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Zusammenfassung 

Die Existenz von überlappenden Genen (OLGs) die dadurch beschrieben werden, dass sie in einem 

alternativen Frame zu einem bereits existierenden Gen lokalisiert sind, wurde kontrovers diskutiert, da 

dies nicht mit dem „ein Gen - ein Protein“ Prinzip übereinstimmt. Deshalb wurde die Möglichkeit von 

mehr als einem protein-kodierenden Gen am selben Lokus, jedoch in verschiedenen Frames, in 

Prokaryoten weitestgehend nicht berücksichtigt, obwohl die Beschreibung von überlappenden Genen in 

Viren bereits seit 1976 von Virologen anerkannt ist. Lediglich vereinzelte OLGs wurden sowohl in 

Eukaryoten als auch Prokaryoten unter der Verwendung der Next-Generation-Sequencing Variante 

RIBO-Seq identifiziert. 

RIBO-Seq ist eine neue Technik, die die Momentaufnahme des Translatoms mit der bestimmten 

Zuordnung von Reads zu einem der beiden genomischen Stränge ermöglicht. Dabei werden lediglich 

ribosomal geschützte mRNA Fragmente sequenziert, wodurch aktiv translatierte Gene zum Zeitpunkt 

der Zellernte aufgedeckt werden. Diese Arbeit fokussiert sich auf die Detektion, Evaluation und 

Verifikation von OLGs in Prokaryoten unter der Verwendung einer optimierten Analyse von RIBO-Seq 

Datensätzen.  

Zuerst wurden neun bereits publizierte RIBO-Seq Datensätze von E. coli K12 verglichen, um eine 

spezifische Größenauswahl für ribosomal geschützte mRNA Fragmente zu bestimmen. Hierbei zeigten 

sich Fragmente mit einer Länge zwischen 24 bis 27 Nukleotiden als am informativsten. Zusätzlich zeigte 

eine Analyse im 5‘-UTR, dass für diesen größtenteils längere Reads (34 Nukleotide) detektiert wurden, 

wodurch verdeutlicht wird, dass die Anpassung der Fragmentlängen Auswahl an die experimentelle 

Fragestellung essenziell ist. Generell können bei einer Größenordnung zwischen 22 bis 30 Nukleotiden 

Protein kodierende Fragmente gewonnen, gleichzeitig aber größtenteils jene ausgeschlossen werden, 

die für rRNA oder tRNA kodieren.  Zusätzlich verdeutlichte eine Analyse, dass mindestens 20 Millionen 

Reads notwendig für eine aussagekräftige Evaluierung von RIBO-Seq Experimenten sind. Hier nicht 

eingerechnet sind Reads, welche entweder rRNA oder tRNA zugeschrieben werden. In Anbetracht der 

verbesserten Detektion von bisweilen unbekannten, überlappenden Genen, zeigt sich die Zugabe von 

Chloramphenicol von Vorteil, vor allem für gering exprimierte Gene durch eine verdeutlichte Startpunkt 

Detektion.  

Des Weiteren zeigte eine Analyse von 24 verschiedenen, prokaryotischen Spezies die Verteilung von 

eingelassenen OLGs im phylogenetischen Stammbaum. Vorhersagen der OLGs wurden mit dem 

veröffentlichten Detektionstool DeepRibo oder einem internen Skript durchgeführt. Lediglich wenige 

OLGs wurden mit beiden Programmen detektiert, vermutlich aufgrund von abweichenden 

Gen-spezifischen Merkmalen, welche diese für die Vorhersagen verwenden. Ausschlaggebend für die 

Verifikation vorhergesagter OLGs war deshalb eine Spezies-spezifische Analyse diverser Proben. Die 

somit erreichte Mehrfachbestimmung desselben OLGs wies auf potenzielle Authentizität hin, weshalb 

diese anschließend in Bezug auf ihre evolutionäre Entwicklung analysiert wurden. 43 eingebettete OLG 
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Sequenzen wurde identifiziert und daraufhin auf ihre Integration im Genom und Intaktheit analysiert.  

Das potenzielle Alter der Gene wurde auf Grundlage ihrer Häufigkeit in der Spezies-eigenen Familie 

bestimmt. Allerdings scheint ein Großteil der identifizierten Varianten jung und keinem negativen 

Selektionsdruck ausgesetzt zu sein. Zusätzlich wurden die Länge der OLGs analysiert, basierend darauf 

ob diese willkürlich entstanden sein können oder sie länger sind als erwartet, wodurch deren 

Funktionalität angenommen werden könnte. Des Weiteren konnte eine Länge zwischen 100 - 200 

Nukleotiden für einen Großteil der detektierte OLGs gezeigt werden, während deren Lokalisation 

vermehrt im relativen Leserahmen sas12 vom überlappenden Gen zum korrespondierenden Mutter-Gen 

zu finden ist. Hierbei ist die 1. Codon Position des Mutter-Gens komplementär zu der 2. Position des 

überlappenden Gens und umgekehrt. Daraus resultiert eine entsprechende Überlagerung der 3. Codon 

Position für beide Gen Varianten.  

Basierend auf den Ergebnissen dieser Kriterien konnten vier potenzielle Kandidaten identifiziert 

werden. Auch wenn keine statistisch signifikanten Ergebnisse erzielt wurden, zeigen sich Hinweise auf 

Funktionalität in wenigsten zwei der drei Analysen für diese OLGs. Deshalb können evolutionäre 

Analysen verwendet werden, um aus der Vielzahl der Vorhersagen erste Kandidaten für anschließende 

experimentelle Verifikation auszuwählen. 

Aufgrund der in dieser Arbeit generierten Ergebnisse werden experimentelle Empfehlungen für die 

Durchführung von RIBO-Seq Experimenten ausgesprochen, die möglicherweise zu einer verbesserten 

Detektion von überlappenden Genen, deren Existenz im phylogenetischen Stammbaum nun ebenfalls 

bestätigt werden konnte, beitragen.  
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Abstract 

The existence of overlapping genes (OLGs) characterised as being encoded by an alternative reading 

frame within an already existing gene has been a matter of controversy since it does not conform with 

‘one gene - one protein’ principle. Therefore, the possibility that more than one protein-coding gene can 

be found at the same locus in different reading frames has not been considered in prokaryotes in any 

detail, although the description of overlapping genes in viruses, which started as early as 1976, has been 

accepted among virologists. Only occasionally OLGs were suggested to exist within eukaryotes and 

prokaryotes, mainly based on Next-Generation-Sequencing techniques, namely RIBO-Seq.  

RIBO-Seq is a new technique allowing to visualise a general snapshot of the translatome with the distinct 

assignment of RNA-based reads to either of the two genomic strands. As only ribosome protected 

mRNA fragments are subjected to sequencing, genes that are actively translated at the time of harvest 

are revealed. This thesis focusses on the detection, evaluation, and verification of OLGs within 

prokaryotic genomes using an optimized analysis of RIBO-Seq data. 

First, a total of nine publicly available RIBO-Seq experiments from E. coli K-12 were compared to 

identify an appropriate size selection range to obtain solely ribosomal protected mRNA fragments. Here, 

fragments between 24 to 27 nucleotides in length were identified to be most informative. Further, the 

importance of size selection was demonstrated as an analysis focused on the 5’-UTR regions of 

annotated genes showed a predominant coverage of longer fragments (34 nucleotides). Hence, an 

adaptation of the read length analysed to the goal of the analysis is crucial. In general, a range between 

22 to 30 nucleotides covers protein-coding fragments while simultaneously excluding mostly those 

corresponding to rRNA/tRNA. A general analysis regarding sufficient read coverage reveals that at least 

20 million reads, excluding rRNA and tRNA reads, are necessary for appropriate RIBO-Seq evaluation. 

With reference to non-annotated overlapping genes, the application of chloramphenicol might aid in 

their detection as it supports start site detection especially for weakly expressed genes.          

Second, an analysis of 24 prokaryotic species revealed the presence of embedded OLGs throughout the 

phylogenetic tree. Predictions made were based on the publicly available tool DeepRibo and an in-house 

prediction script. However, few OLGs were detected by both approaches, probably due to the fact that 

both tools focus on different gene specific features. More suitable for the verification of OLGs was 

species-specific analysis of different samples. Here, re-occurring determination indicated potential 

authenticity of the OLGs, which were subjected to a first analysis focussing on sequence evolution. On 

this basis, 43 embedded OLGs were identified and their sequence was analysed according to potential 

functionality based on maintenance in the genome and integrity. The potential genes’ age was estimated 

based on its abundance within the species’ family. Most appeared to be ‘young’ and no significant 

negative selection was detectable. Furthermore, an analysis was performed regarding the OLGs length, 

whether this can be explained by random creation or is longer than expected, therefore implying 

functionality. Additionally, the predominant length for embedded OLGs predicted is between 100 - 200 
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nucleotides whilst the favoured location to maintain within the genome seems to be in relative reading 

frame sas12 to their mother gene. Here, the 1st codon position of the mother gene is complementary to 

the 2nd position of the overlapping gene and vice versa. Consequently, the 3rd codon positions are 

corresponding to each other for the mother gene and overlap. 

Based on these criteria, four OLG candidates of interest were identified. Though not statistically 

significant, those OLGs showed indications for functionality based on at least two of the three analyses 

performed. Thus, evolutionary analysis can be used to narrow down the number of potential OLGs to 

those of special interest which can then be subjected to further experimental verification.  

Based on the results of this dissertation, recommendations for future RIBO-Seq experiments are given 

that may contribute to OLG detection, whose existence is now confirmed throughout the phylogenetic 

tree.   
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1. Introduction 

1.1 Overlapping genes – fallacy or reality? 

1.1.1 History of overlapping genes (OLGs) 

The definition of what can be described as a gene has changed over the past 150 years (Portin & Wilkins, 

2017). What defines a gene, in general, is the nucleotide structure it is based on. A seemingly random 

sequence consisting of bases adenine, cytosine, guanine, and thymine, attached via a sugar (deoxyribose) 

and phosphate backbone, forms the foundation of a functional gene (Watson & Crick, 1953). It was 

previously believed that genomes, no matter whether pro- or eukaryotic, are packed with genes one after 

the other, with some genes in such close distance, forming operon structures, resulting in both of them 

being transcribed at the same time (Yanofsky & Lennox, 1959). This assumption implies that one gene 

at a specific location in the genome stores the information for exactly one transcribed mRNA, resulting 

in one protein after translation. Besides factors such as alternative promotors, splicing variants and post-

translational modifications, all evidence against the ‘one gene - one protein’ hypothesis (Hickman & 

Cairns, 2003; Portin & Wilkins, 2017), another counterexample is the detection of overlapping genes 

(OLGs).  

The first overlapping genes were found in the genome of bacteriophage ΦX174 by Barrell et al. in 1976. 

Way back then, the discrepancy between the bacteriophages' genome size and the nucleotides needed to 

code for the identified proteins led to an analysis of the genome sequence itself. A first explanation for 

the hitherto unknown phenomenon of potential functional genes located in alternative frames and 

thereby overlapping already identified genes was the genome ‘compression theory’ (Belshaw, Pybus, & 

Rambaut, 2007; Brandes & Linial, 2016; Chirico, Vianelli, & Belshaw, 2010). Due to the 

bacteriophages’ small genome size and little space left between known genes, any additional genes are 

required to occur in an alternative frame (Scherbakov & Garber, 2000). However, further detections of 

overlapping genes not only in viruses (Cassan, Arigon-Chifolleau, Mesnard, Gross, & Gascuel, 2016; 

Fernandes et al., 2016; Nelson, Ardern, Goldberg, et al., 2020) but also in prokaryotes (Hücker, 

Vanderhaeghen, Abellan-Schneyder, Scherer, & Neuhaus, 2018; Hücker, Vanderhaeghen, Abellan-

Schneyder, Wecko, et al., 2018; Vanderhaeghen, Zehentner, Scherer, Neuhaus, & Ardern, 2018; 

Zehentner, Ardern, Kreitmeier, Scherer, & Neuhaus, 2020), plants (Terryn & Rouze, 2000), fruit flies 

(Henikoff, Keene, Fechtel, & Fristrom, 1986; Spencer, Gietz, & Hodgetts, 1986), mice (Williams & 

Fried, 1986) and even humans (Nakayama, Asai, Takahashi, Maekawa, & Kasama, 2007) are discarding 

the compression theory as OLGs can be detected in genomes spanning sizes from 4 Mb (Lim, Yoon, & 

Hovde, 2010) up to 6.2 Gb (Piovesan et al., 2019). Yet, they remained undetected due to technical 

limitations and their own unusual properties for quite a while. While the development of Next 

Generation Sequencing has contributed to the detection of new genes, overlapping ones have remained 

out of favour. A limiting factor in sequencing approaches was the problem that reads are most likely 

mapped to the open reading frame (ORF) of an annotated gene as the differentiation between frames 
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was not taken into account. Second, even if detected, the ORF of an OLG is often discarded as non-

functional due to its short length (Sberro et al., 2019; Storz, Wolf, & Ramamurthi, 2014; Su, Ling, Yu, 

Wu, & Xiao, 2013). With the development of ribosome profiling (see Section 1.2.1.) the detection of 

overlapping genes is now possible. Still, the question of their purpose and their development, especially 

in prokaryotes, remains.  

 

1.1.2 Mechanism of gene development: are overlapping genes a 

source of new genes through overprinting?  

There are two potential explanations for the origin of new genes. One is through the modification of 

present genes, whereas the other is through de novo gene birth (Pavesi, Magiorkinis, & Karlin, 2013; 

Sabath, Wagner, & Karlin, 2012; Taylor & Raes, 2004). Gene fusion or transposition are just examples 

of possible modifications (Long, Betran, Thornton, & Wang, 2003; Q. Zhou & Wang, 2008). The 

relocation of an already functional gene into an alternative frame overlapping another gene is possible 

but highly unlikely. The nucleotide sequence change caused by such a modification would highly affect 

the sequence of the existing gene and more likely result in its loss of function. Therefore, this mechanism 

does not seem to be causing OLG development.  

Overprinting, on the other hand, could explain the origin of OLGs (Hücker, Vanderhaeghen, Abellan-

Schneyder, Wecko, et al., 2018; Keese & Gibbs, 1992; Pavesi et al., 2018; Rancurel, Khosravi, Dunker, 

Romero, & Karlin, 2009). Nucleotide sequences coding for annotated genes are quite strongly conserved 

as their order is the template for the resulting protein. The order of nucleotides is translated into a 

polypeptide sequence based on triplets, namely codons. Within a codon, the positions are of different 

importance, with the second position being the most 

decisive one for the incorporated amino acid 

characteristics whereas the third position is mostly 

inessential (Blazej, Wnetrzak, Mackiewicz, & 

Mackiewicz, 2018; Massey, 2006; Saier, 2019). 

Changes in the third codon position can oftentimes 

be described as synonymous mutation, defined by a 

nucleotide change that is still coding for the same 

amino acid. This factor can be described as codon 

degeneracy, as several codons are translated into the 

same amino acid (Gonzalez, Giannerini, & Rosa, 

2019; Plotkin & Kudla, 2011). This synonymous 

mutation in the mother gene however could cause a 

nonsynonymous mutation in an alternative frame, 

leading to amino acid changes in any protein encoded 

Figure 1: (A) Codon table from (Esberg, 2007), (B) 

Potential variations in triplets 3rd position with caused 

changes in both strands shown.   
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in the alternate frame. Additionally, it is known that the third codon position evolves faster than any of 

the other two, for which lower selective pressure is presumably responsible (Bofkin & Goldman, 2007). 

This redundancy may facilitate the development of overlapping genes.  

For instance, if glutamine (codon triplet CAG) is incorporated into the mother gene, a synonymous 

mutation to CAA entails a synonymous mutation in the complementary strand from triplet CTG to TTG, 

both coding for leucine. It has been shown that TTG functions as a start codon in prokaryotes, more 

likely used in Bacillus (Belinky, Rogozin, & Koonin, 2017; Hecht et al., 2017). Additionally, a mutation 

in the third position of leucine, coded by CAA, could also result in an exchange to triplet CAC or CAT, 

both coding for more effective start codons GTG or ATG in the opposite strand. The nucleotide changes 

caused by mutation and the resulting changes of amino acid triplets are shown in Figure 1 accompanied 

by the codon table.  

The introduction of a start codon could lead to a new open reading frame (ORF) in an alternative frame 

which could also be achieved by an emerging stop codon after an already-existing start. Here, a 

nucleotide change in the third codon position within the mother gene could cause the incorporation of a 

stop codon triplet. Additionally, depending on the localization of the OLG in an alternative frame, 

nucleotide exchanges in the third codon position of the mother gene can lead to base replacement in the 

second triplet position of the OLG. As already mentioned, the second codon position is the most relevant 

for the amino acid determination (Bofkin & Goldman, 2007). The combination, where the third position 

of the mother gene is affecting the second position in the OLG can emerge if for example the mother 

gene is located in frame +1 and the OLG in frame -3 (see Figure 2A, relative reading frame sas11). 

There are far more possibilities present in the genetic code allowing one mutation in the second position 

of a codon to change it into either a start or a stop codon. Due to this fact and the importance of the 

position itself regarding the determination of the amino acid characteristics, one analysis in this thesis 

focusses on the reading frame of detected OLGs in several prokaryotic species. Additionally, this 

analysis sheds light on whether OLGs can be found in a variety of prokaryotic species distributed over 

the phylogenetic tree.  

To maintain functionality based on sequence integrity not only in the mother gene but also the OLG, the 

locus coding for both is expected to be under higher evolutionary constraint than typical non-overlapping 

genes. Mentioned above are just the favourable mutations that could lead to the occurrence of a second 

ORF at an already ‘occupied’ locus. However, another mutation within a locus coding for two gene 

variants (mother gene and OLG) can directly affect one or both negatively, resulting in loss of 

functionality for one or both. A potential explanation of only a few OLGs detected might be their 

integration into an intergenic region of the genome, through ‘copying out’ after a relatively short time. 

In this way, the selective pressure on the locus primarily coding for both would be reduced and their 

function can be maintained independently. Yet another possible role of genes overlapping existing genes 

in an alternative frame might be to function as a regulator of the mother gene (Boi, Solda, & Tenchini, 



Introduction 
 

4 

 

2004; Yelin et al., 2003). In this case, the complementary parts of transcribed RNAs form complexes 

through bonding, thereby blocking the active centre of the protein, thus regulating potential bonding 

(Jen, Michalopoulos, Westhead, & Meyer, 2005; Kiyosawa et al., 2003). This, however, has been shown 

only in higher eukaryotes, whereas this study is focussing on independently functional OLGs and their 

characteristics in various prokaryotes. 

 

1.1.3 Characteristics of potential OLGs 

An overlapping gene is described as a protein-coding ORF located in an alternate reading frame to 

another gene which is most likely already annotated. Within this explanation, two variations need further 

clarification: first the type of overlap and second the location in relation to the annotated gene.  

The differentiation between types of overlaps is based on the length of the overlapping part. If the OLG 

is fully embedded within the mother gene, meaning the start and stop codon are located within the 

borders of the mother gene, it is called an embedded ORF (eORF). A partial antisense ORF (paORF) 

however, is only overlapping a part of the mother gene, either the N- or C-terminus. Overlaps ≥ 90 bp 

located in an alternative frame antisense to the mother gene are called non-trivial overlaps (Brandes & 

Linial, 2016; Vanderhaeghen et al., 2018; Zehentner et al., 2020), contrary to trivial overlaps of only a 

few base pairs, which for instance, enable transcriptional coupling in operon like structures (Eyre-

Walker, 1995; Price, Arkin, & Alm, 2006). Even though the existence of non-trivial OLGs has recently 

been shown in bacteria (Fellner et al., 2014; Fellner et al., 2015; Zehentner et al., 2020), difficulties in 

their detection remain. While the development of ribosomal profiling (see Section 1.2.) assists OLG 

detection based on monitoring the translational status at the point of harvest, the resolution of 

prokaryotic sense overlaps in alternative frames is still challenging. The codon periodicity, enabling the 

exact mapping of sequencing reads, thus revealing the frame location, is precise while using, for 

example, RNase I in Saccharomyces cerevisiae (Jackson & Standart, 2015; Mohammad, Green, & 

Buskirk, 2019). However, when analysing prokaryotic ribosome profiling results, there are still 

problems assigning reads to different frames. The difficulties result from digestion enzymes used lacking 

precise cleaving sites (Glaub, Huptas, Neuhaus, & Ardern, 2020) resulting in nearly evenly distributed 

mapping of reads to all three codon positions (Gelsinger et al., 2020; Mohammad, Woolstenhulme, 

Green, & Buskirk, 2016). Additionally, due to their mostly shorter length, OLGs were oftentimes 

overlooked in sequencing approaches. ORFs shorter than 100 - 200 bp have until recently only rarely 

been associated with a function, and are also more difficult to exclude from ORFs present merely by 

chance, thus were excluded from analysis (Olexiouk, Van Criekinge, & Menschaert, 2018; Warren, 

Archuleta, Feng, & Setunal, 2010).  
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The second type of variation within OLG characterisation is their location in relation to the mother gene 

(pre-existing annotated gene). As detection in an alternative frame on the same strand is still difficult, 

only the relation of the mother gene and antisense OLG will be explained as it is the focus of the rest of 

the thesis. Defining the mother gene’s reading frame as +1, the overlapping codon position of the OLGs 

can be used to classify the type of overlap. If the third codon position of the OLG is at the same sequence 

position as the first position of the mother gene, the classification is sense 1 antisense 3 localisations 

(sas13 relative reading frame). Here, the sense information is referring to the mother gene, whereas 

antisense is describing the OLG. Similarly, the relation can be described with sas12 or sas11 (Nelson, 

Ardern, & Wei, 2020; Wei & 

Zhang, 2014). For clarification the 

relative reading frames are shown 

in Figure 2A, complemented with 

the two types of overlap possible 

mentioned above. One question 

considered within this thesis is if 

one frame favours the 

development of OLGs.      

Another factor potentially 

influencing OLG development are 

the nucleotides used and the 

resulting codons. It has been 

demonstrated by Pavesi et al (2020) that in viral genomes overlapping genes are predominantly 

composed of dinucleotides containing one or two cytosines, whereas they have a relative lack of 

dinucleotide combinations of adenine and thymine. Based on these results a hypothesis can be set up 

stating that GC-content rich prokaryotes are more prone to the development of overlapping genes. 

Contradictory to this, however, the three commonly used stop codons (TAA, TGA, TAG) (Belinky, 

Babenko, Rogozin, & Koonin, 2018; Korkmaz, Holm, Wiens, & Sanyal, 2014; Povolotskaya, 

Kondrashov, Ledda, & Vlasov, 2012) consist of at least one adenine and thymine. Within high 

GC-content genomes these nucleotides occur less which could potentially influence the length of new 

ORFs in general. Additionally, results from Miravet-Verde et al. (2019) support the latter statement, 

reporting a connection between lower GC-content genomes containing more small proteins. This is 

especially of interest, as OLGs can be categorised as short genes mostly characterised due to their short 

length (≤ 100 amino acids) (Basrai, Hieter, & Boeke, 1997; Su et al., 2013). As both of these hypotheses 

are reported, one approach in this study is to compare the prediction efficiency for eORFs in low 

(Staphylococcus aureus subsp. aureus NTC8325; Bacillus subtilis subsp. subtilis str. 168) and high 

(Pseudomonas fluorescens F113; Streptomyces coelicolor A3) GC-content genomes. Is a difference 

detectable in the number of predicted eORFs and if so, can a nucleotide usage trend be seen in the OLGs 

Figure 2: (A) Explanation of the relative reading frame location of a reference 

sequence to one of the three potential other frames on the opposite strand. Figure 

from (Nelson, Ardern, & Wei, 2020). (B) Visualised is a partial antisense overlap 

(C) Visualised is an embedded antisense overlap. 



Introduction 
 

6 

 

sequences? Furthermore, is there a difference in observed eORF length based on genome size? In the 

selected prokaryotes higher genome size is correlated with increased GC-content. Based on less adenine 

and thymine nucleotides present in these GC-rich genomes a resulting minimisation of stop codons 

could benefit potential for longer ORFs. All analyses made for this study are based on the performance 

of ribosomal profiling experiments (RIBO-Seq) in the lab. This technique and the history of next 

generation sequencing are the topics of the following chapter.  

 

1.2  Ribosomal profiling as a technique to detect OLGs 

1.2.1 History of next generation sequencing (NGS) 

The development and improvement of nucleotide sequencing techniques span the past 50 years (Heather 

& Chain, 2016). Modern sequencing began in 1977 with base-per-base sequencing based on the Sanger 

method, where the incorporation of a new base each time stops the reaction (Sanger, Air, et al., 1977; 

Sanger, Nicklen, & Coulson, 1977). This was followed by the development of second generation 

sequencing, which can detect an attached base by generated fluorescence (J. Shendure & Ji, 2008). In 

recently developed third-generation sequencing methods only single molecules are necessary to perform 

the whole experiment (Ardui, Ameur, Vermeesch, & Hestand, 2018; Heather & Chain, 2016; 

Jenjaroenpun et al., 2018). As the sequencing methods have developed over the years so has the 

specificity of what can be found with the approach. Although methods began with whole genome 

shotgun sequencing approaches to unravel DNA sequences of eukaryotic and prokaryotic organisms for 

analysing their genome sequence, now the focus is shifting to resequencing already known species in 

hopes of detecting genomic variations within a species (J. A. Shendure et al., 2011). It is also now 

possible to characterise the transcriptional or translational status of a cell using its RNA (Ozsolak & 

Milos, 2011).  

Transcriptome analysis started with microarray experiments in the mid-1990s (Lockhart et al., 1996; 

Marinov, 2017; Schena, Shalon, Davis, & Brown, 1995) but with the development of DNA-sequencing 

approaches, the first experiments using complementary DNA (cDNA) from RNA sequences as the input 

source were conducted in 2008, resulting in less noisy and more reliable data (Cloonan et al., 2008; 

Marinov, 2017; Nagalakshmi et al., 2008). The transcriptome of a cell is highly dependent on 

environmental influences or developmental stages and in multicellular eukaryotes is specific for 

different tissues (Qian, Ba, Zhuang, & Zhong, 2014; Z. Wang, Gerstein, & Snyder, 2009). Consequently, 

to explore this variability in transcriptomes many different sequencing methods for RNA-analysis arose.  

Some methods are specific to eukaryotes; for instance, RNA exome sequencing which unveils just the 

protein-coding sequences and their variants, leaving out introns and intergenic sequences (Ng et al., 

2010). Other methods are also applicable to prokaryotes, for instance, single-cell RNA-sequencing 

(scRNA-seq) which allows the analysis of the transcriptome of one cell at a time (Hagemann-Jensen, 
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Abdullayev, Sandberg, & Faridani, 2018; Imdahl, Vafadarnejad, Homberger, Saliba, & Vogel, 2020; 

Stegle, Teichmann, & Marioni, 2015; Svensson et al., 2017), or small RNA-sequencing (sRNA-seq) 

that enables detection of small non-coding RNAs (ncRNAs) such as micro RNA (miRNA) which are 

otherwise difficult to detect (Costa, Angelini, De Feis, & Ciccodicola, 2010; Qian et al., 2014; 

Raghavan, Groisman, & Ochman, 2011; Shinhara et al., 2011; Wu et al., 2017). With cappable-seq, the 

detection of the transcription start site is possible due to modification and enrichment of the 5’-end of 

transcribed RNA (Ettwiller, Buswell, Yigit, & Schildkraut, 2016; Zehentner et al., 2020). The 

development of ribosomal profiling allows capturing the actual status of translation (translatome) at the 

point of harvest. This in comparison to RNA-Seq capturing the transcriptional status of an organism 

allows first comments on whether an RNA sequence is coding for a translated and therefore potentially 

functional protein (Ingolia et al., 2014; Ingolia, Ghaemmaghami, Newman, & Weissman, 2009). The 

critical experimental proceedings during ribosomal profiling are described beloow.   

 

1.2.2 Ribosomal profiling and its determining factors 

RIBO-Seq, as a method to detect the actual status of translation (translatome) at the point of harvest, 

was first established in S. cerevisiae in 2009 by Ingolia et al. (Ingolia et al., 2009). Since then, the method 

was adapted and applied to successfully analyse other organisms, such as mammalian stem cells, 

bacteriophage lambda, Drosophila melanogaster, E. coli K12 MG1655, and its pathogenic relative 

E. coli O157: H7 strain Sakai (Dunn, Foo, Belletier, Gavis, & Weissman, 2013; Hücker, Ardern, et al., 

2017; Ingolia, Lareau, & Weissman, 2011; Li, Burkhardt, Gross, & Weissman, 2014; Liu, Jiang, Gu, & 

Roberts, 2013). The workflow starts with ribosomal stalling followed by cell harvest and lysis. Captured 

RNA is digested and separated according to its molecular weight with gradient density centrifugation 

subsequently followed by fragment size selection in an urea gel. rRNA depletion should minimise the 

remaining rRNA present before library preparation is completing the experimental procedures followed 

by sequencing (Ingolia, 2010; Ingolia, Brar, Rouskin, McGeachy, & Weissman, 2012). A brief overview 

of these steps is shown in Figure 3. 

Stalling ribosomes efficiently during translation is a crucial factor in the experimental protocol, ensuring 

the protection of mRNA fragments, so-called footprints, of interest. The haltered translation can be 

achieved by several methods all having slightly different benefits and drawbacks. One possibility is 

stalling induced by rapid freezing using liquid nitrogen (Ingolia, 2016) which’s effectiveness is highly 

dependent on working efficiency. Nevertheless, this method is still recommended as it is not causing 

translational adaptation due to environmental changes or introducing read artefacts (Glaub et al., 2020; 

Mohammad et al., 2019). These can be detected by drug application, such as chloramphenicol (Cm), 

retapamulin (Ret), or tetracycline (Tet). An artefact detected is the ribosomal accumulation at the 

translational start site caused by inhibited elongation (Meydan et al., 2019; Mohammad et al., 2019; 
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Nakahigashi et al., 2016). Then again, this bias can be advantageous in start site detection emphasizing 

its location by ribosomal accumulation (Meydan et al., 2019; Nakahigashi et al., 2016).  

 

Figure 3: Overview of important steps performed in RIBO-Seq experiments. Figure obtained from (Glaub et al., 2020). 

Also noteworthy is the appropriate use of RNase for the digestion of accessible RNA in the organism. 

Ribosomal profiling aims to only sequence ribosomal protected footprints, therefore, tRNA transporting 

amino acids or rRNA building new ribosomes needs to be digested. However, this is also causing the 

breakdown of polysome structures, characterised by several ribosomes occupying one transcript during 

translation, into separate ribosomes protecting parts of the mRNA, so-called monosomes. Commonly 

used in RIBO-Seq experiments is RNase I as it not only shows uniformly produced footprints in length 

but also enables high resolution reading frame detection in S. cerevisiae (Ingolia, 2010, 2016). However, 

this endoribonuclease seems unsuitable for prokaryotic experiments, especially in E. coli, as its 30S 

ribosomal subunit inhibits the enzymatic activity by actively binding it (Kitahara & Miyazaki, 2011; 

Zhu, Gangopadhyay, Padmanabha, & Deutscher, 1990). In this case, micrococcus nuclease (MNase) is 

used even though it is known to have a cleavage bias. Important for RIBO-Seq experiments is the 

complete digestion of any unprotected RNA up to the ribosome itself. However, as micrococcus is 

favouring cleavage in adenine and thymine rich regions (Dingwall, Lomonossoff, & Laskey, 1981) parts 

of unprotected mRNA at the boundaries of the ribosome may remain resulting in different footprint 

length. Thereby it is more difficult to detect a clear reading frame when MNase is used. The detection 

of the reading frame is dependent on the length of protected mRNA footprints and their distance relation 

to positions within the ribosome. If a periodicity of reads is detectable, the actual reading frame can be 

assigned. This seems to be more difficult in bacteria as the sequence quality is noisy, due to the different 

read length caused by insufficient digestion. One solution for this problem might be the use of RelE for 

digestion, as it precisely cleaves protected mRNA after the second nucleotide in the ribosomal A-site 

(Hwang & Buskirk, 2017; Pedersen et al., 2003). Another option is to mix endo- and exonucleases to 
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increase digestion efficiency while decreasing sequence specificity simultaneously (Hücker, Ardern, et 

al., 2017).  

Another important aspect is the appropriate size selection of protected footprints during sequencing 

preparation. After digestion, samples are loaded onto a TBE-urea gel and bands containing fragments 

of interest are excised according to their length. This is a second step ensuring only protected footprints 

are used for further processing. The assumption that only protected fragments are collected from the gel 

is based on their size due to the limited length that can be protected by the ribosome during translation. 

For S. cerevisiae fragments of 28 to 30 nucleotides are expected after digestion, therefore gel excision 

will be performed according to this size (Ingolia, 2010; Ingolia et al., 2012; Ingolia et al., 2009). 

However, for prokaryotic experiments, the determination of a specific protected fragment length is more 

difficult as mentioned above. Therefore, the gel-based size selection varies more spanning ranges of 15 

to 40 nucleotides, as well as aiming for fragments of 23 nucleotides in length (Burkhardt et al., 2017; 

Buskirk & Green, 2017; Hücker, Simon, Scherer, & Neuhaus, 2017; Li et al., 2014; Mohammad et al., 

2019). A broader range is claimed to be appropriate as it covers every varying read length but narrowing 

the range might be more effective as it excludes reads corresponding to rRNA or tRNA. However, it is 

necessary to adjust the size selection range depending on the experimental aim as longer reads were 

found associated with 5’-UTR regions (Glaub et al., 2020).  

Furthermore, rRNA depletion is another crucial step in the performance efficiency of ribosomal profiling 

experiments. With an amount of up to 85 - 90 % rRNA is the most prevalent type of RNA in any cell 

(Z. Chen & Duan, 2011; Petrova, Garcia-Alcalde, Zampaloni, & Sauer, 2017). Thus, if not depleted, 

RNA based approaches will result in reads covering nearly exclusively rRNA. Some depletion kits 

contain unique probes complementary to the targeting sequences of 16S and 23S rRNA. They are bound 

by covalent binding and subsequently extracted from the sample by magnetic interaction (Petrova et al., 

2017). RiboZero, Illumina’s depletion kit, was commonly used due to its high efficiency of rRNA 

reduction. Despite its success, it is no longer available resulting in the improvement and development 

of new kits such as RiboMinus (ThermoFisher) or Pan-riboPOOLs (siTools).  

Other experiments, where depletion was neglected, need high read amounts for successful approaches. 

5 to 10 million reads are claimed to be sufficient for RNA-Seq experiments whereas for RIBO-Seq at 

least 20 million reads are recommended (Glaub et al., 2020; Haas, Chin, Nusbaum, Birren, & Livny, 

2012). These numbers are referring to the read amount passing quality control, trimming, and alignment 

after sequencing. If 20 million reads are covering the 5% of input reads characterised as non rRNA 

sequences, the starting point for sequencing coverage would be at around 400 million reads for sufficient 

coverage implying no pooling of samples per sequencing run. Therefore, the use of a depletion kit is a 

cost-efficient alternative in rRNA reduction necessary for experimental proceedings.  
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The combination of RIBO-Seq results with the analysis of the transcriptome (RNA-Seq) can lead to the 

identification of actually functional proteins. However, improvements in RIBO-Seq approaches, both 

during the experiment and the bioinformatic evaluation can aid in obtaining more indicative results.  

 

1.2.3 Computational evaluation of RIBO-Seq results 

Despite the influence of experimental work, the appropriate evaluation of sequencing data is similarly 

important. Raw reads generated during sequencing undergo different bioinformatical steps to increase 

their contribution to evaluation. Quality of raw reads is analysed with FastQC by inspection of read 

amount, sequence length distribution, adapter content present, and potential overrepresented sequences. 

Next, the remaining adapter, necessary for flow cell attachment and sample assignment, is trimmed at 

the 3’-read ends with fastp. Fastp is outperforming other tools such as Cutadapt or Trimmomatic due to 

its ability not only to automatically detect adapter content present in the sample but its immediate 

removal (S. Chen, Zhou, Chen, & Gu, 2018). Trimming of adapter sequence is especially necessary if 

the alignment of reads to an appropriate reference genome is performed in ‘end-to-end’ mode. In this 

case nucleotides on both read edges must be aligned to the reference sequence, whereas in ‘local’ mode 

only nucleotides on one edge have to map to the reference genome (Langmead & Salzberg, 2012). In 

the processing pipeline for the evaluation of all RIBO-Seq samples in these experiments, Bowtie2 was 

used for alignment. It was first developed for fast and accurate alignment of short reads (≤ 50bp), while 

in the upgraded version parameters such as allowed mismatches can improve the alignment rate even 

further (Langmead, 2010; Langmead & Salzberg, 2012). After subsequent quality control of trimmed 

and aligned reads, the actual evaluation of the translatome can be performed.  

A crucial factor for the evaluation efficiency of sequencing experiments, in general, is the number of 

reads left after read adjustments, the so-called read depth. In RNA-Seq experiments, a read depth 

between 5 - 10 million fragments, depleted of rRNA mapping ones, is considered sufficient to detect 

even low expressed genes (Haas et al., 2012). Nevertheless, the appropriate amount needed is highly 

dependent on the experimental procedure itself. If the focus lies on detecting primarily low expressed 

genes, an adjustment of the necessary read depth should be considered to guarantee sufficient coverage. 

In RIBO-Seq experiments the detection of highly expressed genes is in favour due to their mRNA 

abundance in the cell present that can be used for translation. Hence, low expressed genes are less prone 

to be translated. As most overlapping genes remained undetected so far, due to technology limitations 

and maybe lack of interest, their characterisation and therefore their potential function is unresolved. As 

their detection is now possible with RIBO-Seq experiments, a comparison of read depth and the amount 

of predicted OLGs should shed light on the number of reads necessary to enable their detection in 

general. The OLGs predicted in this analysis are based on the results obtained from the ribosome 

profiling assisted (re-) annotation (REPARATION) tool. Here, ORFs are predicted based on extracting 

read patterns from annotated genes in RIBO-Seq data, such as read accumulation at the start and stop 
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region (Ndah et al., 2017). Additionally, ORFs can be made in each of the possible six reading frames, 

whereas the detection of genes overlapping annotated ones is enabled. DeepRibo is another tool of 

interest, as it also makes use of ribosomal profiling data and additional binding site patterns to delineate 

open reading frames (Clauwaert, Menschaert, & Waegeman, 2019). The third option of ORF prediction 

is an in-house script that detects every possible open reading frame just based on the start and stop 

codons present. In contrast to other prediction tools it uses 11 different start codons, all summarized in 

the standard codon Table 11 for bacteria from NCBI. Thus, as even rare codons are used for prediction, 

the amount of ORFs predicted is expected to exceed the efficiency of the previously mentioned tools. 

Additional filtering according to thresholds such as reads per kilobase million (RPKM), coverage and 

length is necessary to distinguish between potentially translated ORFs and background noise. Results 

from each of the three different prediction techniques are then filtered for ORFs either fully located 

within the boundaries or partially overlapping on edge of an annotated gene but in an alternative frame. 

Another analysis of special interest is the detection of the ribosome protected footprint length in 

prokaryotes. As mentioned, for eukaryotes the range of informative mRNA is between 28 and 30 

nucleotides (Ingolia, 2010, 2014). However, for prokaryotes, no definite length has been agreed on so 

far. To improve RIBO-Seq experiments based on computational evaluation one aim is to analyse the 

length of reads mapping to mRNA sequence. Therefore, publicly available RIBO-Seq experiments 

performed with E. coli K12 are being analysed according to their length. Besides mRNA fragment 

length reads mapping to either rRNA or tRNA are also subjected to this type of analysis to reveal 

potential RNA type-specific length. If a relation between RNA type and length can be detected, this can 

be of interest for improvements in rRNA depletion by depleting specific length already in gel excision. 

However, the excision step is still highly discussed without any length unification so far for prokaryotic 

RIBO-Seq experiments. A comparison between the read length distribution chosen for gel excision and 

the actual obtained length variation after sequencing is included to potentially improve the success of 

RIBO-Seq experiments.  

Furthermore, the last analysis regarding read length is focused on the upstream region of genes. Reads 

including the Shine-Dalgarno Sequence, a sequence binding motive for the ribosomal subunit, are 

longer. Their range between 28 - 40 nt emphasises the claim for a broader spectrum of read length in 

gel excision (Buskirk & Green, 2017; Li, Oh, & Weissmann, 2012). However, this could also enrich for 

sequences that are not of interest. Therefore, a sequence range of 25 nucleotides upstream of the start 

codon is analysed to detect a potential corresponding read length for regions covering the SD sequence. 

As this part of the analysis is partly focussing on the genes’ associate start site, one more analysis is 

performed regarding this specific sequence part. Ribosomal stalling can be induced by drug application, 

which also can lead to read accumulation at the translation start site (Meydan et al., 2019; Mohammad 

et al., 2019). To take advantage of this, the last analysis elucidates whether the bias might also facilitate 

the detection of overlapping genes.  
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After analyses primarily focused on the improvements for the performance of RIBO-Seq experiments, 

the actual detection of overlapping genes and their distribution throughout the phylogenetic tree is 

subject of the following chapter.  

 

1.2.4 RIBO-Seq comparison within different bacterial species: are 

their specific features contributing to different results? 

Though ultimately presumed to be derived from one common ancestor, prokaryotes have evolved 

differently, i.e. in their cell wall construction which, separates them into two different groups (Errington, 

2013). Within these groups, further separations take place based on genome rearrangements, which lead 

to various genome sizes present across the prokaryotes’ phylogenetic tree. Not only the size of the 

genome but also its construction differs across species, as the content of guanine and cytosine 

(GC-content) present in the genome sequence varies throughout the different genera. This fact might be 

in favour for the construction of longer ORFs as the reduced amount of adenine and thymine present 

might be hindering in stop codon creation as they are mostly constructed out of pyrimidine bases 

(Korkmaz et al., 2014). A comparison of predicted eORF lengths across different species can shed light 

on this question after answering the general question of whether eORFs are found equally in various 

genera distributed across the phylogenetic tree. A broad spectrum of datasets covering eubacterial 

experiments ensures differences in genome size and GC-content. Two added archaeal sets allow for 

additional comparisons across characteristics more broadly. All eubacterial species selected for these 

analyses are shown in Figure 4.  

A major difference between the species selected in general is the genomic construction, for instance 

reflected in the GC-content. Defined as the sum of guanine and cytosine (in on strand) divided by the 

total sequence length, variations from 20 - 70 % GC-content are reported for bacterial genomes (Bohlin, 

Eldholm, Pettersson, Brynildsrud, & Snipen, 2017; Hildebrand, Meyer, & Eyre-Walker, 2010; H. Q. 

Zhou, Ning, Zhang, & Guo, 2014). The GC-content present might be influential in the eORF length. As 

the three stop codons (TAA, TAG, TGA) are mostly created out of adenine and thymine (Pohl, Theissen, 

& Schuster, 2012; Trotta, 2016), a lack of these pyrimidine bases present in the genome might lead to 

lesser stop codon creation, enabling longer ORF creation. In contrast, other studies detected usage shift 

of stop codons based on GC-content, where stop codon TGA is clearly in favour in higher GC-content 

genomes (Povolotskaya et al., 2012; Wong et al., 2008). Based on these finding, an analysis between 

GC-content and eORF length is performed with an expected outcome of detecting longer eORFs in high 

GC-content genomes.  
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Figure 4: Self-constructed phylogenetic tree showing the species chosen for phylogenetic analysis. Note that archaeal species 

are missing here. 

The genomic sequence by its codon triplets dictates any encoded amino acid sequence. A shift by one 

or two nucleotides, representing the alternative two frames per strand, is coding for completely different 

amino acids. Based on the dependency of one nucleotide affecting three different codon positions in the 

alternative frames, it is of interest if the OLG creation is favoured in one. Expected, it could be argued, 

is a clear trend for their detection in sas11, as the least important codon position in the mother gene 

affects the most important position (2nd) in the overlap. Thereby, a mutation in this location does not 

alter the functionality of the mother gene but causes major amino acid changes in the OLG. The frame 

for each OLG detected is determined with subsequent comparison to predicted eORFs which do not 

meet the criteria as being declared translated and therefore are assumed to be ‘background’ ORFs and 

not genes.  

Identified eORFs of interest, that are found to be translated in several samples per species or even with 

different predictions techniques, and show similar read distribution patterns as annotated genes, are the 

subject of further descriptive analyses. Phylostratigraphic analysis estimates a gene’s age by searching 

homologues in the phylogenetic tree and inferring the last common ancestor of the extant homologues 

(Domazet-Loso, Brajkovic, & Tautz, 2007; Zhang, Tan, Fan, Zhang, & Zhang, 2019). Detection of 

homologues is based on the tblastn NCBI search, where a translated protein sequence is used as an input 

query for a nucleotide database. Codon degeneracy, in this case, can result in various nucleotide 

combinations for one codon which are all used within the search approach, enabling a lesser restricted 

search than if only one given nucleotide sequence is used as the search template (blastn). The tool 

OLGenie focusses on the selection pressure and therefore draws conclusions of potential functionality 
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of the ORF analysed (Nelson, Ardern, & Wei, 2020). Besides these two methods, Frameshift can provide 

information on whether the length of a predicted ORF is significantly longer than expected. Hereby, the 

mother gene sequence is translated into codon succession followed by random shuffling (Schlub, 

Buchmann, & Holmes, 2018). The length outcome of potential ORFs in the alternative frames are 

analysed and compared to the length of the actual eORF of interest (e.g., one predicted as translated).  

 

1.3  Important bacteria of the SIHUMI community - Escherichia coli K12 

MG1655 and Bacteroides thetaiotaomicron VPI-5482 

Without overstatement Escherichia coli (E. coli) K12 is one of the most commonly used and best 

understood bacteria in biological research. A simple name search in the national centre for 

biotechnology information (NCBI) reveals 390.825 publications focussing on this specific prokaryote 

(cited 03.11.2020). Thus, E. coli, a gram-negative, rod-shaped bacterium with a genome size of 

~ 4.6 Mb, is one of the most well-studied organisms, being one of the first for which whole genome 

sequencing was performed (Baba et al., 2006; Blattner et al., 1997; Kneifel & Forsythe, 2017; Lim et 

al., 2010). Nowadays, E. coli K12 MG1655 is the most commonly used lab strain with a nearly unaltered 

genome structure (Blattner et al., 1997; Hayashi et al., 2001), although substrains such as MC4100 or 

BW25113 are also of interest having slightly changed genomic structures (Grenier, Matteau, Baby, & 

Rodrigue, 2014; Peters, Thate, & Craig, 2003). It is a harmless inhabitant of high abundance in human 

and animal gut flora, while its pathogenic relative enterohemorrhagic E. coli O157:H7 EDL933 or Sakai 

are causing severe gastrointestinal tract affecting diseases (Hücker, Ardern, et al., 2017; Lim et al., 2010; 

Neuhaus et al., 2016). Besides, E. coli other inhabitants of the human gut have been identified and 

together are used as a model microbial community, namely Anaerostipes caccae, Bacteroides 

thetaiotaomicron, Bifidobacterium longum, Blautia producta, Clostridium ramosum, Lactobacillus 

plantarum. These seven species are referred to as the simplified human intestinal microbiota (SIHUMI) 

(Becker, Kunath, Loh, & Blaut, 2011). As E. coli has been analysed sufficiently, even with RIBO-Seq 

approaches, another member of the SIHUMI group was chosen for an own ribosome profiling 

experiment. B. thetaiotaomicron was chosen for this approach, as it makes up nearly 30 % of human gut 

commensals (Hooper et al., 2001; Mimee, Tucker, Voigt, & Lu, 2015).   

To contribute an additional RIBO-Seq dataset to the current state of research, a RIBO-Seq experiment 

of a bacterial strain involved in the human gut microbiome was performed. Besides E. coli, 

B. thetaiotaomicron is a relatively high abundant, gram-negative gut bacterium (Colosimo et al., 2019; 

Mimee et al., 2015). To our knowledge, so far just one RIBO-Seq dataset focusing solely on 

B. thetaiotaomicron has been published (Sberro et al., 2019). Due to its larger proportion in the human 

gut and the lack of additional dataset available, B. thetaiotaomicron was chosen as the candidate for the 

following RIBO-Seq experiment. This experiment aims to potentially detect so far overlooked 

overlapping genes in this candidate. Simultaneously, RNA-Seq was performed for comparison purposes 
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and potential ribosomal coverage value (RCV) calculation. This value is obtained by the division of 

RPKMs obtained from RIBO-Seq experiments with those from RNA-Seq equivalents. Additionally, 

results from this analysis then will be compared to the ones obtained from evaluating the publicly 

available dataset from Sberro (Sberro et al., 2019). With this approach, the second verification of 

potentially detected overlapping genes could be achieved, if found in both datasets. Subsequently, a 

phylostratigraphy analysis should reveal the OLGs age combined with a BLAST analysis for potential 

function determination.  

 

1.4  Purpose of this study  

The existence of overlapping genes as an important feature of bacterial genomes is still controversial, 

however, with the development of RIBO-Seq an important steppingstone towards proving their 

existence has been made. So far, they have been detected in various model organisms across eukaryotes 

and prokaryotes. The first goal of this study is the comparison of available RIBO-Seq data performed 

on E. coli K-12 to potentially identify determining factors contributing to the successful detection of 

overlapping genes. Factors such as the read amount necessary for evaluation of data, gel excision range 

to obtain ribosomal covered mRNA fragments, and application of translation inhibitors which improve 

the detectability of the start position of genes are just a part of the analyses performed. Results gathered 

from the performed analyses should be seen as recommendations that are applied in experimental lab 

work to enhance the possibility of detecting overlapping and other unannotated genes.  

Additionally, a second goal is to shed light on the existence of OLGs by analysing diverse RIBO-Seq 

data obtained from prokaryotic species and archaea. The detection of eORFs with homologues 

throughout the phylogenetic tree would support their existence and potential functionality as they are 

maintained in various genomes. Species-specific characteristics concerning eORFs were analysed as 

well as the favoured frame relation of such in relation to the mother gene. The repeated detection of the 

same eORF within multiple samples per species, on occasion even predicted with different methods, 

may indicate actual ‘functionality’. Hence, these eORFs were subjected to further characterisation based 

on homologue comparison, selection pressure determination, and sequence length significance analysis.  

Lastly, a RIBO-Seq experiment with B. thetaiotaomicron was performed, not only testing the developed 

experimental recommendations but also to contribute to eORF detection in an additional prokaryotic 

species. As the main focus of analyses performed for this study was on computational evaluation and 

analysis, an experimental part was included to complete the RIBO-Seq based prediction of overlapping 

genes in multiple prokaryotic organisms. 
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2. Material and Methods 

2.1  Computational Evaluation 

2.1.1 Tools 

Artemis Release 17.0.1 

bedtools v2.25.0  

Bowtie2 2.2.6  

DeepRibo  

EMBOSS:6.6.0.0 

fastp 0.20.0  

FastQC v0.11.4  

FastQ Screen v0.14.0  

genbank_to_fasta.py 1.2 

GNU bash version 4.3.48 

gnuplot 5.2 patchlevel 4 

newick utilities V1.1 

OLGenie.pl 

OLGenie_bootstrap.R 

ORFFinder.pl 

Perl v5.22.1 

Prodigal V2.6.2 

Python 2.7.16 

R 3.2.3 

REPARATION  

samtools 1.7 

seqkit  
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2.1.2 Data set compilation  

To evaluate RIBO-Seq data comparative analyses were performed on publicly available sequencing 

experiments from E. coli K12. Experiments were searched for in google scholar or on the gene 

expression omnibus (GEO) website from NCBI. Combinations of tags such as ‘ribosomal profiling’, 

‘Escherichia coli’, ‘High throughput sequencing’ or ‘RIBO-Seq’ were used to search for suitable 

experiments. Results from these searches were subsequently filtered according to whether they match 

the requirement of a RIBO-Seq experiment performed with E. coli K12 in lysogeny broth medium. Data 

sets with the same growth medium used (LB) were chosen to ensure growth condition does not alter the 

translatome. In total raw reads in fastq format for 48 samples from 9 different experiments were 

downloaded that were available at the time of analysis (Balakrishnan, Oman, Shoji, Bundschuh, & 

Fredrick, 2014; Bartholomäus et al., 2016; Elgamal et al., 2014; Hwang & Buskirk, 2017; Kannan et al., 

2014; Marks et al., 2016; Oh et al., 2011; J. Wang et al., 2015; Woolstenhulme, Guydosh, Green, & 

Buskirk, 2015). Experiments were performed with one of the three close related E. coli K12 substrains 

BW25113, MC4100 or MG1655. Differences within their genomic structure led to the differentiation 

from MG1655, as BW25113 and MC4100 lack operon structures and ORFs present in MG1655 (Grenier 

et al., 2014; Peters et al., 2003). Nevertheless, their close relation enables comparison between them, 

which results in a bigger data set to analyse. Samples were obtained from either the European Nucleotide 

Archive (ENA) or NCBI BioProject website.  

Similar to the first analysis project, raw reads of different prokaryotic RIBO-Seq experiments were again 

obtained from ENA or the BioProject website for a second project. Here, the search of tag combinations 

such as ‘RIBO-Seq’, ‘ribosome profiling’, ‘bacteria’ or ‘prokaryotes’ provided many results, which 

were subsequently filtered to match the criteria of RIBO-Seq experiments performed in different 

prokaryotes with at least two samples available for reproducibility. Further, experiments were chosen 

according to their relations, as one goal for this analysis was to detect if eOLG can be found distributed 

throughout the phylogenetic tree. Raw read files were downloaded for 22 different species, 20 were 

bacteria whereas two were archaeal species. The species are as followed: Acetobacterium woodii, 

Bacillus subtilis, Caulobacter crescentus, Clostridium ljungdahlii, E. coli, Eubacterium limosum, 

Flavobacterium johnsonia, Halobacter salinarium, Haloferax volcanii, Mycobacterium smegmatis, 

M. abscessus, Pseudomonas aeruginosa, P. fluorescens, Salmonella enterica typhimurium, 

Staphylococcus aureus, Streptococcus pneumonia, Streptomyces clavuligerus, S. coelicolor, S. griseus, 

S. tsukubensis, S.venezuelae and Synechocystis sp. PCC6803 (Al-Bassam et al., 2018; Baek, Lee, Yoon, 

& Lee, 2017; Baez et al., 2019; Basu & Yap, 2016; Davis, Gohara, & Yap, 2014; Gelsinger et al., 2020; 

Giess et al., 2017; Grady et al., 2017; Grenga et al., 2017; Jeong et al., 2016; Karlsen, Asplund-

Samuelsson, Thomas, Michael, & Hudson, 2018; Kim et al., 2020; Li et al., 2012; Lopez Garcia de 

Lomana et al., 2020; Miranda-CasoLuengo, Staunton, Dinan, Lohan, & Loftus, 2016; Ndah et al., 2017; 

Schrader et al., 2016; Schrader et al., 2014; Shell et al., 2015; W. Song et al., 2019; Y. Song et al., 2018; 

Subramaniam et al., 2013; Yang et al., 2016) (A.woodii: PRJEB33460, available on NCBI BioProject). 
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In total 364 unique samples were found, in which already 192 are belonging to E. coli K12 substrains, 

once more highlighting its role as a go-to bacterium for analysis.   

 

2.1.3 Quality control, trimming and filtering of data  

The first project was performed on the RIBO-Seq data set based on the different E. coli K12 substrains. 

Quality of reads both raw and after trimming was monitored using FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). First, raw reads in fastq format were 

subjected to the program within the bash console and the obtained HTML file was manually inspected. 

Of special interest in this step were results for adapter content or overrepresented sequences present in 

the samples. Considering this information is available as well as extracting the adapter information from 

the corresponding publication if necessary, samples were subjected to the trimming step.  

Here, adapter sequences present at the end of raw reads were trimmed using fastp v0.14.2 (S. Chen et 

al., 2018; Glaub et al., 2020). Therefore, adapter sequences were either specified as an input variable or 

if automated for several samples with different adapters, a tab delineated file with the information of 

sample number, corresponding genome number and the used adapter sequence were subjected to the 

program. Additionally, setting for trimming an accumulation of the same nucleotide at the 3’-end of a 

read (polyX structure, setting -x) was enabled, as these structures build-out of repeating adenine are 

oftentimes used as a kind of adapter equivalent. Also, quality filtering is disabled (setting -Q or 

--disable_quality_filtering) which allows keeping reads with ambiguous nucleotides (N) incorporated 

in the read for further processing. The amount of this undecided nucleotides within the sequence can be 

limited by setting --n_base_limit. This flag was set for the phylogenetic analysis (with --n_base_limit 

1) and will be explained later in this chapter.  

Trimmed reads were then aligned to their corresponding reference genome with Bowtie2 v2.2.6 in local 

alignment mode (Langmead & Salzberg, 2012). This mode was chosen to ensure that if trimming was 

not performed perfectly, alignment can still be conducted. In this mode (--local) exact alignment at the 

end of a read is not required, so remaining adapter sequence at the 3’-end is not interfering with the 

alignment of the read (Langmead & Salzberg, 2012). Beside standard-settings like input file and 

corresponding genome sequence, the length of the seed substring (-L) and the maximal number of 

mismatches in the seed alignment (-N) were specified (Glaub et al., 2020). A seed sequence is defined 

as a part of the read that is used for first aligning it to its target, which is then further extended in its 

length during the ongoing alignment (Ye, Meehan, Tong, & Hong, 2015). While in the alignment of the 

seed substring leads to multiple mapping options during the extension of the sequence the alignment 

becomes more precise and is at best assigned to a specific genome location after the complete read length 

is aligned. For the performed alignment in this project, a seed length of 19 was chosen and no 

mismatches within the seed sequence were allowed (-L 19, -N 0). After trimming and alignment reads 
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were sorted with the samtools’ sort option as a sorted order is necessary for filtering the reads resulting 

in bam format files labelled “$input.sorted.bam”. Trimming efficiency was again inspected with FastQC 

(Glaub et al., 2020). 

Only reads obtained from ribosome protected mRNA fragments are of interest for evaluation of the 

translatome itself. Therefore, reads mapping either rRNA or tRNA were filtered out with the bedtools 

tool. Therefore, unique tables for each genome containing annotation information were collected from 

NCBI. Out of this locus information for tRNA and rRNA present in the respective genome were 

extracted. Comparison of the read containing bam files to the tRNA and rRNA locus information in bed 

file format was performed using bedtools intersect. Here, reads in the trimmed bam files were excluded 

if they map the regions specified in the bed file resulting in a sam file with reads mapping to mRNA. A 

workflow for the steps explained can be found in Script 1. 

cores=8 
# perform quality control for raw fastq files available  
fastqc *.fastq -o /directory/of/raw_files -t 6 ; 
 

# trimming, alignment and filtering in an automated script 
accession=”GCF_number” #species specific number 
cat samples_info.txt | while read -r ribo adapter_sequence 
do 
file1="$ribo".fastq ; 
genome=$(echo "$accession"*_genomic.fna) ; 
ft=${genome%_*}_feature_table.txt ; 
adapter="$adapter_sequence" ; 
 

echo $genome $adapter ;  
 

chromosome=$(cat $genome | head -1 | awk '{print $1}' | sed -e "s|>||g") ; 
 

test ! -e $chromosome.fna && faidx -x $genome ; 
test ! -e Genes-"$chromosome".txt && cat $ft |  
awk -F "\t" '{if ($1=="gene" && $2=="protein_coding" &&$7=="'$chromosome'") 

print $8 "\t" $9 "\t" $10}' > Genes-"$chromosome".txt ; 
 

# BED file of tRNA and rRNA positions, from feature table  
test ! -e $chromosome-excluded-RNAs.bed && cat $ft | awk -F "\t"  '{if 

($1=="gene" && $7=="'$chromosome'") print}' |          
awk -F "\t" '{if ( $2=="rRNA" || $2=="tRNA") print $7 "\t" ($8-1) "\t" $9 

"\t" $17 "\t" "0" "\t" $10 }' > $chromosome-excluded-RNAs.bed ; 
 
input=$(echo $file1 | awk -F "[_|.]" '{print $1}' )  
# PRE-PROCESSING OF FASTQ FILE  
# removing adapter sequences 
# ALIGNING 
test $adapter != "-" && fastp -i $file1 -x -Q -a $adapter -o ${input%.*}-

fastp.fastq ; 
test ! -e $chromosome.rev.1.bt2 && bowtie2-build $chromosome.fna 

$chromosome ; 
bowtie2 -p $cores --local -x $chromosome -N 0 -L 19 -U ${file1%.*}-

fastp.fastq |  
samtools view -bh - | samtools sort - > $input.sorted.bam ;  
samtools index $input.sorted.bam  ;  
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# zip fastq file and remove fastp.fastq file to save space 
rm ${input%.*}-fastp.fastq ; 
 

################ 
 

# Remove rRNA & tRNA regions from BAM file, to create input SAM for 

REPARATION  
test ! -e ${input%.*}_RNAfree.sam && bedtools intersect -abam 

${input%.*}.sorted.bam  -b $chromosome-excluded-RNAs.bed -v |  
samtools view -hS > ${input%.*}_RNAfree.sam ; 
 

# convert sam file to bam and subsequently to fastq for quality control, 

each sample  
samtools bam2fq $input.sorted.bam > $input.sorted.mapped.fastq ; 
 

# perform quality control for trimmed and filtered fastq files available  
fastqc $input.sorted.mapped.fastq -o /directory/of/trimmed_filtered_files -

t 6 ; 
done     

Script 1: Preprocessing pipeline of RIBO-Seq raw reads including quality control with FastQC, adapter removal using fastp 

and alignment to reference genome with bowtie2. Subsequently, tRNA and rRNA reads are excluded. 

 

In the second project that focusses on the detection of eORFs throughout the phylogenetic tree, slightly 

different settings were used after the software was updated. In the trimming step the incorporation of 

only one ambiguous nucleotide was allowed (--n_base_limit 1). The complexity of adjacent bases had 

to be at least 30 % (--low_complexity_filter 30) and reads shorter than 15 nucleotides were discarded 

during analysis (--length_required 15). Additionally, for alignment the stricter mode was chosen 

(end-to-end¸--very-sensitive -D 20 -R 3 -N 0 -L 17 -i S,1,0.50), as the quality of trimming was improved 

and remaining contaminants, so-called overrepresented sequences, were removed if they exceeded 

0.5 % and were not mapping to the genome. Additionally, only mapping reads were kept in the files for 

further processing (with the setting --no-unal). Setting changes were made in the trimming and 

alignment step as shown in Table 1.  

 

 

Table 1: Settings used for read evaluation in analysis for detection of eORFs in several prokaryotic species. 

Step Important settings 

Trimming 

(Fastp 

0.20.1) 

fastp --thread 6 --in1 .//”$sample”.fastq --out1 

./”$species”/samples/”$sample”/02.Fastp/run1/”$sample”.trimmed.fastq  

--adapter_sequence “$sequence” --disable_quality_filtering --n_base_limit 1  

--low_complexity_filter --complexity_threshold 30 --length_required 15 

--length_limit 0 --json 

./”$species”/samples/”$sample”/02.Fastp/run1/”$sample”.trimmed.json  

--html ./”$species”/samples/”$sample”/02.Fastp/run1/”$sample”.trimmed.html 2>&1 
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Step Important settings 

Alignment 

(Bowtie2 

2.3.5.1) 

bowtie2 -p 6 --quiet -q --end-to-end -D 20 -R 3 -N 0 -L 17 -i S,1,0.50 --no-unal -x 

./”$species”/tmp/”$genome”.fna -U 

./”$species”/samples/”$sample”/02.Fastp/run1/”$sample”.trimmed.fastq  

| samtools sort -@ 6 -O bam - 2> /dev/null | bedtools intersect -abam stdin  

-b ./”$species”/tmp/RNA.bed -v | samtools sort -@ 6 -O bam -n - -o 

./”$species”/samples/”$sample”/03.BedtoolsFiltering/”$sample”.trimmed.filtered.bam  

2> /dev/null 

 

Output “$sample”.trimmed.filtered.bam files had to be sorted again using samtools sort for further 

processing.  

 

2.1.4 Read depth analysis 

Evaluation of the necessary amount of reads left after trimming and filtering is based on the comparison 

of read amount and detected annotated genes within the sample. The total number of reads mapping to 

the genome after passing trimming and filtering is obtained. Therefore, reads mapping to the genome 

sequence are obtained with samtools’ view option (setting -S forces strand specificity for the reads, -F 4 

forwards only mapped reads to the output file). Their amount is calculated with samtools’ depth setting. 

Similar, samtools’ flagstat is another option to obtain the read amount information, both for total reads 

left but also for mapped ones.  

Subsequent, a prediction of annotated genes within the first project dataset was made with 

REPARATION, a machine learning algorithm that is first trained on annotated ORFs to later predict 

potential new ORFs. A subset of data per sample is blasted against a protein database (here Uniprot 

Database) to analyse the pattern of read distribution across the ORFs and additional coverage estimation 

using only prodigal (Ndah et al., 2017). Considered start codons for detection of translated ORFs are 

ATG, GTG and TTG resulting in ORFs from these starts to the next stop codon (Ndah et al., 2017). The 

learned patterns are subsequently applied to the remaining data to predict ORFs possible. Reads shorter 

than 19 nucleotides were excluded from the analysis. Predicted ORFs are filtered according to specific 

criteria, here if they are corresponding to genome locations belonging to annotated genes. Genomic 

information such as locus of the gene, strand location, as well as its characteristics (described as a gene 

and protein-coding) are extracted from the NCBI obtained feature table. Comparison of ORF positions 

in both files was performed using awk programming. If positions matched the predicted ORFs were 

categorized as annotated genes. The amount of annotated genes identified was plotted against the read 

depth after trimming and filtering.  
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#!/bin/bash 
# PREDICTS GENES USING REPARATION 

# aORF = ORFs corresponding to annotated genes 
# eaORF = embedded ORF, on opposite strand to an annotated gene  
# SETTING INITIAL VARIABLES: 
cores=8 
date=$(LC_ALL=en_GB.utf8 date | awk '{print $3 $2}' | sed -e "s|\.||g") ; 
program=prodigal ;  
mkdir tmp ; 
 
######################### 
echo "GENE PREDICTION WITH REPARATION" ; 
cat samples.txt | while read -r ribo accession ; 
do  
### Set Variables 
input="$ribo"; 
sam=${input%.*}_RNAfree.sam ; 
genome=$(echo "$accession"*_genomic.fna) ; 
 
# uniprot database file was downloaded from the website on Feb 27, 2019 
db=uniprotSP_bacteria_27022019.fasta ; 
ft=$(echo "$accession"*_feature_table.txt) ; 
chromosome=$(cat $genome | head -1 | awk '{print $1}' | sed -e "s|>||g") ; 
 

test ! -e Genes-"$chromosome".txt && cat $ft |  
awk -F "\t" '{if ($1=="gene" && $7=="'$chromosome'" && $2=="protein_coding" 

|| $2=="pseudogene") print $8 "\t" $9 "\t" $10}' > Genes-"$chromosome".txt 

; 
test ! -e Genes2-"$chromosome".txt && cat Genes-"$chromosome".txt | awk 

'{if ($3=="+") print $2$3 "\t" $0; else print $1$3 "\t" $0}' > Genes2-

"$chromosome".txt ; 
###################################################### 
echo "RUNNING REPARATION ON "$sam"" ; 
perl ~/REPARATION/reparation.pl -sam $sam -g "$chromosome".fna \ 
-sdir ~/REPARATION/scripts/ -db $db -en "$sam"_prodigal -sd Y -mn 19 -pg 1 

;   
echo "CLASSIFYING PREDICTED GENES FOR "$sam"" ;  
cat 

"$sam"_"$program"_reparation_"$date"/"$sam"_"$program"_Predicted_ORFs.txt |  
 
# post processing (filtering of at least three reads necessary for 

evaluation is incorporated) 
awk '{if ($5>=3) print $1 "\t" $2 "\t" $3 "\t" $4 "\t" $5 "\t" $6 "\t" $7 

"\t" $8 "\t" $9 "\t" $10}' |  
tail -n+2 | awk '{split($1,a,":"); print a[2] "\t" $2 "\t" $5 "\t" $6 "\t" 

$7 }' |  
awk '{split($1,a,"-"); print a[1] "\t" a[2] "\t" $2 "\t" $3 "\t" $4 "\t" $5 

"\t" "'$sam'"}' |  
awk '{if ($3=="+") print $1 "\t" ($2+3) "\t" $3 "\t" $5 "\t" $6 "\t"  

"'$program'" "\t" "allORFs" "\t" ($2+3)$3 "\t" $4 ;  
else print ($1-3) "\t" $2 "\t" $3 "\t" $5 "\t" $6 "\t" "'$program'" "\t" 

"allORFs" "\t" ($1-3)$3 "\t" $4 }' | sort | uniq > 

tmp/"$sam"_"$program"_ORFs.txt ; 
 
# annotated genes (based on same stop codon and same strand) 
awk -F "\t" 'NR==FNR{a[NR]=$0; next}{for (i in a){split(a[i],x,"\t"); \ 
if (x[1]==$8) print x[1] "\t" x[2] "\t" x[3] "\t" x[4] "\t" $0 }}' Genes2-

"$chromosome".txt tmp/"$sam"_"$program"_ORFs.txt |  
awk '{print $1 "\t" $5 "\t" $6 "\t" $7 "\t" $8 "\t" $9 "\t" "||" "\t" $2 

"\t" $3 "\t" $4 "\t" $(NF-3) "\t" "anORF" "\t" $NF }' | sort | uniq > 

tmp/"$sam"_"$program"_aORFs-Ribo.txt ;   
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# embedded antisense ORFs, non-annotated   
awk -F "\t" 'NR==FNR{a[NR]=$0; next}{for (i in a){split(a[i],x,"\t"); \ 
if (x[1]!=$7  && x[2]<$1 && x[3]>$2 && x[4]!=$3) print x[1] "\t" x[2] "\t" 

x[3] "\t" x[4] "\t" $0 }}' Genes2-"$chromosome".txt 

tmp/"$sam"_"$program"_ORFs.txt |  
awk '{print $(NF-1) "\t" $5 "\t" $6 "\t" $7 "\t" $8 "\t" $9 "\t" "||" "\t" 

$2 "\t" $3 "\t" $4 "\t" $(NF-3) "\t" "eORF" "\t" $NF }' | 
awk -F"\t" 'NR==FNR{a[$1]=$1;next}{ if (!a[$1])print ;}' 

tmp/"$sam"_"$program"_aORFs-Ribo.txt - | 

 

# "$sam"_"$program"_psORFs-Ribo.txt was performed in another filtering step 

(not shown) 
awk -F"\t" 'NR==FNR{a[$1]=$1;next}{ if (!a[$1])print ;}' 

tmp/"$sam"_"$program"_psORFs-Ribo.txt - | sort | uniq > 

tmp/"$sam"_"$program"_eaORFs-Ribo.txt ; 
cat tmp/$sam*Ribo.txt > $sam-genes.txt ;  

 
# convert combined output to BED file for visualisation  
# -1 to convert from 1 based to 0 based format 
cat $sam-genes.txt | awk '{ print "'$chromosome'" "\t" ($2-1) "\t" $3 "\t" 

$NF "\t" "0" "\t" $4 }' > $sam-genes.bed ; 

 
# create BED file for annotated genes if not already made  
test ! -e Genes-$chromosome.txt && cat Genes-$chromosome.txt |  
awk '{ print "'$chromosome'" "\t" ($1-1) "\t" $2 "\t" "ANNOTATED" "\t" "0" 

"\t" $3 }' > annotated_Genes-$chromosome.bed ; 
echo "GENES FOR "$sam" CLASSIFIED" ; 
done ;   

Script 2: Wrapper script around REPARATION based open reading frame prediction. Subsequent categorization of predicted 

ORF as annotated ORFs (aORF) and embedded antisense ORFs (eaORF). Additional categories such as partial sense or 

antisense ORFs were performed but are not shown here. Last, all predictions per sample were combined and converted into 

bed format for later processing. 

Additionally, as a second option to analyse a potential correlation between read depth and prediction 

efficiency ribosomal coverage values (RCVs) were calculated for annotated genes if RIBO- and 

RNA-Seq information were available for the same sample (Glaub et al., 2020). RCV is characterised as 

a value for translation based on the division of RPKMs obtained from RIBO-Seq experiments by 

RNA-Seq equivalents. Indication of translation is given if RCV exceeds 0.355 (Glaub et al., 2020; 

Neuhaus et al., 2017). RNA-Seq samples were available for 22 samples and were pre-processed 

according to Script 1 as for RCV calculation only reads covering mRNA locations were of interest. The 

necessary input files for both sequencing approaches included the trimmed and filtered reads which were 

subsequently compared to the REPARATION based ORFs (Glaub et al., 2020). Based on the read 

coverage per locus of interest RPKMs for genes of interest in RIBO-Seq and RNA-Seq results were 

calculated followed by RCV estimation. Only genes with RCVs  ≥ 0.355 were considered translated and 

used in read depth comparison analysis (Glaub et al., 2020).   
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#!/bin/bash/  
 

#### Predict genes of different classes, based on REPARATION output  
#### Calculate RPKMs and RCVS for defined sequence regions, from BAM files  
cat rcvs.txt | while read -r riboseq rnaseq accession ; 
genome=$(echo "$accession"_genomic.fna) ; 
chromosome=$(cat $genome | head -1 | awk '{print $1}' | sed -e "s|>||g") ; 
do  
cat ${riboseq%.*}_RNAfree.sam-genes.txt | awk '{print "'$chromosome'" "\t" 

($2-1) "\t" $3 "\t" $1 "\t" "0" "\t" $4}' | 
sort -k1,1 -k2,2n > $riboseq-positions_sorted.bed ; 
 

for input in $rnaseq $riboseq ;  
do 
chr=$(samtools view ${input%.*}_RNAfree_headered.bam | awk '{print $3}' | 

egrep -v '[*]' | head -1 ) ; 
chrom=$(echo $chr | awk -F "|" '{print $(NF-1)}' ) ;  
echo $chrom ; 
 

# Calculate RPKMs 
reads=$(samtools flagstat ${input%.*}_RNAfree_headered.bam | grep mapped | 

grep -v mate | awk '{print $1}' ) ; 
millions=$(echo "$reads / 1000000" | bc -l) ; 
cat $genome.fai | awk '{print $1 "\t" $2}' > genome.txt ;  
bedtools coverage -sorted -s -F 0.5 -a $riboseq-positions_sorted.bed -b 

${input%.*}_RNAfree_headered.bam -g genome.txt | 
awk '{print $2 "\t" $3 "\t" $4 "\t" $7 "\t" $7/(($9/1000)*"'$millions'") 

"\t" $NF}' > ${input%.*}_coverage.txt ; 
done ;  
 

# Calculate RCVs [final column of output] 
paste ${rnaseq%.*}_coverage.txt ${riboseq%.*}_coverage.txt | awk '{if 

($4>0) print $0 "\t" $11/$5; else if($4==0) print $0 "\t" "0"}' > $riboseq-

RCVs.txt ; 
done ;  
 

# filter for ORFs that are above threshold of 0.355 for RCV value 
cat rcvs_ribo.txt | while read -r ribo  
do  
awk '{if ($13 >= 0.355) print $0}' "$ribo"-RCVs.txt > 

"$ribo"_RCV_Threshold.txt  
done  

Script 3:RCV calculation script. Input files were created after REPARATION prediction containing its combined results. 

Calculations can be made for RIBO-Seq as well as RNA-Seq files, if available.  The final output is filtered according to the 

RCV threshold of ≥ 0.355. 

Further, for three samples (SRR1734437, SRR1734439, SRR1734441, (Woolstenhulme et al., 2015)) 

with high read depth, an additional analysis was performed to verify the necessary read depth 

recommendation within samples. Therefore, variations of lesser coverage per sample were analysed in 

regard to the prediction efficiency of annotated genes (Glaub et al., 2020). A decreased coverage was 

obtained by random extraction of only a certain amount of reads (Script 4). This ‘down sampling’ was 

performed in triplicates per coverage step with a script provided by a bioinformatician. For each newly 

obtained reduced sample gene predictions were made with REPARATION with subsequent mean 

calculation within the triplicate per coverage step.   
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bash DownsampleSam.bash -c 50,75,100,125 -r 3 -t 8 -f assembly_size 

"$sample"_RNAfree.sam "$accession_number"_genomic.gff /"$Output_Directory"  

Script 4: Script used to randomly extract reads within a sample to test prediction efficiency in less covered subsamples. 

DownsampleSam.bash is an in-house written script achieving this task. -c coverage list (adapted to the coverage of each 

sample), -r number of replicates, -t number of threads, -f normalization factor.  

Similar to the categorization of annotated genes, further classifications for ORFs predicted by 

REPARATION were made for later analysis. The comparison of genomic positions again was 

performed using awk programming, this time focussing on the identification of ORFs predicted in the 

same location as an annotated gene but in an alternative frame. Two types of overlaps were 

distinguished, where embedded ORFs are located fully within the start and stop position of an annotated 

gene, whereas partial overlaps are characterised by an ORF overlapping an annotated gene at one of its 

ends. Next, analyses were performed that focus on the different read length present after sequencing. 

Can specific characteristics be assigned to the different read length?  

 

2.1.5 Evaluation of various read length  

To test whether specific read length can be assigned to a type of RNA (mRNA, rRNA or tRNA) all reads 

per sample were categorized according to its type (Glaub et al., 2020). Here, besides the samples specific 

trimmed and filtered sam files that only contain reads mapping to mRNA similar files were constructed 

with reads stored mapping either exclusively rRNA or tRNA regions. The information for rRNA or 

tRNA regions were extracted from the feature table of the specific genomes. These files were then 

compared to bed files containing mapping information for each read within the sorted bam file, such as 

start and stop position, length and strand location. At least 50 % had to map in a region of interest to be 

considered as mapping. These read information were compared to the rRNA and tRNA regions of 

interest using bedtools’ intersect option. The length of each read that was considered mapping to a region 

of interest (either rRNA or tRNA) was calculated with subsequent counting of re-occurring length. Read 

length analysis for mRNA mapping reads was performed differently as sample-specific trimmed and 

filtered sam files could be used. Here, only the length of reads that mapped the genome was calculated. 

Thereafter, only those with a length between 20 to 40 nucleotides were considered for analysis, as this 

contains most of the size selection ranges used in the experiments analysed. For each RNA type within 

a sample, their length distribution was calculated in percentage (Glaub et al., 2020). Therefore, the total 

amount of the reads was summed within the sample. The obtained read sum was used to calculate the 

percentage of reads representing the specific read lengths. Percentage values for all samples were 

combined into one file for which column and line arrangements were switched and sorted, necessary for 

subsequent median estimation. The median was estimated out of all corresponding length values within 

the 46 samples (Glaub et al., 2020). This estimation for 46 samples was based on calculating the average 

number from the two values at position 23 and 24 from the sorted columns. Median estimation was 

performed for each RNA type (mRNA, rRNA and tRNA) and plotted against each other for length 
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comparison between the respective types (Glaub et al., 2020). Calculation of read length for the different 

RNA types, followed by median estimation exemplary for rRNA is shown in Script 5. 

# extract rRNA information of species specific feature table  
cat $feature_table | awk '{if ($1=="gene" && $2=="rRNA") print $7 "\t" $8 

"\t" $9 "\t" "gene" "\t" "0" "\t" $10 }' | 
sort -k1,1 -k2,2n > "$feature_table"_rRNA_tmp.bed ;  
####### 
cat all_samples.txt | while read -r ribo accession  
do 
# set variables 
bam_file="$ribo".sorted.bam ; 
feature_table="$accession"_feature_table.txt ; 
####### 
echo BAM: $bam_file  
bedtools bamtobed -i $bam_file | awk '{print $6}' > "$ribo"_tmp.txt  ; 
samtools view -F 4 $bam_file | awk '{print $3 "\t" $4 "\t" 

($4+(length($10))) "\t" $1 "\t" "0" }' > "$ribo"_tmp2.txt ;  
paste "$ribo"_tmp2.txt "$ribo"_tmp.txt > "$ribo"_bam.bed ;  
bedtools intersect -u -s -f 0.50 -sorted -bed -a "$ribo"_bam.bed -b 

"$feature_table"_rRNA_tmp.bed | awk '{print $3-$2}' | sort | uniq -c > 

"$ribo"_rRNA_reads.txt ; 
rm "$ribo"_tmp2.txt "$ribo"_tmp.txt 
done 
# trim files containing read length to range from 20-40 
for i in *_rRNA_reads.txt  
do  
cat "$i" | awk '{if ($2>19 && $2<41) print $0 }' > "$i"_trimmed.txt  
done 
# sum total amount of reads mapping to rRNA per sample 
cat allsamples.txt | while read -r ribo  
do  
awk '{sum+=$1} END {print sum}' ${ribo%_*}_rRNA_reads.txt_trimmed.txt > 

${ribo%_*}_rRNA_readsumme.txt ; 
done 
# calculated read distribution in percentage per sample 
cat allsamples.txt | while read -r ribo ; 
do 
number=$(cat ${ribo%_*}_rRNA_readsumme.txt) 
cat "$ribo"_rRNA_reads.txt_trimmed.txt | awk '{print 

(($1/"'$number'")*100)}' > "$ribo"_rRNA_percentage.txt 
done 
# combine read length distribution of all samples  
awk '{ a[FNR] = (a[FNR] ? a[FNR] FS : "") $1 }END{for(i=1;i<=FNR;i++) print 

a[i]}' *_rRNA_percentage.txt > rRNA_percantages.txt ; 
awk ' 
{  

    for (i=1; i<=NF; i++)  { 

        a[NR,i] = $i 

    } 

} 

NF>p { p = NF } 

END {     

    for(j=1; j<=p; j++) { 

        str=a[1,j] 

        for(i=2; i<=NR; i++){ 

            str=str" "a[i,j]; 

        } 

        print str 

    } 

}' rRNA_percantages.txt > switched_file_construction_rRNA.txt ;  
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cat switched_file_construction_rRNA.txt | sed -e 's/ /\t/g' > 

sorted_rRNA.txt ; 
# estimate median value for each read length  
for i in {1..21} ;  
do 
awk -F '\t' -v col=$i '{print $col}' sorted_rRNA.txt | sort -b -gk1,1 | awk 

'{if (NR==23 || NR==24) print}' | awk '{sum+=$1} END {print sum/NR}' ; 
done > median_rRNA.dat  

Script 5: Read length analysis according to different types of RNA (mRNA, rRNA, tRNA), here shown for rRNA. Information 

about rRNA sequence location is extracted from corresponding species’ feature tables. Reads mapping to rRNA are analysed 

according to their length for each sample respectively. Within each sample, percentages were calculated for read length 

distributions within RNA types, and median calculation was performed over all samples to compare distribution across all.  

A second analysis was only focussing on rRNA read length, as here a depletion before sequencing is 

crucial to obtain a higher coverage at non rRNA covering regions. As mentioned, rRNA locus 

information was obtained from the corresponding genome feature table. Here, reads were filtered 

according to which type of rRNA, 5S, 16S or 23S, they were mapped to (Glaub et al., 2020). For all 

three types read length distributions were calculated as already mentioned to detect if specific read 

lengths are referring to one type of rRNA. This would be of special interest for 5S rRNA as this type 

mostly is not targeted during kit-based depletion but might potentially be lower by adapted size selection 

(Glaub et al., 2020).  

Similar to the mentioned analysis, the upstream 5’-UTR region was analysed for read length variation. 

As the reported length for sequences within SD like motifs is between 28 to 40 (Buskirk & Green, 2017; 

Li et al., 2012), an analysis was performed on reads ranging from 24 to 40 nucleotides in length mapping 

in a region of 25 nucleotides down- and upstream of the start position. Therefore, samples with less 

variation in their read length not covering the upper analysis limit were excluded, resulting in 30 samples 

for analysis (Glaub et al., 2020). Again, information for the location of interest, here the start position 

of annotated genes, was extracted from the corresponding feature table. The location for the 5’-UTR 

region was obtained by addition of 25 nucleotides upstream from the genes’ start position (Glaub et al., 

2020). For the analysis of the region directly after the start position, 25 nucleotides downstream of this 

location were analysed. Correspondingly to the previous read length analysis performed, reads mapping 

the genome position at the defined locations were analysed according to their length. These comparisons 

were again performed with awk scripting and bedtools’ intersect option. A specific setting in bedtools 

was chosen for the minimum overlap required, as for this analysis a clear categorization of reads was 

necessary. Therefore, at least 55% of a read had to map in either of the locations to be categorized as 

such, hindering reads mapping in both locations to be counted twice. Additionally, to avoid interference 

with operon like structures and potentially biased read length due to another specific pattern at stop 

regions, a second filtering step was performed. Reads were analysed whether at least 55% were mapped 

to an adjacent gene and if so, these positions were excluded from the analysis. According to the first 

analysis, read length distribution was calculated within a sample, followed by median estimation per 

length between samples analysed (Glaub et al., 2020). The difference between the median values at each 

analysed length was calculated to highlight the potential alteration (Script 6). As verification for 
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potential location-specific read length, an analysis of reads covering the whole genes analysed and their 

stop regions was performed. Here, the stop region was defined spanning an area from the stop position 

to 25 nucleotides upstream. The space between the start and stop region is referred to as ‘whole gene’ 

(Glaub et al., 2020). These areas were analysed as start and upstream region.    

cat samples.txt | while read -r ribo accession  
do 

#set variables: 
bam_file="$ribo".sorted.bam 
feature_table="$accession"_feature_table.txt 
echo $bam_file 
 
# extract region 25 nt upstream of gene 
cat $feature_table |  awk '{if ($1=="gene" && $2=="protein_coding" && 

$10=="+") \ 
print $7 "\t" ($8-25) "\t" $8 "\t" "gene" "\t" "0" "\t" $10 ; 

else if ($1=="gene" && $2=="protein_coding" && $10=="-") print $7 "\t" $9 

"\t" ($9+25) "\t" "gene" "\t" "0" "\t" $10}' | 
sort -k1,1 -k2,2n > "$ribo"_SD_region_gene.bed ;  
  
# extract region 25 nt downstream from start 
cat $feature_table | awk '{if ($1=="gene" && $2=="protein_coding" && 

$10=="+") \ 
print $7 "\t" $8 "\t" ($8+25) "\t" "gene" "\t" "0" "\t" $10 ; 

else if ($1=="gene" && $2=="protein_coding" && $10=="-") print $7 "\t" ($9-

25) "\t" $9 "\t" "gene" "\t" "0" "\t" $10}' | 
sort -k1,1 -k2,2n > "$ribo"_start_gene.bed ;  
 
# prepare bed file out of bam file necessary for bedtools command  
bedtools bamtobed -i $bam_file | awk '{print $6}' > "$ribo"_tmp.txt  
samtools view -F 4 $bam_file | awk '{print $3 "\t" $4 "\t" 

($4+(length($10))) "\t" $1 "\t" "0" }' > "$ribo"_tmp2.txt  
paste "$ribo"_tmp2.txt "$ribo"_tmp.txt > "$ribo"_bam.bed ;  
rm "$ribo"_tmp2.txt "$ribo"_tmp.txt ; 
 
# include exclusion step from adjacent in upstream region 
# creat bed file containing all gene information 
cat $feature_table | awk '{if ($1=="gene" && $2=="protein_coding") print $7 

"\t" $8 "\t" $9 "\t" "gene" "\t" "0" "\t" $10 }' | 
sort -k1,1 -k2,2n > "$ribo"_tmp.bed  
 
# create filtered upstream region bed file  
bedtools intersect -s -f 0.55 -sorted -bed -a "$ribo"_SD_region_gene.bed -b 

"$ribo"_tmp.bed -v > "$ribo"_SD_region_filtered.bed  
 
# read distribution upstream of start region 
bedtools intersect -u -s -f 0.55 -sorted -bed -a "$ribo"_bam.bed -b 

"$ribo"_SD_region_filtered.bed | awk '{print $3-$2}' | sort | uniq -c > 

"$ribo"_SD_region_reads.txt   
 
# read distribution at start region 
bedtools intersect -u -s -f 0.55 -sorted -bed -a "$ribo"_bam.bed -b 

"$ribo"_start_gene.bed | awk '{print $3-$2}' | sort | uniq -c > 

"$ribo"_start_gene_reads.txt  
done  

Script 6: Script used to compare different read lengths present at certain loci. Here, the comparison between the 5’-UTR 

upstream region (SD-region) is shown, as well as the start region (located 25 nucleotides downstream of the translation start 

point).   
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Analysis regarding potentially improved detection of OLGs due to chloramphenicol application was 

tested for differential expression types of genes. Each category includes ten annotated genes with similar 

RPKM values (high = 1,000 - 3,000; medium = 100 - 250; low = 10 - 20) in all eight samples analysed, 

where four were treated with chloramphenicol whereas the remaining ones were controls (Glaub et al., 

2020). First, for each annotated gene detected RPKM and coverage were calculated to identify ten genes 

that showed a similar RPKM within the eight samples analysed. Again, the information for the gene 

locations was obtained from the corresponding feature table using awk scripting. Then, the number of 

mapped reads and the average read depth was calculated. With bedtools, the coverage for each gene 

location was calculated considering each read for analysis with an overlap of at least 50% in the locations 

of interest. The ten genes per expression level were obtained by comparison of RPKMs for each gene 

detected within the ten samples analysed. For each read the assumed p-site location defined by the 

position 15 nucleotides upstream of 3’- read end was calculated to ensure each read was just counted 

once (Script 7) (Glaub et al., 2020). Therefore, reads were obtained from the sorted bam files that were 

mapping in a region covering the start region of the genes of interest. Here, the start region includes the 

start position of the identified top ten genes per expression level to 50 nucleotides downstream of this 

location (Glaub et al., 2020). The assumed p-site location per read was identified and counted followed 

by normalization by corresponding read depth. The sum of the remaining reads per treatment 

(chloramphenicol vs. control) was calculated and divided by sample size (n = 4). A sum signal to detect 

a potential read pattern within each expression level was built by combining the pattern of all ten genes.  
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# detect p-site (subtract 15 from 3'-end from each read)   
# exemplary for low expressed gene group 
for bam in sample1.sorted.bam sample2.sorted.bam sample3.sorted.bam 

sample4.sorted.bam ... ;  
do  
cat low_cov-starts.txt | while read -r chromosome first last strand ;  
do 
if [ $strand == "+" ] ; 
then 
samtools view -F 0x10 $bam -b $chromosome:$first-$last > $bam-$first-low-

fwd.bam ; 
bam2=$bam-$first-low-fwd.bam ; 
 

elif [ $strand == "-" ] ; 
then  
samtools view -f 0x10 $bam -b $chromosome:$first-$last > $bam-$first-low-

rev.bam ; 
bam2=$bam-$first-low-rev.bam ; 
fi ; 
bedtools bamtobed -i $bam2 | awk '{if (($3-$2)>=20 && ($3-$2)<=40 && 

$6=="+") print $3-15; else if (($3-$2)>=20 && ($3-$2)<=40 && $6=="-") print 

$2+15 }' | sort | uniq -c | sort -gk2,2 | awk '{print $2 "\t" $1}' > $bam2-

count.txt ; 
if [ $strand == "+" ] ; 
then 
awk '{if ($1>=("'$first'"+0) && $1<=("'$first'"+50)) print }' $bam2-

count.txt > $bam2-pos-final.txt ; 
elif [ $strand == "-" ] ; 
then 
awk '{if ($1<=("'$last'"+0) && $1>=("'$last'"-50)) print }' $bam2-count.txt 

> $bam2-neg-final.txt ; 
fi   
done 
done  

Script 7: Script for p-site estimation (15 nt upstream of 3’ read end) within each read and subsequent sequence location 

assignment. 

All analyses mentioned so far were based on the RIBO-Seq data compilation focussing on different 

E. coli K12 experiments. The experiments were chosen based on the same analysed organism and 

medium to ensure that potential translatome differences were not biased by altering input. The analyses 

performed next are especially focussed on potential differences due to a selection of different 

prokaryotes.    

 

2.1.6 Prediction of eORFs with DeepRibo and an in-house script 

(ORFFinder) 

The subsequent analyses were performed on the subset of RIBO-Seq data collected that is used for the 

detection of eORFs in various prokaryotic species. 

DeepRibo is designed to predict potential ORFs based on RIBO-Seq obtained results. Different to 

REPARATION this tool uses the combination of an area covering 30 nucleotides of the translation 

initiation site and the whole ORF length, exceeding 50 nucleotides up- and 20 nt downstream of the 

ORF (Clauwaert et al., 2019). Similar to REPARATION, the same start codons are considered in the 
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identification of potential ORFs. As a threshold for potential functionality minimum length of 30 

nucleotides has to be exceeded for an ORF to be predicted (Clauwaert et al., 2019). Input for the 

prediction are trimmed, filtered and sorted bam files which are used to calculate the coverage over each 

possible ORF as well as the coverage only at the 5’-end. Followed by minimal RPKM and coverage 

calculation per sample, to which subsequently predicted ORFs are compared to and ranked according to 

their values. Results for predicted ORFs are stored in csv files which are then, similar to the 

REPARATION output, categorized with awk programming (see Script 8). The rank score assigned 

during processing is used in an exponential function to transform the log value of the prediction score 

assigned by DeepRibo, and ORFs having a higher re-calculated score greater than or equal to 0.5 are 

considered translated and are used in further filtering steps. Again, the genomes’ feature tables are used 

to obtain information from annotated genes which are utilised to search for embedded OLGs in 

DeepRibo prediction output. Predictions made can be located at the same position with different start 

codons, therefore these are length variations of the same ORF. Based on the prediction rank assigned by 

DeepRibo per ORF just the ORF with the highest values for different length variations was chosen for 

further analysis. The output file from these filtering steps contains amongst other things the locus 

information, such as start and stop position as well as strand specificity for the eORF and the mother 

gene. Besides filtering the predicted eORFs from the DeepRibo output their location in relation to the 

mother gene was calculated. This analysis is explained in section 2.1.8. 

## extract eORF information out of DeepRibo csv files 
## $11=start_site, $13=stop_site, $6=strand, $18=prediction value 
chromosome="$chromosome_number".fna 
for csv in *.csv ; 
do 
cat $csv | awk -F "," '{print $11 "\t" $13 "\t" $6 "\t" $18}' | tail -n +2 

|  
awk -F "\t" '{ if ($1<$2) print $1 "\t" $2+2 "\t" $3 "\t" $4 ; else print 

$2-2 "\t" $1 "\t" $3 "\t" $4 }' | 
awk -F "\t" '{print $0 "\t" 1/(1+exp(-($4)))}' | awk -F "\t" '{if ($5>0.5) 

print}' | tee "$csv"_predgenes.txt | while read -r first last strand pred 

score ; 
do  
cat "$accession_number"_feature_table.txt |  
awk -F "\t" '{if ($1=="gene" && $2=="protein_coding" && $7=="'$chromosome'" 

&& $8<=("'$first'"+0) && $9>=("'$last'"+0) && $10!="'$strand'" && 

"'$strand'"=="+") print "'$first'" "\t" "'$last'" "\t" "'$strand'" "\t" $8 

"\t" $9 "\t" $10 "\t" "||" "\t" "'$last'" "\t" "'$score'" "\t" "'$strand'" 

"\t" ("'$last'"-"'$first'"); else if ($1=="gene" && $2=="protein_coding" && 

$7=="'$chromosome'" && $8<=("'$first'"+0) && $9>=("'$last'"+0) && 

$10!="'$strand'" && "'$strand'"=="-") print "'$first'" "\t" "'$last'" "\t" 

"'$strand'" "\t" $8 "\t" $9 "\t" $10 "\t" "||" "\t" "'$first'" "\t" 

"'$score'" "\t" "'$strand'" "\t" ("'$last'"-"'$first'")}' ;  
done | tee "$csv"_eORFs.txt ; done    

Script 8: Filtering script for DeepRibo output. Results from the prediction tool are contained in a csv file per sample. All files 

are then analysed according to eORFs of interest, exceeding prediction score of 0.5 to be considered.  

An in-house script (called ORFFinder, written by Dr. Christopher Huptas) is the third option used for 

prediction of ORFs. Contrary to the other two tools, ORFFinder in general predicts every ORF possible 
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within the six frames of a genome. Subsequent filtering is necessary to differentiate between potential 

translated ORFs and background noise. Predictions of ORFs are based on a minimum ORF length of 93 

nucleotides starting with a variety of start codons summarized in the bacterial, archaeal and plant plastid 

code (transl_Table=11; https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi#SG11). Again, 

first, a comparison between all ORFs predicted to a file generated by extracting information of the 

location of protein-coding genes is used to filter for potential embedded ORFs within the output. Next, 

embedded ORFs are removed if they are adjacent to an annotated gene with less than 100 nucleotides 

in distance. This should prevent them from being some sort of ribosomal read through signal which is 

classified as background noise. Additionally, ORFs predicted must exceed a threshold of read coverage 

normalized to the sample itself. Therefore, the read count of mapped reads is obtained with samtools’ 

flagstat option and divided by 1.000.000. The average read number acts as the threshold value unique 

for each sample analysed. Another criterion for ORFs potentially being translated is that their coverage 

value is greater than or equal to 0.6 with an RPKM ≥ 10. If ORFs different in length but within the same 

region remain, a required overlap of at least three nucleotides is chosen to classify them to be located 

within the same region. In that case, the longest eORF possible is chosen for further evaluation. In the 

following when the ORFFinder output is mentioned it refers to the results after filtering and matching 

their thresholds such as minimal length, read count and coverage.   

# set variables  
cat samples.txt | while read -r ribo accession ; 
do 
genome=${accession%_*}_genomic.fna ;  
bam="$ribo".trimmed.filtered.sorted.bam ; 
RPKM=10 ; 
coverage_proportion=0.6 ; 
filter_distance=100 ;   
 

# ORFs within this distance from annotated genes on the same strand are not 

counted as potential OLGs 
# PRE-PROCESSING INPUTS: 
test ! -d tmp && mkdir tmp ; 
faidx -x $genome ; 
chromosome=$(cat $genome | head -1 | awk '{print $1}' | sed -e "s|>||g") ; 
samtools faidx $chromosome.fna ; 
cat $chromosome.fna.fai | head -1 | awk '{print $1 "\t" $2}' > 

tmp/"$chromosome"-genome.txt ;  
feature_table=${genome%_*}_feature_table.txt ; 
minimum_length=93 ;  

 
# 30 amino acids + stop  
# functions: 
linear () { awk '!/^>/ { printf "%s", $0; n = "\n" } /^>/ { print n $0; n = 

"" } END { printf "%s", n }'; } ; 

 
# find annotated genes, from NCBI feature table: 
cat $feature_table | awk -F "\t" '{if ($1=="gene" && $2=="protein_coding" 

&& $7=="'$chromosome'" ) print}' |  
awk -F "\t" '{ print $7 "\t" $8-1 "\t" $9 "\t" "gene_"NR "\t" "0" "\t" 

$10}' | awk -F "\t" '{if ($2<$3) print}' > ${genome%_*.*}_genes.bed ;   
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# find all ORFs 

# note – genome positions can be 0 or 1-based depending on file format and 

genome length counting therefore adjustment may be necessary for later 

comparison  
perl ORFFinder.pl --code 11 --min $minimum_length "$chromosome".fna 

tmp/"$chromosome"-ORFs.txt ;  
cat tmp/"$chromosome"-ORFs.txt | tail -n +2 |  
awk -F "," '{print $1 "\t" $2-1 "\t" $3 "\t" 

"'$chromosome'""_ORF_family_"$8 "\t" "0" "\t" $4}' > 

tmp/${genome%_*.*}_ORFFinder.bed ; 
bedtools getfasta -s -fi "$chromosome".fna -bed 

tmp/${genome%_*.*}_ORFFinder.bed > tmp/"$chromosome"-ORFs.fa ; 
cat tmp/$chromosome-ORFs.fa | seqkit translate | linear > $chromosome-

ORFs_aa.fa ; 
 
# embedded ORFs: 

bedtools intersect -S -f 1 -wo -a tmp/${genome%_*.*}_ORFFinder.bed -b 

${genome%_*.*}_genes.bed |  
tee tmp/${genome%_*.*}_eORFs_overlaps.txt |  
awk -F "\t" '{print $1 "\t" $2 "\t" $3 "\t" $4 "\t" $5 "\t" $6}' > 

${genome%_*.*}_eORFs.bed ; 
 

# filter to remove those near annotated genes, on the same strand  

bedtools window -w $filter_distance -v -sm -a ${genome%_*.*}_eORFs.bed -b 

${genome%_*.*}_genes.bed |  
sort -k1,1 -k2,2n > tmp/${genome%_*.*}_eORFs-filtered.bed ; 
reads=$(samtools flagstat $bam | grep mapped | grep -v mate | awk '{print 

$1}' ) ; 
millions=$(echo "$reads / 1000000" | bc -l) ; 
 

# coverage calculation 

bedtools coverage -s -F 0.5 -sorted -a tmp/${genome%_*.*}_eORFs-

filtered.bed -b $bam -g tmp/$chromosome-genome.txt |  
tee tmp/tmp-cov.txt |  
awk -F "\t" '{if ($7>0)  
print "'$chromosome'" "\t" $2 "\t" $3 "\t" $4 "\t" $5 "\t" $6 "\t" $7 "\t" 

$7/(($9/1000)*"'$millions'") "\t" $NF; 
else print "'$chromosome'" "\t" $2 "\t" $3 "\t" $4 "\t" $5 "\t" $6 "\t" $7 

"\t" $7 "\t" $NF}' | 
sort -rgk5,5 > tmp/${bam%.*}_eORFsf_coverage.bed ; 
 
# filtering samples: 
# get out-of frame overlaps - from each full set of overlapping ORFs pick   
# regions: at least 3 bp of overlap required to count as same region  

cat tmp/${bam%.*}_eORFsf_coverage.bed |  
awk -F "\t" '{if (($3-$2)>=93 && $7>="'$millions'" && $9>=0.6) print $1 

"\t" $2 "\t" $3 "\t" $4 "\t" $5 "\t" $6}' |   
sort -k1,1 -k2,2n > ${bam%.*}_candidates.bed ; 
bedtools merge -d -3 -s  -c 6 -o distinct -i ${bam%.*}_candidates.bed |  
awk -F "\t" '{print $1 "\t" $2 "\t" $3 "\t" "region_"NR "\t" "0" "\t" $4 }' 

> ${bam%.*}-candidate-regions.bed  ;   
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#find all overlaps with each "region" - pick one with best start region 
bedtools intersect -wao -a ${bam%.*}_candidates.bed -b ${bam%.*}-candidate-

regions.bed | tee tmp.txt | 
awk -F "\t" '{print $10}' | sort | uniq | while read -r region ;  
do cat tmp.txt | awk -F "\t" '{if ($10=="'$region'") print $4}' | while 

read -r family ;  
do cat tmp/${bam%.*}_eORFsf_coverage.bed |  
awk -F "\t" '{if ($4=="'$family'") print }' ; done | sort -k7,7rg | head -1 

; done |  
awk -F "\t" '{if ($7>=1) print}' |  
awk -F "\t" '{if ($6=="+") print $2 "\t" $4 "\t" $6; else if ($6=="-") 

print $3 "\t" $4 "\t" $6}' |  
while read -r start family strand ; 
do cat tmp/${bam%.*}_eORFsf_coverage.bed |  
awk -F "\t" '{if ($6=="+" && $2=="'$start'" && $4=="'$family'") print ;  
else if ($6=="-" && $3=="'$start'" && $4=="'$family'") print}' ; done | 
awk -F "\t" '{if ($7>="'$millions'") print}' > ${bam%.*}-candidates-

filtered.bed ;  
 
#apply thresholds  
awk '{if ($8>="'$RPKM'" && $9>="'$coverage_proportion'") print $0}' 

${bam%.*}-candidates-filtered.bed > ${bam%.*}_RPKM_coverage_filtered.bed ; 
done   

Script 9: Script with implemented in-house ORFFinder script. Thereafter, all ORFs predicted are compared to annotated 

locations, ORFs embedded in these are stored into a new file (eORFs-filtered). Next, coverage for these is calculated and 

thresholds of RPKM ≥ 10 and coverage ≥ 0.6 are applied. Remaining eORFs are subjects of further analyses.   

Additional, during the filtering of ORFFinder results, ORF families were estimated, needed for genome 

characteristic comparison. Within the location of an annotated gene, the possibility of various overlaps 

exists. These are attributed to the same ORF family if their ORFs share the same stop codon. Length 

variations for these overlaps are based on various start codons upstream of the shared stop codon. Even 

if these variations could be considered as isoforms of the same potential gene, they are not of interest 

for the comparison analysis. Therefore, they are considered as one ORF family.     

A potential verification for eORFs being considered of interest is if they are re-occurring within multiple 

samples per species. Even more convenient is their prediction ability based on both methods mentioned.  

The re-occurrence of eORFs within each tool was analysed differently as the prediction efficiency highly 

varied between the two methods. DeepRibo was sparse in its efficiency in comparison to the ORFFinder 

output, so a manual comparison between the predicted eORFs was made. To combine the considerably 

higher amount of predictions based on the ORFFinder script a comparison was made with awk scripting. 

Therefore, all files were concatenated into one followed by sorting the file according to the numeric 

value in column 1. Re-occurring entries within this file representing the same ORF being predicted 

within the different samples were counted. Adjusted to the sample amount available per species a 

threshold was chosen for an ORF to be of interest depending on how many different samples the ORF 

was predicted. Additionally, not only the re-occurrence within the prediction of one analysis but also a 

comparison of eORFs predicted by both methods was performed manually. A general workflow for the 

detection of eORFs present in multiple samples within one species can be seen in Script 10.  
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# filter ORFFinder results for reoccurrence of eORFs within one species 
cat *_all_info_eORF.txt >> combined_all.txt ; 
cat combined_all.txt |  awk '{print $1 "\t" $2 "\t" $3 "\t" $4 "\t" $5 "\t" 

$6 "\t" $11}' | sort | uniq -c > restricted_all.txt ; 
 
# threshold for reoccurrence: ORF should be detected in at least specific 

number of samples available per species (adapted to number of samples) 
awk '{if ($1 >= "$threshold_number") print $0}' restricted_all.txt > 

threshold_eORF.txt  

Script 10: Script combining eORF predictions made within a species and subsequent filtering for the once re-occurring 

(exceeding threshold number which is the threshold for re-occurrence amount). 

After the prediction of eORFs was made for the different prokaryotic species, another analysis focused 

on whether genomic differences might potentially influence characteristics of eORFs predicted and the 

prediction efficiency.  

 

2.1.7 Influence of genome characteristics on OLG predictions 

After eORF prediction for each sample with both DeepRibo and the ORFFinder script, a comparison of 

eORF length and genome characteristics were made. Based on the assumption that higher GC content 

may favour longer eORFs, they were analysed according to their length and compared to the 

corresponding GC content of their genome. As only a few predictions of eORFs were made by DeepRibo 

with filtered output files containing their length the results were compared manually. Results based on 

the in-house script and subsequent filtering were combined and analysed for ORF length 

computationally. First, the results from each species were combined and if the same ORF was predicted 

within several samples its length was only considered once. Next, the eORF lengths were split into 

increments of 100. The length analysis of eORFs identified and their length division can be seen in 

Script 11. GC-content information was obtained from the NCBI website for each genome and compared 

to the length variation.  

# combine ORFFinder eORF output per species  
cat *_all_info_eORF_filtered.txt | awk '{print $1 "\t" $2 "\t" $3 "\t" $4 

"\t" $5 "\t" $6 "\t" $10 "\t" $11}' | sort | uniq -c > 

"$species"_comparison.txt ; 

 
# analyse eORF length in hundreds 
cat "$species"_comparison.txt | awk '{print $9}' | sort -n | awk '{print 

(int($1/100)+1)*100}' | sort -g | uniq -c > eORF_length_distribution.txt  

Script 11: Combination of eORF predictions within a species, re-occurring ORFs are only counted once. Next, lengths 

calculated by start and stop position are categorized into length groups in increments of 100.  

Prediction efficiency was compared per samples between both methods used and if there is a correlation 

between its amount and potential genome size. This comparison was based on the assumption that in 

bigger genomes more annotated genes can be found. Considerably, the number of eORFs predicted in 

bigger genomes was expected to be higher. First, predictions were normalized to the samples’ read depth 

with subsequent comparison to the genome size to detect a potential correlation.  
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2.1.8 Relative reading frame estimation 

One analysis focus on the location of the eORF predicted in relation to its mother gene. This analysis 

was performed on the DeepRibo predicted eORFs was well as on the output of the ORFFinder filtered 

output. As this type of analysis is again based on the comparison of genomic positions, awk scripting 

was used once again. Within the script, the distance between the nucleotides’ start position of the mother 

gene and OLG was used to perform a modulo operation on. The numeric modulo operator is three, as 

there are three possible frames for location based on the three-nucleotide periodicity dictated by the 

codon structure. Depending on the remainder after the calculation, the relation between the mother gene 

and eORF is assigned to each eORF predicted. If the result is zero the relative reading frame is sas11, a 

remainder of one indicates the relative reading frame sas12, whereas sas13 is assigned it the modulo 

operation results in two. Here, sas stands for sense (s, location of mother gene) and antisense (as, location 

for eORF), with their respective frame location. Additionally, per sample, the localisation of eORFs was 

summed up to analyse a potential trend for one frame being in favour of the creation of overlapping 

genes.  

This type of analysis was repeated on the results based on the ORFFinder script analysis. First, the start 

and stop position, as well as the strand specificity for the mother gene, had to be extracted from the 

genomic feature table. Then a modulo operator calculation was again performed of the difference 

between the two start positions. The same locations were assigned to the eORF according to the 

calculation mentioned above. The following script is showing the calculations performed with 

ORFFinder output as an input file.  
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#### HANDLING ORFFINDER OUTPUT in relation to reading frame location  
## extract mother gene information from corresponding feature table, 

accession is referring to species specifique numeric code  
cat "$sample_number".trimmed.filtered.sorted-candidates-filtered.bed | 

while read -r chromosome pos1 pos2 family value strand reads rpkm cov ; 
do  
cat "$accession"_feature_table.txt | awk -F "\t" '{if ($1=="gene" && 

$2=="protein_coding" && $7=="'$chromosome'" && $8<=("'$pos1'"+1) && 

$9>=("'$pos2'"+0) && $10!="'$strand'" && "'$strand'"=="+") print 

("'$pos1'"+1) "\t" "'$pos2'" "\t" "'$strand'" "\t" $8 "\t" $9 "\t" $10 "\t" 

"||" "\t" "'$pos2'" "\t" "'$cov'" "\t" "'$strand'" "\t" ("'$pos2'"-

("'$pos1'"+1)); else if ($1=="gene" && $2=="protein_coding" && 

$7=="'$chromosome'" && $8<=("'$pos1'"+1) && $9>=("'$pos2'"+0) && 

$10!="'$strand'" && "'$strand'"=="-") print ("'$pos1'"+1) "\t" "'$pos2'" 

"\t" "'$strand'" "\t" $8 "\t" $9 "\t" $10 "\t" "||" "\t" "'$pos1'" "\t" 

"'$cov'" "\t" "'$strand'" "\t" ("'$pos2'"-("'$pos1'"+1))}' ;  
done > "$sample_number"_all_info_eORF.txt ; 

 
for i in *_all_info_eORF.txt;  
do 
awk '{if (((($2-$4)% 3)==0) && $3=="-") print $0 "\t" "sas11"; else if 

(((($2-$4) % 3)==1) && $3=="-") print $0 "\t" "sas12" ; \ 
else if (((($2-$4) % 3)==2) && $3=="-") print $0 "\t" "sas13" ; else if 

(((($5-$1) % 3)==1) && $3=="+") print $0 "\t" "sas12" ; \ 

else if (((($5-$1) % 3)==2) && $3=="+") print $0 "\t" "sas13" ; else if 

(((($5-$1) % 3)==0) && $3=="+") print $0 "\t" "sas11" }' $i |\ 
tee "$i"_reading_frame.txt | awk '{print $12}' | sort | uniq -c | sort -nr 

> "$i"_reading_frame_count.txt ; 
done   

Script 12: For eORFs of interest corresponding mother gene information is extracted from the corresponding feature table. 

Based on the start positions location relation between overlap and mother gene is calculated.   

 

2.1.9 Phylogenetic analysis 

The first analysis performed to potentially describe eOLGs of interest was focused on the detection of 

the last common ancestor to reveal the potential age of the gene. Re-occurring eORFs found in the 

comparison performed in section 2.1.6. were subject to the following analyses. First, BLAST searches 

were performed on the nucleotide level to identify potential homologous sequences within other species. 

Based on the distribution within the phylogenetic tree in relation to sequence similarity calculations the 

genes’ approximate ‘age’ could be estimated. Second, protein sequence blast searches were used to 

potentially detect similar functional sequences in other species. Based on the sequences’ similarity and 

an assigned functionality to the detected homologue an assumption on the eORFs functionality could be 

made. Additionally, the characteristics of the mother gene were analysed according to whether the 

function of different mother genes was similar. Sequence extraction was performed with the faidx 

command for which the genome in fasta format and the genomic start and stop position had to be 

specified. Depending on whether the nucleotide or protein sequence should be extracted, and on which 

strand the ORF of interest was located, different flags had to be specified. As the command is strictly 

working on increasing numbers, ORFs in the minus frame had to be specified according to it but with 

the flag ‘revseq -filter’ they were extracted correctly. If the amino acid sequence should be obtained the 

flag ‘transeq -filter’ had to be specified. For each of the 43 eORFs of interest both nucleotide and protein 
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sequence was extracted and subjected to the corresponding blast search. General extraction commands 

can be found in Script 13. 

# sequence extraction of antisense location with defined locus positions 
faidx "$chromosome".fna "$chromosome":"$pos1"-"$pos2" | revseq -filter > 

nucleotide_sequence.fna 
 
# obtain protein sequence using transeq filter 
faidx "$chromosome".fna "$chromosome":"$pos1"-"$pos2" | revseq -filter | 

transeq -filter > translated_sequence.fna  

Script 13: Commands used to extract nucleotide and amino acid sequences from eORFs of interest, which are required for 

further phylostratigraphy analyses performed.  

Extracted sequences were used for potential functionality characterisation of eORFs if homologues were 

found. Comparison of sequence on nucleotide level was performed with blastn option, whereas for 

protein sequences blastp was used. Both comparisons were conducted with the NCBI blast tool in Linux 

although the used database is stored on the NCBI server (i.e. remote search). In the tool used access to 

the server is implemented. Nucleotide level BLAST analysis was used to find homologue’s in the 

phylogenetic tree for gene age estimation, whereas protein BLAST was used to analyse potential 

functionality based on protein sequence. Additionally, tblastn was another search query performed. 

Here, the input protein sequence is searched for in a nucleotide database, enabling a higher variety of 

sequence to search and has better sensitivity than a nucleotide-based search. Only the best 1,000 aligned 

sequences were obtained from this comparison which was performed within the bacterial species, 

family, and genus. These results were then forwarded to another evolutionary based analysis. 

OLGenie, a program exclusively written for overlapping gene analysis, was used to estimate their 

selection and potential functionality. Analysed here is the rate of synonymous and non-synonymous 

nucleotide exchanges whilst considering their impact in mother and overlapping gene (Nelson, Ardern, 

& Wei, 2020). Necessary input information for the analysis are the aligned tblastn results and the relative 

reading frame of the overlap. Before analysis with OLGenie, the fasta files had to be adapted to the 

specific input format required. Characters that were not supported were exchanged with the stream editor 

sed, replacing a specified string or character by another specified input. Additionally, unique headers 

were required obtained by comparison with awk scripting and subsequent maintenance of unique ones. 

Last, an analysis with OLGenie necessitated same length sequences for comparison (to avoid having to 

perform an additional alignment of those sequences altering in length - a more precise analysis would 

involve additional alignment for each length differing sequence), hence the most common length 

sequences were kept for evaluation. The tool calculates the ratio of exchanges for both genes which are 

then subjected to an additional R script relating to OLGenie. Within this script significance of the 

obtained values is calculated by iterating over codons. Results from this analysis are indicators for 

potential functionality of the sequences analysed, as sequences with higher selection pressure are 

expected to be of function due to the evolutionary ‘effort’ required for maintaining their functionality. 

The command-line expression for OLGenie execution can be seen in Script 14. 
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# Script including OLGenie perl script to detect potential selection on 

mother gene and overlap 
cat samples.txt | while read -r species frame ; 
do  
OLGenie.pl --fasta_file="$species"_aligned_seq_test.fna --frame="$frame" --

output_file=OLGenie_"$species".tsv --verbose >/dev/null 2>&1 ; 
Rscript /usr/bin/OLGenie_bootstrap.R OLGenie_"$species".tsv 3 1000 4 | tee 

bootstrap_"$species".txt |  
awk '{print $10 "\t" $12 "\t" $16 "\t" $23}' > "$species"_info.txt ; 
done  

Script 14: Wrapper Script around OLGenie perl script with subsequent bootstrap analysis performed. Here, a significance 

regarding potential selection pressure is calculated. Settings for OLGenie used are: minimum number of defined codons per 

codon position = 3, number of bootstrap replicates = 1000, number of threads used = 4.  

The last analysis regarding the preliminary characterisation of the eORFs of interest is called Frameshift. 

In general, the length of an overlap detected is compared to possible length variations based on random 

eORF creation (Schlub et al., 2018). The nucleotide sequences of the respective mother genes were 

extracted, then randomly shuffled using a public R script (https://github.com/TimSchlub/Frameshift). 

Here, the triplet structure is kept during shuffling but a new random succession of these leads to changed 

open reading frame structures with consequently changed embedded sequence length. If those artificial 

created ORFs were overall significantly shorter than the originally detected one this is an indication of 

functionality, or selection for the long eORF.   

 

# input = fasta file containing nucleotide sequence of mother genes  
# mother genes are shuffled to analyse ORFs created in alternative frames 

according to their length  
# 'linear' converts fasta sequence to one line of sequence per header 

(posted online by Pierre Lindbaum)  
linear () { awk '!/^>/ { printf "%s", $0; n = "\n" } /^>/ { print n $0; n = 

"" } END { printf "%s", n }'; } ; 
for gene in *.fna ;  
do 
geneseq=$(cat $gene | linear | awk '{if (NR==2) print }') ; 
Rscript Frameshift_20000_revcom0.r $geneseq |  
awk '{if (NF==7 || $1~"#") print }' > ${gene%.*}-frameshift.txt ; 
done ;  

Script 15: Script shown includes Frameshift R script from (Schlub et al., 2018). Each input fna-file contains nucleotide sequence 

of mother gene from the embedded ORF of interest. Analysed were the same mother gene and eORFs that were subject to 

OLGenie analysis.  
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2.2  Experimental Proceedings and Equipment 

2.2.1 Chemicals  

A complete table containing all used chemicals for this experiment are listed in Supplementary Table 

S1. Ready-to-use kits needed for this experiment are shown in Supplementary Table S2 with their 

purpose and provider.  

 

2.2.2 Buffers and solutions 

Table 2: List of buffers necessary for RIBO-Seq and RNA-Seq preparation.  

Buffer Ingredient End concentration 

Polysome Lysis Buffer (PLP) 

without ions  

TRIS-HCl pH8 

NH4Cl 

Tergitol 

Triton-X-100 

20 mM 

100 mM 

0.1% 

0.4 % 

Polysome Lysis Buffer (PLP) 

TRIS-HCl pH8 

MgCl2 

NH4Cl 

CaCl2 

Tergitol 

Triton-X-100 

20 mM 

20 mM 

100 mM 

10 mM 

0.1% 

0.4 % 

Polysome Gradient Buffer 

(PGP) 

TRIS-HCl pH 8 

MgCl2 

NH4Cl 

DTT 

20 mM 

10 mM 

100 mM 

2 mM 

50 x Tris Acetate EDTA 

(TAE) 

TRIS  

Acetic acid 

Na2EDTA 

2 M 

1 M 

50 mM 

10 x Tris Borate EDTA 

(TBE) 

TRIS  

Boric acid 

Na2EDTA 

1 M 

1 M 

20 mM 

Gel Extraction Buffer 
NaOAc pH 5.5 

EDTA 

300 mM 

1 mM 

Sucrose solution 
Sucrose  

PGP 

50 % 

50 % 
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2.2.3 Enzymes 

Table 3 contains used restriction enzymes for polysome structure digestion, as well as its inhibitor 

(Superase IN) and the enzyme used for DNA digestion. Providers of these enzymes are Invitrogen 

(Carlsbad, CA, USA), Lucigen (Middleton, WI, USA), New England Biolabs (NEB; Ipswich, MA, 

USA) and Thermo Fisher Scientific (Waltham, MA, USA) and.   

Table 3: List of enzymes used in several RIBO-Seq and RNA-Seq processing steps. The first for enzymes are used in RNA 

digestion for RIBO-Seq samples, which are inhibited by application of SUPERase In. TURBO DNase is used in DNA digestion. 

Enzyme MNase XRN-1 
RNase 

R 
RNase T 

SUPERase 

IN 

TURBO™ 

DNase 

Unit 300 U/µl 
1.000 

U/ml 
20 U/µl 

5.000 

U/ml 
20 U/µl 1000 U, 2U/µl 

Provider 
Thermo 

Fisher 
NEB Lucigen NEB Invitrogen Invitrogen 

 

In Table 4 the listed enzymes are used for de- and phosphorylation (phosphatase + T4 ligase), as well 

as the enzymes necessary for library preparation (ligases + reverse transcriptase).  

Table 4: The first two enzymes listed are used to ensure the same phosphate status at all mRNA fragments before library 

preparation. The latter two enzymes mentioned are needed for within Illumina base library preparation.  

Enzyme 
Antarctic 

Phosphatase 

T4 

polynucleotide 

(PNK) Ligase 

T4 RNA Ligase 

2, truncated 

SuperScript II 

Reverse 

Transcriptase 

Provider NEB NEB NEB Invitrogen 

 

 

2.3  Methods 

2.3.1 Strain and cell harvest  

Harvested culture pellets of B. thetaiotaomicron VPI-5482 were provided by Hannes Petruschke, 

Helmholtz Institute Leipzig as part of a collaboration (50 falcons each containing one pellet). Before 

harvest, the culture was grown anaerobically at 37 °C in Brain-Heart-Infusion (BHI) medium for 72 

hours. Unfortunately, no further precautions reassuring the ribosomal stalling necessary for RIBO-Seq 

were performed before or during cell harvest.   
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2.3.2 Cell lysis  

For comparison purposes, two RIBO-Seq and corresponding RNA-Seq approaches are conducted 

simultaneously. For each sample (n = 2), two pellets are resuspended in 375 µl PLP buffer (without 

ions) to increase the experiment’s input material. Droplets of the obtained suspension are pipetted into 

liquid nitrogen followed by transferring them into a metal mortar. Under constant addition of liquid 

nitrogen to ensure no thawing samples are homogenized using mechanic shear force. Addition of 37 °C 

pre-warmth PLP buffer (750 µl, with double ion content) per sample for rapid thawing is followed by 

centrifugation for 5 min at 11.000 rpm and 4°C. The supernatant is transferred followed by second 

centrifugation (same settings) followed by splitting it into the RIBO-Seq (500 µl) and RNA-Seq (300 µl) 

sample. Nucleic acid extraction of the RNA-Seq samples is performed as quality control of the input 

material. 

 

2.3.3 Nucleic acid extraction via Trizol/chloroform precipitation  

Extraction is always performed on ice unless stated otherwise. The sample is split into 200 µl and 100 

µl followed by adding 1 ml Trizol and incubation for 5 min at room temperature (RT). 200 µl (0.2 

volumes of added Trizol) pre-cooled chloroform are applied with subsequent vortexing for 15 sec 

followed by incubation for 5 min. Centrifugation is performed for 15 min at 12.000 g and 4°C to separate 

the RNA. The supernatant of the top layer is transferred, 500 µl isopropanol and 1 µl glycogen are added. 

Slow inversion of the mixture (five times) is followed by incubation for 30 min. RNA is pelleted by 

centrifugation for 10 min at 12.000 g and 4°C. The supernatant is discarded whilst the pellet is washed 

by addition of 1 ml 80 % ethanol without resuspension. Centrifugation is repeated with the same settings 

followed by a second wash step with subsequent centrifugation. The supernatant is discarded, the nucleic 

acid pellet is dried for 10-15 min at RT, then resuspended in 30 µl RNase free H2O (combine the split 

approaches).  

 

2.3.4 Nucleic acid concentration measurement using Nanodrop  

RNA quantification is measured by Nanodrop analysis based on spectrophotometer measurements using 

1 µl of extract. The used tool can provide information about concentration and purification, in this case, 

of RNA but not value for intactness of the nucleic acid. RNA and other nucleic acids absorb light at 

260 nm, whereas proteins or other contaminants absorb at 280 nm. Hence, the ratio of these two values 

can be used as an indicator for the pureness of the sample. The analysis is performed according to the 

manufacturers’ instructions. 
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2.3.5 Size separation with gel electrophoresis 

Dissolve 0.75 g agarose in 50 ml 1 x TAE buffer by heating the suspension. Add 1 µl GelRed® nucleic 

acid to the suspension. Mix sample with 2 x RNA loading dye, then pipet them into wells of the hardened 

gel. As a reference, a 1 kb and a 100 bp ladder are applied to the gel. The size separation obtained by 

electrophoresis is due to the slower movement of molecules through the gel based on their molecular 

size. Current flow is possible by covering the gel with 1 x TAE buffer. Separation takes place during 

30-45 min at 110 volts followed by visualising the results under UV light. Based on the success of RNA 

extraction the analysis of the RIBO-Seq samples will be performed.       

 

2.3.6 Nucleic acid quality control analysis using capillary gel 

electrophoresis  

In comparison to concentration measurements with the Nanodrop (see 2.3.4.), the Bioanalyzer uses gel 

electrophoresis techniques to assess the quality of the samples. Hence, Bioanalyzer results can give 

information about the intactness or degradation of the input material. For RNA analysis the ribosomal 

subunits 16S and 23S are analysed. The proportion of these is used to estimate the RNA integrity number 

(RIN), where > 7 is considered intact RNA. The analysis is performed according to the manufacturers’ 

instructions for the Bioanalyzer RNA 600 Nano Kit. 

 

2.3.7 RNA digestion followed by density centrifugation for RIBO-

Seq samples  

Preparation of the RIBO-sample starts with RNA digestion to ensure polysome structures are broken 

down to monosomes. Digestion is performed using endo- and exonucleases for sufficient separation of 

the ribosomes (Gerashchenko & Gladyshev, 2017). Per sample following RNA nucleases are used:  

• 375 U MNase 

• 2.5 U XRN-1 

• 25 U RNase R 

• 6 U RNase T 

Digestion is completed by adding 1 mM CaCl2 and NEB4 buffer with incubation for 1 h at RT. Inhibition 

of digestion is ensured by first adding 0.6 µl of 0.5mM EDTA to bind MNase, followed by addition of 

3.75 µl SUPERase IN to inactivate the other enzymes. The complete sample is transferred to the density 

centrifugation approach necessary to only collect monosomes for further proceedings. Thereby, 

molecules remaining in the sample are separated by their molecular weight. Different phases necessary 

for density centrifugation are based on different ratios of a sucrose solution and polysome gradient buffer 

(PGP). The ratio with its corresponding phase is listed in Table 5. Starting with the highest ratio special 
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centrifugation utensils are filled up in descending order. The phase of interest containing the monosomes 

is located between 25 % and 30 %. Therefore, the 30 % phase will be stained blue, while the 25 % phase 

will be dyed yellow, resulting in a green phase of interest in between. For both dyes, stock solutions are 

prepared by dissolving 0.03125 g of the respective colour granulate in 1.56 ml PGP. The working 

solutions of dyes are diluted 1:50 and will replace the PGP in the mentioned phases. Centrifugation is 

conducted for 3 h at 28.000 rpm and 4°C.  

Table 5:  Overview of sucrose density layer composition. Layers are made off differing concentration mixtures of sucrose and 

polysome gradient buffer (PGB). PGB is changed by dye for two layers, namely 25 % (yellow dye) and 30% (blue dye). The 

resulting green layer after centrifugation is of interest containing monosomes necessary for subsequent sequencing.    

Gradient 10 % 15 % 20 % 25 % 30 % 35 % 40 % 45 % 50 % 

Sucrose 

[ml] 
0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 

PGB 

[ml] 
3.2 2.8 2.4 - - 1.2 0.8 0.4 - 

Dye [ml] - - - 2  1.6  - - - - 

 

The bottom of the centrifugation utensil is punctured with a needle (0.55 x 25 mm) allowing a slow 

collection of coloured phased droplets in a microtiter plate. Green droplets are united for subsequent 

RNA extraction, performed as described in section 2.3.3., only adapted to elution of extracted RNA in 

50 µl RNase free H2O. 

 

2.3.8 Footprint size selection through urea gel excision    

RIBO-Seq intends for sequencing only ribosome protected footprints. Due to the characteristics of this 

here used urea gel, RNA fragments can be separated very precisely. RNA fragments of specific sizes 

are used as markers on the urea gel aiding in the excision of the fragments with a length of interest. 

Ingredients for one 15 % urea gel can be found in Table 6. 

Table 6: Ingredients for 15 % urea gel used for in size selection step during RIBO-Seq processing.  

Ingredient 
Sequencing 

thinner [ml] 

Sequencing 

concentrate 

[ml] 

Sequencing 

buffer [ml] 
TEMED [µl] 

10 % APS 

[µl] 

Amount 5.2 12.8 2 15 150 

 

Before transferring the samples onto the gel, a 20 min pre-run at 200 V with 1 x TBE buffer as a current 

flow is necessary to ensure an even distribution of heat in the gel. RNA concentration of 2.5 µg per well 

should not be exceeded. Specified marker aiding in the exact excision of fragments with a length of 

interest are also applied to the gel. One marker only contains RNA fragments with a length of 23 nt, the 
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second marker includes fragments in a length range between 19 to 27 nt. Separation is obtained by 

running the gel for 90 min at 200 V, followed by staining the nucleic acid by adding 15 µl SYBR™ 

Gold nucleic acid gel stain and 15 min incubation. Gel excision is performed by orientation at the marker 

range under UV light. Gel fragments are transferred into punctuated (0.9 x 40 mm) micro reaction vessel 

placed in a second one. Centrifugation for 2 min at 13.000 rpm (RT) breaks down the gel structure due 

to centrifugal force pressuring the gel through the punctures. For complete dissolution 400 µl gel 

extraction buffer and 2 µl SUPERase IN are added to the sample with incubation overnight (ON) at 800 

rpm and 20 °C. Subsequently, the samples are transferred onto a cellulose acetate column filter (0.2 µm) 

followed by centrifugation for 2 min at 10.000 rpm (RT). RNA precipitation is obtained by adding 1 ml 

ethanol absolute (100 %) and 1 µl glycogen (20 µg/µl) with incubation ON at -80°C. Centrifugation for 

20 min at 12.000 g and 4°C pellets the RNA, subsequent the nucleic acid is washed twice with 1 ml 

80 % ethanol. After drying the pellet at RT for 10 - 15 min it is resuspended in 15 µl RNase free H2O. 

Quality of purified RNA is checked via Nanodrop measurement (see Section 2.3.4.).   

 

2.3.9 DNA digestion, a control 16S PCR and fragment shredding for 

RNA-Seq samples 

To eliminate DNA remaining in the sample, RNA-Seq samples need special treatment. While in the 

processing of RIBO-Seq samples, DNA is removed during density centrifugation, an extra DNA 

digestion step is necessary for RNA-Seq. Input material for digestion should not exceed 10 µg per 

reaction. Addition of 1 µl TURBO™ DNase and 5 µl of its buffer complement the experimental 

approach. Incubation for 30 min at 37°C is followed by inactivation for 10 min at 65°C through adding 

1.5 µl EDTA (0.5 M). EDTA binds metal ions present in the digestion enzyme therefore inhibiting its 

reactions. The nucleic acid is incubated ON at -80°C by 690 µl ethanol absolute, 27 µl NaOAc (3 M) 

and 1 µl glycogen (20 µg/µl). Precipitation is obtained by centrifugation for 15 min at 12.000g and 4°C. 

The nucleic acid pellet is washed twice with 1 ml 80 % ethanol, then dried and resuspended in 16 µl 

RNase free H2O.  

Digestion efficiency is verified performing a 16S rRNA PCR as control. With the use of specific primer 

(27F 5'-AGAGTTTGATCCTGGCTCAG-3'; 1492R 5’-TACGGYTACCTTGTTACGACTT-3’) 

targeting the 16S rRNA gene, a band present on the agarose gel would indicate insufficient digestion. 

Per sample PCR mix is as follows: 

• 1 µl Template 

• 25 µl Dream Taq Mastermix (Thermo Fisher Scientific) 

• 0,5 µl 10 M Forward Primer (27F) 

• 0,5 µl 10 M Reverse Primer (1429R) 

• 23 µl RNA-free water  
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Genomic DNA was used as the positive control, RNase free H2O as negative. The PCR protocol is as 

follows: 

Table 7: PCR protocol for 16S rRNA amplification, here used to verify the prior performed DNA digestion within RNA-Seq 

samples. Additionally, this protocol will be used to monitor potential contamination of redundant DNA probes after rRNA 

depletion. 

16S rRNA PCR 

 Repeat Step Temperature Time 

Denaturation 
1 1 95 °C 1 min 30 sec 

35 

2 95 °C 30 sec 

Annealing 3 58 °C 30 sec 

Elongation 
4 72 °C 1 min 

1 5 72 °C 5 min 

Hold 1 6 8 °C   

 

Digestion success was visualised via gel electrophoresis (see Section 2.3.5.). From the next step on both 

RIBO-Seq and RNA-Seq samples are treated the same.  

 

2.3.10 rRNA Depletion  

The RNA present in a cell consists up to 85 – 90 % of rRNA, therefore sufficient depletion of this type 

is necessary to decrease its amount before sequencing (Z. Chen & Duan, 2011; Petrova et al., 2017). 

Depletion is performed using siTools Pan-Prokaryotes Kit according to the manufacturer’s instructions. 

Here, streptavidin coat beads are used to bind rRNA present in the sample, lowering the amount present 

in the sample. After performing the depletion, DNA digestion was performed as described in section 

2.3.9. Probes necessary during the depletion might contaminate the samples, hence an additional 

digestion step was required.   

 

2.3.11 RNA quantification using Qubit Assay  

The Qubit Fluorometer is used to measure nucleic acid concentration. Unlike the Nanodrop, this tool 

can measure concentrations in the low range from 10 pg/µl to 100 ng/µl. The fluorescent dye in the 

reagent mix binds to the RNA, hence the emission measurement is synonymous to the nucleic acid 

concentration in the sample. The sample preparation is performed according to the manufacturers’ 

instructions. Each sample, as well as the two standards, are measured three times and results are 

averaged. 
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2.3.12 Covaris Ultrasonicator used for sheading fragment size 

RNA fragments present in the RNA-Seq samples are sheared using covaris ultrasonicator to size down 

their length as no size selection step by gel excision was performed for these. Duration (3 min), intensity 

(175 W), duty cycle (10 %) and amount (200 cycles) of the ultrasonic impulse are influencing the 

remaining length of the fragments (here approximately 220 bp). To decrease the amount of liquid nucleic 

acids are resolved in and consequently increase the RNA concentration per µl they are applied to 

SpeedVac Vacuum Concentrators. A lower amount of input sample is necessary for the next preparation 

step which is performed to prepare the nucleic acids for adapter ligation.  

 

2.3.13 Dephosphorylation and subsequent Phosphorylation 

To ensure all fragments are phosphorylated at their termini uniformly dephosphorylation with 

subsequent phosphorylation is performed. In between the two steps and at the end, nucleic acids 

fragments are purified using the miRNeasy mini kit (Qiagen) according to the manufacturers’ 

instructions. 27 µl Antarctic phosphatase buffer, 2 µl Antarctic phosphatase and 0.5 µl SUPERase IN 

are added to each sample followed by an incubation step for 30 min at 37°C. After purifying the samples 

using the mentioned kit, the phosphorylation of all termini is achieved by adding 3.5 µl T4 DNA ligase 

buffer, 2 µl T4 polynucleotide ligase and 0.5 µl SUPERase IN. Here, the incubation is set for 1 h at 

37°C followed by a second purification step. Nanodrop is used for RNA concentration estimation (see 

Section 2.3.4.). Samples are then evaporated into 5 µl each, as this is the required input material amount 

for the TruSeq small RNA library kit (Illumina).  

 

2.3.14 Library Preparation and Sequencing 

The TruSeq small RNA library kit is used for library preparation of RIBO-Seq and RNA-Seq samples. 

The protocol comprises steps, such as 3’-adapter ligation, 5’-adapter ligation, reverse transcription of 

the library from RNA to DNA, amplification of the library including indexing of the samples followed 

by concentration estimation and quality verification. All steps are performed according to the 

manufacturers’ instructions with following specified adaptations. The indices used to label the different 

samples before pooling are listed in Table 8. Table 9 contains the PCR protocol for library amplification.  

Table 8: Indices with respective sequences used for B. thetaiotaomicron RIBO-Seq and RNA-Seq samples.  

Sample RIBO-Seq I RIBO-Seq II RNA-Seq I RNA-Seq II 

Index RPI10 RPI11 RPI9 RPI2 

Sequence TAGCTT GGCTAC GATCAG CGATGT 
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Table 9: PCR protocol used for library amplification in Illuminas TruSeq Small RNA Library preparation.   

Library Amplification 

 Repeat Step Temperature Time 

Denaturation 
1 1 98 °C 30 sec 

15 

2 98 °C 10 sec 

Annealing 3 60 °C 30 sec 

Elongation 
4 72 °C 15 sec 

1 5 72 °C 10 min 

Hold 1 6 4 °C   

 

Fragments of interest are excised from the gel and subsequently purified. Within the purification step, 

one adaptation is the incubation ON for breaking the gel debris. The second change is made at eluting 

the fragments by adding glycogen, NaOAC and 100% ethanol. Here, the incubation is again performed 

ON. Libraries are concentrated according to following conversion formula, with values for concentration 

obtained from Qubit measurements and average library size from Nanodrop analysis: 

𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑛𝑀 =
(concentration in 

ng

µl
)

(660
g

mol
 x average library size in bp)

 𝑥 106   

Libraries are tested regarding their quality of covering mostly mRNA fragments in a first sequencing 

experiment. Therefore, 5 µl of each library (0.5 mM) are pooled and analysed in a 2 x 300 bp paired-

end sequencing run.   

 

2.3.15 Data Evaluation  

Quality control of raw reads is analysed using FastQC, followed by adapter trimming with fastp. The 

following adapter sequence is specified for trimming: TGGAATTCTCGGGTGCCAAGG. Reads are 

aligned to the reference genome (NC_004663.1) or reference assembly file (GCF_000011065) using 

Bowtie2. Settings for alignment were: -p 6 --quiet -q --end-to-end -D 20 -R 3 -N 0 -L 17 -i S,1,0.50 

--no-unal –x. FastQ Screen is used to compare input reads against a standard set of libraries providing 

information about the percentage of reads mapping to either mRNA, rRNA or tRNA and their 

uniqueness (mapping only to one genome or multiple) (Wingett & Andrews, 2018). Important settings 

for FastQ Screen are as follows:  --threads 6 --aligner bowtie2 --bowtie2 '-p 6' --subset 0 --tag --force 

--filter 00003. Afterwards, a second quality control step is performed on the trimmed and filtered reads. 

Results before and after trimming and filtering are compared to evaluate the number of usable reads. 

Additionally, the FastQ Screen output is analysed regarding the distribution of reads mapping to either 

RNA of interest or rRNA and tRNA. An already available RIBO-Seq experiment on Bacteroides 

thetaiotaomicron (Sberro et al., 2019) was analysed identically to compare outputs obtained. 
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3. Results 

3.1  Experimental adjustments in RIBO-Seq experiments 

A compilation of sample information, such as their reference, corresponding experiment number and 

experimental criteria can be found in Table 10. 

Table 10: Overview of available RIBO-Seq experiments chosen for comparative analysis. Table from (Glaub et al., 2020). 

GEO/Experiment number Stalling method Harvesting method  Size selection  Publication 

GSE85540  - rapid filtration 20-40 nt Hwang et al. 2017 

GSE68762 chloramphenicol centrifugation n.d. Bartholomäus et al. 2016 

GSE86536 chloramphenicol/linezolid rapid filtration 28-42 nt Marks et al. 2016 

E-MTAB-2903 chloramphenicol rapid filtration ~28 nt Wang et al. 2015 

GSE64488  - rapid filtration 20-40 nt Woolstenhulme et al. 2015 

SRP048921  - rapid filtration 20-30 nt Balakrishnan et al. 2014 

SRP040142  - rapid filtration 28-42 nt Elgamal et al. 2014 

GSE61619 erythromycin/telithromycin rapid filtration 25-42 nt Kannan et al. 2014 

GSE33671 chloramphenicol/ - centrifugation/filtration 25-31 nt Oh et al. 2011 

 

Supplementary Table S3 gives an overview of sample-specific characteristics such as raw read number, 

used adapter sequence for trimming and amount of effective reads after filtering. Reference genomes 

used for the three E. coli K-12 substrains with their respective accession numbers are specified in 

Supplementary Table S4.    

 

3.1.1 Estimation of necessary read depth for sufficient ORF detection  

Based on the results published for RNA-Seq read depth analysis by Haas et al (Haas et al., 2012), here 

the necessary amount of reads left after adapter removal, alignment and filtering out reads corresponding 

to rRNA and tRNA was estimated for RIBO-Seq results.  

The evaluation of data was based on the comparison of detected annotated genes to the effective read 

amount left for the prediction (Figure 5). Annotated genes were considered for comparison if they 

showed coverage of at least 3 reads required for predictions based on REPARATION (Glaub et al., 

2020). Effective reads are defined as those that remain for evaluation after adapter sequence removal 

and successful alignment to the corresponding reference genome not covering either rRNA or tRNA. 

Not only the ORF predictions made by REPARATION were used for this comparison, but also genes 

assumed to be translated due to their RCV value. Locations of genes predicted by REPARATION were 

used to analyse processed RIBO-Seq and RNA-Seq data to obtain read coverage information from both 
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sequencing approaches for samples where those two techniques were performed. Accepted for 

comparison to their read depth were only those genes with RCV values equal to or above 0.355 (Glaub 

et al., 2020). Based on the two comparison approaches a necessary read amount to detect annotated 

genes sufficiently in RIBO-Seq experiments seems to be at least 20 million effective reads (Glaub et al., 

2020). A higher amount of effective reads does not seem to contribute to more predictions made. The 

increase of reads may give rise to spurious detections which is why the evaluation of sufficient read 

amount is of especial importance (Glaub et al., 2020; Haas et al., 2012).  

 

Figure 5: (A) REPARATION based prediction efficiency of annotated genes compared to used effective reads. The threshold 

for genes being accepted as potentially translated are a minimum of three reads needed (only REPARATION based, orange) 

or additionally exceeding an RCV ≥ 0.355 (blue). Available analysis results for both criteria representing one sample are 

connected via dashed lines. (B) Subsampling of high sequencing depth samples (SRR1734437; SRR1734439; SRR1734441) 

performed in triplicates for each. A comparison of reduced sequencing depth and the number of annotated genes predicted 

(REPARATION based) was performed. Figure from (Glaub et al., 2020). 

To verify the recommended read amount necessary, three samples (SRR1734437, SRR1734439, 

SRR1734441, (Woolstenhulme et al., 2015)) with remaining high read coverage were used for a second 

determination. Here, a reduction of reads left used for gene prediction leads to a decreased amount of 

annotated genes detectable. Nonetheless, in question was if still 20 million reads are needed for 

sufficient detection or if a certain decreased amount is already sufficient. Again, as can be seen in Figure 

5B, if 20 million reads are available for prediction this is a sufficient amount for gene detection. 

Additional reads are not contributing to more genes being predicted.   

However, even if at least 20 million reads were available for prediction, only around 3,500 annotated 

genes could be detected. These are around 82 % of possible annotated genes known for E. coli K-12 

(Glaub et al., 2020). For RNA-Seq analysis, the detection efficiency was as high as only 2 out of the 

hitherto described 4,149 annotated genes were not detected (Haas et al., 2012). Nevertheless, for the 
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mentioned analyses only one read was sufficient for ORF detection, whereas in this study, a minimum 

of at least three reads was required (Glaub et al., 2020).   

Next, reads used for prediction were analysed according to their length and whether there is a trend 

detectable for specific read length regarding RNA type.   

 

3.1.2 Different RNA types have specific read lengths 

The primary aim of the RNA type-specific read length analysis was to potentially deplete for types of 

disinterest already during experimental proceedings due to adapted size selection. Samples were chosen 

for the analysis that showed a read length distribution from 20 to 40 nucleotides resulting in 46 samples 

for comparison (Glaub et al., 2020). First, percentage values for each specific length were calculated 

within the different RNA types. These values were then compared between the multiple samples with 

median estimation to avoid the high influential impact of potential outliers (Glaub et al., 2020).  

A differentiation between the RNA types (Figure 6) is possible with a dominant read length between 24 

to 27 nt for mRNA reads whereas rRNA and tRNA corresponding reads tend to be longer (Glaub et al., 

2020). rRNA read lengths peak at 26 nt respectively 31 nt. tRNA reads tend to be even longer with peak 

values at 32 and 35 nt of length (Glaub et al., 2020). These results lead to the assumption that reads 

ranging in length between 24 to 27 nt are of especial interest to obtain ribosomal protected mRNA 

fragments. Although a proportion of rRNA is also included in this range an additional part seems to 

correspond to longer reads. These, along with most of the tRNA reads could be depleted due to an 

adapted size selection of 22 to 30 nt during experimental processing (Glaub et al., 2020). Even though 

the excision step can never be of absolute accuracy, a narrower selection range could already aid in 

depletion of undesirable fragments. Still, rRNA depletion is highly recommended to decrease the general 

amount of rRNA fragments present, that cannot be targeted with the adapted size selection range (Glaub 

et al., 2020).  
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Figure 6: RNA type-specific read length analysis. Percentage values for each unique read length were compared between 

analysed samples (n = 46) with subsequent median estimation shown here. Colour code: pink = mRNA, blue = rRNA, 

orange = tRNA. Figure from (Glaub et al., 2020).  

An additional analysis solely focused on rRNA corresponding reads was performed, as these are the 

main intern ‘contaminant’ within RNA type sequencing approaches. To lower the amount of rRNA 

present within the sample kit-based depletion is performed during experimental proceedings. However, 

the technique is not 100 % successful, with remaining rRNA fragments present. Therefore, the approach 

of potential rRNA type (5S, 16S, 23S) assessment to a specific read length was made to identify 

representative lengths per type (Glaub et al., 2020). Reads mapping to 23S locations are showing a pretty 

similar read length distribution as for the combined rRNA type analysis. For the other two types, clearer 

trends could be detected. Fragments obtained from 16S regions are in general 26 nucleotides in length, 

whereas those mapped to 5S are mostly represented by longer reads of 32 nucleotides in length (Figure 

7). 
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Figure 7: Analysis of read length for specific types of rRNA (pink = 5S, blue = 16S, orange = 23S). Median estimation was 

obtained from percentage distribution according to various length per type and sample (n = 46). Figure from (Glaub et al., 

2020). 

However, a modification of the selection range has always to be matched to the outcome of interest. If 

longer reads are of interest, the recommended size selection should be neglected due to a relatively low 

higher limit of 30 nt. Longer reads were the focus of the next analysis performed.  

 

3.1.3 Longer reads mapping in 5’-UTR region  

As the analysis of longer reads required a read length range up to 40 nt, samples not matching the needed 

range were excluded from the comparative analysis of the 5’-UTR region resulting in 30 samples.  

Previous studies showed that Shine-Dalgarno like motifs are more likely to be detected in reads ranging 

from 28 up to 40 nt in length (Buskirk & Green, 2017; Glaub et al., 2020). As this sequence, in general, 

is known to be located upstream of the translational start, a range of 25 nucleotides upstream of a start 

codon presumably containing the SD sequence was analysed according to the mapped reads, especially 

their length. Here, this region is defined as the 5’-UTR region. A comparison of read length within this 

region was made to a region 25 nucleotide downstream of the translational start, the here called start 

region (Glaub et al., 2020). An expected read length for the start region corresponds to the length 
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identified for mRNA fragments (24 - 27 nt), whereas reads mapping in the 5’-UTR region are assumed 

to be longer.  

Indeed, a differentiation in the read length can be made based on the two regions analysed (Figure 8). 

Reads that map in the start region show a dominant length of 27 nt, which is consistent with the prior 

detected mRNA associated read length range. The most frequently represented length for reads in the 

5’-UTR region is 34 nt, emphasizing the hypothesis that reads mapping upstream of the translational 

start, potentially containing an SD motif, are longer (Glaub et al., 2020). This result is underlining the 

previously made statement that size selection during experimental proceedings has to be adjusted to the 

experimental goal. There is no unique read length detectable in prokaryotes that could represent all 

possible fragments of interest.    

 

 

Figure 8: Comparative analysis of median calculation for read lengths of two specific regions. Start region covers 25 nt 

downstream of the translational start (orange), whereas the 5’-UTR region is located 25 nt upstream of the start position (pink), 

where the Shine-Dalgarno sequence is expected. Figure from (Glaub et al., 2020).  

The additional analyses over the whole gene and stop regions (Figure 9) lead to similar results as the 

start region, with a most common length of 27 nucleotides for all of these gene coding regions (Glaub 

et al., 2020). These outcomes emphasize that reads with a length of 27 nucleotides are crucial to obtain 

during RIBO-Seq experiments as they most likely represent ribosome covered fragments and therefore 

are potential of protein-coding nature.    
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Figure 9: Region-specific read length analysis for (A) start region, (B) 5’-UTR region, (C) stop region, (D) covering the whole 

gene. Figure from (Glaub et al., 2020).  

The next results are also focussing on the start site or more precisely on its detection.  

 

3.1.4 Chloramphenicol addition assists translation start site detection 

Ribosomal stalling can oftentimes be achieved by the application of translation inhibitors such as 

chloramphenicol. Accompanied by the stopped translation is an accumulation of ribosomes at the 

translational start site, as the attachment of ribosomes to mRNA is still possible (Mohammad et al., 

2019). One chosen experiment (Oh et al., 2011) was analysed in regard to the caused accumulation 

artefact and its potential to aid in the detection of overlapping genes (Glaub et al., 2020).    

The comparison between untreated samples and those where Cm was applied shows a detectable benefit 

in start site detection due to the added antibiotic in all three expressional levels analysed (Figure 10) 

(Glaub et al., 2020). However, it seems that the impact of ribosomal stalling at the beginning of genes 

is especially helpful in the detection of weakly expressed genes. Even though, the start position is more 

highlighted in all three expression status’ analysed, the difference between mean RPKM is the highest 

in weakly expressed genes (Figure 10C). This finding is of special interest as the functions for many 
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overlapping genes in the organisms’ metabolism are still unknown making it difficult to enhance their 

expression status due to targeted environmental conditions. Still, with the addition of in this case Cm, 

detection of even weakly expressed genes is possible if an accumulation of reads at the translational 

start site is detectable (Glaub et al., 2020).   

Even though Cm is claimed to cause translational arrest read accumulations at other positions than the 

start site can be detected primarily in high and moderate expressed genes.  

 

 

Figure 10: Translational start site analysis based on averaged read accumulation within (A) highly, (B) moderate, (C) weakly 

expressed genes. Chloramphenicol application (purple) is compared to non-treatment (orange). Figure from (Glaub et al., 2020). 

The results obtained from analyses in this chapter lead to recommendations for an adapted size selection 

range for different regions of interest, a potential advanced rRNA depletion due to a narrower targeted 

size selection, sufficient read depth of at least 20 million reads for successful evaluation of RIBO-Seq 

experiments and supportive feature of Cm addition of the detection of weakly expressed genes (Glaub 

et al., 2020). The next chapter focusses on results obtained from overlapping gene detection in various 

prokaryotes and the potential influence of their genomes in detection efficiency. Furthermore, a general 

localisation of eOLGs detected was made with additional further analyses of selected eOLGs detected 

in multiple samples.  
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3.2  Influence of genomic features on OLG prediction amount 

The number of eORFs predicted with both DeepRibo and the filtered results from the general ORFFinder 

script can be found in Supplementary Table S5. Similarities in prediction efficiency for both techniques 

used could not be identified. In general, the amount of potential eORFs is slightly bigger in the filtered 

ORFFinder results as it requires only exceeding an RPKM of 10 and coverage of 0.6 after being 

normalized to the samples read depth. Whereas DeepRibo also considers read distribution across ORFs 

predicted. Presumably, the stricter thresholds DeepRibo uses for prediction evaluation were contributing 

factors in the low prediction efficiency. A failure within the informatics implementation and evaluation 

of results can be denied as the prediction of annotated genes, in general, was possible, as well as the 

identification of overlaps within the prediction results. Therefore, further analyses were primarily based 

on the detected eORFs obtained from the in-house ORFFinder script. Nevertheless, for the identification 

of re-occurring eORFs DeepRibo results, if available, were also considered. From here on out, when 

referred to eORFs those are considered translated due to thresholds matched (RPKM, coverage).  

First, the number of detected eORFs within the in-house prediction script (ORFFinder) were compared 

to the effective read amount. Again, effective reads are characterised as those remaining after alignment 

against a reference genome and are not mapped to either rRNA or tRNA loci. This analysis is similar to 

the one performed for section 3.1.1., however here the detection efficiency of eORFs is analysed. The 

previous claim of 20 million effective reads necessary for sufficient ORF detection should be verified 

whether this threshold also applies to eORF detection. Per sample number of effective reads is compared 

to the number of eORFs. 

 

Figure 11: Comparison of eORFs identified with ORFFinder script and threshold application and the number of effectively 

mapped reads per sample (n = 164; without E.coli). Previously claimed threshold of 20 million reads for sufficient gene 

detection is included visualised by drawn line. 
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The threshold of 20 million effective reads, visualised in Figure 11 as a vertical line, can be confirmed 

as being sufficient for eORF detection in general. Higher read depth is not necessarily contributing to 

the detection of more predictions. However, the number of effective reads for samples belonging to 

S. venezuelae ranging from around 1.5*108 to 3.5*108 (8 highest read numbers) could be considered 

problematic. Here, quality control categorized up to 30 % of the sequence (sample SRR1021845) as 

overrepresented which were subjected to BLAST analysis before additional trimming. Sequences 

detected mapped to the reference genome of S. venezuelae, therefore, were not considered as potential 

contamination. Further evaluation of these reads was not performed, as they were not contributing to a 

higher eORF detection. 

In general, even fewer read numbers seem already sufficient for eORF detection. Still, it needs to be 

emphasized that the threshold of 20 million effective reads for annotated genes was based on 

REPARATION predictions. For these stricter thresholds were applied by the tool as are used in the 

in-house prediction. Here, only the RPKM and coverage threshold was applied compared to read 

distribution patterns. Nevertheless, the threshold can be confirmed with an additional evaluation of 

eORFs obtained from the in-house script necessary. 

The next analysis was performed to account the potential correlation of species-specific characteristics 

like genome size and GC-content and the amount of eORF families respectively.    

 

3.2.1 General genome characteristics comparison 

A first analysis focused on genomic feature comparison in general. The GC-content was compared to 

the genomic size per species respectively to detect a potential correlation based on these features. Results 

of this comparison were of interest to propose a hypothesis for expected eOLGs occurrence within the 

different species. In general, bigger genome size is accompanied by more annotated genes, as can be 

seen in Supplementary Table S6 for the species analysed. In comparison to this, for higher GC-content 

within a genome, it could be speculated that there are fewer but longer genes present. This assumption 

is based on the formation of stop codons mostly out of pyrimidine bases which are present in a lower 

proportion in high GC-content genomes. The comparison between these two features is shown in Figure 

12 with the calculated R-squared value to identify a potential correlation. A slight trend can be detected 

implying that a bigger genome is more likely accompanied by a higher GC-content. The two clustering 

outliers circled represent the two archaeal species analysed. Interestingly here is that both have small 

genomes but unexpectedly high GC-contents. These results emphasize their phylogenetic distinction 

from bacteria at least within the features analysed.     
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Figure 12: Correlation between genome size and GC-content (n = 22). Linear regression with the corresponding function is 

shown, as well as the calculated R-squared value. Clustered dots circled represent the two archaeal species analysed.   

Additional comparisons were then made against the number of embedded ORFFamilies for each feature 

respectively. An ORFFamiliy comprises length variations of the same ORF based on a shared stop 

codon. The eORFs predicted in general are based on the ORFFinder output. As for these comparisons, 

the actual length of the translated ORF itself is not important but rather the possibility of the creation of 

an embedded ORF, the length variations are condensed into the ORFFamilies. Also not considered for 

the estimation of an ORFFamily is an exceedance of RPKM or coverage threshold. Here, the simple 

creation possibility of an eORF is subject of the analysis and subsequent comparison to the genomic 

features. Of interest here is whether GC-content or genome size influence the number of embedded 

ORFFamilies. The analysis shows that genome size seems to have a slightly higher impact (Figure 13A) 

on the amount of ORFFamilies possible than GC-content (Figure 13B) based on R-squared values 

calculated. ORFFamily amount and GC-content do not correlate at all. Again, for both analyses 

performed the clustering of the two archaeal species can be shown once more emphasizing their 

difference to bacteria.   

From these first general comparisons, a hypothesis for eORFs based on genomic features is derived and 

subjected to further analysis. Genome size seems to have a slightly higher impact on embedded 

ORFFamily occurrence. Additionally, bigger genome size is more likely accompanied by higher 

numbers of annotated genes. Therefore, an assumption of more eORFs present in bigger genomes was 
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made but had to be rejected after analysing the number of eORFs detected within the samples (see 

Supplementary Table S5). 

 

Figure 13: (A) Correlation between genome size and embedded ORF families; (B) Relation between GC-content and embedded 

ORF families. For both correlations (n = 22) linear regression lines with their function and R-squared values are added. 

Clustered circled dots again represent the two archaeal species.  

Next, the focus was on whether GC-content could influence eORFs in general. Here, a hypothesis was 

made that higher GC-content could potentially enable the creation of longer eORFs.   

 

3.2.2 Length analysis of eORFs detected 

For each species, eORFs predicted were combined and re-occurring ones were condensed to eliminated 

multiple counting. Then, those identified were categorized according to their length and their abundance 

was calculated in percentage. Length distribution for an excerpt of species is shown in Figure 14, with 

species chosen as representatives for different GC-contents. Supplementary Figure S2 shown eORF 

length distributions of all species analysed.     
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Segment A shows the eORF length distribution for S. aureus having slightly more eORF with a length 

range between 93 to 100 nucleotides (Figure 14A). Shorter ORFs were in general excluded as a threshold 

for minimal length was set to 93 for consideration of an actual ORF. From there a shift for the most 

abundant length can be detected starting with B. subtilis having an equivalent amount of eORF 

predictions for both lengths. For all species with GC-contents above ~ 44 %, the predominant eORF 

lengths are between 100 to 200 nucleotides. Thereafter, no shift to even longer ranges as the most 

frequent one can be detected. 

Nevertheless, in higher GC-content genomes predictions of eORFs spanning 500 nt or more can still be 

found. Occasionally also eORF detections were made of length up to 1,300 nt in length. Such long 

eORFs were identified in P. aeruginosa, S. typhimurium and H. volcanii, matching all criteria to be 

considered translated.   

 

Figure 14: eORF length distribution within a selection of species analysed (n = 7). Species shown were selected based on their 

increasing GC-content (A) 32.9, (B) 43.5, (C) 50.8, (D) 60.8, (E) 66.6, (F) 67.4, (G) 72.7.  
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The length analysis revealed that the predominant length for eORFs in general ranges between 100 to 

200 nt. Therefore, the hypothesis of proportional longer eORF in higher abundance present in higher 

GC-content genomes had to be rejected. However, in general, the detection of long eORFs even up to 

1,300 nt in length, is possible in high GC-content genomes.  

After length analysis of eORFs predicted another interesting point is the location relation of the 

embedded overlapping gene with its mother gene.   

 

3.2.3 Relative reading frame relation between the mother gene and 

eORF 

The maintenance of a nucleotide sequence is highly dependent on its function. Protein-coding parts of 

the genomic sequence are therefore under negative selection which implies that mutation resulting in 

functionality loss should be prevented. Hence, the conservation of the known functional sequence is 

affecting potential new open reading frames located in an alternative frame as it restricts potential 

nucleotide exchanges. The relation of annotated genes and potential eORFs was analysed regarding one 

frame being favoured in the creation of overlapping genes.   

 

Figure 15: Location relation analysis for mother gene and embedded ORF (n = 24). Additionally shown is the comparison of 

all possible eORFs predicted and eORFs considered translated. A trend (p = 0.07) for the formation of translated eORFs is 

found in sas12, whereas their occurrence in sas11 seems even statistically significant unlikely (p = 0.0009). 
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Expected to be in favour is the relative reading frame sas11 as here, the third codon position of the 

mother gene is overlapped by the second position of the alternative ORF. An exchange in the most 

variable position for the annotated genes is likely to cause no amino acid exchange in the protein 

sequence, whereas an exchange in the most informative 2nd position would lead to major rearrangements 

for the overlapping gene. This hypothesis however cannot be confirmed by the results from the 

performed analysis (Figure 15). Rather sas12 seems to be most likely for the localisation of translated 

eORFs (p = 0.07) and sas11 significantly confirmed as unlikely for their occurrence (p = 0.0009). A 

two-sided t-test analysis performed was used for significance calculations. Numbers used for the 

calculation can be found in Supplementary Table S7. Still, sas12 was not expected to be the most likely 

relative reading frame relation as here for both annotated and overlapping ORF the third codon positions 

are complementary to each other. Exchanges that might happen more frequently here are most likely not 

impacting any of the two sequences. On the other hand, this might be in favour to maintain functional 

sequences. Hence, it is necessary to differentiate between the localisation of an overlapping gene to an 

annotated one dependent on the creation of a functional overlap versus maintaining its functionality.  

 

3.2.4 Re-occurring eORFs and their BLAST analysis 

The analysis of eORF re-occurrence within a species was first tested on a subset of species available, 

namely C. crescentus, E. coli, H. salinarium, H. volcanii, M. smegmatis, M. abscessus, P. aeruginosa, 

P. fluorescens, S. typhimurium, S. aureus, S. clavuligerus, S. coelicolor, S. griseus and S. tsukubensis. 

For each species, an individual frequency of re-occurrence was estimated based on the sample amount 

and prediction efficiency. Based on their re-occurrence within species-specific samples and additional 

visual inspection of read distribution across the loci, a total of 43 eORFs was chosen for further analyses. 

Supplementary Table S8 contains location information for eORFs and corresponding mother genes, the 

location relation between the two genes and additional genomic information. For all loci nucleotide as 

well as protein sequences were extracted from the associated genome.  

First, for both mother gene and overlap an approximate age determination was performed based on 

homologue sequence detection within the associated species family. Therefore, protein sequences were 

used for a tblastn approach. Here, the protein query sequence is translated into a nucleotide sequence. 

For amino acids within the protein sequence that can be encoded by several nucleotide triplets, all 

possibilities are considered. Thus, this approach is not restricted to exact matching homologues but 

allows to search for sequence similarities as long as the same protein sequence is encoded.  

The maximal target sequence was set to 1,000, however, if more alignments during BLAST analysis 

were found, the total number is displayed. Additionally, an e-value of 1*e-10 was set for sequence 

alignment similarity to be considered. The number of homologues found for the mother gene and overlap 

was compared. Therefore, if more than 500 hits were obtained the query gene was categorized as ‘old’, 
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whereas fewer hits indicate a ‘young’ gene. This is only a preliminary analysis as it does not take into 

account the number of genomes sequenced for a taxonomic group. Analysis output is summarized in 

Table 11.  

Table 11: Obtained tblastn output performed on the mother gene and overlap protein sequence. Parameters set for database 

search were: maximum target sequence number 1,000, e-value threshold of sequence similarity 1*e-10, search for homologues 

restricted to the species-specific family level.  

eORF Name BLAST hits for mother gene BLAST hits for detected eORF 

Caulobacter1 25 + 8 + 

Caulobacter2 298 + 5 + 

Escherichia1 9953 * 4030 * 

Escherichia2 1010 * 1001 * 

Escherichia3 1000 * 1000 * 

Escherichia4 21333 * 15366 * 

Escherichia5 1036 * 1000 * 

Escherichia6 1017 * 422 + 

Escherichia7 1036 * 1000 * 

Escherichia8 1017 * 422 + 

Halobacter 21 + 4 + 

Haloferax 18 + 1 + 

Mycobacterium1 1408 * 117 + 

Mycobacterium2 249 + 8 + 

Mycobacterium3 661 + 9 + 

Mycobacterium4 9631 * 11 + 

Mycobacterium5 113 + 16 + 

Mycobacterium6 15 + 10 + 

Mycobacterium7 1550 * 44 + 

Mycobacterium8 30 + 21 + 

Pseudomonas1 898 * 895 * 

Pseudomonas2 360 + 262 + 

Salmonella1 1000 * 1002 * 

Salmonella2 1015 * 871 * 

Staphylocuccus1 1000 * 686 * 

Streptomyces1 10 + 6 + 

Streptomyces2 628 * 105 + 

Streptomyces3 260 + 193 + 

Streptomyces4 322 + 84 + 

Streptomyces5 100 + 15 + 
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eORF name BLAST hits for mother gene BLAST hits for detected eORF 

Streptomyces6 263 + 225 + 

Streptomyces7 684 * 16 + 

Streptomyces8 743 * 331 + 

Streptomyces9 314 + 15 + 

Streptomyces10 29 + 36 + 

Streptomyces11 408 + 15 + 

Streptomyces12 156 + 52 + 

Streptomyces13 28 + 15 + 

Streptomyces14 398 + 16 + 

Streptomyces15 508 * 19 + 

Streptomyces16 325 + 315 + 

Streptomyces17 335 + 3 + 

Streptomyces18 263 + 203 + 

Total  * = 19; + = 24 * = 10; + = 33 

 

A clear clustering according to the two possible categories can be detected. Except for nine sequences 

where the mother gene is categorized ‘old’ and the overlap new, all 34 remaining pairing hits per locus 

analysed correspond to the same category. For ten combinations mother gene and overlap are 

categorized as ‘old’. Interestingly here, seven belong to the family Enterobacteriaceae, more specific, 

six are assigned to E. coli and two to S. typhimurium. Additionally, the two pairings of S. aureus and 

the one in P. fluorescens are categorized ‘old’. Within the remaining 24 mother gene and overlap 

combinations, both genes were categorized as ‘young’. Still, for most mother genes contained in this 

category, more homologue hits can be found. Thus, in general, the mother gene seems to be ‘older’ as 

expected.  

Next, the re-occurring eORFs sequences were subject of selection pressure analysis. Here, the aim was 

to establish if the sequences were more likely constructed due to selection or are of random origin. 

Additionally, these results could underlie if an eORF detected could be of interest with this second 

verification.   

  

3.2.5 Indication of functionality based on selection pressure 

estimation 

For the performed analysis the tblastn approach was repeated, however setting changes were made 

matching the OLGenie tools input criteria. The search for similar sequences was limited to the genus 

level and e-value was set to 1*e-5. Based on the narrower genus level search a less strict e-value was 
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chosen. If available, the 1,000 best aligned sequenced were obtained with additional filtering necessary. 

Sequences used for OLGenie analysis are required to have a matching length as otherwise the 

substitution calculation for each specific location cannot be performed appropriately (Nelson, Ardern, 

& Wei, 2020). Albeit the threshold adaptations for the tblastn approach, the detection of 1,000 similar 

sequences was not possible for each eORF of interest. For 9 eORFs however, no sequence hits were 

detected, hence, they were excluded from subsequent OLGenie analysis. Nevertheless, for the remaining 

candidates, the amount available was obtained and OLGenie analysis was performed on all 34 sequences 

of interest with subsequent significance analysis also provided by extending OLGenie scripts available 

(OLGenie_bootstrap.R obtained from https://github.com/chasewnelson/OLGenie).  

For all but six eORFs analysis was successfully performed. Sequence comparison is performed 

regarding synonymous and nonsynonymous nucleotide exchanges at each position within the sequence 

and their number of occurrences. The tool detects selection for the mother genes’ sequence based on the 

input eORF sequence and the frame relation variable which is necessary for processing. Calculated are 

four different substitution possibilities, namely a synonymous (dS) exchange in both mother gene and 

overlap, a nonsynonymous (dN) exchange within both, a synonymous exchange in the mother genes’ 

sequence is accompanied by a nonsynonymous in the overlap and vice versa (Nelson, Ardern, & Wei, 

2020).  

Significance values for the mentioned substitution relation were estimated with an additional available 

OLGenie associated R-script. Low values detected imply purifying selection for the eORF analysed. 

Therefore, the functionality of the eORF is assumed based on the necessity to maintain its sequence 

order. The p-value results are listed in Table 12. For 16 mother genes’ sequences, significant results 

were obtained indicating a high purifying selection for these as even synonymous substitutions are very 

unlikely to occur. However, only for two eORF sequences analysed p-values < 0.05 were detected. 

Unfortunately, these were previously not categorized as ‘old’ which could be considered as a second 

verification. Interestingly, however, both, Streptomyces3 and Streptomyces6 were detected in the genus 

Streptomyces. Nevertheless, for six additional eORF sequences’ nearly significant values were 

detectable. Of those, two, Pseudomonas1 and Salmonella1, were categorized in the previous analysis as 

‘old’. As both analyses performed so far are considered as first indicators to identify eORFs of potential 

functionality based on the sequence’s evolution, these correspondences are of interest. However further 

analysis, especially experimental is needed to verify their functionality conclusively.   

Also addressed here should be the mother gene sequence of Streptomyces16. Noticeable, the p-value 

calculated implies no selection for this sequence at all. This indicates that the mother gene itself has no 

functionality. Potentially, the mother gene, in this case, is a pseudo gene that at some point might have 

been of actual function but due to unknown reason lost its functionality during evolution, or is 

incorrectly annotated as a gene, or is simply under relaxed selection.  
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Table 12: OLGenie based selection pressure analysis for 28 eORFs of interest obtained from re-occurrence analysis (sample 

names are connected). P-values were calculated indicating to which extend purifying selection is working on maintaining the 

sequences’ order. Significant results are labelled according to following categories: 0.05 = *; 0.01 = **; 0.001= ***. Six marked 

p-values indicate further interesting eORFs nearly matching a significant threshold.  

eORF name p-value eORF p-value mother gene eORF length 

Caulobacter1 0.71 0.00*** 209 

Escherichia1 0.99 0.20 290 

Escherichia2 0.25 0.01** 335 

Escherichia3 0.93 0.25 290 

Escherichia4 0.93 0.26 290 

Escherichia5 0.24 0.00*** 116 

Escherichia6 0.08 0.53 242 

Escherichia7 0.73 0.93 176 

Escherichia8 0.08 0.52 242 

Halobacter 0.29 0.66 230 

Mycobacterium1 0.08 0.00*** 248 

Pseudomonas1 0.07 0.00*** 548 

Pseudomonas2 0.33 0.34 221 

Salmonella1 0.07 0.32 233 

Salmonella2 0.45 0.00*** 191 

Streptomyces3 0.03* 0.15 299 

Streptomyces4 0.41 0.00*** 131 

Streptomyces5 0.49 0.01** 215 

Streptomyces6 0.03* 0.00*** 542 

Streptomyces7 0.10 0.05* 224 

Streptomyces8 0.43 0.00*** 1058 

Streptomyces12 0.83 0.00*** 131 

Streptomyces13 0.95 0.00*** 158 

Streptomyces14 0.23 0.00*** 683 

Streptomyces15 0.16 0.00*** 278 

Streptomyces16 0.22 7.09 176 

Streptomyces17 0.12 0.27 230 

Streptomyces18 0.78 0.00*** 374 

 

First descriptive analyses of selected eORFs were completed by the following Frameshift analysis. Here, 

the corresponding mother gene nucleotide sequence is analysed regarding the creation of random 

overlaps possible. Especially their length is of interest here and will be compared to the length of eORFs 

detected. Thus, conclusions can be drawn whether their length is considered significant or random.  
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3.2.6 Probability analysis of eORF creation based on codon 

permutation 

The nucleotide order of an overlapping gene is dictated by its mother gene sequence. Hence, for this 

analysis, the mother genes’ sequence is analysed not only concerning the possibility of overlap 

formation but rather whether its length is longer than expected by chance. Here, an available tool named 

Frameshift is used (Schlub et al., 2018). An entered nucleotide sequence is translated according to the 

three-base periodicity into codon structure. After random shuffling the resulted overlapping ORFs 

possible within the input sequence are analysed considering their length. An also provided R script is 

calculating the length outcome and whether this length is longer than expected based on random codon 

permutation (Schlub et al., 2018). An obtained p-value ≤ 0.001 indicates that the created eORFs length 

is highly unlikely of random origin. Therefore, this analysis is also used for additional verification of 

the eORFs of interest.  

Again, the 43 eORFs of interest identified in section 3.2.4. were chosen for this analysis. Therefore, 

their assumed functionality could be additionally verified based on their sequence length probability. 

Unfortunately, for none of the eORFs analysed a statistically significant p-value was calculated. Thus, 

their respective length is not considered valid to indicate potential functionality. Nevertheless, for three 

candidates nearly significant values were estimated (Escherichia1, Escherichia3, Escherichia4, 

Streptomyces18). None of these corresponds to sequences for which a potential selection pressure was 

estimated (see Section 3.2.5.). However, sequences of candidates Escherichia1, Escherichia3 and 

Escherichia4 were categorized as old in the analysis explained in Section 3.2.4. Even though p-values 

calculated here do not reach a significance level, a correspondence of eORFs analysed between the 

different analyses performed is always of interest. A comparison between these candidates obtained 

from the same species (E. coli MG1655) revealed identical sequences for Escherichia3 and 

Escherichia4. The sequence of Escherichia1 showed 2 different amino acid exchanges shown in 

Supplementary Figure S3. Despite differences, all three of them are located complementary to the same 

mother gene, the IS1 transposase B. However, a comparison for this gene also reveals exchanges in the 

amino acid sequences at different locations. Here, even six different amino acids incorporated were 

detected (see Figure S4).                 

A potential bias introduced on a sequences’ length itself can also be neglected. For the longest eORF 

analysed (Streptomyces8, 1,058 nt) no significance was determined. Here, the speculation was, that just 

based on its length the sequence might show significance. However, an even longer mother gene 

simultaneously enables the possibility of long overlaps – depending also on codon usage. Based on the 

results obtained and the variety of eORF length tested (see Supplementary Table S8) a potential bias 

due to query length cannot be confirmed.        

Sequence evolution can be considered as an indicator for its actual functionality. The performed analyses 

were focussing on different aspects in evolution enabling a comparison for obtained results. These were 
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used as the first evaluation of potentially assigned functionality based on sequences’ integrity and 

distribution. Those analyses should assist in the identification of potentially functional eORF sequences 

in terms of narrowing down candidates of interest for subsequent experimental verification.    

Table 13: List with calculated p-values for codon permutation analysis. Analysed were the 43 eORFs of interest obtained from 

the re-occurrence analysis mentioned in Section 3.2.4. None of the eORFs respective lengths was longer than expected based 

on the random shuffling of the mother genes’ codons.   

eORF name 
p-value for codon 

permutation 
eORF name 

p-value for codon 

permutation 

Caulobacter1 0.942559654 Salmonella1 0.421985380 

Caulobacter2 0.999917694 Salmonella2 0.1472487392 

Escherichia1 0.053546052 Staphylococcus1 0.620273717 

Escherichia2 0.103011241 Streptomyces1 0.685593909 

Escherichia3 0.051226354 Streptomyces2 0.723092694 

Escherichia4 0.055928932 Streptomyces3 0.310695902 

Escherichia5 0.996650014 Streptomyces4 0.989725877 

Escherichia6 0.387908731 Streptomyces5 0.9996148381 

Escherichia7 0.404562304 Streptomyces6 0.76954544 

Escherichia8 0.391049067 Streptomyces7 0.9544756478 

Halobacterium 0.593421465 Streptomyces8 0.391375103 

Haloferax 0.66591771 Streptomyces9 0.957758014 

Mycobacterium1 0.462857695 Streptomyces10 0.903352171 

Mycobacterium2 0.982964929 Streptomyces11 0.761793043 

Mycobacterium3 0.432052136 Streptomyces12 0.696437949 

Mycobacterium4 0.999182019 Streptomyces13 0.878540392 

Mycobacterium5 0.337132782 Streptomyces14 0.665218059 

Mycobacterium6 0.70030499 Streptomyces15 0.677845211 

Mycobacterium7 0.995674588 Streptomyces16 0.973468532 

Mycobacterium8 0.911797303 Streptomyces17 0.670263340 

Pseudomonas1 0.24504758 Streptomyces18 0.053114782 

Pseudomonas2 0.573251756 

 

The results obtained from a RIBO-Seq and RNA-Seq experiment for B. thetaiotaomicron are the topic 

of the following chapter. The experiment was performed to potentially identify eORFs within the 

analysed species.   
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3.3  B. thetaiotaomicron experimental proceedings 

Harvested cell pellets in multiple falcon tubes all obtained from the same bacterial culture were received 

from another research institute. For evaluation and comparison purposes for each technique (RIBO-Seq 

and RNA-Seq) at least duplicates were processed. Based on the labelling of falcons received, samples 

were named I and II respectively in the following evaluation.   

 

3.3.1 RIBO-Seq and RNA-Seq preparation  

Experimental proceedings after homogenisation started with RNA extraction and quality estimation to 

decide whether to directly start a RIBO-Seq experiment or not. Right from the start extracted RNA 

showed signs of degradation seen as smeared bands on the agarose gel (Figure 16A). Expected were 

two clear bands at around 1 kb and 1.5 kb representing 16S and 23S, respectively. Bands that proceeded 

further are marks for degradation as these represent smaller rRNA fragments. Changes in 

homogenisation such as quicker thawing or adapted lysis buffer composition were tried to prevent 

samples from degradation. Unfortunately, these improvements did not result in non-degradation. 

Nonetheless, the ribosomal assembly should still be intact to some extend even while degradation is 

proceeding. Thus, mRNA fragments embedded within the two ribosomes’ subunits should be protected 

from degradation and the experiment was continued.  

 

Figure 16: Samples are shown after RNA extraction (A) RNA-Seq samples: 1) 100 bp ladder, 2) RNA I, 3) RNA II, 4) 1 kb 

ladder; (B) RIBO-Seq samples: 1+7) 1kb ladder, 2+3) RIBO I, 5+6) RIBO II. In all samples, RNA degradation can be seen as 

multiple additional smaller bands visual on the gel. Arrows mark the expected localisation for 16S and 23S bands. 

Interestingly, RNA samples showed a wrong size assignment on the agarose gel (Figure 16A). Expected 

sizes for 16S and 23S were not matched. Here, the corresponding 23S band in comparison to both the 

1 kb and 100 bp ladder was at around 1 kb whereas the 16S band can be matched to the 500 bp band. 

To verify the right sizes for the band’s gels were performed in other stations where this mislabelling did 

not occur. A second verification with additional quality control was done by a Bioanalyzer analysis 
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(Figure 17). Here, the two RNA-Seq samples shown in Figure 16A were subjected to the analysis. Again, 

a clear sign of degradation can be detected in both samples. Nevertheless, even though the size 

estimation on the agarose gel does not correspond to the ribosomal subunit sizes, the Bioanalyzer results 

are assigned correctly, confirming that the bands are correct.  

 

 

Figure 17: Results are shown for a bioanalyzer RNA 600 Nano Chip run of RNA samples (A) RNA I (same sample as shown 

in Figure 16A, lane 2), (B) RNA II (same sample as shown in Figure 16A, lane 3). The RNA degradation that is already seen 

on the agarose gel (Figure 16) can be confirmed with the performed bioanalyzer analysis. Given are the length of fragments 

detected in nucleotide [nt] and their abundance by detected fluorescence units [FU]. 

Next, remaining DNA within RNA-Seq samples was digested with subsequent performance verification 

by 16S PCR. No bands corresponding to 16S fragments were detectable on the agarose gel implying 

degradation success (Supplementary Figure S1). Then rRNA depletion was performed simultaneously 

with RIBO-Seq samples.  

The first experimental step for RIBO-Seq samples after homogenisation is footprint generation based 

on a treatment with a mixture of RNA digestion enzymes. A combination of endo- and exonucleases 

should ensure complete digestion of unprotected mRNA. While endonucleases are causing the cleavage 

within their targeted sequence exonucleases are causing digestion of fragments from their edges on 

forward (Artymiuk, Ceska, Suck, & Sayers, 1997; Bernad, Blanco, Lkaro, Martin, & Salas, 1989; 

Roberts, 1978). During the process of RNA digestion mRNA whose sequence is protected by multiple 

ribosomes (polysome structure) is disassembled into parts solely protected by one ribosome 
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(monosome). To obtain only monosomes for further processing a density gradient centrifugation is 

performed where ribosomal protected mRNA fragments within the samples are separated according to 

their molecular weight (Oster & Yamamoto, 1963). A band between the 25 % and 30 % gradient levels 

was collected containing monosome protected mRNA of interest. RNA extraction was performed on the 

collected samples which also showed degradation with a slightly clearer band pattern (Figure 16B). 

Nevertheless, subsequent footprint extraction out of an UREA polyacrylamide gel (15 %) was 

performed. Aimed fragment size was around 24 to 27 nucleotides, therefore one marker of 23 

nucleotides in length was chosen as a lower boundary, whereas a ladder stretched a range from 19 to 27 

nucleotides. According to these guidance bands were excised from gel and RNA was subsequently 

purified thereof.  

Depletion on RIBO-Seq and RNA-Seq samples were handled simultaneously. rRNA depletion was 

performed with Pan-Prokaryotes riboPOOLs to decrease the amount of remaining rRNA present in the 

samples. Next, dephosphorylation of 3’ fragment ends were performed with subsequent phosphorylation 

of the same 3’-ends. Hereby, the same status of phosphorylation for all fragments is achieved necessary 

for the following adapter ligation during library preparation.  

Concentration determination of extracted RIBO-Seq and RNA-Seq samples can be found in 

Supplementary Table S9. As expected, the RNA concentration within RIBO-Seq samples was lower 

due to targeted extraction of only ribosome protected mRNA fragments. During sample processing, a 

loss of RNA material was measurable, with only very low amounts before library preparation 

(Supplementary Table S9). Nevertheless, samples were prepared for sequencing as in this technique 

amplification steps are performed increasing the material concentration.  

Library preparation was performed according to the Illumina TruSeq Small RNA Kit. Index 

(Supplementary Table S10) and adapter attachment were performed to enable multiplexing samples for 

test sequencing. After transcription from input RNA to DNA, libraries were amplified by a polymerase 

chain reaction to enhance input material for sequencing. After purification samples were separated on a 

polyacrylamide gel (10%) with a size selection aimed for between the custom RNA ladders’ bands of 

145 bp and 160 bp respectively. DNA was extracted from the gel and subsequently, concentration was 

measured with Qubit (Supplementary Table S9). Fragment length detection is based on a high sensitivity 

DNA Chip Bioanalyzer analysis (Figure 18).  Concentration as well as fragment length values were then 

used to calculate necessary input material per sample to result in 2 nM libraries each.  
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Figure 18: Bioanalyzer High Sensitivity DNA run for NGS library fragment length detection. Shown are samples (A) RIBO I 

and (B) RNA I. An average of all four libraries’ length was calculated for subsequent library input concentration.  

First, the measured concentrations [ng/µl] had to be converted considering fragment length. The length 

value was averaged considering all four library values (x = 140). The calculation was performed as 

follows according to manufacturers’ instructions.   

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 [
𝑛𝑔

µ𝑙
]

660∗140 
∗  106 = 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 [𝑛𝑀]  

With calculated concentrations input amounts of prepared libraries were estimated in this manner: 

                                         𝑥 ∗  𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 [𝑛𝑀] = 2 𝑛𝑀 ∗ 10 µ𝑙  

    𝑥 = 𝑠𝑎𝑚𝑝𝑙𝑒 𝑖𝑛𝑝𝑢𝑡 [µ𝑙] 

0.5 mM dilutions were pooled (5 µl per library) for test sequencing purposes. Raw reads were generated 

and processed as mentioned before including quality control, adapter removal, reference genome 

alignment and filtering out of ‘undesired’ rRNA and tRNA reads. 

Again, during sample processing loss of material was recorded which is expected to some amount due 

to gel excision. However, concentrations before sequencing were very low (Supplementary Table S9). 

Nevertheless, samples processed were used for a first sequencing test run to determine the quality of 

samples and efficiency of rRNA depletion.   
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3.3.2 RIBO-Seq data evaluation of test sequencing approach 

compared to the available dataset   

 

Figure 19: Custom FastQ Screen output for self-performed B. thetaiotaomicron experiment, shown one sample per approach 

with (A) RIBO I, (B) RNA I. Notable, nearly 90 % of reads are not aligned to the reference genome. However, when forwarded 

to BLAST analysis the reads can be aligned to the reference genome and genus. Presumably, shortened reads due to RNA 

degradation caused the non-alignment.  

All four samples were subjected to computational evaluation according to the pipeline mentioned, the 

only difference here was the categorization of reads with FastQ Screen before filtering out rRNA and 

tRNA ones. With this upstream visualisation of reads, the efficiency of rRNA depletion can be analysed. 

Quality control after adapter removal and filtering reveals at most only 1 % of reads left for evaluation 

which will not be sufficient even if samples are sequenced unmated. Notably, FastQ Screen output of 

sample I RIBO (Figure 19A) and RNA (Figure 19B) shows 80 % and more reads cannot be aligned to 

B. thetaiotaomicrons’ genome (NC_004663.1). FastQ Screen was set up only report reads mapping to 

the reference genome. Reads categorized as either one hit or multiple hits to multiple genomes are 

referring to the different rRNA variations (as multiple genomes). Reads for which no hits could be 

identified were extracted into a separate file and subsequently blasted. Most reads mapped to partial 16S 

rRNA sequences within Bacteroides genus, Enterococcus, Staphylococcus or Escherichia. As the 

sequence specificity within 16S rRNA is very high slight changes within can lead to mismatches during 

alignment. These changes might be sequencing errors caused by the machine. For sample II similar 

results were reported by FastQ Screen. Thus, the test sequencing revealed insufficient library 
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composition for an appropriate RIBO-Seq and RNA-Seq experiment. For both samples, a decision was 

made rejecting a stand-alone sequencing experiment as it would be too expensive. Only if single samples 

were sequenced with a starting coverage of at least 2 billion reads and outcome of 1 % (20 million reads) 

could be used for evaluation if rRNA is not sufficient. The insufficiency of the performed rRNA 

depletion can be noted here as nearly all reads, whether categorized as mapping to the reference genome 

or not can be matched to partial 16S rRNA sequences.  

Available RIBO-Seq data for B. thetaiotaomicron were obtained from ENA and analysed consistent 

with the self-generated samples. Interestingly, again nearly none of the reads (≤ 1 %) were left after 

trimming and filtering. Again, FastQ Screen was used to analyse the categorization of reads.  

 

 

Figure 20: Custom FastQ Screen output for publicly available B. thetaiotaomicron samples A) RIBO I, B) RIBO II (Sberro et 

al., 2019). Contrary to self-performed experiment (Figure 19) most reads were aligned to the reference genome. However, those 

alignments showed a high abundance of reads corresponding to 16S and 23S respectively. Those are excluded before 

subsequent read evaluation, with only a low number of reads left. Therefore, an evaluation was also not possible.   

Inspection revealed nearly all reads that did not remain for evaluation were mapped to rRNA variants 

for the first RIBO-Seq (Figure 20A) and second RIBO-Seq (Figure 20B) sample. Unfortunately, a 

downstream evaluation regarding the detection of overlapping genes was not possible for any of the two 

samples.  

Therefore, additional experimental proceedings will be needed, at best starting with a new cultivation. 

Changes made during downstream sample handling did not prevent RNA degradation in total. Thus, the 
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assumption was made that RNA degradation already started during harvest. Additionally, an appropriate 

ribosomal stalling could be induced to prevent ribosomal run-off from actually translated genes. 

The various analyses performed as well as the just mentioned experiment were performed to verify the 

existence of overlapping genes present in a variety of prokaryotic genomes and to give recommendations 

to further improve these findings both experimentally and during evaluation. The results will be 

discussed in their scientific context in the following chapter.    
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4. Discussion 

4.1  Improvements during the experimental RIBO-Seq processing  

4.1.1 Necessary read coverage  

Sufficient read coverage is a crucial factor in any performed sequencing experiment, as it ensures the 

potential detection ability for every transcript or genomic variation present within the analysed sample. 

Still, prediction tools such as REPARATION require a minimum amount of reads (here 3) to consider 

a potential ORF being of interest (Ndah et al., 2017). This implies not only the sufficient coverage of 

every position within the genome for example necessary in de novo sequencing approaches but to have 

multiple reads covering a locus of interest in the mentioned scenario. Nevertheless, a sufficient amount 

of read coverage is highly dependent on the scientific issue (Haas et al., 2012; Sims, Sudbery, Ilott, 

Heger, & Ponting, 2014). Two options can be used to increase read coverage, namely, to increase the 

general read coverage used for sequencing which is also dependent on the machine used. Second, to 

enrich for fragments of interest before sequencing either by targeted enrichment of those or depletion of 

abundant fragments (Haas et al., 2012).     

Experiments focused on RNA-Seq have shown that sufficient coverage for result evaluation is given at 

around 5 Mio. reads (Haas et al., 2012). Furthermore, exceeding a coverage of around 50 million is 

associated with the generation of spurious reads interfering with the correct interpretation of obtained 

results (Haas et al., 2012). The performed analysis within this thesis is contributing to the determination 

of a necessary read coverage for RIBO-Seq results. Compared to the amount sufficient for RNA-Seq, 

for RIBO-Seq experiments, the recommendation is to obtain at least 20 million reads after alignment 

and excludes reads covering tRNA or rRNA (see Section 3.1.1.). With this amount the detection of 

~ 82 % of annotated genes for E. coli K 12 was possible (Glaub et al., 2020). Within an RNA-Seq 

experiment, the detection for nearly 99 % of the annotated genes was possible, but only one read was 

used for ORF validation, whereas in this thesis at least three reads were necessary for ORF detection 

(Glaub et al., 2020; Haas et al., 2012). Only one read for validation is considered insufficient as it cannot 

be excluded from being spurious and therefore wrongly aligned to a position of interest.     

Still, the need for higher coverage in RIBO-Seq was not expected as more transcripts are assumed to be 

available for sequencing in RNA-Seq samples. Here, also sequences that are not translated such as non-

coding RNA needed to be covered to obtain the whole transcriptome. A major difference between the 

here performed analysis and the one focussing on RNA-Seq it is compared to is the number of reads 

necessary for ORF evaluation. Therefore, here at least the triple number of reads is necessary to consider 

an ORF as of interest. Furthermore, even with the higher coverage, the reproducibility of annotated gene 

detection success of 99 % in the RNA-Seq experiment was not possible. Responsible here may be the 

fact that not every transcript present is subsequently translated, e.g., long non-coding RNA or short 

interfering RNA (siRNA) (Waters & Storz, 2009; Zur Bruegge, Einspanier, & Sharbati, 2017). 

Additional, even in RNA-Seq a detection of nearly all known genes was not expected as not all genes 
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present in the genome are assumed to be transcribed simultaneously. Rather the transcription status in 

bacteria is reflecting the actual condition and phase the organism is present in. Environmental or growth 

phase changes lead to altered transcription states with different transcripts present (Calviello & Ohler, 

2017; Jiang et al., 2015). The low threshold of only one read considered for ORF evaluation in RNA-Seq 

most likely caused the high detection efficiency.  

The decreased amount of detection in RIBO-Seq experiments potentially is also affected by the required 

read distribution across an ORF. Not only do prediction tools such as DeepRibo or REPARATION 

consider an ORF as being of interest only with a certain read coverage but also require a distinct pattern 

of reads covering an ORF of interest. Particularly, the focus is on start and stop region coverage as well 

as on a proportion of start region compared to the rest of a gene (Clauwaert et al., 2019; Ndah et al., 

2017). This read pattern evaluation should ensure the detection of only actual translated ORFs but may 

also be responsible for a decreased prediction efficiency. These patterns might not be given under 

circumstances such as drug-induced ribosomal stalling. As mentioned, some drugs are inhibiting 

translation elongation, therefore might hinder read pattern construction in the stop region if ribosomes 

were not covering this gene proportion at the point of application. Additional, internal structures might 

cause ribosomal pausing during translation (Li et al., 2012) again preventing read distribution necessary 

that is recognized by the prediction tool used for ORF estimation. Therefore, these ORFs might be 

missed even if translated.   

Another crucial factor influencing the read coverage is rRNA presence. The recommendation of at least 

20 million reads is excluding ones’ mapping to rRNA. As 85-95 % of RNA present in an organism is 

considered rRNA a sufficient depletion is crucial for successful RNA focused sequencing experiments 

(Z. Chen & Duan, 2011; Petrova et al., 2017). Arguable, depletion might be even more important in 

RIBO-Seq experiments as targeting ribosomal protected mRNA fragments is simultaneously 

accompanied by the enrichment of rRNA. For every mRNA fragment kept all three types of rRNA (5S, 

16S and 23S) are also retained once as they are part of the ribosome (Bhavsar, Makley, & Tsonis, 2010; 

Melnikov et al., 2012). Hence, the proportion of mRNA in comparison to rRNA is low emphasizing the 

need of rRNA depletion before sequencing. RNA-Seq is also mostly focussing on mRNA to obtain 

information about the transcriptome present but a major difference here is that whole mRNA transcripts 

are not affected by ribosomal coverage. Therefore, the amount of rRNA is still high but not only are 

several fragments per transcript necessary but these are not protected by the triple amount of rRNA. 

Thus, the rRNA depletion performed might be more successful as the input amount of rRNA could be 

lower compared to RIBO-Seq experiments.  

Besides necessary depletion, another potential factor already reducing the amount of rRNA present 

could be the adapted range of fragment size selection during RIBO-Seq experiments.  
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4.1.2 Appropriate size selection for mRNA corresponding fragments  

First and foremost, size selection is performed to only target monosome protected fragments. This 

should ensure to obtain mRNA fragments being translated at the point of harvest. Polysome structures 

are digested before size selection resulting in several monosomes also present to obtain for further 

processing. The appropriate size selection range is of especial interest to aim for protected fragments 

and simultaneously reduce the amount of potential faulty fragments, e.g., with remained undigested 

sequence at the edge of a ribosome. To identify the range of interest length of sequenced mRNA 

fragments was analysed. Additionally to that, lengths corresponding to either rRNA or tRNA were 

evaluated to potentially detect representative sizes which could be used for size-specific depletion.   

The results obtained in this thesis indicate that prokaryotic protected mRNA fragments range between 

24 - 27 nucleotides in length (see Figure 6) whereas eukaryotic fragments are slightly longer ranging 

from 28 - 30 nt (Glaub et al., 2020; Ingolia et al., 2012; Ingolia et al., 2009). With this result, a 

recommendation for an adapted selection range from original protocols is made for prokaryotic 

RIBO-Seq experiments in general. This recommendation contrasts with previously published size 

selections, as these are ranging from 15 - 40 nt. This wide range should ensure capturing all reads of 

interest, but still, the most informative length is claimed to be of 24 nt in length (Li et al., 2014; 

Mohammad et al., 2019). With the here proclaimed range targeting a smaller variety of fragment lengths, 

the informative ones are also obtained with a potential reduction of unwanted fragments corresponding 

to either rRNA or tRNA (Glaub et al., 2020).  

In comparison to mRNA, the length of fragments representing tRNA is longer, with the most dominant 

length of 32 and 35 nt respectively (Glaub et al., 2020). Size selection is achieved by excision of a gel 

band from a denaturing gel. Thus, as fragment size is orientated on a corresponding ladder with 

subsequent manual excision, it is highly unlikely to exactly cut at the border of an aimed length. 

Therefore, it is expected to always include a minor amount of slightly shorter and longer fragments as 

is aimed for. With the here recommended narrower selection range the additionally incorporated 

fragments could potentially be kept at a minimum. This claim was validated with an analysis focused 

on the amount of tRNA present in samples (see Supplementary Table S11) which were obtained from a 

range between 20 - 30 nt (Glaub et al., 2020). Here, especially the upper border of the selected range 

was of interest, as the most dominant tRNA corresponding length were identified as exceeding at this 

point. Indeed, for samples obtained from this range, less than 1 % of tRNA remained. With a shift of the 

upper border a successive increase of tRNA amount present could be detected (Glaub et al., 2020). 

Therefore, an aimed for cut off at around 30 nt or even lower should aid in the reduction of tRNA present 

in the analysed sample already before sequencing.  

However, a similar trend of size selection-based depletion cannot be identified for remaining rRNA. 

One contributing factor might be that the most dominant length for rRNA corresponding fragments were 

26 and 31 nt, respectively (Glaub et al., 2020). Longer fragments might be excluded with a narrow size 
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selection but reads with a length of 26 nt will always be kept due to their length similarity to fragments 

of interest. Additionally, as rRNA is the highest abundant RNA type present (Petrova et al., 2017) 

sufficient depletion is necessary for reduction. Here, it might be of especial interest if a specific type of 

rRNA is mostly represented by a certain length. Various available depletion kits target different types 

of rRNA; therefore, the selection of the appropriate kit might aid in the performance of a sufficient 

rRNA depletion.   

The analysis revealed that, even to some extent similar, the various rRNA types can be assigned to 

different read length. Reads corresponding to 5S are generally longer with most of them having a length 

of 31 or 32 nt respectively. Likewise, a proportion of fragments obtained from 23S sequences are also 

31 nt in length, whereas a second dominant length for this type of rRNA is 26 nt. The majority of reads 

belonging to 16S sequences show a length of 26 nt (Glaub et al., 2020). Common depletion kits such as 

RiboMinus (ThermoFisher) or MICROBExpress (ThermoFisher) only target 16S and 23S sequences. 

Here, it is especially important to also reduce the amount of 5S fragments present within a sample. With 

the performed analysis fragments with a length of 31 and 32 nt respectively can be assigned to 5S rRNA 

sequences. With this information, a slightly lower set upper size selection border can be used to 

potentially exclude a proportion of 5S rRNA fragments from samples. The development of siTOOLs 

rRNA depletion kits also targeting 5S sequences according to the manufacturer leads to redundancy of 

prior 5S reduction based on size selection. Nevertheless, a narrow range from 22 - 30 nt includes most 

likely all fragments of interest and simultaneously excludes longer fragments corresponding to tRNA 

(Glaub et al., 2020).   

It is important to emphasize that size selection highly depends on the aim of the study. A narrower 

selection can aid in the reduction of unwanted fragments but could potentially also exclude fragments 

of interest hitherto unknown. An analysis focussed on the upstream region of translation start site 

revealed such longer fragments that are subject of the next chapter.  

 

4.1.3 Read length variation upstream of the translation start   

So far there has been no consensus about ribosomal protected fragment length within prokaryotes. The 

first results mentioned showed that there is already variation within different types of RNA present. 

Nevertheless, a certain range (24 - 27 nt) in fragment length can be assigned to mRNA (Glaub et al., 

2020). However, other studies have shown that internal sequences motifs by interaction with ribosomes 

cause the protection of longer RNA fragments (Li et al., 2012; Mohammad et al., 2019; Mohammad et 

al., 2016). First studies assumed that an SD like motif within a sequence interferes with the ribosome 

causing translational pausing (Li et al., 2012), whereas more recent studies specifically named a glycine 

codon as responsible for slowed down translation (Mohammad et al., 2016). Still, the interaction 

between SD motif and anti-SD motif within a ribosome is identified to protected mRNA fragments 
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against nuclease digestion resulting in longer mRNA fragments (Mohammad et al., 2019; Mohammad 

et al., 2016). Due to these findings, an analysis performed focused on potential longer fragments mapped 

upstream of annotated genes. 

The model organism E. coli K-12 chosen in this study is known for its presence of SD motifs upstream 

of annotated genes (Amin, Yurovsky, Chen, Skiena, & Futcher, 2018; Shine & Dalgarno, 1974). 

Therefore, a comparison of their upstream region where the supposed SD motif is located and the same 

length region downstream of the translation start was analysed according to the length of mapped 

fragments. The initial analysis (see Section 3.1.3.) revealed that reads mapped in the upstream region 

tend to be longer (~ 34 nt) than reads aligned downstream of translation start site (~ 27 nt). Furthermore, 

additional analyses focussed on fragment length for reads covering the whole genes’ length and a certain 

area upstream of the stop region showed a similar length distribution as in the start region (see Figure 

8) (Glaub et al., 2020). As hypothesized fragments assigned to the 5’-UTR region of annotated genes 

were found to be longer, presumably based on an interaction with the SD motif located in this area 

(Glaub et al., 2020).  

However, the detected representative length for protein-coding areas seems to be longer than initially 

reported. As claimed obtained from the general length comparison within the different RNA types, the 

mRNA corresponding fragments range between 24 to 26 nucleotides. Here, the most frequently 

represented length for coding sequence is 27 nt (Glaub et al., 2020). This length discrepancy can be 

explained by study design primarily. For the general RNA type analysis, a broader variety of samples 

could be used for analysis as the only restriction chosen was a read length range from 20 to 40 

nucleotides. However, for the analysis specifically focused on potential longer reads present fewer 

samples (n = 30) were chosen (Glaub et al., 2020). This restriction was based on the characteristics 

within the samples, as they did not include reads up to 40 nucleotides in length, therefore, were excluded 

from the analysis. This read length, however, was of especial interest, as it has been published that SD 

like motif caused interactions result in longer fragments (Li et al., 2012; Mohammad et al., 2016).  

Certainly, it is arguable if the length range representing mRNA fragments is biased by samples included 

with a narrower length distribution in general not covering longer fragments or size selection in general. 

That is why for the general RNA type analysis all samples were kept showing a wide spectrum of size 

selection aimed for. Interestingly, accordance between aimed for and actual fragment length was every 

rarely detectable (Glaub et al., 2020). A minor proportion on fragment length variation can be assigned 

to size selection as it is possible to exclude the majority of certain lengths if the experimental step is 

performed appropriate and exact. Nevertheless, the excision will never be 100 % accurate, therefore, a 

small proportion of fragments slightly smaller or longer as aimed for might be present. The most 

determining factor on fragment length, however, is the ribosome itself. But even here variation within 

protection capability is seen as so far, the identification of one correct length for protected mRNA 
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fragments was not possible. Potentially contributing to length variations is insufficient digestion of 

unprotected fragments.  

In eukaryotic RIBO-Seq experiments, the most commonly used nuclease is RNase I as it lacks a 

nucleotide cleavage bias (Ingolia, 2010; Ingolia et al., 2012). Due to its claimed inactivity within bacteria 

based on an interaction with the 30S ribosome subunit for prokaryotic RIBO-Seq experiments another 

enzyme is needed (Glaub et al., 2020; Kitahara & Miyazaki, 2011). Oftentimes used as an alternative is 

micrococcus nuclease despite its known sequence specificity which might cause the monitored sequence 

length variability (Dingwall et al., 1981; Glaub et al., 2020). Also, a mixture of endo- and exonucleases 

can be used to ensure sufficient digestion of unprotected mRNA sequence (Hücker, Ardern, et al., 2017). 

Nevertheless, ensuring a 100 % sufficient digestion might never be possible as internal mechanisms or 

structural folding could prevent parts from digestion. Even as the field of sequencing with its steady 

development is improving our understanding of many mechanisms might still be unknown.  

A potential other factor resulting in different fragment length might be translation performed by 

alternative ribosomes. These have already been described for E. coli and M. smegmatis, with differences 

to canonical ribosomes mostly based on lack of specific proteins or alternative assembled ribosomal 

subunits (Y.-X. Chen et al., 2020; van de Waterbeemd et al., 2017). Additionally, it has been shown that 

artificially enriched alternative ribosomes based RIBO-Seq results are different compared to an identical 

performed standard RIBO-Seq experiment. Not only were different read accumulations observed but 

also shifted codon usage patterns and even a seemingly selective translation bias for only a proportion 

of the genes (Y.-X. Chen et al., 2020). Especially the finding of divergent codon usage might lead to a 

bias in protected mRNA length. Ribosomal pausing is associated with the incorporation of certain amino 

acids (Buskirk & Green, 2017). Conformation changes due to the paused translation could result in 

length variations within the mRNA fragment proportions protected. In general, it could also be 

speculated that the different assembly itself within alternative ribosomes might lead to a changed 

protected fragment length. This could be subject of further analysis using the results obtained from the 

comparison analysis performed by Chen et al. A counterargument for longer fragments in this analysis 

caused by alternative ribosomes is their specific activity. Presumably, they are particularly involved in 

stress adaptation (Y.-X. Chen et al., 2020), whereas samples used for these comparison analyses were 

all grown in standard LB medium. Therefore, it is highly unlikely that this type of ribosomes, in general, 

was active within the experiments used. 

Nevertheless, results from this analysis once more are underlining the importance of size selection 

adaption. A range between 24 to 27 nt is the most appropriate one to obtain mRNA fragments for 

prokaryotic RIBO-Seq experiments. In parallel, due to the narrow range, unwanted fragments present 

can already be decreased even if the selection is not completely precise. However, if an analysis focuses 

on 5’-UTR regions it is necessary to aim for longer fragments as it has been shown that mapped reads 
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in this particular area tend to be longer. The last analysis performed focused on the improved start site 

detection by chloramphenicol application.  

 

4.1.4 Start site detection improvements due to chloramphenicol 

application  

Previous studies have shown that chloramphenicol, in general, is suitable in translation start site 

detection as it causes ribosome accumulation at this position. The reagent binds within the 

peptidyl-transferase centre, therefore, hindering peptide bond formation resulting in stopped translation 

elongation (Wilson 2009). Still, as can be seen in the obtained results (see Section 3.1.4.) ribosomes can 

be located at subsequent sequence position indicating that elongation is not stopped completely. One 

reported explanation might be that stalling efficiency is dependent on the amino acids located within the 

second to last position of the translated protein (Wilson 2009). Nevertheless, application of Cm is clearly 

causing improved start site detection due to ribosomal stalling.  

Interestingly, this bias might even contribute to improved detection of overlapping genes in general. 

Results obtained in this thesis show, those weakly expressed genes (RPKM between 10 - 20) (Glaub et 

al., 2020) are benefitting the most from the drug application (see Figure 10). This might be explained 

only by the number of ribosomes available for translation based on the different expression levels that 

were determined. Highly expressed genes are most likely to be translated by a multitude of ribosomes 

at the same time. Therefore, it is most likely that within all samples tested despite Cm application the 

translation start site is always occupied by a ribosome. In the experiment chosen for this comparison the 

time between stalling reagent application and subsequent cell harvest and general translation inhibition 

was two minutes (Oh et al., 2011). As mentioned, chloramphenicol hinders translation elongation, but 

initiation can still proceed (Mohammad et al., 2019; Mohammad et al., 2016; Oh et al., 2011). A slight 

increase in ribosomal occupied fragments is detectable for highly expressed genes but even without drug 

application, it is highly likely that the vast majority of transcripts is subjected to translation initiation 

just due to its increased requirement within the bacteria tested. Therefore, it is not surprising that the 

emphasis on start site detection for highly expressed genes is low as this location, in general, is 

oftentimes occupied by ribosomes.  

Likewise, the slightly improved start site detection for medium expressed genes by chloramphenicol 

addition can be explained. Here, the detection is more enhanced in comparison to highly expressed genes 

but not as good as for weakly categorized genes. The number of transcripts present for genes within this 

category is lower than for highly expressed but higher as for weakly expressed genes. In general, 

translation is performed to an extent but not as efficiently as for highly expressed genes. Therefore, a 

still possible translation initiation after chloramphenicol application results in the detection of more 
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transcripts as the general initiation amount is lower in medium expressed genes compared to highly 

expressed ones.  

The increased detection efficiency within weakly expressed genes can also be explained due to 

transcripts available and the expression status. For weakly expressed genes only a few transcripts are 

present within a sample and are only rarely translated. If translation elongation within an organism is 

stopped in general, it is speculated if ribosomal subunits present to assemble at highly expressed genes 

now be available for other transcripts. Due to the stopped elongation most of the highly expressed genes 

are occupied by ribosomes in general but under normal circumstances, namely, without induced stalling, 

several ribosomes would proceed at one transcript for a highly expressed gene. Nevertheless, the 

ribosomal subunits necessary for the ribosomal assembly at the mRNA are already constructed for 

translation purposes. These might then even assemble at rare transcripts present of weakly expressed 

genes. Under normal conditions, the same transcript might be translated but at the point of harvest, 

elongation could be ongoing therefore not emphasizing the translation start site. Therefore, based on the 

expression status itself and the point of harvest weakly expressed start sites are difficult to detect but are 

especially emphasized by chloramphenicol application. This improved detection is of especial interest 

as the involvement of undetected overlapping genes within the organisms’ metabolism is unknown. 

Thus, the expression status remains unknown but even if only weakly expressed they could be detected 

by ribosomal stalling inducing drugs.  

The recommendations for RIBO-Seq experiments obtained from these first analyses are not only 

improving gene detection in general but are assumed to also promote the detection of overlapping genes. 

The next chapter is primarily focusing on the verification of unknown OLGs within a broad spectrum 

of prokaryotic species.  

 

4.2  Influence of genomic characteristics on eORFs and their phylogenetic 

analysis  

4.2.1 Genomic features involvement in prediction efficiency 

eORF values used for the following comparisons and evaluations are containing only those considered 

translated. This status is assumed based on thresholds matched (RPKM and coverage) during prediction. 

Neither genome size nor GC-content seems influential for eORF prediction efficiency as no correlation 

between ORF amount and either of the features was detectable. Read coverage normalization was 

performed to exclude the introduction of a bias. Nevertheless, no pattern for prediction efficiency based 

on either of the genomic features is detectable. Further, even within a genus, here Streptomyces, no 

correlation can be detected. Exemplary calculated median values for this genus is shown in 

Supplementary Table S12. And even within one species prediction efficiency per samples is highly 

different (see Supplementary Table S5). The comparison of the genomic features against eORFFamilies 

predicted could imply a slight influence of genome size on the numbers of eORFFamilies. However, an 
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R-squared value of 0.29 does not indicate a strong relation between the two variables (see Figure 13A). 

Still, as bigger genome sizes are usually accompanied by an increased number of genes present (see 

Supplementary Table S6) this correlation, in general, might be an enabling factor. Simply as more know 

genes are available an increased potential of locations to form embedded genes in is obtainable. The 

assumption that bigger genomes are more prone to the occurrence of overlapping genes just based on 

their size therefore holds up but cannot be statistically verified.  

On the hypothesis of an increased GC-content being accompanied by fewer eORFs present, this 

correlation was analysed, but had to be neglected. There was no negative relation detectable between 

these variables which most likely can be explained due to stop codon adaptation within higher 

GC-content genomes. Commonly used stop codons within bacteria are TAA, TAG, TAC (Belinky et 

al., 2018; Wong et al., 2008) and just based on their construction a lower GC-content could be more 

suitable for their formation. Especially the most common TAA codon is solely created of pyrimidine 

bases, therefore the formation of this specific stop codon is more unlikely in high GC-content genomes. 

However, it has been shown that an increment in GC-content is accompanied by stop codon usage shift 

towards purine bases included triplets (Belinky et al., 2018; Povolotskaya et al., 2012). Thus, the limited 

presence of a particular stop codon, even if it is the most common one in bacteria, does not impact ORF 

creation.    

Nevertheless, the total eORF numbers were used in regard to verify the recommended read coverage of 

effective reads needed for proper RIBO-Seq evaluation (see 3.1.1.). For each sample analysed the 

number of reads was plotted against the eORF amount predicted with the in-house ORFFinder script. 

Values for E. coli K12 were excluded as an overlap to the analysis focused on estimating the threshold 

necessary should be prevented. Additionally, as 192 samples are associated with the named species, a 

potential bias introduced to the number of samples should also be avoided.  

Even if GC-content is not influential of the eORF prediction efficiency, its potential contribution in 

eORF length is subject of the next chapter.  

 

4.2.2 eORF length distribution within species analysed  

For this analysis, the hypothesis formulated focused on a potential relation between detected eORFs’ 

lengths and the GC-content of the respective species’ genome. An assumption was made that high 

GC-content could be accompanied by longer eORFs present, as the formation of the most commonly 

used stop codon TAA is more likely within a low GC-content. A counterargument here is the stop codon 

usage shift from TAA to TAG or TGA with an increase in GC-content (Belinky et al., 2018; 

Povolotskaya et al., 2012). Therefore, the amount of stop codon present should not be significantly lower 

compared to low GC-content genomes. Based on these facts it is not surprising that there is no significant 

eORF length difference across the genomes analysed (see Figure 14, Supplementary Figure S2). Within 
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the Staphylococcus genome eORFs in length up to 100 nt are predominant, compared to the remaining 

23 genomes. Therefore, a slight trend for shorter (93 - 100 nt) eORFs in genomes with a GC-content up 

to ~ 43 % is detected, whereas then a shift from equivalent length distributions to a length between 

100 - 200 nt as the most dominant occurs (see Figure 14). However, for B. subtilis only four eORFs 

within eight samples were detectable as translated (see Supplementary Table S3), implying potentially 

non-conclusive results for the length analysis solely based on a low prediction bias within this species.  

Even if the proposed hypothesis of a significantly shifted length distribution had to be rejected, still a 

general detection of longer eORFs in higher GC-content genomes could be noted. Occasionally, even 

eORFs up to length spanning 1,300 nt were found in several samples within a species (in P. aeruginosa, 

S. typhimuirum and H. volcanii). Even without more descriptive analysis revealing its potential function, 

these ORFs could be associated with functionality due to their length. In general, the longer a sequence 

proportion is without an incorporated stop codon it is more likely to deduce some functionality. 

However, to maintain the functionality of beneficial sequences is a cost-effective evolutionary ‘effort’ 

for an organism. More precise this refers to negative selection, characterised by the evolutionary ‘effort’ 

to reverse spontaneous mutations within coding sequences to keep them functional (Cvijovic, Good, & 

Desai, 2018). Especially the formation of a stop codon within a translated ORF needs to be prevented 

in avoidance of functionality loss. With an increased ORF length, the possibility of such malfunction 

causing mutations is higher, especially the incorporation of additional stop codons. Thus, if long ORFs 

are detected at best even in other species, this, in general, implies functionality. Even if not translated 

this ORF might represent a long non-coding RNA, which are mostly involved in regulatory processes 

(Zur Bruegge et al., 2017). One re-occurring long eORF detected in S. clavuligerus was even subject of 

analysis discussed in the following chapters to potential obtain the first hint of its functionality. 

As correlations between genome size and GC-content did not yield to significant results in regard to 

eORF detection efficiency or length, the next analysis focused on frame location relation of mother gene 

and overlap and whether one frame is in favour for its creation.     

 

4.2.3 Relative reading frame analysis of mother gene and overlap  

The positions within a codon are of different importance determining specific characteristics of the 

amino acid they represent. For a long time, it was believed that the 1st position is the most descriptive 

one, whereas the 3rd position was referred to as the “wobble-base” (Saier, 2019). Within this position, a 

nucleotide exchange most likely does not lead to an alternative amino acid incorporation into the 

translated protein sequence. This fact can be underlined by the codon degeneracy phenomenon, which 

states that there are more codon possibilities than amino acid they could code for. Therefore, several 

codons, which mostly vary within the third codon position, code for the same amino acid (see Figure 

1A) (Esberg, 2007). However, more recent studies showed that the main determinant of the 
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characteristics of the amino acids within a codon seems to be the 2nd position (Bofkin & Goldman, 2007; 

Saier, 2019). In particular, the nucleotide located within this position is specifying the amino acids’ 

charge which can highly influence the resulting proteins’ formation (Blazej et al., 2018; Saier, 2019).  

Based on these different importances of codon positions the relative reading frame relation of sas11 is 

expected to be in favour of the creation of an overlap in general. Here, each 3rd codon position within 

the mother gene is complementary to the 2nd position within the overlap (see Figure 2A). The lower 

evolutionary pressure for the third position could allow exchanges there potentially not affecting the 

sequence of the mother gene (Bofkin & Goldman, 2007). However, a nucleotide exchange at the second 

position, here in the overlap, definitely causes an amino acid exchange. Either the formation of a start 

or stop codon could lead to the creation of an eORF with a difference in length or a substitution within 

the sequence can result in an alternative conformation. Therefore, a single exchange could cause major 

changes leading to actual translation and/or functionality of an overlap.    

Results from the frame relation analysis (see Figure 15) do not support the hypothesis of sas11 being 

favoured. Moreover, for this relation, a significant difference can be detected compared to the general 

possibility of eORF creation. Therefore, it is more likely to detect a none translated eORF than an actual 

translated one. Two facts might be utilised to explain this result. First, as mentioned the 3rd codon 

position is less determining for the amino acid incorporated and, therefore, under lower evolutionary 

pressure (Bofkin & Goldman, 2007; Saier, 2019). An exchange can remain unnoticed due to the codon 

degeneracy and the same amino acid being incorporated for the mother gene (Gonzalez et al., 2019). 

Eight amino acids are not affected by a nucleotide exchange in the third position (see Figure 1A; Ala, 

Arg, Gly, Leu, Pro, Ser, Thr, Val). However, as this is beneficial for maintaining the mother genes’ 

sequence, the most important codon position within the overlap is highly affected. Whilst one exchange 

might be beneficial for the formation of a functional protein sequence, another one could reverse this 

mutational caused positive effect resulting in loss of functionality again. The evolutionary pressure for 

the 2nd codon position is assumed to be more decisive than for the 3rd position within the mother gene. 

Of course, to maintain an additional potentially functional protein (here the embedded overlap) can be 

beneficial. However, if the necessity of the proteins’ function is limited to distinct processes and not 

ubiquitous its benefits might remain undetected at the point of creation. Nevertheless, the functionality 

of the mother gene regardless of nucleotide exchanges within certain amino acids in the 3rd codon 

position maintains. Therefore, cost-effective mechanisms to change the nucleotide sequence to obtain a 

certain structure are not necessary. Here, the functionality of the mother gene is more important whilst 

less energy-consuming than maintaining a potentially selectively functional gene.  

Another factor why sas11 could not be identified as being in favour of the mother gene and overlap 

formation might be caused by difficulties of actual detection. Results obtained show a snapshot of the 

mother gene and overlap relation. By analysing different species all at once a species-specific bias can 

be excluded. However, differentiation between creation and maintenance regarding frame location 
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relation needs to be discussed. The perspective of evolution is more likely in favour within the sas11 

relation based on the complementary positions explained for mother and overlapping gene. However, 

the survival of an eORF is presumably the strongest within the relative reading frame sas12. Here, not 

only the complementary position of the 3rd codons for both mother gene and overlap is decisive but also 

location relation of the 2nd position to the 1st in both orientations (see Figure 2A). The nucleotide-based 

exchange in position three in sas11 might cause the incorporation of a different amino acid in the 

overlap. However, in sas12 whilst exchanged in the 3rd position the functionality can maintain in both 

sequences due to the complementary location of both third codon positions. Again, the 3rd codon position 

is more likely to be exchanged due to lower evolutionary pressure (Bofkin & Goldman, 2007; Saier, 

2019), however, the exchange sometimes does not affect the amino acid sequence, therefore no loss in 

functionality is caused. Furthermore, in the sas12 frame location, this does not affect the mother gene 

as well as the overlap. This would be favoured to maintain the functionality of both sequences. 

Additionally, the most decisive 2nd position within the mother gene is complementarily located to the 1st 

position in the overlap and vice versa (see Figure 2A). Thus, as nucleotide exchanges at the second 

position are most likely prevented or reversed to preserve the amino acid incorporated at this position 

in this relation are presumably protected by each other. Therefore, this relation is highly appropriate to 

preserve both gene sequences and consequently the resulting amino acids.  

Results from the analysis performed support the hypothesis that sas12 could be in favour to maintain 

both genes as the detection of translated eORF is significantly higher in this frame location relation (see 

Figure 15). However, still, the assumption remains of sas11 being in favour of eORF creation. This 

relation might be considered as a gene nursery, where the creation of a potential functional gene arises. 

Yet, to potentially maintain its functionality it is highly likely to be integrated by insertion into another 

genomic position in the +1 frame. Further nucleotide exchanges at the former overlap location might 

cause the potential loss of functionality there. However, the integrated previously overlapping gene will 

not be affected.  

In conclusion, the creation of eORFs seems more likely in sas11, whereas they maintain especially in 

the relative reading frame relation sas12 thus are most likely detected there. Another potential indicator 

to verify an eORF of interest is its detected occurrence within several samples of one species. The 

repeated detection of the same eORF is assumed to distinguish it from spurious signals. In the following 

chapter, such eORFs were detected and forwarded to further analyses.      

 

4.2.4 BLAST-based age categorisation of eORFs of interest  

The general detection of eORFs within a genome is the first implication of their existence. However, 

more descriptive analysis, both informatics and experimental, are necessary to distinguish between 

authentic and spurious predictions. Criteria like RPKM and coverage were matched by all referred to 
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eORFs within this thesis. Still, further analyses were performed to narrow down the number of 

candidates predicted based on criteria used to verify the reliability of their detection. A subset of eORFs 

was determined based on their re-occurrence within several samples of one species. Hereby, the random 

occurrence of an eORF is eliminated thus it is more likely authentic. Those identified candidates were 

the content of further analyses to potentially determine reliable eORFs that could subsequently be 

experimentally verified.    

The first hint of a genes’ age can be obtained by analysing its occurrence within the phylogenetic tree. 

In general, this is of interest as the context of a genes’ age can be used to draw a first conclusion 

regarding its functionality. Essential genes that are necessary to maintain an organisms’ metabolism are 

found throughout the phylogenetic tree due to their vital importance (Jordan, Rogozin, Wolf, & Koonin, 

2002; Luo, Gao, & Lin, 2015). Here, a commonly known example is the 16S rRNA gene whose 

occurrence within each living organism can be used to precisely distinguish e.g., bacteria of the same 

species (Johnson et al., 2019). Based on its important functionality accompanied by its ubiquitous 

occurrence, it is clearly defined as being ‘old’. This means by implication, the further distributed a gene 

is within the phylogenetic tree, it is more likely to be of important functionality. Hence, it is kept in the 

genome of diverse organisms with a less close relation.  

An analysis to categorize the subset of eORFs identified within ‘older’ or ‘younger’ genes was 

performed. As OLGs are more likely of recent origin implied by a smaller distribution within the 

phylogenetic tree search parameters were adapted to this. The tblastn database used for homologues 

identification contained only family-specific genomes. Sequence similarity with an e-value of at least 

1*e-10 was required. Results for both mother gene and overlap were categorized into ‘old’ or ‘young’ 

gene with especial interest in eORFs categorized as ‘old’.  

For ten pairings both genes are considered ‘old’ based on the number of family-specific homologues 

found (see Table 11). Interestingly, eight of these are associated with the Enterobacteriaceae family. 

One possible explanation might be the well-studied variety of E. coli genomes included in this family. 

Each analysis based on database comparison will be biased by its compilation. Here, with family-

specific genomes, a fairly broad cut-off was chosen to ensure non-species-specific identification of 

homologues. Simultaneously, a bias is introduced based on sequenced genome availability within the 

family to search against. Nevertheless, with a broader spectrum, the possibility of homologue detection 

can be given even for less well-studied species. Anyhow, the eORFs categorized as ‘old’ should be 

subject of further analysis, as their ubiquitous occurrence implies functionality. To maintain a sequence 

in its original order is cost-effective in terms of purifying (negative) selection (Cvijovic et al., 2018; 

Rogozin et al., 2002). Therefore, similar coding sequences found in a variety of species distributed 

across the phylogenetic tree are assumed to be ‘older’ and of functionality.  

eORFs categorized as ‘young’ whereas the mother gene is ‘old’ are presumably indeed of recent origin. 

Within the families Mycobacteriaceae and Streptomycetaceae mother genes for both categories were 
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identified. Therefore, the genomic diversity within the database is assumed sufficient as a variety of 

homologues at least for a proportion of mother genes were found. Hence, speculation of insufficient 

database coverage responsible for low homologues numbers can be rejected. However, even if 

categorized as ‘younger’ this does not imply non-functional eORFs. They solely occurred later within 

the phylogenetic tree as they potentially were created more recently. Additionally, it is important to state 

that there is no correlation between mother genes’ and eORFs’ occurrence within the phylogenetic tree.  

If both genes of a pairing were categorized ‘young’ here the database compilation might be the limiting 

factor. Unfortunately, for the candidates within this analysis, this factor cannot be ruled out as there are 

no detections made for an ‘old’ gene within neither Caulobacteraceae nor Halobacteriaceae. 

Nevertheless, as these eORFs also matched the prediction threshold and were detected multiple times 

they are still of interest. A pairing where the mother gene would be categorized ‘young’ whereas the 

overlap is assigned ‘old’ was not detected. Even if not detected as was expected, this could be explained 

by potential miss-annotation of the mother gene during whole genome sequencing. 

The same candidates from this analysis were once again forwarded to a tblastn analysis, however, this 

time to a genus-specific database. Purifying selection of the eORF sequence was analysed with OLGenie 

based on a comparison to the best analysis obtained from the BLAST analysis.  

 

4.2.5 OLGenie based detection of purifying selection on eORFs of 

interest 

A genes’ nucleotide sequence is dictating the emerging amino acid sequence. Based on a codon’s triplet 

structure a succession of three nucleotides is determined for an incorporated amino acid. Within this 

nucleotide triplet, as mentioned the positions are individually decisive for the amino acids’ 

characteristics (Saier, 2019). Nucleotide substitutions within a triplet can result in two different 

outcomes, either the original amino acid is still incorporated, or a different amino acid takes its place. 

Synonymous substitutions are causing no alteration in the resulting protein sequence, whereas 

nonsynonymous substitutions result in a different, potentially non-functional protein (Ina, 1996). 

Therefore, nonsynonymous substitutions are required to be reversed in functional sequences if they 

cause loss of functionality (Cvijovic et al., 2018). This process is also known as purifying (negative) 

selection (Rogozin et al., 2002).  

An emerged beneficial sequence is kept within a genome based on two different evolutionary processes. 

As described one possibility is purifying selection, characterised by hindering the incorporation of 

deleterious mutations. Here, the functional sequence is already implemented into a genome and whilst 

evolution is proceeding its functionality is sustained by purifying selection (Cvijovic et al., 2018). 

Contrary, positive selection is supporting the integration of a new functional gene into a genome (Tan 

& Riley, 1997). Either a new gene can be introduced by e.g., horizontal gene transfer or a sequence 
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change within an already existing sequence can cause its functionality. In those cases, when the obtained 

sequences are beneficial for the organism their integration into the genome is supported by positive 

selection (Tan & Riley, 1997). Hence, positive selection is associated with new gene integration whereas 

purifying selection is working on maintaining ‘older’ genes functionality.  

OLGenie is a tool used to calculate the ratio of synonymous and nonsynonymous nucleotide exchanges 

within a sequence (Nelson, Ardern, & Wei, 2020). With significance estimation conclusions can be 

drawn whether purifying selection is working on the query sequence, hence it is maintained due to 

functionality. However, characterising for this tool is its ability to calculate these ratios for overlapping 

genes considering the substitution differences within the alternative frames (Nelson, Ardern, & Wei, 

2020). Thus, an analysis regarding purifying selection on the eORFs of interest was performed, revealing 

that for only two of the 28 analysed eORFs significant p-values were detectable. Therefore, only for 

those two purifying selection is assumed simultaneously implying that they are potentially functional. 

However, six additional eORFs were identified whose p-values are close to the significance level (see 

Table 12). For two of those, their sequence was categorized as ‘old’ in the previous analysis performed. 

Those correspondences are of especial interest, as both types of analyses are considered as potential first 

indicators for functional gene sequences. However, in general, eight eORFs were identified that would 

be of interest for further descriptive analysis.  

In comparison to the previously performed analysis, selection detection is considered more conclusive 

based on significance determination. Nevertheless, as these analyses are performed in silico and can be 

biased by database sizes and compilation it is always recommended to not exclusively rely on one 

approach only. In consideration of their significance, however, here the results would be narrowed down 

to eight eORFs of interest. Still, to discuss the result in a broader context, all 43 eORFs obtained from 

re-occurrence analysis were used for the following Frameshift analysis. 

Briefly, the corresponding mother gene to Streptomyces16 should be mentioned here, as its calculated 

p-value clearly shows no selection for its sequence at all (see Table 12). A potential explanation might 

be this locus representing a pseudo gene. Thus, an annotation is available, but no functionality is 

associated with this locus. However, a reconciliation with the species genome (here S. clavuligerus) 

revealed an annotation for a vitamin B12-dependent ribonucleotide reductase. Experimental analysis 

should be performed regarding the coded proteins’ functionality. Additional, targeted sequencing for 

this gene could be performed to check whether the annotation was made correctly in this case. Based on 

the obtained p-value there is no indication for selection on this sequence indicating that maintaining the 

sequence order is not vital. Therefore, it is highly unlikely to be beneficial or functional at all.  

 



Discussion 
 

92 

 

4.2.6 Probability of creation based on eORFs length 

This last analysis performed is analysing whether the length of an eORF present can be explained just 

based on random codon structure or if it is significant in its totality. The sequence of an overlapping 

gene is highly dependent on the genomic structure of the mother gene (Krakauer, 2000). Thus, random 

shuffling of the mother genes’ codon structure can lead to the creation of random eORFs possible. Now, 

with a tool called Frameshift a comparison between these randomly created OLGs can be made (Schlub 

et al., 2018). Based on the mother gene codons’ permutation and the subsequently resulting eORFs a 

significance value can be estimated revealing if the resulting length is longer than expected (Schlub et 

al., 2018). The results obtained are assumed to be related to potential functionality as otherwise a 

necessity for this particular ORF length is not given. 

Here, for none of the eORFs analysed statistically significant p-values were calculated. This was 

surprising as a variety of length was tested (see Supplementary Table S8) and at least for longer eORFs 

a significance level was expected. This expectation was based on the assumption that long ORFs are 

associated with functionality, whether they are actually translated (Xu et al., 2006) or are only involved 

in transcription regulation (Guttman, Russell, Ingolia, Weissman, & Lander, 2013; Harris & Breaker, 

2018). Both possibilities are of interest for the analysis of overlapping genes. However, as the analysed 

data is obtained from RIBO-Seq results eORFs identified here should even be associated with 

functionality in terms of a resulting translated protein due to ribosomal occupation (Ingolia, 2014).  

Candidate Streptomyces8 has a length of 1,058 nt, however, the calculated p-value is far off significance. 

Solely based on its length it was assumed to be significant but interestingly, the analysis revealed even 

longer variants possible within the mother genes’ permuted sequence. Nevertheless, for three candidates 

nearly significant p-values were estimated. Moreover, three of them (Escherichia1, Escherichia3, 

Escherichia4) were already classified as ‘older’ genes in Section 3.2.4. Thus, functionality for these 

eORFs can be assumed as their sequences are distributed in the family Enterobacteriaceae and more 

likely to arise directed than randomly. Interestingly, two of the three sequences were exact matches, 

whereas in the third nucleotide exchanges lead to two different amino acids incorporated (see Figure 

S3). All of the candidates are located within the same genome, however, as their respective mother gene 

is the IS1 transposase B a re-occurrence within the genome is not surprising. As transposases are used 

for genomic rearrangements, they can commonly be located multiple times within a genome (Sekine & 

Ohtsubo, 1989).  

Yet, the detected amino acid exchange for the identified transposase the identified overlap is of interest. 

A comparison of the two sequences is shown in Figure S3, whereas the top one corresponds to candidate 

Escherichia1. Selection detection (see Section 3.2.5.) as well as length significance analysis (see Section 

3.2.6.) for this candidate indicate a lesser probability to code for a functional protein. One amino acid 

exchange can be detected in the sixth position where cysteine is replaced by serine. Here, no major 

difference in the proteins’ secondary structure was expected as an exchange between polar and 
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uncharged acids should not affect the conformation (Barnes & Gray, 2003). However, claims were made 

that cysteine-to-serine substitutions reduce protein activity (Pavlin et al., 2019; Smith & Marnett, 1996) 

whereas contrary statements report no alteration in this type of exchange (Barnes & Gray, 2003). In 

general, from the obtained results here a cysteine-to-serine exchange could at least be associated with 

functionality as those sequences with serine incorporated show a preference in terms of evolution (see 

Sections 3.2.5. & 3.2.6.).    

A second amino acid substitution is located at position 92. Here, while in candidates’ Escherichia1 

sequence a serine is detected, for Escherichia3 an arginine is incorporated at this position (see Figure 

S3). The last-mentioned variant seems more likely to code a functional protein as indicated by the 

sequences’ evolution. A broader spectrum of homologues detected within the Enterobacteriaceae 

family as well as nearly significant values for a non-random creation of the overlap support this 

speculation. However, no selection was detectable for this sequence (see Section 3.2.5.). Nevertheless, 

the characteristics of the substituted amino acid might explain the potentially assumed functionality. 

Arginine is often detected within the active centre of a protein or its binding site (Barnes & Gray, 2003; 

Cotton, la Cour, Hazen, & Legg, 1977), whereas serine is known for its high mutation rate (Creixell, 

Schoof, Tan, & Linding, 2012). Therefore, the probability of a more stable protein is assumed solely 

based on the amino acid incorporated. Additionally, compared to serine arginine is positively charged 

(Barnes & Gray, 2003) which potentially could also contribute to beneficial conformation changes in 

the proteins’ secondary structure. Yet, it should be stated again that the actual functionality of the eORF 

detected still requires verification. The potential involvement of the amino acid substitutions in sequence 

improvement discussed here is therefore speculative.        

Again, it should be stated that the overlap discussed here was identified within a transposase gene. As 

they naturally can be located multiple times within a genome (Sekine & Ohtsubo, 1989) the  

identification of the overlap although in varying sequences is not surprising. Based on the transposases’ 

own capacity to change its location within the genome frequently (Vigil-Stenman, Ininbergs, Bergman, 

& Ekman, 2017) the location of the overlap requires precise analysis. An overlap located at a 

transposons’ edge needs more critical evaluation as the integration of the gene at a different location is 

accompanied by changing nucleotide sequence at the integrated positions. However, an embedded 

overlap should not be affected by the surrounding location of the integration. Therefore, this overlap 

relation should still be considered interesting. Nevertheless, an ideal overlap in terms of interpretation 

would include a potential relation between mother gene and overlap where one might be regulatory 

involved in the transcription of the other or would counteract to its function.  

Based on results obtained from these first comparative analyses performed, the most promising 

candidates for further experimental descriptive analysis would be eORFs Escherichia1, Escherichia3 

(Escherichia4 is identical), Pseudomonas1 and Salmonella1. A first bioinformatic evaluation of 

RIBO-Seq data available concludes that embedded overlapping genes can be found distributed across a 
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variety of prokaryotes and even two archaeal species. Faced by in silico verification limitations these 

analyses are considered as a first step to narrow down the eORF predictions made. Of especial interest 

was to potentially determine functionality based on eORF sequence evolution. Nonetheless, 

experimental verification is indispensable for the informatical based recommendations. It was shown 

that the tools tested should not be considered as stand-alone indicators as no eORF was estimated 

significant in each approach individually. However, their combined results are useful in the verification 

of identified candidates.  

To conclude this chapter, the detection of overlapping genes in multiple prokaryotic species, in general, 

is possible. Interpretation and selection of eORFs of interest are based on several performed analysis 

focussing on sequences evolution. In the last chapter a performed RIBO-Seq experiment will be 

discussed and how it is contributing to the verification of potential OLGs.    

 

4.3  RIBO-Seq of B. thetaiotaomicron 

4.3.1 Mapping unmapped reads of B. thetaiotaomicron 

Right from the start samples showed RNA degradation after RNA extraction (see Figure 17). 

Degradation is caused by ubiquitous RNases whose activity is inhibited at very low temperatures (Fabre, 

Colotte, Luis, Tuffet, & Bonnet, 2014; Seelenfreund et al., 2014). Therefore, experimental processes 

with a focus on RNA always take place on ice. Experimental changes during homogenisation such as 

using even more liquid nitrogen to prevent samples from thawing under any circumstances did not result 

in intact RNA. Additional changes in buffer composition to exclude divalent ions, which support 

increased RNases activity (Hsieh et al., 2010; Thompson, Zong, & Mackie, 2015) did not prevent RNA 

degradation. Thus, RNA degradation might even start before homogenisation, already during cell 

harvest. The assumption, that RNA degradation is inhibited as long as the cells, in this case, the bacteria, 

are intact would not explain potential degradation even before homogenisation. But as a matter of fact, 

even without cell lysis degradation is possible as RNases are present in prokaryotes as they are involved 

in various mechanisms (Deutscher, 2015).  

The RIBO-Seq experiment of B. thetaiotaomicron was performed not only to obtain information about 

its translatome and potential overlapping genes but also to compare these finding, especially eORFs 

with mass spectrometry data to potentially verify predicted eORFs. In mass spectrometry proteins that 

are present in the sample can be detected, if their sequence is available for data comparison purposes. 

Thus, the predicted eORFs would be used as part of a database for mass spectrometry evaluation. To 

ensure no translatome changes due to different growth conditions, bacterial cell culture was provided 

from the lab that will perform mass spectrometry analysis. One major problem might already be the cell 

harvest step special for RIBO-Seq experiments. Here, it is crucial not only to stall the translation to 

obtain a snapshot of the ongoing translatome at the point of harvest but also to stabilize RNA necessary 
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for sequencing. As RNA is less stable than DNA or even proteins (S. Wang & Kool, 1995) specific 

precautions should be taken. 

One option is the use of RNAlater, a non-toxic reagent used to stabilize RNA. Its water-based 

characteristics allow permeation into still intact cells, therefore preventing intracellular RNA 

degradation (Passow et al., 2019). Besides, another advantage is its aid in simplified sample handling as 

it keeps RNA stable even without permanent cooling (Auer et al., 2014; Passow et al., 2019). 

Unfortunately, this solution is not appropriate for RIBO-Seq experiments, as it has been shown to alter 

the expression status in RNA-Seq experiments (Passow et al., 2019), hence is believed to also change 

the translatome impeding the adequate detection of potential additional ORFs. As mentioned, either the 

application of e.g., chloramphenicol or tetracycline can result in ribosomal stalling, as well as flash 

freezing the cells in liquid nitrogen (Glaub et al., 2020; Ingolia, 2016; Mohammad et al., 2019). The 

rapid cooling of the sample with either direct processing or storage at -80°C is also considered to prevent 

RNA degradation (Passow et al., 2019).   

A miscommunication affecting cell harvest might be the causative factor for RNA degradation in this 

RIBO-Seq experiment. As for mass spectrometry experiments, no additional translation inhibitory or 

RNA stabilizing precautions are necessary cell culture was harvested without any addition. This includes 

general centrifugation of cell culture from which the cell pellet is obtained for further analysis as in mass 

spectrometry only amino acids present in the sample are of interest which are more stable than the RNA 

they were constructed of. Obtained cell pellets were frozen and stored at -80°C which normally would 

prevent RNA degradation but here, this mechanism was already started by insufficient cooling during 

cell harvest. Nevertheless, even if RNA degradation occurs, a RIBO-Seq experiment could still be 

successful, as mostly due to its high abundance in each cell rRNA is more prone to be affected by 

RNases. Therefore, if rRNA structures potentially protecting mRNA of interest are broken down mRNA 

might get available for degradation. Nevertheless, proportions of secured mRNA can still be subjected 

to RIBO-Seq analysis. Hence, even if RNA degradation was detected the experiment was processed and 

a special focus was on rRNA depletion. As the RNA degradation might already result in less mRNA 

available for sequencing successful rRNA depletion was crucial to minimize its abundance. Therefore, 

available sequencing capacity would cover almost exclusively mRNA of interest.   

 

4.3.2 Sequencing results evaluation 

After sequencing was performed for both RIBO-Seq and RNA-Seq samples, they were subjected to 

subsequent evaluation according to the pipeline used for analysis in the above-mentioned chapters. A 

comparison of raw read amount and quantity after alignment with additional categorization according 

to RNA type (mRNA, rRNA or tRNA) only a fraction of reads (≤ 1%) was left. To determine if reads 

were not aligned to the reference genome or were identified as belonging to excluded RNA types results 
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from FastQ Screen (see Figure 19) were evaluated. Here, the output showed that nearly ≤ 95% of reads 

available after alignment to the reference were categorized as unmappable reads. These results would 

implicate that either a wrong reference genome was chosen for alignment or potential contamination 

during experimental proceedings.  

The appropriate genome chosen for alignment was checked and was correctly from the beginning. To 

detect if there was a contamination in the culture, unmappable reads were extracted and subjected to 

BLAST analysis potentially identifying contamination. Nevertheless, most reads were mapped to partial 

16S rRNA sequences within genera Bacteroides, Escherichia or Enterococcus all belonging to the gut 

flora (Rinninella et al., 2019). As the experiment started with a pure culture, it is highly unlikely that 

two other bacterial genera were brought into the samples analysed as all necessary purity standards were 

applied before sample handling. Additionally, if another bacterium was present in the sample, exact 

species hits during BLAST analysis were expected, not only hits to the genus.  

Reads categorized as unmappable to the B. thetaiotaomicron genome still were mapped to the genus 

implying a high sequence similarity. Potentially RNA degradation caused the phenomenon of nearly 

only unmappable reads. For alignment, a very high sensitive approach was chosen with a seed length of 

17 nucleotides. Due to degradation and consequently shorter fragments for sequencing, this might cause 

insufficient alignment resulting in nearly all reads categorized as unmappable. Nevertheless, even if reds 

were considered aligned properly to the reference genome nearly all mapped to partial 16S rRNA 

fragments according to the BLAST analysis. Hence, they would still not contribute to the detection of 

potential embedded overlapping genes in B. thetaiotaomicron. 

The number of reads corresponding to 16S rRNA fragments is surprising as rRNA depletion was 

performed during sequencing preparation. siTOOLs Pan-Prokaryotic Kit was used as it is not 

genome-specific claiming sufficient rRNA depletion of up to 90 % in general (according to 

manufacturer). Additionally, here not only 16S and 23S are targeted as common for most depletion kits 

but also 5S rRNA (according to manufacturer). Nevertheless, depletion was not successful for any of 

the four samples treated. As depletion was performed two times for two samples simultaneously a 

handling mistake can be excluded for the lack of depletion efficiency. Additionally, probes from rRNA 

depletion could be potentially identified due to a small proportion of unmappable reads. These mapped 

eukaryotic genomes and according to the manufacturer form the basis of rRNA depletion probes. The 

DNA digestion performed after rRNA depletion generally should ensure minimising the number of 

unused probes left. Therefore, depletion insufficiency cannot be explained by experimental mishandling 

during rRNA depletion. Potentially the ongoing RNA degradation within the samples is responsible for 

insufficient rRNA depletion. The hybridization between fragmented rRNA and added DNA probes 

necessary for the extraction of targeted rRNA fragments might be ineffective. Indeed, the 

incompatibility with fragmented RNA has been shown for the used kit explaining the lack of performed 

rRNA depletion (Huang, Sheth, Kaufman, & Wang, 2020).  
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Interestingly, when compared to the evaluation of the available B. thetaiotaomicron RIBO-Seq samples 

a similar result for insufficient depletion was detected.  

 

4.3.3 Analysis of publicly available B. thetaiotaomicron RIBO-Seq 

data 

The released dataset for B. thetaiotaomicron was analysed according to the mentioned processing 

pipeline. Nevertheless, the obtained data is just as inadequate for the detection of eORFs in the used 

species as the own generated data. Even though the number of unmappable reads in the two evaluated 

samples from Sberro (Sberro et al., 2019) is much lower than from the own data (7 % compared to 

≤ 95 %), nearly 89 % of their mappable reads are aligned to rRNA (see Section 3.3.3.). This might 

implicate almost only rRNA fragments present in these samples before sequencing as well even though 

rRNA depletion was also performed. In fact, here the RiboZero Removal Kit from Illumina was used 

with a slight adaptation of the protocol only using half the amount of input recommended (Sberro et al., 

2019). The decreased amount used for depletion might have caused the insufficient rRNA depletion. 

From the obtained results, it is not possible to detect, whether the rRNA depletion was insufficient due 

to decreased input material or potential other factors such as degradation as well. As the used Illumina 

kit for rRNA depletion is discontinued by the manufacturer, it was not available for the self-performed 

RIBO-Seq experiment. Thus, it is not possible to test whether the recommended amount of input would 

have beneficial effects on rRNA depletion efficiency for this Bacteroides species.  

Finally, for the experimental part of this thesis, there is to say that it, unfortunately, did not contribute 

to the detection of potential eORFs in B. thetaiotaomicron. Nevertheless, the performance of the 

experimental proceedings with the obtained results once more showed the importance of intact RNA as 

input material for RIBO-Seq experiments. Additionally, it demonstrates the significance of rRNA 

depletion to minimise the amount present in analysed samples to reduce the read coverage lost to this 

type of RNA. Furthermore, the necessity of the appropriate rRNA depletion kits is shown, as the chosen 

one does not seem to be capable of depletion of fragmented rRNA. However, the RiboZero kit having 

the best reputation for depletion performance was no longer available, therefore could not be chosen for 

this experiment. But even if available, the detection of potential eORFs in B. thetaiotaomicron is 

questionable as even a sufficient depletion does still not alter the RNA degradation in general.  

After interpretation and discussion of all results obtained in this thesis, the following conclusion will 

complete this thesis.  
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5. Conclusion  

The general aim of this thesis was to detect potential improvements for prokaryotic RIBO-Seq 

experiments based on the comparison of already available data. With identified experimental changes a 

RIBO-Seq experiment was performed which should contribute to the acceptance of overlapping genes 

not only being present in the genome but being of actual functionality due to RIBO-Seq signals. 

Furthermore, the detection of antisense OLGs within a variety of prokaryotic species widely distributed 

across the phylogenetic tree should once and for all demonstrate the existence of OLGs in bacteria.   

First, crucial changes for prokaryotic-focused RIBO-Seq experiments were identified which led to 

recommendations for subsequent studies. A sufficient coverage necessary was identified after analysing 

the prediction success of annotated genes. In comparison to published RNA-Seq guideline values, higher 

coverage should be achieved for RIBO-Seq experiments. Not only should more than one read be used 

to verify a potential ORF, hence requiring an increased amount, but also prediction tools require specific 

read distribution patterns to identify ORFs as being of interest. This requires multiple reads per ORF of 

interest. Therefore, a recommendation of at least 20 million reads without rRNA and tRNA mapped 

reads is proposed. Further, the importance of appropriate size selection during RIBO-Seq experiments 

was shown. Based on a read length comparison for distinct RNA types present, a general selection of 

mRNA fragments is achieved when aimed for a size range roughly between 24 to 27 nt. Of course, an 

exact gel excision is difficult due to sometimes blurry gel band borders. Hence, with a narrower selection 

range even if excision is inaccurate to some extent the addition of unwanted fragment length is kept 

lower compared to a broader arrange that includes unwanted fragment sizes. However, size selection 

must always be adapted to the scientific question of interest. Within this thesis, it could be shown that 

reads mapped to the 5’-UTR upstream region of genes tend to be longer than those covering protein-

coding regions. Thus, if a strived for analysis should focus on e.g., the SD sequence located within the 

here analysed 5’-UTR region, a size selection range adaption is crucial to cover the longer fragments 

needed. Lastly, the application of ribosomal stalling inducing additive chloramphenicol was found 

especially useful for start site detection of weekly expressed genes. This is particularly of interest 

considering the potential low-level expression of potential OLGs. However, despite their expression 

level, their detection could be improved by the application of chloramphenicol. Unfortunately, these 

established recommendations, even if to some extent applied, did not result in a successful performed 

RIBO-Seq experiment for B. thetaiotaomicron.  

Here, the aim was to potentially identify so far unknown overlapping genes for this species. The failure 

of the experimental proceedings is attributed to the RNA degradation that presumably is caused due to 

insufficient enzyme activity suppression during harvest. Subsequent procedures of the RIBO-Seq 

protocol with additional changes to prevent further degradation were performed. Nevertheless, results 

showed alignment difficulties mostly caused by shortened reads due to RNA degradation. A published 

RIBO-Seq experiment for the chosen species could not be used for evaluation of potential OLGs either. 
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Analysis performed on the available samples showed nearly solely coverage of rRNA corresponding 

fragments. Based on the reported sample preparation it is speculated that decreased rRNA depletion 

volume is responsible for the remaining amount of rRNA within the samples. Thus, so far, the detection 

of OLGs within B. thetaiotaomicron remains concealed. However, the general existence of OLGs within 

a variety of species could be shown within this thesis. 

In general, the detection of eORFs throughout the phylogenetic tree is possible although lacks clear 

influence of the genomic features’ genome size or GC-content on prediction efficiency. Furthermore, 

the predominant length for eORFs detected as actually translated spans from 100 - 200 nt, even though 

occasional eORFs can be found with length up to 1,300 nt however only in high GC-content genomes. 

Detected eORFs are most likely found in sas12 relation to the mother gene, which is in accordance to 

be beneficial for maintaining their functionality. However, it is still believed that the creation of a new 

eORF is more likely to be in favour in frame relation sas11. 43 eORFs within 14 different species were 

found re-occurring in several samples analysed allowing to state that they are of interest for further 

analysis. Due to their multiple detection success, it is assumed that these eORFs are genuinely translated 

and are not just of spurious origin. Age determination performed on those mentioned revealed that ten 

eORFs can be categorized as ‘old’ due to the number of tblastn hits within their families. The sequences’ 

distributions in various bacteria can be considered as an indication of functionality as well. Here, it is 

assumed that only beneficial sequences are maintained in a genome due to purifying selection. Thus, all 

sequences were submitted to OLGenie to detect potential selection on the nucleotide order. Only for two 

eORF sequences selection was statistical significantly detectable. Unfortunately, those two did not 

correspond to an eORF categorized as ‘old’, which was desired to have several indicators for 

functionality. However, for six additional eORF sequences’ nearly significant values were obtained 

within selection detection analysis. Two of those were corresponding to eORFs categorized as ‘old’ in 

the previous analysis and therefore of especial interest for the last analysis performed. The last analysis 

performed focused on eORF lengths’ significance based on the simulation of random ORFs. Here, three 

sequences were identified as nearly significant while three also corresponded to sequences of interest 

based on age determination. Here, both candidates had identical sequences whereas within the third two 

amino acid exchanges were identified. Nevertheless, all of them were located complementary to the 

same mother gene. Different similarity values or length analysis results are presumably caused by these 

amino acid variants incorporated. Thus, if the actual functionality of the eORF would be identified, an 

analysis of interest could be to analyse the potential influence of the amino acid exchanges in regard to 

the enzymes’ activity.   

All in all, a comparison of the analyses performed shows that none of the eORFs was validated in all 

three approaches. Thus, it is essential to not rely on one but multiple analyses to verify sequences of 

potential interest. These tools and methods assist in narrowing down the number of eORFs predicted to 

choose those used for first experimental verification. Candidates Escherichia1, Escherichia3, 

Escherichia4, Pseudomonas1 and Salmonella1 could be chosen for following experimental verification 
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based on their results in at least two of the three analyses performed. Here, performance analysis of 

those identified in any lab experiments such as competitive growth, growth rates in various 

environmental or stress conditions or the detection of applied antibiotics’ minimal inhibitory 

concentration would be of interest. Additionally, a detection analysis of the corresponding protein with 

mass spectrometry would verify the translation status of the eORF.    

Bioinformatic evaluation of RIBO-Seq data regarding eORF detection is only a first step. Applied 

methods such as BLAST, OLGenie and Frameshift are used to narrow down predictions to potential 

eORFs of interest. Nevertheless, the necessity of comparing various tools available is shown as their 

stand-alone results are rarely corresponding. Thus, sequences chosen for further analysis solely based 

on results from one analysis could be misleading. Based on the combination of first descriptive analyses 

performed eORFs can be selected for experimental evaluation to verify or neglect hypothesis from 

informatically obtained results. This first analysis of eORF detection throughout the phylogenetic tree 

gives a first glimpse of what still remains uncovered but now is available for experimental verification 

to further analyse the actual function of overlapping genes.  
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Figure S1: Gel picturing showing DNA digestion success based on performed 16S PCR after digestion. 1) 100bp ladder, double 

application of samples 2) + 3) RNA I, 4) + 5) RNA II, 6) negative control (RNA-free H20 as PCR template); 7) double 

application of positive control (1 µl and 2µl tested as PCR template). 
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Figure S2: eORF length distribution for all species analysed in alphabetical order, genome specific GC-contents are as followed: 

(A) 39.3, (B) 43.5, (C) 67.2, (D) 31.1, (E) 50.8, (F) 50.6, (G) 50.6 , (H) 46.9 , (I) 34.1, (J) 67.9, (K) 66.6, (L) 64.1, (M) 67.4, 

(N) 66.6, (O) 60.8, (P) 52.2, (Q) 32.9, (R) 40, (S) 72.7, (T) 72.1, (U) 72.2, (V) 71.9, (W) 72.5, (X) 47.5 (n = 24). Shown is the 

percentage calculation for abundance of eORFs within one length category. 
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Figure S3: Shown are the protein sequences for the eORFs of (A) candidate Escherichia1 and (B) Escherichia3 (Escherichia4 

respectively due to exact sequence accordance). Overlaps are similar in all but two amino acids incorporated. Substitutions are 

highlighted by squares at the positions of interest.  

 

 

 

 

 

Figure S4: Shown are the protein sequences for mother genes of (A) candidate Escherichia1 and (B) Escherichia3 (Escherichia4 

respectively due to exact sequence accordance). Mother gene sequences (coding for IS1 transposase B) are similar in all but 

six amino acids incorporated. Substitutions are highlighted by squares at the positions of interest. 
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Table S1: List of chemicals used in performed RIBO-Seq and RNA-Seq experiment with corresponding providers.  

Chemicals Provider 

Agarose Sigma-Aldrich, St. Louis, MO, USA 

Ammonium chloride (NH4Cl) Roth, Karlsruhe, Germany 

Ammonium persulfate (APS) Roth, Karlsruhe, Germany 

Boric acid Sigma-Aldrich, St. Louis, MO, USA 

Calcium chloride (CaCl2) Roth, Karlsruhe, Germany 

Chloroform Roth, Karlsruhe, Germany 

D(+)-Saccharose ≥99,5%, p.a. Roth, Karlsruhe, Germany 

DTT (Dithiothreitol) Roche, Basel, Switzerland 

DreamTaq PCR Master Mix (2 x) Thermo Fisher Scientific, Waltham, MA, USA 

ethanol absolute VWR International, Darmstadt, Germany 

 ethylenediaminetetraacetic acid (EDTA) Roth, Karlsruhe, Germany 

Fluorescin-Na Roth, Karlsruhe, Germany 

GelRed® Nucleic Acid 10.000X Biotium, Fremont, CA, USA 

Glycogen RNA Grade  Thermo Fisher Scientific, Waltham, MA, USA 

Hydrophilic Streptavidin Magnetic Beads NEB, Ipswich, MA, USA 

Isopropanol (2-Propanol) Sigma-Aldrich, St. Louis, MO, USA 

Magnesium chloride (MgCl2) Sigma-Aldrich, St. Louis, MO, USA 

NEB4 Buffer NEB, Ipswich, MA, USA 

Noves TBE Urea Sample Buffer (2x) Thermo Fisher Scientific, Waltham, MA, USA 

NP-40 Sigma-Aldrich, St. Louis, MO, USA 

Patent Blue V Sigma-Aldrich, St. Louis, MO, USA 

RNA Loading Dye (2x) NEB, Ipswich, MA, USA 

Rotiphorese® sequencing gel buffer concentrate Roth, Karlsruhe, Germany 

Rotiphorese® sequencing gel concentrate Roth, Karlsruhe, Germany 

Rotiphorese® sequencing gel thinner Roth, Karlsruhe, Germany 

Sodium acetate (NaOAc) Sigma-Aldrich, St. Louis, MO, USA 

SYBR™ Gold nucleic acid gel stain Thermo Fisher Scientific, Waltham, MA, USA 

TEMED Roth, Karlsruhe, Germany 

TRIS- hydrochloric acid (HCl) Roth, Karlsruhe, Germany 

Triton X-100 Roth, Karlsruhe, Germany 

Trizol Thermo Fisher Scientific, Waltham, MA, USA 

TURBO™ DNase buffer (10 x) Thermo Fisher Scientific, Waltham, MA, USA 

1 kb DNA ladder NEB, Ipswich, MA, USA 

100 bp DNA ladder NEB, Ipswich, MA, USA 
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Table S2: List of kits used during RIBO-Seq and RNA-Seq experimental proceedings. Additional information contains 

purposes of named kits plus their provider.  

Kit name Purpose Provider 

Bioanalyzer High Sensitivity 

DNA Kit + Chip 
Library quality control 

Agilent Technologies, Santa 

Clara, CA, USA 

Bioanalyzer RNA 600 Nano 

Kit + Chip 
RNA quality control 

Agilent Technologies, Santa 

Clara, CA, USA 

miRNeasy Mini Kit RNA purification Qiagen, Hilden, Germany 

MiSeq Reagent Kit v3 Next Generation Sequencing Illumina, San Diego, CA, USA 

Pan-Prokaryotes (Pan-

riboPOOLs) 
rRNA depletion 

siTooLs Biotech GmbH, 

Martiensried, Germany 

Qubit RNA High Sensitivity 

Assay 

RNA concentration 

measurement 

Thermo Fisher Scientific, 

Waltham, MA, USA 

Qubit™ 1X dsDNA HS Assay-

Kit 

DNA concentration 

measurement 

Thermo Fisher Scientific, 

Waltham, MA, USA 

TruSeq Small RNA Library 

Prep Kit -Set A 
Library preparation Illumina, San Diego, CA, USA 

TruSeq Small RNA Library 

Prep Kit, Core Solutions 
Library preparation Illumina, San Diego, CA, USA 

 

Table S3: Table summarising samples used (with their ENA assigned numbers) with additional raw read numbers, reads left 

after adapter trimming and filtering and respective adapter sequence as removal template.  

Sample 
Raw read 

number 

Read number 

after trim-

/filtering 

Adapter sequence (published or detected) 

SRR1734437 64,469,767 18,393,118 CTGTAGGCACCATCAAT 

SRR1734438 51,236,059 17,506,641 CTGTAGGCACCATCAAT 

SRR1734439 47,811,573 23,341,030 CTGTAGGCACCATCAAT 

SRR1734440 54,023,827 5,549,778 CTGTAGGCACCATCAAT 

SRR1734441 70,560,079 28,603,430 CTGTAGGCACCATCAAT 

SRR1734442 24,162,556 4,537,688 CTGTAGGCACCATCAAT 

SRR1734443 33,378,397 7,471,395 CTGTAGGCACCATCAAT 

SRR1734444 27,920,647 10,773,198 CTGTAGGCACCATCAAT 

SRR4023274 18,237,413 9,379,697 CTGTAGGCACCATCAAT 

SRR4023280 27,160,645 7,269,556 CTGTAGGCACCATCAAT 

ERR618770 194,819,312 65,991,623 GAGGCTGAGGCGTGATGACGAGGCAC 

ERR618771 161,912,593 46,832,304 GAGGCTGAGGCGTGATGACGAGGCAC 

SRR1613268 3,640,574 1,571,362 CTGTAGGCACCATCAAT 
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SRR1613269 14,545,092 5,200,100 CTGTAGGCACCATCAAT 

SRR1613270 5,358,746 2,086,650 CTGTAGGCACCATCAAT 

SRR1613272 8,779,929 3,467,170 CTGTAGGCACCATCAAT 

SRR1613277 6,811,320 1,572,969 CTGTAGGCACCATCAAT 

SRR1613278 20,537,706 4,256,485 CTGTAGGCACCATCAAT 

SRR1613280 3,642,225 807,692 CTGTAGGCACCATCAAT 

SRR1613281 18,767,441 4,065,713 CTGTAGGCACCATCAAT 

SRR1613283 3,666,535 802,984 CTGTAGGCACCATCAAT 

SRR1613285 23,299,777 4,965,105 CTGTAGGCACCATCAAT 

SRR1613287 23,648,253 8,415,606 CTGTAGGCACCATCAAT 

SRR1200730 10,558,976 1,975,001 GGCTGAGGCGTGATGACGAGGCAC 

SRR1200731 8,589,645 1,343,820 GGCTGAGGCGTGATGACGAGGCAC 

SRR1200738 7,263,033 1,417,420 GGCTGAGGCGTGATGACGAGGCAC 

SRR1200739 10,452,140 1,689,198 GGCTGAGGCGTGATGACGAGGCAC 

SRR1200750 7,139,565 1,028,411 GGCTGAGGCGTGATGACGAGGCAC 

SRR1200751 8,769,881 1,335,550 GGCTGAGGCGTGATGACGAGGCAC 

SRR1613263 23,558,119 18,917,577 CTGTAGGCACCATCAAT 

SRR1613265 20,020,207 16,302,283 CTGTAGGCACCATCAAT 

SRR1613266 18,140,727 13,945,969 CTGTAGGCACCATCAAT 

SRR1583082 22,259,168 13,406,859 CTGTAGGCACCATCAAT 

SRR1583083 26,096,770 13,509,892 CTGTAGGCACCATCAAT 

SRR1583084 23,465,502 12,799,823 CTGTAGGCACCATCAAT 

SRR4190324 19,701,724 7,126,787 CTGTAGGCACCATCAAT 

SRR4190325 15,283,224 7,315,769 CTGTAGGCACCATCAAT 

SRR4190326 17,699,028 5,717,589 CTGTAGGCACCATCAAT 

SRR364363 20,151,889 9,224,533 CTGTAGGCACCATCAAT 

SRR364364 19,274,111 8,560,579 CTGTAGGCACCATCAAT 

SRR364365 19,888,911 10,649,863 CTGTAGGCACCATCAAT 

SRR364366 19,279,468 9,503,165 CTGTAGGCACCATCAAT 

SRR364367 24,137,567 11,589,789 CTGTAGGCACCATCAAT 

SRR364368 24,490,400 14,705,508 CTGTAGGCACCATCAAT 

SRR364369 23,384,961 7,427,654 CTGTAGGCACCATCAAT 

SRR364370 24,706,067 15,049,873 CTGTAGGCACCATCAAT 

SRR2016457 35,352,233 10,726,959 GATCTCGTATGCCGTCTTCTG 

SRR2016465 29,770,749 7,303,237 GATCTCGTATGCCGTCTTCTG 
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Table S4: E. coli K12 substrains used for RIBO-Seq data evaluation. Genome specific NCBI reference sequence number and 

accession number are listed.  

E. coli K-12 substrains BW25113 MC4100 MG1655 

NCBI RefSeq Genome NZ_CP009273.1 NZ_HG738867.1 NC_000913.3 

NCBI RefSeq Accession GCF_000750555.1 GCF_000499485.1 GCF_000005845.2 

 

Table S5: Detection numbers of multiple prokaryotic species tested for distribution analysis. Detections are based on an 

in-house script (ORFFinder) or the available detection tool DeepRibo. Sample numbers are adopted from ENA, with read 

number detected in raw sequencing file and read amount left after adapter trim and rRNA/tRNA removal.    

Species 
Sample 

number 

Read 

amount 

before trim 

Read 

amount 

after 

trim/filter 

eORFs 

in-house 

eORFs 

DeepRibo 

Acetobacterium woodii  

DSM 1030 

    

 ERR3428526 249,172,796 35,488,175 414 0 
 

ERR3428527 69,476,513 10,580,971 651 0 
 

ERR3428528 131,703,279 13,641,574 303 0 
 

ERR3428529 139,370,873 18,840,528 247 0 

Bacillus subtilis subsp. subtilis str. 168 
   

 
 

SRR987023 6,567,480 1,528,968 1 0 
 

SRR987022 3,692,648 1,530,526 0 0 
 

SRR987020 8,433,879 3,199,021 1 0 
 

SRR407279 15,991,160 4,880,082 1 0 
 

SRR987018 9,660,224 5,115,255 1 0 
 

SRR407278 18,230,224 6,686,023 0 0 
 

SRR407280 35,407,892 11,988,286 0 0 
 

SRR407281 176,894,215 58,443,192 0 0 

Caulobacter crescentus 

 (C. vibrioides NA1000) 

   
 

 
SRR1167750 2,656,902 1,995,944 58 1 

 
SRR1167751 4,274,091 4,073,158 31 1 

 
SRR1991280 13,538,820 5,663,671 35 9 

 
SRR1991278 17,278,060 6,483,702 22 8 

 
SRR1991279 20,443,469 9,454,087 0 7 

 
SRR1991277 22,993,484 9,509,804 2 7 

 
SRR1991275 20,703,090 11,464,530 155 18 

 
SRR1991276 80,717,688 19,773,223 72 26 
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Clostridium ljungdahlii  

DSM 13528 

   
 

 
SRR6286686 31,815,773 10,495,830 2 0 

 
SRR6286687 31,226,831 8,757,358 0 0 

 
SRR6286690 95,785,654 17,027,233 5 1 

 
SRR6286691 74,932,501 10,973,071 2 0 

 
SRR6286692 44,431,801 4,585,435 6 0 

 
SRR6286693 50,618,624 3,856,272 9 0 

Eubacterium limosum  

ATCC8486  

   
 

 
SRR5442631 129,922,465 97,381,460 0 0 

 
SRR5442632 31,128,811 23,304,526 87 0 

 
SRR5442633 156,504,637 124,161,794 107 0 

 
SRR5442634 37,692,055 29,855,609 85 0 

 
SRR5442635 141,679,752 121,011,679 19 0 

 
SRR5442636 34,849,334 29,649,625 9 0 

 
SRR5442637 142,722,087 29,159,603 22 0 

 
SRR5442638 34,892,020 29,159,603 17 0 

Flavobacterium johnsoniae  

UW101 

   
 

 
SRR10100140 19,043,505 760,599 2 0 

 
SRR10100141 14,410,982 722,297 1 0 

 
SRR10100142 26,216,828 1,352,373 5 0 

Halobacterium salinarum 
   

 
 

SRR2583990 19,815,990 623,873 197 0 
 

SRR2583992 20,619,543 356,811 44 0 
 

SRR2583993 10,916,190 201,457 29 0 
 

SRR2583995 10,325,125 395,820 138 0 
 

SRR2583998 17,025,028 198,763 28 0 
 

SRR2583999 17,474,431 408,640 94 0 
 

SRR2584009 21,546,550 408,605 150 0 
 

SRR2584010 9,974,124 156,456 45 0 
 

SRR2584012 24,563,352 771,967 356 0 

Haloferax volcanii DS2 
   

 
 

SRR10294592 24,325,319 7,148,962 154 0 
 

SRR10294593 108,269,604 62,282,106 136 0 
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SRR10294594 4,480,382 2,298,388 133 0 

 
SRR10294595 8,990,526 3,836,447 205 0 

 
SRR10294596 9,421,109 1,032,894 174 0 

 
SRR10294597 16,070,885 6,581,436 240 0 

 
SRR10294598 15,432,004 5,689,637 353 0 

Mycobacterium abscessus  

ATCC 19977 

   
 

 
SRR2392990 24,739,218 2,039,285 52 4 

 
SRR2392989 33,032,537 3,252,765 71 2 

Mycobacterium smegmatis 

 MC2 155 

   
 

 
ERR599190 99,829,689 7,770,333 25 9 

 
ERR599192 80,612,378 13,624,091 2028 42 

Pseudomonas aeruginosa 

ATCC33988/AO1 

   
 

 
SRR5356894 85,820,972 2,543,266 1028 5 

 
SRR5356904 95,133,754 3,316,735 690 3 

 
SRR5356888 65,592,402 3,547,592 864 11 

 
SRR5356908 98,145,010 3,808,674 844 5 

 
SRR5356898 106,010,338 3,911,912 890 6 

 
SRR5356892 111,201,922 4,033,941 710 0 

 
SRR5356902 130,257,169 4,236,850 817 10 

 
SRR5356900 145,025,585 4,758,652 812 16 

 
SRR5356896 135,235,702 4,836,495 586 11 

 
SRR5356906 124,715,511 4,939,063 547 7 

 
SRR5356893 90,928,652 5,229,127 87 1 

 
SRR5356886 94,572,638 5,726,344 494 17 

 
SRR5356907 73,952,429 6,253,598 98 3 

 
SRR5356890 136,181,328 6,998,736 292 29 

 
SRR5356897 101,520,011 7,997,013 38 4 

 
SRR5356903 71,767,127 9,632,036 4 2 

 
SRR5356887 62,093,655 12,741,784 324 12 

 
SRR5356885 92,012,581 12,777,043 191 11 

 
SRR5356905 90,030,430 13,969,059 214 3 

 
SRR5356901 94,948,217 14,385,074 212 8 

 
SRR5356891 83,809,807 14,982,012 267 11 
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SRR5356899 83,560,401 15,036,413 329 12 

 
SRR5356889 100,563,944 19,122,838 341 20 

 
SRR5356895 106,331,232 25,860,477 166 15 

Pseudomonas fluorescens  

F113 (SBW25) 

   
 

 
ERR1797531 13,719,271 3,375,883 166 0 

 
ERR1797530 27,730,412 5,573,534 106 0 

 
ERR1797529 37,747,215 7,943,240 84 0 

 
ERR1797532 24,135,343 7,618,436 69 0 

Salmonella enterica subsp. enterica 

serovar typhimurium str. LT2 

   
 

 
SRR4417735 32,704,873 18,517,302 56 2 

 
SRR4417736 17,593,796 9,729,040 0 1 

 
SRR4417737 31,420,973 13,462,771 65 3 

 
SRR4417738 27,566,313 13,911,214 28 2 

 
SRR5090708 191,796,596 63,046,643 42 66 

 
SRR5090709 174,834,326 63,385,584 51 56 

Staphylococcus aureus subsp. aureus 

NCTC 8325 

   
 

 
SRR1265836 13,081,432 592,248 1 0 

 
SRR1265837 9,430,867 1,463,752 1 0 

 
SRR1265839 10,954,130 749,828 0 0 

 
SRR1265840 14,696,988 428,145 0 0 

 
SRR1265842 12,124,389 1,804,100 0 0 

 
SRR1265843 9,563,522 622,701 1 0 

 
SRR1265846 12,906,461 1,742,443 0 0 

 
SRR1265847 16,000,000 718,000 0 0 

 
SRR1265848 22,788 1,021 0 0 

 
SRR2733429 16,000,000 481,370 0 0 

 
SRR2733430 16,000,000 477,822 0 0 

 
SRR2733431 13,928,237 416,958 0 0 

 
SRR2733432 16,000,000 1,271,621 4 0 

 
SRR2733433 16,000,000 1,276,102 5 0 

 
SRR2733434 16,000,000 1,261,907 4 0 

 
SRR2733435 16,000,000 1,264,061 4 0 

 
SRR2733436 6,285,308 500,716 0 0 
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SRR2733445 16,000,000 482,054 1 0 

 
SRR2733446 16,000,000 482,892 1 0 

 
SRR2733447 16,000,000 483,453 0 0 

 
SRR2733448 4,091,470 121,372 0 0 

 
SRR2733449 16,000,000 1,293,590 2 0 

 
SRR2733450 16,000,000 1,301,908 2 0 

 
SRR2733451 16,000,000 1,306,651 1 0 

 
SRR2733452 2,132,733 167,316 0 0 

 
SRR2733460 16,000,000 669,493 1 0 

 
SRR2733461 13,895,704 585,110 1 0 

 
SRR2733462 16,000,000 1,903,635 1 0 

 
SRR2733463 16,000,000 1,862,912 1 0 

 
SRR2733464 16,000,000 1,904,336 0 0 

 
SRR2733465 4,313,498 472,712 0 0 

 
SRR2733471 16,000,000 3,099,260 0 0 

 
SRR2733472 16,000,000 3,107,825 2 0 

 
SRR2733473 9,946,206 1,888,373 1 0 

 
SRR2733474 16,000,000 2,027,267 3 0 

 
SRR2733475 16,000,000 2,040,915 5 0 

 
SRR2733476 9,098,581 1,133,138 2 0 

Streptococcus pneumoniae  

D39 

   
 

 
SRR2992164 6,399,746 5,227,238 1554 0 

 
SRR3031488 4,723,164 3,815,913 2242 0 

 
SRR3031489 5,969,494 2,482,818 2952 0 

Streptomyces clavuligerus 

ASM169367v1 

   
 

 
SRR8718525 295,724,334 16,486,892 43 0 

 
SRR8718526 307,178,979 24,196,090 50 0 

 
SRR8718527 253,508,213 12,335,014 128 0 

 
SRR8718528 278,275,008 11,777,616 152 0 

 
SRR8718529 270,412,414 10,246,762 213 0 

 
SRR8718530 247,353,047 9,277,273 5 0 

 
SRR8718531 238,332,934 10,865,692 237 0 

 
SRR8718532 265,467,800 14,027,593 194 0 
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Streptomyces coelicolor  

A3(2) 
 

SRR2043967 21,467,666 361,454 5 0 
 

SRR2043969 22,247,790 559,374 26 1 
 

SRR2043966 19,101,972 601,934 4 0 
 

SRR2043968 23,725,610 651,147 8 1 

Streptomyces griseus subsp. griseus 

NBRC 13350 

   
 

 
SRR10212831 143,788,818 4,699,624 10 0 

 
SRR10212832 187,573,750 11,039,479 66 1 

 
SRR10212833 155,225,446 3,769,262 22 1 

 
SRR10212834 162,820,587 8,578,068 3 0 

 
SRR10212835 178,011,502 11,851,509 60 2 

 
SRR10212836 191,018,264 10,834,240 40 1 

 
SRR10212837 207,591,209 13,867,575 20 0 

 
SRR10212838 146,481,080 6,828,396 10 1 

Streptomyces tsukubensis 
   

 
 

SRR5443325 125,024,824 2,171,449 20 0 
 

SRR5443326 124,524,054 1,990,028 58 0 
 

SRR5443327 132,160,059 3,971,304 61 0 
 

SRR5443328 113,065,267 1,648,784 31 0 
 

SRR5443329 162,942,510 12,977,918 97 0 
 

SRR5443330 166,664,595 11,422,798 80 0 
 

SRR5443331 146,033,026 2,573,723 49 0 
 

SRR5443332 199,958,654 7,648,370 13 0 

Streptomyces venezuelae  

ATCC 10712 

   
 

 
SRR1021839 319,268,737 258,412,481 0 0 

 
SRR1021840 214,371,450 198,785,737 0 0 

 
SRR1021841 329,759,627 273,382,674 1 0 

 
SRR1021842 166,241,490 138,028,609 1 0 

 
SRR1021843 408,127,842 348,866,580 2 0 

 
SRR1021844 304,119,238 258,439,907 0 0 

 
SRR1021845 238,259,689 198,953,437 1 0 

 
SRR1021846 168,577,692 144,243,170 0 0 
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Synechocystis sp. 

PCC 6803 
 

ERR2736130 67,594,046 40,391,662 147 0 
 

ERR2736131 102,553,513 65,302,494 55 0 
 

ERR2736132 74,184,736 43,438,600 158 0 
 

ERR2736133 96,384,647 56,788,237 105 0 
 

ERR2736134 105,335,418 47,130,902 335 0 

 

Table S6: Species-specific genome information with genome size, number of annotated proteins within a genome, GC-content, 

cell wall based gram category, NCBI reference genome sequence number and corresponding assembly number. 

Species 

Genome 

Size 

[Mb] 

Proteins 
GC 

Content 
Gram 

NCBI Reference 

Sequence 
Assembly 

Halobacterium 

salinarum 
2.01 2,095 67.9 

gram-

negative 
NC_002607.1 GCF_000006805.1 

Streptococcus 

pneumoniae D39 
2.06 1,861 40 

gram-

positive 
NC_003098.1 GCF_000014365.2 

Staphylococcus 

aureus subsp. 

aureus NCTC 8325 

2.82 2,767 32.9 
gram-

positive 
NC_007795.1 GCF_000013425.1 

Haloferax volcanii 

DS2 
2.85 2,883 66.6 

gram-

positive 
NC_013967.1 GCF_000025685.1 

Synechocystis sp. 

PCC 6803 
3.85 3,559 47.5 

gram-

negative 
NC_000911.1 GCF_000009725.1 

Acetobacterium 

woodii DSM 1030 
4.04 3,564 39.3 

gram-

positive 
NC_016894.1 GCA_000247605.1 

Caulobacter 

crescentus 

(C. vibrioides 

NA1000) 

4.04 3,886 67.2 
gram-

negative 
NC_011916.1 GCF_000022015.1 

Bacillus subtilis 

subsp. subtilis str. 

168 

4.22 4,237 43.5 
gram-

positive 
NC_000964.3 GCF_000009055.1 

Clostridium 

ljungdahlii DSM 

13528 

4.63 4,116 31.1 
gram-

positive 

 

NC_014328.1 
GCF_000143685.1 

Escherichia coli str. 

K-12 substr. 

MG1655 

4.64 4,242 50.8 
gram-

negative 
NC_000913.3 GCF_000005845.2 
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Eubacterium 

limosum 

ATCC8486  

4.74 4,419 46.9 
gram-

positive 
NZ_LR215983.1 GCF_000807675.2 

Salmonella enterica 

subsp. enterica 

serovar 

Typhimurium str. 

LT2 

4.86 4,446 52.2 
gram-

negative 
NC_003197.2 GCF_000006945.2 

Mycobacterium 

abscessus ATCC 

19977 

5.07 4,920 64.1 
gram-

positive 
NC_010397.1 GCF_000069185.1 

Flavobacterium 

johnsoniae UW101 
6.10 5,091 34.1 

gram-

negative 
NC 009441.1 GCF_000016645.1 

Pseudomonas 

aeruginosa 

ATCC33988/AO1 

6.26 5,572 66.6 
gram-

negative 
NC_002516.2 GCF_000006765.1 

Bacteroides 

thetaiotaomicron 

VPI-5482 

6.26 4,646 42.8 
gram-

negative 
NC_004663.1 GCF_000011065.1 

Pseudomonas 

fluorescens F113 

(SBW25) 

6.85 5,919 60.8 
gram-

negative 
NC_012660.1 GCF_000009225.2 

Streptomyces 

clavuligerus 

ASM169367v1 

6.88 5,529 72.7 
gram-

positive 
NZ_CP016559.1 GCF_001693675.1 

Mycobacterium 

smegmatis MC2 

155 

6.99 6,480 67.4 
gram-

positive 
NC_008596.1 GCF_000015005.1 

Streptomyces 

tsukubensis 
7.96 6,239 71.9 

gram-

positive 
NZ_CP020700.1 GCF_003932715.1 

Streptomyces 

venezuelae ATCC 

10712 

8.22 7,141 72.5 
gram-

positive 
NZ_CP029197.1 GCF_008639165.1 

Streptomyces 

griseus subsp. 

griseus NBRC 

13350 

8.55 6,959 72.2 
gram-

positive 
NC_010572.1 GCF_000010605.1 

Streptomyces 

coelicolor A3(2) 
8.67 7,767 72.1 

gram-

positive 
NC_003888.3 GCF_000203845.1 
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Table S7: Frame relation of mother gene and overlap calculated in percentage per species. Compared is the distribution of all 

eORFs possibly predicted per species to those considered actual translated (based on matching thresholds RRKM and 

coverage). 

Species 
All 

eORFs 
Translated 

All 

eORFs 
Translated 

All 

eORFs 
Translated 

 sas11 sas12 sas13 

B. subtilis 26.3 0 36.6 50 37.1 50 

C. cresentus 19.4 12.6 64.7 68.8 16 18.6 

H. salinarium 29.1 24.3 54.2 61.9 16.7 13.7 

H. volcanii 21.8 17.9 63 64.4 15.2 17.7 

M. smegamtis 30.9 15 51.9 60.7 17.2 24.4 

M. abscessus 29.6 32.5 43.4 53.2 27 14.3 

S. aureus 28.3 28.6 45.7 42.9 26 28.6 

P. aeruginosa 25.3 19.7 63.2 68.1 11.5 12.2 

P. fluorescens 6 13.2 46.6 69.1 47.4 17.6 

S. typhimurium 32.7 29.3 33.7 31.5 33.6 39.2 

C. ljungdahlii 21.5 26.3 44.9 36.8 33.7 36.8 

A. woodi 23.2 20.4 38.5 29 38.4 50.6 

S. coelicolor 22.6 20 67.9 66.7 9.5 13.3 

S. venezuelae 19.7 0 72.4 100 7.9 0 

S. tsukubensis 27.1 17.7 63.5 73.5 9.4 8.8 

S. griseus 22.7 13 68.5 79.5 8.8 7.5 

S. clavuligerus 21.7 17.8 69.3 70.8 9 11.4 

E. coli BW25513 26.2 23.7 38.4 37 35.5 39.3 

E. coli MC4100 26.1 17.3 38.3 43.8 35.6 38.9 

E. coli MG1655 26.4 23.9 38.3 38.4 35.3 37.8 

Synechocystis spp. 23.3 22.7 39.3 36.4 37.4 40.9 

S. pneumoniae 26.2 18.7 38.6 32 35.1 49.4 

E. liosum 22.4 15.1 40.8 32.5 36.8 52.4 

F. johnsoniae 27 20 39 40 34 40 

 

Table S8: Location information for eORFs of interest based on re-occurrence analysis. Also provided are corresponding mother 

gene information, their frame relation, the assigned eORF name, length [nt] and the genome ID they were identified in.  

  eORF info mother gene info   

Genome Name Position 1 Position 2 Strand Position 1 Position 2 Strand 

eORF 

length 

[nt] 

Localisation 

relation 

NC_011916.1 Caulobacter1 486162 486371 + 486159 487127 - 209 sas13 

NC_011916.1 Caulobacter2 3294604 3294696 + 3294602 3296371 - 92 sas11 

NC_002607.1 Halobacterium 1060409 1060639 + 1060402 1060698 - 230 sas12 



Supplementary Files 
 

XXX 

 

NC_013967.1 Haloferax 1904214 1904441 + 1903778 1905196 - 227 sas12 

NC_008596.1 Mycobacterium1 4054253 4054501 - 4053599 4054810 + 248 sas13 

NC_008596.1 Mycobacterium2 5456131 5456256 + 5456127 5456711 - 125 sas12 

NC_008596.1 Mycobacterium3 6147012 6147326 - 6146474 6147355 + 314 sas11 

NC_008596.1 Mycobacterium4 6248395 6248556 - 6247672 6250494 + 161 sas13 

NC_008596.1 Mycobacterium5 6417181 6417426 - 6416588 6417490 + 245 sas12 

NC_010397.1 Mycobacterium6 236032 236127 - 235976 236137 + 95 sas12 

NC_010397.1 Mycobacterium7 362749 362841 - 362594 363481 + 92 sas12 

NC_010397.1 Mycobacterium8 436440 436646 + 436073 437515 - 206 sas12 

NC_016830.1 Pseudomonas1 2527588 2528136 + 2527546 2528220 - 548 sas13 

NC_002516.2 Pseudomonas2 897654 897875 + 897335 898423 - 221 sas12 

NC_003197.2 Salmonella1 2096306 2096539 + 2096293 2097222 - 233 sas11 

NC_003197.2 Salmonella2 2165530 2165721 + 2165290 2166240 - 191 sas13 

NC_007795.1 Staphylococcus1 710601 710693 - 710153 712093 + 92 sas11 

NC_007795.1 Staphylococcus2 1457446 1457586 + 1456670 1457623 - 140 sas11 

NC_003888.3 Streptomyces1 3636411 3636536 - 3636329 3636847 + 125 sas11 

NC_003888.3 Streptomyces2 3669722 3669895 + 3669717 3670676 - 173 sas11 

NC_003888.3 Streptomyces3 6418707 6419006 - 6418515 6419081 + 299 sas13 

NC_003888.3 Streptomyces4 7518673 7518804 - 7518030 7519466 + 131 sas11 

NZ_CP016559.1 Streptomyces5 154160 154375 + 153172 156768 - 215 sas12 

NZ_CP016559.1 Streptomyces6 864676 865218 + 864673 866106 - 542 sas13 

NZ_CP016559.1 Streptomyces7 1424833 1425057 + 1424772 1427657 - 224 sas12 

NZ_CP016559.1 Streptomyces8 2730822 2731880 + 2730801 2732177 - 1058 sas13 

NZ_CP016559.1 Streptomyces9 2772254 2772346 - 2771679 2772449 + 92 sas12 

NZ_CP016559.1 Streptomyces10 3713295 3713516 - 3712075 3713586 + 221 sas12 

NZ_CP016559.1 Streptomyces11 3818543 3818716 + 3818520 3819389 - 173 sas11 

NZ_CP016559.1 Streptomyces12 3945269 3945400 + 3945130 3945879 - 131 sas12 

NZ_CP016559.1 Streptomyces13 4688749 4688907 + 4688082 4689164 - 158 sas12 

NZ_CP016559.1 Streptomyces14 4819691 4820374 - 4819169 4820410 + 683 sas13 

NC_010572.1 Streptomyces15 5043512 5043790 + 5043490 5044134 - 278 sas12 

NC_010572.1 Streptomyces16 5911631 5911807 - 5910855 5911820 + 176 sas12 

NZ_CP020700.1 Streptomyces18 2724669 2724899 + 2724335 2725168 - 230 sas12 

NZ_CP020700.1 Streptomyces19 4152999 4153373 + 4152980 4153381 - 374 sas12 

NC_000913.3 Escherichia1 279212 279502 + 279178 279681 - 290 sas12 

NC_000913.3 Escherichia2 906421 906522 + 905740 906753 - 101 sas13 

NC_000913.3 Escherichia3 1978552 1978842 + 1978518 1979021 - 290 sas12 

NC_000913.3 Escherichia4 3583856 3584146 - 3583677 3584180 + 290 sas12 

NZ_HG738867.1 Escherichia5 293575 293691 - 292234 293694 + 116 sas13 

NZ_HG738867.1 Escherichia6 2983427 2983669 + 2983234 2984493 - 242 sas12 

NZ_CP009273.1 Escherichia7 386795 386971 - 385707 387167 + 176 sas12 

NZ_CP009273.1 Escherichia8 3791132 3791374 - 3790308 3791567 + 242 sas12 
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Table S9: List of concentration measurements during RIBO-Seq and RNA-Seq duplicate sample processing. Experimental 

steps are provided to assigned values during progressing processing.    

Experimental step Sample I Sample II 

RNA extraction of RNA 

samples 
20883.3 ng/µl 986.7ng/µl 

RNA extraction of RIBO 

samples 
199.4 ng/µl 110.4 ng/µ 

RIBO samples after size 

selection 
52.2 ng/µl 21.4 ng/µl 

RNA samples after DNA 

digestion 
27.9 ng/µl 94 ng/µl 

RNA samples after 16S control 

PCR 
220 ng/µl 272.3 ng/µl 

RIBO samples after rRNA 

depletion (Nanodrop) 
5.6 ng/µl 5.4 ng/µl 

RNA samples after rRNA 

depletion (Nanodrop) 
7.6 ng/µl 15.9 ng/µl 

RIBO samples after rRNA 

depletion (Qubit) 
not detectable not detectable 

RNA samples after rRNA 

depletion (Qubit) 
3.63 ng/µl 6.99 ng/µl 

RIBO samples after 

phosphorylation 
4.5 ng/µl 4.4 ng/µl 

RNA samples after 

phosphorylation 
2.6 ng/µl 6.9 ng/µl 

Library Prep RIBO samples 

(Qubit) 
1.57 ng/µl 2.93 ng/µl 

Library Prep RNA samples 

(Qubit) 
6.38 ng/µl 13.53 ng/µl 
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Table S10: TruSeq Small RNA Library Prep Kit -Set A (Illumina) specific Indices used to label the four samples prepared 

differently to ensure appropriate read assignment after sample multiplexing.  

Sample Index number Index sequence 

RIBO I RPI10 TAGCTT 

RIBO II RPI11 GGCTAC 

RNA I RPI9 GATCAG 

RNA II RPI2 CGATGT 

 

Table S11: Percentage calculation of reads present within samples assigned to their respective RNA category. The original 

table is obtained from (Glaub et al., 2020). 

Sample Genes tRNA rRNA Sample Genes tRNA rRNA Sample Genes tRNA rRNA 

SRR1734437 29.04 23.35 45.42 SRR4023280 27.94 22.3 44.04 SRR1200739 20.49 35.33 41.84 

SRR1734438 35.16 27.89 34.57 SRR1613263 81.76 0.41 14.64 SRR1200750 16.36 34.66 46.52 

SRR1734439 52.05 16.59 29.42 SRR1613265 82.41 0.44 13.89 SRR1200751 18.35 39.41 41.13 

SRR1734440 9.54 68.82 20.34 SRR1613266 77.73 0.39 18.84 SRR1583082 61.92 23.19 11.01 

SRR1734441 42.12 17.63 37.69 SRR1613268 84.34 0.42 11.54 SRR1583083 53.8 23.75 17.38 

SRR1734442 41.29 14.97 41.8 SRR1613269 35.3 0.18 63.2 SRR1583084 58.44 21.15 17.24 

SRR1734443 36.6 18.05 43.01 SRR1613270 83.64 0.39 12.41 SRR4190324 33.84 12.72 50.49 

SRR1734444 48.09 15.37 34.89 SRR1613272 84 0.42 12.01 SRR4190325 43.07 19.28 32.08 

SRR4023274 59.17 16.6 22.73 SRR1613277 72.1 0.72 13.03 SRR4190326 28.46 15.25 51.71 

SRR1613278 79.97 0.68 16.55 SRR1200730 25.13 33.65 38.45 SRR364363 51.95 7.93 36.79 

SRR1613280 82.73 0.67 13.5 SRR1200731 18.09 29.53 50.38 SRR364364 45.11 18.2 32.11 

SRR1613281 78.78 0.62 17.9 SRR1200738 25.84 18.61 52.64 SRR364365 55.6 8.37 30.36 

SRR1613283 85.17 0.7 10.95 SRR2016457 42.69 10.83 40.66 SRR364366 48.46 19.03 27.52 

SRR1613285 61.99 0.48 35.39 SRR2016465 29.75 1.47 66.06 SRR364367 54.2 9.2 33.84 
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SRR1613287 73.35 0.36 23.54 SRR364370 62.91 12.15 20.76 SRR364368 63.72 11.34 19.7 

        SRR364369 38.67 5.81 53.95 

 

Table S12: Comparison of eORF prediction efficiency (calculated as the median) to genome-specific size or GC-content 

within genus Streptomyces.  

Species Median eORF amount GC-content Genome Size  

S. clavuligerus 140 72.7 6.88 

S. coelicolor 6.5 72.1 8.67 

S. griseus 21 72.2 8.55 

S. tsukubensis 53.5 71.9 7.96 

S. venezuelae 1 72.5 8.22 
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