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Abstract
This dissertation contributes to the field of pedestrian dynamics. Pedestrian dynam-
ics tries to better understand crowd behavior to make gatherings safer. In particular,
one wants to avoid crowd disasters like the one at the Love Parade festival in Germany,
2010, with 21 dead or at the Hajj with hundreds of casualties in several years. Pedestrian
dynamics researchers carry out experiments and simulate large crowds and pedestrian
streams. Current crowd simulation models mostly focus on physically correct simula-
tions but neglect psychological aspects which affect crowd behavior. This dissertation
describes my efforts to model behavioral changes in agent-based simulations and how
I try to bridge the gap between computer science and social sciences to get accurate
crowd simulation results.

In Part I of this work, I conduct an exhaustive literature research on current modeling
approaches and psychological aspects. I distill three important concepts from the broad
research field of psychology that must be integrated into state-of-the-art simulations:
perception, cognition and behavior. In Part II of this dissertation, I implement these
aspects in an established open-source simulation tool. I base my modeling efforts on
latest psychological findings. I implement the findings as reusable psychology layer
which can easily be integrated into other crowd simulation tools to be beneficial for
the whole research community. My modeling effort is supported by an own experiment
with 58 participants in which I document human behavior in a specific safety-relevant
scenario. In the experiment, I extract quantitative and qualitative data for the model
refinement and validation. I use three real-world scenarios to show that my approach is
able to reenact a wide range of human behavior which can be observed in reality.

My modeling approach is easy to understand and reusable. It aims to better con-
nect natural and life sciences because knowledge from both disciplines is necessary to
simulate and understand crowd behavior. My approach also provides clear guidelines to
operationalize observed human behavior for future simulations with the three sequential
phases perception, cognition and a selection of suitable behaviors.

Keywords: computer science, psychology, pedestrian dynamics, modeling, experiment,
humans, behavioral changes
With: 97 figures, 18 tables, 14 listings, 221 references

iii



Zusammenfassung

Diese Arbeit trägt zum Forschungsgebiet der Fußgängerdynamik (engl. Pedestrian Dy-
namics) bei. Pedestrian Dynamics versucht das Verhalten von Menschenmengen besser
zu verstehen und so Veranstaltungen sicherer zu machen. Im Besonderen gilt es, Kata-
strophen zu verhindern wie bei der Loveparade 2010 in Deutschland mit 21 Toten oder
wiederholt bei der jährlichen Haddsch. Forscher auf dem Gebiet der Fußgängerdyna-
mik versuchen das Verständnis durch zwei Teilbereiche zu vertiefen: Experimente mit
Menschen und der Simulation von Menschenmengen. Dabei fokussieren sich die gegen-
wärtigen Simulationsmodelle überwiegend auf eine physikalisch korrekte Simulation.
Jedoch werden bei der Simulation psychologische Aspekte vernachlässigt, welche sich
auf das Verhalten von Menschenmengen auswirken können. Aus diesem Grund widmet
sich diese Arbeit diesem Missstand. Die Dissertation beschreibt die Modellierung von
menschlichen Verhaltensänderungen für agentenbasierte Fußgängersimulationen.

Der erste Teil dieser Arbeit widmet sich einer umfassenden Literaturübersicht zu ak-
tuellen Modellierungsansätzen und psychologischen Aspekten, welche menschliche Ver-
haltensänderungen beeinflussen können. Aus dem breiten Forschungsgebiet der Psycho-
logie arbeite ich drei essentielle Konzepte heraus, welche in State-of-the-Art-Simulati-
onen integriert werden müssen: Perzeption, Kognition und Verhalten. Im zweiten Teil
dieser Arbeit implementiere ich diese drei wesentlichen Konzepte in einem etablier-
ten Open-Source-Fußgängersimulator. Dabei fußt meine Implementierung auf neuestem
psychologischen Wissen. Der Fokus meiner Arbeit liegt in der Schaffung einer wieder-
verwendbaren Architektur, welche sich auch einfach in eine Vielzahl weiterer Fußgän-
gersimulatoren integrieren lässt. Aus diesem Grund kapsle ich meine Implementierung
als wiederverwendbare Psychologieschicht. Dadurch ist meine Modellierung und Imple-
mentierung für die gesamte Forschungsgemeinschaft nützlich. Meine Modellierung wird
unterstützt durch ein eigenes Fußgängerexperiment mit 58 Teilnehmern. Ich nutze die
neu geschaffene Psychologieschicht, um drei reale Situationen als Simulationen nachzu-
stellen. Die erfolgreiche Anwendung zeigt, dass mein Ansatz in der Lage ist, ein breites
Spektrum von menschlichen Verhaltensänderungen korrekt und realitätsnah abzubilden.

Mein Modellierungsansatz ist einfach zu verstehen und vor allem wiederverwendbar.
Mein Ziel ist es Natur- und Sozialwissenschaften besser zu verbinden, da Wissen aus bei-
den Bereichen notwendig ist, um das Verhalten von Menschenmengen zu verstehen und
korrekt zu simulieren. Mein Ansatz liefert klare Leitlinien für Modellierer, um menschli-
ches Verhalten systematisch für Simulationen zu operationalisieren. Diese Leitlinien sind
durch Perzeption, Kognition und einem Verhaltensrepertoire gegeben.

Themenbereiche: Informatik, Psychologie, Fußgängerdynamik, Modellierung, Experi-
ment, Menschen, Verhaltensänderungen
Mit: 97 Abbildungen, 18 Tabellen, 14 Listings, 221 Quellen
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“Everything should be made as simple
as possible, but not simpler.”

Attributed to Albert Einstein
(O’Toole 2011)
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Chapter

1 Introduction

This dissertation contributes to the field of pedestrian dynamics. More concretely to
the simulation of pedestrians and how their movement and behavior evolves over time.
The term pedestrian dynamics encompasses a wide range of research activities to better
understand crowds. On the one hand, it covers experiments in closed and open spaces,
with single pedestrians or large crowds, experiments under laboratory or field condi-
tions. These experiments analyze pedestrian and collective phenomena like clogging
at bottlenecks, lane formation in counterflow scenarios or evacuation times for differ-
ent motivation levels, cooperative or competitive, and exit widths. On the other hand,
pedestrian dynamics covers the modeling of pedestrians and crowds to carry out simu-
lations, see Fig. 1.1. These simulations can help to identify risks in the planning phase
of crowd events or to make buildings safer to ensure certain evacuation times.

(a) An evacuation experiment conducted
by Krüchten et al. 2016.

Critical
density

Low

High

(b) A simulation of the experiment setup
with the Vadere simulation framework
conducted by myself.

Figure 1.1: (a) An evacuation experiment where participants wore colored hats and (b) a
subsequent simulation to identify critical high densities (video footage of the experiment can be
found at: https://doi.org/10.34735/ped.2014.1).

1.1 Motivation: Why we need pedestrian dynamics mod-
els

My personal motivation for my research activities is to better understand crowds and
to avoid risks wherever crowds gather. Pedestrian and crowd simulations are a use-
ful support for evacuation planning and safety concepts for crowd events and provide
valuable insights into pedestrian streams and waiting systems. Also, in times of global
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pandemics, like COVID-19, simulations can help to test the effectiveness of social dis-
tancing. For instance, how likely is it to get infected in a supermarket? I think that it is
the planning phase where computer simulations help most. Simulations identify critical
densities, maybe, caused by architectural shortcomings of the venue. Such shortcom-
ings led to injuries and even casualties in the past. For instance, 21 people died at the
Love Parade music festival in Duisburg, Germany, in 2010 when visitor waves crushed
together because a tunnel was used as an entry and an exit simultaneously as revealed
by (Helbing and Mukerji 2012), see Fig. 1.2. Also several casualties were reported at
the Hajj (Challenger et al. 2009, p. 187). Lastly, 769 fatalities were documented after a
stampede at the Hajj in Mina, 2015 (Alqahtani et al. 2016, Tab. 1, p. 7–9). These are
only a few examples of many more crowd disasters. Simulations allow to test hypothe-
ses without harming people and can give decision makers clear guidelines where critical
densities occur and if certain scenarios can threaten life and limb.

Figure 1.2: Festivalgoers in severe danger when trying to escape from being crushed at the
Love Parade in Germany 2010. A tunnel was used as entry and exit simultaneously. The
organizers overestimated the capacity of the tunnel which could have been revealed by
simulations in the planning phase of the event. 21 Festivalgoers were killed during the crush
(photo: Wiffers 2010).

1.2 Challenges in simulating pedestrian dynamics

My understanding of modeling and simulation starts by observing the real world. Then,
a mathematical and algorithmic model of the real world is derived. In a further step, this
model must be implemented as computer program to be able to carry out simulations
with varying parameter sets to test “what-if scenarios”. Each step must be carefully
verified to minimize introduced errors. Fig. 1.3 summarizes my understanding of the
modeling and simulation pipeline.

In the last few years, we have seen an increasing interest in the research of pedestrian
dynamics as the upsurge in publications shows, see Fig. 1.4.
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Modeling

observe

Real
world

Simulated
world

translateLocomotion
model verify

implementAlgorithmic
formulation verify

simulate

Simulation
program

validate

predict

Figure 1.3: My understanding of modeling and simulation: from the real world to simulations.
First, observe the real world. Then, derive a mathematical locomotion model, translate it into
an algorithmic formulation which is implemented as computer program. Lastly, carry out
simulations to get new insights into pedestrian streams. Each step must be carefully verified to
obtain accurate simulation results (own graphic but globe icon from Free SVG 2020).

1970 1980 1990 2000 2010 2020
Year

0

50

100

150

200

250

Pu
bl

ica
tio

ns

Search term at Scopus:
"pedestrian dynamics"

(a) An increasing number of
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(b) Different disciplines contribute to “pedestrian
dynamics”.

Figure 1.4: The upsurge in scientific publications demonstrates an increasing interest in the
research of “pedestrian dynamics”. The publications were collected in the Scopus citation
database for peer-reviewed literature (Elsevier 2020b). The search revealed 2880 publications
and was carried out at Dec 11, 2020.

Attracting researchers from different disciplines is a great benefit for the pedestrian
dynamics research community. It allows to tackle problems from different perspectives
and to derive creative solutions. In my eyes, this comes with three major challenges:
empirical challenges, modeling challenges and interdisciplinary challenges.

The starting point of each modeling effort should be observations of the real world.
But, to obtain reliable data from observations is a challenging task. While field obser-
vations allow a great number of (unbiased) participants in a natural environment it is
difficult to get experiment approvals because of ethical and data privacy concerns. On
the other hand, data privacy concerns are easier to handle in experiments under labo-
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ratory conditions with a smaller number of participants. Laboratory experiments face
other challenges. An experimenter needs a representative sample of the whole popu-
lation to draw valid and general conclusions. The participants must not be biased or
primed in any sense which is hard to achieve if an experiment consists of multiple re-
peating runs. Experimenters should collect quantitative and qualitative data. Especially,
for natural scientists it is hard to design a valid questionnaire to collect qualitative data
because these researchers are usually not trained to detect social or psychological is-
sues which could prime participants in an undesired way. Collecting quantitative data
requires expensive equipment like cameras. Usually, filming an experiment calls for mul-
tiple cameras and also “backup” cameras for unforeseen incidents. This raises financial
and logistic problems. For instance, an experiment requires a sufficient number of exper-
iment assistants to guide the participants and to operate cameras and further experiment
equipment. Extracting pedestrian trajectories can also be a time-consuming task when
done manually. These aspects show that conducting an experiment to obtain reliable
data involves a plethora of challenges.

But also modeling imposes several challenges. The umbrella terms modeling or simu-
lations are typical examples for “pars pro toto” (a part describes the whole) as stated by
(Bungartz et al. 2014, p. 2). The word modeling or simulation hides the whole pipeline
behind it. Simulations are the third pillar beside theoretical analyses and experiments to
promote understanding. As Bungartz et al., I also think that “simulations complement
analyses and experiments but they do not replace them”. Simulations are a useful tool
to get new insights in different domains where theoretical analyses are hardly possible
or not covered by experiments (e. g., the evacuation of a whole city). But, obtaining an
accurate model is also challenging. One must find a correct mathematical description
of an observed phenomenon. For instance, how can behavioral changes in a crowd be
described mathematically? Often, it is hard to describe pedestrian and crowd behavior
mathematically. In a further step, the mathematical model must be translated into an
algorithm, a finite sequence of instructions which can be understood by computers. Each
step involves pitfalls and is a source for possible mistakes. Examples are a missed param-
eter in the mathematical model, numerical problems and instabilities when discretizing
the continuous world, or programming errors when implementing the algorithm in a
programming language. Most notably, a model should be easy to understand for a wide
range of researchers and also for decision makers. They must be able to trust the simula-
tion output. Therefore, a model should not contain too many parameters. A scientifically
valid model must be “falsifiable” as postulated by (Popper 1935).

As shown in Fig. 1.5, pedestrian dynamics involves different research disciplines and
goals. On the one hand, different perspectives offer a great possibility to solve prob-
lems in an uncommon and creative way. On the other hand, working interdisciplinary
imposes great challenges. Each discipline uses different terminology, and usually back-
ground knowledge is missing to completely understand the research approaches and
methodologies of a different discipline. It takes time to acquire knowledge and method-
ologies from different disciplines and usually time is limited when there is pressure to
succeed. Therefore, interdisciplinary work is often met with skepticism.
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Physics
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Figure 1.5: Pedestrian dynamics is an interdisciplinary research topic (own graphic but inspired
by: Büchele 2014, p. 2).

1.3 Goals and research question

Nowadays, pedestrian and crowd simulations are widely used to test and legitimate
construction plans or crowd management plans for large-scale events (Mauri 2019).
Therefore, these simulations must be accurate and reliable. In the last few years, a
plethora of physically inspired (loco) motion models arose which have been extended
continuously. Their key assumption is the “homo oeconomicus”: simulated pedestrians
— agents — search for the shortest path from a starting to a destination point. All
these locomotion models include destinations, or targets, which attract agents while
obstacles and other agents repel agents. But, especially, in high-density situations such
simulations often end in dead lock situations were agents do not move anymore while
in the real-world we can observe that pedestrians maintain flow. Agents stick to one
behavior throughout the simulation.

During my research, I identified the following gap: modeling physically correct pedes-
trian streams is not sufficient to reenact real-world observations. To make pedestrian
simulations more reliable, new falsifiable models are needed that respect psychologi-
cal processes of humans. Additionally, such new models should be easy to understand
so that they are beneficial for an interdisciplinary research community of physicists,
mathematicians, computer scientists, sociologists, psychologists and others as well as
practitioners.

To address the scientific gap, I pose the following research question:
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Research question

How can changes in human behavior be operationalized for simulations?

From the research question, I derive following four objectives for this dissertation:

• To research and document individual and social human behaviors and triggers that
lead to behavioral changes.

• To develop a reusable model that allows behavioral changes of agents.

• To implement the model to proof that it can be realized and is not yet another
theoretical model.

• To validate the implementation against real-world data to show the usefulness of
the model for future predictions.

1.4 Structure of this work

To answer the research question adequately, I base my work on three pillars:

1. A literature research: I conducted an exhaustive literature research about state-of-
the-art approaches to model pedestrian streams and existing approaches to model
behavioral changes.

2. An own experiment for a specific safety-relevant scenario: I carefully conducted
an own experiment to observe and document human behavior and behavioral
changes quantitatively and qualitatively.

3. A close cooperation with a social psychology research group: As computer sci-
entist, I visited the social psychology professor Dr. John Drury and his research
group. I attended his course “Psychology of Crowds and Collective Actions” and I
worked closely together with his research group to manifest a strong psychological
perspective in the new model. As computer scientist and modeler, the goal is to
boil down all input into a reusable, falsifiable and accurate model.

In Fig. 1.6, I cluster the research question into modeling, implementation and testing
tasks. The division into sub-tasks and goals respectively helps to work in a structured
way. To solve all these problems, I apply different research methods which are depicted
as the lowest layer in Fig. 1.6.

This dissertation describes my efforts to model behavioral changes in agent-based
simulations and how I try to bridge the gap between social and computer sciences. The
dissertation is subdivided into two parts:

• Part I

– Sec. 2 scrutinizes current computer models for pedestrian dynamics, existing
pedestrian stream simulators and useful validation techniques to test my own
model.
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Research question:
How can changes in human behavior be operationalized for simulations?

Literature
research

Verification Validation

Experiments Case
studies

Unit
tests

Reusable software architecture

Modeling Implementation Testing

Literature
research

Experiments Software
patterns

Clean
code

Pedestrian streams Human behavior

Figure 1.6: The research question, derived tasks and sub-tasks and applied research methods.

– Sec. 3 introduces the psychological perspective in the context of crowd dy-
namics and I distill which aspects influence human decision-making and can
have an effect on pedestrian streams.

– Sec. 4 adds concepts from social psychology in the context of crowd dynamics
and how humans behave as social beings.

• Part II

– Sec. 5 outlines the requirements of my model for behavioral changes of agents
and the technological foundation I base my implementation on.

– Sec. 6 describes how I incorporate all findings from the locomotion and psy-
chological perspective into a reusable psychology layer — with sub-layers
perception, cognition and behavior — which is implemented in the Vadere
simulation framework.

– Sec. 7 demonstrates the versatility of my modeling approach by validating
simulations against three different real-world scenarios.

The target audience of this dissertation are primarily computer scientists, but re-
searchers from life sciences, like psychologists, should be able to read this dissertation
easily. I put special effort in making the content easy to understand. Wherever possi-
ble, I try to make complex topics, e. g. mathematical formulas, understandable through
pictures. Additionally, I make code listings as simple as possible by rigorously applying
a clean-code paradigm. Due to the interdisciplinary nature of the work, the literature
review in Part I is somewhat more extensive, as two areas need to be addressed (loco-
motion models and psychological aspects).

1.5 Infrastructure and tools

I would like to give recognition to some great software tools which hugely supported my
research work. Most of the software tools are open source or at least free and I would
like to thank all software authors for their continuous effort. Tab. 1.1 summarizes the
software tools which I primarily used along with the version numbers:
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• This document is typeset with LaTeX using TeXstudio and TeXLive 2017. JabRef is
used for the citation management. UML diagrams and flowcharts are created with
draw.io.

• I use the IntelliJ IDEA Community Edition for Java programming tasks when work-
ing on a pedestrian simulator in Sec. 6. The PyCharm Community Edition is used
for Python-related programming tasks. Python is primarily used for data analysis
tasks in Sec. 7 in connection with the matplotlib library for plotting tasks. Python
is also used as “glue logic” to trigger continuous integration tasks consistently.

• Kubuntu 18.04 is used as operating system which is based on the GNU/Linux soft-
ware basis.

• All my code contributions are under version control using Git and are publicly
available on https://gitlab.lrz.de/vadere/vadere under the GNU Lesser Gen-
eral Public License to promote knowledge transfer.

Software Version Link

LaTeX (pdfTeX) 3.14159265-2.6 https://www.latex-project.org/
TeXstudio 2.12.6 https://www.texstudio.org/
TeXLive 2017 https://www.tug.org/texlive/
JabRef 5.0.0 https://www.jabref.org/
draw.io 13.0.3 https://www.diagrams.net/
OpenJDK Java 11.0.9.1 https://openjdk.java.net/
IntelliJ IDEA 2019.01 https://www.jetbrains.com/idea/
PyCharm 2018.1.4 https://www.jetbrains.com/pycharm/
Python 3.6.9 https://www.python.org/
Git 2.17.1 https://www.git-scm.com/
Kubuntu 18.04 https://kubuntu.org/

Table 1.1: The primary software which was used for this dissertation.
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State of the Art
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In the following three sections, I provide an overview of the state-of-the-art litera-
ture to answer my central research question: how can changes in human behavior be
operationalized for simulations to get better insights into pedestrian dynamics? So far,
pedestrian streams were mostly inspected and modeled by natural scientists like physi-
cists, mathematicians or computer scientists with a strong focus on physically correct
locomotion models to navigate agents through virtual environments. But, until now, the
social science perspective has mostly been neglected when modeling pedestrian streams.
For instance, why do pedestrians change their behavior and how do these changes look
like? This is where social sciences can help to promote understanding of pedestrian dy-
namics. Therefore, I would like to shed light on both topics in my literature overview:
state-of-the art techniques to model pedestrian streams from the typical natural sci-
ence perspective but also include the psychology perspective to explain why pedestrians
change their behavior. The following table Tab. 1.2 represents my “search grid” which
I used to collect useful literature from several scientific citation databases like Google
Scholar, Datenbank-Infosystem (DBIS), ACM Digital Library, IEEE Xplore, arXiv, Science
Direct, Scopus, Springer Link and World Scientific (Google 2020; Universität Regensburg
2020; Association for Computing Machinery 2020; Institute of Electrical and Electron-
ics Engineers 2020; Cornell University 2020; Elsevier 2020a; Elsevier 2020b; Springer
Nature Switzerland 2020; World Scientific Publishing 2020). The search grid allows to
conduct a systematic, transparent and reproducible literature research.

Search terms
physics mathematics
informatics computer science
modeling operationalization
simulation computer simulation
pedestrian crowd
dynamics streams
human individual
stationary dynamic
dense high density
scenarios bottleneck
counterflow bidirectional flow
agents agent-based
locomotion movement
validation verification
psychology social psychology
collective actions social norms
social identity theory self-categorization theory
emergency situation
perception sensation
cognition behavior

A
N

D
/

O
R

behavioral changes sociology
AND / OR

Table 1.2: A “search grid” for the research question visualizing important keywords for
investigating the topic during the literature research. The logical AND / OR in the first column
and the last row signals how to combine these search terms during the literature research.
Sophisticated search engines let the user combine several search terms explicitly by logical
operators. For instance, “physics AND simulation AND pedestrian” or “(physics OR
mathematics) AND simulation AND pedestrian”.
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Chapter

2 Simulations of pedestrian
dynamics

As outlined in the introduction in Sec. 1, my goal is to integrate psychological processes
into pedestrian simulation tools. Therefore, I scrutinize existing computer models for
pedestrian dynamics and their realization in simulation tools. I answer the following
questions: what are relevant modeling approaches to maneuver agents through virtual
environments? Which models already include insights from a psychological perspective?
Which open-source and commercial simulators exist using these modeling concepts and
are candidates to implement my own findings? How can simulations be validated?

2.1 Different perspectives on pedestrian streams

As visualized in Fig. 1.5 and described by Kleinmeier, Zönnchen, et al. 2019, p. 2, pedes-
trian dynamics is an active and versatile research field that attracts scientists from dif-
ferent disciplines. Biologists, sociologists, psychologists, physicists, computer scientists,
engineers, mathematicians and others share a common goal: to enhance the under-
standing of crowd behavior. Each researcher strives for new insights by using different
techniques. For instance, biologists and psychologists observe and analyze human be-
havior that affects pedestrian movement and describe their findings verbally. Physicists
and mathematicians mold the observed behavior into equations. And computer scientists
transform the mathematical equations into computer models to carry out simulations.

This interdisciplinary research character means that different perspectives on pedes-
trian streams exist. Similar to physics, we can look at pedestrian streams from a macro-,
meso- and microscopic perspective. While the macroscopic can be perceived by the
naked eye1 and reveals large-scale units, the microscopic requires special measurement
instruments which yield small-scale units. In physics, also the term “mesoscopic” gained
popularity in the last few years, especially, in biomaterials science or mesoscopic physics
“which indicates physics on the scale between nanometers and micrometers where quan-
tum phenomena appear to interfere with macroscopic, [...] principles” (Nakatsuji 2013).

In the context of pedestrian dynamics, a typical measure on the macroscopic level is
the density in number of people per area or the pedestrian flow in number of people per
second per unit length (Adrian et al. 2019, p. 5). Whereas, on microscopic level a typical
measure is the speed of individuals, the step length of pedestrians or the fundamental

1Merriam-Webster. (n.d.). Macroscopic. In Merriam-Webster.com dictionary. Retrieved June 16, 2020,
from https://www.merriam-webster.com/dictionary/macroscopic.
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Original Video

Macroscopic View
(e.g. density map)

Microscopic View
(e.g. trajectory plot)

Mesoscopic View
(e.g. flow combining density and

trajectory information)

Figure 2.1: Typical measures on macro- and microscopic scale based on real-world video
footage: the density in number of people per area (macroscopic, left) and the position of
individuals over time combined as trajectory (microscopic, right). The mesoscopic scale
(middle) in pedestrian dynamics can be derived by combining macroscopic and microscopic
measures. The original video footage shows a waiting crowd which is crossed by one walking
person denoted as blue circular shape in the density map and in the trajectory plot.

diagrams which link density and speed (see Fig. 2.2 as an example). Fig. 2.1 visualizes
two typical measures for the macroscopic and the microscopic view. The mesoscopic
view combines measures from the macro- and the microscopic level. In pedestrian dy-
namics, it highly depends on the application which view is useful because all views have
advantages and disadvantages. For instance, for practitioners like crowd managers, the
macroscopic view with the density measure is a useful tool to decide if an event location
is overcrowded or not. Crowd managers are not interested in the distinct stepping be-
havior of individual visitors on the microscopic level. In contrast, the microscopic level
is interesting for researchers who investigate queuing and bottleneck scenarios for ex-
ample. These researchers need to know how the step length of individuals evolves over
time to reveal clogging situations.

2.2 Pedestrian stream models for locomotion

The previous Sec. 2.1 showed that different perspectives on pedestrian streams exist:
the macro-, meso- and microscopic view. Depending on the application one view has
advantages over the other. As we will see in the next sections, crowd modelers have
implemented numerous models and extensions to existing models. Before reviewing
them, it makes sense to group them together in rough classes. One possibility is to
use the existing scales: macroscopic, mesoscopic and microscopic. Inspired by physics,
I classify modeling approaches for pedestrian dynamics as macroscopic, mesoscopic or

12
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Figure 2.2: Example of three fundamental diagrams published in Daamen 2004, p. 83 which are
based on a narrow bottleneck experiment. Fundamental diagrams are a graphical tool to study
traffic flow. The two dimensional graphs visualize the basic relationship flow = speed× density
which can be expressed by speed-density, speed-flow and flow-density graphs. Fundamental
diagrams allow researchers to study specific traffic scenarios. A typical observation of the
fundamental diagram is a decreasing speed with increasing density (Weidmann 1993, p. 62).

microscopic. While macroscopic modeling approaches cover large-scale areas like whole
cities, microscopic approaches cover small-scale areas like single buildings. Finally, the
mesoscopic approaches cover medium-scale areas, see Tab. 2.1.

Modeling Application Examples
approach

Macroscopic Large-scale areas Cities
Mesoscopic Medium-scale areas Urban districts
Microscopic Small-scale areas Single buildings (e. g. stadiums, airports)

Table 2.1: My classification of pedestrian dynamic models into macro-, meso- and microscopic
modeling approaches and their possible usage.

Of course, the scale is subjective and open to debate. For instance, one can also use a
macroscopic model to simulate pedestrian motion inside a single room of several square
meters. On the other hand, it is also possible to use microscopic models for simulating
large-scale areas. While in the first case the resulting quantity (e. g. density) may be too
imprecise, in the second case the computational time may be very long.
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So far, I have used an analogy from physics to describe pedestrian streams as macro-,
meso- or microscopic. For me, it is a useful approach to define the scale first (that is,
what should be modeled or simulated) and then look for possible techniques for this
scale. Crowd modelers have picked up these ideas and developed and implemented
models accordingly. In the next three sections, I review existing modeling approaches
which fall into macroscopic, mesoscopic or microscopic category. In 2019, 41 researchers
from natural sciences and psychology addressed the lack of clear definitions in the pedes-
trian dynamics community. The researchers agreed on terms that are frequently used in
research on human crowds like agent or models (micro-, meso- and microscopic) and
published their work as glossary (Adrian et al. 2019).

In the pedestrian dynamics context, macro-, meso- and microscopic also define the
level of detail which is used to describe pedestrian streams. While microscopic ap-
proaches model pedestrians in great detail, distinguish individuals and their interac-
tions, macroscopic approaches model pedestrian streams as a whole and neglect indi-
viduals (Kormanová 2013, p. 2). Mesoscopic approaches are set between microscopic
and macroscopic. Pedestrians are considered as individuals but their behavior is de-
scribed as aggregated relationship (Adrian et al. 2019). In the following three sections,
I will provide an overview of existing macro-, meso- and microscopic pedestrian stream
models and I will review if these models are suitable to use them as basis for model-
ing behavioral changes. I include screenshots of simulation results from the original
model publications to give the interested reader a better insight in the capabilities of
the presented models. The timeline in Fig. 2.3 visualizes the chronology of influential
locomotion models within the pedestrian dynamics community.
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Figure 2.3: A timeline of selected locomotion models including their original authors. The
locomotion models are grouped by their type: macro-, meso- or microscopic.
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Beside the scale, there are other classifications of pedestrian dynamics. For instance,
Zheng, Zhong, and Liu 2009 divided models into cellular automata, lattice gas models,
social force models, fluid-dynamic models, agent-based models, game-theoretic models
and “approaches based on experiments with animals”. In contrast, Seitz 2016, p. 39,
classifies models by what is being modeled rather than by real-world analogies used for
them. In his dissertation, Seitz focused only on microscopic pedestrian models where
he distinguishes (1) cellular automata where rules defines the transition from one state
to the next (2) velocity-based models where the velocity of agents is described by first-
order ordinary differential equations and (3) force-based models which are described
mathematically by second-order ordinary differential equations.

The terms “agent” and “pedestrian”

Note: in the current pedestrian dynamics modeling literature, the term “agent”
is frequently used. Throughout this work, I use the term “agent” to describe
a simulated person while reserving the words “pedestrian”, “human” and
“crowd” for the real-world counterpart. While macroscopic locomotion mod-
els neglect individual pedestrians as we will see in the following, microscopic
locomotion models try to mimic individual pedestrians as closely as possible. In
these models, agents are equipped with a wide range of attributes like height,
step length or a preferred speed, which is also called free-flow velocity. When
individuals are subject of modeling often the term agent-based model is used.

2.2.1 Macroscopic locomotion models

Model definition and overview As Adrian et al. 2019, p. 8, define in their glossary,
macroscopic locomotion models “do not distinguish individuals. The system dynam-
ics are described using aggregate quantities, such as densities or flows.” Macroscopic
pedestrian models are the oldest model types and were introduced in 1955 by Lighthill
and Whitham to describe traffic flow in general. Later, this model was refined to de-
scribe pedestrian dynamics. Macroscopic pedestrian models have in common that they
are based on physical laws and are expressed by differential equations which usually
describe density evolution over time. Pedestrian crowds are seen as “thinking fluid”
(Tordeux, Lämmel, et al. 2018, p. 129). Due to their close relationship to physics,
macroscopic models were mostly introduced by mathematicians or physicists who are
primarily faced with ordinary or partial differential equations as part of their education.
Newer approaches avoid differential equations and use the definition of flow and den-
sity to describe pedestrian motion on a macroscopic level. These newer approaches are
rather descriptive models than explaining models. That is, these descriptive models are
applied to video footage for example to analyze pedestrian movement. But, they are
not used to carry out simulations in the end. In the following section, I will describe
three macroscopic models in more detail in chronological order. I cluster them into
Lighthill-Whitham-Richards models — the first macroscopic models for traffic flow —,
hydrodynamic models and first-order flow models.
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Model examples

Lighthill-Whitham-Richards models (mathematics background) As Bungartz et
al. 2014, p. 151 describe, if one would take a picture of road traffic from bird’s eye
view in the night with long exposure time, one would notice that cars flow like a viscous
liquid. Fig. 2.4 visualizes the idea to “liquidize” the discrete road traffic into a continuous
flow.

Velocity v(x, t)

Density ρ(x, t) Flow q = v·ρ
low

high

x

Figure 2.4: Liquidization of discrete road traffic into a continuous flow (own graphic but
inspired by: Bungartz et al. 2014, p. 151).

Back in 1955, the mathematicians Lighthill and Whitham picked up this “liquidization”
idea and proposed a macroscopic model to describe an unidirectional flow of vehicles.
One year later, in 1956, Richards independently proposed a similar model for describing
traffic flow. Both models rely on the basic relationship flow = speed×density, which the
authors described as: “[the] fundamental hypothesis of the theory is that at any point of
the road the flow q (vehicles per hour) is a function of the concentration k (vehicles per
mile)” (Lighthill and Whitham 1955, p. 319). Later, both models referenced as Lighthill-
Whitham-Richards (LWR) model. The LWR model assumes that the discrete flow of
vehicles can be approximated by a continuous flow which is expressed by a hyperbolic
differential equation Eq. 2.6.

Usually, (partial) differential equations are not self-explanatory and it requires some
unpacking to get behind their intuition. One central idea for describing physical phe-
nomena is the conservation law which states in a broader sense that the total quantity
of a measurable does not change over time in an isolated system. This also holds true
for a traffic system with pedestrians: on an isolated road section [a, b] without entries or
exits, no pedestrian should be lost. By integrating the density ρ(x, t) which depends on
the location x and the time t, one can derive the number of road users n(t) in section
[a, b], Eq. 2.1:

n(t) =

∫ b

a
ρ(x, t) dx (2.1)

Applying the derivative to both sides yields the change in the numbers of road users
at time t, Eq. 2.2:

∂

∂t
n(t) =

∫ b

a

∂

∂t
ρ(x, t) dx (2.2)

Additionally, also the flow q yields the change in the numbers of road users at time t:
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∂

∂t
n(t) = f(a, t)− f(b, t) = −

∫ b

a

∂

∂x
q(x, t) dx (2.3)

Combining Eq. 2.2 and 2.3 results in:∫ b

a

∂

∂t
ρ(x, t) +

∂

∂x
q(x, t) dx = 0. (2.4)

It is also known that this holds true for every time instant t and therefore, it is plausible
to drop the integral and to denote that the flow q depends on the density ρ, which leads
to the continuity equation where Lighthill and Whitham drew upon, Eq. 2.5.

∂

∂t
ρ(x, t) +

∂

∂x
q(ρ(x, t)) = 0. (2.5)

Eq. 2.5 captures the initial idea of the LWR model. Lighthill and Whitham and Richards
added additional factors and a diffusion term denoted by second derivatives, see Eq. 2.6
(Lighthill and Whitham 1955, p. 344). Both extensions shall make the model more ac-
curate. The second derivative with respect to time accounts for the fact that road users
have a reaction time before they can adapt their velocity. The second derivative with
respect to location models that speeding-up or slowing-down cannot happen instanta-
neously.

∂q

∂t
+ c

∂q

∂x
+ T

∂2q

∂t2
−D∂2q

∂x2
= 0 (2.6)

Lighthill-Whitham-Richards model examples Colombo and Rosini presented their
macroscopic pedestrian model in 2005 with the goal of providing an analytically treat-
able framework to analyze situations caused by a “sharp increase in the density” (Colombo
and Rosini 2005, p. 1555). They describe such situations with the fuzzy word “panic”.
The authors base their model on the Lighthill-Whitham-Richards (LWR) model which
was originally intended for vehicular traffic. Colombo and Rosini motivate their choice
for the LWR model because it only has two assumptions:

1. Conservation: the total number of pedestrians is constant.

2. Speed law: the speed v is a function of the density ρ.

Colombo and Rosini assume a typical flow which is depicted in Fig. 2.5, but they
extended Eq. 2.6 by their own assumptions. They modify the speed law by introducing
what they call “characteristic density”. In contrast to the classic LWR model, these special
density allows pedestrians to move even if the density grows above the maximum density
R in Fig. 2.5. In this case, modeled pedestrians “feel” overcompressed but they can still
move. Analytical difficulties bound the authors to consider only one-dimensional cases
which makes the model unsuitable for real-world applications.
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0 T R
Density 
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 q

Typical flow
Additional flow assumed
by colombo-2005

Figure 2.5: A typical flow-density diagram. First, the flow q increases with increasing density ρ.
After reaching a density threshold T , the flow decreases until it completely stops at a density
value R. Colombo and Rosini assumed for their Lighthill-Whitham-Richards-based model that
pedestrians can still move even if a critical density T is reached.

Hydrodynamic models (physics background) In hydrodynamic models, individ-
ual pedestrians are aggregated to a larger swarm and these models assume that such a
swarm moves like compressed fluids or gasses. These modeling approaches try to cap-
ture the density and speed changes in time accurately by using differential equations.
Hydrodynamic models are based on the Boltzmann equation or the Navier-Stokes equa-
tions. Typically, following types of liquids or flows are distinguished: (1) Viscous and
inviscid fluids. Viscosity describes the “toughness” of liquids. While gases are inviscid,
fluids are more viscous. (2) Laminar and turbulent flows. In the former, the single
streams of a liquid do not easily blend in the course of the flow. In the latter, the differ-
ent streams easily blend resulting in turbulences. (3) Compressible and incompressible
liquids. While gases are a typical example of compressible flows, liquids stand for in-
compressible flows.

One example to describe the spatial and temporal dispersion of laminar, viscous flows
of incompressible fluids is the Navier-Stokes equation (named after the French physicist
Claude-Louis Navier and the Irish physicist George Stokes). Navier and Stokes describe
the conservation of momentum and mass by connecting three physical quantities: (1)
The velocity field u(x, y, t), (2) The pressure p(x, y, t) and (3) The density ρ(x, y, t).
In the incompressible case the density ρ is assumed constant. Then, the Navier-Stokes
equation describes the flow as following:

∂

∂t
u+ (u · ∇)u = −∇p+

1

Re
4u+ g, (2.7)

where divu = 0, Re ∈ R represents the dimensionless Reynolds number, ∇ is the
gradient operator, 4 the Laplace operator and g = (gx, gy)

T denotes the sum of exter-
nal forces like gravitation. By using the velocity u and the viscosity v, Eq. 2.7 can be
reformulated as (Bungartz et al. 2014, p. 358–360):

0 =
∂u

∂x
+
∂v

∂y
(2.8)
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To be able to solve Eq. 2.8, initial values for the velocity have to be provided as well
as boundary values at the boundary of the domain for all times.

Hydrodynamic model examples In 1974, Henderson was the first who used a hy-
drodynamic model to describe human crowd motion (Helbing 1992, p. 391). Hender-
son assumed a conservation of energy in his model which is quite unrealistic because
simulated agents usually enter and leave the simulated area which could lead to an un-
balanced situation. For example, more agents enter the simulation area than leaving the
area. In contrast, Helbing’s fluid-dynamic model for the movement does not enforce the
conservation of energy. The differential equations in Helbing 1992 describe the change
of density over time which is influenced by four effects (Helbing 1992, p. 393–395):

1. The tendency of pedestrians to reach their intended velocity.

2. The interactions between pedestrians.

3. The changes of pedestrian types when turning left or right (at crossings).

4. The density gain or loss per time unit.

Helbing’s model is able to produce walking lanes and traffic jams.
Another hydrodynamic model was introduced by Hughes in 2000. Hughes assumes

that crowd motion follows well-defined rules of behavior. Therefore, Hughes embedded
his observations on crowd movement into three hypotheses. The original formulation of
the hypotheses are (Hughes 2000, p. 368):

1. “It states that the speed, f , at which pedestrians walk is determined solely by the
surrounding pedestrian density and the behavioural characteristics of the pedes-
trians, [...]”

2. “It states that pedestrians have a common sense of the task (called potential) that
they face to reach their common destination such that any two individuals at dif-
ferent locations having the same potential would see no advantage to either in
changing places. There is no perceived advantage to a pedestrian of moving along
a line of constant potential. Thus the motion of any pedestrian is in the direction
perpendicular to the potential, [...]”

3. “It states that pedestrians seek to minimize their (accurately) estimated travel time,
but temper this behaviour to avoid extremely high densities.”

From these hypotheses Hughes derived highly non-linear differential equations to
replicate the path and density of a crowd. Hughes conceives that the “greatest difficulty
in applying this formulation involves the appropriate choice of boundary conditions to
match the psychological state of the pedestrians” (Hughes 2000, p. 370). The bound-
ary conditions are very important because they have a huge effect on the observed flow
pattern of the model.
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First-order flow models (civil/transportation engineering background) In con-
trast to hydrodynamic models, first-order flow models try to replicate fundamental di-
agrams for pedestrians, e. g. the speed-density relationship. They use the velocity (di-
rected) or the speed (undirected) as central element — which is expressed as first deriva-
tive of the time-dependent position x(t) of an object and gives the model its name. For
these models, the pedestrian trajectories must be known in advance. It is a data-driven
approach to describe and analyze existing pedestrian streams instead of simulating un-
known geometries. Thus, first-order flow models are rather descriptive models than
explaining models.

First-order flow model examples In 2004, Daamen developed a first-order flow
model in her dissertation and published it as Daamen, Hoogendoorn, and Bovy 2005.
From known trajectories of N pedestrians, she derives a function N(x, t) which rep-
resents the number of pedestrians passing a cross-section x from an arbitrary starting
moment t. Using this information, she calculates the flow q at the cross section x during
the time period from t1 to t2, see Eq. 2.9:

Flow q(x, t1 to t2) =
N(x, t2)−N(x, t1)

t2 − t1
(2.9)

At each time t when a pedestrian passes the cross section x, the speed of this pedes-
trian is measured as well. Using this information, the density at x at time t can be
derived by the basic relationship flow = speed×density⇔ density = flow

speed , see Eq. 2.10:

Density k(x, t) =
q(x, t)

v(x, t)
, (2.10)

where v(x, t) denotes the speed of the pedestrian at cross section x at time t.

Conclusions on macroscopic locomotion models Macroscopic pedestrian stream
models do not replicate each pedestrian individually. Instead, macroscopic models try
to capture the motion of all aggregated pedestrians as a whole, e. g. in form of a density
evolution over time. This approach makes macroscopic models computational fast for
large numbers of simulated agents compared to microscopic models where each pedes-
trian is modeled individually. My goal is to model behavioral changes of simulated
agents. Wijermans 2011 revealed that collective behavior stems from actions of individ-
uals. Thus, the lack of individualism makes macroscopic models unsuitable to integrate
my findings from a conceptional point of view. How should psychological effects be in-
tegrated into such macroscopic pedestrian models? By adding additional terms into its
mathematical definition?

Furthermore, macroscopic models often result in differential equations to describe
the flow or density evolution over time. Differential equations are thoroughly studied
in mathematics and well-grounded theories exist to solve them numerically, e. g. by fi-
nite differences or finite element methods. But, applying these techniques is not trivial,
especially, for non-mathematicians like engineers and practitioners. On the other hand,
differential equations are usually not easily understood by an interdisciplinary research
community ranging from psychologists to physicists (see Fig. 1.5, p. 5). With my model-
ing of behavioral changes, I am addressing an interdisciplinary research community to
promote understanding across discipline boundaries. In summary, macroscopic models
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do not suit my purpose from a conceptual point of view but also not from an implemen-
tation point of view.

2.2.2 Mesoscopic/Multi-scale locomotion models

Model definition and overview A modern definition of mesoscopic models in the con-
text of pedestrian dynamics can be found in Adrian et al. 2019, p. 8. The authors set
mesoscopic models “in between microscopic and macroscopic models. It does not aim
to describe aspects, such as the motion and behaviour, of each individual, but only cer-
tain aspects.” Another key aspect is that agents are considered as individuals but their
motion is described as aggregated relationship. Usually, models of this type divide the
simulation area into rectangular or hexagonal cells which can be occupied by multiple
agents simultaneously, see Fig. 2.6, p. 22. This differs from cellular automata on micro-
scopic level (see Sec. 2.2.3), where one cell can be occupied by only one agent. Then, a
function aggregates all agents together and defines the next cell for the agents based on
individual properties of the agents. One of these properties could be the preferred ve-
locity of an agent. Existing mesoscopic models mostly differ in the aggregation function
and how they move agents over to the next cell or region. Some authors also use graphs
instead of cells.

Other research disciplines like hydrodynamics often refer to the term “multi-scale
modeling” when combining macroscopic and microscopic approaches. The goal of such
“multi-scale approaches” is to compute large-scale areas efficiently but also maintain mi-
croscopic accuracy for subareas of the whole simulation area. The interested reader is
referred to Cristiani, Piccoli, and Tosin 2014, a book which is dedicated to multi-scale
modeling of pedestrian dynamics. From a modeling perspective, the great challenge for
multi-scale models is how information are exchanged between the macroscopic and the
microscopic layer. For instance, how is a density information from the macroscopic per-
spective converted into individual agent positions for microscopic calculations and vice
versa.

Model examples

teknomo-2008, Fig. 2.3 (civil/transportation engineering) The transportation en-
gineers Teknomo and Gerilla claimed that in “the analysis, however, such microscopic
[pedestrian] model will always be aggregated into either mesoscopic level or macro-
scopic level” (Teknomo and Gerilla 2008, p. 3). Of course, this claim is disputable be-
cause when analyzing the clogging at bottlenecks microscopic quantities like step lengths
are of great interest and they should not be aggregated to macroscopic quantities. Nev-
ertheless, Teknomo and Gerilla propose a mesoscopic pedestrian model with following
properties.

The authors use a grid with square cells to cover the simulation area. In contrast to
microscopic cellular automata, one cell can be occupied by multiple agents. They choose
a cell size between 1 m×1 m and 3 m×3 m. It must be large enough, so that agents cannot
skip single cells because of too high speeds. When choosing the cell size 0.5 m×0.5 m
and restricting the cell density to one pedestrian per cell one ends up with a cellular
automaton described by Schadschneider 2001 or Kretz, Grünebohm, and Schreckenberg
2006 (cellular automata are described in more detail in Sec. 2.2.3, p. 33).
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(a) A rectangular grid structure used by mesoscopic models.
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(b) A hexagonal grid structure used by mesoscopic models.

Figure 2.6: Most mesoscopic locomotion models divide the simulation area into rectangular or
hexagonal cells which can be occupied by multiple agents simultaneously. Then, an aggregation
function aggregates all agents together and defines the next cell for the agents based on the cell
neighborhood and individual properties of the agents. One of these properties could be the
preferred velocity of an agent. Some models use rectangular cells where different neighborhood
definitions exist (Moore or von Neumann neighborhood). Other models use triangular or
hexagonal cells with an unitary neighborhood definition.

To move agents from cell to cell, the authors use the three matrices ND, NL and
NQ. ND represents the pedestrian count in each cell. NL describes the simulation
layout where zero entries represent obstacles, one entries represent free cells and high
values represent target cells. NQ provides information to navigate agents to the target
similar to a floor field (see Sec. 2.2.3, p. 32) which encodes the geodetic distance to a
target (Burstedde et al. 2001). The authors combine these matrices by using the entry-
wise product denoted by • and normalize the resulting matrix by dividing each matrix
element by the maximum matrix value. This normalization is denoted by || · ||max:

Np = ||ND •NL •NQ||max (2.11)
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Then, an agent’s new position is calculated by using the old position xt and the move-
ment direction vt = arg maxNp and combining them to xt+1 = xt + vt. The flowchart in
Fig. 2.7 visualizes the update scheme for each agent in each simulation step.
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Figure 2.7: Flowchart of the agent movement in each simulation step defined by Teknomo and
Gerilla 2008, p. 6. The neighborhood probabilities take three influences into account: (1) The
layout of the area, e. g., if the neighbor cell is an obstacle or a source. (2) The speed-density
relationship in the neighbor cells (the speed and density information are derived from existing
fundamental diagrams). (3) The attraction of the neighbor cell to the pedestrian target. This
information encodes the direction and travel time to the target.

The authors use two parameters to adapt the model to specific simulation areas. The
first parameter represents the target attraction in “sink” cells. The second parameter
influences the density matrixND which affects the probability to enter a cell. This second
parameter is a flow-related quantity — like for all mesoscopic models — expressed as
speed-density function. The authors used their model to carry out five simulation runs
based on a rectangular floor plan with either one or two rooms, compare Fig. 2.8.

(a) Left: the constructed layout matrix,
right: the constructed navigation matrix
(image: Teknomo and Gerilla 2008, p. 10)

(b) The density evolution in a one-door
scenario (image: Teknomo and Gerilla
2008, p. 11).

Figure 2.8: Teknomo and Gerilla simulated a 20 m × 30 m room which is separated by a single
door. Their model yields a density evolution over time for 50 agents.

bellomo-2012, Fig. 2.3 (mathematics) The mathematicians Bellomo, Piccoli, and
Tosin critically survey existing macro-, meso- and microscopic modeling approaches for
pedestrian dynamics. They state that macroscopic approaches model pedestrians as
continuum under assumption of the conservation law but neglect the behaviors and
motions of individuals. That is, in all macroscopic models pedestrians are seen as re-
active particles instead of active participants. Therefore, the authors’ goal is to express
the pedestrian’s “active ability to express a strategy” as mathematical structure which is
not centered around the Newtonian concepts and the passive behavior of inertia matter
(Bellomo, Piccoli, and Tosin 2012, p. 8). The authors suggest that one-to-one interac-
tion between pedestrians can be best described by microscopic quantities like positions
instead of macroscopic quantities like density. Their model is based on three concepts:
desired velocity of pedestrians, an interaction neighborhood and an interaction kernel
which reflects interactions between two agents (Bellomo, Piccoli, and Tosin 2012, p. 16).
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They translate the interaction kernel into an Eulerian model consisting of a partial dif-
ferential equation2. In contrast to other models presented in this mesoscopic overview,
this model is continuous in space and allows to directly obtain agent positions (Bellomo,
Piccoli, and Tosin 2012, p. 18). The model is based on the microscopic agent positions
{Xi

t}Ni=1 for N agents at time t. From the microscopic positions, the authors derive a
probability distribution which is described by Eq. 2.12.

µt(E) = Prob(Xi
t ∈ E), E ⊆ Rdmeasurable (2.12)

The probability distribution µt(E) describes the positions of all pedestrians i at time
t. Then, the actual pedestrian motion is described by the time derivative Ẋi

t in Eq. 2.13:

Ẋi
t = vdes(X

i
t) +

∑
Xj

t∈SR(Xi
t)

F (Xi
t , X

j
t ;Nµt(Br(X

j
t ))), i = 1, ..., N (2.13)

where vdes(X
i
t) is the desired velocity field which drives each agent to its destination,

SR(Xi
t) is the interaction neighborhood of the ith pedestrian and F represents the in-

teraction kernel. The interaction kernel describes how a pedestrian adapts the desired
velocity due to binary interaction with pedestrians in the considered neighborhood. The
neighborhood is described by the ball Br(X

j
t ) which is centered at Xj

t with radius r > 0.
Bellomo, Piccoli, and Tosin provide only the bare model without an implementation.
Therefore, also any simulation results and validations are missing.

kneidl-2013, Fig. 2.3 (computer science) Kneidl, Hartmann, and Borrmann’s goal
is to efficiently compute large simulation areas. To this end, the authors use two ap-
proaches to route agents through the simulation area: (1) Graphs, which are compu-
tational efficient, are used for long-range navigation decisions of agents (see Fig. 2.9,
p. 25). (2) A cellular automaton (see Sec. 2.2.3, p. 33) is used for subareas of the sim-
ulation area to get accurate microscopic quantities like queuing behavior. The cellular
automaton helps to dynamically update edges of the graph in the course of the simula-
tion. For instance, a congested corridor in the cellular automaton (that is, the agent’s
average speed over a certain time is close to zero) lets delete a vertex in the graph and
make this route inaccessible for agents. On the other hand, the graph helps to identify
which cells of the cellular automaton must be updated in a simulation step. The authors
demonstrated their hybrid model by simulating an urban area in Munich with 731 m ×
545 m with 2400 agents.

laemmel-2014, Fig. 2.3 (geoinformatics/transportation engineering)
Lämmel, Seyfried, and Steffen combine a mesoscopic queuing model and a microscopic
pedestrian model to preserve the quantities flow, density and speed across model bound-
aries (Lämmel, Seyfried, and Steffen 2014). Their goal is to simulate hundreds of thou-
sands agents inside New York’s Grand Central Terminal train station, see Fig. 2.10. The
authors use a mesoscopic model which is based on a graph with links and nodes in-
spired by Simon, Esser, and Nagel 1999. The links in the graph have a flow capacity and
a storage capacity. A link cannot release more “vehicles or pedestrians per second” than

2In fluid dynamics, an Eulerian model uses a fixed reference grid to track the particle motion at a very
specific location instead of the Lagrangian model where the observer follows a particle along its way.
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(a) A constructed navigation graph with
edges ei (image: Kneidl, Hartmann, and
Borrmann 2013, p. 6).

(b) A simulation result with 2400 agents
in an urban area (image: Kneidl,
Hartmann, and Borrmann 2013, p. 12).

Figure 2.9: Kneidl, Hartmann, and Borrmann simulated an urban area of 731 m × 545 m with
2400 agents.

the flow capacity. Additionally, “once a link is full, vehicles that want to enter the link
need to wait. This leads to queue spill-back through the network” (Simon, Esser, and
Nagel 1999, p. 941). For the pedestrian movement on the links, the authors use a mi-
croscopic obstacle velocity model called ORCA (optimal reciprocal collision avoidance).
Within the microscopic model, neighboring agents are taken into account by considering
a visibility radius.

The flow-related parameters of their model are the link length l, the free-flow travel
time τ , the flow capacity q, and the storage capacity c. The author’s parameter definition
is given by Eq. 2.14 to Eq. 2.16.

Free-flow travel time τ = l/v0, (2.14)

where v0 describes the properties of a link (e. g. plane, stair or ramp).

Flow capacity q = w · 1.2 1

m s
, (2.15)

where w describes the minimum bottleneck width to a link and the authors assume a
width-dependent scaling factor of 1.2.

Storage capacity c = A · ρmax, (2.16)

where A describes the area and ρmax the maximum density.
The authors divide the simulation area into regions where each region can have its

own simulation model, either the macroscopic queuing model or the microscopic ORCA
model. The assignment of a model to a simulation area is static and does not change in
the course of a simulation. The complexity of this model arises at the transition zones
of two models. Agents are gradually transferred between the two models to preserve
the fundamental features of density and flow. This hybrid model was able to simulate
750,000 agents within 2:43 hours (Lämmel, Seyfried, and Steffen 2014, p. 10) with two
profound disadvantages from a microscopic perspective: all agents on one link move on
a single line which results in implausible trajectories. And bidirectional flows are not
simulated correctly because oncoming agents do not interact properly with each other.
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Figure 2.10: Simulation results by Lämmel, Seyfried, and Steffen 2014 of New York’s Grand
Central Terminal train station. The left visualization depicts that edges of the underlying graph
data structure end in a departure hall. The departure hall is covered by a microscopic
pedestrian model. The right visualization stresses the transition zones between both modeling
approaches (image: Lämmel, Seyfried, and Steffen 2014, p. 10).

biedermann-2016, Fig. 2.3 (modeling/simulation) The goal of Biedermann et al.
is to simulate agent movement with mixed spatial resolutions at a large event site. They
model the “Back to the Woods” festival, an annual open air festival with approximately
5000 visitors which takes place in Garching, Germany. Arriving pedestrians are mod-
eled by a macroscopic approach. The authors assume that the pedestrians arrive with
bus shuttles at the event with multiple bus stops along that way. Biedermann et al. set
up a generalized Dynamic Min-Cost Flow Problem (Ford and Fulkerson 1958) to mini-
mize the waiting time for passengers at the bus stops. For their optimization, they use a
graph-based approach where vertices are bus stops and edges are travel times between
bus stops. The macroscopic model controls the inflow into the event site. For the simu-
lation of the event site, two microscopic models are used. Large areas on the event site
are modeled as cellular automaton and smaller areas with complex geometry like en-
trances are modeled on micro scale using a social force model. Their model also works
with transition zones like Lämmel, Seyfried, and Steffen 2014 but here two microscopic
models are coupled. The authors use a cellular automaton which is computational more
efficient than the social force model for larger areas. One of the authors’ simulation
results is visualized in Fig. 2.11. The authors have not validated the simulation so far,
but they identified the density in certain areas and trajectories as possible quantities for
validation.

tordeux-2018, Fig. 2.3 (civil engineering) In 2018, Tordeux, Lämmel, et al. intro-
duced another mesoscopic pedestrian model where pedestrians are considered as indi-
viduals and their movement is described by a density-flow relationship. The authors use
a grid with hexagonal cells to get an unambiguous neighborhood definition. Thus, the
model is discrete in space but continuous in time. One hexagonal cell can be occupied
by multiple agents. The authors categorize pedestrians into classes c, for instance slower
and faster ones. Then, they define a “jump rate” b(c) for each category c which depends
on the current flow J and the direction D to the intended target cell i.

b(c)(n, i) =
K

n
J (c)(n, ni) ·D(c)(hi, J

(c)(n, ni)), (2.17)
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Figure 2.11: Biedermann et al. simulate a large music festival with different spatial resolutions.
While pedestrian movement in open areas is modeled by a cellular automaton, the movement
in more complex areas is covered by the social force model (image: Biedermann et al. 2016,
p. 11).

where J (c)(n, ni) describes the flow of n agents of the source hexagon to the target
hexagon i (which already contains ni agents) and the directional factorD(c)(hi, J

(c)(n, ni)
where hi represents the direction to the target hexagon. The movement direction D is
set to maximize the flow, but also a static floor field (see Sec. 2.2.3, p. 32) could be used
to derive D. Obstacles are represented as cells with a flow of J = 0. Based on Eq. 2.17,
the total jump rate to a target cell i is expressed as sum

b(n, i) =
n∑

m=1

bcm(n, i) (2.18)

The authors use existing density-flow fundamental diagrams to derive the flow func-
tion J depending on the scenario type. As scenario types, they consider uni- and multi-
directional scenarios. In each simulation step, the flow from cell to cell is calculated
based on the defined jump rate.

The authors applied their model to a rectangular walkway with 25 m by 50 m with up
to 8000 agents. They used periodic boundary conditions. Agents who leave the sce-
nario on one end reenter the scenario on the other end. The model yields congestion in
uni-directional flows when obstacles are introduced and lane formation in bi-directional
flows, see Fig. 2.12. Additionally, the authors validated the model against empirical data
from bottleneck, counter- and cross-flow experiments with closed and open geometries.
The travel and egress time is used as validation data. Lastly, the authors applied the
model to a large real-world scenario where approximately 300,000 individuals are evac-
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uated from an urban area of 4 km by 7 km which is typically too large for microscopic
models.

Figure 2.12: The model by Tordeux, Lämmel, et al. is able to reproduce lane formation as
emergent behavior which is visualized in their density snapshots over time (image: Tordeux,
Lämmel, et al. 2018, p. 137).

shi-2018, Fig. 2.3 (civil engineers) Shi, Lee, and Ma use a grid-based structure
with square cells to model the evacuation of pedestrians in buildings. As cell size, the
authors use 0.4 m by 0.4 m where multiple agents can occupy a single cell. The model
uses a floor field (see Sec. 2.2.3, p. 32) to express the distance of a cell to the exit. In the
floor field, diagonal directions are more costly than horizontal and vertical directions.
In this floor field, the density in the target cell and the neighborhood of the current cell
is used to calculate the flow into the target cell in each simulation step. The flow to a
target cell is reduced if the density in a target cell is high. The flow to a target cell is
high if the difference of the floor field values between the target cell and original cell
is high. Shi, Lee, and Ma state that a new mesoscopic model is necessary because the
computational time for microscopic models and numerous agents in large areas is in-
sufficient. Nevertheless, they only apply their new model to a small-scale scenario to
evacuate 80 agents from a square room with 6.4 m by 6.4 m. In a sensitivity study, the
authors calculated a density map for each simulation step, see Fig. 2.13.
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Figure 2.13: Shi, Lee, and Ma’s mesoscopic model yields density maps over time for a
evacuation of a square room with an exit on the left-hand side (image: Shi, Lee, and Ma 2018,
p. 618, amended by own caption).
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Conclusions on mesoscopic locomotion models One of the key motivations for
authors to introduce mesoscopic models for pedestrian streams is to reduce the simu-
lation time compared to microscopic approaches. While microscopic approaches model
the individual characteristics of each pedestrian, mesoscopic models divide the simula-
tion area into larger cells which can be occupied by multiple agents. Then, the flow
between the cells is expressed by functions which take neighboring cells and their cur-
rent density into account. All presented models except Bellomo, Piccoli, and Tosin 2012
are discrete in space. However, humans move in continuous space and their behavior
is driven by this fact. Therefore, it is unsuitable to base my modeling of behavioral
changes on mesoscopic models where the space is limited to cells or graphs which leads
to movement artifacts (see Sec. 2.2.3, p. 29). Also authors of mesoscopic models like
Bellomo, Piccoli, and Tosin explicitly use the term behavior. According to psychologist
Gerrig, “behavior is the means by which organisms adjust to their environment. Behav-
ior is action” (Gerrig 2013, p. 2). But, all mesoscopic modeling approaches presented
here usually neglect the deeper processes of perception and cognition which lead to a
specific behavior of humans. Only the flow between cells is modeled which depends on
density and the direction to a specific target. Such a modeling approach mostly covers
evacuation scenarios. This is an improvement over macroscopic modeling approaches
which approximate pedestrian streams by analogies to fluids. Yet, it is not sufficient to
include decision-making of individual humans properly when such models mainly move
an aggregation of agents from cell to cell.

I think a better approach is to get the decisions on microscopic level “correct” from
a psychological point of view. Later on, this can be embedded into a larger, meso-
scopic context if computational efficiency is necessary because of large simulation areas.
Many authors of mesoscopic models argue that their models are more efficient than mi-
croscopic models. For instance, Tordeux, Lämmel, et al. 2018 state that the “model is
more efficient than microscopic models, and potentially more accurate than macroscopic
ones.” I question that efficiency is really more important than accuracy when using such
simulations for improving human safety. What insights do I get from fast but “wrong”
results? Nevertheless, efficient simulations are a useful tool where “real” data is hard to
obtain because of ethical or logistical reasons. For example to estimate the evacuation
time of a whole city as proposed in Tordeux, Lämmel, et al. 2018.

2.2.3 Microscopic locomotion models

Model definition and overview So far, I have looked at macroscopic and mesoscopic
approaches to model pedestrian streams. In these approaches, pedestrians are mostly
not seen as individuals. Rather their density evolution in space and time is considered.
But, Wijermans concludes in her dissertation about “Understanding Crowd Behaviour:
Simulating Situated Individuals” that “crowd behaviour is affected and generated by
individuals” (Wijermans 2011, p. 5). Therefore, let’s have a look at microscopic locomo-
tion models which focus on individuals. According to Adrian et al. 2019, p. 8, micro-
scopic approaches represent a “model of a particle system in which the dynamics of each
particle are addressed individually (i.e. through a dedicated set of equations and/or
algorithms). Examples include cellular automata and acceleration-based models.”

The development of microscopic pedestrian models can be divided into three phases
until now. The first phase started in 1985 when Gipps and Marksjö used the idea of a
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cellular automaton to describe motion of individual agents through a virtual environ-
ment (Gipps and Marksjö 1985). Gipps and Marksjö drew upon the article by physicist
Wolfram in which he systematically explained cellular automata to describe dynamical
and information systems in physics. In the following years, several authors used cellular
automata to primarily simulate traffic flow in general and not only pedestrian streams
(Nagel and Schreckenberg 1992; Rickert et al. 1996; Blue, Embrechts, and Adler 1997;
Burstedde et al. 2001). The second phase of pedestrian models started in 1995, when
Helbing and Molnár introduced their social force model (Helbing and Molnár 1995).
Contrary to the elder cellular automaton, which is discrete in space and time, the so-
cial force model is continuous in space and time. In this model, pedestrians are driven
by imaginary forces from source areas to target areas while avoiding obstacles. Hel-
bing and Molnár were not the first authors to use forces to model pedestrian motion.
Already in 1975, Hirai and Tarui used forces to simulate the “behavior of a crowd in
panic” (Hirai and Tarui 1975). The third phase started at the turn of the millenium and
the number of pedestrian stream models branched out. Several authors from different
fields like the gaming industry, robotics and computer science introduced new models
to mitigate shortcomings of existing models. Reynolds 1999 established a selection of
steering behaviors to navigate autonomous characters in computer games. Berg et al.
introduced a model to control “where multiple mobile robots need to avoid collisions
with each other while moving in a common workspace” which is known as optimal re-
ciprocal collision avoidance (ORCA) (Berg et al. 2011, p. 1). The computer scientists
Seitz and Köster presented their new optimal space model in 2012 (Seitz and Köster
2012). The authors’ goal was to introduce a locomotion which is based on simple rules
like cellular automata but is not restricted to a cellular grid. They proposed to use a local
discretization around agents to find the next step which allows movement in arbitrary
directions and mimics the natural stepping behavior of humans. The multitude of com-
peting models shows that there is no universally accepted locomotion model so far —
and maybe there never will. There are different requirements for different applications.
For instance, real-time computation of crowd motion for crowd control or step-accurate
simulations to analyze clogging behavior. In the following sections, I will describe the
most prominent microscopic models in more detail to assess if they can be used as basis
to integrate psychological findings.

Before this, it is useful to introduce Hoogendoorn and Bovy’s view for modeling pedes-
trian streams. In 2004, the civil engineers Hoogendoorn and Bovy proposed a new
view onto microscopic modeling approaches (Hoogendoorn and Bovy 2004). They con-
sider pedestrians as individuals and assume that pedestrians are “utility maximizers:
they schedule their activities, the activity areas, and the paths between the activities”
(Hoogendoorn and Bovy 2004, p. 188). Hoogendoorn and Bovy introduced a strategi-
cal, a tactical and an operational layer to guide agents through virtual environments, see
Fig. 2.14, p. 31. The strategic layer represents the “motivation” of agents and controls
their activity choice, that is, what an agent will do next. For instance, an agent may first
buy a bus ticket at the ticket machine, then the agent goes to the bus stop. The tactical
layer considers route-choice questions and how to reach the chosen activity area. This
encompasses navigation and wayfinding algorithms which can include graphs and floor
fields (see Sec. 2.2.3, p. 32). The operational layer carries out the actual movement to
the activity area. This involves repulsion by other agents and obstacles for example.
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Many existing microscopic locomotion models cover most of these layers but do not
separate them so strictly.

Civil Engineering and Geosciences
by Hoogendoorn and Bovy (2004)

Strategical Level
activity choice

Tactical Level
route choice

Operational Level
walking behavior

Virtual Environment and Gaming
by Reynolds (1999)

Action Selection
planning and settings goals

Steering
path determination

Locomotion
animation

Social, Psychology and Cognition
by Wijermans (2011)

Group Level
social goals and physical aspects (e.g. density)

Individual Level
internal state and perception

Cognitive Level
knowledge processing and behavior selection

Figure 2.14: Different but similar perspectives from various authors onto microscopic
approaches to model pedestrian streams.

Common ground for all microscopic locomotion models3

Topography All microscopic locomotion models described in the following sections
share four basic modeling components: (1) agents — simulated pedestrians — which
move from (2) a starting point (also called source or origin) to (3) a target area (also
called destination) while avoiding (4) obstacles and other agents. These components
are summarized as topography, see Fig. 2.15 (Kleinmeier, Zönnchen, et al. 2019, p. 6).

Figure 2.15: The four basic modeling components shared by different microscopic locomotion
models: (1) agents (blue) move from (2) a source area (green) to (3) a target area (orange)
while avoiding (4) obstacles (gray) and other agents (image: Kleinmeier, Zönnchen, et al.
2019, p. 6).

3The title and the first paragraph are taken from Kleinmeier, Zönnchen, et al. 2019, p. 6. The publication
was a joint cooperation between Benedikt Zönnchen, Marion Gödel, Gerta Köster and me. The title
and the first paragraph reflects my own thoughts which apply to all microscopic locomotion models
and are also helpful for readers of this dissertation.
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Agent navigation by graphs or floor fields One central aspect of microscopic lo-
comotion models is how agents find the direction to their target. One can distinguish
two approaches: graph-based navigation and floor-based navigation, see Fig. 2.16.

(a) A graph-based navigation approach. (b) A floor-field-based navigation
approach (image: Kleinmeier, Zönnchen,
et al. 2019, p. 7).

Figure 2.16: Navigation of agents by graphs or floor fields in a topography with two obstacles
(white). The source area is on the left-hand side and the target area is on the right-hand side.

Graph-based navigation uses so called orientation points (Hartmann 2010) which are
distributed within the topography, either heuristically or randomly. Agents can then
walk from orientation point to orientation point by using graph algorithms, see Fig. 2.16
(a). Common graph algorithms are the Dijkstra algorithm and the corridor map method
(Dijkstra 1959; Geraerts and Overmars 2007). The common idea behind floor fields
is that they encode the distance to the target for every point of the topography. That
is, the topography must be discretized and for each grid point the distance to a target
is calculated. A simple approach is to calculate the Euclidean distance to the target
which leads to drawbacks when obstacles are between the considered point and the
target. More elaborated approaches calculate the geodetic distance to the target which
takes impermeable obstacles into account. Fig. 2.17 visualizes the difference between
the Euclidean and geodetic distance.

(a) The Euclidean distance. (b) The geodetic distance.

Figure 2.17: Two options for navigating agents trough the topography by using either the
Euclidean or the geodetic distance to a target (image: Kleinmeier, Zönnchen, et al. 2019, p. 6).

The geodetic distance can be mathematically expressed by the eikonal equation Eq. 2.19.
The eikonal equation physically describes the propagation of a wave front, see Fig. 2.18.

|∇u(x)| = 1

f(x)
, x ∈ Ω (2.19)

where Ω represents the topography in Rn, f(x) is a function with positive values,
∇ denotes the gradient and | · | the Euclidean norm. The solution u(x) for the eikonal
equation is the shortest travel time from x to a specified target inside Ω. f(x) is provided
as input to the eikonal equation and characterizes the material properties at point x.
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Using large values for f(x) speeds up the wave propagation and yields a small gradient
|∇u(x)|. A small gradient (in s/m) means that a short time is needed to travel a certain
distance. Sethian’s fast marching method is a computational algorithm to solve the
eikonal equation numerically.
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Figure 2.18: The figure shows the expansion of a propagating wave front in a corridor with
10 m × 6 m (length × width). The corridor is enclosed with a wall of 0.5 m which cannot be
penetrated by the wave (the speed f(x) of the wave inside the wall is zero). Outside the wall, a
constant speed of 1 m/s is assumed. The initial wave front is given by the curvature around the
target. The decreasing color intensity from a darker red to a lighter red visualizes the increasing
distance to the target curvature. Blue color tones show an even greater distance to the target.
The gray contour lines indicate the propagating wave front.

Burstedde et al. 2001 introduced floor fields when they investigated pedestrian streams
using a cellular automaton. Later, this idea was reused for other microscopic pedestrian
locomotion models like the optimal steps model (Hartmann 2010; Zönnchen 2013).
Graph-based approaches allow fast navigation in large scenarios compared to floor fields
but can yield unrealistic trajectories.

Model examples

Cellular automata (gipps-1985, Fig. 2.3) While John von Neumann introduced the
general concept of cellular automata in 1966, the physicist Wolfram 1984 refined it to
analyze dynamical and information systems in 1984 (Wolfram 1984). According to Wol-
fram’s definition, a cellular automaton consists of cells which the author denoted as ai:
“The value ai of the site at each position i is updated in discrete time steps accord-
ing to an identical deterministic rule depending on a neighborhood of sites around it”
(Wolfram 1984, p. 419). Gipps and Marksjö 1985 were the first authors who applied this
concept to model pedestrian streams. That is, agents are moved from cell to cell towards
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a target by taking the neighboring cells into account. Fig. 2.19 visualizes the concept of
a cellular automaton for pedestrian dynamics.

Figure 2.19: The concept of a cellular automaton with the common grid structure (image:
Kleinmeier, Zönnchen, et al. 2019, p. 9).

The pedestrian dynamics community adopted the simple idea of cellular automata
and developed several extensions. In 1997, Blue, Embrechts, and Adler added special
evasion rules for agents to let agents evade only if the space towards the target is occu-
pied (Blue, Embrechts, and Adler 1997). Fukui and Ishibashi used a cellular automaton
to simulate car traffic in 1999 (Fukui and Ishibashi 1999). A significant improvement
was introduced in 2001, when Burstedde et al. applied the concept of floor fields to
cellular automata to achieve long-range interactions of agents (Burstedde et al. 2001).
A floor field allows agents to better estimate the distance to the target by taking ob-
stacles into account and to evade them at an early stage. In 2003, Klüpfel used floor
fields and added a preferred movement direction to each cell (Klüpfel 2003). In 2006,
Wąs, Gudowski, and Matuszyk introduced a cellular automaton taking the social space
concept into account which was originally proposed by the anthropologist Hall in 1966
(Wąs, Gudowski, and Matuszyk 2006). By observing animals and American men, Hall
identified four well-respected spaces (distances) around humans and animals: the inti-
mate space (0 m to 0.5 m; from center of body), personal space (0.5 m to 1.2 m), social
space (1.2 m to 3.0 m) and public space (3.0 m and above), see Hall 1966, p. 113–131.
Different authors, e. g. Leng et al. 2014, use hexagon cells instead of square cells. Newer
approaches like Feliciani and Nishinari 2016a try to mitigate shortcomings of the regular
grid structure by introducing sub-meshes to allow higher densities than regular cellular
automata.

Cellular automata are easy to understand and fast to compute even for larger sim-
ulation areas. However, the fixed spatial discretization limits the step length and the
physical size of agents artificially. Additionally, the spatial discretization causes move-
ment artifacts, see Fig. 2.20.

Social force model (helbing-1995, Fig. 2.3) The physicists Helbing and Molnár in-
troduced their social force model in 1995 as an alternative draft to the existing cellular
automata to study pedestrian motion (Helbing and Molnár 1995). In the social force
model, the movement of a pedestrian α is determined by four factors where arrows
denote vector quantities:

1. The difference between the current velocity ~vα of a pedestrian α and its preferred
velocity ~v 0

α .
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Shortest Path

Simulated Path

(a) A zig-zag trajectory because
of the regular grid structure.

(b) A too coarse grid hinders agents to pass a
narrow passage.

Figure 2.20: Movement artifacts produced by cellular automata (image: Kleinmeier, Zönnchen,
et al. 2019).

2. The direction ~eα to the target.

3. The repulsion by another pedestrian β and wall B (depending on their position r).

4. The attraction to other objects i.

The total force ~Fα acting upon a pedestrian α at time t is then defined by Eq. 2.20.

~Fα = ~F 0
α(~vα, v

0
α~eα) +

∑
β

~Fαβ(~eα, ~rα − ~rβ)︸ ︷︷ ︸
preferred velocity to target and pedestrian repulsion

+
∑
B

~FαB(~eα, ~rα − ~r αB)︸ ︷︷ ︸
wall repulsion

+
∑
i

~Fαi(~eα, ~rα − ~ri, t)︸ ︷︷ ︸
object attraction

(2.20)

Helbing and Molnár combined these factors as second-order differential equation of
motion to take acceleration of pedestrians into account. The change in the position dwα
is described as

dwα
dt

= ~Fα + randomness (2.21)

The social force model can be solved by numerical methods for ordinary differential
equations like Runge-Kutta. The model is able to yield natural-looking trajectories be-
cause it is continuous in space and time opposed to the zig-zag trajectories which can
be observed by cellular automata. Lane formation is one well-known emergent effect
of the model, see Fig. 2.21, p. 36. However, the various forces in the model can lead
to oscillating trajectories. Like all differential-equation-based models it can suffer from
mathematical instabilities and numerical pitfalls like described in Köster, Treml, and
Gödel 2013.
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Figure 2.21: Lane formation is one well-known emergent effect of the social force model.
Helbing and Molnár simulated a 50 m × 10 m (length × width) walkway with agents walking in
different directions represented by empty and full circles (image: Helbing and Molnár 1995,
p. 51).

Reynolds’s steering behaviors for autonomous characters (reynolds-1999, Fig.
2.3) Reynolds presented his steering behaviors after working for several gaming and
animation companies for twelve years (Reynolds 1999, p. 18). The proposed behaviors
originate in the gaming industry to control autonomous characters through virtual en-
vironments. The basis of the steering behaviors is the motion equation from physics.
The equation states that a new position xnew of a point mass can be obtained by using
the old position xold, the current velocity v and the acceleration a of the point mass:
xnew = xold + vt + 1

2at
2, where t is a given time interval. Reynolds uses the pseudo

code in List. 2.1, p. 37, to express the motion equation. He proposes different behaviors
which only modify the acceleration term steering_force in List. 2.1. For instance, the
seek behavior uses the vector between a target and the current position to modify the
term steering_force while the flee behavior uses the opposite direction of this vector,
see Fig. 2.22. The pursuit behavior permanently calculates a vector between a moving
target and the current position to continuously adapt the acceleration term. In total,
Reynolds proposes 18 behaviors in Reynolds 1999: seek, flee, pursuit, evasion, offset
pursuit, arrival, obstacle avoidance, wander, path following, wall following, contain-
ment, flow field following, unaligned collision avoidance, separation, cohesion, align-
ment, flocking, and leader following. The proposed behaviors can be combined, either
sequentially or they can be blended together by simply summing multiple acceleration
vectors. Reynolds proposes a wide range of behaviors but does not provide empirical
evidences for his modeling approaches.

TargetAgent

Seek path

Flee path

Current path

Flee
steering

Seek
steering

Target
vector

Figure 2.22: In Reynolds’s model the “Target vector” is used to derive different steering
strategies, for instance, seek or flee which results in different agent paths.
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Listing 2.1: The position calculation of agents proposed by Reynolds 1999, p. 7.

1 // Note: "max_force" and "max_speed" are constants
2 steering_force = truncate(steering_direction , max_force)
3 acceleration = steering_force / mass
4 velocity = truncate (velocity + acceleration , max_speed)
5 position = position + velocity

Optimal reciprocal collision avoidance (berg-2011, Fig. 2.3) In 2011, the com-
puter scientists Berg et al. presented a new model which addresses the problem of
multiple moving robots that need to avoid collisions with each other while moving in
a shared workplace (Berg et al. 2011). The model is abbreviated as ORCA (optimal re-
ciprocal collision avoidance) and ensures that robots can move collision-free at least for
a fixed amount of time τ into the future. Optimal refers to the fact that each robot A tries
to reach its preferred velocity vpref

A . Reciprocal means that each robot A chooses a new
speed vnew

A independently and simultaneously just by observing the local neighborhood.
To this end, the authors firstly define how two robots A and B can move in a collision-

free way. Then, they extend this idea to move n robots in a collision-free way. To move
two robots A and B without collisions, they define a mathematical set called “velocity
obstacle” V OτA|B which contains all velocities that lead to collisions between robot A
and B. Geometrically, this set represents a truncated cone with its apex at the origin of
the velocity space (with origin vx = 0 and vy = 0, see Fig. 2.23 (b)). Additionally, the
authors define a second set of “collision-avoiding” velocities CAτA|B. This set for robot A
represents the complement of the Minkowski sum of V OτA|B and VB, where VB contains
the velocity which is chosen by robot B (and observed by robot A). Fig. 2.23 visualizes
this concept.

Figure 2.23: Collision avoidance in the ORCA model: (a) The position of robot A and B in the
Cartesian space. (b) The set “velocity obstacle” V OτA|B which contains all velocities that lead to
collisions between robot A and B in the velocity space. (c) The set of “collision-avoiding”
velocities CAτA|B which represents the complement of the Minkowski sum of V OτA|B and VB
(image: Berg et al. 2011, p. 5).

The authors demonstrated the efficiency of the model by simulating an evacuation of
an office building with 1000 agents, see Fig. 2.24, p. 38. But, the authors did not validate
their results against empirical data.
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Figure 2.24: Berg et al. used their ORCA model to simulate an evacuation of an office building
with 1000 agents (image: Berg et al. 2011, p. 5).

Optimal steps model (seitz-2012, Fig. 2.3) The computer scientists and mathemati-
cians Seitz and Köster proposed their optimal steps model in 2012 (Seitz and Köster
2012). Their goal was to describe pedestrian movement with simple rules, like cellular
automata, but do not restrict this movement to a cellular grid. They were inspired by the
stepwise movement of humans and consequently they use a local discretization around
agents which allows movement in arbitrary direction and different step lengths. The
direction of an agent is influenced by three factors:

1. The attraction towards a target t.

2. The repulsion by other agents.

3. The repulsion by obstacles.

The target attraction is represented as floor field (see Sec. 2.2.3, p. 32). The repul-
sion to other agents and obstacles depends on the Euclidean distance to them and is
expressed by potential functions that try to replicate the graph of a Gaussian bell curve
around the agent or the obstacle. That is, the repulsion is high when being close to
the agent’s or the obstacle’s center and it decreases when further away from its center.
The target potential at point x in the plane is denoted as Pt(x), the agent potentials as
Pp(x) and the obstacle potentials as Po(x). For each pedestrian l the authors form an
aggregated potential, Eq. 2.22.

Pl(x) = Pt(x) +

n∑
i=1,i 6=l

Pp,j(x) +

m∑
j=1,

Po,j(x), (2.22)

with n pedestrians and m obstacles in the scenario. The next position of an agent
is the minimum of all potentials. The minimum is searched within a certain radius
around the agent which depends on the current speed of the agent, see Fig. 2.25. The
authors argue that these potentials should be interpreted as utility to address the idea
of a “homo oeconomicus” who maximizes its utility instead of searching a minimum
potential. However, the mathematical description is equivalent: the potentials change
the sign and agents search the maximum utility instead of the minimum potential. The
model was extended by a personal space concept (Sivers and Köster 2014) which makes
agents to keep a certain distance from each other to mimic the human’s need for a
personal space (Hall 1966).

The optimal steps model reproduces well-known fundamental diagrams by Weidmann
1993 and allows different step lengths like humans do in real world which is validated
against empirical data (Sivers, Köster, and Kleinmeier 2016), see Fig. 2.26. The model is
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Figure 2.25: In the optimal steps model, agents search their next step in a radius which
depends on the current speed. The figure shows three consecutive time steps of a fast agent
(left) and a slow agent (right).

computational expensive when simulating thousands of agents because a mathematical
optimization problem must be solved in each simulation step.

Figure 2.26: Seitz and Köster tested their optimal steps model against several small-scale
real-world scenarios. The simulation shows how 200 agents walk around a corner with
different parameter sets of the optimal steps model (image: Seitz 2016, p. 69).

Gradient navigation model (dietrich-2014, Fig. 2.3) The mathematicians Dietrich
and Köster introduced a new microscopic locomotion model in 2014 (Dietrich and Köster
2014 ). It is based on a set of ordinary differential equations to determine the position
x ∈ R2 of each pedestrian i at any point in time. The proposed model uses a velocity
field instead of a force field like the social force model. Therefore, it does not include
an acceleration aspect but changes the velocity vector directly. An agent’s direction is
instantly adapted without acceleration over time.

Similar to the optimal steps model it combines a target attraction and repulsion by
agents and obstacles. All factors are expressed by gradients. The target attraction ~Ni,T

for target T and pedestrian i which is heading to target T is derived from the underlying
floor field φ which is based on the eikonal equation, see Eq. 2.23. The repulsion is also
achieved by gradients to neighboring agents j and obstacles B, see Eq. 2.24.

~Ni,T = −∇φ︸ ︷︷ ︸
target attraction

, (2.23)

where φ denotes the solution of the eikonal equation.
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~Ni,P = −


∑
j 6=i
∇Pi,j︸ ︷︷ ︸

pedestrian repulsion

+
∑
B

∇Pi,B︸ ︷︷ ︸
obstacle repulsion

 , (2.24)

where ∇Pi,j and ∇Pi,B are gradients of functions that are based on the distance of
pedestrian i to another pedestrian j and obstacleB respectively. The gradient for the tar-
get attraction ~Ni,T and the gradient for repulsive factors ~Ni,P influence the next position
x of a pedestrian.

The authors successfully validated their gradient navigation model against empirical
data. The model reenacted the flow rate according to Liddle et al. 2011 and the speed-
density relation according to Weidmann 1993 in an unidirectional bottleneck scenario.
Also, the authors observed stop-and-go waves when a certain global density is reached.

Behavioral heuristics model (seitz-2016c, Fig. 2.3) Based on their experiences
with the optimal steps model, Seitz, Bode, and Köster proposed an additional model in
2016 which describes pedestrian movement with only four heuristic rules which also
represent their cognitive effort (Seitz, Bode, and Köster 2016). As in other models,
agents are attracted by a target. To reach this target, agents use four heuristic rules:
(1) If the space in front of an agent is clear, the agent steps to it. Otherwise, the agent
waits. (2) A second heuristic allows agents to evade tangentially, if the space in front is
occupied but space next to it is free. (3) As third option, an agent can evade sideways
if the whole area in front of the agent is blocked. (4) A last heuristic allows agents to
follow other agents. Each heuristic is cognitively more demanding than the previous
one because it requires more collision checks. Fig. 2.27 summarizes the four movement
heuristics introduced by Seitz, Bode, and Köster.

Step or Wait Tangential
Evasion

Sideways
Evasion

Follow

Figure 2.27: Seitz, Bode, and Köster propose four heuristics to navigate agents towards a target
(image: Kleinmeier, Zönnchen, et al. 2019, p. 13).

The authors tested their behavioral heuristics model with a bottleneck scenario which
is based on a real experiment. Seitz, Bode, and Köster revealed that enabling and dis-
abling different heuristics lead to different shapes for the waiting agents in front of the
bottleneck. The behavioral heuristics model is an intuitive idea to move agents through
virtual environments even if it is not fully developed yet. For instance, a fixed step length
is used which does not reflect movement of humans. Until now, it was only applied to
very simple geometries and not larger real-world scenarios.

Model extensions The last sections showed that there is a wide range of micro-
scopic pedestrian models and even a wider range of model extensions exists. For in-
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stance, Yanagisawa; Xue et al. extended cellular automata to overcome deadlock situa-
tions in bidirectional pedestrian flows based on a more cooperative behavior of agents
(Yanagisawa 2016; Xue et al. 2020). Feliciani and Nishinari extended a cellular automa-
ton to allow greater densities and enabled swapping strategies for agents to maintain
flow in counterflow scenarios (Feliciani and Nishinari 2016a). Other modelers let agents
evade tangentially or sideways in force-based models (Feliciani and Nishinari 2016a).
Sivers, Templeton, et al. extended the optimal steps model to include helping behavior
of agents (Sivers, Templeton, et al. 2016). All these aspects show that there is no uni-
versally accepted locomotion model and many modeling approaches are not reusable.

Conclusions on microscopic locomotion models Microscopic models try to cap-
ture the stepping behavior of each agent individually instead of interpreting all agents
as a continuum like macroscopic models do and partially mesoscopic models do. There-
fore, microsopic models suit best to include psychological aspects because these aspects
affect each agent individually and not the whole agent continuum. The overview of
microscopic models also revealed that there is no universally accepted microscopic lo-
comotion model at the moment, see Fig. 2.28, p. 42, — and maybe there never will be
one, because each model has strengths and also weaknesses.

For instance, the widely used cellular automata (see Fig. 2.28) are computational fast
but are discrete in space which limits the agent movement to fixed cells. The social force
model is continuous in space but is based on differential equations and does not allow
real interaction between agents except pushing and pulling forces which makes it hard
to include psychological aspects. The optimal steps model is not based on differential
equations. It rather solves an optimization problem for each agent individually in each
simulation step to find the next step of an agent. Agents can better interact with each
other which makes it a preferable choice to include my findings even if it is computa-
tional expensive for a large number of agents. The other models are not sufficiently
validated against empirical data at the moment.

Introduced Model name Search term
pedestrian crowd

1985 cellular automaton 6150 6040
1995 social force model 7690 6870
1999 reynolds steering 277 351
2011 optimal reciprocal collision avoidance 313 311
2012 optimal steps model 87 73
2014 gradient navigation model 63 61
2016 behavioral heuristics model 6 6

Table 2.2: Search results for different microscopic locomotion models on
https://scholar.google.com/ to “measure” the popularity and acceptance. For each model,
two search queries were carried out on Nov 12, 2020. First, the model name was combined
with the term “pedestrian”. Then, the model was combined with the term “crowd”. The name
of the model was enclosed in quotation marks to search the exact pattern.
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Figure 2.28: The popularity of different microscopic locomotion models by counting search
results on https://scholar.google.com/ on Nov 12, 2020.

2.3 Pedestrian stream models including psychology

Currently, most of the presented modeling approaches only take physics into account to
replicate pedestrian streams, but neglect psychological and sociological effects when hu-
mans come together. For this reason, I would like to shed light onto which models exist
that include some sort of psychology and what aspects are helpful to answer the research
question: how can changes in human behavior be operationalized for simulations?

One can distinguish two categories when looking at models including psychological
aspects: explanatory and predictive models. The latter model type focuses on moving
simulated agents through virtual environments, for instance, to detect critical high den-
sities. The former model also uses “agents”, but here, an agent is a wrapper to store
human-like psychological attributes like a stress level. In contrast to predictive models,
explanatory models usually do not move agents through virtual environments. Instead,
explanatory models are used to carry out numerical simulations to find causing effects,
for example, if the stress level influences an agent’s memory.

2.3.1 Explanatory models

Different research communities contribute and describe models which include psycho-
logical aspects for agent-based simulation approaches. Surprisingly, mainly the multi-
agent community proposes a wide range of models. In 2014, Balke and Gilbert con-
ducted a survey to distill 14 models which are suitable for integration in agent-based
simulations (Balke and Gilbert 2014). It is worth to introduce approaches from this
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community with an important note in advance: on the one hand, researchers from a
multi-agent background usually do not have a well-educated psychological background.
But, they are experts in the actual implementation of models. On the other hand, re-
searchers from life sciences like psychology and sociology provide long, verbal descrip-
tions for modeling but usually lack any implementation. Thus, the usefulness of a model
cannot be fully assessed.

Most of these publications presented in the following originated in the multi-agent
community where the term “agent” is described as following: “We consider agents to be
systems that are situated in some environment. By this, we mean that agents are capa-
ble of sensing their environment (via sensors), and have a repertoire of possible actions
that they can perform (via effectors or actuators) in order to modify their environment”
(Bordini, Hübner, and Wooldridge 2007, p. 2). Contrarily to the pedestrian dynamics
community, the focus lies more on cognitive information processing to coordinate the
knowledge and goals of multiple agents rather than steering agents through virtual en-
vironments. Therefore, the multi-agent community mostly proposes computational logic
and logic languages like Prolog to describe behavior in agent-based systems (Balke and
Gilbert 2014, p. 5). This makes them not very attractive for current pedestrian stream
simulators which are usually based on object-oriented languages like C++ or Java.

In the following, I will shortly summarize the approaches proposed in Balke and
Gilbert 2014 to model decision-making of virtual agents. I categorize and summarize
the modeling approaches in table Tab. 2.3. When applying Hoogendoorn and Bovy’s
three-layer architecture from Fig. 2.14, we see that all of these approaches only cover
the topmost layer, the strategic level. The approaches completely neglect the actual
movement of agents.

• Production rules: In production rule systems, the behavior of agents is based on
the inputs an agent perceives and is expressed by simple if-then-else statements.
Formally, a production rule system consists of three components (Balke and Gilbert
2014, p. 4):

1. A set of rules (called productions in literature) in the form Ci → Ai: upon
condition Ci the action Ai follows.

2. One or more knowledge databases which describe the state of the environ-
ment of an agent.

3. A rule interpreter which determines the order of the rules when applying the
rules against the knowledge database.

Usually, each agent-based modeling and simulation approach uses simple if-then-
else chains to steer agents through virtual environments even if not explicitly im-
plementing the three formal components of a production rule system. That is, first
agent-based systems test an agent’s environment — the if-part of production rules
— and then the actual steering part follows. Production rules are not a completely
new approach to model agent behavior but a more formal approach which was
initially proposed by Nilsson 1977.

• Intentional models: The idea of intentional models for human decision-making
arrived roughly a decade after the production rule systems. They are based on
philosophers Bratman’s view that three components determine human’s behavior:
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Model Model examples Characteristic
category

Production rules - Agents follow simple if-
then-else rules.

Intentional
model

• BDI: Beliefs Desires Intentions

• eBDI: Extended BDI

• BOID: Beliefs Desires Obliga-
tions Intentions

• BRIDGE

Agents follow believes, de-
sires and intentions.

Normative model • Deliberative Normative Agents

• EMIL-A: EMergence In the Loop
Agent Architecture

• NoA: Normative Agents

Agents obey social and le-
gal norms.

Cognitive model • PECS: Physical conditions, Emo-
tional state, Cognitive capabili-
ties and Social status,

• Consumat

Agents take more aspects
into account than inten-
tional models, e. g. an
emotional state or a stress
level.

Neurological
model

• ACT-R/PM: Adaptive Control of
Thought-Rational/ Perceptual-
Motor

• CLARION (neural network)

• SOAR: Symbolic (cognitive) Ar-
chitecture

Agents use a short- and
long-term memory to de-
rive behavior.

Table 2.3: Theoretical models from multi-agent community for agent-based simulations.

beliefs, desires and intentions. In agent-based simulations, beliefs represent the
information that an agent has about the world. Desires are tasks an agent might
like to accomplish. For instance, leave the building. Sometimes, desires are also
referred to as goals. Finally, the intentions represent a specific course of action
to fulfill a desire. The beliefs, desires and intentions are updated in each simula-
tion step. Many extensions were developed for the original BDI model which is
described in detail in the book Bordini, Hübner, and Wooldridge 2007. The eBDI
model (emotional beliefs desires intention) proposes to add emotions as part of
an agent’s decision-making process (Pereira, Oliveira, and Moreira 2008). The
BRIDGE model proposes that not only beliefs, desires and intentions influence an
agent’s behavior (Dignum and Dignum 2009). There are three other factors that
should be taken into account: the ego, responses and goals. The ego represents
personal preferences. For instance, some commuters prefer the subway to the car.
Additionally, responses to environmental stimuli influence the selection of goals.
In summary, the factors beliefs, responses, intentions, desires, goals and ego are
the core components of the BRIDGE model. The BOID model (beliefs obligations
intentions desires) extends the classic BDI model by obligations of an agent and
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is step towards normative models (Broersen et al. 2001). Obligations or “social
rules” influence the behavior of an agent.

• Normative models: The central aspects to control agents in normative models are
norms and social rules. While intentional models focus on the internal motivation
of humans, normative models highlight the importance of external motivation.
This external motivation is affected by laws and social norms. For instance, it is
forbidden to drive over a red traffic light. It is suggested that such social norms are
recognized by agents through observing the environment or via communication
with other agents (Balke and Gilbert 2014, p. 13). As in BDI models, it is sug-
gested that agents perceive their environment (as part of the beliefs component
in BDI models). But now, the selection of desires is influenced by norms. Kolling-
baum and Norman argue that norms are not only filters for the selection of desires
(Kollingbaum and Norman 2004). Norms involve more considerations. Therefore,
it is an own model category. Model examples are: the deliberate normative agents
(Conte, Castelfranchi, and Dignum 1999), the normative agent (NoA) of Kolling-
baum and Norman 2004 and the EMIL architecture presented in Andrighetto et al.
2007.

• Cognitive models: The goal of cognitive models is to improve social simulations
so that simulated agents do not only carry out one single custom-tailored task, for
instance, to reach the next exit as quickly as possible. Agents should be able to
carry out more tasks by perceiving their environment, processing this information
by taking emotions, cognitive capabilities and the social status into account and
derive an appropriate behavior. The PECS model (physics, emotions, cognition,
social status) is a prominent cognitive model (Urban 2000).

• Neurological models: Neurological models are heavily related to cognitive mod-
els. The main difference is that they include a sort of memory in the cognitive
process. Agents store past experiences in a short- or long-term memory. This
memory influences future decisions and shall convert agents to learning creatures.
In contrast to the previously mentioned cognitive models, the cognitive process is
more granular. Model examples are CLARION (Connectionist Learning with Adap-
tive Rule Induction ON-line) in Sun and Peterson 1996, ACT-R (Adaptive Control
of Thought-Rational) and its extension ACT-R/PM in Taatgen, Lebiere, and An-
derson 2005 and the symbolic cognitive architecture SOAR in Laird, Newell, and
Rosenbloom 1987.

My fundamental critique on these models Except production rules, all of the pre-
sented models try to mimic human cognitive and decision-making processes as closely
as possible. For instance, Balke and Gilbert 2014, p. 12 state that “autonomous entities
such as agents need to be able to reason, communicate and negotiate about norms, in-
cluding deciding whether to violate social norms [...]”. But, how does such a negotiation
look like? Through eye contact? Or a (long-running) milling process between partici-
pants like proposed by social psychologists (Turner and Killian 1957)? The authors do
not provide any details about the essential modeling aspects.

In my opinion, a model which is suitable for simulations should be understandable
and not too complex. That is, a simplification of the reality. Otherwise, the actual
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implementation gets error-prone and simulation results cannot be validated because a
model requires too much parameters. These explanatory models are too theoretic and
too complex, compare Fig. 2.29. There is a large gap between these models and an actual
implementation in real pedestrian simulators. But, these model approaches give an idea
what is important when considering decision-making of humans and simulated agents.
For example, most models propose to include perception as a central component.

Figure 2.29: The complexity of existing explanatory models for agent-based simulations
exemplified by the Normative Agent (NoA) model (image: Balke and Gilbert 2014, p. 16).

2.3.2 Predictive models

Some authors already tried to integrate psychological aspects into current pedestrian
stream simulators and validated their results. The following section provides a chrono-
logical overview of these approaches. In contrast to the previous section, they focus on
steering agents through virtual environments instead of coordinating multiple agents.

• Pelechano, O’Brien, et al. 2005: The authors combine an existing locomotion
framework called MACES with the existing framework PMFserv that implements
human behavior models. MACES stands for “Multi-Agent Communication for Evac-
uation Simulation” and computes the agent navigation on two levels. The high
level yields a sequence of rooms to the exit and the low level uses the social force
model to steer the agents. The MACE framework allows agents to share infor-
mation about the environment, e. g. hazards or closed doors. PMFServ stands
for “Performance Moderator Functions” and is a software library that covers a
decision-making process based on the emotional state of an agent which is influ-
enced by stress and physiological factors. In their publication, the authors focus
on evacuation scenarios.
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• Pan 2006: The dissertation of the civil engineer Pan deals with the “computational
modeling of human and social behaviors for emergency egress analysis”. Pan’s
goal is to integrate diverse human behaviors in the existing simulator MASSEg-
ress (Multi-Agent Simulation System for Egress analysis). In the dissertation,
Pan equips agents in MASSEgress with sensors to perceive environmental cues,
a “brain” to process this information and adapt the behavior accordingly. Follow-
ing behaviors are available for egress situations: explore, go to goal point, compete
at exit, queue at exit, follow a leader and follow an agent.

• Pelechano, Allbeck, and Badler 2007: The authors extended their previous model
from 2005 (Pelechano, O’Brien, et al. 2005). They replace the external library
PMFserv by their own implementation. Their own implementation covers per-
ception and a set of reactive behaviors: queuing, pushing behavior, falling and
becoming obstacles, panic propagation and avoiding bottlenecks. The authors re-
name their simulator from MACES to HiDAC (High-Density Autonomous Crowds)
which shifts the focus away from only evacuations.

• Wijermans 2011: Wijermans focuses on the question of understanding crowd be-
haviors. She develops and implements a model to simulate festivalgoers in her
dissertation. The model is called CROSS which stands for crowd behaviour that
simulates situated individuals. In the model, Wijermans introduces multiple physi-
ological parameters like arousal and bladder which affect an agent’s behavior. The
CROSS model was promoted in a dedicated paper two years after the dissertation
(Wijermans et al. 2013).

• Bosse et al. 2013: This represents an exhaustive extended Beliefs Desire Inten-
tion (eBDI) implementation. The authors focus more on how agents share and
change their beliefs/desire/intention status than on obtaining accurate pedestrian
streams. The model is used to analyze a false alarm during a WWII ceremony at
the Dam Square in Amsterdam 2010 and how the visitors came to a collective de-
cision to flee. The authors describe the scenario as following: “The panic spread
through the people that were running away who infected each other with their
emotions and intentions to flee” (Bosse et al. 2013, p. 64–65).

• Sivers 2016: Sivers integrates three concepts from social psychology into the open
source simulator Vadere (see Sec. 5.2, p. 80). In her dissertation, she focuses on
the personal space of pedestrians, the social identity theory and search strategies.
The dissertation was a first proof of concept that theories from social psychology
can be systematically integrated into existing pedestrian stream simulators.

• Kielar 2017: In his dissertation, Kielar develops a model for a sequential desti-
nation selection. The model is called SPICE, for spatial destination choice. Kielar
draws upon the three-layer architecture of Hoogendoorn and Bovy 2004 with a
strategic, tactical and operational layer. The author extends this architecture by
several modules to allow a sequential destination selection. These modules com-
prise perception, a memory and individual preferences of agents and are imple-
mented in the open-source MomenTUMv2 simulator. The simulations are vali-
dated against data from a real trade fair.
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• Wal et al. 2017: Wal et al. analyze the effects of culture, cognition, and emo-
tions on crisis management of individuals. They develop a model, called IMPACT,
where the behavior of each agent is based on 30 factors. The factors are subdi-
vided into four categories: individual characteristics, people-people interactions,
people-environment interactions and decision-making strategies. Such factors are
the speed of an individual or the tendency to help a falling agent. The IMPACT
model is based on a BDI-inspired model called ASCRIBE. In contrast to the previ-
ous models presented in this section, the authors implemented their model in the
NetLogo programming environment (Wilensky 1999). The authors employ simple
if-then-else rules where NetLogo takes care of the movement of agents on a cellular
grid. The simulations are validated against data from an evacuation drill.

2.3.3 Conclusions on pedestrian stream models including psy-
chology

The multi-agent community proposes numerous models to include intentional, norma-
tive, cognitive and neurological factors into agent-based simulations to make them more
realistic. They involve numerous parameters and impose architectural complexities (see
Fig. 2.29, p. 46). For this reason, these models have not been widely adopted by the
pedestrian dynamics community which is mostly interested in the motion of pedestri-
ans. Therefore, the usefulness of these approaches in regard to pedestrian dynamics
cannot be assessed fully.

Only a few authors tried to integrate psychological factors into simulation tools with
a strong focus on pedestrian dynamics. But so far, no systematic approach exists to
combine well-grounded physical locomotion of agents and their mental state to allow
behavioral changes of agents which reflect what humans do: perceive the environment,
process this information and react appropriately.

2.4 Existing microscopic simulators

As first step, a mathematical and algorithmic pedestrian movement model is derived
from real-world observations. A plethora of existing modeling approaches were pre-
sented in the previous Sec. 2.3. In a subsequent step, such models are implemented as
stand-alone computer programs or as holistic simulators with graphical user interfaces
and additional tools to set up scenarios and to analyze simulation results. This section
should shed light on existing simulators for microscopic pedestrian movement which
could be a starting point for my own implementation.

Several companies offer licenses for commercial crowd simulators based on micro-
scopic models. However, their models are closed source, that is, we do not fully under-
stand how and why individual agents move in the way they do. This hinders compari-
son between models and thus the knowledge transfer between researchers that I strive
for. Therefore, I just want to provide a state-of-the-art list of commercial microscopic
pedestrian simulators as overview in the next section Sec. 2.4.1. In Sec. 2.4.2, I present
current open-source frameworks in more detail which are suitable as foundation for my
own implementation.
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2.4.1 Commercial simulators

This overview of commercial simulators is based on an internet research using the
Google search engine with the search terms “pedestrian crowd simulation software” on
Nov 4, 2020. The goal is to unearth the seven most popular commercial simulators for
pedestrian dynamics. In Tab. 2.4, I list the first seven commercial simulators which were
found with these search terms.

Simulator name Company Programming
language

AnyLogic The AnyLogic Company Java
MassMotion Oasys C++
Pedestrian Dynamics INCONTROL C++/Delphi/4DScript
PTV Viswalk PTV Planung Transport Verkehr not revealed
SimCrowds uCrowds C++
crowd:it accu:rate Java
SimWalk Savannah Simulations C++

Table 2.4: Seven commercial simulators for microscopic pedestrian dynamics (ordered by their
Google search index on Nov 4, 2020).

An up-to-date list of 14 commercial simulators and eleven open-source simulators
for agent-based simulations can be found in Richards 2020. The dissertation Sivers
2016 (p. 17–22) provides an exhaustive list of 43 simulators (commercial and open-
source ones). Sivers also mentions the main focus of a simulation tool. For instance,
“evacuations” or “airports”.

2.4.2 Open-source simulators4

The overview in Tab. 2.5 lists frameworks that have been documented through publica-
tions or tutorials and have undergone recent development activities. The table shows the
initial release date, the programming language the simulator is based on, the number of
files and the lines of code 5.

Among the seven simulators in Tab. 2.5, SUMO (simulation of urban mobility) plays
a special role. SUMO focuses on complete intermodal traffic systems including road
vehicles, public transport and pedestrians, while FDS+Evac, JuPedSim, Menge and Mo-
menTUMv2 concentrate on the actual pedestrian dynamics.

FDS+Evac The Fire Dynamics Simulator (FDS) has been developed by the National
Institute of Standards and Technology (NIST) since 2000 (McGrattan et al. 2019). FDS
started as a pure large-eddy simulator for slow flows which focuses on smoke and heat

4The overview of open-source simulators is taken from Kleinmeier, Zönnchen, et al. 2019, p. 14–16. The
publication was a joint cooperation between Benedikt Zönnchen, Marion Gödel, Gerta Köster and me,
but the overview reflects my own analysis of existing open-source simulators. Please note, that the
GAMA platform was not part of the overview in Kleinmeier, Zönnchen, et al. 2019, p. 14–16.

5The lines of code exclude test code, blank lines and comments. The lines were counted with the “cloc”
software tool. See appendix 1 for more details about how lines of code were obtained.
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Simulator name Initial release Programming Files Lines of code
language

FDS+Evac 2007 Fortran 715 249,702
GAMA 2007 Java 2009 370,957
JuPedSim 2014 C++ 774 173,973
Menge 2014 C++ 697 67,476
MomenTUMv2 2016 Java 814 56,569
SUMO 2001 C++ 1,618 253,472
Vadere 2010 Java 977 73,145

Table 2.5: Open-source simulation frameworks for microscopic pedestrian dynamics (in
alphabetical order).

transport from fires. In the following years, the VTT Technical Research Centre of Fin-
land joined this development and integrated the evacuation module FDS+Evac into FDS
in 2007. FDS+Evac focuses on simulating human egress situations.

The simulation framework consists of four components: (1) The simulation core
which is called FDS. (2) The graphical user interface Smokeview (SMV) that is used
to display the output of FDS. (3) The FDS+Evac submodule for FDS to integrate agent-
based simulations of humans and (4) additional third-party tools for visualization, pre-
and post-processing. FDS+Evac uses the social force model (Helbing and Molnár 1995)
to move agents in a 2-dimensional plane and offers grouping behavior and different exit
selection strategies for agents. FDS+Evac is described in more detail in Korhonen et al.
2007.

GAMA GAMA (GIS Agent-based Modeling Architecture) has been developed since
2007 as an open-source project under the umbrella of the international research col-
laboration “Unit for Mathematical and Computer Modeling of Complex Systems” (UM-
MISCO). Five French and two Vietnamese research groups are involved in the develop-
ment of the GAMA platform. The focus of GAMA lies in carrying out spatially correct
simulations with thousands of agents. To this end, GAMA can import several GIS-related
(Geographic Information System) data formats. To be able to simulate thousands of
agents efficiently, GAMA moves agents using a regular grid or using graph data struc-
tures. The agents are programmed with a declarative domain-specific language called
GAMA Modeling Language (GAML). In this, GAMA differs from all other simulators in
this section where agents are programmed in regular programming languages like Java
or C++. The GAMA Modeling Language is supposed to encourage also non-computer
scientists to model agent behavior.

The GAMA platform offers an Eclipse-based GUI to model and carry out simulations
and to analyze the simulation output. GAMA is built on the Eclipse integrated devel-
opment environment (IDE) and its plugin architecture. Small and mostly independent
plugins are put together to build up the whole simulator. The minimal configuration of
GAMA requires five plugins: (1) The modeling and simulation core which offers data
structures and the simulation kernel to model agent-behavior and to carry out simula-
tions. (2) The graphical user interface. (3) A plugin to bundle all external libraries
to define the GAMA modeling language. Plugin (3) to (5) are supportive libraries for
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processing the GAMA modeling language. Additionally, optional plugins exist to cover
a wide range of use cases. For instance, plugins to enable communication between
agents via the FIPA standard, a physics engine for collision modeling, a plugin to process
GIS data, another one to model BDI-aware agents or a plugin to run simulations in a
high-performance computing (HPC) environment. GAMA is described in more detail in
Taillandier et al. 2017.

JuPedSim JuPedSim’s development is mainly driven by the Forschungszentrum Jülich.
JuPedSim is a framework for the simulation of pedestrian dynamics at a microscopic
level that focuses on evacuation scenarios.

JuPedSim consists of four modules: (1) JPScore simulates the movement of agents.
JPScore provides three models on the tactical layer: a shortest path strategy, a quickest
path strategy and a cognitive map to explore the environment, e. g. to discover doors.
On the operational layer, JPScore provides three continuous models based on ordinary
differential equations: the force-based generalized centrifugal force model (Chraibi,
Seyfried, and Schadschneider 2010), the collision-free velocity model (Tordeux, Chraibi,
and Seyfried 2015) and the wall-avoidance model (Graf 2015). (2) JPSreport includes
tools for density, velocity and flow measurements to analyze agent trajectories. (3)
JPSvis visualizes simulation results through 2D or 3D animations. JPSvis can be directly
connected to JPScore to get an online visualization of a simulation run. (4) JPSeditor is
a tool for editing model parameters and the topography. JuPedSim is described in more
detail in Chraibi and Zhang 2016.

Menge The Menge framework originated at the University of North Carolina. Like
for Vadere, the goal is to facilitate model comparison. For this, the Menge developers
provide a very generic framework and invite researchers to contribute to the project.

Menge breaks the simulation down into six sub-problems: (1) Target selection. (2)
Plan computation: find the destination by using graphs or potential fields. (3) Plan
adaption: use local navigation to find the preferred velocity (4). Motion synthesis: this
means the physical motion of an agent including head, shoulder and feet movement
which is not yet addressed within the Menge framework. (5) Environmental queries:
identify influencing factors which are in line-of-sight of agent. (6) Crowd systems: sim-
ulations of aggregated individuals.

Compared to Vadere, Menge offers but also insists on a software structure which real-
izes all three levels of pedestrian behavior defined in Hoogendoorn and Bovy 2004: the
operational (locomotion) layer, the tactical layer, and the strategic layer. This predefined
structure is valuable if the model can be mapped onto it but hampering if not. Overhead
and additional complexity result in longer development times before a researcher can
compare locomotion models. Menge is described in more detail in Curtis, Best, and
Manocha 2016.

MomenTUMv2 MomenTUMv2 has been developed at Technical University Munich.
The focus lies on analyzing and comparing pedestrian behavior models.

Like Menge, the MomenTUMv2 framework implements all levels of pedestrian be-
havior defined in Hoogendoorn and Bovy 2004. That is, the simulation as well as the
software itself breaks down into strategic, tactical and operational layers. The strate-
gic layer is responsible for the destination choice of agents. The tactical layer contains
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four items: (1) Navigating to a destination (2) Participating (e. g. in front of a stage)
(3) Queuing (4) Searching unknown locations. The operational layer provides models
for walking and waiting agents. Both models can either use a cellular automaton or
a force-based model for locomotion. Compared to Vadere, and similar to Menge, the
three-layered structure in the software introduces development overhead before two lo-
comotion models can be compared. MomenTUMv2 is described in more detail in Kielar
and Borrmann 2016.

SUMO SUMO is spearheaded by the Institute of Transportation Systems of the German
Aerospace Center (DLR). The SUMO simulator allows to evaluate infrastructure changes
before implementing them in a real environment. Its scope and its user community
are much larger than that of the other pedestrian dynamics simulators. I mention it,
because in the long run, an interface between SUMO and well-established locomotion
models from the pedestrian community would benefit the scientific community. SUMO
is described in more detail in Krajzewicz et al. 2012.

Vadere The Vadere project was started in 2010 (Sivers 2016, p. 23). Its main intention
is to facilitate development and comparison of locomotion models. Therefore, it was
designed as a generic framework, but with an eye on keeping it lightweight, so that new
locomotion models can be quickly implemented.

Vadere’s architecture applies the model view controller (MVC) software pattern (Ga-
mma et al. 1994). Therefore, Vadere is divided into three interconnected modules:
state, gui and simulator. Moreover, Vadere is complemented by two supporting mod-
ules: utils and meshing. In sum, it is composed of five separated modules. The MVC
pattern leads to a clear separation of responsibilities for the three MVC modules within
Vadere:

• Model (state): the model layer does not contain any logic. Instead, it is the
simulation state, that is, the composition of agents, sources, obstacles, targets and
their corresponding attributes like the x and y coordinate of an agent.

• Controller (simulator): the control layer contains the logic to change objects of
the model layer. For instance, to update the x and y coordinate of all agents in each
time step. Mainly, the control layer holds implementations for different locomotion
models.

• View (gui): the view visualizes the current state of the model objects in form of a
GUI. The optional GUI supports setting up simulation scenarios, simulating them
and analyzing the output. Simulations can also be carried out without the GUI by
using the command-line interface of Vadere.

Vadere is described in more detail in Kleinmeier, Zönnchen, et al. 2019.

2.5 Validation of pedestrian dynamic models

In the last two sections, I provided an overview of important models for pedestrian
stream simulations. First, these models are usually derived by real-world observations.
Then, these models are implemented and embedded in a simulation software which
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were presented in the previous section. In this last section, I scrutinize how pedestrian
stream models can be validated. Validation is an important step in a reliable modeling
pipeline. Validation ensures that a model is able to replicate real-world observations so
that it can finally be used for predictions. In the validation step, simulation results of a
model are checked against real-world data.

2.5.1 Validation of locomotion models

Visual validation Already in 1986, Gipps dedicated a paper to stress the importance
of graphical techniques to validate simulation models (Gipps 1986). Gipps is right when
he states that it is difficult and time-consuming to detect (modeling) errors in tables of
numbers. It is more useful to visualize these tables. For instance, if the table contains
trajectory information, one can graphically visualize the positions over time for all agents
to easier detect flaws and glitches. The human brain can immediately recognize if agents
overlap or collide with walls which would indicate a modeling or implementation error.
Therefore, visual validation is a quick and easy technique in the development phase of
new models to detect errors. Of course, visual validation also depends on subjective
views of the person who looks at the data. This makes visual validation not the first
choice for validation but a useful step in the validation phase.

Validation against trajectories and fundamental diagrams Visual validation is a
manual task. Therefore, one also requires methods to validate thousands of simulation
runs quickly. Different metrics exist to compare pedestrian streams on a microscopic
level. For instance, two trajectories could be compared directly (position by position over
time). Yet, trajectories are an error-prone quantity because they differ in each scenario.
E. g. queuing behavior of humans at a ticket counter leads to small steps while walking in
an unobstructed corridor leads to larger steps. Therefore, usually more robust quantities
are used for validating simulation results. Such quantities are fundamental diagrams for
different scenarios like (1) unidirectional flows (e. g. experiments by Hankin and Wright
1958; Weidmann 1993; Daamen 2004; Jelić et al. 2012), (2) bidirectional flows (e. g.
experiments by Zhang, Klingsch, Schadschneider, et al. 2012; Zhang, Schadschneider,
and Seyfried 2014), (3) bottlenecks (Seyfried et al. 2010) or (4) staircases (Burghardt,
Seyfried, and Klingsch 2013). The publications above are often used by modelers to test
if the model is able to replicate the empirically observed speed-density relationship.

Two other useful metrics were proposed by Webster and Amos 2020 to compare sim-
ulated and real crowds: “polarization” and the “nearest-neighbor distance” (NDD). The
polarization φ measures the level of “order” in a crowd, in terms of heading alignment
of members. The polarization φ is zero when the crowd is completely disordered. That
is, everyone is heading in different directions. The polarization φ is 1 when all crowd
members share the same heading, see Eq. 2.25 (Webster and Amos 2020, p. 6).

φ =
1

N

∣∣∣∣∣∣
N∑
j=1

eiθj

∣∣∣∣∣∣ , (2.25)

where N is the total number of crowd members, | · | denotes the Euclidean norm, i
denotes the imaginary number and θj is the heading of each individual j.
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The nearest-neighbor distance (NDD) measures the level of clustering in a crowd by
looking at the closest neighbor of each individual crowd member, see Eq. 2.26 (Webster
and Amos 2020, p. 6).

nnd =
1

N

N∑
j=1

dj , (2.26)

where N is the total number of crowd members and dj is the Euclidean distance
between an individual pedestrian j and its closest neighbor. Small values represent
denser crowds while high values indicate a loosely coupled crowd.

Empirical data serves another two important topics: it can help to identify model
parameters during the model development phase and to identify the range of parameters
for simulations (parameter estimation).

Experiments as basis for empirical data An important basis of empirical observa-
tions are carefully conducted experiments. In the last decade, we observe an upsurge in
the published literature about pedestrian dynamics. For instance, Haghani 2020 presents
experimental data from 194 experiments from 2005 to 2019 in his exhaustive literature
review. These experiments can be categorized into (1) laboratory condition experiments,
(2) virtual/augmented reality (VR/AR) experiments and (3) evacuation drill experi-
ments. Also animal experiments are considered by the review but these experiments are
not useful for validating pedestrian stream models. Laboratory experiments are a useful
resource to collect quantitative but also qualitative data. Since 2005, different experi-
ments were carried out by numerous researchers. The experiments can be clustered into
following topics (Haghani 2020, p. 12–16):

• Single-file movement of pedestrians

• Unidirectional flow

• Stepping behavior of pedestrians

• Directional flows under the rhythm
effect

• Multi-directional flows of pedestrians

• Conflict/collision avoidance in bidi-
rectional pedestrian flows

• Conflict/collision avoidance in multi-
directional pedestrian flows

• Merging flows of pedestrians

• Pedestrian flows through bottlenecks

• Pedestrian flows at bottlenecks and
architectural adjustments

• Fundamental diagram of pedestrian
flows

• Pedestrian boarding and alighting be-
havior

• New measurement methods (e.g.
pressure sensors)

• Social group behavior

• Limited visibility conditions

• Pedestrians with limited mobility

Extracting useful quantities for validation is a time-consuming task. Most often, the
positions over time of experiment participants are extracted. Either manually or in an
automatic process. An automatic process is often only possible if the participants have
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worn colored markers during the experiment. In the past, more and more microscopic lo-
comotion models were successfully validated against fundamental diagrams from Weid-
mann 1993 or other experiments. E. g., a modified version of the social force model
was validated against an egress scenario with 600 people (Parisi, Gilman, and Moldovan
2009). An optimal reciprocal collision avoidance model was validated against an evac-
uation drill experiment (Poulos et al. 2018 ). The optimal steps model was validated
against a corridor scenario (Seitz and Köster 2012).

The Forschungszentrum Jülich builds up a central database for experiments focused
on pedestrian dynamics. Each experiment is described textually and with pictures and
is assigned with a unique document object identifier (DOI), compare Fig. 2.30. The
experiment data is usually provided as trajectory file for each participant. The database
is called “Pedestrian Dynamics Data Archive” which is described in Boltes, Holl, and
Seyfried 2020 and can be found at: https://ped.fz-juelich.de/da/

Figure 2.30: Snapshots of experiments found in the “Pedestrian Dynamics Data Archive”
provided by the Forschungszentrum Jülich. From first column to last column: bottlenecks, uni-
and bidirectional flow and different crossings (snapshots were taken from the Pedestrian
Dynamics Data Archive at https://ped.fz-juelich.de/da/).

The guideline for microscopic evacuation analysis Another useful resource to val-
idate simulation results is the “Guideline for Microscopic Evacuation Analysis” (RiMEA
2016). In its latest revision from 2016, the guideline establishes standardized criteria
which should be applied when using computer simulations to determine the evacuation
time of humans in specific scenarios. To this end, the guideline defines certain scenar-
ios (the topography with walls, doors, stairs etc.), expected evacuation times (within a
margin) and expected evacuation routes for a given number of participants.

2.5.2 Validation of psychology-inspired models

The experiments from the previous section mostly focus on providing quantitative data.
In such experiments, participants often have clear instructions to perform a single task.
But, psychological aspects are often neglected. Possible causes are that psychological
aspects are often only expressed qualitatively by questionnaires about emotions or ver-
bal descriptions. For researchers and modelers, who have not conducted the experiment
themselves it is almost impossible to extract psychological aspects because the exact ex-
periment setup is not known in detail including the mental state and any priming of
the participants. Therefore, validating models including psychological aspects impose
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special challenges. Relevant qualitative data must be extracted from fuzzy, human de-
scriptions or derived from a time-consuming video analysis focusing on human behavior.
Therefore, the psychology-inspired models from Sec. 2.3.2 were mostly validated quali-
tatively. This qualitatively-only validation is definitely a scientific gap when dealing with
psychology-related pedestrian dynamics models.

2.5.3 Uncertainty quantification as systematic methodology to
identify uncertainties

Even if a quantitative validation is not possible under certain circumstances, uncertainty
quantification (UQ) offers a possibility to quantify the uncertainty of introduced model
parameters. The central question we ask is: do model parameters have a great impact
on quantities of the simulation output? UQ tackles this problem by varying input param-
eters and check the effect on chosen output quantities, see Fig. 2.31. UQ is a relatively
new research area within probability and statistics (Smith 2014, p. ix) which is used for
several applications: from mechanical engineering, over fluid dynamics to pedestrian
dynamics (Najm 2009; Hu and Mahadevan 2017; Gödel, Fischer, and Köster 2020).

Input variation Effect on output

Black Box
Input is converted

to output

Simulator

Figure 2.31: The scientific field of uncertainty quantification (UQ) offers systematic approaches
to measure the uncertainty and the impact of model parameters on the simulation output.

2.6 Summary

At this point, most models for pedestrian dynamics solely focus on locomotion of simu-
lated agents but neglect psychological aspects in crowd motion. These physics-inspired
locomotion models can be categorized by their scale: macroscopic, mesoscopic and mi-
croscopic models. Macroscopic locomotion models do not distinguish individuals. The
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system dynamics over time are described using aggregate quantities, such as densities
or flows. In contrast, microscopic locomotion models focus on the locomotion of in-
dividuals by using dedicated equations and algorithms to replicate accurate stepping
behavior of pedestrians. Mesoscopic models are set between the macroscopic and the
microscopic level. In mesoscopic models, agents are considered as individuals — with
individual properties like preferred speed — but their motion is described as an aggre-
gated relationship. Since microscopic models focus on individuals, this model type is the
preferred one to integrate my psychological findings.

There are only a few pedestrian dynamic models that also consider psychological as-
pects when maneuvering agents through virtual environments. Such models take the
nearby environment of an agent into account by perception components, an agent’s
mental state and aspects like stress levels or helping behavior when an agent has fallen
down.

All of the presented models are implemented, either as standalone program or within
an existing simulation framework. I shortly reviewed existing simulators. For the com-
mercial ones, I limited the overview to a short list of seven simulators because the un-
published code hinders the scientific knowledge transfer. Therefore, I will use an es-
tablished open-source simulation framework to integrate my new model for behavioral
changes in agent-based simulations. I reviewed seven open-source simulators, namely
FDS+Evac, GAMA, JuPedSim, Menge, MomenTUMv2, SUMO and Vadere. My preferred
choice is Vadere because it was designed from the ground up as framework to compare
locomotion models. For this reason, Vadere is already packaged with different carefully
validated locomotion models like the optimal steps model.

Finally, each model should be validated against empirical data to test the usefulness
of the model. I shed light on different validation techniques, namely visual validation
and data-driven validation based on trajectories and fundamental diagrams. Addition-
ally, I proposed uncertainty quantification as a method to quantify the uncertainty of
introduced model parameters.
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Chapter

3 The psychology of human
decision-making

In this section, I would like to distill which aspects influence human decision-making
and can have an effect on pedestrian streams. I will analyze which of these findings can
be systematically integrated in a computer simulation model for pedestrian dynamics to
allow realistic behavioral changes of agents. The great challenge is to extract the rele-
vant aspects which could influence human pedestrian streams from the broad research
field of psychology. For this reason, this section is rather based on textbook knowledge
than latest journal articles (as in the last section) because a textbook provides a broader
overview of the huge research topic of psychology. Nevertheless, the knowledge is also
backed up and underpinned by peer-reviewed journal articles where appropriate. I chose
Gerrig 2013 which is used as introductory textbook for psychology students. The version
that I cite was authored by Richard Gerrig only, a professor of psychology at Stony Brook
University, New York.

Former editions were co-authored by Philip Zimbardo. Zimbardo is an American pro-
fessor emeritus of psychology at Stanford University who became well-known for his
“Stanford prison experiment”. Zimbardo recruited 24 young men to participate in a
study on prison life where the participants were randomly assigned as guards or pris-
oners. The study was terminated prematurely because guards repressed the prisoners
and their cruelty escalated. The experiment was heavily criticized because of ethical
and methodological mistakes and its scientific validity is questionable (Haslam, Reicher,
and Van Bavel 2019). For instance, Zimbardo announced the objectives of the experi-
ment to the guards during the orientation day (Le Texier 2019, p. 5). Additionally, the
experimenters gave clear instructions to the guards instead of just observing the scene
(Le Texier 2019, p. 5).

The “Stanford prison experiment” exemplifies the difficulty of conducting psycholog-
ical experiments very well. But, even if Zimbardo’s “Stanford prison experiment” was
discredited in the scientific community, the introductory textbook (Gerrig 2013) provides
a good overview of psychology, its research branches, research methods and conducted
experiments. The book shows how different psychological hypotheses were tested in
the past. Therefore, the readers are informed well and they can decide — based on
experimental studies —- if they trust in a psychological hypothesis or not. In psychology,
humans — or animals in a broader context — are the object of investigation. In con-
trast to physical materials, all humans have their own personalities, their own traits and
specific behavior which stems from them. Therefore, psychological conclusions about
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humans and their behavior are hard to draw even if applying scientific methods care-
fully.

The main focus of this dissertation is to show how psychological aspects that affect
human behavior and pedestrian streams can be systematically integrated in a computer
simulation model for pedestrian dynamics. Therefore, this chapter mostly addresses
readers with a computer science background and not psychologists which already have
a comprehensive education in that field. As stated before, the challenge is to extract
relevant factors which influence pedestrian streams and find a common ground for the
computer model which suites for different simulation scenarios (e. g., evacuations, com-
muting situations, demonstrations and so on).

3.1 Introduction

The American psychology professor Richard Gerrig defines “psychology as the scientific
study of the behavior of individuals and their mental processes. [...] The goals of the
psychologist conducting basic research are to describe, explain, predict, and control
behavior.” (Gerrig 2013, p. 2–3) For this reason, psychologists usually follow four steps
to draw conclusions:

1. Describe what happens: that is, obtain data and make accurate observations about
behavior.

2. Explain what happens: find explanations for the observed behavior. This goes
beyond the pure observations.

3. Predict what will happen: these are statements about the likelihood of a specific
behavior in a given context. For example, if your parents are vegetarians, how
likely is it that you are also a vegetarian?

4. Control what happens: make a specific behavior happen or prevent one.

In the broad field of psychology, there are different perspectives to understand be-
havior: the psychodynamic, behaviorist, humanistic, cognitive, biological, evolutionary
and sociocultural perspective. Tab. 3.1 summarizes the seven perspectives on psychology
defined by Gerrig 2013, p. 6. Each perspective defines own causes and consequences of
behavior. Nevertheless, each perspective contributes to the understanding of human and
animal behavior with own research methods and techniques. For instance, the biological
perspective heavily focuses on visualizing brain activity and the activity of nerve cells by
using sophisticated electronic devices. On the other hand, the sociocultural perspective
uses questionnaires, surveys, narrative notes, police reports and newspaper articles to
formalize the interplay between different social groups.

3.2 Perception: From physical events to mental events

A definition of perception One important factor which influences human behavior is
the perception of the environment. For instance, if we approach a red traffic light when
driving a vehicle, we stop. The term perception refers to the process of apprehending
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Perspective Focus of study Primary research topics

Psychodynamic Unconscious drives, con-
flicts

Behavior as overt expression of un-
conscious motives

Behaviorist Specific overt responses Behavior and its stimulus causes
and consequences

Humanistic Human experience and
potentials

Life patterns, values, goals

Cognitive Mental processes, lan-
guage

Inferred mental processes through
behavioral indicators

Biological Brain and nervous system
processes

Biochemical basis of behavior and
mental processes

Evolutionary Evolved psychological
adaptations

Mental mechanisms in terms of
evolved adaptive functions

Sociocultural Cross-cultural patterns of
attitudes and behaviors

Universal and culture-specific as-
pects of human experience

Table 3.1: The seven perspectives on psychology defined by Gerrig (table: Gerrig 2013, p. 6).

(1) Psychodynamic

Psychoanalysis
by Sigmund Freud

(2) Behaviorist

Classical conditioning
by Ivan Pavlov

(3) Humanistic

Hierarchy of needs
by Abraham Maslow

(4) Cognitive

Müller-Lyer illusion
by Franz Carl Müller-Lyer

(5) Biological

Magnetic resonance imaging
by several researchers

(7) Sociocultural

Social identity theory
by Henri Tajfel and John Turner

(6) Evolutionary

Evolution through natural selection
by Charles Darwin

1 2

3 4

Social 
identities

Personal 
identity

Figure 3.1: Examples of important findings of the seven psychology perspectives (own graphic
but image (1) of Sigmund Freud by Max Halberstadt, 1921, the images (1) to (5) from
Wikimedia Commons 2020).
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objects and events in the environment. For psychologists, perception encompasses to
sense objects and events, understand, recognize and label them and also to prepare a
reaction (Gerrig 2013, p. 80), which is also visualized in Fig. 3.2.

Stimulus Receptor Nervous system Cortex Brain

Sensation Transduction Transmission Cognition

Figure 3.2: The actors (black) and processes (blue) involved in the human perception process
(own graphic but sun, neuron and brain icon from Free SVG 2020).

The functions of perception: Survival and sensuality Perception mainly serves two
functions (Gibson 1962): firstly, the process of perception ensures our survival. Humans
and animals can smell food and perception allows us to recognize dangerous situations,
e. g. a fire. Secondly, perception brings us joy and satisfaction, e. g. the sweet taste or
smell of a cake. The second function is summarized as sensuality which also denotes the
intensity and quality of the perception.

Perception as three-step process: Sensation, perceptual organization and identi-
fication Perception can be broken down into three sequential processes (Gerrig 2013,
p. 80): sensation, perceptual organization and identification. Sensation covers the physi-
cal detection using sensory receptors (e. g., eyes and ears), the transformation of physical
signals into neural impulses which are passed to the brain. During the perceptual orga-
nization, the brain integrates all sensory input and compares it with existing knowledge
of the world. This integration covers an object’s size, shape or movement for example.
In the identification process the questions “What is the perceived object?” and “What is
its function?” are answered. This is called recognition. Fig. 3.3 visualizes the three-step
process of perception consisting of sensation, perceptual organization and identification.
In a later step, all the perceptional impressions are processed actively by a cognition pro-
cess.

Distal and proximal stimuli Psychologists distinguish between distal and proximal
stimuli (Graham 1992, p. 55–56). The distal stimulus describes a real object in the
world while the proximal stimulus reflects the projection of the same object on an ob-
server’s retina in case of visual perception. Both representations differ enormously. In
case of visual perception, an object in the real world is three-dimensional, but its pro-
jection on the retina is two-dimensional. Our brain is able to interpret this projection as
3D object. All human senses — hearing, smelling, tasting etc. — involve a distal and
proximal processing. The process of perception transforms a distal stimulus in a prox-
imal stimulus. The distinction between distal and proximal stimuli is a good example
that mathematical models for computer simulations must simplify the real world. Psy-
chologists strongly emphasize the distinction between distal and proximal stimuli. But,
from a modeling perspective this discrimination can be neglected for a pedestrian stream
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Figure 3.3: Perception as three-step process defined by Gerrig 2013, p. 82: sensation,
perceptual organization and identification. Perception can be seen as bottom-up approach
where the environmental stimulus triggers the perception. On the other hand, our existing
knowledge about the world influences our perception, especially the identification step, which
can be seen as top-down approach (own graphic but inspired by: Gerrig 2013, p. 82).

model. Modelers simplify this process by abstraction since the transformation from dis-
tal into proximal stimulus does not influence human motion. Instead, we are interested
in the final result of this process, that is, the decision a person makes. Nevertheless, the
general concept of perception is an important one that should be picked up by modelers.

Psychophysics A central research domain when talking about perception is psycho-
physics. Psychophysics is the study of the relationship between physical stimuli and the
following mental experience or response (Gescheider 1997, p. ix). In psychophysics,
systematic studies are carried out to reveal which physical intensity is necessary so that
a stimulus can be detected by humans. For instance, how loud must an alarm be in
an emergency case? In this context, the absolute threshold is defined as the “minimum
amount of physical energy needed to produce a sensory experience” (Gerrig 2013, p. 82).
To this end, researchers perform detection tasks with participants were the intensity of
a stimulus is varied continuously. Usually, there is no clear threshold that separates un-
detected stimuli from those that humans detect. Therefore, the absolute threshold takes
this into account and defines the stimulus level at which a sensory signal is detected
half the time (by participants). When plotting the stimulus intensity on the horizontal
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axis and the detection rate on the vertical axis, the graph is a S-shaped sigmoid curve,
see Fig. 3.4. First systematic studies in psychophysics date back to the German physicist
Gustav Fechner (1801–1887). From a modeling perspective this means, that environ-
mental stimuli should have a certain intensity. For instance, this intensity level limits the
radius in which a stimulus can be perceived.
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Figure 3.4: The detection rate in psychophysics when participants are exposed to a physical
stimulus: the absolute threshold is the stimulus level at which a sensory signal is detected half
the time.

When talking about the absolute threshold and detection of physical stimuli, it is also
important to note that the human perception is more sensitive to detect changes in the
environment than observing steady state conditions. This has naturally evolved by the
process of sensory adaption which describes the diminishing responsiveness of sensors
to a continuous stimulus (Gerrig 2013, p. 83). For instance, when moving from a dark
room into a bright sunny scene, first, the human eyes are blinded by the bright light
but over time the pupil gets smaller and the eyes are not blinded anymore. Sensory
adaption allows humans to quickly react to environmental changes. The perception of
stimuli — or signals in general — is closely connected to the signal detection theory in
psychophysics which is covered in more detail in (Green and Swets 1966).

From physical events to mental events Before closing this section with an overview
of human senses, it is also important to describe the information flow from physical to
mental events. What happens when humans sense physical energy in form of light or
sound? All physical energy in the environment is detected by human sensory recep-
tors. The energy is converted into neural (electrochemical) impulses. The conversion
from one form of energy into another is called transduction. All environmental stim-
uli are converted to identical neural impulses. Thus, each sensory input (e. g., seeing)
is processed in a first step in a dedicated brain region that is part of the cerebral cor-
tex (Courten-Myers 1999, p. 219). For instance, the visual cortex processes information
from the eyes. This allows humans to distinguish different stimuli sources. That is, the
human sensory system shares the same basic flow of information from sensory receptors
to dedicated brain regions via the nervous system.
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The human senses To detect physical stimuli, humans are equipped with different
sensory receptors which are summarized in Tab. 3.2. The visual and the hearing system
are more developed than other sensual systems like smelling. They are primarily used to
guide humans through the environment. Animals have additional receptors for sensing
more physical stimuli than listed in Tab. 3.2. For example, pigeons can detect magnetic
fields (Leask 1977).

Sense Receptor Sensation

Vision Eyes Color, brightness
Hearing Ears Frequency, loudness, timbre
Smell Nose Odorant molecules
Taste Mouth Sweet, sour, bitter, salty, umami
Touch Skin Pressure, warmth, cold
Vestibular sense Inner ear Orientation, balance
Kinesthetic senses In muscles Feedback about motor activities
Pain Fine meshgrid

covering entire body
Temperature, mechanical stimuli,
chemicals and others

Table 3.2: The humans senses and its corresponding sensory receptors.

3.3 Cognition: Mental processes

A definition of cognition “Cognition is any mental activity involved in the represen-
tation and processing of knowledge, such as thinking, remembering, perceiving, and
language use” (Gerrig 2013, p. 167). The definition states that cognition involves both,
the content and its processing: the content we perceive and that we store in our mem-
ory or which we retrieve from our memory; the processing describes how we manipulate
this content. That is, how we interpret this content, how it shapes our personality and
how we solve problems in our daily life. Fig. 3.5 depicts some inputs which are used in
a cognitive process by the human brain. Cognition has evolved to an autonomous and
interdisciplinary academic field in the last decades covering aspects from philosophy,
neuroscience (brain science), linguistics, cognitive psychology, computer science (AI)
and other fields.

Mental processes take time One old but omnipresent finding from the Dutch cogni-
tive psychologist Franciscus Cornelis Donders (1818–1889) is that each mental activity
takes time (Greenwood 1999, p. 19; Goldstein 2011, p. 6–7). Donders scientifically mea-
sured the speed of mental processes by conducting a reaction time experiment in 1868,
see Fig. 3.6. Donders was interested in how long it takes for a person to make decisions
and chose the following experimental setup. In the first part of the experiment, the
participants were asked to press a button upon recognizing a light. The measured time
was called “simple reaction time”. In the second part of the experiment, Donders made
the task more difficult. He presented two lights, one to the left and another one to the
right. Donders asked the participants to push button A when the left light was illumi-
nated and button B when the right light was illuminated. The measured time was called
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Cognition

Attention

LanguageThinking and
problem solving

MemoryPerception

Intelligence

Figure 3.5: Different inputs for the cognitive process of humans. First, you have to direct
attention to a specific task. Then, humans use different capabilities to process a task (own
graphic but inspired by: Gerrig 2013, p. 207).

“choice reaction time”. In the first part of the experiment, only the reaction time to a
stimulus was measured. In the second part of the experiment, the time measurement
also included a mental response (push button A or B). Donders revealed in this simple
task that the “choice reaction time” was one-tenth of a second longer than the “simple
reaction time” (Goldstein 2011, p. 7). That is, the more demanding a mental task is, the
more time it takes to process the task. For each task, one has to direct attention to it
and then process different inputs (language, memory, perception) by using intelligence
and thinking capabilities. Donders pioneered the work on cognitive processes because
he realized that mental processes could not be directly measured at that time but must
be deduced from behavioral reaction times (Goldstein 2011, p. 7).

The different inputs attention, intelligence, language, memory and thinking are not
described in this work because they are not of greatest importance for modeling pedes-
trian streams. The interested reader should consult (Gerrig 2013) where each input is
discussed in an own chapter or section. More important from a modeling perspective
is that humans process information from different sources, merge them in a cognitive
process and make decisions based on this processing (e. g., press button A or B).

Mental processes: Serial versus parallel, controlled versus automatic Psycholo-
gists distinguish serial and parallel cognitive processes (Li et al. 2020, p. 1–2). While
serial processes are carried out in order, parallel processes can be carried out simulta-
neously. Talking and walking are examples for parallel processes whereas walking and
painting usually cannot be performed in parallel. A further distinction are controlled and
automatic processes (Shiffrin and Schneider 1977). Controlled processes require atten-
tion and are usually performed sequentially. Automatic processes on the other hand do
not require attention.
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A B
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Mental
response

Behavior

Perceive light
Perceive light and

decide which button to press
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Part 1 Part 2

Figure 3.6: The Dutch psychologist Franciscus Cornelis Donders (1818–1889) measured the
time of mental processes by using elaborated experiment setups. In a first step, Donders
measured the time for a simple response task (left). In a second step, Donders measured the
time for a discrimination response task (right). From his experiments, Donders concluded that
each mental process takes time and more difficult tasks require more time than easier tasks.

Cognitive influences on learning Learning is also a cognitive process which is based
on experiences and affects the future behavior or behavioral potential. A simple example
is when touching a hot cooktop for the very first time. The painful experience prevents
us from repeating the action. Such learning aspects are mostly studied under the behav-
iorism perspective of psychology. Experiments with animals and humans revealed three
important cognitive effects on learning:

1. Cognitive maps: humans and animals use spatial memory to plan their route
through environment (Gerrig 2013, p. 167). For instance, squirrels bury food in
autumn and recover it during the winter season by using a cognitive map.

2. Habituation versus sensitization: habituation means that responses to stimuli get
less intense over time, when the stimuli occur repeatedly. Sensitization means that
responses to stimuli become stronger, when the stimuli occur repeatedly. Sensiti-
zation is more likely to stimuli which are irritating.

3. Observational learning: humans learn and imitate behavior by observing others.
This is also known as “social learning” and was studied by Bandura, Ross, and Ross
1963. In this famous study, children, aged from 35 to 69 months where exposed
to aggressive role models who punched a doll. These children were more likely
to also punch the doll than a control group of children who were not exposed to
aggressive role models.
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3.4 Behavior: Motivational aspects and decision-making

After processing inputs in a cognitive phase, humans derive an action from it, a behavior.
Such a behavior is driven by motivation or the social context (which is introduced in
Sec. 4).

Motivation Motivation is “the process of starting, directing, and maintaining physical
and psychological activities” (Gerrig 2013, p. 298). Psychologists differ between three
sources of motivation: drives and incentives, instinctive behaviors and learning, expec-
tations and cognitive approaches (Gerrig 2013, p. 299–301).

Drives are internal triggers of humans and animals which are fired when the physio-
logical needs are in disequilibrium, hunger for example. Drives were already addressed
by pedestrian dynamics modelers. For instance, Wijermans modeled festivalgoers that
go to the toilet from time to time by introducing a “bladder” parameter (Wijermans
2011). Additionally to drives, incentives affect the motivation of humans. In contrast
to drives, incentives are external triggers. Imagine a bus driver bringing kids to school
even if he or she is hungry because he/she gets paid for driving.

Instinctual behaviors, like straightening of the fur of many animals in dangerous situ-
ations, can also influence future activities. Researches in the 1900th century suggested
that many human activities are driven by instincts (James 1905, p. 403 ff.). Pedestrian
dynamics modelers used this instinctive view to justify the modeling of “panic behavior”
(Helbing, Farkas, and Vicsek 2000; Pelechano, Allbeck, and Badler 2007; Bellomo, Pic-
coli, and Tosin 2012). Yet, newer researches suggest that humans rather rely on learning
aspects than on instinctive behaviors (Bateson and Mameli 2007). For instance, when
we drive a car and we come close to a red traffic light, we stop which is a learned behav-
ior and not an instinctive reflex. The psychologist Sime asked the provocative question
“Escape Behaviour in Fires: ‘Panic’ or Affiliation?” in his dissertation (Sime 1984). Sime
challenged the irrational or “instinctive” behavior of humans in “panic” situations: “For
shorthand this is called the panic concept or scenario. Evidence of real behaviour in fires
does not support it. As will be shown, people appear to behave rationally in the light of
the information they have.” (Sime 1984, p. 3 in PDF file). There are more reasonable
and more scientific explanations to describe human behavior in extreme situations than
the fuzzy word “panic”. And modelers must take this newer explanations into account.
To this end, Sec. 4 also includes the social context — how humans act in social groups
— which also affects the behavior in extreme situations. For instance, the psychologists
Drury, Cocking, and Reicher found that in emergencies, victims helped each other in-
stead of fleeing chaotically as the word “panic” suggests (Drury, Cocking, and Reicher
2009a).

Expectations and cognitive approaches are the third source which motivates humans
— it is not only physiology or only instincts. The social psychologist Festinger proposed
in his cognitive dissonance theory that humans are driven by the discrepancy (disso-
nance) between beliefs and reality which leads to “corrective behaviors” to bring both in
harmony (Festinger 1957). For example a cognitive dissonance arises, when a smoker
gets aware of risks associated with tobacco use.
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Problem solving, reasoning and decision-making Problem solving and reasoning
combine current information and information from the memory to achieve a specific
goal. There is an information gap between the initial state and the end state. This
gap is closed by the process of problem solving. In this context, psychologists use the
terminology problem space and algorithm (Simon and Newell 1971; Newell and Simon
1972).

The problem space are “the elements that make up a problem: the initial state, the in-
complete information or unsatisfactory conditions the person starts with; the goal state,
the set of information or state the person wishes to achieve; and the set of operations,
the steps the person takes to move from the initial state to the goal state” (Gerrig 2013,
p. 224). An algorithm describes a step-by-step procedure to solve a given problem.

To reveal mental processes, psychologists carry out experiments and use “think-aloud
protocols” to yield an exact description of how test persons solve problems. While algo-
rithms can easily be integrated in existing pedestrian stream simulations another aspect
of problem solving cannot: creativity, that is, the ability to generate novel ideas. This is
one of the objectives the artificial intelligence community strives for.

In 1979, Kahneman and Tversky pioneered the work on decision-making, the process
of choosing between alternatives. Kahneman and Tversky argue that people’s judgments
often rely on heuristics instead of taking all available options into account because the
human brain has limited processing resources. They claim that fast and frugal heuristics
often lead to correct judgments. Tversky and Kahneman identified three fundamental
heuristics which are used in the human decision-making process: (1) availability, (2)
representativeness and (3) anchoring (Tversky and Kahneman 1974).

The availability heuristic refers to the fact that humans use information readily avail-
able in mind instead of starting a long thinking process. The representativeness heuris-
tics leads people to making decisions based on a few averaged impressions instead of
taking the sum of all impressions. For instance, a music concert is often rated by peo-
ple using the peak intensity and the intensity at the end (Gerrig 2013, p. 232). The
anchoring heuristic means that a judgment depends on the original starting value. This
heuristic is best explained using an example. Guess within 5 seconds the following re-
sults:

a) 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 =

b) 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1 =

Tversky and Kahneman 1974, p. 1128 showed that the median estimate for the first,
ascending sequence was 512, while the median estimate for the second, descending
sequence was 2,250 and the correct answer is 40,320. Humans rely on the very first
“anchors” they perceive. Pedestrian modelers like Seitz, Bode, and Köster successfully
used a heuristic approach to steer agents through virtual environments (Seitz, Bode, and
Köster 2016) instead of utilizing all information which would be available in a simula-
tion model. For instance, when carrying out a specific simulation step, the positions of
all agents are globally known and could be “injected” into an agent to select the next
“optimal” step. Instead, the authors use an heuristic approach where agents only use
local information and their direct neighborhood to derive the next footstep.
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3.5 Summary and impact on agent-based simulations

This chapter shed light on human behavior from a psychological perspective. Psycholo-
gists’ goals are to describe, explain, predict, and control behavior. For this, psychologists
conduct experiments with human or animal subjects. Psychology tries to explain behav-
ior from different perspectives: namely, psychodynamic, behaviorist, humanistic, cogni-
tive, biological, evolutionary and sociocultural perspective. Each perspective involves a
wide variety of research methods and tools.

From a modeling perspective, the challenge in this section was to identify psychologi-
cal aspects that influence pedestrian streams and to find a common ground which suites
different simulation scenarios. Psychologists identify two important processes which
mainly influence the human behavior: perception and cognition. Humans perceive their
environment, process this input and adapt their behavior accordingly. The process of
perception includes the sensation of physical stimuli by receptors (e. g. eyes), the con-
version from physical impulses to electrochemical impulses which are transmitted by the
nervous system to the brain. In a second process stage, the cognition, humans process
the input further, think about the input and enrich it with further information to solve
problems.

Each human activity is driven by some kind of motivation. Psychologists identify
three sources of motivation: drives and incentives, instinctive behaviors and learning,
expectations and cognitive approaches.

As described in Sec. 2, current modeling approaches for pedestrian dynamics mostly
focus on physically correct simulations but neglect psychological aspects when navigat-
ing agents. That is, locomotion modeling and psychology have been treated as isolated
worlds so far. On the one hand, locomotion modelers usually do not have a broad and
well-grounded knowledge of important psychological foundations about influences on
human decision-making. On the other hand, psychologists usually do not have the nec-
essary knowledge to derive a mathematically correct model, implement it accurately
and verify the implementation by systematic tests. It is my aim to close this gap with
this dissertation — at least a bit. In this section, I worked out and emphasized that
the human (and also animal) decision-making process starts with the perception of the
environment. In a subsequent cognition phase the perceptional input is processed and
enriched with existing knowledge. This is a well-grounded theory which was developed
by psychologists and must be the connection point for agent-based models and locomo-
tion modelers. Thus, the perception and cognition aspect must be picked up later when
modeling behavioral changes of agents for simulations in Part II. The challenge will be
to integrate these findings but not making the model too complex. Besides perception
and cognition, the social context influences the behavior of humans. Therefore, we will
have a closer look at social influences in the next chapter.
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Chapter

4 The social psychological
perspective: From clas-
sical crowd psychology
to modern views

So far, I have provided an overview of existing locomotion models for pedestrian stream
simulations and of those that are suitable to integrate psychological aspects. Addition-
ally, I presented psychological factors which influence the decision-making processes of
humans. One factor is still missing: how do humans behave in a social context with
other humans and how does this influence their behavior? After formulating a verbal
model, I will derive a simple and reusable architecture which encompasses those aspects
allowing more realistic simulations which are presented in Sec. 6.

Social groups and crowds The objects of investigation of social psychology are indi-
viduals and groups. Social psychologists study how personality, attitudes, motivations,
and behavior of individuals are influenced by social groups and the presence of others.1

In natural sciences, we are accustomed to having clear and unambiguous definitions
of phenomena and facts. For instance, the function f(x) with input x is defined as
f(x) = x2 for x ∈ R2. Contrarily, in social psychology often multiple definitions exist for
the same phenomenon. For instance, Challenger et al. 2009, p. 59 list seven possibilities
to define a “crowd”. Therefore, I need to decide which one to use. I refer to the following
definitions for four key terms which are frequently used within social psychology:

• Social group: “A social group can be defined as two or more individuals who share
a common social identification of themselves” (Tajfel 1982, p. 15). For example,
two football supporters form a social group when visiting a game of their favorite
football team.

• Crowd: “A compact gathering or collection of people with connotations of ho-
mogeneity of characteristics and unanimity of behavior” (Brown and Lewis 1998,
p. 649.). For example, many shoppers at a Christmas market can form a crowd.

• Crowding: “Situations of close physical proximity” (Novelli 2010, p. 23). For ex-
ample, commuters standing in the subway are described by the term crowding.

1Merriam-Webster. (n.d.). Social psychology. In Merriam-Webster.com dictionary. Retrieved November
23, 2020, from https://www.merriam-webster.com/dictionary/social%20psychology.
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• Collective actions: “Collective action consists of people’s acting together in pur-
suit of common interests” (Tilly 1977, p. 11). For example, protesters at a demon-
stration who block the police carry out a collective action.

Current researchers of crowds and crowd behavior emphasize the distinction between
a physical crowd — a gathering of people in the same location, but each with their own
personality — and a psychological crowd — an aggregate of people who are united by
common social identity and shared goals (Reicher and Drury 2010, p. 162; Reicher 2011,
p. 3; Templeton, Drury, and Philippides 2015, p. 1).

(a) Physical crowd: commuters on the
New York City subway, 2017 (image:
Robert Nickelsberg/Getty Images)

(b) Psychological crowd: pope Francis
greets a crowd at St. Peter’s Square in
Rome, 2016 (image: GC/Pacific
Press/Barcroft Images).

Figure 4.1: The adverse and pleasurable effects of crowds and crowding which are stressed by
modern social psychologists contradict classical crowd psychology views. In (a), commuters
ignore each other by standing back to back and looking at their smartphones. In (b), the people
share their emotions. They laugh and wave their hands together to greet pope Francis.

Crowd researchers also stress the adverse and pleasurable effects of crowds and crowd-
ing, see Fig. 4.1. For instance, while commuters feel stressed in an overcrowded subway,
people standing together as dense crowd to greet the pope feel positive emotions be-
cause of their close proximity. That is, similar physical densities lead to completely
different feelings and behaviors. This is contrary to what classical crowd psychologists
in the 20th century suggested, where crowds were seen as inherently “mindless” and
violent (Le Bon 1895). Therefore, it is important to include such findings in modern
computer models for crowd simulations.

In the following two sections, I draw a picture from classical crowd psychology starting
in the 19th century to modern views of crowds and their behavior. Fig. 4.2 depicts
influential social psychologists in that era.

4.1 Classical crowd psychology

Gustave Le Bon (1841–1931): Group mind theory (1895) In Europe, “crowd science”
arose in the late 19th century in France as a response to social problems of urbanization
and unrest (Nye 1975). It was an attempt to understand these social problems. At that
time, industrialization evolved quickly and numerous workers came from the villages
to live in the cities. Industrialization also meant that workers organized in unions and
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Figure 4.2: Timeline of influential social psychologists (portraits taken from Drury 2019a;
Drury 2019b).

strikes arose. At that time, Le Bon summarized his observations about crowds in (Le Bon
1895). But instead of providing an unprejudiced view on crowds, Le Bon expresses the
concerns of the establishment at that time. People who gather as crowd are perceived
as a public threat (for the establishment): “Isolated, he [a man] may be a cultivated in-
dividual; in a crowd, he is a barbarian...” and finally “...a crowd puts them [individuals]
in possession of a sort of collective mind...” (Le Bon 1895, p. 13 and 11). Le Bon argues
that the anonymity in the crowd leads to a disappearance of the individual personality
(a loss of self). Then, the crowd behavior is governed by a group mind which is driven
by primitive instincts. Le Bon emphasizes that contagion reinforces the group mind ef-
fect. Le Bon’s view on crowds is very one-dimensional. The group-mind theory cannot
explain peaceful gatherings and how crowd members interact and influence each other.

Floyd Allport (1890–1979) Individualism theory (1924) Like Le Bon, Allport wanted
to explain inherent crowd violence as Le Bon. But, Allport rejected Le Bon’s idea of a
single group mind in crowds. Instead, Allport argues that the individual is the proper
unit when analyzing crowds. Allport concludes that individual (violent) predispositions
(innate and learned ones) lead to crowd violence and suppress civilized values that nor-
mally control crowd behavior (Drury 2019a, p. 22). Stimulation by other co-present
individuals reinforces the effect of crowd behavior.

Philip Zimbardo (1933): De-individuation theory (1969) Zimbardo conducted exper-
iments like the “Stanford prison experiment” (Zimbardo 1999) in which participants are
embedded in a setup of arousal, group presence and anonymity. In his debatable ex-
periments (see Sec. 3.1, p. 59), Zimbardo observed “a sudden change in the restraints
which normally control the expression of our drives, impulses, emotions [...] Behaviour
is freed from obligations, liabilities, and the restrictions imposed by guilt, shame, and
fear” (Zimbardo 1969, p. 248) which lead to counter-normative behavior in Zimbardo’s
eyes. A meta-analysis of 60 publications by Postmes and Spears showed little evidence
that anti-normative behavior results from de-individuation (Postmes and Spears 1998).
Instead, the authors found a strong relation to conformity. That is, test persons in de-
individuation experiments tried to fulfill “their tasks” as well as possible.
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Summary on classical crowd psychology While Le Bon claims that crowds are in-
herently violent, Allport argues that individuals in the crowd control the group mind.
Zimbardo argues that group presence and anonymity reduce self-control and lead to a
state of de-individuation with impulsive and irrational behavior. All these classical the-
ories neglect that most crowds are peaceful. All these theories do not take the personal
motives of the crowd members (mostly protesters at that era) into account. Therefore,
these theories are decontextualized. Thus, modern views onto crowd behavior are re-
quired which can explain violent crowds but also peaceful gatherings. Consequently, it
is not advisable to include the older, one-dimensional theories of crowd behavior into
modern models to simulate pedestrian dynamics.

4.2 Modern crowd psychology

Muzafer Sherif (1906–1988): Psychology of social norms (1936) Instead of claim-
ing that crowds are inherently violent, like classical crowd psychologists proposed, Sherif
has a more differentiated view on crowds and gatherings. In his book The psychology of
social norms, Sherif writes: “When a group of individuals faces a new unstable situation
and has no previously established interests or opinions regarding the situation, the re-
sult is not chaos; a common norm arises and the situation is structured in relation to the
common norm” (Sherif 1936, p. 111). Sherif draws this conclusion after conducting an
experiment where participants were situated in a dark room and they watched a moving
light, once individually and once in a group (Sherif 1936, p. 89–113). The participants
estimated the distance the light moved during the experiment, first alone and afterwards
in a group situation. The experiment revealed a significant convergence of individual’s
judgments to the group median which indicates an internalization of the group estimate
(a “group norm”). The addition of social norms is an important contribution to social
psychology and a break with former crowd psychology.

Ralph Turner (1919–2014) and Lewis Killian (1919–2010): Emergent norm theory
(1957) Turner and Killian applied Sherif’s idea of social norms to crowd events. In
Turner and Killian 1957, they described a more formalized four-step process to explain
collective behavior — violent and non-violent: (1) An incident triggers the process, for
instance disasters or social conflicts. (2) The trigger marks the break from everyday
norms. (3) Then, the interaction between the participants starts to obtain a guide of
conduct for the new situation. (4) Eventually, a norm emerges which gets shared by
the participants. Turner and Killian stress that collective behavior is norm-governed and
the emergent norm theory is able to explain violent but also non-violent crowd behavior.
This theory marks a first step towards a model which could be implemented as algorithm
because of its clearly defined steps. The previous theories were too fuzzy in this sense.

Henri Tajfel (1919–1982) and John Turner (1947–2011): Social identity theory (1974)
and self-categorization theory (1987) The social psychologists Tajfel and Turner took
up emergent norm theory and addressed one key issue that is attached with the emer-
gent norm theory: is a long-running, interpersonal interaction always required before
collective action can occur? The social psychologist Reicher showed in a detailed analy-
sis about the St. Pauls riot in Bristol, 1980, that no long interaction process is necessary
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to carry out collective actions (Reicher 1984). Shortly after the police arrested a cafe
owner in his cafe — because of allegations of illegal drinking and the sale of drugs —
citizens of the St. Pauls district crowded together and fought against the police without
a long milling process. In Tajfel 1974, Tajfel introduced three key ideas to better under-
stand these collective actions (when do they occur?) and behavioral changes in crowds
(how do they look like?):

• Humans have multiple identities: personal and social identities. For instance, a
man with a child is a “father” when being at home. But when being in a football
stadium, the same man is a football supporter with all the corresponding attitudes
(e. g. shouting and singing loudly, drinking beer etc.).

• Crowd behavior arises by a shift in salience from personal to a shared social iden-
tity. That is, the members of a crowd share an identity (e. g., football supporter)
and adopt its norms (e. g., sing loudly).

• A social identity is defined in relation to other groups. Humans distinguish be-
tween in- and out-group members. Members of the same group (in-group mem-
bers) are treated differently than out-group members. This was colorfully shown
in a recent study presented in (Novelli, Drury, and Reicher 2010). Novelli, Drury,
and Reicher showed that in-group members keep a smaller personal space to each
other than to out-group members. Another current experiment supports the differ-
ent treatment of in- and out-group members. In (Templeton, Drury, and Philippi-
des 2018), the authors compared the behavior of physical and psychological crowd
members: in comparison to the physical crowd members (out-group), members of
the psychological crowd (in-group) walked slower, walked further, and maintained
closer proximity. The same authors concluded in Templeton and Neville 2020b,
p. 36: “the categorisation of people as ingroup or outgroup members is important
for modelling collective movement in crowds [...]”.

Besides having multiple social identities (e. g., father and football supporter), there
is another important process from the social psychology perspective which should be
taken into account when modeling behavioral changes of agents. In (Turner, Hogg,
et al. 1987), the authors introduce the process of self-categorization as an essential
aspect of collective behavior. The authors conclude that humans categorize themselves
into categories (identities) to which they belong to when coming together in a social
context and they apply the norms of this category. This self-categorization process allows
humans to change categories which leads to behavioral changes of crowds by following
new (social/categorial) norms.

Modern social psychologists subsume the social identity theory and the self-catego-
rization theory under the umbrella term “social identity approach” (Reicher, Spears, and
Haslam 2010). The usefulness and versatility of the social identity approach for ex-
plaining crowd behavior and behavioral changes have been shown by several authors
in the last years. For instance, Drury, Cocking, and Reicher 2009a used the social iden-
tity approach to accurately describe human behavior in emergencies instead of hiding
the observed crowd behavior behind fuzzy words like “panic” or “irrationality” which
were used by classical crowd psychologists. Other researchers used the social identity
approach to accurately describe crowd behavior in different situations (Reicher 1984;
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Haslam, Holme, et al. 2008; Drury, Cocking, and Reicher 2009b; Alnabulsi and Drury
2014; Templeton, Drury, and Philippides 2018).

Introducing multiple identities, norms and self-categorization is an important and very
concrete step towards operationalization of collective actions and behavioral changes of
crowds which can be implemented as computer model for simulations. All these aspects
tackle limitations and inconsistencies of previous crowd psychology theories. Newer
approaches allow to explain violent but also non-violent crowd behavior and will be the
basis of my own implementation.

Summary on modern crowd psychology In his pioneering experiment in 1936, Mu-
zafer Sherif observed that norms are established in groups. This idea was extended by
Ralph Turner and Lewes Killian to the more evolved emergent norm theory for crowding
events in 1957. A long interaction process between crowd members eventually leads
to a shared norm. This was identified as major limitation of the emergent norm theory
and the social psychologists Henri Tajfel and John Turner addressed this by introducing
multiple social identities, norms and self-categorization. These three aspects cover a
wider range of collective behaviors — violent and non-violent — than classical crowd
psychology views allowed for.

4.3 Summary

While classical crowd psychologists stress that crowds are inherently violent (Le Bon,
Allport, Zimbardo), modern crowd psychologists have a more differentiated view on
crowds (Sherif, Turner and Killian, Tajfel and Turner). Their goal is to explain both,
violent but also peaceful crowding events. The classical crowd psychology view was
mainly driven by influential French psychologist Gustave Le Bon at the end of the 19th
century. He argued that crowd behavior is governed by a group mind which is driven by
primitive instincts and a loss of self. In the 20th century, social psychologists questioned
this one-dimensional view on crowds, conducted several experiments and analyzed sev-
eral crowd events (violent and non-violent ones) which dispose of Le Bon’s assertions.
In 1936, Muzafer Sherif observed that norms are established in groups and that group
members act according to that norms. Other social psychologists drew upon the idea
of norms. Ralph Turner and Lewes Killian developed the emergent norm theory which
focuses on a long interaction process between crowd members. Henri Tajfel and John
Turner observed that there is not always a long interaction process necessary for collec-
tive actions of humans. Therefore, they introduced the key concept of multiple social
identities, norms and self-categorization as central aspects for collective actions and be-
havioral changes. Not only they are more valid, but also they are easier to map to a
clean software architecture for behavioral changes contrary to classical views on crowd
psychology. Tab. 4.1 summarizes the social psychology approaches to explain crowd be-
havior which were covered in this chapter.
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Theory founder View Explain crowd
behavior by...

Le Bon 1895 Classical Group mind theory
Allport 1924 Classical Individualism theory
Zimbardo 1969 Classical De-individuation theory
Sherif 1936 Modern Social norms
Turner and Killian 1957 Modern Emergent norm theory
Tajfel 1974 Modern Social identity theory
Turner, Hogg, et al. 1987 Modern Self-categorization theory

Table 4.1: The different approaches of several social psychologists to explain crowd behavior.
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Operationalization of behavioral
changes in simulations
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In the first part of this dissertation, I provided an overview of state-of-the-art ap-
proaches to model pedestrian streams. Mostly, these models let agents walk from sources
to targets while avoiding obstacles and other agents. In the first part, I also shed light
on findings from psychology which affect human decision-making and which can trigger
behavioral changes. These findings cover perceptional, cognitive and social aspects.

The current part of the dissertation addresses the research question:

Research question

How can changes in human behavior be operationalized for simulations?

In the overview of the state of the art, I worked out that there is no universally ac-
cepted locomotion model in the pedestrian dynamics research community. This moti-
vates me to establish an universal approach to allow behavioral changes of agents which
can be used in conjunction with different microscopic locomotion models. I also iden-
tified different psychological implications that affect the behavior of humans. Now, I
will use this knowledge to derive a model for behavioral changes of agents which is (1)
reusable, (2) easy to understand from a conceptual point of view and (3) follows the
KISS (keep it simple, stupid) principle during its implementation (Martin 2008, p. 10).
As visualized in Fig. 1.5 on p. 5, pedestrian dynamics is an interdisciplinary research
topic attracting researchers from natural and life sciences. Thus, I strive for a model
which is easy to understand for both communities and a wide range of researchers. A
simple and slim structure allows to add new findings to my implementation.

First, I will outline the technological foundations for my modeling efforts. Then, I will
explain in detail how I model behavioral changes of agents. In a last step, I will show
the usefulness of the new model by reenacting three real-world scenarios which are also
used to validate my model mostly qualitatively but also quantitatively.
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Chapter

5 Model requirements and
technological foundation
for implementation

This chapter outlines the requirements of my model for behavioral changes of agents and
the technological foundation I base my implementation on. Additionally, I demonstrate
how I ensure a correct implementation by employing several code quality measures.

5.1 Requirements

I will implement my new model in an established simulator to carry out simulations in
the end. By using an established simulator I have sustainability in mind. As simulator,
I choose Vadere which has a strong community and which has features like a graphical
user interface that make it convenient to use. Thus, implementing my model within
its frame enhances chances that it will be used by third parties. A ready-to-use imple-
mentation allows researchers (1) to set up own scenarios quickly and (2) to validate
simulation results without undue effort. The implementation step additionally shows
that the model is not only a vague, verbal description but can be precisely described
mathematically and algorithmically and is a useful step towards more realistic crowd
simulations.

As with every software project, it is useful to explicitly write down the requirements in
the first place. Clearly stated requirements keep the development process focused, define
acceptance criteria for the final “product” and facilitate decisions for the right (software)
design (Balzert 2009). I define the functional and non-functional requirements (denoted
by F and NF) for my model of behavioral changes and its implementation as follows:

F1: Use an established open-source simulator.
Reason: The locomotion layer must not be re-implemented. It must be open source
because scientific work should be transparent and accessible for everyone. An open
and royalty-free implementation has better chances that the model will help others.

F2: Use a well-validated locomotion layer.
Reason: The goal is to get valid simulation results.

F3: The model architecture should fit for several simulators.
Reason: Currently, there is a wide range of simulators and simulation frameworks
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available. Researchers should be able to easily incorporate my model in other reason-
ably designed simulators.

F4: Write unit tests for the implementation.
Reason: Each implementation must be verified automatically because each line of code
is a potential error.

F5: Provide a GUI to quickly check simulation results and behavioral changes of agents.
Reason: As stressed in (Gipps 1986), graphical techniques are an effective tool to
detect faults in computer models. Especially, when modeling psychological aspects
where it is difficult to quantify effects of behavioral changes.

NF6: Apply the KISS (keep it simple, stupid) principle.
Reason: The new model should be understandable for different researchers from nat-
ural and life sciences, especially psychologists and computer scientists.

NF7: Use accepted psychological theories for behavioral changes.
Reason: Draw upon latest scientific findings and not outdated knowledge (classical
versus modern views on crowds, see Sec. 4.3, p. 75).

5.2 Vadere: An open-source framework for pedestrian
dynamics

Vadere: Open source, well-validated locomotion models and a ready-to-use GUI
To lower the development effort and not to reinvent the wheel, I will base my implemen-
tation on an established open-source simulator. As worked out in Sec. 2.2.3, microscopic
pedestrian stream simulations suit best to integrate psychological aspects. In Sec. 2.4, I
presented seven open-source simulators with recent development activities (FDS+Evac,
GAMA, JuPedSim, Menge, MomenTUMv2, SUMO and Vadere). I choose Vadere for my
implementation because it was designed from the ground as a framework to compare
different locomotion models. It is packaged with implementations of several locomotion
models (social force model, optimal steps model, gradient navigation model and oth-
ers) which were carefully validated. Especially, the optimal steps model was validated
in two dissertations (Seitz 2016, p. 65–76, p. 89–91; Seer 2015, p. 39–45) and other
publications (Seitz and Köster 2012, p. 5–6; Sivers and Köster 2015, p. 112–114). Addi-
tionally, Vadere offers a ready-to-use graphical user interface which allows quick, visual
validation of simulation results, see Fig. 5.1.

Vadere’s architecture Vadere uses four topography elements to model pedestrian
streams: sources, targets, obstacles and agents. Agents are created (or spawned) in
sources. After spawning, agents walk to a target while avoiding obstacles and other
agents which is achieved by using a specific locomotion model which updates the agents’
positions in each simulation step. One simulation step is visualized in Fig. 5.2 showing
all the basic modeling components.

Vadere is implemented in the Java programming language by applying the model-
view-controller software design pattern, which is also depicted in Fig. 5.3:
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Figure 5.1: The Vadere GUI helps to create, run and analyze simulation scenarios. Left-hand
side: the top-panel lists input scenario files, the bottom-panel output files. Right-hand side: the
GUI includes a toolbar to create scenarios, which consist of sources, targets, obstacles and
agents. Below the toolbar, a canvas visualizes the current simulation state when a simulation is
running.

Figure 5.2: The basic modeling components for a pedestrian stream in Vadere. Agents (in
blue), are spawned in source areas (green). After spawning, agents walk to target areas
(orange), while avoiding obstacles (gray) and other agents.

• Model: the basic topography elements like sources and targets are implemented
as model classes. A model class just holds information and data about a specific
element, e. g. for sources, the geometric shape and the number of agents to spawn.

• Controller: each model class has a corresponding controller class to update the
model class. For instance, the SourceController spawns the requested number of
agents in each simulation step.
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• View: the graphical user interface (which uses Java’s Swing library) visualizes the
model classes in each simulation step.

uses

User

updates

Model

changes

is seen by

Controller View

1

2 3

4

Figure 5.3: The model-view-controller software design pattern which is adopted by Vadere: a
user updates the model via the controller which is visualized by the view.

In summary, Vadere consists of five software packages with several classes in each
package: gui (= view), simulator (= controller), state (= model), meshing and
utils. The utils package contains helper classes for input/output operations and
geometric calculations, e. g. writing output files and calculating intersections of two
geometric shapes. The controller package also contains so called “output processors”
which can be used to log data in each simulation step. Besides the position of each
agent, additional information can be logged, e. g. the speed of each agent. The meshing
package provides classes and methods for mesh generation and for solving the eikonal
equation during floor field generation, see Sec. 2.2.3 for details. Fig. 5.4 summarizes all
important packages and classes of the Vadere simulator.
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Figure 5.4: Important classes and packages of the Vadere simulator and their interaction (own
graphic but inspired by: Kleinmeier, Zönnchen, et al. 2019, p. 19).

Vadere’s simulation loop Vadere’s core is its simulation loop — like for any other
simulation software. In each simulation step, a locomotion model updates the agents’
positions and then a time variable is incremented, see List. 5.1.

Listing 5.1: Vadere’s simulation loop: a locomotion model is responsible for updating the
positions of agents in each simulation step. Then, the simulation time is incremented.

1 while (simulationIsRunning) {
2 ...
3 // A locomotion model searches the next
4 // position for an agent which is closer
5 // to a target than currently.
6 locomotionModel.update(agents , time);
7 ...
8 time ++;
9 }

Fig. 5.5 visualizes three simulation steps of the simulation loop (List. 5.1) in which the
optimal steps model updates the agents’ positions.

Vadere has been designed as a framework to compare different locomotion models.
Therefore, each locomotion model must implement an interface. The generic simulation
loop in List. 5.1 just holds a reference to this interface without knowing the concrete
implementation and how the agents’ positions are updated. By applying this strategy
pattern, different locomotion models can be included easily. Adding a new locomotion
model requires implementing four methods:
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(a) Time: 2.8 s (b) Time: 6.8 s (c) Time: 13.6 s

Figure 5.5: Agent positions at three different time steps using the optimal steps model

• initialize(): is called before the simulation starts, to initialize the locomotion
model.

• preLoop(): is called before the simulation starts to carry out model-specific ac-
tions.

• postLoop(): is called after the simulation finished to perform clean-up actions.

• update(): is called in each simulation step to update the agents’ positions.

Vadere’s input and output Vadere stores all input parameters for the simulation, e. g.
sources, targets and obstacles, in a JSON-based text file, see List. 5.2. The simulation
output is written to a CSV-file, see List. 5.3. The output can be directly visualized in
the Vadere GUI when the simulation is carried out and it can be replayed afterwards.
Fig. 5.6 summarizes the typical steps to carry out a simulation in Vadere.
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Listing 5.2: Vadere’s JSON-based input file format. The input file stores all simulation
parameters.

1 {
2 "name" : "Sample Scenario",
3 ...
4 "scenario" : {
5 "mainModel" : "... OptimalStepsModel",
6 ...
7 "attributesSimulation" : { },
8 "topography" : {
9 ...

10 "obstacles" : [ ... ],
11 "stairs" : [ ... ],
12 "targets" : [ ... ],
13 "sources" : [ ... ],
14 "dynamicElements" : [ ],
15 "attributesPedestrian" : {
16 "radius" : 0.195 ,
17 "speedDistributionMean" : 1.34,
18 "speedDistributionStandardDeviation" : 0.26,
19 ...
20 },
21 ...
22 }
23 }
24 }

Listing 5.3: Vadere’s CSV-based output file format: the positions of three simulated agents.

1 timeStep pedestrianId x y
2 1 1 1.67 4.87
3 1 2 1.59 3.03
4 1 3 1.31 2.51
5 2 1 2.40 5.14
6 2 2 2.29 2.77
7 2 3 1.76 1.73
8 ...

1. Configuration 2. Simulation 3. Analysis
Input file containing:

Topography
Locomotion model
Output processors
...

Extension: .scenario

Output files:

postvis.trajectories
...

vadere-gui.jar

vadere-console.jar

or

Figure 5.6: The three steps to carry out simulations with Vadere: (1) Configure the simulation
parameters. (2) Use Vadere’s graphical user interface or its command-line interface to run the
scenario file. (3) Analyze the simulation output (mainly agent trajectories) by using the GUI or
self-written scripts (e.g. in Python or Matlab) (own graphic but inspired by: Kleinmeier,
Zönnchen, et al. 2019, p. 17).
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5.3 Code quality measures

In this dissertation, I strive for a valid model of behavioral changes of agents which
accurately replicates real-world observations. To ensure validity, I carry out simulations
and compare them with real data in Sec. 7. But, a simulation model can only yield
“accurate” results if the model is correctly implemented. To mitigate the probability of
errors in the implementation phase, I apply the following measures:

1. I follow the clean code guidelines in Martin 2008. Especially, I use descriptive
names for variables and methods instead of short and cryptic names. This ensures
that my code can be understood and verified by non-experts. Descriptive names
also avoid “magic numbers”. For instance, see the variable requiredFootSteps in
List. 2 (line 34, appendix 2, p. 169).

2. I program short methods, which solve a single problem at a time, in a test-driven
approach. As first step, I implement the unit tests and then I code the actual
method implementation. This leads to reusable methods with a well-defined in-
terface. For instance, compare method pedestrianCannotMove() in List. 2 (line
30–42, appendix 2, p. 169).

3. I apply the continuous integration (CI) and continuous deployment (CD) prac-
tice (Beck 1999; Fowler 2006; Duvall, Matyas, and Glover 2007). That is, each
committed source code change triggers a continuous integration pipeline. In the
pipeline, first, verification tests are carried out (the unit tests). Then, basic valida-
tion tests are carried out. Several of them have been standardized by the research
community (see RiMEA test cases, Sec. 2.5.1, p. 55). As last step, the Vadere sim-
ulator including my new model is packaged as ZIP package and is deployed to
http://www.vadere.org/download/.

The continuous integration/deployment approach brings two important benefits.
On the one hand, continuous integration provides immediate feedback to devel-
opers and reveals if newly introduced code breaks existing functionality. On the
other hand, continuous deployment makes Vadere and my new model easily ac-
cessible for users. Users just have to download the ZIP package and install the
Java runtime environment as only dependency. Then, they can execute the simu-
lator, try out my model and can report misbehavior. This continuous deployment
approach promotes the scientific exchange between researchers and users. Fig. 5.7
visualizes the continuous integration/deployment pipeline which is implemented
by using the Git version control system (Git Contributors 2015) and the GitLab
repository manager (GitLab Contributors 2018).

4. I document code sufficiently so that other developers can use the code.

5. The code is open source and accessible for everyone under https://gitlab.lrz.
de/vadere/vadere.
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2. Run validation tests (RiMEA tests)
3. Deploy Vadere on vadere.org/download

Figure 5.7: My continuous integration/deployment approach to promote scientific exchange
with users. Changes to the source code trigger a continuous integration pipeline in which
verification and validation tests are carried out (unit tests and RiMEA test cases) and finally the
Vadere simulator is deployed to http://www.vadere.org/download/.

5.4 Summary

My model for behavioral changes of agents shall fulfill seven requirements: five func-
tional and two non-functional requirements. One of my primary goals is described by
the third functional requirement F3: the model architecture should fit for several sim-
ulators. This is utterly important because, currently, there are a plethora of simulators
and simulation frameworks for pedestrian dynamics. My model should be beneficial for
all of them and the whole pedestrian dynamics research community.

I will base my implementation on an established open-source simulator. This lowers
the development effort because the locomotion layer must not be re-implemented. Ad-
ditionally, an established simulator improves the sustainability of my model. An existing
user base can directly apply my new model without getting familiar with a new simu-
lation tool. I choose Vadere which is packaged with different locomotion models and a
graphical user interface which makes the simulator easy to use.

I strive for a valid model which is error-free from an implementation point of view as
much as this can be achieved. Thus, I will apply several measures to verify the correct-
ness of my implementation. I will strongly follow the clean code guidelines by Martin
2008 and develop the code in a test-driven approach. A carefully configured continuous
integration pipeline ensures that unit tests and validation tests are executed upon each
source code commit.
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Chapter

6 Modeling collective be-
havioral changes using
a single concept: Imple-
mentation of a psychol-
ogy layer

As worked out in the literature overview in Part I, there are two crucial aspects which
lead to behavioral changes of humans: perception and cognition. Humans perceive
their environment, process this (and additional) information and react accordingly by
choosing from a repertoire of different behaviors. Fig. 6.1, p. 89, visualizes the most
important modeling influences from the psychology of decision-making, from social psy-
chology and locomotion modeling, and my operationalization of behavioral changes for
pedestrian simulations.

As a first step, I will implement this observations as minimally-invasive and reusable
architecture in the open-source simulator Vadere. This implementation follows an uni-
versal approach and can be reused in other pedestrian dynamics simulation tools. It is
described in this chapter Sec. 6. In a further step, in Sec. 7, I will use real-world exam-
ples to enrich this generic architecture with application-specific knowledge from social
psychology to make simulations more realistic and get behavioral changes of agents as
emergent effect.

6.1 Operationalization of psychological processes to a
reusable model1

Like for any other simulation software, a pedestrian stream simulator’s core is a simu-
lation loop in which time is incremented. In this loop, a locomotion model is respon-
sible for finding the next position for each agent in each simulated time step (compare
List. 6.1).

1The content of the following two sections follows and enlarges on my peer-reviewed publication Klein-
meier, Köster, and Drury 2020, p. 7–9. The two sections reflect my own and personal modeling efforts
to allow behavioral changes of agents.
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Figure 6.1: From the real-world complexities to a simplified and reusable model to allow
behavioral changes of agents: real human perceive their environment, process this (and
additional) information and react accordingly by choosing from a repertoire of different
behaviors.

Listing 6.1: A typical simulation loop of a pedestrian stream simulator (listing: Kleinmeier,
Köster, and Drury 2020, p. 7).

1 while (simulationIsRunning) {
2 ...
3 // A locomotion model searches the next
4 // position for an agent which is closer
5 // to a target than currently.
6 locomotionModel.update(agents , time);
7 ...
8 time ++;
9 }
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Most of the current locomotion models (Helbing and Molnár 1995; Antonini, Bierlaire,
and Weber 2006; Seitz and Köster 2012; Dietrich and Köster 2014) only include physical
aspects to navigate an agent through an environment. For instance, obstacles repel an
agent while targets attract agents.

But, the key is to include also the psychological status of an agent in each simulation
step. This layer represents the mental processes of perception and cognition of real
humans (Gerrig 2013, p. 206 ff.) and effects the behavior of an agent. Additionally that
means, instead of having just one behavior — that is, moving towards a target — an
agent must have a behavioral repertoire from which the agent can choose to react to its
environment. For pedestrian stream simulations that means, that agents

• on perception sub-layer, perceive environmental stimuli in a sight / search radius
r.

• on cognition sub-layer, use information from the perception sub-layer and enrich
it with information about neighboring agents to include the social psychology per-
spective. Agents can categorize themselves as in- or out-group members in com-
parison to their neighboring agents and follow the social norms of this group.
For instance, in-group members trust each other and imitate behavior of other
in-group members to allow collective actions across agents. I employ the term
self-category here because the social psychologists Templeton and Neville state
that “self-categorisation [...] becomes the psychological basis for crowd behavior”
(Templeton and Neville 2020b, p. 20).

• on locomotion layer, agents choose from a repertoire of different behaviors (e. g.,
wait, make step towards target, swap with other agent) to get closer to their phys-
ical target.

Fig. 6.2, p. 91, visualizes the sequential processing of information inside the intro-
duced psychology layer. The lower layers, e.g. Cognition, only process the information
from the direct upper layer. That means, an agent firstly perceives environmental stim-
uli, then an agent processes this information in the cognition layer and enriches it with
further information. This simple architecture reflects what real humans do: they per-
ceive, process and react to this information with a specific behavior. For instance, look up
the figures in Sec. 7 to see the model in action and how target-oriented agents become
cooperative and swap places to reach their targets.

The main advantage of those clearly separated psychology layers is that experts in
psychology or other fields can implement the perception and cognition sub-layer with-
out knowing implementation details of the pedestrian stream simulator. A locomotion
expert can implement specific locomotion strategies. For instance in a scenario with
counterflowing agents, if cooperative behavior does not mean swapping two agents,
another locomotion strategy can be implemented on the locomotion layer. This clean
software architecture makes it possible to work on a pedestrian stream simulator inter-
disciplinarily combining knowledge from different research domains, like proposed by
Templeton and Neville 2020b, p. 46.

Introducing this psychology layer (with sub-layers perception, cognition and pre-
existing locomotion) modifies the existing simulation loop List. 6.1 only very slightly
and keeps the overall software architecture simple and easy to implement according to
the KISS principle (Axelrod 1997, p. 18 Martin 2008, p. 10), compare List. 6.2.
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Figure 6.2: The three sequential phases of the new psychology layer: firstly, agents perceive
environmental stimuli. Secondly, agents process these information in a cognition phase and
enrich it with further (context-relevant) information. Thirdly, agents react to the processed
information by selecting a behavior from a behavioral repertoire on locomotion layer. The
behavioral repertoire on the locomotion layer should cover different real-world situations. For
instance, make a step towards a target (e. g., a train station), wait at a platform (that is, to not
move) or escape when a stimulus is perceived as threat (which consists of several locomotion
patterns) (own graphic but inspired by: Kleinmeier, Köster, and Drury 2020, p. 7).

Listing 6.2: The new simulation loop which contains the added psychology layer with
sub-layers perception, cognition and behavior (listing: Kleinmeier, Köster, and Drury 2020,
p. 8).

1 while (simulationIsRunning) {
2 ...
3 // Perception
4 perceptionModel.update(agents , stimuli);
5 ...
6 // Cognition
7 cognitionModel.update(agents);
8 ...
9 // Locomotion

10 locomotionModel.update(agents , time);
11 |
12 +-> if (agent.selfCategory == COOPERATIVE) {
13 Agent candidate = findSwapCandidate ();
14 swapAgents(agent , candidate);
15 }
16 ...
17 time ++;
18 }

perceptionModel and cognitionModel are implementations of interfaces. Using this
design decision — the strategy pattern — allows to extend a pedestrian stream simu-
lator to a tool to also test psychological hypotheses. That means that it is possible to
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change the perception and cognition model for each simulation run and to cover differ-
ent real-world situations. For instance, a protest march differs from a daily commuting
situation which affects humans’ perception, cognition and locomotion, e. g. the personal
space. The personal space is a small protective sphere that humans maintain between
themselves and others (Hall 1966, p. 119). For instance, humans allow closer proximity
to others in an overcrowded subway but keep a greater distance from each other in an
open space. Using an interchangeable approach also reflects the fact that a simulation
tool cannot provide a “one-fits-all-situations” model. Therefore, I facilitate interfaces
with only two methods here, see UML diagrams Fig. 6.3 and Fig. 6.4

<<Interface>>
IPerceptionModel

// No member variables

+ initialize( topography: Topography ): void
+ update( agents: Collection<Agent>,

      stimuli  List<Stimulus> ): void

In a simulation step, multiple environmental stimuli can occur. A concrete perception model,
e.g. SimplePerceptionModel, ranks which stimulus has the highest priority for an agent. For instance
if a soft whistle and a loud bang occur simultaneously, the loud bang has a higher priority and should
be handled in the subsequent cognition process.
The Topography represents the environment. I.e., it contains obstacles etc. It is stored by a model so
that agents can retrieve this information.
The update() method iterates over all agents, ranks the current environmental stimuli at a specific
time step (i.e., multiple stimuli can occur at a specific time step) and stores the most important one
inside the agent.

SimplePerceptionModel

- topography: Topography

+ initialize( topography: Topography ): void
+ update( agents: Collection<Agent>,
     stimuli  List<Stimulus> ): void
- rankStimuli( stimuli List<Stimulus>,
     agent Agent ) Stimulus

...

// Variables
...

// Methods
...

Figure 6.3: UML diagram of the interface and interface implementations of the perception
sub-layer. Private access is prefixed with the minus symbol and public access is prefixed with
the plus symbol.
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<<Interface>>
ICognitionModel

// No member variables

+ initialize( topography: Topography ): void
+ update( agents: Collection<Agent> ): void

CooperativeCognitionModel

- topography: Topography

+ initialize( topography: Topography ): void
+ update( agents: Collection<Agent> ): void

EvasionCognitionModel

- topography: Topography

+ initialize( topography: Topography ): void
+ update( agents: Collection<Agent> ): void

ThreatCognitionModel

- topography: Topography

+ initialize( topography: Topography ): void
+ update( agents: Collection<Agent> ): void

Implementations of ICognitionModel use the prioritized stimuli
from the perception sub-layer and use additional information to
decide which behavior to use next. Additional information are for
instance:

The average speed of the last n time steps in case of
CooperativeCognitionModel.
The in-/out-group relationship in case of
ThreatCognitionModel.
The possible collision with a counterflowing agent in case of
EvastionCognitionModel.

Later on, the locomotion layer can retrieve the information from the
cognition sub-layer to select a locomotion behavior.

Figure 6.4: UML diagram of the interface and interface implementations of the cognition
sub-layer. Private access is prefixed with the minus symbol and public access is prefixed with
the plus symbol.

The final psychological status, after processing the perception and cognition sub-layer,
is stored inside the agent and can be retrieved on the locomotion layer to select the
appropriate action, compare Fig. 6.5, p. 94. Such a detailed psychology status reflects
latest ideas from social psychologists to enhance pedestrian simulations. Templeton and
Neville formulated following requirements for new agent-based crowd models (Temple-
ton and Neville 2020b, p. 47 ff.):

• “First, each agent should be given the ability to have both a personal and social
identity.”
This is reflected in my new model by the broader concept of (social) categories which
can cover different real-world scenarios. I argue that category names like TARGET_
ORIENTED or COOPERATIVE are easier to interpret in terms of locomotion behavior
than (social) identities like “father” or “football supporter”.

• “Second, agents should be given social identities and the ability to know both their
own social identity and the social identities of others.”
The self-category is stored in each agent and can be retrieved by other agents in each
simulation loop.

• “Third, further research could focus on the changing perceptions of group mem-
bership and the implications this has for levels of help provided among crowd
members.”
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Additionally to the self-category, in my model, an agent also stores its group mem-
bership in terms of in- and out-group membership. Two (or more) in-group members
trust each other and can collaboratively act together by imitating behavior (that is,
changing the self-category). Contrarily to in-group members, out-group members do
not trust each other and stick to their social category in the course of a simulation.

Adding a self-category and a group membership to each agent is a simple implemen-
tation of Turner’s self-categorization theory. This allows agents to identify their own
social category and also others’ category in the course of a simulation and to change
the category as consequence of environmental stimuli or social events. Additionally, the
group membership allows to identify other agents as in- or out-group members and al-
lows collective actions among in-group members which was reported by several social
psychologists in the past (Reicher 1984; Drury, Cocking, and Reicher 2009a; Drury,
Cocking, and Reicher 2009b).

Agent

- psychologyStatus: PsychologyStatus
...

+ getMostImportantStimulus(): Stimulus
+ getSelfCategory(): SelfCategory
+ getGroupMembership(): GroupMembership
...

PsychologyStatus

- mostImportantStimulus: Stimulus
- selfCategory: SelfCategory
- groupMembership: GroupMembership
...

+ getMostImportantStimulus(): Stimulus
+ getSelfCategory(): SelfCategory
+ getGroupMembership(): GroupMembership
...

Use UseUse

Extends Extends

Threat

- origin: Point2D
- radius: double
- loudness: double

+ getOrigin(): int
+ getRadius(): double
+ getLoudness(): double
...

...

// Variables
...

// Methods
...

<<Enumeration>>
SelfCategory

TARGET_ORIENTED
COOPERATIVE
EVADE
THREATENED
COMMON_FATE
...

<<Enumeration>>
GroupMembership

IN_GROUP
OUT_GROUP
...

<<Abstract Class>>
Stimulus

+ timestamp: double

+ getTimestamp(): double
+ setTimestamp( timestamp: double ): void
...

Figure 6.5: The psychology status is stored in the agent class. It consists of the currently most
important stimulus, the agent’s self-category and agent’s group membership in terms of in- and
out-groups.
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6 Modeling collective behavioral changes using a single concept: A psychology layer

As Fig. 6.5 shows, I introduce the following categories in the enum SelfCategory as
first step towards the self-categorization theory: TARGET_ORIENTED, COOPERATIVE, EVADE,
THREATENED and COMMON_FATE. These first categories are required to accurately reenact
the real-world use cases in Sec. 7. One could argue that these are not typical categories
as used in social psychology, because psychologists demand (social) identities as result
of a self-categorization process. Instead, these categories indicate which behavior is
expected on the locomotion level as a result of the self-categorization. I argue as follows:

1. TARGET_ORIENTED: Being target-oriented is the behavior of a person whose salient
social identity makes to look at the people around him/her as out-group. Such
target-oriented persons act more competitive by blocking others and they try to
leave a scene as quickly possible without helping others.

2. COOPERATIVE: In contrast, cooperative persons categorize themselves as in-group
members and help each other. In a dense crowd, a cooperative person would swap
places with another cooperative person. In-group members are willing to imitate
or copy behavior of other in-group members because they trust each other.

3. EVADE: Evading others is a consequence of a person’s categorization as out-group
to others. In contrast to the target-oriented category, others are seen more friendly
and they are not blocked or hindered as target-oriented identities would do.

4. THREATENED: Persons categorize themselves as threatened as an immediate re-
sponse to dangers or hazards. As an immediate reaction, people’s goal is to flee
and others are recognized as out-group and are ignored.

5. COMMON_FATE: Besides feeling out-group to each other as immediate reaction to a
threat, it was also reported that people share a common fate identity a bit after a
threat was perceived. For example, after the bombings in the London subway in
2005, survivors of the bombings helped each other instead of fleeing egoistically
(Drury, Cocking, and Reicher 2009b). The survivors shared a common fate after
being inside the same threat area.

I argue that all five introduced categories are a result of a self-categorization process.
This categorization process and the change between the categories can lead to different
collective behaviors as we will see in the use cases in Sec. 7. For the sake of simplicity and
making the architecture reusable, I directly map the result of the cognitive process to a
(social) category which better describes what is expected on locomotion layer instead of
introducing identities. Otherwise, another layer of complexity would have to be added
with social identities (e. g. commuters) and different norms and behaviors for each
identity (e. g. target-oriented, cooperative etc.). My proposed categories must be seen
as a starting point for more elaborated social categories.

6.2 Implementation steps

The operationalized psychology layer from Sec. 6.1 is implemented in Vadere (Klein-
meier, Zönnchen, et al. 2019; Vadere team 2020). The following steps are carried out:
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6 Modeling collective behavioral changes using a single concept: A psychology layer

1. Add the psychological state to agents by introducing model classes (compare UML
diagram in Fig. 6.5, p. 94):

a) Add abstract class Stimulus and concrete stimuli implementations like Threat
(with an origin, a loudness and a radius).

b) Add enums SelfCategory and GroupMembership.

c) Add class PsychologyStatus, as wrapper for Stimulus, SelfCategory and
GroupMembership, to Agent which allows to update the psychological state in
each simulation step.

2. Update the psychological state in each simulation step by introducing controller
classes for perception and cognition:

a) Add interfaces IPerceptionModel and ICognitionModel (see UML diagrams
Fig. 6.3, p. 92, and Fig. 6.4, p. 93).

b) In a first step, implement simplified controllers for perception and cognition.
Later on, replace simplistic implementations with application-specific knowl-
edge from experts. As first step, implement SimplePerceptionModel and
SimpleCognitionModel. SimplePerceptionModel just ranks the occurred
stimuli (which is necessary if multiple stimuli occur simultaneously). For
instance, a Threat has a higher priority than a red traffic light. Simple
CognitionModel fixes an agent’s SelfCategory to TARGET_ORIENTED unless
a high-priority stimulus is perceived, compare List. 6.3, p. 97.

3. Extend the behavioral repertoire of agents and use it on locomotion layer:

a) Add class OSMBehaviorController to encapsulate different locomotion strate-
gies for the optimal steps model.

b) Implement methods like makeStepToTarget(), wait(), swapPedestrians()
to cover a wide range of real-world scenarios.

c) During locomotionModel.update(), evaluate agent.getSelfCategory() and
react accordingly, compare List. 6.4, p. 97.
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Listing 6.3: The update() method of class SimpleCognitionModel.

1 public class SimpleCognitionModel implements ICognitionModel {
2 ...
3 public void update(Collection <Pedestrian > pedestrians) {
4 for (Pedestrian pedestrian : pedestrians) {
5

6 Stimulus stimulus = pedestrian.getMostImportantStimulus ();
7 SelfCategory nextSelfCategory;
8

9 if (stimulus instanceof Threat) {
10 nextSelfCategory = SelfCategory.THREATENED;
11 } else if (stimulus instanceof ElapsedTime) {
12 nextSelfCategory = SelfCategory.TARGET_ORIENTED;
13 } else {
14 throw new IllegalArgumentException (...);
15 }
16

17 pedestrian.setSelfCategory(nextSelfCategory);
18 }
19 }
20

21 }

Listing 6.4: The update() method of class UpdateSchemeEventDriven of the optimal steps
locomotion model.

1 public class UpdateSchemeEventDriven implements UpdateSchemeOSM {
2 ...
3 void update(PedestrianOSM pedestrian , double timeStepInSec , double

currentTimeInSec) {
4 ...
5 SelfCategory selfCategory = pedestrian.getSelfCategory ();
6

7 if (selfCategory == SelfCategory.TARGET_ORIENTED) {
8 osmBehaviorController.makeStepToTarget(pedestrian , topography

);
9 } else if (selfCategory == SelfCategory.COOPERATIVE) {

10 PedestrianOSM candidate = osmBehaviorController.
findSwapCandidate(pedestrian , topography);

11

12 if (candidate != null) {
13 pedestrianEventsQueue.remove(candidate);
14 osmBehaviorController.swapPedestrians(pedestrian ,

candidate , topography);
15 pedestrianEventsQueue.add(candidate);
16 } else {
17 osmBehaviorController.makeStepToTarget(pedestrian ,

topography);
18 }
19 }
20 ...
21 }
22 }
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6.3 Making the psychology layer optional

In an additional step, I recommend to make the new psychology layer optional. This
has two benefits: (1) It saves computational time in each simulation step when no
psychological aspects are required to reenact a real-world observation. (2) It retains
the original simulator purpose (mostly evacuations) and agents do not change their
behavior. That is, in most simulators, agents act in a target-oriented way and agents
shall move closer to their targets in each simulation step. Making the psychology layer
optional requires to introduce a boolean flag usePsychologyLayer in the simulation
loop. If this flag is false, the perceptional and cognitive phases are skipped and only
the locomotion layer is executed in each simulation step.

Listing 6.5: Making the psychology layer optional saves computational time and keeps the
original simulator behavior. It only requires to introduce a boolean flag usePsychologyLayer.

1 scenarioFile = readScenarioFile(filename);
2

3 while (simulationIsRunning) {
4 ...
5 if (scenarioFile.usePsychologyLayer ()) {
6 perceptionModel.update(agents , stimuli);
7 cognitionModel.update(agents);
8 }
9

10 locomotionModel.update(agents , time);
11 time ++;
12 }

6.4 Summary

In the literature overview in Part I, I presented a wide range of factors which influence
the human decision-making process and lead to changes in human behavior. My goal
is to establish a reusable software architecture which can be also applied to different
pedestrian stream simulators as a benefit for the whole pedestrian dynamics research
community. Therefore, I chose a minimally invasive implementation. I focused on
the three crucial psychological aspects perception, cognition and a behavioral reper-
toire. These three aspects are realized as three sequential steps in the simulation loop of
Vadere. First, an agent perceives environmental stimuli. Then, an agent uses this infor-
mation and adds additional information (like the SelfCategory of neighboring agents)
to process this information in a cognitive process. Lastly, based on this cognitive pro-
cess, the agent uses its SelfCategory to select a locomotion action from the behavioral
repertoire. To this end, I added a PsychologyStatus to agents which is updated in each
simulation step.

This approach is a straight-forward mapping of psychological processes (perception
and cognition) to a clean and re-usable software architecture. I applied the strategy
software design pattern on the perception and cognition phase. That is, the simula-
tion loop of Vadere only knows the interfaces IPerceptionModel and ICognitionModel.
Perception and cognition experts can provide different implementations for these inter-
faces to cover a wide range of real-world examples. Then, simulator users can employ
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different perception and cognition models for each simulation run. This clear separa-
tion allows experts in corresponding fields to implement their findings without knowing
the rest of the simulation framework. This requires minimal programming experience
and allows working interdisciplinarily on a pedestrian stream simulator and combining
expertise from natural and life sciences. Despite the minimal changes in the software
architecture, this implementation fundamentally improves on Vadere. It now is not only
a tool to test locomotion hypotheses, but also a tool to explore psychological hypotheses
about perception and cognition. The architecture is minimally invasive and can easily
be implemented in other simulators.

Of course, this approach is a simplification of the real world. For instance, the per-
ception process does not cover all the sensory aspects like transduction or transmitting
neural impulses. But, I argue that this simplification is necessary to obtain a reusable
architecture for pedestrian simulators which can be easily understood by a wide range
of researchers: from sociologists and psychologists to mathematicians and computer sci-
entists. Also, not all intricacies of the perception process need to be covered to obtain a
correct model of behavioral changes.
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Chapter

7 Model validation and ap-
plication: Demonstrating
behavioral changes of
agents in simulations to-
wards natural behavior

As the British mathematician George Box said, “all models are wrong, but some are
useful” (Box 1976). That’s certainly true because scientific models always fall short of
the complexities of reality. Nevertheless, with my work I strive for a model that is useful
for other researchers and practitioners like crowd managers. Especially, practitioners
can benefit from simulations by trying out “what if” scenarios in the planning phase
of crowd events to avoid casualties like seen in the past (e. g., at the Love Parade music
festival 2010 in Germany, see Helbing and Mukerji 2012). Simulations can help to detect
critical high densities or to test how environmental stimuli like a loud bang can change
the atmosphere at an urban parade from a peaceful march to a chaotic escape situation.
To ensure the usefulness of my new model for behavioral changes of agents presented
in 6, I base my validation on three pillars:

1. I implement approved psychological theories which are carefully identified by the
thorough literature review in Sec. 3 and Sec. 4.

• These theories are accepted by the psychological community and were re-
viewed by experts in this field.

• Additionally, these theories have been applied in practice for several years
and have shown their usefulness.

2. I test the model implementation quantitatively and qualitatively against empirical
data.

• The quantitative and qualitative data is derived from an own experiment
which I conducted at the Munich University of Applied Sciences with 58 par-
ticipants in October 2018.

• More qualitative data is derived from a real-world incident at Oxford Street,
London, in 2017 were a false alarm caused thousands of people to change
their behavior from shopping to escaping.
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3. I carry out a sensitivity study to reveal the effects of introduced parameters.

• The overall goal is to keep the number of introduced parameters small to
make the model understandable by different research communities, both nat-
ural and life sciences.

• I vary input parameters systematically and test the effect on interesting output
quantities.

Concretely, I will demonstrate the versatility of my modeling approach from Sec. 6.2
by using two real-world use cases and one fictional use case. Before carrying out simula-
tions, I will use the generic architecture from Sec. 6.2 to add application-specific knowl-
edge to the cognition layer to be able to reenact the observed behavior from the use
cases. The following three use cases will be shown:

• The first use case represents an own experiment and is validated quantitatively
and qualitatively.

• The second use case represents a false-alarm which occurred at Oxford Street in
2017. This use case is validated qualitatively and effects of introduced model
parameters are tested in a sensitivity study.

• The last use case, a fictional scenario with counterflowing agents in a narrow cor-
ridor, is validated qualitatively.

In the following, I describe the scenario, the application-specific knowledge comple-
menting the generic architecture from Sec. 6.2 and the simulation results for each use
case in more detail.

My goal for all simulations is to use default parameters of existing code which I used
as foundation. Especially, this holds for locomotion parameters as they were defined
by the original authors, for instance, the default parameters of the optimal steps model
as defined in Seitz 2016. My implementation shall seamlessly work with an existing
simulator to show that this approach can be used in other simulators as well without
heavily tweaking of existing code.

7.1 Use case 1 — Experiment: Motion through a dense
and stationary crowd (at Munich University of Ap-
plied Sciences 2018)1

This use case represents an own experiment which I conducted at the Munich University
of Applied Sciences in 2018 and is validated quantitatively and qualitatively.

1The content of this section follows and enlarges on my peer-reviewed publication Kleinmeier, Köster,
and Drury 2020. The content reflects my own and personal contribution to the experiment, the ex-
periment analysis and the derived model for cooperative behavior. The publication was supported by
well-respected co-authors from mathematical modeling and social psychology. To ensure consistency in
this work, I mostly chose the “I” formulation in this section even if my arguments were backed up by
the co-authors.
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7.1.1 Scenario description

Simulations for pedestrian dynamics are nowadays used to make crowd gatherings safer.
Yet, the underlying pedestrian stream models only work well for very specific scenarios.
For instance, unidirectional pedestrian flows or queuing behavior. But often locomotion
models fail for setups that seem only slightly different. For instance, when a first aid-
attendant needs to forge a path through a dense crowd to reach an injured person. When
reenacting such a real-world situation in current simulation tools, agents often get stuck
and end up in a deadlock situation. This is because there is no real interaction between
agents, compare Fig. 7.1.

(a) Social force model (b) Optimal steps model

Figure 7.1: A walking agent (red) starts walking at the bottom area and tries to reach the
rectangular target area on top while confronted with a dense, stationary crowd. In simulations,
one cannot observe real interaction between agents when using different physically-inspired
locomotion models. Either the walking agent “ignores” the dense, stationary crowd and walks
on other agents which could not happen in real life (a). Or the crowd blocks the walking agent
completely because of the high density (b). The open source simulator Vadere was used for the
simulations (image: Kleinmeier, Köster, and Drury 2020, p. 2).

From real life, we know that humans interact with each other and act cooperatively.
Imagine a crowded music festival where participants forge their path to the toilette. But,
today’s pedestrian models mostly focus on locomotion aspects solely and neglect the
psychological aspects which influence human decision-making to resolve the aforemen-
tioned scene at the music festival. In order to reveal how humans interact cooperatively
with each other in a high-density situation, I conducted a controlled experiment in the
foyer of the Munich University of Applied Sciences on Oct 12, 2018 (11:45 – 13:00). A
controlled experiment allowed me to have the full control about the environment and
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to avoid priming of participants and observer biases (Gerrig 2013, p. 20–37). The whole
experiment is described in more detail in Kleinmeier, Köster, and Drury 2020. The mea-
sures I took to avoid observer biases and priming are outlined in Kleinmeier and Köster
2020.

Experiment setup In the experiment, I observed how a participant walks through a
dense, waiting crowd. To this end, I kept 58 participants in a separate waiting room.
The participants were entertained by experiment assistants with quizzes and discussions
to keep the atmosphere as normal as possible. To avoid any priming, the participants re-
ceived minimal information. The participants signed an informed consent form with the
title “Study on movements of pedestrians”. The form stated that no physical risks were
involved and that the experiment was recorded on camera. I chose first-year students in
their second week as participants to ensure that they did not know anything about the
experiment’s intentions.

During the experiment, 13 participants stood in a delimited area of 2.64 m2 (1.55 m ×
1.70 m) as a waiting crowd. In each experiment run, the walking participant successfully
crossed the crowd along what would be the y-axis in Fig. 7.2. The density while crossing
was ρ = 5.30 ped/m2. For each experiment run, I randomly chose one person from the
waiting room and assigned this person as walking participant. For the very first run, I
also chose 13 persons from the waiting room and assigned them as waiting crowd. The
experiment set-up is depicted in Fig. 7.2 and described in more detail in Kleinmeier and
Köster 2020.

Target

Starting point

Waiting area
of ~2.6 m²
for 13 persons

10
.3

0 
m

9.
40

 m

1.
70

 m

1.55 m

(a) Schematic experiment setup (b) Real experiment setup

Figure 7.2: The experiment setup: a waiting crowd of 13 participants in a delimited area of
2.64 m2 is successively crossed by a participant (image: Kleinmeier and Köster 2020, p. 3).

I took two measures to avoid training effects for the waiting crowd: (1) After each
run, a staff member shuffled the waiting crowd. To this end, the waiting crowd were
asked to leave and re-enter the waiting area, so that the positions of the participants
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were shuffled. (2) After five runs, seven random participants of the waiting crowd were
replaced by seven participants from the waiting room, who were also chosen randomly. I
also took several measures to avoid observer biases like using a standardized experiment
procedure with consistent instructions for all participants. The walking participants were
instructed with the sentence “Go to the tree by crossing the crowd”. The waiting crowd
was instructed with “Wait in the delimited area”. See Kleinmeier and Köster 2020 for
a description of all measures against observer biases. Tables on the left- and right-
hand side of the waiting area prevented the participants from leaving the waiting area
accidentally.

In total 58 students participated in the experiment. 27 of them (men and women),
aged 19–66, were assigned as walking participants and performed 30 runs (compare
Fig. 7.3). I collected gender, age, height and shoulder width for each walking participant.

male

70.37% (19)

female

29.63% (8)

(a) Gender
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Mean: 24.63 years
Std: 10.22 years

(b) Age

Figure 7.3: Gender and age distribution of the 27 walking experiment participants (image:
Kleinmeier, Köster, and Drury 2020, p. 4).

The experiment was filmed from above at an angle of around 60◦ (compare Fig. 7.2).
I recorded the experiment with a camcorder, the Sony Handycam HDR-PJ780VE, using
a resolution of 1280 pixel×720 pixel and 25 frames per second. The raw video material
had a length of 73 minutes. I used the free video analysis and modeling tool Tracker
(Tracker Contributors 2019) to correct the optical distortion and to track the trajectories
of the walking participant and the waiting crowd. I used self-written Python scripts,
more precisely Jupyter notebooks, to analyze the data.

Experiment results Together with final-year students I carefully analyzed the video
material in course of the “modeling seminar” lecture at the Munich University of Ap-
plied Sciences during the winter term 2018/2019. After watching the video footage,
we formulated hypotheses of the observed behavior and measured the effect size of the
behavior. The video analysis yielded three hypotheses:

• Pedestrians walking through a crowd are slowed down.

• The pedestrians in a waiting crowd return to their initial positions after giving way
to the “intruder”.

• Real humans can pass a crowd at high densities.
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The last hypothesis, while seemingly trivial, is crucial because this is where current
simulations fail but my new psychology layer from Sec. 6 will help to address this short-
coming as we will see in this section.

Speed measurements of walking participants Fig. 7.4 and Tab. 7.1 provide an
overview of the averaged instantaneous speeds of all walking participants.
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Figure 7.4: Box plot for speed distribution
(averaged instantaneous speeds) of the
walking participants inside and outside the
waiting crowd (image: Kleinmeier, Köster,
and Drury 2020, p. 4).

Speed [m/s]
inside outside

sample size 30.00 30.00
mean 0.70 1.33
std 0.19 0.25
min 0.44 0.93
25% 0.55 1.16
50% 0.63 1.36
75% 0.77 1.40
max 1.21 2.20

Table 7.1: Detailed statistics for the
measured speed distributions of the walking
participants inside and outside the waiting
crowd (table: Kleinmeier, Köster, and Drury
2020, p. 4).

Comparing the mean instantaneous speed of 0.70 m/s (inside) and 1.33 m/s (outside)
supports the hypothesis that the walking participants are slowed down by the waiting
crowd. The detailed analysis can be found in Kleinmeier, Köster, and Drury 2020 along
with a statistical significance test for the speed measurements.

Distributions of waiting crowd A second measurement revealed that the crowd
members tend to return to their initial positions before the walking participant entered
the crowd. I used two metrics to draw this conclusion. Firstly, I measured the Eu-
clidean distance between the initial position — before the walking participant entered
the waiting crowd — and the end position of each crowd member. Then, I measured the
maximum Euclidean distance a participant of the waiting crowd moved while the crowd
was crossed by the walking participant. Both measurements are visualized in Fig. 7.5
and Fig. 7.6, accompanied by Tab. 7.2 and Tab. 7.3.
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Figure 7.5: The data in blue visualizes the
Euclidean distances between a participant’s
initial position — before the walking
participant entered the waiting crowd — and
the end position. The Euclidean distance is
defined as ||pinitial − pend||2 with p ∈ R2.
The plot includes the best-fitting continuous
distributions with a p-value ≥ 0.90 (image:
Kleinmeier, Köster, and Drury 2020, p. 5).

Distances [m]
(metric 1)

sample size 400.00
mean 0.14
std 0.11
min 0.00
25% 0.06
50% 0.11
75% 0.19
max 0.76

Table 7.2: Detailed statistics for the
participants of the waiting crowd and the
Euclidean distance between participant’s
initial and end position (table: Kleinmeier,
Köster, and Drury 2020, p. 5).
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burr, p: 0.9046
mielke, p: 0.9046
invweibull, p: 0.9071
genextreme, p: 0.9074
invgamma, p: 0.9108
nct, p: 0.9223
gumbel_r, p: 0.9244
weibull_max, p: 0.9247
genlogistic, p: 0.9284
powerlognorm, p: 0.9315
kstwobign, p: 0.9393

Figure 7.6: The data in red visualizes the
maximum Euclidean distance a participant of
the waiting crowd moved while the crowd
was crossed by the walking participant. The
plot includes the best-fitting continuous
distributions with a p-value ≥ 0.90 (image:
Kleinmeier, Köster, and Drury 2020, p. 5).

Distances [m]
(metric 2)

sample size 400.00
mean 0.25
std 0.16
min 0.00
25% 0.13
50% 0.22
75% 0.33
max 0.93

Table 7.3: Detailed statistics for the
participants of the waiting crowd and the
maximum Euclidean distance (table:
Kleinmeier, Köster, and Drury 2020, p. 5).

One can observe that the second metric (maximum Euclidean distance) constantly
yields higher values than the first metric. I conclude that participants of the waiting
crowd, evade the walking participants (by accepting “long” distances). But, afterwards
crowd members tend to return to their original positions. I argue that the data supports
a tendency to return, where the mean distance from the initial position is only 0.14 m
with a standard deviation of 0.1 m.
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Trajectories of walking participants A third measurement shed light on the tra-
jectories of the walking participants, see Fig. 7.7 and Fig. 7.8. The trajectory plots show
that all walking participants were able to cross the waiting crowd. Instead of straight
lines, one can observe curvy trajectories where walking participants move around a wait-
ing person or both seem to swap places. The measurements of the waiting participants’
maximum displacement in Fig. 7.6 show that the waiting participants also move. I ar-
gue, that this indicates interaction. In fact, during the experiment one could see different
techniques: communication through eye contact or asking verbally, but also shoving the
waiting person aside.
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Figure 7.7: The trajectory of a single walking participant inside the waiting area at a time
resolution of 1/25 s (image: Kleinmeier, Köster, and Drury 2020, p. 6).
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Figure 7.8: The trajectories of ten walking participants inside the waiting area (red rectangle)
at a time resolution of 1/25 s (image: Kleinmeier, Köster, and Drury 2020, p. 6).

Fig. 7.9 visualizes the duration a walking participant spends inside the waiting area.
It indicates that the interaction process between the participants takes time. The mean
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duration of a walking participant’s stay inside the waiting area is 7.88 s. Note, that if
a walking participant walked through the waiting area, on a straight line, with an in-
stantaneous speed of 0.70 m/s (measurement from Tab. 7.1), it would only take height

speed =
1.70m
0.70m/s = 2.43 s.
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Figure 7.9: The duration of the walking participants inside the waiting area as histogram
(image: Kleinmeier, Köster, and Drury 2020, p. 6).

7.1.2 Implementation details

My main conclusion from the experiment is that real humans can pass a dense, waiting
crowd but simulated agents can not. The new psychology layer from Sec. 6.1 — with
sub-layers perception, cognition and behavior — allows to easily address this shortcom-
ing by breaking down the problem into smaller pieces. There were no environmental
stimuli present during the experiment. Therefore, nothing must be implemented on the
perception sub-layer. On cognition sub-layer, I must implement the behavioral change
from target-oriented agents to cooperative agents which was observed during the exper-
iment. In most pedestrian stream models, agents can only move in a target-oriented way.
That is, in each simulation step, agents walk towards a target while repelled by other
agents and obstacles. But currently, there is no real interaction between agents outside
physical repulsion. This leads to a deadlock situation where no agent can move as we
have seen in Fig. 7.1 where a walking agent is blocked by waiting agents. On a cognitive
level, we need agents that are able to recognize that they cannot move anymore. Conse-
quently, these agents change their behavior from being (strictly) target-oriented to being
cooperative. Cooperative agents are able to swap positions on the locomotion sub-layer.
Swapping positions is a very simplistic form of cooperation in a crowding situation but
it is sufficient to reenact the experiment qualitatively.

In summary, the generic psychology layer from Sec. 6.1 must be extended by the fol-
lowing aspects:

• Perception: nothing must be done because no environmental stimuli were present
during the experiment.
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• Cognition: implement class CooperativeCognitionModel which sets agent’s Self
Category from TARGET_ORIENTED to COOPERATIVE when the agent cannot move
anymore. Concretely, this means that the speed over the last n steps is below a
certain threshold. As threshold I chose 0.05 m/s which results in almost no move-
ment over the last n steps.

• Behavior: add methods findSwapCandidate() and swapPedestrians() to class
OSMBehaviorController and use it during locmotionModel.update() if agent.
getSelfCategory() == COOPERATIVE, where:

– findSwapCandidate() searches the closest neighbor (agent) which is closer
to the agent’s target.

– swapPedestrians() swaps two agents in the topography.

List. 7.1 and List. 7.2 show how this verbalization is programmed as easy understand-
able and readable code in Vadere. The code listings also show that it only requires 16
lines of code on cognition layer and 27 lines of code on locomotion layer to utilize the
new psychology layer of the Vadere simulator. To ensure correctness of the implemen-
tation, the code was developed with a test-driven development strategy resulting in the
code coverage which is depicted in Tab. 7.4.

Class name Total Line Branch
lines coverage [%] coverage [%]

Note: no perception class required - - -
CooperativeCognitionModel.java 16 100 100
OSMBehaviorController.java 96 54 50

Table 7.4: The code coverage for the newly introduced classes which are required for the first
use case. The code coverage was obtained for Git commit da89eafa with the Java code
coverage library “JaCoCo” version 0.8.3: https://www.eclemma.org/jacoco/

Listing 7.1: The update() method of class CooperativeCognitionModel which toggles an
agent’s self category from target-oriented to cooperative based on agent’s speed to reenact the
observed behavior from the experiment.

1 public void update(List <Agent > agents) {
2

3 int lastSteps = 4;
4 double threshold = 0.05;
5

6 for (Agent agent : agents) {
7 boolean cannotMove = agent.getSpeed(lastSteps) <= threshold;
8

9 if (cannotMove) {
10 agent.setSelfCategory(COOPERATIVE);
11 } else {
12 agent.setSelfCategory(TARGET_ORIENTED);
13 }
14 }
15

16 }
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7 Model validation and application: Demonstrating behavioral changes of agents

Listing 7.2: The update() and updateAgent() method of the locomotion model which reacts
to agent’s psychological status reflected by agent.getSelfCategory().

1 public void update(List <Agent > agents , double time) {
2

3 for (Agent agent : agents) {
4 updateAgent(agent , time)
5 }
6

7 }
8

9 void updateAgent(Agent agent , double time) {
10

11 selfCategory = agent.getSelfCategory ();
12

13 if (selfCategory == TARGET_ORIENTED) {
14 makeStepToTarget(agent);
15 } else if (selfCategory == COOPERATIVE) {
16 // Search for other cooperative agents in a search radius r.
17 Agent candidate = findSwapCandidate(agent);
18

19 if (candidate != null) {
20 swapPedestrians(agent , candidate);
21 } else {
22 makeStepToTarget(agent);
23 }
24 }
25 ...
26

27 }

The operationalization of the observed cooperative behavior from the experiment is
depicted as UML activity diagram in Fig. 7.10.
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7 Model validation and application: Demonstrating behavioral changes of agents

CooperativeCognitionModel.update()

for all agents

lastSteps = 4;
threshold = 0.05;

cannotMove =
agent.getSpeed(lastSteps) <= threshold

if cannotMove?

no

yesagents available?

yes no

agent.setSelfCategory(
COOPERATIVE)

agent.setSelfCategory(
TARGET_ORIENTED)

Figure 7.10: The UML activity diagram of the update() method of class
CooperativeCognitionModel.

7.1.3 Simulation results and validation

Simulator version and scenario file

The simulations were carried out with Vadere version 1.11 (Git commit hash:
91c1015ef6773f30ea81ab099940bd3b0cf3db09). The scenario file, which con-
tains all simulation parameters, can be found as PDF attachment (click the icon
to save file to disk):

I reenacted the experiment setup from Sec. 7.1.1 as closely as possible by using the
same dimensioning. I carried out 100 simulation runs with slightly varying the initial po-
sition of the walking agent but consistent positions for the agents of the waiting crowd.
Fig. 7.11 and Fig. 7.12 show one of these simulation runs and visualize how the walking
agent (red-encircled) changes its target-oriented behavior to a cooperative one when the
agent is blocked by the waiting crowd.

To validate the simulations, I compare the simulation results to the experiment results.
In Sec. 7.1.1, I measured the speed of the walking participant, the spatial distribution of
the waiting crowd and the trajectories of the walking participant. In the comparison, I
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{
  "name" : "CooperativeCognitionModel-OSM",
  "description" : "",
  "release" : "1.11",
  "commithash" : "91c1015ef6773f30ea81ab099940bd3b0cf3db09",
  "processWriters" : {
    "files" : [ {
      "type" : "org.vadere.simulator.projects.dataprocessing.outputfile.EventtimePedestrianIdOutputFile",
      "filename" : "postvis.traj",
      "processors" : [ 1, 2, 3 ]
    } ],
    "processors" : [ {
      "type" : "org.vadere.simulator.projects.dataprocessing.processor.FootStepProcessor",
      "id" : 1
    }, {
      "type" : "org.vadere.simulator.projects.dataprocessing.processor.FootStepTargetIDProcessor",
      "id" : 2
    }, {
      "type" : "org.vadere.simulator.projects.dataprocessing.processor.FootStepPsychologyStatusProcessor",
      "id" : 3
    } ],
    "isTimestamped" : true,
    "isWriteMetaData" : false
  },
  "scenario" : {
    "mainModel" : "org.vadere.simulator.models.osm.OptimalStepsModel",
    "attributesModel" : {
      "org.vadere.state.attributes.models.AttributesOSM" : {
        "stepCircleResolution" : 4,
        "numberOfCircles" : 1,
        "optimizationType" : "NELDER_MEAD",
        "varyStepDirection" : true,
        "movementType" : "ARBITRARY",
        "stepLengthIntercept" : 0.4625,
        "stepLengthSlopeSpeed" : 0.2345,
        "stepLengthSD" : 0.036,
        "movementThreshold" : 0.0,
        "minStepLength" : 0.1,
        "minimumStepLength" : true,
        "maxStepDuration" : 1.7976931348623157E308,
        "dynamicStepLength" : true,
        "updateType" : "EVENT_DRIVEN",
        "seeSmallWalls" : false,
        "targetPotentialModel" : "org.vadere.simulator.models.potential.fields.PotentialFieldTargetGrid",
        "pedestrianPotentialModel" : "org.vadere.simulator.models.potential.PotentialFieldPedestrianCompactSoftshell",
        "obstaclePotentialModel" : "org.vadere.simulator.models.potential.PotentialFieldObstacleCompactSoftshell",
        "submodels" : [ ]
      },
      "org.vadere.state.attributes.models.AttributesPotentialCompactSoftshell" : {
        "pedPotentialIntimateSpaceWidth" : 0.1,
        "pedPotentialPersonalSpaceWidth" : 0.2,
        "pedPotentialHeight" : 50.0,
        "obstPotentialWidth" : 0.8,
        "obstPotentialHeight" : 6.0,
        "intimateSpaceFactor" : 1.2,
        "personalSpacePower" : 1,
        "intimateSpacePower" : 1
      },
      "org.vadere.state.attributes.models.AttributesFloorField" : {
        "createMethod" : "HIGH_ACCURACY_FAST_MARCHING",
        "potentialFieldResolution" : 0.1,
        "obstacleGridPenalty" : 0.1,
        "targetAttractionStrength" : 1.0,
        "cacheType" : "NO_CACHE",
        "cacheDir" : "",
        "timeCostAttributes" : {
          "standardDeviation" : 0.7,
          "type" : "UNIT",
          "obstacleDensityWeight" : 3.5,
          "pedestrianSameTargetDensityWeight" : 3.5,
          "pedestrianOtherTargetDensityWeight" : 3.5,
          "pedestrianWeight" : 3.5,
          "queueWidthLoading" : 1.0,
          "pedestrianDynamicWeight" : 6.0,
          "loadingType" : "CONSTANT",
          "width" : 0.2,
          "height" : 1.0
        }
      }
    },
    "attributesSimulation" : {
      "finishTime" : 60.0,
      "simTimeStepLength" : 0.4,
      "realTimeSimTimeRatio" : 0.1,
      "writeSimulationData" : true,
      "visualizationEnabled" : true,
      "printFPS" : false,
      "digitsPerCoordinate" : 2,
      "useFixedSeed" : false,
      "fixedSeed" : -7548557034348592525,
      "simulationSeed" : -3973964371949892121
    },
    "attributesPsychology" : {
      "usePsychologyLayer" : true,
      "psychologyLayer" : {
        "perception" : "SimplePerceptionModel",
        "cognition" : "CooperativeCognitionModel"
      }
    },
    "topography" : {
      "attributes" : {
        "bounds" : {
          "x" : 0.0,
          "y" : 0.0,
          "width" : 5.0,
          "height" : 25.0
        },
        "boundingBoxWidth" : 0.5,
        "bounded" : true,
        "referenceCoordinateSystem" : null
      },
      "obstacles" : [ {
        "shape" : {
          "x" : 0.5,
          "y" : 11.3,
          "width" : 1.225,
          "height" : 1.7,
          "type" : "RECTANGLE"
        },
        "id" : 4
      }, {
        "shape" : {
          "x" : 3.275,
          "y" : 11.3,
          "width" : 1.225,
          "height" : 1.7,
          "type" : "RECTANGLE"
        },
        "id" : 5
      } ],
      "measurementAreas" : [ {
        "shape" : {
          "x" : 0.5,
          "y" : 11.0,
          "width" : 4.0,
          "height" : 2.0,
          "type" : "RECTANGLE"
        },
        "id" : 2
      }, {
        "shape" : {
          "x" : 0.5,
          "y" : 14.1,
          "width" : 4.0,
          "height" : 8.0,
          "type" : "RECTANGLE"
        },
        "id" : 3
      }, {
        "shape" : {
          "x" : 0.5,
          "y" : 1.9,
          "width" : 4.0,
          "height" : 8.0,
          "type" : "RECTANGLE"
        },
        "id" : 1
      } ],
      "stairs" : [ ],
      "targets" : [ {
        "id" : 1,
        "absorbing" : true,
        "shape" : {
          "x" : 1.0,
          "y" : 22.4,
          "width" : 3.0,
          "height" : 1.0,
          "type" : "RECTANGLE"
        },
        "waitingTime" : 0.0,
        "waitingTimeYellowPhase" : 0.0,
        "parallelWaiters" : 0,
        "individualWaiting" : true,
        "deletionDistance" : 0.1,
        "startingWithRedLight" : false,
        "nextSpeed" : -1.0
      } ],
      "targetChangers" : [ ],
      "absorbingAreas" : [ ],
      "sources" : [ {
        "id" : 6,
        "shape" : {
          "x" : 1.5,
          "y" : 0.5,
          "width" : 2.0,
          "height" : 0.5,
          "type" : "RECTANGLE"
        },
        "interSpawnTimeDistribution" : "org.vadere.state.scenario.ConstantDistribution",
        "distributionParameters" : [ 1.0 ],
        "spawnNumber" : 1,
        "maxSpawnNumberTotal" : -1,
        "startTime" : 0.0,
        "endTime" : 0.0,
        "spawnAtRandomPositions" : true,
        "spawnAtGridPositionsCA" : false,
        "useFreeSpaceOnly" : true,
        "targetIds" : [ 1 ],
        "groupSizeDistribution" : [ 1.0 ],
        "dynamicElementType" : "PEDESTRIAN"
      } ],
      "dynamicElements" : [ {
        "attributes" : {
          "id" : 7,
          "radius" : 0.2,
          "densityDependentSpeed" : false,
          "speedDistributionMean" : 1.34,
          "speedDistributionStandardDeviation" : 0.26,
          "minimumSpeed" : 0.5,
          "maximumSpeed" : 2.2,
          "acceleration" : 2.0,
          "footstepHistorySize" : 3,
          "searchRadius" : 1.0,
          "walkingDirectionCalculation" : "BY_TARGET_CENTER",
          "walkingDirectionSameIfAngleLessOrEqual" : 45.0
        },
        "source" : null,
        "targetIds" : [ ],
        "nextTargetListIndex" : 0,
        "isCurrentTargetAnAgent" : false,
        "position" : {
          "x" : 1.925,
          "y" : 11.5
        },
        "velocity" : {
          "x" : 0.0,
          "y" : 0.0
        },
        "freeFlowSpeed" : 1.3050224898511462,
        "followers" : [ ],
        "idAsTarget" : -1,
        "isChild" : false,
        "isLikelyInjured" : false,
        "psychologyStatus" : {
          "mostImportantStimulus" : null,
          "threatMemory" : {
            "allThreats" : [ ],
            "latestThreatUnhandled" : false
          },
          "selfCategory" : "TARGET_ORIENTED",
          "groupMembership" : "OUT_GROUP"
        },
        "groupIds" : [ ],
        "groupSizes" : [ ],
        "trajectory" : {
          "footSteps" : [ ]
        },
        "modelPedestrianMap" : null,
        "type" : "PEDESTRIAN"
      }, {
        "attributes" : {
          "id" : 8,
          "radius" : 0.2,
          "densityDependentSpeed" : false,
          "speedDistributionMean" : 1.34,
          "speedDistributionStandardDeviation" : 0.26,
          "minimumSpeed" : 0.5,
          "maximumSpeed" : 2.2,
          "acceleration" : 2.0,
          "footstepHistorySize" : 4,
          "searchRadius" : 1.0,
          "walkingDirectionCalculation" : "BY_TARGET_CENTER",
          "walkingDirectionSameIfAngleLessOrEqual" : 45.0
        },
        "source" : null,
        "targetIds" : [ ],
        "nextTargetListIndex" : 0,
        "isCurrentTargetAnAgent" : false,
        "position" : {
          "x" : 2.3,
          "y" : 11.7
        },
        "velocity" : {
          "x" : 0.0,
          "y" : 0.0
        },
        "freeFlowSpeed" : 1.3050224898511462,
        "followers" : [ ],
        "idAsTarget" : -1,
        "isChild" : false,
        "isLikelyInjured" : false,
        "psychologyStatus" : {
          "mostImportantStimulus" : null,
          "threatMemory" : {
            "allThreats" : [ ],
            "latestThreatUnhandled" : false
          },
          "selfCategory" : "TARGET_ORIENTED",
          "groupMembership" : "OUT_GROUP"
        },
        "groupIds" : [ ],
        "groupSizes" : [ ],
        "trajectory" : {
          "footSteps" : [ ]
        },
        "modelPedestrianMap" : null,
        "type" : "PEDESTRIAN"
      }, {
        "attributes" : {
          "id" : 9,
          "radius" : 0.2,
          "densityDependentSpeed" : false,
          "speedDistributionMean" : 1.34,
          "speedDistributionStandardDeviation" : 0.26,
          "minimumSpeed" : 0.5,
          "maximumSpeed" : 2.2,
          "acceleration" : 2.0,
          "footstepHistorySize" : 4,
          "searchRadius" : 1.0,
          "walkingDirectionCalculation" : "BY_TARGET_CENTER",
          "walkingDirectionSameIfAngleLessOrEqual" : 45.0
        },
        "source" : null,
        "targetIds" : [ ],
        "nextTargetListIndex" : 0,
        "isCurrentTargetAnAgent" : false,
        "position" : {
          "x" : 2.7,
          "y" : 11.5
        },
        "velocity" : {
          "x" : 0.0,
          "y" : 0.0
        },
        "freeFlowSpeed" : 1.3050224898511462,
        "followers" : [ ],
        "idAsTarget" : -1,
        "isChild" : false,
        "isLikelyInjured" : false,
        "psychologyStatus" : {
          "mostImportantStimulus" : null,
          "threatMemory" : {
            "allThreats" : [ ],
            "latestThreatUnhandled" : false
          },
          "selfCategory" : "TARGET_ORIENTED",
          "groupMembership" : "OUT_GROUP"
        },
        "groupIds" : [ ],
        "groupSizes" : [ ],
        "trajectory" : {
          "footSteps" : [ ]
        },
        "modelPedestrianMap" : null,
        "type" : "PEDESTRIAN"
      }, {
        "attributes" : {
          "id" : 10,
          "radius" : 0.2,
          "densityDependentSpeed" : false,
          "speedDistributionMean" : 1.34,
          "speedDistributionStandardDeviation" : 0.26,
          "minimumSpeed" : 0.5,
          "maximumSpeed" : 2.2,
          "acceleration" : 2.0,
          "footstepHistorySize" : 4,
          "searchRadius" : 1.0,
          "walkingDirectionCalculation" : "BY_TARGET_CENTER",
          "walkingDirectionSameIfAngleLessOrEqual" : 45.0
        },
        "source" : null,
        "targetIds" : [ ],
        "nextTargetListIndex" : 0,
        "isCurrentTargetAnAgent" : false,
        "position" : {
          "x" : 3.1,
          "y" : 11.6
        },
        "velocity" : {
          "x" : 0.0,
          "y" : 0.0
        },
        "freeFlowSpeed" : 1.3050224898511462,
        "followers" : [ ],
        "idAsTarget" : -1,
        "isChild" : false,
        "isLikelyInjured" : false,
        "psychologyStatus" : {
          "mostImportantStimulus" : null,
          "threatMemory" : {
            "allThreats" : [ ],
            "latestThreatUnhandled" : false
          },
          "selfCategory" : "TARGET_ORIENTED",
          "groupMembership" : "OUT_GROUP"
        },
        "groupIds" : [ ],
        "groupSizes" : [ ],
        "trajectory" : {
          "footSteps" : [ ]
        },
        "modelPedestrianMap" : null,
        "type" : "PEDESTRIAN"
      }, {
        "attributes" : {
          "id" : 11,
          "radius" : 0.2,
          "densityDependentSpeed" : false,
          "speedDistributionMean" : 1.34,
          "speedDistributionStandardDeviation" : 0.26,
          "minimumSpeed" : 0.5,
          "maximumSpeed" : 2.2,
          "acceleration" : 2.0,
          "footstepHistorySize" : 4,
          "searchRadius" : 1.0,
          "walkingDirectionCalculation" : "BY_TARGET_CENTER",
          "walkingDirectionSameIfAngleLessOrEqual" : 45.0
        },
        "source" : null,
        "targetIds" : [ ],
        "nextTargetListIndex" : 0,
        "isCurrentTargetAnAgent" : false,
        "position" : {
          "x" : 2.7,
          "y" : 11.9
        },
        "velocity" : {
          "x" : 0.0,
          "y" : 0.0
        },
        "freeFlowSpeed" : 1.3050224898511462,
        "followers" : [ ],
        "idAsTarget" : -1,
        "isChild" : false,
        "isLikelyInjured" : false,
        "psychologyStatus" : {
          "mostImportantStimulus" : null,
          "threatMemory" : {
            "allThreats" : [ ],
            "latestThreatUnhandled" : false
          },
          "selfCategory" : "TARGET_ORIENTED",
          "groupMembership" : "OUT_GROUP"
        },
        "groupIds" : [ ],
        "groupSizes" : [ ],
        "trajectory" : {
          "footSteps" : [ ]
        },
        "modelPedestrianMap" : null,
        "type" : "PEDESTRIAN"
      }, {
        "attributes" : {
          "id" : 12,
          "radius" : 0.2,
          "densityDependentSpeed" : false,
          "speedDistributionMean" : 1.34,
          "speedDistributionStandardDeviation" : 0.26,
          "minimumSpeed" : 0.5,
          "maximumSpeed" : 2.2,
          "acceleration" : 2.0,
          "footstepHistorySize" : 4,
          "searchRadius" : 1.0,
          "walkingDirectionCalculation" : "BY_TARGET_CENTER",
          "walkingDirectionSameIfAngleLessOrEqual" : 45.0
        },
        "source" : null,
        "targetIds" : [ ],
        "nextTargetListIndex" : 0,
        "isCurrentTargetAnAgent" : false,
        "position" : {
          "x" : 3.1,
          "y" : 12.1
        },
        "velocity" : {
          "x" : 0.0,
          "y" : 0.0
        },
        "freeFlowSpeed" : 1.3050224898511462,
        "followers" : [ ],
        "idAsTarget" : -1,
        "isChild" : false,
        "isLikelyInjured" : false,
        "psychologyStatus" : {
          "mostImportantStimulus" : null,
          "threatMemory" : {
            "allThreats" : [ ],
            "latestThreatUnhandled" : false
          },
          "selfCategory" : "TARGET_ORIENTED",
          "groupMembership" : "OUT_GROUP"
        },
        "groupIds" : [ ],
        "groupSizes" : [ ],
        "trajectory" : {
          "footSteps" : [ ]
        },
        "modelPedestrianMap" : null,
        "type" : "PEDESTRIAN"
      }, {
        "attributes" : {
          "id" : 13,
          "radius" : 0.2,
          "densityDependentSpeed" : false,
          "speedDistributionMean" : 1.34,
          "speedDistributionStandardDeviation" : 0.26,
          "minimumSpeed" : 0.5,
          "maximumSpeed" : 2.2,
          "acceleration" : 2.0,
          "footstepHistorySize" : 4,
          "searchRadius" : 1.0,
          "walkingDirectionCalculation" : "BY_TARGET_CENTER",
          "walkingDirectionSameIfAngleLessOrEqual" : 45.0
        },
        "source" : null,
        "targetIds" : [ ],
        "nextTargetListIndex" : 0,
        "isCurrentTargetAnAgent" : false,
        "position" : {
          "x" : 2.3,
          "y" : 12.1
        },
        "velocity" : {
          "x" : 0.0,
          "y" : 0.0
        },
        "freeFlowSpeed" : 1.3050224898511462,
        "followers" : [ ],
        "idAsTarget" : -1,
        "isChild" : false,
        "isLikelyInjured" : false,
        "psychologyStatus" : {
          "mostImportantStimulus" : null,
          "threatMemory" : {
            "allThreats" : [ ],
            "latestThreatUnhandled" : false
          },
          "selfCategory" : "TARGET_ORIENTED",
          "groupMembership" : "OUT_GROUP"
        },
        "groupIds" : [ ],
        "groupSizes" : [ ],
        "trajectory" : {
          "footSteps" : [ ]
        },
        "modelPedestrianMap" : null,
        "type" : "PEDESTRIAN"
      }, {
        "attributes" : {
          "id" : 14,
          "radius" : 0.2,
          "densityDependentSpeed" : false,
          "speedDistributionMean" : 1.34,
          "speedDistributionStandardDeviation" : 0.26,
          "minimumSpeed" : 0.5,
          "maximumSpeed" : 2.2,
          "acceleration" : 2.0,
          "footstepHistorySize" : 4,
          "searchRadius" : 1.0,
          "walkingDirectionCalculation" : "BY_TARGET_CENTER",
          "walkingDirectionSameIfAngleLessOrEqual" : 45.0
        },
        "source" : null,
        "targetIds" : [ ],
        "nextTargetListIndex" : 0,
        "isCurrentTargetAnAgent" : false,
        "position" : {
          "x" : 1.95,
          "y" : 11.9
        },
        "velocity" : {
          "x" : 0.0,
          "y" : 0.0
        },
        "freeFlowSpeed" : 1.3050224898511462,
        "followers" : [ ],
        "idAsTarget" : -1,
        "isChild" : false,
        "isLikelyInjured" : false,
        "psychologyStatus" : {
          "mostImportantStimulus" : null,
          "threatMemory" : {
            "allThreats" : [ ],
            "latestThreatUnhandled" : false
          },
          "selfCategory" : "TARGET_ORIENTED",
          "groupMembership" : "OUT_GROUP"
        },
        "groupIds" : [ ],
        "groupSizes" : [ ],
        "trajectory" : {
          "footSteps" : [ ]
        },
        "modelPedestrianMap" : null,
        "type" : "PEDESTRIAN"
      }, {
        "attributes" : {
          "id" : 15,
          "radius" : 0.2,
          "densityDependentSpeed" : false,
          "speedDistributionMean" : 1.34,
          "speedDistributionStandardDeviation" : 0.26,
          "minimumSpeed" : 0.5,
          "maximumSpeed" : 2.2,
          "acceleration" : 2.0,
          "footstepHistorySize" : 4,
          "searchRadius" : 1.0,
          "walkingDirectionCalculation" : "BY_TARGET_CENTER",
          "walkingDirectionSameIfAngleLessOrEqual" : 45.0
        },
        "source" : null,
        "targetIds" : [ ],
        "nextTargetListIndex" : 0,
        "isCurrentTargetAnAgent" : false,
        "position" : {
          "x" : 1.91,
          "y" : 12.3
        },
        "velocity" : {
          "x" : 0.0,
          "y" : 0.0
        },
        "freeFlowSpeed" : 1.3050224898511462,
        "followers" : [ ],
        "idAsTarget" : -1,
        "isChild" : false,
        "isLikelyInjured" : false,
        "psychologyStatus" : {
          "mostImportantStimulus" : null,
          "threatMemory" : {
            "allThreats" : [ ],
            "latestThreatUnhandled" : false
          },
          "selfCategory" : "TARGET_ORIENTED",
          "groupMembership" : "OUT_GROUP"
        },
        "groupIds" : [ ],
        "groupSizes" : [ ],
        "trajectory" : {
          "footSteps" : [ ]
        },
        "modelPedestrianMap" : null,
        "type" : "PEDESTRIAN"
      }, {
        "attributes" : {
          "id" : 16,
          "radius" : 0.2,
          "densityDependentSpeed" : false,
          "speedDistributionMean" : 1.34,
          "speedDistributionStandardDeviation" : 0.26,
          "minimumSpeed" : 0.5,
          "maximumSpeed" : 2.2,
          "acceleration" : 2.0,
          "footstepHistorySize" : 4,
          "searchRadius" : 1.0,
          "walkingDirectionCalculation" : "BY_TARGET_CENTER",
          "walkingDirectionSameIfAngleLessOrEqual" : 45.0
        },
        "source" : null,
        "targetIds" : [ ],
        "nextTargetListIndex" : 0,
        "isCurrentTargetAnAgent" : false,
        "position" : {
          "x" : 2.7,
          "y" : 12.3
        },
        "velocity" : {
          "x" : 0.0,
          "y" : 0.0
        },
        "freeFlowSpeed" : 1.3050224898511462,
        "followers" : [ ],
        "idAsTarget" : -1,
        "isChild" : false,
        "isLikelyInjured" : false,
        "psychologyStatus" : {
          "mostImportantStimulus" : null,
          "threatMemory" : {
            "allThreats" : [ ],
            "latestThreatUnhandled" : false
          },
          "selfCategory" : "TARGET_ORIENTED",
          "groupMembership" : "OUT_GROUP"
        },
        "groupIds" : [ ],
        "groupSizes" : [ ],
        "trajectory" : {
          "footSteps" : [ ]
        },
        "modelPedestrianMap" : null,
        "type" : "PEDESTRIAN"
      }, {
        "attributes" : {
          "id" : 17,
          "radius" : 0.2,
          "densityDependentSpeed" : false,
          "speedDistributionMean" : 1.34,
          "speedDistributionStandardDeviation" : 0.26,
          "minimumSpeed" : 0.5,
          "maximumSpeed" : 2.2,
          "acceleration" : 2.0,
          "footstepHistorySize" : 4,
          "searchRadius" : 1.0,
          "walkingDirectionCalculation" : "BY_TARGET_CENTER",
          "walkingDirectionSameIfAngleLessOrEqual" : 45.0
        },
        "source" : null,
        "targetIds" : [ ],
        "nextTargetListIndex" : 0,
        "isCurrentTargetAnAgent" : false,
        "position" : {
          "x" : 3.0,
          "y" : 12.6
        },
        "velocity" : {
          "x" : 0.0,
          "y" : 0.0
        },
        "freeFlowSpeed" : 1.3050224898511462,
        "followers" : [ ],
        "idAsTarget" : -1,
        "isChild" : false,
        "isLikelyInjured" : false,
        "psychologyStatus" : {
          "mostImportantStimulus" : null,
          "threatMemory" : {
            "allThreats" : [ ],
            "latestThreatUnhandled" : false
          },
          "selfCategory" : "TARGET_ORIENTED",
          "groupMembership" : "OUT_GROUP"
        },
        "groupIds" : [ ],
        "groupSizes" : [ ],
        "trajectory" : {
          "footSteps" : [ ]
        },
        "modelPedestrianMap" : null,
        "type" : "PEDESTRIAN"
      }, {
        "attributes" : {
          "id" : 18,
          "radius" : 0.2,
          "densityDependentSpeed" : false,
          "speedDistributionMean" : 1.34,
          "speedDistributionStandardDeviation" : 0.26,
          "minimumSpeed" : 0.5,
          "maximumSpeed" : 2.2,
          "acceleration" : 2.0,
          "footstepHistorySize" : 4,
          "searchRadius" : 1.0,
          "walkingDirectionCalculation" : "BY_TARGET_CENTER",
          "walkingDirectionSameIfAngleLessOrEqual" : 45.0
        },
        "source" : null,
        "targetIds" : [ ],
        "nextTargetListIndex" : 0,
        "isCurrentTargetAnAgent" : false,
        "position" : {
          "x" : 2.4,
          "y" : 12.6
        },
        "velocity" : {
          "x" : 0.0,
          "y" : 0.0
        },
        "freeFlowSpeed" : 1.3050224898511462,
        "followers" : [ ],
        "idAsTarget" : -1,
        "isChild" : false,
        "isLikelyInjured" : false,
        "psychologyStatus" : {
          "mostImportantStimulus" : null,
          "threatMemory" : {
            "allThreats" : [ ],
            "latestThreatUnhandled" : false
          },
          "selfCategory" : "TARGET_ORIENTED",
          "groupMembership" : "OUT_GROUP"
        },
        "groupIds" : [ ],
        "groupSizes" : [ ],
        "trajectory" : {
          "footSteps" : [ ]
        },
        "modelPedestrianMap" : null,
        "type" : "PEDESTRIAN"
      }, {
        "attributes" : {
          "id" : 19,
          "radius" : 0.2,
          "densityDependentSpeed" : false,
          "speedDistributionMean" : 1.34,
          "speedDistributionStandardDeviation" : 0.26,
          "minimumSpeed" : 0.5,
          "maximumSpeed" : 2.2,
          "acceleration" : 2.0,
          "footstepHistorySize" : 4,
          "searchRadius" : 1.0,
          "walkingDirectionCalculation" : "BY_TARGET_CENTER",
          "walkingDirectionSameIfAngleLessOrEqual" : 45.0
        },
        "source" : null,
        "targetIds" : [ ],
        "nextTargetListIndex" : 0,
        "isCurrentTargetAnAgent" : false,
        "position" : {
          "x" : 2.0,
          "y" : 12.7
        },
        "velocity" : {
          "x" : 0.0,
          "y" : 0.0
        },
        "freeFlowSpeed" : 1.3050224898511462,
        "followers" : [ ],
        "idAsTarget" : -1,
        "isChild" : false,
        "isLikelyInjured" : false,
        "psychologyStatus" : {
          "mostImportantStimulus" : null,
          "threatMemory" : {
            "allThreats" : [ ],
            "latestThreatUnhandled" : false
          },
          "selfCategory" : "TARGET_ORIENTED",
          "groupMembership" : "OUT_GROUP"
        },
        "groupIds" : [ ],
        "groupSizes" : [ ],
        "trajectory" : {
          "footSteps" : [ ]
        },
        "modelPedestrianMap" : null,
        "type" : "PEDESTRIAN"
      } ],
      "attributesPedestrian" : {
        "radius" : 0.2,
        "densityDependentSpeed" : false,
        "speedDistributionMean" : 1.32,
        "speedDistributionStandardDeviation" : 0.17,
        "minimumSpeed" : 0.93,
        "maximumSpeed" : 1.66,
        "acceleration" : 2.0,
        "footstepHistorySize" : 4,
        "searchRadius" : 1.0,
        "walkingDirectionCalculation" : "BY_TARGET_CENTER",
        "walkingDirectionSameIfAngleLessOrEqual" : 45.0
      },
      "teleporter" : null,
      "attributesCar" : null
    },
    "stimulusInfos" : [ ]
  }
}


Benedikt Kleinmeier
CooperativeCognitionModel-OSM.scenario
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(a) Time step 1 (b) Time step 4 (c) Time step 29

Figure 7.11: A walking agent (red-encircled) starts walking in the green source area and tries
to reach the orange target area while the agent is blocked by a waiting crowd consisting of 13
agents. The colors represent the current behavior of an agent: blue is target-oriented behavior
and green is cooperative behavior. (Time step 1) When the simulation starts, all agents are
target-oriented. While the walking agent is attracted by the orange target, the waiting crowd
does not have a target and waits. (Time step 4) The agents of the waiting crowd become
cooperative because their speed falls below a certain threshold. (Time step 29) The walking
agent reaches the waiting crowd and cannot move anymore. Thus, the walking agent also
becomes cooperative. The walking agent searches for a swap candidate (orange-encircled) and
both swap positions (image: Kleinmeier, Köster, and Drury 2020, p. 8).

omit the spatial distribution of the crowd because, in the implemented model the agents
of the waiting crowd just wait in the waiting area and do not move at all. This is what I
assumed as — very simplified — waiting behavior. That is, the traveled distance of the
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(a) Time step 31 (b) Time step 36 (c) Time step 51

Figure 7.12: Cooperative behavior of agents inside the waiting crowd. The colors represent the
current behavior of an agent: blue is target-oriented behavior and green is cooperative
behavior. (Time step 31) After swapping positions, the walking agent (red-encircled) and the
swap candidate (orange-encircled ) get target-oriented again because their speed is above a
certain threshold. (Time step 36) The walking agent gets cooperative again and swaps position
with another cooperative agent which is closer to the target. (Time step 51) The walking agent
found its way through the dense crowd by using a cooperative behavior (image: Kleinmeier,
Köster, and Drury 2020, p. 9).

agents of the waiting crowd is zero. Therefore, it makes no sense to compare it with the
experiment participants who were continuously moving at least a bit.

The 100 simulations reproduce the measured instantaneous “free-flow” speeds at least
qualitatively: the walking agents are slowed down inside the waiting area from 1.31 m/s
(outside) to 0.16 m/s (inside) on average compared to 1.33 m/s and 0.70 m/s in the
experiment, see Fig. 7.13 and Tab. 7.5.
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Figure 7.13: Box plot for speed distribution
of the walking agent inside and outside the
waiting crowd (image: Kleinmeier, Köster,
and Drury 2020, p. 9).

Speed [m/s]
inside outside

sample size 100.00 100.00
mean 0.16 1.31
std 0.03 0.15
min 0.12 0.90
25% 0.14 1.20
50% 0.15 1.32
75% 0.17 1.41
max 0.24 1.68

Table 7.5: Detailed statistics for the
measured speed distributions of the walking
agents inside and outside the waiting crowd
(table: Kleinmeier, Köster, and Drury 2020,
p. 9).

The speed of the walking agent inside the waiting crowd is much lower than what
was observed in the experiment. In the experiment, even if the walking participant is
blocked by the waiting crowd for some moments, the walking participant is constantly
moving its body a tiny bit. That means the speed of the walking participant is constantly
greater than zero. But in the simulation, it takes some simulation steps until a walking
agent becomes cooperative when the agent is blocked by the waiting crowd. That is,
the agent’s speed is zero for a lot of simulation steps which lowers the average speed
of the walking agents. Please keep in mind that this is the very first version of such a
psychological model of collective cooperation and it will require some sort of calibration
in the future.

Nevertheless, in my simulations we see that all walking agents were able to cross the
waiting crowd like in the experiment with real humans, see Fig. 7.14. Also the mean time
of the walking agent inside the waiting area is very close to the experiment observations:
(9.90± 2.24) s in simulation compared to (7.88± 2.31) s in the experiment, see Fig. 7.15.
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Figure 7.14: The trajectories of 25 walking agents inside the waiting area (red rectangle).
Inside the waiting area, the walking agents follow zig-zag trajectories because they swap
positions with agents of the waiting crowd. By changing to a cooperative behavior, all walking
agents were able to reach the target region. The agents of the waiting crowd are placed at the
same positions for all 100 simulation runs. Therefore, we did not see a greater variety of the
trajectories inside the waiting area (image: Kleinmeier, Köster, and Drury 2020, p. 9).
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Figure 7.15: The duration of the walking agents inside the waiting area as histogram (image:
Kleinmeier, Köster, and Drury 2020, p. 10).

7.2 Use case 2 — Real-world incident: Perceived threat
at Oxford Street (London 2017)

This use case represents a real-world incident which contains self-categorization of hu-
mans and imitating behavior and is validated qualitatively. The effects of introduced
parameters are analyzed in a sensitivity study.
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7.2.1 Scenario description

The scenario I use as basis for my implementation of collective behavior and self-cat-
egorization occurred at London’s underground station Oxford Circus and the nearby
streets on Nov 24, 2017, see Fig. 7.16. In retrospective, it can be summarized as false
alarm which caused thousands of commuters and shoppers to change their behavior
from relaxed walking to scared fleeing.

Figure 7.16: Area of interest of the scenario around the underground station Oxford Circus and
the nearby Oxford Street in London, 2017 (source: Siddique 2017).

The data that I draw upon comes from a number of sources: three newspaper reports,
ten photographs (from newspaper reports), eyewitness accounts (Siddique 2017), two
videos (from personal sources) and the official police statements. Especially, personal
sources must be seen critical in this context. Thus, data from different types of sources
and from different instances was combined. This data triangulation methodology (Den-
zin 2009) aims to reveal untruth and misleading accounts about the event and to only
include accounts that confirm each other. But of course, the data is open to challenge on
the basis of representativeness and accuracy. It is very common with such sudden real-
life events that quantitative data is very scarce and we mostly have to rely on qualitative
data.

The false alarm at Oxford Circus, Nov 24, 2017, occurred at a time of several terrorist
attacks in the UK. In 2017, four terrorist attacks in London left 18 dead and 137 injured.
A further 22 people were killed by a suicide bomber in Manchester (Greenfield, Cobain,
and Dodd 2017). As consequence, the UK terrorism threat level was set to “severe” at
that time which means an attack is assessed to be highly likely.

In the following, I describe the events in more detail to draw a picture from the scene.
This allows to operationalize the observed behavior and to embed it into the generic
architecture described in Sec. 6. The Telegraph summarized the events on the same day
(Nov 24, 2017) as following:
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Oxford Circus: Met Police end operation after thousands flee in panic over
reports of ’gunshots’

For a heart-stopping hour, it appeared a nation’s collective worst fears had come
true.

On Black Friday2 on Britain’s best known and busiest street, packed with Christ-
mas shoppers, commuters and school children, it seemed that terrorists had
struck. At 4.37pm, hordes of people on Oxford Street were convinced they had
heard the sound of gunfire and explosions.

It was a false alarm, but whatever they heard — or for that matter didn’t hear
— prompted a stampede for cover. Shoppers ran for their lives, certain they
were under attack.

(Mendick and Yorke 2017)

The Guardian provided more details in an article one day after the events (Nov 25,
2017):

Oxford Street panic began with fight at tube station, suggest police

Visitors to London West End ran and hid, two tube stations were closed and
armed police raced to scene after incident

(Greenfield, Cobain, and Dodd 2017)

Also the Evening Standard agreed on the false alarm: “Oxford Circus: Terror alert
on London’s busiest shopping street declared false alarm” (Collier and Grafton-Green
2017).

The chronology of the events from The Guardian draws the big picture of the scenario:

• Armed police and officers from British Transport Police rushed to the scene
shortly after 4.30pm, after numerous calls of shots fired on Oxford Street
and at Oxford Circus tube station, responding, as if the incident is terrorist
related.

• Panicked commuters and shoppers ran out of the tube station and took
cover in shops, on one of the busiest shopping days of the year — Black
Friday — as rumours circulated about what had occurred. People were
advised to avoid the area or stay inside if already there.

• British Transport Police said one woman received a minor injury in the
crush as she fled Oxford Circus tube station [Later, nine people were re-
ported injured (Greenfield, Cobain, and Dodd 2017)].

• Shortly after 6pm, the Met said its response had been stood down. In a
statement, it said the first armed response vehicle was on the scene in less
than one minute from receiving the first call.

(Siddique 2017)

An eyewitness account below supports the chaotic situation and Fig. 7.17 provides an
impression of the atmosphere at the scene.

2“The Friday immediately following Thanksgiving Day that is considered by retailers to mark the beginning
of the holiday shopping season.” (Merriam-Webster. (n.d.). Black Friday. In Merriam-Webster.com
dictionary. Retrieved January 7, 2021, from https://www.merriam-webster.com/dictionary/Black%
20Friday)
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(a) Source: Reuters (b) Source: EPA (c) Source: AFP/Getty
Images

Figure 7.17: Scenes at Oxford Street in 2017: (a) People run down Oxford Street following
reports of shots being fired. (b) Armed London police officers react to the incident. (c) Armed
police patrol near Oxford street as they respond to the incident. (images: Collier and
Grafton-Green 2017)

The eyewitness describes the unfolding of the events as following (Siddique 2017):

I was just near Oxford Circus on the corner of Regent’s street on the way back
to tube. I could see some police had just arrived but I thought maybe it was for
traffic control because it was so busy.

Then suddenly people started screaming and running dropping their bags. I
just started running too. There were hundreds and hundreds of people running
away. Some said someone had been stabbed, others were saying shots fired,
everyone was really scared.

People were really really panicked and shops were instantly locking their doors.
I just kept going till I got to Regent’s Park.

But, what can also be derived especially from the video material and the images: not
all people fled immediately. Instead, some were attracted by the perceived threat at
Oxford Circus and headed towards the apparent bang. Others obviously did not trust
the fleeing people and continued walking their way, see Fig. 7.18 p. 119.

7.2.2 Implementation details

After studying the accounts about the false alarm at Oxford Street in 2017, it is impor-
tant to distill what is crucial from a modeling perspective to operationalize the observed
behavior. Previous modeling publications, e. g. Pelechano, O’Brien, et al. 2005, simply
mentioned they modeled “panic behavior”. But, panic is a very fuzzy and imprecise
term and it does not describe what really happens! In 2005, the sociologists Schwein-
gruber and Wohlstein tried to uncover crowd myths which are often picked up by the
crowd modelers like “panic behavior” (Hirai and Tarui 1975; Helbing, Farkas, and Vicsek
2000; Pelechano, O’Brien, et al. 2005; Schneider 2010; Frank and Dorso 2011). Often,
modelers draw upon myths like “panic behavior” because they do not have a sociology
or psychology background. But in (Schweingruber and Wohlstein 2005, p. 138), the
authors clearly demystified the term “panic”:

A leading example of supposed irrational crowd behavior is “panic” which is
generally conceptualized as irrational flight in which fearful people may end
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(a) Source: Reuters (I highlighted fleeing people in
red and walking people in blue)

(b) Source: Reuters (I highlighted fleeing people in
red and walking people in blue)

Figure 7.18: Mixed reactions to the perceived threat at Oxford Circus: while some people fled
immediately (red outline), others continued walking their way with hands in their pockets or
continued making phone calls (blue outline).

up hurting or even killing themselves and others. Subsequent research has
not demonstrated that people in crowds suffer any cognitive deficits. Indeed,
research into emergency dispersal (e.g., Bryan 1982; Canter 1980; Johnson
1987a, 1987b; Johnson and Johnson 1988; Keating 1982; Sime 1980, 1995)
has consistently shown that when people are fleeing from dangerous situations
they are guided by social relationships and roles and exhibit altruistic behavior.

From the scenario description we know that an environmental stimulus (a bang) at
underground station Oxford Circus caused people to run away. They accelerated and
searched for a safe zone. Bystanders and other pedestrians, which approached the un-
derground station Oxford Circus from all directions, imitated the escaping behavior, but
not all. Some pedestrians continued walking their way and ignored the escaping peo-
ple. Newer psychological researches suggest that imitation is a too simple concept and
a more complex process of social appraisal leads to collective behavior (Bruder, Fischer,
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and Manstead 2014). Yet, to keep the model as simple as possible in the first place, I
stick to the observed “imitating” behavior.

In summary, the generic psychology layer from Sec. 6.1 must be extended by the fol-
lowing aspects:

• Perception: implement class Threat. A Threat can be a loud bang like at Oxford
Circus or any other environmental cue. A Threat has a loudness and a radius in
which the threat can be perceived acoustically or visually. For instance, a loud
bang can frighten people while a quiet whistle can attract people. These attributes
allow great flexibility and variation.

• Cognition: implement class ThreatCognitionModel which varies agent’s SelfCate
gory between TARGET_ORIENTED, THREATENED and COMMON_FATE. This fulfills two
observed behaviors:

1. Agents which perceived the Threat escape. That is, when being THREATENED,
the agents maximize the distance to the Threat origin and they accelerate.
Additionally, after reaching a certain distance from the Threat, agents share
a COMMON_FATE and search for a safe zone. Safe zones are targets which are
placed sufficient far away from the Threat origin.

2. Agents which did not perceive the Threat themselves but see other agents
escaping have two options:

– Either trust the fleeing agents and imitate their behavior.

– Or do not trust the fleeing agents and stay TARGET_ORIENTED.
This is where self-categorization and group membership comes into play
and is crucial for realistic behavioral changes and collective behavior.
Psychologically, two agents who trust each other form an in-group. Two
agents who do not trust each other are out-group to each other. If
an unthreatened agent A1 has the GroupMembership IN_GROUP and A1
perceives another escaping IN_GROUP member A2, A1 imitates the es-
caping behavior of A2. In contrast, if the unthreatened agent has the
GroupMembership OUT_GROUP, the agent ignores the behavior of other
agents and stays TARGET_ORIENTED.

• Behavior: add two methods to class OSMBehaviorController. The first method is
changeToTargetRepulsionStrategyAndIncreaseSpeed() as reaction to the cog-
nitive result agent.getSelfCategory() == THREATENED. The second
method is changeTargetToSafeZone() if agent.getSelfCategory()== COMMON_
FATE.

– changeToTargetRepulsionStrategyAndIncreaseSpeed(): in this case, an
agent perceives a Threat and wants to maximize the distance to the Threat.
In the optimal steps model, agents usually find their next position by min-
imizing the travel time to a target: points closer to a target have a shorter
travel time than far-away points. This method just negates the sign of the
target travel times. By using this simple technique, the original minimiza-
tion problem of the optimal steps model is preserved and, during locomotion,
agents maximize the distance to a former target. That is, agents search for
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points which are further away from a target in the minimization phase. Ad-
ditionally, this method doubles an agent’s preferred speed as reaction to the
Threat. Doubling the speed is just a simple assumption because quantitative
data is missing for the Oxford Street scenario.

– changeTargetToSafeZone(): this method reacts to the agent.getSelfCate
gory() == COMMON_FATE condition. After the immediate fear response to the
threat, that is fleeing, the people at Oxford Street searched cover in shops.
To reflect this, after reaching a certain distance to the Threat, agents start
searching for a safe zone. To this end, an agent selects the target as safe
zone which is closest to the agent’s source. This is in alignment with place
attachment theories (Scannell and Gifford 2010; Rollero and De Piccol 2010).
In dangerous situations, humans tend to escape to familiar places (or where
they came from). Clearly, where the place attachment theory falls down in the
Oxford Street incident is that some of the people were tourists and some did
not live or work in the area. That is, they are not familiar with the location.
Therefore, I assume the area that is close to an agent’s source as safe zone.

This simple operationalization reflects the observed behavior from the scenario de-
scription. The operationalization combines knowledge from

• psychology of decision-making: the perception3 and cognitive processing of a
threat which lead to a behavioral change of agents

• social psychology: self-categorization which leads to collective behavior across in-
group members

• the reusable architecture from Sec. 6

The following UML activity diagrams Fig. 7.19–7.22 depict the exact implementation
steps for the class ThreatCognitionModel to obtain short, readable and testable meth-
ods. The code was developed with a test-driven development strategy resulting in the
code coverage in Tab. 7.6.

Class name Total Line Branch
lines coverage [%] coverage [%]

SimplePerceptionModel.java 55 100 92
ThreatCognitionModel.java 53 92 77
OSMBehaviorController.java 96 54 50

Table 7.6: The code coverage for the newly introduced classes which are required for the
second use case. Please note that the test code for SimplePerceptionModel.java only covers
the true condition of an if statement, but misses the branch if the condition is false. This
approach results in 100% line coverage but only 92% branch coverage. The code coverage was
obtained for Git commit da89eafa with the Java code coverage library “JaCoCo” version 0.8.3:
https://www.eclemma.org/jacoco/

3The perception of the threat, a loud bang, is psychologically grounded in the signal detection theory, see
Sec. 3.2 on p. 62.
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ThreatCognitionModel.update()

for all agents

agent.getMostImportantStimulus() is
Threat?

yes

no

agents available?

handleThreat(agent)

yes

handleElapsedTime(agent)

no

Figure 7.19: ThreatCognitionModel.update(): the entry point of the cognitive process. The
code tests if an agent perceived a threat. If so, it calls the handleThreat() method. Otherwise,
it calls handleElapsedTime() to move an agent.
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ThreatCognitionModel.handleThreat()

setLatestThreatUnhandled(true)

agent.setSelfCategory(THREATENED)

agent.setSelfCategory(COMMON_FATE)

yes

noisNewThreatForAgent(agent)

noagentIsBlockedByObstacle(agent)

Figure 7.20: The UML activity diagram of the handleThreat() method of class
ThreatCognitionModel: the purpose of this method is to signal to the locomotion layer that
the agent is threatened. This method must handle two corner cases: (1) Agents shall accelerate
when they perceive a Threat. But, this acceleration should only happen once. Therefore, the
method tests for isNewThreatForAgent(). (2) The implementation uses the optimal steps
model as locomotion model. When agents maximize the distance to the Threat, it could
happen that agents are blocked by obstacles and agents do not navigate around them because
of blindly trying to maximize the distance to the threat. In this case, agents should immediately
search for a safe zone allowing them to better maneuver around obstacles. In all other cases, it
is sufficient to finish the cognitive process with THREATENED and react accordingly on the
locomotion layer (with: maximize distance to the threat and accelerate).
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ThreatCognitionModel.handleElapsedTime()

agent.setSelfCategory(
TARGET_ORIENTED) imitateThreatenedNeighborIfPresent(agent)agent.setSelfCategory(

THREATENED)
agent.setSelfCategory(

COMMON_FATE)

yes no

insideThreatArea(agent) &&
notBlockedByObstacle(agent) OUT_GROUP IN_GROUPagent.getGroupMembership()

agent perceived threat?yes no

Figure 7.21: The UML activity diagram of the handleElapsedTime() method of class
ThreatCognitionModel: this cognitive process has the following purposes. If the agent
perceives a threat, test if the agent is still inside the threat area (result: THREATENED) or outside
(result: COMMON_FATE). If the agent does not perceive a threat, either keep behavior
TARGET_ORIENTED or imitate behavior if another in-group member was perceived by calling
imitateThreatenedNeighborIfPresent().

ThreatCognitionModel.imitateThreatenedNeighborIfPresent()

neighbors = getThreatenedNeighbors(agent)

ingroupNeighbors =
filterForIngroup(neighbors)

yes noingroupNeighbors.size() > 0?

handleThreat(agent) agent.setSelfCategory(
TARGET_ORIENTED)

Figure 7.22: The UML activity diagram of the imitateThreatenedNeighborIfPresent()
method of class ThreatCognitionModel: this cognitive process looks for threatened in-group
neighbors and imitates their behavior by reusing method handleThreat().
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Implementation remark: A wrapper class for an easy GUI integration Vadere has
originally been designed as a framework to compare locomotion models. To this end,
Vadere defines an interface Model which a locomotion model must implement so that
Vadere can automatically visualize all model parameters in its GUI and to carry out
the simulation loop (List. 6.1, p. 89). The implementation of the perceived threat sce-
nario introduces a new parameter which is called probabilityIngroupMembership. To
make this parameter easily accessible for GUI users, a new Model SelfCatThreatModel
is implemented which holds AttributesSelfCatThreatModel which in turn stores the
probabilityIngroupMembership. See Fig. 7.23 how Vadere visualizes the Model param-
eters in its “Model” tab.

1 public class SelfCatThreatModel
2 implements Model {
3

4 // Variables
5 private AttributesSelfCatThreat
6 attributesSelfCatThreat;
7 ...
8 }
9

10 public class AttributesSelfCatThreat
11 extends Attributes {
12

13 AttributesOSM attributesLocomotion
14 = new AttributesOSM ();
15 double probabilityInGroupMembership
16 = 0.0;
17 ...
18 }

(a) The wrapper class SelfCatThreatModel. (b) The “Model” tab in the GUI.

Figure 7.23: Vadere visualizes the probabilityIngroupMembership parameter of the wrapper
class SelfCatThreatModel (a) under the “Model” tab (b).

7.2.3 Simulation results and validation

Simulator version and scenario file

The simulations were carried out with Vadere version 1.15 (Git commit hash:
ab19352993746cd0662ad8ac7cf910ce6d48a683). The scenario file, which con-
tains all simulation parameters, can be found as PDF attachment (click the icon
to save file to disk):

In this section, I walk the reader through the simulation results of the perceived threat
scenario step by step. Firstly, I show how I import OpenStreetMap data (OpenStreetMap
contributors 2020) to match the scene at Oxford Circus as accurately as possible. Then,
I depict some simulation steps using a bird’s eye view and magnified views to visual-
ize how the behavioral changes of agents evolve over time. Lastly, I conclude with a
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{
  "name" : "SelfCatThreatModel-OSM",
  "description" : "",
  "release" : "1.15",
  "commithash" : "ab19352993746cd0662ad8ac7cf910ce6d48a683",
  "processWriters" : {
    "files" : [ {
      "type" : "org.vadere.simulator.projects.dataprocessing.outputfile.EventtimePedestrianIdOutputFile",
      "filename" : "postvis.traj",
      "processors" : [ 1, 2, 3 ]
    }, {
      "type" : "org.vadere.simulator.projects.dataprocessing.outputfile.NoDataKeyOutputFile",
      "filename" : "evacuation_time.txt",
      "processors" : [ 4 ]
    } ],
    "processors" : [ {
      "type" : "org.vadere.simulator.projects.dataprocessing.processor.FootStepProcessor",
      "id" : 1
    }, {
      "type" : "org.vadere.simulator.projects.dataprocessing.processor.FootStepTargetIDProcessor",
      "id" : 2
    }, {
      "type" : "org.vadere.simulator.projects.dataprocessing.processor.FootStepPsychologyStatusProcessor",
      "id" : 3
    }, {
      "type" : "org.vadere.simulator.projects.dataprocessing.processor.EvacuationTimeProcessor",
      "id" : 4,
      "attributesType" : "org.vadere.state.attributes.processor.AttributesEvacuationTimeProcessor",
      "attributes" : {
        "pedestrianStartTimeProcessorId" : 5,
        "pedestrianEndTimeProcessorId" : 6
      }
    }, {
      "type" : "org.vadere.simulator.projects.dataprocessing.processor.PedestrianStartTimeProcessor",
      "id" : 5
    }, {
      "type" : "org.vadere.simulator.projects.dataprocessing.processor.PedestrianEndTimeProcessor",
      "id" : 6
    } ],
    "isTimestamped" : true,
    "isWriteMetaData" : true
  },
  "scenario" : {
    "mainModel" : "org.vadere.simulator.models.psychology.selfcategorization.SelfCatThreatModel",
    "attributesModel" : {
      "org.vadere.state.attributes.models.AttributesSelfCatThreat" : {
        "attributesLocomotion" : {
          "stepCircleResolution" : 4,
          "numberOfCircles" : 1,
          "optimizationType" : "NELDER_MEAD",
          "varyStepDirection" : true,
          "movementType" : "ARBITRARY",
          "stepLengthIntercept" : 0.4625,
          "stepLengthSlopeSpeed" : 0.2345,
          "stepLengthSD" : 0.036,
          "movementThreshold" : 0.0,
          "minStepLength" : 0.1,
          "minimumStepLength" : true,
          "maxStepDuration" : 1.7976931348623157E308,
          "dynamicStepLength" : true,
          "updateType" : "EVENT_DRIVEN",
          "seeSmallWalls" : false,
          "targetPotentialModel" : "org.vadere.simulator.models.potential.fields.PotentialFieldTargetGrid",
          "pedestrianPotentialModel" : "org.vadere.simulator.models.potential.PotentialFieldPedestrianCompactSoftshell",
          "obstaclePotentialModel" : "org.vadere.simulator.models.potential.PotentialFieldObstacleCompactSoftshell",
          "submodels" : [ ]
        },
        "probabilityInGroupMembership" : 0.5
      },
      "org.vadere.state.attributes.models.AttributesPotentialCompactSoftshell" : {
        "pedPotentialIntimateSpaceWidth" : 0.45,
        "pedPotentialPersonalSpaceWidth" : 1.2,
        "pedPotentialHeight" : 50.0,
        "obstPotentialWidth" : 0.8,
        "obstPotentialHeight" : 6.0,
        "intimateSpaceFactor" : 1.2,
        "personalSpacePower" : 1,
        "intimateSpacePower" : 1
      },
      "org.vadere.state.attributes.models.AttributesFloorField" : {
        "createMethod" : "HIGH_ACCURACY_FAST_MARCHING",
        "potentialFieldResolution" : 0.1,
        "obstacleGridPenalty" : 0.1,
        "targetAttractionStrength" : 1.0,
        "cacheType" : "TXT_CACHE",
        "cacheDir" : "/home/bkleinmeier/.cache/vadere/PerceivedThreat-OxfordStreet",
        "timeCostAttributes" : {
          "standardDeviation" : 0.7,
          "type" : "UNIT",
          "obstacleDensityWeight" : 3.5,
          "pedestrianSameTargetDensityWeight" : 3.5,
          "pedestrianOtherTargetDensityWeight" : 3.5,
          "pedestrianWeight" : 3.5,
          "queueWidthLoading" : 1.0,
          "pedestrianDynamicWeight" : 6.0,
          "loadingType" : "CONSTANT",
          "width" : 0.2,
          "height" : 1.0
        }
      }
    },
    "attributesSimulation" : {
      "finishTime" : 800.0,
      "simTimeStepLength" : 0.4,
      "realTimeSimTimeRatio" : 0.0,
      "writeSimulationData" : true,
      "visualizationEnabled" : true,
      "printFPS" : false,
      "digitsPerCoordinate" : 2,
      "useFixedSeed" : false,
      "fixedSeed" : 6540305324188895832,
      "simulationSeed" : -3443379705044675018
    },
    "attributesPsychology" : {
      "usePsychologyLayer" : true,
      "psychologyLayer" : {
        "perception" : "SimplePerceptionModel",
        "cognition" : "ThreatCognitionModel"
      }
    },
    "attributesStrategy" : {
      "useStrategyModel" : false,
      "strategyModel" : null,
      "arguments" : [ ],
      "requiredDataProcessorIds" : [ ]
    },
    "topography" : {
      "attributes" : {
        "bounds" : {
          "x" : 0.0,
          "y" : 0.0,
          "width" : 402.0,
          "height" : 369.0
        },
        "boundingBoxWidth" : 0.5,
        "bounded" : true,
        "referenceCoordinateSystem" : null
      },
      "obstacles" : [ {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 284.44790502486285,
            "y" : 339.32801881898195
          }, {
            "x" : 299.10187072632834,
            "y" : 344.0766939204186
          }, {
            "x" : 303.4600359608885,
            "y" : 330.87367404066026
          }, {
            "x" : 306.03874017694034,
            "y" : 323.3802685495466
          }, {
            "x" : 298.4657207962591,
            "y" : 320.72348372638226
          }, {
            "x" : 297.9306571854977,
            "y" : 317.17269036360085
          }, {
            "x" : 293.43788052373566,
            "y" : 315.8723646234721
          }, {
            "x" : 290.4339018011233,
            "y" : 318.9618621086702
          } ]
        },
        "id" : 1
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 317.4794606101932,
            "y" : 349.89524718467146
          }, {
            "x" : 334.4614365401212,
            "y" : 355.51453169155866
          }, {
            "x" : 339.1905158950249,
            "y" : 337.27063902281225
          }, {
            "x" : 330.3381370200077,
            "y" : 334.46355340629816
          }, {
            "x" : 326.0878137884429,
            "y" : 336.3796302806586
          }, {
            "x" : 324.6899592402624,
            "y" : 341.0351759213954
          }, {
            "x" : 320.77859592821915,
            "y" : 339.7909665554762
          } ]
        },
        "id" : 2
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 322.25560287211556,
            "y" : 293.49269165378064
          }, {
            "x" : 335.0983688418055,
            "y" : 297.48025229852647
          }, {
            "x" : 347.8314313907176,
            "y" : 301.43015043251216
          }, {
            "x" : 357.3974948453251,
            "y" : 270.714664561674
          }, {
            "x" : 345.1377867924748,
            "y" : 266.9168824572116
          }, {
            "x" : 331.8141472780844,
            "y" : 262.78800829220563
          } ]
        },
        "id" : 3
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 293.2501260021236,
            "y" : 311.96768854372203
          }, {
            "x" : 297.16151675907895,
            "y" : 313.2118759704754
          }, {
            "x" : 296.5521740656113,
            "y" : 315.11444785259664
          }, {
            "x" : 301.89120562921744,
            "y" : 316.80419342871755
          }, {
            "x" : 304.3220613930607,
            "y" : 317.5339516326785
          }, {
            "x" : 308.1598783750087,
            "y" : 305.3795714462176
          }, {
            "x" : 306.1426190941129,
            "y" : 304.7327954955399
          }, {
            "x" : 296.5284371719463,
            "y" : 301.68441637791693
          } ]
        },
        "id" : 4
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 304.3220613930607,
            "y" : 317.5339516326785
          }, {
            "x" : 306.06532065046486,
            "y" : 318.0809313394129
          }, {
            "x" : 314.23751591087785,
            "y" : 320.6943457573652
          }, {
            "x" : 318.1954360381933,
            "y" : 308.6671558385715
          }, {
            "x" : 310.1983824551571,
            "y" : 306.0160437086597
          }, {
            "x" : 308.1598783750087,
            "y" : 305.3795714462176
          } ]
        },
        "id" : 5
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 314.23751591087785,
            "y" : 320.6943457573652
          }, {
            "x" : 313.46553852560464,
            "y" : 323.02483101561666
          }, {
            "x" : 324.7552371582715,
            "y" : 327.1075337063521
          }, {
            "x" : 326.6661621630192,
            "y" : 320.87971157953143
          }, {
            "x" : 329.4847694983473,
            "y" : 312.4046601522714
          }, {
            "x" : 318.1954360381933,
            "y" : 308.6671558385715
          } ]
        },
        "id" : 6
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 340.8286248460645,
            "y" : 332.1568120419979
          }, {
            "x" : 339.1905158950249,
            "y" : 337.27063902281225
          }, {
            "x" : 330.3381370200077,
            "y" : 334.46355340629816
          }, {
            "x" : 323.1947527703596,
            "y" : 332.19099467340857
          }, {
            "x" : 324.05738649587147,
            "y" : 329.49659263994545
          }, {
            "x" : 324.7552371582715,
            "y" : 327.1075337063521
          }, {
            "x" : 329.49639822053723,
            "y" : 328.62917141616344
          }, {
            "x" : 335.57199227891397,
            "y" : 330.4925166592002
          } ]
        },
        "id" : 7
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 257.96729882690124,
            "y" : 327.70314384810627
          }, {
            "x" : 259.2142885274952,
            "y" : 331.17041005566716
          }, {
            "x" : 271.8445449770661,
            "y" : 335.2608591420576
          }, {
            "x" : 274.61666936718393,
            "y" : 326.72828993946314
          }, {
            "x" : 270.75471194589045,
            "y" : 325.4637816026807
          }, {
            "x" : 270.64735434157774,
            "y" : 319.502231085673
          }, {
            "x" : 261.54650920128915,
            "y" : 316.4739863285795
          } ]
        },
        "id" : 8
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 271.8445449770661,
            "y" : 335.2608591420576
          }, {
            "x" : 281.614307277021,
            "y" : 338.4154948676005
          }, {
            "x" : 284.88314811477903,
            "y" : 327.1296751797199
          }, {
            "x" : 275.3648290709825,
            "y" : 323.9403239013627
          }, {
            "x" : 274.61666936718393,
            "y" : 326.72828993946314
          } ]
        },
        "id" : 9
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 265.2839763049269,
            "y" : 305.284423109144
          }, {
            "x" : 274.88557855202816,
            "y" : 308.47700878977776
          }, {
            "x" : 278.7692242455669,
            "y" : 296.9257053816691
          }, {
            "x" : 269.1532930706162,
            "y" : 293.74368874169886
          } ]
        },
        "id" : 10
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 269.1532930706162,
            "y" : 293.74368874169886
          }, {
            "x" : 272.1834496030351,
            "y" : 284.6533081093803
          }, {
            "x" : 295.6948106492637,
            "y" : 292.44297606218606
          }, {
            "x" : 292.66461445530877,
            "y" : 301.53334366716444
          }, {
            "x" : 283.1653216481209,
            "y" : 298.3892655717209
          }, {
            "x" : 278.7692242455669,
            "y" : 296.9257053816691
          } ]
        },
        "id" : 11
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 292.66461445530877,
            "y" : 301.53334366716444
          }, {
            "x" : 284.88314811477903,
            "y" : 327.1296751797199
          }, {
            "x" : 275.3648290709825,
            "y" : 323.9403239013627
          }, {
            "x" : 283.1653216481209,
            "y" : 298.3892655717209
          } ]
        },
        "id" : 12
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 191.96689531125594,
            "y" : 138.36343292240053
          }, {
            "x" : 176.52952717477456,
            "y" : 135.15456799045205
          }, {
            "x" : 174.95682448300067,
            "y" : 142.68733829446137
          }, {
            "x" : 168.46297784580383,
            "y" : 141.03056574985385
          }, {
            "x" : 164.3671193741029,
            "y" : 157.48428241163492
          }, {
            "x" : 177.69028205913492,
            "y" : 161.63494303636253
          }, {
            "x" : 179.305518202018,
            "y" : 159.05900985002518
          }, {
            "x" : 181.0464350556722,
            "y" : 157.17837194073945
          }, {
            "x" : 183.15891223901417,
            "y" : 155.3902000123635
          }, {
            "x" : 185.4872511572903,
            "y" : 154.30084777716547
          }, {
            "x" : 187.51902172563132,
            "y" : 153.3335304269567
          }, {
            "x" : 188.94463461090345,
            "y" : 152.76566576305777
          } ]
        },
        "id" : 13
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 166.86071125697345,
            "y" : 86.72830096632242
          }, {
            "x" : 169.32694534142502,
            "y" : 79.97650026343763
          }, {
            "x" : 173.3496042189654,
            "y" : 68.95391278155148
          }, {
            "x" : 175.1848968626,
            "y" : 63.59163475316018
          }, {
            "x" : 164.18020761676598,
            "y" : 59.66520410683006
          }, {
            "x" : 162.6207535942085,
            "y" : 64.01382235065103
          }, {
            "x" : 150.1028981038835,
            "y" : 59.87241009250283
          }, {
            "x" : 152.16456504387315,
            "y" : 53.51679957751185
          }, {
            "x" : 161.3813127843896,
            "y" : 38.29871821217239
          }, {
            "x" : 165.58168920781463,
            "y" : 39.79905383940786
          }, {
            "x" : 170.29714021249674,
            "y" : 41.45314045716077
          }, {
            "x" : 172.3479037861107,
            "y" : 42.13456922955811
          }, {
            "x" : 175.71352575009223,
            "y" : 33.70308731496334
          }, {
            "x" : 178.1746042665327,
            "y" : 26.728383395820856
          }, {
            "x" : 196.8973204611102,
            "y" : 32.4596840031445
          }, {
            "x" : 220.75904125685338,
            "y" : 39.85060797166079
          }, {
            "x" : 221.79275582463015,
            "y" : 44.15579902101308
          }, {
            "x" : 218.30127732863184,
            "y" : 53.13909777626395
          }, {
            "x" : 215.85101438127458,
            "y" : 59.83582737389952
          }, {
            "x" : 208.59772494994104,
            "y" : 80.98767802491784
          }, {
            "x" : 205.33942661923356,
            "y" : 91.47221610229462
          }, {
            "x" : 204.11031857714988,
            "y" : 95.90054452605546
          }, {
            "x" : 199.7796702112537,
            "y" : 97.55748639814556
          } ]
        },
        "id" : 14
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 144.0909428828163,
            "y" : 78.60081379674375
          }, {
            "x" : 148.40281141572632,
            "y" : 66.5762037485838
          }, {
            "x" : 150.1028981038835,
            "y" : 59.87241009250283
          }, {
            "x" : 145.40696785971522,
            "y" : 58.25250971503556
          }, {
            "x" : 143.06268746301066,
            "y" : 57.437137567438185
          }, {
            "x" : 147.98608336399775,
            "y" : 42.91985784191638
          }, {
            "x" : 122.37751419178676,
            "y" : 34.002332147210836
          }, {
            "x" : 110.07751827733591,
            "y" : 66.25940632540733
          }, {
            "x" : 128.42330750601832,
            "y" : 72.92223037034273
          }, {
            "x" : 134.9176385756582,
            "y" : 75.28048275317997
          }, {
            "x" : 138.70610436680727,
            "y" : 76.65335432067513
          } ]
        },
        "id" : 15
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 10.0,
            "y" : 249.4338628873229
          }, {
            "x" : 27.987135079107247,
            "y" : 255.30289391987026
          }, {
            "x" : 37.36437887966167,
            "y" : 258.37490336131305
          }, {
            "x" : 55.522707219352014,
            "y" : 264.3063966464251
          }, {
            "x" : 70.49745596223511,
            "y" : 269.211670470424
          }, {
            "x" : 84.9696945368778,
            "y" : 273.9971464192495
          }, {
            "x" : 92.91933099308517,
            "y" : 261.1458238400519
          }, {
            "x" : 105.18907077913173,
            "y" : 240.3234162265435
          }, {
            "x" : 111.74392532662023,
            "y" : 229.2104056123644
          }, {
            "x" : 123.83516001526732,
            "y" : 208.69284779950976
          }, {
            "x" : 129.57966685597785,
            "y" : 198.94010223820806
          }, {
            "x" : 138.5381541227689,
            "y" : 183.74531269446015
          }, {
            "x" : 135.0158381672809,
            "y" : 178.22939711250365
          }, {
            "x" : 120.12358848622534,
            "y" : 174.58544950466603
          }, {
            "x" : 102.09409660974052,
            "y" : 170.1508932635188
          }, {
            "x" : 45.71929099236149,
            "y" : 156.3240687744692
          }, {
            "x" : 38.144624848035164,
            "y" : 161.7072495194152
          }, {
            "x" : 17.865506948670372,
            "y" : 224.67561697401106
          }, {
            "x" : 15.535628296551295,
            "y" : 232.2122637750581
          }, {
            "x" : 10.83776510041207,
            "y" : 246.66050052363425
          } ]
        },
        "id" : 16
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 143.00493447610643,
            "y" : 210.78910305257887
          }, {
            "x" : 152.7159434297355,
            "y" : 215.27740144450217
          }, {
            "x" : 161.7232902571559,
            "y" : 219.4598453314975
          }, {
            "x" : 165.16223793581594,
            "y" : 208.97121075261384
          }, {
            "x" : 149.4670531678712,
            "y" : 200.63013994786888
          } ]
        },
        "id" : 17
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 259.17679949628655,
            "y" : 143.91880827303976
          }, {
            "x" : 252.54162005300168,
            "y" : 156.36474277172238
          }, {
            "x" : 241.36249008739833,
            "y" : 152.10838751494884
          }, {
            "x" : 242.261283899541,
            "y" : 147.24401654675603
          }, {
            "x" : 238.24044794868678,
            "y" : 146.48555307742208
          }, {
            "x" : 231.21507562429179,
            "y" : 144.74111216608435
          }, {
            "x" : 230.70112497115042,
            "y" : 146.69196030311286
          }, {
            "x" : 218.4956151584629,
            "y" : 143.45338894613087
          }, {
            "x" : 221.01854288566392,
            "y" : 133.4746092548594
          }, {
            "x" : 223.54841564467642,
            "y" : 123.49610182084143
          }, {
            "x" : 226.07829637662508,
            "y" : 113.51759552489966
          }, {
            "x" : 237.03172244713642,
            "y" : 116.79632382467389
          }, {
            "x" : 242.9120455144439,
            "y" : 118.86347653251141
          }, {
            "x" : 242.11495561723132,
            "y" : 120.94801486562937
          }, {
            "x" : 255.63768663455267,
            "y" : 124.26039989013225
          }, {
            "x" : 257.90793567535,
            "y" : 123.41378340125084
          }, {
            "x" : 259.26437870250084,
            "y" : 120.88343244045973
          }, {
            "x" : 251.61739262170158,
            "y" : 117.44438148196787
          }, {
            "x" : 258.8664868272608,
            "y" : 105.64601450506598
          }, {
            "x" : 272.0159409377957,
            "y" : 113.53156670648605
          }, {
            "x" : 272.90940294088796,
            "y" : 114.84704651590437
          }, {
            "x" : 273.61893675790634,
            "y" : 117.13523698411882
          }, {
            "x" : 273.5758726197528,
            "y" : 118.59226936846972
          } ]
        },
        "id" : 18
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 266.2775963396998,
            "y" : 21.809029365889728
          }, {
            "x" : 259.72230300912634,
            "y" : 31.49654791224748
          }, {
            "x" : 258.66517350741196,
            "y" : 32.2346920883283
          }, {
            "x" : 254.01507750246674,
            "y" : 41.52900920063257
          }, {
            "x" : 246.44870907696895,
            "y" : 56.28809199668467
          }, {
            "x" : 241.69721930776723,
            "y" : 65.33347977697849
          }, {
            "x" : 241.67549097898882,
            "y" : 65.88939201273024
          }, {
            "x" : 242.03746364067774,
            "y" : 66.58278909418732
          }, {
            "x" : 236.24564667150844,
            "y" : 77.89251135848463
          }, {
            "x" : 237.84208337613381,
            "y" : 82.55375827103853
          }, {
            "x" : 255.80834352585953,
            "y" : 93.41133990697563
          }, {
            "x" : 262.7256295646075,
            "y" : 97.21160371415317
          }, {
            "x" : 276.6898035116028,
            "y" : 104.87290433049202
          }, {
            "x" : 281.5077769960044,
            "y" : 103.54686486069113
          }, {
            "x" : 285.0289682855364,
            "y" : 97.53787349816412
          }, {
            "x" : 290.03064969799016,
            "y" : 88.84749636054039
          }, {
            "x" : 307.95592401653994,
            "y" : 58.45874059665948
          }, {
            "x" : 315.757321924204,
            "y" : 45.15650891326368
          }, {
            "x" : 308.90540126978885,
            "y" : 41.99343975260854
          }, {
            "x" : 299.31742039776873,
            "y" : 36.307061600498855
          }, {
            "x" : 270.63776897557545,
            "y" : 20.643243238329887
          } ]
        },
        "id" : 19
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 304.2828951374395,
            "y" : 90.38461914286017
          }, {
            "x" : 323.4769261884503,
            "y" : 100.75596330314875
          }, {
            "x" : 326.85381397942547,
            "y" : 94.529785416089
          }, {
            "x" : 330.14438223058823,
            "y" : 88.73450839240104
          }, {
            "x" : 333.4029186532134,
            "y" : 82.51484126131982
          }, {
            "x" : 335.58294851181563,
            "y" : 78.29075074475259
          }, {
            "x" : 339.7656566980295,
            "y" : 70.1140176448971
          }, {
            "x" : 343.5927643115865,
            "y" : 62.680577772669494
          }, {
            "x" : 350.43115830619354,
            "y" : 66.18836050946265
          }, {
            "x" : 357.2725869595306,
            "y" : 69.61832501739264
          }, {
            "x" : 349.6200487887254,
            "y" : 84.79704102408141
          }, {
            "x" : 353.89267543912865,
            "y" : 86.93507270421833
          }, {
            "x" : 355.7942217688542,
            "y" : 87.877988464199
          }, {
            "x" : 362.05511185887735,
            "y" : 90.87325340509415
          }, {
            "x" : 356.13502962037455,
            "y" : 103.14660504553467
          }, {
            "x" : 354.1973747740267,
            "y" : 107.21313761733472
          }, {
            "x" : 352.26665984047577,
            "y" : 111.27994217257947
          }, {
            "x" : 349.83981581323314,
            "y" : 116.48541036155075
          }, {
            "x" : 343.22192961501423,
            "y" : 130.9696686156094
          }, {
            "x" : 341.24928818340413,
            "y" : 130.06851730681956
          }, {
            "x" : 338.1645974715939,
            "y" : 128.6450636908412
          }, {
            "x" : 335.72936299967114,
            "y" : 127.49198450986296
          }, {
            "x" : 333.8815865610959,
            "y" : 126.59571910277009
          }, {
            "x" : 332.92968902538996,
            "y" : 128.5517041273415
          }, {
            "x" : 331.3971163498936,
            "y" : 131.6764534348622
          }, {
            "x" : 329.92525921354536,
            "y" : 134.6699544042349
          }, {
            "x" : 327.64289818529505,
            "y" : 139.20183128584176
          }, {
            "x" : 327.0956243899418,
            "y" : 140.22714376170188
          }, {
            "x" : 307.4543244204251,
            "y" : 129.74920518137515
          }, {
            "x" : 310.32467632263433,
            "y" : 124.39403239637613
          }, {
            "x" : 303.67581548937596,
            "y" : 120.83803422097117
          }, {
            "x" : 291.16063752793707,
            "y" : 113.9682297585532
          }, {
            "x" : 298.6077100901166,
            "y" : 100.48509719315916
          } ]
        },
        "id" : 20
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 305.87080253975,
            "y" : 130.978978167288
          }, {
            "x" : 287.4386716657318,
            "y" : 120.31455978006124
          }, {
            "x" : 282.9031261643395,
            "y" : 128.81159173790365
          }, {
            "x" : 294.91708547982853,
            "y" : 135.52815854735672
          }, {
            "x" : 297.4542785232188,
            "y" : 131.7634283946827
          }, {
            "x" : 303.08729082054924,
            "y" : 135.17948336340487
          } ]
        },
        "id" : 21
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 308.44598133058753,
            "y" : 82.70818254165351
          }, {
            "x" : 304.2828951374395,
            "y" : 90.38461914286017
          }, {
            "x" : 323.4769261884503,
            "y" : 100.75596330314875
          }, {
            "x" : 326.85381397942547,
            "y" : 94.529785416089
          }, {
            "x" : 326.2620221270481,
            "y" : 94.20599304419011
          }, {
            "x" : 321.55369423283264,
            "y" : 91.66121461987495
          }, {
            "x" : 322.3399145019939,
            "y" : 90.21097025182098
          }, {
            "x" : 311.4600143424468,
            "y" : 84.34042257256806
          } ]
        },
        "id" : 22
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 334.02823834784795,
            "y" : 137.59194021113217
          }, {
            "x" : 332.9241422947962,
            "y" : 139.70900209620595
          }, {
            "x" : 325.56882807670627,
            "y" : 154.22011816687882
          }, {
            "x" : 327.6012676859973,
            "y" : 155.3685775771737
          }, {
            "x" : 329.3562439098023,
            "y" : 156.32802392728627
          }, {
            "x" : 341.67129755357746,
            "y" : 160.13904910255224
          }, {
            "x" : 345.0781545659993,
            "y" : 161.14083069004118
          }, {
            "x" : 342.56530434358865,
            "y" : 171.92169590853155
          }, {
            "x" : 348.8323204566259,
            "y" : 173.51414956711233
          }, {
            "x" : 350.73125922412146,
            "y" : 166.52866727206856
          }, {
            "x" : 351.7136962049408,
            "y" : 162.90359265357256
          }, {
            "x" : 352.02989690110553,
            "y" : 161.74675788357854
          }, {
            "x" : 353.5860045355512,
            "y" : 153.7568315267563
          }, {
            "x" : 354.2900932864286,
            "y" : 150.1431417958811
          }, {
            "x" : 355.0144381831633,
            "y" : 147.61036336049438
          }, {
            "x" : 353.15930047491565,
            "y" : 146.72493759170175
          }, {
            "x" : 350.5918390437728,
            "y" : 145.57781449705362
          }, {
            "x" : 348.0100874810014,
            "y" : 144.26310521364212
          }, {
            "x" : 339.4982889550738,
            "y" : 140.199927194044
          }, {
            "x" : 335.9449464872014,
            "y" : 138.50203678943217
          } ]
        },
        "id" : 23
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 250.74047535995487,
            "y" : 171.51620218344033
          }, {
            "x" : 253.27758666139562,
            "y" : 172.72889940999448
          }, {
            "x" : 255.13664188527036,
            "y" : 168.893102071248
          }, {
            "x" : 252.59259193530306,
            "y" : 167.68013279512525
          } ]
        },
        "id" : 24
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 261.54650920128915,
            "y" : 316.4739863285795
          }, {
            "x" : 265.2839763049269,
            "y" : 305.284423109144
          }, {
            "x" : 274.88557855202816,
            "y" : 308.47700878977776
          }, {
            "x" : 276.5386646812549,
            "y" : 309.0204526139423
          }, {
            "x" : 275.39763981150463,
            "y" : 312.43890318926424
          }, {
            "x" : 274.10829468944576,
            "y" : 312.0098974118009
          }, {
            "x" : 272.84974480059464,
            "y" : 315.7689461875707
          }, {
            "x" : 275.1197533705272,
            "y" : 316.52580752037466
          }, {
            "x" : 273.77446634182706,
            "y" : 320.54871080070734
          }, {
            "x" : 270.64735434157774,
            "y" : 319.502231085673
          } ]
        },
        "id" : 25
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 308.72349443810526,
            "y" : 264.8470497922972
          }, {
            "x" : 306.517278143554,
            "y" : 271.51987662166357
          }, {
            "x" : 304.980804888648,
            "y" : 271.0143890772015
          }, {
            "x" : 302.3734291646397,
            "y" : 278.88527309987694
          }, {
            "x" : 311.40019231976476,
            "y" : 281.85501489043236
          }, {
            "x" : 319.8317356951302,
            "y" : 256.3398099709302
          }, {
            "x" : 285.6996656921692,
            "y" : 245.29530555102974
          }, {
            "x" : 284.51383260602597,
            "y" : 245.772299666889
          }, {
            "x" : 281.85792191990186,
            "y" : 253.64129505027086
          }, {
            "x" : 291.28056102548726,
            "y" : 256.79350328445435
          }, {
            "x" : 298.6468976401957,
            "y" : 259.2306199669838
          }, {
            "x" : 297.96122552629095,
            "y" : 261.30837134830654
          } ]
        },
        "id" : 26
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 330.3451740456512,
            "y" : 220.22732694726437
          }, {
            "x" : 330.4423305754317,
            "y" : 219.87479841336608
          }, {
            "x" : 334.63260918378364,
            "y" : 220.74018285702914
          }, {
            "x" : 336.7067197629949,
            "y" : 221.177621669136
          }, {
            "x" : 338.1331041684607,
            "y" : 221.47837830521166
          }, {
            "x" : 339.2827605273342,
            "y" : 222.81502655893564
          }, {
            "x" : 339.6589361013612,
            "y" : 224.21050837635994
          }, {
            "x" : 333.1555595927639,
            "y" : 247.3179313847795
          }, {
            "x" : 331.39777206408326,
            "y" : 248.56315041985363
          }, {
            "x" : 326.3890379782533,
            "y" : 246.95310576073825
          }, {
            "x" : 322.4294766780222,
            "y" : 245.69587991852313
          } ]
        },
        "id" : 27
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 278.36605114722624,
            "y" : 270.80893993284553
          }, {
            "x" : 277.3788935360499,
            "y" : 270.2915311008692
          }, {
            "x" : 276.752471770742,
            "y" : 269.6100617274642
          }, {
            "x" : 276.5448890632251,
            "y" : 268.69999180175364
          }, {
            "x" : 276.76134379860014,
            "y" : 267.60606545582414
          }, {
            "x" : 281.85792191990186,
            "y" : 253.64129505027086
          }, {
            "x" : 291.28056102548726,
            "y" : 256.79350328445435
          }, {
            "x" : 288.4091104307445,
            "y" : 265.19969532918185
          }, {
            "x" : 295.1762731305789,
            "y" : 267.50202904175967
          }, {
            "x" : 292.3750768228201,
            "y" : 275.71053158212453
          } ]
        },
        "id" : 28
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 304.980804888648,
            "y" : 271.0143890772015
          }, {
            "x" : 295.1762731305789,
            "y" : 267.50202904175967
          }, {
            "x" : 292.3750768228201,
            "y" : 275.71053158212453
          }, {
            "x" : 302.3734291646397,
            "y" : 278.88527309987694
          } ]
        },
        "id" : 29
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 218.62546326604206,
            "y" : 195.94993453565985
          }, {
            "x" : 212.6565402254928,
            "y" : 201.66286700498313
          }, {
            "x" : 205.4213576054899,
            "y" : 205.4667363036424
          }, {
            "x" : 196.7788499291055,
            "y" : 245.4607840264216
          }, {
            "x" : 206.9091279214481,
            "y" : 248.4623221596703
          }, {
            "x" : 206.25293274887372,
            "y" : 251.03118565212935
          }, {
            "x" : 215.4536493346095,
            "y" : 253.99641350843012
          }, {
            "x" : 216.44837558013387,
            "y" : 252.36500596161932
          }, {
            "x" : 240.916800612933,
            "y" : 260.3811098411679
          }, {
            "x" : 240.46918010211084,
            "y" : 262.41249631065875
          }, {
            "x" : 250.95965308183804,
            "y" : 265.7956681670621
          }, {
            "x" : 251.78187002870254,
            "y" : 263.7789254607633
          }, {
            "x" : 257.4881897359155,
            "y" : 265.494112605229
          }, {
            "x" : 260.3385217419127,
            "y" : 264.20249733515084
          }, {
            "x" : 276.4579855068587,
            "y" : 214.0559767689556
          }, {
            "x" : 275.5473517222563,
            "y" : 211.22543119546026
          }, {
            "x" : 224.84937879128847,
            "y" : 199.53375685214996
          }, {
            "x" : 224.87210163322743,
            "y" : 197.5303034130484
          } ]
        },
        "id" : 30
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 125.26294382603373,
            "y" : 269.7807527538389
          }, {
            "x" : 128.30514046980534,
            "y" : 264.64377538021654
          }, {
            "x" : 126.66505698428955,
            "y" : 263.76683306880295
          }, {
            "x" : 124.35775329021271,
            "y" : 262.5409048134461
          }, {
            "x" : 114.5220137652941,
            "y" : 257.15696622338146
          }, {
            "x" : 112.3548536967719,
            "y" : 260.70239092968404
          }, {
            "x" : 111.42914627003483,
            "y" : 261.6349940476939
          } ]
        },
        "id" : 31
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 153.2759527793387,
            "y" : 246.11043925955892
          }, {
            "x" : 151.15141736145597,
            "y" : 253.1873800540343
          }, {
            "x" : 153.71932194172405,
            "y" : 253.96695838030428
          }, {
            "x" : 153.06839422544,
            "y" : 256.0460830386728
          }, {
            "x" : 150.9347932599485,
            "y" : 262.64385503996164
          }, {
            "x" : 149.2929542058846,
            "y" : 267.857802959159
          }, {
            "x" : 148.52938208042178,
            "y" : 268.9080865783617
          }, {
            "x" : 147.80576075438876,
            "y" : 269.1136543219909
          }, {
            "x" : 146.58831754827406,
            "y" : 269.3333343202248
          }, {
            "x" : 144.85758479882497,
            "y" : 268.9984700428322
          }, {
            "x" : 140.37427704106085,
            "y" : 267.63184334523976
          }, {
            "x" : 138.42335718986578,
            "y" : 272.399445108138
          }, {
            "x" : 142.98253231111448,
            "y" : 273.7801696220413
          }, {
            "x" : 146.80034153105225,
            "y" : 274.9314992874861
          }, {
            "x" : 149.82866204471793,
            "y" : 275.8404169669375
          }, {
            "x" : 149.46829830983188,
            "y" : 276.88418350275606
          }, {
            "x" : 148.89847165939864,
            "y" : 278.6658261511475
          }, {
            "x" : 146.10599309625104,
            "y" : 277.9442867487669
          }, {
            "x" : 144.62464550847653,
            "y" : 282.2514179153368
          }, {
            "x" : 142.83888077153824,
            "y" : 287.41520331427455
          }, {
            "x" : 140.92127937730402,
            "y" : 293.1083290670067
          }, {
            "x" : 150.8272937258007,
            "y" : 296.6911648726091
          }, {
            "x" : 151.46985481469892,
            "y" : 296.24859100114554
          }, {
            "x" : 152.21993036335334,
            "y" : 295.8992997016758
          }, {
            "x" : 153.9259084367659,
            "y" : 290.99964506179094
          }, {
            "x" : 154.2225511284778,
            "y" : 289.8086312422529
          }, {
            "x" : 155.03174831380602,
            "y" : 287.41276920586824
          }, {
            "x" : 155.49533783411607,
            "y" : 285.86081595811993
          }, {
            "x" : 157.64497028442565,
            "y" : 279.38615963887423
          }, {
            "x" : 158.747759849648,
            "y" : 276.05527530424297
          }, {
            "x" : 160.90520509460475,
            "y" : 269.558654778637
          }, {
            "x" : 161.98458111239597,
            "y" : 266.29366745613515
          }, {
            "x" : 164.13509652460925,
            "y" : 259.7967771347612
          }, {
            "x" : 166.74182638374623,
            "y" : 251.93694556877017
          }, {
            "x" : 165.21412159199826,
            "y" : 249.96199458185583
          } ]
        },
        "id" : 32
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 122.30102376139257,
            "y" : 286.37900733668357
          }, {
            "x" : 132.07699965138454,
            "y" : 289.91218407824636
          }, {
            "x" : 138.42335718986578,
            "y" : 272.399445108138
          }, {
            "x" : 140.37427704106085,
            "y" : 267.63184334523976
          }, {
            "x" : 141.10364992683753,
            "y" : 265.8564331391826
          }, {
            "x" : 145.49113261327147,
            "y" : 267.3640744294971
          }, {
            "x" : 147.4850917212898,
            "y" : 261.1394424047321
          }, {
            "x" : 136.10403726971708,
            "y" : 257.6103437403217
          }, {
            "x" : 135.04164273187052,
            "y" : 260.08539837691933
          }, {
            "x" : 130.1677629132755,
            "y" : 257.6902178451419
          }, {
            "x" : 126.66505698428955,
            "y" : 263.76683306880295
          }, {
            "x" : 131.446568045998,
            "y" : 266.39224160369486
          } ]
        },
        "id" : 33
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 136.49567237845622,
            "y" : 291.5101191056892
          }, {
            "x" : 138.08504130796064,
            "y" : 292.0844330135733
          }, {
            "x" : 140.92127937730402,
            "y" : 293.1083290670067
          }, {
            "x" : 142.83888077153824,
            "y" : 287.41520331427455
          }, {
            "x" : 144.62464550847653,
            "y" : 282.2514179153368
          }, {
            "x" : 146.80034153105225,
            "y" : 274.9314992874861
          }, {
            "x" : 142.98253231111448,
            "y" : 273.7801696220413
          } ]
        },
        "id" : 34
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 140.74683899898082,
            "y" : 242.09106804057956
          }, {
            "x" : 138.69572091824375,
            "y" : 241.42076824139804
          }, {
            "x" : 136.73347925546113,
            "y" : 240.7873471332714
          }, {
            "x" : 127.58039106987417,
            "y" : 237.84639715123922
          }, {
            "x" : 126.64821186836343,
            "y" : 238.2331193909049
          }, {
            "x" : 124.77212686662097,
            "y" : 239.30675713531673
          }, {
            "x" : 116.33362065686379,
            "y" : 254.1766843656078
          }, {
            "x" : 115.09307193418499,
            "y" : 256.2327802181244
          }, {
            "x" : 114.5220137652941,
            "y" : 257.15696622338146
          }, {
            "x" : 124.35775329021271,
            "y" : 262.5409048134461
          }, {
            "x" : 126.1788949550828,
            "y" : 259.672350843437
          }, {
            "x" : 130.13996140111703,
            "y" : 252.35536188911647
          }, {
            "x" : 133.26544034318067,
            "y" : 252.9117372315377
          }, {
            "x" : 137.24152606807183,
            "y" : 253.92448406293988
          } ]
        },
        "id" : 35
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 202.00017201364972,
            "y" : 311.4963087774813
          }, {
            "x" : 196.10487349063624,
            "y" : 309.6401735423133
          }, {
            "x" : 202.19617062190082,
            "y" : 291.0151454983279
          }, {
            "x" : 207.89463503519073,
            "y" : 293.10856886487454
          } ]
        },
        "id" : 36
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 250.65556860202923,
            "y" : 276.5960956234485
          }, {
            "x" : 255.85636829503346,
            "y" : 278.0910866847262
          }, {
            "x" : 256.22818003827706,
            "y" : 279.95407066494226
          }, {
            "x" : 252.4993102970766,
            "y" : 291.9902539467439
          }, {
            "x" : 251.55299989983905,
            "y" : 295.0488577261567
          }, {
            "x" : 242.84574604220688,
            "y" : 292.2587405350059
          }, {
            "x" : 240.3207970749354,
            "y" : 291.44738845154643
          }, {
            "x" : 241.6209811666049,
            "y" : 287.333632864058
          }, {
            "x" : 240.6246971525252,
            "y" : 287.049714371562
          }, {
            "x" : 242.11175980966073,
            "y" : 282.7762351259589
          }, {
            "x" : 248.05389669747092,
            "y" : 284.6787944836542
          } ]
        },
        "id" : 37
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 245.80453634180594,
            "y" : 312.8966375514865
          }, {
            "x" : 242.92830263683572,
            "y" : 322.4941327115521
          }, {
            "x" : 241.44195129349828,
            "y" : 323.9058835301548
          }, {
            "x" : 231.5494340044679,
            "y" : 320.8690177993849
          }, {
            "x" : 234.05829688266385,
            "y" : 312.67133273370564
          }, {
            "x" : 234.36836388346273,
            "y" : 311.8483098857105
          }, {
            "x" : 236.3743448263267,
            "y" : 312.60596850141883
          }, {
            "x" : 237.1111851503374,
            "y" : 310.107071781531
          } ]
        },
        "id" : 38
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 149.4670531678712,
            "y" : 200.63013994786888
          }, {
            "x" : 165.16223793581594,
            "y" : 208.97121075261384
          }, {
            "x" : 161.7232902571559,
            "y" : 219.4598453314975
          }, {
            "x" : 160.2566463634139,
            "y" : 223.92344097886235
          }, {
            "x" : 156.76274960988667,
            "y" : 233.15165087208152
          }, {
            "x" : 167.26413449493703,
            "y" : 236.9693427234888
          }, {
            "x" : 171.75000234588515,
            "y" : 233.6481623854488
          }, {
            "x" : 173.2077708976576,
            "y" : 226.3892814097926
          }, {
            "x" : 179.38740643206984,
            "y" : 198.03549368679523
          }, {
            "x" : 175.44497289857827,
            "y" : 193.13783811125904
          }, {
            "x" : 173.5768328459235,
            "y" : 186.53960095066577
          }, {
            "x" : 159.62192538764793,
            "y" : 183.80070743896067
          } ]
        },
        "id" : 39
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 201.71089898387436,
            "y" : 277.2998483432457
          }, {
            "x" : 206.04415000230074,
            "y" : 278.9501822087914
          }, {
            "x" : 202.19617062190082,
            "y" : 291.0151454983279
          }, {
            "x" : 196.10487349063624,
            "y" : 309.6401735423133
          }, {
            "x" : 182.69023501535412,
            "y" : 305.17407688777894
          }, {
            "x" : 180.6121271365555,
            "y" : 300.92829558998346
          }, {
            "x" : 193.0796541844029,
            "y" : 261.89657727163285
          }, {
            "x" : 195.96210700948723,
            "y" : 259.960338880308
          }, {
            "x" : 199.99759859545156,
            "y" : 260.6970767136663
          }, {
            "x" : 195.5445867863018,
            "y" : 275.44426025263965
          } ]
        },
        "id" : 40
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 215.77824503893498,
            "y" : 265.4227114152163
          }, {
            "x" : 221.05491977895144,
            "y" : 267.1099298968911
          }, {
            "x" : 218.05821416631807,
            "y" : 276.4132122900337
          }, {
            "x" : 217.0937195722945,
            "y" : 279.4042991483584
          }, {
            "x" : 216.2233318964718,
            "y" : 282.1206833841279
          }, {
            "x" : 210.94667194178328,
            "y" : 280.4334695516154
          } ]
        },
        "id" : 41
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 230.94927178206854,
            "y" : 270.2804623665288
          }, {
            "x" : 241.0907326679444,
            "y" : 273.5274853669107
          }, {
            "x" : 238.48907519096974,
            "y" : 281.61018876265734
          }, {
            "x" : 237.9747286211932,
            "y" : 283.2158282576129
          }, {
            "x" : 235.59371032193303,
            "y" : 282.4546457529068
          }, {
            "x" : 234.75540621438995,
            "y" : 285.06092915683985
          }, {
            "x" : 228.22321366763208,
            "y" : 282.96829417254776
          }, {
            "x" : 226.99498574307654,
            "y" : 282.5750956069678
          } ]
        },
        "id" : 42
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 251.55299989983905,
            "y" : 295.0488577261567
          }, {
            "x" : 245.80453634180594,
            "y" : 312.8966375514865
          }, {
            "x" : 237.1111851503374,
            "y" : 310.107071781531
          }, {
            "x" : 237.2538663536543,
            "y" : 309.65610428061336
          }, {
            "x" : 218.43991751864087,
            "y" : 303.62036723736674
          }, {
            "x" : 223.5863446382573,
            "y" : 287.6642915979028
          }, {
            "x" : 239.85502522974275,
            "y" : 292.876762714237
          }, {
            "x" : 240.3207970749354,
            "y" : 291.44738845154643
          } ]
        },
        "id" : 43
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 163.40443290851545,
            "y" : 349.4401919906959
          }, {
            "x" : 176.6542198335519,
            "y" : 353.85526179056615
          }, {
            "x" : 181.79408002004493,
            "y" : 336.64061645790935
          }, {
            "x" : 186.4771798371803,
            "y" : 338.04849764797837
          }, {
            "x" : 190.1568457633257,
            "y" : 326.37781666591763
          }, {
            "x" : 188.24189725972246,
            "y" : 325.77962695714086
          }, {
            "x" : 175.77239818079397,
            "y" : 321.8404308948666
          }, {
            "x" : 174.07031553867273,
            "y" : 321.30624085105956
          }, {
            "x" : 171.53347010700963,
            "y" : 322.9330722875893
          } ]
        },
        "id" : 44
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 143.00493447610643,
            "y" : 210.78910305257887
          }, {
            "x" : 133.64027153409552,
            "y" : 225.35557842906564
          }, {
            "x" : 156.76274960988667,
            "y" : 233.15165087208152
          }, {
            "x" : 160.2566463634139,
            "y" : 223.92344097886235
          }, {
            "x" : 149.5439740892034,
            "y" : 221.6007656045258
          }, {
            "x" : 152.7159434297355,
            "y" : 215.27740144450217
          } ]
        },
        "id" : 45
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 206.16392792528495,
            "y" : 262.55266978032887
          }, {
            "x" : 215.77824503893498,
            "y" : 265.4227114152163
          }, {
            "x" : 210.94667194178328,
            "y" : 280.4334695516154
          }, {
            "x" : 206.04415000230074,
            "y" : 278.9501822087914
          }, {
            "x" : 201.71089898387436,
            "y" : 277.2998483432457
          } ]
        },
        "id" : 46
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 221.05491977895144,
            "y" : 267.1099298968911
          }, {
            "x" : 230.94927178206854,
            "y" : 270.2804623665288
          }, {
            "x" : 226.99498574307654,
            "y" : 282.5750956069678
          }, {
            "x" : 219.2549343946157,
            "y" : 280.10120572615415
          }, {
            "x" : 220.21943019435275,
            "y" : 277.1101192487404
          }, {
            "x" : 218.05821416631807,
            "y" : 276.4132122900337
          } ]
        },
        "id" : 47
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 241.0907326679444,
            "y" : 273.5274853669107
          }, {
            "x" : 250.65556860202923,
            "y" : 276.5960956234485
          }, {
            "x" : 248.05389669747092,
            "y" : 284.6787944836542
          }, {
            "x" : 242.11175980966073,
            "y" : 282.7762351259589
          }, {
            "x" : 238.48907519096974,
            "y" : 281.61018876265734
          } ]
        },
        "id" : 48
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 200.0805794770131,
            "y" : 329.5049029048532
          }, {
            "x" : 200.93812062696088,
            "y" : 329.78339163120836
          }, {
            "x" : 208.63821842090692,
            "y" : 332.2111557247117
          }, {
            "x" : 201.0438234921312,
            "y" : 355.6992045659572
          }, {
            "x" : 200.2875142476987,
            "y" : 357.98577493056655
          }, {
            "x" : 197.30998109525535,
            "y" : 357.0231320587918
          }, {
            "x" : 196.23957730841357,
            "y" : 356.6806486910209
          }, {
            "x" : 191.9241459973855,
            "y" : 355.2871255790815
          }, {
            "x" : 193.5217677342007,
            "y" : 350.31643654592335
          } ]
        },
        "id" : 49
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 54.313456092379056,
            "y" : 288.3334949426353
          }, {
            "x" : 56.612134758615866,
            "y" : 281.2410529628396
          }, {
            "x" : 80.39951544941869,
            "y" : 289.08502446021885
          }, {
            "x" : 78.13723758410197,
            "y" : 295.95617512986064
          }, {
            "x" : 61.83721359807532,
            "y" : 290.8320883847773
          } ]
        },
        "id" : 51
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 54.313456092379056,
            "y" : 288.3334949426353
          }, {
            "x" : 61.83721359807532,
            "y" : 290.8320883847773
          }, {
            "x" : 90.32678312459029,
            "y" : 299.95099952444434
          }, {
            "x" : 86.03886422084179,
            "y" : 314.7492469130084
          }, {
            "x" : 77.87348011007998,
            "y" : 312.4927998036146
          }, {
            "x" : 49.5478642313974,
            "y" : 303.09084222093225
          } ]
        },
        "id" : 52
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 190.1568457633257,
            "y" : 326.37781666591763
          }, {
            "x" : 194.5217294174945,
            "y" : 327.7509987410158
          }, {
            "x" : 199.0305457668146,
            "y" : 329.1743506388739
          }, {
            "x" : 200.0805794770131,
            "y" : 329.5049029048532
          }, {
            "x" : 193.5217677342007,
            "y" : 350.31643654592335
          }, {
            "x" : 185.14407555491198,
            "y" : 347.6283748559654
          }, {
            "x" : 188.09643365163356,
            "y" : 338.7464838810265
          }, {
            "x" : 186.4771798371803,
            "y" : 338.04849764797837
          } ]
        },
        "id" : 53
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 49.5478642313974,
            "y" : 303.09084222093225
          }, {
            "x" : 45.43924166401848,
            "y" : 315.7915635369718
          }, {
            "x" : 63.958054322516546,
            "y" : 321.91534169763327
          }, {
            "x" : 65.7233632481657,
            "y" : 316.56143663916737
          }, {
            "x" : 75.47722020966467,
            "y" : 319.7707210648805
          }, {
            "x" : 77.87348011007998,
            "y" : 312.4927998036146
          } ]
        },
        "id" : 54
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 218.46568530832883,
            "y" : 335.31224645022303
          }, {
            "x" : 213.56344586249907,
            "y" : 350.7099716728553
          }, {
            "x" : 212.58624555310234,
            "y" : 350.4713447391987
          }, {
            "x" : 210.09824053861666,
            "y" : 358.6698528295383
          }, {
            "x" : 201.0438234921312,
            "y" : 355.6992045659572
          }, {
            "x" : 208.63821842090692,
            "y" : 332.2111557247117
          } ]
        },
        "id" : 55
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 105.88595089036971,
            "y" : 270.6829643789679
          }, {
            "x" : 102.08498503395822,
            "y" : 276.9261071514338
          }, {
            "x" : 102.46115995757282,
            "y" : 279.21238493267447
          }, {
            "x" : 122.30102376139257,
            "y" : 286.37900733668357
          }, {
            "x" : 131.446568045998,
            "y" : 266.39224160369486
          }, {
            "x" : 128.30514046980534,
            "y" : 264.64377538021654
          }, {
            "x" : 125.26294382603373,
            "y" : 269.7807527538389
          }, {
            "x" : 119.92436174955219,
            "y" : 278.9257840467617
          } ]
        },
        "id" : 56
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 232.64607972546946,
            "y" : 166.4327965825796
          }, {
            "x" : 230.72260421293322,
            "y" : 163.56267422344536
          }, {
            "x" : 231.4468376598088,
            "y" : 161.56436889339238
          }, {
            "x" : 227.52622581878677,
            "y" : 155.21994492877275
          }, {
            "x" : 230.70112497115042,
            "y" : 146.69196030311286
          }, {
            "x" : 218.4956151584629,
            "y" : 143.45338894613087
          }, {
            "x" : 216.20129059965257,
            "y" : 152.2050933521241
          }, {
            "x" : 214.47282880346756,
            "y" : 160.34420528728515
          }, {
            "x" : 217.91765080287587,
            "y" : 163.75259338878095
          }, {
            "x" : 220.10214847954921,
            "y" : 166.5215596621856
          }, {
            "x" : 222.3581242208602,
            "y" : 169.9502992052585
          }, {
            "x" : 223.14815066044684,
            "y" : 174.09007604420185
          }, {
            "x" : 229.76117362338118,
            "y" : 175.71817458420992
          } ]
        },
        "id" : 57
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 229.76117362338118,
            "y" : 175.71817458420992
          }, {
            "x" : 232.64607972546946,
            "y" : 166.4327965825796
          }, {
            "x" : 237.7737179546384,
            "y" : 168.02511887904257
          }, {
            "x" : 240.50728215812705,
            "y" : 159.2349143223837
          }, {
            "x" : 249.11549703939818,
            "y" : 161.89865334145725
          }, {
            "x" : 243.4969886065228,
            "y" : 179.97422442398965
          }, {
            "x" : 232.1777983616339,
            "y" : 176.45847219321877
          } ]
        },
        "id" : 58
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 249.11549703939818,
            "y" : 161.89865334145725
          }, {
            "x" : 252.54162005300168,
            "y" : 156.36474277172238
          }, {
            "x" : 241.36249008739833,
            "y" : 152.10838751494884
          }, {
            "x" : 240.50728215812705,
            "y" : 159.2349143223837
          } ]
        },
        "id" : 59
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 270.7879111963557,
            "y" : 173.5581580651924
          }, {
            "x" : 269.2197446686914,
            "y" : 173.15166166704148
          }, {
            "x" : 272.27705635956954,
            "y" : 166.21144097670913
          }, {
            "x" : 274.4144262865884,
            "y" : 167.34171030670404
          }, {
            "x" : 279.75608816335443,
            "y" : 157.23930799867958
          }, {
            "x" : 270.38633066485636,
            "y" : 152.19621105771512
          }, {
            "x" : 268.3097227232065,
            "y" : 154.84316417668015
          }, {
            "x" : 257.31220331357326,
            "y" : 178.82169242482632
          }, {
            "x" : 257.1751678432338,
            "y" : 179.12812223099172
          }, {
            "x" : 257.2808434822364,
            "y" : 180.3348585003987
          }, {
            "x" : 258.35206701478455,
            "y" : 181.54593286290765
          }, {
            "x" : 264.8289051312022,
            "y" : 183.4582709018141
          }, {
            "x" : 268.067548481049,
            "y" : 184.3198023866862
          } ]
        },
        "id" : 60
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 339.61011184065137,
            "y" : 234.34167418908328
          }, {
            "x" : 335.6378098685527,
            "y" : 250.1097332201898
          }, {
            "x" : 345.0414179188665,
            "y" : 252.68226547911763
          }, {
            "x" : 345.5176782858325,
            "y" : 250.8078990848735
          }, {
            "x" : 349.06450123968534,
            "y" : 236.68235776666552
          }, {
            "x" : 351.4319642793853,
            "y" : 227.13182211574167
          }, {
            "x" : 351.87700200651307,
            "y" : 225.34531700238585
          }, {
            "x" : 347.23541273211595,
            "y" : 224.29523901548237
          }, {
            "x" : 342.49757405614946,
            "y" : 223.21913079265505
          } ]
        },
        "id" : 61
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 310.7985674353549,
            "y" : 78.33493618667126
          }, {
            "x" : 317.6893841706915,
            "y" : 65.57613771688193
          }, {
            "x" : 320.3936816379428,
            "y" : 60.55966793280095
          }, {
            "x" : 324.4531708882423,
            "y" : 53.04621964134276
          }, {
            "x" : 343.5927643115865,
            "y" : 62.680577772669494
          }, {
            "x" : 339.7656566980295,
            "y" : 70.1140176448971
          }, {
            "x" : 337.15265480801463,
            "y" : 68.7090126844123
          }, {
            "x" : 334.2991661116248,
            "y" : 73.98688624985516
          }, {
            "x" : 330.5315274716122,
            "y" : 80.96611237060279
          }, {
            "x" : 333.4029186532134,
            "y" : 82.51484126131982
          }, {
            "x" : 330.14438223058823,
            "y" : 88.73450839240104
          }, {
            "x" : 324.6413416530704,
            "y" : 85.90254072286189
          } ]
        },
        "id" : 62
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 279.4391730305506,
            "y" : 134.95644393842667
          }, {
            "x" : 291.6430119777797,
            "y" : 141.79177933745086
          }, {
            "x" : 293.8160127358278,
            "y" : 137.92372707929462
          }, {
            "x" : 297.5210776211461,
            "y" : 140.00611731223762
          }, {
            "x" : 298.8124774406897,
            "y" : 137.7182080615312
          }, {
            "x" : 294.91708547982853,
            "y" : 135.52815854735672
          }, {
            "x" : 282.9031261643395,
            "y" : 128.81159173790365
          } ]
        },
        "id" : 63
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 310.7985674353549,
            "y" : 78.33493618667126
          }, {
            "x" : 308.44598133058753,
            "y" : 82.70818254165351
          }, {
            "x" : 304.2828951374395,
            "y" : 90.38461914286017
          }, {
            "x" : 323.4769261884503,
            "y" : 100.75596330314875
          }, {
            "x" : 326.85381397942547,
            "y" : 94.529785416089
          }, {
            "x" : 326.2620221270481,
            "y" : 94.20599304419011
          }, {
            "x" : 321.55369423283264,
            "y" : 91.66121461987495
          }, {
            "x" : 322.3399145019939,
            "y" : 90.21097025182098
          }, {
            "x" : 324.6413416530704,
            "y" : 85.90254072286189
          } ]
        },
        "id" : 64
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 291.16063752793707,
            "y" : 113.9682297585532
          }, {
            "x" : 287.4386716657318,
            "y" : 120.31455978006124
          }, {
            "x" : 305.87080253975,
            "y" : 130.978978167288
          }, {
            "x" : 307.4543244204251,
            "y" : 129.74920518137515
          }, {
            "x" : 310.32467632263433,
            "y" : 124.39403239637613
          }, {
            "x" : 303.67581548937596,
            "y" : 120.83803422097117
          } ]
        },
        "id" : 65
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 279.4391730305506,
            "y" : 134.95644393842667
          }, {
            "x" : 270.38633066485636,
            "y" : 152.19621105771512
          }, {
            "x" : 279.75608816335443,
            "y" : 157.23930799867958
          }, {
            "x" : 288.6675844519632,
            "y" : 161.9193146461621
          }, {
            "x" : 296.55525013722945,
            "y" : 146.9390155924484
          }, {
            "x" : 297.588201775332,
            "y" : 145.0418700473383
          }, {
            "x" : 291.6430119777797,
            "y" : 141.79177933745086
          } ]
        },
        "id" : 66
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 316.02073345391545,
            "y" : 183.5889964941889
          }, {
            "x" : 321.4497515998082,
            "y" : 155.9743112437427
          }, {
            "x" : 319.9921215760987,
            "y" : 155.76142071932554
          }, {
            "x" : 321.51785829057917,
            "y" : 151.56741808075458
          }, {
            "x" : 325.777691477444,
            "y" : 143.1932589430362
          }, {
            "x" : 327.0956243899418,
            "y" : 140.22714376170188
          }, {
            "x" : 307.4543244204251,
            "y" : 129.74920518137515
          }, {
            "x" : 305.87080253975,
            "y" : 130.978978167288
          }, {
            "x" : 303.08729082054924,
            "y" : 135.17948336340487
          }, {
            "x" : 297.588201775332,
            "y" : 145.0418700473383
          }, {
            "x" : 296.55525013722945,
            "y" : 146.9390155924484
          }, {
            "x" : 288.6675844519632,
            "y" : 161.9193146461621
          }, {
            "x" : 283.8589147211751,
            "y" : 170.47247748449445
          }, {
            "x" : 274.34755945543293,
            "y" : 168.3412675689906
          }, {
            "x" : 273.0059840255417,
            "y" : 174.04573817085475
          }, {
            "x" : 270.7879111963557,
            "y" : 173.5581580651924
          }, {
            "x" : 268.067548481049,
            "y" : 184.3198023866862
          }, {
            "x" : 313.5221661499236,
            "y" : 195.2501146160066
          } ]
        },
        "id" : 67
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 226.07829637662508,
            "y" : 113.51759552489966
          }, {
            "x" : 230.35978863679338,
            "y" : 93.91990049555898
          }, {
            "x" : 235.03175339277368,
            "y" : 91.35210006125271
          }, {
            "x" : 258.8664868272608,
            "y" : 105.64601450506598
          }, {
            "x" : 251.61739262170158,
            "y" : 117.44438148196787
          }, {
            "x" : 239.05535428167786,
            "y" : 110.17201016750187
          }, {
            "x" : 237.03172244713642,
            "y" : 116.79632382467389
          } ]
        },
        "id" : 68
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 199.99759859545156,
            "y" : 260.6970767136663
          }, {
            "x" : 206.16392792528495,
            "y" : 262.55266978032887
          }, {
            "x" : 201.71089898387436,
            "y" : 277.2998483432457
          }, {
            "x" : 195.5445867863018,
            "y" : 275.44426025263965
          } ]
        },
        "id" : 69
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 310.1983824551571,
            "y" : 306.0160437086597
          }, {
            "x" : 306.06532065046486,
            "y" : 318.0809313394129
          }, {
            "x" : 314.23751591087785,
            "y" : 320.6943457573652
          }, {
            "x" : 318.1954360381933,
            "y" : 308.6671558385715
          } ]
        },
        "id" : 70
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 218.46568530832883,
            "y" : 335.31224645022303
          }, {
            "x" : 222.68662053684238,
            "y" : 336.63528655841947
          }, {
            "x" : 217.83598432538565,
            "y" : 351.7789150243625
          }, {
            "x" : 213.56344586249907,
            "y" : 350.7099716728553
          } ]
        },
        "id" : 71
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 369.9181333120214,
            "y" : 74.22179838549346
          }, {
            "x" : 369.31793651368935,
            "y" : 75.35638976935297
          }, {
            "x" : 365.6654903240269,
            "y" : 83.11956556234509
          }, {
            "x" : 362.05511185887735,
            "y" : 90.87325340509415
          }, {
            "x" : 355.7942217688542,
            "y" : 87.877988464199
          }, {
            "x" : 353.89267543912865,
            "y" : 86.93507270421833
          }, {
            "x" : 360.88749832392205,
            "y" : 71.6972337840125
          }, {
            "x" : 363.1311243653763,
            "y" : 72.7760182581842
          }, {
            "x" : 363.71009385213256,
            "y" : 71.47356730792671
          } ]
        },
        "id" : 72
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 307.95592401653994,
            "y" : 58.45874059665948
          }, {
            "x" : 301.40409145283047,
            "y" : 54.906545142643154
          }, {
            "x" : 308.90540126978885,
            "y" : 41.99343975260854
          }, {
            "x" : 315.757321924204,
            "y" : 45.15650891326368
          } ]
        },
        "id" : 73
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 379.02581623056903,
            "y" : 111.19072109181434
          }, {
            "x" : 376.6950517396908,
            "y" : 110.20873723365366
          }, {
            "x" : 375.5497033254942,
            "y" : 112.6693705022335
          }, {
            "x" : 369.062361568911,
            "y" : 126.12312783300877
          }, {
            "x" : 371.33238405326847,
            "y" : 127.41451983340085
          }, {
            "x" : 364.99466056888923,
            "y" : 140.77391553204507
          }, {
            "x" : 364.6373094684677,
            "y" : 141.56167706288397
          }, {
            "x" : 362.38158073986415,
            "y" : 140.43787548597902
          }, {
            "x" : 359.908213193994,
            "y" : 139.1942106075585
          }, {
            "x" : 360.26338948856574,
            "y" : 138.46203996799886
          }, {
            "x" : 350.02174820250366,
            "y" : 133.5071820858866
          }, {
            "x" : 349.61975287273526,
            "y" : 134.19298137538135
          }, {
            "x" : 346.4366630950244,
            "y" : 132.62091603595763
          }, {
            "x" : 343.22192961501423,
            "y" : 130.9696686156094
          }, {
            "x" : 349.83981581323314,
            "y" : 116.48541036155075
          }, {
            "x" : 352.694697581348,
            "y" : 118.10031772963703
          }, {
            "x" : 355.23427698470186,
            "y" : 112.85471870936453
          }, {
            "x" : 352.26665984047577,
            "y" : 111.27994217257947
          }, {
            "x" : 354.1973747740267,
            "y" : 107.21313761733472
          }, {
            "x" : 357.2100951615721,
            "y" : 108.70059712789953
          }, {
            "x" : 359.1425542430952,
            "y" : 104.58932138048112
          }, {
            "x" : 356.13502962037455,
            "y" : 103.14660504553467
          }, {
            "x" : 362.05511185887735,
            "y" : 90.87325340509415
          }, {
            "x" : 365.6654903240269,
            "y" : 83.11956556234509
          }, {
            "x" : 369.31793651368935,
            "y" : 75.35638976935297
          }, {
            "x" : 391.33106384344865,
            "y" : 85.23695001285523
          }, {
            "x" : 387.2266997102415,
            "y" : 93.89552568737417
          } ]
        },
        "id" : 74
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 103.24036612862255,
            "y" : 82.28316566441208
          }, {
            "x" : 112.08807476900984,
            "y" : 85.40142256207764
          }, {
            "x" : 109.97489058715291,
            "y" : 91.47665312886238
          }, {
            "x" : 107.7823511804454,
            "y" : 97.80489459913224
          }, {
            "x" : 100.78280094545335,
            "y" : 118.34320776350796
          }, {
            "x" : 91.98024247086141,
            "y" : 115.13764885533601
          }, {
            "x" : 100.8618217195617,
            "y" : 88.74890230875462
          } ]
        },
        "id" : 75
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 124.99129364348482,
            "y" : 90.17023389134556
          }, {
            "x" : 119.02687835961115,
            "y" : 106.4396349741146
          }, {
            "x" : 114.1358884909423,
            "y" : 104.65624874457717
          }, {
            "x" : 116.34489064500667,
            "y" : 98.61816821992397
          }, {
            "x" : 120.10072358942125,
            "y" : 88.37572403345257
          } ]
        },
        "id" : 76
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 107.7823511804454,
            "y" : 97.80489459913224
          }, {
            "x" : 100.78280094545335,
            "y" : 118.34320776350796
          }, {
            "x" : 108.70913931063842,
            "y" : 121.03574287053198
          }, {
            "x" : 114.1358884909423,
            "y" : 104.65624874457717
          }, {
            "x" : 116.34489064500667,
            "y" : 98.61816821992397
          }, {
            "x" : 120.10072358942125,
            "y" : 88.37572403345257
          }, {
            "x" : 112.08807476900984,
            "y" : 85.40142256207764
          }, {
            "x" : 109.97489058715291,
            "y" : 91.47665312886238
          } ]
        },
        "id" : 77
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 162.6207535942085,
            "y" : 64.01382235065103
          }, {
            "x" : 164.18020761676598,
            "y" : 59.66520410683006
          }, {
            "x" : 175.1848968626,
            "y" : 63.59163475316018
          }, {
            "x" : 173.3496042189654,
            "y" : 68.95391278155148
          }, {
            "x" : 169.32694534142502,
            "y" : 79.97650026343763
          }, {
            "x" : 166.86071125697345,
            "y" : 86.72830096632242
          }, {
            "x" : 155.87644561228808,
            "y" : 82.81381851248443
          }, {
            "x" : 160.29762315028347,
            "y" : 70.4817013675347
          } ]
        },
        "id" : 78
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 86.87555042968597,
            "y" : 83.42563479021192
          }, {
            "x" : 81.32448301918339,
            "y" : 99.07650935929269
          }, {
            "x" : 73.63526215602178,
            "y" : 96.35987467505038
          }, {
            "x" : 69.60631665238179,
            "y" : 107.72747237887233
          }, {
            "x" : 57.50387896376196,
            "y" : 103.44661568012089
          }, {
            "x" : 64.27209067752119,
            "y" : 84.38020175602287
          }, {
            "x" : 67.14754673372954,
            "y" : 76.39719765912741
          }, {
            "x" : 77.5552418360021,
            "y" : 80.13307319302112
          } ]
        },
        "id" : 79
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 147.98608336399775,
            "y" : 42.91985784191638
          }, {
            "x" : 153.840078742709,
            "y" : 44.95246541779488
          }, {
            "x" : 156.72698808053974,
            "y" : 36.68043401837349
          }, {
            "x" : 160.28439221158624,
            "y" : 37.92180538550019
          }, {
            "x" : 161.98913582775276,
            "y" : 33.05550744663924
          }, {
            "x" : 163.44895107496995,
            "y" : 33.56908629555255
          }, {
            "x" : 164.78114351758268,
            "y" : 30.23602886777371
          }, {
            "x" : 167.35929817089345,
            "y" : 22.931838240474463
          }, {
            "x" : 130.77705459634308,
            "y" : 10.0
          }, {
            "x" : 122.37751419178676,
            "y" : 34.002332147210836
          } ]
        },
        "id" : 80
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 160.29762315028347,
            "y" : 70.4817013675347
          }, {
            "x" : 156.85080273263156,
            "y" : 69.2557841008529
          }, {
            "x" : 158.62838232610375,
            "y" : 64.3032494969666
          }, {
            "x" : 154.35952225525398,
            "y" : 62.777972377836704
          }, {
            "x" : 152.4796010395512,
            "y" : 68.03829600475729
          }, {
            "x" : 150.30051499034744,
            "y" : 67.26277967076749
          }, {
            "x" : 148.40281141572632,
            "y" : 66.5762037485838
          }, {
            "x" : 144.0909428828163,
            "y" : 78.60081379674375
          }, {
            "x" : 145.91363678022753,
            "y" : 79.25105230603367
          }, {
            "x" : 155.87644561228808,
            "y" : 82.81381851248443
          } ]
        },
        "id" : 81
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 166.00911862181965,
            "y" : 116.34812007471919
          }, {
            "x" : 160.4413707536878,
            "y" : 114.28213562909514
          }, {
            "x" : 163.99780758365523,
            "y" : 104.52187781129032
          }, {
            "x" : 169.8334925060626,
            "y" : 106.84330928325653
          } ]
        },
        "id" : 82
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 154.74860755342524,
            "y" : 114.17107186280191
          }, {
            "x" : 149.3373661203077,
            "y" : 112.1891611488536
          }, {
            "x" : 153.55726823234,
            "y" : 100.7399940835312
          }, {
            "x" : 158.94207565602846,
            "y" : 102.68747012969106
          } ]
        },
        "id" : 83
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 160.4413707536878,
            "y" : 114.28213562909514
          }, {
            "x" : 158.0332636833191,
            "y" : 120.96939901262522
          }, {
            "x" : 152.9628039842937,
            "y" : 119.1566913286224
          }, {
            "x" : 154.74860755342524,
            "y" : 114.17107186280191
          }, {
            "x" : 158.94207565602846,
            "y" : 102.68747012969106
          }, {
            "x" : 163.99780758365523,
            "y" : 104.52187781129032
          } ]
        },
        "id" : 84
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 140.71065032563638,
            "y" : 117.99877730570734
          }, {
            "x" : 134.6269572066376,
            "y" : 115.8013132410124
          }, {
            "x" : 136.90664240927435,
            "y" : 109.91075934097171
          }, {
            "x" : 141.86502997099888,
            "y" : 96.45268907397985
          }, {
            "x" : 147.87200183223467,
            "y" : 98.65829831454903
          } ]
        },
        "id" : 85
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 169.1423101365799,
            "y" : 124.88876724150032
          }, {
            "x" : 163.51736546109896,
            "y" : 122.50875773187727
          }, {
            "x" : 166.00911862181965,
            "y" : 116.34812007471919
          }, {
            "x" : 169.8334925060626,
            "y" : 106.84330928325653
          }, {
            "x" : 175.3401150048012,
            "y" : 108.87350965570658
          } ]
        },
        "id" : 86
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 149.3373661203077,
            "y" : 112.1891611488536
          }, {
            "x" : 146.17088210873771,
            "y" : 119.97145777568221
          }, {
            "x" : 140.71065032563638,
            "y" : 117.99877730570734
          }, {
            "x" : 147.87200183223467,
            "y" : 98.65829831454903
          }, {
            "x" : 153.55726823234,
            "y" : 100.7399940835312
          } ]
        },
        "id" : 87
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 126.5598390090745,
            "y" : 104.79636758565903
          }, {
            "x" : 125.20207391411532,
            "y" : 108.60724797286093
          }, {
            "x" : 119.02687835961115,
            "y" : 106.4396349741146
          }, {
            "x" : 124.99129364348482,
            "y" : 90.17023389134556
          }, {
            "x" : 131.04249582916964,
            "y" : 92.48890224192291
          } ]
        },
        "id" : 88
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 136.30375419545453,
            "y" : 94.3981211790815
          }, {
            "x" : 131.04249582916964,
            "y" : 92.48890224192291
          }, {
            "x" : 126.5598390090745,
            "y" : 104.79636758565903
          }, {
            "x" : 126.10710567538626,
            "y" : 106.07036709506065
          }, {
            "x" : 125.20207391411532,
            "y" : 108.60724797286093
          }, {
            "x" : 119.02687835961115,
            "y" : 106.4396349741146
          }, {
            "x" : 114.34052739385515,
            "y" : 104.75332390982658
          }, {
            "x" : 108.70913931063842,
            "y" : 121.03574287053198
          }, {
            "x" : 104.40224451979157,
            "y" : 131.86910550668836
          }, {
            "x" : 112.54619113099761,
            "y" : 134.85966340452433
          }, {
            "x" : 108.86368900875095,
            "y" : 144.82659500278533
          }, {
            "x" : 113.61331698985305,
            "y" : 146.31494124419987
          }, {
            "x" : 116.89345449465327,
            "y" : 136.68862212263048
          }, {
            "x" : 126.01940941473003,
            "y" : 139.79550862777978
          }, {
            "x" : 128.67460787133314,
            "y" : 133.0065334169194
          }, {
            "x" : 134.6269572066376,
            "y" : 115.8013132410124
          }, {
            "x" : 131.4624127636198,
            "y" : 114.64211481343955
          }, {
            "x" : 132.39432667940855,
            "y" : 112.12855547014624
          }, {
            "x" : 127.38715291395783,
            "y" : 110.29607626609504
          }, {
            "x" : 128.60787825798616,
            "y" : 106.96979250758886
          }, {
            "x" : 131.36878534208518,
            "y" : 107.96846300084144
          } ]
        },
        "id" : 89
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 191.96689531125594,
            "y" : 138.36343292240053
          }, {
            "x" : 198.4525590633275,
            "y" : 118.18373862467706
          }, {
            "x" : 197.19513601937797,
            "y" : 113.73618723917753
          }, {
            "x" : 184.4913608356146,
            "y" : 110.44482731260359
          }, {
            "x" : 182.23711100616492,
            "y" : 111.94907942973077
          }, {
            "x" : 176.52952717477456,
            "y" : 135.15456799045205
          } ]
        },
        "id" : 90
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 84.33764893515036,
            "y" : 138.0894752573222
          }, {
            "x" : 93.45412974467035,
            "y" : 140.37192663550377
          }, {
            "x" : 100.78280094545335,
            "y" : 118.34320776350796
          }, {
            "x" : 91.98024247086141,
            "y" : 115.13764885533601
          } ]
        },
        "id" : 91
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 126.01940941473003,
            "y" : 139.79550862777978
          }, {
            "x" : 116.89345449465327,
            "y" : 136.68862212263048
          }, {
            "x" : 113.61331698985305,
            "y" : 146.31494124419987
          }, {
            "x" : 122.73968999867793,
            "y" : 149.41070401482284
          } ]
        },
        "id" : 92
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 93.45412974467035,
            "y" : 140.37192663550377
          }, {
            "x" : 100.44483554095495,
            "y" : 142.4711467633024
          }, {
            "x" : 104.40224451979157,
            "y" : 131.86910550668836
          }, {
            "x" : 108.70913931063842,
            "y" : 121.03574287053198
          }, {
            "x" : 100.78280094545335,
            "y" : 118.34320776350796
          } ]
        },
        "id" : 93
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 100.44483554095495,
            "y" : 142.4711467633024
          }, {
            "x" : 108.86368900875095,
            "y" : 144.82659500278533
          }, {
            "x" : 112.54619113099761,
            "y" : 134.85966340452433
          }, {
            "x" : 104.40224451979157,
            "y" : 131.86910550668836
          } ]
        },
        "id" : 94
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 147.22498488239944,
            "y" : 154.69884532038122
          }, {
            "x" : 160.18055683083367,
            "y" : 158.12244340591133
          }, {
            "x" : 166.11048610962462,
            "y" : 140.4264285583049
          }, {
            "x" : 162.28086086525582,
            "y" : 139.39711662288755
          }, {
            "x" : 160.45098737603985,
            "y" : 142.30986072681844
          }, {
            "x" : 156.52382268197834,
            "y" : 141.1097138542682
          }, {
            "x" : 149.63630740065128,
            "y" : 139.2148808222264
          }, {
            "x" : 147.63433974829968,
            "y" : 147.77759675309062
          }, {
            "x" : 148.38173903594725,
            "y" : 148.7421549046412
          } ]
        },
        "id" : 95
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 128.67460787133314,
            "y" : 133.0065334169194
          }, {
            "x" : 126.01940941473003,
            "y" : 139.79550862777978
          }, {
            "x" : 122.73968999867793,
            "y" : 149.41070401482284
          }, {
            "x" : 146.971711883205,
            "y" : 155.6688496209681
          }, {
            "x" : 147.22498488239944,
            "y" : 154.69884532038122
          }, {
            "x" : 148.38173903594725,
            "y" : 148.7421549046412
          }, {
            "x" : 147.63433974829968,
            "y" : 147.77759675309062
          }, {
            "x" : 149.63630740065128,
            "y" : 139.2148808222264
          }, {
            "x" : 160.45098737603985,
            "y" : 142.30986072681844
          }, {
            "x" : 162.28086086525582,
            "y" : 139.39711662288755
          }, {
            "x" : 169.1423101365799,
            "y" : 124.88876724150032
          }, {
            "x" : 158.0332636833191,
            "y" : 120.96939901262522
          }, {
            "x" : 152.9628039842937,
            "y" : 119.1566913286224
          }, {
            "x" : 151.4687492827652,
            "y" : 118.80880448967218
          }, {
            "x" : 150.4596369988285,
            "y" : 121.51977880112827
          }, {
            "x" : 146.17088210873771,
            "y" : 119.97145777568221
          }, {
            "x" : 140.71065032563638,
            "y" : 117.99877730570734
          }, {
            "x" : 134.6269572066376,
            "y" : 115.8013132410124
          } ]
        },
        "id" : 96
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 122.58714080636855,
            "y" : 341.83244086429477
          }, {
            "x" : 135.78408882347867,
            "y" : 346.1785251609981
          }, {
            "x" : 136.36434390232898,
            "y" : 343.9518801253289
          }, {
            "x" : 137.44195550738368,
            "y" : 340.73136106319726
          }, {
            "x" : 138.4358791426057,
            "y" : 337.6968713309616
          }, {
            "x" : 140.90897763392422,
            "y" : 330.2326775174588
          }, {
            "x" : 141.8777505174512,
            "y" : 327.30855785962194
          }, {
            "x" : 146.3890286955284,
            "y" : 313.5546498708427
          }, {
            "x" : 145.55113732430618,
            "y" : 311.3505449621007
          }, {
            "x" : 145.22343596152496,
            "y" : 310.4914647694677
          }, {
            "x" : 144.55838264455087,
            "y" : 310.26504719629884
          }, {
            "x" : 134.59254070639145,
            "y" : 306.96940049529076
          }, {
            "x" : 115.6102874019416,
            "y" : 300.61569056566805
          }, {
            "x" : 113.34753022901714,
            "y" : 307.4979449370876
          }, {
            "x" : 112.73439734883141,
            "y" : 308.7879494447261
          }, {
            "x" : 96.37158937694039,
            "y" : 303.4942663582042
          }, {
            "x" : 87.66889025096316,
            "y" : 330.2908615246415
          }, {
            "x" : 96.47672263684217,
            "y" : 333.17372259218246
          }, {
            "x" : 117.9231162504293,
            "y" : 340.2917418945581
          }, {
            "x" : 121.83278139506001,
            "y" : 341.58026678767055
          } ]
        },
        "id" : 98
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 341.67129755357746,
            "y" : 160.13904910255224
          }, {
            "x" : 329.3562439098023,
            "y" : 156.32802392728627
          }, {
            "x" : 328.7845469916938,
            "y" : 158.68861043825746
          }, {
            "x" : 324.34069305774756,
            "y" : 176.92139718309045
          }, {
            "x" : 323.83536498842295,
            "y" : 179.00619821064174
          }, {
            "x" : 322.2057438152842,
            "y" : 185.6792971836403
          }, {
            "x" : 321.88302954880055,
            "y" : 187.00290729664266
          }, {
            "x" : 319.85767908755224,
            "y" : 196.68931885343045
          }, {
            "x" : 336.1138326191576,
            "y" : 199.563192862086
          }, {
            "x" : 342.56530434358865,
            "y" : 171.92169590853155
          }, {
            "x" : 345.0781545659993,
            "y" : 161.14083069004118
          } ]
        },
        "id" : 100
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 349.06450123968534,
            "y" : 236.68235776666552
          }, {
            "x" : 345.5176782858325,
            "y" : 250.8078990848735
          }, {
            "x" : 345.0414179188665,
            "y" : 252.68226547911763
          }, {
            "x" : 362.04983757424634,
            "y" : 257.2782132830471
          }, {
            "x" : 362.5482193523785,
            "y" : 255.3713075518608
          }, {
            "x" : 367.1095821970375,
            "y" : 237.8669343488291
          }, {
            "x" : 369.17592991376296,
            "y" : 230.50940721295774
          }, {
            "x" : 369.57543828350026,
            "y" : 228.8213397283107
          }, {
            "x" : 357.50537589006126,
            "y" : 226.38945211842656
          }, {
            "x" : 351.87700200651307,
            "y" : 225.34531700238585
          }, {
            "x" : 351.4319642793853,
            "y" : 227.13182211574167
          } ]
        },
        "id" : 101
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 330.3451740456512,
            "y" : 220.22732694726437
          }, {
            "x" : 322.4294766780222,
            "y" : 245.69587991852313
          }, {
            "x" : 302.60650394833647,
            "y" : 239.3420033622533
          }, {
            "x" : 287.83343211736064,
            "y" : 234.61095193214715
          }, {
            "x" : 293.8093634728575,
            "y" : 211.83918929751962
          }, {
            "x" : 308.8137240449432,
            "y" : 215.27647420484573
          } ]
        },
        "id" : 102
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 254.01507750246674,
            "y" : 41.52900920063257
          }, {
            "x" : 258.66517350741196,
            "y" : 32.2346920883283
          }, {
            "x" : 260.5698482096195,
            "y" : 32.56525427196175
          }, {
            "x" : 283.22393839701544,
            "y" : 44.897857120260596
          }, {
            "x" : 282.0001081932569,
            "y" : 47.76744472514838
          }, {
            "x" : 277.82415491947904,
            "y" : 54.17398189846426
          } ]
        },
        "id" : 103
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 260.5698482096195,
            "y" : 32.56525427196175
          }, {
            "x" : 266.2775963396998,
            "y" : 21.809029365889728
          }, {
            "x" : 270.63776897557545,
            "y" : 20.643243238329887
          }, {
            "x" : 299.31742039776873,
            "y" : 36.307061600498855
          }, {
            "x" : 292.0068576335907,
            "y" : 49.67304679285735
          }, {
            "x" : 283.22393839701544,
            "y" : 44.897857120260596
          } ]
        },
        "id" : 104
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 285.0289682855364,
            "y" : 97.53787349816412
          }, {
            "x" : 271.6201724790735,
            "y" : 90.0652899928391
          }, {
            "x" : 276.25893139489926,
            "y" : 81.41638926882297
          }, {
            "x" : 290.03064969799016,
            "y" : 88.84749636054039
          } ]
        },
        "id" : 105
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 285.0289682855364,
            "y" : 97.53787349816412
          }, {
            "x" : 281.5077769960044,
            "y" : 103.54686486069113
          }, {
            "x" : 276.6898035116028,
            "y" : 104.87290433049202
          }, {
            "x" : 262.7256295646075,
            "y" : 97.21160371415317
          }, {
            "x" : 267.88339957990684,
            "y" : 88.08189940825105
          }, {
            "x" : 271.6201724790735,
            "y" : 90.0652899928391
          } ]
        },
        "id" : 106
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 84.33764893515036,
            "y" : 138.0894752573222
          }, {
            "x" : 68.63146459043492,
            "y" : 134.1132489843294
          }, {
            "x" : 77.28816048649605,
            "y" : 110.27678576670587
          }, {
            "x" : 81.32448301918339,
            "y" : 99.07650935929269
          }, {
            "x" : 86.87555042968597,
            "y" : 83.42563479021192
          }, {
            "x" : 100.8618217195617,
            "y" : 88.74890230875462
          }, {
            "x" : 91.98024247086141,
            "y" : 115.13764885533601
          } ]
        },
        "id" : 107
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 68.63146459043492,
            "y" : 134.1132489843294
          }, {
            "x" : 51.22916819888633,
            "y" : 129.6254324587062
          }, {
            "x" : 50.29663690784946,
            "y" : 128.24165815021843
          }, {
            "x" : 49.87096458952874,
            "y" : 126.51021454576403
          }, {
            "x" : 57.50387896376196,
            "y" : 103.44661568012089
          }, {
            "x" : 69.60631665238179,
            "y" : 107.72747237887233
          }, {
            "x" : 77.28816048649605,
            "y" : 110.27678576670587
          } ]
        },
        "id" : 108
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 167.35929817089345,
            "y" : 22.931838240474463
          }, {
            "x" : 178.1746042665327,
            "y" : 26.728383395820856
          }, {
            "x" : 175.71352575009223,
            "y" : 33.70308731496334
          }, {
            "x" : 173.3284831829369,
            "y" : 32.863838559016585
          }, {
            "x" : 170.29714021249674,
            "y" : 41.45314045716077
          }, {
            "x" : 165.58168920781463,
            "y" : 39.79905383940786
          }, {
            "x" : 168.4959345354,
            "y" : 31.539231050759554
          }, {
            "x" : 164.78114351758268,
            "y" : 30.23602886777371
          } ]
        },
        "id" : 109
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 307.77346798893996,
            "y" : 91.5566739467904
          }, {
            "x" : 323.4769261884503,
            "y" : 100.75596330314875
          }, {
            "x" : 326.2620221270481,
            "y" : 94.20599304419011
          }, {
            "x" : 321.55369423283264,
            "y" : 91.66121461987495
          }, {
            "x" : 322.3399145019939,
            "y" : 90.21097025182098
          }, {
            "x" : 311.4600143424468,
            "y" : 84.34042257256806
          } ]
        },
        "id" : 110
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 202.00017201364972,
            "y" : 311.4963087774813
          }, {
            "x" : 214.36347184551414,
            "y" : 315.3089304808527
          }, {
            "x" : 217.42995793791488,
            "y" : 305.9972391407937
          }, {
            "x" : 218.43991751864087,
            "y" : 303.62036723736674
          }, {
            "x" : 223.5863446382573,
            "y" : 287.6642915979028
          }, {
            "x" : 211.12848770141136,
            "y" : 283.602980918251
          }, {
            "x" : 207.89463503519073,
            "y" : 293.10856886487454
          } ]
        },
        "id" : 111
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 231.5494340044679,
            "y" : 320.8690177993849
          }, {
            "x" : 220.11178137746174,
            "y" : 317.19274838548154
          }, {
            "x" : 223.17827742255758,
            "y" : 307.8810602640733
          }, {
            "x" : 223.36737471295055,
            "y" : 307.13125534541905
          }, {
            "x" : 234.7599676764803,
            "y" : 310.71668755821884
          } ]
        },
        "id" : 112
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 220.11178137746174,
            "y" : 317.19274838548154
          }, {
            "x" : 214.36347184551414,
            "y" : 315.3089304808527
          }, {
            "x" : 217.42995793791488,
            "y" : 305.9972391407937
          }, {
            "x" : 223.17827742255758,
            "y" : 307.8810602640733
          } ]
        },
        "id" : 113
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 329.4847694983473,
            "y" : 312.4046601522714
          }, {
            "x" : 334.2328804001445,
            "y" : 313.9265732290223
          }, {
            "x" : 329.49639822053723,
            "y" : 328.62917141616344
          }, {
            "x" : 324.7552371582715,
            "y" : 327.1075337063521
          } ]
        },
        "id" : 114
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 334.2328804001445,
            "y" : 313.9265732290223
          }, {
            "x" : 340.40125858655665,
            "y" : 315.9049042025581
          }, {
            "x" : 337.4312679802533,
            "y" : 324.8751165959984
          }, {
            "x" : 335.57199227891397,
            "y" : 330.4925166592002
          }, {
            "x" : 329.49639822053723,
            "y" : 328.62917141616344
          } ]
        },
        "id" : 115
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 337.4312679802533,
            "y" : 324.8751165959984
          }, {
            "x" : 342.5352961724857,
            "y" : 326.53344533685595
          }, {
            "x" : 345.2099534580484,
            "y" : 318.3645583158359
          }, {
            "x" : 344.4903855181765,
            "y" : 317.2228914350271
          }, {
            "x" : 340.40125858655665,
            "y" : 315.9049042025581
          } ]
        },
        "id" : 116
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 342.5352961724857,
            "y" : 326.53344533685595
          }, {
            "x" : 340.8286248460645,
            "y" : 332.1568120419979
          }, {
            "x" : 335.57199227891397,
            "y" : 330.4925166592002
          }, {
            "x" : 337.4312679802533,
            "y" : 324.8751165959984
          } ]
        },
        "id" : 117
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 299.10187072632834,
            "y" : 344.0766939204186
          }, {
            "x" : 304.65243264625315,
            "y" : 345.8637974373996
          }, {
            "x" : 311.95347721595317,
            "y" : 325.4488645000383
          }, {
            "x" : 306.03874017694034,
            "y" : 323.3802685495466
          } ]
        },
        "id" : 118
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 304.65243264625315,
            "y" : 345.8637974373996
          }, {
            "x" : 312.58831649657805,
            "y" : 348.30094324145466
          }, {
            "x" : 319.24122437729966,
            "y" : 327.93862142786384
          }, {
            "x" : 311.95347721595317,
            "y" : 325.4488645000383
          } ]
        },
        "id" : 119
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 312.58831649657805,
            "y" : 348.30094324145466
          }, {
            "x" : 317.4794606101932,
            "y" : 349.89524718467146
          }, {
            "x" : 320.77859592821915,
            "y" : 339.7909665554762
          }, {
            "x" : 323.1947527703596,
            "y" : 332.19099467340857
          }, {
            "x" : 324.05738649587147,
            "y" : 329.49659263994545
          }, {
            "x" : 319.24122437729966,
            "y" : 327.93862142786384
          } ]
        },
        "id" : 120
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 140.74683899898082,
            "y" : 242.09106804057956
          }, {
            "x" : 153.2759527793387,
            "y" : 246.11043925955892
          }, {
            "x" : 151.15141736145597,
            "y" : 253.1873800540343
          }, {
            "x" : 149.60279646783601,
            "y" : 258.32702350988984
          }, {
            "x" : 137.07759484881535,
            "y" : 254.56392240151763
          } ]
        },
        "id" : 121
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 111.42914627003483,
            "y" : 261.6349940476939
          }, {
            "x" : 108.82577477616724,
            "y" : 266.0319272913039
          }, {
            "x" : 122.65956337482203,
            "y" : 274.1776791419834
          }, {
            "x" : 125.26294382603373,
            "y" : 269.7807527538389
          } ]
        },
        "id" : 122
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 108.82577477616724,
            "y" : 266.0319272913039
          }, {
            "x" : 105.88595089036971,
            "y" : 270.6829643789679
          }, {
            "x" : 119.92436174955219,
            "y" : 278.9257840467617
          }, {
            "x" : 122.65956337482203,
            "y" : 274.1776791419834
          } ]
        },
        "id" : 123
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 136.49567237845622,
            "y" : 291.5101191056892
          }, {
            "x" : 132.07699965138454,
            "y" : 289.91218407824636
          }, {
            "x" : 138.42335718986578,
            "y" : 272.399445108138
          }, {
            "x" : 142.98253231111448,
            "y" : 273.7801696220413
          } ]
        },
        "id" : 124
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 78.13723758410197,
            "y" : 295.95617512986064
          }, {
            "x" : 90.32678312459029,
            "y" : 299.95099952444434
          }, {
            "x" : 113.34753022901714,
            "y" : 307.4979449370876
          }, {
            "x" : 115.6102874019416,
            "y" : 300.61569056566805
          }, {
            "x" : 80.39951544941869,
            "y" : 289.08502446021885
          } ]
        },
        "id" : 125
      }, {
        "shape" : {
          "type" : "POLYGON",
          "points" : [ {
            "x" : 335.8,
            "y" : 199.4
          }, {
            "x" : 390.1,
            "y" : 211.1
          }, {
            "x" : 390.1,
            "y" : 164.5
          }, {
            "x" : 354.3,
            "y" : 147.7
          }, {
            "x" : 348.2,
            "y" : 173.0
          }, {
            "x" : 342.0,
            "y" : 171.5
          } ]
        },
        "id" : 50
      } ],
      "measurementAreas" : [ ],
      "stairs" : [ ],
      "targets" : [ {
        "id" : 1,
        "absorbing" : true,
        "shape" : {
          "x" : 0.0,
          "y" : 0.0,
          "width" : 402.0,
          "height" : 5.0,
          "type" : "RECTANGLE"
        },
        "waitingTime" : 0.0,
        "waitingTimeYellowPhase" : 0.0,
        "parallelWaiters" : 0,
        "individualWaiting" : true,
        "deletionDistance" : 0.1,
        "startingWithRedLight" : false,
        "nextSpeed" : -1.0
      }, {
        "id" : 3,
        "absorbing" : true,
        "shape" : {
          "x" : 0.0,
          "y" : 364.0,
          "width" : 402.0,
          "height" : 5.0,
          "type" : "RECTANGLE"
        },
        "waitingTime" : 0.0,
        "waitingTimeYellowPhase" : 0.0,
        "parallelWaiters" : 0,
        "individualWaiting" : true,
        "deletionDistance" : 0.1,
        "startingWithRedLight" : false,
        "nextSpeed" : -1.0
      }, {
        "id" : 2,
        "absorbing" : true,
        "shape" : {
          "x" : 397.0,
          "y" : 5.0,
          "width" : 5.0,
          "height" : 359.0,
          "type" : "RECTANGLE"
        },
        "waitingTime" : 0.0,
        "waitingTimeYellowPhase" : 0.0,
        "parallelWaiters" : 0,
        "individualWaiting" : true,
        "deletionDistance" : 0.1,
        "startingWithRedLight" : false,
        "nextSpeed" : -1.0
      }, {
        "id" : 4,
        "absorbing" : true,
        "shape" : {
          "x" : 0.0,
          "y" : 5.0,
          "width" : 5.0,
          "height" : 359.0,
          "type" : "RECTANGLE"
        },
        "waitingTime" : 0.0,
        "waitingTimeYellowPhase" : 0.0,
        "parallelWaiters" : 0,
        "individualWaiting" : true,
        "deletionDistance" : 0.1,
        "startingWithRedLight" : false,
        "nextSpeed" : -1.0
      }, {
        "id" : 0,
        "absorbing" : true,
        "shape" : {
          "radius" : 10.0,
          "center" : {
            "x" : 197.7,
            "y" : 179.1
          },
          "type" : "CIRCLE"
        },
        "waitingTime" : 0.0,
        "waitingTimeYellowPhase" : 0.0,
        "parallelWaiters" : 0,
        "individualWaiting" : true,
        "deletionDistance" : 0.1,
        "startingWithRedLight" : false,
        "nextSpeed" : -1.0
      } ],
      "targetChangers" : [ {
        "id" : 97,
        "shape" : {
          "x" : 184.0,
          "y" : 158.0,
          "width" : 4.5,
          "height" : 4.5,
          "type" : "RECTANGLE"
        },
        "reachDistance" : 1.0,
        "changeAlgorithmType" : "SORTED_SUB_LIST",
        "nextTarget" : [ 4, 3, 2 ],
        "probabilityToChangeTarget" : [ 0.1, 0.1, 0.1 ]
      }, {
        "id" : 97,
        "shape" : {
          "x" : 214.5,
          "y" : 167.0,
          "width" : 4.5,
          "height" : 4.5,
          "type" : "RECTANGLE"
        },
        "reachDistance" : 1.0,
        "changeAlgorithmType" : "SORTED_SUB_LIST",
        "nextTarget" : [ 1, 3, 4 ],
        "probabilityToChangeTarget" : [ 0.1, 0.1, 0.1 ]
      }, {
        "id" : 97,
        "shape" : {
          "x" : 208.5,
          "y" : 196.5,
          "width" : 4.5,
          "height" : 4.5,
          "type" : "RECTANGLE"
        },
        "reachDistance" : 1.0,
        "changeAlgorithmType" : "SORTED_SUB_LIST",
        "nextTarget" : [ 2, 1, 4 ],
        "probabilityToChangeTarget" : [ 0.1, 0.1, 0.1 ]
      }, {
        "id" : 97,
        "shape" : {
          "x" : 178.0,
          "y" : 189.5,
          "width" : 4.5,
          "height" : 4.5,
          "type" : "RECTANGLE"
        },
        "reachDistance" : 1.0,
        "changeAlgorithmType" : "SORTED_SUB_LIST",
        "nextTarget" : [ 3, 2, 1 ],
        "probabilityToChangeTarget" : [ 0.1, 0.1, 0.1 ]
      } ],
      "absorbingAreas" : [ ],
      "sources" : [ {
        "id" : 1,
        "shape" : {
          "x" : 5.0,
          "y" : 5.0,
          "width" : 392.0,
          "height" : 5.0,
          "type" : "RECTANGLE"
        },
        "interSpawnTimeDistribution" : "org.vadere.state.scenario.ConstantDistribution",
        "distributionParameters" : [ 1.0 ],
        "spawnNumber" : 20,
        "maxSpawnNumberTotal" : 200,
        "startTime" : 0.0,
        "endTime" : 10.0,
        "spawnAtRandomPositions" : true,
        "spawnAtGridPositionsCA" : false,
        "useFreeSpaceOnly" : true,
        "targetIds" : [ 0 ],
        "groupSizeDistribution" : [ 1.0 ],
        "dynamicElementType" : "PEDESTRIAN",
        "attributesPedestrian" : null
      }, {
        "id" : 3,
        "shape" : {
          "x" : 5.0,
          "y" : 359.0,
          "width" : 392.0,
          "height" : 5.0,
          "type" : "RECTANGLE"
        },
        "interSpawnTimeDistribution" : "org.vadere.state.scenario.ConstantDistribution",
        "distributionParameters" : [ 1.0 ],
        "spawnNumber" : 20,
        "maxSpawnNumberTotal" : 200,
        "startTime" : 0.0,
        "endTime" : 10.0,
        "spawnAtRandomPositions" : true,
        "spawnAtGridPositionsCA" : false,
        "useFreeSpaceOnly" : true,
        "targetIds" : [ 0 ],
        "groupSizeDistribution" : [ 1.0 ],
        "dynamicElementType" : "PEDESTRIAN",
        "attributesPedestrian" : null
      }, {
        "id" : 2,
        "shape" : {
          "x" : 392.0,
          "y" : 10.0,
          "width" : 5.0,
          "height" : 349.0,
          "type" : "RECTANGLE"
        },
        "interSpawnTimeDistribution" : "org.vadere.state.scenario.ConstantDistribution",
        "distributionParameters" : [ 1.0 ],
        "spawnNumber" : 20,
        "maxSpawnNumberTotal" : 200,
        "startTime" : 0.0,
        "endTime" : 10.0,
        "spawnAtRandomPositions" : true,
        "spawnAtGridPositionsCA" : false,
        "useFreeSpaceOnly" : true,
        "targetIds" : [ 0 ],
        "groupSizeDistribution" : [ 1.0 ],
        "dynamicElementType" : "PEDESTRIAN",
        "attributesPedestrian" : null
      }, {
        "id" : 4,
        "shape" : {
          "x" : 5.0,
          "y" : 10.0,
          "width" : 5.0,
          "height" : 349.0,
          "type" : "RECTANGLE"
        },
        "interSpawnTimeDistribution" : "org.vadere.state.scenario.ConstantDistribution",
        "distributionParameters" : [ 1.0 ],
        "spawnNumber" : 20,
        "maxSpawnNumberTotal" : 200,
        "startTime" : 0.0,
        "endTime" : 10.0,
        "spawnAtRandomPositions" : true,
        "spawnAtGridPositionsCA" : false,
        "useFreeSpaceOnly" : true,
        "targetIds" : [ 0 ],
        "groupSizeDistribution" : [ 1.0 ],
        "dynamicElementType" : "PEDESTRIAN",
        "attributesPedestrian" : null
      }, {
        "id" : 8,
        "shape" : {
          "x" : 177.0,
          "y" : 188.5,
          "width" : 4.5,
          "height" : 4.5,
          "type" : "RECTANGLE"
        },
        "interSpawnTimeDistribution" : "org.vadere.state.scenario.ConstantDistribution",
        "distributionParameters" : [ 1.0 ],
        "spawnNumber" : 1,
        "maxSpawnNumberTotal" : 100,
        "startTime" : 0.0,
        "endTime" : 80.0,
        "spawnAtRandomPositions" : true,
        "spawnAtGridPositionsCA" : false,
        "useFreeSpaceOnly" : true,
        "targetIds" : [ 4 ],
        "groupSizeDistribution" : [ 1.0 ],
        "dynamicElementType" : "PEDESTRIAN",
        "attributesPedestrian" : null
      }, {
        "id" : 7,
        "shape" : {
          "x" : 207.5,
          "y" : 195.5,
          "width" : 4.5,
          "height" : 4.5,
          "type" : "RECTANGLE"
        },
        "interSpawnTimeDistribution" : "org.vadere.state.scenario.ConstantDistribution",
        "distributionParameters" : [ 1.0 ],
        "spawnNumber" : 1,
        "maxSpawnNumberTotal" : 100,
        "startTime" : 0.0,
        "endTime" : 80.0,
        "spawnAtRandomPositions" : true,
        "spawnAtGridPositionsCA" : false,
        "useFreeSpaceOnly" : true,
        "targetIds" : [ 3 ],
        "groupSizeDistribution" : [ 1.0 ],
        "dynamicElementType" : "PEDESTRIAN",
        "attributesPedestrian" : null
      }, {
        "id" : 6,
        "shape" : {
          "x" : 213.5,
          "y" : 166.0,
          "width" : 4.5,
          "height" : 4.5,
          "type" : "RECTANGLE"
        },
        "interSpawnTimeDistribution" : "org.vadere.state.scenario.ConstantDistribution",
        "distributionParameters" : [ 1.0 ],
        "spawnNumber" : 1,
        "maxSpawnNumberTotal" : 100,
        "startTime" : 0.0,
        "endTime" : 80.0,
        "spawnAtRandomPositions" : true,
        "spawnAtGridPositionsCA" : false,
        "useFreeSpaceOnly" : true,
        "targetIds" : [ 2 ],
        "groupSizeDistribution" : [ 1.0 ],
        "dynamicElementType" : "PEDESTRIAN",
        "attributesPedestrian" : null
      }, {
        "id" : 5,
        "shape" : {
          "x" : 183.0,
          "y" : 157.0,
          "width" : 4.5,
          "height" : 4.443840549285596,
          "type" : "RECTANGLE"
        },
        "interSpawnTimeDistribution" : "org.vadere.state.scenario.ConstantDistribution",
        "distributionParameters" : [ 1.0 ],
        "spawnNumber" : 1,
        "maxSpawnNumberTotal" : 100,
        "startTime" : 0.0,
        "endTime" : 80.0,
        "spawnAtRandomPositions" : true,
        "spawnAtGridPositionsCA" : false,
        "useFreeSpaceOnly" : true,
        "targetIds" : [ 1 ],
        "groupSizeDistribution" : [ 1.0 ],
        "dynamicElementType" : "PEDESTRIAN",
        "attributesPedestrian" : null
      } ],
      "dynamicElements" : [ ],
      "attributesPedestrian" : {
        "radius" : 0.2,
        "densityDependentSpeed" : false,
        "speedDistributionMean" : 1.34,
        "speedDistributionStandardDeviation" : 0.26,
        "minimumSpeed" : 0.5,
        "maximumSpeed" : 2.2,
        "acceleration" : 2.0,
        "footstepHistorySize" : 4,
        "searchRadius" : 5.0,
        "walkingDirectionCalculation" : "BY_TARGET_CENTER",
        "walkingDirectionSameIfAngleLessOrEqual" : 45.0
      },
      "teleporter" : null,
      "attributesCar" : {
        "id" : -1,
        "radius" : 0.2,
        "densityDependentSpeed" : false,
        "speedDistributionMean" : 1.34,
        "speedDistributionStandardDeviation" : 0.26,
        "minimumSpeed" : 0.5,
        "maximumSpeed" : 2.2,
        "acceleration" : 2.0,
        "footstepHistorySize" : 4,
        "searchRadius" : 5.0,
        "walkingDirectionCalculation" : "BY_TARGET_CENTER",
        "walkingDirectionSameIfAngleLessOrEqual" : 45.0,
        "length" : 4.5,
        "width" : 1.7,
        "direction" : {
          "x" : 1.0,
          "y" : 0.0
        }
      }
    },
    "stimulusInfos" : [ {
      "timeframe" : {
        "startTime" : 60.0,
        "endTime" : 800.0,
        "repeat" : false,
        "waitTimeBetweenRepetition" : 0.0
      },
      "stimuli" : [ {
        "type" : "Threat",
        "originAsTargetId" : 0,
        "loudness" : 1.0,
        "radius" : 60.0
      } ]
    } ]
  }
}
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7 Model validation and application: Demonstrating behavioral changes of agents

short parameter study which evaluates the effects of the newly introduced parameter
probabilityInGroupMemberhsip on the evacuation time.

The simulation area Fig. 7.24, p. 127, visualizes the simulation area with a size of
402.0 m × 369.0 m (width × height). The simulation area is centered around the un-
derground station Oxford Circus which was the initial scene for the perceived threat.
To reenact the scene as accurately as possible, a self-written Python script imports map
material around Oxford Circus from OpenStreetMap. The Python script converts Open-
StreetMap buildings to Vadere obstacles.
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7 Model validation and application: Demonstrating behavioral changes of agents

Entries (orange) and exits (green)
at underground station Oxford
Station

Obstacles

Sources Targets /
Safe zones

Figure 7.24: The simulation area in OpenStreetMap (background) and Vadere (foreground). A
self-written Python script imports the buildings from OpenStreetMap as obstacles (gray) into
Vadere. Additionally, the following Vadere scenario elements are added for a realistic
simulation: (1) Four sources (green) at the underground station Oxford Circus for agents that
leave the underground station at north, south, west or east exit. (2) Four sources (green) at the
top, bottom, left and right edge so that agents can approach the underground station from all
directions like observed in the real world. (3) Four targets (orange) which represent safe zones
after agents perceive a threat. (4) A threat (orange) at the center of Oxford Circus which
appears 60 seconds after the simulation has started and which can be perceived in a radius of
60 meter (as light shade of red).

Together with obstacles, following Vadere scenario elements are added for a realistic
simulation (see Fig. 7.24): (1) Four sources (green) at the underground station Oxford
Circus for agents that leave the underground station at north, south, west or east exit.
(2) Four sources (green) at the top, bottom, left and right edge so that agents can
approach the underground station from all directions like observed in the real world.
(3) Four targets (orange) which represents safe zones after agents perceive a threat.
(4) A threat (orange) at the center of Oxford Circus which appears 60 seconds after the

127



7 Model validation and application: Demonstrating behavioral changes of agents

simulation started and which can be perceived in a radius of 60 meter (depicted as light
shade of red). It is assumed that agents use the underground exit that corresponds to
their destination. For instance, agents heading southwards take the southern exist and
agents heading northwards take the northern exit. But, in real life it can be observed that
this idealization is not always true and humans take “wrong” exits accidentally or also
intentionally. To account for this, I use Vadere’s TargetChanger to change the original
destination of agents. For example at the southern exit, 30% of the agents are redirected
by the TargetChanger (10% northwards, 10% westwards and 10% eastwards). This
technique is used for all four exits at the underground station, see Fig. 7.25.

10%
10%

10%

Figure 7.25: A TargetChanger (pink outline) redirects 30% of the agents to other directions.
For example, 30% of the agents at the southern exit are redirected north-, west- and eastwards.
70% of the agents at the southern exit are heading southwards.

In the following four sections, I will focus on small subareas of the simulation area to
exemplify the behavioral changes of agents over time. Fig. 7.26, p. 129, highlights the
four areas of interest in the whole simulation area. In the first area of interest, we see
how agents behave in a target-oriented way after leaving the underground station. In the
second area, we see how agents react to the perceived threat at the underground station
by maximizing the distance to the treat. In the third area, we see how agents change
their behavior to searching for a safe zone after leaving the area of immediate threat.
The fourth area depicts how in-group members (agents) imitate escaping behavior. For
the simulation the newly introduced parameter “probabilityGroupMembership” was set
to 0.8 (80%) and agents used a “searchRadius” of 5.0 m to search for in-group members.
All other simulation parameters were left to default values.
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7 Model validation and application: Demonstrating behavioral changes of agents

1 2

3 4

Figure 7.26: An overview of subareas of the whole simulation area which will be examined in
more detail in the following sections. (1) Subarea 1 focuses on target-oriented agents. (2)
Subarea 2 shows how target-oriented agents react to the threat. (3) Subarea 3 shows how
threatened agents start searching for a safe zone. (4) Subarea 4 focuses on imitating behavior.

129



7 Model validation and application: Demonstrating behavioral changes of agents

Bird’s eye view

(a) Time: 36.4 s (b) Time: 60.8 s

(c) Time: 70.4 s (d) Time: 132.4 s

Figure 7.27: Birds eye view of a simulation of the perceived threat at underground station
Oxford Circus and the behavioral changes of agents. The colored lines represent the agents’
trajectories and their current self category: blue = target-oriented, red = threatened, green =
common fate. (a) After the simulation starts, agents leave the underground station Oxford
Circus and, simultaneously, agents head towards the underground station from all directions.
(b) After 60 s, a threat occurs at the underground station which is perceived by agents denoted
in red. (c) The threatened agents escape and leave the threatened area which is indicated by
the green color. (d) After 132 s, most of the agents have escaped and the fleeing agents “inform”
other agents which did not perceive the threat themselves. Only a few agents are left
uninformed and are still walking towards the underground station (blue trajectories).
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7 Model validation and application: Demonstrating behavioral changes of agents

Magnified view: Simulation start

(a) Time: 16.0 s (central area)

(b) Time: 16.0 s (northern area)

Figure 7.28: Magnified view of the central and the northern part of the simulation area shortly
after the simulation started. (a) Agents leave the underground station Oxford Circus. (b)
Agents walk towards the underground station.
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7 Model validation and application: Demonstrating behavioral changes of agents

Magnified view: Reaction to threat

(a) Time: 60.0 s

(b) Time: 60.4 s

(c) Time: 60.8 s

Figure 7.29: Magnified view of the agents’ reaction to the threat. Agents (in the purple ellipsis)
maximize the distance to the threat and accelerate. Small triangles indicate the changing
walking direction of agents after perceiving the threat. (a) to (c) shows agents which change
their behavior from TARGET_ORIENTED (blue) to THREATENED (red).
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7 Model validation and application: Demonstrating behavioral changes of agents

Magnified view: Searching for a safe zone

(a) Time: 61.2 s

(b) Time: 61.6 s

(c) Time: 62.0 s

Figure 7.30: Magnified view of an agent which changes its behavior from escaping to “search
for a safe zone” after leaving the immediate Threat radius. Red agents are still in the Threat
radius, while the green agent indicates an agent searching for a safe zone. Small triangles
indicate the walking direction of agents.
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7 Model validation and application: Demonstrating behavioral changes of agents

Magnified view: Imitation behavior of in-group members

(a) Time: 68.4 s

(b) Time: 68.8 s

(c) Time: 69.2 s

Figure 7.31: Imitation behavior of agents that did not perceive the threat themselves but
perceive other escaping in-group members (brown encircled): (a) The target-oriented agent
(blue) heading southwards perceives escaping agents (green) coming northwards. Another
target-oriented agent (blue), which did not perceive the threat, is overtaken by escaping agents
(green). (b) After processing the escaping agents in a cognitive phase, the in-group members
feel threatened themselves (that is, they maximize the distance to the threat and search for a
safe zone). (c) Another target-oriented agent feels threatened after perceiving an escaping
in-group member and changes the walking direction towards its safe zone which is located
southwards. Out-group members (black encircled) do not trust in others and strictly stick to
their behavior (that is, being target-oriented).
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7 Model validation and application: Demonstrating behavioral changes of agents

Sensitivity study for the parameter “probabilityIngroupMembership” I con-
clude with a short parameter study which evaluates the effects of the newly introduced
parameter probabilityInGroupMemberhsip on the evacuation time. To this end, I use
the Vadere scenario from above and vary the parameter probabilityIngroupMembership.
The parameter probabilityIngroupMembership controls how many of the agents are
IN_GROUP members. IN_GROUP members trust each other and imitate each other, see
Fig. 7.31, p. 134. We can hypothesize that an increasing number of IN_GROUP members
leads to more imitating behavior which could lower the evacuation time of all agents.
The evacuation time is the time until the last agent reaches a safe zone after the threat
occurred at time step 60 s. Surely, the evacuation time depends on what behavior is
copied by IN_GROUP members. If many people are running, then people copying them
lead to a fast evacuation. This observed behavior could be derived from the scenario
description on p. 116 where many people were running because of the threat and this
behavior was copied.

The parameter probabilityIngroupMembership is varied in the interval [0.0, 1.0] in
0.1 steps. For each value, 30 simulations are conducted. Vadere’s random seed feature
is used for each simulation which ensures that the agents start at random positions
inside the sources and the agents start with random preferred velocities drawn from a
truncated normal distribution which is described in Tab. 7.7. Both parameter settings
ensure randomness in the simulation.

Parameter name Value

speedDistributionMean 1.34
speedDistributionStandardDeviation 0.26
minimumSpeed 0.50
maximumSpeed 2.20

Table 7.7: The speed configuration of agents in Vadere.

The plots Fig. 7.32 (p. 136) and Fig. 7.33 (p. 137) visualize the simulation results for
30 repetitions per parameter value using different statistical plots. Fig. 7.32 visualizes
the distribution of the evacuation time as box plot with a focus on the minimum time,
first quartile, median, third quartile, and the maximum time. The same data is visu-
alized as violin plot in Fig. 7.33a to emphasize the skewness of the evacuation times
for a parameter value to visually check if the data is normally distributed. The check
for a normal distribution is important for a subsequent Student’s t-test which requires
normally distributed data. For the t-test, the 30 repetitions are interpreted as one sin-
gle group. Then, I compare groups of different parameter values pairwise to check if
the groups significantly differ from each other statistically, see Fig. 7.33b. The simula-
tion results are also plotted as scatter plot in 7.33c which shows a relationship between
the parameter probabilityInGroupMemberhsip and the evacuation time. The linear
regression line in 7.33c shows a clear trend of decreasing evacuation time if agents
trust each other (that is, a high probabilityInGroupMemberhsip). Of course, simula-
tions only show one possible outcome of a scenario and not the ground truth. Ran-
dom effects determine the trajectories of agents significantly which can cause that some
agents imitate behavior but others do not. Nevertheless, the data suggests that a high
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probabilityInGroupMemberhsip leads to decreasing evacuation times. This is an im-
portant outcome for event practitioners and safety concepts for crowd events.
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Figure 7.32: The evacuation time of all agents when varying the parameter probabilityIn
groupMembership from 0 to 100%. For each parameter value, 30 simulations are conducted.
The box plots highlight the median for the 30 repetitions and show a clear trend of a decreasing
evacuation time if agents trust each other, that is, when probabilityIngroupMembership is
high.
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(a) Violin plot
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(b) P-values for a pairwise t-test with the
reference group (0%) and the null
hypothesis that both groups have identical
average values.
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(c) Linear regression line

Figure 7.33: The 30 repetitions per probabilityInGroupMembership as different statistical
plots: (a) As violin plot to highlight the skewness in each group. (b) The p-values as result of a
pairwise t-test with the reference group (probabilityInGroupMembership = 0%) under the
null hypothesis that both groups share the same mean. (c) As scatter plot (x-axis:
probabilityInGroupMembership, y-axis: evacuation time) with a linear regression line (R2
score: 0.095, p-value:� 0.001) which shows a negative correlation (r-value: −0.308) between
probabilityInGroupMembership and the evacuation time. That is, a significant tendency of
decreasing evacuation time.

Model limitations The simulation results show that the model for behavioral changes
is able to reenact the observed behavior after the false alarm at underground station
Oxford Circus at least qualitatively. But of course, the model is a simplification in regard
to psychological influences and also from a locomotion point of view.

In the simulation, agents use the whole width of the streets instead of using only
the pavements. While this is plausible after the bang, it is certainly not realistic before
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the bang where pedestrians would use the pavements instead of using roads that are
primarily intended for car traffic.

The simulation does also not contain advanced psychological aspects like helping be-
havior, where people help each other when being injured. Drury, Cocking, and Reicher
2009b showed that survivors of an emergency helped each other. This helping behavior
was already simulated by modelers like Sivers, Templeton, et al. 2016. Additionally, psy-
chologists stress that in-group members allow closer proximity to each other (Novelli,
Drury, and Reicher 2010; Templeton, Drury, and Philippides 2018). The psychologists
Templeton and Neville also stress the three transformations that are important to accu-
rately describe crowd dynamics in regard of the social identity approach (Templeton and
Neville 2020a, p. 63):

• Cognitive transformation: from personal identity to social identity (e.g., from fa-
ther to football supporter).

• Relational transformation: one “other” becomes “one of us” (the crowd).

• Emotional transformation: for instance, positive emotions like empowerment when
achieving a group goal

Furthermore, latest psychological researches suggest to additionally take the social
appraisal theory into account when explaining collective behavior (Bruder, Fischer, and
Manstead 2014). The social appraisal theory tries to explain how own emotions are
influenced by the appraisal of others’ emotions. The authors improve the primitive emo-
tional contagion theory which suggests that a sender expresses an emotion and the re-
ceivers automatically mimic the expression shown by the sender (Bruder, Fischer, and
Manstead 2014, p. 142). Social appraisal can be seen as mediation process: instead of
just mimicking the sender’s emotions and behavior, the receiver’s behavior slowly con-
verges to the one of the sender. The process is mediated by what psychologists call social
appraisal. My implementation neglects such a meditation process for the sake of simplic-
ity. The social appraisal theory would require to include emotional variables that would
lead to a more complex model which would be similar to an eBDI approach (emotional
beliefs desires intention).

These are all psychological implications. In the application, I have neglected the emo-
tional aspects when modeling behavioral changes in favor of a minimal and reusable
software structure because I did not need it. My primary goal is to establish a clean
and reusable software architecture. When an application demands it, this minimal ar-
chitecture can be extended by further psychological processes. The inclusion of all these
additional processes which influence behavior is left to other modelers.

In the simulation, agents sharing the in-group membership, trust each other and imi-
tate their behavior. This was achieved by adding a SelfCategory and a GroupMembership
to agents. This can clearly be seen as social identification process — a cognitive and re-
lational transformation from single, selfishly acting agents to a psychological crowd. It
is a step forward to more realistic “social” simulations which also include psychological
aspects. My modeling approach is a step towards psychologists and their demand that
“social identification is a core component that influences the microscopic level factors in
pedestrian movement” (Templeton and Neville 2020a, p. 71) which should be integrated
into simulation models.
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I decided to only include the essential aspects into my model so that it remains
reusable and falsifiable and that scientific conclusions can be drawn from the model.
The model is a starting point to test also psychological hypotheses and how they affect
the evacuation time in emergencies. Such computer models and the subsequent simula-
tions help to enhance the safety concepts for public places. This is particularly important
in the UK where the high terrorism threat level leads to uncertainty in the population
and causes false alarms with subsequent “collective flight incidents”. These incidents are
dangerous for people. The Oxford Street incident left nine people injured and even more
psychologically distressed (Greenfield, Cobain, and Dodd 2017). My new model allows
to scrutinize “collective flight incidents” in more details and helps to answer following
questions:

• When and how do people perceive a signal as threatening?

• When and how do people flee?

• When do they follow (or ignore) others?

• What is the role of other groups (authorities, emergency services) in communicat-
ing information about threat?

• When do these responses become disorderly?

These questions are also raised by different researchers of the University of Sussex,
Universities of St Andrews (Edinburgh), Lund University and Keele University. In a
current research proposal, their goal is to develop a new psychological “model of ‘stam-
pedes’ in response to perceived threats, based on a novel combination of social appraisal
theory and the social identity approach” (Drury 2020, p. 1).

7.3 Use case 3 — Fictitious scenario: Counterflowing
agents and evasion

This use case represents a fictitious scenario in a narrow corridor with counterflowing
agents. Even if it is a fictitious scenario, the constellation with counterflowing pedestrian
streams can often be observed in the real world. For instance, in pedestrian zones or
supermarkets where space is limited. While the first two scenarios used the optimal
steps model on the locomotion layer, this last scenario uses the experimental behavioral
heuristics model to show that the software architecture is generic enough to be combined
with different locomotion models and simulation tools. The behavioral heuristics model
was introduced by Seitz in his dissertation (Seitz 2016). In it’s current form, it can
only be used for simple geometries and must be seen as an experimental model which
is not widely adopted. My simulation results are not analyzed in depth as done with
the previous simulations. Instead, the results are just validated qualitatively against
behavior extracted from pedestrian experiments to show that this implementation is
able to reenact real-world behavior.
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7.3.1 Scenario description

A self-organization phenomenon called lane formation is often reported when observ-
ing bidirectional pedestrian flows. Lane formation means the phenomenon in crowds
that opposite pedestrian flows tend to separate. In that case, pedestrians follow other
pedestrians in the same direction very closely, see Fig. 7.34. Lane formation was studied
and confirmed in older but also newer experiments by several authors (Muramatsu, Irie,
and Nagatani 1999; Kretz, Grünebohm, Kaufman, et al. 2006; Ma et al. 2010; Feliciani
and Nishinari 2016b). For instance (Kretz, Grünebohm, Kaufman, et al. 2006) reported
the formation of two and three lanes during their experiment in a 34 m ×2 m corridor
(length × width) with 67 participants using different fractions of counterflow ([0.00,
0.10, 0.34, 0.50, 0.66, 0.90]).

(a) Source: Zhang, Klingsch, and Seyfried
2012, p. 6 (I added arrows to denote the
walking direction)

(b) Source: Kretz, Grünebohm, Kaufman,
et al. 2006, p. 4 (I added arrows to denote
the walking direction)

Figure 7.34: Lane formation as an emergent effect of counterflowing pedestrian streams was
observed in several experimental setups in the past.

Several modelers were able to reproduce lane formation by only considering the phys-
ical locomotion aspect but neglecting cognitive aspects of counterflowing humans. For
instance, Helbing and Molnár 1995 reported lane formation with their social force model
or Liu et al. 2014 by using a model based on “utility optimization” to move agents sim-
ilar to the optimal steps model. As stated in Sec. 7.1.1 (Fig. 7.1, p. 102), considering
only physical aspects for agent navigation can lead to deadlock situations in simulations
while real pedestrians keep moving.

7.3.2 Implementation details

As the preceding scenario description shows, pedestrians often form lanes in bidirec-
tional traffic to maintain flow. Counterflowing pedestrians evade each other instead of
strictly following their target direction. Based on the video footage from the “Pedestrian
Dynamics Data Archive” (Boltes, Holl, and Seyfried 2020), I identified two simple heuris-
tics which trigger the process of lane formation from the view of individual pedestrians:
A pedestrian evades if (1) a neighboring agent occupies the current path but walks in a
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different direction or (2) the (neighboring) pedestrian in walking direction evades (that
is, followers imitate the evasion behavior of the person in front of them), see Fig. 7.35.

Walking direction Evasion direction

(a) First cognitive heuristic: evaluate
walking direction of opposite agent.

Imitate evasion

(b) Second cognitive heuristic: imitate
evasion behavior if no counterflowing
agent is present but agent in front evades.

Figure 7.35: Two simple heuristics to trigger evasion behavior of agents from a cognitive point
of view.

These two heuristics are embedded into the generic psychology layer from Sec. 6.1 as
following:

• Perception: nothing must be implemented because no environmental stimulus is
necessary to achieve evasion behavior.

• Cognition: implement class CounterflowCognitionModel which varies agent’s Self
Category between TARGET_ORIENTED and EVADE by using the two heuristics from
Fig. 7.35. Agents look for neighboring agents in a search radius r. If the neigh-
boring agents walk in a different direction, change SelfCategory to EVADE. If the
neighboring agent walks in the same direction and evades, imitate this evasion
behavior.

– The walking direction of an agent is derived from the floor field gradient
which describes the shortest geodetic path to the agent’s target. Fig. 7.36 vi-
sualizes how the walking direction is derived by using the floor field gradient.

1

1

2

1

2

180°

2

Figure 7.36: The walking direction of agents is derived by using the corresponding
floor field and its gradient. The blue agent walks to the blue target (1) on the
left-hand side. The red agent walks to the red target (2) on the right-hand-side. The
curved lines denote the contour lines of the corresponding target floor field (gray
numbers show the value of the contour line). Arrows denote the gradient of the
floor field at that position (the shortest path to the target).
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– It is assumed that the walking direction of two agents differs if the angle be-
tween their walking direction vectors is greater than 45◦ (this is a configurable
new attribute of an agent)

• Behavior: this time, the behavioral heuristics model (BHM) is used to move agents
in the environment instead of the optimal steps model. The optimal steps model
solves an optimization problem in each simulation step for each agent, see Sec. 2.2.3,
p. 38. The BHM uses four strategies to move agents: (1) Step towards the target
with step length d if this position is free. (2) If the position from step (1) is oc-
cupied, try to evade tangentially (45◦). (3) If the tangential position is occupied,
try to evade with a sidestep (90◦). (4) If this position is also occupied, wait. The
following three extensions are added to the original BHM:

– The original BHM uses the Euclidean distance to derive the direction of an
agent to its target. This imposes problems when an obstacle is located be-
tween an agent and its target. Then, the target direction would point into the
obstacle and agents would be blocked. Therefore, a floor field, based on the
eikonal equation, is generated to be able to derive the geodesic distance and
geodesic direction of an agent to its target. The Vadere framework already
provides methods to generate floor fields which can be used along with the
BHM.

– The method PedestrianBHM.collideWithPedestrianOnPath() does not take
the future path of an agent into account even if the name would suggest it.
Therefore, I extend this method to only take agents into account which are
located on the path towards an agent’s target.

– The BHM searches a new agent position in the method update() of class
PedestrianBHM. Now, this method takes the current cognitive status of an
agent into account. If an agent has the status EVADE, the agent tries to evade
tangentially or sideways by using the class NavigationEvasion temporarily,
see List. 7.3.

Listing 7.3: The update() method of class PedestrianBHM which reacts to the current
cognitive status in agent.getSelfCategory().

1 public void update(double currentTimeInSec) {
2 ...
3 SelfCategory selfCategory = getSelfCategory ();
4 VPoint position = getPosition ();
5

6 if (selfCategory == TARGET_ORIENTED) {
7 // Use regular heuristics to move agent
8 updateTargetDirection ();
9 nextPosition = navigation.getNavigationPosition ();

10 makeStep ();
11 } else if (selfCategory == EVADE) {
12 // Evade tangentially or with sidestep
13 INavigation evasionNavigation = new NavigationEvasion ();
14 evasionNavigation.initialize(this , topography , null);
15 nextPosition = evasionNavigation.getNavigationPosition ();
16 makeStep ();
17 }
18 ...
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19 }

The UML activity diagram Fig. 7.37 summarizes the cognitive process of agents which
is carried out in the update() method of class CounterflowCognitionModel.

CounterflowCognitionModel.update()

No target, i.e.:
- Agent does not move.
- No action required.

Evade if:

Both agents walk in
different directions.
Or if agent in front of
me also evades (i.e.,
imitate behavior)

for all agents

agent.hastNextTarget() ?

yes

no

agents available?

no

neighborCloserToTarget = TopographyHelper.
getNeighborCloserToTargetCentroid(agent, topography)

yes

agent.setSelfCategory(EVADE)

yes

no

TopographyHelper.walkingDirectionDiffers(agent,
neighborCloserToTarget, topography)

OR
neighborCloserToTarget.getSelfCategory() == EVADE

agent.setSelfCategory(TARGET_ORIENTED)
Stay

TARGET_ORIENTED
as long as possible.

Figure 7.37: UML diagram of the CounterflowCognitionModel. Existing locomotion models
like the social force model focus on target attraction and agent repulsion to achieve evasion
behavior. But, a simple cognitive heuristic mimics human behavior more naturally: agents
simply process two information and evade tangentially or sideways if one of these information
holds true. (1) Does the next neighboring agent walk in different direction? (2) Does the
neighboring agent evade?

The implementation is covered by unit tests which results in the code coverage in
Tab. 7.8.
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Class name Total Line Branch
lines coverage [%] coverage [%]

Note: no perception class required - - -
CounterflowCognitionModel.java 14 93 90
OSMBehaviorController.java 96 54 50

Table 7.8: The code coverage for the newly introduced classes which are required for the third
use case. The code coverage was obtained for Git commit da89eafa with the Java code
coverage library “JaCoCo” version 0.8.3: https://www.eclemma.org/jacoco/

7.3.3 Simulation results and validation

Simulator version and scenario file

The simulations were carried out with Vadere version 1.15 (Git commit hash:
c2f7c07f50ce22dde6d7afbbff21ce6d842df92f). The scenario file, which con-
tains all simulation parameters, can be found as PDF attachment (click the icon
to save file to disk):

I applied the model from the previous section in a topography with a narrow corridor
of 19 m × 1 m (length × width). 20 agents move from left to right and 20 agents move
from right to left. On locomotion layer, default parameters are used for the behavioral
heuristics model and agents use a search radius of 4 m to look for neighboring agents.
When agents have SelfCategory.EVADE assigned, they either evade tangentially or with
a sidestep as shown in List. 7.3 (line 11–17). The agents use only a subset of the available
movement heuristics and omit the “step or wait” and “follower” heuristic. Qualitatively,
we can clearly see that agents form two lanes after detecting the evasion situation in a
cognitive process, see Fig. 7.38.

A closer look at the simulated trajectories reveals movement artifacts which are in-
troduced by the behavioral heuristics locomotion model. Agents evade towards a wall
and are immediately “bounced back” which leads to unrealistic zig-zag trajectories, see
Fig. 7.39. This can be explained by the experimental status of the behavioral heuristics
model. The focus of my work is to provide a generic architecture to allow behavioral
changes of agents and not to refine an existing locomotion model. Therefore, I don’t
address the unrealistic zig-zag trajectories in my work. Instead, the simulation result
shows that agents detect counterflowing agents in a cognitive process and change their
SelfCategory from TARGET_ORIENTED to EVADE. In the locomotion phase, agents evade
tangentially or with a sidestep.

7.4 Summary

In this chapter, I used the new psychology layer from the previous Sec. 6 with sub-layers
perception, cognition and behavior. I extended it with application-specific knowledge
from three scenarios and validated the simulation results against real-world observa-
tions. I based this application-specific knowledge on three scenarios: (1) An own exper-
iment with 58 participants which I conducted in Oct 2018 where a participant is asked
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{
  "name" : "CounterflowCognitionModel-BHM",
  "description" : "",
  "release" : "1.15",
  "commithash" : "c2f7c07f50ce22dde6d7afbbff21ce6d842df92f",
  "processWriters" : {
    "files" : [ {
      "type" : "org.vadere.simulator.projects.dataprocessing.outputfile.EventtimePedestrianIdOutputFile",
      "filename" : "postvis.traj",
      "processors" : [ 1, 2, 3 ]
    } ],
    "processors" : [ {
      "type" : "org.vadere.simulator.projects.dataprocessing.processor.FootStepProcessor",
      "id" : 1
    }, {
      "type" : "org.vadere.simulator.projects.dataprocessing.processor.FootStepTargetIDProcessor",
      "id" : 2
    }, {
      "type" : "org.vadere.simulator.projects.dataprocessing.processor.FootStepPsychologyStatusProcessor",
      "id" : 3
    } ],
    "isTimestamped" : true,
    "isWriteMetaData" : false
  },
  "scenario" : {
    "mainModel" : "org.vadere.simulator.models.bhm.BehaviouralHeuristicsModel",
    "attributesModel" : {
      "org.vadere.state.attributes.models.AttributesBHM" : {
        "stepLengthIntercept" : 0.4625,
        "stepLengthSlopeSpeed" : 0.2345,
        "stepLengthSD" : 0.036,
        "stepLengthDeviation" : false,
        "navigationCluster" : false,
        "navigationFollower" : false,
        "followerProximityNavigation" : true,
        "navigationModel" : "NavigationProximity",
        "directionWallDistance" : false,
        "tangentialEvasion" : true,
        "sidewaysEvasion" : false,
        "onlyEvadeContraFlow" : false,
        "makeSmallSteps" : false,
        "differentBehaviour" : false,
        "differentEvasionBehaviourPercentage" : [ ],
        "varyingBehaviour" : true,
        "adaptiveBehaviourDensity" : false,
        "adaptiveBehaviourStepsRemained" : [ ],
        "switchBehaviour" : false,
        "evasionDetourThreshold" : 0.1,
        "onlyEvadeContraFlowAngle" : 2.0943951023931953,
        "followerAngleMovement" : 1.5707963267948966,
        "followerAnglePosition" : 1.5707963267948966,
        "followerDistance" : 10.0,
        "smallStepResolution" : 5,
        "plannedStepsAhead" : 5,
        "obstacleRepulsionReach" : 1.0,
        "obstacleRepulsionMaxWeight" : 0.5,
        "distanceToKeep" : 0.5,
        "backwardsAngle" : 1.5707963267948966,
        "reconsiderOldTargets" : false,
        "targetThresholdX" : 1.7976931348623157E308,
        "targetThresholdY" : 1.7976931348623157E308,
        "spaceToKeep" : 0.01,
        "stepAwayFromCollisions" : false
      },
      "org.vadere.state.attributes.models.AttributesFloorField" : {
        "createMethod" : "HIGH_ACCURACY_FAST_MARCHING",
        "potentialFieldResolution" : 0.1,
        "obstacleGridPenalty" : 0.1,
        "targetAttractionStrength" : 1.0,
        "cacheType" : "NO_CACHE",
        "cacheDir" : "",
        "timeCostAttributes" : {
          "standardDeviation" : 0.2,
          "type" : "DISTANCE_TO_OBSTACLES",
          "obstacleDensityWeight" : 1.0,
          "pedestrianSameTargetDensityWeight" : 3.5,
          "pedestrianOtherTargetDensityWeight" : 3.5,
          "pedestrianWeight" : 3.5,
          "queueWidthLoading" : 1.0,
          "pedestrianDynamicWeight" : 6.0,
          "loadingType" : "CONSTANT",
          "width" : 1.0,
          "height" : 5.0
        }
      }
    },
    "attributesSimulation" : {
      "finishTime" : 100.0,
      "simTimeStepLength" : 0.4,
      "realTimeSimTimeRatio" : 0.1,
      "writeSimulationData" : true,
      "visualizationEnabled" : true,
      "printFPS" : false,
      "digitsPerCoordinate" : 2,
      "useFixedSeed" : true,
      "fixedSeed" : -8539920412942853482,
      "simulationSeed" : -8539920412942853482
    },
    "attributesPsychology" : {
      "usePsychologyLayer" : true,
      "psychologyLayer" : {
        "perception" : "SimplePerceptionModel",
        "cognition" : "CounterflowCognitionModel"
      }
    },
    "topography" : {
      "attributes" : {
        "bounds" : {
          "x" : 0.0,
          "y" : 0.0,
          "width" : 20.0,
          "height" : 2.0
        },
        "boundingBoxWidth" : 0.5,
        "bounded" : true,
        "referenceCoordinateSystem" : null
      },
      "obstacles" : [ ],
      "measurementAreas" : [ ],
      "stairs" : [ ],
      "targets" : [ {
        "id" : 1,
        "absorbing" : true,
        "shape" : {
          "x" : 18.5,
          "y" : 0.5,
          "width" : 1.0,
          "height" : 1.0,
          "type" : "RECTANGLE"
        },
        "waitingTime" : 0.0,
        "waitingTimeYellowPhase" : 0.0,
        "parallelWaiters" : 0,
        "individualWaiting" : true,
        "deletionDistance" : 0.1,
        "startingWithRedLight" : false,
        "nextSpeed" : -1.0
      }, {
        "id" : 2,
        "absorbing" : true,
        "shape" : {
          "x" : 0.5,
          "y" : 0.5,
          "width" : 1.0,
          "height" : 1.0,
          "type" : "RECTANGLE"
        },
        "waitingTime" : 0.0,
        "waitingTimeYellowPhase" : 0.0,
        "parallelWaiters" : 0,
        "individualWaiting" : true,
        "deletionDistance" : 0.1,
        "startingWithRedLight" : false,
        "nextSpeed" : -1.0
      } ],
      "targetChangers" : [ ],
      "absorbingAreas" : [ ],
      "sources" : [ {
        "id" : 3,
        "shape" : {
          "x" : 1.6,
          "y" : 0.5,
          "width" : 1.0,
          "height" : 1.0,
          "type" : "RECTANGLE"
        },
        "interSpawnTimeDistribution" : "org.vadere.state.scenario.ConstantDistribution",
        "distributionParameters" : [ 1.0 ],
        "spawnNumber" : 20,
        "maxSpawnNumberTotal" : -1,
        "startTime" : 0.0,
        "endTime" : 0.0,
        "spawnAtRandomPositions" : false,
        "spawnAtGridPositionsCA" : false,
        "useFreeSpaceOnly" : true,
        "targetIds" : [ 1 ],
        "groupSizeDistribution" : [ 1.0 ],
        "dynamicElementType" : "PEDESTRIAN",
        "attributesPedestrian" : null
      }, {
        "id" : 4,
        "shape" : {
          "x" : 17.4,
          "y" : 0.5,
          "width" : 1.0,
          "height" : 1.0,
          "type" : "RECTANGLE"
        },
        "interSpawnTimeDistribution" : "org.vadere.state.scenario.ConstantDistribution",
        "distributionParameters" : [ 1.0 ],
        "spawnNumber" : 20,
        "maxSpawnNumberTotal" : -1,
        "startTime" : 0.0,
        "endTime" : 0.0,
        "spawnAtRandomPositions" : false,
        "spawnAtGridPositionsCA" : false,
        "useFreeSpaceOnly" : true,
        "targetIds" : [ 2 ],
        "groupSizeDistribution" : [ 1.0 ],
        "dynamicElementType" : "PEDESTRIAN",
        "attributesPedestrian" : null
      } ],
      "dynamicElements" : [ ],
      "attributesPedestrian" : {
        "radius" : 0.2,
        "densityDependentSpeed" : false,
        "speedDistributionMean" : 1.34,
        "speedDistributionStandardDeviation" : 0.26,
        "minimumSpeed" : 0.5,
        "maximumSpeed" : 2.2,
        "acceleration" : 2.0,
        "footstepHistorySize" : 4,
        "searchRadius" : 4.0,
        "walkingDirectionCalculation" : "BY_TARGET_CENTER",
        "walkingDirectionSameIfAngleLessOrEqual" : 45.0
      },
      "teleporter" : null,
      "attributesCar" : null
    },
    "stimulusInfos" : [ ]
  }
}


Benedikt Kleinmeier
CounterflowCognitionModel-BHM.scenario
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(a) Time: 0.0 s

(b) Time: 4.0 s

(c) Time: 4.4 s

(d) Time: 12.0 s

(e) Time: 16.8 s

Figure 7.38: Behavioral changes of agents in the course of the simulation. Blue agents walk
from left to right. Red agents walk from right to left. Agents with SelfCategory.EVADE are
encircled in black. (a) and (b) Agents start walking in the green source areas. (c) The red
agents change from TARGET_ORIENTED to EVADE after detecting a counterflowing (blue) agent in
a cognitive process. Also the foremost (blue) agent detects a counterflowing agent which causes
the blue agent to change the behavior. The following (blue) agents imitate this behavior. (d)
and (e) The counterflowing agents form two lanes which are dissolved at the end of the
simulation when agents turn back to SelfCategory.TARGET_ORIENTED.

Figure 7.39: Movement artifacts of the experimental locomotion model: agents are bounced
back from walls which leads to unrealistic zig-zag trajectories.

to cross a dense, waiting crowd. (2) A false alarm at underground station Oxford Circus
(London, 2017). (3) A narrow corridor with two counterflowing pedestrian streams.
The crucial aspect for the application-specific knowledge was to identify triggers on the
cognitive level which cause humans to change their behavior. Three triggers where iden-
tified:

• For the experiment: a person realizes that he/she cannot move anymore when
confronted with a waiting crowd. Then, the person changes the behavior from
target-oriented to cooperative to be able to cross the waiting crowd.
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7 Model validation and application: Demonstrating behavioral changes of agents

• For the false alarm: a loud bang — an environmental stimulus — causes people to
escape (they increase their walking speed and maximize the distance to the bang).
Other, people who did not perceive the bang imitate the escaping behavior when
perceiving fleeing people.

• For the narrow corridor: people change their behavior from target-oriented to
evasion when they detect counterflowing pedestrians directly in front of them or
when their neighbor (in same direction) evades, that is, they imitate behavior.

These triggers where implemented as implementations of the interface ICognitionMo-
del from the psychology layer and can easily be enabled/disabled (List. 6.5, p. 98) when
setting up a scenario in the Vadere simulator. The whole concept of the psychology layer
provides a generic architecture to allow behavioral changes of agents in simulations.
First, environmental stimuli are processed on the perception layer. Then, this informa-
tion is enriched with other information — e. g., the triggers from above — in a cognitive
process on the cognition layer. Lastly, according to the cognitive status an agent carries
out a movement on locomotion layer. For developers, the psychology layer provides a
clear framework to map human behavior onto a clean and reusable software architecture
to reenact real-world observations accurately.
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Chapter

8 Summary, conclusions
and outlook

The last section briefly summarizes my work chapter by chapter, draws general conclu-
sions and gives an outlook on future work.

8.1 Summary

The goal of this work was to model behavioral changes in agent-based simulations. I
transformed this goal into a research question: how can changes in human behavior be
operationalized for simulations? This revealed two key terms: behavioral changes and
simulations. The key terms show that two different research disciplines are involved
to find answers to the question: social sciences which cover humans, their behavior
and behavioral changes. And natural sciences which help to derive mathematical and
algorithmic models from real-world observations and to carry out computer simulations.
For me as a computer scientist, the challenge was to bridge the gap between both worlds.
I strove for a model and a reusable software architecture that covers a wide range of
real-world scenarios and is therefore beneficial for the whole research community.

To this end, I subdivided this dissertation into two parts. The first part contains a
broad literature research. The second part describes my modeling efforts to obtain a
minimal and reusable software architecture that allows behavioral changes of agents.

I shed light on existing approaches to model and simulate pedestrian streams. I
classified these approaches into macroscopic, mesoscopic (multi-scale) and microscopic
pedestrian models and provided many examples for each model type. While macro-
scopic approaches do not distinguish individual agents, microscopic approaches strongly
focus on individuals. This made microscopic models my choice to include psychological
processes because previous researches revealed that crowd behavior is affected and gen-
erated by individuals. I evaluated seven open-source pedestrian stream simulators which
implement locomotion models or subsets of them. With sustainability in mind, I decided
to integrate my findings in an established open-source simulator. I chose Vadere which
originally was designed as a framework to compare different locomotion models. Its
clean architecture and the well-validated locomotion models helped to easily integrate
my findings. Nevertheless, my modeling and architectural approach is not limited to the
Vadere simulator. The approach could directly be adopted by other simulator developers
and researchers.
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In addition to locomotion modeling, I scrutinized psychological aspects in my litera-
ture research to model behavioral changes accurately. Psychology, as the scientific study
of the behavior of individuals and their mental processes, helped to identify three key
concepts which should be integrated into a pedestrian dynamics model: perception,
cognition and a behavioral repertoire of agents. These three key concepts help to mimic
what real humans do: they perceive their environment, process this input and adapt
their behavior accordingly. I found that these three psychological key concepts are usu-
ally not implemented in current pedestrian stream simulation tools.

Human behavior is also affected by the social context. Therefore, I took a closer look
at the social psychological perspective. This research revealed two further aspects which
should be integrated into a model/architecture that allows behavioral changes of agents:
social identities and self-categorization. The term social identities describes that humans
have multiple identities when taking part in social life with others. The process of self-
categorization describes the shift from one identity (category) to another one. That
is, humans categorize themselves into categories (identities) to which they belong to
when coming together in a social context. Then, they apply the norms of this category.
For a simulation model this means that agents must be equipped with a self category
which can change in the course of a simulation as consequence of environmental stimuli
and cognitive processing of the close neighborhood. In this work, I chose to label the
agents’ self categories with the (expected) behavior on the locomotive level, e. g., target-
oriented or cooperative.

In the second part of this work, I derived a reusable software architecture which can
easily be employed in a wide range of pedestrian simulators. My architecture repre-
sents a simple psychology layer with the three sub-layers: perception, cognition and
a behavioral repertoire, see Fig. 8.1, p. 149. The psychology layer is optional and can
be enabled/disabled for each simulation run. This layered software structure, comple-
mented by suitable algorithms, operationalizes changes in human behavior for simula-
tions. Therefore, my contribution is one possible answer to the former research question
of “How can changes in human behavior be operationalized for simulations?”

In a test-driven development process, I verified my implementation with several unit
tests. A carefully configured continuous integration pipeline executes the unit tests upon
each source code change and deploys the Vadere simulator along with my new model to
the Vadere website.

In a validation phase, I ensured that my model is able to reenact real-world observa-
tions accurately. I selected three real-world use cases: (1) An own experiment where
a walking participant crosses a dense, waiting crowd. (2) An incident in London’s Ox-
ford Street where a perceived threat caused thousands of pedestrians to change their
behavior from shopping to escaping and members of a shared social category (identity)
follow each other. (3) A scenario in a narrow corridor with counterflowing pedestrians.
The three use cases helped to identify triggers on the cognitive level that cause a be-
havioral change and to complete the generic psychology layer with application-specific
knowledge. Now, (1) agents are able to act in target-oriented way like commuters, (2)
they can act cooperatively as observed in dense crowds and (3) agents can react to en-
vironmental stimuli and their direct neighbors (the social context) which can lead to
behavioral changes.

A picture in the summary seems uncommon, but it conveys my take-away message
of this dissertation very concisely: integrating psychological aspects into existing pedes-
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trian simulators makes simulations more realistic and by using my layered approach it
comes with little implementation overhead. Therefore, instead of wasting valuable re-
sources on software development, crowd modelers can concentrate their effort on the
important part: the model. The left listing in Fig. 8.1 shows how a simulation loop em-
ploys the new psychology layer. The right image in Fig. 8.1 visualizes the three sequential
steps of the psychology layer: perception, cognition and a behavioral selection.

1 while (simulationIsRunning) {
2 ...
3 // Perception
4 perceptionModel.update(agents ,

stimuli);
5 ...
6 // Cognition
7 cognitionModel.update(agents);
8 ...
9 // Locomotion

10 locomotionModel.update(agents ,
time);

11 ...
12 time ++;
13 }

Psychology Layer

Perception

Cognition

Behavior

Locomotion Layer

makeStep wait escapeswapAgents ...

1

2

3

Figure 8.1: Minimal modeling effort to integrate central psychological aspects in established
pedestrian stream simulators (original listing and image: p. 91).

8.2 Conclusions

In my overview of the state of the art, I worked out that the current modeling approaches
for pedestrian dynamics focus too much on physically correct simulations: agents walk
from sources to targets while avoiding obstacles and other agents. Of course, this as-
sumption is a good starting point for pedestrian simulations but realistic models should
not stop here. It limits crowd simulations mostly to evacuation scenarios where evacuees
permanently stick to a single behavior — being target-oriented. This simple approach
fails in situations which seem only slightly different. Other modeling approaches include
certain psychological aspects but are tailored to one very specific scenario only. Thus,
these psychologically-inspired models are not reusable. I addressed this problem by in-
troducing a well-defined psychology layer with sub-layers perception, cognition and a
repertoire of behaviors for agents. This approach allows agents to change their behavior
in the course of a simulation and makes simulations more versatile. For example, agents
can change their behavior from being target-oriented to being cooperative and can swap
places with other cooperative agents. Practitioners can now use such simulations to es-
timate how long it takes for a first responder to reach an injured person in a crowded
scene. Or, law enforcement forces can use simulations to measure how long it takes to
evacuate a crowded scene after a threat; in both cases, when people trust each other
and when they do not trust each other. Former modeling approaches were not able to
replicate such real-world observations in a reusable way.
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I see four benefits of my work:

• Two improvements on the modeling:

1. My psychology layer is based on empirical data. I conducted an own ex-
periment with 58 participants to observe and document changes in human
behavior.

2. Together with social psychologists, I used the experiment data to operational-
ize the process of behavioral changes into three sequential phases: percep-
tion, cognition and a selection of appropriate behaviors.

• Two improvements on the software reusability:

3. I encapsulated the three phases into a clean and simple psychology layer. I
integrated it into Vadere, carried out simulations and validated the model
successfully. This shows clearly that my model is very close to real applica-
tions and not another vague and not falsifiable model of human behavior and
behavioral changes.

4. I designed the psychology layer as reusable approach which can easily be
integrated in other crowd simulation tools. This makes my model sustainable
and beneficial for the whole pedestrian dynamics research community.

I implemented this new psychology layer in the open-source pedestrian simulator
Vadere. It was originally designed as framework to compare different locomotion mod-
els. I drew upon on this framework idea. My goal was to push this idea further to a
framework that also allows to test psychological hypotheses about perception, cognition
and behavior. However, my approach is not limited to the Vadere simulator. The generic
idea of extending the simulation loop by a perceptional and a cognitive phase which in-
fluence the behavioral selection of agents can easily be integrated into other microscopic
pedestrian simulation tools. My generic psychology layer

1. provides a clear guideline on how to operationalize observed behavior for com-
puter models — even for non-psychology experts —, and

2. is reusable for a wide range of real-world scenarios as the validation with three
use cases showed.

I used the three-step process perception, cognition and a behavioral selection because
it can be easily understood by researchers from different disciplines. It is well-grounded
in the psychological world but also natural scientists are able to understand the concept
and complement it with application-specific knowledge. My modeling approach is a
step forward: it establishes the required connection between life and natural scientists.
For realistic simulations and to better understand crowd behavior, knowledge from both
disciplines is necessary and both disciplines can and should benefit from each other. By
fostering understanding and following this synergistic relation, my work helps to make
crowd gatherings safer.

I believe that my psychology-related modeling is just the starting point for more
evolved models and more validation. Natural and life scientists should work closer
together to obtain more realistic models. I hope that more modelers integrate (basic)
psychological findings in their models without making the model too complex.
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8.3 Outlook

In my dissertation, I integrated my findings in the Vadere simulation framework. As
every software project, Vadere can be continuously improved. Outdated and unused
code should be removed to keep the architecture clean and maintainable — which is a
continuous effort. A code quality tool like SonarQube can help to identify code smells.
One important issue to solve is to make the GUI more user-friendly that non-experts can
set up simulation scenarios. One architectural decision which could be made here is to
offer Vadere as a web service. This requires that Vadere’s simulation loop runs on a web
server and is complemented by a HTML/CSS/JavaScript GUI. This is a major redesign
but could make Vadere accessible for non-experts because tablets and smartphones could
be used to access pedestrian simulations. Another important topic is to accelerate the
simulations. Large scenarios (1000 m×1000 m and bigger) with thousands of agents take
hours to compute. It would be beneficial to shorten this computation time.

From a modeling perspective, one could explicitly introduce social identities and
norms instead of the more general (social) categories which I employed. My intro-
duced (social) categories like target-oriented and cooperative give a clear hint what is
expected on the locomotion layer and makes my approach reusable for a wide range of
real-world scenarios. Nevertheless, from a social psychological perspective it is a sim-
plification. Introducing identities and norms could make the behavioral selection more
granular. For example, target-oriented football supporters (first identity) could keep a
closer proximity to each other than target-oriented fathers (second identity).

So far, I have shown the versatility of my new modeling approach by using three real-
world scenarios. It would be beneficial to operationalize and simulate more observations
from real life. Applying a model helps to detect shortcomings and to develop model
refinements.

I would like to close with a final remark on crowd simulations: all simulation results
must be treated with care because crowd behavior is very hard to predict. On the one
hand, simulations can help to detect risks when crowds gather. On the other hand,
simulations cannot ensure that all risks for life and limb are found.
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Wąs, Jarosław., Bartłomiej Gudowski, and
Paweł Matuszyk (2006). “Social dis-
tances model of pedestrian dynamics”.
In: Cellular Automata. Ed. by Samira
El Yacoubi, Bastien Chopard, and Stefa-
nia Bandini. Vol. 4173. Lecture Notes in
Computer Science. Springer Berlin Hei-
delberg, pp. 492–501. DOI: 10 . 1007 /
11861201_57.

Wiffers, Erik (2010). Here, revellers flee out
of the tunnel and the deadly stampede.
Agence France-Presse (AFP), Accessed:
10. December 2020. URL: https : / /
www.spiegel.de/fotostrecke/photo-
gallery - a - catastrophe - at - the -
love - parade - fotostrecke - 57501 .
html.

Wikimedia Commons (2020). Wikimedia
Commons, the free media repository. Ac-
cessed: 16 November 2020, used me-
dia: https : / / commons . wikimedia .
org / wiki / File : Pavlov % 27s _ dog _
conditioning.svg, https://commons.
wikimedia . org / wiki / File : Maslow %
27s_Hierarchy_of_Needs.svg, https:
//commons.wikimedia.org/wiki/File:
M % C3 % BCller - Lyer _ illusion . svg,
https : / / commons . wikimedia . org /
wiki/File:Tmax_by_MRI_perfusion_
in_cerebral_artery_occlusion.jpg.
URL: https : / / commons . wikimedia .
org/.

Wilensky, Uri (1999). NetLogo. Accessed
21. July 2020. Evanston, IL: Center
for Connected Learning and Computer-
Based Modeling, Northwestern Univer-

166

https://doi.org/10.1007/978-3-319-67477-3_1
https://doi.org/10.1007/978-3-030-50450-2_4
https://doi.org/10.1007/978-3-030-50450-2_4
https://arxiv.org/abs/1512.05597
https://arxiv.org/abs/1512.05597
https://physlets.org/tracker/
https://dbis.uni-regensburg.de/
https://dbis.uni-regensburg.de/
https://doi.org/10.1007/978-3-642-51744-0_6
https://doi.org/10.1007/978-3-642-51744-0_6
http://www.vadere.org/
http://www.vadere.org/
https://doi.org/10.1007/978-3-319-70647-4_11
https://doi.org/10.1007/978-3-319-70647-4_11
https://doi.org/10.1007/11861201_57
https://doi.org/10.1007/11861201_57
https://www.spiegel.de/fotostrecke/photo-gallery-a-catastrophe-at-the-love-parade-fotostrecke-57501.html
https://www.spiegel.de/fotostrecke/photo-gallery-a-catastrophe-at-the-love-parade-fotostrecke-57501.html
https://www.spiegel.de/fotostrecke/photo-gallery-a-catastrophe-at-the-love-parade-fotostrecke-57501.html
https://www.spiegel.de/fotostrecke/photo-gallery-a-catastrophe-at-the-love-parade-fotostrecke-57501.html
https://www.spiegel.de/fotostrecke/photo-gallery-a-catastrophe-at-the-love-parade-fotostrecke-57501.html
https://commons.wikimedia.org/wiki/File:Pavlov%27s_dog_conditioning.svg
https://commons.wikimedia.org/wiki/File:Pavlov%27s_dog_conditioning.svg
https://commons.wikimedia.org/wiki/File:Pavlov%27s_dog_conditioning.svg
https://commons.wikimedia.org/wiki/File:Maslow%27s_Hierarchy_of_Needs.svg
https://commons.wikimedia.org/wiki/File:Maslow%27s_Hierarchy_of_Needs.svg
https://commons.wikimedia.org/wiki/File:Maslow%27s_Hierarchy_of_Needs.svg
https://commons.wikimedia.org/wiki/File:M%C3%BCller-Lyer_illusion.svg
https://commons.wikimedia.org/wiki/File:M%C3%BCller-Lyer_illusion.svg
https://commons.wikimedia.org/wiki/File:M%C3%BCller-Lyer_illusion.svg
https://commons.wikimedia.org/wiki/File:Tmax_by_MRI_perfusion_in_cerebral_artery_occlusion.jpg
https://commons.wikimedia.org/wiki/File:Tmax_by_MRI_perfusion_in_cerebral_artery_occlusion.jpg
https://commons.wikimedia.org/wiki/File:Tmax_by_MRI_perfusion_in_cerebral_artery_occlusion.jpg
https://commons.wikimedia.org/
https://commons.wikimedia.org/


References

sity. URL: http://ccl.northwestern.
edu/netlogo/.

World Scientific Publishing (2020). World
Scientific. Accessed: 05. November 2020.
URL: https://www.worldscientific.
com/.

Zhang, J., A. Schadschneider, and A.
Seyfried (2014). “Empirical Fundamen-
tal Diagrams for Bidirectional Pedes-
trian Streams in a Corridor”. In: Pedes-
trian and Evacuation Dynamics 2012. Ed.

by Ulrich Weidmann, Uwe Kirsch, and
Michael Schreckenberg. Springer Inter-
national Publishing, pp. 245–250. DOI:
10.1007/978-3-319-02447-9_19.

Zimbardo, Philip (1999). Stanford Prison
Experiment. Accessed: 5. August 2020
(via Internet Archive Wayback Machine).
URL: https : / / web . archive . org /
web / 20000512020449 / http : / / www .
prisonexp.org/slide-4.htm.

167

http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/
https://www.worldscientific.com/
https://www.worldscientific.com/
https://doi.org/10.1007/978-3-319-02447-9_19
https://web.archive.org/web/20000512020449/http://www.prisonexp.org/slide-4.htm
https://web.archive.org/web/20000512020449/http://www.prisonexp.org/slide-4.htm
https://web.archive.org/web/20000512020449/http://www.prisonexp.org/slide-4.htm


Appendix

1 Obtain lines of code (LOCs) for different simulators

The lines of code exclude unit tests, blank lines and comments. The “cloc” software
tool1 version 1.74 was used to obtain the lines of code. The hash contained in the
–report-file indicates the analyzed simulator version according to the Git version con-
trol system.

Listing 1: The “cloc” software was used to obtain the lines of code for different simulators
excluding unit tests, blank lines and comments.

1 FDS+Evac:
2 cloc
3 --report -file=fds -5c0149698 -cloc_report.txt
4 .
5

6 GAMA:
7 cloc
8 --report -file=gama -d81fcb858 -cloc_report.txt
9 .

10

11 JuPedSim:
12 cloc
13 --exclude -dir=Utest
14 --exclude -lang=XML
15 --report -file=jupedsim -d942c947 -cloc_report.txt
16 jpscore/ jpseditor/ jpsreport/ jpsvis/
17 .
18 Menge:
19 cloc
20 --match -d=src
21 --exclude_dir=test
22 --report -file=menge -menge -c3eb429 -cloc_report.txt
23 .
24 MomenTUMv2:
25 cloc
26 --exclude -dir=momentum -documentation ,tests
27 --exclude -lang=HTML ,CSS ,XML
28 --report -file=momentumv2 -55c8f3a -cloc_report.txt
29 .
30 SUMO:
31 cloc
32 --match -d=src
33 --report -file=sumo -1.0.1 - cloc_report.txt
34 .

1https://github.com/AlDanial/cloc
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35 Vadere:
36 cloc
37 --exclude -dir=tests
38 --exclude -lang=JSON --report -file=vadere -87 b4fe32 -cloc_report.txt
39 .

2 Clean code exemplified by the class “CooperativeCog-
nitionModel”

Clean code is obtained by several measures: (1) a minimal documentation of the pur-
pose of a class, (2) short methods with well-defined interfaces and (3) descriptive vari-
able and method names.

Listing 2: Clean code exemplified by the class CooperativeCognitionModel

1 package org.vadere.simulator.control.psychology.cognition.models;
2

3 /**
4 * The {@link CooperativeCognitionModel} makes a pedestrian cooperative

if its
5 * average speed falls below a certain threshold. I.e., usually the agent
6 * could not move for some time steps. For example , in case of other
7 * counter -flowing agents.
8 *
9 * {@link SelfCategory#COOPERATIVE} should motivate pedestrians to swap

places
10 * instead of blindly walking to a target and colliding with other

pedestrians.
11 */
12 public class CooperativeCognitionModel implements ICognitionModel {
13

14 private Topography topography;
15

16 public void initialize(Topography topography) {
17 this.topography = topography;
18 }
19

20 public void update(Collection <Pedestrian > pedestrians) {
21 for (Pedestrian pedestrian : pedestrians) {
22 if (pedestrianCannotMove(pedestrian)) {
23 pedestrian.setSelfCategory(SelfCategory.COOPERATIVE);
24 } else {
25 pedestrian.setSelfCategory(SelfCategory.TARGET_ORIENTED);
26 }
27 }
28 }
29

30 private boolean pedestrianCannotMove(Pedestrian pedestrian) {
31 boolean cannotMove = false;
32

33 FootstepHistory footstepHistory = pedestrian.getFootstepHistory ()
;

34 int requiredFootSteps = 2;
35

36 if (footstepHistory.size() >= requiredFootSteps
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37 && footstepHistory.getAverageSpeedInMeterPerSecond () <=
0.05) {

38 cannotMove = true;
39 }
40

41 return cannotMove;
42 }
43 }
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