”0” for alpha particles and ”1” for beta-like particles) which leads
to an enhanced discrimination power.
The latest used gatti parameter cut of gatti < 0.015 yields a full neutron acceptance
(99.996%), but a rather high alpha acceptance of 8.3%. The optimized mlp cut is defined as
mlp > 0.085 so that an alpha acceptance of 0.1% is achieved. However, the drawback is that
the neutron acceptance is lowered to 99.72%. It has to be noted that the neutron acceptance
depends on the detector position and is higher in the detector center (99.92% for r < 3m
and 99.58% for r > 3m). As the current neutron acceptance of 99.72% is obtained without
applying a FV cut (and for neutrons above 200 p.e.), the performance of the mlp parameter
would improve when a FV cut is required. Further, the mlp parameter could be improved by
directly training the mlp parameter with neutrons instead of electrons, as for example from
the 241Am-9Be calibration data.
Even though the obtained values from MC simulations agree with the ones from 241Am-
9Be calibration data [35], the precise performance of the mlp parameter as a function of
the detector position and energy has to be studied with new calibration data. While the
background is not critical for the SOX analysis (see Chapter 7), a precise knowledge on the
neutron acceptance is mandatory. Depending on the calibration data results and given the
case that the calibration data agrees better with the gatti than with the mlp parameter, one
could also reconsider a cut on the gatti parameter.

5.2.4 Detection Efficiency of the Inverse Beta Decay

The differential detection efficiency for the optimized selection cuts is shown in Figure 5.12 as
a function of the true vessel distance. In the detector center a detection efficiency of 96.1% is
achieved which is given by the product of the cut efficiencies of ∆R (99.4%) and ∆t (96.7%).
The detection efficiency lowers towards the vessel border to ∼ 55% (∼ 33% when a FV cut
of 0 cm is applied) which is a combination of the loss of the detection efficiency of positrons
and neutrons.
The detection efficiency is shown for four different detector regions divided by the polar
angle of the detector. The different vessel shapes in the different regions lead to variations of
the detection efficiency up to 6% close to the vessel border. The variations are even larger
when a higher energy cut of 860 p.e. on the delayed event (the value from the latest geo
neutrino analysis) is applied. Thus, an unknown vessel shape results into an uncertainty of
the detection efficiency close to the vessel border. The comparison of data and MC simulation
using the 241Am-9Be calibration data shows that increasing discrepancy for smaller vessel
distances and can be seen in Figure 5.13. The discrepancy reaches up to 10% (4%), when a
delayed energy cut of 860 p.e. (200 p.e.) is applied. The uncertainty on the detection efficiency
decreases with a lower energy cut, as the integral detection efficiency increases and is then
effectively less affected by the exact vessel shape (see also Figure 7.8). In addition to an
improved vessel shape reconstruction algorithm, it is mandatory to calibrate the detector
and understand its behavior close to the vessel border. The idea of applying no minimum
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Figure 5.12: Differential Detection Efficiency The differential detection efficiencies of IBD
events that survive the optimized selection cuts are shown as a function of the true IBD position.
Panel a) shows the detection efficiency when no FV is applied, panel b) when the prompt event
is reconstructed within the IV. The efficiencies are shown for a minimum energy cut of 200 p.e.
and 860 p.e. and for four detector positions (separated by the polar angle θ). The results are
obtained from MC simulations assuming a uniform distributed IBD distribution within the IV.
Due to the different vessel shapes at the different detector positions, the detection efficiency
differs close to the vessel border, where the difference is larger for the higher energy cut. The
central value of 96.1% can be explained by the ∆R and ∆t cut efficiencies.

a) b)

Figure 5.13: Accuracy of the Detection Efficiency The discrepancy of data and MC data
from an 241Am-9Be source is shown for a minimum energy cut on the delayed event of 860 p.e.
(a) and 200 p.e. (b) as a function of the vessel distance (vd). The discrepancy increases towards
the vessel border, due to the uncertainty in the vessel shape reconstruction, and decreases for a
lower energy cut. Note that the range of the y-axis is different in the two plots. The plots are
taken from [193].

energy cut on the delayed event at all and hence reducing the uncertainty on the detection
efficiency is extended in Chapter 8 by laying out a possible hardware modification of the
Borexino trigger system.
The integral detection efficiency as a function of the FV cut is shown in Figure 5.14a in
red, where the detection efficiency is computed as the ratio of the number of detected events
over the number of started events for the same FV cut. Applying no FV cut, 90.8% of all
IBD reactions taking place in the IV can be detected. Due to spill out events, the detection
efficiency reduces to 88.4% when a FV cut of 0 cm is applied. The larger the FV cut,
the higher the detection efficiency becomes. With the improved selection cuts, the detection
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Figure 5.14: Integral Detection Efficiency The number of detected events is shown as a
function of the FV cut with respect to the started event number in the a)FV and in the b) IV.
In a) the number of detected events are given for the optimized selection cuts in red. The blue
line requires in addition that the detected events are also started in the FV. The detected events
for the black line can be detected anywhere, but are started in the FV. The detection efficiency
in b) is computed for the optimized SOX cuts and the cuts from the latest geo neutrino analysis.
The circles indicate the values for the respective FV cuts. The results are obtained from MC
simulations assuming a a) uniform and b) SOX-like IBD distribution within the IV.

efficiency could be increased from 84.2% to 93.3% for the FV cut of the previous geo neutrino
analysis of 30 cm. This corresponds to an improvement of 10.8%.
The expected event number of the SOX event sample can be further increased by the opti-
mization of the FV cut. One can define the integral detection efficiency then as the fraction of
started events in the IV that are reconstructed in a certain FV which is shown in Figure 5.14b.
The efficiency decreases for larger FV cuts and results into 77.6% for the optimized FV cut
of 25 cm. The optimization is discussed in Chapter 7 and takes into account the interplay
between the increasing statistics and uncertainties for smaller FV cuts. On the one hand,
one would like a small FV cut to increase as much as possible the statistics of the SOX event
sample. On the other hand, the uncertainty of the detection efficiency increases close to the
vessel border and decreases the sensitivity of the experiment. With the optimized selection
cuts the statistics of the SOX event sample increases by 16.3%.
For the optimized FV cut of 25 cm a detection efficiency of 93.0% is achieved with respect
to the same volume. Figure 5.14a shows in addition two more efficiencies: the fraction of
events for a given FV cut that are detected anywhere and that are detected within the same
FV. The differences in the efficiencies show the effect of spill in and spill out events, where
the latter dominate. Moreover, it shows that spill in events need to be taken into account,
and that in MC simulations the events need to be started in an extended volume by about
30 cm in comparison to the FV. Spill in events due to IBD interactions in the buffer are
hence studied in the following.

Spill In Events from the Buffer

IBD reactions taking place in the buffer can be reconstructed within the FV and contribute
to the observed data sample. IBD-like candidates are selected using the optimized selection
cuts from MC simulations, where events are started in the volume up to the outer vessel.
The increase in the event number due to the buffer events in comparison to the one expected
from the IV is shown as a function of the FV cut for several minimum energy cuts on the
prompt event in Figure 5.15. The higher the minimum energy cut, the smaller the amount
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Figure 5.15: Increase of Event Number due to Spill in Events from IBD Reactions
in the Buffer The increase of the a) differential and b) integral event number is shown as a
function of the vessel distance and the minimum energy cut on the prompt event. The increase
is computed with respect to the expected event number from IBD reactions in the IV from
MC simulations. For the optimized cuts (300p.e. and 25 cm) an integral increase of 0.03% is
expected. The differential increase is rather high outside the IV, because of the low expected
event number from the IBD reactions from the IV.

of spill in events becomes. While the increase of the integral event number is 0.03% for the
optimized energy and FV cut (300 p.e. and 25 cm), it is by a factor of ∼ 10 larger for the
same FV cut and an energy cut of 200 p.e. The lower the minimum energy cut, the more
events are reconstructed within the FV even for large FV cuts, as the position reconstruction
becomes worse for such small energies (see Figure 8.2).

Dead Time due to Borexino Events

It can be assumed that the detection efficiency is not affected by the dead time introduced
by the Borexino standard events. The trigger rate in Borexino is ∼ 19Hz (October 2017).
Hence, the rate of SOX events that accidentally fall into a standard Borexino event at the
beginning of data taking can be computed to: 19Hz × 36/day × 19 µs = 0.014 events/day.
Here, 36/day is the expected SOX rate at the beginning of data taking for a 125 kCi source
and 19 µs is the data acquisition gate length including the following electronics dead time. For
a total measurement time of 1.5 y, 4.1 events are expected which is negligible in comparison
to ∼ 104 expected SOX events.

5.3 Summary

The Borexino detector is well characterized and the systematics of the detector are small.
However, the systematic uncertainties, which are obtained from the calibration campaign with
radioactive sources in 2009 [189], increase towards the vessel border. Hence, a dedicated SOX
calibration campaign was planned to especially characterize the part of the detector close to
the vessel border and minimize the systematic uncertainties. The effect of the systematic
uncertainties on the sensitivity of SOX is studied in Chapter 7.
Furthermore, the selection cuts of the IBD detection channel were optimized in this chapter
and are summarized in Table 5.1. For the optimized FV cut of 25 cm, a detection efficiency
of 93.0% is achieved with respect to the expected event number of the same volume. This
corresponds to an improvement of 10.8% in comparison to the previous geo neutrino analysis,
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Table 5.1: Optimized Selection Cuts for the SOX Analysis The selection parameters
are listed in the first column, where their definitions can be found in Table 4.1. The second
column quotes the selection cuts used in the previous geo neutrino analysis in Borexino [155].
The optimized selection cuts for the SOX analysis are given in column three. The detection
efficiency in the last row is obtained from SOX MC simulations and is defined as the fraction of
all generated events in the IV which survive the specified selection cuts.

parameter geo neutrino analysis SOX analysis
Ep > 408 p.e. 300 p.e. - 1300 p.e.
Ed 860 p.e. - 1300 p.e. 200 p.e. - 3000 p.e.
∆t 20 µs - 1280 µs 1.52 µs - 13.48 µs or 19 µs - 1280 µs
∆R < 1.0m < 1.5m

pulse shape gatti < 0.015 mlp > 0.085
vd > 30 cm > 25 cm

efficiency 66.7% 77.6%

which comes mainly from the relaxed ∆R, ∆t, and Ed cut. Due to the enlarged FV cut,
the expected event number for the SOX event sample is increased in total by 16.3%. The
statistics of the SOX event sample can be even more increased by a new muon veto strategy
which is discussed in the next chapter.
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6 Investigation of Background
Sources

This chapter evaluates the expected background for SOX which needs to be taken into ac-
count for the sterile neutrino analysis. As antineutrinos are detected through the inverse
beta decay (IBD) and the corresponding coincidence signal, the background of single Borex-
ino events is suppressed for an antineutrino search. However, a non-reducible background
remains that is given by natural antineutrinos, namely geo and reactor neutrinos, and their
backgrounds. An advantage of the SOX experiment is that the Borexino detector has been
already taking data for more than ten years before the planned start of the SOX experiment
and the backgrounds can be precisely characterized. As the selection cuts differ from the pre-
vious geo neutrino analyses, the detector-related background is studied for these selection cuts
in Sections 6.1-6.6. First, the analyzed Borexino data and the fit method to determine the
main background sources are introduced. Subsequently, the individual background sources
of neutrino events, cosmogenic isotopes, accidental background, and fast coincidences from
radioactive decay chains are evaluated. Moreover, additional detector-related background is
summarized. Lastly, source-induced background is studied in Section 6.7.

6.1 Borexino Data Sample and Simultaneous Fit

In this analysis the data from December 15, 2011 until December 31, 2016 corresponding to
a total measurement time of 1516.6 d (4.16 y) is investigated. This data is collected in the
so-called Borexino Phase-II that denotes the period after an extensive purification campaign
of the liquid scintillator in which the intrinsic background has been significantly reduced. The
238U and 232Th contaminations decreased to< 9.4×10−20 g/g (95% CL) and< 5.7×10−19 g/g
(95% CL), respectively. Moreover, 85Kr and 210Bi concentrations were lowered by a factor
of ∼ 4.6 and ∼ 2.3, respectively [139].
In comparison to a geo neutrino analysis with an expectation of O(10) events per year, the
expected event number for SOX is O(104). Hence, from the background point of view it
is affordable to soften the selection cuts in comparison to the geo neutrino analysis and
improve at the same time the selection efficiency for the SOX event sample. In Chapter 5,
the optimization of the selection cuts is discussed, which are summarized in Table 5.1.
Using the bx-sox filter (see Chapter 4) with the optimized cuts, 52 IBD events are found in
the analyzed period. This corresponds to an expected background event number of 18.8±2.6
for the SOX measurement time (1.5 y). Figure 6.1 shows the measured distributions of these
events (black data points) for various parameters, namely the energy of the prompt (Ep)
and delayed (Ed) event, the difference in space (∆R) and time (∆t) in between prompt and
delayed event, and the detection position of the prompt event given in distance (Lrec) to the
source position (8.51m below the detector center) and the vessel distance (vd).
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Figure 6.1: Simultaneous Fit of IBD Events in Borexino. The data (black data points) is
selected from 4.16 y with the selection cuts from Table 5.1 and can be well described with a binned
likelihood fit by the sum (black) of geo neutrinos (red), reactor neutrinos (blue), cosmogenic
isotopes (violet), and accidental coincidences (light blue). The fit minimizes simultaneously the
spectral distributions of the energy of the prompt (Ep) and delayed (Ed) event, the difference
in space (∆R) and time (∆t) in between prompt and delayed event, and the detection position
of the prompt event given in distance (Lrec) to the source position and the vessel distance (vd).
The event number of cosmogenic and accidental background is determined prior to the fit and
fixed. The dashed line in panel a) indicates the maximum energy of the prompt event for the
SOX experiment. The error bars give the statistical errors.

As the measurement time of the present data sample is about a factor of 2.8 larger than
the SOX measurement time, the total expected background event number can be assumed
accurate enough for a rate analysis in a sterile neutrino search. However, in a shape analysis,
the expected spectral distributions (probability distributions), especially of the energy of the
prompt event and the source distance, have to be precisely known. As the statistics of the
selected data sample are too small that the distributions of the data could be directly used
as the probability distributions for the SOX analysis, they are determined with a simultane-
ous fit. Several observables are fitted simultaneously: Ep, Ed, ∆R, ∆t, Lrec, and vd. The
fit includes the main background components, namely geo neutrinos, reactor neutrinos, cos-
mogenic background (mainly 9Li), and accidental coincidences. A binned likelihood fit (see
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Chapter 3 Equation 3.6) with the expected event number per bin i is performed

N exp
i (Ngeo, Nrea, Ncos, Nacc) =

∑
b∈{geo, rea, cos, acc}

Nb · pdf bi , (6.1)

where i spans over all bins of all observables j ∈ {Ep, Ed,∆R,∆t, Lrec, vd}: i ∈ [1,∑j binsj ]
with binsj the number of bins for the observable j. Ngeo, Nrea, Ncos, Nacc are the total event
numbers of the geo neutrino, reactor neutrino, cosmogenic and accidental components. While
the geo neutrino and reactor neutrino components are determined by the fit, the cosmogenic
and accidental components are determined in an independent way and fixed in the fit (see
Sections 6.3 and 6.4). The probability distributions pdfgeo

i , pdf rea
i , pdf cos

i , pdfacc
i are normal-

ized to one for each observable (∑i∈binsj pdfi = 1). Note that the probability distribution
of the cosmogenic background assumes only the spectrum of the dominating cosmogenic
background 9Li. However, Ncos is the sum of all cosmogenic contributions.
The probability distributions for geo neutrino, reactor neutrino, and cosmogenic background
which were generated with the full Borexino Monte Carlo (MC) simulation (see Chapter 4)
for the latest geo neutrino publication [35] are used. The simulation starts uniformly dis-
tributed events within the inner vessel, where the shape of the inner vessel and the detector
configuration (e.g. number of active photomultiplier tubes (PMTs)) changes within the sim-
ulation to obtain the average expected detector response. The probability distribution of
the accidental coincidences can be directly obtained from the data with an off-time window
selection (∆t = 2-20 s).
To properly determine the individual components, the energy window of the prompt event
is increased to the maximum energy of the reactor spectrum up to 4900 p.e. (∼ 10MeV).
Afterwards, the fraction in the SOX energy range (below 1300 p.e.) is extracted.
Figure 6.1 shows the result of the simultaneous fit. The total event number of 112.3 ± 10.6
and the spectral distributions of the fit agree well with the data with a total event number of
113± 10.6. The fit result corresponds to an expected event number of 19.7± 2.7 for the SOX
energy window and measurement time. The results of the individual components are listed
at the end of this chapter in Table 6.2. Before, these individual background components are
in detail discussed in the following sections.

6.2 Neutrino Events

Antineutrinos have been extensively studied with the Borexino detector [35,51,155–157,194].
These events are indistinguishable from SOX events and will contribute to the SOX data
sample. The SOX analysis benefits from the experience of the previous antineutrino analyses.
However, the relaxed selection cuts in SOX in comparison to the previous analyses make a
reevaluation of these events necessary. After the discussion of geo and reactor antineutrinos,
the expected background from atmospheric neutrinos, whose neutrinos can also produce an
IBD-like signal, is studied.

6.2.1 Geo Neutrinos

Geo neutrinos are generated in radioactive decays from isotopes inside the Earth (see Sec-
tion 1.3.1). Due to the IBD detection channel, only antineutrinos from the decay chains
of 238U and 232Th with energies above 1.8MeV can be detected. Their expected energy
spectrum at the Borexino site was computed in [35] and extends up to ∼ 3.3MeV which is
slightly above the endpoint of 144Pr of 3MeV (see Figure 1.6). Hence, almost all (99.4%) geo
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neutrino events fall in the energy window of SOX and contribute hence to the background
for SOX.
The expected geo neutrino event number is extracted from the simultaneous fit to 26.7±6.5,
where in the geo neutrino probability distribution the Th/U mass ratio is fixed (see Sec-
tion 2.1.5). This event number corresponds to 9.6 ± 2.3 events for the SOX energy range
and measurement time of 1.5 y. The determined value is in good agreement with previ-
ous measurements of 8.5+1.7

−1.3 (this value is rescaled using Equation 6.4 and the result from
Reference [35].).

6.2.2 Reactor Neutrinos

Reactor antineutrinos are produced through beta decays from fission products in nuclear
power plants (see Section 1.3.1). Even though there are no nuclear power reactors in Italy,
Borexino observes the reactor neutrinos that are produced worldwide. The neutrino flux at
the Borexino site was estimated in [35]. Here, the monthly energy production of each reactor
site and the neutrino oscillation probability is taken into account. In this work, the energy
spectrum of Mueller et al. [195] is used. The so-called ’5MeV bump’ that was observed by
several experiments [196–198] is not considered and can be assumed to be negligible as it is
above the endpoint of the 144Pr spectrum. Reactor neutrinos reach energies up to ∼ 10MeV
and only 32.3% fall into the SOX energy range.
The expected event number is extracted from the fit to 56.2±7.0. In the SOX energy window
and for a measurement time of 1.5 y, the expected event number corresponds to 6.6 ± 0.8.
The result agrees with the rescaled value from previous measurements of 4.9+2.0

−0.5 [35]. Note
that the reactor neutrino flux depends on the power of the nuclear power plants. Hence, the
expected event number for reactor neutrinos could slightly differ in the SOX measurement
period.

6.2.3 Atmospheric Neutrinos

Atmospheric neutrinos are secondary particles that are produced in interactions of primary
cosmic rays with nuclei of the atmosphere (see Section 1.3.1). Atmospheric neutrinos can
be neutrinos as well as antineutrinos with electron and muon flavor, respectively, and reach
energies up to ∼TeV. In addition to the CC IBD channel itself, atmospheric neutrinos can
interact via NC interactions mainly on Carbon atoms in which high-energy neutrons can
be produced1. The IBD signal can be mimicked when for example the neutrons scatter off
protons and produce a prompt-like event and the neutron itself is captured and provides
the delayed signal. For a detailed description see for example Reference [35], in which the
atmospheric neutrino events in Borexino are estimated. In this work, the previously obtained
result is used and corrected for the different exposure and detection efficiency using Equa-
tion 6.4. The resulting value is 0.4 ± 0.2 which is negligible in comparison to the expected
SOX event number.

6.3 Cosmogenic Background

Even though Borexino is located at a rock overburden of 3800m.w.e. and the cosmic muon
flux is reduced by about six orders of magnitude in comparison to the ground level, the
residual muon flux measured in Borexino is ∼ 0.05 s−1. The inefficiency of the muon veto

1The measurement of the dominating NC interactions of atmospheric neutrinos in Borexino can be found
in Ref [63].
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was determined to 0.0013± 0.0005 and the background induced by untagged muons crossing
the inner detector is negligible [35] (see Section 6.6). While the muons themselves can be
well identified, they can produce fast neutrons and radioisotopes with lifetimes up to several
minutes in nuclear spallation processes on Carbon nuclei of the liquid scintillator. The most
dangerous backgrounds arise from the isotopes 9Li and 8He that decay via β + n decays
and can mimic the IBD signature. With the respective lifetimes of 257.2ms and 171.7ms,
the previous geo neutrino analyses suppressed this background by applying a veto of two
seconds after each internal muon (corresponding to more than seven times the lifetime of
9Li). However, with a muon rate of ∼ 0.05 s−1, the dead time becomes ∼ 9.5% of the total
measurement time2. To increase the statistics for the SOX event sample by the reduction of
the dead time, a new veto strategy was developed by Stefan Weinz [199] (see also Chapter 4).
It is based on the fact that 82.2% of all 9Li/8He events are produced in coincidence with at
least one cosmogenic neutron. By vetoing only two seconds after muons followed by at least
one neutron, the dead time can be reduced to 0.176%, as these muons make up only 1.4% of
all muons. After all residual muons, internal muons without a neutron and external muons,
the data is vetoed for 2ms to get rid of the fast cosmogenic neutron background. With the
new muon strategy, the lifetime and the statistics of the SOX signal increase by 11.4%. Due
to the relaxed muon veto, a few cosmogenic backgrounds, namely 9Li, 8He, and 12B, will end
up in the SOX data sample, which are evaluated in the following.

6.3.1 9Li, 8He
9Li and 8He decay both via beta decay and can populate excited states of the daughter nu-
clides 9Be and 8Li. These excited states can emit a neutron while relaxation. The coincidence
of the beta particle and the neutron is indistinguishable from an IBD signal. The Q-value of
9Li and 8He is 13.6MeV and 10.7MeV, respectively [140].
The 9Li/8He events obtained with the new veto strategy can be estimated by looking at the
IBD-like events that appear after muons without a neutron (µint−n). In the energy region
up to 4900 p.e. (∼ 10MeV) for the prompt event3 31 events are found and are shown in
Figure 6.2a as a function of the time after the muon. The number of 9Li/8He events are
determined using a binned likelihood fit and the following fit function:

f(t) =
(
NLi/He · exp(−τLi · t) +NB · exp(−τB · t) +Nacc

)
· exp(−rµint−n · t). (6.2)

This function consists of three components: NLi/He is the amplitude of 9Li/8He events that
are exponentially decaying after the muon and where the decay time is fixed to the lifetime
of 9Li. An extra component for 8He can be neglected, as the ratio of IBD-like events from
9Li:8He was measured in Borexino to 6:1 [35]. NB is the amplitude of accidental coincidences
of two cosmogenic 12B events that are produced by the same muon. The exponential decay
time is given by the lifetime of 12B of 29.1ms. The 12B events are described in the next
section and constrained by the fit in Figure 6.3. The third component Nacc is the amplitude
of all IBD-like events accidentally falling in the time window after a muon. These can be
either real IBD events or any background source. All three components are multiplied with
the term exp(−rµint−n · t) that gives the probability that no other muon falls in between the
muon and the IBD-like event and is connected to the (µint − n)-rate rµint−n = 0.054 s−1.
Nacc can be constrained through the time distribution of the IBD-like events in the time
window ∆t(µ-IBD) = 2 s - 100 s (see Figure 6.2b). In this time window, the contributions of

2The probability to detect no muon for the time t is given by exp(−rµ · t), where rµ is the muon rate.
3In order to constrain the event number in the simultaneous fit, the same energy window as in the simul-

taneous fit is used.
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Figure 6.2: Determination of 9Li/8He Background IBD-like events from 4.16 y of Borexino
data (black data points) as a function of the time between an internal muon without a cosmogenic
neutron (µint−n) and the prompt event. The IBD events are selected with the optimized selection
cuts with an enlarged energy cut Ep < 4900 p.e.. The data can be fitted with the sum of 12B
(green), 9Li/8He (blue), and accidental (red) events. The latter are constrained for large time
differences of ∆t(µ-IBD) = 2 s - 100 s in panel b. 12B events are constrained in Fig 6.3.

9Li,8He, and 12B are negligible, and the data can be solely described by Nacc ·exp(−rµint−n ·t).
The fit returns a total expected event number for the accidental IBD-like events of 9.4 for the
time interval 2ms - 2 s. This value is consistent with the one expected due to the increase of
the lifetime of 9.3 events.
Besides NLi/He, all other parameters are fixed in the fit and the resulting 9Li/8He event
number in the time interval 2ms - 2 s is 18.0±5.1. The total event numbers of data (31) and
fit (32.1) agree well with each other.
The fraction of the 9Li energy spectrum below 1300 p.e. is estimated to 15.9% using the
energy spectrum simulated with the Borexino MC. Therefore, the expected 9Li/8He back-
ground in the SOX energy window and measurement time corresponds to 1.0 ± 0.3 events.
This result is compatible with a similar analysis from [199].
The contribution from 9Li/8He events that appear after the muon veto of two seconds is
negligible and not considered.

6.3.2 12B
12B is a cosmogenic isotope produced in the spallation processes induced by muons and decays
via a beta decay with a lifetime of 29.1ms and a Q-value of 13.4MeV. As the production
yield of 12B is high in Borexino [140], it is possible that one muon creates several 12B isotopes
that generate a coincident signal. The coincidence of two 12B events is the first time observed
in Borexino in this work and is deduced from the fact that the exponential decay time after
a muon and the prompt event as well as the time in between the prompt and delayed event
correspond both to the lifetime of 12B.
The background contribution of 12B is determined similarly to the one of the 9Li/8He com-
ponent. To increase the statistics of the 12B events, IBD-like events with ∆t < 150ms (∼ 5
times the lifetime of 12B) are selected. Figure 6.3 shows the obtained data as a function of
the time difference to the last preceding muon without a neutron. Equivalently to the deter-
mination of the 9Li/8He component, the data can be described with Equation 6.2. Again,
Nacc is constrained through the data with ∆t(µ-IBD) = 2 s - 100 s to 11.6 events (see 6.3b).
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Figure 6.3: Determination of 12B Background IBD-like events from 4.16 y of Borexino data
(black data points) as a function of the time between an internal muon without a cosmogenic
neutron (µint − n) and the prompt event. Besides Ep < 4900 p.e. and ∆t<150ms, the IBD
events are selected with the optimized selection cuts. The data can be fitted with the sum of
12B (green), 9Li/8He (blue), and accidental (red) events. The latter are constrained for large
time differences of ∆t(µ-IBD) = 2 s - 100 s in panel b. 9Li/8He events are constrained in Fig 6.2.

The 9Li/8He event number is constrained to the value obtained from the data with ∆t <
1280 µs to 11.3 events (see Figure 6.2). Note that the energy range is different in both fits
and that the event number is corrected accordingly.
Leaving only NB free in the fit, results into a total event number of 109.3 for 12B. The total
event number of data (136) and fit (132.2) are in agreement. The expected 12B events in the
SOX time window (∆t<1280 µs), reduces to only 4.3%, i.e. 4.7 events. This event number is
used in the fit to determine the 9Li/8He event number which was discussed in the previous
section.
Out of these events only 7% appear in the SOX energy window. This number is computed
from the 12B spectrum generated with the Borexino MC in [140]. Hence, for the SOX
measurement time and energy window the 12B background reduces to 0.12 events and is fully
negligible.
In addition, one could fully get rid of this background by enlarging the dead time window
from 2ms to ∼ 150ms after each muon without a neutron. However, such a veto would
decrease the lifetime and the statistics of the SOX signal. Given the small expected event
number of 12B, such a modification is not necessary.
Note that the exact number of cosmogenic background events could slightly vary as they
depend on the muon flux which modulates seasonally. Such modulations are mainly correlated
to the temperature of the atmosphere and were measured in Borexino in References [63,200].

6.4 Accidental Background

Uncorrelated single events can produce accidental coincidences and mimic an IBD signal. To
validate the fit model for the accidental coincidences, data is selected for the muon veto used
in the previous antineutrino analyses: i.e. two seconds are vetoed after each internal muon,
independent on the fact whether there is a neutron. Further, to increase the statistics, a ∆R
of 5m is chosen. The rate of accidental coincidences as a function of ∆t can be described by
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Figure 6.4: Scheme of the Time Dependency of the Accidental Coincidence Rate
due to the Muon Veto An accidental coincidence is accepted, when no muon appears two
seconds before the prompt and the delayed event (indicated in red and blue). As the muon veto
overlaps for events with ∆t < 2 s (bottom), the time of the net muon veto of the delayed event
is exactly ∆t and hence smaller than 2 s. As a consequence, the accidental coincidence rate is
enhanced for ∆t < 2 s.

the following function:

racc(∆t) =
{
racc(∆t = 0 s) · exp(−rµ ·∆t) if ∆t ≤ 2 s,
racc(∆t = 0 s) · exp(−rµ · 2 s) if ∆t > 2 s (6.3)

where rµ is the muon rate.
The accidental coincidence rate (racc(∆t = 0 s)) is altered by the probability that there is no
muon before the delayed event which is a function of time. Figure 6.4 sketches this feature.
A coincidence is only observed when there is no muon two seconds before the prompt and
the delayed event. When the time difference between the prompt and the delayed event
is smaller than two seconds, the muon vetos overlap and the net time without a muon is
only ∆t and hence smaller than two seconds. As the time is shorter than two seconds the
probability is larger that no muon falls accidentally before the delayed event and corresponds
to exp(−rµ ·∆t). After two seconds, the probability to observe no muon stays constant and
is given by exp(−rµ · 2 s).
Figure 6.5a shows the fit of the collected data for IBD-like events up to ∆t<4 s. The obtained
muon rate of 0.061 s−1 in the fit agrees well with the actual internal muon rate of 0.055 s−1.
As this model for the accidental coincidences has been developed during this work, the result
was in addition cross-checked and validated with a toy MC.
For the optimized cosmogenic veto, only two seconds after each internal muon with at least
one neutron are vetoed. Hence, rµ reduces to 7.6 · 104s−1 and due to its small value it is
fixed in the fit. Figure 6.5b shows the determination of the accidental coincidences for the
selection cuts used in the simultaneous fit and for ∆t < 20 s. The expected event number due
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Figure 6.5: Determination of Accidental Coincidence Background a) Validation of the
fit model for accidental coincidences for a muon veto of two seconds after each internal muon
and ∆R=5m. The accidental coincidence rate changes in time due to the applied dead time after
each muon. The probability of having no muon in between two events decreases in time with
exp(−rµ · ∆t) and stays constant above 2 s. The fitted muon rate rµ returns well the actually
measured muon rate in Borexino. b) accidental coincidences selected for the optimized selection
cuts with Ep < 4900 p.e.. Here, rµ is fixed to the rate of muons which produce at least one
neutron.

to accidental coincidences in the ∆t window for SOX can then be determined to 6.73± 0.02
events. In addition, with the SOX energy window (91.5%) and measurement time one expects
2.2± 0.01 events. The small error is given by the large event number in the off-time window.
The fit in Figure 6.5b agrees well with the data, however, one could eventually observe a
small excess in the data in comparison to the fit function for ∆t<2 s (see Figure 6.5b).
These events are most likely accidental coincidences of two uncorrelated cosmogenic events
like 12B or 8B, as the excess vanishes when a muon veto of two seconds after each internal
muon is applied. As the data after a muon within two seconds could be well described (see
previous section), any extra contribution due to cosmogenic background is expected to be
negligible and not discussed further.
Note that the spectral distributions of the accidental coincidences follow the spectral dis-
tributions of single Borexino events. This means that the energy spectrum peaks at small
energies and that the accidental coincidences are mainly reconstructed close to the vessel
border (especially at the poles). Further, the probability to observe two coincident events
increases with the spatial distance ∆R (see Figure 6.1). Hence, more strict selection cuts on
for example the fiducial volume, the minimum value of the energy, or ∆R could reduce this
background component even further.

6.5 Fast Coincidences from the 238U and 232Th Decay Chains

The decay chains of 238U and 232Th have at least one radioisotope with a short lifetime that
can produce an observable fast coincidence. These radioisotopes count to the intrinsic back-
grounds of Borexino and are mainly located at the vessel surface and the detector structure
material, e.g. the construction material at the poles.
The most critical backgrounds are 212Bi-212Po and 214Bi-214Po coincidences as the lifetimes of
the Polonium isotopes are smaller or similar to the neutron capture time and appear hence in
the SOX ∆t-window. Table 6.1 lists the decay properties and the life times of the Polonium
isotopes. In both cases the Bismuth isotope decays via a beta decay and the Polonium
isotope via an alpha decay that allows to discriminate these events by means of pulse shape
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Figure 6.6: Determination of 212Bi-212Po and 214Bi-214Po Events IBD-like events (black
data points) are selected for the optimized selection cuts, but without the mlp-cut on the de-
layed event. The two panels show different time scales for ∆t. The time distributions can be
well described by the sum (black) of the two Polonium lifetimes (blue and red) and accidental
coincidences (violet). The dashed line indicates the maximum ∆t cut used for the SOX analysis.

discrimination from the IBD signals. The alpha rejection efficiency was defined in Chapter 5
to > 99.9 % for the optimized multi-layer perceptron (mlp) cut of mlp > 0.085.
Hence, an IBD signal can be mimicked by such fast coincidences if the alpha particle is not
recognized given by the inefficiency of the pulse shape parameter. In addition, 214Po decays
with a probability of 1.04× 10−4 into an excited state of 210Pb that produces a gamma line of
799.7MeV while relaxation. As the gamma and the alpha event happen almost at the same
time, the pulse shapes overlap and the pulse shape discrimination loses power. The rejection
efficiency for 214Po is hence smaller and assumes that the pulse shape discrimination fails for
that decay branch: ε(214Po) = 99.89 %.
These fast coincidences are searched for with the optimized selection cuts without applying
a mlp cut on the delayed event. Figure 6.6 shows the ∆t distribution of these events which
follows the decay times of the two Polonium isotopes. Hence, their contributions can be
determined from a fit assuming the two Polonium components plus accidental coincidences.
As the fraction of real IBD events is small in the data sample and to obtain conservative
results on the Polonium backgrounds, the IBD events are not included in the fit. Table 6.1

Table 6.1: Expected Event Numbers of IBD-like Signals due to Fast Coincidences
with a Polonium Event The listed Polonium isotopes decay via an alpha decay within short
lifetimes (second column) and can produce a fast coincidence signal as their energy (third column)
is quenched and appear in the energy region of the delayed SOX event. IBD-like events are
determined from a fit of the data of 4.16 y selected for the optimized selection cuts without
the mlp cut on the delayed event (fourth column). The expected event number due to the
inefficiency of the mlp cut for the analyzed period/ SOX measurement time are given in the last
two columns.

isotope lifetime Q-value events
4.16 y 4.16 y 1.5 y

mlp-ε mlp-ε
212Po [201] 425.1 ns 8.9MeV 9.2 9.2× 10−2 3.3× 10−3
214Po [202] 236.0 µs 7.8MeV 1428.7 1.6 0.6
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quotes the results for the SOX ∆t-window for the two Polonium components. In order to
obtain an upper limit on the Polonium component on the SOX data sample, the measured
Polonium event numbers are multiplied with the inefficiency of the mlp cut and scaled to
the SOX measurement time. Even though 214Po dominates by two orders of magnitude in
comparison to 212Po, it contributes with only < 0.6 events to the SOX background and is
hence negligible.
In Appendix A.3 Figure A.8, the same analysis is performed for the data sample when no
fiducial volume cut is applied. Fast coincidences due to 215Po- and 216Po- decays need then
to be taken into account as well.

6.6 Additional Detector-Related Background Sources
This section summarizes additional detector-related background sources that were studied in
detail in the latest geo neutrino analysis [35]. In the following, these are described and their
expected event numbers are estimated based on the previous results Ngeo

NSOX ≈
τSOX
τgeo

· εSOX
εgeo

·Ngeo ≈ 0.164 ·Ngeo, (6.4)

where τSOX/geo and εSOX/geo is the exposure and detection efficiency used in the SOX/geo
neutrino analysis, respectively. This estimation assumes that the backgrounds are uniformly
distributed in the detector which is not true for external background components that increase
towards the vessel border, as volumes at outer radii are less shielded. Note that also some
of the selection cuts differ in the geo neutrino analysis, such as the larger energy window for
the prompt event in the geo neutrino analysis. However, these small effects are negligible as
the sum of these backgrounds is below one event for the total SOX measurement period.
In general, any process that produces neutrons can be a possible background candidate for
an IBD signal. The neutrons will be thermalized and captured and produce exactly the same
signal as the delayed IBD event. The prompt event depends on the process. For example,
if fast neutrons are produced, they can scatter off protons and the deposited energy acts as
the prompt signal.

Untagged Muons The inefficiency of the internal muon veto used for the SOX analysis
is (0.0013 ± 0.0005)% [35]. Hence, undetected muons can lead to non-vetoed cosmogenic
background. On the one hand, the prompt event could be the muon itself. However, to
observe a signal in the SOX energy window, the muon passed most likely only through the
buffer medium. The delayed event could be one spallation neutron, where it has to be exactly
one neutron as the multiplicity cut would veto this event otherwise. On the other hand, the
IBD signal could be mimicked by coincidences of cosmogenic isotopes and/or neutrons.
The background due to untagged muons was estimated to (0.023 ± 0.007) events in [35].
Hence, the expected background for SOX corresponds to (0.004 ± 0.001) events and is neg-
ligible.

Fast Cosmogenic Neutrons The energy of cosmogenic neutrons produced through spal-
lation processes of muons can reach several GeV. Such high energies allow the neutrons to
penetrate large distances in the rock or the detector material. If a neutron reaches the inner
detector volume, it can scatter off protons and produce a prompt signal. The neutron itself
can give the delayed event. Untagged muons passing the water tank4 or the rock can generate

4The background due to untagged muons crossing the inner detector is considered in the category of
untagged muons.
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such cosmogenic neutrons.
The rescaled upper limits at a 95% CL from untagged muons in the water tank and in the
rock result to 2.1× 10−4 and 0.23 events, respectively.

(α,n) Events Alpha particles generated in the decay chains of 238U, 235U, 232Th that con-
tribute to the intrinsic background of Borexino can produce neutrons through (α,n) reactions.
The main alpha source is 210Po and the reaction occurs mostly on 13C. The produced neu-
trons can achieve energies up to 7.3MeV and scatter off protons and produce a prompt signal.
After thermalization and capturing, the neutron is itself the delayed event. The prompt sig-
nal could also be mimicked by gamma events that can be emitted in the relaxation process of
the excited states of the products of the reaction. However, the energy of the gamma particle
is above the SOX energy range.
Detectable (α,n) reactions can arise from alpha decays that take place in the inner vessel or
in the inner buffer. As the rate of alpha decays within the inner vessel can be accurately de-
termined via pulse shape discrimination, the expected event number of (α,n) reactions in the
inner vessel can be computed. The rescaled event number is 0.13±0.02. The determination
of the 210Po rate in the inner buffer is more uncertain and the upper limit of 0.43 events can
be computed (95% CL). Note that this limit is very conservative and that this background
component is in addition expected to decrease with the 210Po lifetime of ∼200 d.

(γ,n) Background Gamma particles with energies higher than 3MeV can produce neu-
trons in (γ,n) reactions with the nuclei of the detector material. These high-energy gammas
are in turn generated most likely in neutron capture reactions. The prompt signal can be
mimicked by Compton scattering of the gamma and the delayed by the neutron itself.
The upper limit of this background can be estimated to 5.6× 10−2 at the 95% CL.

Spontaneous Fission Fast neutrons can be produced by spontaneous fission of the de-
tector material and mimic an IBD signal. The 238U contamination in the PMTs is the most
important contribution to this background.
The upper limit of this background can be estimated to 9.3× 10−3 at the 95% CL.

In summary, the above-described background sources sum up to < 0.9 events and are there-
fore negligible for the SOX analysis.

6.7 Source-Induced Background

The antineutrino source for the SOX experiment has to be an extremely pure 144Ce source.
This is important, as a background component located at the same position as the source
could generate a signal that is decreasing with the distance to the source. This could mimic a
sterile neutrino signature especially with a long oscillation length, e.g. a small sterile neutrino
mass below 1 eV2. Moreover, impurities prevent from an accurate activity measurement and
decrease the sensitivity of the experiment. Within the source specifications, there are two
relevant types of background sources: gammas and neutrons (see Chapter 2).
The most serious gamma line is the 2.185MeV line that is produced by the source itself with
a probability of 0.7%, when 144Pr decays into an excited state of 144Nd. Due to the very
similar energy, such a gamma could in particular mimic a delayed event. In addition, the
gamma can also produce a signal in the prompt energy window. However, these gammas can
be easily shielded and actually define the thickness of the shielding: 19 cm of tungsten achieve
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a total attenuation of 3.1× 10−7 [133]. With the full Borexino MC based on Geant4 [184],
a gamma flux per initial gamma at the source location with an energy deposit larger than
1MeV in the inner vessel is determined to 1.4× 10−18 [203]. Hence, at the beginning of data
taking with a 100 kCi source activity, one expects 3.1 events/day within the inner vessel.
The rate of an accidental coincidence of two such events in a 1280 µs time window is then
1.4× 10−7events/day which is a conservative upper limit, as no spatial correlation is required.
For the total measurement time of 1.5 y one expects 7.8× 10−5 events which is fully negligible.

In addition, a gamma-induced background signal can create an accidental coincidence with
a single Borexino event. The Borexino rate above 1MeV is 0.03 s−1 in the whole inner
vessel which is more than ∼ 800 times larger than the expected rate from gamma-induced
background signals [35]. Assuming the same spatial and spectral distribution within the
detector, the accidental coincidence rate would increase by 0.2%. Using the value obtained
in Section 6.4 of 2.2 events, one would expect 4.4× 10−3 events for the full measurement
time. As the intensity of the gamma line reduces with the source activity, the quoted event
numbers are an upper limit.

Fast neutrons mainly produced by spontaneous fission of contaminants in the source are
another background source. The most critical isotope is 244Cm and the source is required to
contain only 1× 10−5 Bq of 244Cm per one Bq of 144Ce. The expected neutron flux of the
source corresponds then to 1.4× 105 per second for a 100 kCi source [133]. In comparison
to the gamma rays, about 40% of the neutrons can escape the tungsten shielding. However,
the neutrons cannot reach the inner vessel, but are captured before, e.g. in the steel plates
or the water tank and can produce gammas up to 9MeV. In turn, these gamma rays can
reach the inner detector volume and contribute to the background. The probability that such
a gamma deposits an energy in the prompt energy range is 2.4× 10−7 per initial neutron.
This number is determined from a TRIPOLI-4 simulation and a generic detector setup that
is similar to the Borexino detector [133]. Preliminary results from the Borexino MC are in
agreement to this result [203]. The rate of single events in the prompt energy window is then
given by ∼ 0.03 s−1 which is similar to the single event rate of Borexino events above 1MeV.

This event number is high enough that it contributes to the background for the SOX exper-
iment. Again, the expected accidental coincidence rate is estimated by assuming the same
spatial and spectral distribution within the Borexino detector. Given an increase of the single
event rate by a factor of two, will lead to an increase of the accidental coincidence rate by a
factor of four. Accidental coincidences due to source-induced neutron background (i.e. coin-
cidence between two source-induced or one source-induced and one Borexino event) can be
estimated to ∼ 6.6 events for 1.5 years of data taking, assuming the result for the accidental
coincidences from Section 6.4. As the half life of 244Cm is 18.1 y, this background can be
assumed to be constant over the measurement time of SOX. It has to be noted that this
number gives an impression of the order of magnitude. However, the exact number depends
on the selection cuts, the spatial and spectral distributions, and on the source activity.

Independent from the simulations and as source-induced background contributes only to the
accidental coincidences, the increase of the accidental coincidence rate can be determined
very precisely (< 0.03 events) directly from the data by looking at the off-time window for
∆t = 2 s-20 s (see Section 6.4). Vice versa, the source-induced increase of the accidental
coincidence rate allows to draw conclusions on the contamination levels of the source and
could also decrease the uncertainty on the activity measurement.
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6.8 Summary of Background
The results for the expected background components using the optimized selection cuts are
summarized in Table 6.2. The total expected background for the SOX analysis could be
determined to 28.2+2.7

−4.2 and can be divided into detector- and source-related backgrounds.
The detector-related background can be determined from existing Borexino data of 4.16 y
to 21.6+2.7

−4.2 events. The uncertainty in the current analysis is only statistical and could be
lowered by the analysis of a data sample with a longer measurement period. Source-related
background is currently only estimated from MC simulations to 6.6± 0.03 events. However,
source-related background is of accidental nature and can be precisely determined during
data taking via an off-time window. In summary, the expected background event number is
by a factor of ∼ 200 smaller than the expected SOX signal event number for a source activity
of 100 kCi and can be determined with a precision better than 10%. Hence, the background
is negligible and SOX can be called a background-free experiment.

Table 6.2: Expected Backgrounds for the SOX Experiment The detector-related back-
ground determined from 4.16 y of Borexino data is given in the first row. The data can be
described by a simulations fit, where the individual components are grouped together and the
sum of the fit is highlighted in gray. Additional negligible detector-related components and
source-induced backgrounds are listed in the last rows. The second and third column give the
measured events numbers in the energy range used for the simultaneous fit and for the SOX
analysis, respectively. The last column quotes the expected background rescaled for the SOX
measurement time. It has to be noted that the source-induced background is only an estima-
tion, but can be precisely determined during data taking. The quoted numbers are valid for the
optimized selection cuts from Table 5.1.

background events
4.16 y 4.16 y 1.5 y

(200-4900) p.e. (200-1300) p.e. (200-1300) p.e.
data 113 ± 10.6 52 ± 7.2 18.8 ± 2.6

background components included in simultaneous fit
geo neutrinos 26.7 ± 6.5 26.6 ± 6.5 9.6 ± 2.3

reactor neutrinos 56.2 ± 7.0 18.6 ± 2.3 6.6 ± 0.8
9Li/8He 18.0 ± 5.1 2.9 ± 0.8 1.0 ± 0.3

12B 4.7 ± 0.5 0.33 ± 0.04 0.12 ± 0.01
accidental coincidences 6.73 ± 0.02 6.16 ± 0.02 2.2 ± 0.01

total fit 112.3 ± 10.6 54.6 ± 6.9 19.7 ± 2.7
additional background components
214Bi-214Po-coincidences <0.6
atmospheric neutrinos 0.4 ± 0.2
residual background <0.9

source-induced background (100 kCi)
gammas ∼ 4.4 · 10−3

neutrons ∼ 6.6± 0.03
total expectation 28.2+2.7

−4.2
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7 Effect of the Systematic
Uncertainties on the Sensitivity

In general, having any systematic uncertainty in an experiment not understood can lead to
a misinterpreted signal. Hence, this chapter discusses the systematic uncertainties of the
source (Section 7.1) and the detector (Section 7.2) and their effects on the sensitivity. The
chapter ends with a summary including the sensitivity of the SOX experiment taking into
account all systematic effects (Section 7.3). Note that this chapter relies on the asymptotic
probability distributions of the test statistic, i.e. using Wilks’ theorem and the Asimov data
set (compare Chapter 3). However, it is assumed that the relative effects on the sensitivity
are independent on the used method. The comparison of the absolute sensitivity can be
found in Chapter 11.

7.1 Source-Induced Uncertainties

In order to draw conclusions on the sterile neutrino hypothesis, the properties of the source
have to be precisely known. The two main sources of uncertainties of the neutrino source are
the activity and the spectral shape of the neutrino spectrum (see Chapter 2 for the charac-
terization of the source). An uncertainty in the activity transfers directly to an uncertainty
in the expected event number that could mimic a sterile neutrino signature. The activity of
the source at time t0 is determined via

A(t0) = h(t0)
〈E〉

, (7.1)

where h(t0) is the heat produced by the source at time t0 and 〈E〉 is the mean deposited
energy per 144Ce-144Pr decay in the tungstate shielding. The mean energy is given by the
sum of the mean energies of the emitted electron and gamma lines per decay:

〈E〉 = 〈ECe(e−)〉+ 〈ECe(γ)〉+ 〈EPr(e−)〉+ 〈EPr(γ)〉. (7.2)

〈EPr(e−)〉 and 〈ECe(e−)〉 depend on the spectral shape of the 144Ce-144Pr neutrino spectrum.
The uncertainty in the spectral shape of the neutrino spectrum can hence, on the one hand,
distort the neutrino spectrum and mimic a shape oscillation signal, and, on the other hand,
affect the prediction of the expected event number and mimic a rate oscillation signal as well.
In the following, the two sources of uncertainties, namely the uncertainty of the calorimetric
measurement (Section 7.1.1) and the uncertainty on the spectral shape measurement (Sec-
tion 7.1.2), are discussed independently. Moreover, effects of the size, the position, and the
backgrounds of the source are investigated in Sections 7.1.3 and 7.1.4.
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Figure 7.1: Impact of the Uncertainty of the Calorimetric Measurement on the
Sensitivity The 95% CL exclusion limits are shown for varying uncertainties σh, where an
activity of 125 kCi and the optimized selection cuts (Table 5.1) are assumed. The achieved
accuracy of σh = 0.2% allows to probe the full parameter space favored by the anomalous
neutrino oscillation data (gray).

7.1.1 Calorimetric Power Measurement

The power (heat h) of the source is measured by two independent calorimetric setups (see
Section 2.2.2) with an accuracy of 0.2% [170].
The sensitivity as a function of the uncertainty σh is studied by treating the expected event
number as a nuisance parameter and varying the width of the Gaussian pull term according
to the specific uncertainty σh ·NS . The likelihood function is given by Equation 4.6.
Figure 7.1 shows the 95% CL contours for different uncertainty levels in a rate+shape anal-
ysis. With increasing uncertainty the sensitivity reduces in terms of sin2(2θ). Given an
uncertainty of 100%, the contour corresponds to the one of a shape only analysis, as defined
in Chapter 4.3. The sensitivity of the shape only analysis is reduced to sin2(2θ)=0.074 at
∆m2=1 eV2 in comparison to the one with a perfectly-known heat (sin2(2θ)=0.043). This
reduction corresponds to a factor of ∼0.6. In contrast, at ∆m2≈0.35 eV2 or ∆m2&10 eV2,
the sensitivity decreases by a factor of 0.06 or is even completely lost. At these ∆m2-values,
the sterile neutrino signature is mostly given by a flat rate reduction (see Figure 2.14) that
can be fully explained with a smaller but unknown activity.
The achieved accuracy of 0.2% is better than the indicated 0.5% in Figure 7.1 and allows
therefore to probe the full parameter space preferred by the anomalous neutrino oscillation
data.

7.1.2 Spectral Shape of the 144Pr Spectrum

The main branch of the 144Pr spectrum follows a non-unique first-forbidden decay that cannot
be fully described by theory. In addition, the latest measurements were performed several
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decades ago and disagree up to 10% [167]. Therefore, new experiments have been planned
within the collaboration (see Section 2.2.2) to determine the electron and thus the neutrino
spectrum of 144Pr.
The electron spectrum Ne, which is the complementary of the neutrino spectrum, can be
described for a pure pseudoscalar transition1 as a function of the shape factor b

Ne(W, b) = N0(W ) · (1 + b ·mec
2

W
). (7.3)

Here, W denotes the total energy (i.e. the sum of the kinetic energy and the rest mass of
the electron mec

2) and N0(W ) represents the allowed spectrum that can be obtained from
Fermi’s theory (see for example Reference [165,204]).
As already discussed, an uncertainty in the neutrino spectrum can affect the sensitivity in
two ways. First, the neutrino spectrum itself deforms and can mimic an oscillation signature.
Moreover, the fraction of the spectrum above the inverse beta decay (IBD) threshold can
change and affect the estimation of the expected event number. Second, the mean emitted
energy per decay changes which leads to a wrong activity estimation.
To study the effect of the uncertainty on the shape factor σb, b is treated as a nuisance
parameter. The probability distributions and the expected event number depend then on b

pdfS
ij(sin2(2θ),∆m2)→ pdfS

ij(sin2(2θ),∆m2, b) (7.4)

N exp
S (sin2(2θ),∆m2, NS)→ N exp

S (sin2(2θ),∆m2, NS, b) (7.5)

and the likelihood function is extended with a Gaussian pull term for b with the measured
value bobs

L(sin2(2θ),∆m2, NS)→ L(sin2(2θ),∆m2, NS , b)
=
∏
ij

P(Nobs
ij |N

exp
ij (sin2(2θ),∆m2, NS , b)) · N (Nobs

S |NS , σ
2
NS

) · N (bobs|b, σ2
b ). (7.6)

Technically, one can compute the expected probability distribution functions and event num-
bers with a single high statistics Monte Carlo (MC) data sample for one specific shape factor
bobs. The normalized neutrino spectrum nν(E, b) (and thus pdfS

ij(sin2(2θ),∆m2, b)) with
shape factor b can be obtained through the correction factor2

c(E, b) = 1 + b ·mec
2

(Q− E) +mec2 , (7.7)

where Q is the endpoint of the 144Pr spectrum. This results to

nν(E, b) = nν(E, bobs) · c(E, b)
c(E, bobs) ·

(∫ Q

0
nν(E, bobs) · c(E, b)

c(E, bobs)dE
)−1

. (7.8)

The event number is given by

N exp
S (sin2(2θ),∆m2, NS, b) = NS(bobs) ·

∫Q
Ethr

∫
L nν(E, b)σIBD(E)Pee(E,L)dEdL∫Q

Ethr

∫
L nν(E, bobs)σIBD(E)dEdL

· 〈E(bobs)〉
〈E(b)〉 ,

(7.9)
where NS(bobs) is the expected event number for the nominal shape factor bobs and the
no-oscillation hypothesis. The second term corrects the expected event number due to the

1The main decay branch of 144Pr → 144Nd is a 0− → 0+ transition.
2In the following E = Etrue and L = Ltrue.
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Figure 7.2: Impact of the Uncertainty of the Spectral Shape on the Sensitivity The
95% CL levels are shown as a function of the uncertainty on the shape factor b. Note that the
uncertainty is given in an absolute scale. The goal of the spectral shape experiments is to achieve
an absolute error of 0.03 that could still cover the full preferred parameter space by global data
(gray). The results are shown for the optimized selection cuts and an activity of 125 kCi.

spectral deformation, where σIBD(E) is the cross section (Equation 2.7) and Pee(E,L) the
survival probability (Equation 1.10). The third term 〈E(bobs)〉

〈E(b)〉 accounts for the change in the
mean emitted energy by the source, where 〈E(b)〉 is defined by Equation 7.2.3
The impact of the shape factor on the sensitivity can be seen in Figure 7.2, where NS is
fixed here in the likelihood function. The sensitivity obtained for an unconstrained shape
factor reduces up to a factor of ∼ 0.5 in comparison to the sensitivity obtained with a perfect
knowledge on b. The main reason for the loss of the sensitivity is the changed expected event
number that can mimic a flat disappearance signal. However, an oscillation signature can be
slightly mimicked for ∆m2-values below 1 eV2 which can be seen in Figure 7.3 that compares
the sensitivities for a fixed and unconstrained shape factor in a shape only analysis. Hence,
an uncertainty in the shape factor can only mimic large oscillation lengths in the order of the
detector dimensions and the sensitivities are consistent above 1 eV2. The desired smoking
gun signature of the experiment can thus not be mimicked by a shape uncertainty.
The experimental setups have been designed to determine the spectral shape with an accuracy
better than 0.03 (see Section 2.2.2). With that uncertainty, SOX can still probe almost the
full 99% CL parameter space preferred by the anomalous neutrino oscillation data.

7.1.3 Source Dimension and Source Position

Having a compact source is important to be able to resolve small oscillation lengths and
be sensitive to sterile neutrino masses above 1 eV2. In SOX the source consists of CeO2

3In praxis, the correction factor enters into the weights of the PDFBuilder and the integral is computed
via the weighted sum of the high statistics MC sample (see Section 4.3).
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Figure 7.3: Interplay of the Uncertainties of the Heat and the Spectral Shape The
sensitivities at the 95% CL for fixed heat and shape (black), unconstrained shape and fixed
heat (light blue), unconstrained heat and fixed shape (dark blue), and unconstrained heat and
shape (red) uncertainties are shown. From the comparison of the curves one can observe that
an uncertainty in the spectral shape can mimic shape oscillations only for ∆m2-values < 1 eV2.
The residual reduction of the sensitivity comes from rate oscillations. The results are shown for
the optimized selection cuts and an activity of 125 kCi.

powder that is compressed into a cylindrical capsule with a diameter and height of 15 cm,
respectively (see Section 2.2). The impact of the source dimensions on the sensitivity is
studied by setting the source size to a sphere with a radius of 7 cm in the MC simulations.
The sensitivity remains unchanged when it is compared to the one obtained from a point-like
source. This is plausible as the source dimensions do not exceed the position resolution of
the detector. These results are consistent with previous ones from Reference [133].
The source is located 8.51m below the detector center with an uncertainty smaller than
1 cm [165]. Assuming a spherical vessel with 4.25m radius and using Equation 4.2 leads to
an uncertainty of 0.2% in the event number. Note this number would be consistent with a
position reconstruction shift of 1 cm in the z-coordinate (see Table 7.1).

7.1.4 Source-Induced Backgrounds

As discussed in Chapter 6, source-induced background is only from an accidental nature that
can be accurately (< 0.3%) measured during data taking. In addition, the total expected
event number of source-induced background is less than 10 events in 1.5 y of data taking.
As the signal event number is by a factor of more than 200 higher than the background,
the sensitivity is almost not affected by source-correlated background, as will be discussed in
Section 7.2.4 for the study of the detector-correlated background.
Note that this result is only valid given the source requirements (see Section 2.2). In contrast,
a too large background of the source could, on the one hand, lead to a wrong activity
measurement and, on the other hand, possibly mimic a sterile neutrino signature. The
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too high contamination levels of the source produced end of 2016 were one reason for the
cancelation of the SOX project.

7.2 Detector-Correlated Uncertainties

One advantage of the SOX experiment is that the Borexino detector has already been taking
data for more than ten years and has been studied in detail. While the detector is well
characterized in the fiducial volume (FV) used for the solar analysis (typically r < 3m), the
systematic uncertainties increase towards the vessel border. The systematic uncertainties
arising from the comparison of calibration data of 2009 are summarized in Chapter 5. Given
that the calibration campaign was performed several years ago and the main focus was
the central detector, a new SOX-dedicated calibration campaign with positron and neutron
sources (see Chapter 5) was planned and would have taken place before the start of SOX.
In the following the effect of the systematic uncertainties on the sensitivity without the new
calibration campaign are studied.

7.2.1 Energy Resolution

Chapter 5 discussed that the energy resolution degrades for larger radii (see Figure 5.1
and 5.2). Such a degradation smears the oscillation signature in the data for large radii,
shown in Figure 7.4a, and reduces the sensitivity. In the default analysis, the data is binned
in E and L which includes no information about the radius and thus averages the energy
resolution. In order to increase the sensitivity, three-dimensional data (E, L, and R) and
probability distribution functions are implemented

pdfS
ij(sin2(2θ),∆m2)→ pdfS

ijk(sin2(2θ),∆m2), (7.10)

where k denotes the radial bin.
Figure 7.4b shows the comparison of the sensitivity for the two- and three-dimensional data.
Only a minimal improvement in the ∆m2-region sensitive to small oscillation lengths (≈
1 eV2 - 5 eV2) is obtained for the three-dimensional data set. The small difference can be
explained as, on the one hand, the data with a radius larger than 3m account for already
∼ 60% of the total data (see legend in Figure 7.4a) and therefore dominate statistically. On
the other hand, the degradation of the energy resolution is mainly due to the relatively high
number of broken photomultiplier tubes (PMTs) in the southern part of the detector that
leads to a north-south difference in the energy response. However, the L-binning in the data
implicitly separates the data with low and high z-coordinates so that a radial binning does
not add any further information.
Due to the almost unchanged sensitivity, the SOX analysis stays with the two-dimensional
data. However, a three-dimensional analysis could be reconsidered to implement radial de-
pendent uncertainties.

7.2.2 Effect of Position Shifts

The z-shift

Calibration data indicates a bias in the z-coordinate reconstruction, the so-called ”z-shift”
(see Chapter 5), that cannot be reproduced with MC simulations. The z-shift can be param-
eterized as

∆z = a · z2 − c, (7.11)
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Figure 7.4: Effect of the Position-Dependent Energy Resolution on the Sensitivity
a) Ratio of L/E-distributions for an oscillation (sin2(2θ)= 0.1 and ∆m2= 2 eV2) over the no
oscillation hypothesis grouped for the radius in the detector. The energy resolution drops for
larger radii and smears the oscillation signature. For each spherical shell the fraction contributing
to the whole data sample is given in the legend. The small statistics for r < 1m lead to an
artifact in the signature. b) Comparison of the sensitivity for two- (E,L) and three- (E,L,R)
dimensional probability distributions functions for the data with five radial bins. The sensitivity
changes only slightly for ∆m2 ≈ 1 eV2 - 5 eV2.

where a = 0.0025, c = 0.035, and [z] = m. The z-shift is studied in two ways (see also
Reference [205]). First, it is assumed that the z-shift is present in the data, while the
expected data used in the likelihood fit do not take the shift into account. The shifted
data is generated by applying the z-shift, as defined in Equation 7.11, to the nominal MC
simulations, which are used to build the expected data.
The position shift affects the rate and the shape analysis. With a FV cut of 25 cm to the
inner vessel the event number in the data is reduced by 0.6% compared to the expectation.
Assuming an unchanged vessel shape, but applying a z-shift that reduces the reconstructed
z-coordinate, events that were previously within the FV are now reconstructed outside the
FV. The effect on the shape analysis is shown in Figure 7.5. The sensitivity including the
z-shift fluctuates around the nominal sensitivity especially in the ∆m2-region below 2 eV2.
These fluctuations are in addition illustrated in Figure 7.6b which shows the ratio of the two
sensitivity contours. They can be explained with the relative changes in the L and E spectra
of the data and the expectation. The negative z-shift deforms the L spectrum to smaller
values and at the same time the E spectrum to larger values. This is because the data from
the north with the higher light yield is shifted towards the south. Both shifts result in an
increase at small values of the L/E spectrum for the data compared to the expectation,
which is shown in Figure 7.6a. Thus, the relative increase in the spectrum at ∼ 3m/MeV
disagrees with a disappearance signature and the sensitivity becomes effectively improved
for the respective oscillation length, i.e. ∼ 5m/MeV. Analogously, the relative reduction of
the L/E spectrum above 5m/MeV mimics exactly a sterile neutrino signature with a large
oscillation length of ∼ 10m/MeV and reduces the sensitivity for the respective ∆m2-region
at ∼ 2.5 eV2.
In the second approach, the z-shift is implemented in the likelihood fit model, where a and c
of Equation 7.11 become nuisance parameters. The expected event number and probability
functions depend on a and c and the likelihood function minimizes in addition to the de-
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Figure 7.5: Effect of the z-shift on the Shape Analysis The sensitivity at the 95% CL
is shown when the data is modified with the z-shift (blue) and when the data is not modified
(red). The expected data is in both cases not modified by the shift. The results are computed
for a FV cut of 25 cm.
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Figure 7.6: Effect of the z-shift on the Spectral Shape a) Relative difference in the L/E
spectra for the data and the expected data. b) Relative difference in the sensitivity at the 95%
CL as a function of ∆m2. The absolute sensitivities are shown in Figure 7.5. The results are
obtained, when the data is modified with the position shift and the expectation not. A FV cut
of 25 cm is applied.

fault parameters over these two new parameters. Even though the shift parameters are not
constrained in the fit, the fit always returns the true values for them. This implies that the
z-shift constructed with the parametrization given in Equation 7.11 cannot mimic a sterile
neutrino signature. Note that this study is performed with the Asimov data set. Further
investigations with toy-MC data samples are needed in order to draw final conclusions. In
addition, a more flexible model for the position shift could also affect the results.

Miscellaneous Position Shifts

Furthermore, the effect of various position shifts is discussed even though they are not a
specific systematic uncertainty of Borexino. However, one would like to understand how
much these shifts can affect the sensitivity. The same method as described for the z-shift is
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Table 7.1: Uncertainty on the Event Number due to Systematic Position Shifts The
results are obtained by modifying the MC simulation data with the respective position shifts
and applying a FV cut of 25 cm. The results are supposed to give an estimate of the order of
magnitude. Not all of the studied shifts are present in Borexino.

type of shift parametrization [cm] uncertainty [%]
”z-shift” 0.25(z/m)2-3.5 0.6
absolute position shifts in x and y 5 <0.07
absolute position shifts in z 1 0.2

2 0.5
3 0.7
4 0.9
5 1.1

outward shift in x 2 0.7
5 1.8

random shifts in x, y 2 <0.05

applied. The data is modified by a certain position shift, while the expected data remains
unshifted. Table 7.1 summarizes the effect of these shifts on the uncertainty in the event
number when a FV cut of 25 cm is applied. The following shifts are studied:

• absolute position shifts: Even though absolute position shifts up to 5 cm in x- and y-
direction are negligible, a 5 cm shift along the z-direction can lead to an uncertainty in
the event number up to 1.1%. Figure 7.7a shows the impact on the shape only analysis
for a negative 5 cm and 10 cm shift. Similarly to the previously discussed ”z-shift”, the
relative deformation in the L/E spectra can be described by some oscillation pattern
and leads to fluctuations around the nominal sensitivity;

• outward shifts: Outward shifts in the x- and y-coordinate can lead to uncertainties
in the event number up to 1.8%. However, fluctuations in the shape analysis appear
mainly below 1.5 eV2 (see Figure 7.7b);

• random position shifts: The calibration data shows an agreement with the nominal
position within 2 cm [189]. Such random shifts are smaller than the size of the position
resolution and have a negligible impact on the expected event number and the expected
signature. Thus, the sensitivity is not affected.

To summarize, the uncertainty in the event number for position shifts up to 5 cm can lead
to uncertainties up to 1.8% in the event number. However, as only the extreme cases are
beyond the 1% level, the uncertainty due to a position shift can be assumed to be < 1%.
Position shifts mainly affect the low ∆m2-region below 1 eV2 on the shape analysis. Thus,
the studied position shifts cannot mimic a sterile neutrino signature above 1 eV2 and hence
not mimic the smoking gun signature of a sterile neutrino. In addition, the relative variations
of the sensitivity due to a position shift are smaller or comparable to the expected statistical
fluctuations of the sensitivity and are hence not critical (see Chapter 11). Note that the
vessel shape is assumed to be known in this study. However, it is likely that a position shift
also changes the estimated vessel shape, as the vessel shape reconstruction is applied to the
reconstructed position, which would require further investigation.
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Figure 7.7: Effect of Systematic Position Shifts on the Shape Analysis The sensitivity
at the 95% CL is shown when the data is modified with a) absolute position shifts in the z-
coordinate and an b) outward shift in the x-coordinate. The expected data is in both cases not
shifted. A FV cut of 25 cm is applied.

7.2.3 Vessel Shape, Detection Efficiency, and the Fiducial Volume Cut

The largest uncertainty for the SOX experiment is the uncertainty in the vessel shape. As
the vessel shape changes with time, it needs to be reconstructed on a weekly basis where
the uncertainties reach up to 5 cm (see Section 2.1.2). To minimize the uncertainty, the
algorithm for vessel shape reconstruction has been improved within the collaboration. An
uncertain vessel shape leads not only to an uncertainty in the active volume and thus the
expected event number. Moreover, the exact vessel shape affects the detector response and
the detection efficiency close to the vessel border (see Chapter 5).
In the following, the effect of the vessel shape is studied and the FV is optimized with respect
to the sensitivity taking into account the reducing uncertainties and statistics for larger FV
cuts. To assess the effect of an uncertainty of 5 cm in the vessel shape, MC simulations are
produced for three different vessel shapes [190]. Here, the vessel shape from October 2016 is
shifted 5 cm inwards and outwards in comparison to the nominal one (see Figure A.7 in the
Appendix). The uncertainty on the event number as a function of the FV cut is determined
as the difference of the event number for the three data sets and the specific FV cut with
respect to the nominal vessel shape (see also Reference [190] for a similar analysis). Thus, the
uncertainty in the event number already includes the uncertainty in the active volume, the
detection efficiency and the energy and position reconstruction. The resulting uncertainty is
shown in Figure 7.8 for various energy cuts on the prompt and the delayed event. Applying
no FV cut would result in an uncertainty of almost 4% (see panel b), mainly due to the
difference in the active volume. Such a large uncertainty is too large for the SOX analysis
and would drastically reduce the sensitivity (see Figure 7.1). The uncertainty decreases
with increasing FV cut and reaches a constant level of 0.2% above a FV cut of 50 cm.
Furthermore, the uncertainty reduces for smaller energy cuts on the prompt and the delayed
event, respectively. This is because of the increase of the total detection efficiency and enters
into the optimization of the selection cuts which was discussed in Chaper 5. In addition, the
uncertainty on the event number computed only from the variation of the detection efficiency
for a fixed vessel shape (see Figure 5.14) within 5 cm is compared and agrees well with the one
obtained from the MC simulation (see the gray line in Figure 7.8b). However, this method
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Figure 7.8: Uncertainty on the Event Number due to the Vessel Shape Uncertainty
The uncertainty is shown as a function of the vessel distance for different cut values on the
prompt (a) and delayed (b) energy. The uncertainty is obtained from MC simulations assuming
three different vessel shapes in the range of the vessel uncertainty (see text). For comparison, the
uncertainty of the detection efficiency computed only from the variation of the detection efficiency
for a fixed vessel shape (see Figure 5.14) within 5 cm is added for the optimized delayed energy
cut value of 200 p.e..
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Figure 7.9: Optimization of the FV Cut a) The signal and background event numbers
are shown as a function of the FV cut. The uncertainties on the event number are taken from
Figure 7.8 and decrease for increasing FV cut. The background event numbers are determined
from Borexino data (see Chapter 6). b) The rate sensitivity in terms of sin2(2θ) at ∆m2 =
10 eV2 is shown as a function of the FV cut and is computed as described in Appendix A.5. The
sensitivity is maximal for a FV cut of 25 cm. The results are computed for an activity of 125 kCi
and the optimized selection cuts.

gives only meaningful results above a FV cut of 5 cm when the active volume is the same for
all three vessel shapes. Here, the uncertainty comes then only from the detection efficiency
and the energy and position response.
Using these uncertainties and the detector-related background event numbers studied in the
previous chapter, the FV cut is optimized with respect to the maximum sensitivity. The
rate only sensitivity is computed (see Appendix A.5) for the various FV cuts and depicted
in Figure 7.9. As the uncertainty on the event number decreases, the sensitivity increases
first for an increasing FV cut up to 25 cm. For further increasing FV cuts, the expected
event number becomes too small and the sensitivity reduces. The FV cut with the maximum
sensitivity at 25 cm is hence used as the optimized FV cut. The background does not affect
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Figure 7.10: Effect of the Uncertainty in the Vessel Shape on the Spectral Shape
a) The normalized energy spectra for the MC simulations with the three different vessel shapes
(Figure A.7) are shown for a FV cut of 25 cm. b) The effect on the shape sensitivity at the 95%
CL due to the differences in the spectral shape is shown. While for the data the shifted vessel
shape is used, the expected data assumes the nominal vessel shape. The results were produced
in Reference [190].

the conclusions, but for completeness, it is taken into account.

The uncertainty in the vessel shape affects not only the expected event number, but also the
energy and distance spectrum. Close to the vessel border the energy scale is affected (see
Chapter 5), however, for a FV cut of 25 cm the difference is reduced. Moreover, the energy
spectrum from the positrons produced in the center of the detector changes, as the light yield
reduces slightly for an increasing vessel shape. This effect comes from the higher attenuation
length of DMP in comparison to PPO in the wavelength region of the scintillation light [184].
The average distance traversed by the scintillation light through PPO increases for larger
vessel shapes and the light yield is decreased. Figure 7.10a shows the normalized energy
spectra for the three studied vessel shapes. The small differences in the energy distribution
lead to small fluctuations around the nominal sensitivity, which is shown in Figure 7.10b.
However, these fluctuations are small and well below the statistical fluctuations in the data
set and the sensitivity.

In order to maximize the sensitivity of SOX, the collaboration studied to increase the FV
even further and include at the same time nuisance parameters in the likelihood fit to account
for the vessel shape uncertainty [190, 206]. On the one hand, a detection efficiency map as
a function of the detector position and the radial information in the data, and on the other
hand, the interpolation and extrapolation of the three vessel shape MC simulations are used.
In both studies the likelihood fit returns the true vessel shape and a vessel shape uncertainty
cannot be explained by any sterile neutrino signature. This is similar to what is obtained in
the z-shift study (Section 7.2.2). Further studies with a more flexible model for the vessel
shape in the likelihood function would have been required for the SOX analysis. The option
to reduce the uncertainty on the detection efficiency and hence to allow for an increased FV
by the hardware modification of the trigger system is discussed in Chapter 8.
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Figure 7.11: Effect of Background on Sensitivity The increase of the sensitive sin2(2θ)-
value at the 95% CL at ∆m2 = 10 eV2 in comparison to the sensitivity with zero background
is shown as a function of the background event number. The sensitivity is computed in a
rate analysis (see Appendix A.5) for an activity of 125 kCi with an uncertainty of 1.5%. The
background uncertainty is given by 10%. The red line indicates the background level in SOX.

7.2.4 Detector-Related Backgrounds

The detector-related background can be determined from the running Borexino experiment
with an accuracy better than 10% (see Chapter 6). Therefore, the expected event number
as well as the spectral shape are well known.
In order to study the background, the likelihood function incorporates the background com-
ponent that is constrained at the 10% level (see Equation 3.4). The inclusion of the back-
ground has no visible effect on the sensitivity of the SOX experiment, as the expected signal
to background ratio is larger than 200. Figure 7.11 shows the sensitivity as a function
of the background event number in a rate only analysis (using the formalism described in
Appendix A.5). The sensitivity decreases on a minimal level (smaller than 0.1%) for the
expected background event number of 30 events which already includes the source-related
background. Thus, the background in SOX is totally negligible and SOX can be called a
”background-free” experiment.

7.3 Summary of Systematics and Sensitivity in SOX

Table 7.2 summarizes the systematics of the SOX experiment and their impact on the event
number and the shape analysis, respectively. Notice, an uncertainty on the energy scale was
not studied explicitly. However, the expected effect on the detection efficiency and therefore
on the event number can be assumed to be small as the energy selection cuts are chosen in
a conservative way. The effect on the shape analysis is indirectly studied by the position
and vessel shape shifts that also alter the energy distribution. Small fluctuations around the
nominal sensitivity arise mainly for ∆m2-values below 1 eV2 and the smoking gun signature
for a sterile neutrino cannot be mimicked.
Figure 7.12 shows the sensitivities for the rate, shape, and rate+shape analysis for the opti-
mized FV cut of 25 cm and the expected systematic uncertainties. The uncertainty on the
event number is set to a conservative value of 1.5% that includes the uncertainty on the
power measurement, the detection efficiency, and position shifts. The sensitivities are shown
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Table 7.2: Summary of Systematic Uncertainties in SOX The systematic parameter, its
central value and the uncertainty are listed in the first three columns. The effect on the event
number and on the shape analysis that are evaluated in this chapter are given in column three
and four. The systematics are grouped in source and detector-correlated ones and are computed
for a FV cut of 25 cm.

parameter central value uncertainty uncertainty on effect on
event number shape analysis

Source-Related
power ∼ 1000W 0.2% 0.2% -
shape factor 0 0.03 < 1% < 10% for

∆m2< 0.7 eV2

position 8.51m < 1 cm < 0.2% < 2% for
∆m2< 1 eV2

Detector-Related
position shift < 4.5 cm ∼ 1% 35% for

∆m2< 1 eV2

vessel shape 5 cm - < 10%
detection efficiency 93.0% 0.5% 0.5% -
background ∼ 30 10% - -
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Figure 7.12: Sensitivity of the SOX experiment The sensitivities for the rate (red), shape
(blue), and combined analysis (black) are shown for the optimized selection cuts (FV cut 25 cm)
including the expected systematic uncertainties (b: spectral shape, h: event number). The
sensitivity bands indicate the variation for the possible source activity range of 100-150 kCi. The
parameter region preferred by the anomalous neutrino oscillation data is shown in gray.

in bands that span the possible activity range from 100-150 kCi corresponding to an event
number between 5760 and 8640. The final rate+shape sensitivity can probe the full 90%
CL parameter region preferred by the anomalous neutrino oscillation data at the 95% CL.
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Note that the sensitivities are obtained assuming the asymptotic distributions of the profile
likelihood ratio. In Chapter 11 the sensitivity of SOX is compared and discussed in detail to
the ones obtained from toy-MC techniques.
Further, it has to be noted that a dedicated SOX-calibration campaign is mandatory to scan
and characterize the detector especially close to the vessel border for positrons and neutrons.
Moreover, the vessel shape reconstruction and position reconstruction close to the vessel
border need to be improved. The resulting discrepancies have to be studied and taken into
account in the final SOX analysis. In addition, the uncertainties on the detection efficiency
could be lowered by a hardware modification of the trigger system which will be discussed
in the next chapter.
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8 Evaluation of an Optimized
Trigger System

As discussed in the previous chapter, the shape of the inner vessel (IV) dominates the sys-
tematic uncertainties of SOX. As the uncertain vessel shape also increases the uncertainty of
the detection efficiency close to the vessel border, a large fiducial volume (FV) cut needs to be
applied. However, such a large FV cut decreases the statistics of the data sample and, hence,
the sensitivity of the experiment. In this chapter, the modification of the Borexino trigger is
studied to decrease the uncertainty on the detection efficiency induced by the vessel shape,
and to improve the sensitivity of SOX in comparison to the one presented in the previous
chapter. The modification is based on the fact that the light yield in the inner buffer (IB)
is actually higher than designed due to a leakage of PPO from the IV to the IB. Provided
a small detection threshold, this increased light yield enables the reconstruction of events
interacting in the buffer medium, as discussed in Section 8.1. Two modifications of the hard-
ware trigger are evaluated1: a reduced trigger threshold (Section 8.2) and an automatically
issued neutron gate after a possible candidate for a prompt SOX event (Section 8.3).

8.1 Detector Response in the Buffer

While the active volume contained in the IV of the Borexino detector can be calibrated
with radioactive sources, the buffer is out of reach of the calibration system [189]. However,
cosmogenic neutrons can be used to determine the detector response in the buffer and to
optimize Monte Carlo (MC) simulations, which is discussed in Section 8.1.1. Using the
optimized MC simulation, the expected SOX signature due to events interacting in the buffer
is studied in Section 8.1.2.

8.1.1 Light Yield of Cosmogenic Neutrons in the Buffer

Cosmogenic neutrons observed from 2008 to 2016 show a significantly higher light yield in
the IB region than in the outer buffer (OB). This can be explained by the leak from the
scintillator of the IV, especially the wavelength shifter PPO, to the IB [199]. The leak started
in April 2008 with a rate of 1.33m3/month. In order to reduce the density differences between
IV and the buffer medium, the DMP concentration in the buffer was lowered from 5 g/l to
3 g/l and 2 g/l in April 2009 and January 2010, respectively. Thus, the leak rate was reduced
to 0.56m3/month and 1.5m3/year, respectively [141]. Given the leak evolution, the PPO
concentration in 2017 can be estimated to 0.12 g/l in the IB [207].
Figure 8.1 shows the energy response of the 2.2MeV and 4.9MeV gammas induced by cos-
mogenic neutron capture on Hydrogen and Carbon as a function of the reconstructed ra-

1The modifications were studied together with several people from the Borexino/SOX collaboration.
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Figure 8.1: Energy Response of Cosmogenic Neutron Data The energy is shown in
nhits (normalized to the number of working PMTs) versus the reconstructed radius in the a) full
detector volume and b) inner buffer region. The events are selected in a time period up to 1.6ms
after a muon and with a distance of less than two meters to the reconstructed muon track. The
dashed lines indicate the nominal radius of the nylon two vessels. Three regions can be identified
that correspond to the neutrons captured in the IV (r < 4.25m), IB (4.25m < r < 5.5m), and
OB (5.5m < r < 6.3m), respectively. The light yield in the IB is increased in comparison to the
nominal one in the OB, due to the IV leak. Moreover, substructures at low energies due to 14C
in the IV and mis-reconstructed neutrons are visible. Both plots are taken from [199].

dius. Three energy regions can be identified that correspond to neutrons captured in the IV
(hits>500), IB (hits∼40), and OB (hits∼20). The latter light yield corresponds to the one
expected without PPO in the buffer, i.e. the nominal value [199].
In an annual analysis of cosmogenic neutrons, it can be found that the light yield of the IB
is similar to the one of the OB in 2008. From 2008 to 2010 the light yield increases and
stays constant afterwards in the IB which is consistent with the leak evolution. Further,
cosmogenic neutron data shows that the light yield is uniform in the whole IB, which leads
to the conclusion that the scintillator and mainly the PPO mixed well within the IB [199].
As the light yield of the mixture of PC, DMP, and PPO of the IB has not yet been experi-
mentally measured, the effective light yield of the IB is optimized in the MC simulation in
order to be consistent with the cosmogenic neutron data. With this optimized configuration,
the MC simulation can reproduce the response in the whole detector volume (IV, IB, and
OB) as measured with the cosmogenic neutron data [207].
In summary, the high light yield in the buffer enables to detect neutrons also in the buffer
medium. It allows therefore to exploit events interacting in the buffer for the SOX analysis.

8.1.2 SOX Events in the Buffer

With the optimized MC simulation that can reproduce the observed high light yield in the
IB, 2× 106 SOX events are simulated in the IV and in the IB (up to a radius of 5.5m), where
the detector status is set to October 2016. Figure 8.2 shows the energy response as a function
of the reconstructed radius for the prompt and the delayed event2. The prompt (delayed)
events with energies above 200 (300) hits deposit their full energy in the IV. The events
reconstructed at ∼ 4m with an energy in between 40-200 (100-300) hits deposit their energy
partially in the IV and partially in the IB. Especially, one of the two 511 keV annihilation
gammas of the prompt event can deposit its energy in the IV and the other one in the buffer.
The substructure at 100 hits in panel a is mainly due to inverse beta decay (IBD) reactions

2The energy observable is in the following the actual observed value and not normalized to the number of
2000 photomultiplier tubes (PMTs), as described in Section 5.1.
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Figure 8.2: Energy Response of Simulated SOX Events in the IV and IB The energy
is shown in (non-normalized) nhits versus the radius for 2× 106 SOX events generated in the IV
and IB. The prompt (panel a and b) and the delayed (panel c and d) events are selected with
∆t<2000 µs. Panel b) and d) show a zoom in the buffer region, in which the energy spectrum of
the prompt and the delayed event can be reconstructed. The dashed lines indicate the nominal
radius of the inner and outer vessel. The cutoff at 5 hits is due to the efficiency threshold of
the cluster algorithm. It can be seen that the position reconstruction becomes worse for low
energies, where the structure at 6.3m corresponds to an artifact in the reconstruction algorithm.
Additional discussion about the individual substructures can be found in the text.

in the IB, where one gamma spills in the IV. The events below 50 (60) hits correspond to
the ones interacting in the IB. The large deviation in the reconstructed radius from the
true radial position for the IB-events shows the inefficiency of the position reconstruction
algorithm at low energies. Another limitation of the position algorithm is the reconstructed
structure at 6.3m that corresponds to the position of the PMTs mounted on the stainless
sphere. Moreover, the efficiency-threshold of the cluster algorithm can be seen at the kink
at 5 hits in the prompt as well as in the delayed spectrum3. Within the collaboration the
improvement on the position reconstruction and the cluster algorithm at such low energies
was an ongoing effort.
As the Borexino trigger is issued when at least 20 hits are detected, a large fraction of the
prompt and the delayed events in the buffer cannot be observed. The next two sections
discuss hence two different options to modify the Borexino trigger system.

3The cluster algorithm looks for an accumulation of hits within a short time period. The reconstructed
cluster is associated to a physical event.
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8.2 Option 1: Reduction of the Trigger Threshold

An attractive and easy extension of the trigger system is to simply lower the trigger threshold
so that the prompt and the delayed signal can be fully detected in the buffer. These additional
events could be used for a sterile neutrino analysis and could improve the sensitivity of the
experiment. In the following, the increase in the sensitivity and the feasibility from the data
taking point of view are discussed.

8.2.1 Detection Efficiency, Signature, and Sensitivity

The detection efficiency in the buffer is reduced in comparison to the IV, as a lot of low
energy events are mis-reconstructed. Figure 8.3 shows the comparison of the reconstructed
and true radius for coincident SOX events selected with ∆R < 2m and ∆t < 1280 µs. While
IBD reactions taking place in the IV can be well reconstructed, the reconstructed radius
distribution from the events in the IB shows a large deviation from the true radial position
(red and blue solid line). Moreover, the number of selected IBD events drops in the IB, as
the requirement of spatial correlation is not fulfilled. With the selection cuts of Ep = 10− 40
hits, Ed = 10− 60 hits, vd < 0.25m, r < 5.75m (radius of prompt event), ∆R < 1.75m, and
∆t = 1.52 µs − 13.48 µs or 19 µs − 1280 µs, a detection efficiency of 25.6% is reached in the
buffer. The minimum energy cut on both events is given by the cluster inefficiency below 10
hits. Given this detection efficiency, a total event number of ∼ 3600 events is expected for a
measurement time of 1.5 years and an activity of 125 kCi.
The expected signature in the buffer as a function of energy and distance is shown in Fig-
ure 8.4. It can be seen, that a sterile neutrino with the oscillation parameters sin2(2θ)=0.1
and ∆m2=0.5 eV2 produces a detectable signal in the buffer. While the oscillatory pattern is
mostly washed out by the poor energy resolution in the energy spectrum, it can be still ob-
served in the distance spectrum. Moreover, the reconstructed distance range becomes larger
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Figure 8.3: Position Reconstruction of SOX Events in the Buffer The reconstructed
radius (red) is compared to the true radius (blue) of the prompt events generated in the IV
(dashed) or IV+IB (solid). The distributions are obtained from MC simulations of 2× 106 SOX
events generated in the IV+IB (black) and selected with ∆R < 2m and ∆t < 1280 µs. The
dashed line indicates the nominal radius of the IV. While the IBD reactions taking place in the
IV are well reconstructed, a large fraction of the events in the buffer are mis-reconstructed and
reduce the detection efficiency.
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Figure 8.4: Sterile Neutrino Signature in the Buffer The energy and distance spectra
are shown for the no-sterile and a sterile neutrino hypothesis. In total 3600 events are expected
in the buffer for the no-sterile hypothesis, for which the statistical error bars are indicated. The
distributions are obtained from MC simulations assuming the detector status of October 2016.

than for the nominal SOX experiment, which allows to probe a larger ∆m2-range.
Figure 8.5 shows the sensitivity with the additional buffer events in a rate+shape and shape
analysis. Already the sensitivity of the neutrinos interacting within the IV improves in
comparison to the sensitivity with the standard Borexino trigger. This is caused by the
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Figure 8.5: Sensitivity with a Reduced Trigger Threshold The sensitivity of the data
selected in the IV (black) and in addition in the IB (blue) is shown in a rate+shape (solid) and
a shape (dashed) analysis. The expected event number in the IV are 8500 events and in the IB
3600 events for a 125 kCi source. The sensitivity of the rate+shape analysis is shown for three
different uncertainties on the expected event number reconstructed in the IB. The uncertainty
on the event number in the IV is assumed to be 1%. It has to be noted that no uncertainty on
the spectral shape of the antineutrino spectrum and no background is taken into account.
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increased detection efficiency and its accuracy close to the vessel border that allows to enlarge
the FV (besides the optimized selection cuts of Table 5.1, a FV cut of 5 cm and a minimum
energy cut on the delayed event of 10 hits is here assumed). Given in addition the events
interacting in the buffer and an uncertainty of only 1% on the event number, the full 99% CL
parameter space preferred by the anomalous neutrino oscillation data could be investigated.
However, as radioactive sources cannot be inserted into the buffer and hence the buffer
cannot be directly calibrated, the uncertainty on the detection efficiency will be large and
the sensitivity is shown for increasing uncertainties on the event number. Even in the shape
only analysis, the sensitivity improves with the buffer data. The improvement is mainly
given in the ∆m2-region below 2 eV2 due to the increased distance range and the observable
oscillation pattern in the distance spectrum.
It has to be noted that no background is taken into account which will be a crucial point
and will be discussed in the next section. Moreover, closer distances to the source would also
enhance the source-induced background components which would require further investiga-
tions.

8.2.2 Borexino Data Acquisition and Background

The nominal Borexino trigger is issued when at least 20 hits within 100 ns are detected [141].
In order to study the feasibility of the reduction of the trigger threshold, Borexino data is
taken with a lowered threshold. Figure 8.6 shows the trigger rate versus the threshold which
is exponentially increasing towards smaller thresholds. The trigger rate at a threshold of
6 hits is more than 10 times higher than the nominal trigger rate which leads to several
problems in the data acquisition and prevents from a stable data taking. For example, due
to the high trigger rate many Laben boards, where each board collects the data of eight
PMTs [140], are automatically disabled and the run crashes after ∼ 0.5 h.
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Figure 8.6: Borexino Trigger Rate as a Function of the Trigger Threshold The trigger
threshold is defined as the minimum number of hits recorded within 100 ns, where the nominal
Borexino trigger threshold is 20. The data was taken in June 2017.

However, the data from the run with the threshold of 6 is analyzed in order to study the
feasibility from the background point of view.4 Figure 8.7 shows the position of single events
which are reconstructed within a radius of 6.3m (i.e. position of PMTs). These events account

4A trigger threshold of 6 is required to achieve a full detection efficiency at 10 hits.
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Figure 8.7: Position of Borexino Events with a Reduced Trigger Threshold The data
was taken in June 2017 with a trigger threshold of 6. All events which have passed a muon cut
and are reconstructed with r < 6.3m are shown, where ρ =

√
x2 + y2. Panel b) shows the events

with z = 3m− 4m and r = 5.5m− 6.3m. The three substructures correspond to the positions
of CCD cameras installed at the stainless steel sphere.
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Figure 8.8: Energy versus Position of Borexino Events with a Reduced Trigger
Threshold The data was taken in June 2017 with a trigger threshold of 6. All events which
have passed a muon cut and are reconstructed with r < 6.3m are shown. The energy range is
shown above the cluster threshold of 10 hits. Panel b) shows a zoom in the energy region which
is expected for SOX events interacting in the buffer.

only for ∼ 36% of the trigger rate. Most of these events are in turn reconstructed within
the IV and the event number in the buffer is therefore suppressed. Further, a north-south
asymmetry in the event number is observed that can be explained by a larger number of
working PMTs in the northern detector part. In addition, an increased event number can be
observed at large radii in the north which can be traced back to the position of CCD cameras
installed at the stainless steel sphere [141] (see Figure 8.7b). The energy versus the radius
of the single events is shown in Figure 8.8. The energy distribution peaks at small energies
due to the dominating 14C background which is uniformly distributed within the detector.
A few events which are mainly impurities from the IV are reconstructed above the endpoint
of 14C (∼ 50 hits) close to the IV.
When the selection cuts from the previous section are applied, 33 events are found in the
buffer for a measurement time of only 0.51 h. Obviously, the measurement time is too short
to give an accurate background estimation, nevertheless, the expected high background rate
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and the unstable data acquisition with the lowered trigger threshold make this modification of
the trigger infeasible. Moreover, a calibration of the buffer medium with a precise knowledge
on the detection efficiency and detector response would be challenging. As an alternative,
the next section discusses the option to modify the trigger system so that the neutrons from
the buffer can still be detected.

8.3 Option 2: Installation of a Neutron Trigger Gate

In Chapter 7, it was shown that the uncertainty of the detection efficiency increases towards
larger radii, which is mainly caused by the uncertainty of the vessel shape. For all IBD
reactions taking place close to the IV, a fraction of the neutrons, which depends on the
specific vessel shape, are captured in the buffer and the detection efficiency is suppressed.
As the increased light yield in the IB allows to detect also the neutrons from the buffer, all
neutrons can be observed and the uncertainty on the detection efficiency can be decreased.
However, as the energy of the neutrons captured in the buffer is partially smaller than the
trigger threshold, the trigger system of Borexino has to be modified.
The idea is based on the successful working tt128-gate5, which is automatically issued after
muons to detect cosmogenic neutrons, and is sketched in Figure 8.9. Hence, after each high
energy event that could be a possible prompt SOX event (nhits > sox-threshold), a 1.6ms
long gate is issued. To distinguish between the standard Borexino events (tt1), the high
energy event is associated as a tt4-event and has the standard gate length of 1.6 µs. The
automatically following neutron gate is associated as a tt16-event.

tt4 tt16

1.6ms16µs

tt8

16µs

dead time 

1

Figure 8.9: Sketch of the Gate Sequence in the SOX Trigger After each tt4-event a
1.6ms long window (associated with tt16) is automatically issued to detect the delayed neutron
signal. A tt4-event is assigned to events above a certain energy threshold. The event is a tt1-
event, otherwise. The tt8-gate is introduced to reset an unexplained higher dark noise level after
a tt16-event.

In the following, the improvement of the detection efficiency and the sensitivity using such
a SOX trigger is compared to the standard Borexino trigger (Section 8.3.1). Moreover,
the - in the Borexino hardware implemented - SOX trigger is characterized with respect
to the detection and trigger efficiency, and the hit-time distributions in the tt4- and tt16-
gates (Section 8.3.2-8.3.4). Subsequently, the tt4-threshold is optimized (Section 8.3.5) and
Borexino data taken with the final configuration of the SOX trigger is analyzed in order to
evaluate the expected background (Section 8.3.6).

8.3.1 Detection Efficiency and Sensitivity

With the SOX trigger and given that all spill out neutrons can be detected in the buffer,
the uncertainty on the detection efficiency of the IBD depends mostly only on the detection
efficiency of the prompt event. In turn, the uncertainty of the detection efficiency of the

5A summary of the Borexino trigger types can be found in Appendix A.2.
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Figure 8.10: Uncertainty of the Detection Efficiency with the SOX Trigger The
uncertainty is shown as a function of the FV cut and given for different energy cuts on the
prompt event. The uncertainty is computed from the variation of the detection efficiency of the
prompt event within ±5 cm as shown in Figure 5.5b.

prompt event depends on the uncertainty on the vessel shape that is 5 cm (see Chapter 5).
However, the effect of the vessel shape on the detection efficiency is smaller for positrons
than for neutrons and the overall uncertainty can be decreased. The uncertainty on the
detection efficiency with the SOX trigger is shown in Figure 8.10 as a function of the FV
cut. It is determined via the variations of the detection efficiency of the prompt event (see
Figure 5.5) within ±5 cm for a given FV cut. This method has already been tested for the
Borexino trigger and gives consistent results with the ones from full MC simulations that
incorporate modified vessel shapes (see Figure 7.8). This method can only determine the
uncertainties above a FV cut of 5 cm, as the active volume differs otherwise. The obtained
uncertainty is largest for a FV cut of 5 cm with 0.6%, which is about three times smaller
than the uncertainty obtained with the standard Borexino trigger for the same FV cut, and
drops quickly below 0.1% at a FV cut of 20 cm.
The sensitivity with the SOX trigger is studied in Figure 8.11 with a rate only analysis
considering the change in the total event numbers and their uncertainties. The sensitivity is
maximal at a FV cut of 15 cm. The increasing uncertainty on the total event number and the
decreasing total event number of the SOX event sample degrade the sensitivity for smaller
and larger FV cuts, respectively. The sensitivity improves in comparison to the Borexino
trigger, on the one hand, as the detection efficiency increases and hence the total expected
event number increases. On the other hand, and more importantly, the reduction in the
uncertainty of the detection efficiency improves the sensitivity and allows at the same time
the enlargement of the FV. The FV cut with the SOX trigger results into 15 cm in comparison
to the 25 cm of the Borexino trigger, where the sensitivity is increased by 9%. It has to be
noted that the computation does not include backgrounds. However, as studied in Chapter 7,
the sensitivity is almost not affected by the background due to the large signal-to-background
ratio. The backgrounds expected for the SOX trigger are discussed at the end of this chapter.

8.3.2 Trigger Efficiency and Decision Delay

In the following, the tt4-efficiency is studied which is defined as the fraction of tt4-events of
all tt1-events and tt4-events as a function of the energy:

ε(nhits) = #tt4(nhits)
#tt1(nhits) + #tt4(nhits) . (8.1)
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Figure 8.11: Sensitivity with the SOX Trigger The expected neutrino event number (a)
and sensitivity (b) with the SOX trigger are shown as a function of the FV cut. The error
bars shown for the event number take into account the uncertainty on the vessel shape and are
smaller than the marker size for a FV larger than 0.15m. The sensitivity with the SOX trigger
increases in comparison to the one with the standard Borexino trigger (from Figure 7.9) and the
FV cut can be enlarged to 15 cm. The sensitivity is computed for a rate analysis as described in
Appendix A.5.

At first, a brief explanation of the Borexino trigger system is given, which is illustrated in
Figure 8.12. The Borexino trigger is raised when a minimum number of hits (tt1-threshold)
are detected within 100 ns6. The tt1-threshold is currently set to 20 hits. In praxis, each
hit PMT creates a logical signal with a length of 100 ns. The sum of these logical signals is
updated every 33 ns by the 30mHz so-called sum clock. The trigger clock (60MHz) evaluates
every 16 ns the sum and issues a trigger if the sum is larger than the tt1-threshold. At
this time the sum exceeds the tt1-threshold, but, due to the time spread of the arriving
scintillation photons of several tens of nanoseconds, not necessarily the tt4-threshold (see
black line in Figure 8.12). In order to achieve a full tt4-efficiency, the decision whether the
event is associated with tt1 or tt4 and in addition to issue the following tt16-gate is delayed
for several trigger clock cycles. A maximum delay time (in multiples of trigger clock cycles) is
defined up to which at each clock cycle the sum is compared to the tt4-threshold. If the tt4-
threshold is crossed, the event is assigned as tt4-event and the following tt16-gate is issued.
If the sum remains below the tt4-threshold, the event is saved as tt1.
The optimum value of the maximum delay time is studied by varying its value and deter-
mining the tt4-efficiency using physical Borexino data and laser pulses. Here, the pulsed
laser system is used that is installed in Borexino for the time calibration of the PMTs, where
sub-ns 394 nm laser pulses are sent via optical fibers to each PMT [141] and produce a Gaus-
sian energy spectrum with a mean of ∼ 70 hits (see Figure 8.14)7. Figure 8.13 shows the
tt4-efficiency for a delay time between two and five clock cycles (33 ns - 83 ns) for several tt4-
thresholds. The tt4-efficiency starts to rise at the set tt4-threshold. The larger the delay time
the steeper the efficiency curve becomes and a full efficiency is reached for smaller energies.
For example, in a physical run for a tt4-threshold of 50, a full efficiency is obtained at an
energy of 70 hits for a delay time of 5 clock cycles in comparison to 80 hits for 3 clock cycles.
Indeed, a delay of two clock cycles is too short to obtain full efficiencies. In comparison to the
physical runs, the laser runs have a steeper efficiency transition curve due to the narrower

6In addition, the Borexino trigger is issued, when the threshold of the outer detector is crossed (see
Appendix A.2).

7The following figures are shown at the end of this chapter.
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Figure 8.12: Sketch of the Borexino Trigger Logic Each hit PMT generates a 100 ns
long logical signal. The sum of these channels is updated every 33 ns by the sum clock. The
trigger clock evaluates the sum every 16 ns and issues a 16 µs gate when the sum exceeds the
tt1-threshold. Whether the event is saved as tt1 or tt4 is decided with a delay of maximal five
trigger clock cycles, i.e. 83 ns.

time spread of the signal. In conclusion, the delays of four and five clock cycles produce
similar results and the optimized delay time is set to five clock cycles.

8.3.3 Detection Efficiency

Using the pulsed laser system, the detection efficiency of the laser pulses in the tt4- and
tt16-gates is investigated. First, the detection efficiency in the tt4-gate is studied by the
fraction of all sent laser pulses that are detected either in a tt1- or in a tt4-event. Given a
high efficiency in observing the sum of tt1- and tt4-events, the efficiency of the tt4-events
must be high as well. The number of sent pulses is determined from the known frequency
of the pulser (100Hz). The detection efficiency as a function of the tt4-threshold is listed in
Table 8.1. For all thresholds, the efficiency reaches a sufficiently high level of at least 99.88%.
The small amount of unobserved pulses could be due to laser pulses that accidentally fall into
other trigger gates. For example, the tt128-trigger or the service triggers (see Appendix A.2),
which are not taken into account in the efficiency computation.
Second, the detection efficiency of events in the tt16-gate is determined with double-laser
pulses, where the time difference between the two pulses is ∆t. The efficiency is defined as
the fraction of observed double-pulse events with a detected second pulse and is given in
Table 8.1 for varying ∆t. The efficiency is larger than 99.96% for all time differences besides
∆t = 16 µs (99.93%) that lies in the transition region of the tt4- and the tt16-gate. The
energy spectra from the laser pulses reconstructed in the tt4- and tt16-gate agree well with
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Table 8.1: Detection Efficiency of Laser Pulses in the tt4- and tt16-Gate left: the
tt4-efficiency as a function of the tt4-threshold. right: efficiency to detect the second laser pulse
of double pulses as a function of the time difference between the two pulses (∆t). The second
pulse appears in the tt4-gate for ∆t < 16 µs, and in the tt16-gate otherwise. In all tests, the
delay time is set to five clock cycles and the tt1-threshold to 20.

tt4-threshold efficiency [%]
41 99.91± 0.02
51 99.93± 0.02
61 99.96± 0.01
71 99.88± 0.01

∆t [µs] efficiency [%]
13 99.98+0.02

−0.05

14 99.98+0.02
−0.05

15 100.00+0.00
−0.04

16 99.93+0.07
−0.06

17 99.98+0.02
−0.05

18 99.96+0.04
−0.06

19 99.98+0.02
−0.05

20 100.00+0.00
−0.05

50 100.00+0.00
−0.04

100 100.00+0.00
−0.04

200 100.00+0.00
−0.05

400 100.00+0.00
−0.04

800 99.96+0.04
−0.05

each other and are shown in Figure 8.14.
In summary, the results from the laser tests indicate a proper functionality of the SOX trigger.

8.3.4 Hit-Time Distributions in the Trigger Gates

Figure 8.15a shows the cumulative hit-time distribution in the tt4- and tt16-gates from all
events of a physical run. A significantly larger dark noise level is present in the tt4-gate than
in the tt16-gate, which produces a step in the hit-time distribution at 16 µs. One can observe
that (due to an unresolved problem) the dark noise level is increased in events that follow
after a tt16- or tt128-event. Figure 8.16 shows the total number of all hits recorded in the gate
for tt1- or tt4-events as a function of the time difference to the previous event. Two distinct
structures can be observed: while one distribution shows a time-constant energy response,
for the other one the number of reconstructed hits in one gate increases linearly with the
time to the previous event. The latter distribution can be traced back to those events that
follow after a tt16- or tt128-event. Excluding those events from the data, the higher dark
noise level in the tt4-events vanishes and the transition in the hit-time distribution from the
tt4- to tt16-gate is smooth (see 8.15b).
As the reason for the increased dark noise level after tt16/tt128-events could not be explained,
a fake event with 16 µs length that automatically follows after each tt16/tt128-event is intro-
duced. This fake event is not used for the data analysis, but resets the dark noise level and
ensures that the following events are unaffected by a larger dark noise level. The associated
trigger type is tt8. Figure 8.9 sketches the full sequence that is implemented in the SOX
trigger.
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The hit-time distribution recorded in the three gates (tt4, tt16, and tt8) can be seen in
Figure 8.17. The dark noise level in tt4 and tt16 agree well with each other and are both
slightly smaller than the one in tt8 (which is expected). The tt8-gate appears 50 µs after the
end of the tt16-gate, even though the time difference is set to ten trigger clock cycles, i.e.
∼ 160 ns. This indicates that the intrinsic dead time after a tt16/tt128-event is 50 µs. The
dead time in between the tt8- and the next tt1- or tt4-event is negligibly small, which can be
seen in Figure 8.18. Hence, after a total time of ∼ 1.7ms after a tt4-event the next tt1- or
tt4-event can be recorded.
The dead time between the tt4- and the tt16-gate is shown in Figure 8.19 and is ∼ 200 ns. In
comparison, the dead time of the Borexino trigger after a tt1-event is ∼ 3 µs (see Chapter 5).
Having a minimized dead time increases the detection efficiency of the neutrons and increases
hence the statistics of the SOX event sample and the sensitivity of the SOX experiment.

8.3.5 Optimization of the SOX-Trigger Threshold

The tt4-threshold is optimized in order to increase the signal-to-background ratio for the
SOX event sample. Figure 8.20 shows the fraction of the total spectrum above the threshold
of SOX and Borexino events, respectively. The spectrum of the SOX events is obtained from
MC simulations, where the SOX events are generated within the IV. First events are visible
at 100 hits. The Borexino spectrum is reconstructed from Borexino data in October 2017.
The main contribution of the Borexino spectrum comes from the intrinsic 14C background
that reaches up to ∼ 50 hits. Above 50 hits the fraction of Borexino events remains less than
1% and decreases only slightly. Hence, the signal-to-background ratio stays almost constant
above 50 hits. To remove, on the one hand, the full 14C background and to avoid, on the
other hand, the rejection of any signal events, the optimized tt4-threshold is set to 65.
With a Borexino rate of ∼ 19Hz (October 2017) and the tt4-threshold of 65, a tt4-rate of
7 · 10−3 · 19Hz = 0.13Hz is expected due to Borexino events. The rate of SOX events that
accidentally fall into a tt4/tt16-event that is issued by a standard Borexino event is at the
beginning of data taking: 0.13Hz × 36/day × 1.6ms = 7.5 · 10−3/day. Here, 36/day is
assumed to be the expected SOX rate at the beginning of data taking for a 125 kCi source.
For the total measurement time of 1.5 years, 2.3 accidental tt4-events are expected. Similarly,
the accidental coincidence rate of a SOX event in a tt1-gate can be computed: 18.87Hz ×
36/day× 16 µs = 0.01/day and 3.3 events in 1.5 years. Both rates are negligible in comparison
to ∼ 104 expected SOX events. In addition, there is a possibility to reconstruct these events,
which depends on how the prompt and the delayed event fall relatively into these gates.

8.3.6 Final Configuration of the SOX Trigger and Background

With the final configuration of a tt4-threshold of 65, a delay time of five trigger clock cycles,
and the fake tt8-event, physical Borexino data is taken. The resulting tt4-efficiency can be
seen in Figure 8.21, where a full efficiency is obtained for 110 clustered hits.
The tt4-rate is measured to 0.11Hz that agrees well with the prediction from the previous
section. The total rate and energy spectrum of the runs with the final SOX trigger configura-
tion are compared to the ones measured with the standard Borexino trigger without the SOX
modification. An unresolved discrepancy in the rate and the spectrum at low energy events
is observed. The average rate of tt1-events in a standard Borexino run (averaged over 5 runs
in November 2017) is (18.85 ± 0.01)Hz. Instead, the rate of the sum of tt1- and tt4-events
in the SOX trigger runs averages to only (17.81 ± 0.02)Hz, which is a deficit of 5.5%. The
observed difference cannot be explained by the fact that the effective measurement time in
the SOX trigger runs is reduced by 0.018% which is given by the dead time introduced by
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the tt16-gate length times the tt4-rate. The comparison of the total energy spectra for tt1-
and tt4-events is shown in Figure 8.22. The deviation is especially visible in the low energy
region below 50 hits. The reason for the discrepancy has not been understood and due to
the cancelation of the SOX project has not been further investigated.
The data taken with the final configuration and a total measurement time of 24.15 h is
investigated for IBD-like events. This short measurement time can only provide preliminary
results and a longer investigation would be necessary for the SOX analysis. For the optimized
selection cuts (see Table 5.1), a FV cut of 15 cm, and without a minimum energy cut on the
delayed event, seven events are found. The energy and the position of the prompt and the
delayed events are shown in Figure 8.23. All events are reconstructed close to the vessel
border and are likely either accidental coincidences or fast coincidences from the 238U and
232Th chain (see Chaper 6). It has to be noted that for all seven events, the pulse shape
discrimination algorithm fails and the improvement of the pulse shape discrimination at such
low energies would be mandatory to remove background events. Given more statistics, the
selection cuts could be optimized especially for the region close to the vessel border to increase
the signal-to-background ratio. Even though the background at the vessel border might be
high, it can be precisely determined before data taking. In case of accidental coincidences, the
background can also be constrained during data taking via an off-time window measurement
(see Chapter 6).

In summary, in this chapter, the feasibility of using the events interacting in the buffer in
order to increase the sensitivity of the SOX experiment was investigated. The most realistic
option is the installation of a delayed neutron trigger gate to improve the detection efficiency
of IBD reactions close to the vessel border. Such a modification of the Borexino trigger could
increase the sensitivity by about 9% in terms of sin2(2θ) and was extensively and successfully
studied. However, an unresolved discrepancy in the event number and the energy spectrum
in comparison to the nominal Borexino values would have required further investigations
before implementation.
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a)

b)

Figure 8.13: tt4-Efficiency as a Function of the Energy The efficiency is shown for physical
events (a) and laser pulses (b) for the delay times of two to five clock cycles and several SOX
(tt4) trigger thresholds. As the laser events are sharper in time in comparison to the physical
events, the full efficiency is reached for lower energies. The tt1-threshold is for all settings the
nominal one of 20. The shown errors are statistical errors.

Figure 8.14: Energy Spectrum of Laser Pulses The energy spectrum of the laser pulses
reconstructed in a tt4- and tt16-gate are shown in red and blue, respectively.
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a) b)

Figure 8.15: Hit-Time Distribution in the tt4- and tt16-Gate The cumulative hit time
distribution of tt4- (blue) and the following tt16- (red) events of a physical run are shown for a)
all events b) all events not preceded by a tt16/tt128-event. Due to an unsolved issue, tt4-events
after a tt16/tt128-event have an increased dark noise level which is present up to ∼ 19.5 µs. The
peak at 16 µs corresponds to the trigger signal.

Figure 8.16: Dark Noise Level after tt16/tt128-Events The total number of hits in the
tt4-gate is shown as a function of the time difference to the preceding event for a physical
run. The linearly-increasing distribution can be traced back to those events that follow after a
tt16/tt128-event.
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a) b)

Figure 8.17: Hit-Time Distribution of the full SOX Trigger-Gate Sequence The
cumulative hit time distribution is shown for tt4- (blue), tt16- (red), and tt8- (green) events of a
physical run. The latter has been introduced to reset the dark noise level. The dead time after
tt16-events is 50 µs long.
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Figure 8.18: Dead Time after tt16-Events The time difference of the next physical event
(cluster) to the previous tt4-event is shown. The events in the tt16, tt8, tt1/tt4-gate are indicated
in red, green, and black, respectively. The total dead time after a tt16-gate results into ∼ 0.1ms.
The event number is reduced in the black distribution, as events below the trigger threshold are
not recorded.
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a) b)

Figure 8.19: Hit-Time Distribution of tt4- and tt16-Events for the Final Configura-
tion of the SOX Trigger The cumulate hit-times in the tt4-gate and the tt16-gate are shown
in blue and red, respectively. Panel b) shows a zoom in the transition region of the tt4- and
tt16-gates, where the dead time after the tt4-events of about 200 ns is visible.
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a)

b)

Figure 8.20: Fraction of Spectrum above the SOX Trigger Threshold The fraction is
shown for SOX signal events (a) and background events (b). The function for the signal events
is reconstructed from MC simulations with SOX events generated in the IV. The function for
the background is obtained from Borexino data with a tt1-threshold of 20. The optimized tt4-
threshold is set to 65, in order to be well above the 14C background (below ∼ 50 hits) and be
able to detect the low energy SOX events. Note that the energy estimator differs slightly. While
in the top panel the energy is given by the hits reconstructed in the full cluster (1.5 µs), the
energy in the bottom panel is given by the hits reconstructed within 100 ns.
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a) b)

Figure 8.21: tt4-Efficiency for the Final Configuration of the SOX Trigger The effi-
ciency is computed as a function of the number of hits reconstructed in a time window of 100 ns
(a) and 1.5 µs (b), i.e. clustered nhits. The efficiency is obtained from one physical Borexino
data run (∼ 6 h). The error bars indicate the statistical error.
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Figure 8.22: Comparison of the Energy Spectra Measured with the Borexino and
the SOX Trigger The top panels show the energy spectra normalized to the measurement
time for the full energy range (a) and the low energy region (b). The comparison is based on tt1
(Borexino trigger) and tt1+tt4 (SOX trigger) events with one cluster and no signal in the outer
detector. Panel c) and d) show the ratio of the energy spectra of the SOX and the Borexino
trigger. A significant deficit in the spectrum obtained with the SOX trigger is visible for energies
smaller than 50 hits. The error bars account for the statistical uncertainties. Notice the different
ranges of the y-axis in the bottom panels.
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Figure 8.23: Energy and Position of Background Events with the SOX Trigger The
energy (in clustered nhits) is shown as a function of the reconstructed radius for the prompt
and the delayed event. The IBD-like events are selected with the optimized selection cuts, but
without a minimum energy cut on the delayed event and with a FV cut of 15 cm. The data is
taken with the final SOX trigger configuration with a measurement time of 24.15 h. Note that
the pulse shape discrimination algorithm does currently fail for such low energies of the delayed
event.





Part II

Statistical Methods and Issues in
Sterile Neutrino Experiments

A large fraction of the following part was developed in collaboration with Matteo Agostini
and was published in Reference [208].





In order to check whether your die is fair you have to: 

1. Roll the dice a lot of times while playing for example 
’’Mensch ärgere Dich nicht’’. 

2. Count the results.    

3. Have a look at your 
data. 

4. Choose a fit model and make a decision. 

As a consequence, you will almost never decide for a fair die, even though it actually is 
fair and you roll the dice really a lot of times.  
 
In analogy, in the sterile neutrino search the signal of no sterile neutrinos corresponds 
to a flat line. Moreover, a sterile neutrino signal is represented by an oscillation 
signature, which is a very flexible fit model. Thus, the best-fit value in a sterile 
neutrino experiment is typically given by a sterile neutrino hypothesis, even though the 
no-sterile hypothesis might be true! Such best fit values are called biased.   

→ Given a 
flexible enough 
fit model, the 
fit will always 

return 
something 

different from a 
flat line. 

unfair 

Depending on the fit model, the die is  

fair 

Is my die fair? 
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9 Statistical Issues of Short-
Baseline Experiments

As introduced in Chapter 1 and 3, a large number of experiments are currently looking for
light sterile neutrinos. In the following chapter, the common statistical properties of these
sterile neutrino experiments are studied. The focus is set on sterile neutrino experiments that
assume a (3+1) model and search for an oscillation signature in the neutrino spectrum as a
function of distance and energy. In particular, those experiments are considered for which
the oscillation probability can be approximated with the two-flavor oscillation probability.
The statistical issues are studied with two toy experiments and a toy model that are intro-
duced in Section 9.1. Further, the sensitivities, the confidence regions, and the maximum
likelihood estimators in a rate, shape, and rate+shape analysis are discussed in Section 9.2.

9.1 Toy Experiments and Toy Model
Short-baseline experiments look for a signature that is defined by the oscillation probability
(see Section 1.5.5). In particular, the appearance probability that a muon neutrino converts
to an electron neutrino is given by [116]:

P (νµ → νe) = sin2(2θµe) sin2(k ·∆m2 · L/E), (9.1)

where k = 1.27MeV/(eV2·m). Analogously, the survival probability of an electron neutrino
is given by [116]:

P (νe → νe) = 1− sin2(2θee) sin2(k ·∆m2 · L/E), (9.2)
with the oscillation amplitudes sin2 2θee and sin2 2θµe for the respective experiment. Both
probabilities contain the same oscillation term: sin2(k · ∆m2 · L/E) which produces an os-
cillation pattern in L/E and is shown in Figure 9.1a. As the ∆m2-value is correlated to the
oscillation frequency, the oscillation length (period) becomes smaller for larger ∆m2-values.
Due to this common term, the same statistical issues for both types of experiments are ex-
pected. In the following, a toy appearance and a toy disappearance experiment are defined
with parameters representative of the currently running experiments (see Table 1.2). The
parameters of the two toy experiments are summarized in Table 9.1.
The toy appearance experiment is designed to resemble the current MiniBooNE experi-
ment [120]. Hence, as neutrino source a muon-neutrino beam is assumed that can lead to an
excess of electron neutrino events through muon to electron neutrino oscillations, described by
Equation 9.1. The reconstructed distance ranges from 500m to 550m, where the uncertainty
is mainly given by the length of the decay region, in which the muon neutrinos are produced.
For convenience, the energy spectrum is chosen to be flat from 200MeV to 2000MeV with
a resolution of σErec=10MeV. The neutrino energy can be typically reconstructed using the
kinematics of the scattering process and the energy and angle of the outgoing particle that



140 CHAPTER 9. STATISTICAL ISSUES OF SHORT-BASELINE EXPERIMENTS

2 = 0.1 eV2m∆ 2 = 0.5 eV2m∆
2 = 2.0 eV2m∆ 2 = 10 eV2m∆

pseudo data (no signal)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
L/E [m/MeV]

0

0.2

0.4

0.6

0.8

1
 L

/E
)

⋅ 2
m∆ ⋅

(k
 

2
si

n
a)

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
 [m/MeV]rec/ErecL

0.01−

0.005−

0

0.005

0.01

0.015

) eν
→ µν

P
(

b) ) = 0.01eµθ(22sin

1 1.5 2 2.5 3 3.5 4 4.5 5
 [m/MeV]rec/ErecL

0.9

0.95

1

1.05

1.1

) eν
→ eν

P
(

c) ) = 0.1eeθ(22sin

Figure 9.1: Signature of the Toy Experiments a) The oscillation term which is present
in both oscillation probabilities is shown for different ∆m2-values. b) and c) The expected
reconstructed oscillation probabilities for the toy appearance and toy disappearance experiment
is shown for different ∆m2-values. The reconstructed oscillation probability is defined as the ratio
of the difference of observed data and the expectation for the background over the expected data
for the no-oscillation hypothesis. In addition, the reconstructed oscillation probability is shown
for one pseudo-data sample from the no-oscillation hypothesis, where the error bars account for
the statistical uncertainties before background subtraction.

is measured from Cherenkov and scintillation light. Thus, the Lrec/Erec-range varies from
0.4-2.4m/MeV with a resolution between 10 and 25%. A total expected electron neutrino
event number of 105 with an uncertainty of 10% is expected. Here, the event number cor-



9.1. TOY EXPERIMENTS AND TOY MODEL 141

Table 9.1: Parameters of the Toy Appearance and Toy Disappearance Experiment
The ranges of reconstructed distance (Lrec) and reconstructed energy (Erec) are given along
with their uncertainties (σLrec , σErec). Further, the binning refers to the number of energy and
distance bins in the data. The expected event numbers for the total neutrino event number
(N exp

S ) and the background event number (N exp
B ) are quoted with the uncertainties (σNS

, σNB
),

where N exp
S corresponds to the event number for an oscillation probability of one.

parameter unit appearance disappearance
ν - oscillation νµ → νe νe → νe
Lrec m 500− 550 7− 10
σLrec m 50 0.5
Erec MeV 200− 1200 2− 7
σErec MeV 10 0.05 ·

√
E/(1MeV)

Lrec/Erec m/MeV 0.4− 2.4 1− 5
σLrec/Erec % 10− 25 5− 10
binning Lrec × Erec 1× 20 6× 10
N exp
S 105 105

σNS % 10 2
N exp
B 103 104

σNB % 5 2

responds to the maximum possible event number for an appearance probability of one. The
large uncertainty on the event number comes from several sources including the neutrino
flux prediction, neutrino cross sections, uncertainties from nuclear effects, and the detector
response. Further, the background is also assumed to be flat with an event number of 104

and an uncertainty of 5%. As the traveled distance is larger than the detector size, the data
is only binned in the energy observable.
The toy disappearance experiment is similar to a reactor- or source-based experiment that is
looking for an electron neutrino disappearance oscillation (see Equation 9.2). The distance
range is chosen to be 7-10m with a resolution of 0.5m, where the spectrum is proportional
to 1/L2. The energy spectrum is flat from 2MeV to 7MeV with a resolution of 5% at 1MeV.
Hence, the L/E-range spans from 1-5m/MeV with a resolution between 5 to 10%. As the
detector is close to the source and the detector is capable to resolve the energy and the
position (either by time-of-flight techniques or by the segmentation of the detector), the data
is grouped into six L and ten E bins. The expected event number for a survival probability of
one (and hence the no-sterile hypothesis) is 105 with an uncertainty of 2%. The background
event number is assumed to be 104 with 2% uncertainty.
Figure 9.1b and c depict the expected reconstructed oscillation probability for the two toy
experiments for several ∆m2-values. The signature clearly depends on the ∆m2-value:

(a) ∆m2 < 0.1 eV2 → (L/E)osc > 10m/MeV: The oscillation length is larger than the
reconstructed L/E-range and can only partially be observed.

(b) 0.1 eV2 < ∆m2 < 10 eV2 → (L/E)osc ∼ 1m/MeV: The oscillation length is smaller
than the reconstructed L/E-range and can be observed within the detector.

(c) ∆m2 > 10 eV2 → (L/E)osc > 0.1m/MeV: The oscillation length is smaller than the
detector resolution. An overall increased (reduced) event number can be observed in
an appearance (disappearance) experiment.



142 CHAPTER 9. STATISTICAL ISSUES OF SHORT-BASELINE EXPERIMENTS

In addition, the reconstructed signature from a pseudo-data set from the no-sterile hypothesis
is shown with the statistical error bars. From that signature, one can observe that statistical
fluctuations in the data sample could possibly mimic a sterile neutrino signature. This will
be discussed in more detail in this chapter and in Chapter 11.
In the following, three different kinds of analyses are performed: the rate, shape and rate+shape
analysis. The likelihood function in a rate+shape analysis is defined by:

L(sin2(2θ),∆m2, NS , NB) =
∏
ij

P(Nobs
ij |N

exp
ij (sin2(2θ),∆m2, NS , NB)) (9.3)

·N (Nobs
S |NS , σ

2
S) · N (Nobs

B |NB, σ
2
B),

where the notation follows the one introduced in Chapter 3. For a shape analysis the normal
distribution N (Nobs

S |NS , σ
2
S) (the constraint on the neutrino event number) is dropped in

the likelihood function. Further, i and j are set to one in the likelihood function for a rate
analysis and the data has hence only one bin in energy and distance.
For the test statistic, the profile likelihood ratio as defined in Equation 3.9 is used. The
probability distributions of the profile likelihood ratio are constructed via the Monte Carlo
(MC) construction introduced in Chapter 3.2.3. Details on the minimization algorithm of
the negative log-likelihood function, can be found in Appendix A.4.
Note that the so-called ”ratio - method” which is independent on the neutrino flux and
therefore currently used by most of the reactor-based experiments is not considered in the
following [128, 130]. However, the sensitivities of the ratio-method are expected to behave
similar to the sensitivities in a shape analysis.

9.2 Sensitivities, Confidence Regions, and Maximum-
Likelihood Estimators

As introduced in Chapter 3, one can distinguish between the exclusion and discovery sensi-
tivity. The exclusion sensitivity delimits the parameter space that could be rejected if the
no sterile hypothesis is true with a probability of at least 50%. The parameter space on
the right of the sensitivity is excluded and the parameter space on the left of the sensitivity
corresponds to the median obtained confidence region when the no sterile hypothesis is true.
Instead, the discovery sensitivity delimits the parameter space that could be discovered with
50% probability if the sterile hypothesis is true. This means that for the hypotheses in the
discovery region, if they are true, the no-signal hypothesis is rejected with a probability of
at least 50% (see Figure 3.4).
The sensitivities of the toy experiments are shown at the 95% CL in Figure 9.2.1 The appear-
ance and disappearance experiment show similar behavior, which is summarized shortly in
the following and discussed in detail in Section 9.2.1-9.2.3. As the signature depends on the
∆m2-value, the sensitivities can be grouped into the same three ∆m2-regions as defined pre-
viously. At ∆m2 ∼ 1 eV2, the oscillation length can be resolved within the detector and the
experiment is sensitive to the oscillation signature. This is the most sensitive ∆m2-region.
For larger ∆m2-values the oscillation length becomes smaller than the detector resolution
and only an overall change in the event number can be observed. At these ∆m2-values
(∆m2 > 20 eV2), sin2(2θ) and NS become correlated and the sensitivity in the shape analysis
is lost. Instead, the sensitivity in the rate analysis (i.e. whenNS is constrained) stays constant
in terms of sin2(2θ) for large ∆m2-values. The sensitivity decreases for smaller ∆m2-values

1The following figures of this chapter can be found at the end of the chapter.
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(∆m2 . 0.1 eV2), as the oscillation length becomes larger than the reconstructed L/E range.
In this ∆m2-region the change in the expected event number and hence the sensitivity is
approximately proportional to the product sin2(2θ)×∆m2.
The sensitivity in the appearance experiment is stronger in terms of sin2(2θ) than in the
disappearance experiment. In the appearance experiment the no-sterile hypothesis is given
by the background contribution only. Typically, the expected event number and the statistical
uncertainties are hence smaller in an appearance experiment and the sensitivity is reached for
smaller sin2(2θ)-values. It should be emphasized that the mixing angles cannot be compared
directly to each other (see Equation 1.12 for their connection).
In the following, the sensitivities obtained from the rate, the shape, and the combined rate +
shape analysis are discussed in more detail. Additionally, the reconstructed confidence regions
and maximum-likelihood estimator (MLE)-values from toy-data samples are investigated in
the individual analyses.

9.2.1 Rate Analysis

A rate analysis is based on the integral event number independently from the spectral shape.
Given an observed event number, any hypothesis with the same expected event number has
the same probability to be true. Hence, the hypotheses at the sensitivity share all the same
expected event number which deviates exactly by 2σ from the reference hypothesis. In turn,
the likelihood function, which is shown in Figure 9.3a and b for pseudo-data samples of the
toy appearance experiment2, is constant for the set of hypotheses with the same expected
event numbers. As a consequence, the reconstructed confidence regions are also restricted
by these iso-event hypotheses. Such confidence regions are exemplarily depicted in black
in Figure 9.4 for pseudo-data sets of the toy experiments under the no-signal and signal
hypothesis, respectively. A signal in a rate analysis is represented by a confidence region
that is a band in the sin2(2θ)-∆m2 parameter space (see black lines in Figure 9.4d). Since
the data has only one bin, the oscillation parameters are correlated and only one parameter
(the overall oscillation probability) can be deduced. Thus, the oscillation parameters sin2(2θ)
and ∆m2 cannot be constrained at the same time and the analysis has only one degree of
freedom.
In Figure 9.5a and b the MLE-values for pseudo data under the no-signal hypothesis are
shown in black. Each point in the sin2(2θ)-∆m2 parameter plane stands for all hypotheses
with the same oscillation probability. Hence for more visibility, the equivalent oscillation
probability is shown in Figure 9.5c and d. On the one hand, the MLE-values are normally
distributed around the true value in the physically allowed parameter space. The restriction
of the parameter space, on the other hand, bounds the MLE-values to the value of the physical
border. For instance, the no-signal hypothesis in a disappearance experiment has a survival
probability of one (Pee = 1). Given an observed event number larger than the expected one,
the best-fit value results into the maximum possible oscillation probability. Therefore, due
to statistical fluctuations, half of the pseudo-data samples have the no-signal hypothesis as
the best-fit hypothesis. In Chapter 11 the effect of the distribution of the MLE-values on the
distribution of the test statistic is discussed.
From the sensitivities in Figure 9.2 one observes, that there is a parameter space which can be
on the one hand discovered but on the other hand not be excluded. This can be traced back
to a boundary effect. In a signal discovery the tested hypothesis is the no-signal hypothesis,
which lies directly on the edge of the allowed parameter space. The MLE-values are hence
bounded as described above and the variance of the MLE is reduced on the boundary in

2The negative log-likelihood function of a disappearance experiment is shown in Figure 11.8.
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comparison to hypotheses far from the boundary. This behavior is illustrated in Figure 9.6a,
which shows the variance of the MLE in terms of the survival probability as a function of
sin2(2θ) at ∆m2=1 eV2. Testing the no-signal hypothesis with a smaller variance leads hence
to better sensitivities. This is the reason why the discovery sensitivity is shifted to smaller
sin2(2θ)-values. Appendix A.5 shows how to compute the sensitivities for the rate analysis
from the statistical and systematic uncertainties on the background and neutrino events only.
The parameter bound also affects the power of the hypothesis tests in the rate analysis.
The power is defined as the probability to reject the tested hypothesis when the alternative
hypothesis is true (see Chapter 3). The exclusion power represents the probability to re-
ject the signal hypothesis H(sin2(2θ),∆m2) when the no-signal hypothesis is true, while the
discovery power gives the probability to reject the no-signal hypothesis when the signal hy-
pothesis H(sin2(2θ),∆m2) is true. Figure 9.7a shows the exclusion and discovery power as a
function of sin2(2θ) for ∆m2 = 1eV2 for the toy disappearance experiment. In the discovery
case, the tested hypothesis always stays the no-signal hypothesis and the power increases
(as expected) for larger oscillation hypotheses. In the exclusion case instead, the power is
minimal at sin2(2θ) ≈ 0.15 with a value smaller than the test size. Such a test, when the
power becomes smaller than the test size, is called biased3 [175]. Figure 9.7b visualizes the
explanation of the reduction of the power using the distributions of the MLE-values of the
oscillation probability for the no-oscillation hypothesis and the oscillation hypothesis close
to the minimal power with sin2(2θ) = 0.015 and ∆m2 = 1 eV2. Due to the parameter bound,
the no-oscillation hypothesis and oscillation hypotheses close to the parameter bound can
only be rejected in a disappearance experiment when the observed event number is smaller
than the expected one. This behavior can be interpreted as a one-sided limit with one critical
value. As the expected event number decreases for a signal hypothesis in a disappearance
experiment, the critical value for the signal hypothesis decreases as well in comparison to the
critical value of the no-signal hypothesis. Hence, the fraction of the expected event number
under the no-signal hypothesis beyond the critical value of the signal hypothesis decreases
in comparison to the fraction under the signal hypothesis, i.e. the test size. As this fraction
corresponds to the power of the test, the power of the test of the signal hypothesis is reduced
in comparison to the test size.4 However, the power of the test of large signals increases,
as these hypotheses are unaffected by the parameter bound. These hypotheses are that far
from the parameter bound and can be rejected when the observed event number is larger or
smaller than the expected one which corresponds then to a two-sided limit (with two critical
values). Thus, the data sets with an observed event number larger than the expected one
add also to the power of the test and the power increases.

9.2.2 Shape Analysis

In the definition of the shape analysis, the total neutrino event number is unconstrained.
Such an analysis is for example performed when the absolute neutrino flux is unknown. The
shape analysis is sensitive in the mass region from 0.1 eV2 to 10 eV2, where the oscillation
length is around 1m/MeV and can be directly reconstructed within the detector. Oscillation
lengths smaller than the detector resolution change only the overall expected event number
of the neutrino signal and an unknown neutrino flux could hence explain the change in the
neutrino event number. Therefore, a shape analysis is not sensitive to large ∆m2-values.
For the disappearance experiment and given a true oscillation hypothesis, both oscillation

3A biased test implies that the confidence region will contain the tested hypothesis with a higher probability
than designed by the test size, given the alternative hypothesis is true.

4The actual power is computed from the probability distributions of the test statistic.



9.2. SENSITIVITIES, CONFIDENCE REGIONS, AND MAXIMUM-LIKELIHOOD
ESTIMATORS 145

parameters can be reconstructed (see red contour in Figure 9.4c). Hence, the degrees of
freedom in a shape analysis are two. In contrast, it is worth mentioning that an appearance
experiment has no exclusion sensitivity in a shape analysis. Remember in an appearance
experiment the expected neutrino event number is given by:

N exp
S = NS · Pint(νµ → νe) ∝ NS · sin2(2θµe). (9.4)

Hence, the neutrino signal NS and the oscillation amplitude sin2(2θµe) are fully correlated
and the degrees of freedom of the analysis is only one. Having no knowledge on NS prevents
thus from the reconstruction of sin2(2θµe) and the likelihood function is independent on
sin2(2θµe) (see Figure 9.3c and d). Hence, given for example the no-oscillation hypothesis is
true, any oscillation hypothesis could explain the data when NS becomes arbitrarily small.
This is also the reason why there is no exclusion sensitivity in the appearance experiment
(see Figure 9.2b). Furthermore, no exclusion limit can be obtained from a data sample under
the no-signal hypothesis (see Figure 9.4b).
In contrast, the discovery sensitivity in the appearance experiment is independent on the
uncertainty of the total neutrino event number and overlaps with the rate + shape sensitivity
in Figure 9.2b. Suppose the observed event number of a data set is larger than the expected
one from the background, which can be constrained with some precision. In that case, the
no-oscillation hypothesis is rejected independently on the uncertainty of the total neutrino
event number. However, due to the correlation of NS and sin2(2θµe), the confidence region
for a signal can only reconstruct the ∆m2-value (see red line in Figure 9.4d).
In comparison to the rate analysis, the ordering of the exclusion and discovery sensitivity
is reversed in the shape analysis for the disappearance experiment (see Figure 9.2a). This
behavior can be traced back to statistical fluctuations in the data that lead to best-fit hy-
potheses always different from the no-signal hypothesis, even though the true hypothesis is
the no-signal hypothesis. This bias can be seen in the distribution of the MLE-values of
sin2(2θ) and ∆m2 under the no-oscillation hypothesis for the shape analysis indicated in red
in Figure 9.5a. These MLE-values are actually distributed close to the expected sensitivity
of the shape analysis. In addition, one can observe that the MLE-values are completely
unaffected by the boundary condition sin2(2θ)≥0, which can be seen by the projection of
the MLE-values on the respective survival probability shown in Figure 9.5c. The bias is that
large that the MLE-values are shifted far away from the physical border at Pee = 1. Fur-
ther, the bias enlarges the total variance of the MLE which is shown in Figure 9.6b for the
variance of the survival probability as a function of sin2(2θ) at ∆m2=1 eV2. One can clearly
observe that the variance increases because of the bias by almost three orders of magnitude
below sin2(2θ)<0.05, i.e. in the insensitive parameter region. Instead, when the oscillation
signature is larger than the statistical fluctuations of the data set, the bias vanishes as the
true hypothesis can be reconstructed. However, as the bias removes any dependency on the
parameter bound for the variance (as discussed in the rate analysis, see Figure 9.6a) and
the bias reduces with increasing sin2(2θ)-value, the variance for the sin2(2θ)-value close to
the sensitivity is smaller than the variance of the no-oscillation hypothesis. Thus, the ex-
clusion sensitivity is stronger in terms of sin2(2θ) in comparison to the discovery sensitivity.
The observed distribution of the MLE-values is consistent with recent results from Refer-
ences [209–213]. Moreover, Reference [212] predicts the average value of the MLE of sin2(2θ)
to 〈sin2(2θ)〉 ≈ 6.2/

√
N exp
S . Thus, in the case of the disappearance experiment a value of

sin2(2θ)≈ 0.02 is expected which agrees well with the observed values at ∼ 1 eV2. Chapter 11
discusses how this bias affects the distributions of the test statistic.
Statistical fluctuations in the data and the sought-after oscillation signature lead to confidence
regions which strongly fluctuate around the exclusion sensitivity in terms of sin2(2θ). This
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behavior is especially visible for pseudo-data under the no-oscillation hypothesis from the toy
disappearance experiment which is shown in red in Figure 9.4a. An oscillation length, which
can describe the statistical fluctuations of a specific data set, results in a weaker exclusion
limit at the respective ∆m2-value than the sensitivity. Moreover, the oscillation signature
implies that typically also multiple values of the oscillation length can fit the statistical
fluctuations of that data. Instead, the ∆m2-values with an oscillation length that are not
compatible with the statistical fluctuations of the data, produce exclusion limits stronger
than the sensitivity. Thus, the negative log-likelihood function features many local minima
along the ∆m2-axis which can be seen for example in Figure 9.3 (and in Figure 11.8 of
Chapter 11). These local minima complicate the minimization of the negative log-likelihood
function and is one of the main challenges of a shape analysis.

9.2.3 Rate + Shape Analysis

In a rate + shape analysis, the total neutrino event number is known with the uncertainty
σS and the analysis becomes hence sensitive to large ∆m2-values. The rate + shape analysis
combines the individual sensitivities and confidence regions from the rate and the shape
analyses, but is not a simple linear combination of them (see Figure 9.2 and 9.4). How the
rate and the shape information exactly add depends on the parameters of the experiment.
The bulk of the sensitivity steams from the rate analysis in the appearance experiment, while
the shape part gives only little improvement. In the disappearance experiment, instead, the
shape analysis dominates.
The rate + shape analysis has two degrees of freedom and can reconstruct both oscillation
parameters under a signal hypothesis in the disappearance and appearance experiment (see
blue lines in Figure 9.4c and d). The size of the confidence region becomes smaller in the
rate + shape analysis in comparison to the shape analysis, as the constrained neutrino event
number decreases the correlation to sin2(2θ).
For large ∆m2-values (∆m2 & 20 eV2), the sensitivities and limits in the rate analysis are
stronger than in a rate + shape analysis (see Figure 9.2 and 9.4a and b). This can be
traced back to the degrees of freedom of the individual analyses. Since the data consists in
a rate analysis of only one bin, sin2(2θ) and ∆m2 become totally correlated and the degree
of freedom is one. While the degrees of freedom in a rate + shape analysis are two, and
confidence regions increase with the number of degrees of freedom5, the sensitivities do not
overlap. In other words, in a rate analysis one loses all sensitivity to reconstruct ∆m2, but
at the same time gains sensitivity in terms of sin2(2θ).
The MLE for the no-signal hypothesis is also biased. However, in comparison to the shape
analysis, the parameter space of the MLE-values is narrowed and the bias is hence reduced
(see Figure 9.5 in blue). Thus, the bias becomes smaller with decreasing uncertainty on the
total neutrino event number. Moreover, the bias in the appearance experiment is found to
be smaller than the one in the disappearance experiment.
The presence of the parameter bound and at the same time the bias of the MLE are respon-
sible for the unintuitive effect that the exclusion sensitivity and limit become stronger with
larger uncertainties on the event number for ∆m2∼1 eV2 (see Figure 9.2a and Figure 9.4a).
To demonstrate this behavior in more detail, Figure 9.8 shows the exclusion and discovery
power for several systematic uncertainties on the total neutrino event number as a function
of sin2(2θ). The discovery power behaves as expected and is strongest for all sin2(2θ) - values
for the smallest uncertainty. However, the ordering of the exclusion power reverses around
the sensitive sin2(2θ)-value: For sin2(2θ)-values smaller than the sensitivity, the power is

5See Appendix A.8 for an illustration.
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maximal for the largest uncertainty, while for sin2(2θ)-values above the sensitivity the power
is minimal for the smallest uncertainty (as expected). As discussed in the rate analysis, a
parameter bound introduces a one-sided limit and reduces the exclusion power for the oscil-
lation hypotheses close to the parameter bound. This is also the case for the rate + shape
analysis. However, due to the bias, the MLE-values are shifted away from the parameter
bound and are hence less affected by it which effectively produces a two-sided limit. Thus, as
the exclusion power of two-sided limits increases with the oscillation hypothesis (also for the
oscillation hypotheses close to the parameter bound), the bias counteracts the reduction of
the power induced by the parameter bound. Given a large enough bias, the exclusion power
effectively increases for the oscillation hypotheses close to the parameter bound and results
into stronger sensitivities and exclusion limits for a shape analysis than for a rate+shape
analysis. The above-described phenomenon is visually explained in Figure 9.9 and 9.10.

In summary, in this chapter the issues of the analysis of a short-baseline experiment were
discussed. Some unintuitive features are found, which can be traced back to two reasons:
the parameter bound on sin2(2θ) and the statistical fluctuations in the data sample that can
mimic an oscillation signature and introduce a bias on the MLE. Moreover, the likelihood
pattern in a shape and rate+shape analysis with its many local minima complicates the
analyses and requires optimized minimization algorithms including a huge computational
effort. Therefore, the current experiments try to simplify their analyses, but introduce at the
same time results that cannot be compared directly to each other. In the next chapter, the
methods that are currently used by the sterile neutrino search experiments will be discussed.
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Figure 9.2: Sensitivities of Toy Experiments The sensitivities for the disappearance (a)
and appearance (b) toy experiment are shown for exclusion (black) and discovery (red) in a rate,
shape and rate + shape analysis at the 95% CL. Note that the shape analysis in the appearance
experiment is either consistent with the rate+shape analysis (discovery) or not sensitive at all
(exclusion).
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Figure 9.3: Negative Log-Likelihood Maps for the Toy Appearance Experiment The
negative log-likelihood function is normalized to the absolute minimum and shown in a rate,
shape and rate+shape analysis for pseudo data from the no-oscillation and from an oscillation
hypothesis (signal sin2(2θ)µe = 0.004 ∆m2 = 1 eV2), respectively. The negative log-likelihood
function is clipped at a value of 20 and the the maximum likelihood estimator in the individual
analysis is indicated in red.
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Figure 9.4: Reconstructed Confidence Regions from Pseudo-Data of the Toy Ex-
periments The confidence regions at the 95% CL obtained in a rate, shape and rate+ shape
analysis are shown separately for the same pseudo-data either for the no-oscillation (a and b) or
an oscillation hypothesis (c and d). Note that the rate analysis is not sensitive to the oscillation
hypothesis of the disappearance experiment.
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Figure 9.5: Maximum-Likelihood Estimators under the No-Oscillation Hypothesis
for the Rate, Shape and Rate+Shape Analysis The MLE-values for sin2(2θ) and ∆m2

from 105 pseudo-data samples of the toy disappearance and appearance experiment are shown in
a) and b). The distribution of the corresponding oscillation probabilities of a) and b) are shown c)
and d), respectively. MLE-values which are reconstructed outside of the shown parameter range
are not shown. The distribution of the MLE-values peak at the physical parameter bounds at
one (disappearance) and zero (appearance). In the shape and rate+shape analysis, statistical
fluctuations in the data sample mimic an oscillation hypothesis and introduce a bias in the
analysis. The bias increases with increasing uncertainty on the total event number and moves
the distribution away from the parameter bounds.



152 CHAPTER 9. STATISTICAL ISSUES OF SHORT-BASELINE EXPERIMENTS

3−10 2−10 1−10 1
)θ(22sin

0.1

0.15

0.2

0.25

0.3

0.35

0.4
3−10×

)
ee

P
V

ar
(

2 = 1eV2m∆

exclusion sensitivity

test size

a)
Disappearance

rate

3−10 2−10 1−10 1
)θ(22sin

5−10

4−10

3−10

2−10

)
ee

P
V

ar
(

2 = 1eV2m∆

exclusion sensitivity

b)
Disappearance

shape

Figure 9.6: Variance of the Survival Probability. The variance as a function of sin2(2θ)
for the toy disappearance experiment is shown in a rate (a) and a shape (b) analysis. The
variance is determined from 105 toy experiments for each sin2(2θ)-point. In general, the variance
is decreasing with decreasing expected event number (sin2(2θ) > 0.1). Due to the parameter
bound at sin2(2θ) = 0, the variance is suppressed for sin2(2θ)-values smaller than the exclusion
sensitivity in the rate analysis. In the shape analysis, the bias in the MLE enlarges the variance
for small sin2(2θ)-values and counteracts the suppression due to the parameter bound. Thus,
in the rate analysis, the variance is larger at the sin2(2θ)-value of the exclusion sensitivity than
for the no-sterile hypothesis (sin2(2θ)=0), in the shape analysis otherwise. This determines the
ordering of the exclusion and discovery sensitivity (Figure 9.2).
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Figure 9.7: Power of a Test for Exclusion and Discovery for the Toy Disappearance
Experiment in a Rate Analysis a) The power is shown as a function of sin2(2θ) for ∆m2 =
1 eV2 and is computed from the probability distributions of the test statistic obtained from 104

pseudo-data samples each. The power increases with increasing sin2(2θ)-value. However, due to
the physical border, the power for exclusion drops below the test size of 0.05 for small sin2(2θ)-
values. b) The probability distribution of the MLE-values in terms of the survival probability is
shown for the no-oscillation and the oscillation hypothesis with the minimal exclusion power of
panel a. The shaded regions correspond approximately to the exclusion (black) and discovery
(red) power which is defined by the fraction of the distributions beyond the critical values tc of
the alternative distributions.
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Figure 9.8: Exclusion and Discovery Power for Different Uncertainties on the Total
Event Number in a Rate+Shape Analysis a) The discovery power is shown as a function
of sin2(2θ) and decreases with increasing uncertainty. b) The exclusion power is shown as a
function of sin2(2θ) and the ordering of the exclusion power is reversed for small sin2(2θ)-values
and leads to stronger limits in a shape analysis than in a rate+shape analysis (see Figure 9.2a
and Figure 9.4a). This effect is induced by the presence of the parameter bound and the bias of
the MLE (see Figure 9.9 and 9.10).

Figure 9.9: Sketch of the Impact of the Bias on the Power of a Test Two pseudo-
probability distributions for the no-oscillation and a small oscillation hypothesis for two different
uncertainties on the total event number σ1 (left) and σ2 (right), where σ1 < σ2, are shown. The
presence of a parameter bound leads only to a one-sided limit (upper limit tup) that induces a
reduced power for small oscillation hypotheses (see also Figure 9.7). Given a bias that is large
enough to shift the probability distribution away from the parameter bound, a two-sided limit
arises (upper and lower limit tup/tlow). The fraction of the probability distribution of the no-
oscillation hypothesis below the lower limit contributes then also to the power and the power
increases.
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σS ↑

bias ↑ one-sided →
two-sided limit

power ↑

variance ↑ power ↓

Figure 9.10: Interplay Between Bias and Variance of the Maximum-Likelihood Es-
timators The sketch explains the flip flop of the exclusion power in Figure 9.8 and is valid for
small (insensitive) oscillation hypotheses. On the one hand, as the systematic uncertainty on
the expected neutrino event number increases, the bias on the MLE becomes larger. Due to the
bias, the presence of the parameter bound effectively vanishes, and the limit becomes two-sided
(see Figure 9.9). As the power of a two-sided limit is larger than for a one-sided limit for the
test of a small oscillation hypothesis, the power increases. On the other hand, the systematic
uncertainty increases the statistical uncertainty (variance) and reduces the power of a test. For
hypotheses close to the parameter bound, the bias effect can dominate and reverse the ordering
of the exclusion power.
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10 Comparison of Statistical
Methods

As discussed in Chapter 3, current short-baseline experiments apply different analysis meth-
ods, which prevents from a direct comparison of the results. The goal of the following chapter
is to compare the different methods and discuss their properties and interpretations. Here,
the work of Reference [177] and [183] is extended by studying a large set of experimental
parameters, as the rate, shape and rate+shape analysis in appearance and disappearance
experiments. Further, exclusion and discovery scenarios are discussed.
Section 10.1 introduces the statistical methods that are afterwards compared in Section 10.4.
Beforehand, the individual components of a method, namely the test statistic and the so-
called CLS method, are discussed separately in Section 10.2 and 10.3.

10.1 Statistical Methods

In the following, a method is decomposed into two ingredients. The first one is the choice of
a test statistic that is mandatory. The second one is the optional combination with the CLS
method.

10.1.1 Choice of the Test Statistic and the Alternative Hypothesis

To test the hypothesis H(sin2(2θ) = x,∆m2 = y), all experiments use a likelihood ratio1 [176]

T = −2 ln
max
η
L(sin2(2θ) = x,∆m2 = y,η)

max
(sin2(2θ),∆m2)∈H1,η

L(sin2(2θ),∆m2,η) , (10.1)

where η represents the vector of nuisance parameters (see Chapter 3). The nominator is the
maximum value of the likelihood function (see Equation 3.7) in the allowed parameter space
of the nuisance parameters. The denominator maximizes the likelihood function additionally
over the oscillation parameters in the parameter space defined by the alternative hypothesis
H1.
The difference in the test statistics can be traced back to the definition of the alternative
hypothesis. The definition of the alternative hypothesis changes the denominator in Equa-
tion 10.1 and thus the reference hypothesis and the reference value of the test statistic.
Table 10.1 lists the different test statistics and their alternative hypotheses.
When the alternative hypothesis corresponds to the physically-allowed parameter space, the
test statistic is called T2. As the alternative hypothesis is two-dimensional, the inversion

1Depending on the event number, the ratio of a χ2-teststatistic is used instead. However, the following
discussion applies to both cases.
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Table 10.1: Test Statistics Used in Sterile Neutrino Searches The first column specifies
the nomenclature used throughout this thesis. The test statistics differ by the definition of the
alternative hypothesis which is specified in the second and third column. The name of associated
techniques is given in the fourth column. Experiments using different approaches are summarized
in column five. Note that the table represents the status in 2018. Some of these experiments
adapted their methods in the meantime (see Chapter 12).

name H1:{sin2(2θ), ∆m2} techniques associated experiments
sin2(2θ) ∆m2

T2 0 ≤sin2(2θ)≤ 1 ∆m2≥ 0 eV2 2D/ global scan or
global p-value

LSND [117]
MiniBooNE [120]
PROSPECT [128]

T1 0 ≤sin2(2θ)≤ 1 ∆m2= y
raster scan or
local p-value

NEOS [71]
STEREO [130]

T0 sin2(2θ)= 0 ∆m2= 0 eV2 Gaussian CLS DANSS [126]

of the set of hypothesis tests with T2 results into a two-dimensional confidence region (see
Figure 10.1) that contains the sin2(2θ)-∆m2-values that are most compatible with the data
within the 3+1 model. This test statistic corresponds to the discussed test statistic in the
previous chapter and is agnostic towards the two oscillation parameters which is the current
situation in the sterile neutrino experiments.
If the ∆m2-value could be constrained by measurements or a theoretical model in the future,
the test statistic T1 can be used. Given a known ∆m2=y, sin2(2θ) remains the only free oscil-
lation parameter. The alternative hypothesis is therefore H1:{sin2(2θ), ∆m2:0 ≤ sin2(2θ) ≤
1,∆m2 = y}. This test produces a one-dimensional confidence region for ∆m2=y. Even
though ∆m2 is currently not known, T1 is applied by NEOS and STEREO2. As the neg-
ative log-likelihood function has several local minima along the ∆m2-axis (see for example
Figure 9.3 or Figure 11.8), the minimization process for T2 requires a large computational
effort. Fixing the ∆m2-value simplifies the minimization process and reduces therefore the
computation time. To obtain a two-dimensional region, the construction of a one-dimensional
confidence region is repeated for all possible ∆m2-values. Hence, the alternative hypothesis
changes for each ∆m2-value and always corresponds to the one-dimensional sin2(2θ)-space at
the ∆m2-value of the null hypothesis. The confidence region3 obtained with T1 corresponds
to the union of one-dimensional confidence regions, where each one-dimensional confidence
region contains the sin2(2θ)-values most compatible with the data for the respective ∆m2-
value.
The alternative hypothesis for T0 is the no-oscillation hypothesis. This test statistic could
be used if both oscillation parameters are motivated by a theory or a measurement. Besides
the nuisance parameters, all parameters are fixed and the test compares two (almost) simple
hypotheses. Hence, the computational effort is low. The obtained confidence regions are only
point-like. This means for each hypothesis in the sin2(2θ)-∆m2-plane, the construction of
the confidence region needs to be repeated to obtain a two-dimensional region. When testing

2STEREO applied T1 in their first analysis [130]. In a recent update, the results are in addition also shown
for T2 [211].

3Even though the two-dimensional region does not correspond to a confidence region by definition, the
regions reconstructed by any method will be referred to as a confidence region in the following.
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union of point-like
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two-dimensional
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Figure 10.1: Construction of Two-Dimensional Confidence Regions The construction
and interpretation of the confidence region depends on the test statistic. The construction using
the text-book approach (see Chapter 3.2) is indicated with blue. Through the repetition of the
text-book approach, two-dimensional regions are obtained for T1 and T0.

the no-oscillation hypothesis, the null and the alternative hypothesis are the same. Hence,
the no-oscillation hypothesis is always accepted and no discovery can be made. Further,
the confidence region will contain all sin2(2θ)-∆m2-values that are more likely than the no-
oscillation hypothesis.
It has to be noted that all three test statistics are conceptually correct for the test of a single
hypothesis. However, the interpretation differs and some issues, which will be discussed in
this chapter, arise when the test statistics T0 and T1 are used to generate two-dimensional
confidence regions.

10.1.2 Combination with the CLS Method

In order to avoid to reject hypotheses beyond the sensitivity, the CLS method can be applied.
This method results into more conservative sensitivities and limits and is especially used in
the searches for small signals [176].
Figure 10.2 sketches the CLS method: when one is testing a hypothesis with a small oscillation
signal H(x, y), the distributions of the test statistic under the oscillation hypothesis f(t|(x, y))
and the no-oscillation hypothesis f(t|(0, 0)) typically overlap. Given an observed test statistic
value tobs, one can compute the p-value under the oscillation hypothesis and under the no-
oscillation hypothesis via

p(x, y) =
∫ ∞
tobs

f(t|(x, y)) and (10.2)

p(0, 0) =
∫ tobs

−∞
f(t|(0, 0)). (10.3)

Instead of the standard rejection criteria p(x, y) < α, the hypothesis H(x, y) is rejected, when

CLS = p(x, y)
1− p(0, 0) < α (10.4)

with the test size α.
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test statistic t

f(t|(x,y)) f(t|(0,0))

obst1 - p(0,0)
p(x,y)

 = sCL

p(x,y)

1 - p(0,0)

Figure 10.2: Sketch of the CLS Method The hypothesis H(x, y) is rejected when the CLS-
value is smaller than the test size α.

For small oscillation signals, p(0, 0) is smaller than one and leads to a more conservative
limit. When the oscillation signal is large, f(t|(x, y)) and f(t|(0, 0)) are well separated and
p(0, 0) becomes negligible. The CLS limit converges thus to the standard one.
In short-baseline experiments the CLS method is combined with the test statistic T0. This
method is known as the ”Gaussian CLS method” [183].

10.2 Comparison of the Applied Test Statistics

The test statistics are compared using the toy disappearance experiment (see Chapter 9.1)
and the toy-Monte Carlo (MC) approach to generate the probability distributions of the test
statistics (see Chapter 3.2.3). How these results compare to the ones under the assumption of
the asymptotic probability distributions of the test statistic, is shown in Chapter 11. The test
statistics are discussed in exclusion and discovery scenarios exemplarily for the rate+shape
analysis. However, similar results are obtained in a rate and shape analysis.

10.2.1 Setting a Limit

Figure 10.3a shows the exclusion sensitivities for the different test statistics. The sensitivity
of T0 is stronger than T1, and the sensitivity of T1 is in turn stronger than T2. This ordering
comes from the number of free oscillation parameters in the alternative hypothesis that define
the degrees of freedom in the analysis. Fixing a parameter before the analysis, increases the
ability to distinguish between the hypotheses of the residual parameters. Hence, the power
(the probability to reject the tested hypothesis when the alternative is true) follows the same
ordering4 and is largest for T0. This power is shown in Figure 10.5a assuming that the no-

4Below sin2(2θ)=0.01, the power of T1 is suppressed because of the parameter bound at sin2(2θ)=0. Due
to the bias in T2, the suppression of the power is reduced in comparison to T1 (see Chapter 9.2.1).
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Figure 10.3: Comparison of the Test Statistics a) exclusion and b) discovery sensitiv-
ities are shown at the 95% CL, where the parameter space right of the sensitivities can be
excluded/discovered. Note that there is no discovery sensitivity for T0 in panel b. c) and d)
confidence regions at the 95% CL are reconstructed from pseudo data from the no-oscillation
and an oscillation hypothesis (sin2(2θ)=0.04 and ∆m2=1 eV2).

signal hypothesis is true. The ordering of the power is also the reason why the confidence
regions typically get larger with the degrees of freedom in the analysis, which can be seen in
Figure 10.3c for pseudo data from the no-oscillation hypothesis. As a limit corresponds to a
confidence region with the lower bound at zero and the upper bound at the limit, a smaller
confidence region corresponds to a stronger limit. Even though the limits and sensitivities
reconstructed with T0 and T1 are typically stronger, one has to consider that the oscillation
parameters are currently unknown. Therefore, results obtained with T0 and T1 can be
overestimated up to a factor of two. Note that this factor depends on the experimental
parameters and the type of analysis, which will be shown at the end of the chapter.
This overestimation can be very large in the case of T0 for single ∆m2-values (e.g. 0.5 eV2

and 2 eV2 in Figure 10.3c). Such a strong overestimation happens when the no-oscillation
hypothesis is the most likely hypothesis for that specific ∆m2-value. Since T0 has almost no
degree of freedom5, it already rejects all hypotheses that are slightly more unlikely than the
no-oscillation hypothesis. To weaken such strong limits, T0 is typically used together with
the CLS method.
It has to be added that the ordering of the limits of T1 and T2 can be reversed in the case

5The presence of nuisance parameters introduce a tiny degree of freedom.
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Figure 10.4: Statistical Variance of the Exclusion Sensitivity The 1σ and 2σ variance
is shown for the 95% CL level of the exclusion sensitivity for a) T1 and b) T2. In addition,
the limits reconstructed from the same pseudo-data sample from the no-oscillation hypothesis
are shown. Note, that T1 can reject the no-oscillation hypothesis for single ∆m2-values (here at
∆m2∼1.1 eV2).

when a signal hypothesis is strongly favored over the no-oscillation hypothesis, however, the
no-oscillation hypothesis cannot be excluded yet. Thus, such a situation can be connected
to the p-value of the no-oscillation hypothesis. For example, this ordering is observed for
p-values smaller than ∼ 0.25 and ∼ 0.15 in the shape and rate+shape analysis of the toy
disappearance experiment, respectively.6 However, as the signal is strongly preferred over the
no-oscillation hypothesis, the no-oscillation hypothesis at the specific ∆m2-value of the best-
fit hypothesis is typically rejected with T1. Such a result is reported by the latest STEREO
publication, where the p-value of the no-oscillation hypothesis corresponds to 0.09 [211].
Due to the above-mentioned overestimation, it is useful to compare a limit to the expected
sensitivity and its variance. In Figure 10.4 the 1σ and 2σ variation of the exclusion sensi-
tivities for T1 and T2 are shown. The variation of T2 is slightly larger than for T1, due to
the higher number of degrees of freedom in the analysis. In addition, a pseudo-data sample
from the no-oscillation hypothesis is shown. The observed event number of this data sample
is smaller than the expected one and causes overall stronger limits than expected. Moreover,
the limits fluctuate around the sensitivity especially for 0.1 eV2 . ∆m2 . 20 eV2. The size
of the fluctuations are connected to the 1σ and 2σ variation of the exclusion sensitivities, as
they contain the limit with a probability of 68% and 95%, respectively. These fluctuations
of the limit are due to the statistical fluctuations in the data sample which can be described
by an oscillation signature for some specific ∆m2-values (see Chapter 9.2.2). In comparison
to T2 and as the ∆m2-values are tested individually in T1, the no-oscillation hypothesis can
be rejected for single ∆m2-values (for example at ∆m2∼1.1 eV2). The results of this section
are compatible with References [177,183,214].

6Of course the p-value needs to be larger than the test size of 5%, as the confidence region is no limit
otherwise.
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Figure 10.5: Power for the Different Statistical Methods The power is computed for
the 95% CL, under the assumption that a) the no-oscillation hypothesis is true b) an oscillation
hypothesis is true c) an oscillation hypothesis is true, but a different ∆m2-value is tested (∆m2 6=
∆m2

true). Notice that the difference between the true and the tested hypothesis is so large in
panel c that the power of T2 is always one.
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10.2.2 Looking for a Signal

Figure 10.3b compares the discovery sensitivities of the test statistics. T0 has no sensitivity
to discover a sterile neutrino, as T0 cannot reject the no-oscillation hypothesis. Hence, the
power for the no-oscillation hypothesis is zero and the test is biased. T1 can discover a larger
oscillation parameter space than T2. This follows again from the different number of free
parameters in the alternative hypothesis. However, due to the fixed ∆m2-value in the test
statistic, the discovery sensitivity of T1 is about a factor of 1.5 overestimated.
The difference becomes more visible in the confidence regions reconstructed from pseudo data
from a signal hypothesis, which is shown in Figure 10.6 for sin2(2θ)= 0.04 and ∆m2=1 eV2.
T2 creates a narrow confidence region around the true oscillation parameters. The signif-
icance of such a signal corresponds to ∼ 3.5σ (red line in the right panel). Instead, the
significance of T1 becomes a function of the ∆m2-value, as each ∆m2-value is tested inde-
pendently from each other. Therefore, for the present pseudo data the no-sterile hypothesis
can be rejected several times at the 3σ-level (e.g. 1 eV2, 2.5 eV2, 5 eV2, 9 eV2). As previously
discussed, constraining the ∆m2-value before testing the no-sterile hypothesis, leads to a
larger discrimination power between the hypotheses and hence to a larger, but overestimated
significance at the true ∆m2-value of ∼ 4.5σ. In high energy physics, a popular method ex-
ists to correct the significance obtained from T1 and account for the so-called look-elsewhere
effect. This method is applied to the sterile-neutrino search and discussed in Chapter 11.4.1.
In addition to the overestimation of the significance, the confidence region of T1 cannot
reconstruct the true ∆m2-value, as it is the union of one-dimensional sin2(2θ)-confidence
regions for each ∆m2-value. These results are in agreement with References [177,214].
Even though T0 cannot be used to claim a discovery, a confidence region can be reconstructed
in any case. Fig 10.3d shows the confidence region of T0 for the same pseudo data in
comparison to T1 and T2. The confidence region corresponds only to a limit, as it contains
the no-oscillation hypothesis and all hypotheses that are more likely than it. Hence, neither
sin2(2θ) nor ∆m2 can be reconstructed with T0.
As just mentioned, T0 and T1 cannot pinpoint an oscillation signal and the confidence regions
contain a lot of sin2(2θ)-∆m2-values that are indeed not true. The smaller the so-called
probability of false acceptance is, the more desirable, informative, and accurate the tests
and the obtained confidence regions become [215]. As the probability of false acceptance
of a test is the complementary probability of the power, a large power is desirable. The
power for the different test statistics are compared in Figure 10.5. As already discussed,
the power is largest for T0 when the true hypothesis is the no-oscillation hypothesis (panel
a). In this case, the power grows monotonically with the mixing angle for all test statistics.
Given a true sterile-neutrino hypothesis with ∆m2

true, the power is largest for T1 when the
tested ∆m2-value corresponds to the true one (panel b). Instead, T0 loses power because
the true hypothesis is defined neither in the null nor in the alternative hypothesis. While
the power has a minimum for T1 and T2 at the true value of the mixing angle and reaches
a maximal value of one for the no-oscillation hypothesis, the power of T0 is minimal for
the no-oscillation hypothesis. Further, testing ∆m2-values different from the true one, T2
becomes the most powerful test (panel c), as T1 in turn does not contain the true hypothesis
within the definition of the null or the alternative hypothesis. Here, the power of T0 and T1
is below 0.5 (i.e. the sensitivity) for many sin2(2θ)-values. The power of T2 is on the contrary
independent on the mixing angle and is always one due to the large difference between the
tested and the true hypothesis.
In case of a true signal (see panel b and c), the power of T0 for small sin2(2θ)-values is zero
and hence smaller than the test size of 0.05. T0 is therefore a biased test that also leads
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Figure 10.6: Reconstructed Confidence Regions for a Pseudo-Data Sample from
an Oscillation Hypothesis The 1σ and 2σ confidence regions of T1 and T2 are compared. In
addition, the discovery sensitivities at the 95% CL are shown. On the right panel, the significance
(p-value for the no-oscillation hypothesis) of T1 and T2 are compared. As T1 tests each ∆m2-
value individually, the confidence region of T1 contains for each ∆m2-value a sin2(2θ)-interval
and the significance is a function of the ∆m2-value.

to biased confidence regions, i.e. the confidence region always contains these small sin2(2θ)-
values. This bias confirms that T0 can only produce limits.

10.3 Impact of the CLS Method on the Test Statistic

The CLS method introduces an artificial overcoverage to penalize exclusion limits which
are stronger than the sensitivity. This behavior is shown in Figure 10.7a that compares
the exclusion limits obtained from a pseudo-data sample from the no-oscillation hypothesis
for T0 and T0+CLS. The overall limit is more conservative, especially in the parameter
region, in which T0 is not sensitive. In the sensitive parameter region, the limit of T0
converges to the one of T0+CLS. To achieve this weakening effect, the power is zero for
small sin2(2θ)-values (see Figure 10.5). Thus, these small sin2(2θ)-values will always be
within the confidence region. This is equivalent to a coverage of 100% for these hypotheses,
which is shown in Figure 10.7b. Thus, the confidence regions obtained with T0+CLS are
biased and their interpretations are not trivial. For large sin2(2θ)-values the power and the
coverage of T0+CLS converges with the ones from T0.
For the same reason, also the exclusion sensitivity of T0+CLS is more conservative as T0 (see
Figure 10.7). Actually, the sensitivity with a 95% CL of T0+CLS corresponds to the 97.5%
CL of T0 which is proven in Appendix A.7.
The combination of T0+CLS adapts the interpretation of T0. Hence, only limits can be
reconstructed and the confidence region contains all hypotheses that are more likely than the
no-oscillation hypothesis. These results are consistent with Reference [183].
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Figure 10.7: Impact of the CLS Method a) The limits of T0 and T0+CLS are compared
using pseudo data from the no-oscillation hypothesis at the 95% CL. b) The coverage of the
T0+CLS method is computed for the nominal level of 0.95. In addition, the exclusion sensitivities
of T0 and T0+CLS are compared at the 95% CL.

10.4 Comparison of the Applied Methods

In addition to the previously discussed properties, a full comparison of the currently used
methods, namely T0+CLS, T1, and T2 for a rate, shape, and rate+shape analysis, is shown
in the following. Figure 10.8 shows a comprehensive overview of the differences by comparing
the sensitivities and reconstructed confidence regions from pseudo data. A detailed discussion
on the ingredients of the methods can be found in the previous sections. In the following,
additional information will be given.
The exclusion sensitivity of T0+CLS overlaps with the sensitivity of T1 which can be seen
in panel a-b and is consistent with Reference [183]. The fact that the sensitivities of the
two methods are the same is related to the fulfilled asymptotic behavior of the test statistic
distributions and is discussed in detail in Appendix A.7. However, the limits obtained with
T0+CLS can be weaker or stronger than T1, depending on how the obtained result compares
to the sensitivity. Stronger limits than expected for a given ∆m2-value also cause stronger
limits for T1 than for T0+CLS, as the CLS method weakens the limit for T0+CLS (see for
example ∆m2=50 eV2 in panel f). In case of a weaker limit than expected, the situation is
reversed, as the CLS method has no effect on T0 and the difference in the degrees of freedom
in the test remains (see for example ∆m2=1.5 eV2, 3 eV2 in panel f).
Furthermore, the sensitivities and confidence regions are the same for T2 and T1 in a rate
analysis, as both analyses have effectively only one degree of freedom (see Chapter 9.2.1).
An interesting observation is that the differences among the exclusion sensitivities become
almost negligible in a shape analysis. The reason for this behavior is the bias of T2 for the
no-oscillation hypothesis (see Figure 9.2 and Figure 9.5) that produces on average stronger
limits for T2 than expected for a two-dimensional analysis. These stronger limits are hence
comparable to the overestimated ones from T1 and T0+CLS. The bias is reduced for a
rate+shape analysis, which leads, on the other hand, to larger and expected differences
between the methods.
The same bias that is reducing the differences between the exclusion sensitivities of T1 and
T2, is responsible for an increased difference in the discovery sensitivities of a shape and
rate+shape analysis of T1 and T2 (see panel h and i). The oscillation signal has to overcome
the (due to the bias) enlarged variance and the discovery sensitivity is shifted to larger
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Figure 10.8: Comparison of the Applied Methods The methods are compared in a rate
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compared. All results are computed for a 95% CL. The gray-shaded areas indicate the parameter
space within the confidence region or beyond the sensitivity of T2.
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sin2(2θ)-values for T2.

In summary, in this chapter the currently applied methods in short-baseline experiments
were compared. The differences can be mainly traced back to the definition of the alternative
hypothesis in the hypothesis test that changes the interpretation of the confidence regions.
The largest deviations arise, when a sterile neutrino hypothesis is true, and T0 and T1 become
not suitable to reconstruct confidence regions. However, the differences are reduced, when
the no-oscillation hypothesis is true. This may be a reason for the wide acceptance of these
various methods. In addition, the computational effort is reduced for T0 and T1 and the
asymptotic probability distributions of the test statistic are valid, which will be shown in the
next chapter.
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11 Validity of the Asymptotic
Formulae for the Probability
Distributions

As described in Chapter 9, the maximum-likelihood estimator (MLE) for the no-oscillation
hypothesis is biased in a sterile neutrino search experiment. This bias in addition with the
physical parameter bound on sin2(2θ) leads to non-intuitive issues in the analysis. Thus, one
expects the probability distributions of the test statistic to deviate from their asymptotic
formulae.
Therefore, this chapter discusses the probability distributions of the test statistics T0, T1,
and T2 and the validity of the asymptotic formulae in more detail (Section 11.1-11.3). In
particular, the reconstructed results based on the assumptions of the asymptotic formulae
are compared to the ones from the previous chapter. The sensitivity of SOX using a Monte
Carlo (MC) construction is discussed and compared to the one based on the asymptotic
formulae. Approximations for the p-value and the goodness-of-fit test are also discussed in
the sterile neutrino framework in Section 11.4 and 11.5.

11.1 Probability Distributions of T0

The probability distributions of a likelihood ratio of two simple hypotheses asymptotically
tend to Gaussian functions in the large sample limit1 [179]. Even in the presence of nuisance
parameters2, the distributions can be approximated with [183]

f
(
t(x,y)|(x, y)

)
∼ N

(
t
A(x,y)
(x,y) , 4tA(x,y)

(x,y)

)
and (11.1)

f
(
t(x,y)|(0, 0)

)
∼ N

(
t
A(0,0)
(x,y) , 4t

A(0,0)
(x,y)

)
, (11.2)

where N is the normal distribution and tA(x,y)
(x,y) (tA(0,0)

(x,y) ) is the value of the test statistic for the
Asimov-data set of H(x, y) (H(0,0)) as defined in Formula 3.12. The asymptotic distributions
hold under rather mild conditions, namely, the data size of each bin is large, the parameter
range of the nuisance parameters is not constrained, and the difference between the two
tested hypotheses H(0,0) and H(x, y) is small. Further, for small differences between the two
hypotheses, tA(x,y)

(x,y) ≈ −t
A(0,0)
(x,y) holds, and the probability distributions are symmetric [179].

A good agreement between the asymptotic expectations and the toy-MC distributions for
the toy disappearance and toy appearance experiment is observed. Figure 11.1a compares

1As the null and the alternative hypothesis are not nested, Wilks’ theorem does not apply here.
2As nuisance parameters are free parameters, the hypotheses in the hypothesis test are not exactly ”simple”

anymore.
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Figure 11.1: Probability Distributions of T0 The probability distributions under the null
(red) and the alternative hypothesis (i.e. no-oscillation hypothesis, blue) are produced from
104 toy-MC data samples each. Panel a shows the distributions for the test of an oscillation
hypothesis close to the sensitivity (sin2(2θ)=0.02 and ∆m2=1 eV2) in a rate+shape analysis of
the toy disappearance experiment, where the distributions are symmetric. Instead, in panel b,
which shows the test of a well-observable oscillation hypothesis (sin2(2θ)=0.01 and ∆m2=1 eV2)
in a rate+shape analysis of the toy appearance experiment, the symmetry is broken. In both
cases, the probability distributions agree well with the expected Gaussian distributions (black
lines).

exemplarily the distributions for sin2(2θ)=0.02 and ∆m2=1 eV2 for the toy disappearance
experiment in a rate+shape analysis. At this hypothesis, which is close to the 95% CL-
sensitivity, the probability distributions are symmetric. In Figure 11.1b, the difference be-
tween the tested (sin2(2θ)=0.01 and ∆m2=1 eV2 for the toy appearance experiment in a
rate+shape analysis) and the no-sterile hypothesis is so large that the symmetry is broken.
However, the MC-approach and the expectation agree still reasonably well. The results agree
with Reference [183], to which the reader is referred for more details.

11.2 Probability Distributions of T1

In comparison to T0, the alternative hypothesis of T1 is a composite hypothesis, i.e. a hy-
pothesis with free parameters. The null hypothesis is nested in the alternative hypothesis
and T1 is a profile likelihood ratio with the free oscillation parameter sin2(2θ). If some
regularity conditions are met (see Chapter 3), the probability distribution under the null
hypothesis (f

(
t(x,y)|(x, y)

)
) follows a χ2 distribution with one degree of freedom (Wilks’

theorem [178]). According to Wald [180], the probability distribution under the alternative
hypothesis (f

(
t(x,y)|(0, 0)

)
) follows a non-central χ2 distribution with one degree of free-

dom. Here, the non-centrality parameter can be estimated with the test-statistic value using
the Asimov data set (see Formula 3.12). Both approximations typically come along with
normally distributed MLE-values.
Figure 11.2 shows the MLE-values for sin2(2θ) for the no-sterile hypothesis (blue) and for
a sterile neutrino hypothesis (red) with sin2(2θ)=0.045 and ∆m2=1 eV2. In the physically-
allowed parameter space, the MLE-values are normally distributed around the true value. In
contrast, for the no-sterile hypothesis, statistical fluctuations in the data-sample that would
prefer negative ̂sin2(2θ)-values are projected inside the allowed parameter space, namely to
sin2(2θ)=0, the no-sterile neutrino hypothesis. Similarly, the border at sin2(2θ)=1 affects
the distributions of the MLE-values. Hence, the physical border prevents the MLE-values
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Figure 11.3: Probability Distributions of T1 a) The distributions under the null hypoth-
esis for the no-signal (blue) and a signal (red) hypothesis can be described by the expected
distributions (black lines). b) The distribution under the alternative hypothesis (i.e. no-signal
hypothesis and sin2(2θ)test=0.045, ∆m2

test=1 eV2) is shown in solid black for the MC construc-
tion and in dashed black for the expectation. The median of both distribution overlaps and
is indicated in red. The fraction of the MC distribution, where the no-signal hypothesis is the
best-fit hypothesis for the respective toy-data samples, is shaded in blue. Both distributions
are constructed from 104 toy-MC data samples each for the toy disappearance experiment in a
rate+shape analysis.

from being normally distributed, when the true value is close to it.
In the case, when the MLE-values are normally distributed, the probability distributions
under the null hypothesis follow a one-dimensional χ2 distribution. Figure 11.3a shows
the agreement of the asymptotic and toy-MC distribution for an exemplary sterile neutrino
hypothesis with sin2(2θ)=0.045 and 1 eV2. For all other hypotheses with normally distributed
MLE-values, the same result is obtained. This is visualized using the coverage (the probability
that the true value is inside the confidence region) which would be obtained when Wilks’
theorem is applied. When Wilks’ theorem is valid, the coverage corresponds to the size of
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Figure 11.4: Coverage of T1 The coverage is computed from toy-MC probability distributions
(104 toy-MC data samples each) under the assumption of Wilks’ theorem, where the nominal
value is 0.95. In addition, the exclusion sensitivity at the 95% CL is shown.

the nominal confidence level. In Figure 11.4 the coverage for a 95% CL for the rate+shape
analysis of the toy disappearance experiment is shown. It can be seen that the coverage is
correct in the sensitive parameter region, and Wilks’ theorem can be hence applied for T1.
However, the coverage is larger than the nominal value (overcoverage) in the parameter re-
gions close to the physical border, as the border decreases the effective degrees of freedom
and leads to non-normally distributed MLE-values. For the no-sterile hypothesis the distri-
bution under the null hypothesis follows a 1/2χ2 distribution [181] (see Figure 11.3a). This
is a superposition of a χ2 distribution and a Dirac delta function at zero, where the latter
comes from the toy-data samples with the no-oscillation hypothesis as the best-fit hypoth-
esis ( ̂sin2(2θ) = 0). Such a distribution has a smaller critical value (2.7 instead of 3.84 for
a 95% CL) and applying Wilks’ theorem rejects only 2.5% of the probability distribution
(i.e. the test size is 2.5%). Thus, a confidence region based on Wilks’ theorem contains the
no-sterile hypothesis with a probability of 97.5%, i.e. the coverage is 97.5%. The probability
distributions for hypotheses close to the border are a mixture of the 1/2χ2 and the χ2 dis-
tribution, and lead hence also to overcoverage. The overcoverage due to a physical border is
present for both borders of sin2(2θ) at zero and at one (e.g. for ∆m2∼0.05 eV2). As there is
no sensitivity for ∆m2<0.03 eV2, the respective hypotheses will always be accepted and the
coverage is 100%.
The construction of the exclusion sensitivities relies on the probability distributions for the
alternative hypothesis when the true hypothesis is the no-sterile hypothesis. Since the MLE-
values of the no-sterile hypothesis are not normally distributed, the toy-MC probability distri-
bution deviates from the asymptotic distribution, which is shown in Figure 11.3b. However,
in the parameter region close to the sensitivity, differences between the two distributions can
be observed above their median values which almost perfectly overlap. The values above the
median correspond to the events with ̂sin2(2θ) = 0. Hence, the median of the distribution
and thus the median exclusion sensitivity can be obtained using the Asimov-data set.
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Figure 11.5: Power of T1 The power is defined here as the fraction above the expected median
value of the probability distribution when the no-signal hypothesis is true. The power is shown
for the rate+shape analysis for the appearance (a) and disappearance (b) experiment and is
computed from 104 toy-MC data samples each. The nominal value of the power corresponds to
0.5. In addition, the exclusion sensitivities at the 95% CL are shown.

Note that the median of the asymptotic and toy-MC distribution does not overlap for all
hypotheses. The distributions are compared using the power which would be obtained when
the expected median value is used, i.e. the fraction of the toy-MC distribution above the
asymptotic median. A power of 50% indicates that the median of the toy-MC distribution
agrees with the one from the asymptotic distribution. Figure 11.5 shows the power for the
toy appearance and toy disappearance experiment in a rate+shape analysis. The median
values match for the hypotheses close to the sensitivity, otherwise they can differ. As the
distribution for the no-sterile hypothesis is given by a 1/2χ2 distribution, the power is only
half of the nominal value for the no-sterile hypothesis, namely 25%. Similarly, the power is
reduced for hypotheses close to the no-sterile hypothesis.
Similar results are obtained for the rate and shape analysis for both toy experiments. Even
though the MLE-values are not normally distributed for all hypotheses, the median exclu-
sion sensitivity can be obtained with the asymptotic distributions. This result agrees with
previous studies from Reference [177] and was also recently observed in Double Chooz [209].

11.3 Probability Distributions of T2

In the following, the asymptotic properties of the test statistic T2 are discussed in detail
(Section 11.3.2 and 11.3.3). If Wilks’ theorem is valid, the probability distribution under the
null hypothesis (f

(
t(x,y)|(x, y)

)
) follows a χ2 distribution with two degrees of freedom. How-

ever, Wilks’ theorem requires some regularity conditions (see Chapter 3). These regularity
conditions, as sketched in Figure 11.6, ensure normally distributed MLE-values and, in turn,
the validity of Wilks’ theorem. Similarly, the asymptotic probability distribution under the
alternative hypothesis (e.g. f

(
t(x,y)|(0, 0)

)
) follows a non-central χ2 distribution with two

degrees of freedom with the non-centrality parameter estimated with the Asimov data set
(see Formula 3.12) [180,181].
As the sensitivities shown in the first part of this thesis rely on the asymptotic distributions,
the following discussion focuses on the SOX experiment and the difference of the respective
sensitivity is shown in Section 11.3.4. The chapter closes with the comparison to the obtained
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unbounded parameter
T1: sin2(2θ)<sin2(2θ)rate

T2: sin2(2θ)>sin2(2θ)shape for ∆m2∼0.1 eV2

Normally
distributed MLE

sufficient data
T2: sin2(2θ)<sin2(2θ)shape

nested hypotheses
T0

identifiable parameter
T2: ∆m2 for sin2(2θ)=0

Wilks’ theorem
valid

Figure 11.6: Requirements for the Validity of the Asymptotic Probability Distribu-
tions The requirements [216] (bold) and the specific case (test statistic and parameter region)
when the requirement is not fulfilled are given in the boxes, where sin2(2θ)rate/shape defines
the sensitive sin2(2θ) value in a rate/shape analysis. A non-fulfilled requirement prevents from
normally distributed MLE-values and thus the validity of Wilks’ theorem.

results from Feldman and Cousins (Section 11.3.5). As the validity of the asymptotic formulae
come typically along with normally distributed MLE-values, the distributions of the MLE-
values as a function of the tested hypothesis are studied first.

11.3.1 Normality of Maximum-Likelihood Estimator Values

The proof of Wilks’ and Wald’s asymptotic approximations relies in a key-middle step on
the MLE property of being normally distributed. As already discussed in Chapter 9, the
distribution of the MLE-values under the no-signal hypothesis is affected by the presence
of the physical border at sin2(2θ)=0 and by the oscillatory nature of the signal leading to
biased MLE, i.e. the best-fit hypothesis is likely not to be the true one.
To illustrate this bias, Figure 11.7 shows a pseudo-data sample from the no-sterile hypothesis
of the SOX experiment as a function of the distance and the energy. In addition, the best-fit
hypotheses for this pseudo-data sample are shown in a rate, shape and rate+shape analysis.
While the best-fit hypothesis for the rate analysis is the true no-sterile hypothesis, the best-fit
hypothesis deviates significantly from the no-sterile hypothesis in the shape and rate+shape
analysis. Statistical fluctuations in the data can mimic an oscillation signature and therefore
a sterile neutrino signature. This effect can be in particular observed in panel e) and f)
of Figure 11.7. Note the constraint on the total event number in a rate+shape analysis
typically reduces the size of the best-fit value of the oscillation amplitude sin2(2θ). Thus, in
the present example, the MLE-value of sin2(2θ) is 0.03 in a rate+shape analysis and 0.07 in
a shape analysis, respectively.
Normally distributed MLE-values often come along with a likelihood function that is itself
asymptotically a Gaussian function [176]. Figure 11.8 shows the negative log-likelihood func-
tion for pseudo data from the no-sterile and a sterile neutrino hypothesis for the rate, shape,
and rate+shape analysis, where the data sample from the no-sterile hypothesis corresponds
to the one from Figure 11.7. In the rate analysis, the likelihood function is asymptotically
Gaussian around the MLE-value, where all hypotheses with the same survival probability are
MLE-values. As sin2(2θ) and ∆m2 are degenerate in a rate analysis, the likelihood function
is only a one-dimensional Gaussian function of the survival probability (see Chapter 9).
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Figure 11.7: Pseudo Data for the SOX Experiment The ratio of the pseudo-data, which
is generated from the no-signal hypothesis, to the expected data for the no-signal hypothesis is
shown as a function of the distance for eight energy ranges, where the energy is reconstructed
in the number of photoelectrons (p.e.). The ratio of the total event event number of the pseudo
data to the total event number of the expected data is depicted in gray with the statistical 1σ
error. The total event number per energy range is given in the respective panels. In addition,
the best-fit hypothesis in a rate, shape, and rate+shape analysis are shown.

The likelihood function in the shape and rate+shape analysis is for all ∆m2-values a mono-
tonic function in sin2(2θ) with a well-defined maximum. On the contrary, the likelihood
function as a function of ∆m2 for a fixed sin2(2θ)-value is a non-trivial function with several
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Figure 11.8: Negative Log-Likelihood Function for Pseudo Data in the SOX Ex-
periment The negative log-likelihood function is shown in a rate (top), shape (middle) and
rate+shape (bottom) analysis for the same pseudo data from the no-signal (left) and signal
(right) hypothesis. The negative log-likelihood function is normalized to the absolute mini-
mum and is cut at 20. The best-fit hypotheses are indicated in red. Note that in a shape and
rate+shape analysis the likelihood function has several local minima in ∆m2.

local maxima. This behavior clearly deviates from a Gaussian function and hints at the
non-validity of the asymptotic distributions. In addition, it complicates the minimization
of the negative log-likelihood function that becomes challenging and time-consuming (see
Appendix A.4). However, an almost Gaussian likelihood function is obtained for the data
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sample of the signal hypothesis. The size of this signal is already larger than the statistical
fluctuations in the data samples and the true hypothesis can be reconstructed. This im-
plies that the bias and hence the normality of the MLE become a function of the oscillation
hypothesis.
Figure 11.9 shows the MLE-values for different hypotheses in the rate, shape and rate+shape
analyses. In a rate analysis with its effectively only one degree of freedom, the MLE-values
are normally distributed around the sin2(2θ)-∆m2-values with the true survival probability
(see top panel of Figure 11.9a). However, for a hypothesis close to the physical parameter
border, theMLE-values are bounded and the MLE-values peak at the value of the parameter
border (see the discussion of T1 in Section 11.2). In a shape analysis, one can distinguish
between four different parameter regions:

(A) parameter region below sensitivity (sin2(2θ)<sin2(2θ)shape): the sin2(2θ)-value is smaller
than the size of the statistical fluctuations of the data samples. Hence, these hypothe-
ses can typically not be reconstructed and the best-fit hypothesis is different from the
true one which leads to biased MLE. Actually, the MLE-values are distributed close
to the sensitivity of the shape analysis which is consistent with recent results from
References [209–213]. Moreover, Reference [212] predicts the average value of the MLE
of sin2(2θ) to 〈sin2(2θ)〉 ≈ 6.2/

√
N exp
S . Thus, a value of sin2(2θ) ≈ 0.06 is expected

which agrees approximately with the observed values at ∼ 1 eV2.

(B) parameter region above sensitivity (sin2(2θ)>sin2(2θ)shape): the oscillation signature
is larger than the statistical fluctuations and can be reconstructed. The MLE-values
follow hence a two-dimensional normal distribution in sin2(2θ) and ∆m2.

(C) parameter region at sensitivity (sin2(2θ)∼sin2(2θ)shape): the size of the statistical fluc-
tuations are similar to the sterile neutrino signature. When the signature dominates
over the statistical fluctuations the true hypothesis can be reconstructed, otherwise
not. Therefore, the MLE-values are a combination between normally distributed val-
ues around the true hypothesis and randomly-distributed sin2(2θ)-∆m2-values in the
sensitivity region (see parameter region (A)).

(D) parameter region at ∆m2∼0.1 eV2 and sin2(2θ)> 0.5: for these hypotheses, the os-
cillation length becomes larger than the distance between the neutrino source and the
detector and the integral survival probability and hence the sensitivity is approximately
proportional to the product sin2(2θ)×∆m2. Therefore, the variance of the MLE is large
and the distribution of the MLE-values would exceed the physical border at sin2(2θ)=1.
Due to the physical border, the MLE-values are bounded and peak at sin2(2θ)=1.

The rate+shape analysis adopts the features of the shape analysis. However, as the total
event number is constrained, the bias and variance of the MLE are reduced. Moreover, the
no-sterile hypothesis can become reconstructed as the best-fit hypothesis.

11.3.2 Null Distribution and Validity of Wilks’ theorem

Figure 11.9 shows the probability distributions of T2 obtained from MC constructions for
different hypotheses in a rate, shape and rate+shape analysis. The rate analysis with its
effectively one degree of freedom behaves similar to the test statistic T1 which was discussed
in Section 11.2. Hence, the probability distributions of the hypotheses close to the sensitivity
can be described by one-dimensional χ2 functions and Wilks’ theorem can be used for a
rate analysis. However, the physical border at sin2(2θ)=0 reduces the effective degrees of
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Figure 11.9: Maximum-Likelihood Estimator Values and Probability Distributions
of T2 for the SOX Experiment left panels: The MLE-values for the oscillation parameters are
shown for different oscillation hypotheses in a rate, shape and rate+shape analysis and grouped
into bins, where the size of the box correlates to the number of MLE-values in the specific bin.
The no-signal hypothesis is filled into the smallest sin2(2θ)-∆m2 bin. The top left panel shows
the projection of the MLE-values on the survival probability in the rate analysis. The sin2(2θ)-
∆m2-points with the same survival probability of 0.84 is indicated in gray in panel a. In addition,
the exclusion sensitivity at the 95% CL is shown in panel c and e. right panels: The probability
distributions under the null hypothesis in the rate, shape and rate+shape analysis are shown
for the same oscillation hypotheses. The expected probability distributions according to Wilks’
theorem are indicated in gray, where χ2

n stands for a chi-square distribution with n degrees of
freedom. The probability distributions can be described by the expected distributions, when the
MLE-values are normally distributed. Note that redundant distributions are not shown: cyan
and magenta are similar to black in panel c and d, blue and red of panel c and d are almost the
same for panel e and f.



11.3. PROBABILITY DISTRIBUTIONS OF T2 177

freedom of the analysis for hypotheses close to the border and the probability distribution of
in particular the no-signal hypothesis becomes a 1/2χ2

1 distribution.
In the shape analysis, the distributions depend on the true hypothesis and on the distributions
of the MLE-values. Therefore, the same parameter regions as previously described can be
identified. Given normally distributed MLE-values (parameter region (B)), the distributions
of T2 follow a χ2 distribution with two degrees of freedom and Wilks’ theorem is valid. The
bias which is present for the no-signal hypothesis and the hypotheses in parameter region (A)
and (C) increases the effective degrees of freedom of the analysis and shifts the distribution
to larger test statistic values, where a larger bias results into a larger shift of the probability
distribution. Hence, the critical value increases compared to Wilks’ theorem and applying
Wilks’ theorem would result into an undercoverage of these hypotheses in the confidence
region. The non-validity of Wilks’ theorem for this parameter region can be traced back
to the non-fulfilled requirement of sufficient data. Even though the event number per data
bin is sufficient, the difference of the event number between the oscillation and no-oscillation
hypothesis is too small. The shift of the probability distributions in particular for the no-
oscillation hypothesis was also observed by several groups [71, 177, 183, 209–212, 217]. The
hypotheses of the parameter region (D) are affected by the physical border which decreases
the effective degrees of freedom. The probability distributions of T2 are thus shifted to
smaller test statistic values and the critical value becomes smaller in comparison to Wilks’
theorem. Moreover, using Wilks’ theorem would lead to an overcoverage of these hypotheses.
The rate+shape analysis is a combination of both features from the rate and the shape
analysis. In particular, the parameter bound at sin2(2θ)=0 counteracts the bias and reduces
the shift of the test statistic distribution towards larger test statistic values for hypotheses
in parameter region (A). However, the probability distributions of the rate+shape analysis
cannot be described by a simple combination of the two single analyses.
In order to show a comprehensive comparison to Wilks’ theorem for all hypotheses, the cover-
age and the critical values for a 95% CL is depicted in Figure 11.10 for the SOX experiment
in a rate, shape, and rate+shape analysis (see Figure A.10 for the toy experiments). In
comparison to a critical value of 5.99, the critical values vary from ∼ 3 up to ∼ 10 and the
coverage from ∼ 60% up to ∼ 97.5%. Again, the previously defined parameter regions can
be identified. The hypotheses at the sensitivities in a shape and rate+shape analysis are in
parameter region (C) and still affected by the biased MLE. Therefore, the critical value is
larger and the coverage is smaller than expected from Wilks’ theorem. Wilks’ theorem can
hence not be applied in these analyses. It is worth to mention that the critical values at the
sensitivity for a rate+shape analysis are not constant which affords special attention when
confidence regions are reconstructed.
Figure 11.11a compares the exclusion sensitivity obtained from a MC construction to the one
assuming Wilks’ theorem in the rate+shape analysis of the toy disappearance experiment.
The sensitivity with Wilks’ theorem overestimates the actual sensitivity by almost a factor
of two, due to the previously discussed undercoverage. In the shape analysis the sensitivity
is even more overestimated (not shown here). Therefore, reconstructed confidence regions
using Wilks’ theorem overestimate the exclusion limits, or can even lead to the rejection of
the no-signal hypothesis even though it is true.
The probability of rejecting the no-signal hypothesis (i.e. p-value) and thus claiming a signal
is connected to the coverage of the no-signal hypothesis, which is listed in Table 11.1 for all
studied experiments at the 95% CL. Hence, instead of 5%, this probability is 23% in the
rate+shape analysis and 35% in the shape analysis for the toy disappearance experiment.
These probabilities and therefore the overestimation of the significance applying Wilks’ theo-
rem are illustrated as a function of the significance under Wilks in Figure 11.11b for the SOX
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Figure 11.10: Critical Values and Coverage of T2 for the SOX Experiment The critical
values (left) and the coverage using Wilks’ theorem (right) are shown at the 95% CL in a rate,
shape, and rate+shape analysis, where the top (bottom) color scale belongs to the coverage
(critical value). The nominal value for the critical value is 3.84 and 5.99 for one and two degrees
of freedom (ndof), respectively. The exclusion sensitivities at the 95% CL are shown in black.
The assumed degrees of freedom of the χ2 functions are defined as the number of uncorrelated
parameters in the respective analysis.

and the toy experiments. The significance is overestimated for all studied experiments up to
the ∼ 1σ level. For instance, a 3σ significance assuming Wilks corresponds actually only to
a 2.3σ-level for the shape analysis in the toy disappearance experiment. Equivalently, the
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Figure 11.11: Validity of Wilks’ Theorem a) The exclusion sensitivities at the 95% CL
based on Wilks theorem and the full MC construction are shown for the toy disappearance
experiment in a rate+shape analysis. In addition, the reconstructed confidence regions at the
95% CL from a pseudo-data sample from the no-sterile hypothesis is shown for Wilks’ theorem
and the full MC construction. b) The p-value reconstructed from 106 pseudo-data samples is
shown as a function of the significance whenWilks’ theorem is assumed. The significance is shown
for the rate+shape analysis of the toy appearance experiment, and the shape and rate+shape
analysis of the toy disappearance and SOX experiment, respectively. The right and top axis
transfer the p-value to the corresponding σ-level. The dashed lines indicate whether the p-value
using Wilks’ theorem is consistent (bottom) or overestimated by 0.5σ (middle) and 1σ (top),
respectively.

probability to observe a signal with a significance of 3σ or larger with Wilks, is 2.8% instead
of 0.27%. The overestimation depends on the experiment and might be correlated to the size
of the statistical and systematic uncertainties on the total event number (see Table 11.1).
Such a correlation would require further investigation. Indeed, a similar hint for a correlation
was recently published by Reference [212].

11.3.3 Alternative Distribution and the Asimov Data Set

According to Wald [180] and Reference [181], the alternative distribution follows asymp-
totically a non-central χ2 distribution with the degrees of freedom of the analysis. The
non-centrality parameter can be determined from the test statistic value of the Asimov data
set, i.e. the data set without statistical fluctuations (see Chapter 3.4). In the following, the
no-sterile hypothesis is assumed as the true hypothesis, as these distributions (mainly the
median) are needed for the determination of the exclusion sensitivities.
Similar to the validity of Wilks’ theorem, this approximation holds when the MLE-values are
normally distributed. However, as already discussed, this is not the case for the no-sterile
hypothesis. The alternative distributions under the no-signal hypothesis of T2 are shown in
Figure 11.12 for the SOX experiment for a rate, shape, and rate+shape analysis when the
hypothesis with sin2(2θ)=0.1 and ∆m2=1 eV2 is tested. All three distributions differ from the
asymptotic distributions. However, in the rate analysis, the distribution is only altered above
the median value and the median values of both distributions are consistent. This is the same
behavior that was observed for the distributions of T1 (see Section 11.2). The distributions of
the shape and rate+shape analysis differ significantly due to the biased MLE and are shifted
towards larger test statistic values in comparison to the expected distributions. As the bias
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Table 11.1: Difference between Asymptotic and Toy-MC Probability Distributions
The differences in the specific analyses for the SOX, toy appearance, and toy disappearance
experiment are listed in the individual columns. The coverage of the null distributions for the
no-oscillation hypothesis are listed in the first row assuming a nominal value of 95%. The
comparison for the alternative distribution is given by the difference in the median values at
the sensitivity in the second row. In addition, the ratio of the statistical to the systematic
uncertainty on the total event number for the no-oscillation hypothesis is quoted in the third
row.

SOX toy appearance toy disappearance
shape rate+shape rate+shape shape rate+shape

Coverage of H(0,0) 0.60 0.92 0.89 0.65 0.77
∆Median at sensitivity 4.5 1 1.4 4.1 3
σstat/σsyst of H(0,0) 0 0.67 0.64 0 0.16
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Figure 11.12: Alternative Distribution of T2 for the SOX Experiment The distributions
and the respective median values are shown in a rate, shape and rate+shape analysis for the true
no-sterile hypothesis and tested hypothesis with sin2(2θ)=0.1 and ∆m2=1 eV2. The expected
distributions and their median values are indicated with the dashed lines. The median values
overlap in the rate analysis.

is larger for the shape analysis, the difference between the median values is also larger in the
shape analysis than in the rate+shape analysis.
It can be observed that the difference between the median obtained from a MC construction
and the expectation changes as a function of the tested hypothesis, because of the physical
border at sin2(2θ)=0. The difference for the tested hypotheses close to the the physical border
is reduced, as it is shown in Figure 11.13 for the toy experiments in a rate+shape analysis.
The difference of the medians at the sensitivities are listed for the studied experiments in
Table 11.1. Due to the bias, all values are positive, i.e. the values obtained through the MC
constructions are larger than the ones from the expectations, where the size of the difference
correlates to the bias of the MLE of the no-signal hypothesis.
Instead of the (almost) constant shift, one can compare the distributions in terms of the
power, i.e. the fraction of the alternative distribution above the expected median. Fig-
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Figure 11.13: Difference of the Median Values of the Asymptotic and MC Alterna-
tive Distributions of T2 The difference is shown as a function of sin2(2θ) for ∆m2=1 eV2 for
the toy appearance (a) and toy disappearance (b) experiment in a rate+shape analysis. The sta-
tistical error increases with increasing sin2(2θ)-value, as the absolute test statistic values become
larger.

ure 11.14 shows the power in a rate, shape, and rate+shape analysis of the SOX experiment
for the full oscillation parameter space (the power for the toy experiments can be found in
Appendix A.6 Figure A.12). Due to the positive shift in the median, the power is larger than
the nominal value of 0.5 for the hypotheses close to the sensitivity. Thus, the sensitivity
would be underestimated when the Asimov data set is used. Despite the constant shift in the
medians, the power reaches for large sin2(2θ)-values the desired power of 0.5. This feature
is simply given because of the increasing values of the test statistic, where the shift of the
median becomes comparably small.

11.3.4 Comparison of SOX Sensitivities

In the first part of this thesis, the exclusion sensitivities for the SOX experiment were com-
puted based on the asymptotic distributions. Here, these sensitivities are compared to those
obtained from a full MC construction, which is shown in Figure 11.15. The comparison
assumes 104 expected events for the no-oscillation hypothesis with an uncertainty of 1.5%.
Further, the optimized selection cuts are applied (see Chapter 5) and no background is taken
into account. The data is grouped in total in 72 bins in distance (9,4m,13m) and energy
(8,400 p.e.,1200 p.e.). In the following, the three different kinds of analyses are discussed
separately.
As discussed in the previous sections, the critical and median values of a rate analysis agree
in the parameter region of the sensitivity with the expected values from the asymptotic
distributions. Hence, the approximations can be used in a rate analysis. However, in the SOX
sensitivities displayed in Figure 7.12, the degeneracy of sin2(2θ) and ∆m2 is not taken into
account and two degrees of freedom are assumed in the analysis. Hence, the rate sensitivity
of is underestimated by about 20%.
The shape sensitivity is underestimated with the asymptotic distributions by about 8%.
However, the difference is comparably small, as the probability distributions under the null
and the alternative hypothesis are shifted in a similar way towards larger test statistic values.
The underestimation can be explained with the bias that is larger for the no-sterile hypothesis
than for a hypothesis close to the sensitivity, which results into a relatively larger shift for
the median values than for the critical values. In other words, given the no-signal hypothesis
is true, the best-fit hypothesis is a random oscillation hypothesis. However, the best-fit
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Figure 11.14: Power of T2 for the SOX Experiment The power is computed here as
the fraction of the alternative distribution above the expected median value for the rate, shape,
and rate+shape analysis. The nominal value corresponds to 0.5. In addition, the exclusion
sensitivities at the 95% CL are shown.

hypothesis is unlikely the specific tested hypothesis. Thus, as the local maxima in the
likelihood function have typically large values, the chance to reject the tested hypothesis
is higher than expected and the sensitivity effectively increases.
Although the sensitivities of the rate and the shape analyses are underestimated, the sensi-
tivity for the combined rate+shape analysis is actually overestimated by 15%. However, the
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assume an expected event number of 104 events with an uncertainty of 1.5%. In addition, the
oscillation parameter space allowed by the anomalous neutrino oscillation data is indicated in
gray. Note that the gray dashed line overlaps with the black solid line.

precise value of the overestimation depends on the ∆m2-value. The overestimation of the
sensitivity comes from the fact that the bias of the no-sterile hypothesis is reduced in compar-
ison to a hypothesis close to the sensitivity, as the border at sin2(2θ)=0 reduces the effective
degrees of freedom for the no-sterile hypothesis in a rate+shape analysis. This results into
a relatively larger shift for the critical values than for the median values. In comparison to
the shape analysis, the best-fit hypothesis is still often a random oscillation hypothesis, if the
no-signal hypothesis is true. However, the constraint on the total event number constrains
the parameter space of the MLE-values as well. Therefore, the difference of the best-fit
hypothesis and the specific tested hypothesis (close to the sensitivity) is small. Thus, the
chance to reject the tested hypothesis reduces and becomes even smaller than expected from
the asymptotic distributions. This results into an effective decrease of the sensitivity.

Note that the differences in the sensitivities depend on the specific experimental parameters.
The comparison of the sensitivities of the toy experiments can be found in Appendix A.6.
Even though the sensitivities deviate, the assumption of the asymptotic distributions is a
suitable and convenient tool to study systematic uncertainties of an experiment and the
respective relative changes of the sensitivities. However, a full MC construction has to be
performed for a final analysis.

11.3.5 Comparison to the Results from Feldman and Cousins

The analysis with T2 using a toy-MC construction is based on the method of Feldman and
Cousins [177]. In order to validate and compare the presented results, the toy experiment
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from Reference [177] is studied, namely an appearance experiment with L = 600 − 1000m
and E = 10 − 60GeV. The data is grouped into five energy bins, where the expected
background event number per bin is 100 (N exp

B = 500). The expected neutrino event number
is N exp

S = 50000 for an appearance probability of one. Further, N exp
S and N exp

B are assumed
to be known and fixed in the likelihood function.

The coverage at the 90% CL is compared to the results from Reference [177] in Figure 11.16.
The overall agreement is very good and the same parameter regions of under- and overcov-
erage can be identified. Moreover, the absolute values of the coverage vary from 75% to
96% which is consistent with the range of 76% to 94% from Reference [177]. However,
the parameter region with an overcoverage at ∆m2∼100 eV2 and sin2(2θ)>0.1 reported by
Feldman and Cousins is not observed with the present analysis. The overcoverage could be
explained by an artifact in the analysis introduced by the minimization algorithm of the
negative log-likelihood function. In that parameter region, the oscillation signal can be well
reconstructed and the MLE-values are normally distributed with a small variance around the
true values. As the minimization of the negative log-likelihood function is not trivial, the
minimization algorithm typically scans over a set of ∆m2-values at which the negative log-
likelihood function is minimized over sin2(2θ). Thus, the absolute minimum can be missed
if the ∆m2-steps are not fine enough. Therefore, effectively only one parameter (sin2(2θ))
is minimized and the probability distributions have only one degree of freedom which leads
to an artificial overcoverage. To properly reconstruct the absolute minimum of ∆m2 in that
parameter region, additional ∆m2-raster points around the specific tested hypothesis are
defined, which is described in Appendix A.4.
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Figure 11.16: Comparison of the Coverage to Feldman and Cousins The coverage is
computed at the 90% CL for the toy experiment defined in Reference [177] using 103 toy-MC
samples at each raster point. The lines indicate the results of Reference [177], where regions of
overcoverage are drawn in black and regions of undercoverage in red.
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11.4 Estimation of the P-Value
In addition to the previously discussed bias, another requirement for Wilks’ theorem is not
fulfilled for T2 under the no-sterile hypothesis. Namely, the non-identifiability problem [218]
exists when a (nuisance) parameter is present only under the alternative hypothesis. In sterile
neutrino searches, ∆m2 is not defined for the no-signal hypothesis, as it can have any value
when sin2(2θ)=0. As the no-sterile hypothesis is of special interest for claiming a discovery,
the distribution has to be known with high precision. For example, claiming a discovery at
5σ would require a toy-MC with the statistics of the order of 107 [176], where the p-value
of the no-signal hypothesis and thus the significance can be computed from the probability
distribution:

p(T2) =
∫ ∞

Tobs
2

f(T2|(0, 0)). (11.3)

As the computation of f(T2|(0, 0)) is computationally intensive, alternative procedures have
been developed to evaluate the significance of a discovery. In the following, the estimation
with the Gross-Vittels correction and a recently published method based on fitting Gaussian
white noise are applied to the toy disappearance and the SOX experiment.

11.4.1 Gross-Vittels Correction

The Gross-Vittels correction [219] is a common procedure performed in high energy physics,
which can give an upper bound on the tail probability of the test statistic distribution, i.e. the
p-value. This procedure corrects the underestimated p-value obtained with T1 (local p-value)
for the fact that a sterile neutrino could have any ∆m2-value and is called the look-elsewhere
effect.
Thus, the upper bound for the global p-value can be approximated with

p(T2) ≈ min
∆m2

p(T1) +
〈
Nc
〉
, (11.4)

where
〈
Nc
〉
is the mean number of the so-called upcrossings above the level c. Each upcrossing

corresponds to a ∆m2-value for which the respective signal hypothesis is preferred over the
no-signal hypothesis at a certain level c. The number of upcrossings

〈
Nc
〉
can be estimated

from a small number of MC simulations (O(100)) for a low level c0 with c0 � c to〈
Nc
〉

=
〈
Nc0

〉
e−(c−c0)/2. (11.5)

Figure 11.17a visualizes the determination of the number of upcrossings above the level c0
for one data sample from the no-signal hypothesis.
As the no-signal hypothesis is on the boundary of the parameter space, the probability
distribution under the no-signal hypothesis of T1 follows a 1/2χ2

1-distribution. The local
p-value is hence given by (see also Section 11.2) [216]

p(T1) = 0.5 · P (χ2
1 > c). (11.6)

This procedure has been tested for the sterile neutrino search with the toy disappearance
experiment. The p-value as a function of the test-statistic value is shown in Figure 11.17b
for the MC construction and the Gross-Vitells correction. The estimation overestimates the
actual p-value with a factor of ∼ 1.5 (∼ 1.6 for the shape analysis). This can be traced
back to the in turn overestimated number of upcrossings. The individual upcrossings are
correlated to each other because of the oscillation signature that produces a harmonic series
in the likelihood function of ∆m2 (see for example Figure 11.17a). If it would be possible
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Figure 11.17: Gross-Vitells Correction a) Example of the number of upcrossings (red
crosses) from a pseudo-data sample from the no-signal hypothesis. The y-axis gives the value of
the test statistic T1, when the no-sterile hypothesis is tested. b) The p-value obtained from a
MC construction of T2 (red, 108 toy-MC samples) is compared to the estimation of the global
p-value using the Gross-Vitells correction (black) as a function of the observed test statistic
value of T2. The mean number of upcrossings is determined from 1000 MC samples and the
level c0 = 1 to

〈
Nu
〉

= 5.6. Due to the correlation of the individual upcrossings the estimation
of the p-value is too high.

to determine the uncorrelated number of upcrossings, this procedure might be an attractive
tool. However, first attempts to determine the fundamental frequencies in ∆m2 did not
produce the desired results, and further studies are required.

11.4.2 Fitting Gaussian White Noise

Reference [212] reinterprets the minimization of short-baseline experiments, in particular
disappearance experiments, with the problem of fitting Gaussian white noise. The authors
show that the distribution of the square-root of the test statistic T2 under the no-oscillation
hypothesis can be described (under some assumptions) as the one of the maximum of N
standard normal random variables, where N denotes the effective number of bins. Such
a distribution can be easily obtained from numerical simulations and is defined as ”max.
Gauss distribution” in Reference [212]. Moreover, for N → ∞ an analytical expression for
the cumulative probability distribution of

√
T is given:

F (x) = exp {− exp[−AN (x−BN )]} , (11.7)

where

AN =
√

2 logN and BN = AN −
log logN + log 4π

2AN
. (11.8)

Figure 11.18 compares the p-value as function of
√
T2 obtained from the MC construction to

the ones using Equation 11.7 for the toy disappearance and the SOX experiment in a shape
and rate+shape analysis. The distributions in the shape analysis can be well described by
the estimations up to large p-values of ∼ 0.02 and ∼ 0.07 for the toy disappearance and SOX
experiment, respectively. The enhanced agreement in the toy disappearance experiment could
be traced back to a better fulfillment of the assumptions for the estimation. Namely, the
estimation requires the same value for the statistical error of each bin, which is indeed given by
the flat energy spectrum of the disappearance-experiment. From Figure 1 of Reference [212],
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Figure 11.18: Estimation of P-Value P-value as a function of the square-root of the test
statistic value T2 for the a) disappearance and b) SOX experiment. The p-value is computed from
106 toy-MC samples for the shape (red) and rate+shape (blue) analysis each. The estimation is
based on Equation 11.7 using N = 60 and N = 72 for the disappearance and SOX experiment,
respectively.

it looks promising that the agreement for large p-values is even more improved using the
”max. Gauss distribution”.
While the approximation holds especially in the shape analysis, the effective number of
bins is reduced in a rate+shape analysis. This implies that the p-value is overestimated
with the estimation in a rate+shape analysis. The overestimation depends on details of the
experimental parameters, such as the ratio of the statistical to the systematic uncertainty on
the total event number (see also Table 11.1). The obtained results agree and confirm the ones
of Reference [212]. Thus, this estimation is a promising method to determine the p-value in
a shape analysis which can be especially useful for the current reactor-based experiments.

11.5 Goodness-of-Fit Test

A goodness-of-fit test returns a measure of the discrepancy of the data and the model [176],
where the assumed model (here the (3+1) model) is tested against any other model. As
introduced in Chapter 3.5, the probability distributions of the goodness-of-fit test statistic
(see Formula 3.13) follows asymptotically a χ2 distribution, where the degrees of freedom
depend on the number of bins, free parameters, and the presence of auxiliary-measurement
terms in the likelihood function [182]. For example, for the toy experiment 58 and 57 degrees
of freedom are expected in a rate+shape and shape analysis, respectively (see Chapter 3.5).
Note, as the asymptotic distributions follow from Wilks’ theorem, normally distributed MLE-
values are required that the approximation holds.
In the following, the properties of the goodness-of-fit test for the toy disappearance exper-
iment is studied. Figure 11.19 shows the probability distribution of the goodness-of-fit test
statistic when the no-signal hypothesis and a sterile neutrino hypothesis with sin2(2θ)=0.1
and ∆m2=1 eV2 is true. When the latter is true, the asymptotic distributions are valid, as
the MLE-values are normally distributed. Moreover, the difference of one degree of freedom
is visible for the shape and rate+shape analysis.
Instead, when the no-signal hypothesis is true, the MLE-values are not normally distributed
and the bias of the MLE shifts the probability distribution to smaller test statistic values.3

3The absolute values of the global minima of the negative log-likelihood function are smaller than expected
for normally distributed MLE-values.
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Figure 11.19: Goddness-of-Fit Distribution of the goodness-of-fit test statistic, when the
true hypothesis is the no-sterile hypothesis (a) and a sterile neutrino hypothesis (b). The lines
indicate the expected distributions assuming Wilks’ theorem. The degrees of freedom of the χ2

distribution is reduced by one in the shape analysis, as the likelihood function does not contain
the Gaussian constraint term on the total neutrino event number.

Table 11.2: Comparison of Goodness-of-Fit Parameters The distributions of the
goodness-of-fit test are compared for the toy-MC construction and the asymptotic distribu-
tion for the toy disappearance experiment assuming the no-signal hypothesis is true. The first
row lists the mean value of the respective distributions. The second row gives the p-value one
would quote when the mean value of the MC distribution is observed.

shape rate+shape
MC EXP MC EXP

mean 53.5 57 55.8 58
p-value at mean(MC) [%] 47.4 60.7 47.2 55.8

Due to the larger bias the shift becomes larger in the shape analysis. The goodness-of-fit
values based on the asymptotic distributions are hence overestimated, as listed in Table 11.2.
Even though the asymptotic distributions are not valid for the no-sterile hypothesis, the
difference of the goodness-of-fit values is comparably small due to the large total number of
degrees of freedom. Thus, quoting a goodness-of-fit value based on the asymptotic distribu-
tions might be applicable, as these results are in addition more conservative.

In this chapter, the asymptotic distributions of the test statistics T0, T1, T2, and the
goodness-of-fit test were extensively discussed. While the asymptotic distributions are valid
for T0 and T1, they do not apply for T2. Thus, the usage of Wilks’ theorem with T2 causes
too strong limits and overestimates the significance which can even lead to a wrong claim of
a signal. In addition, the sensitivities reconstructed from the Asimov data set in combination
with Wilks’ theorem differ from the true sensitivities. Two estimations for the p-value of the
no-oscillation hypothesis were discussed. First, the Gross-Vitells correction was tested for
sterile neutrino experiments. It was found that the correction does not apply and that the
p-value is overestimated, i.e. the significance is underestimated. Second, the recently pub-
lished method on fitting Gaussian white noise gives promising results for a shape analysis.
However, the p-value in a rate+shape analysis is as well overestimated. Finally, the degrees
of freedom in a goodness-of-fit test are likely to be underestimated which results, however,
only into an overestimated and more conservative goodness-of-fit p-value.
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12 Summary

A vast experimental program is currently ongoing to test the existence of a sterile neutrino at
the eV-scale, which is motivated by anomalous results from neutrino oscillation experiments.
This hypothetical, beyond the standard model, particle cannot interact weakly. However,
due to its mass, it mixes with the active neutrinos and can thus be observed indirectly. This
can be realized by a disappearance or an appearance experiment, where the sterile neutrino
mixing leads either to a reduction of the initial neutrino flux or the appearance of a different
neutrino flavor. In both cases, an oscillation signature could be observed, which cannot be
explained by the standard 3-neutrino model. This thesis covers two aspects of the sterile
neutrino search. The first part discusses the data analysis of the SOX project, which is one
specific experiment with the goal of testing the sterile neutrino hypothesis. The second part
evaluates the non-trivial statistical features of the sterile neutrino search and compares the
analysis methods applied in the current short-baseline (SBL) experiments.

12.1 Data Analysis for the SOX Project
The source-based SOX project is a disappearance experiment and exploits the solar neutrino
detector Borexino at the Laboratory Nazionali del Gran Sasso (LNGS) in Italy. Borexino is
a 270 t-liquid scintillator detector with an unprecedented low background level. The 144Ce-
144Pr-source, with an activity in between 100 kCi and 150 kCi, produces electron antineutrinos
(ν̄e) up to 3MeV via β-decays and is located 8.5m below the center of the spherical Borexino
detector. As the ν̄e are detected via the inverse beta decay (IBD) and the Borexino detector
can reconstruct the deposited energy and interaction position of the neutrinos, an oscillation
pattern induced by active to sterile neutrino oscillations can be observed. For instance, a
sterile neutrino with a mass of ∼ 1 eV results into an oscillation length of ∼ 1m which can
be directly resolved in the detector and would be a smoking gun signature. Unfortunately,
the SOX project was canceled in December 2017 due to problems in the source production.
However, the work performed in this thesis had, on the one hand, a direct impact on the
understanding of the Borexino detector itself and enhanced in particular the ν̄e-analyses in
Borexino [35, 51]. On the other hand, these results will be relevant for current or future
experiments, especially the proposed 144Ce source-based experiment JUNO [42].
This thesis focuses on the data analysis of SOX and a large fraction of the analysis software
was developed or improved in order to predict the expected signature, select the IBD events,
and produce a confidence region in the parameter space of the oscillation parameters sin2(2θ)
and ∆m2.
The expected signal, including the detector response and detection efficiency, was discussed.
Moreover, the detection efficiency of the IBD was optimized with respect to the previously-
performed Borexino analysis of geo neutrinos, which are also detected via the IBD [155]. Here,
the individual selection cuts were optimized concerning the expected signal and background
event numbers, and the systematic uncertainties in order to maximize the overall sensitivity.
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The improved detection efficiency results in (93.0± 0.5)% for a fiducial volume (FV) cut at
25 cm distance from the inner vessel. This corresponds to an enhanced detection efficiency of
10.8% using the same FV cut of the previous geo neutrino analysis. Moreover, the statistics of
the SOX event sample could be increased with an enlarged FV by a total of 16.3%. This still
relatively large FV cut of 25 cm is mandatory to minimize the uncertainty on the detection
efficiency due to the uncertain inner vessel shape. A large fraction of this optimization
strategy entered in the latest geo neutrino analysis of Borexino [35].
Furthermore, the expected detector- and source-related backgrounds for SOX were inves-
tigated. The detector-related background was studied using 4.16 y of Borexino data. The
expected event number for a measurement time of 1.5 y of SOX was evaluated to 21.6+2.7

−4.2,
where the main contribution comes from the irreducible geo and reactor neutrinos. Dur-
ing this work, a new model for the determination of accidental coincidences was developed.
Moreover, the coincidence of two µ-induced 12B-decays can mimic an IBD signal in Borexino,
which was observed for the first time in the frame of this thesis. These results have been pub-
lished as part of the latest geo neutrino analysis [35] and the search for low-energy neutrinos
from astrophysical sources [51]. The source-related background was estimated from Monte
Carlo (MC) simulations to ∼ 6.6± 0.03 events. These events are mainly induced from neu-
trons produced by spontaneous fission of 244Cm, a contamination of the 144Ce-source which
is extracted from spent nuclear fuel. While the neutrons are captured on their way to the
detector, the resulting relaxation gamma reaches the FV and can accidentally coincide with
another single detector- or source-related event. Thus, as the source-related background is
only of accidental nature, it can be well characterized during the data taking of SOX. In total,
28.2+2.7

−4.2 background events are expected for a source activity of 100 kCi, which corresponds
to a signal to background ratio of ∼200. In conclusion, the expected event number as well
as the spectral shape of the background for SOX can be well-constrained with a precision of
more than 10%.
The sensitivity of SOX and the systematic effects on the sensitivity were also studied. SOX
is sensitive to oscillation amplitudes sin2(2θ) & 0.06 at ∆m2 = 1 eV2 at the 95% CL and
covers most of the parameter space which is preferred from the anomalies. Due to the well-
characterized source and detector, the expected event number is known and a sensitivity for
sin2(2θ) & 0.09 at large mass splittings (∆m2 & 10 eV2) is achieved (95% CL). Here, an
uncertainty on the total event number of 1.5% and an absolute uncertainty of 0.03 on the
spectral shape of the neutrino spectrum is assumed. The uncertainty on the event number
mainly consists of the measurement of the power of the source (0.2%), uncertainties on the
position reconstruction (∼ 1%), and the uncertainty on the detection efficiency (0.5%). An
uncertainty on the event number decreases the sensitivity for ∆m2 & 10 eV2 and ∆m2 ∼
0.3 eV2, where the sterile neutrino signature is mostly given by a flat reduction of the event
number. The uncertainty on the spectral shape of the neutrino spectrum affects not only
the spectral shape of the neutrino signal itself, but also the total expected event number.
This comes from the power-to-activity conversion using the mean emitted energy per decay
which depends on the spectral shape. However, within the required accuracy of the spectral
shape, the effect on the total expected event number is below 1%. Besides this additional
uncertainty on the event number, an uncertainty in the spectral shape can only mimic an
oscillation signature with ∆m2 < 1 eV2, which corresponds to an oscillation length larger
than ∼ 5m. Similar results are obtained for the uncertainties in the position reconstruction
and the source position. Thus, the desired smoking gun signature of an oscillation length of
∼ 1m cannot be mimicked by any detector- or source-related systematic in SOX.
Moreover, the sensitivity and the impact of the systematic uncertainties in SOX were studied
using the asymptotic distributions of the test statistic, described by Wilks’ theorem and the
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Asimov data set. As shown in the second part of this thesis, these methods approximate
within 15% the results of a full analysis based on MC techniques.
In order to reach the expected sensitivity, a well-characterized source and detector are re-
quired. Thus, in the frame of this thesis, preliminary measurements on the spectral shape of
the 144Ce-144Pr spectrum were performed. Moreover, a dedicated SOX calibration campaign
with radioactive sources at various positions in the Borexino detector was prepared by the
collaboration.
In order to further increase the sensitivity of the SOX experiment, two hardware modifications
of the Borexino trigger system were investigated. The modifications are based on the fact
that the light yield of the inner buffer in Borexino is higher than actually designed due to
a leak in the inner vessel. This enhanced light yield allows detecting SOX events also in
the buffer. As the amount of scintillation light is close to the trigger threshold of Borexino,
a modification of the nominal Borexino trigger system is required. First, the reduction of
the trigger threshold was studied. However, the resulting high trigger rate prevented from
a stable data acquisition system, and this modification was hence discarded. Second, the
installation of an automatically issued neutron capture gate after each potential prompt SOX
candidate was investigated. The idea is to detect all the neutrons from the IBD reactions
close to the inner vessel border and decrease thus the uncertainty on the detection efficiency
induced by the uncertain vessel shape. The proper behavior of this trigger modification in
terms of detection efficiencies and hit-time distributions in the data acquisition gates were
successfully tested and validated. However, the trigger rate with the modified trigger was
reduced by 5.5% in comparison to the nominal Borexino trigger rate. This problem could
not be resolved and was not further investigated due to the cancelation of the SOX project.
During this study, an artifact of the Borexino data acquisition system was identified for the
first time. This artifact is now taken into account in the data analysis of Borexino.

12.2 Statistical Methods and Issues in Sterile Neutrino Ex-
periments

The statistical issues in a (3+1) model for SBL experiments were studied for a large set
of experimental parameters using a toy appearance and a toy disappearance experiment.
Moreover, three different statistical analyses were discussed. The analysis based on the
integral event number only (rate analysis) and the analysis based on the relative differences
in the spectral shape as a function of the distance L and the energy E (shape analysis)
are studied. In addition, the analysis given by the shape analysis with a constraint on the
total event number (rate+shape analysis) is investigated. Further, exclusion and discovery
scenarios were evaluated and compared.
Due to the same sought-after signature in appearance and disappearance experiments, the
same behavior of the sensitivities and the statistical issues are observed. The rate analysis has
effectively one degree of freedom and can only reconstruct the integral oscillation probability,
as the two oscillation parameters sin2(2θ) and ∆m2 become correlated. The confidence region
and the expected sensitivity can be obtained from Wilks’ theorem and the Asimov data set
assuming one degree of freedom for the asymptotic test statistic distributions. In contrast, the
shape and rate+shape analysis can observe an oscillation signature in L and E and can hence
reconstruct - in case of a signal - both oscillation parameters. However, with the effective two
degrees of freedom in the analysis, weaker limits in terms of sin2(2θ) are obtained than in
the one-dimensional rate analysis for ∆m2 & 10 eV2. Statistical fluctuations in the spectral
data typically lead to best-fit hypotheses different from the no-oscillation hypothesis, even
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when it is true. This can be explained by the flexibility of the fit model which can always
describe the statistical fluctuations in the data sample with a certain oscillation signature.
Thus, the maximum-likelihood estimators are biased in a shape and rate+shape analysis.
This bias results into several unexpected effects. For instance, the bias reverses the ordering
of the discovery and exclusion sensitivity for the same confidence level in comparison to the
rate analysis. Moreover, the bias in combination with the presence of the parameter bound
for the mixing angle at sin2(2θ) = 0 changes the ordering of the exclusion power for different
constraints on the total event number. From that follows that the limit and sensitivity
obtained from a rate+shape analysis are weaker than the ones from a shape analysis at
∆m2 ∼ 1 eV2. The above-described features imply that the rate+shape analysis is not a
simple linear combination of the individual rate and shape analyses in a SBL experiment.
The bias is also responsible for the non-validity of the asymptotic probability distributions
in a shape and rate+shape analysis. In particular, Wilks’ theorem does not hold for the
no-oscillation hypothesis and leads to an undercoverage. The undercoverage, which depends
on the experimental parameters, is for the toy disappearance experiment 65% and 77% for
a nominal value of 95% in a shape and rate+shape analysis, respectively. Thus, the limit
and the significance reconstructed from Wilks’ theorem are overestimated by up to 1σ and
could also lead to the claim of a signal even though the no-oscillation hypothesis is true.
The tool from Reference [212] for the estimation of the probability distribution of the no-
oscillation hypothesis and hence the significance was tested and gave promising results for the
shape analysis. However, the significance is underestimated in a rate+shape analysis which
is similar to what is obtained for the tested look-elsewhere effect correction in both the shape
and the rate+shape analysis. Further, the asymptotic distribution for the goodness-of-fit test
statistic cannot be described by Wilks’ theorem if the no-oscillation hypothesis is true. The
above-described bias decreases the effective degrees of freedom of the test, and using Wilks’
theorem results into overestimated goodness-of-fit values.
The methods applied to the current SBL experiments were compared and discussed. Their
differences can be traced back to the definition of the test statistic and the alternative hy-
pothesis used in the hypothesis test. The natural test statistic T2 is based on the most
general alternative hypothesis, i.e. the physically allowed parameter space, and carries the
above-described properties. The reconstructed confidence region with T2 contains those hy-
potheses which describe the data best in the (3+1) model. This is the natural interpretation
of a confidence region, which is obtained via the text-book approach. The test statistic T2
can reconstruct a limit as well as a signal. However, the discussed bias and the non-trivial
likelihood function require a large computational effort. Moreover, as the asymptotic for-
mulae for the probability distributions of the test statistic are not valid, an extensive MC
construction is required.
Two alternative test statistics T0 or T1 are applied in current SBL experiments. These test
statistics restrict the alternative hypothesis and simplify the minimization of the negative
log-likelihood function. The asymptotic formulae of the probability distributions of the test
statistics are valid and the computational effort is reduced in comparison to T2. Even though
both oscillation parameters are currently unknown and a restriction of them in the alterna-
tive hypothesis is not natural, two-dimensional regions can be obtained via the repetition of
the text-book approach of the construction of a confidence region. T1 fixes the mass splitting
∆m2 to the value of the tested hypothesis in the alternative hypothesis and constructs there-
fore a one-dimensional confidence region via the text-book approach. Instead, T0 defines
the alternative hypothesis as the no-oscillation hypothesis and fixes hence both oscillation
parameters. The reconstructed confidence region with T0 is therefore point-like. The result-
ing two-dimensional regions are hence the union of one-dimensional or point-like confidence
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Table 12.1: Comparison of the Confidence Regions based on the Different Test
Statistics applied to Current Short-Baseline Experiments The first row describes the
interpretation of the hypotheses contained in the specific confidence region. The second row
indicates whether the two-dimensional confidence region is constructed via the inversion of a
hypothesis test. The third and the fourth row show whether a signal or a limit can be re-
constructed. The fifth column lists the validity of the asymptotic formulae for the probability
distributions of the test statistic. Whether the amount of computation time is relatively low is
indicated in row six.

T0 T1 T2

statement of confi-
dence region

hypotheses more
likely than the
no-signal hypothesis

hypotheses describ-
ing data best for
each ∆m2-value

hypotheses describ-
ing data best for
3+1 model

text-book approach – – +
signal – – +
limit + + +
asymptotic formulae + + –
computation time + + –

regions, respectively. Even though the test of a single hypothesis with T0 and T1 is correct
in terms of a hypothesis test and coverage, the reconstructed two-dimensional regions are not
obtained via the text-book approach and carry hence a different interpretation. In particular,
the two-dimensional region reconstructed with T1 contains for each ∆m2-value the sin2(2θ)-
region which describes the data best for that specific ∆m2-value. Hence, all ∆m2-values are
contained in the two-dimensional region and ∆m2 cannot be reconstructed with T1. The
two-dimensional region reconstructed with T0 always contains the no-oscillation hypothesis
and only those hypotheses which are more likely than the no-oscillation hypothesis. Hence,
T0 cannot reject the no-oscillation hypothesis and therefore claim a discovery. Moreover,
neither sin2(2θ) nor ∆m2 can be reconstructed with T0. Thus, both test statistics cannot be
used to reconstruct a signal.
In contrast, all three test statistics can set a limit in the sin2(2θ) and ∆m2 parameter
region, where the differences to each other are reduced. Nevertheless, the different alternative
hypothesis prevents from a direct comparison and defines the ordering of the limits. Thus,
as the restriction of the alternative hypothesis increases the power of a test, the limit with
T0 is stronger than T1, which is in turn typically stronger than T2. As T0 can produce very
strong limits for some ∆m2-values, it is used in combination with the CLS-method which
weakens the overall limit. However, the interpretation of the two-dimensional region remains
unchanged. The three test statistics and their properties are summarized in Table 12.1.
In order to ease the comparison of the results, a standardized approach in the presentation
of the results would be beneficial for the field. In Reference [208], in which a large part of
this thesis was published, an analysis based on T2 using a MC construction was proposed.
In particular, if the no-oscillation hypothesis is accepted, the reconstructed confidence region
will extend down to vanishing sin2(2θ) values and its upper limit can be plotted along with its
median value (i.e. the exclusion sensitivity) and 68/95% central intervals expected under the
no-oscillation hypothesis. If the no-oscillation hypothesis is instead rejected, the confidence
region can be plotted for different confidence levels along with the discovery sensitivity.
Moreover, a p-value for the significance and a goodness-of-fit test are supposed to be reported.
Furthermore, the non-validity of Wilks’ theorem and the non-trivial interplay between the
rate and the shape analysis implies that a MC construction is also required for a global sterile
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neutrino analysis. Therefore, we encouraged the individual experiments to provide as much
as possible information needed for a global analysis.
Fortunately, this proposed standardized approach has been adopted by several groups in
their recent analyses. In particular, STEREO [211] updated their analysis using not only
T1, but also T2 with a MC construction. Moreover, STEREO as well as PROSPECT [210]
extended their results by extra information, as for example the map of their critical values.
In addition, stimulated by the results of this thesis, groups performing global fits are aware
of the overestimation of the significance when Wilks’ theorem is applied. Therefore, they
already perform a MC construction [217] or plan to do so in the future [64].

12.3 Outlook
The work of this thesis on the statistical issues in SBL experiments could be extended by the
study of a wide range of the experimental parameters. In particular, it would be interesting
to investigate the distribution of the test statistic under the no-oscillation hypothesis as a
function of the systematic and statistical uncertainties of the experiment. Moreover, given a
possible correlation, as already hinted at in Chapter 11, it might be possible to approximate
the significance of a signal also in a rate+shape analysis.1 In addition, as Reference [212] ob-
serves a difference between the probability distributions for a Poisson- or Gaussian-distributed
test statistic, the investigation of such a dependency is worthwhile as well.
From the published critical values of STEREO [211] and PROSPECT [210] it is visible that
the applied ratio-method does not fully agree with a shape analysis. Hence, a detailed study
of the ratio-method and its comparison to the shape analysis is desirable.
Moreover, similar statistical issues were found in experiments beyond the SBL program, as
for example in the sterile neutrino search in the long-baseline experiment Double Chooz [209]
and the test of new physics in the coherent elastic neutrino-nucleus scattering experiment
COHERENT [220]. Therefore, this work could be extended to study the statistical issues for
experiments beyond the SBL program.

1The distribution in a shape analysis can already be well described by the approximation in Reference [212].
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13 Current Status of Sterile
Neutrino Search

The current situation of light sterile neutrinos is unclear. Several experiments have already
released first results, where some of them could exclude a large fraction of the preferred
oscillation parameter region of the anomalies. In contrast, a few experiments hint at a
positive signal which, however, cannot be confirmed by the other experiments. The results
are summarized in more detail in the following.
An interesting coincidence of the positive ∼ 2σ confidence regions of the reactor experiments
NEOS [71] and DANSS [126] is observed. The best-fit value of a combined analysis is given
by sin2(2θ) = 0.049 and ∆m2 = 1.29 eV2 at a significance, which is dominated by the DANSS
data set, of 3.7σ [221]. The observed mixing is smaller than the expected one from the reactor
antineutrino anomaly (RAA) and Gallium anomaly and is in tension with them at the ∼ 2σ
level [116]. As this result is based on the ratio of the measured energy spectra at different
baselines, it is independent on the reactor neutrino flux, and hence more robust than the
RAA [7]. Moreover, this observation is also called the ”spectral anomaly” of the RAA [222].
However, DANSS presented preliminary results in 2019 and the combined significance with
NEOS [71], Bugey-3 [223], and PROSPECT [128] reduces to, assuming Wilks’ theorem, 2.6σ
with a best-fit value of sin2(2θ) = 0.026 and ∆m2 = 1.29 eV2 [224]. Based on our work
in Reference [208], this significance is reevaluated to 1.8σ using a toy-Monte Carlo (MC)
construction [217]. The corresponding confidence regions are depicted in Figure 13.1a. In
addition to the ones from the toy-MC construction, the overestimated confidence regions
reconstructed from Wilks’ theorem are shown. DANSS preliminarily presented another up-
dated result at the Neutrino conference 2020 which shows no indication for a sterile neutrino
signal and states a corresponding significance of 1.5σ [225]. Thus, one can expect that the
significance of the combined analysis will reduce further.
Another positive signal at the 3.0σ level is reported by the Neutrino-4 collaboration, where
their best-fit value is sin2(2θ) ∼ 0.26 and ∆m2 ∼ 7.25 eV2 [228]. However, this result
is heavily debated (see for example Reference [229]) and is in tension with the residual
experiments, which can be seen in Figure 13.1b. In particular, the preferred oscillation
parameters are inconsistent with the RAA and the above-discussed results from NEOS and
DANSS. Further, the limits of PROSPECT [210] and solar neutrino data [123] reject the best-
fit value of Neutrino-4. In addition, STEREO [211] and the tritium-endpoint measurement
KATRIN [138] are about to probe this parameter region in the near future. Moreover,
Neutrino-4 uses Wilks’ theorem and the significance of the signal is therefore overestimated,
as discussed in Chapter 11. Based on the work of this thesis, PROSPECT and STEREO
emphasize for another time the non-validity of Wilks’ theorem and request the Neutrino-4
collaboration to publish their results using a toy-MC construction [229]. The significance of
the Neutrino-4 signal is reestimated in Reference [212] to 2.6σ which, however, treats only
the statistical error. Hence, it is likely that the significance decreases even further when the
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Figure 13.1: Current Status of Sterile Neutrinos a) The preferred parameter space
in sin2(2θ)-∆m2 for a combined analysis of NEOS [71], DANSS [226], Bugey-3 [223], and
PROSPECT [128] data are shown for the 1σ (blue), 2σ (red), and 3σ (green) level. The con-
fidence regions reconstructed from a toy-MC construction (Wilks’ theorem) are shown in solid
(dashed). The cross indicates the best-fit value. The figure is taken from Reference [217]. b)
Results on the oscillation parameters sin2(2θ)-∆m2 from the Neutrino Conference 2020. The
limits from STEREO [227], PROSPECT [210], DANSS [225], and KATRIN [138] are shown at
the 95% CL. The signal observed from Neutrino-4 [228] is shown at the 2σ level. The gray area
highlights the 90% CL region allowed by the reactor and gallium anomaly [67]. Remind that
the experiments use different methods which prevents from the direct comparison of the results.

systematic effects are taken into account.
In a recent update, MiniBooNE reports an increased excess of 4.8σ in a combined neu-
trino and antineutrino measurement with a best-fit value at sin2(2θ) = 0.807 and ∆m2 =
0.043 eV2 [230].
The preferred parameter region in a global analysis in 2019 becomes small and is shifted
towards slightly smaller mixing angles than initially hinted at by the anomalies [231]. The
best-fit value in a (3+1) model is sin2(2θ) = 0.053 and ∆m2 = 1.32 eV2 and is favored over
the no-oscillation hypothesis with more than 5σ. However, the tension between appearance
and disappearance experiments remains and corresponds to a 4.5σ level. The strong tension
comes actually from the fact that a signal is observed in νe/ν̄e-disappearance and in νµ → νe/
ν̄µ → ν̄e-appearance experiments, but not in the νµ/ν̄µ-disappearance channel [7]. The
strongest bounds come here from Minos&Minos+ [232] and IceCube [233]. In order to make
the appearance and disappearance results compatible with each other, alternative models are
studied. However, a (3+2) model cannot reduce the tension. In contrast, the (3+1+decay)
model, where the fourth neutrino mass state can decay, lowers the tension to a 3.2σ level [231].
Moreover, such a model could also decrease the tension with cosmological data which strongly
disfavor a sterile neutrino at the eV-scale. The number of relativistic neutrinos Neff is
consistent with three neutrinos and the sum of the respective neutrino masses is mν .
0.1 eV [17]. However, this result is based on the cosmological model which assumes for
example that the sterile neutrino is in thermal equilibrium with the active neutrinos at the
time of neutrino decoupling. Therefore, a model that avoids the thermal equilibrium can
hence reduce this tension (see e.g. References [116,231]).
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In order to explain the anomalous data, models of new physics, also beyond the sterile neu-
trino hypothesis, are proposed [234–240]. Moreover, the anomalies themselves are reevaluated
and crosschecked for systematic effects. For instance, the Gallium anomaly was recently rees-
timated based on new cross-section calculations to only 2.3σ [241]. Doubts on the RAA arise
from two observations that show a deviation from the nominal Huber-Mueller flux predic-
tion [65,66]: First, the so-called ”5MeV bump” in the spectral shape which is a discrepancy
of ∼ 10% was observed by several experiments [196–198]. Second, Daya Bay [242, 243] and
RENO [244] directly observed that the IBD event rate and energy spectrum evolve and
depend on the reactor fuel composition during burnup. According to their results, a mispre-
diction of the reactor neutrino flux, mainly the 235U contribution, may be the main source
for the RAA. Therefore, the RAA is reevaluated using not only the Huber-Mueller flux, but
also two updated flux predictions [72,204]. The anomaly depends then on the flux prediction
and results into a significance varying in between 0.95σ and 2.8σ [222], where the smallest
significance is obtained for the neutrino flux based on ab initio calculations (see Chapter 1).
The MiniBooNE anomaly is also disputed, as the excess is only present in the lowest energy
bins which is not fully compatible with the (3+1) model [7, 120]. MiniBooNE reinvestigates
hence carefully their individual backgrounds. In particular, single photons from misidentified
π0-decays could mimic a neutrino signal. However, π0-decays can be well constraint with
in-situ measurements and are disfavored as an explanation for the excess [230]. Moreover,
the future short-baseline program at Fermilab uses liquid Argon time-projection chambers
and can discriminate between photons and electrons and can hence independently test this
possible background source [135].
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14 Conclusions

Light sterile neutrinos are one of the current hot topics in neutrino physics, and a large
number of experiments are looking for them. However, the present status is confusing, and
more experimental data is needed. Here, the complementary SOX project with its well-
characterized source and detector would have provided a helpful measurement to disentangle
this unclear situation. Even though SOX was canceled, the results obtained within this
dissertation project are a valuable input for the design and analysis of current and future
experiments. Moreover, the optimized event selection and background modeling were used
to improve other antineutrino analyses in Borexino. In order to describe the present global
picture of light sterile neutrino searches, either new physics or so far unknown systematic
effects need to be considered. Furthermore, due to the different applied analysis methods,
special attention is required for the comparison of the results and the interpretation of the
significance. The standardized analysis approach proposed in the frame of this work helps
to clarify the situation from a statistical point of view and has been adopted by several ex-
periments. Within the next years, the currently running experiments will expand their reach
and test the full parameter space opened by anomalous neutrino oscillation data. However,
recent results may hint at an allowed parameter region towards smaller mixing angles and
next-generation experiments with an intense and well-characterized neutrino source (e.g. Iso-
DAR [245]) might be necessary to give conclusive results on the existence of light sterile
neutrinos. A discovery of sterile neutrinos would have deep repercussions on both particle
physics and cosmology.
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A.1 Calibration of the TUM Spectrometer
The energy spectrum of the produced electron in a beta decay can be described with:

N(W ) ∝W · p · (W −W0)2 · F (Z,W ) · C(W ), (A.1)

where W is the total energy and p the momentum of the electron [246]. W0 is the endpoint
of the beta spectrum. F (W,Z) is the Fermi function and a numerical solution can be found
for example in [247]. The shape factor C(W ) modifies the allowed spectrum and depends on
the classification of the transition.1 The calibration sources and their transitions are listed
in Table A.1.

Table A.1: Calibration Sources for the TUM Spectrometer The decays of the calibration
sources are listed along with their probabilities and energies in the first four columns. Given a
beta decay, the energy corresponds to the Q-value. The classification and the shape factor used
for the simulation of the beta transition is given in the last two columns. Here, q denotes the
momentum of the neutrino and (1) stands for 3(W 2−1)2 +3(W0−W )4 +10(W 2−1)(W0−W )2.

Source Decay Probability Energy Type of Forbidden Shape Factor
[%] [keV] Transition

90Sr [248] β− 100 545.9 unique 1st p2 + q2 [246]
90Y [248] β− 99.983 2278.7 unique 1st p2 + q2 [246]

β− 0.017 518.0 unique 1st p2 + q2 [246]
36Cl [191] β− 98.1 709.5 non-unique 2nd (1) [249]

137Cs [248] β− 94.4 514.0 unique 1st p2 + q2 [246]
β− 5.6 1175.6 non-unique 2nd 0.03p2 + q2 [250]
γ 85.0 661.7

conversion e− 7.6 624.2
conversion e− 1.4 656.0
conversion e− 0.3 660.5

The comparison of the Geant4-based simulated and measured spectra with the TUM spec-
trometer are shown in Figures A.1, A.2, and A.3. Figure A.4 compares the measured spectrum
of the same 137Cs source for two different measurement runs.

1One differentiates forbidden decays between unique and non-unique transitions, where non-unique tran-
sitions are typically more difficult to describe as they consist of more than one (”unique”) nuclear matrix
element.
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a) b)

Figure A.1: Calibration of the TUM Spectrometer with a 90Sr-90Y Source a) spectrum
measured with the multi-wire chamber b) spectrum measured with the photo multiplier tube.

Figure A.2: Calibration of the TUM Spectrometer with a 36Cl Source Spectrum
measured with the photo multiplier tube.
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Figure A.3: Calibration of the TUM Spectrometer with a 137Cs Source Spectrum
measured with the photo multiplier tube.

a) b)

Figure A.4: Stability of the TUM Spectrometer The spectrum of a 137Cs source measured
in a) the multi-wire chamber b) the photo multiplier tube is shown for two different measure-
ments. In between the two measurements, the spectrometer was opened and closed, which could
affect the relative source position to the two detectors and thus explain the difference in the
spectra.
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A.2 Borexino Trigger Types

Table A.2: Borexino Trigger Types The Borexino trigger types (tt) and the correspond-
ing Borexino trigger board inputs (btb) with their conditions and gate lengths are listed. The
combination of tt and btb is important to distinguish between events only triggering the Inner
Detector (ID), the Outer Detector (OD), or both. The service triggers (calibration and random)
are automatically issued every two seconds.

Trigger Name tt btb Condition Gate Length
Neutrino 1 0 ≥20 ID PMT hits within 100 ns 16 µs
Muon 2 4 ≥6 OD PMT hits within 150 ns 16 µs

Neutron 128 8 after tt1 & btb4 1.6ms
SOX Prompt 4 16 ≥65 ID PMT hits within 100 ns 16 µs
SOX Delayed 16 32 after tt4 1.6ms
Fake Signal 8 64 after tt16/tt128 1.6 µs
Calibration 32 64 issued every 2 s 1.6 µs
Random 64 64 issued every 2 s 1.6 µs
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A.3 Optimization of Selection Cuts
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Figure A.5: Optimization of the Ep-Cut a) the SOX and the background event numbers are
given as a function of the Ep-cut value. The SOX event number assumes a total event number
of 104. The background event number is obtained from Borexino data selected for the optimized
cut values without a FV cut. b) the sensitivity is shown in terms of sin2(2θ) at ∆m2= 10 eV2.
The sensitivity is computed as described in Appendix A.5 and assumes an uncertainty on the
signal and background event number of 1%, respectively.
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Figure A.6: Optimization of the Ed-Cut a) the SOX and the background event numbers are
given as a function of the Ed-cut value. The SOX event number assumes a total event number
of 104. The background event number is obtained from Borexino data selected for the optimized
cut values without a FV cut. b) the sensitivity is shown in terms of sin2(2θ) at ∆m2= 10 eV2.
The sensitivity is computed as described in Appendix A.5 and assumes an uncertainty on the
signal and background event number of 1%, respectively.
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Figure A.7: Reconstructed Inner Vessel Shape The blue line shows the reconstructed
radius of the vessel shape from October 2016 as a function of the polar angle θ. One assumes
a cylindrical symmetry of the vessel shape. The red and black vessel shapes are generated by
applying a 5 cm shift which is the size of the uncertainty of the vessel shape. The plot is taken
from Reference [190].
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Figure A.8: Fast Coincidences with Polonium Isotopes The IBD-like events are selected
for the optimized selection cuts, but without the mlp-cut on the delayed event and for Ep =
200 p.e.. The four panels show different time scales for ∆t. The measured time distribution can
be well described by the sum of four exponential decay functions with the respective Polonium
lifetimes (τ(212Po) = 425.1 ns, τ(214Po) = 236.0 µs, τ(215Po) = 2.6ms, τ(216Po) = 209ms) and a
flat contribution due to accidental coincidences. The dashed line indicates the maximum ∆t-cut
value for SOX.
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A.4 Minimization Algorithm of the Negative Log-Likelihood
Function

To minimize the non-trivial negative log-likelihood function (see for example Figure 9.3
and 11.8) and determine the maximum-likelihood estimator (MLE) for a specific data sample,
the ∆m2-range is divided into a fine raster of 500 ∆m2-values. These 500 raster points are
equally-spaced in a logarithmic scale. Further, 100 individual raster points are added for the
assumed true ∆m2-value. These additional values cover a ∆m2-region up to a deviation of
±5% for the specific ∆m2-value in linear spacing. As the likelihood function is a monotonic
function in sin2(2θ) for a fixed ∆m2-value, the minimization algorithm MINUIT [188] con-
verges properly for fixed ∆m2-values. After the individual minimization at these 600 raster
points, the smallest local minimum out of these defines then the global minimum.
To speed up the minimization process, one can use the advantage that only one probability
distribution pdfS(sin2(2θ) = x1,∆m2) and integrated oscillation probability Pint(sin2(2θ) =
x1,∆m2) has to be produced per ∆m2-value. All other probability distributions of the signal
hypotheses with sin2(2θ) = x2 for the same ∆m2-value can be obtained via rescaling and the
probability distribution of the no-signal hypothesis pdfS (0, 0). In case of the appearance ex-
periment, the normalized probability distribution is unchanged (pdfS(sin2(2θ) = x2,∆m2) =
pdfS(sin2(2θ) = x1,∆m2)) and the integral survival probability becomes

Pint(sin2(2θ) = x2,∆m2) = x2
x1
· Pint(sin2(2θ) = x1,∆m2). (A.2)

For the disappearance experiment, the product of the probability distribution and the integral
survival probability can be rescaled using:

Pint
(
sin2(2θ) = x2,∆m2

)
· pdfS

(
sin2(2θ) = x2,∆m2

)
= (A.3)

pdfS (0, 0)− x2
x1
·∆pdfS

(
sin2(2θ) = x1,∆m2

)
,

where

∆pdfS
(
sin2(2θ) = x1,∆m2

)
= (A.4)

pdfS (0, 0)− Pint
(
sin2(2θ) = x1,∆m2

)
· pdfS

(
sin2(2θ) = x1,∆m2

)
.

Notice that such a construction works only, when there are no bin-correlated uncertainties.
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A.5 Calculation of Sensitivities in a Rate Analysis
In the following, the formalism for an easy computation of the sensitivities in a rate analysis
is given. To reject a hypothesis with the expected event number Nexp at the nσ level, the
observed event number Nobs needs to be apart exactly nσ:

∆N = |Nexp −Nobs| = n · σ, (A.5)

where σ is the total uncertainty of statistical and systematic ones of the signal (s) and the
background (b), respectively:

σ2 = σ2
stat(Nexp) + σ2

syst(Nexp) = N s
exp +N b

exp + (σsr ·N s
exp)2 + (σbr ·N b

exp)2. (A.6)

Notice that these equations are valid, when the expected event numbers of the signal (N s
exp)

and the background (N b
exp) are large, where Nexp = N s

exp + N b
exp. Moreover, σsr and σbr

denote the relative systematic uncertainties on the signal and background event number,
respectively. One has to distinguish between one-sided and two-sided limits, as sketched in
Figure A.9. If a hypothesis can be rejected for both a positive and a negative difference in
the event numbers (i.e. Nobs > Nexp or Nobs < Nexp), n corresponds to ≈ 2 for a 95% CL.
This is the case for the exclusion sensitivity (two-sided limit). When a hypothesis can only
be rejected for an excess or deficit in the event number as for the no-oscillation hypothesis
in the appearance and disappearance experiments, the 95% CL corresponds to n = 1.645.
This is the case for the discovery sensitivity (one-sided limit).
For large ∆m2-values, when the integral oscillation probability averages out, the difference
in the event numbers needed for the sensitivity can be connected to the sensitive value of the
mixing amplitude:

∆N = 0.5 · sin2(2θ) ·Nν , (A.7)

where Nν denotes the neutrino event number in case of an oscillation probability of one.
Table A.3 lists the computed values for the sensitivities with Nν = 105 for the toy appear-
ance and the toy disappearance experiment. They are consistent with the values which are
obtained through a full MC approach (see Figure 9.1). Given a known background event num-
ber, the 1σ signal discovery limit for the appearance experiment reduces to ∆N/

√
N b

expwhich
is equivalent to s/

√
b from Reference [181].

Table A.3: Assumed and Computed Values in a Rate Analysis for the Toy Exper-
iments The assumed values are the ones from Table 9.1. The values indicated in gray are
computed using Equations A.5-A.7. The last column shows the computed sensitive sin2(2θ)
value in a rate analysis for large ∆m2-values at the 95% CL.

n N s
exp N b

exp σsr σbr σ Nobs ∆N sin2(2θ)
toy appearance experiment
exclusion 1.96 120 103 0.1 0.05 61.4 1000 120 2.40 · 10−3

discovery 1.645 0 103 0.1 0.05 59.2 1097.3 97.3 1.95 · 10−3

toy disappearance experiment
exclusion 1.96 96157 104 0.02 0.02 1960.8 110000 3843 0.077
discovery 1.645 100000 104 0.02 0.02 2037.2 106649 3351 0.067
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σ
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∫

Figure A.9: Visualization of One-Sided and Two-Sided Limits. f(N) denotes the
Gaussian distribution with the mean Nexp and the standard deviation σ. The critical values at
the 95% CL for a one-sided and two-sided limit are indicated in red and blue, respectively.
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A.6 Asymptotic Properties of T2
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Figure A.10: Coverage of T2 for the Toy Eperiments The coverage assuming Wilks’
theorem are shown at the 95% CL in a rate, shape, and rate+shape analysis for the toy disap-
pearance and the toy appearance experiment. In addition, the exclusion sensitivities at the 95%
CL are shown in black. The assumed degrees of freedom (ndof) of the chi-square functions are
defined as the number of uncorrelated parameters in the respective analysis.
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Figure A.11: Power of T2 for the Toy Experiments The power is computed as the
fraction of the alternative distribution above the expected median value and is shown for the
rate+shape analysis for the toy appearance and toy disappearance experiment. The nominal
value corresponds to 0.5. In addition, the exclusion sensitivities at the 95% CL are shown.
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experiment and the rate+shape analysis of the toy appearance experiment.
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A.7 Connection of the Sensitivities of T0 and T1

In Figure 10.8 it was shown that the exclusion sensitivities for T0+CLS and T1 overlap,
which will be proven in the following. The proof is based on the asymptotic formulae for the
probability distributions of T0 and T1 which are valid for both test statistics in the oscillation
parameter space close to the sensitivity (see Chapter 11). Thus, the null and the alternative
distributions of T0 follow approximately Normal distributions

f
(
t(x,y)|(x, y)

)
∼ N

(
t
A(x,y)
(x,y) , 4tA(x,y)

(x,y)

)
(A.8)

f
(
t(x,y)|(0, 0)

)
∼ N

(
t
A(0,0)
(x,y) , 4t

A(0,0)
(x,y)

)
, (A.9)

where tA(x,y)
(x,y) (tA(0,0)

(x,y) ) is the value of the test statistic for the Asimov-data set of H(x, y)
(H(0, 0)) as defined in Formula 3.12 and tA(x,y)

(x,y) ≈ t
A(0,0)
(x,y) . Moreover, the null and the alterna-

tive distribution of T1 can be described by a central and non-central chi-square distribution
with one degree of freedom χ2

1, respectively. Here, the non-centrality parameter of the alter-
native distribution can be approximated with tA(0,0)

(x,y) . Therefore, the median of the alternative
distributions for the test of the same hypothesis is the same for T0 and T1 and is given by
t
A(0,0)
(x,y) , which will be abbreviated with t in the following.
The exclusion sensitivity is defined for these hypotheses, where the integral of the null dis-
tribution above the median value of the alternative distribution is given by the test size
α: ∫ ∞

med
f
(
t(x,y)|(x, y)

)
= α. (A.10)

In the case of T0 one obtains:

α(T0) =
∫ ∞

med
f
(
t(x,y)|(x, y)

)
=
∫ ∞
t
N (−t, 4t) (A.11)

= 1
2

(
1− erf

(
t− (−t)

2
√

2t

))
= 1

2

(
1− erf(

√
t

2)
)

(A.12)

= 1
2

(
1− 1√

π
γ(1

2 ,
t

2)
)
, (A.13)

with
∫∞
x N (µ, σ2) = 1

2

(
1− erf(x− µ√

2σ
)
)

and erf(x) = 1√
π
γ(1

2 , x
2), where erf(x) and γ(a, x)

denote the error and the lower incomplete gamma function, respectively.
In the case of T1 one finds:

α(T1) =
∫ ∞

med
f
(
t(x,y)|(x, y)

)
=
∫ ∞
t

χ2
1 = 1−

γ(1
2 ,
t

2)

Γ(1
2)

= 1−
γ(1

2 ,
t

2)
√
π

, (A.14)

with the gamma function Γ(x) and Γ(1
2) =

√
π.

Thus,
α(T0) = 1

2α(T1). (A.15)

This means that the confidence levels of the sensitivities of T0 and T1 are connected: e.g.
the sensitivity of T1 with a 95% confidence level corresponds to the 97.5% confidence level
for T0.
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Moreover, the test size of the T0+CLS method is connected to the test size of T0 and hence
to the one of T1:

CLS =
∫∞

med f
(
t(x,y)|(x, y)

)
∫∞

med f
(
t(x,y)|(0, 0)

) = α(T0)
0.5 = α(T1). (A.16)

Here, it is assumed that the median of the distribution of T0+CLS corresponds to the ratio of
the integrals of the null and alternative distribution above the median value of the alternative
distribution. This connection proves that the exclusion sensitivities are the same for T0+CLS
and T1 independent on the specific confidence level. Note that this connection holds only for
the sensitivities but is not given for the reconstructed limits and confidence regions from a
single data set.
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A.8 Degrees of Freedom and Size of Confidence Region
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Figure A.13: Degrees of Freedom and Size of Confidence Region The Normal prob-
ability distributions are shown in yellow for one (top) and two (bottom) degrees of freedom,
respectively. The standard deviation of the parameters a and b are indicted in red. The blue
lines restrict the parameters which contain 68% of the probability distributions around the mean
value and can be interpreted as the confidence regions. The confidence region of parameter a for
b = 0 is larger than its standard deviation σa for two degrees of freedom. Hence, the confidence
region of parameter a increases for two degrees of freedom in comparison to the confidence region
with one degree of freedom. This illustration is supposed to visualize that the size of a confidence
region increases with the number of free parameters and therefore with the degrees of freedom
of a test.
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