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Zusammenfassung

Automatisierte und autonome Fahrsysteme werden in virtuellen Testfahrten erprobt, die
meist mithilfe szenariobasierter Tests durchgeführt werden. Dabei wird das Fahrsystem
Instanzen sowohl von häufig vorkommenden als auch von speziellen Verkehrsszenarien
ausgesetzt, um Vertrauen in die Sicherheit des Systems zu gewinnen. Intuitiv ergeben sich
daraus zwei Hauptprobleme: Es wird eine vollständige Liste von Szenariotypen benötigt,
die alle relevanten Szenariotypen enthält, und das Fahrsystem muss in Testfällen getestet
werden, die interessante Instanzen dieser Szenariotypen darstellen.

Das erste Problem kann aus zwei Richtungen angegangen werden, nämlich konstruktiv
die Vollständigkeit zu erhöhen und die Vollständigkeit so gut wie möglich zu bewerten.
Derzeit leiten Experten Szenariotypen manuell anhand ihres mentalen Modells ab, das auf
Erfahrung basiert. Dies erfordert eine Validierung, wofür Redundanz durch automatisierte
Ableitung vorgeschlagen wird. Bestehende Arbeiten zur automatisierten Ableitung von
Szenariotypen weisen entweder technische Einschränkungen auf oder verlassen sich auf
das mentale Modell des Experten, wodurch der Redundanzaspekt verloren geht. In die-
ser Arbeit wird ein Clustering-Ansatz vorgestellt, der Szenarioinstanzen allein auf Basis
syntaktischer Merkmale zu Szenariotypen gruppiert und damit den Einfluss des mentalen
Modells des Experten auf die Entscheidung, welche Art von Daten erfasst und für das
Clustering verwendet werden, reduziert. Die resultierende Liste der Szenariotypen muss
auf Vollständigkeit geprüft werden. Da eine absolute Messung der Vollständigkeit nicht
möglich ist, ist das Ziel eine Messung relativ zu realen Verkehrsdaten. Bestehende Arbeiten
bieten keinen geeigneten Ansatz. In dieser Arbeit wird ein statistisches Modell beschrieben,
das - basierend auf Verkehrsdaten - angibt, ob alle Szenariotypen bekannt sind, die im
realen Verkehr bis zu einer bestimmten Wahrscheinlichkeit stattfinden.

Das zweite Problem erfordert zunächst die Generierung von Szenario-Instanzen, die die
gewünschte Form haben und interessant sind, also “gute” Testfälle sind, und anschließend
die Analyse, ob solche interessanten Testfälle generell “gut” bleiben, wenn sie wieder-
verwendet werden, z.B. für Regressionstests. Für die Testfallgenerierung wurden in der
Vergangenheit suchbasierte Techniken vorgeschlagen. Die vorhandenen Arbeiten liefern
jedoch entweder ad-hoc Fitnessfunktionen für ein bestimmtes System oder einen bestimm-
ten Szenariotyp; oder konzentrieren sich auf die technischen Aspekte der suchbasierten
Testszenario-Generierung unter der Annahme, dass die Fitnessfunktion gegeben ist. Dabei
bleibt der methodische Aspekt unberücksichtigt, wie Fitnessfunktionen generell erstellt
werden sollten. In dieser Arbeit werden Templates zur Formulierung von Fitnessfunktionen
vorgestellt, sowie methodische Anleitungen zur Kombination und Anwendung, um sicher-
zustellen, dass die ausgewählten Testfälle die gewünschte Form haben und interessant sind.
Einige solcher Testfälle können fehlerhaftes Verhalten aufzeigen. Die Wiederverwendbar-
keit solcher Testfälle für verschiedene Versionen und Varianten von Fahrsystemen wird
in einer Vielzahl von Arbeiten implizit vorausgesetzt. Nach bestem Wissen des Autors
gibt es jedoch keine Arbeit, die tatsächlich einen Beweis für oder gegen diese Annahme
liefert. In dieser Arbeit wird ein Gegenbeispiel vorgestellt, das zeigt, dass die Qualität
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von Testfällen generell systemabhängig ist. Daher wird die naı̈ve Wiederverwendung von
Testfällen nicht empfohlen. Stattdessen wird vorgeschlagen, die Testfallgenerierung für
verschiedene Systemversionen und -varianten erneut auszuführen.

viii



Abstract

Automated and autonomous driving systems are tested in virtual test drives, mostly
conducted by scenario-based testing. This involves exposing the driving system to instances
of both commonly encountered and special traffic scenario types to gain confidence in the
safety of the system. Intuitively, this imposes two main problems: A complete list of scenario
types is required containing all such relevant scenario types and the driving system needs
to be tested in “good” test cases, which are interesting instances of these scenario types.

The first problem may be tackled from two directions, namely constructively increasing
the completeness and assessing the completeness as much as possible. Currently, experts
derive scenario types manually using their mental models based on experience. This
requires validation, for which redundancy by automated derivation is suggested. Existing
works on automated scenario type derivation either come with technical limitations or
rely on the experts mental model nullifying the redundancy aspect. This work presents
a clustering approach that groups scenario instances to scenario types solely based on
syntactic features, reducing the influence of the experts’ mental model to the decision of
what kind of data is recorded and used for the clustering. The resulting list of scenario types
needs to be assessed for completeness. Since an absolute measurement of completeness
is infeasible, the goal is a measurement relative to real traffic data. Existing works do not
provide a suitable approach. In this work, a statistical model is described that states – based
on traffic data – whether all scenario types are known that take place in real traffic up to a
certain likelihood.

The second problem requires first the generation of scenario instances that are of the
desired form and are interesting, which are “good” test cases, and afterwards the analysis
whether such interesting test cases generally stay “good” when re-used, e.g. for regression
testing. For test case generation, search-based techniques have been suggested in the past.
However, existing works either provide ad-hoc fitness functions for a specific system or
scenario type; or focus on the technical aspects of search-based test scenario generation
assuming the fitness function to be given. This leaves the methodological aspect unconsid-
ered of how fitness functions generally should be created. This work presents templates to
formulate fitness functions as well as the means to combine and apply them to ensure that
selected test cases are of the desired form and are interesting. Some of those test cases may
reveal faulty behavior. Re-usability of such test cases for different versions and variants
of driving systems is implicitly assumed by a variety of works. However, to the best of
the author’s knowledge there is no work actually providing evidence for or against this
assumption. In this work, a counterexample is presented that shows that the quality of test
cases generally is system-dependent. Thus, naı̈vely re-using test cases is not recommended.
Instead, it is suggested to re-execute the test case generation for different system versions
and variants.
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1. Introduction

This chapter introduces the topic of scenario-based testing of automated and
autonomous driving systems, describes this work’s goal of providing a framework
for test case generation while striving for completeness. The gaps in the literature
and practice as well as the contributions to fill them are described, followed by
a description of this work’s structure. Parts of this chapter have previously
appeared in peer-reviewed publications [54, 56, 57, 59], co-authored by the
author of this thesis.

1.1. Testing Automated and Autonomous Driving Systems

The strive for highly automated and autonomous driving systems results in more and more
complex and capable systems. Due to the complexity of these systems and the complexity
and sheer number of possible driving scenarios, ensuring safety and functional correctness
is one of the crucial challenges [62, 63, 82, 85, 86, 87, 126]. Since verification and validation
solely by real test drives are practically infeasible due to the high number of required driven
kilometer or driven time to reach sufficient confidence [63, 73, 161, 176], the focus shifted to
virtual test drives [69].

The de facto standard for virtually testing automated and autonomous driving systems
is scenario-based testing: testing such driving systems in challenging traffic scenarios. These
are (extreme) instances of so-called scenario types. Scenario types, also named functional
scenarios [106], capture recurring traffic situations, e.g. lane changes or cut-ins. During
testing, scenario types are used to generate scenario instances, also called concrete test
scenarios [106]. Proving that the system works as expected in challenging instances increases
the confidence in the system’s overall correctness in this scenario type. To extend this
confidence to the whole driving task the system has to perform, the list of known scenario
types for test case generation is required to be “complete” [40, 59, 130, 129].

1.1.1. Scenario Type Derivation

The derivation of a “complete” list of scenario types is challenging. A common approach in
industry is to have experts manually create such lists of scenario types. Various means to
formalize their mental models are suggested, e.g., the use of skill graphs [16] or ontologies
[14, 37]. However, no matter how comprehensive such lists of scenario types may be,
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1. Introduction

the manual creation process poses multiple risks, most importantly: (i) certain scenario
types might be overlooked, (ii) the mental model, according to which the derivation is
done, might be inadequate. Using an expert’s mental model for scenario type derivation
influences the way that scenario types are structured and at which level of granularity they
are located. Literature also calls this the human test scenario bias [83]. For instance, an expert
could derive scenario types according to the existence of maneuvers like braking or lane
changing. Similarly, the derivation could be stopped at the granularity level of contains a lane
change or contains a lane change to the right in front of another vehicle on the target lane. Which
of those are appropriate and suitable is generally unclear. Thus, validation is required for
the process of manual scenario type derivation.

Completeness of a list of scenario types may generally not be possible. However, one
way of striving for completeness and validity is to create a list of scenario types in a
methodologically different way. This creates redundancy to potentially identify overlooked
scenario types and to confirm or contradict the experts’ mental model. Such an alternative
approach is to derive scenario types from various kinds of real driving data, e.g. [21, 52, 53,
74, 89, 90, 92, 101, 164, 174]. Recordings of real driving and traffic contain a high number of
scenario instances, from which scenario types can be derived in an automated way. Note
the assumption that the collected data is sufficiently representative for the system’s use
case (also called Operational Design Domain [157]), as—usually implicitly—assumed by most
existing data-driven approaches in this domain: It must cover the multitude of driving
tasks and environments of the system’s use case, e.g. highway data in different parts of
the country for a highway pilot system. The goal is to perform this automated derivation
without relying too much on handcrafted features and, thus, reducing the dependence
on mental models. This way, it yields scenario types of various levels of granularity,
structured mostly independently of a mental model. Only then does this approach create
redundancy and can be used to evaluate manually derived scenario types with respect to
completeness and adequacy of structure and granularity. In contrast, automated derivation
with features based on mental models will yield scenario types related to those mental
models, e.g. encoding “braking maneuver” into the features will result in scenario types
related to “braking meneuver” [93]. Note that it is inherently impossible to be completely
independent of the expert’s mental model, since the expert decides what kind of data is
collected, e.g. recording the velocity of vehicles over time. Thus, the type of collected
data influences the granularity and structure of scenario types. Current approaches either
entirely rely on features based on mental models, e.g. [93, 121], or are technically limited,
i.e. restrictions in the number of vehicles, the total duration of the scenario, and the type,
number, and length of time series; [19, 33, 93, 98, 165].

1.1.2. Completeness of a List of Scenario Types

Test case generation is applied for each derived scenario type. This means that the un-
derlying list of scenario types — derived from data as suggested above or by experts, e.g.
[36, 77, 158, 166, 178] — has to be complete. Only then will testing be complete itself and a test
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1. Introduction

exit criterion can be formulated. However, one can always come up with another scenario
type as well as with instances of those types that are different from the types and instances
used before. Simply adding a new or unforeseen object to the scenario might already be
sufficient to impose a challenge on the system. For instance, simply having a bouncing
kangaroo crossing the road has been reported to confuse emergency braking systems [140].
This means an absolute measurement of completeness is infeasible. Fortunately, not all
scenario types are equally likely to occur in reality [26]. This fact can be used to statistically
assess that a given list of scenario types at least contains all scenario types that take place in
real traffic (data) up to a certain likelihood.

Existing works on this topic focus on different aspects around completeness: 1) on
clarifying that testing solely with real test drives is not feasible [63, 73, 161, 176]; 2) on
analyzing whether sufficient instances for a specific scenario type are recorded in real traffic
[38, 39]; 3) on the comparison of a driving system’s performance with human driving for
specific scenario types. The completeness analysis of a list of scenario types — even relative
to real traffic (data) — is left unaddressed.

1.1.3. Test Case Generation Using Search-Based Techniques

For each scenario type in the complete list of scenario types, instances have to be generated,
which are the final test cases. A common approach is to create parameterized scenarios,
where some characteristics of a scenario type are described by parameters to vary different
aspects of a scenario like the starting positions of traffic participants. The domains of
these parameters span a multi-dimensional space of possible test scenarios, meaning that a
multitude of different test cases can be described with one parameterized scenario. Each
combination of parameter values defines one such test case. During test case generation,
the “good” test cases have to be selected.

The definition of a “good” test case that is used in this work is in the spirit of limit testing
and in line with defect-based testing [128]: A “good” test case can reveal potentially faulty
system behavior. That means in a “good” test scenario, a correct system approaches the limits of the
safe operating envelope (see [85]), and a faulty system violates them [57]. Inside the envelope, the
system is allowed to freely optimize its performance [85], and as long as it does not leave
the envelope, it is considered safe. Note that cost-effectiveness is another aspect of “good”
test cases [128], which, however, is not in the focus of this work.

Not every test case that is contained in the space of the parameterized scenario is of
the desired form, meaning that it contains a desired maneuver like a lane change, or is
interesting in that it causes a correct driving system to approach the safety boundaries or
causes a faulty driving system to violate them. Identifying the “good” test cases that are of
the correct form and challenge the driving system is difficult. Existing works suggest the
use of search-based techniques, e.g. [3, 9, 23, 30, 155]. These techniques explore a so-called
search space with the goal to find the individual that yields the best fitness value given by a
so-called fitness function. Here, the search space is the space spanned by the parameters
of the parameterized scenario and the individuals are the test cases. The fitness function
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1. Introduction

assigns a test case a fitness value, which is a quality measurement of how “good” a test case
is: the better the fitness value, the better the test case. Such a fitness function needs to be
created with care such that it is able to guide the search technique to the test cases that have
the correct form and that challenge the system. A test case of the desired form should be
assigned a better fitness value than one without the correct form; a challenging test case
of the correct form should yield a better fitness value than a less challenging test case of
the correct form. Formulating fitness functions correctly is difficult, time-consuming, and
requires experience. Wrongly derived fitness functions leave “good” test cases unidentified,
which might even lead to wrong conclusions about the test results. Thus, creating fitness
functions ad-hoc, as done in the past, is not sufficient. For the derivation of fitness functions
at a large scale, methodological guidance for test engineers is needed.

However, existing work on the search-based testing of driving functions focuses on
technical aspects or assumes the search space and the fitness function for the test cases to be
given, or creates them ad-hoc. Many such presented fitness functions do not yield “good”
test cases, because they do not ensure the correct form of the test case or do not yield test
cases that challenge the system. This leaves the methodological aspect unconsidered of
how the fitness function should be created. Note that there is an exception: In [80], which
has been published after this thesis’ publication on fitness functions [57], language snippets
like “on lane” or “is behind” are provided to create specifications, which are translated to
fitness functions ensuring correct scenario form.

1.1.4. Re-Use of Scenario Instances

Once “good” test cases have been created, one might have the intention to save time and,
thus, might want to re-use them for other versions and variants of the driving system.
However, this requires that the quality of the test cases does not drop when re-used,
meaning that “good” test cases stay “good”. This is in general only possible if the quality
of the test case does not depend on the system’s behavior. Since different versions and
variants of a driving system may perform a maneuver like a lane change at different points
in time during a scenario and in different ways, it seems that a test case that is “good” for
one system may turn “bad” for another system. This is one perspective. However, many
approaches in literature and industry are based on the assumption that scenario instances
can generally be re-used [11, 95, 107, 145]. For instance, recording scenario instances in
traffic and replaying them as test cases in simulation is an instance of re-using test cases.
These perspectives are conflicting and, thus, analysis is required.

There is one work [22] that discusses the general re-use of test cases, which has been
published after the publications of this thesis. In [22], it is stated that test cases may
yield different results when used in different simulation environments, since simulation
environments may use different simulation models.

However, to the best of the author’s knowledge there are no existing works that inves-
tigate the re-usability of test cases among different versions and variants of automated
and autonomous driving systems. This might be because — intuitively — it is difficult to
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1. Introduction

show that test cases are generally re-usable among different driving systems, meaning that
“good” test cases always stay “good” when re-used. However, if there is a “good” test case
that turns “bad” when re-used, the general re-usability is disproved by counter-example.
An investigation is needed.

1.2. Problem Statements and Research Gaps

This work tries to solve two main problems, for which several gaps need to be addressed:

• Problem 1 is to ensure that the driving system is tested in scenario instances of “all”
scenario types. Only then does testing provide the basis for a safety argument that
the system can cope with “all” traffic situations. However, identifying a “complete”
list of scenario types is infeasible, since one can always find another scenario type.
Still, one can strive for completeness by deriving scenario types in methodologically
different ways to achieve redundancy, e.g. by complementing the manual scenario
type derivation with a data-driven one. This increases the confidence in the list of
identified scenario types. Additionally, the resulting list of scenario types needs to be
assessed for completeness. Again, an absolute measurement of completeness cannot
be given. However, all available information, e.g. collected traffic data, can be used
to assess whether the list of identified scenarios is complete relative to the available
information. Thus, a data-driven scenario type derivation process is required as well
as an approach to assess relative completeness.

– Gap 1: Existing works on clustering recorded traffic scenarios either have tech-
nological shortcomings, directly encode the experts mental model into the clus-
tering process, or both. There is a need to reduce the influence of mental models
during clustering to yield methodological redundancy with manually derived
scenario types, especially with respect to the scenario types’ level of granularity
and structure.

– Gap 2: Existing works on test exit criteria for testing automated and autonomous
driving systems mostly focus on showing that gathering miles is not a feasible
test exit criterion. Other works try to use completeness as text exit criterion,
but focus on the completeness of identified instances for a single scenario type
relative to data. Complementing those works, there is a need to provide the
named relative completeness assessment of a list of scenario types.

• Problem 2 is to ensure that the driving system is tested with “good” test cases, which
are instances of scenario types. This requires a definition of what it means that a test
case is “good”. Such “good” test cases need to be generated, which are of the correct
form and challenging. It also requires to understand whether the “good” test cases
generally stay “good” when re-used, e.g. for regression testing, since new ones might
have to be generated to ensure that the system is still tested in “good” test cases.
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1. Introduction

– Gap 3: Existing works on search-based test scenario generation for automated
and autonomous driving systems focus on the technical aspects of the search or
assume the fitness function to be given or create it ad-hoc. Especially, ensuring
a desired scenario form with the help of fitness functions is left unconsidered.
There is a need for methodological guidance for creating fitness functions such
that test cases are identified in the search space, which are of the correct form
and challenging.

– Gap 4: Many existing works implicitly assume that test cases for automated and
autonomous driving systems may be created once and re-used for other versions
and variants, and in this sense “good” by definition. However, whether this
holds is not shown. There is need for analysis whether this is generally possible.

1.3. Solution

This work presents a framework for scenario-based testing of automated and autonomous
driving systems while considering completeness. Methodological and technical solutions
are presented where literature leaves gaps (filled elements in Fig. 1.1): The idea of scenario-
based testing is to automatically and manually identify a reasonably small set of relevant
dynamic traffic situations, or scenario types; check if the set of scenario types is complete;
and then derive “good” system-specific test cases for each scenario type. Numbers in
Fig. 1.1 will be referred to in the text.

Initially, experts manually derive (1) a list of scenario types (2). Several sources of infor-
mation, e.g. specification of and requirements for the system (3) as well as their mental
model (4) serve as input for this manual derivation. In parallel, automated clustering (5) of
scenario instances that are contained in real driving data (6) is performed. As it is typical for
a data-driven approach, note that this clustering requires representative data of real traffic.
Also note that the automated clustering is not fully independent of the expert’s mental
model, since the expert decided what kind of data is collected. The resulting list of scenario
types complements and validates the manually derived scenario types with respect to the
level of granularity and the structural adequacy. Using real driving data and a catalog of
scenario types as input, a statistical completeness check is performed (7). This completeness
assessment is relative to the available real driving data. The more representative the data is
for the actual operational design-domain, the more meaningful is this relative assessment.
If the catalog is found to be incomplete, further manual and data-driven scenario type
derivation may be necessary. Otherwise, the scenario types are used as a basis for the
derivation of system-specific test cases. For each scenario type, a parameterized scenario is
derived (8) based on scenario type description as well as scenario parameter types (9) that
are used to vary characteristics of the scenario, e.g. starting positions of traffic participants.
Those might be provided by experts or careful system analysis. Similarly, based on the
scenario type description, a fitness function is created (10) that ensures that challenging test
cases with correct form are identified. Both the parameterized scenario (11) and the fitness
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Figure 1.1.: Big Picture (previous versions appeared in [55, 59])

function (12) are the input to the test case generation (13). Using a system specific model
(14) for simulation, the test case generation yields “good” test cases (15).

This framework is intended to yield the basis for safety argumentations. This work provides
the means to derive for scenario types such a fitness function that measures the quality of a
test case, i.e. measuring whether the test case has the correct form and how close a correct
system approached the safe operating boundaries and by how far a faulty system surpassed
those. A search-based technique will try to optimize this quality, meaning it searches for the
test case (of the correct form) in which a correct system gets closest to the safety boundaries
or in which a faulty system violates those boundaries the most. If the driving system under
test is still safe in these system-specific extreme situations, meaning it stays within the
boundaries of the safe operating envelope, one can assume that it is also safe in all other
test cases of this scenario type’s parameterized scenario. Repeating this argument for all
scenario types yields the basis for an overall safety argument. To improve the completeness
of the known list of scenario types, automated derivation of those is suggested. To assess
the completeness of the known list of scenario types, a statistical model is presented.

1.4. Contributions

This work makes the following contributions (filled activity boxes in Fig. 1.1):

• To fill Gap 1 and provide a solution for (5), a clustering method is presented that tries
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1. Introduction

to keep the influence of expert mental models as low as possible. Recorded traffic data
in the form of time series is clustered based on purely syntactical features to derive
clusters that represent scenario types. This provides methodological redundancy to
the scenario types manually derived by experts, thus aiming at complementing and
validating expert efforts with respect to granularity and structural adequacy of the
scenario types.

• To fill Gap 2 and provide a solution for (7), a statistical model is presented that helps
assessing the completeness of a list of scenario types relative to a given data set.
The model is based on the so called Coupon Collector’s Problem. From real data, a
histogram of occurrence probabilities of scenario types is derived, which serves as
input to the Coupon Collector’s Problem. The model yields a statistical statement
whether a sufficient amount of data is collected and, therefore, all scenario types are
known for this data set.

• To fill Gap 3 and provide a solution for (10), a set of fitness function templates for
search-based test scenario generation are presented. The templates can be used for
both (i) to ensure that the generated scenario instances contain the desired maneuvers
and (ii) to specifically test against the boundaries of a safe operating envelope. The
templates enable measuring the quality of a test case and the quality of the system’s
behavior in a test case. Thus, the templates provide methodological guidance to
experts for the creation of suitable fitness functions for generation of “good” test
cases.

• To fill Gap 4 and potentially re-use test cases (15), an experiment is presented that
shows that “good” test case are generally not re-usable. “Good” test cases for different
system variants are generated and ”re-used” for the other variants. By measuring
the test case quality and analyzing the ability to reveal faulty behavior, it is analyzed
whether test-cases can generally be re-used.

1.5. Publications

As part of this publication-based doctoral thesis, these contributions have previously
appeared in the following peer-reviewed publications published in proceedings of interna-
tional conferences:

• Addressing Gap 1: Florian Hauer, Ilias Gerostathopoulos, Tabea Schmidt, Alexander
Pretschner: Clustering Traffic Scenarios Using Mental Models as Little as Possible,
IEEE Intelligent Vehicle Symposium (IV), 2020 ([54])

• Addressing Gap 2: Florian Hauer, Tabea Schmidt, Bernd Holzmüller, Alexander
Pretschner: Did We Test All Scenarios for Automated and Autonomous Driving
Systems?, IEEE Intelligent Transportation Systems Conference (ITSC), 2019 ([59])

10
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• Addressing Gap 3: Florian Hauer, Alexander Pretschner, Bernd Holzmüller: Fitness
Functions for Testing Automated and Autonomous Driving Systems, International
Conference on Computer Safety, Reliability and Security (SafeComp), 2019 [57]

• Addressing Gap 4: Florian Hauer, Alexander Pretschner, Bernd Holzmüller: Re-
Using Concrete Test Scenarios Generally Is a Bad Idea, IEEE Intelligent Vehicle Sym-
posium (IV), 2020 [56]

1.6. Structure

The remainder of this work is structured as follows: Chapter 2 provides an overview of the
background of this work. Afterwards, the solutions to the presented gaps are described in
Chapters 3-7 in the order of the respective gaps (automated clustering of scenario types,
statistical assessment of completeness, derivation of fitness functions, analysis of general re-
usability of test cases). A discussion of existing works is conducted in Chapter 8, including
both a description of related work covering the non-filled steps in Fig. 1.1 as well as a
description of the state of the art to which the approaches of this work (filled steps in
Fig. 1.1) are compared to. This work is concluded in Chapter 9, containing a discussion of
this work’s results and an outlook of future work.
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2. Background and Preliminaries

This chapter provides a general overview over the background of this thesis. It
describes the fundamentals of automated driving systems and their use case.
Further, test goals are described, e.g., safety as defined in the literature. Parts of
this chapter have previously appeared in peer-reviewed publications [54, 56, 57,
59], co-authored by the author of this thesis.

2.1. Driving Systems

Driver assistance systems, automated, and autonomous driving systems support the driver
and partially or completely take over the driving task. This means the driving systems take
over longitudinal and / or lateral steering, maneuvering the vehicle from the origin to the
target location while respecting the traffic rules and ensuring safety. The semantic of safety
in scenario-based testing is discussed below in Sec. 2.2.3.

2.1.1. Levels of Automation

The degree to which driving systems take over the driving task is divided into so called
levels of automation. The German BASt (Bundesanstalt für Straßenwesen, en. federal
highway research institute) names four levels of automation [45]. However, the generally
accepted standard are the five levels of automation published later on by SAE [139], which
we refer to in this work; those are:

• No Automation (Level 0): “the full-time performance by the human driver of all
aspects of the dynamic driving task, even when enhanced by warning or intervention
systems”

• Driver Assistance (Level 1): “the driving mode-specific execution by a driver assis-
tance system of either steering or acceleration/deceleration using information about
the driving environment and with the expectation that the human driver performs all
remaining aspects of the dynamic driving task”

• Partial Automation (Level 2): “the driving mode-specific execution by one or more
driver assistance system of both steering and acceleration/deceleration using informa-
tion about the driving environment and with the expectation that the human driver
performs all remaining aspects of the dynamic driving task”
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2. Background and Preliminaries

• Conditional Automation (Level 3) (Note that from here onward, the system monitors
the driving environment):“the driving mode-specific performance by an automated
driving system of all aspects of the dynamic driving task with the expectation that the
human driver will respond appropriately to a request to intervene”;

• High Automation (Level 4) (Note that from here onward, the system itself is respon-
sible for the “fallback performance of [the] dynamic driving task”): “the driving
mode-specific performance by an automated driving system of all aspects of the
dynamic driving task, even if a human driver does not respond appropriately to a
request to intervene”

• Full Automation (Level 5): “the full-time performance by an automated driving sys-
tem of all aspects of the dynamic driving task under all roadway and environmental
conditions that can be managed by a human driver”

Generally speaking, the approaches presented in this work may be applied to systems
from all levels. However, the focus of this work lies especially on systems of the level 4
and 5, where the system has no human driver as fallback. Most prominently, the system
class highway pilot of automation level 4 is used to demonstrate the clustering approach in
Chap. 3 and the fitness function templates in Chap. 5.

2.1.2. System-Environment Interaction

On an abstract level, driving systems generally follow the MAPE-K structure of autonomic
computing [75], slightly adapted by the driving systems literature [125, 151]. A simplified
and abstracted overview of the components of the driving system and the environment is
presented in Fig. 2.1. The environment, containing among others the vehicle that contains
the driving system, driver, road, traffic, and weather, is monitored by sensors, e.g. lidars,
radars, cameras, slip sensors, engine speed sensor, and others. The current traffic scene is
analyzed, e.g., that a collision is imminent, before a suitable behavior is planned, e.g. an
evasion maneuver. The actuators, e.g. (lateral) steering controllers, execute the planned
behavior. All those steps are supported by environment and system models, e.g., to estimate
the error margin of the sensors, to assign semantics to the sensed traffic scene or to select
the correct behavior and control actions based on a physical vehicle model.

Such driving systems are generally tested in closed-loop simulations, meaning that the
actions of the system influences the environment, which in turn influences the system’s
behavior. A commonly used term for such simulation setups is X-in-the-loop (XiL), where
X depends on the realism of the setup. In early stages of the development, only a model
of the system exist (MiL), while later the complete software (SiL), hardware (HiL) or even
the whole vehicle including the driving system (VehiL) [48, 49] is available for testing.
Intuitively, in MiL and SiL setups, the hardware is virtual, while in HiL some parts of
the system, e.g. the camera [114, 113], or the whole vehicle (VehiL) including the system
may be real. The scenario type derivation and completeness methods that are presented

14



2. Background and Preliminaries

(Monitor)
Sensors

(Analyze)
Scene Understanding

(Plan)
Behavior Planning

(Execute)
Actuators

(Knowledge)
Env. / System Models

Vehicle excl. 
driving system

Road Traffic Weather

Driving System

Environment

…

Data Flow Force FlowComponent

Passenger

Figure 2.1.: System-Environment Interaction (c.f. [75, 151] about system architectures)

here are fundamental for all setups. However, the search-based test case generation is best
suited for completely virtual setups, i.e. MiL and SiL, since search-based techniques require
the execution of a high number of test cases. For a limited number of scenario types, an
application of search-based test generation may also be feasible in HiL setups.

2.2. Terminology Concerning Scenario-Based Testing

A driving system has to provide its functionality in its whole operational design domain
(ODD), which is defined as the “operating conditions under which a given driving automa-
tion system or feature thereof is specifically designed to function, including, but not limited
to, environmental, geographical, and timeof-day restrictions, and/or the requisite presence
or absence of certain traffic or roadway characteristics” [139]. For development and testing
of automated and autonomous driving systems, the ODD is usually split into micro-ODDs
[84] or scenarios types, also called functional scenarios [15, 106, 148] or scenario categories
[37].

2.2.1. Scenarios for Testing

When using such scenario types for testing, the goal is to mimic real traffic scenarios in
simulation to test the safety of the driving behavior of automated and autonomous driving
systems. A variety of different scenario types, or functional scenarios [15, 106, 148, 156],
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(lane change, emergency brake, etc.) take place in real traffic. Lists of such scenario types
are derived from experience [14, 37, 99, 158] and real data [54], and the completeness of
such lists is determined with statistical models as presented in this work. For each scenario
type, a parameterized scenario is created, also called logical scenario [15, 106, 148], for the
description of which the literature suggests various formats [8, 51, 68, 131]. The intention
is to capture the variability of the real world with n parameters P and their domains
Dj ∈ D, j = 1..n, e.g. the initial velocity of other traffic participants in a scenario type is not
set to a specific value of 100km/h, but is assigned a parameter vother with domain [80, 130].
The domains span a space A = D1 ×D2 × ...×Dn ⊂ Rn of test cases. Assigning to each
parameter a value from its domain yields a single, executable test case, also called concrete
test scenario [15, 106, 148]. Not every test case in such a space A is of the correct form (e.g.
the ego vehicle should perform a lane change, but does not) and among those that have the
correct form not all are interesting (e.g. all other vehicles are several hundred meters away
from the ego vehicle) [57]. In other words, many test scenarios in such a search space are
not the “good” test scenarios we are searching for.

2.2.2. “Good” Test Cases

A test case describes the input and environment conditions for simulation. The expected
behavior of driving systems is described with the help a safe operating envelope (cf. Fig. 2.2).

c1

c2 c3e

Figure 2.2.: Example of a safe operating envelope (green plain rectangle) bounded by the
necessary safety distances (red shaded rectangle) and lane markings

Inside the envelope, the system (inside the ego vehicle e) is allowed to freely optimize its
performance [85], and as long as the vehicle does not leave the envelope it is considered safe.
In the spirit of limit testing, we define “good” test cases to test vehicle safety as follows
[57, 128]:

A “good” test case can reveal potential faulty system behavior. In a “good” test scenario,
a correct system approaches the limits of the safe operating envelope, and a faulty system
violates them.
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2.2.3. Safety as a Test Goal

Test goals are the purpose for generating and executing test cases [148]. Ideally, the quality
of test cases is measurable according to the test goal’s purpose; the system quality becomes
assessable, and it allows for a conclusion about the fulfillment of the test goal.

Functional correctness, safety, and compliance with traffic rules are closely intertwined
and ensuring them is one of the fundamental requirements for the release of automated
and autonomous driving systems [1]. Ideally, the requirement documents, foremost the
functional specification, provide information about the functionality of the system. The
respective quality criteria are mostly formulated from a safety perspective, considering
different subgoals, most importantly safety thresholds for technical and physical properties
as well as for safety distances in time (e.g. [47, 72, 160, 172]) and space (see below). Their
combination forms a safe operating envelope as described above.

For the experiments presented in the publications of this work, a safety distance in space
is used. Those usually imply a threshold, which should not be violated to avoid danger.
For the determination of such a minimal safety distance, (inter)national laws may serve as
a baseline, e.g. this excerpt from the Vienna Convention on Road Traffic [41], which is also
part of the German traffic regulations [42]:

“The driver of a vehicle moving behind another vehicle shall keep at a sufficient distance
from that other vehicle to avoid collision if the vehicle in front should suddenly slow
down or stop.”

In a series of works, an interpretation of this safety distance notion has been derived
[124, 133, 134, 135]. Because of space limitation, only a short description is given (cf. Figure
2.3):

c1c2

∆d(t)

d(t)

safeDist(t)

Figure 2.3.: Minimum safety distance at a specific moment in time t

For two vehicles ci, i ∈ {1, 2} with velocities vi > 0 and minimum accelerations ai < 0
and the assumption that c1 drives in front of c2 with distance d(t), this series of works
provides case distinctions [134] for checking whether c2 keeps sufficient distance, such that
no collision takes place in the case where c1 applies a1 and c2 applies a2 after reaction time
δ. According to this notion, we can compute both the minimum safety distance safeDist(t)
which c2 has to respect, and the remaining distance until violation ∆d(t), both for every
time step t of a test case.
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However, any other appropriate safety distance function may be used as well. Also
commonly used are the Responsibility-Sensitive Safety (RSS) model [144] or the Safety Force
Field (SFF) model [120]. Similar to the series of works above, both aim at formalizing traffic
rules. This includes not only safety distances for various kinds of scenario types, but also
suggestions on how the driving system should behave to restore safety distances if they are
violated.
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Figure 3.1.: Big Picture (previous versions appeared in [55, 59])

Summary: Currently, scenario types are manually derived by experts. To complement
and validate their efforts, automated clustering may be performed on scenario instances
that have been collected in real traffic. Since the automated clustering should serve as a
methodological redundancy to the manual scenario type derivation, it has to be done by
relying on the expert’s mental model as little as possible.

• Problem: How can recorded scenario instances be clustered to scenario types to
complement and validate the manually derived scenario types?

• Gap / Contribution: Existing works are either technically limited, i.e. restrictions in
the number of vehicles, the total duration of the scenario, and the type, number, and
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length of time series; or heavily depend on the expert, i.e. using handcrafted features
or relying on the expert to compute shape and number of clusters.

• Solution: Scenario instances are represented as time series on which the clustering is
performed solely based on syntactic features. The number of clusters is determined
based on a syntactic metric. This reduces the influence of the expert’s mental model
to the choice of what kind of data is recorded.

• Evaluation: The presented approach is applied to the highD data set [89] with manual
labeling of the resulting clusters.

• Results: For a two-lane highway data set containing 346 scenario instances, 57 clusters
representing 38 manually labeled scenario types could be identified. For a three-
lane data set with 414 scenario instances, 78 clusters representing 67 scenario types
could be identified. The yielded scenario types are found to be more granular than
[67, 158, 166] and similar granular as [36, 178].

• Limitations: The approach is not fully independent of the expert, since an expert has
to choose what kind of data is recorded in real traffic. The resulting clusters require
manual inspection and labeling, which limits the scalability of the approach.

Author Contribution: F. Hauer and his supervisor A. Pretschner conceived and discussed
the problem statement. The theoretical solution was derived by F. Hauer, who discussed
the transfer to a technical solution with I. Gerostathopoulos. During the implementation, F.
Hauer was supported by T. Schmidt. The experiments and result analysis were conducted
by F. Hauer. The manuscript creation was mainly done by F. Hauer in close discussion with
I. Gerostathopoulos and A. Pretschner.

Copyright Note: © 2020 IEEE. Reprinted, with permission, from Florian Hauer, Ilias
Gerostathopoulos, Tabea Schmidt, Alexander Pretschner, Clustering Traffic Scenarios Using
Mental Models as Little as Possible, 2020 IEEE Intelligent Vehicles Symposium (IV), October
2020.

The following text is reprinted with the permission of the publisher. It is the accepted but
not the published version of the paper due to copyright restrictions.
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Abstract— Test scenario generation for testing automated
and autonomous driving systems requires knowledge about the
recurring traffic cases, known as scenario types. The most
common approach in industry is to have experts create lists
of scenario types. This poses the risk both that certain types
are overlooked; and that the mental model that underlies the
manual process is inadequate. We propose to extract scenario
types from real driving data by clustering recorded scenario
instances, which are composed of timeseries. Existing works in
the domain of traffic data either cannot cope with multivariate
timeseries; are limited to one or two vehicles per scenario
instance; or they use handcrafted features that are based on
the mental model of the data scientist. The latter suffers from
similar shortcomings as manual scenario type derivation. Our
approach clusters scenario instances relying as little as possible
on a mental model. As such, we consider the approach an
important complement to manual scenario type derivation. It
may yield scenario types overlooked by the experts, and it may
provide a different segmentation of a whole set of scenarios
instances into scenario types, thus overall increasing confidence
in the handcrafted scenario types. We present the application
of the approach to a real driving dataset.

I. INTRODUCTION

Automated and autonomous driving systems (ADAS) are
commonly tested in simulation using scenario-based testing:
testing such driving systems in challenging traffic scenarios.
These are (extreme) instances of so-called scenario types.
Scenario types, or functional scenarios [17], capture recur-
ring traffic situations. One example is a vehicle following
another on the right lane of a two-lane highway when both
vehicles are overtaken by a third vehicle. During testing,
scenario types are used to generate scenario instances which
vary in different aspects [3], [4], [9]. In the example, different
instances may consider different driving speeds or distances
between the cars. The goal of scenario-based testing is to
identify instances that stress the autonomous driving behav-
ior (e.g., near crashes, abrupt acceleration or deceleration).
Proving that the system works as expected in the challenging
instances increases confidence in the system. This requires
that the list of known scenario types for test case generation
is “complete,” e.g. as discussed in [10].

The derivation of a “complete” list of scenario types is
challenging. A common approach in industry is to have ex-
perts manually create such lists of scenario types. However,
no matter how comprehensive such lists may be, the manual

F. Hauer, T. Schmidt, and A. Pretschner are with the Department of
Informatics at the Technical University of Munich, Germany. (e-mail:
{florian.hauer, tabea.schmidt, alexander.pretschner}@tum.de).
I. Gerostathopoulos is with the Faculty of Science at the Vrije University
in Amsterdam, Netherlands. (e-mail: i.g.gerostathopoulos@vu.nl).

creation process poses multiple risks: (i) certain scenario
types are overlooked, (ii) the mental model, according to
which the derivation is done, is inadequate. Using an expert’s
mental model for scenario type derivation influences the
way that scenario types are structured and at which level
of granularity they are located. For instance, an expert could
derive scenario types according to the existence of maneuvers
like braking or lane changing. Similarly, the derivation could
be stopped at the granularity level of contains a lane change
or contains a lane change to the right in front of another
vehicle on the target lane. Because this manual derivation
process necessarily introduces bias, there is an obvious need
to validate the results.

An alternative approach is to derive scenario types from
real driving data such as [11], [12], [16]. Such recordings
of real driving contain a high number of scenario instances,
from which scenario types can be derived in an automated
way (but which risk missing relevant scenario types [10]).
In this work, we present an approach that derives scenario
types in an automated way without relying on handcrafted
features and that is nearly independent of the mental model
of an expert. Note that because a human has to select
features and distance measures, it is impossible to completely
remove any kind of mental model—but we aim at minimizing
the introduced bias. Our approach yields scenario types of
various levels of granularity, structured independently of an
elaborate mental model. Thus, it can be used to evaluate
manually derived scenario types w.r.t. completeness and
adequacy. Note that a hand-written set of rules, e.g. to detect
a lane change in the data, depends on the mental model of the
person(s) providing the rules, similar to manual derivation.
We hence believe that both manual and automated derivation
of scenario types should be executed redundantly.

Existing works have suggested clustering techniques to
group recorded driving data according to specific features
extracted from each recorded drive. The technical solutions
presented in these existing works come with at least one
of the following technical limitations (see §V): (i) they are
restricted to scenario instances with only one or two vehicles;
(ii) they are not capable of handling multivariate timeseries
of variable length; or (iii) are restricted to scenario instances
of two seconds duration. Thus, such approaches cannot be
applied in general to arbitrary scenario instances. Moreover,
some approaches make use of handcrafted features that are
based on a mental model. For instance, [13] uses one feature
which explicitly encodes whether or not a scenario instance
contains a braking maneuver. We propose a solution that



overcomes such technical limitations of existing works.
Our contributions are two-fold. From a technical perspec-

tive, the presented approach generalizes existing clustering
approaches to scenario instances that are composed of any
number and any kind of timeseries, containing any number of
vehicles, and are of any duration. Thus, technical limitations
of existing approaches are overcome. From a methodological
perspective, the presented approach reduces the dependency
on mental models for automated scenario type derivation.
This way, it can potentially identify scenario types missed
during manual derivation improving completeness, and can
increase the confidence in the manual derived scenario types,
thus validating the mental model of the experts.

In §II, we introduce scenario-based testing. §III explains
the technical details of automated scenario clustering. Ex-
periments and insights are discussed in §IV, followed by a
presentation of related work in §V. We conclude in §VI.

II. OVERVIEW OF SCENARIO-BASED TESTING

The goal of scenario-based testing of ADAS is to subject
the driving system to a variety of traffic scenario types.
For each type, “good” test cases are generated, which are
test cases that can reveal potential faulty behavior [9], [21].
Intuitively, the more complete a set of scenario types is,
the more convincingly testing can ensure correct system
behavior. Currently, experts derive scenario types manually
according to their experience in form of a mental model. This
process comes with the described shortcomings. Our work
aims at the automated derivation of scenario types as depicted
in Fig. 1. The goal is to complement manual derivation by
potentially identifying scenario types that were overlooked
and by increasing the confidence that the manually derived
list of scenario types is complete.

An increasing amount of (publicly available) real driving
data (1) serves as foundation. The data sets were designed
for different purposes and collected in various ways and
locations (see [26] for a survey). While some data sets, e.g.
[16], are recorded from a single ego-vehicle’s perspective,
others are created from bird’s eye perspective, e.g. [11].

We focus on the automated clustering approach (2), which
aggregates real driving data into scenario types. The desired
result (3) is a set of clusters, each representing a scenario
type. Scenario instances that have the same structure are
hence grouped into the same cluster, e.g. several instances
where the ego-vehicle performs a lance change to the left
behind a decelerating other vehicle. Ideally, there is not
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Fig. 1. Automated scenario type derivation for scenario-based testing.

more than one cluster representing the same scenario type.
Conversely, clusters that contain scenario instances of two
distinct scenario types are not desired either. Determining
purity and minimality obviously requires careful inspection.
Moreover, automated clustering approaches cluster solely
based on syntactic features and do not interpret the scenario
instances in a semantic way, as a human expert would
do. The resulting clusters may be perfect in terms of the
clustering quality on a syntactic level, e.g. measured by
silhouette scores; and yet they may not represent the scenario
types that a human expert would expect.

As a second step, automated cluster interpretation (4) is
applied. It uses a living meta-model (5) for scenarios to
interpret clustering results and yield the desired scenario
types (6). A starting point for such a living meta model
are existing scenario meta models [1], [7], [23]. The idea
of a living meta-model for scenarios is to create a meta-
model and improve it over time, such that it increasingly
resembles the scenario types of real traffic. The meta-model
assigns semantic meaning to the cluster contents that are
merely more than timeseries. For instance, a “lane change”
is detected whenever the lateral position of a vehicle exceeds
a certain threshold. The cluster may be interpreted as the
scenario type shared by most of the scenario instances in the
cluster. This process yields a list of scenario types. Ideally,
such a list is as complete as possible, in that it contains “all”
relevant possible scenario types of real traffic [10].

Finally, for each scenario type in the list, a variety of
different approaches for test case generation (7) can be used
to generate “good” test cases (8) [8].

III. AUTOMATED CLUSTERING APPROACH

An overview of the approach is provided in Fig. 2. The
first step is data preparation (1). Real driving datasets usually
consist of n data segments or scenario instances di, i ∈ [1, n].
We assume this segments to be given; a real drive recording
of many kilometer length has to be segmented first. Two
such scenario instances are shown in Fig. 2, “car following”
and “cut-in.” A scenario instance di consists of a list of m
timeseries tsj,di

, j ∈ [1,m] that describe the evolution of
m object attributes related to an ego-vehicle over time. For
instance, a timeseries can be the evolution of the distance
sc1 − se, where se is the position of the ego-vehicle and
sc1 the position of a preceding vehicle (Fig. 2, top). Since
our technique can cope with any number of timeseries m,
it overcomes the technical limitations of existing works that
only allow small or specific numbers. We will assume that
each scenario instance consists of the same list of timeseries.
The time interval of the m timeseries of a single scenario
instance is equally long, but usually differs among scenario
instances. This way, we overcome the technical limitations
of very short or fixed lengths scenario instances. Depending
on the dataset, the number of timeseries (attributes) m may
range from a dozen to even a hundred, capturing e.g. the
difference in longitudinal and lateral positions, velocities, or
accelerations between an ego-vehicle and vehicles on its left
lane, its right lane, its own lane, etc.
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Fig. 2. Overview of the proposed approach.

Once the data is prepared, normalization is applied. We
chose z-normalization (2) as suggested in [6], since it empha-
sizes the structure of the timeseries and neglects the absolute
values, desired as described above. For each timeseries tsj,di ,
z-normalization is applied individually.

For the computation of the feature vectors used for cluster-
ing, we use (3) Dynamic Time Warping (DTW) [19]. DTW
is one of several methods to measure the difference between
two timeseries. Those timeseries may be of different lengths,
and the key structural characteristics may be shifted and
stretched over time without affecting the final score of DTW
(contrary to e.g. Euclidean distance). We use DTW based
on the L1-norm; see e.g. [2]. In our example of Fig. 2, the
DTW distance between the timeseries of the two scenario
instances is 76.42, while the DTW distance between two
identical timeseries is 0. Based on this, a distance vector q
between two scenario instances di and dj can be defined as
qk = DTW (tsk,di

, tsk,dj
) with k ∈ [1,m]. This means

q contains the pairwise DTW distances of the timeseries of
the two scenario instances. In our example, since we used
m = 1 timeseries of each scenario instance, q has length
1, in particular q = [76.42]. The final feature vector of
di is created by concatenating all distance vectors between

dj , j ∈ [1, n] and di. Such a feature vector of a scenario
instance can be understood as the difference to all other
scenario instances based on the individual timeseries. In total,
each feature vector has a length of n ∗m. This results in a
feature matrix M of dimension n× n ∗m.

Using such a similarity measure instead of handcrafting
features, our approach intuitively generalizes well. This con-
cept of feature computation—and with that the clustering—
does not depend on the mental model of an expert. Moreover,
by comparing timeseries in a direct way using DTW, instead
of comparing their summary statistics such as moving aver-
ages or min-max values, we preserve important patterns that
may be lost in aggregation.

The next step, columnwise min-max-normalization (4),
ensures that all features are scaled to [0..1]. Remember that
the feature vectors’ length is linear in the number of scenario
instances to be clustered. To reduce the dimensionality of
the feature vectors and facilitate clustering, we use Principal
Component Analysis (PCA) (5), a well-known statistical
procedure for dimensionality reduction. For our experiments,
the PCA was parameterized to keep 95% of the variance in
the features, which resulted in 15 dimensions (§IV).

For the clustering itself, we chose classic k-means (6),
since it allows for an easier interpretation of the clustering
results compared to other techniques. We also experimented
with hierarchical clustering, which yielded very similar re-
sults; and density-based clustering, which resulted in clusters
of undesired structure and quality and were difficult to
interpret. When using k-means, we do not prescribe the
number k of clusters. Instead, we run k-means for every k
from 2 to the number of scenario instances n and let a state
of the art knee/elbow detector [22] choose the best k based
on the inertia of the clustering results.

IV. EXPERIMENTS

A. The highD Dataset

We applied our approach to the highD dataset [11], which
is just one dataset containing well-structured highway traffic
data. The data was recorded from a bird’s-eye perspective
with the help of a drone-mounted camera. Fig. 3 shows an
exemplary picture. Each vehicle’s trip from end to end of
the field of view of the recording camera corresponds to one
scenario instance with this vehicle as ego-vehicle.

1) Data Preparation: Surrounding vehicles may be very
far away from the ego-vehicle due to the recording in bird’s-
eye perspective. Therefore, we apply pre-processing to the
data in form of a range of interest. Other vehicles outside
of this range are not considered to be neighbors of the ego-
vehicle. This region of interest should be the maximum range
at which other cars still influence the scenario type.

Fig. 3. Exemplary image of the highD dataset
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Fig. 4. Eight car model for environment modelling of the ego-vehicle

We chose 60m with the intuition that the scenario type
from the perspective of the ego-vehicle mainly depends on
the next and not so much on the second next car ahead or
behind. Another pre-processing step is to filter the scenario
instance for those where the ego-vehicle is of type “car,”
since we are interested in scenario types to test automated
and autonomous driving systems for passenger cars. Trucks
and other vehicle types may still be part of the environment.

2) Choosing Relevant Timeseries: There are several kinds
of timeseries in the data, including longitudinal and lateral
positions as well as velocities, and meta data, e.g. vehicle
type. Following the intuition of the range of interest, we
consider the eight cars around the ego vehicle at every time
step (Fig. 4) similar to [11]. Based on the available data,
we computed the longitudinal and lateral distances from the
ego-vehicle to those eight other vehicles. As long as there
is no such other vehicle at one of those eight positions, the
respective timeseries is set to 0. This results in m = 2 ∗
8 timeseries per scenario instance. Note that the eight car
model and the choice of time series can be understood as a
mental model. We argue, however, that this choice constitutes
a minimalistic model. In principle, the presented technique
can be applied to more cars and more timeseries to further
reduce the influence of the mental model. Scenario instances
are of different lengths, since vehicles pass the field of view
with different velocities. The number of time steps varies
between 200 for fast vehicles and 300 for slow ones.

B. Experiment Results

We cluster the data for a two-lane and a three-lane
recording, monitored over stretches of 420m, containing 346
and 414 scenario instances respectively. Clustering is done
for every number of clusters k from two to the number of
scenario instances n. A common way to identify the best k
is the one with the highest so-called silhouette score [24].
Fig. 5 shows the silhouette scores for both datasets and all k.
The maximum silhouette scores for both datasets is at k = 2,
which is not surprising: In the two-lane dataset, all scenario
instances have either other vehicles on the left or on the
right. Clearly, the best clustering is to divide the scenario
instances into two clusters, one for driving on each lane.
Potential lane changes are assigned to the cluster of the two
lanes on which the ego-vehicle drives for a longer duration.
For most of the scenario instances of the three-lane data, this
explanation still holds. Even though the best k equals 2, this
is not a helpful clustering result; we therefore seek the next
best k. However, for both datasets, a wide range of k provide
similar silhouette scores, making a clear decision impossible.
Therefore, we rely on the elbow (or knee) method [18] to
identify a good k. We apply this method to the inertias of the
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Fig. 6. Inertias for each number of clusters in [2..n]; red line is the chosen
number of clusters by the kneedle algorithm [22]

clustering results (Fig. 6) and let the state-of-the-art elbow
detector Kneedle [22] identify the elbow, providing us with
k = 57 for two-lane data and k = 78 for three-lane data.

To understand the experiment results, we manually in-
spected the 57 and 78 clusters and interpreted the clusters as
the scenario types that are shared by most of the instances
contained. Intuitively, one would watch the video recordings
to manually interpret the cluster representatives or run an
automated interpretation. We cannot present videos in this
paper nor can we show all the scenario type descriptions
of all clusters. Instead, we present the 16 timeseries of one
exemplary cluster of the two-lane data in Fig. 7. Addi-
tionally, we provide the clustering results for the presented
experiments online.1 For the two-lane case, the 57 clusters
represent, upon manual inspection, 38 different scenario
types. 38 < n = 57 is a result of the nature of traffic
data: Some scenario types are very rare compared to others,
which leads to more than one cluster for a single common
scenario type. For the three-lane data, we manually identified
67 distinct scenario types among the 78 clusters.

C. Threats to Validity

All experiments face threats to validity. We applied the
presented approach to the highD dataset, which is limited
in terms of data diversity, since the data is recorded on a
straight highway section of 420m length without ramps. To
transform the data from bird’s-eye perspective to ego-vehicle
perspective, we applied the discussed range of interest. By
inspection of the data, we chose a suitable value, which might
not be perfect to identify scenario types. For the clustering,
longitudinal and lateral distances are experimentally selected

1https://drive.google.com/open?id=
1JApX49mbT-zULq3uFmiRRm4ja5SWFG23
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Fig. 7. Shown are the 16 timeseries of five scenario instances that are contained in a cluster of the two-lane dataset. The five scenario instances are
plotted in blue, orange, red, green, and purple. The scenario instance plotted in blue is a good representative for this cluster. In this scenario instance, the
ego-vehicle drives on the left lane with a vehicle behind it, as seen in plot (E). Then, the ego-vehicle drives by another vehicle on the right lane, which
can be seen in the plots (G) and (H). Finally, the ego-vehicle performs a lane change to the right in front of the overtaken vehicle, which is indicated by
the jump from -2 to 2 in plot (M). This behavior defines the scenario type for this cluster.

as information source. It might be that there exists a better set
of timeseries. Similarly, there might be more suitable cluster-
ing techniques than k-means, even though we experimentally
found k-means to perform better than others. The quality of
clustering results strongly depends on the correct number of
clusters. We used the elbow method, which leaves room for
interpretation. We tried to mitigate eye-balling by using the
Kneedle [22] algorithm. However, there might still be better
numbers of clusters. The final experiment results have been
analyzed and interpreted manually.

D. Discussion

Our feature vectors (§III) are defined solely by the dis-
tance between one scenario instance and all other scenario
instances, based on the individual timeseries. These features
hence do not encode any further “semantics.” The clustering
depends on the timeseries data only. Information that is not
contained in the timeseries data cannot impact clustering:
scenario instances cannot be grouped according to this
missing information, and missing scenario types cannot be
found. For instance, if weather conditions should intuitively
impact the resulting clusters but weather information is not
input to the clustering algorithm, then the resulting scenario
types cannot distinguish different weather conditions, unless
of course this weather information correlates with other in-
formation provided as input (in this case, however, “weather”
cannot be identified as a relevant feature). The choice of data
in time series hence constitutes a mental model. Similarly,
we are aware that the eight-car-model constitutes a mental
model, but argue that it encodes a minimum amount of
information needed for clustering.

Selecting the number of clusters k can be understood as
the selection of a distance threshold up to which scenario
instances are put into the same cluster. Choosing more or
fewer clusters allows the adjustment of the granularity of
the resulting scenario types. We let the Kneedle algorithm
[22] automatically perform this choice to avoid further bias.

The resulting scenario types together with the provided

level of granularity are meant to provide redundancy w.r.t.
the scenario types (& granularity) of the experts’ manual
derivation. This raises the question of what the “correct”
level of granularity is for testing automated and autonomous
driving systems, since it is crucial for the safety argumen-
tation. Manual derivation of scenario types relies on the
correctness of the mental model of the expert performing
this derivation, which motivates the need for redundancy.
Our work provides a perspective on scenario types that is
barely influenced by mental models and can be used to
identify further scenario types and to validate the scenario
types yielded by manual derivation, both in terms of correct
granularity and completeness.

V. RELATED WORK

A multitude of existing works are concerned with cluster-
ing timeseries; see [15] for an overview.

In the domain of traffic engineering, the goal is to under-
stand the usage and demand of the road network [2] or of
single road sections [5]. Both works cluster two-dimensional
GPS position timeseries of individual vehicle trips from start
to destination. Since the position timeseries of a single vehi-
cle does not contain information about surrounding vehicles
and since such a trip is composed of a multitude of scenario
instances, their approach is not suitable to cluster single
scenario instances with traffic interactions to scenario types.
From a technical perspective, their approaches are limited to
the two-dimensional GPS position timeseries.

In [14] and [25], “driving encounters” between two ve-
hicles are clustered based on vehicle position trajectories.
The approach yields four [14] and ten [25] clusters where
one cluster contains driving encounters at crossings, another
clusters contains driving encounters where vehicles approach
each other on opposing lanes, and so on. Arguably, this level
of granularity does not provide a sufficient level of detail to
yield fine-grained scenario types. For instance, it ignores the
various different ways how two or more vehicles may interact
at a crossing. From a technical perspective, the approach is



limited to two-vehicle interactions while in reality scenario
instances take place with more than two vehicles.

In [20], an approach is presented that clusters collision
data to identify different types of collisions. Abstract, cate-
gorical information is used as input for the clustering, e.g. the
gender of the driver or three categories of injuries. Intuitively,
this approach is limited to the specific use case of collision
data composed of categorical data. It is not applicable to
(non-collision) driving data presented as timeseries.

The goal of [13] is to extract traffic scenario types from
simulated driving data. The approach is limited to scenario
instances of two seconds’ length and interactions between
two vehicles. The clustering is based on handcrafted features,
such as aggregations and characteristic points within the
timeseries, e.g. whether or not a braking maneuver took place
as well as the velocity of both vehicles at the start and at the
end of the two second time span. In reality there are traffic
scenarios with (i) more than two interacting vehicles and (ii)
usually such scenarios are longer than two seconds. Further,
handcrafted features come with the discussed shortcomings.

In sum, this paper closes the following gap: It overcomes
technological limitations, i.e. restrictions in the number of
vehicles, the total duration of the scenario, and the type,
number, and length of timeseries. Moreover, our approach
clusters without handcrafted features and, thus, arguably
relies on a minimum mental model of an expert.

VI. CONCLUSIONS

We motivated the need for scenario types by test scenario
generation, highlighting that the current manual derivation
by industrial experts poses a risk of incompleteness and
inadequacy. We proposed an automated clustering approach
to extract scenario types from real driving data. It solely
relies on the difference between the timeseries of recorded
scenario instances. We applied the presented approach to the
highD dataset [11]. The presented experiment results show
the application of the clustering to both a two-lane and a
three-lane highway recording. We discussed how the pre-
sented feature creation allows the clustering to yield different
levels of granularity, and how the clusters are influenced
by the choice of data, and distance measures according to
the eight-car-model, used for clustering. We have argued
that the partitioning of the scenario instances into types
is barely influenced by a mental model and the level of
granularity is not pre-set by an expert. As the clustering
results can therefore be used to evaluate handcrafted scenario
types, this makes the presented approach valuable from a
methodological perspective, in addition to overcoming the
technical shortcomings of existing works. However, further
research is necessary to understand what an adequate level of
granularity is for scenario types. It heavily influences the test
case generation and, therefore, also the overall assessment of
the driving system. We believe that the presented approach
is a first step in this direction.

VII. ACKNOWLEDGEMENTS

This work was supported by the Intel Collaborative Re-
search Institute “Safe Automated Vehicles.”

REFERENCES

[1] J. Bach, S. Otten, and E. Sax. Model based scenario specification
for development and test of automated driving functions. In IEEE
Intelligent Vehicles Symposium, pages 1149–1155, 2016.

[2] P. Besse, B. Guillouet, J.-M. Loubes, and F. Royer. Review and
perspective for distance-based clustering of vehicle trajectories. IEEE
Trans. on Intelligent Transportation Systems, 17(11):3306–3317, 2016.

[3] A. Calo, P. Arcaini, S. Ali, F. Hauer, and I. Fuyuki. Generating
avoidable collision scenarios for testing autonomous driving systems.
In IEEE Intl. Conf. on SW Testing, Verification and Validation, 2020.

[4] A. Calo, P. Arcaini, S. Ali, F. Hauer, and I. Fuyuki. Simultaneously
searching and solving multiple avoidable collisions for testing au-
tonomous driving systems. In Genetic and Evolutionary Computation
Conference, 2020. to appear.

[5] M. Y. Choong et al. Modeling of vehicle trajectory clustering based
on lcss for traffic pattern extraction. In IEEE International Conference
on Automatic Control and Intelligent Systems, pages 74–79, 2017.

[6] D. Goldin and P. Kanellakis. On similarity queries for time-series
data: constraint specification and implementation. In Intl. Conf. on
Principles and Practice of Constraint Prog., pages 137–153, 1995.

[7] L. Hartjen, F. Schuldt, and B. Friedrich. Semantic classification of
pedestrian traffic scenarios for the validation of automated driving. In
IEEE Intelligent Transp. Systems Conf., pages 3696–3701, 2019.

[8] F. Hauer, B. Holzmüller, and A. Pretschner. Re-using concrete test
scenarios generally is a bad idea. In IEEE Intelligent Vehicles
Symposium (IV), page to appear, 2020.

[9] F. Hauer, A. Pretschner, and B. Holzmüller. Fitness functions for
testing automated and autonomous driving systems. In Intl. Conf. on
Computer Safety, Reliability, and Security, pages 69–84, 2019.

[10] F. Hauer, T. Schmidt, B. Holzmüller, and A. Pretschner. Did we test
all scenarios for automated and autonomous driving systems? In IEEE
Intelligent Transportation Systems Conf., pages 2950–2955, 2019.

[11] R. Krajewski, J. Bock, L. Kloeker, and L. Eckstein. The highd dataset:
A drone dataset of naturalistic vehicle trajectories on german highways
for validation of highly automated driving systems. In IEEE Intelligent
Transportation Systems Conference (ITSC), pages 2118–2125, 2018.
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4. Did We Test All Scenarios for Automated
and Autonomous Driving Systems?
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Figure 4.1.: Big Picture (previous versions appeared in [55, 59])

Summary: Test case generation is applied for each relevant scenario type. This means
that the underlying list of scenario types — derived from data (see Sec. 1.1.2) or by experts
— has to be complete. Only then will testing be complete as well and a test exit criterion
can be formulated. A completeness assessment of the list of scenario types is required. An
absolute completeness measurement is infeasible, but an assessment relative to a given real
traffic data set is possible.

• Problem: How to assess a list of scenario types for completeness relative to a given
data set?

• Gap / Contribution: Existing works either focus on the fact that testing solely with
real test drives is not feasible or lack an argument that all scenario types are known.
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• Solution: A statistical model based on the Coupon Collector Problem is presented
that takes a histogram of occurrence probabilities (derived from traffic data) as well as
an occurrence probability up to which all scenario types should be known and states
whether sufficient amounts of data has been collected in traffic. If so, it follows that
all scenario types up to the provided occurrence probability are known for a given
data set.

• Evaluation: The model is applied to one histogram of occurrence probabilities from
literature [175] and three artificial distributions.

• Results: The experiment results show the applicability of the model to measure the
completeness of a list of scenario types. The experiment results indicate that the
amount of necessary collected scenario instances is practically feasible. For instance
if one would like to ensure that all scenario types with an occurrence probability of
at least 0.00001 are known, the model yields numbers of required collected scenario
instances roughly between 450,000 and 500,000 for the given histograms of occurrence
probabilities.

• Limitations: The solution idea heavily relies on a representative histogram of occur-
rence probabilities, the derivation of which requires representative data of real traffic.
The model is influenced by the level of granularity of the scenario types.
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Abstract— To ensure safety and functional correctness of
automated and autonomous driving systems, virtual scenario-
based testing is used. Experts derive traffic scenario types
and generate instances of these types with the support of test
generation tools. Since driving systems operate in a real-world
environment, it is always possible to find a new scenario type
as well as new instances of scenario types that are different
from all other scenario types and instances. Thus, the testing
process to find faulty behavior may continue forever. There
is a practical need for test ending criteria for both of the
following problems: Did we test all scenario types? Did we
sufficiently test each type with specific instances? We address the
first question and present a suitable test ending criterion and
methodology. Whether the system is tested in each scenario type
is reduced to the question whether all test scenarios are known.
We analyze driving data to provide a statistical guarantee that
all scenario types are covered. We model this as a Coupon
Collector’s Problem. We present experimental results for the
application of this model to different driving tasks of automated
and autonomous driving systems.

I. INTRODUCTION

Striving for highly automated and autonomous driving
systems results in ever more complex and capable systems.
Due to the complexity of these systems and the complexity
and sheer number of possible traffic scenarios, ensuring
safety and functional correctness is a crucial challenge [1].
Since verification and validation by real test drives alone
become practically infeasible [2], [3], [4], the focus is
currently shifting to virtual test drives. For virtual testing,
scenario-based closed-loop testing in the form of X-in-the-
Loop settings is used [5]. This means, that the automated
or autonomous driving system, e.g. in form of a model,
software, or hardware is tested in a simulated traffic sce-
nario, where the system behavior affects the behavior of the
simulated environment.

Automated and autonomous driving systems must provide
their functionality in every possible scenario of the poten-
tially infinite number of scenarios. These scenarios can be
clustered into scenario types, e.g. “free drive”, “lane change”,
“cut-in”, or “emergency braking”; [6], [7] present related
catalogs of scenario types. One can always come up with
another scenario type as well as with instances of those types
that are different from the types and instances used before.
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Simply adding a new object to the scenario might already
be sufficient to impose a challenge on the system as the
example of a kangaroo shows [8]. Intuitively, there is the
strong need for a test ending criterion, which can be defined
by addressing the two following issues. Firstly, we need to
judge whether all scenario types that occur in real traffic are
known to us. Secondly, we have to decide whether we tested
each of those types sufficiently. Approaches that answer these
questions have to provide statistical guarantees for safety
argumentation and certification while still being applicable
in practice. Such a test ending criterion would greatly benefit
the release process of automated and autonomous vehicles,
since resources can be used more effectively to fulfill the test
ending criteria.

The contribution of this paper is the following: We pro-
vide an approach to the first part of the described test ending
criterion for automated and autonomous driving systems.
The question whether all scenario types that occur in real
traffic are tested is modeled as an instance of the Coupon
Collector’s Problem. The resulting model receives statistical
data from real driving data as input and yields an answer to
the question as output.

§II introduces scenario-based testing. We recap the
Coupon Collector’s Problem in §III in order to model the
test ending criterion accordingly in §IV. §V provides insights
from experiments. We discuss related work in §VI and
conclude in §VII.

II. SCENARIO-BASED TESTING

Testing aims both to (1) gain confidence that functional-
ity was implemented correctly (requirements-based testing)
and (2) provoke failures (defect identification). In software
testing, test case selection is usually done by partitioning the
input domain, and then picking or generating a few inputs
(i.e., test cases) for each block of the partition. If the pur-
pose is requirements-based testing, blocks are chosen w.r.t.
common functionality, which are driving tasks, or scenario
types, in our case. If the purpose is defect identification, then
blocks are chosen w.r.t. some defect hypothesis. For instance,
such a hypothesis may state that failures are more likely to
occur at the boundaries of relevant intervals; or that specific
weather conditions negatively impact the accuracy of sensors.
Either way, the intuition is that the blocks should exhibit
“similar” behavior in terms of (1) requirements and/or (2)
the same class of potential failures they provoke. Partition-
based testing, understood as requirements-based testing, is
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precisely what we advocate here: the scenario types define
the blocks of the partition of the input domain. These
scenarios types are then used to generate scenario instances,
possibly in a defect-based way.

A. Big Picture

The idea of scenario-based testing is to automatically or
manually identify a reasonably small set of relevant dynamic
traffic situations, or scenario types; check if the set of
scenario types is complete; and then derive system-specific
tests for each scenario type. While this paper is concerned
with checking completeness of scenario types only, we need
to explain the big picture in Fig. 1.

Initially, we choose between manual (1) and automatic (2)
identification of scenario types. For manual identification (3),
several sources of information (5), e.g. requirements, safety
analysis, functional specifications, and traffic rules are used
for the identification of scenario types (6). For automatic
identification of scenario types (4), automated clustering
techniques are applied to a subset of pre-recorded real driving
data (7), e.g. suggested in [9]. Note that depending on the
distance measure used by the clustering algorithm, the auto-
matically identified clusters need not necessarily correspond
to scenario types that a human would identify with typical
recurring traffic situations. Also note our assumption that the
collected data is sufficiently diverse as—usually implicitly—
assumed by most existing data-driven approaches in this
domain: It must cover the multitude of driving tasks of
the automated or autonomous system under test, e.g. data
in different parts of the country for which the system is
designed. The data must not be biased towards a small part
of the driving task, e.g. only collecting highway drive data
on a single straight 10km long segment.

We now want to assess if the identified scenario types
can be expected to cover all real driving situations, which
constitutes the technical contribution of this paper. Using the
real driving data and the catalog of scenario types as input,
we model this problem as a Coupon Collector’s problem
(8), as explained in §III. If the catalog is incomplete, we
iterate the process (and possibly need to record more driving
data, which is not shown in the Figure). Otherwise, we use
the scenario types as a basis for the derivation of system-
specific test cases. We motivate that we cannot simply re-use

c1c2

c3ego

Fig. 2. Example test case for testing lane change functionality

recorded drives as tests (9) in §II-B and sketch how to derive
system-specific tests (10) in §II-C.

B. The Need for System-Specific Tests

The quality of pre-recorded real drives as test cases is
system-specific as the following example demonstrates: The
ego vehicle ego is driving on a two-lane highway behind the
car c3 and performs a lane change into the gap between the
cars c1 and c2. Suppose our goal is to test whether the system
keeps sufficient safety distance (shaded areas in Fig. 2) to
the surrounding cars during the lane change.

Assume that in a specific test case for this scenario type,
one system version (or configuration) does not keep sufficient
safety distance to c1. This means that this test case revealed
faulty system behavior. Now assume that a second system
version is implemented such that it keeps a larger safety
distance to surrounding cars and, because of this, does not
even perform a lane change in this test case! The same test
case that is able to reveal a faulty behavior for one system
is not even a very interesting test case of the correct form
(meaning it contains a lane change of the ego vehicle into the
gap) for another system. This means that the quality of a test
case depends on a specific system’s behavior: Recorded tests
may be good or bad at revealing failures, thus fundamentally
questioning the predictability of the testing procedure.

C. Test Case Derivation

Therefore, system-specific test cases for each scenario type
need to be generated for each version of the system. At first
sight, we could choose random scenario instances from each
scenario type. Analytical as well as empirical considerations
[10] show that if the goal of testing is to reveal failures,
then test cases need to be chosen on the grounds of defect
hypotheses. Otherwise, fully randomly picking tests from
the entire input domain cannot be shown to be inferior to
partition-based testing in general, which in turn questions the
very effort of defining the partition. Empirically, one gener-
ally applicable defect hypothesis states that failures are more
likely to occur at the boundaries of suitably chosen input
blocks, i.e., in “extreme” scenarios for each scenario type.
Therefore, we will first use scenario types to partition the
input domain (and test requirements), and second “extreme”
scenarios in each of the blocks to specifically target failure-
provoking behaviors. In this vein, existing works present a
multitude of test generation techniques. Very popular are
search-based techniques that try to identify the extreme test
cases, e.g. [11], [12]. The topic of test case generation,
however, relates to the second part of a test ending criterion
(Did we test a scenario type sufficiently?), which we do not
further discuss in this work. Our focus instead is on the



number of relevant scenario types that we compute on the
grounds of real test drive data.

III. THE COUPON COLLECTOR’S PROBLEM

The Coupon Collector’s Problem (CCP) is an instance of
the Urn Problem as described in [13]. A famous example
of the CCP are the collectable pictures of soccer players
during a world championship. There exist N different types
of coupons in the urn. Each type j is drawn with a constant
probability of pj > 0. It holds that 1 ≤ j ≤ N and∑N
j=1 pj = 1. One is interested in the number of samples

that have to be drawn independently (with replacement) from
the urn such that each type is at least drawn once. We will
later turn our attention to the problem of unknown numbers
of coupons. Additionally, one would like to know how large
the probability is to have a complete collection of all types
of coupons when we have drawn S coupons [14], [15]. This
means that a solution to the CCP takes the probabilities of
all types of coupons pj as input and yields a number of
necessary samples as output. Existing works distinguish two
cases for this problem: In the first case, pj is equal for all
types j, while in the second one, the probabilities pj may
differ for the distinct types.

In this work, we encounter the case of unequal proba-
bilities of scenario types. Let X be the random variable
describing the number of samples that need to be drawn until
all types are seen at least once. For the CCP, the samples are
assumed to be independent of one another. The following
formula can be used for the computation of the estimated
value E(X) of expected necessary samples for a complete
set [15]:

E(X) =

∫ +∞

0

(1−
N∏

i=1

(1− e−pix)) dx

Unfortunately, there is no analytical solution available
to compute the probability of having seen all types after
drawing S samples. Inspired by [16], we use Monte Carlo
simulations to calculate this probability.

The input for the simulations is a set of types j (those
will be the scenario types later on) and their probabilities
pj . A single simulation of the CCP is achieved by randomly
drawing samples from an urn until all types are seen at least
once. The idea of the Monte Carlo simulation is to repeat
this single simulation many times to yield good estimations
for the mean, variance and standard deviation of the random
variable X . We start with a fixed number of 1000 simulations
to obtain a good estimation of the variance σ and mean X
of X . This allows us to compute the number of necessary
simulations sim as suggested in [17]: When calculating this
number, we use one percent for the standard error e of the
sample mean X . This means that σ√

sim
needs to be smaller

than one percent of the mean value X as estimated by the
first 1000 simulations. We use a confidence level conf of
0.95 (z-score z1−0.05/2 = 1.96) while computing the number
of simulations sim as follows:

sim ≥
z21−α/2 ∗ σ2

e2

We can derive the probability P (X ≤ S) to discover all
distinct types at least once when drawing at most S samples
after executing an additional sim−1000 simulations. For the
computation of P (X ≤ S) we regard how often it occurs
that X is equal to i during the simulations with 1 ≤ i ≤ S.
By adding up these occurrences occ(i) we can calculate the
probability in a similar way as in [18]:

P (X ≤ S) =
1

sim

S∑

i=1

occ(i)

In the same way we can add up the occurrences occ(i)
until we achieve a given threshold τ . Therefore, we search
for the smallest number of samples S, for which the added
up occurrences are equal to or greater than τ .

S = minimize Y subject to
1

sim

Y∑

i=1

occ(i) ≥ τ

is the number of samples that need to be drawn until all
types are seen at least once with probability τ .

IV. THE TEST ENDING CRITERION AS CCP

We have seen that one test ending criterion can be reduced
to the question whether the list of scenario types is complete.
If all scenario types that happen in real traffic are contained
in the collected data, the list is complete. This means that we
need to see an instance of each scenario type at least once in
the data. We are hence interested in the question of whether
a scenario type exists in real traffic that is not reflected in
the collected data. This can be modeled as a CCP.
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Fig. 3. Process of computing the needed number of samples

We start with a given set of real drive data that may
or may not cover all scenario types. From this data we
derive the number of necessary scenario samples to find all
scenario types at least once as shown in Fig. 3. A scenario
sample is a single instance of an arbitrary scenario type.
Note that scenarios vary in time and in driven distance.
The scenarios in the collected driving data are assigned to
one of the N distinct scenario types, which is usually easy
to do in an ad-hoc way and can also be automated using
machine learning [19]. For each type, we count the number
of occurrences in the collected data. With these numbers we
build a histogram of occurrence probabilities, which serves as
an input for the CCP. However, applying the CCP directly to
these probabilities would compute the necessary number of
scenario samples until all the already known scenario types
have been seen at least once when randomly sampling—and
this of course is of limited interest if we already know which
scenario samples belong to which scenario types. Instead,



we are now interested in deciding if there may be scenario
types in the real world that are not covered by the collected
data. To this end, we assume that there exists a hypothetical
undiscovered scenario with occurrence probability pnew.
This probability is not known a priori, but can iteratively
be estimated. The probabilities of the other scenarios pj
are scaled linearly to p′j such that pnew +

∑N
j=1 p

′
j = 1

holds. The updated probabilities p′j together with pnew serve
as input for the CCP, which then computes the number
of necessary scenario samples to see all scenario types at
least once, including the newly added hypothetical type. For
computation purposes, we use a Monte Carlo simulation as
described above. The number of simulations sim within a
single Monte Carlo simulation is determined and executed to
achieve a result with a given confidence level and error rate
as mentioned in §III. Afterwards, we calculate the necessary
number of scenario samples S to see all scenario types at
least once with a certain probability τ .
S can be used to answer the question whether we did

collect all scenarios: Assume that at some point the collected
data contains R scenario samples and that R > S, meaning
that more scenario samples have been collected than the
computed number of samples to see a new hypothetical
scenario. Further assume that no such new scenario type has
been seen during the collection of the R scenario samples.
However, with probability τ , we should have seen a new
hypothetical scenario type that has an occurrence probability
of at least pnew. Therefore, we conclude that our list of
scenarios is complete with regard to the provided confidence
values. Data collection can hence be stopped.

V. EXPERIMENT

Automated and autonomous driving systems have to han-
dle a variety of driving tasks, most prominently piloting
through highway or city traffic. Depending on the location,
these driving tasks differ a lot. Therefore, certain scenario
types may or may not be encountered in some places. For
instance, on a German highway, the drivers are obligated to
drive on the furthest right lane, when possible. In contrast,
this is not the case in the USA. Analogously, speed limits
vary from country to country with Germany as the extreme
case, where there are no speed limits at all on some parts of
the highway. Similarly, distinct scenarios can be found for
the city driving task. In many European city centers, cars and
bicycles are separated on different lanes, whereas in India,
there is mainly mixed traffic. Therefore, the number of and
kinds of scenarios are highly dependent on the circumstances
under which the data was collected.

Therefore, in our experiments we are interested in finding
out how differently sized and shaped distributions of scenario
types affect the computed number of necessary scenario
samples S. Additionally, we try to gain insight into the
influence of pnew and τ on the number of samples S, since
both variables are required as an input for our approach.

We use four different distributions of scenarios in the
experiments and vary the parameters τ and pnew. The con-
fidence level conf for calculating the number of simulations

sim is set to 0.95 in all experiments. Also, we fix the
standard error e to 1% in the computations of the necessary
number of simulations. Both of these values are set according
to the opinions of experts in the field.

Car manufacturers and suppliers that are developing
automated and autonomous driving systems usually have
databases with real drive data as well as histograms of oc-
currence probabilities for a variety of different locations and
driving tasks. They can directly apply the presented approach
to their data. The histograms of the four distributions used in
the experiments can be found in Fig. 4. The distributions 1,
2, and 4 are fictional. The third one is based on [20], where a
distribution is presented that is derived from real drive data.
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Fig. 4. Histograms of the four distributions used in the experiments

The first two distributions display the task of driving on a
highway. Both are shaped in a way such that the differences
in probabilities are relatively moderate. The first distribution
is a snapshot after collecting R = 1, 000 scenario samples of
fifteen scenario types with a smallest probability of 0.025.
To show the process of data collection and the discovery of
new scenario types, we extended the first distribution and
assume additional scenario types at R = 50, 000 collected
scenario samples. Forty-five different scenario types are
contained with the smallest probability being 0.003. We
regard the city driving task in the third and the fourth
distribution. Analogously to the other two distributions, the
third one displays the state after collecting R = 1, 000
scenario samples, whereas the last distribution is the result
of gathering R = 50, 000 scenario samples. We based the
third distribution on the work in [20], in which the authors
derive a distribution of six different scenario types from data
collected by the U.S. Department of Transportation. There
are only six scenario types, since the authors manually create
these types and map collected data to them, which prevents
the discovery of new scenarios. However, the shape of the
distribution with one very common scenario type and a lot of



rare types with a lowest probability of 0.0019 is in line with
the intuition of traffic in cities with a multitude of uncommon
situations. We extended this distribution to the fourth one
with a few rare and a large amount of very rare scenario
types with lowest probabilities of 0.0001.

Within the experiments, the necessary number of scenario
samples S is computed for different combinations of distri-
bution, pnew, and τ . The results of the experiments can be
found in Table I. We executed each experiment 30 times and
provide S as well as the standard deviation σ of S.

TABLE I
CALCULATED NO. OF NEEDED SAMPLES S AND THEIR STANDARD

DEVIATION FOR THE FOUR DISTRIBUTIONS; 30 EXPERIMENT RUNS

distribution
pnew

τ = 0.95 τ = 0.99
number N S σ S σ

1 15 0.001 2,991 18.72 4,608 59.39
2 45 0.001 3,001 21.60 4,594 57.45
3 6 0.001 3,063 34.49 4,634 67.07
4 30 0.001 46,007 444.68 62,250 893.71
1 15 0.0001 29,966 165.81 45,930 451.78
2 45 0.0001 30,312 226.41 46,561 507.33
3 6 0.0001 29,988 167.46 45,881 333.53
4 30 0.0001 47,876 485.93 63,862 1058.07
1 15 0.00001 332,544 2111.74 510,755 5002.41
2 45 0.00001 333,595 2436.66 512,982 4761.08
3 6 0.00001 299,330 2462.43 460,993 4742.39
4 30 0.00001 299,600 2907.31 458,658 5097.27

Our results provide evidence for the following two con-
clusions. Firstly, and probably not too surprisingly in hind-
sight, if the probability of the new scenario pnew is much
smaller than the probabilities of the other scenarios p′j ,
the probability of the new scenario becomes the dominant
factor in the calculations of the number of needed samples.
The smaller the probability of a scenario, the longer we
have to wait to discover this scenario. Therefore, we need
more samples to see all scenarios at least once. If there
is one scenario with a much smaller probability than the
other ones, we need a large amount of samples to see
this scenario for the first time and often have seen the
others on the way. Thus, the calculated number of needed
samples for a complete collection is largely dependent on
this small probability. We therefore call it “dominant” in the
computations. This dominance can be seen in the results. For
the distributions 1, 2, and 3 even the smallest probabilities
are higher than pnew. All of the distributions lead to a similar
amount of samples for all parameter settings. On the other
hand, the distribution 4 contains fifteen scenarios that have a
low probability between 0.0001 and 0.0005. Therefore, the
results for this distribution are not dominated by probabilities
of 0.001 and 0.0001 for pnew and thus differ from the results
of the other distributions. However, for pnew = 0.00001 the
new scenario becomes dominant in distribution 4 and the
resulting S is similar to the one of the other distributions.
Secondly, associated with the first findings, we discover that
the number N of scenario types that were discovered before
the experiments does not seem to impact the results. This can
be seen especially for the distributions representing the task
of driving on highways. The calculated numbers of necessary

samples for the distributions 1 and 2 are close to each other
with 2, 991 and 3, 001 samples for pnew = 0.001. But, the
first distribution contains only N = 15 distinct scenarios,
whereas the second one consists of forty-five scenario types.
The same can be seen for a lower probability of pnew . In both
distributions the probability of the new scenario is smaller
than the probabilities of the already seen scenarios. In these
cases, the probability of the new scenario dominates the
calculations of the number of needed samples as mentioned
earlier. Therefore, the other scenarios and their quantity
become less relevant. Since we intuitively would search for
a new scenario that has a smaller probability than the others
(as otherwise we should have seen it before), the insights
from these experiments may generalize to real world data.

These concrete examples visualize how the question can
be answered whether we did collect all scenarios: For the
distribution 2, we calculate that for pnew = 0.0001 and τ =
0.99 a number of S = 46, 561 scenario samples is needed to
see each scenario type at least once. Since the distribution
2 contains already R = 50, 000 samples, we can state that
with a probability of 99% there exists no new scenario that
has a probability of 0.0001 or higher. Otherwise, we would
already have seen it. Thus, we know that our list of scenarios
is complete for the case that we are not interested in finding
a scenario that has a lower probability than 0.0001. However,
if we are interested in a hypothetical undiscovered scenario
with pnew = 0.00001 a lot more scenario samples would
be needed (S = 512, 982 > R = 50, 000) and the data
collection has to continue.

VI. RELATED WORK

In [2], a statistical calculation is presented to show that
verification and validation solely by real test drives is in-
feasible. The average driven kilometers between two fatal
accidents on German highways are used to derive that 6.61
billion kilometers need to be driven to encounter at least one
of these scenarios. Similarly, also in [3] fatal accidents are
used. It is stated that tens of billions of kilometers are needed
for direct measurement of sufficient events for statistical
analysis. The authors suggest to use virtual scenarios instead.
Another work [4] states that millions or even billions of miles
have to be driven to arrive at an acceptable level of certainty.
Instead, it is suggested to accelerate testing by using mainly
critical scenarios. All these works did the important task
of raising the awareness that verification and validation by
real drive testing alone is not feasible. However, they do not
provide a practically applicable test ending criterion.

Other works [19], [21] suggest that the driving system
needs to be at least as good as the human driver. The driving
behavior of a human driver is analyzed in all scenario types
of a specific list of scenario types. An expected system
behavior for those scenario types is derived. Then, the
system performance is measured with respect to this expected
behavior. This might be used as a test ending criterion for
those specific scenario types: Stop testing once it can be
shown that the driving system is better than a human driver.
However, it cannot be used as a general test ending criterion,



since the list of scenario types might not be complete. In this
case, it cannot be argued that a system is safe, because it only
performed better than a human driver in some scenarios.

There exist works [22], [23] that analyze real drive data
and generate for each scenario type a histogram of occurring
instances. For example, a cut-in scenario is happening with
different relative positions of the vehicles. Those distri-
butions are then used for test case generation by using
parameterized scenarios and selecting concrete values for
parameters according to the distributions. However, they do
not present a test ending criterion.

VII. CONCLUSION

We started by describing virtual testing of automated and
autonomous driving systems with simulated scenarios. Be-
cause of the potentially infinite number of different scenarios
the system has to cope with, one can always come up with
a new scenario type or a new instance of a type that is
different from all others. This immediately raises the need
for a test ending criterion, consisting of two parts: Did
we test all scenario types? Did we sufficiently test each
type with specific instances? We presented a criterion for
the first question as well as a methodology to apply it
in practice together with other established scenario-based
testing approaches. The test ending criterion is formulated
as the question if sufficient real drive data is collected such
that all scenario types of the real traffic are contained in
the data. For the computation if they are indeed all scenario
types, we model this as a CCP. We show how it can be
used as a test ending criterion for testing automated and
autonomous driving systems, providing the basis for a safety
argumentation for the release of said systems.

It is important not to draw the wrong conclusions from
our results. Our approach effectively indicates that additional
data may be needed if an unspecified scenario type with
a certain occurrence probability is expected not to have
been covered yet. However, it cannot guarantee that this
additional data will eventually contain a specific missing
scenario type: Continuing to collect data in the flatlands
obviously is unlikely to reveal scenario types prevalent in
the mountains.

Further research has to be conducted regarding the prob-
ability of the undiscovered hypothetical scenario pnew as
well as the threshold τ . We assume them to be given and
show experiment results for a variety of different values,
but it is difficult to choose suitable values a priori. Another
assumption in our work is that the samples from the real
drive data are independent from one another. This is needed
to apply the CCP. For the experiments, the manually created
distributions could be far from reality, which is a threat to the
validity of the experimental insights. Methodologically prob-
lematic is the use of an unsupervised clustering technique,
e.g. [9], for drive data clustering. Depending on the applied
distance metric between clusters, the clustering technique
might provide a different number of clusters, which means a
different number of scenario types. We also have mentioned

above that depending on the distance measure, the automat-
ically derived clusters need not necessarily correspond to
real driving situations that a human would come up with.
From a testing perspective, these synthetic clusters are not
necessarily less adequate than real driving situations but are
likely less easy to interpret by certification authorities.
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Figure 5.1.: Big Picture (previous versions appeared in [55, 59])

Summary: For each in the complete list of scenario types, a parameterized scenarios is
created. The parameters span a multi-dimensional space of possible test scenarios. Not
every test case that is contained in the space of the parameterized scenario is of the desired
form, meaning that it contains a desired maneuver like a lane change, or is interesting in
that they cause a correct driving system to approach the safety boundaries or cause a faulty
driving system to violate them. For test case generation with search-based techniques,
a suitable fitness function is needed that ensures the desired form of the test case and
that the test case is interesting. Formulating fitness functions correctly is difficult, time-
consuming, and requires experience. For the derivation of fitness functions at large scale,
methodological guidance for test engineers is needed.
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• Problem: How can practitioners be supported with methodological guidance to derive
suitable fitness functions for test case generation with search-based techniques?

• Gap / Contribution: Existing works either provide ad-hoc fitness functions for a
specific system or scenario type; or focus on the technical aspects of search-based
test scenario generation assuming the fitness function to be given. This leaves the
methodological aspect unconsidered of how fitness functions generally should be
created.

• Solution: Fitness function templates as well as the means to combine and apply
them are presented to ensure that selected test cases are of the desired form and are
interesting.

• Evaluation: The templates are used to create fitness functions for a list of 24 relevant
scenario types provided by [178]. The searches are executed for each scenario type
using the high-fidelity physical simulation CarMaker [31] and a system under test
that was built according to a series of papers [117, 118, 119].

• Results: For the 24 scenario types, fitness functions could be formed by applying the
proposed methodology and their functionality could be demonstrated. (For those
of the 24 for which no clear safety criterion is provided by literature or authority
standards, assumptions were made about the meaning of safety to instantiate the
templates. Any other safety measurement for instantiation may be used as well.)

• Limitations: The templates are evaluated for highway scenarios. Additional or
adapted templates might be necessary for non-highway scenario types.
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the templates as well as the means to combine them for application with search-based
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Abstract. Functional specifications and real drive data are typically
used to derive parameterized scenarios for scenario-based testing of driv-
ing systems. The domains of the parameters span a huge space of possible
test cases, from which “good” ones have to be selected. Heuristic search,
guided by fitness functions, has been proposed as a suitable technique in
the past. However, the methodological challenge of creating suitable fit-
ness functions has not been addressed yet. We provide templates to for-
mulate fitness functions for testing automated and autonomous driving
systems. Those templates ensure correct positioning of scenario objects
in space, yield a suitable ordering of maneuvers in time, and enable the
search for scenarios in which the system leaves its safe operating enve-
lope. We show how to compose them into fitness functions for heuristic
search. Collision and close-to-collision scenarios from real drive data serve
as a use case to show the applicability of the presented templates.

Keywords: System Verification · Automated & Autonomous Driving ·

Scenario-Based Testing · Search-Based Techniques

1 Introduction

Striving for highly automated and autonomous driving systems results in ev-
ermore complex and capable systems. Due to the complexity of these systems
and the complexity and sheer number of possible scenarios, ensuring safety and
functional correctness is a crucial challenge [9]. Since verification and validation
by real test drives alone are practically infeasible [17], the focus shifts to virtual
test drives. For virtual testing, scenario-based closed-loop testing in the form
of X-in-the-Loop settings is used [16]. Such scenarios describe dynamic traffic
situations to test the behavior of the automated or autonomous driving system.
A whole set of such scenarios is encoded by a parameterized scenario. We show
such a parameterized scenario for a highway pilot in Fig. 1. The ego vehicle e
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accelerates from standstill and approaches car c3, which is driving at lower ve-
locity than e. e then changes to the middle lane, while simultaneously c1 changes
also to the middle lane behind e. During this scenario, e must not violate the
safety distances, e.g. the one to c2 (shaded area in Fig. 1). Each other car ci,
i ∈ {1, 2, 3} has a parameter for its longitudinal starting position s0,ci , a starting
time tstart,ci for accelerating from standstill, and a desired velocity vi it tries to
reach and hold throughout the scenarios. In addition, the lane change of c1 is
triggered at a specific time, described by parameter tlc,c1 . The domains of these
ten parameters span a ten-dimensional space of possible test scenarios.

c2

c3

c1

e

Parameter
Lower
Bound

Upper
Bound

Starting positions s0,ci [m]
Starting times tstart,ci [s]
Target velocities vi [km/h]
Lane change time tlc,c1 [s]

0
0
80
6

300
3

140
13

Fig. 1. Parameterized highway scenario with ten parameters and their domains

Most scenarios in this space are not useful test cases, however. In some sce-
narios, e will not even perform a lane change; will perform it in front of c2
instead of behind it; or c1 performs its lane change several seconds later than e.
Instead, “good” test cases need to be identified within the parameter space. In
one interpretation of “good” test scenarios, a correct system approaches safe op-
erating limits, and a faulty system violates them. Existing works suggest the use
of search-based techniques. These were successfully applied for testing classic ad-
vanced driver assistance systems (SAE levels 1&2 [14]), e.g. a parking assistant,
an adaptive cruise control, an emergency braking system, and their combination.

Those works focus on technical aspects, e.g. on how to improve the search al-
gorithm, and assume the fitness functions to be given or created ad-hoc. This was
an important, and successful, first step. Because these search-based techniques
are so promising, we want to apply them to testing automated and autonomous
driving systems of SAE levels 4&5 [14]. Such systems are fundamentally dif-
ferent, as they take over the complete driving task including decision making
and executing active maneuvers in dynamic traffic scenarios. Thus, the variety
of different possible parameterized scenarios is huge, which requires the defini-
tion of many different fitness functions. However, formulating fitness functions
correctly is difficult, time-consuming, and requires experience. Wrongly derived
fitness functions leave “good” test cases unidentified, which might even lead to
wrong conclusions about the test results. It seems clear that creating fitness func-
tions ad-hoc, as done in the past, is not sufficient. For the derivation of fitness
functions at large scale, methodological guidance for test engineers is needed.

The contribution of this paper is the following: We provide such guidance
in the form of a set of fitness function templates for testing automated and
autonomous driving systems in dynamic traffic scenarios with heuristic search.
It is further explained how those templates can be easily combined and applied
to identify “good” test cases for complex scenario types.
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§2 explains scenario-based testing and the application of search-based tech-
niques in this domain. The templates are described in §3, before §4 presents ways
to combine them. An application is provided in §5. We discuss related work in
§6 and conclude in §7.

2 Scenario-Based Testing with Search-Based Techniques

In scenario-based testing of automated and autonomous driving systems, the
goal is to test the behavior of such systems in dynamic traffic situations. A mul-
titude of different scenario types exist. Several sources of information are used
for the identification of those types, e.g. requirements, safety analysis, functional
specifications, traffic rules, and real (test) drives. For each scenario type, one or
more parameterized scenarios are derived, each describing a set of test cases.
Generalizing and adapting the formalism of [2] and [10], we define a parameter-
ized scenario as (X,V,D), where X is the data set that describes the scenario
type (e.g. lane change) and context (e.g. two-lane highway). It can be described
using the OpenScenario [1] or CommonRoad [5] formats. The variables vi ∈ V
(i ≤ n) are parameters (e.g. velocities of traffic participants) with their domains
Di ∈ D. Assigning a value to each vi yields a single test case. The domains in
D span an infinite search space A = D1 ×D2 × . . .×Dn ⊂ Rn of test cases.

c1

c2 c3e

Fig. 2. Example of a simple safe operating envelope (green plain rectangle) bounded
by the necessary safety distances (red shaded rectangles) and lane markings

The simulated scenario describes input and environment conditions of a test
case. The expected behavior of continuous systems is described with the help
of domains and thresholds. In this context, a safe operating envelope is used
(Fig. 2). Inside the envelope, the system is allowed to freely optimize its perfor-
mance [9], and as long as it does not leave the envelope, it is considered safe. By
that the safe operating envelope provides a description of safe system behavior.
It depends on the scenario and changes over time during the scenario. Recent
works, e.g. the responsibility-sensitive safety (RSS) model [15], the safety force
field model [11] as well as other formal models [13] presented such envelopes.
These works provide a model of safe system behavior even for scenarios, in which
the system alone cannot guarantee complete safety, as other traffic participants
may still cause accidents. In the spirit of limit testing, we define a “good” test
case as follows (see [12]):

A “good” test case can reveal potentially faulty system behavior. That
means in a “good” test scenario, a correct system approaches the limits

of the safe operating envelope, and a faulty system violates them.
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A fitness function f : A → W assigns every test case a quality value
w ∈ W , which depends on the observed behavior of the system under test in
the respective test case. It is important that a total order on the fitness values
is preserved, such that a scenario gets a better quality value than another if it is
a better test case. If the search space A and the quality function f are created
accordingly, then search-based techniques may be used to find the “good” test
cases in the following way (see Fig. 3):

Test Cases

Input OutputSearch-Based Optimization

Search Space / 
Parameterized 

Scenario

Fitness Function Test Oracle

Simulation 
Results

Fitness Value

New 
Candidates

Fitness 
Computation

Optimizer

Simulation

Fig. 3. Search-based techniques for scenario optimization

An initial set of scenario candidates is created either by reusing existing
scenarios, by using manually created ones by experts, or by generating them
randomly. These candidates are then executed in a simulation and the simula-
tion results are evaluated by the fitness function, which returns a quantitative
quality measure for the respective scenario. According to these fitness values, the
optimization algorithm tries to adapt the parameter values in order to obtain
scenarios of better quality. This iteration may be continued until a maximum
number of iterations is reached, the assigned computation time is spent or the
optimizer fails to find a better solution. This means that during the optimiza-
tion process, the system is usually tested in one test case per fitness function
evaluation, depending on the applied optimization technique. In the ideal case,
search-based techniques would find the global optimum, which is the best sce-
nario. This scenario is called worst-case. In the case that the system does not
leave the safe operating envelope in the worst-case, it is considered to be safe.

In the following, templates are presented, which may be combined to fitness
functions. For this work, the search space is assumed to be given, e.g. we use a
parameterized scenario created by a domain expert.

3 Fitness Function Templates

In order to capture all potential scenarios, we present templates to aim for qual-
itative and quantitative test goals. Our goal is to find test cases, in which the
system violates the safe operating envelope, e.g. by coming below a distance
threshold. We call this a quantitative test goal, since a quantitative value (e.g.
a distance between cars) is used to assign a fitness value. We present a suitable
template to search for a violation of the safe operating envelope.
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However, search spaces usually contain many scenarios in which a desired
system behavior, e.g. a lane change, does not take place because the neces-
sary context to provoke it does not occur. For instance, there is no lane change
if there is no car to be overtaken. In theory it might be possible to only use
a quantitative test goal and search for the violation of a safe operating enve-
lope in a search space covering all possible scenarios. However, in practice this
is undesired for several reasons. Scenario types (e.g. lane change, cut-in) are
human-interpretable; testing every type on its own provides information about
the quality of the system behavior in those specific scenarios. Further, testing
these interpretable scenario types will be required by certification authorities.
Lastly, such a theoretical search space that contains all possible scenarios is high-
dimensional and complex. The search for a safety violation would be difficult - or
even practically infeasible - for current search-based techniques. Thus, we need
to ensure that the scenario description encodes the relevant parts of the context.
Those are called qualitative test goals, since the mere existence of the relevant
circumstances is used to assign a fitness value.

For dynamic scenarios, two aspects are of fundamental importance: space and
time. Scenario objects need to be at the correct location at a specific moment,
e.g. one car should be ahead of another. Furthermore, scenario events need to
take place at the right moment in time, e.g. two cars should change the lane
simultaneously. Since the (dynamic) behavior of the ego vehicle is unknown a-
priori, the correct timing of maneuvers and positioning of scenario objects cannot
be established statically and a-priori, e.g. by setting suitable parameter domain
boundaries. However, incorporating such desired qualitative test goals into fit-
ness functions is possible. We hence present specific templates for timing and
positioning to ensure that such qualitative goals are fulfilled. During optimiza-
tion those templates identify the scenarios that fulfill the qualitative test goals.
Among them the best scenario is searched with the template that aims at the
quantitative test goal. Note that in this work, minimization is used for opti-
mization purposes. In the following, we will explain the generic idea first, before
transferring it to templates for automated and autonomous driving systems.

3.1 Template for Testing Against Safe Operating Envelopes

We start with a very basic, simple, and intuitive template. Even though most
of the existing works in this domain do not state it explicitly, their idea is to
measure a certain system behavior and identify a test case in which this system
behavior exceeds a threshold. For the case of a constant threshold, a qualitative
generic example is provided in Fig. 4.

The blue time series describes a system behavior and the red line a threshold
that must not be violated. This means the maximum value of the blue curve must
not be greater than the threshold. During an optimization process, it is desired
that better and better scenarios are found, which means that the maximum
of the blue curve gets closer and closer to the red line or even surpasses it.
The following fitness function idea may be used to achieve the described search
behavior (assuming minimization): fidea,1 = −max(blue curve)
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t[s]

value

system behavior
constant threshold

max

Fig. 4. Generic case of testing system behavior against a constant threshold

Now, this idea is transferred for testing automated and autonomous driving
systems in dynamic traffic scenarios. As described in Section 2, instead of a
constant threshold, a safe operating envelope is used, e.g. as presented in recent
works [15,11,13]. Those works express safety often as a safety distance in time or
space, which is usually depending on velocities of and relative positions among
cars and, thus, is changing over time. We use safeDist as a placeholder for the
computation of a safety distance according to such a safe operating envelope.
We stick to the example of Fig. 1, but for the sake of simplicity, only c2 and the
safety distance to it are considered on a single lane for now (see Fig. 5):

c2e

d(t)− safeDist(t)

d(t)

safeDist(t) t[s]

distance[m]

tstart tend

actual distance d(t)
safety distance safeDist(t)
d(t) − safeDist(t)

min

Fig. 5. Schematic depiction of a safety distance that should not be violated

The ego vehicle e is approaching another vehicle c2, which is driving at lower
velocity. Once e gets closer, it will reduce its velocity until it reaches the velocity
of c2. During this period, e must not violate the safety distance. Applying the
classic idea fidea,1 as fitness function would mean that the scenario is searched, in
which the distance d between e and c2 gets smallest. However, a small d does not
necessarily mean that the safeDist threshold is violated, since safety distances
might be even smaller (relatively speaking) in scenarios with low velocities. One
cannot conclude by the achieved fitness value whether the safe operating envelope
has been violated or not. The dynamically changing safety distance has to be
included into the template:

Template 1: ftemplate,1 = min(d(t)− safeDist(t)) (1)

The difference of d(t) and safeDist(t) is denoted as the remaining buffer until
violation of the threshold (see image 5). Within the scenario, the minimum
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remaining buffer is used as characteristic value, since it is the most dangerous
moment. By applying this template, search techniques will identify the scenario
in which the minimum of the remaining buffer is smaller than the minimum
remaining buffer in all other scenarios. This has the side effect that the following
test oracle can be applied for this template: If the remaining buffer is greater or
equal than 0 even in the worst-case scenario, the system did never enter and, thus,
never violate the safety distance. It even kept an additional distance equal to
the remaining buffer in the worst-case. It never left the safe operating envelope
and it is considered safe. If the remaining buffer is negative, a faulty system
behavior is revealed. In this case, the absolute value is the amount by which the
system violated the safety distance. Using this template, an argumentation basis
for the release process is provided by making the system behavior measurable.
With the help of this measurement, systems can be compared with respect to
their performance in the system-specific worst-case.

3.2 Templates for Ensuring Qualitative Test Goals

General Idea to Ensure Qualitative Test Goals. A specific scenario does
or does not satisfy the desired qualitative test goals. The following templates
can be used to ensure such goals. By combination of multiple templates (§4),
multiple qualitative test goals can be fulfilled. In the case of non-fulfillment of
a goal, we assign the value m as fitness value, which has to be greater than
any value that corresponds to a qualitative test goal being fulfilled. If m is
constant, the optimizer will perform like random selection. However, we want
to apply search-based techniques to identify scenarios that satisfy the desired
qualitative test goals. Thus, this m should be a gradual measurement to provide
a ranking among the scenarios that do not fulfill this qualitative test goal. In
order to gradually reach a “fulfilling” scenario, a measurement is used for how
far a scenario is away from fulfilling the goal. Since the mere fulfillment of the
qualitative test goal is sufficient, every scenario that does so is equally good and,
thus, receives the same constant fitness value, e.g. 0:

fidea,2 =

{
m, qualitative test goal not fulfilled

0, otherwise
(2)

Assume a time series (blue curve in Fig. 6), which serves as input for the
computation of m. At a specific time t1, a qualitative test goal should be fulfilled.
Fulfillment means that the value of the time series value(t1) at t1 is in between
the red thresholds zmin and zmax. Note that in general those thresholds do not
need to be constant.

If value(t1) is outside the area described by the thresholds, m is the distance
of value(t1) to the closer threshold to reach the area in between. During the
optimization, value(t1) would approach the area. To avoid having one fitness



8 Florian Hauer, Alexander Pretschner, Bernd Holzmüller

function per threshold, the mean of the thresholds is chosen:

fidea,3 =

{∣∣ zmin+zmax

2 − value(t1)
∣∣ , value(t1) outside

0, otherwise
(3)

t[s]

value

input for measurement m
constant threshold

t1

value(t1)

zmin

zmax

Fig. 6. Depiction of the general idea: The value of a curve at a specific moment has to
be within a specific domain.

Template for Correct Positioning of Scenario Objects. This general idea
is now transferred to a template. It ensures that scenario objects, e.g. cars, are
correctly located relative to each other at a specific moment in time during the
scenario. In Fig. 7, a scenario is depicted in which the ego vehicle e and the
other cars c1, c2 are driving on two lanes next to each other. Assume that the
qualitative test goal is that e is located in between c1 and c2 at a specific moment
tevent. This might be desired in the case that e should perform a lane change
into the gap bounded by c1 and c2.

c2 c1

e

∣∣∣∣∣∣(sc1 + sc2)/2− se
∣∣∣∣∣∣

sc2 sc1

se
t[s]

s[m]

tevent

position sc1 (t) of c1
position sc2 (t) of c2
position se(t) of e

|(sc1 + sc2)/2− se|

Fig. 7. Qualitative test goal: e should be located in the gap at tevent

The position of the ego vehicle se is used to compute the measurement m.
The positions of the other cars sc1 , sc2 serve as thresholds. Note that in contrast
to above, here the thresholds are not constant. The transferred template looks
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as follows:

Template 2a: (4)

ftemplate,2a =

{∣∣∣ sc1 (tevent)+sc2 (tevent)

2 − se(tevent)
∣∣∣ , e not in between c1 and c2

0, otherwise

During the optimization, the structure of the template will bring e closer
and closer to the gap until it is in the gap. However, as it is the case for the
introductory example in Fig. 1, there might not be a gap. Only a single other car
is of interest for relative positioning. The ego vehicle should be located behind
c2 for its lane change. This is reduced to the situation of Fig. 8.

c2

e

se − sc2sc2 se
t[s]

s[m]

se(tevent)− sc2(tevent)

tevent

position of ego se(t)
position of other sc2 (t)

Fig. 8. Qualitative test goal: e should be located behind c1 at tevent

In the case that e is ahead of c2, the distance between them is used as
measurement m. Since there is only one threshold (“behind of”), there is a slight
difference to template 2a. This simplifies the template to the following, where
only the distance to the one threshold is used:

Template 2b: (5)

ftemplate,2b =

{
sc2(tevent)− se(tevent), se(tevent) < sc2(tevent)

0, otherwise

Template for Correct Timing of Scenario Events. So far, a template for
the search of safe operating violations as well as templates for correct positioning
of scenario elements were discussed. In the following, a template for timing is
presented. It can be used to ensure that events, e.g. the start of a maneuver, are
happening at the right moments in time relatively to each other. In the example
of Fig. 1, the ego vehicle and the c1 are supposed to perform their lane changes
onto the middle lane simultaneously. This means that c1 starts its lane change
during the lane change of e. This is resembled in Fig. 9.

To allow c1 to start its lane change even a bit before e, an offset ∆t1 can be
used. In general, also an offset ∆t2 is possible, even though here it is set to 0.
A ∆t2 > 0 would mean that c1 starts lane changing after e already completed
its lane change. The general idea of fidea,3 is adjusted to yield a template for
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c1

e t[s]

lateral position [m]

tevent

tstart

tend

tstart − ∆t1 tend + ∆t2

lateral position of other
lateral position of ego

Fig. 9. Qualitative test goal: Lane changes should happen simultaneously

timings. However, this time the thresholds are not on the vertical axis as it is
the case for the location templates, but on the horizontal one. The thresholds
are the start tstart and the end tend of the ego vehicle’s lane change. In the case
that the start of the other vehicle’s lane change is not in between tstart − ∆t1
and tend+∆t2, the distance to the middle of the interval is chosen. The template
for timing looks as follows:

Template 3: (6)

ftemplate,3 =

{∣∣ tstart−∆t1+tend+∆t2
2 − tevent

∣∣ , tevent not in between bounds

0, otherwise

4 Combining Templates

We have presented several templates, each addressing a specific aspect. In the
following, it is described how those templates can be combined to a fitness func-
tion that can be used by search-based techniques to yield complex scenarios.
There are two possibilities: Combining the set of templates to a single fitness
function allows the usage of single-objective optimizers, while for multi-objective
search, the fitness functions stay separated.

4.1 Combination for Single-Objective Search

The templates are nested into each other with the help of case distinctions.
The innermost level in the nesting is a template that measures the behavior of
the system with respect to a safe operating envelope; it aims for a quantitative
test goal. The outer levels of nesting are templates for qualitative test goals
(e.g. positioning and timing), which need to be fulfilled for the inner ones. Each
level consists of one template returning the measurement m as described above.
Instead of returning 0 in the case that the qualitative test goal is fulfilled, the
measurement m of the next inner level is returned. This structure causes the
optimizer to approach the search in steps. First, scenarios are searched that
are of the desired form. Among those, the best scenario is identified for testing
against a safe operating envelope. To ensure the necessary total order of fitness
values, offsets are added to all levels of nesting except for the most inner one.
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This offset needs to be greater than the maximum value of the next inner level.
A simple overapproximation of the sum of the m of the next inner level plus the
offset of the next inner level is sufficient.

4.2 Combination for Multi-Objective Search

Most likely, there are some goals that are not dependent on each other, meaning
that each of those independent goals can be fulfilled without the constraint that
the others need to be fulfilled. For instance in the introductory example in Fig.
1, the goal that “e performs its lane change behind c2” can be fulfilled even
though the goal that “c1 performs its lane change simultaneously with e” is not
fulfilled. In contrast to the usage of single-objective search, independent goals
can be optimized simultaneously with multi-objective search. Multi-objective
search optimizes a vector x of fitness values xi instead of a single fitness value.
The concept of Pareto optimization is used. A vector x is better than another
vector y if all xi ≤ yi and at least one xi < yi. Each xi is computed by a
single template fj , which may depend on one or more fk, j 6= k. The fj that are
dependent on other fk, j 6= k need to be adjusted in the following way: In the
case that at least one of the fk is not 0, which means that the qualitative test
goal connected to at least one of the fk is not fulfilled, xj is set to a very bad,
high value. Step by step, the preliminary qualitative test goals will get fulfilled
before the remaining test goals are optimized.

5 Application of the Templates
Since many car manufacturers and suppliers are currently developing a highway
pilot system or a comparable system, such a system is chosen for demonstration
purposes. It has to cope with all possible situations on the highway and does
not require the driver to take over in critical situations. Therefore, the highway
pilot is considered to be an automated driving system of SAE’s level 4 [14].
Many natural driving studies have been conducted to gather data for further
understanding of road traffic and the driver’s task (e.g. [8]). The database of
the biggest one [8] got analyzed for near-collision and collision recordings on
highways. The findings were grouped to 24 scenario types [18]. We used those
as use cases for the presented templates. In fact, the example of Fig. 1 and
Fig. 10 is one of those scenario types. The presented templates ensure that
maneuvers happen at the right moment and objects are located correctly, while
another template searches for violations of the safe operating envelope. Using
these templates, we were able to create suitable fitness functions for all of those
scenario types. Since those are the near-collision and collision scenarios, they
are the most critical ones. By at least covering those 24 scenarios with the
templates, we argue that the presented set of templates is sufficient for most of
the critical highway traffic scenarios. The following depicts the ease of use of the
templates by applying them to the most complex scenario of the 24, which is
the introductory example of Fig. 1 and Fig. 10. A variety of other scenarios is
contained in this one, e.g. a lane change of the ego vehicle behind another car
without further surrounding cars.
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c2

c3

c1

e

Parameter
Lower
Bound

Upper
Bound

Starting positions s0,ci [m]
Starting times tstart,ci [s]
Target velocities vi [km/h]
Lane change time tlc,c1 [s]

0
0
80
6

300
3

140
13

Fig. 10. Most complex (close-to-)collision scenario of the reduced set of scenarios from
the database analysis [18]

For this scenario, several fitness functions are needed:

• The lane change of e needs to happen, for which a constant template is used.
For the given search space, a constant measurement m is not problematic,
since many candidates contain a lane change of e.

α =

{
∞, e does not change lanes

0, otherwise
(7)

• The lane change of e needs to happen behind c2, which indicates the use
of the positioning template. Let the moment, when e gets past the lane
markings between the starting lane and the target lane, be denoted as te,start.

β =

{
se(te,start)− sc2(te,start), sc2(te,start) < se(te,start)

0, otherwise
(8)

• The lane change of c1 needs to happen behind e. Again, the template for
positioning is used. Let the moment, when c1 gets past the lane markings
between the starting lane and the target lane, be denoted as tc1,start.

γ =

{
sc1(tc1,start)− se(tc1,start), se(tc1,start) < sc1(tc1,start)

0, otherwise
(9)

• Lane changes of e and c1 need to be simultaneously, for which the timing
template is used. Let the moment, when e and c1 are fully on the target
lane, be denoted as te,end and tc1,end. If either tc1,start + ∆t1 < te,start or
te,end < tc1,end − ∆t2 is true, the lane changes are not considered to be
simultaneous anymore. ∆t1 is set to 1s to allow for an earlier start of the
lane change of c1, while ∆t2 is set to 0s such that c1 does not finish the lane
change before e starts changing lanes.

δ =

{∣∣∣ te,start−1+te,end+0
2 − tc1,start+tc1,end

2

∣∣∣ , not simultaneous

0, otherwise
(10)

• We need to search for a violation of the safety distance.

ε = min(sc2(t)− se(t)− safeDist(t)) [te,start, te,end] (11)
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The combined fitness function for single-objective search does look as follows.
Powers of ten are used as offsets oi, e.g. o1 = 103 and o2 = 104.

fsingle =





α+ o4, e does not change lanes



β + o3, sc2(te,start) < se(te,start)



γ + o2, se(tc1,start) < sc1(tc1,start){
δ + o1, not simultaneous

ε, otherwise

(12)

For an application of multi-objective search, the templates need to be changed,
e.g. ε can only be computed if all qualitative test goals underlying the other
templates are fulfilled.

ε̃ =

{
∞, α+ β + γ + δ > 0

ε
(13)

Incorporating the dependencies also in the other templates yields the final vector
of fitness values. β, γ, and δ are independent of each other; they only depend
on α. In contrast to a combination for single-objective search as above, they can
be optimized simultaneously when combined for multi-objective search. α stays
unchanged as it does not depend on other templates.

fmulti = [α β̃ γ̃ δ̃ ε̃] (14)

The actual technical application of search-based techniques is not the focus of
this work as is has been done by various existing works. However, for interested
readers, we provide supplementary material online at https://mediatum.ub.tum.
de/1474281. Contained are two experiments that use the presented parameter-
ized scenario and combined fitness function as well as videos of the worst-case
scenarios identified by single- and multi-objective search during the experiments.

6 Related Work

Search-based techniques have been proposed for test scenario selection. The ini-
tial research presented the idea of applying search-based techniques for the func-
tional testing of advanced driver assistance systems by testing a parking assis-
tant [6] and a braking assistant [7]. Their setup is close to what we describe as
scenario-based testing. Recently, machine learning was introduced to improve the
performance of test case generation in this domain. For instance, with learning
surrogate models the optimization speed may be improved [3] and with build-
ing decision-trees the test engineer receives information about the search space
during test case selection [2]. Both works apply the presented techniques on an
emergency braking system. For testing a feature interaction of an adaptive cruise
control and an emergency braking system, search-based techniques are improved
in a way that they search for multiple faulty interactions simultaneously [4].
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While all these technical improvements are important and show great results,
these works assume the fitness function to be given or create them ad-hoc, e.g.
to test the interaction of some specific features [4]. This is, because those works
focus on the technical aspect of the search-based techniques. Neither of them
addresses the methodological aspect of how fitness functions are correctly created
to allow for statements about safety, e.g. by testing against a safe operating
envelope as for instance provided by recent works [15,11,13]. Additionally, the
evaluation systems are rather reactive driver assistance systems of SAE level 1&2
[14] or combination of such. The provided fitness functions for those systems
are mostly not applicable to higher automated systems (e.g. level 4&5) with
decision making and active functionality (e.g. lane changing or overtaking) in
complex dynamic traffic scenarios, which require the fulfillment of qualitative
test goals. This motivates the need for methodological guidance when deriving
fitness functions.

7 Conclusion

We started by describing the necessity of suitable fitness functions to identify
“good” test cases within huge search spaces, described by parameterized scenar-
ios for automated and autonomous driving. A correct derivation of such suitable
functions is crucial, but difficult. For the application of search-based techniques
at larger scale for testing automated and autonomous driving systems, guidance
for test engineers is necessary. In this work, we provide such guidance in form
of templates and the means to combine them to fitness functions for complex
traffic scenarios. To test against thresholds of a safe operating envelope, we pre-
sented a specific template which provides the test engineer with an automated
oracle. Additional templates for relative positioning in time and space ensure
that the optimizer identifies scenarios that fulfill the qualitative test goals. For
combining the templates, we presented both a single and a multi-objective ap-
proach which make use of case distinctions to provide a total ordering on scenario
candidates such that better scenarios are assigned to better fitness values. As
an evaluation, we presented the application of the templates on the most com-
plex (close-to-)collision highway scenario contained in the biggest natural driving
study database (identified by [18]). We conclude that the presented templates
provide a structured way for test engineers to formulate fitness functions to iden-
tify “good” test cases. Thus, this work adds a much needed methodological angle
to the otherwise technical solutions.

The application of search-based techniques requires both a fitness function
and a search space. The derivation of the search space is not discussed in this
work. Similarly to the fitness function derivation, methodological guidance for
the derivation of search spaces (parameterized scenarios) is of high interest.
Both are difficult the creation of a suitable skeleton of a parameterized scenario
and the identification of suitable parameters and their domains. Further, in
addition to the methodological guidance presented in this work, an automated
fitness function derivation would be very useful to support test engineers. Using
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a suitable scenario description as input, the described combination for single-
and multi-objective techniques might be automated.
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6. Re-Using Concrete Test Scenarios
Generally Is a Bad Idea
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Figure 6.1.: Big Picture (previous versions appeared in [55, 59])

Summary: Once “good” test cases have been created, one might have the intention to save
time and, thus, might want to re-use them for other versions and variants of the driving
system. However, this requires that the quality of the test cases does not drop when re-used,
meaning that “good” test cases stay “good”. Since different versions and variants of a
driving system may perform a maneuver like a lane change at different moments during a
scenario and in different ways, it seems that a test case that is “good” for one system may
turn bad for another system. However, many approaches in literature and industry are
based on the assumption that concrete test scenarios, which are scenario instances and test
cases, can generally be re-used [11, 95, 107, 145]. For instance, recording scenario instances
in traffic and replaying them as test cases in simulation is an instance of re-using test cases.
These perspectives are conflicting and, thus, analysis is required.
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• Problem: Are test cases that have been generated or collected for one system generally
re-usable for another system?

• Gap / Contribution: Re-usability of scenario instances among different variants and
versions of driving systems is implicitly assumed by a variety of works. However, to
the best of the author’s knowledge there is no work actually providing evidence for
or against this assumption.

• Solution: A counter example is experimentally derived: Experiments are conducted
in which test cases are generated for different system versions and variants. The
re-usability of these test cases for the respectively other systems is analyzed.

• Evaluation: The simulation setup consists of the high-fidelity physical simulation
CarMaker [31] and a system under test that built according to a series of papers
[117, 118, 119]. For a lane change scenario, test cases are generated for different
versions of this system.

• Results: Test cases are system-specific and may turn “bad” when naı̈vely re-used.

• Limitations: This work solely provides a counterexample to the naı̈ve re-usability.
Apart from stating that new test cases should be generated, it is not constructive, e.g.
by providing a prediction mechanism that tells whether a test case turns “bad” or not
when re-used.

Author Contribution: F. Hauer, his supervisor A. Pretschner, and the industrial partner
B. Holzmüller conceived the problem statement. F. Hauer implemented the experiment
setup, including the implementation of an exemplary driving system. The experiments and
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Abstract— Many approaches for testing automated and au-
tonomous driving systems in dynamic traffic scenarios rely on
the reuse of test cases, e.g., recording test scenarios during
real test drives or creating “test catalogs.” Both are widely
used in industry and in literature. By counterexample, we
show that the quality of test cases is system-dependent and
that faulty system behavior may stay unrevealed during testing
if test cases are naı̈vely re-used. We argue that, in general,
system-specific “good” test cases need to be generated. Thus,
recorded scenarios in general cannot simply be used for testing,
and regression testing strategies needs to be rethought for
automated and autonomous driving systems. The counterex-
ample involves a system built according to state-of-the-art
literature, which is tested in a traffic scenario using a high-
fidelity physical simulation tool. Test scenarios are generated
using standard techniques from the literature and state-of-the-
art methodologies. By comparing the quality of test cases, we
argue against a naı̈ve re-use of test cases.

I. INTRODUCTION

Striving for highly automated and autonomous driving
systems results in more and more complex and capable
systems. The complexity of these systems as well as the
complexity and sheer number of possible scenarios makes
safety and functional correctness a crucial challenge [17].
Since testing by real test drives alone becomes practically
infeasible [15], [33], the focus shifts to virtual test drives. For
virtual testing of vehicle safety, scenario-based closed-loop
testing in the form of X-in-the-loop settings is used [30].
Such scenarios usually contain dynamic traffic situations
to test the behavior of automated and autonomous driving
systems. An exemplary test scenario for testing a highway
pilot is depicted in Fig. 1.

c1c2

c3e

Fig. 1. Example test scenario for testing lane change functionality

The ego vehicle e is driving on a two-lane highway
behind the car c3 and performs a lane change into the gap
between the cars c1 and c2. It is tested whether the system
keeps a sufficient safety distance (shaded areas in Fig. 1)
to the surrounding cars during the lane change. In case
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Informatics, Technical University of Munich, Germany, e-mail:
{florian.hauer,alexander.pretschner}@tum.de

B. Holzmüller is with ITK Engineering, Germany, e-mail:
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the system violates the safety distance to e.g. c1, because
the gap between c1 and c2 is too small, a faulty behavior
of the system is revealed. Now assume that the system is
updated by “correcting” this faulty behavior and that the
test scenario is re-run to test whether the system behaves
correctly now. In this case, it may turn out that the system
does not even perform a lane change anymore, since the
planning component considers the gap too narrow. Thus, by
slightly modifying the system, the previously useful test case
now has become essentially useless for testing whether a
safety distance is violated during a lane change. Even worse:
The system may still violate a minimum safety distance
threshold during a lane change. This stays unrevealed unless
a new suitable test case is found instead of the re-used one.
Since the consequences of a system change for its behavior
in dynamic traffic in general cannot be known a-priori, we
argue that this problem is of a general nature.

Conventional classical tests can usually be re-used, e.g.
for testing the door locking systems. In contrast, the above
consideration of driving scenarios has severe implications for
the re-use of tests for regression testing as well as for the
re-use of recorded test scenarios and tests of so-called “test
catalogs.” All these approaches rely on the idea of creating
test cases once and re-using them later on. They are widely
used in industry and literature. Unfortunately, as the simple
example conveys, naı̈vely re-using test scenarios in general
cannot directly provide the basis for an argumentation about
safety and functional correctness.

The contribution of this paper is as follows. We provide a
numerical counterexample to the re-usability of concrete test
scenarios, heavily relied on by many approaches in industry
and literature. Using standard techniques from literature,
we generate test scenarios to test an autonomous driving
system built according to state-of-the-art approaches. With
the experimental results, we can show that naı̈vely re-using
concrete test scenarios cannot guarantee the quality of a test
as this test may not even trigger relevant behavior.

The remainder is structured as follows. §II explains
scenario-based testing and what constitutes a “good” test
case, before the methodology of creating the counterexample
is described in §III. §IV explains the experiments and the re-
usability issue, and §V provides an overview of related work.
We conclude in §VI.

II. “GOOD” TEST CASES IN SCENARIO-BASED TESTING

In scenario-based testing the goal is to mimic real traffic
scenarios in simulation to test the safety of the driving



behavior automated and autonomous driving systems. A
variety of different scenario types (lane change, emergency
brake, etc.) take place in real traffic. Lists of such scenario
types are derived from experience [31] and real data [11], and
the completeness of such lists is determined with statistical
models [13]. For each scenario type, a parameterized sce-
nario is created, called logical scenario [21]. The intention is
to capture the variability of the real world with n parameters
P and their domains Dj ∈ D, j = 1..n, e.g. the initial
velocity of other traffic participants in a scenario is not set
to a specific value of 100km/h, but is assigned a parameter
vother with domain [80, 130]. The domains span a space
A = D1 ×D2 × ...×Dn ⊂ Rn of test cases. Assigning to
each parameter a value from its domain yields a single,
executable test case, which is called concrete test scenario
[21]. Not every candidate in such a space A is of the correct
form (e.g. the ego vehicle should perform a lane change,
but does not) and among those that have the correct form
not all are interesting (e.g. all other vehicles are several
hundred meters away from the ego vehicle) [12]. In other
words, many test scenarios in such a search space are not
the “good” test scenarios we are searching for. The concrete
scenario describes the input and environment conditions of
a test case. The expected behavior of continuous systems is
described with the help a safe operating envelope (cf. Fig. 2).
Inside the envelope, the system is allowed to freely optimize
its performance [17], and as long as it does not leave the
envelope it is considered safe. A variety of works present
such safety envelopes [24], [26], [28].

c1

c2 c3e

Fig. 2. Example of a safe operating envelope (green plain rectangle)
bounded by the necessary safety distances (red shaded rectangle) and lane
markings

In the spirit of limit testing, we define “good” test cases to
test vehicle safety as follows [12], [25]: A “good” test case
can reveal potential faulty system behavior. In a “good” test
scenario, a correct system approaches the limits of the safe
operating envelope, and a faulty system violates them.

III. CREATION OF THE COUNTEREXAMPLE

To argue against naı̈ve re-use, we generate test cases for
different variants of a system and then simulate “re-use” of
these tests by applying each test to all variants. If concrete
test scenarios were re-usable, the quality of a test case should
not drop when re-used for another system. This requires that
“good” test cases are generated and that the quality of the
test cases can be measured.

Existing works suggest the use of search-based techniques
for the selection of “good” test scenarios (detailed infor-
mation in Sec V). Such techniques try to identify the best
candidate (here: concrete test scenario) in a search space
(here: logical scenario) with the help of a fitness function,
which provides a quality measure for a test case of how

good it is. In the following, the logical scenario, the fitness
function, and the systems that are used in the experiments
are explained.

A. Logical Scenario

The logical scenario used for the experiments is shown
in Fig. 3. It is a simplification of the exemplary scenario in
Fig. 1. The cars c2 and c3 have been removed. When re-using
concrete test scenarios for such a simple lane change like in
Fig 3, we can expect that at least the form of the concrete
scenario is still correct, i.e. the ego vehicle performs a lane
change behind c1. For more complex scenario types this is
not the case as illustrated for the example in Fig. 1.

The ego car will start at the longitudinal position 0m and
accelerate to the initial velocity ve. As soon as starting time
tstart,c1 is reached, the other car starts accelerating from a
longitudinal starting position s0,c1 to an initial velocity vc1 .
As soon as both cars reach their initial velocities, the lane
change request is triggered after time ttrg. Those parameters
provide the necessary search space to allow c1 with vc1 to
be located arbitrarily on the road at the point in time when
e is triggered to perform a lane change.

c1

e

Parameter Lower Bound Upper Bound
Ego vehicle e:
Initially reached velocity ve [m/s]
lane change trigger time ttrg [s]

22.22 (80km/h)
0

36.11 (130kmh)
5

Other car c1:
Longitudinal starting position s0,c1 [m]
Starting time tstart,c1 [s]
Initially reached velocity vc1 [m/s]

0
0

22.22 (80km/h)

500
5

36.11 (130km/h)

Fig. 3. Parameterized scenario used for the experiments

B. Fitness Function

The fitness function assigns a quality to each concrete test
scenario, which allows the search-based technique to select
the “good” test cases. The goal is to test whether the system
keeps sufficient distance during a lane change behind another
car. Thus, the fitness function has to guide the search-based
technique to identify test cases of the correct form, i.e. ego
vehicle performs a lane change behind the other car. Among
those with the correct form, the biggest violation of the
safety distance is searched. We created the fitness function
according to the literature [12] (the optimizer minimizes):
The fitness function with t ∈ [tstart, tend]:

f =





∞; no lane change happens{
se(tstart)− sc1(tstart); sc1(tstart) ≤ se(tstart)
min{d− safeDist(t)}; sc1(tstart) > se(tstart)

The first part of the fitness function assigns ∞ as a very
bad, high value to scenarios in which the ego vehicle does
not perform a lane change. Instead, if such a lane change
takes place, the longitudinal position of the ego vehicle at
the start of the lane change se(tstart) is compared with the
one of the other vehicle sc1(tstart). If the ego vehicle is in



front of the other car, the distance between the cars at this
moment d(tstart) = se(tstart) − sc1(tstart) is assigned as
bad fitness value. The smaller this distance is, the better the
fitness value. In the third case, the lane change takes place
behind the other car. The difference of distance d(t) and the
the safety distance safeDist(t) is the remaining distance until
the safety distance is violated. By computing the minimum of
it throughout a lane change (t ∈ [tstart, tend]), the least safe
remaining distance until violation during this lane change
is determined. During the search through the search space
this yields the least safe remaining distance in the whole
search space. If the system behavior is faulty, it will yield
the biggest violation in the search space instead. The safety
distance is computed according to a formalization [26] of
the Vienna Road Convention. However, other safety models
may be used as well, e.g. [24], [28].

C. Driving Systems

The driving systems for the experiments are different
versions and variants of a single system type for two reasons:
First, we want to show that even small changes in the
configuration already cause issues with the re-usability of
concrete test scenarios. Changing the whole system design
has a far bigger impact than small configuration changes.
Second, testing different versions of a single system better
represents regression testing, which is the common use case
for re-using test cases.

The architecture of our demonstration system is shown in
Fig. 4. It follows the general control paradigm, which con-
tains the notions of sensing, long-term planning (or decision-
making), short-term planning, tracking and actuation [4].
To ease the interpretation of the experimental results, we
excluded sensing from the experiment setup. Also for the
sake of simplicity, the car c3 from the introductory example
scenario has been removed as a trigger to the decision
making to change lanes. Thus, also the decision making
is removed. To preserve the variability of decision making
caused by different relative positions of the ego vehicle and
this c3, the desire to change is triggered by a time trigger
(cf. ttrg in Sec. III-A). For the short-term planning, a state-
of-the-art approach for lane change maneuvers of automated
vehicles [23] was used. This system was chosen to closely
resemble automated and autonomous driving systems of SAE
levels 4 & 5 [27], e.g. a Highway Pilot of SAE level 4.

This model predictive control approach first predicts the
positions xi and velocities vi of surrounding cars ci for each
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Simulation 
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Fig. 4. System architecture overview
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Fig. 5. Schematic simplified depiction of the predicted positions xi and
time gaps tg(vi) at a specific prediction time tk of the system

sample time step tk over a short time horizon (cf. Fig. 5).
For safety distance planning, a time gap τ = 0.5s is used
as proposed in the paper series of [23]. The safety corridor
for the lane change (dashed green lines) is bounded by the
distance tg(vi) = τ · vi to the predicted positions xi of
other cars ci. First, a safe longitudinal and afterwards a
safe lateral trajectory is computed within these bounds. The
objective is to keep the velocity at each time step of the
trajectory as close to the velocity before the lane change
(given by the scenario parameter “initially reached velocity”
ve) and the acceleration as low as possible. The tracking of
the trajectories is done by classic control of the gas and brake
pedals as well as the steering wheel. Both are tuned for a
physical model of a sports car provided by the widely used
physical simulation software CarMaker by IPG Automotive,
which served as the simulation environment for this work.

IV. EXPERIMENTS
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Fig. 6. Experiment Overview

In Fig. 6, an overview over the experiments is given.
Three systems configurations are created (systems A,B,C).
System A is the system described above, while system B
is created by increasing the time gap τ from 0.5s to 1.2s,
and system C is yielded by decreasing the proportional
gain of the longitudinal PID controller in system B. The
fitness function from Sec. III-B and the logical scenario
as the search space from Sec. III-A are used for all three
experiments. For the optimization, a single-objective genetic
algorithm is applied. Note that the technological aspect is
not the focus of this work and more advanced techniques
could be used, as described in [9]. The population size and
the number of generations were both set to 20, resulting
in 400 simulation executions, which means each system is
tested in 400 concrete scenarios during the optimization.
The experiments were executed multiple times to rule out
randomization effects. The scenario with the best fitness
value of each experiment is presented in detail in the images
of respective Fig. 7, 8, 9: (1) distances during lane change,



and (2) velocities during lane change. Experiment A shows
that faulty behavior of the trajectory planner can be revealed,
B presents a case where the system behavior is seemingly
correct, and in C faulty behavior caused by slow tracking is
detected.

A. Experiment Results

In scenario A, which is the best concrete test scenario
that could be found for system A, the ego vehicle performs
a lane change behind the other car, which drives at lower
velocity. In Fig. 7(1), the actual distance between both
cars d(t), the minimum safety distance safeDist(t), as
well as the remaining distance until this safety distance is
violated are shown (a negative remainder means violation).
Approximately between scenario time 17.5s and 21.5s, the
safety distance is violated (see 7(1)). The biggest violation
of 14m takes place at approximately 19.5s. Even though
tracking will never be perfect, here it is considerably fast (cf.
Fig. 7(2)), which leads to the conclusion that the planned
trajectory does not consider sufficient safety distance in this
scenario with respect to the safe distance computation of
the fitness function. This faulty behavior gets addressed by
increasing τ in the safety distance estimation tg(vi) of the
planning algorithm to 1.2s to yield system B. The concrete
value of 1.2s was determined experimentally. The results of
the scenario B are shown in Fig. 8. It can be seen that even in
the best concrete test scenario, the updated time gap causes
the system to keep sufficient distance to the other vehicle
to not violate the minimum safety distance. Therefore, it
is considered to be safe with respect to this search space.
To yield system C, the proportional gain of the velocity
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Fig. 7. Results of scenario A: Faulty trajectory planner
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Fig. 9. Results of scenario C: Tracking too slow

tracking PID controller of system B is decreased to make the
tracking more smooth, e.g. for passenger comfort. However,
this also increases the rise time of the controller. The results
of scenario C (cf. Fig. 9(2)) show that the tracking does
not follow the planned trajectory close enough to decrease
the ego vehicle’s speed as fast as necessary, which causes
a violation of the safety distance despite the increased time
gap τ .

B. Why Re-Using Concrete Scenarios Is a Bad Idea

Each system (e.g. system A) is additionally tested using
the best concrete test scenarios identified for the other
systems (e.g. scenario B/ C). The resulting fitness values,
which measure both the test case quality and the remaining
buffer until violation of the safety distance in meters, are
depicted in Tab. I.



System A System B System C
Scenario A -14.001 5.604 -3.065
Scenario B 2.595 2.812 -3.037
Scenario C 20.153 20.484 -4.238

TABLE I
FITNESS VALUES OF THE THREE IDENTIFIED BEST CONCRETE TEST

SCENARIOS FOR THE THREE SYSTEMS

Every concrete test scenario has the best fitness value for
testing the system it was created for (red cells). This confirms
the intuition regarding the re-usability issue implied with the
introductory example in Sec. I. The smallest remaining buffer
until violation (positive fitness value) or biggest violation
(negative fitness value) for distinct systems is found in
different scenarios. Especially the first column of Tab. I
illustrates the following. If the best concrete test scenarios B
and C are “re-used” to test system A, the faulty behavior of
system A is not revealed. In other words: By naı̈vely reusing
test scenarios that have been created, or recorded, for other
system versions or variants, the faulty behavior of a system
might not be revealed. In this example, even the best concrete
test scenario for another system is not sufficient, let alone
scenarios of lower quality. Note that for this observation,
the provenance of these concrete scenarios does not matter,
e.g. they could have originated from test drive recordings or
“test catalogs” of concrete test scenarios, showing the same
result in terms of re-usability. This emphasizes the need for
the identification of system-specific concrete test scenarios,
since re-used test cases may not provide a strong foundation
for a safety argument for the release of an automated or
autonomous driving system.

Our argument does not imply that no test case can ever be
re-used. Our experiments show, instead, that there exist new
system variants for which the quality of existing test cases
is provably bad. Our conclusion is hence that in general, the
quality of test cases considered for re-use is unknown. If there
are external means to ensure that the quality of existing test
cases continues to be good, for instance because it is known
that the driving behavior of the system under test has not
been modified, then these tests may indeed be re-used. It is
then the responsibility of the test engineer to argue that the
quality of tests for an earlier version of a system carries over
to a newer version.

V. RELATED WORK

Several existing works are based on the idea of extracting
concrete test scenarios from data according to a variety
of different selection and filtering criteria. This data is
collected with real test drives [5], [19], [22] or simulation
setups [29]. Similar to manual test case generation based on
experience, the result of those approaches are “test catalogs”
of concrete test scenarios. These are subject to the presented
re-usability issue. Additionally, the extracted scenarios are
randomly encountered scenarios, which is problematic for
safety argumentations, as such are hardly possible based
on randomly encountered scenarios. An infeasible amount
of driving hours or driven kilometer is necessary for each

version of the system [33], [15] for each version and variant
of the system.

A very popular idea to circumvent this issue is to ex-
tract all concrete test scenarios that occur in real data and
filter for the “critical” ones, where a multitude of distinct
metrics of criticality exist [14], [20], [32]. The resulting
“test catalogs” are relatively small as they contain only the
critical scenarios. When the amount of data is huge, there
is the hope that the resulting “test catalog” overcomes the
randomness of encountering certain concrete scenarios in real
traffic. However, it is still subject to the re-usability issue.
The critical concrete test scenarios are critical with respect
to the behavior of the recording test vehicle or the driver
maneuvering the recording vehicle. When such concrete test
scenarios are re-used for testing another vehicle, e.g. the
next generation automated or autonomous vehicle, it is not
guaranteed that the concrete test scenarios are still critical.
It might be an easy non-critical test scenario for the new
system. Note that such criticality metrics might be used for
targeted generation of concrete test scenario, e.g. as fitness
function for the application of search-based techniques [10].
In this case, the usage of such criticality metrics is not an
instance of the re-usability issue.

A variety of existing works suggest the use of search-
based techniques for the selection of concrete test scenarios.
We followed this idea to generate system-specific concrete
test scenarios. Some of those works focus on the technical
aspects of the scenario search [1], [2], [3], [6], some describe
fitness functions for different specific purposes [7], [8],
[16], and another one provides fitness function templates for
testing against safe operating envelopes [12]. Even though
these works implicitly advocate the generation of system-
specific concrete test scenarios, neither of them discusses the
re-usability issue or provides a numerical counterexample to
the re-usability.

VI. CONCLUSION

We started by sketching that re-using concrete test sce-
narios for the testing of automated and autonomous driving
systems in general is problematic, since the quality of a test
case is system-dependent and may become bad when the
system changes. However, many approaches in industry and
literature rely on this re-usability. We provided a numerical
counterexample to the re-usability of concrete test scenar-
ios. We used standard techniques to generate concrete test
scenarios for three different configurations of an exemplary
system. As scenario type, we chose an easy lane change. The
experimental results showed that even the best concrete test
scenario for one system configuration may not be a “good”
concrete test scenario for the other. Note that even for a
simple lane change and configurations of the identical system
design, the re-usability issue could be shown. Systems with
different designs (e.g. systems from different vendors) differ
much more than configurations of a single design. Thus, re-
usability may even be worse. While for this lane change
scenario the re-used concrete test scenarios at least are of
the correct form, i.e. the ego vehicle performs a lane change



behind the other car, for more complex scenario types,
re-used scenarios might not even be of the correct form
anymore. In the case of the introductory example of Fig.
1, almost certainly the lane changes will not be performed
into the gap anymore as different systems decide to do their
lane changes at different moments in time. In terms of re-
usability, the provenance of the concrete test scenarios does
not matter, e.g. they could be recorded test cases or reference
tests from “test catalogs.”

We have argued that this shows that the quality of existing
tests in general cannot be predicted for new versions of a
system. While this shows that there cannot be “canonical”
reference tests for a product line in general, this does not
mean that the quality of existing test cases never carries
over to new versions of the system. There may well be
situations where an engineer can argue that the re-use of
tests is justified.

As a direct consequence, regression testing of automated
and autonomous driving systems needs to be reviewed, and
new methodologies are necessary. As a solution, we recom-
mend the re-use of logical scenarios instead of concrete test
scenarios. Then, for a new system, system-specific concrete
test scenarios are generated for each logical scenario instead
of re-using concrete test scenarios—which is the automated
technique we used to generate all test cases in this paper.
The generation of tests obviously is more costly than simple
re-use, but our arguments suggest that this cost cannot be
avoided unless one can argue that tests for earlier versions
are safe to re-use. In addition to using recorded scenarios
directly as test cases when this can be explicitly justified,
we deem these recorded scenarios useful for the derivation
of logical scenarios for test case generation, e.g. as done in
[18], [34].
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7. Related Work

This chapter discusses the related work in the domain of scenario-based testing.
Parts of this chapter have previously appeared in peer-reviewed publications [54,
56, 57, 59], co-authored by the author of this thesis.

Existing surveys [18, 27, 66, 78, 115, 132, 149, 150] provide an overview of the many
facets and perspectives on the domain of verification and validation of automated and
autonomous driving systems. In the following, we discuss in depth the existing works
relevant for this thesis. We align the structure of this chapter to the methodology of this
work as depicted in Fig. 7.1. Note that Sec. 7.2, 7.3, 7.5, and 7.7 reflect on the state-of-the-art
to which this work is compared to, while Sec. 7.1, 7.4, and 7.6 name related works that focus
on other parts of the overall test case generation process.
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Figure 7.1.: Big Picture (previous versions appeared in [55, 59])
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7.1. Manual Derivation

Literature suggests many different ways that support experts in the manual derivation of
scenario types. They mostly aim at structuring and formalizing the experts’ knowledge and
often times exploit the formalism to infer (additional) scenario types.

In [143, 14], a layer structure for scenarios is suggested that is widely used. On the first
layer, the road network is described, followed by the traffic infrastructure on level two and
temporal manipulations of both previous levels on level three. Static and dynamic objects
including their interactions are detailed on level four. The environment, meaning weather
and lighting, is specified on level five.

Next to ad-hoc meta-models that allow the direct description of each individual scenario
type [13] or a set of those with the classification tree method [12], various ontology-based
formalisms have been proposed. In [37], an ontology is presented based on categories,
e.g. pedestrian crossing, which are similar to scenario types. This formalism encourages to
directly specify parameterized scenarios instead of the more abstract scenario types. In [99],
ontologies are based on categorical enumerations, e.g. road surface may be dry, wet, or icy.
By n-wise combination of such enumerations, scenario types are generated. Based on the
layer structure, an ontology is created in [14] from which a large amount of different scenes
can be automatically inferred. The scenes then serve as input for scenario type derivation.

In [7, 60, 150], so-called situation coverage is suggested, which translates to coverage of
scenario types. Manually specified street layout snippets are combined to reach coverage.

Various technical reports present lists of scenario types [8, 32, 36, 112, 123, 158, 166, 178].
Those are of differing levels of abstraction and granularity as well as for various kinds of
different operational design domains.

Summary: All these works help the expert in (manually) deriving scenario types by
formalization of the expert’s mental model.

7.2. Automated Clustering

A variety of works exist that present traffic data clustering with various different goals, e.g.
traffic flow analysis, accident analysis, and understanding the driving task. This is reflected
in the data, which ranges from abstract keyword databases to high resolution time series.

In the domain of traffic engineering, the goal is to understand the usage and demand of
the road network [19] or of single road sections [33]. Both works cluster two-dimensional
GPS position time series of individual vehicle trips from start to destination. Since the
position time series of a single vehicle does not contain information about surrounding
vehicles and since such a trip is composed of a multitude of scenario instances, their
approach is not suitable to cluster single scenario instances with traffic interactions to
scenario types. From a technical perspective, these approaches are limited to the two-
dimensional GPS position time series.

In [98, 165], so-called “driving encounters” between two vehicles are clustered based on
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vehicle position trajectories. The approach yields four [98] and ten [165] clusters where
one cluster contains driving encounters at crossings, another clusters contains driving
encounters in which vehicles approach each other on opposing lanes, and so on. Arguably,
this level of granularity does not provide a sufficient level of detail to yield fine-grained
scenario types. For instance, it ignores the various different ways how two or more vehicles
may interact at a crossing. From a technical perspective, the approach is limited to two-
vehicle interactions, while in reality scenario instances take place with more than two
vehicles.

In [121], an approach is presented that clusters collision data to identify different types
of collisions. Abstract, categorical information is used as input for the clustering, e.g. the
gender of the driver or three categories of injuries. Intuitively, this approach is limited to
the specific use case of collision data composed of categorical data. It is not applicable to
(non-collision) driving data presented as time series. Similar to that, in [146], clustering
is presented based on keywords for crash data specific to crossings, which has the same
shortcomings. In [141], a combination of categorical and numeric values is used, e.g. the
collision angle, of crash data for clustering. Since these (handcrafted) features are specific to
crash data, the approach is limited to this kind of data.

The goal of [93] is to extract traffic scenario types from simulated driving data. This
approach is limited to scenario instances of two seconds’ length and interactions between
two vehicles. The clustering is thereby based on handcrafted features, such as aggregations
and characteristic points within the time series, e.g. whether or not a braking maneuver took
place as well as the velocity of both vehicles at the start and at the end of the two second
time span. In reality there are traffic scenarios (1) with more than two interacting vehicles
and (2) usually such scenarios are longer than two seconds. Furthermore, handcrafted
features come with the discussed shortcomings (see Sec. 1.1.1). In their follow-up work [94],
they suggest an adapted approach that clusters scenario instances of varying length, but
still on handcrafted features, e.g. whether the ego vehicle performed a lane change or not.

The approach of [152] avoids the use of handcrafted features. Scenario instances are
represented as time series of fixed length and are clustered based on difference between
those time series. Their approach requires the expert to manually select values for technique-
specific parameters that are used to compute the amount and structure of the clusters. Thus,
the structure and level of granularity of the scenario types is chosen by the expert based on
the mental model, which contrasts the goal of reducing the influence of the mental model.

Summary: The existing works are either (1) technically limited, i.e. restrictions in the
number of vehicles, the total duration of the scenario, and the type, number, and length of
time series, or (2) heavily depend on the mental model of the expert, i.e. using handcrafted
features or relying on the expert to compute shape and number of clusters.
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7.3. Completeness Check (and Test Exit Criteria)

The existing works about completeness of testing and test exit criteria for automated and
autonomous driving systems are roughly divided into two groups, namely (1) works that
raise the concern that verification and validation solely by real test drives are not feasible
and (2) works that provide constructive methods to assess testing completeness.

In [161], a statistical calculation is presented to show that verification and validation
solely by real test drives is infeasible. The average driven kilometers between two fatal
accidents on German highways are used to derive that 6.61 billion kilometers need to
be driven to ensure to encounter at least one of these scenarios. Similarly, in [63], fatal
accidents are used as well. It is stated that tens of billions of kilometers are needed for direct
measurement of sufficient events for statistical analysis. It is therefore suggested to use
virtual scenarios instead. In another work [176] it is stated that millions or even billions of
miles have to be driven to arrive at an acceptable level of certainty. Instead, it is suggested
to accelerate testing by using mainly critical scenarios. Another work in this line [73] states
that millions to billions of miles need to be driven. All these works did the important task
of raising the awareness that verification and validation by real drive testing alone is not
feasible. However, they do not provide a practically applicable test exit criterion.

In other works [137, 138] it is suggested that the driving system needs to be at least
as good as the human driver. The driving behavior of a human driver is analyzed in all
scenario types of a specific list of scenario types. An expected system behavior for those
scenario types is derived. Then, the system performance is measured with respect to this
expected behavior. This might be used as a test exit criterion for those specific scenario
types: Stop testing once it can be shown that the driving system is better than a human driver.
However, it cannot be used as a general test exit criterion, since the list of scenario types
might not be complete. In this case, it cannot be argued that a system is safe, because it only
performed better than a human driver in some scenarios. Such a comparative argument
needs to be complemented by an argument that the list of scenario types is complete.

There exist works [38, 130] that analyze real drive data and generate for each scenario
type a histogram of occurring instances. For example, a cut-in scenario is happening
with different relative positions of the vehicles. Those distributions are then used for
test case generation by using parameterized scenarios and selecting concrete values for
parameters according to the distributions. However, they do not present a test exit criterion.
They are missing an argument that the list of scenario types is complete for which this
histogram-based testing is performed.

Constructive completeness argumentations for whether or not one has collected sufficient
amounts of data for a single scenario type are presented in [39] and [164]. It is suggested to
describe scenario types with the help of scenario type-specific parameters and deriving a
kernel density function along those dimensions. These works focus on completeness on
the level of single scenario types. Thus, they need to be complemented by a completeness
argument on the level of a list of scenario types.

Summary: The one group of existing works that states that testing solely with real test
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drives is not feasible do not provide a practically applicable test exit criterion. The other
works lack an argument that all scenario types are known.

7.4. Parameterized Scenario Derivation

The derivation of parameterized scenarios comprises two steps: (1) the formalization of
scenario types including the choice of the types of parameters and (2) the identification of
the boundaries of the parameters’ domains.

Various existing works [105, 167] provide abstract guidelines for the mostly manual
process of formalizing scenario types and choosing the “appropriate” parameter types.
Both works base their thoughts on the scenario layer model of [142] that tries to structure
the way the parameter types are selected (see Sec. 7.1). In [50], it is suggested to use those
parameter types the systems is sensitive to.

A variety of works [38, 70, 91, 170, 177] present data-driven approaches to identify the
parameter domains’ boundaries. In [38], parameters are used to describe the braking of
a vehicle in front of the ego vehicle. Similarly, in [177], parameters are used to describe a
lane change. For more complex models, in [91], an approach is presented to encode many
scenario parameters into less scenario parameters with the help of autoencoders. Other
works focus on complex crossing scenarios [70] and on complex highway scenarios with
many cars [170].

Summary: All these works provide approaches and suggest a way to yield parameterized
scenarios that best resemble and cover reality.

7.5. Fitness Function Derivation (and Test Case Selection With
Search-Based Techniques)

Since the space of test cases spanned by the parameters of a parameterized scenario is huge,
search-based techniques have been proposed for targeted test case selection. An abundance
of works has been published, suggesting a variety of different approaches to test driving
systems of all SAE levels [139] against various different (safety) criteria.

First works on search-based test scenario generation presented the idea of applying
search-based techniques for the functional testing of advanced driver assistance systems,
e.g. parking assistants [23] and braking assistants [24, 25]. This initial research focused on
the technical aspects of the application of search-based techniques to these very specific
driver assistance systems, using ad-hoc fitness functions that do not generalize and are not
applicable to other or more complex driving systems.

Similarly, an approach is presented in [4] using an ad-hoc fitness function to test the
interaction of a braking system and an adaptive cruise control system. In [147], an ad-hoc
fitness function for another breaking system is suggested and, in [50], an experience report
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is presented using ad-hoc fitness functions to test an adaptive cruise control system and a
lane keeping assistance system.

For more complex driving systems of higher automation levels, a series of works [9, 79, 81]
suggests to use search to minimize the safe drivable space during the scenario such that
the driving system has a hard time obtaining a safe motion plan. Intuitively, such test
cases are challenging. However, ensuring that scenario of a desired form is not the focus of
these works. Note that in a later work of the same authors [80], which has been published
after this thesis’ publication on fitness functions [57], language snippets like “on lane” or
“is behind” are provided to create specifications, which are translated to fitness functions
ensuring correct scenario form.

Other works use ad-hoc fitness functions to guide the search to test cases in which the
time to collision is small [28, 43, 44] or in which collisions occur, e.g. collisions in crossings
[5], or on usual city roads [46], or on highways [155]. These ad-hoc fitness functions do not
ensure that the selected test cases are of the desired form. Additionally, a collision or a small
time to collision does not necessarily mean that the driving system behaves incorrectly or
unsafe. Thus, the generated test cases are not necessarily “good”.

To overcome this issue, two different methodologies are suggested by literature. On the
one hand, searching for avoidable collisions is suggested [29, 30]. Knowing that a collision is
avoidable means that in case of a collision, the system could be improved to actually avoid
the collision. On the other hand, other works [61, 34] present an ad-hoc fitness function for
a single scenario type. Those fitness functions make use of one safety aspect of the so-called
responsibility-sensitive safety model [144]. By testing specifically against such a safety
criterion, the safety of the driving system’s behavior can be directly argued for. However,
all those works do not ensure a desired scenario form. Additionally, these works [61, 34]
provide their approaches only for a single scenario type without providing methodological
guidance on how to create fitness functions that search for safety model-violating test cases
for other scenario types.

Even though the concept of targeted search promises to be more efficient than random
test selection, it is still very costly to run all the test cases as part of the optimization. Several
technical improvements have been suggested. In [3] and [17], so-called surrogate models
are used to learn the fitness value space. This way, running test cases can be avoided if they
are predicted to yield a bad fitness value. Another idea is to create decision trees during
the search [2] to provide information to the engineer about which regions of the parameter
space spanned by the parameterized scenario results in interesting test cases. Other works
[88, 108, 109, 153] focus on reducing the simulation time of the test cases by executing test
cases only partially and re-using such parts for future test cases. This way, only missing
parts of future test cases need to be run. While all of these technical improvements are
important and show great results [97], these works assume the fitness function to be given
or create them ad-hoc. Neither of them addresses the methodological aspect of how fitness
functions are correctly created.

Another line of research [10, 58, 65, 100, 103, 104, 127, 159, 171] aims at directly generating
the input signals to controllers (and driver assistance systems) instead of generating full-

76



7. Related Work

blown test scenarios. They are not applicable to scenario-based testing of complex driving
systems of higher automation levels.

Scenario-based testing is also used in other domains, e.g. to test unmanned aerial vehicles
[20, 180], cleaning robots [116], and unmanned underwater vehicles [110, 111]. Obviously,
those systems are vastly different from automated driving systems.

Summary: Many of the existing works are not applicable to complex driving systems.
Other works either provide ad-hoc fitness functions for a specific system or scenario type or
focus on the technical aspects of search-based test scenario generation assuming the fitness
function to be given. Both leave the methodological aspect unconsidered of how fitness
functions generally should be created. Especially, ensuring a desired scenario form with the
help of fitness functions is left unaddressed. Note that there is an exception: In [80], which
has been published after this thesis’ publication on fitness functions [57], language snippets
like “on lane” or “is behind” are provided to create specifications, which are translated to
fitness functions ensuring correct scenario form.

7.6. Test Case Generation (Without Search)

Next to search-based test scenario generation, a variety of other approaches have been
suggested that transfer various ideas of classic software testing to driving systems.

In [12], parameter space coverage is suggested, meaning that the parameter space is
discretized and all variations are covered. A similar approach is to perform uniform
random sampling on the parameter space [76, 102] until, e.g., a certain number of test cases
is reached or some sort of coverage of the parameter space is achieved. In addition to
uniformly random sampling, other works [6, 168] suggest to use statistical sampling to
yield a distribution of test scenarios that is similar to the distribution of scenario instances
in reality. To reduce the number of necessary test cases needed for simple parameter space
coverage, some works [136, 154, 173] suggest to discretize the parameter space and select
test cases to yield n-wise combinatorial coverage. However, parameter space coverage
is very similar to gathering miles in real drive test cases: Run test cases until all possible
traffic situations are covered. The necessary number of test cases needed to achieve such
a coverage is just too large to be practically feasible. Note that the amount of necessary
test cases depends on the granularity of the discretization, meaning that a very coarse
discretization requires only very few test cases. However, the coarser the discretization, the
less meaningful is the coverage.

Summary: Test case selection to achieve some sort of parameter space coverage is practi-
cally infeasible. This is why many works suggest to use targeted test case selection using
search-based techniques.
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7.7. (Re-Usability of) Test Cases

Several existing works are based on the idea of extracting scenario instances, also called
concrete test scenarios, from data according to a variety of different selection and filtering
criteria. This data is collected with real test drives [11, 35, 95, 107, 179] or simulation
setups [145]. Similar to manual test case generation based on experience, the result of those
approaches are “test catalogs” of test cases [8]. These are subject to the presented re-usability
issue. Additionally, the extracted scenarios are randomly encountered scenarios, which
is problematic for safety argumentations, as such are hardly possible based on randomly
encountered scenarios. An infeasible amount of driving hours or driven kilometer is
necessary for each version and variant of the system [63, 73, 161, 176].

A very popular idea to circumvent this issue is to extract all scenario instances that occur
in real traffic data and filter for the “critical” ones, where a multitude of distinct metrics of
criticality exist [71, 96, 122, 160, 162, 163, 169]. The resulting “test catalogs” are relatively
small as they contain only the critical scenario instances. When the amount of data is huge,
there is the hope that the resulting “test catalog” overcomes the randomness of encountering
certain scenario instances in real traffic. However, it is still subject to the re-usability issue.
The critical scenario instances are critical with respect to the behavior of the recording test
vehicle or the driver maneuvering the recording vehicle. When such scenario instances
are re-used for testing another vehicle, e.g. the next generation automated or autonomous
vehicle, it is not guaranteed that the scenario instances are still critical. It might be an easy
non-critical test scenario for the new system. Note that such criticality metrics might be
used for targeted generation of scenario instances, e.g. as fitness function for the application
of search-based techniques. In this case, the usage of such criticality metrics is not an
instance of the re-usability issue.

There is one work [22] that discusses the general re-use of test cases, which has been
published after the publications of this thesis. In [22], it is stated that test cases may
yield different results when used in different simulation environments, since simulation
environments may use different simulation models. However, they do not discuss the
re-usability of test cases among different system versions and variants.

Summary: Re-usability of concrete test scenarios among different system version and
variants is implicitly assumed by a variety of works. However, to the best of author’s
knowledge there is no work actually providing evidence for or against this assumption.
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This chapter concludes this work by summarizing the results and their lim-
itations. After presenting lessons learnt, potential future steps are dis-
cussed. Parts of this chapter have previously appeared in peer-reviewed publica-
tions [54, 56, 57, 59], co-authored by the author of this thesis.

8.1. Summary of Results and Limitations

In this work, an approach is shown for scenario-based testing of automated and autonomous
driving systems while considering completeness. The goal is to test the driving system in
the most difficult scenario instances of “all” scenario types. This requires that “all” scenario
types are known (Problem 1) and that the systems is tested in “good” test cases (Problem
2), which are instances of those scenario types.
Addressing Problem 1:

Scenario types are usually manually derived by experts. To complement this manual
process, it is suggested to use automated clustering as redundancy. However, existing
works are technically limited or rely on the expert’s mental model (Gap 1). The presented
clustering approach clusters traffic scenario instances solely based on syntactic similarity,
i.e. by comparing the time series that describe dynamic aspects of the scenario instances like
the position of traffic participants. This reduces the influence of the expert’s mental model
to the choice of what kind of data is recorded. Note that this influence can inherently not be
avoided. By application of the approach to a data set of highway scenario instances with
two lanes with 346 instances and three lanes with 414 instances, 57 clusters representing 38
manually labeled scenario types and 78 clusters representing 67 manually labeled scenario
types could be found. Comparing the granularity of the automatically derived scenario
types with literature’s lists of scenarios types, we found the automatically derived scenario
types to be more granular than [67, 158, 166] and similar granular as [36, 178]; we could not
find a more granular list. Limitations: As it is in the nature of recorded data, the presented
approach depends on the expert’s choice of what kind of data is recorded (and used) as for
the feature computation during the clustering. Thus, the influence of the expert’s mental
model is not completely avoided. Here, relative positions of vehicles to each other have
been used as data for feature computation. From a technical perspective, there may be
more appropriate techniques to determine the number and content of the clusters than the
ones used for this approach. Further, the evaluation is limited to data from a 420m section

79



8. Conclusion and Outlook

of straight highway, which is not representative for the whole driving task. Finally, the
approach is limited in its scalability, since the clusters require manual inspection.

Once the derivation of scenario types is finished, the resulting list of scenario types needs
to be assessed for completeness. Since an absolute measurement is infeasible, the goal is
an assessment relative to collected traffic data. However, existing works either provide
arguments that the classic test exit criterion, namely gathering miles in real traffic, is not feasi-
ble or analyze completeness of data for a single scenario type (Gap 2). With the described
statistical model, lists of such scenario types can be analyzed for completeness relative to a
given traffic data set. An adapted version of the Coupon Collector’s Problem considers the
existence of an unknown scenario type and estimates based on a histogram of occurrence
probabilities (extracted from recorded traffic data) whether this hypothetical unknown
scenario type should have been seen already. Depending on the statistical guarantees one
would like to have, this approach provides the amount of data that is necessary to assume
completeness relative to this data set. The statistical model is applied to hand-crafted,
(artificial) distributions of scenario type occurrence rates as well as to one suggested by
literature. Limitations: The histogram of occurrence probabilities changes with the level
of granularity of the scenario types. Instead of a very abstract scenario type lane change,
one could also use two — still very abstract — scenario types lane change to the left and lane
change to the right, or many more granular ones. As a result, the histogram contains more
or less scenario types with respective occurrence probabilities, which results in different
amounts of necessary data to be considered complete. Thus, granularity influences the
assessment result. However, it is generally unclear what an adequate level of granularity
is. Further, the provided approach assumes the existence of this histogram of occurrence
probabilities of scenario types, which is difficult to acquire. Additionally, the application of
the presented model requires the specification of the occurrence probability up to which it
is desired for scenario types to be known. Choosing an adequate value is left to the expert.
Addressing Problem 2:

The scenario types are fundamentally important for test case generation. Based on those
types, search spaces and fitness functions are created for the application of search-based
techniques to identify “good” test cases. However, existing works either focus on technical
aspects of the search or assume the fitness function to be given or create it ad-hoc. Especially,
ensuring a desired scenario form with the help of fitness functions is left unconsidered
(Gap 3). The presented approach provides methodological guidance for the creation of
fitness functions. Three templates for space, time, and safe operating envelope violation are
provided that can be combined to ensure that the identified test case is of the desired form
and is interesting, meaning that the system under test approaches the boundaries of the safe
operating envelope. The templates are evaluated for highway scenario types suggested by
literature [178] by generating test cases for those types. A prototypical highway pilot driving
system based on [117, 118, 119] served as system under test. Limitations: The templates
are evaluated using 24 scenario types of [178], which are straight-line highway scenario
types. Not contained are special highway scenario types like exist ramps or construction
sites as well as city center scenario types. It is expected that the templates may need slight
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adaption for such other highway scenario types or inner city scenario types, e.g. crossings.
Further, the idea of testing the driving systems in the most challenging test case assumes
that the search-based techniques actually identify the global optimum in the search space
or at least some candidate close to it. However, heuristic search is not perfect and may get
stuck in local optima. Finally, since the fitness function is used to ensure that test cases are
of the desired form, it depends on the structure and level of granularity of the scenario
types, which is an open problem.

Once a system is tested and potential problems are resolved, it needs to be tested again.
One might want to naı̈vely re-use the already generated test cases. Many existing works
implicitly rely on the assumption that this is possible. However, no one shows evidence
for or against this assumption (Gap 4). The presented counter-example conveys that such
a naı̈ve re-use is generally a bad idea if there is no evidence that a “good” test case stays
“good” when re-used. We apply the presented fitness function templates to generate “good”
test cases for three system versions. Then, the best test case identified for each of those
versions is “re-used” for the other two. By showing that a re-used test case is not able to
reveal faulty behavior, while a newly generated test case does so, the system-dependence
of test cases is shown and a counter-example to naı̈ve re-use is provided. Limitations:
The presented experiments are a single counterexample. It does not provide constructive
analysis how it can be determined which existing “good” test cases are not naı̈vely re-usable
because of a change in the system.

8.2. Lessons Learned

As stated in [64], testing is not only about revealing faulty behavior, but also to increase
the confidence that the behavior of the system under test is correct. While this statement is
made in a different context, it holds for the domain of scenario-based testing of automated
and autonomous driving systems. It is the fundamental principle of several lessons learned
throughout working on this thesis, which are named in the context of, but – of course – are
not necessarily limited to scenario-based testing:

Having an explicit definition of the meaning of a “good” test case is key. Only then can
the quality of a test case and the quality of the system behavior be measured quantitatively
(according to the definition). This is fundamental for two reasons: (1) It usually allows for
an automated oracle and (2) without knowing how good or bad a test case is, it is generally
unclear how much it increases the confidence that the systems behaves correctly.

Since those test cases as the result of the test case generation process are needed for the
release argumentation of the system under test, one should aim for a structured and simple
to interpret methodology and process. An unstructured approach that, e.g., uses trial and
error until the results look “as expected” is not providing any confidence. Similarly, even
if failing test cases are generated for some scenario types, no confidence is gained if the
approach is hardly interpretable.

Completeness and adequacy are fundamental. A good testing approach needs to incor-
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porate validity checks for the inputs to the test case generation process, intermediate results
in between sequential steps, and the final test cases. The best techniques integrated into the
test case generation process will not yield useful results if they are applied on bad inputs.
For instance the recorded traffic data that serves as input to the scenario clustering needs
to be of high quality; otherwise the results will be meaningless. Analogously, if the fitness
function or search space - both input to the search-based test case generation - are bad, the
search cannot find any “good” test case and the identified test cases are meaningless.

8.3. Outlook and Future Work

While this work addresses a variety of problems and gaps, several issues stay unsolved
and may be aimed at by future work. The majority of the following open problems are
fundamental not only for the approaches presented in this work, but also for many other
existing approaches as well.

Suitable level of scenario granularity The level of granularity determines the number
of scenario types, which means that most of the steps in the test case generation process
are affected by the granularity. Many of the statistical models for completeness assessment
are influenced by the number of scenario types. Similarly, the granularity directly affects
the parameter space of parameterized scenarios as well as the test selection criterion (i.e.
the fitness functions in this work) and, thus, indirectly the test case generation. Further
investigation is necessary to identify a suitable level of scenario granularity.

Extended and integrated statistical assessment Ideally, one would like to receive an
overall, sound statistical guarantee that a driving system is behaving safe in every possible
traffic situation it may encounter. While this might be too ambitious, several steps in the
test case generation process may be enhanced with statistical analysis. For instance one
would like to estimate how well the test case generation technique performed in identifying
the relevant test cases in the parameter space of a parameterized scenario. Such statistical
analyses may then be combined to an overall statistical assessment.

Adequacy of a parameterized scenarios Many existing works in the domain of scenario-
based testing rely on parameterized scenario for test case generation. Their creation usually
involves a lot of manual effort. Intuitively, the test case selection can only select test cases
that are actually contained in the parameter space of a parameterized scenario. Thus,
validation of the parameterized scenarios’ completeness and adequacy is necessary.

Fitness function templates for other highway and city center scenarios More specific to
this work’s approach is the idea to extend the presented fitness function templates to other
highway scenario types, e.g. exit ramps and construction sites, as well as to non-highway
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scenarios, e.g. crossings or roundabouts in city centers. While it is expected that the core
notion of time, space, and safety (distance) violation does not change, the templates may
require adaption to be applicable to such scenario types.

Investigation of the re-usability issue While this work presents a counterexample to the
naı̈ve re-usability of test cases, it may still be very well possible to utilize historical test data
or system change information to (1) assess the re-usability of test cases or (2) improve the
cost-effectiveness of the generation of new test cases.

Adaptions for future driving systems Future driving systems may render some parts of
the presented test case generation process obsolete or inapplicable. For instance, the notion
of safety may change when driving systems cooperate with each other. Thus, adaptions to
the presented approaches may be necessary, i.e. new scenario types are added and refined
parameterized scenarios and fitness functions are required.
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[96] Matthias Lehmann, Maximilian Bäumler, Günther Prokop, and Diana Hamelow. Use
of a criticality metric for assessment of critical traffic situations as part of sepia. In 19.
Internationales Stuttgarter Symposium, pages 1154–1167. Springer, 2019.

[97] Guanpeng Li, Yiran Li, Saurabh Jha, Timothy Tsai, Michael Sullivan, Siva Kumar Sas-
try Hari, Zbigniew Kalbarczyk, and Ravishankar Iyer. Av-fuzzer: Finding safety
violations in autonomous driving systems. In 2020 IEEE 31st International Symposium
on Software Reliability Engineering (ISSRE), pages 25–36. IEEE, 2020.

[98] Sisi Li, Wenshuo Wang, Zhaobin Mo, and Ding Zhao. Cluster naturalistic driving
encounters using deep unsupervised learning. In IEEE Intelligent Vehicles Symposium
(IV), pages 1354–1359, 2018.

93



Bibliography

[99] Yihao Li, Jianbo Tao, and Franz Wotawa. Ontology-based test generation for au-
tomated and autonomous driving functions. Information and Software Technology,
117:106200, 2020.

[100] Felix Lindlar, Andreas Windisch, and Joachim Wegener. Integrating model-based
testing with evolutionary functional testing. In Software Testing, Verification, and
Validation Workshops (ICSTW), 2010 Third International Conference on, pages 163–172.
IEEE, 2010.

[101] Waymo LLC. Waymo open dataset. online at https://waymo.com/open/, re-
trieved 5th October 2020.

[102] Rupak Majumdar, Aman Mathur, Marcus Pirron, Laura Stegner, and Damien Zufferey.
Paracosm: A language and tool for testing autonomous driving systems. arXiv preprint
arXiv:1902.01084, 2019.

[103] Reza Matinnejad, Shiva Nejati, Lionel C Briand, and Thomas Bruckmann. Automated
test suite generation for time-continuous simulink models. In Proceedings of the 38th
international conference on software engineering, pages 595–606. ACM, 2016.

[104] Reza Matinnejad, Shiva Nejati, Lionel C Briand, and Thomas Bruckmann. Test
generation and test prioritization for simulink models with dynamic behavior. IEEE
Transactions on Software Engineering, 45(9):919–944, 2018.

[105] Till Menzel, Gerrit Bagschik, Leon Isensee, Andre Schomburg, and Markus Maurer.
From functional to logical scenarios: Detailing a keyword-based scenario description
for execution in a simulation environment. In 2019 IEEE Intelligent Vehicles Symposium
(IV), pages 2383–2390. IEEE, 2019.

[106] Till Menzel, Gerrit Bagschik, and Markus Maurer. Scenarios for development, test
and validation of automated vehicles. In 2018 IEEE Intelligent Vehicles Symposium (IV),
pages 1821–1827. IEEE, 2018.

[107] Pascal Minnerup, Tobias Kessler, and Alois Knoll. Collecting simulation scenarios by
analyzing physical test drives. In IEEE Intelligent Transportation Systems Conference
(ITSC), pages 2915–2920, 2015.

[108] Pascal Minnerup and Alois Knoll. Testing autonomous driving systems against sensor
and actuator error combinations. In Intelligent Vehicles Symposium Proceedings, 2014
IEEE, pages 561–566. IEEE, 2014.

[109] Pascal Minnerup and Alois Knoll. Temporal logic for finding undesired behaviors
of autonomous vehicles in a state space explored by dynamic analysis. In Intelligent
Vehicles Symposium (IV), 2016 IEEE, pages 1248–1253. IEEE, 2016.

94

https://waymo.com/open/


Bibliography

[110] Galen E Mullins, Paul G Stankiewicz, and Satyandra K Gupta. Automated generation
of diverse and challenging scenarios for test and evaluation of autonomous vehicles.
In IEE International Conference on Robotics and Automation (ICRA), pages 1443–1450,
2017.

[111] Galen E Mullins, Paul G Stankiewicz, R Chad Hawthorne, Jordan D Appler, Michael H
Biggins, Kevin Chiou, Melissa A Huntley, Johan D Stewart, and Adam S Watkins.
Delivering test and evaluation tools for autonomous unmanned vehicles to the fleet.
Johns Hopkins APL technical digest, 33(4):279–288, 2017.

[112] Wassim G Najm, John D Smith, Mikio Yanagisawa, et al. Pre-crash scenario typology
for crash avoidance research. Technical report, United States. National Highway
Traffic Safety Administration, 2007.

[113] Mirko Nentwig, Maximilian Miegler, and Marc Stamminger. Concerning the appli-
cability of computer graphics for the evaluation of image processing algorithms. In
Vehicular Electronics and Safety (ICVES), 2012 IEEE International Conference on, pages
205–210. IEEE, 2012.

[114] Mirko Nentwig and Marc Stamminger. Hardware-in-the-loop testing of computer
vision based driver assistance systems. In Intelligent Vehicles Symposium (IV), 2011
IEEE, pages 339–344. IEEE, 2011.

[115] Christian Neurohr, Lukas Westhofen, Tabea Henning, Thies de Graaff, Eike
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[129] Andreas Pütz, Adrian Zlocki, Julian Bock, and Lutz Eckstein. System validation
of highly automated vehicles with a database of relevant traffic scenarios. 12th ITS
European Congress, 2017.

[130] Andreas Pütz, Adrian Zlocki, Jörg Küfen, Julian Bock, and Lutz Eckstein. Database
approach for the sign-off process of highly automated vehicles. In 25th International
Technical Conference on the Enhanced Safety of Vehicles (ESV) National Highway Traffic
Safety Administration, 2017.

96

https://www.nvidia.com/content/dam/en-zz/Solutions/self-driving-cars/safety-force-field/the-safety-force-field.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/self-driving-cars/safety-force-field/the-safety-force-field.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/self-driving-cars/safety-force-field/the-safety-force-field.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/self-driving-cars/safety-force-field/the-safety-force-field.pdf


Bibliography

[131] Rodrigo Queiroz, Thorsten Berger, and Krzysztof Czarnecki. Geoscenario: An open
dsl for autonomous driving scenario representation. In 2019 IEEE Intelligent Vehicles
Symposium (IV), pages 287–294. IEEE, 2019.

[132] Stefan Riedmaier, Thomas Ponn, Dieter Ludwig, Bernhard Schick, and Frank Dier-
meyer. Survey on scenario-based safety assessment of automated vehicles. IEEE
Access, 8:87456–87477, 2020.

[133] Albert Rizaldi and Matthias Althoff. Formalising traffic rules for accountability
of autonomous vehicles. In 2015 IEEE 18th International Conference on Intelligent
Transportation Systems, pages 1658–1665. IEEE, 2015.

[134] Albert Rizaldi et al. Formalising and monitoring traffic rules for autonomous vehicles
in isabelle/hol. In International Conference on Integrated Formal Methods, pages 50–66.
Springer, 2017.

[135] Albert Rizaldi, Fabian Immler, and Matthias Althoff. A formally verified checker
of the safe distance traffic rules for autonomous vehicles. In NASA Formal Methods
Symposium, pages 175–190. Springer, 2016.

[136] Elias Rocklage, Heiko Kraft, Abdullah Karatas, and Jörg Seewig. Automated scenario
generation for regression testing of autonomous vehicles. In 2017 IEEE 20th Inter-
national Conference on Intelligent Transportation Systems (ITSC), pages 476–483. IEEE,
2017.

[137] Christian Roesener, Felix Fahrenkrog, Axel Uhlig, and Lutz Eckstein. A scenario-
based assessment approach for automated driving by using time series classification
of human-driving behaviour. In 2016 IEEE 19th International Conference on Intelligent
Transportation Systems (ITSC), pages 1360–1365. IEEE, 2016.

[138] Christian Roesener, Jan Sauerbier, Adrian Zlocki, Felix Fahrenkrog, Lei Wang, András
Várhelyi, Erwin de Gelder, Joris Dufils, Sandra Breunig, Pablo Mejuto, et al. A com-
prehensive evaluation approach for highly automated driving. In 25th International
Technical Conference on the Enhanced Safety of Vehicles (ESV) National Highway Traffic
Safety Administration, 2017.

[139] SAE. Definitions for terms related to on-road motor vehicle automated driving
systems. J3016, SAE International Standard, 2018.

[140] Khaled Saleh, Mohammed Hossny, and Saeid Nahavandi. Kangaroo vehicle colli-
sion detection using deep semantic segmentation convolutional neural network. In
2016 International Conference on Digital Image Computing: Techniques and Applications
(DICTA), pages 1–7. IEEE, 2016.

97



Bibliography

[141] Ulrich Sander and Nils Lubbe. The potential of clustering methods to define inter-
section test scenarios: Assessing real-life performance of aeb. Accident Analysis &
Prevention, 113:1–11, 2018.

[142] Fabian Schuldt. Ein Beitrag für den methodischen Test von automatisierten Fahrfunktionen
mit Hilfe von virtuellen Umgebungen. PhD thesis, TU Braunschweig, 2017.

[143] Fabian Schuldt, Falko Saust, Bernd Lichte, Markus Maurer, and S Scholz. Effiziente
systematische testgenerierung für fahrerassistenzsysteme in virtuellen umgebungen.
Automatisierungssysteme, Assistenzsysteme und Eingebettete Systeme Für Transportmittel,
2013.

[144] Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. On a formal model of
safe and scalable self-driving cars. arXiv:1708.06374, retrieved 5th October 2020.

[145] Christoph Sippl et al. From simulation data to test cases for fully automated driving
and adas. In IFIP International Conference on Testing Software and Systems, pages
191–206. Springer, 2016.

[146] Jaehyun Jason So, Inseon Park, Jeongran Wee, Sangmin Park, and Ilsoo Yun. Gener-
ating traffic safety test scenarios for automated vehicles using a big data technique.
KSCE Journal of Civil Engineering, 23(6):2702–2712, 2019.

[147] Michal Sroka, Roman Nagy, and Dominik Fisch. Genetic algorithms in test design
automation. In Applied Mechanics and Materials, volume 693, pages 153–158. Trans
Tech Publ, 2014.

[148] Markus Steimle, Gerrit Bagschik, Till Menzel, Jan Wendler, and Markus Maurer.
Ein Beitrag zur Terminologie für den szenarienbasierten Testansatz automatisierter
Fahrfunktionen. In AAET - Automatisiertes und vernetztes Fahren, 2018.
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