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Abstract
In this article we report on a novel way to incorporate complex network structure into the analysis
of interacting particle systems. More precisely, it is well-known that in well-mixed/homogeneous/
all-to-all-coupled systems, one may derive mean-field limit equations such as Vlasov–Fokker
–Planck equations (VFPEs). A mesoscopic VFPE describes the probability of finding a single
vertex/particle in a certain state, forming a bridge between microscopic statistical physics and
macroscopic fluid-type approximations. One major obstacle in this framework is to incorporate
complex network structures into limiting equations. In many cases, only heuristic approximations
exist, or the limits rely on particular classes of integral operators. In this paper, we notice that there
is a much more elegant, and profoundly more general, way available due to recent progress in the
theory of graph limits. In particular, we show how one may easily enter complex network
dynamics via graphops (graph operators) into VFPEs.

1. Introduction

Interacting particle systems, or more generally, dynamical systems on graphs/networks, form one of the
major building blocks of modern science [1, 2]. Within the last three decades, they have permeated virtually
all disciplines, ranging from molecular scales [3] to neuroscience [4], systems biology [5], machine learning
[6], social science [7], epidemiology [8], and transportation networks [9] up to climate science scales [10].
For all-to-all coupled systems, lattice systems, and various special classes of network dynamics with similar
dynamics at each vertex, there is a well-developed theory to pass to a mean-field approximation in many
theoretical frameworks [11–16]. One considers the limit of an infinite graph [17]

n →∞

so the particle/vertex number tends to infinity. If one is interested in the probability density ρ = ρ(u, t) to
find a vertex in a certain dynamical state u ∈ R

k at time t, one may often derive a differential equation for ρ.
One common form for k = 1 is

∂tρ = −∂u(ρV(ρ)), (1)

where the map V can be derived from the dynamics of each vertex [11, 18]. If each vertex also is influenced
by Gaussian noise, a second-order term ∂uu(·) commonly appears as well in (1). The equation (1) is
sometimes referred to as Liouville equation, continuity equation [19], and/or Vlasov equation, while the
second-order equation is more known as Fokker–Planck and/or Kolmogorov equation. Here we shall refer
to this class of equations as Vlasov–Fokker–Planck equation (VFPEs).

Now it is evident that one would like to derive a far more general form of (1), which also takes into
account cases, where the adjacency matrix A = A(n) ∈ Rn×n of the interaction between finitely many
vertices is not just the the matrix of a full graph nor a highly symmetric structure such as a lattice, i.e., one
wants to derive mean-field limits for complex networks [20, 21]. There have been many recent steps
forward to achieve this goal. Several mathematical approaches have been successful providing rigorous
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proofs for VFPEs, where nonlocal integral terms appear to take into account the heterogeneous coupling
structure [14, 22]. However, a general theory, which would allow us to upgrade easily from particular cases
or standard all-to-all mean-field limit VFPEs, to modern complex network structures is still lacking.

In this note, we propose that a path to achieve an elegant extension of all classical approaches is to
incorporate an analytical approach to graph limit theory. Graph limit theory [23], i.e., taking n →∞, has
made significant progress in recent years. New limit structures for dense graphs via graphons [24], as well as
for sparse graphs [25–27], have recently appeared. The theory is relatively technical and convergence
notions are often hard to understand as they have relied on combinatorial structures [23]. Recently a new
approach to unify and extend graph limit theory was proposed by Backhausz and Szegedy [28]. Their idea
relies on viewing the adjacency matrix A(n) from an operator-theoretic perspective. In the simplest setting,
one takes a vector v in Rn and consider the 2 × n matrix formed from v and v�A(n). Sampling the columns
of this matrix uniformly at random generates a measure μv . Hence, one may view graphs also via their
associated measures. Different graphs, even of different sizes, can then be more easily compared as we only
view them through their action; see section 2 for more details and a brief review of the class of graphops
(graph operators), which we shall rely on. Backhausz and Szegedy show that in a suitably chosen metric,
large classes of graphs do have non-trivial subsequential limits

A(n) → A(∞) as n →∞,

where A(∞) can also be viewed as an operator, but now acting as an abstract operator on a function space.
We are going to show (formally) that exactly this viewpoint is the missing ingredient to start a general
theory of VFPEs, and related classes of evolution equations, as limits of finite-dimensional network
dynamics.

We are going to illustrate our reasoning primarily on a benchmark class of interacting particle systems,
the famous Kuramoto model of coupled oscillators [13, 19]. This model is widely studied and has served as
a benchmark case to understand self-organizing and adaptive nonlinear synchronization. It can be
embedded into a more general class of kinetic-type models. We shall see, how these kinetic models also fit
elegantly together with graphops. This approach really seems to break a barrier that has held back the
application of tools from dynamical systems, functional analysis, and evolution equations to broad classes of
large-scale network dynamics problems.

The paper is structured as follows: in section 2, we review the relevant parts of graphop theory. In
section 3, we show how this theory also provides an elegant framework to deal with network dynamics on a
finite-dimensional level, i.e., for finite graphs. For example, we show that the graphop viewpoint provides a
completely natural way to intertwine in one set of equations the dynamics on the network and the
correlation structure between network elements. Then we proceed to formally develop, why graphops do
generalize previous approaches to VFPEs in section 4. We conclude in section 5 with an outlook toward
future opportunities and challenges.

2. Graphs as operators

We build upon the theory of graphops from [28]. Let (Ω,F ,μ) be a probability space and let
Lp(Ω,R) = Lp(Ω) denote the usual Lebesgue space for p ∈ [1,∞]. A linear operator A : L∞(Ω) → L1(Ω) is
called P-operator if the operator norm

‖A‖∞→1 := sup
v∈L∞(Ω)

‖Av‖1

‖v‖∞

is finite. Key examples of P-operators are matrices, which we want to view as adjacency matrices of graphs.
Indeed, consider Ω = {1, 2, . . . , n}=: [n] for n ∈ N with the uniform measure μ[n] and sigma-algebra given
by the power set 2[n]. Then a vector v ∈ Rn defines a function v : [n] → R by v(j) = vj for j ∈ [n]. On
([n], 2[n],μ[n]) any matrix A ∈ Rn×n is a P-operator acting on (row) vectors via the usual rule

(vA)(j) =
n∑

k=1

v(k)Akj =

n∑
k=1

vkAkj.

Obviously, we can identify L∞([n]) and L1([n]) with Rn and finite-dimensional linear operators given by
matrices are bounded in the associated operator norm.

A key advantage of general P-operators are their convergence properties, when one considers sequences
of these operators via profiles. As an example, we consider again A ∈ Rn×n and any (row) vector v ∈ Rn,
then we have vA ∈ R1×n so that we may form a matrix M ∈ R2×n with rows v and vA. Now we sample
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columns of M uniformly, which yields a probability measure μv on R2. The (1-)profile of A is given by the
collection of measures {μv : v ∈ R2}. One may generalize the notion of a 1-profile to a k-profile Sk(A) for a
general P-operator where one uses k vectors v1, v2, . . . , vk as the first k rows and v1A, v2A, . . . , vkA as k
further rows. Hence, the matrix M becomes a matrix of size R2k×n; wlog one may restrict vj ∈ [−1, 1]n as
the results do not change upon scaling vectors. A random column in M yields a probability measure on R2k

and Sk(A) is the collection of all such measures.
For a general P-operator A, consider functions v1, . . . , vk, v1A, . . . vkA and let

D(v1, v2, . . . , vk, v1A, v2A, . . . , vkA) (2)

be the joint distribution of the 2k-tuple, which can be viewed as the pushforward (Tk,A)∗μ of the measure μ
under the map

Tk,A(x) = (v1(x), v2(x), . . . , vk(x), (v1A)(x), (v2A)(x), . . . , (vkA)(x)),

where x ∈ Ω. The k-profile Sk(A) is the set of all probability measures of the form (2), where we go through
all possible k-tuples of functions in L∞(Ω, [−1, 1]). In summary, the two crucial ideas are to view more
analytically graphs as operators and to use profiles to compare matrices/graphs/P-operators regardless of their
size. Let A, B be two P-operators. One defines a metric

dM(A, B) :=
∞∑

k=1

2−kdH(Sk(A),Sk(B)), (3)

where dH is the Hausdorff distance for X, Y ∈ P(Rk) (i.e., X, Y are subsets of probability measures on Rk)

dH(X, Y) := max

{
sup
x∈X

inf
y∈Y

dLP(x, y), sup
y∈Y

inf
x∈X

dLP(x, y)

}
(4)

and dLP is the Lévy–Prokhorov metric. This metric is actually quite natural and given for ν1, ν2 ∈ Rk by

dLP(ν1, ν2) := inf{ε > 0 : ν1(U) � ν2(Uε) + ε and ν2(U) � ν1(Uε) + ε ∀U ∈ Bk}, (5)

where Bk is the Borel sigma-algebra on Rk and Uε is the set of points having distance less than ε from U. It
is well-known that convergence in the Lévy–Prokhorov metric essentially is equivalent to weak convergence
of measures so to actually ensure the existence of non-trivial limits, it is well-balanced choice between
retaining some complexity in the limit, yet still having some form of mean-field object.

The definition of P-operators generalizes in a natural way to ‖A‖p→q. One may metrize the space of
P-operators via

dM(A, B) :=
∞∑

k=1

2−kdH(Sk(A),Sk(B)), (6)

and call the associated convergence notion action convergence. Then one can prove [28] that any sequence
{A(j)}∞j=1 with uniformly bounded norm ‖ · ‖p→q for p ∈ [1,∞) and q ∈ [1,∞] has a limit [28,
theorem 2.14]. This convergence is seen to generalize the theory of graphons and even graphings (classical
objects used for very sparse graphs) as well as many intermediate cases. For example, if we have a graphon
[23] W : Ω× Ω→ R with finite norm

‖W‖p :=

∫
Ω×Ω

W(x, y) dμ2, p ∈ [1,∞), q :=
p

p − 1
, (7)

then we can define an associated P-operator by

(f AW )(x) :=

∫
Ω

W(y, x)f (y) dμ. (8)

It is easy to see that the norm ‖AW‖p→q is finite in this case and AW is just an operator-theoretic viewpoint
on the Lp-graphon W. Again, compactness results hold for the case of ‖ · ‖p→q so that we get the existence of
a limiting graphon/P-operator.

There are also special classes of P-operators, which are particularly relevant. One important class are
graphops, which are positivity preserving and self-adjoint P-operators, which behave effectively like
undirected graphs. This makes sense since in the finite-dimensional case, adjacency matrices of undirected
graphs are graphops.

3



New J. Phys. 22 (2020) 053030 C Kuehn

Once we have graphops, it is natural to ask, how these operators are going to appear in dynamical
systems on networks. It is the main theme of this paper to understand their appearance in dynamics on a
formal level (rigorous proofs seem to be out of reach in full generality at this point but it is expected that
eventually such proofs will be available).

3. Microscopic network dynamics

We always denote the dynamical state of a vertex by uk(t) for k ∈ [n] and denote the current time by
t ∈ [0, T) with some fixed T > 0.

3.1. The Kuramoto model
The classical Kuramoto model considers oscillators on a circle so uk(t) ∈ S1 :=R/(0 ∼ 2π). The dynamics
is given by

duk

dt
=: u′

k = ωk +
p0

n

n∑
j=0

sin(uj − uk), (9)

where ωk are given internal frequencies of the individual oscillators and p0 � 0 is a parameter controlling
the coupling. The Kuramoto model on complex networks is usually written as follows [29]

u′
k = ωk + p

n∑
j=0

Akj sin(uj − uk), (10)

where p � 0 is a parameter controlling the coupling, which may contain a certain scaling in n depending
upon the type of graph defined by the adjacency matrix A = (Akj)k,j∈[n]. Of course, on a finite-dimensional
level the interpretation of adjacency matrices as graphops on ([n], 2[n],μ[n]), as discussed in section 2,
applies. So if we consider a matrix of phase differences

vjk := sin(uj − uk), V := (vjk)j,k∈[n],

this yields upon inserting it into the Kuramoto model

u′
k = ωk + p diag(AV), (11)

where diag(M) is the vector obtained from the elements on the diagonal of the matrix M. Note that (V, AV)
contains the same information as

(v�·1 , v�·2 , . . . , v�·n , v�·1 A, v�·2A, . . . , v�·nA)

where we used A = A� as our graphs are undirected. Hence, (V, AV) can be viewed as an n-profile if we
uniformly sample from it. Since the matrix of phase differences V does evolve in time, we see that the input
to the dynamics of each oscillator is (in addition to its intrinsic frequency) driven by moving through a
subset of the n-profiles. Even beyond identifying the driving, we can go further by setting

ω = (ω1, . . . , ωn), u = (u1, . . . , un), d = ((AV)11, . . . , (AV)nn),

to re-write our differential equations as u′ = ω + pd, so right-multiplication and time-differentiation of the
1-profile (u, uA) gives

(u, (uA)) = (u′, (uA)′) = (ω + pd,ωA,+pdA).

Therefore, this defines an evolution equation for the pair (u, uA), which yields an evolution equation on the
space of measures (T1,A)∗μ also written by

D(u, uA) =
1

n

n∑
j=1

δuj,(uA)j (12)

which are associated to a 1-profile. In summary, the dynamics of the Kuramoto model on finite graphs
induces an evolution equation on measures, which is somewhat different from using the classical empirical
measure

1

n

n∑
j=1

δuj ,
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which keeps only track of the positions. Indeed, the 1-profile also contains the action of A on u given by uA
and thereby the relevant correlation structure embodied by the joint empirical distribution (aka the ‘JEDi’)
given by (12). The importance of this novel viewpoint of the dynamics is that once we are on a graph, then
we have to intertwine structure and dynamics [30], thereby capturing how vertices respond to connectivity.
We will see that this theme re-appears on other modeling scales and for VFPEs below.

3.2. The Cucker–Smale model
The Cucker–Smale model [31] is one well-known model for swarming. One variant of it reads

u′′
k =

1

n

n∑
j=1

(u′
j − u′

k)ψ(|uk − uj|),

where uk = uk(t) is the position of agent k at time t and ψ is a given function regulating the type of
communication between different agents. More generally, one may pose the model on a network via

u′′
k =

1

n

n∑
j=1

akj(u′
j − u′

k)ψ(|uk − uj|).

We set ãkj := akjψ(|uk − uj|), and obtain by re-writing the model in vectorized form as a first-order system
and by right-multiplication with A, the following set of equations

u′ = v,

v′ =
1

n

[
Ãv − Diag(ÃÃ�)u

]
,

(uA)′ = vA,

(vA)′ =
1

n

[
Ã(vA) − Diag(ÃÃ�)(uA)

]
,

(13)

where Diag(M) denotes the matrix obtained from M by only keeping the entries on the diagonal and setting
all other entries to zero. Of course, the equations for (uA, vA) still depend directly on values of u via the
definition of Ã. It is interesting to see that we effectively obtain now an evolution of measures via the
2-profile (u, v, uA, vA). The structure of the equations entails that the second-order nature of the model
transfers to profiles, i.e., there is a constraint on the 2-profile in the same sense as for usual second-order
ODEs.

3.3. Kinetic models
Instead of particular models, one can also look at broader classes of interacting systems frequently
employed in kinetic theory [11, 16, 32]. A form commonly found in the literature is:

u′
k =

∑
j�=k

f (uj, uk). (14)

Evidently, one can extend this to a model with a complex network structure by writing

u′
k =

n∑
j=1

akjf (uj, uk). (15)

In this general abstract form, if we set f(uj, uk)=: fjk = fjk(u) we get with a matrix F(u) = (fjk(u)) that

u′ = diag(AF(u)) and (uA)′ = diag(AF(u))A,

as the evolution equation via the 1-profile (u, uA). Of course, this formulation is far too general to see any
special structure regarding the evolution equation induced on the measures contained in profiles. If we
linearize the evolution equations around a steady state u∗ we obtain

U ′ = Du

[
diagAF(u)

]
u=u∗

U and (UA)′ = Du

[
diagAF(u)

]
u=u∗

UA.

So locally near steady states the evolution equation for the 1-profile are identical for both components,
regardless of the precise underlying kinetic/particle model. This already hints at the fact, that profiles and
the operator-theoretic viewpoint via graphops is well-suited for nonlinear dynamics and functional analysis
techniques. This viewpoint will re-appear again for VFPEs below.
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4. Mesoscopic network dynamics

Having observed that graphops and profiles can provide a very elegant re-interpretation as well as
augmentation of finite-dimensional network dynamics models, we now proceed to formally take limits
n →∞ to obtain ‘mean-field’ models. We consider the mesoscale, in the sense that we are no longer
interested in the state of individual vertices on a graph but only in the probability distribution of the state of
a vertex.

4.1. The Kuramoto model
We have already seen in section 3.1 that the classical Kuramoto model provides a good starting point. It is
well-studied, and its homogeneous mean-field limiting equation is well-known. We recall its classical formal
derivation [13, 19] here because this derivation will be important for us to reflect back upon in the context
of graphops below.

4.1.1. All-to-all coupling
Starting from (9), suppose we have very large number of oscillators and their intrinsic frequencies are
distributed according to a density g = g(ω) with g(ω) = g(−ω). One introduces the complex order
parameter as

reiψ :=
1

n

n∑
j=1

eiuj . (16)

Multiplying the order parameter by eiuk , and taking imaginary parts, one easily checks that now the
Kuramoto model (9) can be re-written as

u′
k = ωk + p0r sin(ψ − uk). (17)

In particular, the kth oscillator feels all other oscillators via a single mean-field parameter. Next, let

ρ(u, t,ω) du

denote the fraction of oscillators with frequency ω between u and u + du at time t. Then by construction ρ
is a probability density ∫ 2π

0
ρ(u, t,ω) du = 1, ρ � 0.

In the limit n →∞, we can formally re-write the order parameter (16) as

r(t)eiψ(t) =

∫ 2π

0

∫
R

eiuρ(u, t,ω)g(ω) dω du. (18)

Indeed, the last formula can be derived as a limit of the sum in (16) using the law of large numbers [19].
Yet, it is very crucial to note that this law of large numbers argument only gives us a mean-field as it
produces only the mean of the order parameter completely discarding correlations. Furthermore, the
approach implicitly assumed that each random variable has finite variance. Yet, if these assumptions hold
then we know that the resulting Liouville/continuity equation for the probability density ρ for the
Kuramoto model should be given by

∂tρ = −∂u(ρv), v(u, t,ω) :=ω + p0r sin(ψ − u).

This equation can be re-written using the definition of r(t) in (18), multiplying by a suitable exponential
and taking the imaginary part as

∂tρ = −∂u

(
ρ

(
ω + p0

∫ 2π

0

∫
R

sin(ũ − u)ρ(ũ, t, ω̃)g(ω̃)dω̃dũ

))
. (19)

The previous argumentation can be made fully rigorous to derive the mean-field Vlasov-type equation (19).
Yet, the argument is highly non-trivial and the currently most elegant way of proof proceeds via a so-called
Dobrushin-type bound [33, 34], which is effectively a Gronwall estimate on a metric space of measures,
usually carried out in a Wasserstein metric [11, 35, 36]. We remark that if one would consider the
Kuramoto model with stochastic perturbations, then one is going to obtain a (nonlinear) Fokker–Planck
equation [18], which appears in many classical stochastic coupled oscillator models, where the coupling
appears through a mean field, such as the Desai–Zwanzig model [37]. Hence, one sometimes refers to (19)
as a Vlasov–Fokker–Planck (VFPE) equation.
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4.1.2. Complex network heuristics
Having dealt with the classical all-to-all coupled VFPE case, it is natural to think about extensions to treat
the Kuramoto model (10) on complex networks. Recall that we have assumed that the underlying graph is
undirected and unweighted so that the adjacency matrix A = (Aij)i,j∈[n] is symmetric and binary Aij ∈ {0, 1}
for all i, j ∈ [n]. There exists a known formal approach [29] to try to ‘save’ the classical mean-field
argument from section 4.1.1. One defines a local order parameter as

rkeiψk :=
n∑

j=1

Akje
iuj .

If the graph is sufficiently well-connected and effectively still behaves like an all-to-all coupled system, one is
then tempted to make the ansatz of a single global field

reiψ =
1

κk
rkeiψk ,

where κk is the degree of vertex k, i.e., the global field is locally proportional to the local field weighted by
the degree. With this assumption one obtains that (17) can now be written as

u′
k = ωk + p0rκk sin(ψ − uk).

In particular, these steps motivate that one might want to use the local degree of a vertex as the next
approximation criterion to derive a mean field [38]. Hence, one option is to consider a probability density
ρ(u, t,ω,κ) of oscillators having phase u, frequency ω, and degree κ at time t with the usual conditions

∫ 2π

0
ρ(u, t,ω,κ) du = 1, ρ � 0.

Evidently one cannot really do much with standard tools as just defining ρ still does not lead to a
mean-field VFPE. If one assumes that the network is uncorrelated and has a degree distribution d(κ), then
the probability that an edge has its end a vertex of phase u, degree κ and frequency ω at time t is

κd(κ)

〈κ〉 g(ω)ρ(u, t,ω,κ)

where 〈κ〉 is the average degree of a vertex in the graph. This suggests that it might be helpful to define the
order parameter now as

reiψ :=

∫ 2π

0

∫
R

∫ ∞

0

κd(κ)

〈κ〉 g(ω)ρ(u, t,ω,κ) dω dκ du.

Now the same trick as previously, multiplying by an exponential and taking imaginary parts, yields VFPE
equation

∂tρ = −∂u

(
ρ(ω + pκr sin(ψ − u))

)
.

The right-hand side of the VFPE could again be expressed now as some integral. Indeed, one may formally
write the equation for the evolution of the average phase in the limit n →∞ as

u′ = ω +
pκ

〈κ〉

∫ 2π

0

∫
R

∫ ∞

0
g(ω̃)d(κ̃)κ̃ρ(ũ, t, ω̃, κ̃) sin(ũ − u) dκ̃ dũ dω̃, (20)

which arises as a formal replacement of the sum in the Kuramoto model (10). This suggests a closed VFPE
in the form

∂tρ = −∂u

(
ρ

(
ω +

p

〈κ〉

∫ 2π

0

∫
R

∫ ∞

0
g(ω̃)d(κ̃)κ̃ρ(ũ, t, ω̃, κ̃) sin(ũ − u) dκ̃ dũ dω̃

))
. (21)

The last considerations already show an emerging theme that we shall exploit later on: there is an effective
integral operator acting on the density ρ, which depends upon the graph structure, in the mean-field VFPE
equation on complex networks. In comparison to the classical all-to-all coupled VFPE (19), we have
replaced in (21)

ρ(ũ, t, ω̃) by

∫ ∞

0

d(κ̃)κ̃

〈κ〉 ρ(ũ, t, ω̃, κ̃) dκ̃.

7
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Of course, this replacement entails implicit assumptions, most prominently that the degree distribution
alone is enough to approximate the dynamics, e.g., higher-order correlations between degrees are discarded.
So far, it has been difficult to validate such assumptions mathematically beyond simulations, which shows
that a more general abstract framework may be needed.

4.1.3. Kuramoto on graphons
Regarding the previous considerations in section 4.1.2 on integral operators, it is now no surprise, how the
VFPE equation on graphons should look [22]. Let W : Ω× Ω→ R be a graphon as defined in (7) and recall
that it defines an associated P-operator AW via (8). For graphons we know that we may identify Ω = [0, 1]
with the unit interval. So for x ∈ Ω one now obtains the VFPE

∂tρ = −∂u

(
ρ

(
ω + p

∫ 2π

0

∫
R

∫
Ω

g(ω̃)W(x, x̃)ρ(ũ, t, ω̃, x̃) sin(ũ − u) dx̃ dũ dω̃

))
(22)

for a density ρ = ρ(u, t,ω, x) of oscillators having phase u, frequency ω, and graphon position x at time t.
The position x ∈ [0, 1], where we evaluate a graphon has the natural interpretation in the graph limit as the
position/index of a vertex, while W(x, y) provides a limiting version of the adjacency matrix, i.e., how x is
connected to y. In comparison to the classical all-to-all coupled VFPE (19), we have replaced in (22)

ρ(ũ, t, ω̃) by

∫
Ω

W(x, x̃)ρ(ũ, t, ω̃, x̃) dx̃.

It is important to observe that (22) still relies crucially on the fact that the graph limit can be encoded by a
single scalar-valued integral kernel W(x, y). This covers only a relatively small set in the space of all graph
limits as explained in [28]. Yet, the generalization to far more general classes beyond graphons is becoming
physically evident if one aims to remove the integral operator restriction.

4.1.4. Kuramoto on graphops
Let A : Lp(Ω) → Lq(Ω) be a graphop as defined in section 2. Suppose it arises as a limit from a sequence of
adjacency matrices

A = A(∞) = lim
n→∞

A(n),

where convergence is understood with respect to the metric dM. From the Kuramoto model on complex
networks (10) one now formally obtains the VFPE

∂tρ = −∂u

(
ρ

(
ω + p

∫ 2π

0

∫
R

g(ω̃)(A(∞)ρ)(ũ, t, ω̃, x) sin(ũ − u) dx̃ dũ dω̃

))
(23)

for a density ρ = ρ(u, t,ω, x) of oscillators having phase u, frequency ω, and graphop coordinate x at time t.
The position x ∈ Ω is now more abstract, yet it still has a meaning in the sense that it should present the
position/index of a vertex. Instead of an integral operator representation, for a P-operator, we have to think
of the action of a graph, which is actually the primary insight that recently arose in the graph theory
literature as discussed in section 2. In (23), we see, how this insight can be carried over to easily writing
abstract VFPE mean-field type equations, even if the graph is neither all-to-all, nor uncorrelated, nor
homogeneous, nor dense, nor a special sparse graph. In comparison to the classical all-to-all coupled VFPE
(19), we have abstractly replaced in (23)

ρ(ũ, t, ω̃) by (A(∞)ρ)(ũ, t, ω̃, x̃).

Note that this formulation is much cleaner, more general, and much easier to comprehend in comparison to
other approaches.

4.2. Kinetic models on graphops
The approach in the previous section for the Kuramoto model is now relatively easy to formally generalize
to more abstract kinetic models such as (15). One simply takes the normal VFPE for (14), which would
read

∂tρ = −∂u(ρV(ρ)), (24)

where V is completely computable from f [11]. Then one lifts the action of the finite-dimensional adjacency
matrices A(n) onto a limiting graphop A(∞), and replaces the density in the vector field driven part V of the
VFPE

∂tρ = −∂u(ρV(A(∞)ρ)), ρ = ρ(u, t, x), x ∈ Ω. (25)

8
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All the operator-theoretic properties of the finite-dimensional graphs A(n), which persist in the limit A(∞),
actually can now be used to analyze the VFPE. We know from [28] that graphops do carry a lot of
information via the graph limit for large classes of graphs, so we may strongly expect that an analysis of (25)
can now proceed along classical lines of dynamical systems theory. For example, steady states ρ∗ will
satisfy

0 = ∂u(ρ∗V(A(∞)ρ∗)).

Linearization is possible via the normal Fredholm derivative in many cases. Suppose that we have an
evolution equation

∂tρ = −∂u(ρV(A(∞)ρ)) ρ = ρ(t) ∈ X , (26)

in a suitable Banach space X where the P-operator part is such that it defines a well-defined evolution in X .
Then the linearization is just formally given by the chain rule and product rule

∂tΞ = −∂u(ΞV(A(∞)ρ∗) + DρV(A(∞)ρ∗)A(∞)Ξ) =: L∞Ξ (27)

for Ξ = Ξ(t) ∈ X . The linear operator L∞ can now be analyzed using classical tools from functional
analysis such as spectral theory. As in section 3.3 on the finite-dimensional level, the operator L∞ carries in
an intertwined way the information about

(S1) the shape of the steady state via ρ∗,

(S2) the linearization of the coupling function f via DρV,

(S3) the graph spectral information via A(∞).

Hence, the graphop viewpoint provides in a completely natural way the opportunity to lift spectral
information from the finite-dimensional setting to the graph limit in the context of stability
analysis.

4.3. Remarks on applications
Applying the strategy (S1)–(S3) for concrete graphs is beyond the current work as it requires more detailed
investigations of the spectral theory of graphops, which is currently under development. However, we
would like to outline possible abstract steps one might take to link topology and dynamics similar to the
general idea of the master stability function formalism [39] following up on the last section. In the master
stability function framework, one usually makes directly assumptions about the shape or symmetry of
steady states. On the mean-field level for graphops, it is much more natural to make assumptions about
A(∞)ρ∗. For simplicity, assume A(∞) : Lp → Lq maps ρ∗ to a finite-dimensional sub-space of Lq, so that we
can express the image A(∞)ρ∗ as a linear combination

A(∞)ρ∗ =

L∑
l=1

ρ∗,lel

for a suitable Schauder basis el and computable coefficients ρ∗,l. Then we have to study, when

λId(·) + ∂u

(
·V

(
L∑

l=1

rho∗,lel

)
+ DρV

(
L∑

l=1

ρ∗,lel

)
A(∞)(·)

)

has no bounded inverse to get the elements λ ∈ C of the spectrum. Suppose we may understand this
problem by studying the two operators

∂u

(
·V

(
L∑

l=1

ρ∗,lel

))
∂u

(
DρV

(
L∑

l=1

ρ∗,lel

)
A(∞)(·)

)
(28)

separately; note that this is already a (potentially) strong assumption similar to the case, when two matrices
have to commute to easily determine the spectrum of their sum. The first operator in (28) does no longer
depend on A∞ as this dependence is in the finitely many coefficients ρ∗,l. The second operator in (28) can
be viewed as a composition of three operators, which we may abbreviate ∂uDρV A(∞). If these operators
commute then we have

spec(∂u DρV A(∞)) ⊆ spec(∂u)spec(DρV)spec(A(∞)).

9
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In the commuting case, we then get that the spectrum of the graphop (encoding the topology) multiplied
by the spectrum of the linearization of the vector field (encoding the dynamics) provide a spectral bound,
which can then be translated into a stability bound for the state ρ∗ as we just have to check, when the
spectral bound ensures that the spectrum lies in the left half of the complex plane, as usual.

Although we did make quite strong assumptions in the last calculations, it shows that the general
approach to link topology to network dynamics is still possible. More precisely, the approach shows that it is
a next natural step to establish spectral properties of graphops and to check when A(∞)ρ∗ is practically
computable.

5. Outlook

We have shown that the viewpoint of a more abstract operator-theoretic approach is extremely elegant to
provide a general theory for network dynamics, when we do not have a simple coupling structure. This
applies to the finite-dimensional microscopic case as well as the limiting case for VFPEs.

Although we have physically derived, by using analogies to previous approaches in the mean-field
context for homogeneous/all-to-all coupling, a suitable VFPE formulation on a limiting graphop, several
questions remain. From a kinetic theory perspective, we would like to prove that the limiting VFPE indeed
approximates over a finite time scale, the underlying finite-dimensional network dynamics for large n. We
conjecture that similar proofs1 via a Dobrushin-type estimate can also work in the graphop context, when
the structure of the graph limit theory is taken into account.

From the dynamics perspective, it would be very interesting to study spectral theory for operators
involving graphops as one element of their definition in more detail as we have indicated in section 4.3. A
natural first example, where such a theory could be used is again the Kuramoto model on a complex
network.

Furthermore, from the physical perspective it is important to gain a better understanding of graph limit
procedures in the sense of particle interactions. We believe that the finite-dimensional observations we
provided hint at a correlation structure viewpoint being particularly important to provide the correct
physical interpretation. From the viewpoint of direct applications in various sciences, it seems reasonable to
assume that testing examples and analyzing finite-size effects are going to be of particular practical
importance.
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