
TECHNISCHE UNIVERSITÄT MÜNCHEN

Fakultät für Chemie

 Bayerisches NMR–Zentrum

Lehrstuhl für biomolekulare NMR Spektroskopie

Modelling False Positives in High
Throughput Assays

dipan ghosh

Vollständiger Abdruck der von der Fakultät für Chemie der Technischen Univer-

sität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

genehmigten Dissertation.

Vorsitzende : Prof. Dr. Angela Casini

Prüfer der Dissertation:

1. Prof. Dr. Michael Sattler

2. Dr. Igor Tetko

Die Dissertation wurde am 24.02.2021 bei der Technischen Universität München

eingereicht und durch die Fakultät für Chemie am 02.07.2021 angenommen.

Dedicated to my parents and brother who have been a constant
source of support and joy

Abstract
Medicine plays a monumental role in modern society, and with it the importance of developing
new and safe drugs has become paramount. While therapeutic antibodies and biologics are
emerging as novel therapeutic entities, small molecules remain as most important drugs in use,
as they usually are advantageous regarding cost, delivery (pills) and storage and distribution.
However, developing a novel drug is time- and resource-intensive and expensive. Therefore, it
is vital to expedite the process of generating valid lead compounds in the early stages of drug
discovery.

With the advancement in automation, high throughput assays have become routine in ear-
ly-stage drug discovery. Although such methods are instrumental in high-throughput screening
(HTS) an extensive collection of compounds, a significant inherent problem is the presence of
false positive hits, depending on the specific screening assay used. Different mechanisms of
how compounds may interfere with the assay can give rise to a false-positive result. In fact,
some compounds are found to show promiscuous activity across different assay types and tar-
gets. Such unwanted hits should be identified and eliminated during the initial stages of screen-
ing to focus further developments on true hits.

In this thesis, high-performance, state-of-the-art machine learning models have been developed
and applied to identify false positives and promiscuous hits for three different assay systems
that are commonly used in early-stage drug discovery. First, the problem of assay interference
due to inhibition of luciferase, an enzyme widely used as a reporter is discussed. From publicly
available luciferase counterscreen assay data, a robust machine learning model with balanced
accuracy of 89% is built. Second, the performance of a machine learning model is compared
with more traditional scaffold-based filters, that were developed from in-house AlphaScreen
data, and then tested against public datasets. It was found that machine learning methods out-
perform the scaffold-based methods significantly. A new machine learning model for filtering
AlphaScreen frequent hitters was also developed which predicts AlphaScreen frequent hitters
with a Balanced Accuracy score of 84.7%. Third, publicly available data were analysed to de-
velop a model for flagging frequent hitters in GPCR assays. Assays with GPCRs that are distant
in the phylogenetic tree were chosen to avoid identifying GPCR-specific scaffolds. Assays
using fluorescence technology were found to contain more frequent hitters than assays using
bioluminescence. The model developed using 10 datasets flags potential GPCR frequent hitters
with 86.0% balanced accuracy.

All the machine-learning models described were built using the OCHEM platform
(http://ochem.eu) and are freely available to the public.

The results provide useful tools to enhance the quality and efficiency of early-stage drug dis-
covery.

Zussamenfassung
Die Medizin spielt in der modernen Gesellschaft eine essentielle Rolle. Die Entwicklung neuer
und sicherer Medikamente ist hierbei von größter Bedeutung. Während therapeutische Anti-
körper und Biologika als neuartige therapeutische Moleküle an Bedeutung gewinnen, bleiben
kleine Moleküle die wichtigsten verwendeten Medikamente, da sie im Allgemeinen hinsicht-
lich Kosten, Applikation (Pillen) sowie Lagerung und Verteilung vorteilhaft sind. Die Entwick-
lung eines neuartigen Arzneimittels ist jedoch Zeit- und Ressourcen intensiv und damit teuer.
Daher ist es wichtig, den Prozess der Erzeugung gültiger Leitstrukturen in den frühen Stadien
der Wirkstoffentdeckung zu beschleunigen.

Mit dem Fortschritt von Automatisierungstechniken, ist „High Throughput Screening“ (HTS)
ein Standardverfahren in der frühen Wirkstofffindung geworden. Ein Problem dieser Verfahren
ist, dass oft Moleküle fälschlicherweise als aktiv identifiziert werden. Solche Verbindungen
werden als „Falsch-Positive“ bezeichnet. Verschiedene Studien haben die Mechanismen, die
zur Interferenz mit der im Assay verwendeten Detektionsmethode und damit zu falsch-posi-
tiven Verbindungen führen, aufgeklärt. Ebenso wurden sogenannte „promiske“ Substanzen,
also Moleküle, die unabhängig von der verwendeten Assaymethode oder dem Zielprotein aktiv
sind, beschrieben. Diese Verbindungen werden in der Literatur auch als „frequent hitter“ be-
zeichnet. Die vorliegende Arbeit hat zum Ziel, solche Moleküle zu identifizieren und möglichst
früh aus dem Drug Discovery Prozess zu entfernen.

In dieser Arbeit wird die Entwicklung von „Machine Learning“ (ML) Verfahren zur Identifizie-
rung solcher Verbindungen für drei verschiedene Assaymethoden beschrieben. (1) Luciferase
ist ein in zahlreichen Assays verwendetes Detektorprotein. Verbindungen, die Luciferase inhi-
bieren, erscheinen daher aktiv in einem Luciferase Assay. Unter Verwendung öffentlich zugäng-
licher Luciferase Assay Daten wurde ein robustes ML Modell mit einer „balanced accuracy“
von 89% entwickelt. (2) ML Modelle wurden auch für Daten aus „Alphascreen“ Kampagnen
entwickelt und mit traditionellen, Modellen verglichen, die auf der Identifizierung gemeinsa-
mer Substrukturen basieren. Es konnte für Daten aus proprietären und öffentlichen HTS Kam-
pagnen gezeigt werden, dass die ML Modelle den substruktur-basierten Modellen überlegen
sind. Ein neues ML Verfahren zuz Identifizierung von falsch-positven Verbindungen wurde ent-
wickelt. Die „balanced accuracy“ dieses Modells liegt für die Identifizierung falsch-positiver
bei 84.7%. (3) Schliesslich wurden ML Modelle zur Identifizierung von „frequent hittern“ in
GPCR Assays entwickelt. Hierzu wurden Daten aus der Datenbank Pubchem verwendet. Dabei
wurden GPCRs ausgewählt, die phylogenetisch möglichst wenig Ähnlichkeit aufweisen, um zu
verhindern, daß Substanzklassen, die infolge ihrer priveligierten Struktur an mehrere verwand-
te GPCRs binden, fälschlicherweise als „frequent hitter“ identifiziert werden. Die Wahrschein-
lichkeit „frequent hitter“ zu identifizieren, war grösser für Assays, die Fluoreszens Methoden
verwenden, als für solche, deren Detektionsmethode auf Bioluminiszens beruht. Die „balanced
accuracy“ des Modell zur Vorhersage von „frequent hittern“, das auf 10 GPCR Datensätzen
basiert liegt bei 80%.

Alle ML Modelle wurden unter Verwendung der OCHEM Platform (http://ochem.eu) erstellt
und stehen der Öffentlichkeit frei zur Verfügung.

Table of Contents

Modelling False Positives in High Throughput Assays   		    i

Abstract   		    iii

Zussamenfassung   		    iv

Introduction   		    1

1.1. A brief overview of the drug discovery pipeline  		   2

1.1.1. Target Identification  		   2
1.1.2. Screening  		   3
1.1.3. Hit Validation  		   3
1.1.4. Lead Optimization  		   3
1.1.5. Clinical Trials  		   3

1.2. High Throughput Assays:  		   3

1.3. False positives and Frequent Hitters:  		   4

1.4. Mechanism of False Positives:  		   4

1.4.1. Interference with the assay:  		   4
1.4.2. Reactive Species:  		   5
1.4.3. Aggregation:  		   5

1.5. Pan Assay Interference Compounds:  		   6

1.6. Identification of false positives:  		   6

1.6.1. Biochemical Methods:  		   6
1.6.2. Biophysical Methods:  		   7
1.6.3. Computational approaches:  		   9

1.7. Machine Learning:  		   11

1.7.1. What is Machine Learning?  		   11
1.7.2. Classification of ML Implementations  		   11

1.8. About this Thesis  		   13

Methods   		    14

2.1. Data Collection  		   15

2.1.1. Gathering Assay Data  		   15

2.1.2. Gathering Structural Data  		   16
2.2. Data Analysis  		   16

2.3. Tools used in the study:  		   19

2.3.1. Programming Language: Python  		   19
2.3.2. Scaffold-Hunter65  		   21

2.3.3. LigandScout80  		   21

2.3.4. AutoDock  		   22
2.4. Machine Learning  		   22

2.4.1. OCHEM: Online Chemical Modelling Database   		   22
2.4.2. Overview of Common ML algorithms  		   23
2.4.1. Variations of the ANN Algorithm  		   30
2.4.2. Available Descriptors in OCHEM:  		   31

2.1. Model Training in OCHEM  		   35

2.1.1. Data Upload  		   35
2.1.2. Building a model  		   36

2.2. Model evaluation parameters  		   37

2.2.1. Sensitivity and specificity  		   37
2.2.2. Accuracy  		   40
2.2.3. Balanced Accuracy  		   40
2.2.4. Matthews Correlation Coefficient  		   41
2.2.5. ROC-AUC  		   41
2.2.6. Test set Evaluation  		   41
2.2.7. Cross validation  		   42
2.2.8. Bagging Validation  		   43

2.3. Applicability Domain of QSAR Models  		   43

2.3.1. Distance to model  		   43
2.3.2. Model Performance with Applicability Domain  		   45

Motivation   		    47

Modelling False Positive Hits in Luciferase HTS Assays   		    48

3.1. Project Introduction  		   49

3.2. Data  		   50

3.3. Methods  		   51

3.3.1. Docking studies  		   51
3.3.2. Pharmacophore Analysis  		   52
3.3.3. Machine learning methods.   		   52
3.3.4. Molecular descriptors.   		   52

3.3.5. Statistical coefficients.   		   52
3.4. Results   		   53

3.4.1. Molecular Docking  		   53
3.4.2. Scaffold Analysis  		   54
3.4.3. Pharmacophore analysis  		   56
3.4.4. Machine Learning Models  		   57
3.4.5. Sensitivity of existing filters  		   61

3.5. Discussion  		   62

3.6. Project Conclusions  		   62

Machine Learning model to filter Frequent Hitters for AlphaScreen assays   	
	    63

4.1. Introduction  		   64

4.2. Data  		   65

4.3. Methods  		   66

4.3.1. Machine learning methods  		   66
4.3.2. Molecular descriptors  		   66
4.3.3. Statistical coefficients  		   67

4.4. Results  		   67

4.4.1. Frequent Hitter Analysis  		   67
4.4.2. Machine-learning Models:  		   67
4.4.3. Comparison between Scaffold based Filter and Machine-learning Models:  	
	   68
4.4.4. Machine learning models to identify mechanism of action of FHs  		

  71

Modelling False Positives in GPCR assays   		    75

5.1. Introduction  		   76

5.2. Data  		   76

5.2.1. Data description  		   76
5.2.2. Data Collection  		   76
5.2.3. Frequent Hitter Flagging  		   78

5.3. Methods  		   78

5.3.1. Data Gathering:  		   78
5.3.2. Activity Cross-check:  		   78

5.4. Machine Learning  		   78

5.5. Results and Discussion  		   79

5.5.1. Compound Activity Profile:  		   79

5.5.2. Scaffold Identification:   		   79
5.5.3. Machine Learning  		   80

5.6. Conclusion  		   81

Comparison with other tools   		    82

Thesis Discussion   		    83

Thesis Conclusion   		    86

Acknowledgments   		    87

References   		    88

Appendix I: PCA Pipeline with Jupyter Notebook   		    106

Appendix II   		    123

Chapter 1

Introduction

2

Chapter 1: Introduction

In the year 1938, E. Chain, Howard Florey, and their collaborators selected penicillin, a metab-
olite from a penicillium for further study as an antibiotic. Penicillin proved to be a success in
treating bacterial infections and started turning the wheels of pharmacology and drug discov-
ery1, 2.

Over the past century, humanity has made enormous progress in understanding the world
around it. As each branch of science develops, we are provided with better tools with which to
understand and potentially override natural design. With a proper understanding of chemistry,
and the molecular structure of novel drugs and their endpoints, the synthetic accessibility of
new compounds are increasingly within our grasp. On the other hand, a better understanding of
the cell and its vast array of molecular machinery and pathways, leads to new ways of targeting
said machinery, and raises new questions on a daily basis. New developments in microscopy
have led to the direct visualization of living cells in real-time3-5, and X-Ray crystallography
has led to the elucidation of complex biological structures, such as DNA6 and proteins7, 8. Over
the last few decades, automation and computers have become a key part of the drug discovery
effort. Drug discovery is a multi-disciplinary effort, with experts participating from almost all
fields of science9, 10. Biotech and pharma industries are delving into fundamental research, often
collaborating actively with academic partners. Analysis of Big Data using cheminformatics and
machine learning methods contribute to the fast development of the field11, 12.

1.1. A brief overview of the drug discovery pipeline
Early in human history, people developed remedies from natural sources. This was mostly gov-
erned by observations and serendipity, and there are many known instances of such remedies
actually being extremely harmful to the point of lethality; eg, Mercury. As scientific discover-
ies led to an understanding of natural systems, it propelled forward an understanding of these
traditional remedies. Isolation of the active ingredient, and establishing a causal relationship
between the drug and its effects became a major part of pharmaceutical research. More recently,
screening libraries of chemical compounds or natural products against intact cells or live or-
ganisms became popular for finding a desired effect or phenotype. This is known as phenotypic
screening and is still popular today. However, the chances of finding a lead that is worth perus-
ing in such non-targeted screening is very slim, and therefore a more refined, targeted, rational
approach is often called for.

1.1.1. Target Identification

The first step in the drug discovery process is identification of a biological target, the modula-
tion of which may lead to a desired phenotype, such as alleviation of a symptom. Such target
identification often comes from basic scientific research, or a systematic genomic analysis of
human genetic data deposited in biobanks. The target of a modern drug are usually the protein
machineries, often enzymes. However, only 10% of the human genome are known to be drug-
gable, and thus, even if the cause of a disease is known it may be challenging to find a good
drug target for that disease.

3

Chapter 1: Introduction

1.1.2. Screening

Once a druggable target is identified, the next step involves finding chemical or biological enti-
ties that will interact with the target. A virtual screening may be a first step in identifying a list
of compounds for in-vitro screening. A robot driven high-throughput or ultra-high-throughput
screening may also be used to identify potential lead compounds from a huge library of com-
mercially available or in-house compound library. Much of this thesis is concerned with refin-
ing the hitlist from such large screens and identifying potential bad actors early on in the pro-
cess in order to minimize cost and effort. We will discuss them in detail in the following section.

1.1.3. Hit Validation

The list of hits from such screens must be verified, and this is known as validation of hits. A va-
riety technique including biochemical assays, structural and spectroscopic techniques are used
to probe, elucidate and validate the interaction between the hit and the target. We will discuss
some of such techniques in the following sections.

1.1.4. Lead Optimization

Once the hit is confirmed, it may be called a lead. The most promising leads are then subjected
to a wide range or pharmacological and toxicological studies and often the molecular design
is optimized considerably to improve their pharmacokinetics or address key properties such as
solubility or oral availability. The compounds are tested both on live cells (animal or human
cell lines) and in animal (typically mouse) models. Only when their efficacy is demonstrated
in-vivo, can a compound be subjected to clinical trials.

1.1.5. Clinical Trials

Preclinical research and pharmacological parameters are only an indication of how a given drug
will interact with the human body. Clinical trials refer to the studies that are done on increasing-
ly larger groups of people in order to ascertain the effectiveness of drug and eliminate off-target
activity or toxicity, before the drug is made commercially available. There are three phases of
clinical trials, and only 1 out of 20 compounds that enter a clinical trial are released commer-
cially as a drug. Being at the very end of the pipeline, failure at this stage is very expensive and
it is the major contributor for the overall expense of a drug development pipeline.

In this thesis, we are focussed on the early stage of the drug discover pipeline, namely screening
and hit selection. We will discuss them briefly below.

1.2. High Throughput Assays:
A critical step in discovering new drugs is to test candidate molecules against the intended tar-
get or otherwise-related targets and look for an effect. This process is known as a biochemical
assay. There are many different kinds of well-established assays, with various detection tech-

4

Chapter 1: Introduction

nologies each suited for different scenarios13. With the advent of automation, high-throughput
assay systems have become popular14-16. In such systems, hundreds of thousands, sometimes
millions of compounds can be tested against given endpoints using automated systems in a
relatively short time.

1.3. False positives and Frequent Hitters:
High throughput Screening (HTS) enables direct testing of more compounds than ever, but
analysing these hits and finding good results is a challenging task. There always exists the
possibility of false positives mixed in with ‘true’ hits17; there can also be compounds that are
generally promiscuous and are not a specific binder to our intended target18. Identifying such
molecules is the primary aim of this project.

The two different kinds of molecules that are the subject of this project are false positives and
frequent hitters. Sometimes, the distinction between the two types of molecules is not clear, so
before proceeding, what is meant by each should be clearly defined. In binary classification, a
false positive (FP) is where the test result improperly indicates the presence of an affirmative
assay result, in our case, a hit. These molecules, therefore, usually do not produce a desirable
interaction in the assay, despite giving a positive result in the assay detection mechanism. A
frequent hitter, on the other hand, is a molecule that shows up as a hit in many different bio-
logical assays covering a wide range of targets18. These molecules may produce the intended
interaction but are not specific to any particular target, and hence, are considered a poor drug
candidate. Both classes of molecules are potentially unwanted, and their identification is an
important part of recognising unwanted hits from an HTS.

1.4. Mechanism of False Positives:
Biochemical assays involve testing the effect of a compound on an assay system: The assay
systems can typically be anything from a single enzyme to multilayer binding cascades, but
the results of such events are usually optical measurements, such as absorbance, fluorescence,
luminescence, or scintillation counting. The assays are typically carried out in microtiter plates,
and automated systems take the measurements from each well, to be analysed later.

1.4.1. Interference with the assay:

Choosing compatible assay systems and targets is the first step in avoiding false positives in an
assay. It is essential to understand that biochemical assays do not measure biological activity,
but molecular interactions. If the compounds, the target, and the assay system are not compati-
ble with each other, unwanted interactions may lead to false positives.

1. Interference with detection technology:

Test compounds may directly interfere with the readout signal. Fluorescence quenchers can foil
an assay using fluorescence as the detection mechanism19, 20. If a compound inhibits luciferase,

5

Chapter 1: Introduction

assays using luciferase as a reporter enzyme will fail21-23.

2. Interference with assay technology:

Target proteins may be sensitive to a class of compounds, or their activity may be modulated
indirectly by the assay system employed. For example, nucleophilic protease assays are partic-
ularly susceptible to protein-reactive electrophiles. Similarly, phosphatase assays are sensitive
to phosphorylated compounds, salts, metals, and polyions24.

1.4.2. Reactive Species:

Although some drugs act by binding to their target covalently25, in an assay system, the same
kind of reactive species can indiscriminately attach themselves to proteins or DNA irreversibly.
Reactive species may also oxidize susceptible target proteins, such as metalloenzymes and
cysteine-using enzymes. Such oxidation may lead to, say, inhibition of the target enzyme, but
such indiscriminate reactive molecules are not useful for therapeutic purposes. Therefore, such
reactive species lead to false positives. Such compounds can often be identifi ed based on their
chemical structures and inhibition pattern26-29. Being protein reactive, they are often active on
the counterscreen enzymes. Therefore, a counterscreen combined with the irreversibility of the
inhibition and mass spectrometry of the target protein may help identify the presence of such
molecules in an assay system.

1.4.3. Aggregation:

In 2002 Shoichet et al. fi rst reported that aggregates formed in solution by certain compounds

Figure 1 . 1 : Different modes of assay interference and a few examples of each.

6

Chapter 1: Introduction

could non-specifically inhibit enzymes30. Since the initial report, the same phenomenon has
been observed in kinase inhibitors31, cruzain inhibitors32, kinesin motor protein inhibitors33, am-
yloid polymerization34, and non-nucleoside reverse transcriptase inhibitors (NNRTIs)35. Above
a particular concentration known as critical aggregation concentration (CAC), typically in the
low-to-mid micromolar compound concentration range, these molecules form solid colloids
composed of up to 108 small-molecules and are several hundred nanometers in mean diameter.
For enzyme systems, a reversible association between the aggregate surface and the protein was
observed30, 36. Aggregates formed by promiscuous compounds reversibly sequester enzyme,
resulting in apparent inhibition36.

1.5. Pan Assay Interference Compounds:
In 2010, Jonathan B. Baell and Georgina A. Holloway reported a new class of compounds that
turn up as hits in different assays37. They termed them Pan Assay Interference Compounds or
PAINS. They also published common scaffolds of such compounds implemented as a filter in
Sybyl notation. The report received wide recognition by the scientific community, and the term
PAINS became synonymous with unwanted compounds in an assay. In our current context,
such compounds are defined as frequent hitters. The filters the Baell et al. published became
widespread and are still in use today to weed out potential offenders, sometimes even before
doing an assay38-43.

However, the PAINS filter is not a magic bullet to solve the frequent hitter problem. In 2018, J.
B. Baell published a review44 on PAINS where he states “It has become increasingly clear that
overzealous or simplistic use of these filters may inappropriately exclude a useful compound
from consideration and inappropriately tag a useless compound as worthy of development.”

Baell et al. developed the PAINS filter from a set of six independent high-throughput assays, all
of which were Alphascreen assays. The compound set was relatively small, only about 100,000
compounds. The filters were derived with observation alone, not taking pharmacokinetics or
toxicology into account. These factors combined limits where applying a PAINS filter is effec-
tive, versus where it can be potentially misleading. Nevertheless, the seminal work by Baell and
Holloway paved the way for computational filters for identifying false positives and frequent
hitters in a high throughput assay campaign.

1.6. Identification of false positives:

1.6.1. Biochemical Methods:

1. Detergent Sensitivity

Detergent such as Triton-X100 impede the formation of aggregates. Performing assays both
with and without detergent might help identify potential aggregators that may contribute to the
false-positive signal45, 46.

7

Chapter 1: Introduction

2. Sensitivity to Concentration

The ability of a nanomolar inhibitor to titrate at micromolar concentration implies the forma-
tion of an aggregate30, 36. Titrating under varying concentrations may help identify compounds
with such properties47

Preincubation

Steep inhibition curves are often associated with undesirable screening hits. Performing two
assays with identical conditions, but incubating one for longer may identify compounds that
have slow on-rates, binds covalently, or form aggregates30, 31, 36.

3. Counterscreen with dissimilar Enzymes

A compound interfering with assay technology will show up as positive even with completely
unrelated targets. Performing multiple assays and finding frequent hits may help filter out assay
technology-related artifacts.

4. Reactivity Profiling

Careful consideration of functional groups and reactivity may help identify compounds that
bind to the target covalently and lead to false hits. For example, reactivity towards glutathione
and toward thiols in general, can be measured using a competitive assay system developed by
Epps et al.29 Similar assay systems are also available for checking redox activity of small mol-
ecules48, which are particularly important when the target is susceptible to oxidation.

1.6.2. Biophysical Methods:

Several biophysical methods can be used to verify the interaction between the ligand and the
protein directly. Such experiments take effort and time to perform but may provide conclusive
evidence of protein-ligand interaction. Some of the methods, such as dynamic light scattering
and electron microscopy, can be used to observe the aggregates directly.

1. Dynamic Light Scattering

Aggregates can be identified directly using Dynamic Light Scattering (DLS)49. In this tech-
nique, monochromatic light scatters off the particles suspended in a solution, and the scattered
light is detected as the signal and analyzed. The larger the particle, the slower its Brownian
motion, which leads to a larger variation in the scattering intensities. Because of this, aggre-
gate-forming inhibitors yield an autocorrelation function with well-defined decay on the mi-
crosecond timescale and can be easily identified. Using DLS, the particle size of the aggregates
can also be calculated.

2. Surface Plasmon Resonance

Surface plasmon Resonance or SPR can be used to calculate the binding constant between a
protein target and a ligand, among a variety of other uses. In this technique, light is focused on a

8

Chapter 1: Introduction

sensor chip containing free electrons known as surface plasmons. At a specific angle, resonance
is observed between the incident electromagnetic wave and the surface plasmon. This angle is
sensitive to the local environment of the SPR chip. For determining a binding constant, target
proteins are immobilized on to the chip surface, and ligands are passed using a flow system. If
binding occurs, a resonance angle shift is observed. Then the ligand is washed off with some
buffer, and another shift is observed. Monitoring these shifts with respect to time, association
and dissociation constants (kon and koff respectively) can be calculated, which can then be used
to calculate the binding constant. This method provides a conclusive and quantitative estima-
tion of the interaction between the target protein and the ligand. However, this technique is
labor and cost-intensive, therefore not suitable for testing more than a few ligands.

3. NMR and Mass Spectrometry

Multidimensional Nuclear Magnetic Resonance can be used to identify interactions between

two separate molecules, such as a target protein and a ligand. Mass spectrometry can measure
the molecular mass of a species with extreme precision, validating or ruling out covalent bond
formation. Such methods provide conclusive evidence, but are not suitable for high throughput
applications.

4. Electron Microscopy

Electron microscopy can be used to observe any aggregate formation. Confocal microscopy has

Figure 1 . 2 : Setup for determining protein-ligand binding using Surface Plasmon Resonance.
Source: Wikipedia

9

Chapter 1: Introduction

been used to characterize interactions between aggregates and protein molecules. Aggregation
of proteins that are associated with pathological conditions, such as Amyloid, have been char-
acterized using Transmission Electron Microscopy (TEM)50, 51.

1.6.3. Computational approaches:

Over the past few years, efforts to build a computational filter to flag potential false positives
and frequent hitters has intensified. In contrast with the biochemical and biophysical techniques
described above, there are certain advantages to a computational filter. However, such filters do
have their limitations, and using one blindly can lead one down the wrong path.

The most common type of cheminformatic filter is a substructure-based filter. Over the last 25
years, many such filters have been developed, aimed at solving a wide range of cases37, 52-56.
Most of these filters are based on observation. A general ruleset is derived from a set of data,
which is then implemented as a filter that looks for substructures, functional groups and calcu-
lates various molecular properties to filter against the given ruleset.

In literature, there are a plethora of articles describing various rulesets for filtering out potential-
ly unwanted compounds13, 37, 39, 57-61. Such rulesets have been applied most successfully in detect-
ing and eliminating reactive species. Because such reactivity often depends on the functional
groups present, relatively simple functional group filters can flag the molecules successfully17.

In 1999, Walters et al. published REOS (Rapid Elimination of Swill), which is a program devel-
oped to filter out potentially unwanted compounds using a hybrid method62. REOS combines
functional group filters with Lipinski’s Rule of 5. The initial filtering is based on a set of prop-
erty filters in conjunction with another set of more than 200 rules based on chemical function-
alities known to be problematic. REOS allows users to specify a maximum allowed quantity for
each functional group role, rather than just accept or reject it. REOS is one of the first efforts
towards creating a computational filter for eliminating artifacts from an assay.

In 2002, Gisbert Schneider and colleagues developed a virtual screening method to identify
compounds that are frequently active, and coined the term frequent hitter18. They developed
a scoring scheme from substructural analysis and multivariate linear and nonlinear statistical
methods applied to several sets of one and two-dimensional molecular descriptors. The final
model, based on a three-layer neural network, was able to correctly classify 90% of the test set
molecules in a 10-times cross-validation study. This report is the first application of machine
learning to identify frequent hitters.

In 2010, Baell and Holloway published the now-famous PAINS filter. Along with its wide-
spread usage, its applicability sparked controversy. Numerous reports were published showing
that the PAINS filter has many shortcomings, and should be applied in context. One of the most
significant report in this context was published by Tropsha et al. in 201763. They found that
the majority (97%) of all compounds containing PAINS alerts were infrequent hitters in Al-
phaScreen assays measuring protein-protein interaction inhibition. They also reported that the
presence of PAINS alerts did not correlate with any heightened assay activity trends across all

10

Chapter 1: Introduction

assays in PubChem including AlphaScreen, luciferase, beta-lactamase, or fluorescence-based
assays. Also, 109 PAINS alerts were present in 3570 extensively assayed, but consistently in-
active compounds called Dark Chemical Matter. In 2018, J. B. Baell published a review dis-
cussing and highlighting the considerations that should be taken into account when using the
PAINS filter44.

In 2016, Bologa et al. developed a system for identifying likely promiscuous compounds via
associated scaffolds, which they called Badapple (bioassay-data associative promiscuity pat-
tern learning engine)64. Badapple is a scaffold-based filter for flagging frequent hitters. The
authors defined “promiscuity” as the multiplicity of positive non-duplicate bioassay results. At
the core, Badapple employs a “Bayesian-like” method to calculate a score for a given scaffold
in a dataset by the formula

Score =
sA

sT +med(sT)
×

aA

aT +med(aT)
×

wA

wT +med(wT)
× 105 [1]

where sT = tested substances with scaffold, sA = active substances with scaffold, aT = assays with
tested compounds with scaffold, aA = assays with active compounds with scaffold, wT = tested
samples with scaffold, wA = active samples with scaffold, med = median. For a high score, all
three terms have to be high. Noisy data requires sufficient sampling to produce evidence, and
the Badapple formula mitigates noise by aggregating across samples and substances. Doing this
reduces the noise in the data and increases confidence in the score as more of the same scaffolds

N

Amitriptyline

NH

Nortriptyline

O

NH

S

O

O

NH

N

Amsacrine

N

NH

N

Cl

O

Quinacrine

NH

NH

OH

OO

HO OH

NH

NH

HO

Mitoxantrone

O

OH

NH2

O

Br

Bromfenac

O

O

NH2

NH2

Nepafenac

O
O

OH
O

O

O

OH

O

HO

NH2

HO

Daunorubicin

N

NH S

O

O

NH

N
O

O

OH

Sulfasalazine

O
O

OH
O

O

O

OH

O

OH

HO

NH2

HO

Doxorubicin

O

O

Phytomenadione

N

O

O

N

S

O

Sulfinpyrazone

NH

NH

OH

OO

HO OH

NH

NH

HO

Mitoxantrone

O

NH
O

OH

NH

N

O

O

OH

Balsalazide

O
O

OH
O

O

O

OH

O

OH

HO

NH2

HO

Epirubicin

O

O

OH

O

O

OH

O

HO

NH2

HO

Idarubicin

O

O

Menadione

O

O
N

O

O

NH2

O

NH

NH2

Mitomycin

NH

N

O

O

OH

O

OH

HO

Olsalazine

O

O O
OH

O

O
O

OH
O

O

HO

NH

OF

F

F

HO

Valrubicin

N

O

NH

O

O

OH

N
N+

N-

Zidovudine

N

S

O

NH

O

N
N+

N-

O

OH

Azidocillin

N
N

S

F

F

F
HO

Flupenthixol

N

N
N

NH2

NH2

Phenazopyridine

Cl

OO

OH

Atovaquone

N

O

NH

NH

N

O

O

OH

Eltrombopag

O

N
N

O O

O

N

N

Cl

Cl

Ketoconazole

N
N

O O

O

N

N

N

Cl

Cl

Terconazole

N

N
NH2

NH2

NH

O

O

O

Trimetrexate

OH

N

O

N

N

N N O

O N

N
N

F

F

Posaconazole

N
N

S

S

O

O

N

Thiothixene

O

O

O

HO

OH

Cortisone acetate

Cl

OO

OH

Atovaquone

N

O

NH

NH

N

O

O

OH

Eltrombopag

O

O

Phenindione

N

Daunorubicin

Figure 1 . 3 : Approved Drugs that contain PAINS scaffolds. Data collected from the article by Tropsha et. al63.

11

Chapter 1: Introduction

are found active repeatedly. On the other hand, Badapple remains sceptical of scanty evidence.

In 2013, Hadian et al. published a scaffold-based filter for identifying frequent hitters of Al-
phaScreen assays19. From four primary in-house assays, the authors identified common ac-
tive molecules, and then looked for overrepresented scaffolds among them. They used Scaf-
fold Hunter65, ISIDA66, and Silicos-IT scaffolds67 using the SetCompare68 utility of the online
chemical modeling environment (OCHEM) platform and identified overrepresented structural
elements in the set of promiscuous compounds. In total, 60 molecules were identified to be
frequent hitters of the Alphascreen technology, and 25 scaffolds were identified to recognize
them. The scaffolds were encoded as SMARTS strings and implemented as a filter in the freely
available Online Chemical Modelling Environment69 (OCHEM).

The latest development in the field of computational chemistry is Machine Learning. In late
2017, Kirchmair et al. reported the first machine learning model for identifying false positives
and frequent hitters in a high throughput assay70. The model, named HitDexter was developed
from 427 657 unique compounds with activity data on a total of 653 unique proteins available
in PubChem. The authors used two extremely randomized tree-based classifiers for the predic-
tion of compounds that are likely to be frequently active. Their final model reached MCC and
AUC values of up to 0.67 and 0.96 on an independent test set, respectively. The model is freely
available as web-service, and alongside the prediction score, the service also provides five near-
est neighbors from the training data, which helps the user validate the model score.

1.7. Machine Learning:
Machine learning is involved in a major part of this thesis. So, it is useful to review the basics
of Machine Learning, various techniques of Machine Learning, including Deep Learning and
learn about various applications of Machine learning in the field of cheminformatics and drug
discovery. Machine learning is an emergent field and is under heavy research. The basic defi-
nitions will be discussed here, details of various algorithms used throughout this thesis can be
found in the Methods section.

1.7.1. What is Machine Learning?

It is difficult to generalize all of machine learning in a simple sentence, but stated simply, ma-
chine learning is the study of a set of algorithms that allows computers to learn and make deci-
sions based on the given data, without being explicitly programmed71. Machine learning can be
considered a key component of Artificial Intelligence (AI), which aims to develop intelligent
autonomous computer systems.

1.7.2. Classification of ML Implementations

Based on the learning approach, machine learning can be classified into three types: Supervised
Learning, Unsupervised Learning, and Reinforcement Learning.

12

Chapter 1: Introduction

1. Supervised Learning:

In supervised learning, the model is trained using labelled data. The input parameters
and the required output are both given as the training data. The algorithm then tries to
come up with a function to map the input parameters to the required output.

2. Unsupervised Learning

In unsupervised learning, the system learns without any associated response or tar-
get, thus identifying general patterns in the data. Such systems are useful in identify-
ing trends and clustering unknown data to discover new features. The features thus
discovered can then be used as a descriptor in a supervised learning algorithm. Many
recommendation systems on the internet, such as in marketing automation, use such
implementations.

3. Reinforcement Learning

In reinforced learning, the machine learns to make an appropriate decision based on the
input data, by trial and error. For any decision the machine takes, a reward or punish-
ment is issued based on whether the decision was correct. By repeating the process and

trying to maximize the reward, the machine slowly learns to make the correct decision
based on the given data.

Based on the desired goal, machine learning tasks can be divided into three categories: Classi-
fication, Regression, and Clustering. Note that these are not types of an algorithm, but types of

Figure 1 . 4 : Chart showing many of the available machine learning algorithms available today.
Source: machinelearningmastery.com

13

Chapter 1: Introduction

problems or tasks that the machine learning system aims to solve.

	 Classification

For classification models, the task is to separate the data into two or more known
groups or classes. For example, determining if a given compound is a frequent hitter
would be a classification task, with two classes. In classification tasks, the outputs are
discreet. Such tasks are generally supervised.

	 Regression

In Regression, the output of the model is continuous, rather than discreet. Predicting
molecular properties such as melting point, water solubility, etc. are examples of such
models. Generally, these tasks are also supervised.

4. Clustering

Clustering involves grouping the input data based on their underlying pattern. For ex-
ample, data points can be grouped based on their similarity. Such tasks are generally
unsupervised.

1.8. About this Thesis
In this thesis, the development of three different frequent hitter filters, involving Luciferase,
GPCR assays, and AlphaScreen will be discussed. In the following chapter, the techniques
and methods used in this study will be outlined. In the third chapter, the development of a ma-
chine learning model for identifying luciferase inhibitors, along with a few other approaches
of identifying luciferase inhibitors will follow. The fourth chapter is about comparing machine
learning methods with scaffold-based filtering techniques. Performances of machine learning
filters are compared to an existing scaffold-based filter in the fourth chapter. In the final chapter,
the development of a machine learning model to identify frequent hitters in GPCR assays is
discussed.

Chapter 2

Methods

15

Chapter 2: Methods

For finding frequent hitters, multiple assays must be analyzed and their results compared.
Therefore, this thesis involves analysis of multiple large datasets, with several hundreds of
thousands of entries in each. Needless to say, such analysis requires powerful computer sys-
tems, and an efficient approach. In this section of this thesis, the tools and methods that were
employed in accomplishing this are examined. First, the nature of the data being handled, and
the methods by which it is handled, are discussed. Then, the various techniques used for ana-
lyzing and building models from this data are examined.

2.1. Data Collection
Before one can start analyzing data and building models, one must collect data. For gathering
in-house data, typically the in-house database was queried. The implementation of such que-
ries was generally done in python because the upstream processing and modelling was also
implemented in python. The majority of data used in this study, however, were collected from
on PubChem72.

2.1.1. Gathering Assay Data

PubChem provides excellent utilities for downloading data from their server. For download-
ing data regarding any assay, the assay ID must be known. For one or a few assays, the assay
data can be downloaded manually by visiting https://pubchem.ncbi.nlm.nih.gov/ and searching
by the assay ID. If the assay ID is not known, a keyword search can be performed. If one is
looking for luciferase counterscreen data for example, one can search for “Luciferase”, and
filter the results for counterscreen assays. This is often enough, but for our purposes, many
assays must be retrieved, and this work was done programmatically. To do this, first search
PubChem for relevant assays by using keywords. The query general must be kept general, so
as to not exclude any relevant assays. For example, if GPCR assays are being sought, one can
just search for “GPCR”. The search result is then downloaded as a text file, and parsed with a
custom python script, which generates a table with all the relevant data, including the Assay
IDs (See Error! Reference source not found. S2 at page 119). Looking through the table, it is
then easy to determine what kind of data is on PubChem, and pass that table on to other scripts
for downloading the data.

Once the assay IDs are obtained, data can then be downloaded from PubChem in various ways.

1.	 PubChem Assay Download service available at the PUBCHEM website at URL
https://pubchem.ncbi.nlm.nih.gov/assay/assaydownload.cgi. Here or more assay
IDs can be specified, and the data obtained in various formats such as .xml or .csv

2.	 PubChem has PUG or the Power User Gateway for programmatic access to its data.
There are various web-services within the umbrella of PUG including PUG-REST:
A Representational State Transfer (REST)-style web service that supplies specific
bits of information on one or more PubChem records. It is intended to handle short,

16

Chapter 2: Methods

synchronous requests - that is, the result is given in a single call that may last at
most 30s. For the majority of applications, this service was used to download data
programmatically.

3.	 Assay data can also be downloaded from the assay page on PubChem manually.

For gathering assay data, generally the assay download service was used. However, sometimes
it was necessary to look up assay data dynamically, and this is where the PUG-REST service
was very useful. All the implementations for the various API calls and web requests were done
in python. As a helper tool, the python package PubChemPy was used. This tool provides wrap-
per functions for many of the services available through PUG-REST and is often easier to deal
with than PUG API.

2.1.2. Gathering Structural Data

The datasets in this thesis were often comprised of millions of data points, and hundreds of
thousands of unique molecules. Like assays, molecules in PubChem also have IDs. There are
two different types of IDs, Substance IDs or SIDs and Compound IDs or CIDs. A PubChem
substance can be a mixture of different compounds, so we used Compound IDs for our studies.
Similar to assays, once the ID is known, the data stored in PubChem about that molecule can be
accessed. Compound IDs generally come from the assays. Once a list of compounds IDs with
relevant assays is obtained, structural data for the molecules from PubChem can be download-
ed. The PubChem Structure Download service at https://pubchem.ncbi.nlm.nih.gov/pc_fetch/
pc_fetch.cgi was often used for downloading structures of one or more compounds. For our
purposes, we usually supplied a list of IDs and downloaded gunzipped SMILES.

However, it is very useful to do the structure download programmatically. Then, as the assays
to identify potential frequent hitters are analysed, PubChem can be queried in-situ for their
structure. For this, the PUG-REST service was used, combined with PubChemPy. For smaller
lists (up to a few thousand) this method works well. For larger sets, the PUG-REST API cannot
be used because of its request volume limitations. PubChem recommends the Structure Down-
load service for bulk downloads and for very large sets (>50000). For this, the list of compound
IDs were exported, and the structures were downloaded separately.

The activity data in all the assays for a particular molecule can also be checked. This was used
to look for the activity of compounds across different assays and identify frequent hitters. Py-
thon was used to implement this in order for checking cross activity of compounds found to be
frequently actives in GPCR assays. The results are discussed in detail in chapter 4.

2.2. Data Analysis
For a majority of our projects, our objective was to find false positives or frequent hitters from
a set of assays. Our dataset often involved a number of high-throughput assays, with over 5
million data points. Needless to say, efficient ways of sifting through such data were called for

17

Chapter 2: Methods

and python was chosen for doing this.

Data exploration was the fi rst step in the projects described here. Information must be gathered
about the chemical space involved, the total number of unique compounds, the total number of
compounds with any activity, before frequent hitters can be identifi ed. For such exploration, py-
thon has excellent tools that are very effi cient and therefore can be applied to big data. As a fi rst
step, extent of overlap between the assay compounds provides a good initial assessment. Many
HTS campaigns come from the same source. Also, many HTS campaigns share compound li-

braries. For data overlap visualization, a pairwise Venn-diagram display was employed. If any
set is an outlier, then it can be identifi ed easily on the Venn diagrams. Making the circles of
the Venn-diagram scale proportionally to the size of the dataset, made it possible to gauge how
large or small the datasets were, visually.

The next step was to identify compounds that show unusually high activity. A standardized
pipeline for was developed doing this task, as this needed to be done quickly in the early stage
of a project. The workfl ow with python was as follows:

1. Transform all the assay data from the spreadsheet format in they were available
(excel or csv) into Pandas Dataframe objects.

2. Merge all the Dataframes based on the Compound ID to get a list of all unique com-
pounds.

Figure 2 . 1 : Method for determining activity frequency derived from activity fi ngerprint. Each
row represents one compound, the assay data records for that compound is represented in the
Assay Data column. In this column, each column of squares represents one assay. Each square
represents a data point, if a square is missing, then the compound was not tested in that assay. An
empty square is an inactive data point, fi lled squares denote active outcomes.

18

Chapter 2: Methods

3.	 Using the Compound ID form the unique compound ID list as a key, query each
Dataframe to find out if an entry for that exists. If it was not found, then the com-
pound was not tested.

4.	 Use “PUBCHEM_ACTIVITY_OUTCOME” field to determine whether the com-
pound was active or inactive in that assay.

5.	 Doing this for all assays under investigation would generate a fingerprint for each
unique compound. 1 was appended to the fingerprint if it is active, 0 if it is inactive,
and no action was taken if the entry is not found, meaning the compound was not
tested (Figure 2.1).

6.	 If the digits of the fingerprint are counted, it gives how many times the compound
was tested. If the digits are added together, that is the total activity count. From this,
activity fraction for any compound can be calculated by

[2]

The program was written is such a way that it could accept a folder as input and all relevant
statistics would be calculated automatically and presented in a easily accessible format. This
provided a very quick and efficient way of finding frequently active compounds between mul-
tiple PubChem assays.

When a histogram of activity fraction for a dataset was plotted, for some specific fractions,
there were a large number of compounds was found, which lead to a large peak at those frac-
tions. Most compounds in a dataset were inactive, so there was a corresponding spike at zero.
Also, as all the assay readings were independent, the probability that a compound would be
tested n times is less than it being tested (n-1) times. Therefore, there were a large number of

Figure 2 . 2 : Histogram plot of activity frequency with and without filtering molecules that are
tested less than three times. Note that the spikes at 0.5 and 1.0 are diminished after filtering.

Activity Fraction= Number of times compound is active
Number of times compound is tested

19

Chapter 2: Methods

compounds that were tested once, and were active that one time. Based on such data, no conclu-
sion could be drawn regarding its promiscuity. So all compounds that had been tested less than
three times were excluded. We plotted the histogram after the exclusion, and the peaks, albeit
present, diminished considerably.

Once the frequent hitters or false positives from a set were identified, we analyzed them and
built the models.

2.3. Tools used in the study:
Throughout our projects, various different tools were employed depending on the task at hand.
They will now be discussed briefly.

2.3.1. Programming Language: Python

As mentioned before, we used python for all of our programming needs. We chose Python
because it has proven itself to be a workhorse in the field of data analysis. It is also the pro-
gramming language of choice in machine learning at the moment. Development of packages
such as Numpy, Pandas, matplotlib and Tensorflow have led to python being the programming
language of choice for data scientists. We shall look at some of the main packages that we used
extensively in our study.

1. NumPy73 and SciPy74:

NumPy is an open-source python package that adds support for large, multi-dimensional arrays
and matrices, and functions to perform operations with such data structures. It is one of the old-
est packages in Python and it has provided the backbone for many other packages in the Python
data analysis ecosystem. Written in C and Python, NumPy is extremely memory efficient, and
therefore, is capable of handling very large multidimensional data.

Scipy builds on the N-dimensional array of NumPy and provides modules for optimization,
linear algebra, integration, interpolation, special functions, FFT, signal and image processing,
ODE solvers and other tasks common in science and engineering. These two modules form the
base of all the machine learning packages available in python today.

2. Pandas75:

Pandas is an open-source python package that adds support for data analysis and manipulation.
The Dataframe object in pandas provides an easy way to work with tabular data. Pandas pro-
vides wrapper functions that can read from databases and various file formats such as .csv or
.xlsx, directly to a Dataframe object. The Dataframe object can be exported to various file for-
mats and databases. This makes File I/O trivial, and allows for advanced filters while ingesting
data. The Dataframe object has methods that mimic many operations found in database query
languages such as SQL. This allows for manipulating very large sets of tabular data in python
as if we are interacting with a database, while retaining all the power python provides us with.

20

Chapter 2: Methods

Pandas is built on Numpy and is also very efficient in handling large data.

3. Matplotlib76:

For graph plotting purposes, we used the matplotlib package from python extensively. Matplot-
lib supports many different kinds of plots, including the regular ones such as scatter, bar, line
and histogram. It also supports Venn-diagrams, which we used for determining data overlap.
The pyplot object from the matplotlib package, which handles most of the plotting is extremely
versatile, allowing for quick customizations. It also integrates seamlessly with pandas, allowing
us to call matplotlib directly on our ingested assay Dataframes. Matplotlib is also extremely
fast and efficient. On a single core at 3.5Ghz it takes 4.5 seconds to plot about 0.5 million data
points in a scatter plot.

4. RDKit77:

RDKit is an open-source library for Cheminformatics and molecular modeling written in C++
and Python. It is the most popular open-source package for working with molecules and pro-
vides extensive functionality for working with molecules. Most of the basic molecular func-
tionality is found in module rdkit.Chem. Features of RDKit includes:

•	 Molecule I/O

•	 Atom and bond manipulation

•	 2D and 3D coordinate generation

•	 Drawing Molecules

•	 Substructure Searching

•	 Chemical Transformations

•	 Maximum Common Substructure

•	 Fingerprinting and Molecular Similarity

•	 Generating Similarity Maps Using Fingerprints

•	 Descriptor Calculation and visualization

•	 Chemical Reactions

•	 Chemical Features and Pharmacophores

•	 Molecular Fragments

Throughout our projects, we have used RDKit for calculating molecular properties and finger-

21

Chapter 2: Methods

prints, visualizing a set of molecules as images and searching for PAINS substructures among
other tasks. The RDKit library serves as the bridge between chemistry and informatics, and
makes it possible to build cheminformatic machine learning pipelines in Python.

5. SciKit-Learn78:

Scikit-learn is a popular machine learning framework for Python. It is famous for being begin-
ner-friendly and exceptionally well documented. Scikit-Learn provides implementations for
various classification, regression and clustering algorithms including support vector machines,
random forests, gradient boosting, k-means among others. Most of the library is written in Py-
thon, using NumPy and SciPy as a base.

6. Jupyter-Notebook79 and PyCharm CE:

Working with the various modules and working with big data requires a solid Integrated Devel-
opment Environment (IDE). Our IDE of choice was PyCharm Community Edition along with
the Jupyter notebook, depending on the situation. For running Machine Learning models and
working with very large datasets, working with PyCharm was a better experience. For multi-
threaded applications we preferred PyCharm, as interrupting the kernel in Jupyter often proved
problematic. On the other hand, Jupyter Notebook is fantastic for exploring and visualizing
data. The Jupyter Notebook is a web application that allows the user to create and share docu-
ments that contain live code, equations, visualizations and narrative text. It has many features
of an IDE such as linting, and can also render markdown, proving an easy way of providing
documentation.

In Appendix I of this thesis, a typical python workflow using Jupyter Notebook is presented.

2.3.2. Scaffold-Hunter65

For visualization of scaffolds present in a molecule set, Scaffold-Hunter is a really useful pro-
gram, for creating scaffold-trees. At the base of a scaffold tree are the building blocks of the
molecule sets, and the branches represent different additions to the base scaffolds. The final
node of the tree represents molecules in the set. This tree is particularly helpful in determining
what type of scaffolds are present in a given set and their relative proportions.

Scaffold-Hunter is written in Java. It is suitable for smaller sets. The program is capable of
handling a couple of thousand compounds, but larger datasets tend to affect its performance.

2.3.3. LigandScout80

LigandScout is a commercial software for analyzing pharmacophores. It can generate struc-
ture-based, or ligand-based pharmacophores, and has a really nice, intuitive user interface.
LigandScout can also perform molecular docking and extract pharmacophores from docked
structures. Once a pharmacophore is identified, the library of molecules can be filtered using
the pharmacophore. Because a pharmacophore is not based on the scaffold, but on the 3D

22

Chapter 2: Methods

structure of the molecule and its interaction pattern, it can encode shape information better than
scaff olds. In our projects, we have used LigandScout for pharmacophore analysis.

2.3.4. AutoDock

AutoDock is a freely available group of software for performing Molecular Docking81. The
AutoDock Tools lets the user pre-process the protein and the ligands for docking. The latest
docking program from AutoDock is AutoDock Vina82, which provides better performance and
accuracy over AutoDock-4. In our project with Luciferase, we used python to build a docking
pipeline for docking over 300,000 molecules. Autodock Vina was used as the docking program.

2.4. Machine Learning

2.4.1. OCHEM: Online Chemical Modelling Database

Machine Learning was used extensively in this research. In the preceding section, the more
popular machine learning methods were contrasted. Subsequently, the respective implemen-
tations shall be discussed: For Machine Learning, the freely available platform OCHEM was
utilized69, 83. In this section, the various machine learning methods off ered by OCHEM are
examined.

OCHEM is a free online service that off ers a vast array of tools for working with chemical
data. As of late 2019, OCHEM contains 2,854,191 records for 637 properties (with at least 50
records) collected from 12957 sources. Anyone can contribute to the data pool, and once pub-

Figure 2 . 3 : Decision tree style fl owchart showing different algorithms available in the Scikit-
Learn library, and when best to choose them. Source: Scikit-Learn Website

23

Chapter 2: Methods

lished, anyone can access them. Once data is uploaded, OCHEM provides a robust modeling
workflow for building machine learning models.

OCHEM has support for many of the popular machine learning algorithms. It also can calculate
and use most of the molecular descriptors developed thus far. OCHEM allows the user to create
many models at once with different algorithms or descriptors. The OCHEM backend facilitates
parallel processing of tasks and returns calculation results in an accessible manner. It also has
support for GPU based Deep Learning, which has gained popularity in recent years.

OCHEM supports consensus modelling as well. With a consensus model, multiple models with
different descriptors and algorithms developed from the same set can be combined, and outputs
of each of the member models are averaged to obtain the final output.

2.4.2. Overview of Common ML algorithms

For different scenarios, there are different machine learning algorithms. The widely used py-
thon module scikit-learn offers over 25 such algorithms belonging to all the different categories
described that are discussed below (Figure 2.3). Apart from the ones shown in the figure, there
are numerous Neural Network architectures and deep learning algorithms. OCHEM provides
implementations for over 15 machine-learning algorithms. A detailed discussion of all the al-
gorithms is beyond the scope of this thesis, so focus will be directed toward the algorithms
employed in this doctoral work.

1. Principal Component Analysis

Principal component analysis (PCA) is a multivariate statistical technique used to emphasize
variation and reduce the dimension of data, losing the least amount of information whilst max-
imising interpretability of the results. It is often used to visualize and explore multidimensional
data84, 85. PCA is a dimensionality reduction technique, with which one attempts to project a
higher-dimensional space into a lower-dimensional space with a minimal loss of information:
From PCA, key groups of the data can be identified. Such groups are known as the principal
components. Each axis in PCA is chosen in a way to maximize variance, so as to explain as
much of the original data ordering as possible; the resultant axes are a product of Singular Value
Decomposition of the higher-dimensional space. Principal components thus identified can help
group the data and identify patterns. PCA has widespread use in object recognition, computer
vision, data compression, and more.

2. Linear Regression

The general goal of supervised machine learning is to map a set of predictor variables to a
response variable by identifying any relation between the inputs and the outputs. Linear re-
gression can model the relationship between two or more predictor variables and a response
variable by fitting a linear equation to observed data86. Multiple linear regression with predictor
variables can be written as

24

Chapter 2: Methods

[3]

where the ϵ denotes the error term of the model. The goal of linear regression is to minimize the
error. In practice, the least squares algorithm is often used to fi nd a solution87.

Fast Stagewise Multiple Linear Regression (FSMLR) is a variation of the linear regression
algorithm. FSMLR88 constructs linear regression models by using greedy descriptor selection.
It is a specialized kind of regression boosting that uses a three-set approach. FSLMR uses three
diff erent internal subsets for learning: A training set, an internal tuning, and a validation set.
The internal set is used for determining the optimal number of descriptors considered in the
model. Then, an iterative descriptor selection process, and the corresponding model formula-
tion, continues until the minimal prediction error for an internal test set can be achieved.

3. K-Nearest Neighbors

K-Nearest Neighbors or KNN is a non-parametric, instance-based algorithm that can be imple-
mented in both a classifi cation and a regression context. For classifi cation, the training phase
involves simply storing all the data in the training set with their corresponding labels89-91. In the
classifi cation phase, the model classifi es the new input based on of its nearest neighbors from
the training data, where is a positive integer. Usually, the value of is optimized by trials run on
the training and validation sets. A general implementation of K-NN would measure the distance
between the unknown sample to of its nearest neighbors in the training data, and then classify
the sample based on the majority class among those points.

Figure 2 . 4 : Maximum-margin hyperplane and margins for an SVM trained with samples from
two classes. Source: Wikipedia

y = β0 + β1x1 + β2x2 + ...+ βk xk +

25

Chapter 2: Methods

4. Support Vector Machine

 Support Vector Machine (SVM) is a non-probabilistic linear binary classifier, that aims to find
an optimal hyperplane separating the input data points to classify them92, 93. The data is viewed
as an N-dimensional vector, and the goal of the algorithm is to find an (N-1)-dimensional
hyperplane that optimally separates the data. Many such hyperplanes may exist. An intuitive
choice for the best hyperplane is the one that has the maximum distance or margin from the

data.

Support vector machines are effective in high dimensional spaces, which is useful in chemin-
formatics94-96, as the descriptor space is often highly multidimensional. SVM is memory effi-
cient as it uses a subset of the training data samples known as support vectors in the decision
function. The kernel function provides versatility in the SVM methodology, as different kernel
functions can be used in the decision function to suit different needs97-99.

Most machine learning packages support SVM. Scikit-learn has a built-in class for SVM. The
most popular package for SVM is LibSVM100, 101. It was developed at the National Taiwan Uni-
versity and written in C++. LibSVM implements the Sequential Minimal Optimization (SMO)
algorithm for kernelized Support Vector Machines (SVMs) and supports classification and re-
gression.

LSSVM102 is a version of SVM where the minimization problem is solved using a set of linear
equations as opposed to convex quadratic programming. Solutions to such linear systems can

Figure 2 . 5 : A. Graphical representation of a decision tree generated by fitting circular Morgan
fingerprint of molecules. For clarity, only four levels are shown. The root node is shown in the
middle enlarged. B. The entire decision tree. Colors represent numbers of samples in a node, or-
ange hue denotes a higher number of samples, blue hue represents a fewer number of samples

26

Chapter 2: Methods

be obtained incrementally, and can be parallelized. Therefore, it is possible to take advantage
of the massively parallelized architecture of a Graphical Processing Unit to make the model
training potentially orders of magnitude faster.

5. Decision Tree

A decision tree is a flowchart of test events or decisions, organized in a tree-like structure103, 104.
Each node of the tree denotes a test, or branching condition. Each branch originating from the
node represents an outcome of that test. As one traverses the tree, more and more conditional
logic is applied to the input, until it (eventually) reaches a terminal node: The terminal nodes,
known as the leaf nodes, contain a prediction value or class label.

There are three factors involved in generating a learning decision tree from a feature set: Se-
lection of features, selection of conditions, and the termination condition. The feature that best
classifies the training data is used to split data into two branches, and the process is repeated,
until the termination condition is met. After a tree is generated, unnecessary branches need to
be trimmed down for the tree to be more efficient, this is known as pruning. One popular algo-
rithm for generating such trees is known as CART, or Classification and Regression Trees105, 106,
which uses the Gini index as the metric for classification. There is also the Iterative Dichoto-
miser 3 or ID3 algorithm107, which uses information gain, or Entropy, as a metric function. The
successor of ID3, the C4.5 algorithm108 is also popular109-112 for building decision trees.

6. Random forest113

Random forest is a very popular ensemble learning algorithm114-117. The forest is made out of
a collection of decision trees. To classify a new sample, the input vector is passed down each
tree. Then the responses from each tree are collected, and the majority vote determines the
final class. Therefore, this method relies on a group consensus, and so it is called an ensemble
learning algorithm.

Radom Forest usually has excellent performance, a low memory overhead, and scales very
well with large datasets. It can also be parallelized to an extent since all the decision trees in the
forest can be processed in parallel.

7. XGBoost: Scalable and Flexible Gradient Boosting

Gradient Boosting118, 119 refers to another ensemble-based machine learning technique. Boost-
ing is an ensemble-meta algorithm that attempts to improve prediction gradually, by training
a sequence of weak learners. The weak learners are grown sequentially, with each iteration
improving upon the previous iteration. In gradient boosting, in each iteration, gradient descent
is used to minimize the loss function, and the newly optimized learner is combined with the
learner from the previous iteration. In contrast to Random Forest, which uses fully grown deci-
sion trees to reduce variance, and uses Bagging (see below), gradient boosting is based on weak
learners, and uses sequential training of the weak learners. Random forest attempts to reduce
the error in the model by reducing variance, whereas gradient boosting reduces error mainly by

27

Chapter 2: Methods

reducing bias.

XGBoost120 is a package that is developed under the gradient boosting framework to be fast,
scalable and portable. First introduced in 2016, it quickly became a very popular choice for
building models to solve a wide range of applications121-123. XGBoost implements a decision
tree ensemble with additive training. It provides a way to control model complexity through
regularization terms that most other tree-based learning packages lack. XGBoost stores the
data in in-memory units, called blocks. This reduces sorting time, which is typically the most
time-consuming part of tree learning.

8. Artifi cial Neural Network124

In all the projects described in this thesis, a variation of the Artifi cial Neural Network algorithm
called the Associative Neural Network contributed the best performing models. In this section
the basics of the Artifi cial Neural Network are examined in greater detail, as they have been
employed heavily in this work.

Artifi cial Neural Networks are machine learning systems inspired by biological neural net-
works. The emergent complexity of an animal brain made out of relatively simple neurons is
emulated in such systems. A network of relatively simple artifi cial neurons can learn complex
patterns by considering examples, just like in primitive animal brains.

1. Single Artifi cial Neuron

The functional unit in a neural network is the neuron, also called a node or unit. It receives
inputs from some other nodes in the network and computes a singular output. Each incoming
input has an associated weight (w), which determines the contribution of that input relative to
other inputs. The node applies a function to the weighted sum of its inputs (Figure 2.7), and
then forwards the result as an output. The function is known as the activation function of the

Figure 2 . 6 : Figurative representation of a single artifi cial neuron.

28

Chapter 2: Methods

neuron. There are a few activation functions that are commonly used.

Sigmoid: [4]

tanh: [5]

ReLu: [6]

The neuron performs a weighted sum of all of its inputs. Each neuron also has a bias value,
which provides the training algorithm a way to modify the output value of a neuron in addition
to modifying the weight parameters. A single neuron with a sigmoid activation function is also
known as a perceptron125.

2. Multi-Layer Perceptron

A Multi-layer perceptron consists of artifi cial neurons organized into multiple layers126, 127.
The fi rst layer in the network is known as the input layer and the last layer as the output layer.
The layers in-between are called hidden layers because they are internal to the network. Given a
set of features X = (x1, x2, …) and a target y, a Multi-Layer Perceptron can learn the relation-
ship between the features and the target, for either classifi cation or regression. The input layer
has the same number of neurons as there are features, and the last layer has the same number of

Figure 2 . 7 : Representation of a neural network, or multilayer perceptron showing inputs, out-
puts and the different layers.

σ(x) = 1
1 + e−x

tanh (x) = ex − e−x

ex + e−x

Relu(x) =
0, if x ≤ 0
x, otherwise

29

Chapter 2: Methods

neurons as targets. All neurons in one layer are connected to all or some of the neurons in the
next layer. So, outputs from (all) the neurons of the previous layer become the inputs of a neu-
ron in the next layer, multiplied by a weight. These weights, wi, and bias values, bi, associated
with the neurons are the trainable parameters of a neural network.

3. Training a Neural Network

In order to be able to predict data, neural networks need to be trained with a training set data.
The full details of the training algorithm can be found elsewhere124, 128-130, and therefore we
will provide a high-level overview. Recall that neural networks contain weights and biases as
parameters. The goal of the training is to produce output values that match the target values as
closely as possible. To quantify this, one can defi ne a cost function as

[7]

where o are output and t are target values. This cost function or error function is the squared
Euclidean distance between the observed and target vectors. Such a cost function is also known
as the Mean Squared Error (MSE). The goal for training, therefore, is to minimize this scoring
function.

1. Initialization: The fi rst step is to create the network itself, with all the neurons and
appropriate associated activation functions. This is done based according to the ar-
chitecture of network, which defi nes the number of neurones in each layer and their
connections. Typically, all the weights and bias values are generated randomly, or a
normalized initialization approach such as Xavier Initialization131 can be used.

2. Feed-Forward step: Network training starts with the propagation of signals from the
input layer to the output using the formula

xi

Output
Input

O_{�nal}=\sigma\left(\sum_{i=1}^{n}W_{jk}^4O^3_i + b_i^4\right)

Figure 2 . 8 : Visual representation of the feed-forward step.

C(w, b) =
1

2
× �o− t�2

30

Chapter 2: Methods

[8]

where a_n is the output of the neuron, n is the number of neurons in the previous
layer, W represents the weights, and x denotes input (can be input vector or outputs
of the preceding layer of neurons). The output of a neuron is the weighted sum of all
of its inputs, subjected to an activation function σ. The signal from the input neurons
propagates through all layers of the network until it reaches the output.

3. Back-Propagation step132: After the feed-forward step, the error between calculated
and target values is calculated . The diff erence between observed and calculated val-
ues is used to adjust the weights and biases of the neural network through gradient
descent (See Figure 2.9).

 The feed-forward and back-propagation steps are done multiple times until network output
starts to match the target values. Since a typical ANN has many adjustable parameters, it can fi t
various data. The important step in neural network training is to prevent so-called overfi tting,
when neural networks begin to learn specifi cs about training data points, or begin to map the
noise in the training data.. There are diff erent techniques used to avoid overfi tting, with one of
the most effi cient known as early-stopping129.

2.4.1. Variations of the ANN Algorithm

1. ASsociative Neural Networks (ASNN)

ASNN133, 134 is a combination of Neural Network Ensemble and K-Nearest Neighbour techniques.
The method is inspired by the thalamo-cortical organization of brain135. The organization of an
ASNN allows the network to incorporate new data cases in short-term memory implemented as

xi

Output
Input W3

W2

W1

W222

Figure 2 . 9 : Visual Representation of Back-propagation process. The error from the output
nodes is fed backward through the network, to fi nd out its gradient against each of the weight and
bias parameters. The equations shown are simplifi ed, and equation for W1 is omitted for clarity.

an = σ

(n
∑

i=1

Wixi

)

31

Chapter 2: Methods

an ensemble of neural network weights and provides high generalizability without the need to
retrain the neural network weights. ASNNs explicitly corrects neural network ensemble biases
leading to improved prediction ability over traditional neural networks and k-nearest neighbour
techniques. ASNNs have proven to be very useful in the field of cheminformatics and drug
discovery111, 136-143, and can also efficiently model highly imbalanced datasets.

2. DNN: Deep Neural Network (GPU)

Deep Neural Networks (DNNs) are neural networks with more than one hidden layer. Each
of the hidden layers can have different activation functions and therefore, Deep Neural Net-
works can model complex, non-linear patterns144-147. DNN architectures generate compositional
models where the object is expressed as a layered composition of primitives. The extra layers
enable the composition of features from lower layers, potentially modelling complex data with
fewer units than a similarly performing shallow network. With the GPU and CUDA framework,
building efficient neural networks that are very complex has become possible148. OCHEM
has an implementation of DNN149, which was used to build models described in this thesis.
OCHEM also has implementations for building Convolutional Neural Fingerprint (CNF)150-152
models using GPUs, CHEMCHAINER models153, and several methods from Deepchem154, 155.

2.4.2. Available Descriptors in OCHEM:

As the OCHEM platform has been used extensively in this doctoral project, it is appropriate to
give a review of its available chemical descriptors (or ‘features’) that can be used as inputs to
a given machine learning algorithm. OCHEM provides a variety of descriptors, ranging from
0-dimensional up to 3D. Properties calculated by other models can also be used as descriptors.
Support for new descriptor packages are being added to OCHEM as they are developed.

1. Adriana.Code156

Adriana.Code comprises a unique combination of topological (2D), spatial (3D) and global mo-
lecular descriptors calculated on a sound geometric and physicochemical basis. Adriana offers
simple molecular property descriptors such as molecular weight and molecular dipole moment
as well as increasingly sophisticated geometric descriptors such as Molecular Radius of Gy-
ration. ADRIANA.Code can perform empirical 3D optimization of the chemical structures or
utilize a pre-optimized representation.

2. ALogPS

ALogPS calculates two descriptors provided by the ALOGPS137 program, which determine the
water/octanol partition coefficient (logPcalc), and water solubility coefficient (logScalc)

157. These
calculated values can then be used as descriptors for building new models.

3. CDK (3D)

CDK or the Chemistry Development Kit is an open source cheminformatics project158. CDK

32

Chapter 2: Methods

includes a descriptors engine that is capable of performing 2D and 3D molecular descriptor
calculations. It supports 204 descriptors divided into 6 blocks: topological, electronic, geo-
metrical, constitutional, hybrid and protein descriptors. CDK also calculates substructure keys
including MACCS, PubChem, and E-state keys, as well as molecular fingerprints of 1024 bits
based on the Daylight theory. CDK has a standalone program with a GUI and can be integrated
into various pipelines, such as Knime. Descriptors in OCHEM are calculated with the recently
released 2.0 version of CDK159.

4. CDDD

CDDD stands for Continuous and Data-Driven Descriptors160, and comprise descriptors de-
rived from a molecular representation using a pre-trained deep learning model. The model that
generates the descriptor uses the ability of deep neural networks to learn a feature representa-
tion from low-level encodings of molecules as SMILES strings.

5. ChemAxon Descriptors (3D)

Chemaxon Descriptors are a set of descriptors developed and implemented by the ChemAxon
company161. The available descriptors are subdivided into seven categories, namely Elemental
Analysis, Charge, Geometry, Partitioning, Protonation, Isomers, and Others. Descriptors that
return a Boolean or Numerical value were implemented into OCHEM.

6. Dragon162 (3D)

Dragon is a well-known software package for the calculation of molecular descriptors, de-
veloped by the Milano Chemometrics and QSAR Research Group of Prof. R. Todeschini. It
comprises perhaps one of the largest and most comprehensive molecular descriptor libraries
available, with a total of 5,270 descriptors. The descriptors are divided into 30 discrete blocks,
such as Topological, Constitutional, Drug-like indices, etc. Dragon is built into OCHEM, and it
uses version 7 by default. It also supports version 6 for older models.

7. GSFRAG163

GSFRAG belongs to the category of 2D fragment descriptors. It calculates the occurrence
numbers of certain special fragments from k=2 to 10 vertices in a molecular graph G, that can
be used as molecular descriptors in quantitative structure-property/activity studies.

8. ISIDA descriptors

ISIDA descriptors are part of the ISIDA project, which stands for In-SIlico Design and data
Analysis164. These fragment-like 2D descriptors are calculated from molecular graphs using
three different methods, namely paths, trees, and neighbors. The descriptors are generated from
the fragments by using different atom and bond labeling methods165.

33

Chapter 2: Methods

9. Mera and Mersy166 (3D)

Mera and Mersy are two related groups of descriptors. Mera provides a group of descriptors
that deal with molecular area and surface. Mersy is abbreviated as Mera Symmetry, and the de-
scriptors are calculated using 3D representations of molecules in the framework of the MERA
algorithm.

10. MORDRED

MORDRED167 is a python-based open source descriptor package that can calculate more than
1800 two- and three-dimensional descriptors. The Mordred package is easy to install in any
environment, and can be deployed as a webserver. It also has preprocessing built-in to ensure
correctness of the descriptors.

11. Spectrophores

Spectrophores168, 169 are 1D descriptors that encode property fields surrounding the molecules.
The algorithm provides a fast method for calculating quantum-mechanical descriptors. The
descriptors include atomic charges, Fukui functions, hardness and softness among other related
descriptors. Spectrophores provide a chemical-class-independent descriptor that can be used to
build models.

NH

00100000000000000000000000000000000000001000

001001001000000000000000000000

0001000000000000000000000000001000

000000000000000000001000100010001000000000000000

0000010000000000000000000000000000000010000000000000000001000000000000000000000000000000100000000000000000000000000000001000000000000000000000000000000010010000000000000000000000000000000000001000000000000

0001000100

0010000000000000000000000000000000000100000001000000000000000000000000000001000100000

001001000100

000

Nortriptyline

*

*

80

*

*

*

*

*

118

*

*

*

*
*

352

*

*

401

*

*

*

*

*

478

*

NH *

667

*

*

694

*

*

*

770

*

NH

*

*

922

*

*

926

*
*

*
*

984

*

*

*

*

*

*

*

1005

*

*

*

*

1038

*

1057

*

*

*

*

*

1120

*

NH
*

1152

**

1199
*

**

1088

*

*

1236

*

*
*

1380

NH
*

1430

*

* *

*

*

1665

*

NH

1700

*

*

*

1708

**

*

1738

*NH

1742

*

**

1750

*

*

1873

*

NH

1995

*

*

Figure 2 . 10 : Circular Morgan Fingerprint (2048 bit) of a compound. The fragments responsible
for setting various bits is shown below the fingerprint.

34

Chapter 2: Methods

QNPR

QNPR or Quantitative Name Property Relationship are 1D descriptors that are directly based
on the IUPAC names or SMILES representation of the molecules. The descriptors are calculat-
ed by splitting the respective string into all possible continuous substrings170.

12. ToxAlert’s56 Extended Functional Group (EFG)171 category

ToxAlert is a descriptor based on classification initially provided by the CheckMol software
package172. The coverage was extended to include new groups, particularly heterocycles171.
ToxAlert covers a total of 583 functional groups.

13. alvaDesc (3D)

alvaDesc is a new descriptor package from AlvaScience. It can calculate 5305 descriptors di-
vided into 30 blocks. It includes ETA and Atom-type E-state indices together with functional
groups and fragment counts. Additionally, alvaDesc implements an extensive number of 3-di-
mensional descriptors such as 3D-autocorrelation, Weighted Holistic Invariant Molecular de-
scriptors (WHIM) and GETAWAY. alvaDesc provides the calculation of several model-based
physicochemical properties such as molar refractivity, topological polar surface area (TPSA),
molecular volume estimations, two LogP models (Moriguchi and Ghose-Chippen octanol-wa-
ter partition coefficient). It calculates 27 drug-like indices including a score for the famous
Lipinski’s Rule of 5. alvaDesc carries out the calculation of MACCS166 fingerprint, Extended
Connectivity Fingerprint and Path Fingerprint and allows the customisation and calculation of
the most-used hashed molecular fingerprints. alvaDesc provides the fragments identified during
fingerprint calculation as SMARTS strings

14. Inductive Descriptors (3D)

The Inductive Descriptors173, 174 are based on calculation of ‘inductive’ electronegativity, ‘in-
ductive’ hardness-softness and ‘inductive’ partial charges. A model for calculating these prop-
erties were developed by the group of Prof. Cherkasov, and descriptors calculated using this
method has been used to build a wide range of QSAR models, to calculate partial charge and
electronegativity of atoms in proteins for docking ligands, amongst other tasks.

15. MAP4 Descriptors

MAP4175 or MinHashed Atom Pair fingerprint of radius 2, is a fingerprint based on the topo-
logical distance between all atom pairs in a circular substructure within a given radius of the
molecule. The original implementation sets the radius to be 2, but it can be customized for dif-
ferent purposes. If the radius is 2, the fingerprint is known as MAP4, which is used in this study.

16. SIRMS

SIRMS stands for SImplex Representation of Molecular Structure176. A simplex is defined as
a tetra-atomic fragment with fixed topology and stereo configuration. SIRMS descriptors are

35

Chapter 2: Methods

the number of identical simplexes in a molecule. There are two implementations of SIRMS;
OCHEM supports the open-source version that calculates 2D simplexes.

17. PyDescriptor (3D)

PyDescriptor177 uses Python to calculate over 16000 molecular descriptors. This tool was devel-
oped by Vijay H. Masand and Vesna Rastija to be used as a PyMol plugin, however it has been
implemented to work natively within OCHEM, as used in this work. PyDescriptor has Con-
stitutional, Geometric, Circular fingerprint, Quantum Chemical and Topological descriptors. A
complete list of all the descriptors can be found in the published report177.

18. RDKIT

The python distribution of the RDKIT package was referenced in the beginning of this chap-
ter77. It can calculate molecular descriptors and hashed molecular fingerprints such as Circular
Morgan Fingerprint. OCHEM has support for a selection of RDKIT descriptors for model
building.

19. JPlogP

JPlogP is an improved logP predictor trained using predicted data. OCHEM already has the
ALogPS descriptors, which uses another model to calculate the same property. Recently, the
JPlogP model has been published178, and support for that is available in OCHEM.

2.1. Model Training in OCHEM
Having looked at the various machine learning methods and descriptors OCHEM supports, the
process of building a machine learning model on the platform must be defined. For the user, the
workflow has two steps: Data Upload, and Model Training.

2.1.1. Data Upload

OCHEM also is a database of molecular property records. As of late 2019, OCHEM contains
2,854,192 records for 638 properties with at least 50 records, collected from 12958 sources.
The first step when working with OCHEM is to import data to the OCHEM database.

OCHEM has a batch data upload feature that allows the user to upload all data at once from a
spreadsheet. The format of the spreadsheet is specified on the upload page. Typically, Python
was used to prepare and export such a spreadsheet for this work, primarily due to the powerful
manipulation and export features offered by the Pandas package. Once uploaded, the spread-
sheet was analyzed by OCHEM and the molecules, typically provided as SMILES strings in
one column along with their properties, were processed and added to the OCHEM database.
This step also looks for internal and external duplicates in the data, and removes any internal
duplicates whilst warning the user about any external duplicates. The data is then represented
as ‘baskets’ in OCHEM.

36

Chapter 2: Methods

2.1.2. Building a model

Once the data is uploaded to OCHEM, the model-building process can be initiated. In OCHEM
there are six steps to start model training. These steps are presented in Figure 2.11 and we will
discuss these steps briefly below.

1. Select sets and learning methods:

The first step is to specify the data and method from which to build the model. We have to se-
lect a training set, and we can optionally add one or more validation sets. If validation sets are
specified, OCHEM will automatically perform external validation after the model is trained.

Next, we specify the method or the algorithm for our model. One can make a selection from the
various machine learning methods OCHEM supports, as previously discussed. Additionally, a
validation method is selected for the model. Different methods for performing model validation
are discussed in an upcoming section.

2. Data Pre-processing

Next, data pre-processing options are selected: Before any descriptors are calculated, the input
molecules must be standardized, neutralized if any charges are present, and any counter-ions
and salts should be removed. In OCHEM this is done using the ChemAxon software. By de-
fault, OCHEM performs these actions, but if for some reason we do not wish for them to be
performed, we can deselect them.

3. Descriptor Selection

The subsequent step is to select descriptors for our model. One or more descriptors can be se-
lected from the wide range available on OCHEM. Additionally, specific blocks of a descriptor
can be chosen, and if applicable one can tune any parameters for that descriptor. For example,
one could specify the fragment length for ISIDA fragment descriptors, or one could choose
just the 2D descriptors from Dragon, for building a model that does not require calculating 3D
structures information. The user can upload and use their own descriptors if they so choose.
This allows for a flexible approach towards model building.

4. Descriptor Filtering

Descriptors are only useful in Machine Learning if they are different for different molecules,
and thereby contain data specific to each molecule. If all the values for a descriptor are the
same for all the molecules in a set, then that descriptor is of no use, and should be removed.
OCHEM has a variety of methods for descriptor selection, some of which are set by default.
OCHEM removes any descriptor with less than 2 unique values, and values that are very large.
OCHEM sets a variance threshold of 0.01 for a descriptor, and any descriptor with a variance
below this threshold is removed. These are set by default, but the user can customize the value
and variance thresholds. The user can also use unsupervised forward selection for eliminating
descriptors that have pair-wise Pearson’s correlation coefficients greater than a given threshold.

37

Chapter 2: Methods

Additionally, full manual selection of descriptors is also possible.

5. Configure Learning Method

A given machine learning method has many tuneable parameters from which to choose, often
called hyperparameters. OCHEM exposes the most important hyperparameters for the chosen
machine learning method, and allows the user to adjust them. For example, in SVM, this step
allows the user to select from three different algorithms; kernel type, cost, and gamma and epsi-
lon parameters. All of the parameters can be given as a range and step, allowing for gridsearch
optimisation. Class weighting is also supported and can be enabled in this step.

6. Start calculation

Now the model is configured, the final step is to name the model and start calculation. OCHEM
provides a default name for the model, which is a combination of the basket name, the model
method, the descriptors used and the model ID. If it is needed, the model can be given a custom
name. A priority can also be set for the task that determines how it will be treated in the queuing
system employed by OCHEM. Once the user presses the red “Start calculation” button, the job
is prepared and set for calculation.

2.2. Model evaluation parameters
Once the model is ready, the performance of the model must be quantified. Different statistical
parameters are used for this purpose and they vary based on the type of task. In this thesis, all
the models described are binary classification models, so model parameters will be examined
with respect to classification metrics. Standard statistical parameters used to define model eval-
uation parameters are outlined below:

True Positive (TP): Data points that are truthfully positive, and predicted to be positive.

True Negative (TN): Data points that are truthfully negative, and predicted to be negative.

False Positive (FP): Data points that are truthfully negative, but predicted to be positive.

False Negative (TN): Data points that are truthfully positive, but predicted to be negative.

In statistical classification and machine learning, these four parameters are often represented in
tabular form. Such a table is known as a confusion matrix (Figure 2.12). We will use confusion
matrices to evaluate model performances throughout this thesis.

2.2.1. Sensitivity and specificity

Sensitivity and specificity are measures of the ability of the model to correctly detect “positives”
and “negatives” respectively. Sensitivity is the percentage of actually positive compounds that
are predicted as positive, whereas specificity is the percentage of actually negative compounds
that are predicted as negative. Therefore, sensitivity is also known as the true positive rate
(TPR) and specificity is also known as true negative rate (TNR). Sensitivity and specificity can

38

Chapter 2: Methods

39

Chapter 2: Methods

Figure 2 . 11 : Model Training Workflow in OCHEM

40

Chapter 2: Methods

be calculated as:

[9]

[10]

A model with a TPR of 100% will report all observed positives as positives, but it may also
report false positives. On the other hand, a model with a TNR of 100% will report all observed
negatives as negatives, but it may also report false negatives. So, if a model indiscriminately
classifies all compounds as positives, it will have a 100% true positive rate, and likewise a mod-
el that classifies all compounds as negatives will have a 100% TNR. Thus, model performance
cannot be effectively judged by either sensitivity or specificity alone.

2.2.2. Accuracy

In classification tasks accuracy is determined as the ratio of correctly classified instances to the
total number of classified instances.

Accuracy =
TP + TN

TP +FP + TN+ FN
[11]

If the number of positive and negative data points in a set are comparable, such a set is called a
balanced set. In a balanced set, accuracy is an acceptable parameter for judging model accura-
cy. However, if the dataset is highly unbalanced, classifying all the observations to the majority
class will produce a high accuracy value. Biological assay datasets are often highly unbalanced,
typically containing over 95% inactives and only 5% actives. Therefore, in such cases, using
accuracy can lead to misleading results (e.g., for the above example classification of all data as
inactives will provide a model with 95% accuracy, whilst not having any meaningful predictive
power) and instead a more meaningful metric should be used.

2.2.3. Balanced Accuracy

Balanced accuracy is calculated as a weighted sum of accuracies within each class. It considers
both sensitivity and specificity equally, and can be calculated as the average of sensitivity and
specificity.

Balanced Accuracy (BA) (NER) =
TPR + TNR

2
=

1

2
×

(

TP

TP + FN
+

TN

TN + FP

)

[12]

As it is an average of sensitivity and specificity, classifying all observations to the majority
class will lead to a BA of 50, thus addressing the limitation of the standard accuracy metric.

Sensitivity(TPR) =
TP

TP + FN

Specificity(TNR) =
TN

TN + FP

Sensitivity(TPR) =
TP

TP + FN

Specificity(TNR) =
TN

TN + FP

41

Chapter 2: Methods

2.2.4. Matthews Correlation Coefficient

The Matthews Correlation Coefficient179 (MCC) can be thought of as a correlation coefficient
between the observed and predicted binary classifications. It ranges between −1 and +1. A coef-
ficient of +1 represents a perfect prediction, 0 an average random prediction and −1 an inverse
prediction. MCC is given by the following formula:

[13]

MCC is a balanced metric, meaning it can be used regardless of class distribution in a dataset.

2.2.5. ROC-AUC

ROC-AUC180 is the area under the Receiver Operating Characteristic curve (Figure 2.12). A
Receiver Operating Characteristic curve or ROC is a graphical plot that describes the variance
in the discrimination power of a binary classification model. The curve is created by plotting
the models’ sensitivity against its false positive rate at various threshold levels. Therefore, The
ROC curve describes the sensitivity as a function of false positive rate for a given classification
threshold. The area under this curve provides a measure for model performance. ROC-AUC
can be used in unbalanced datasets. It ranges from 0 to 1, with 1 being perfect prediction.

Model Evaluation Methods
After a model is built and trained, its prediction ability must be put to the test. There are a few
approaches for doing this, and OCHEM has many implementations, of which the three most
popular are considered.

2.2.6. Test set Evaluation

The simplest approach for testing model performance is to check its prediction against com-
pletely new molecules that the model has never seen before. This dataset is known as a test set,
and based on the source of the data it can be of two types.

a. Internal Test Set: This dataset belongs to the dataset used for training. However, before
training, a portion of the data is set aside as the test set. This test set is used to check model
performance during model training. An internal test set often has similar characteristics to the
training data, and therefore, the model can biasedly report a good performance when evaluated
upon it. Another drawback is that by setting part of the data aside, the model has less training
data, resulting in less efficient usage of all available data.

b. External Test Set: This is data gathered from a completely different source, that is used as
a test set for a model. As it has no relationship with the training data, it is possible that the na-
ture of data be completely different and lie outside the applicability domain of the model being
tested, leading to unreliable prediction. On the other hand, being completely separate, such

MCC =
TP × TN − FP × FN

√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)

42

Chapter 2: Methods

data provides a real-world metric for the performance of the model, without any bias, and gives
information about the generalizability of the model.

2.2.7. Cross validation

In the cross-validation (CV) strategy, the data is randomly divided into N folds or bins. The
modelling procedure is then repeated N times. During each modelling procedure, a single fold
is used as a validation set, and the rest (N-1) are combined to form a training set. Each of the
N available folds are used once as a validation set and (N-1) times as a part of a training set.
Performance measures are calculated based on the prediction values from validation folds. In
cross-validation the model accuracy over the whole dataset is considered.

A special case of CV is the leave-one-out strategy, where one datapoint is used as a test set, and
therefore, N is equal to the total number of datapoints. For very large datasets, this is infeasible,
as it requires calculating N number of models, each with size (N-1). For the majority of QSAR
models, N-fold cross validation is the preferred method. Five-fold cross validation is the default
validation method on OCHEM.

Figure 2 . 12 : Model evaluation parameters, including the ROC curve and confusion matrix, as
displayed in OCHEM.

43

Chapter 2: Methods

2.2.8. Bagging Validation

Bootstrap aggregating181 (bagging) is a variation of machine-learning ensemble meta-algorithm
that relies on building multiple classification or regression models and then averaging the re-
sults (for regression tasks) or voting on the result (for classification tasks) to obtain the final
prediction. The training set for each individual model is obtained by resampling with replace-
ment of the original training set. Given the uniform distribution of the selected training set
instances, every resulting training set is likely to have 63.2% of unique instances of the original
training set. This means the remaining 37% of instances can be used as a validation set for this
run. The set of resampled dataset thus created, is known as a bootstrap sample (Figure 2.13).

If we run the procedure multiple times the chances are high that each molecule in the initial
dataset will appear in the validation set at least once. If the molecule appears in multiple vali-
dation sets, the prediction results are averaged. OCHEM has implementation of bagging with
64 model ensembles, meaning this process is repeated 64 times. Bagging increases prediction
accuracy and model stability, and reduce the risks of over-fitting for random individual estima-
tors.

2.3. Applicability Domain of QSAR Models
As discussed in the preceding section, the performance of a machine learning model is estimat-
ed by evaluating the model against a test set, and measuring the performance. The problem with
this approach is that chemical data is highly inhomogeneous: The performance of the model on
compounds that are dissimilar from the training and validation sets is likely to be different from
the estimated accuracy. Moreover, even within the validation set, the accuracy may be inhomo-
geneous and variable. There can be clusters of compounds that are predicted with an accuracy
that is significantly higher (or lower) than the average accuracy. Thus, considering only the av-
erage prediction accuracy for an inhomogeneous set does not reflect the complete information
on the performance of the model and, therefore, can be misleading. The general definition of
Applicability Domain (AD) as formulated by Netzeva et al. is “The applicability domain of a
QSAR model is the response and chemical structure space in which the model makes predic-
tions with a given reliability”182. Therefore, if one could estimate the prediction accuracies for
each and every compound, then a threshold could be defined for the applicability domain. Any
compound with a prediction accuracy greater than the given threshold lies within the applica-
bility domain of the model, else it is determined to be outside the applicability domain.

2.3.1. Distance to model

There are many approaches for estimating the prediction accuracy of a compound. In this study,
the native OCHEM implementation was employed. All of these approaches rely on the abstract
idea of Distance to Model183. Distance to Model is any numerical measure of the prediction un-
certainty of the model for a given compound. A Distance to Model measure assesses how “far”
a given compound is from the model. The compounds that are “further from the model”, have
larger values of Distance to Model, and are by definition expected to have lower prediction

44

Chapter 2: Methods

accuracy than compounds that have smaller values of Distance to Model. Thus, a distance to
model measure provides a way to estimate the prediction accuracy of the compound: This can
then be used to assess the applicability domain of a given QSAR model.

It is important to note that Distance to Model estimates the reliability of predictions. While
accuracy is an objective measure that has a rigid calculation procedure, reliability is subjec-
tive and can be estimated in numerous ways. Here, a brief overview is given of the Distance
to Model approaches implemented in OCHEM. A comprehensive overview of the methods
can be found in the thesis work where such methods were first introduced184 for classification
problems.

1. Standard deviation of the ensemble predictions (STD)

The standard deviation of the predictions obtained from an ensemble of models can be used as
an estimator of model uncertainty. The general idea is that if different models yield significantly
different predictions for a particular compound, then the prediction for this compound is more
likely to be unreliable. The sample standard deviation can be used as an estimator of model
uncertainty.

Assuming that is a set of predictions for a compound J given by a set of N trained models, the

6

2
7

6

4

5

5

7

94

5

0

2

5

9

0

4

7

2

5

5

5

2

1
6

6
1

8

9

4

4

4

4

5

8

7

6

8

1

0

3

3

5

1

4

7

7

1

8

1

1

6

7

5

3

4

6

6

5

6

1

5

2

8

5

7

7
7

7

1

8

2 2

3

6

2 0

3

8

3

4
7

9

2

7

2

6

4

1

1

2

5

5

2

8
7

4

7

7

7

5

8

9

3

7

3
2

7

5

1

5

6

9

3

0

9

5

5

7

5

0

2

1

7

4

3

0

7

2

1

4
5

4

0

0

8

8

3
82

0

2

9

2
5

6

1

8

3

1

1

9

3

6

4

1

8

1

6

2

9 6

6

9

4

0

4

0

1

98

2
4

3

2

8

5
4

3

4

Sample with
 replacement

Model
Training

Voting

Original
Dataset

Output

Sampled
Data

Machine
Learning
Models

Bootstrap Aggregation

7 8

1

9

6

3

4

2

0

5

Figure 2 . 13 : Graphical representation of Bagging validation.

45

Chapter 2: Methods

corresponding distance to model (STD) is:

[14]

2. Correlation of prediction vectors (CORREL)

This measure is based on the correlation of vectors of an ensemble’s predictions for the target
compound against other compounds from the training set. Similar to the STD, this measure is
applicable only for ensembles of models. More precisely, the CORREL measure for the target
compound J is calculated according to the following expression:

1..
() 1 max[((), ())]correl i ji N
J corrd y T y T

=
= −




[15]

3. Rounding effect (CLASS-LAG)

The CLASS-LAG is a measure of the prediction uncertainty in binary classification. Since the
mean values of predictions are numeric, it must be rounded to the nearest label (-1 or +1) to
identify the class of compound. The less rounding required, the more reliable the prediction is
expected to be. This assumption is utilized by the CLASS-LAG DM. The absolute value of the
difference between the mean prediction value and the nearest label can be used as a DM. In
mathematical notation, this can be expressed as follows:

() () ()()1 , 1CLASS LAGd J min y J y J− = − − − [16]

4. Rounding effect and standard deviation combined (STD-PROB)

In STD-PROB, the two sources of uncertainties; uncertainty related to the rounding of predic-
tions, and uncertainty from model ensemble, are combined. A normal distribution of prediction
probability is assumed with mean y(J) and a standard deviation corresponding to the STD value

described before. e.g. The suggested distance to model STDPROB is calculated as follows:

0
0

(,)(), (

,
(

))
min

()(), ()
)

)

STD

STD PROB

STD

N x y J d J dx
d

N x y J d J dx
J

−∞

+∞

−


= 



∫
∫

[17]

2.3.2. Model Performance with Applicability Domain

With the distance to model metric, compounds with high and low estimated prediction accu-

2(())
1

iy J y
N

−
−

∑

46

Chapter 2: Methods

racy can be distinguished. This gives a way to judge model performance for different subsets
of predictions. There are several ways of calculating average estimated accuracies from the
calculated Distance to Model value.

1. Sliding Window Average

A sliding window size N can be chosen, over which to average the accuracy on N adjacent com-
pounds sorted by some particular distance to model (DM). The resulting value gives a sliding
window average (SWA) estimate of prediction accuracy for a middle compound in the window.
The window is then shifted by one compound and the averaging is repeated to get the accuracy
estimate for the next compound. The sliding window averaging method is useful against noisy
data, and provides smoothed dependencies. The plot of sliding window average accuracy vs
Distance to Model should have an overall downward trend, because as Distance to Model in-
creases, the average accuracy should decrease.

2. Cumulative Averaging

A different approach to assessing prediction accuracy is cumulative averaging. Here, the accu-
racy is averaged over all the compounds with DMs less than a particular threshold, that is varied
to generate the DM vs cumulative averaging accuracy plot. In this approach, it is more conve-
nient to choose an implicit Distance to Model, that corresponds to a certain percentage of the
set of compounds. For example, in this percentage scale, a DM value of 10% would mean that
10% of the compounds from the set have DM values less than this DM value. This cumulative
averaging is easily interpretable and very stable against noise. From this plot, it is very easy
to pick the top or bottom x% predictions. The molecules that are predicted poorly can then be
reviewed (checked for errors in original source, grouped and analysed to find common patterns
and reasons for poor performance), and the model can thus be refined.

47

Motivation

Motivation
Development of a New Chemical Entity (NCE) is a time and capital-intensive process, despite
technological advancements and better understanding of the biological system. The throughput
of new drugs being developed remain quite low, and the cost of developing one has increased
over the past decades. To develop just one drug may take upwards of a decade, and an estimated
2.6 billion dollars, which often requires the involvement of governments and large pharmaceu-
tical companies’ investment.

The most expensive failure in the entire drug development pipeline is at the final stage — fail-
ure at the clinical trials. The earlier a potential toxic or otherwise unwanted compound is ruled
out of the pipeline, the less resource it consumes. There are many ways of weeding out such
compounds, which we have discussed in the introduction section of this thesis. Computational
methods still remain the cheapest, accessible and scalable method for such filtering. However,
the major drawback of computational method is their limited applicability domain along with
the prevalence of false positives and false negatives.

Recently, machine learning has gained enormous popularity for its applicability to a wide range
of non-trivial tasks such as image recognition and Natural Language Processing (NLP). Build-
ing good Machine Learning models requires good training data is sufficient quantity and re-
cently, there has been a rapid growth of available biological assay data — both public and pri-
vate. The central goal of this doctoral thesis is to develop high-performance machine learning
models using such data. For our application, we intend to build models capable of identifying
frequent hitters and false positive in various assay systems such as AlphaScreen or assays in-
volving Luciferase.

The goal of such models is to flag hit compounds that are likely to be an assay artifact as op-
posed to a genuine hit. For target validation step, this means for subsequent secondary assays, a
lower number of compounds may be sufficient to consider reducing expense and time that can
be utilized elsewhere. But eliminating such compounds and ‘failing early’, it ensures that re-
sources are not wasted on false leads, potentially reducing the cost of developing a novel drug.
Though developing an accurate model is time consuming and requires expertise, once trained,
the model can be applied with ease and in a scalable fashion. As new training data become
available over time, the model may be retrained to increase the effectiveness further.

All models developed and described in this thesis are publicly available and would provide a
valuable tool in early stage drug discovery.

Chapter 3

Modelling False Positive Hits in Lucif-
erase HTS Assays141

49

Chapter 3: Modelling False Positive Hits in Luciferase HTS Assays

3.1. Project Introduction
With advances in molecular biology and other areas such as engineering and computation,
high-throughput assay formats have become routine and are widely used in early-stage drug
discovery today185. For hit detection a large fraction (~20%)23 of these assays rely on biolumi-
nescence, which has an excellent signal/noise ratio and a very low background. Such assays
primarily rely on the luciferase enzyme, which is naturally found in various organisms across
the animal kingdom, such as the firefly (Photinus sp.), larvae of certain beetles known as glow
worms, and various marine organisms. Among these, the firefly luciferase (FLuc) obtained
from fireflies (Photinus pyralis) is the most common and widely used variant. The natural sub-
strate for Luciferase is luciferin. The enzyme catalyzes the production of oxyluciferin and light
via a Luciferyl-adenylate intermediate, which is detected and measured in the assay.

It has been known for a long time that ligand molecules tested in luciferase-based assays can
inhibit the luciferase protein, and thus affect the assay outcome21, 186, 187. For this reason, there
has been significant interest towards understanding and evaluating luciferase inhibition, es-
pecially in the context of a high-throughput assay185. In 2008, Auld et al188 published the first
comprehensive study in which they tested ~72000 compounds for luciferase inhibition. They
also identified important scaffolds for FLuc inhibition188. In 2012, the same group published a
follow-up study where they tested a much larger set of compounds, and identified a few addi-
tional scaffolds23. They also published a crystal structure of benzothiol, an inhibitor bound to
FLuc, establishing the binding mode and identifying key interactions23.

Figure 3 . 1 : A. Chemical reaction catalyzed by luciferase that produces light. B. Crystal struc-
ture of the thermostable Japanese Firefly Luciferase complexed with High-energy intermediate
analogue. C. Close-up view of the active site of the Japanese Firefly Luciferase complexed with
High-energy intermediate analogue.

50

Chapter 3: Modelling False Positive Hits in Luciferase HTS Assays

However, despite significant interest and large datasets being publicly available, there has been
little to no reported effort towards building a computational model for luciferase inhibitors.
Such models could potentially be used to identify and filter out these aberrant and false positive
results from a high-throughput assay with good accuracy and relative ease. The goal of our study
is to develop a model that can advise against possible luciferase inhibitors present in a HTS
dataset. In this study, the publicly available data for building a model, using machine-learning
methods, that can identify luciferase inhibitors is analyzed. Further, the influence of molecular
shape and geometry in luciferase inhibition is examined.

3.2. Data
All data used in this study are publicly available in PubChem, as summarized in Table 3.1. The
activity data were downloaded in a spreadsheet format and structures in SMILES format from
PubChem following the Substance ID. The data were then uploaded to the OCHEM platform,
which has established workflows for normalizing and managing the data. The data gathered
were processed to look for overlap in the compounds tested, which should give an indication
of the coverage and reproducibility of the results. Significant dataset overlap was observed
(Figure 3.1).

Table 3 . 1 : Summery of the data used in this study including PubChem Assay ID.

set

Concen-
tration

used for
testing

Number of
compounds

tested

Number of
compounds after
excluding incon-

clusive

% of
Ac-
tives

Pub-
Chem
AID†

Year

1 50 μM 72359 70658 2.17
411

20081 11.5 μM 70231 70231 0.72

2 10 μM 195634 195634 1.52 1006 2010

3 50 μM 364105 326367 6.91
588342

20123 11.5 μM 323224 323224 3.25

† AID stands for Assay ID

Set2 is a complete subset of Set3, and Set1 has some unique compounds with respect to Set3.
The union of all sets has a size of 375001 compounds. This size of data is good for building
models and performing analysis.

In Set1 and 3 there were a few molecules with inconclusive properties. For these molecules, it
was not possible to obtain a concentration-response curve, and therefore the activity was uncer-
tain. We excluded these molecules from our analysis, and because of this, Set2 was no longer
a complete subset of Set3.

A similar analysis was also performed on the active compounds from the three assays. Here, it
was noticed that Set3 has a much larger active compound pool as compared to the others (Fig-
ure 3.1B). This is explained by the fact that there is a significant difference between the highest
concentrations tested in the respective assays: Set2 was measured at a maximum concentration

51

Chapter 3: Modelling False Positive Hits in Luciferase HTS Assays

of 10 μM, whereas both Set1 and Set3 were tested at a maximum concentration of 50 μM. Due
to the higher concentration, Set1 and Set3 contained larger percentages of active molecules
compared to Set2. To compare data at the same concentration for all sets, the inhibition data
at 11.5 μM for Set1 and Set3 was extracted and used. For a few molecules, there were no data
points available at 11.5 μM, hence they were not considered.

It was found that the more recent assays had a signifi cantly larger percentage of active mole-
cules when compared at the same concentration (Table 3.1). This could be either due to diff er-
ence in the chemical spaces, or that more recently performed assays are more sensitive due to
improvements in assay technology. To assess if chemical space was a contributing factor, the
common molecules in all three assays (N = 61224) was analyzed. The same increasing trend
(0.7%, 1.0% and 2.4% for Set1, 2 and 3 respectively) was observed. Because the chemical
space is fi xed, this result points to an increase in assay sensitivity. Indeed, to identify poten-
tial luciferase inhibition through counterscreening, calibration of the counterscreen assay with
known inhibitors is recommended to determine assay sensitivity23. Because of this problem the
diff erent assays cannot be directly compared.

3.3. Methods

3.3.1. Docking studies

For molecular docking, Autodock Vina was used82. SMILES of the molecules were download-
ed from PubChem, and, using CORINA189, their optimized 3D structures were obtained. The
molecules were prepared for docking using AutoDockTools81, and were then docked onto the
luciferase enzyme with an optimal bounding box enclosing the binding pocket. The binding
box was chosen to be large enough to cover the intended docking site, but not too large, in
order to minimize calculation time. Default settings were used for the preparation and docking

Figure 3 . 2 : Venn diagram representation of the datasets used. The sizes of the circles refl ect
the relative sizes of the datasets. A. All molecules B. Active molecules

A B

52

Chapter 3: Modelling False Positive Hits in Luciferase HTS Assays

processes.

The resulting docking poses were analyzed using PYMOL190. A plane was defined, by choosing
three points just outside the binding pocket. This plane denoted the beginning of the binding
pocket and for each atom of a ligand, a position vector was calculated with respect to this
plane. From this, we calculated which atoms were inside and outside the binding pocket. This
information was then averaged over all the docking poses, resulting in the final score that de-
termined how much of a ligand was inside the binding pocket.

3.3.2. Pharmacophore Analysis

Because the crystal structure of luciferase bound to an inhibitor was available, a 3D-struc-
ture-based pharmacophore approach to distinguishing between the active and inactive mole-
cules was investigated. The pharmacophore development and screening were performed using
LigandScout80. The detailed procedure for developing the pharmacophores has been described
in the results section.

3.3.3. Machine learning methods.

Using the freely accessible platform On-line Chemical and Modeling Environment (OCHEM)191,
more than 150 models were built for all three datasets. Primarily Associative Neural Networks
(ASNN)134, 192 and Support Vector Machine (LibSVM)100 algorithms were used for training the
models. Associative Neural Network (ASNN) is an ensemble-based method inspired by the
function and structure of neural network correlations in brain. The method operates by simu-
lating the short- and long-term memory of neural networks, and is particularly effective with
imbalanced data sets (i.e., proportionally many more inactives than actives). These methods
on average provided the highest predictive accuracy in comparison to other methods available
on the OCHEM website. The methods were used with default parameters as specified on the
OCHEM web site.

3.3.4. Molecular descriptors.

A variety of descriptors available within the OCHEM environment were used to train the mod-
els. We have discussed them in-depth in the methods section of this thesis (page 37 - 42).

3.3.5. Statistical coefficients.

For detailed description of the statistical coefficients used in this study, please refer to the Meth-
ods section of this thesis.

53

Chapter 3: Modelling False Positive Hits in Luciferase HTS Assays

3.4. Results

3.4.1. Molecular Docking

In an eff ort to directly visualize the interaction of the ligands with Luciferase, high throughput
molecular docking using Autodock Vina was performed. Interestingly, through visual inspec-
tion, it was found that there was a positional diff erence between the docked population Figure
4.3: Graphical representation of molecules docked onto Luciferase (top), and a histogram of the fraction of ligand
present inside the active site and Vina docking score A. Luciferase Inhibitors B. Luciferase non-inhibitors. C. Densi-
ty plot of ligands vs. fraction of ligand inside the active site. D. Density plot of ligands vs. docking score reported by
Vina. Note that the Vina score is not able to distinguish between the inhibitors and the non-inhibitors as eff ectively.

of the inhibitory and non-inhibitory molecules (Figure 3.3). However, the docking score report-
ed by Vina did not show signifi cant diff erences between both sets. The optimal score to separate
active and inactive compounds (-7.1) using Vina provided a BA of 65.8%. In order to quantify
the diff erence in binding, the percentage of the ligand that was inside the binding pocket was
calculated on an atom-by-atom basis, and then averaged over all the ligand poses (Figure 3.3).
Doing this allowed the quantifi cation of the positional diff erence that can be seen in Figure
3.2C, together with a measure of compatibility between the binding pocket and the ligand.

Figure 3 . 3 : A. Density plot of fraction of ligand present inside the active site, for the false pos-
itive predictions. Note that the majority of the population lies in between the regular active and
inactive molecules. B. Density plot of docking score reported by Vina

54

Chapter 3: Modelling False Positive Hits in Luciferase HTS Assays

From the distribution, one can see that the inhibitory ligands are docked inside the active site
signifi cantly more than the non-inhibitory molecules. Applying a threshold of 0.4obtained a
balanced accuracy of 67.2% in classifying the two groups. Therefore, calculating the fraction of
the ligand inside the active site, one can diff erentiate between the inhibitors and non-inhibitors
with an even better accuracy than using the Vina docking score.

3.4.2. Scaffold Analysis

into identify the chemical nature of the active compounds, a scaff old tree analysis was per-
formed using Scaff old Hunter65, 193. This allowed the direct visualization of the structural hier-
archy of the active compounds. It was immediately clear that there is a great deal of variation
amongst the chemical motifs involved; they are not specifi c to a chemical subtype (Figure 3.3).

Comparing the scaff old structures of Set3 at 50 and 11.5 μM, it was observed that at the lower
concentration, the scaff old hierarchy gets simplifi ed considerably due to the reduced number of
active molecules (reduction of about 50%, see Table 3.1). Further, prominent scaff olds emerge.

Upon closer examination, it became apparent that a clear majority of the scaff olds involved,
although they belong to diff erent chemical families, have a very fl at structure with multiple ar-
omatic rings. Using the SetCompare utility of OCHEM68, this observation was quantifi ed, and
it was found that such scaff olds are enriched several times in the inhibitor population than in the
non-inhibitors (Table 3.2): This implies that the presence of particular functional groups is less
important than the overall 3D shape and structure of the molecule, when considered from the
perspective of luciferase inhibition. This was also corroborated by reported literature23, where
the addition of a non-planar element, such as cyclohexane or a branched motif, to a pre-estab-
lished motif drastically reduced inhibition. It should also be noted that all the scaff olds have a
very limited coverage, therefore indicating a high variability in the chemical space.

Table 3 . 2 : Scaff old analysis using OCHEM

Figure 3 . 4 : Scaffold tree of Set3 in two different concentrations. The larger size and much
higher variability in the chemical space can be clearly seen.

55

Chapter 3: Modelling False Positive Hits in Luciferase HTS Assays

In order to take the idea of prominent scaffolds one step further, a filter was constructed using
SMARTS to screen active molecules from inactive ones based on the scaffold structure. All the
SMARTS were uploaded to ToxAlerts56 on the OCHEM platform, and can be accessed there
online. As can be seen from Table 3.3, even with a general scaffold such as Benzo-imidazole,
only ca. 21% of the actives were captured, along with 13% of the inactive molecules. The ad-
dition of further groups increases selectivity, but reduces coverage significantly. Due to this,
the SMARTS query suffers from exclusivity between selectivity or specificity, and creating
an effective filter with this approach proved very difficult due to the large chemical space and
variability of the set. Although the scope of such a filter is limited, it provided key insights to
the governing scaffold structures behind the inhibition process: This was useful in designing
and refining the pharmacophore during our pharmacophore analysis.

Table 3 . 3 : Filtering active compounds employing SMARTS.

Scaffolds encoded in SMARTS † Actives Inactives Enr ichmen t
Factor

Benzo-imidazole scaffold 21.66 12.93 1.7

Figure 3 . 5 : Scaffold tree of Set3 in two different concentrations. The larger size and much high-
er variability in the chemical space can be clearly seen.

56

Chapter 3: Modelling False Positive Hits in Luciferase HTS Assays

Benzyl imidazole scaffold 4.46 1.06 4.2

Biphenyl system with non-aromatic linker 8.85 6.21 1.4

2-(2-(1H-pyrrol-2-yl)ethyl)-1H-benzoimidazole
scaffold 0.71 0.07 10.1

6-Phenyl napthyl scaffold
2.87 0.92 3.1

Biphenyl system with non-ring linker
6.83 4.11 1.7

2-Phenyl benzo-imidazole scaffold
5.97 0.78 7.7

2-(2-(naphthalen-2-yl)ethyl)-1H-pyrrole scaffold
0.25 0.13 1.9

†For representation purposes, scaffolds that the SMARTS query represents have been used. All
the SMARTS queries can be found in the TOXALERTS section of the OCHEM platform

3.4.3. Pharmacophore analysis

From the scaffold analysis, it is seen that the inhibitors are not scaffold specific, but depend on
the overall 3D structure of the molecule. Therefore, a 3D-structure-based pharmacophore ap-
proach to distinguish between the active molecules and the inactives was investigated. Starting
with a crystal structure of luciferase bound to a benzothiol inhibitor (PDB ID: 4e5d), and using
Ligandscout80, identified the key interactions between the ligand and the enzyme. This provided
the basis of our pharmacophore, which lacks selectivity, but is moderately specific (Table 3.4).
The initial pharmacophore is defined as a combination of three hydrophobic groups and two
hydrogen bond acceptors, as can be seen in Table 3.4. The addition of aromatic rings to the
pharmacophore increased the selectivity, and further made optional both the hydrogen bond
donor to water interactions, and the hydrophobic interactions of the pharmacophore. This sig-
nificantly increased coverage, but had a negative impact on specificity (Table 3.4). Examining
the various scaffolds identified in earlier analysis (Table 3.2), it was found that there are several
members of active compounds where two aromatic systems are bound to a linker group.

To cover this possibility during searching, one feature was allowed to be omitted. This made
the pharmacophore much more flexible, as it can accommodate a biphenyl, benzyl or ben-
zo-imidazole, and many other scaffolds, as long as the aromatic groups satisfy the geometry
criteria. This is the crucial difference between the pharmacophore and the SMARTS query. For
example, in the case of the SMARTS filter that was designed to capture biphenyl systems with a
non-aromatic linker, the shape information is irrelevant. If, due to the nature of linker, the struc-
ture of the ligand becomes non-planar, the SMARTS would still pick it up. On the other hand,
in a pharmacophore query, specifying the motifs involved is not allowed; as long as there are

57

Chapter 3: Modelling False Positive Hits in Luciferase HTS Assays

two aromatic groups present at the specifi ed 3D position and orientation, it will be picked up.
Due to this reason, 74.2% balanced accuracy was achievable with our designed pharmacophore
on our current dataset. This resulting accuracy is higher than any approach based on SMARTS
analysis and molecular docking explored thus far.

Table 3 . 4 : Filtering luciferase inhibitors using pharmacophores.

†Hydrophobic interactions have been shown in yellow, aromatic groups in purple and hydrogen bonds in red. An
outlined shape indicates that the feature was marked as optional.

3.4.4. Machine Learning Models

Models were built with various diff erent descriptors that were discussed in the methods section.

Figure 3 . 6 : 3D and 2D representation of the interactions of luciferase and benzothiol, its inhib-
itor (PDB ID 4e5d). The yellow spheres represent hydrophobic interactions, and red arrows show
hydrogen bond donor interactions.

58

Chapter 3: Modelling False Positive Hits in Luciferase HTS Assays

Across all three datasets, it was found that Dragon descriptors, along with CDK and Adriana,
provided the highest performance. Dragon6 comprised a total of 5270 descriptors. Many of
them capture the shape attributes of the molecules well. The same is true for Chemaxon, CDK
and Adriana sets, which also have similar types of descriptors in the package. Thus 3D-based
descriptors provided the highest accuracy for prediction of inhibitors of luciferase, which in-
dicates the importance of including 3D structural information when modelling luciferase inhi-
bition.

On the other hand, descriptors based on functional groups, such as Structural Alerts56, per-
formed poorly throughout. The best results were calculated with the ISIDA descriptors, which
provide a comprehensive coverage of different molecular types with automatically generated
descriptors. The 2D E-state indices resulted in the second-best models, with a performance that
was not statistically different from the performance of models based on ISIDA descriptors.

Table 3 . 5 : Associative Neural Network analysis

Descriptor Balanced Accuracy † (%)
Set1 Set2 Set3

Dragon6 (3D) 83.7 ± 0.8* 83.6 ± 0.3* 88.1 ± 0.1*

CDK (3D) 83.5 ± 0.9* 84.3 ± 0.3* 88.0 ± 0.1*

ISIDA fragments 81.3 ± 0.8 82.7 ± 0.4* 87.7 ± 0.1*

Adriana (3D) 85.1 ± 0.8* 83.4 ± 0.3* 86.7 ± 0.2*

ALogPS, OEstate 81.3 ± 0.9 81.5 ± 0.3 86.6 ± 0.2

GSFrag 79.5 ± 0.9 80.7 ± 0.4 85.8 ± 0.2

QNPR 79.3 ± 0.9 80.2 ± 0.4 85.4 ± 0.2

Chemaxon Descriptors (3D) 81.2 ± 0.8 81.8 ± 0.3 85.3 ± 0.2

SIRMS 78.1 ± 0.9 81.1 ± 0.4 85.3 ± 0.2

Mera, Mersy (3D) 82.1 ± 0.8 81.8 ± 0.4 84.3 ± 0.2

Inductive Descriptors (3D) 78.1 ± 0.9 78.8 ± 0.4 80.7 ± 0.2

Structural Alerts 73.0 ± 1.0 72.7 ± 0.4 79.1 ± 0.2

Spectrophores (3D) 78.1 ± 0.9 77.4 ± 0.4 78.4 ± 0.2

Consensus Model

86.2 ± 0.7

86.4 ± 0.3

89.3 ± 0.1

†Balanced accuracy for all three datasets obtained using various descriptors and Associative
Neural Network algorithm sorted by accuracy of models for set3.

*Models that are marked with an asterisk were used to create the consensus model.

59

Chapter 3: Modelling False Positive Hits in Luciferase HTS Assays

1. Consensus Models

Consensus models were built for each dataset. This was performed by averaging the results
of the four best-performing models, selected according to the balanced accuracy. As shown in
table 3.5, the consensus models had an accuracy ca. 1-3% better than the individual models: All
further analysis was performed using these consensus models.

2. Analysis across datasets:

To observe the effects of the increasing volume of data in the training sets of the models, as well
as to determine the performance of the models against new compounds, the other two sets were
used as test sets against each trained model:

Since Set1 is the smallest, and also had the least sensitivity amongst the three datasets, models
from this set would not be able to effectively predict molecules from Set2 and Set3. As one can
see from Table 3.6, Set1 models show lower accuracy against Set2 or Set3, in comparison to
itself. In the case of Set2, the sensitivity is higher and training set size is larger than that of Set1,
and therefore the model can effectively predict molecules from Set1. However, against Set3 the
same model does not perform well, and this can be explained by the same argument as in the
case of Set1. The model built from Set3 provided the best results, as the training set was the
largest and also the sensitivity the highest, providing the largest number of active molecules in
the training set. This makes Set3 the main dataset from which to build our final model.

Table 3 . 6 : Cross correlation of models between the datasets used in the study.

Test Set †

Set1 Set2 Set3
Set1 86.2 ± 0.7

(70,231)

81.2% ± 0.3
(195,546)

81.0% ± 0.2

(323,224)
Set2 89.8% ± 0.7

(70,231)

86.4 ± 0.3

(195,546)

85.5% ± 0.2
(323,224)

Set3 90.8 ± 0.5
(70,231)

87.7 ± 0.2
(195,546)

89.3 ± 0.1

(323,224)

†Number inside the parenthesis denotes the number of tested molecules in the respective set.

3. Analysis of incorrect predictions

In order to gain a better understanding of the inaccuracy of the models, the compounds that
were predicted incorrectly were analyzed. First, the molecules that were predicted incorrectly
in at least two consensus models were selected. For the FN (actives that are predicted as inac-
tives), were 130 molecules, and for the FP (inactives that are predicted as actives), there were
13594 molecules. To understand the nature of the false positives, they were docked against Lu-

Tr
ai

ni
ng

 S
et

60

Chapter 3: Modelling False Positive Hits in Luciferase HTS Assays

ciferase, and examined as per the analysis described in the docking section. This revealed that
FP molecules have the propensity to dock inside the active site of luciferase more than regular
inactives (Figure 3.3), but less than that of regular actives. This means that these molecules
have some structural features that are capable of fitting inside the active site of luciferase, but
the interactions are not favorable. This is well corroborated by the docking score reported by
Vina, where the false positives have more favorable binding energy compared to the inactives,
but less favorable compared to the actives. The structural features are being recognized by the
machine learning algorithms, and because the machine learning methods do not consider the
interactions, the molecules are being marked as inhibitors, when in fact due to unfavorable
interactions they do not inhibit luciferase.

Since aggregation is known to play a role in inhibition194, it was decided to investigate whether
the activity of some compounds could be due to aggregation. As a property, aggregation is
dependent on many variables, and therefore it is very difficult to predict: There has been signif-
icant effort in developing this area, and an aggregation advisor (http://advisor.bkslab.org)195 has
been established to address this problem. This on-line server checks new molecules against a
database of known aggregators; the database contains compounds that are known to aggregate
at concentrations of 10 μM or lower. Because at elevated concentration aggregation is promot-
ed further, this test will identify such molecules in our datasets that were screened at 10 and 50
μM.

It was found that 3.2% of the active compounds are known to aggregate, as compared to 2.1%
among the inactive molecules. It is also worth mentioning that in Set1 and Set3 assays, 0.01%
Tween-20 was used as a detergent, presumably to prevent aggregation. In the case of Set2,
compounds were dissolved in DMSO. Therefore, one might expect that in Set2, more aggre-
gators would be present in the active pool. However, due to the small number of aggregator
molecules, no appreciable difference in percentages of aggregation for active/inactive in Set1,
Set3 vs. Set2 was observed. The use of detergent could decrease the percentage of aggregators
amid active molecules. Still, the fraction of aggregators amid active molecules is 50% large
than amid non-active ones. Thus, aggregation plays a significant role in making the molecules
change class across experiments, and may have played some role in inhibiting luciferase.

4. Effect of concentration

Table 3 . 7 : Effect of concentration reporting balanced accuracy in consensus models for Set1 and Set3

Set 50 μM 11.5 μM
Set1 85.3 ± 0.4 86.2 ± 0.8
Set3 87.2 ± 0.1 89.3 ± 0.1

As mentioned previously, there is a concentration difference in the datasets taken for this study,
and the models built are dependent on this concentration due to the activity of molecules chang-
ing based on concentration. It was noted that at higher concentrations, models became less
accurate. To better understand this, the number of molecules (N=2666) were counted that were
incorrectly predicted as inactives by the model developed using 50 μM data. It was found that

61

Chapter 3: Modelling False Positive Hits in Luciferase HTS Assays

81% of these molecules became inactive upon lowering concentration. Contrary to that only
54% (N=22303) of correctly predicted active molecules (corresponding to on average a 50%
decrease of actives when lowering concentration from 50 to 11.5µM) became inactive. There-
fore, at higher concentration, such molecules introduce noise into the data, leading to inaccura-
cy. The models reported here were built using activity data at 10 μM or 11.5 μM: This must be
taken into consideration when applying the model.

5. Merging datasets to create the final model

To create the final model, Set3 was chosen to be our primary set, as reasoned above.

Only the unique active molecules from Set1 and 2 were then added to it, reasoning that since
these molecules are active in an assay with lower sensitivity, they have a higher probability to
be active and not false positives. It was decided not to merge the inactives from three datasets
together, as doing so would lead to having inactive molecules that come from experiments
with lower sensitivity, which may bring false negatives. This gives a merged dataset with N =
323443, and with 3.3% of active molecules. Using the same procedure as previously discussed,
a consensus model was obtained, with a balanced accuracy of 89.7%. It can be accessed at
http://ochem.eu/article/104546.

3.4.5. Sensitivity of existing filters

As the inhibition of luciferase, and the nature of its inhibitors were explored in this study, it was
wondered where these identified inhibitors lie in the context of existing frequent hitter and Pan
Assay Interference Substance (PAINS37) filters: These filters are implemented on OCHEM as
part of the ToxAlerts platform56, and they were ran against our dataset. It was found that PAINS
filters flagged approximately twice as many active compounds as inactive compounds; the Al-
phaScreen filters to detect promiscuous compounds also provided an approximate threefold
enrichment of flagged actives over inactives. However, the promiscuity filter that was designed
to identify compounds likely to hit multiple assays196, provided a much smaller enrichment. The
highest enrichment was calculated for the AlphaScreen filter, however, this filter had the lowest
coverage. The most prominent alert among the AlphaScreen filter that picked up luciferase in-
hibitors was the Aminal alert (aminal on a pyridine-based system). This alert picked up several
compounds with a planar structure, and provided an enrichment factor of 6.2. It should also be
noted that the number of alerts involved in this case is very small, which gets reflected in the
poor coverage of this filter. The difference in the number of alerts in each filter contributes to
the specificity/selectivity trade-off.

Also of note, most of the compounds were flagged as being reactive, unstable or tox-
ic. This is expected, as the responsible filter is known to pick up drug-like molecules: It is
worth mentioning here that the presence of such alerts by itself does not make a molecule
toxic in the context of medicinal application, due to dosage and clearance from the body.

62

Chapter 3: Modelling False Positive Hits in Luciferase HTS Assays

Table 3 . 8 : Luciferase inhibitors tested against a variety of other filters.

Compound Filters † Actives (%) Inactives (%) Enrichment

Pan Assay Inter-
ference Substance

(PAINS) (480)

9.8 4.9 2.0

Promiscuity (178) 4.7 3.8 1.2

AlphaScreen FH
filters (25)

1.7 0.6 2.8

Reactive, Unstable,
Toxic (340)

66.9 62.3 1.1

†The numbers in parentheses represent the number of alerts in each respective filter.

3.5. Discussion
The developed chemoinformatic model is suitable for providing an early warning against po-
tential inhibitors of luciferase that may interfere with HTS experiments. Since the model does
not have 100% accuracy, some compounds can be predicted as luciferase inhibitors when in
reality they are not. On the other hand, even if the molecule is indeed a luciferase inhibitor, that
does not mean that it cannot be a potential lead. Hence, it is strongly advised not to discard the
flagged molecules as false leads but rather to consider them further, to better interpret experi-
mental results.

Thus, the model described here should be used to identify potential interference in lucifer-
ase-based assay systems. The identified molecules should be re-tested using other assay proto-
cols that do not rely on luciferase. The merit of this study is that one can find potential interfer-
ence in very large datasets, and only the flagged molecules then need be tested by orthogonal
assays. This reduces cost, time and effort in the counterscreening effort.

3.6. Project Conclusions
In this study, various methods of filtering and detecting luciferase inhibitors in a lucifer-
ase-based HTS assay were explored. Computational models using machine-learning methods
on publicly available data from PubChem were designed. Further, molecular docking was em-
ployed to understand how inhibitors bind to luciferase, and a scaffold analysis was performed
to gain a better understanding of the chemical nature of such inhibitors. The machine learning
models that were developed outperformed other methods of filtering luciferase inhibitors, such
as SMARTS or pharmacophore-based filters. A prediction accuracy of 89.7% was obtained,
which makes the final model a good tool for filtering potential luciferase inhibitors. Still, the
predictions of the model should be considered as advice, and flagged compounds may be re-
tested in orthogonal assays. All models and data reported here are publicly accessible at http://
ochem.eu/article/104546.

Chapter 4

Machine Learning model to filter
Frequent Hitters for
AlphaScreen assays

64

Chapter 4: Machine Learning model to filter Frequent Hitters for AlphaScreen assays

4.1. Introduction
AlphaScreen is a very versatile assay technology which is commonly used in drug discovery
projects197. It is particularly suitable for HTS, due to the high signal-to-background ratio, dy-
namic range and sensitivity, together with the homogenous assay format and reagent stabili-
ty. The “Alpha” in AlphaScreen stands for Amplified Luminescent Proximity Homogeneous
Assay. As the name indicates, the assay relies on the intended biological interaction to bring
two beads together; a donor and an acceptor bead. The donor bead contains a photosensitizer,
phthalocyanine, which excites ambient oxygen to its singlet state upon irradiation with 680nm
light. This excitation is typically done using a laser. If an acceptor bead is present within about
200nm (typical diameter of a single bead particle), then the singlet oxygen interacts with chem-
ical dyes in the acceptor beads resulting in a cascade that ends with emission of light at 520-
620nm. Excitation of a single donor bead can produce up to 60000 singlet oxygens per second,
which leads to massive amplification of response, if a donor-acceptor interaction is present198. If
no such interactions are present, the singlet oxygens diffuse in the medium and go undetected,
producing exceptionally low background noise.

However, there are multiple ways ligand molecules can interfere with various components
of AlphaScreen assay technology. Based on the mechanism of action, there are three general
categories: These are Singlet oxygen quenchers, color quenchers, or inner filters and light scat-
terers. Efforts have been made to identify such bad actors, and filters have been published to
isolate them in a high throughput screening setting19, 37, 199.

In a previous study19, researchers from the Tetko group reported two classes of interfering
compounds, one that interfered with the interaction of the protein His-tag moiety to nickel
chelate (Ni2+-NTA) beads of the AlphaScreen detection system, and another generic class of
compounds, that interfered with the assays via unknown mechanisms. In a follow-up study199
a class of compounds interfering with the interaction of glutathione S-transferase (GST) to
glutathione (GSH) was examined, which interfere with AlphaScreen assays involving beads
containing Glutathione. Scaffolds were identified that were over-represented among the iden-

Figure 4 . 1 : Principle of AlphaScreen. Figure obtained from article by Elgen et al198.

65

Chapter 4: Machine Learning model to filter Frequent Hitters for AlphaScreen assays

tified frequent hitters. Such scaffolds were then encoded using SMARTS200 strings, and the
ToxAlerts56 platform was used to build a working filter. In this study, machine learning methods
to build models we employed using the OCHEM platform191 from the same data, in order to
compare the efficacy of machine learning and scaffold-based approaches.

4.2. Data
The in house data that were used to create the SMARTS based filter from the previous studies19,

199 was already available. This was used as the training set for building the models. A robust test
set against which both methods could be tested was needed. For this, publicly available data in
PubChem201 was utilized. AlphaScreen confirmatory high throughput screenings was sought,
and from these were selected 15 HTS campaigns with the highest number of actives (see Table
S1 in Appendix I). HTS campaigns with very small number of actives are statistically less
useful for identifying frequent hitters.

From previous studies, two in house datasets were available corresponding to the two frequent
hitters (FH) types identified. However, the identified assays from PubChem used various com-
binations of donor and acceptor beads (Table S1, Appendix I). In order to be directly compara-
ble, compounds had to be identified that were interfering with either the Ni-NTA beads, or GSH
coated beads. However, without counter-screen information, separating compounds based on
Mode Of Action (MOA) was not possible. Therefore, the various types of FH identified in the
previous study were merged into one category in order to compare them against the generic FH
from the PubChem sets. Although an external test set was not available, models were built for
each of the different classes, in an effort to provide models that could suggest mechanism of
action of FHs. Thus, in total, there were four different datasets (Table 4.1).

Table 4 . 9 : Descriptions of the datasets used in this study. In the PubChem-Combined dataset,
the selection threshold was varied, resulting in a variable number of FH.

Data Set abbreviation Data Source Total

Compounds

Active Com-
pounds

FH FH specificity

OCHEM-Ni-NTA in house 24988 77 Streptavi-
din-Ni-NTA/

His
OCHEM-GST in house 24988 53 GST/GSH

OCHEM-Combined in house 24988 190 -

PubChem-Combined PubChem 489951 55560 Variable* -

*The number of FHs was determined by the used enrichment threshold.

For identifying FH, statistical analysis of compound activities was employed. First, compounds
that were tested less than five times were omitted. The activity fractions associated with low-test
count were much higher for such compounds and thus such data points would introduce noise

66

Chapter 4: Machine Learning model to filter Frequent Hitters for AlphaScreen assays

in the analysis. For example, if a compound was tested once and found to be active, then its
activity fraction was 1. Such compounds should not be considered a FH since it could be just an
active. After filtering, the activity fraction Fobs = ni/ki for each compound was calculated, where
a compound i was tested in n assays and was active k times. Next, for each assay the activity
labels were shuffled, keeping the total number of active compounds unchanged. This means
that per compound, the activity was randomized. After this was calculated the activity fraction
again. Let this be called Fcalc. To obtain a statistically significant result, the randomization was
repeated and Fcalc was computed 10,000 times, along with the 95% upper confidence interval
Fav(95%). Then for each activity fraction, an enrichment factor En was defined, as the ratio of
Fobs to Fav(95%). This enrichment factor was the degree of overrepresentation for that activity
fraction, when compared to the one obtained randomly. For example, if for activity fraction 0.7
we calculated En = 10, then compounds that had an activity fraction of 0.7 were observed in the
active group 10 times more than would be expected by chance. Considering that assays were
not related, such an overrepresentation was related to the non-specific activity of compounds,
i.e., these compounds were frequent hitters (FH). Therefore, this metric served as an indicator
of FH propensity (Table S2, Appendix I). Of course, only compounds with enrichment factor >
1 could be considered as FHs.

For identifying FH, a threshold was selected for the enrichment. The larger the threshold the
higher the probability of selected compounds to be FH. If the models and methods of predic-
tion were accurate, the use of the larger threshold could increase their prediction score, i.e.,
the models should be able to predict compounds that are more likely to be frequent hitters
with higher accuracy. This provided an additional measure for comparing the accuracy of the
machine learning and the scaffold-based methods. Because of this reason the FH count for the
PubChem-Combined set was mentioned to be variable in Table 1.

4.3. Methods

4.3.1. Machine learning methods

 Using the freely accessible platform On-line Chemical and Modeling Environment (OCHEM)191,
a comprehensive modeling was performed for all three datasets. Different machine learning al-
gorithms available in OCHEM were applied, such as Associative Neural Network (ASNN)192,
Deep Neural Network (DNN)149, Least Square Support Vector Machine (LSSVM)102 for train-
ing the models. The newly proposed Transformer-CNN202 method that uses the SMILES repre-
sentation of molecules was also included. Detailed descriptions of the methods were provided
in the Methods section of this thesis (Chapter 2).

4.3.2. Molecular descriptors

A variety of descriptors available within the OCHEM environment were used to develop the
models. They were described in the Methods section of this thesis (page 37 - 42).

67

Chapter 4: Machine Learning model to filter Frequent Hitters for AlphaScreen assays

4.3.3. Statistical coefficients

Statistical coefficients used in this study were described in detail in the Methods section of this
thesis (Page 44).

4.4. Results

4.4.1. Frequent Hitter Analysis

In order to compare performances of previously developed ToxAlert filters19, 199 and ma-
chine-learning model, independent test sets were used, different from those utilized to develop
the methods. As described in the Data section these sets were selected from PubChem19, 201 and
identified FHs based on statistical analysis. If one considers compounds with an enrichment
value > 10 to be a frequent hitter, then 7633 FHs were identified out of ~350K compounds,
corresponding to ~2.1%. In comparison, in the in house training set there were 190 FH com-
pounds out of 24988, which is ~0.7%. The lower number of FHs in the in house library could be
due to explicit exclusion of potential FHs by using filters on reactive and unstable compounds
available in the ToxAlert platform when selecting compounds for the library. While the PAINS
filters were not employed in the library design, such a selection still reduced the percentage of
FHs.

4.4.2. Machine-learning Models:

For determining comparative performance of machine-learning models against scaffold-based
FHs, comprehensive modeling with the combined in-house data was performed using a variety
of descriptors in OCHEM (Table 4.2).

Table 4 . 10 : Comprehensive modeling with the OCHEM-Combined dataset. The models pre-
sented in the table, with an exception of Transformer-CNN, were created with the Associative
Neural Network. The ROC-AUC and BA scores calculated with stratified bagging are shown.

Descriptors AUC BA
ALogPS, OEstate 0.86 78
alvaDesc 0.88 79
CDDD# 0.88 78
CDK2 0.86 79
ChemaxonDescriptors 0.86 77
Dragon6 (2D Only)# 0.87 79
Dragon6 (3D) 0.88 80
Fragmentor*# 0.89 81
GSFrag 0.84 76
InductiveDescriptors 0.8 73
JPlogP 0.85 76
MAP4 0.84 73
Mera, Mersy 0.78 69

68

Chapter 4: Machine Learning model to filter Frequent Hitters for AlphaScreen assays

MORDRED (3D) 0.88 79
PyDescriptor (PyDescriptor)* 0.89 80
QNPR 0.86 78
RDKIT (3D)* 0.91 81
SIRMS *# 0.89 80
Spectrophores 0.71 64
StructuralAlerts 0.85 78
Transformer-CNN *# 0.88 81
Consensus 0.92 84
Consensus 2D 0.91 84

*Models denoted were considered for the general consensus model. #Models were used in calculating the 2D only
consensus model.

ASNN, and deep learning algorithms available in OCHEM, were used. Out of all methods,
ASNN showed best overall performance, as summarized in Table 4.2. The five best performing
models were chosen for building the consensus model, which was applied to the test set.

A variety of descriptor packages available in OCHEM were used. Some of the descriptors re-
quired the 3D structure of the molecule, for which the Corina software package189 was used as
a part of the modeling pipeline in OCHEM. It was decided to make one consensus model from
the best performing models with descriptors that did not require 3D structures, and another
consensus model with the best performing models regardless of the descriptor package used.
The consensus model using 2D+3D descriptors outperformed the 2D-only consensus model,
but only by a small margin with an AUC score of 0.9 for the 2D-only model versus 0.91 for the
general consensus model. A similar trend was also observed while modeling with other data-
sets in the study (Table 4.3 and 4.4). This indicates that 2D structure-based models can be used
with almost equal effectiveness to models based on 3D structures. As 3D structure calculation
is computationally expensive, 2D structure-based models maybe used as a faster and lighter
solution.

A Transformer-CNN202 model was also developed with this data. This method requires no de-
scriptors to be calculated, and therefore, is agnostic of any bias that may arise from using one
descriptor over the other. The model is also very lightweight. It required only 8MB of disk
space, whereas some of the other models that depend on large descriptor sets such as Dragon
needed 300MB.

4.4.3. Comparison between Scaffold based Filter and Machine-learn-

ing Models:

To compare the performance of the developed machine learning filter, the general consensus
model developed from the combined training set was applied to the test set collected from
PubChem data. As discussed in the data section, for classifying FHs, a threshold value for the
enrichment was used, that we calculated. As we increased this threshold, performances for
machine learning consensus model were compared against the PAINS filter developed by Baell

69

Chapter 4: Machine Learning model to filter Frequent Hitters for AlphaScreen assays

et al37, as well as the combined filter created from previous AlphaScreen studies19, 199 using in
house data.

With a very low enrichment value, the entire library was marked as frequent hitters, and there-
fore, it resulted in very poor balanced accuracy from all the methods. As the threshold value
increased, there was a marked increase in the BA for both PAINS and the machine learning
methods, with PAINS outperforming machine learning. However, the balanced accuracy for the
AlphaScreen FH based on in house data barely increased (Figure 4.2). At an enrichment thresh-
old of >25, the consensus machine learning model calculated a BA of 64%, and the PAINS filter
calculated a BA of 65%. It should also be noted that increasing the threshold also reduced the
number of identified FHs significantly. At an enrichment threshold of 25, the number of FHs
was down to 4k from 7.6k compounds calculated for threshold of 10.

The reason for the poor performance of the scaffold-based FHs was the limited nature of the
in house dataset. A scaffold-based method could be very effective, but the scaffolds identified
must cover a wide chemical space. This was evident from the fact that PAINS, which is also a
scaffold-based filter, had significantly better performance. The PAINS scaffolds were identified
from six AlphaScreen based assays with a total compound pool of 93212. They covered 2062
FH (2.2%) that were active in four or more out of the six assays. Compared to that, as explained
below the in house data had a reduced fraction (0.9%) of FHs due to the library design. There-
fore, the scaffold-based filter derived from the in-house data performed poorly compared to
the PAINS filters. However, interestingly, the machine-learning model developed from such a
limited dataset was still able to perform almost comparably to the PAINS filter, demonstrating
the effectiveness of this approach.

As the machine learning and the PAINS filter both performed well and were derived from
independent datasets, they were combined and a compound was considered a FH when it was
predicted by any of the approaches. The combined filter improved balanced accuracy by ~5 %
over the entire range (ML+ PAINS as shown in Figure 4.2) and showed 68.3% balanced accu-
racy at an enrichment threshold of >25.

As the performance of the machine-learning model is always limited by the training dataset, it
was desired to explore whether better results could be calculated by developing a model with
a larger dataset. Therefore, models were developed using PubChem-Combined, and applied
to OCHEM-Combined. The rational was that the PubChem-Combined set was much larger –
therefore, a model trained with such a set should be able to pick up FHs from the comparatively
limited OCHEM-Combined set.

Comprehensive modeling was performed using OCHEM (Table 4.3), and it was decided to
use 5-fold cross-validation instead of bagging, since performing bootstrap aggregation on such
a large dataset resulted in very large models. For this dataset, the Transformer-CNN method
contributed the model with the highest AUC-ROC=0.94 and BA=87%. A consensus model was
built with the Transformer-CNN model and the four other best performing models that were
built using ASNNs. When applied to OCHEM-Combined, the consensus model identified 139
out of 190 frequent hitters, resulting in a sensitivity score of 73% and a BA of 79%. Compared

70

Chapter 4: Machine Learning model to filter Frequent Hitters for AlphaScreen assays

to this, the PAINS filter applied to OCHEM-Combined only identified 65 out of 190 frequent
hitters, with a sensitivity score of only 34% and BA of 65%. Since both PAINS and consensus
model were developed with different sets, one cannot compare their performances directly.
Still, this clearly demonstrates that machine learning models, when trained with an appropriate
dataset, may provide very good accuracy.

Table 4 . 11 : Comprehensive modeling using PubChem-Combined dataset. The models present-
ed in the table, with an exception of Transformer-CNN, were created with the Associative Neural
Network. The ROC-AUC and BA scores calculated using 5-fold cross-validation are shown. Opti-
mal threshold was used to calculate the BA.

Descriptors AUC BA
ALogPS, OEstate# 0.88 83
alvaDesc (3D) 0.87 83
CDDD *# 0.89 83
CDK2 0.87 82
ChemaxonDescriptors 0.84 80
Dragon6 (2D Only) 0.86 82
Dragon6 (All) 0.87 82
Fragmentor *# 0.9 85

Figure 4 . 2 : Comparative performance of filters based on the chemical scaffolds groups (Scaf-
fold based FHs from previous studies19, 199) and machine learning model (ML) developed from
the same data across a range of selectivity thresholds. The PAINS filter and a combined filter
(ML+PAINS) is also shown. Number of compounds identified as FHs in PubChem are shown as
char bar diagram for the different enrichment thresholds.

71

Chapter 4: Machine Learning model to filter Frequent Hitters for AlphaScreen assays

GSFrag 0.84 80
InductiveDescriptors 0.74 71
JPlogP 0.86 82
MAP4 0.77 74
Mera, Mersy 0.77 74
MORDRED* 0.89 84
PyDescriptor 0.86 82
QNPR 0.86 81
RDKIT (3D) 0.88 84
SIRMS*# 0.89 84
Spectrophores 0.66 63
StructuralAlerts 0.86 81
Transformer CNN*# 0.94 87
Consensus 0.94 86
Consensus 2D 0.93 86

*Models denoted were considered for the general consensus model. #Models were used in calculating the 2D only
consensus model.

4.4.4. Machine learning models to identify mechanism of action of

FHs

As machine learning models were determined to be effective, also it was decided to developed
models that could suggest a mechanism of action (MoA) for FHs (Table 4.3). For example,
the frequent hitters in the OCHEM-Ni-NTA and OCHEM-GST datasets (Table 4.1) interfered
with Histidine binding to Ni-NTA and interaction of glutathione S-transferase (GST) to gluta-
thione (GSH), respectively. Since the machine learning method provided better performance
compared to scaffold-based filters for the combined set, the models developed for each of the
sets could be more efficient in identifying the MoA of new FHs. Therefore, all datasets were
jointed and a multitask model was developed to simultaneously predict whether a compound is
a frequent hitter, and its MoA. The training set had 371604 molecules spanning three different
target properties, i.e., one for if the molecule is a frequent hitter, and two for the two modes of
action. Employed were both a multitask learning approach203, and multiple single task learning
approaches using stratified cross validation. For this study the combined single task

Table 4 . 12 : Multiple Single task learning for predicting frequent hitter and possible Modes of
Action. Different datasets were used to create the three submodels, as appropriate. For example,
OCHEM-GST dataset was used to create the model for predicting compounds interfering with
GST. The models presented in the table, with an exception of Transformer-CNN, were created
with Associative Neural Network. The ROC-AUC and BA scores calculated using 5-fold stratified
cross-validation are shown. Optimal threshold was used to calculate the BA.

AUC Balanced Accuracy (%)

OCHEM-
GST

OCHEM-
Ni-NTA

PubChem-Com-
bined

OCHEM-
GST

OCHEM-
Ni-NTA

Pub-
Chem-Com-

bined

ALogPS, OEstate 0.79 0.81 0.88 77 78 83

72

Chapter 4: Machine Learning model to filter Frequent Hitters for AlphaScreen assays

alvaDesc (3D)* 0.82 0.89 0.87 78 84 82
CDDD*# 0.84 0.83 0.89 80 80 83
CDK2* 0.83 0.86 0.87 81 80 82
ChemaxonDe-
scriptors 0.79 0.84 0.84 74 78 79

Dragon6 (2D
Only) # 0.83 0.86 0.86 76 83 82

Dragon6 (3D) 0.81 0.88 0.87 75 83 83
Fragmentor# 0.77 0.87 0.89 73 80 85
GSFrag 0.75 0.82 0.84 74 76 80
InductiveDe-
scriptors 0.75 0.74 0.74 73 67 71

JPlogP 0.79 0.75 0.86 74 74 82
Mera, Mersy 0.79 0.74 0.77 75 72 74
QNPR 0.78 0.83 0.86 77 77 81
RDKIT(3D)* 0.8 0.93 0.88 79 89 84
SIRMS# 0.76 0.89 0.89 72 80 84
StructuralAlerts 0.74 0.85 0.86 71 78 81
Transformer
CNN*# 0.79 0.87 0.93 80 87 87

Consensus 0.86 0.93 0.93 81 87 86
Consensus-2D 0.84 0.91 0.91 79 85 86

*Models denoted were considered for the general consensus model. #Models were used in calculating the 2D only
consensus model.

learning performed better. Among the three properties predicted, PubChem-Combined showed
the best performance, followed by OCHEM-Ni-NTA, and OCHEM-GST showed worse perfor-
mance consistently. This is due to the amount and nature of data involved. PubChem-Combined
is a much larger dataset than OCHEM-GST or OCHEM-Ni-NTA, and this produces a better
model. OCHEM-GST has fewer compounds marked as active (53 compared to 77). All other
compounds between the two sets are the same, so the lesser number of actives results in worse
performance. Other models were built from the PubChem-Combined set in this study (Table
4.3). The performances of the two sets of models were very similar (Consensus 0.93 vs 0.94),
which is expected due to the multiple single task learning approach used. The transformer
neural network showed the best performance amongst individual models, with average AUC
of 0.87 and BA of 84.7% (Table 4.4). A consensus model with only 2D descriptors improved
the AUC and BA score to 0.90. Including all types of descriptors in the consensus produced
the final model, with an AUC of 0.91 and BA of 84.7%. The model is publicly available on the
OCHEM web site (https://ochem.eu/article/125278).

In order to find out what improvements the model achieved, apart from the statistical scores,
we applied this final model to OCHEM-Combined. It was able to identify 140 out of 190
frequent hitters. This is very similar to the performance shown by models built from the Pub-
Chem-Combined dataset (Table 4.3), and this is expected. As explained previously, the PAINS
filter identified only 65 of these 190 compounds, so the model identified an additional 75 com-
pounds over the PAINS filters. The full list of these compounds is presented in Appendix II of

73

Chapter 4: Machine Learning model to filter Frequent Hitters for AlphaScreen assays

this thesis, and a few scaffolds of interest are presented in Figure 4.2. In general, the collection
is quite heterogeneous, and no prominent scaffold could be identified. This is expected, as a
well-known scaffold-based filter such as PAINS was not able to identify these compounds.
There are a few toxoflavines, as well as toxoflavin mimics. Also of note, were the presence of
multiple condensed polyaromatic moieties, Cyanodithiines, aminothazoles and Picolylamines
(Figure 4.3). Many of these scaffolds have been identified manually before, and are already
present in the scaffold-based filter. However, as has been discussed in detail, scaffold-based
filters perform very poorly against a broad test set. They are able to pick up these particular
scaffolds, but suffer greatly in overall performance. On the other hand, the machine learning
model was able to identify these scaffolds without prior exposure to them, and provided much
better overall performance (79% BA compared to 65% of PAINS, when the final model was
applied to OChem-Combined). Therefore, in the final model, the presence of a frequent hitter is
identifiable with better accuracy, and further the detection of scaffolds and compounds is possi-
ble that a traditional method such as PAINS may overlook. In addition to this, it is also possible
to comment on a potential mode of action. This makes our model an excellent tool for filtering
frequent hitter compounds in AlphaScreen assays.

N

N
H

N

N

O

N

O

N

O
H
N N

N

N

N

N

N

S

N

S

N

N

N

N

S

N

N
H

N

N

N

HN

N

H
N

N

A B

C
D

E

Figure 4 . 3 : Examples of confirmed AlphaScreen frequent hitter compounds identified by the
ML filter but not by PAINS. A. Scaffold resembling toxoflavin B. Toxoflavin C. Cyanodithiine D.
aminothazole and E. Picolylamine.

74

Chapter 4: Machine Learning model to filter Frequent Hitters for AlphaScreen assays

Conclusion:
Scaffold-based methods and ML methods were compared for identifying AlphaScreen frequent
hitters. The result showed that ML models outperformed scaffold-based methods by a large
margin, when both approaches originated from the same data. It was demonstrated that a ML
model trained on a large dataset collected from PubChem outperformed PAINS37 filters for
prediction of both public and in house data. However, combining PAINS with a ML model
improved the prediction outcome. Further, ML models were developed from the individual in-
house datasets, for which the mechanism of action (MoA) was known. These models should
be effective in identifying compounds that interfere through particular MoAs and should have
higher accuracy compared to existing scaffold-based filters developed in previous studies19, 199.
Finally, was contributed a ML model based on the PubChem dataset. As this set was much larg-
er and more diverse than the training set used to develop PAINS, it provided better coverage of
the chemical space, and was able to identify frequent hitters in the in-house AlphaScreen assays
with higher accuracy than the PAINS filter. Also demonstrated was that the new ML model is
able to identify scaffolds that are not identified by PAINS, without introducing false positives,
and thus provides better balanced accuracy scores.

In summary, the scaffold-based methods were limited to the identified scaffolds only, and there-
fore had lower accuracy compared to ML when both types of models were used to screen large
heterogeneous datasets. Identifying scaffolds from large data sets, such as the PubChem-Com-
bined would be a very daunting task, and would take a very long time. ML on the other hand
benefited from very large datasets. Re-training the models with new datasets is trivial, and add-
ing new molecules could further improve the accuracy of the model. If a scaffold-based filter
is too specific, it is ineffective in large sets, if it is too general and has many scaffolds, then it
may produce too many false positives. Machine learning can identify much more sophisticated
and complex patterns in available data, and therefore provide better prediction accuracy and
generalizability.

The models developed in this study are freely available on the OCHEM platform (https://
ochem.eu/article/125278).

Chapter 5

Modelling False Positives in
GPCR assays 204

76

Chapter 5: Modelling False Positives in GPCR assays

5.1. Introduction
G-Protein Coupled Receptors (GPCR) are the largest family of cell surface receptors205. These
plasma membrane-bound receptors have evolved to recognize a variety of extracellular physi-
cal and chemical signals and, upon recognition, act as the proximal stimulus in cell signalling
pathways. With over ~800 members206, GPCRs are involved in almost every physiological
function, from sensation to growth to hormone responses. Due to their widespread physiologi-
cal relevance, and the presence of druggable sites, GPCRs are one of the major targets of ther-
apeutic drugs. A 2017 study notes that 475 drugs act at 108 unique GPCRs. Approximately 321
agents are currently in clinical trials, of which ~20% target 66 potentially novel GPCR targets.
GPCRs also account for ~27% of the global market share of therapeutic drugs, with aggregated
sales for 2011–2015 of ~US$890 billion.

As promising drug targets, assays involving a member of the GPCR family are commonly
employed in High Throughput Screening (HTS) campaigns. There is a plethora of different
techniques and a wide range of commercial kits available, many of which are suitable for High
Throughput Screening (HTS)207. In such HTS, identifying false positives is a challenge. False
positives may be compounds that interfere with the assay detection technology in some way,
such as inhibiting luciferase in luciferase-based system141, or quenching fluorescence where it
is the final readout19. There may also be compounds that are not specific to the target protein,
but are promiscuous, either to a narrow or broad class of proteins18.

5.2. Data

5.2.1. Data description

An initial goal was the exploration of available data, to find suitable assays that can then be
used for further analysis. On PUBCHEM were identified 92 assays with more than 500 com-
pounds for GPCR agonists and antagonists. The two were separated and it was decided to focus
on the agonists. This was to narrow down the scope of the study. From the list of available ago-
nist screenings were selected the 20 assays with the highest number of active compounds, since
the aim is to find False Positives (FPs). Assays that have little to no positives are less relevant.
For further selection of particular assays, the focus was on GPCR subtypes as described below.

5.2.2. Data Collection

The GPCR family is commonly classified into five different families based on their structural
and sequence similarity. The families are then further classified into a family tree 208, 209. Of
these five major families, the Rhodopsin class in the largest. For selecting assays, the target
proteins were mapped onto this family tree (Fig. 1), and assays were selected with sets of repre-
sentative proteins distant from each other in the family tree. This ensured that compounds that
are frequently active, are not preferential agonists of a subtype of GPCR, but are more likely a
result of an assay artifact.

77

Chapter 5: Modelling False Positives in GPCR assays

Using these criteria a set of 12 assays was chosen, and compounds that are frequently active in
these assays were sought (see Methods section), i.e. actives across all of the various diff erent

subtypes and assay technologies and thus frequent hitters of the Rhodopsin class of GPCR.
However, only 59 out of 373,131 compounds matched our defi nition of being frequently active.
Upon closer examination it was found that these compounds were tested only thrice, and there-
fore are more likely to be an artifact of selection criteria rather than a GPCR frequent hitter or
assay artifact.

To further refi ne the search, focused was pivoted to the diff erent detection technologies used in
the assays. It was found that half of the assays (six) used fl uorescence while the other six as-
says used bioluminescence. Only 71 compounds were frequently active in the bioluminescence
group. In the fl uorescence group, although the number of datapoints and active compounds
was very similar, 502 compounds were frequently active (Table 5.1). This indicates that fl uo-
rescence technology contributes many more artifacts and these 502 compounds were selected
for further analysis.

All data were harvested from PUBCHEM210, manually or by using the PUBCHEM REST API
with Python. All data were obtained and stored locally in the CSV format to be analyzed later
with various python scripts.

Figure 5 . 1 : GPCR family tree represented as a tree and dots mapping the protein targets in iden-
tifi ed assays. The colored part of the tree represents the Rhodopsin class of the GPCR family and
various subfamilies of the Rhodopsin class are marked with different colors.

78

Chapter 5: Modelling False Positives in GPCR assays

Table 5 . 13 : Statistics of compounds for the datasets used in the study.

Inactive Active Frequently
Active

All assays 352685 20446 59
Fluorescence

Assays
363459 9605 502

Bioluminiscence
Assays

358770 10841 71

5.2.3. Frequent Hitter Flagging

Frequent hitters were defined as compounds that were active according to our criteria in more
than half of the assays in which they were tested. Additionally, each compound had to be tested
at least in three different assays. Compounds satisfying both criteria were identified using a
Python script and flagged as frequent hitters.

5.3. Methods

5.3.1. Data Gathering:

All data were harvested from PUBCHEM, sometimes manually, other times by using the PUB-
CHEM REST API with Python. All data were obtained and stored locally in the CSV format to
be analyzed later with various python scripts.

5.3.2. Activity Cross-check:

To see if these flagged compounds were frequently active in other assays, the list of assays in
which each compound was tested was retrieved from PUBCHEM. It was then checked if the
compound was active or not in these assays. By repeating this process for all the compounds, a
list of assays was compiled, in which it was known how many flagged compounds are active in
each. Then, PUBCHEM was queried for information regarding the assay technology used, and
the assays were annotated. Plotting this, gives us Figure 5.2. The entire process, from getting
the list of assays to producing the figure, was done using Python. For annotating the assays, text
mining with Python was followed by manual curation.

5.4. Machine Learning
XGBoost, DNN and ASNN algorithms were employed from the online modelling environment
OCHEM. Details of the algorithms are described in the Methods section of this thesis (page
33-37).

79

Chapter 5: Modelling False Positives in GPCR assays

5.5. Results and Discussion

5.5.1. Compound Activity Profi le:

The fl agged compounds in the bioluminescence group were checked and it found that although
some of the compounds were tested, none of them showed any activity. This improved confi -

dence that the compounds were indeed fl orescence assay artifacts. In order to test this further,
PUBCHEM was inspected for assays where these fl agged compounds were tested. A plethora
of diff erent unrelated assays were found, and where compounds were active in these assays was
noted. A majority of such assays where the compounds were active, fl uorescence was being
used as the detection technology. This led to the conclusion that the fl agged compounds were
indeed artifacts of the assay detection technology present in GPCR screening.

5.5.2. Scaffold Identifi cation:

To recognise prominent scaff olds in the identifi ed compounds, hierarchical clustering was per-
formed using Circular Morgan Fingerprints. About 10 major clusters were identifi ed with more
than 20 compounds including one particular cluster with 68 compounds.

From the hierarchical clustering, a few prominent motifs were identifi ed that were present in
the largest clusters. The identifi ed scaff olds were encoded into SMARTS and checked for en-
richment in the false positive class, as compared to the active and inactive classes (Table 5.1).
This led to a few scaff olds of interest (Table 5.2). In particular the 2-thioxoimidazolidin-4-one
containing scaff old showed a 37.5-fold enrichment among the actives, though the coverage was
very poor (0.05%). The urea motif on the other hand showed a 6.25-fold enrichment compared

Number of Frequent HittersNumber of Frequent Hitters

Figure 5 . 2 : Plot showing activity profi le of the identifi ed frequent hitter compounds and their
correspondence with the assay technology used. X axis represent assay index, and each point
represents an individual assay. Assays with more identifi ed frequent hitters shows correspon-
dence with fl uorescence being used as assay technology.

80

Chapter 5: Modelling False Positives in GPCR assays

to regular urea motif (1.44) in the inactive class.

The identified false positives were also examined for PAINS scaffolds. In total, 114 compounds
were identified that matched the PAINS scaffolds identified by Baell and Holloway. The scaf-
folds identified in this study performed better in terms of coverage and selectivity as compared
to PAINS for identifying the false positives, but overall accuracy and coverage was still poor.
Therefore, it was decided to use machine learning to build a model for identifying these com-
pounds.

Table 5 . 14 : Table showing hits found by the identified scaffolds among the active, inactive, and
frequently active compounds.

SMARTS Query Actives Freq.
H i t -
ters

Inactives Enrich-
ment

O=C1[NX3]C(NC1=Cc:2:c:c:c(:c:c:2)
[NX3])=S

10 9 5 37.5

C C 1 (C (N (C (N 1) = O) C) = O)
c:2:c:c:[cX3]:c:c:2

55 17 725 2.13

C (= [O , o , S , s , N , n]) N C (= [O , S])
N[N,C,n,c]

428 103 9858 0.99

NC(N)=S 473 88 12072 0.69
[NX3]C(CC([NX3])=O)=O 78 7 2282 0.29
NC(N)=O 448 30 18047 0.16
O=C(CC[NX3])Nc:1:c:c:c:c:c1 81 6 4998 0.18
N(~[SX4](=O)=O)* 894 49 55471 0.08

5.5.3. Machine Learning

The analyzed methods were used in combination with different descriptors sets. LSSVM pro-
vided on average the highest accuracy amid the chosen algorithms (Table 5.2). LSSVM models
were selected with the highest accuracy based on their ROC-AUC score for building a con-
sensus model. The consensus model had ROC-AUC score of 0.93 with a balanced accuracy of
86%.

Table 5 . 15 : The performance of models built using the GPCR dataset. The ROC-AUC scores are
calculated using 5-fold stratified cross-validation. Models marked with asterisk were used to
build the consensus model.

Descriptors/methods DNN ASNN XG-
BOOST

LSSVM

ALogPS, OEstate (2D) 0.84 0.84 0.87 0.89*
CDK2 (3D) 0.79 0.85 0.86 0.87*
ChemaxonDescriptors
(3D)

0.82 0.82 0.84 0.88*

Dragon6 (2D blocks) 0.83 0.87 0.88 0.91

81

Chapter 5: Modelling False Positives in GPCR assays

Dragon6 (3D, all blocks) 0.87 0.85 0.89 0.91*
Fragmentor (2D) 0.85 0.83 0.88 0.89*
GSFrag (2D) 0.81 0.8 0.86 0.85
InductiveDescriptors (3D) 0.79 0.78 0.79 0.83
JPlogP (2D) 0.82 0.79 0.85 0.84
Mera, Mersy (3D) 0.69 0.76 0.8 0.81
PyDescriptor (3D) 0.89 0.86 0.85 0.89*
QNPR (2D) 0.81 0.82 0.87 0.86
RDKIT (2D, all blocks) 0.88 0.88 0.87 0.91*
RDKIT (3D, all blocks) 0.88 0.88 0.87 0.91
SIRMS (2D) 0.86 0.83 0.86 0.87*
Spectrophores (3D) 0.63 0.69 0.72 0.68
StructuralAlerts (2D) 0.79 0.79 0.77 0.78
alvaDesc (2D blocks) 0.86 0.85 0.87 0.91*
alvaDesc (3D, all blocks) 0.88 0.86 0.88 0.91

For model testing, an independent dataset was constructed by looking up GPCR agonist assays
in PUBCHEM that were not used for the training set. Five relevant assays were identified
with 4323 active compounds. Frequent hitter analysis identified 157 compounds from these 5
assays. The consensus model predicted the molecules from this set with a balanced accuracy
of 76% and an AUC score of 0.85. The consensus model which was based only subset of 2D
descriptors provided a similar accuracy of 75% and AUC score of 0.85 thus indicating the im-
portance of mainly 2D information for this analysis.

5.6. Conclusion
In this study, GPCR assays from PUBCHEM were analyzed with the aim of identifying fre-
quent hitters. It was found that fluorescence-based assays are more susceptible to false positives
than bioluminescence. Compounds that were frequent hitters in fluorescence-based assays did
not appear as frequent hitters in bioluminescence assays. A predictive machine-learning model
to identify such compounds for GPCR assays was developed. The provided analysis can help
to interpret HTS screening using GPCR assays.

82

Comparison with other tools

Comparison with other tools
The performance of models generated with existing frequent hitter filters was compared. Most
such filters were targeted towards selecting promiscuous compounds, rather than trying to iden-
tify compounds that interfere with a given particular assay type. HitDexter70 is one such pub-
licly available filter, developed by Kirchmair et al, against which the developed model was
compared.

A luciferase counterscreen assay from PubChem (AID 1379) was selected with 201160 tested
compounds. After removing the inconclusive results and common compounds with the training
set, 95 actives (compounds that inhibited luciferase) remained and 36362 inactive molecules.
The developed model performed against this set with a balanced accuracy of 72%, AUC 0.8.
It identified 74 out of 95 luciferase inhibitors, with a sensitivity score of 0.78. As this is an
independent set with no overlapping molecules, some of the molecules were outside the appli-
cability domain of the model. Revaluating the test set with those molecules excluded improved
the balanced accuracy score to 73%.

Some difficulty was encountered in applying such a large set through HitDexter, so initially just
the 95 inhibitors were considered. Among them, HitDexter identified only 18 compounds to be
highly promiscuous with a high confidence (1.0), and 33 compounds with moderate confidence
(>0.5). This calculates to a sensitivity score of 0.34, as compared to 0.78 for our model. As our
model is trained on luciferase counterscreen data, it is much more effective in finding luciferase
frequent hitters, as opposed to a frequent hitter filter such as HitDexter. Thus it is demonstrated
increased efficacy in identifying offending compounds in a particular type of assay system,
compared to a generic frequent hitter filter.

Machine learning and scaffold-based methods were compared, and in the process further com-
parison was drawn against PAINS. Trained on a diverse dataset, machine learning models were
able to identify frequent hitters with significantly better balanced accuracy than PAINS. also It
was also noted that the Machine Learning model was able to identify additional scaffolds.

The model built for finding GPCR frequent hitter had an external test set. So, it was decided to
use a subset of that for our comparison. All the actives were selected and an equal number of
inactives was sampled from the test set. In this case, both HitDexter and our model performed
with a Balanced Accuracy of 77%. A slightly better sensitivity was observed, contrasted to
HitDexter which showed better specificity score (Table 6 . 16). This model was built to identify
frequent hitters, similarly to HitDexter. Thus, they performed almost equally well.

Table 6 . 16 : Confusion matrices for HitDexter and our model tested against the GPCR test set.

HitDexter GPCR FH Model

Predicted→
No Yes

Predicted→
No Yes

Real↓ Real↓

No 132 26 No 110 48

Yes 44 113 Yes 26 131

83

Discussion

Discussion
The primary objective of this project was to develop filters to flag false positives in High
Throughput Screening. In the course of the past three years in this project, three different assay
systems for finding frequent hitters were examined, each with a different scope. Each assay
differed from another in its protocol and, of course, each of the assays had different frequent
hitters. Therefore, models were developed to identify the artefact compounds for each given
type of assay, and further for the luciferase assay given a mechanistic interpretation of the inter-
ference. In this work, compounds were identified through statistical analysis and also high-per-
formance Machine Learning models were developed for analyzed assays.

For identifying frequently active compounds, different metrics can be used. In projects 1 and 3
presented in this thesis, frequent hitters were determined by calculating activity frequency and
selecting a static threshold. This threshold was intuitive and could work for studies where all
compounds were tested in the similar number of assays, but a more rigorous statistical analysis
was to use a dynamic threshold, which depended on the number of assays in which compound
was tested. In the study involving AlphaScreen, a Binomial distribution was used to determine
a suitable activity frequency threshold. Also, compounds that had not been tested at least three
times were excluded. Using additional criteria, such as clustering compounds based on scaf-
folds, and then considering frequently active scaffolds, may provide additional confidence in
selecting frequent hitters.

In this thesis, molecules were consistently represented using SMILES strings. However,
SMILES from different sources may not be canonical, and may follow different standards for
canonicalization. Before processing, the molecules therefore should be standardized, and then
and filtered for invalid molecules. Otherwise, a difference in canonicalization may result in a
difference in structure, which may translate to the calculated descriptors being different, which
in turn may lead to variation in the model or prediction. In the projects, the Standardizer from
ChemAxon, built into OCHEM, was used to standardize molecular sets. OCHEM also checked
for internal and external duplicates, and provided the option to remove them.

In the third chapter, a machine-learning model was developed to identify false positives in Lu-
ciferase assays that arise due to Luciferase inhibition. Though Luciferase inhibition could con-
tribute a large number of frequent hitters, false positives could also arise due to other reasons,
such as chemical reactivity and promiscuity. The developed model did not cover such cases, so
a separate promiscuity filter should be used in conjunction with the Luciferase Advisor model.
Three Luciferase counterscreen assays were selected from PubChem as datasets for modelling,
all of which had been developed for the wild-type Luciferase from firefly (Photinus pyralis).
Consequently, the developed model was most relevant for screening experiments using the wild
type Luciferase. There are several variants of Luciferase enzymes from different organisms
such as the click beetles from the superfamily Elateroidea, marine organisms like Sea Pan-
sy (Renilla reniformis), Photobacetria such as Vibrio fischeri, and Dinoflagellates. There are
also engineered variants of the enzyme, such as UltraGloTM from Promega Corp. The different
structures of Luciferase enzyme could have different structure activity relationship (SAR), and

84

Discussion

therefore could have different compounds as their inhibitors. While developing the models,
other variants of Luciferase were examined, but insufficient counterscreen data was found in
the public domain to build a Machine Learning model. The developed model may still identify
false positive hits against such other variants of Luciferase, as closely related targets often have
similar ligands. However, the resultant model will have the highest accuracy when applied to
the assays using wild-type Luciferase.

As discussed in the introduction section, inhibition of enzymes can be mediated by molecules
which form aggregates. For this reason, it was tried to be understood if any of the compounds
reported as Luciferase inhibitors were known as aggregators as well. However, due to the lack
of experimental data and good prediction models, a definite conclusion could not be reached. A
study where the reported luciferase inhibitors are experimentally tested for aggregation would
prove valuable for elucidating the mode of action for such inhibitors.

In this study a reliable model for flagging luciferase inhibitors was constructed, which would
interfere with assays involving Luciferase. However, this model can be further refined by tak-
ing frequent hitters into consideration. Therefore, a follow-up study which develops further on
frequent hitters in luciferase assays may be useful. This would allow one to flag other potential-
ly unwanted compounds in luciferase assays, and also understand the contribution of inhibition
versus compound promiscuity in the context of unwanted compounds in Luciferase assays.

In the fourth chapter, the comparison between machine learning models and scaffold-based
filters for AlphaScreen frequent hitter was examined. The scaffold-based filters were based on
a highly imbalanced, relatively small in-house datasets, and for comparison, our model was
trained on the same data. For test set a comparatively large set was prepared from PubChem.
The machine learning model performed significantly better than the scaffold-based filters, but
PAINS was better than the machine learning model. This led to the hypothesis that the model
must be limited by the training data, and to test this, another model was built using PubChem
data. This model was able to predict our in-house set with 79% balanced accuracy, far outper-
forming PAINS (65%). Finally, a multitask model was developed to predict if a molecule is a
frequent hitter, and its possible mode of action.

The main constraint in this study was test data. Assays contain many variables, and if the analy-
sis is unable to account for them, then artifacts would be introduced. In this study it was initially
planned to develop individual models per mode of action and test them against appropriate
test sets. However, it was not possible to find such test sets on PubChem, and so datasets were
merged to create a generic AlphaScreen frequent hitter class. Experiments needs to be carried
out to disambiguate the various modes of interference a compound may show, but if such test
sets can be obtained for each mode of action, our final model can be tested against it to gauge
its effectiveness in predicting the modes of action.

Finally, in the fifth chapter the study of frequent hitters in GPCR assays was performed. GP-
CRs are a very large family of proteins, and preferred scaffolds are known to be active against
GPCR subtypes211. We attempted to exclude such preferential scaffolds by selecting assays with
GPCRs from different families in the phylogenetic tree. However, it is possible to have com-

85

Discussion

pounds active against multiple families of GPCR, and they will be labelled as frequent hitters.
Arguably, as they lack specificity, they may not be interesting as drug leads, but classifying
such compounds as promiscuous would be incorrect as well. A scaffold-based filter to identify
such compounds before the model building may help mitigate this issue further.

In the GPCR study, 6 assays involving fluorescence-based detection methods were considered,
and 6 assays with bioluminescence as a detection method. It was found that significantly more
(~ 500 as compared to 72) frequently active compounds came from the fluorescence-based
assays. This highlights the point that frequent hitters are assay system dependent, and it is
therefore worthwhile taking the assay technology into consideration while looking for frequent
hitters.

Machine learning was used extensively in all the projects in this thesis. As OCHEM supports
various different machine learning algorithms and descriptors, this was utilized as best possible.
Here are reported the best performing models, however, building models with other popular
algorithms available in OCHEM such as LibSVM, XGBoost and DNN was also explored. For
our datasets, the Associative Neural Network algorithms performed consistently very well.
One reason for this could be because of the highly imbalanced nature of the training set. As
discussed in the Methods section, ASNN is effective in modelling such highly imbalanced data-
sets, and that may be the reason why it has either produced the best models or produced models
that are very close to the best performing models in our datasets.

The highly imbalanced nature of the data can also lead to issues while judging model perfor-
mance. As seen in the methods section, for such datasets, balanced accuracy must be used, as
opposed to regular accuracy. Therefore, model performance was reported either in balanced
accuracy, or as a ROC-AUC score.

A mixture of 2D and 3D descriptors was employed for building the models. For generating
2D conformation from the 2D structure information available in PubChem, Corina was used,
which is the default method in OCHEM. Interestingly, minor differences were often observed
in model performance between 2D and 3D descriptors (Table 3.5, 4.3 and 5.3), the algorithm
and descriptor used often has a more significant impact. This indicates that 3D structural infor-
mation may not be crucial in building machine learning models. Calculating 3D structures of
molecules is computationally very expensive, and is prone to errors. Conformations generated
computationally can be infeasible in the real world, and the compound may adopt an entirely
different conformation, which may lead to different descriptors, and therefore compound error
in the model. Thus, when building machine learning models in cheminformatics, an entirely 2D
workflow should also be considered.

86

Conclusion

Conclusion
In this thesis, computational filters were developed for identifying frequent hitters in high
throughput assays. Three different types of assays were considered, namely Luciferase based
assays, AlphaScreen, and GPCR assays, and high-performance models were developed for
each. It was demonstrated that the Luciferase Inhibitor detection model developed as a part of
the study outperforms other popular methods available for detecting false positives in a lucif-
erase-based assay. Comparative performances of scaffold-based and machine learning models
were explored in identifying frequent hitters of AlphaScreen, and machine learning models
were developed that are trained to identify false positives in GPCR assays. Compounds that
behave poorly in assays have been a consistent problem for biologists and the problem has only
been compounded after the introduction of robot-driven High Throughput Assays. The studies
described in this thesis add to the growing collection of computational filters being developed
to identify and flag such compounds in the High Throughput Screening context. Recently, there
has been an explosion of interest in Machine Learning and Artificial Intelligence across all
fields of science. Through our development of the machine learning models described herein,
contributions have also been made to the machine learning community, demonstrating how
machine learning can be leveraged to identify false positives and frequent hitters. Such targeted
approach of finding and modelling frequent hitters and false positives in specific assay type or
technology is more useful and applicable to the assay systems under consideration. A rational
approach was followed for developing these models, and the models have been made freely
available through the OCHEM platform. The models, and procedure followed for developing
them, will be useful to the scientists performing such assays, and to the scientific community
at large.

87

Acknowledgments

Acknowledgments
I would like to personally thank Dr. Igor Tetko, who has been the guide and mentor for me
throughout the project. Without his constant effort and help and patience, the project and my
Doctoral studies would never have succeeded. I would like to thank Dr. Uwe Koch for men-
toring me during my time at the Lead Discovery Center, as well as helping me move forward
beyond my PhD. For their invaluable guidance through my doctoral studies, I would like to
thank Dr. Kamyar Hadian. My sincere thanks to Prof. Dr. Michael Sattler for his guidance
and supervision during my doctoral studies. Despite his busy schedule, he always found time
to give his valuable inputs on my studies. I would like to thank Dr. Hongming Chen and Dr.
Ola Engvist for helping me during my secondment at AstraZeneca. A very big thanks to all the
people in Dr. Tetko group: Dr. Ekaterina Ratkova, Dr. Pavel Karpov, Zhonghua Xia for being
together with me during my stay at the lab and beyond and being such great company. A special
thanks to Michael Withnall, fellow doctorate student, for helping from day one, and being a
good friend. He has also helped proofread the manuscript of this thesis, which is no small task.
I would also like to thank the people here in the Lead Discovery Center, Dr. Bert Klebl, Dr.
Peter Nussbaumer, and Dr. Michael Hamacher for welcoming me into LDC. A special thanks
to officemates in LDC during my PhD, Matthäus Brandt, Blaz Andlovic and Pragya Jatoo, and
all other awesome people I met during my stay here at LDC.

The project leading to this thesis has received funding from the European Union’s Horizon
2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No
676434, “Big Data in Chemistry”. The thesis reflects only my view and neither the European
Commission nor the Research Executive Agency (REA) are responsible for any use that may
be made of the information it contains. I thank ChemAxon (http://www.chemaxon.com) for
Academic license of software tools (Standartizer, ChemAxon plugins) as well as AlvaScience
(http://alvascience.com), Molecular Networks GmbH (http://mn-am.com) and Chemosophia
(http://chemosophia.com) for providing descriptors and Corina 2D to 3D conversion program
used in this study.

88

References

References
1.	 Gaynes, R., The Discovery of Penicillin—New Insights After More Than 75

Years of Clinical Use. Emerging Infect. Dis. 2017, 23 (5), 849-853.

2.	 Lobanovska, M.; Pilla, G., Penicillin’s Discovery and Antibiotic Resistance:
Lessons for the Future? The Yale journal of biology and medicine 2017, 90
(1), 135-145.

3.	 Recent Advances in Microscopy. Nature 1934, 133 (3356), 286-287.

4.	 Boutros, M.; Heigwer, F.; Laufer, C., Microscopy-Based High-Content
Screening. Cell 2015, 163 (6), 1314-25.

5.	 Richards, O. W., Some Recent Advances in Microscopy. Transactions of the
American Microscopical Society 1949, 68 (4), 292-303.

6.	 Watson, J. D.; Crick, F. H. C., Molecular Structure of Nucleic Acids: A Struc-
ture for Deoxyribose Nucleic Acid. Nature 1953, 171 (4356), 737-738.

7.	 D W Green, V. M. I., Max Ferdinand Perutz, The structure of haemoglobin
- IV. Sign determination by the isomorphous replacement method. Pro-
ceedings of the Royal Scoiety A 1954, 225.

8.	 Kirk, R., The first of its kind. Nature 2014, 511 (7509), 13-13.

9.	 Khanna, I., Drug discovery in pharmaceutical industry: productivity chal-
lenges and trends. Drug Discovery Today 2012, 17 (19), 1088-1102.

10.	 Ben-Menahem, S. M.; von Krogh, G.; Erden, Z.; Schneider, A., Coordinat-
ing Knowledge Creation in Multidisciplinary Teams: Evidence from Ear-
ly-Stage Drug Discovery. Academy of Management Journal 2015, 59 (4),
1308-1338.

11.	 Tetko, I. V.; Engkvist, O.; Koch, U.; Reymond, J. L.; Chen, H., BIGCHEM:
Challenges and Opportunities for Big Data Analysis in Chemistry. Mol In-
form 2016, 35 (11-12), 615-621.

12.	 Tetko, I. V.; Engkvist, O.; Chen, H., Does ‘Big Data’ exist in medicinal chem-
istry, and if so, how can it be harnessed? Future Med Chem 2016, 8 (15),
1801-1806.

13.	 Baell, J. B., Redox-active nuisance screening compounds and their classifi-
cation. Drug Discovery Today 2011, 16, 840.

14.	 Mayr, L. M.; Bojanic, D., Novel trends in high-throughput screening. Curr.
Opin. Pharmacol. 2009, 9 (5), 580-8.

15.	 Bickle, M., The beautiful cell: high-content screening in drug discovery.
Anal. Bioanal. Chem. 2010, 398 (1), 219-26.

16.	 Hughes, J. P.; Rees, S.; Kalindjian, S. B.; Philpott, K. L., Principles of early

89

References

drug discovery. Br J Pharmacol 2011, 162 (6), 1239-49.

17.	 Sink, R.; Gobec, S.; Pecar, S.; Zega, A., False Positives in the Early Stages
of Drug Discovery. Curr. Med. Chem. 2010, 17 (34), 4231-4255.

18.	 Roche, O.; Schneider, P.; Zuegge, J.; Guba, W.; Kansy, M.; Alanine, A.;
Bleicher, K.; Danel, F.; Gutknecht, E. M.; Rogers-Evans, M.; Neidhart, W.;
Stalder, H.; Dillon, M.; Sjogren, E.; Fotouhi, N.; Gillespie, P.; Goodnow,
R.; Harris, W.; Jones, P.; Taniguchi, M.; Tsujii, S.; von der Saal, W.; Zim-
mermann, G.; Schneider, G., Development of a virtual screening meth-
od for identification of “frequent hitters” in compound libraries. J. Med.
Chem. 2002, 45 (1), 137-42.

19.	 Schorpp, K.; Rothenaigner, I.; Salmina, E.; Reinshagen, J.; Low, T.; Bren-
ke, J. K.; Gopalakrishnan, J.; Tetko, I. V.; Gul, S.; Hadian, K., Identification
of Small-Molecule Frequent Hitters from AlphaScreen High-Throughput
Screens. J. Biomol. Screen. 2014, 19 (5), 715-26.

20.	 Magolda, R., Faculty of 1000 evaluation for Fluorescence spectroscopic
profiling of compound libraries. In F1000 - Post-publication peer review of
the biomedical literature, F1000 (Faculty of 1000 Ltd): 2008.

21.	 Leitão, J. M. M.; Esteves da Silva, J. C. G., Firefly luciferase inhibition. J.
Photochem. Photobiol. B: Biol. 2010, 101 (1), 1-8.

22.	 Thorne, N.; Auld, D. S.; Inglese, J., Apparent activity in high-throughput
screening: origins of compound-dependent assay interference. Curr. Opin.
Chem. Biol. 2010, 14 (3), 315-24.

23.	 Thorne, N.; Shen, M.; Lea, W. A.; Simeonov, A.; Lovell, S.; Auld, D. S.; Ing-
lese, J., Firefly luciferase in chemical biology: a compendium of inhibitors,
mechanistic evaluation of chemotypes, and suggested use as a reporter.
Chem. Biol. 2012, 19 (8), 1060-72.

24.	 Rishton, G. M., Reactive compounds and in vitro false positives in HTS.
Drug Discovery Today 1997, 2 (9), 382-384.

25.	 Potashman, M. H.; Duggan, M. E., Covalent Modifiers: An Orthogonal Ap-
proach to Drug Design. J. Med. Chem. 2009, 52 (5), 1231-1246.

26.	 Dragovich, P. S.; al, e.; et al., ChemInform Abstract: Structure-Based De-
sign, Synthesis, and Biological Evaluation of Irreversible Human Rhinovirus
3C Protease Inhibitors. Part 7. Structure-Activity Studies of Bicyclic 2-Pyr-
idone-Containing Peptidomimetics. ChemInform 2010, 33 (24), no-no.

27.	 Matthews, D. A.; Dragovich, P. S.; Webber, S. E.; Fuhrman, S. A.; Patick,
A. K.; Zalman, L. S.; Hendrickson, T. F.; Love, R. A.; Prins, T. J.; Marakovits,
J. T.; Zhou, R.; Tikhe, J.; Ford, C. E.; Meador, J. W.; Ferre, R. A.; Brown,
E. L.; Binford, S. L.; Brothers, M. A.; DeLisle, D. M.; Worland, S. T., Struc-
ture-assisted design of mechanism-based irreversible inhibitors of human

90

References

rhinovirus 3C protease with potent antiviral activity against multiple rhi-
novirus serotypes. Proceedings of the National Academy of Sciences 1999,
96 (20), 11000-11007.

28.	 Blanchard, J. E.; Elowe, N. H.; Huitema, C.; Fortin, P. D.; Cechetto, J.
D.; Eltis, L. D.; Brown, E. D., High-Throughput Screening Identifies Inhibi-
tors of the SARS Coronavirus Main Proteinase. Chem. Biol. 2004, 11 (10),
1445-1453.

29.	 Epps, D. E.; Taylor, B. M., A Competitive Fluorescence Assay to Measure
the Reactivity of Compounds. Anal. Biochem. 2001, 295 (1), 101-106.

30.	 McGovern, S. L.; Caselli, E.; Grigorieff, N.; Shoichet, B. K., A Common Mech-
anism Underlying Promiscuous Inhibitors from Virtual and High-Through-
put Screening. J. Med. Chem. 2002, 45 (8), 1712-1722.

31.	 Elcock, A., Faculty of 1000 evaluation for Kinase inhibitors: not just for ki-
nases anymore. In F1000 - Post-publication peer review of the biomedical
literature, F1000 (Faculty of 1000 Ltd): 2003.

32.	 Malvezzi, A.; de Rezende, L.; Izidoro, M. A.; Cezari, M. H. S.; Juliano, L.;
Amaral, A. T. d., Uncovering false positives on a virtual screening search
for cruzain inhibitors. Bioorganic & Medicinal Chemistry Letters 2008, 18
(1), 350-354.

33.	 Reddie, K. G.; Roberts, D. R.; Dore, T. M., Inhibition of Kinesin Motor Pro-
teins by Adociasulfate-2. J. Med. Chem. 2006, 49 (16), 4857-4860.

34.	 Feng, B. Y.; Toyama, B. H.; Wille, H.; Colby, D. W.; Collins, S. R.; May,
B. C. H.; Prusiner, S. B.; Weissman, J.; Shoichet, B. K., Small-molecule
aggregates inhibit amyloid polymerization. Nat. Chem. Biol. 2008, 4 (3),
197-199.

35.	 Frenkel, Y. V.; Clark, A. D.; Das, K.; Wang, Y.-H.; Lewi, P. J.; Janssen, P. A. J.;
Arnold, E., Concentration and pH Dependent Aggregation of Hydrophobic
Drug Molecules and Relevance to Oral Bioavailability. J. Med. Chem. 2005,
48 (6), 1974-1983.

36.	 McGovern, S. L.; Helfand, B. T.; Feng, B.; Shoichet, B. K., A Specific Mech-
anism of Nonspecific Inhibition. J. Med. Chem. 2003, 46 (20), 4265-4272.

37.	 Baell, J. B.; Holloway, G. A., New substructure filters for removal of pan
assay interference compounds (PAINS) from screening libraries and for
their exclusion in bioassays. J. Med. Chem. 2010, 53 (7), 2719-40.

38.	 Baell, J. B., Feeling Nature’s PAINS: Natural Products, Natural Product
Drugs, and Pan Assay Interference Compounds (PAINS). J. Nat. Prod. 2016,
79 (3), 616-28.

39.	 Dahlin, J. L.; Nissink, J. W.; Strasser, J. M.; Francis, S.; Higgins, L.; Zhou,

91

References

H.; Zhang, Z.; Walters, M. A., PAINS in the Assay: Chemical Mechanisms
of Assay Interference and Promiscuous Enzymatic Inhibition Observed
during a Sulfhydryl-Scavenging HTS. J. Med. Chem. 2015, 58 (5), 2091-
113.

40.	 Baell, J. B.; Ferrins, L.; Falk, H.; Nikolakopoulos, G., PAINS: Relevance to
tool compound discovery and fragment-based screening. Aust. J. Chem.
2013, 66.

41.	 Baell, J.; Walters, M. A., Chemistry: Chemical con artists foil drug discov-
ery. Nature 2014, 513, 481.

42.	 Lackovic, K.; Lessene, G.; Falk, H.; Leuchowius, K. J.; Baell, J.; Street, I.,
A perspective on 10-years HTS experience at the Walter and Eliza Hall In-
stitute of Medical Research - eighteen million assays and counting. Comb.
Chem. High Throughput Screening 2014, 17, 241.

43.	 Saubern, S.; Guha, R.; Baell, J. B., KNIME Workflow to Assess PAINS Filters
in SMARTS Format. Comparison of RDKit and Indigo Cheminformatics Li-
braries. Mol Inform 2011, 30 (10), 847-50.

44.	 Baell, J. B.; Nissink, J. W. M., Seven Year Itch: Pan-Assay Interference Com-
pounds (PAINS) in 2017—Utility and Limitations. ACS Chemical Biology
2018, 13 (1), 36-44.

45.	 Ryan, A. J.; Gray, N. M.; Lowe, P. N.; Chung, C.-w., Effect of Detergent on
“Promiscuous” Inhibitors. J. Med. Chem. 2003, 46 (16), 3448-3451.

46.	 Feng, B. Y.; Shoichet, B. K., A detergent-based assay for the detection of
promiscuous inhibitors. Nat Protoc 2006, 1 (2), 550-3.

47.	 Coan, K. E. D.; Shoichet, B. K., Stability and equilibria of promiscuous ag-
gregates in high protein milieus. Molecular BioSystems 2007, 3 (3), 208.

48.	 Lor, L. A.; Schneck, J.; McNulty, D. E.; Diaz, E.; Brandt, M.; Thrall, S. H.;
Schwartz, B., A Simple Assay for Detection of Small-Molecule Redox Activ-
ity. J. Biomol. Screen. 2007, 12 (6), 881-890.

49.	 Wyatt, P. J., Light scattering and the absolute characterization of macro-
molecules. Anal. Chim. Acta 1993, 272 (1), 1-40.

50.	 Miraglia, F.; Ricci, A.; Rota, L.; Colla, E., Subcellular localization of al-
pha-synuclein aggregates and their interaction with membranes. Neural
Regeneration Research 2018, 13 (7), 1136-1144.

51.	 Sung, J. J.; Pardeshi, N. N.; Mulder, A. M.; Mulligan, S. K.; Quispe, J.; On,
K.; Carragher, B.; Potter, C. S.; Carpenter, J. F.; Schneemann, A., Transmis-
sion electron microscopy as an orthogonal method to characterize pro-
tein aggregates. J. Pharm. Sci. 2015, 104 (2), 750-759.

52.	 Alves, V.; Muratov, E.; Capuzzi, S.; Politi, R.; Low, Y.; Braga, R.; Zakharov,

92

References

A. V.; Sedykh, A.; Mokshyna, E.; Farag, S.; Andrade, C.; Kuz’min, V.;
Fourches, D.; Tropsha, A., Alarms about structural alerts. Green Chem.
2016, 18 (16), 4348-4360.

53.	 Mannhold, R.; Ostermann, C., Prediction of Log P with Substructure-Based
Methods. In Molecular Drug Properties, Mannhold, R., Ed. 2007; pp 357-
379.

54.	 Bruns, R. F.; Watson, I. A., Rules for identifying potentially reactive or pro-
miscuous compounds. J. Med. Chem. 2012, 55 (22), 9763-72.

55.	 Salmina, E. S.; Haider, N.; Tetko, I. V., Extended Functional Groups (EFG):
An Efficient Set for Chemical Characterization and Structure-Activity Rela-
tionship Studies of Chemical Compounds. Molecules 2016, 21 (1), 1.

56.	 Sushko, I.; Salmina, E.; Potemkin, V. A.; Poda, G.; Tetko, I. V., ToxAlerts: A
Web Server of Structural Alerts for Toxic Chemicals and Compounds with
Potential Adverse Reactions. J. Chem. Inf. Model. 2012, 52 (8), 2310-6.

57.	 Ajay, A.; Walters, W. P.; Murcko, M. A., Can we learn to distinguish be-
tween “drug-like” and “nondrug-like” molecules? J. Med. Chem. 1998, 41
(18), 3314-24.

58.	 Walters, W. P.; Murcko, M. A., Prediction of ‘drug-likeness’. Adv. Drug Del.
Rev. 2002, 54 (3), 255-271.

59.	 Hann, M.; Hudson, B.; Lewell, X.; Lifely, R.; Miller, L.; Ramsden, N., Stra-
tegic Pooling of Compounds for High-Throughput Screening. J. Chem. Inf.
Comput. Sci. 1999, 39 (5), 897-902.

60.	 Percival, M. D.; Ouellet, M.; Campagnolo, C.; Claveau, D.; Li, C., Inhibi-
tion of Cathepsin K by Nitric Oxide Donors: Evidence for the Formation of
Mixed Disulfides and a Sulfenic Acid. Biochemistry 1999, 38 (41), 13574-
13583.

61.	 Devine, S. M.; Mulcair, M. D.; Debono, C. O.; Leung, E. W.; Nissink, J. W.;
Lim, S. S.; Chandrashekaran, I. R.; Vazirani, M.; Mohanty, B.; Simpson, J.
S.; Baell, J. B.; Scammells, P. J.; Norton, R. S.; Scanlon, M. J., Promiscuous
2-aminothiazoles (PrATs): a frequent hitting scaffold. J. Med. Chem. 2015,
58 (3), 1205-14.

62.	 Walters, W. P.; Stahl, M. T.; Murcko, M. A., Virtual screening—an over-
view. Drug Discovery Today 1998, 3 (4), 160-178.

63.	 Capuzzi, S. J.; Muratov, E. N.; Tropsha, A., Phantom PAINS: Problems with
the Utility of Alerts for Pan-Assay INterference CompoundS. J. Chem. Inf.
Model. 2017, 57, 417.

64.	 Yang, J. J.; Ursu, O.; Lipinski, C. A.; Sklar, L. A.; Oprea, T. I.; Bologa, C. G.,
Badapple: promiscuity patterns from noisy evidence. J. Cheminf. 2016, 8,

93

References

29.

65.	 Schäfer, T.; Kriege, N.; Humbeck, L.; Klein, K.; Koch, O.; Mutzel, P., Scaf-
fold Hunter: a comprehensive visual analytics framework for drug discov-
ery. J. Cheminformatics 2017, 9 (1 %@ 1758-2946), 28.

66.	 Varnek, A.; Fourches, D.; Horvath, D.; Klimchuk, O.; Gaudin, C.; Vayer,
P.; Solov’ev, V.; Hoonakker, F.; Tetko, I. V.; Marcou, G., ISIDA - Platform
for virtual screening based on fragment and pharmacophoric descriptors.
Curr Comput Aided Drug Des 2008, 4 (3), 191-198.

67.	 Taylor, R.; Cole, J. C.; Cosgrove, D. A.; Gardiner, E. J.; Gillet, V. J.; Korb,
O., Development and validation of an improved algorithm for overlaying
flexible molecules. Journal of Computer-Aided Molecular Design 2012, 26
(4), 451-472.

68.	 Vorberg, S.; Tetko, I. V., Modeling the Biodegradability of Chemical Com-
pounds Using the Online CHEmical Modeling Environment (OCHEM). Mol
Inform 2014, 33 (1), 73-85.

69.	 Sushko, I.; Novotarskyi, S.; Korner, R.; Pandey, A. K.; Rupp, M.; Teetz, W.;
Brandmaier, S.; Abdelaziz, A.; Prokopenko, V. V.; Tanchuk, V. Y.; Todeschi-
ni, R.; Varnek, A.; Marcou, G.; Ertl, P.; Potemkin, V.; Grishina, M.; Gastei-
ger, J.; Schwab, C.; Baskin, I. I.; Palyulin, V. A.; Radchenko, E. V.; Welsh,
W. J.; Kholodovych, V.; Chekmarev, D.; Cherkasov, A.; Aires-de-Sousa,
J.; Zhang, Q. Y.; Bender, A.; Nigsch, F.; Patiny, L.; Williams, A.; Tkachen-
ko, V.; Tetko, I. V., Online chemical modeling environment (OCHEM): web
platform for data storage, model development and publishing of chemical
information. J. Comput. Aided Mol. Des. 2011, 25 (6), 533-54.

70.	 Stork, C.; Wagner, J.; Friedrich, N. O.; de Bruyn Kops, C.; Šícho, M.; Kirch-
mair, J., Hit Dexter: A Machine‐Learning Model for the Prediction of Fre-
quent Hitters. ChemMedChem 2017, 13 (6), 564-571.

71.	 Koza, J. R.; Bennett, F. H.; Andre, D.; Keane, M. A., Automated Design of
Both the Topology and Sizing of Analog Electrical Circuits Using Genetic
Programming. In Artificial Intelligence in Design ’96, Gero, J. S.; Sudweeks,
F., Eds. Springer Netherlands: Dordrecht, 1996; pp 151-170.

72.	 PubChem PubChem BioAssay Database. http://pubchem.ncbi.nlm.nih.
gov (accessed 4 August 2016).

73.	 Walt, S. v. d.; Colbert, S. C.; Varoquaux, G., The NumPy Array: A Structure
for Efficient Numerical Computation. Computing in Science & Engineering
2011, 13 (2), 22-30.

74.	 Virtanen, P.; Gommers, R.; Oliphant, T. E.; Haberland, M.; Reddy, T.;
Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.;
van der Walt, S. J.; Brett, M.; Wilson, J.; Jarrod Millman, K.; Mayorov,

94

References

N.; Nelson, A. R. J.; Jones, E.; Kern, R.; Larson, E.; Carey, C. J.; Polat, İ.;
Feng, Y.; Moore, E. W.; VanderPlas, J.; Laxalde, D.; Perktold, J.; Cimrman,
R.; Henriksen, I.; Quintero, E. A.; Harris, C. R.; Archibald, A. M.; Ribeiro,
A. H.; Pedregosa, F.; van Mulbregt, P.; Contributors, S., SciPy 1.0--Funda-
mental Algorithms for Scientific Computing in Python. arXiv e-prints 2019,
arXiv:1907.10121.

75.	 McKinney, W. In Data Structures for Statistical Computing in Python, Pro-
ceedings of the 9th Python in Science Conference, 2010; van der Walt, S.;
Millman, J., Eds. pp 51 - 56-56.

76.	 Hunter, J. D., Matplotlib: A 2D Graphics Environment. Computing in Sci-
ence & Engineering 2007, 9 (3), 90-95.

77.	 Landrum, G. A. RDKit, Open-Source Cheminformatics. http://www.rdkit.
org.

78.	 Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Gris-
el, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; Vanderplas,
J.; Passos, A.; Cournapeau, D.; Brucher, M.; Perrot, M.; Duchesnay, E.,
Scikit-learn: Machine Learning in Python. Journal of Machine Learning Re-
search 2011, 12, 2825-2830.

79.	 Perez, F.; Granger, B. E., IPython: A System for Interactive Scientific Com-
puting. Computing in Science & Engineering 2007, 9 (3), 21-29.

80.	 Wolber, G.; Langer, T., LigandScout:  3-D Pharmacophores Derived from
Protein-Bound Ligands and Their Use as Virtual Screening Filters. J. Chem.
Inf. Model. 2005, 45 (1), 160-169.

81.	 Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Good-
sell, D. S.; Olson, A. J., AutoDock4 and AutoDockTools4: Automated dock-
ing with selective receptor flexibility. J. Comput. Chem. 2009, 30 (16),
2785-2791.

82.	 Trott, O.; Olson, A. J., AutoDock Vina: Improving the speed and accuracy
of docking with a new scoring function, efficient optimization, and multi-
threading. J. Comput. Chem. 2010, 31 (2), 455-461.

83.	 OCHEM On-line Chemical Database and Modelling Environment (OCHEM).
http://www.ochem.eu (accessed 28 February 2017).

84.	 Abdi, H.; Williams, L. J., Principal component analysis. John Wiley & Sons,
Inc.: 2010; Vol. 2, p 433–459.

85.	 Jolliffe, I., Principal Component Analysis. In International Encyclopedia of
Statistical Science, Lovric, M., Ed. Springer Berlin Heidelberg: Berlin, Hei-
delberg, 2011; pp 1094-1096.

86.	 Yan, X.; Su, X. G., Linear Regression Analysis: Theory and Computing. World

95

References

Scientific Publishing Co., Inc.: 2009.

87.	 Schneider, A.; Hommel, G.; Blettner, M., Linear regression analysis: part
14 of a series on evaluation of scientific publications. Deutsches Arzteblatt
international 2010, 107 (44), 776-782.

88.	 Tibshirani, R. J., A general framework for fast stagewise algorithms. JMLR.
org: 2015; Vol. 16, p 2543–2588.

89.	 Mucherino, A.; Papajorgji, P. J.; Pardalos, P. M., k-Nearest Neighbor Clas-
sification. In Data Mining in Agriculture, Mucherino, A.; Papajorgji, P. J.;
Pardalos, P. M., Eds. Springer New York: New York, NY, 2009; pp 83-106.

90.	 Chavan, S.; Abdelaziz, A.; Wiklander, J. G.; Nicholls, I. A., A k-nearest
neighbor classification of hERG K(+) channel blockers. J. Comput. Aided
Mol. Des. 2016, 30 (3), 229-36.

91.	 Khan, M.; Ding, Q.; Perrizo, W., k-nearest Neighbor Classification on Spa-
tial Data Streams Using P-trees. Springer-Verlag: 2002; p 517–518.

92.	 Hearst, M. A., Support Vector Machines. IEEE Educational Activities De-
partment: 1998; Vol. 13, p 18–28.

93.	 Steinwart, I.; Christmann, A., Support Vector Machines. Springer Publish-
ing Company, Incorporated: 2008.

94.	 Cheng, T.; Li, Q.; Wang, Y.; Bryant, S. H., Binary classification of aqueous
solubility using support vector machines with reduction and recombina-
tion feature selection. J. Chem. Inf. Model. 2011, 51 (2), 229-36.

95.	 Wu, Y.; Wang, G., Machine Learning Based Toxicity Prediction: From Chem-
ical Structural Description to Transcriptome Analysis. Int J Mol Sci 2018,
19 (8).

96.	 Lind, P.; Maltseva, T., Support vector machines for the estimation of aque-
ous solubility. J. Chem. Inf. Comput. Sci. 2003, 43 (6), 1855-1859.

97.	 Liu, Z.; Xu, H., Kernel Parameter Selection for Support Vector Machine
Classification. Journal of Algorithms & Computational Technology 2014, 8
(2), 163-177.

98.	 Müller, K. R.; Mika, S.; Rätsch, G.; Tsuda, K.; Schölkopf, B., An introduc-
tion to kernel-based learning algorithms. IEEE Trans. Neural Networks
2001, 12 (2), 181-201.

99.	 Schölkopf, B.; Smola, A. J., Learning with kernels : support vector machines,
regularization, optimization, and beyond. MIT Press: Cambridge, Mass.,
2002; p xviii, 626 p.

100.	 Chang, C.-C.; Lin, C.-J., LIBSVM : a library for support vector machines.
ACM Transactions on Intelligent Systems and Technology 2011, 2 (3), 27:1-

96

References

-27:27.

101.	 Chang, C. C.; Lin, C. J. LIBSVM: a Library for Support Vector Machines,
http://www.csie.ntu.edu.tw/~cjlin/libsvm. (accessed November 10,
2015).

102.	 Suykens, J. A. K.; Vandewalle, J., Least Squares Support Vector Machine
Classifiers. Neural Processing Letters 1999, 9 (3), 293-300.

103.	 Podgorelec, V.; Kokol, P.; Stiglic, B.; Rozman, I., Decision Trees: An Over-
view and Their Use in Medicine. Plenum Press: 2002; Vol. 26, p 445–463.

104.	 Quinlan, J. R., Induction of Decision Trees. Kluwer Academic Publishers:
1986; Vol. 1, p 81–106.

105.	 Bel, L.; Allard, D.; Laurent, J. M.; Cheddadi, R.; Bar-Hen, A., CART algo-
rithm for spatial data: Application to environmental and ecological data.
Elsevier Science Publishers B. V.: 2009; Vol. 53, p 3082–3093.

106.	 Boulesteix, A. L.; Tutz, G.; Strimmer, K., A CART-based approach to dis-
cover emerging patterns in microarray data. Bioinformatics 2003, 19 (18),
2465-72.

107.	 Xiaohu, W.; Lele, W.; Nianfeng, L., An Application of Decision Tree Based
on ID3. Physics Procedia 2012, 25, 1017-1021.

108.	 Quinlan, J. R., C4.5: programs for machine learning. Morgan Kaufmann
Publishers Inc.: San Francisco, CA, USA, 1993.

109.	 Kretschmann, E.; Fleischmann, W.; Apweiler, R., Automatic rule genera-
tion for protein annotation with the C4.5 data mining algorithm applied
on SWISS-PROT. Bioinformatics 2001, 17 (10), 920-6.

110.	 Novotarskyi, S.; Sushko, I.; Korner, R.; Pandey, A. K.; Tetko, I. V., A com-
parison of different QSAR approaches to modeling CYP450 1A2 inhibition.
J. Chem. Inf. Model. 2011, 51 (6), 1271-80.

111.	 Tetko, I. V.; Novotarskyi, S.; Sushko, I.; Ivanov, V.; Petrenko, A. E.; Dieden,
R.; Lebon, F.; Mathieu, B., Development of dimethyl sulfoxide solubility
models using 163 000 molecules: using a domain applicability metric to
select more reliable predictions. J. Chem. Inf. Model. 2013, 53 (8), 1990-
2000.

112.	 Chen, G.; Peijnenburg, W. J. G. M.; Kovalishyn, V.; Vijver, M. G., Develop-
ment of nanostructure-activity relationships assisting the nanomaterial
hazard categorization for risk assessment and regulatory decision-mak-
ing. RSC Advances 2016, 6 (57), 52227-52235.

113.	 Breiman, L., Random forests. Machine Learning 2001, 45 (1), 5-32.

114.	 Kovdienko, N. A.; Polishchuk, P. G.; Muratov, E. N.; Artemenko, A. G.;

97

References

Kuz’min, V. E.; Gorb, L.; Hill, F.; Leszczynski, J., Application of random
forest and multiple linear regression techniques to QSPR prediction of
an aqueous solubility for military compounds. Mol. Inform. 2010, 29 (5),
394-406.

115.	 Liaw, A.; Wiener, M., Classification and Regression by RandomForest. R
News 2002, 2, 18-22.

116.	 Palmer, D. S.; O’Boyle, N. M.; Glen, R. C.; Mitchell, J. B. O., Random forest
models to predict aqueous solubility. J. Chem. Inf. Model. 2007, 47 (1),
150-158.

117.	 Sheridan, R. P., Using random forest to model the domain applicability of
another random forest model. J. Chem. Inf. Model. 2013, 53 (11), 2837-
50.

118.	 Freund, Y.; Schapire, R. E., Experiments with a new boosting algorithm.
In Machine Learning: Proceedings of the Thirteen National Conference,
Saitta, L., Ed. Morgan Kaufmann: 1996; pp 148-156.

119.	 Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y.
In LightGBM: A Highly Efficient Gradient BoostingDecision Tree, Advances
in Neural Information Processing Systems 30, 2017; pp 3146-3154.

120.	 Chen, T.; Guestrin, C., XGBoost: A Scalable Tree Boosting System. ArXiv
e-prints 2016, 1603, arXiv:1603.02754.

121.	 Sheridan, R. P.; Wang, W. M.; Liaw, A.; Ma, J.; Gifford, E. M., Extreme
Gradient Boosting as a Method for Quantitative Structure-Activity Rela-
tionships. J. Chem. Inf. Model. 2016, 56 (12), 2353-2360.

122.	 Halder, A. K., Finding the structural requirements of diverse HIV-1 prote-
ase inhibitors using multiple QSAR modelling for lead identification. SAR
QSAR Environ. Res. 2018, 29 (11), 911-933.

123.	 Hu, T.; Song, T., Research on XGboost academic forecasting and analysis
modelling. Journal of Physics: Conference Series 2019, 1324, 012091.

124.	 Hassoun, M. H., Fundamentals of Artificial Neural Networks. MIT Press:
1995.

125.	 Browne, A., Representation and Extrapolation in Multi-Layer Perceptrons.
Neural Comput. 2001, in press.

126.	 Gonzalez-Arjona, D.; Lopez-Perez, G.; Gonzalez, A. G., Non-linear QSAR
modeling by using multilayer perceptron feedforward neural networks
trained by back-propagation. Talanta 2002, 56 (1), 79-90.

127.	 Mateos, A.; Dopazo, J.; Jansen, R.; Tu, Y.; Gerstein, M.; Stolovitzky, G.,
Systematic learning of gene functional classes from DNA array expression
data by using multilayer perceptrons. Genome Res. 2002, 12 (11), 1703-

98

References

15.

128.	 Livingstone, D. J.; Manallack, D. T.; Tetko, I. V., Data modelling with neural
networks: advantages and limitations. Journal of computer-aided molecu-
lar design 1997, 11 (2), 135-42.

129.	 Tetko, I. V.; Livingstone, D. J.; Luik, A. I., Neural network studies. 1. Com-
parison of overfitting and overtraining. Journal of Chemical Information &
Computer Sciences 1995, 35 (5), 826-833.

130.	 Kovalishyn, V. V.; Tetko, I. V.; Luik, A. I.; Kholodovych, V. V.; Villa, A. E. P.;
Livingstone, D. J., Neural network studies. 3. Variable selection in the cas-
cade-correlation learning architecture. J. Chem. Inf. Comput. Sci. 1998, 38
(4), 651-659.

131.	 Glorot, X.; Bengio, Y., Understanding the difficulty of training deep feed-
forward neural networks. In Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics, Yee Whye, T.; Mike, T.,
Eds. PMLR: Proceedings of Machine Learning Research, 2010; Vol. 9, pp
249--256.

132.	 Backpropagation: theory, architectures, and applications. L. Erlbaum As-
sociates Inc.: 1995.

133.	 Tetko, I. V., Associative neural network. Methods Mol Biol 2008, 458, 185-
202.

134.	 Tetko, I. V., Neural network studies. 4. Introduction to associative neural
networks. J. Chem. Inf. Comput. Sci. 2002, 42 (3), 717-728.

135.	 Villa, A. E.; Tetko, I. V.; Dutoit, P.; De Ribaupierre, Y.; De Ribaupierre,
F., Corticofugal modulation of functional connectivity within the auditory
thalamus of rat, guinea pig and cat revealed by cooling deactivation. J.
Neurosci. Methods 1999, 86 (2), 161-178.

136.	 Tetko, I. V.; Bruneau, P., Application of ALOGPS to predict 1-octanol/wa-
ter distribution coefficients, logP, and logD, of AstraZeneca in-house data-
base. J. Pharm. Sci. 2004, 93 (12), 3103-3110.

137.	 Tetko, I. V.; Tanchuk, V. Y., Application of associative neural networks for
prediction of lipophilicity in ALOGPS 2.1 program. Journal of Chemical In-
formation & Computer Sciences 2002, 42 (5), 1136-1145.

138.	 Tetko, I. V., Application of Associative Neural Networks for Prediction of
Physico-Chemical Properties. In EuroQSAR2002 Designing Drugs and Crop
Protectants: processes, problems and solutions, Ford, M.; Livingstone,
D.; Dearden, J.; Van de Waterbeemd, H., Eds. Blackwell Publishing: Bour-
nemouth, UK, 2003; pp 199-203.

139.	 Tetko, I. V. Associative Neural Networks: an innovative method to pre-

99

References

dict physico-chemical, biological and ADMETox properties. Université de
Strasbourg, Strasbourg, France, 2011.

140.	 Varnek, A.; Kireeva, N.; Tetko, I. V.; Baskin, I. I.; Solov’ev, V. P., Exhaustive
QSPR Studies of a Large Diverse Set of Ionic Liquids: How Accurately Can
We Predict Melting Points? J. Chem. Inf. Model. 2007, 47 (3), 1111-1122.

141.	 Ghosh, D.; Koch, U.; Hadian, K.; Sattler, M.; Tetko, I. V., Luciferase Ad-
visor: High-Accuracy Model To Flag False Positive Hits in Luciferase HTS
Assays. J. Chem. Inf. Model. 2018.

142.	 Kovalishyn, V.; Abramenko, N.; Kopernyk, I.; Charochkina, L.; Metelytsia,
L.; Tetko, I. V.; Peijnenburg, W.; Kustov, L., Modelling the toxicity of a large
set of metal and metal oxide nanoparticles using the OCHEM platform.
Food Chem. Toxicol. 2018, 112, 507-517.

143.	 Nizami, B.; Tetko, I. V.; Koorbanally, N. A.; Honarparvar, B., QSAR models
and scaffold-based analysis of non-nucleoside HIV RT inhibitors. Chemo-
metrics Intellig. Lab. Syst. 2015, 148, 134-144.

144.	 LeCun, Y.; Bengio, Y.; Hinton, G., Deep learning. Nature 2015, 521 (7553),
436-44.

145.	 Goh, G. B.; Hodas, N. O.; Vishnu, A., Deep learning for computational
chemistry. J. Comput. Chem. 2017.

146.	 Gawehn, E.; Hiss, J. A.; Schneider, G., Deep Learning in Drug Discovery.
Mol. Inform. 2016, 35 (1), 3-14.

147.	 Schmidhuber, J., Deep learning in neural networks: an overview. Neural
Netw 2015, 61, 85-117.

148.	 Ma, J.; Sheridan, R. P.; Liaw, A.; Dahl, G. E.; Svetnik, V., Deep neural nets
as a method for quantitative structure-activity relationships. J. Chem. Inf.
Model. 2015, 55 (2), 263-74.

149.	 Sosnin, S.; Karlov, D.; Tetko, I. V.; Fedorov, M. V., Comparative Study of
Multitask Toxicity Modeling on a Broad Chemical Space. J. Chem. Inf. Mod-
el. 2019, 59 (3), 1062-1072.

150.	 Kim, Y. In Convolutional Neural Networks for Sentence Classification, Pro-
ceedings of the 2014 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), 2014//; Association for Computational Lin-
guistics: 2014; pp 1746-1751.

151.	 Yamashita, R.; Nishio, M.; Do, R. K. G.; Togashi, K., Convolutional neural
networks: an overview and application in radiology. Insights into Imaging
2018, 9 (4), 611-629.

152.	 Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang,
X.; Wang, G.; ., J. C.; et al., Recent advances in convolutional neural net-

100

References

works. Elsevier Science Inc.: 2018; Vol. 77, p 354–377.

153.	 Tokui, S.; Oono, K. In Chainer : a Next-Generation Open Source Framework
for Deep Learning, 2015.

154.	 Democratizing Deep-Learning for Drug Discovery, Quantum Chemistry,
Materials Science and Biology. GitHub: 2016.

155.	 Ramsundar, B.; Eastman, P.; Walters, P.; Pande, V.; Leswing, K.; Wu, Z.,
Deep Learning for the Life Sciences. O’Reilly Media: 2019.

156.	 Gasteiger, J., Of molecules and humans. J. Med. Chem. 2006, 49 (22),
6429-34.

157.	 Tetko, I. V.; Tanchuk, V. Y.; Kasheva, T. N.; Villa, A. E. P., Estimation of Aque-
ous Solubility of Chemical Compounds Using E-State Indices. J. Chem. Inf.
Comput. Sci. 2001, 41 (6), 1488-1493.

158.	 Steinbeck, C.; Han, Y.; Kuhn, S.; Horlacher, O.; Luttmann, E.; Willighagen,
E., The Chemistry Development Kit (CDK):  An Open-Source Java Library
for Chemo- and Bioinformatics. J. Chem. Inf. Comput. Sci. 2003, 43 (2),
493-500.

159.	 Willighagen, E. L.; Mayfield, J. W.; Alvarsson, J.; Berg, A.; Carlsson, L.; Je-
liazkova, N.; Kuhn, S.; Pluskal, T.; Rojas-Chertó, M.; Spjuth, O.; Torrance,
G.; Evelo, C. T.; Guha, R.; Steinbeck, C., The Chemistry Development Kit
(CDK) v2.0: atom typing, depiction, molecular formulas, and substructure
searching. J. Cheminformatics 2017, 9 (1), 33.

160.	 Winter, R.; Montanari, F.; Noé, F.; Clevert, D.-A., Learning continuous and
data-driven molecular descriptors by translating equivalent chemical rep-
resentations. Chem. Sci. 2019.

161.	 Myrdal, P. B.; Manka, A. M.; Yalkowsky, S. H., AQUAFAC 3: aqueous func-
tional group activity coefficients; application to the estimation of aqueous
solubility. Chemosphere 1995, 30 (9), 1619-1637.

162.	 Todeschini, R.; Consonni, V., In Handbook of Molecular Descriptors, Wi-
ley-VCH Verlag GmbH: 2000.

163.	 Skvortsova, M. I.; Baskin, I. I.; Skvortsov, L. A.; Palyulin, V. A.; Zefirov, N.
S.; Stankevich, I. V., Chemical graphs and their basis invariants. Journal of
Molecular Structure-Theochem 1999, 466, 211-217.

164.	 Ruggiu, F.; Marcou, G.; Varnek, A.; Horvath, D., ISIDA Property-Labelled
Fragment Descriptors. Mol Inform 2010, 29 (12), 855-68.

165.	 Alexandre, V.; Denis, F.; Dragos, H.; Olga, K.; Cedric, G.; Philippe, V.;
Vitaly, S. e.; Frank, H.; Igor, V. T.; Gilles, M., ISIDA - Platform for Virtu-
al Screening Based on Fragment and Pharmacophoric Descriptors. Curr
Comput Aided Drug Des 2008, 4 (3), 191-198.

101

References

166.	 Potemkin, V. A.; Grishina, M. A., A new paradigm for pattern recognition
of drugs. J. Comput. Aided Mol. Des. 2008, 22 (6-7), 489-505.

167.	 Moriwaki, H.; Tian, Y.-S.; Kawashita, N.; Takagi, T., Mordred: a molecular
descriptor calculator. J. Cheminformatics 2018, 10 (1), 4.

168.	 Bultinck, P.; Langenaeker, W.; Lahorte, P.; De Proft, F.; Geerlings, P.; Van
Alsenoy, C.; Tollenaere, J. P., The Electronegativity Equalization Method II:
Applicability of Different Atomic Charge Schemes. The Journal of Physical
Chemistry A 2002, 106 (34), 7895-7901.

169.	 Bultinck, P.; Langenaeker, W.; Carbó-Dorca, R.; Tollenaere, J. P., Fast Cal-
culation of Quantum Chemical Molecular Descriptors from the Electro-
negativity Equalization Method. J. Chem. Inf. Comput. Sci. 2003, 43 (2),
422-428.

170.	 Tetko, I. V.; M. Lowe, D.; Williams, A. J., The development of models to
predict melting and pyrolysis point data associated with several hundred
thousand compounds mined from PATENTS. J. Cheminformatics 2016, 8,
2.

171.	 Salmina, E. S.; Haider, N.; Tetko, I. V., Extended Functional Groups (EFG):
An Efficient Set for Chemical Characterization and Structure-Activity Rela-
tionship Studies of Chemical Compounds. Molecules 2015, 21 (1), E1.

172.	 Haider, N., Functionality Pattern Matching as an Efficient Complementa-
ry Structure/Reaction Search Tool: an Open-Source Approach. Molecules
2010, 15 (8), 5079-5092.

173.	 Cherkasov, A., ‘Inductive’ Descriptors: 10 Successful Years in QSAR. Cur-
rent Computer - Aided Drug Design 2005, 1 (1), 21-42.

174.	 Cherkasov, A., Inductive QSAR Descriptors. Distinguishing Compounds
with Antibacterial Activity by Artificial Neural Networks. International
Journal of Molecular Sciences 2005, 6 (1), 63-86.

175.	 Capecchi, A.; Probst, D.; Reymond, J.-L., One molecular fingerprint to rule
them all: drugs, biomolecules, and the metabolome. J. Cheminformatics
2020, 12 (1), 43.

176.	 Ognichenko, L. N.; Kuz’min, V. E.; Artemenko, A. G., New Structural De-
scriptors of Molecules on the Basis of Symbiosis of the Informational Field
Model and Simplex Representation of Molecular Structure. QSAR & Com-
binatorial Science 2009, 28 (9), 939-945.

177.	 Masand, V. H.; Rastija, V., PyDescriptor: A new PyMOL plugin for calculat-
ing thousands of easily understandable molecular descriptors. Chemom-
etrics Intellig. Lab. Syst. 2017, 169, 12-18.

178.	 Plante, J.; Werner, S., JPlogP: an improved logP predictor trained using

102

References

predicted data. J. Cheminformatics 2018, 10 (1), 61.

179.	 Matthews, B. W., Comparison of the predicted and observed secondary
structure of T4 phage lysozyme. Biochimica et Biophysica Acta (BBA) - Pro-
tein Structure 1975, 405 (2), 442-451.

180.	 Hajian-Tilaki, K., Receiver Operating Characteristic (ROC) Curve Analysis
for Medical Diagnostic Test Evaluation. Caspian. J. Intern. Med. 2013, 4
(2), 627-635.

181.	 Breiman, L., Bagging Predictors. Machine Learning 1996, 24 (2), 123-140.

182.	 Netzeva, T. I.; Worth, A.; Aldenberg, T.; Benigni, R.; Cronin, M. T.; Gramat-
ica, P.; Jaworska, J. S.; Kahn, S.; Klopman, G.; Marchant, C. A.; Myatt, G.;
Nikolova-Jeliazkova, N.; Patlewicz, G. Y.; Perkins, R.; Roberts, D.; Schultz,
T.; Stanton, D. W.; van de Sandt, J. J.; Tong, W.; Veith, G.; Yang, C., Cur-
rent status of methods for defining the applicability domain of (quantita-
tive) structure-activity relationships. The report and recommendations of
ECVAM Workshop 52. Altern Lab Anim 2005, 33 (2), 155-173.

183.	 Sushko, I.; Novotarskyi, S.; Korner, R.; Pandey, A. K.; Cherkasov, A.; Li,
J.; Gramatica, P.; Hansen, K.; Schroeter, T.; Muller, K. R.; Xi, L.; Liu, H.;
Yao, X.; Oberg, T.; Hormozdiari, F.; Dao, P.; Sahinalp, C.; Todeschini, R.;
Polishchuk, P.; Artemenko, A.; Kuz’min, V.; Martin, T. M.; Young, D. M.;
Fourches, D.; Muratov, E.; Tropsha, A.; Baskin, I.; Horvath, D.; Marcou,
G.; Muller, C.; Varnek, A.; Prokopenko, V. V.; Tetko, I. V., Applicability do-
mains for classification problems: Benchmarking of distance to models for
Ames mutagenicity set. J. Chem. Inf. Model. 2010, 50 (12), 2094-111.

184.	 Sushko, I. Applicability domain of QSAR models. Technical University of
Munich, Munich, 2011.

185.	 Thorne, N.; Inglese, J.; Auld, D. S., Illuminating insights into firefly lucifer-
ase and other bioluminescent reporters used in chemical biology. Chem.
Biol. 2010, 17 (6), 646-57.

186.	 Wang, T. T. Y., β-Naphthoflavone, an Inducer of Xenobiotic Metabolizing
Enzymes, Inhibits Firefly Luciferase Activity. Anal. Biochem. 2002, 304 (1),
122-126.

187.	 Bakhtiarova, A.; Taslimi, P.; Elliman, S. J.; Kosinski, P. A.; Hubbard, B.;
Kavana, M.; Kemp, D. M., Resveratrol inhibits firefly luciferase. Biochem.
Biophys. Res. Commun. 2006, 351 (2), 481-484.

188.	 Auld, D. S.; Southall, N. T.; Jadhav, A.; Johnson, R. L.; Diller, D. J.; Sime-
onov, A.; Austin, C. P.; Inglese, J., Characterization of chemical libraries for
luciferase inhibitory activity. J. Med. Chem. 2008, 51 (8), 2372-86.

189.	 Sadowski, J.; Gasteiger, J.; Klebe, G., Comparison of Automatic Three-Di-
mensional Model Builders Using 639 X-ray Structures. J. Chem. Inf. Com-

103

References

put. Sci. 1994, 34 (4), 1000-1008.

190.	 Schrödinger, L. L. C., The PyMOL Molecular Graphics System, Ver-
sion 1.8.6.0. In The PyMOL Molecular Graphics System, Version 1.8.6.0,
2015.

191.	 Sushko, I.; Novotarskyi, S.; Körner, R.; Pandey, A. K.; Rupp, M.; Teetz, W.;
Brandmaier, S.; Abdelaziz, A.; Prokopenko, V. V.; Tanchuk, V. Y.; Todeschi-
ni, R.; Varnek, A.; Marcou, G.; Ertl, P.; Potemkin, V.; Grishina, M.; Gastei-
ger, J.; Schwab, C.; Baskin, I. I.; Palyulin, V. A.; Radchenko, E. V.; Welsh,
W. J.; Kholodovych, V.; Chekmarev, D.; Cherkasov, A.; Aires-de-Sousa,
J.; Zhang, Q.-Y.; Bender, A.; Nigsch, F.; Patiny, L.; Williams, A.; Tkachen-
ko, V.; Tetko, I. V., Online chemical modeling environment (OCHEM): web
platform for data storage, model development and publishing of chemical
information. Journal of Computer-Aided Molecular Design 2011, 25 (6),
533-554.

192.	 Tetko, I. V., Associative neural network. Neural Processing Letters 2002, 16
(2), 187-199.

193.	 Schuffenhauer, A.; Ertl, P.; Roggo, S.; Wetzel, S.; Koch, M. A.; Waldmann,
H., The scaffold tree—visualization of the scaffold universe by hierarchical
scaffold classification. J. Chem. Inf. Model. 2007, 47.

194.	 Feng, B. Y.; Shelat, A.; Doman, T. N.; Guy, R. K.; Shoichet, B. K., High-through-
put assays for promiscuous inhibitors. Nat. Chem. Biol. 2005, 1 (3), 146-
148.

195.	 Irwin, J. J.; Duan, D.; Torosyan, H.; Doak, A. K.; Ziebart, K. T.; Sterling, T.;
Tumanian, G.; Shoichet, B. K., An Aggregation Advisor for Ligand Discov-
ery. J. Med. Chem. 2015, 58 (17), 7076-7087.

196.	 Pearce, B. C.; Sofia, M. J.; Good, A. C.; Drexler, D. M.; Stock, D. A., An
empirical process for the design of high-throughput screening deck filters.
J. Chem. Inf. Model. 2006, 46 (3), 1060-8.

197.	 Yasgar, A.; Jadhav, A.; Simeonov, A.; Coussens, N. P., AlphaScreen-Based
Assays: Ultra-High-Throughput Screening for Small-Molecule Inhibitors of
Challenging Enzymes and Protein-Protein Interactions. Methods Mol. Biol.
2016, 1439, 77-98.

198.	 Eglen, R. M.; Reisine, T.; Roby, P.; Rouleau, N.; Illy, C.; Bossé, R.; Bielefeld,
M., The use of AlphaScreen technology in HTS: current status. Current
chemical genomics 2008, 1, 2-10.

199.	 Brenke, J. K.; Salmina, E. S.; Ringelstetter, L.; Dornauer, S.; Kuzikov, M.;
Rothenaigner, I.; Schorpp, K.; Giehler, F.; Gopalakrishnan, J.; Kieser, A.;
Gul, S.; Tetko, I. V.; Hadian, K., Identification of Small-Molecule Frequent
Hitters of Glutathione S-Transferase-Glutathione Interaction. J. Biomol.

104

References

Screen. 2016, 21 (6), 596-607.

200.	 Mayfield, J. W.; Sayle, R. A., Technical implications of new IUPAC elements
in cheminformatics. J. Cheminformatics 2017, 9 (1), 10.

201.	 Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoe-
maker, B. A.; Thiessen, P. A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E. E.,
PubChem 2019 update: improved access to chemical data. Nucleic Acids
Res. 2019, 47 (D1), D1102-D1109.

202.	 Karpov, P.; Godin, G.; Tetko, I. V., Transformer-CNN: Swiss knife for QSAR
modeling and interpretation. J. Cheminformatics 2020, 12 (1), 17.

203.	 Sosnin, S.; Vashurina, M.; Withnall, M.; Karpov, P.; Fedorov, M.; Tetko,
I. V., A Survey of Multi-task Learning Methods in Chemoinformatics. Mol.
Inform. 2019, 38 (4), e1800108.

204.	 Ghosh, D.; Tetko, I.; Klebl, B.; Nussbaumer, P.; Koch, U. In Analysis and
Modelling of False Positives in GPCR Assays, Artificial Neural Networks
and Machine Learning – ICANN 2019: Workshop and Special Sessions,
Cham, 2019//; Tetko, I. V.; Kůrková, V.; Karpov, P.; Theis, F., Eds. Springer
International Publishing: Cham, 2019; pp 764-770.

205.	 Hauser, A. S.; Attwood, M. M.; Rask-Andersen, M.; Schioth, H. B.; Glori-
am, D. E., Trends in GPCR drug discovery: new agents, targets and indica-
tions. Nat. Rev. Drug Discov. 2017, 16 (12), 829-842.

206.	 Fredriksson, R.; Lagerström, M. C.; Lundin, L.-G.; Schiöth, H. B., The G-Pro-
tein-Coupled Receptors in the Human Genome Form Five Main Families.
Phylogenetic Analysis, Paralogon Groups, and Fingerprints. Mol. Pharma-
col. 2003, 63 (6), 1256-1272.

207.	 Zhang, R.; Xie, X., Tools for GPCR drug discovery. Acta Pharmacologica
Sinica 2012, 33, 372.

208.	 Hu, G. M.; Mai, T. L.; Chen, C. M., Visualizing the GPCR Network: Classifi-
cation and Evolution. Sci Rep 2017, 7 (1), 15495.

209.	 Stevens, R. C.; Cherezov, V.; Katritch, V.; Abagyan, R.; Kuhn, P.; Rosen,
H.; Wüthrich, K., The GPCR Network: a large-scale collaboration to deter-
mine human GPCR structure and function. Nature Reviews Drug Discov-
ery 2012, 12, 25.

210.	 Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoe-
maker, B. A.; Thiessen, P. A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E. E.,
PubChem 2019 update: improved access to chemical data. Nucleic Acids
Res. 2018, 47 (D1), D1102-D1109.

211.	 Basith, S.; Cui, M.; Macalino, S. J. Y.; Park, J.; Clavio, N. A. B.; Kang, S.;
Choi, S., Exploring G Protein-Coupled Receptors (GPCRs) Ligand Space via

105

References

Cheminformatics Approaches: Impact on Rational Drug Design. Frontiers
in pharmacology 2018, 9, 128-128.

106

Appendix I: PCA Pipeline with Jupyter Notebook

Appendix I: PCA Pipeline with
Jupyter Notebook

This is an example of a pipeline built and executed in Jupyter Notebook for ingesting folder
full of assay data, analysing the data to find all active and inactive datapoints, and performing
a Principal Component Analysis to find patterns in the data.

To start with, we import the relevant packages, and initialize a few global variables.

In []:

import pandas as pd
import os, pathlib, functools
import numpy as np

root_dir = "I:\\Backup\\Data\\Alphascreen\\Data\\public\\"
his_dir = root_dir + "His\\"

A1.1. Reading the csv files

Then, we use read_csv() to read csv all the csv files in a given directory, and load them up as
Pandas Dataframe object. We load up just the first 5 columns, as that is what we need. We also
load everything as string, because there are mixed data in every column, and so pandas issus us
an warning if we dont specify the datatype. Some columns are empty, and some unnecessary
rows are present. We can clean the data and typecast porperly post-import.

In []:

def read_csv_print_msg(filename):
 print ("Reading {}".format(filename))
 return pd.read_csv(filename, usecols = range(5), dtype = str)

his_flist = [read_csv_print_msg(i) for i in pathlib.Path(his_dir).glob("*.
csv")]

Reading I:\Backup\Data\Alphascreen\Data\public\His\485360.csv

Reading I:\Backup\Data\Alphascreen\Data\public\His\504333.csv

Reading I:\Backup\Data\Alphascreen\Data\public\His\504339.csv

Reading I:\Backup\Data\Alphascreen\Data\public\His\540317.csv

Reading I:\Backup\Data\Alphascreen\Data\public\His\623870.csv

Reading I:\Backup\Data\Alphascreen\Data\public\His\651724.csv

Reading I:\Backup\Data\Alphascreen\Data\public\His\651725.csv

107

Appendix I: PCA Pipeline with Jupyter Notebook

Taking a look at the data, we can see some rows we do not need. We will clean the dataframes
next.

In []:

his_flist[0].head(10)

Out[]:

PUBCHEM_RE-
SULT_TAG

PUBCHEM_SID PUBCHEM_CID
PUBCHEM_AC-

TIVITY_OUT-
COME

PUBCHEM_
ACTIVITY_

SCORE
0 RESULT_TYPE NaN NaN NaN NaN
1 RESULT_DESCR NaN NaN NaN NaN
2 RESULT_UNIT NaN NaN NaN NaN
3 RESULT_IS_AC-

TIVE_CONCEN-
TRATION

NaN NaN NaN NaN

4 RESULT_ATTR_
CONC_MICRO-

MOL

NaN NaN NaN NaN

5 1 842122 6602571 Inactive 0
6 2 842123 6602616 Inactive 0
7 3 842124 644371 Inactive 0
8 4 842125 6603132 Inactive 0
9 5 842126 2850911 Inactive 0

A1.2. Cleaning the Dataframes

From the output above, we can see that we do not need the first five rows. We also should
use int datatype for all the columns except PUBCHEM_ACTIVITY OUTCOME. We can
also use the PUBCHEM_RESULT_TAG as the index for our dataframe, and thus removing
duplicated columns.

In []:

def clean_dataframe(inp_df):
 inp_df = inp_df.iloc[5:].dropna()
 dtype_dict = {"PUBCHEM_RESULT_TAG": int,"PUBCHEM_SID":int,
 "PUBCHEM_CID": int, "PUBCHEM_ACTIVITY_OUTCOME":str,
 "PUBCHEM_ACTIVITY_SCORE": int}
 inp_df = inp_df.astype(dtype_dict)

 return inp_df.set_index("PUBCHEM_RESULT_TAG")

clean_his_flist = [clean_dataframe(i) for i in his_flist]

108

Appendix I: PCA Pipeline with Jupyter Notebook

We can see that the dataframes are now clean

In []:

clean_his_flist[0].head()

Out[]:

PUBCHEM_RE-
SULT_TAG

PUBCHEM_SID PUBCHEM_CID
PUBCHEM_AC-

TIVITY_OUT-
COME

PUBCHEM_AC-
TIVITY_SCORE

1 842122 6602571 Inactive 0

2 842123 6602616 Inactive 0
3 842124 644371 Inactive 0
4 842125 6603132 Inactive 0
5 842126 2850911 Inactive 0

and has the proper datatypes

In []:

clean_his_flist[0].dtypes

Out[]:

PUBCHEM_SID int32

PUBCHEM_CID int32

PUBCHEM_ACTIVITY_OUTCOME object

PUBCHEM_ACTIVITY_SCORE int32

dtype: object

A1.3. Getting the active and inactive Datapoints

Next we split the dataframes based on compound activity. Pandas provides excellent methods
for filtering dataframes based on a column value, so that is what we will use.

In []:

def getactives(df):
 return df.loc[df["PUBCHEM_ACTIVITY_OUTCOME"] == "Active"]

def getinactives(df):
 return df.loc[df["PUBCHEM_ACTIVITY_OUTCOME"] == "Inactive"]

his_flist_actives = [getactives(i) for i in clean_his_flist]
his_flist_inactives = [getinactives(i) for i in clean_his_flist]

In []:

109

Appendix I: PCA Pipeline with Jupyter Notebook

his_flist_actives[0].head(3)

Out[11]:

PUBCHEM_RE-
SULT_TAG

PUBCHEM_SID PUBCHEM_CID
PUBCHEM_AC-

TIVITY_OUT-
COME

PUBCHEM_AC-
TIVITY_SCORE

221 842394 644662 Active 40
558 842823 5767374 Active 42
713 843005 767427 Active 84

In []:

his_flist_inactives[0].head(3)

Out[18]:

PUBCHEM_RE-
SULT_TAG

PUBCHEM_SID PUBCHEM_CID
PUBCHEM_AC-

TIVITY_OUT-
COME

PUBCHEM_AC-
TIVITY_SCORE

1 842122 6602571 Inactive 0
2 842123 6602616 Inactive 0
3 842124 644371 Inactive 0

A1.4. Getting Assay Data Statistics

Now that we have all the different dataframe objects set up, we can easily generate a nice table
detailing staistics for all the imported assay data.

Our dataframe objects has no information about the assay ID, which is also the filename. This
has to be extracted from the filename in a separate step. We are relying on the fact the we never
changed the order in which the files are imported. This works in this case, but may not be the
best approach.

In []:

assaydetails = {}

for i, df in enumerate(his_flist):
 assayid = list(pathlib.Path(his_dir).glob("*.csv"))[i].name[:-4]
 activitystat = (len(getactives(df)), len(getinactives(df)))
 assaydetails[assayid] = activitystat

In []:

pd.DataFrame.from_dict(assaydetails, orient=’index’, columns=["actives", "in-
actives"])

Out[42]:

110

Appendix I: PCA Pipeline with Jupyter Notebook

actives inactives
485360 1495 217165
504333 15779 312744
504339 17028 342184
540317 2150 371468
623870 2595 390301
651724 1654 328376
651725 2028 355075

A1.5. Merging the Dataframes
We need to get the compound IDs for all the compounds that shows activity. We will use this
list of ids to download SMILES from the Pubchem compound sownload service. To do this, we
need to merge all the dataframes in our active dataframe list. How we do this merge operation
determines what we will get. If we want all unique compounds what has activity at least once,
we can do an intersection operation between PUBCHEM_CID columns of all the dataframes
in the list. If we do an union, we will get all datapoints, which we can use to count how many
times a compound has shown activity. For our purposes, we will do an intersection.

In []:

def getUniqueList(dfList):
 cidlists = [i["PUBCHEM_CID"] for i in dfList]
 reduced = functools.reduce(np.union1d, cidlists)
 return reduced

activelist = getUniqueList(his_flist_actives)
inactivelist = getUniqueList(his_flist_inactives)

Doing this we get a list of all the active compounds and all the inactive compounds

In []:

print ("We have {} actives and {} inactives".format(len(activelist), len(inac-
tivelist)))

activelist, inactivelist

We have 27122 actives and 487608 inactives

Out[34]:

(array([86, 109, 253, ..., 56642969, 56835566, 56835586]),

 array([6, 19, 40, ..., 73265308, 73265382, 85090241]))

111

Appendix I: PCA Pipeline with Jupyter Notebook

A1.6. Exporting the lists

Now, we export these lists as text files that we can load into the PubChem Compound Down-
load Service. This is the better way to work, as trying to access such quantity of data through
PUG is not possible due to Request Volume Limitations.

In []:

with open("actives_list.txt", "w") as f:
 f.write("\n".join(map(str, activelist)))

with open("inactives_list.txt", "w") as f:
 f.write("\n".join(map(str, inactivelist)))

Continuting for here, we download the compound data, and read that data to continue the
analysis. For convenience, this should be done in a separate Notebook.

In []:

import pandas as pd
from rdkit import Chem
from rdkit.Chem import rdMolDescriptors as desc
import numpy as np
from tqdm import tqdm

#root_dir = “I:\\Backup\\Data\\Alphascreen\\Data\\public\\”
root_dir = “D:\\FreqHitterProject\\Alphascreen\\Data\\public\\”
gst_dir = root_dir + “GST\\analyzed\\”
his_dir = root_dir + “His\\analyzed\\”

A1.7. Reading in the Smiles

After downloading the data from PubChem Compound Download Service, we need to read
the data back in. We use Pandas once again, and set the CID column to be the index.

In []:

inactivesdf = pd.read_csv(his_dir + “inactives_smiles.csv”, index_col =
“CID”)
activesdf = pd.read_csv(his_dir + “actives.csv”, index_col = “CID”)

We verify the data has come in properly:

In []:

activesdf.head(5)

Out[]:

112

Appendix I: PCA Pipeline with Jupyter Notebook

CID IsomericSMILES
44263802 C#CCOCCOCCOCCNC1=NC(=NC(=N1)N2CCN(CC2)C(=O)[C@...
9607935 CC1=CC=C(O1)/C(=N/NS(=O)(=O)C2=CC(=C(C=C2)Cl)[...
5737486 CCOC(=O)C1CCCN(C1)C2=NC(=O)/C(=C/C3=CC=C(C=C3)...
6866495 C1=COC(=C1)/C=C/C=N/N2C(=NNC2=S)C3=CC=NC=C3
9549434 CC1=CC=CC=C1N2CCN(CC2)CC3=CC(=C(C=C3)O)C(=O)OC.Cl

A1.8. Generating Morgan Fingerprints

Now that we have the Smiles, we can use rdkit to create molecule objects. Then we can use
the molecule object to generate the morgan fingerprint. We express the fingerprint as a bit
vector of length 1024.

RDKit provides a convenient function for calculating the fingerprint, which returns a BitString.

In []:

mol = Chem.MolFromSmiles(‘c1ccccc1O’)
fp = desc.GetMorganFingerprintAsBitVect(mol,2).ToBitString()
fp

Out[]:

‘0001000000000000000000

00

00

00

0001000000000000000000000000000000

00

00

00

00010000000000

000100000000000000000000000000000000

00

00

001000

00

00000000000000000000000100

00

0000000000000000000000000000000000001000

00

00

0000001000

0010000000000000

000000000000001000

0000000000000000000000000100

00

113

Appendix I: PCA Pipeline with Jupyter Notebook

00000000000000000000000000000000’

We then generate numpy array from the Bitstring, because we need an array for PCA. We use
numpy array because it is significcanly more memory efficient compared to python built-ins
such as list or tuple.

In []:

import sys
listf = list(fp)

print (“Size of numpy array fingerprint in memory:{} bytes”.format(sys.get-
sizeof(listf)))
tuplesize = sys.getsizeof(tuple(fp))

print (“Size of fingerprint tuple in memory: {} bytes”.format(tuplesize))
npa = np.array(tuple(fp), dtype = “u1”)
print (“Size of numpy array fingerprint in memory:{} bytes”.format(sys.get-
sizeof(npa)))

Size of numpy array fingerprint in memory:18544 bytes

Size of fingerprint tuple in memory: 16432 bytes

Size of numpy array fingerprint in memory:2144 bytes

Now, we can write a few functions to generate the fingerprints for all the compounds. We store
the fingerprints in a dictionary with CID as the key, that way, we can access the fingerprint
using the CID later. As this process can take some time, We use the tqdm module to generate
a nice progressbar.

In []:

def ff_int(smiles = ‘c1ccccc1O’):
 mol = Chem.MolFromSmiles(smiles)

 fp = desc.GetMorganFingerprintAsBitVect(mol,2).ToBitString()
 fp = np.array(tuple(fp), dtype = “u1”)
 return fp

def genfp(df):
 fpdict = {}

 for index, row in tqdm(df.iterrows(), total=len(df)):
 fpdict[index] = ff_int(row[“IsomericSMILES”])

 return fpdict

activesfp = genfp(activesdf)
inactivesfp = genfp(inactivesdf)

fplist_actives = list(activesfp.values())
fplist_inactives = list(inactivesfp.values())

114

Appendix I: PCA Pipeline with Jupyter Notebook

totalfp = fplist_actives + fplist_inactives

100%|██| 27061/27061 [00:24<00:00, 1122.29it/s]

100%|██| 462890/462890 [07:35<00:00, 1015.89it/s]

If we want, we can save the fingerprints to disk with using pickle

In []:

import pickle
with open(“activesfp_his”, “rb”) as f:
activesfp = pickle.load(f)

with open(“inactivesfp_his”, “wb”) as f:
pickle.dump(inactivesfp, f)

with open(“inactivesfp_his”, “rb”) as f:
inactivesfp = pickle.load(f)

Principal Component Analysis
With the fingerprints calculated, we can get started on modelling.

A1.9. Creating and Fitting the PCA

We use the PCA object from the decomposition module of Scikit-learn. We want to plot the
data as a scatter plot, so two dimensions are needed. We fit the model to all the fingerprints.
Given our volume of data (~ 500K datapoints), this process requires nearly 25GB or RAM at
runtime. This is an important consideration. If the system does not have enough memory, a
MemoryException will be raised.

In []:

from sklearn.decomposition import PCA

pca = PCA(n_components=2)
pca.fit(totalfp)

The fitting process is very memory and processor intensive, so we should save the model to disk
as a serialized object. The joblib module provides wrapper functions for this. The standard
pickle module can also be used.

In []:

115

Appendix I: PCA Pipeline with Jupyter Notebook

import joblib
joblib.dump(pca, “his-pca.pca”)
pca = joblib.load(“his-pca.pca”)

C:\Users\dipan\.conda\envs\keras\lib\site-packages\sklearn\base.py:306: UserWarning:

Trying to unpickle estimator PCA from version 0.20.3 when using version 0.21.1. This

might lead to breaking code or invalid results. Use at your own risk.

 UserWarning)

A1.10. Dimensionality Reduction

With the model ready, now we can express our Morgan Fingerprint data in two dimensions.
The PCA object has a transform method which does just this.

In []:

X_pca_actives = pca.transform(fplist_actives)
X_pca_inactives = pca.transform(fplist_inactives)

This process gives us a numpy array with the transformed data.

In []:

X_pca_actives

Out[11]:

array([[-0.54778732, -0.62410512],

 [-0.69148143, 0.19595738],

 [0.07530125, -0.66790086],

 ...,

 [-0.18036748, 0.84135547],

 [-0.83018194, -0.3115237],

 [-0.64451642, -0.50277112]])

A1.11. Plotting the transformed data

Our transformed data can be treated as a list of (x,y) coordinates, and that is how we will plot
it. Matplotlib has a scatter method which can take a list of coordinates and diplay a scatter plot.
We set up the various labels and axes properly, and plot the graph

In []:

from matplotlib import pyplot as plt
import matplotlib

scale = 2
matplotlib.rc(‘xtick’, labelsize=30/scale)

116

Appendix I: PCA Pipeline with Jupyter Notebook

matplotlib.rc(‘ytick’, labelsize=30/scale)
plt.figure(figsize=(10,10))
ac = plt.scatter(*zip(*X_pca_inactives), marker = “.”, s=1)
ina = plt.scatter(*zip(*X_pca_actives), marker = “.”, s=1)
plt.xlabel(“PC1”, fontsize = 40/scale)
plt.ylabel(“PC2”, fontsize = 40/scale)
plt.legend((ac, ina),
 (‘Inactives’, ‘Actives’),

 scatterpoints=1,
 loc=’upper right’,

 ncol=1,
 fontsize=35/scale,
 markerscale=30/scale
)
plt

Out[12]:
<module ‘matplotlib.pyplot’ from ‘C:\\Users\\dipan\\.conda\\envs\\keras\\lib\\
site-packages\\matplotlib\\pyplot.py’>

Visualizing Molecules from the clusters

117

Appendix I: PCA Pipeline with Jupyter Notebook

A1.12. Filtering CIDs based on the transformed fin-
gerprint

From out PCA plot, we can see several custers, and let us find out what type of molecules are
there in these clusters. To do this, we must first find out the CIDs of the molecules that are
found in the cluster we want to probe. We can do this by quering the fingerprint dictionary
we made, transforming the fingerprint, and checking if it belongs in the specified range. The
transformation is fairly fast, but a progressbar helps judge progress.

In []:

cluster = []

for cid, fp in tqdm(inactivesfp.items()):
 fp = fp.reshape(1, -1)
 transformed = pca.transform(fp)[0]
 if (transformed[0] > 2.9 and transformed[0] < 3.1):
 cluster.append(cid)

100%|███| 462890/462890 [00:24<00:00, 19021.06it/s]

A1.13. Downloading smiles

With the CIDs in hand, we now think about getting the structures of these compounds from
PubChem. Just for visualization, we do not need all the compounds, just a random subsam-
ple will do. We then use the requests module to query the PubChem PUG API and get the
SMILES. The PUG requests can timeout if we query too many molecules at once, so to avoid
that, we split up the CID list into chunks of 200, and concatenate the results.

In this example, we already have the structure information of the molecules from the csv
file we imported in the beginning. However, here we document the process for downloading
smiles directly from PubChem.

In []:

def chunks(l, n):
 # For item i in a range that is a length of l,
 for i in range(0, len(l), n):
 # Create an index range for l of n items:
 yield l[i:i+n]

def getSmilesFromPubchem(CIDList):
 import requests
 import pandas as pd

118

Appendix I: PCA Pipeline with Jupyter Notebook

 import time
 from tqdm import tqdm_notebook as tqdm
 cid_chunks = list(chunks(CIDList, 200))
 dflist = []

 for chunk in tqdm(cid_chunks):
 cids = “,”.join(chunk)
 response = requests.get (“https://pubchem.ncbi.nlm.nih.gov/rest/pug/
compound/cid/”+cids+”/\	 property/CanonicalSMILES/CSV”)

 smiles_strings = response.content.decode(“utf-8”).split(“\n”)
 df = pd.DataFrame([sub.replace(‘\”’,””).split(“,”) for sub in smiles_
strings[1:len(smiles_\	 strings)-1]], columns=[“CID”, “SMILES”])
 dflist.append(df)

 time.sleep(2)
 return pd.concat(dflist)

import random
rand_cidlist = random.choices(cluster, k=25)
smilesdf = getSmilesFromPubchem(list(map(str, rand_cidlist)))
smilesdf

CID SMILES
0 54629731 CCCC#CC1=CC2=C(C=C1)S(=O)(=O)N(CC(C(O2)CN(C)C(=O)CC)

C)C(C)CO
1 54619912 CC1CN(S(=O)(=O)C2=C(C=C(C=C2)C3=CCCC3)OC1CN(C)C(=O)

COC)C(C)CO
2 54629449 CC1CN(S(=O)(=O)C2=C(C=C(C=C2)C#CCN(C)C)OC1CN(C)C(=O)

CN(C)C)C(C)CO
3 54618805 CC1CN(S(=O)(=O)C2=C(C=C(C=C2)C#CC(C)C)OC1CN(C)C(=O)

C3=CC=NC=C3)C(C)CO
4 54627754 CCC(=O)N(C)CC1C(CN(S(=O)(=O)C2=C(O1)C=C(C=C2)C#C-

C3=CN=CC=C3)C(C)CO)C

A1.14. Drawing Molecules

Now that we have structure information of the molecules encoded as smiles, we can create
molecule objects using RDKit. RDKit offers various functionalities for the molecules to be
drawn in 2D and 3D. RDKit provies a vary handy way of rendering the molecules directly in
notebook.

In []:

from rdkit import Chem
from rdkit.Chem import rdDepictor

119

Appendix I: PCA Pipeline with Jupyter Notebook

from rdkit.Chem.Draw import IPythonConsole
from rdkit.Chem import Draw
from rdkit.Chem.Draw.MolDrawing import MolDrawing
from rdkit.Chem.Draw import rdMolDraw2D
from IPython.display import SVG

IPythonConsole.molSize = (400, 300)

x = “CC1CN(C(=O)CCCN2C(=CN=N2)COC1CN(C)CC3=CC=C(C=C3)OC4=CC=CC=C4)C(C)CO”
m = Chem.MolFromSmiles(x)
m

Out[15]:

However, the default coordination generation does not work very well with macrocycles. We
can use the rDepictor module to create the 2D coordinates. Setting rdDepictor.SetPreferCoord-
Gen to True allows us to calculate the 2D coordinateds of molecules using the new CoordGen
package in RDKit, which yields better results.

In []:

rdDepictor.SetPreferCoordGen(True)

rdDepictor.Compute2DCoords(m)
m

Out[16]:

120

Appendix I: PCA Pipeline with Jupyter Notebook

Now, we can apply the same operation to all the molecules in the dataframe we created.

In []:

rdDepictor.SetPreferCoordGen(True)
dt = smilesdf

mols = [Chem.MolFromSmiles(x) for x in dt[‘SMILES’]]
list(map(rdDepictor.Compute2DCoords, mols)); #Semicolon to Suppress Output

8.14.1. Drawing Molecule in Notebook

As displayed above, we can render a molecule directly in notebook using IPythonConsole from
the Draw module. This is very good for displaying individual molecules and inspecing their
structures.

In []:

mols[10]

Out[18]:

8.14.2. Drawing molecules as grid

What we would like here, is an imagegrid for all the molecules. RDKit convenienetly provides
a method for doing just this. The MolsToGridImage method returns a PIL image object. We can
also use the useSVG parameter to export this as vector graphics.

In []:

scale = 1
MolDrawing.atomLabelMinFontSize = 250
MolDrawing.atomLabelFontSize=45
img=Draw.MolsToGridImage(mols[:100],molsPerRow=5,subImgSize=(200*scale,175*s-
cale), useSVG=False, maxMols=100)
img

121

Appendix I: PCA Pipeline with Jupyter Notebook

Out[19]:

122

Appendix I: PCA Pipeline with Jupyter Notebook

123

Appendix II

Appendix II
Table S1: All relevant assays from PUBCHEM found as a part of our search for a test set.

Assay
ID

Source Target Num-
ber

tested

Num-
ber

Active

Date Donor Acceptor

504332 NCGC euchromatic histone-ly-
sine N-methyltransferase
2 [Homo sapiens]

353740 31109 2011-
02-22

Strepta-
vidin

Anti-Rab-
bit IgG

743279 NCGC interleukin-1 beta pro-
protein [Homo sapiens]

362359 17206 2014-
02-11

Strepta-
vidin

AlphaLi-
sa-SA

504339 NCGC Chain A, Jmjd2a Tan-
dem Tudor Domains
In Complex With A
Trimethylated Histone
H4-K20 Peptide

388413 17028 2011-
02-22

Strepta-
vidin

Nickel
chelate

504333 NCGC bromodomain adjacent
to zinc finger domain 2B
[Homo sapiens]

359824 15779 2011-
02-22

Strepta-
vidin

Nickel
chelate

623870 Broad
Institute

 aryl hydrocarbon recep-
tor nuclear translocator
[Homo sapiens]; ... Total

392905 2595 2012-
03-27

GST
coated

Ni chelate
AlphaL-

ISA
540317 NCGC chromobox protein ho-

molog 1 [Homo sapiens]
387034 2150 2011-

07-28
Strepta-

vidin
Nickel
chelate

651725 NCGC six1 [Homo sapiens] 364407 2028 2012-
10-29

GST
coated

Nickel
chelate

743445 Broad
Institute

 histone-lysine N-meth-
yltransferase NSD2 iso-
form 1 [Homo sapiens]

309832 1662 2014-
04-10

Strepta-
vidin

Biotin

651724 NCGC CtBP interacting protein
CtIP [Homo sapiens]

335532 1654 2012-
10-29

GST
coated

Nickel
chelate

651704 Broad
Institute

 protein AF-9 isoform a
[Homo sapiens]

348218 1633 2012-
10-26

Strepta-
vidin

Biotin

485360 NCGC lethal(3)malignant brain
tumor-like protein 1 iso-
form I [Homo sapiens]

225505 1495 2010-
10-05

Strepta-
vidin

Nickel
chelate

504329 Southern
Research

Specialized
Biocon-
tainment
Screening

Center

 nonstructural pro-
tein 1 [Influenza A
virus (A/Califor-
nia/07/2009(H1N1))]

335445 1013 2011-
02-22

Un-
known

(Perkin-
elmer)

Unknown
(Perkin-
elmer)

485290 NCGC Chain A, Crystal
Structure Of Human
Tyrosyl-Dna Phosphodi-
esterase (Tdp1)

352260 986 2010-
09-28

Strepta-
vidin

anti-FITC

624168 Burnham
Center for
Chemical
Genomics

 LARGE [Homo sapi-
ens]

364168 805 2012-
05-22

Strepta-
vidin

An-
ti-Mouse
IgM Al-
phaLISA

124

Appendix II

651723 Broad
Institute

target unknown 349095 741 2012-
10-28

Anti-
body

Antibody

Table S2: Selection criteria of FH from PubChem assays. The activity fraction indicates the
ratio of the number of times active / number of times tested.

Activity
Fraction

Ob-
served

95% upper confi-
dence

Enrich-
ment

 1/6 87 907 0.1
 1/7 652 2897 0.2
 1/8 2008 6765 0.3
 1/9 6666 16468 0.4
 2/7 104 163 0.6
 1/10 18635 27955 0.7
 1/11 10254 12679 0.8
 2/9 1957 1591 1.2
 1/5 5365 4291 1.3

0 297343 277634 1.1
 2/11 2529 1548 1.6
 1/4 2513 606 4.2
 1/3 1360 137 9.9
 3/8 210 19 11

 3/10 2125 170 12
 3/11 1217 95 13
 2/5 867 33 26
 5/8 54 0 Inf1

 3/4 371 0 Inf
 1/2 920 0 Inf
 5/9 130 0 Inf
 7/9 23 0 Inf
 3/5 133 0 Inf
 2/3 212 0 Inf
 5/11 194 0 Inf
 6/11 95 0 Inf
 4/9 306 0 Inf
 4/11 492 0 Inf
 9/10 9 0 Inf

1 52 0 Inf
 9/11 7 0 Inf
 5/7 14 0 Inf
 3/7 52 0 Inf
 4/7 27 0 Inf
 4/5 25 0 Inf
 8/11 17 0 Inf
 8/9 6 0 Inf

125

Appendix II

 7/11 32 0 Inf
 7/10 35 0 Inf
 10/11 2 0 Inf
 7/8 6 0 Inf

1Inf - the enrichment was > 1000.

