
Hand-pose-based Learning from

Demonstration of Manipulation
Tasks

handed in
BACHELOR’S THESIS

stud. Zeju Qiu

born on the 24.08.1997
living in:

Buergermeister-Haidacher-Strasse 4
82140 Olching

Tel.: 0175 3429125

Human-centered Assistive Robotics
Technical University of Munich

Univ.-Prof. Dr.-Ing. Dongheui Lee

Supervisor: Thomas Eiband, Shile Li
Start: 01.11.2019
Intermediate Report: 17.02.2020
Delivery: 20.03.2020

In your final hardback copy, replace this page with the signed exercise sheet.

Before modifying this document, READ THE INSTRUCTIONS AND GUIDE-
LINES!

Abstract

A Learning from Demonstration algorithm has been created to transfer task knowl-
edge to the robot by observing human demonstration with a depth camera. A
two-tiered segmentation algorithm that employs Hidden Markov Model has been
developed to extract motion primitives from the demonstration and gives them se-
mantic meaning. With the help of the segmentation, the functionality of this pro-
gram has been extended from direct reproduction towards a more optimized and
generalized execution of the demonstration.

2

CONTENTS 3

Contents

1 Introduction 5
1.1 Introduction . 5
1.2 Problem statement . 6
1.3 Procedure . 7

2 State of the Art 9
2.1 Learning from Demonstration . 9
2.2 Human Motion Segmentation . 10
2.3 Robot skills . 11
2.4 Summary . 11

3 Main Part 13
3.1 Solution design . 13
3.2 Environment . 14

3.2.1 ROS . 14
3.2.2 MATLAB . 15
3.2.3 CoppeliaSim/V-REP robot simulator 15

3.3 Data Generation . 16
3.4 Data processing . 18

3.4.1 Transformation . 18
3.4.2 Mapping . 21
3.4.3 Data filtering . 23
3.4.4 Summary data transformation and filtering: 24

3.5 Data pre-processing for HMM . 26
3.5.1 Dynamic Time Warping . 26
3.5.2 Rescaling . 27

3.6 Features . 27
3.6.1 Distance Based Metrics . 27
3.6.2 Velocity Based Metrics . 31
3.6.3 Features selection and weighting 33

3.7 Skill definition . 35
3.7.1 Skill semantic order . 43
3.7.2 Template matching: Hidden Markov Model 43

4 CONTENTS

3.8 Human Motion Segmentation . 45
3.8.1 Segment Point Modelling . 45
3.8.2 Segmentation algorithm . 46

3.9 Dynamic Movement Primitives . 48

4 Experiment 53
4.1 Experiment: Segmentation algorithm 53
4.2 Experiment design . 53
4.3 Experiment execution . 54
4.4 Evaluation . 55

4.4.1 Objective metrics . 56
4.4.2 Subjective metrics . 57

5 Conclusion 63
5.1 Conclusion . 63
5.2 Limitations . 63
5.3 Future Work . 64

List of Figures 65

Bibliography 69

5

Chapter 1

Introduction

1.1 Introduction

Learning from Demonstration (LfD) is a popular technique to transfer task knowl-
edge to a robot. The idea of LfD is to teach the robot new tasks without manually
writing codes, but by showing the robot how to perform the task. Commonly, a
teacher performs multiple demonstrations and generates a data set. A LfD algo-
rithm tries to find a strategy based on the data set to reproduce the demonstration.
The problem statement in LfD can be formulated as follows: the world consists
of states and actions, the desired LfD strategy enables the learner to select an ac-
tion based on the current state [ACVB09]. In traditional robot programming, a
human programmer has to manually implement the desired behavior with codes:
specifies how the robot should perform the action and how the robot respond if a
certain scenario occurs. This way of creating robot applications has some major
drawbacks. Firstly, the robot programming requires expert knowledge. Training
is always required and therefore hinders robot programming to become accessible
for all users. Secondly, even small reconfigurations might require time-consuming
re-programming and the modification of the whole application if the circumstance
changes. With the methods of LfD on the other hand, we can create a programming
framework with which the creation of robot programs will become more intuitive
and the created applications will be more generalizable.
So the question arises: how to create a programming paradigm so that even non-
expert users can create robot applications. One intuitive way is to use a camera to
observe and learn from the demonstration since we as humans also use our eyes to ob-
serve and learn new activities. This kind of demonstration technique is called shad-
owing. Shadowing is where the robot learner uses its own sensing device to record
the demonstration and tries to match the motion of the demonstrator [ACVB09].
How to solve the correspondence problem? How to make the robot reproduce the hu-
man demonstration? This so-called correspondence problem can be solved by iden-
tifying a mapping function between the teacher (demonstrator’s hand) and learner
(robot gripper) [ACVB09]. The mapping function only has to be one-sided, because

6 CHAPTER 1. INTRODUCTION

there is no information transferred back from the learner.
With a recent hand-pose estimation algorithm [LL19], a human could directly demon-
strate manipulation skills to a robot with hand glove and the robot learner is able
to receive the demonstration data with a depth sensor. Furthermore, the demon-
stration involves object handling and therefore an AR tag tracking library could be
used to track the position and orientation of the objects. With these methods, a
mapping between human’s hand and robot gripper can be established.
After the demonstration has been successfully reproduced in the simulator we want
to separate the demonstration into several segments and label each segment with a
skill name. It is further desirable for the robot to be more adaptive to the environ-
ment. For example, after the robot has been shown a demonstration and the object
positions have been changed, the robot should be still able to perform the same set
of actions. Task-parameterized models of movement primitives are often used in this
context. The advantage is that the robot can automatically adjust its movements
to new situations. Some standard approaches like Dynamic Movement Primitives
(DMP) or Task-parameterized Gaussian mixture model (TP-GMM) are helpful
to implement this. For example, we want to use the Dynamic Movement Primitive
(DMP) which encodes a movement primitive into a second-order, non-linear dy-
namical system. We can think of it as employing two systems: a DMP system to
do trajectory planning and a real system to execute. In our case, we want to plan
the trajectory of our robot hand. In our DMP system we plan a path for the robot
to follow, the result is a set of ”forcing terms” as variables calculated to the DMP
[Cal16]. While we can generate DMP with only one demonstration, we will need
more demonstrations to generate TP-GMM. The TP-GMM is more generalized and
can deliver better trajectories to adapt to the new object position.

Aim of my research: is to create a framework, which uses a motion sensing
device as data input to teach manipulation skills, e.g. pick and place, to a robot via
demonstration. The solution should further has the following qualities:

• intuitive: the usage of this framework should be easy to learn and reproduce

• robust: functions under unknown scenarios and can

• extensible: the user should be able to use the routines to extend the func-
tionalities (e.g. define more skills)

• reconfigurable: if the object changes the position, the robot should still be
able to perform the same task without any disturbances or collisions.

1.2 Problem statement

In this paper, the following aspects will be closer examined and they are also the
major contributions of this work:

1.3. PROCEDURE 7

• How to implement learning by demonstration with a vision system: setting up
the demonstration in a robot simulator which represents the demonstration in
reality.

• How to solve the correspondence problem, i.e. how to find the mapping func-
tion from the demonstrator’s hand to the robot end-effector meaningfully. The
robot gripper is, antithetic to human hands, symmetric.

• How to segment the trajectory reasonably. After the segmentation, each seg-
ment should have a semantic meaning (skill).

• How to improve the optimize the execution by applying different motion plan-
ning scheme during the task execution to optimize the demonstration: ranging
from simple linear movements (point-to-point motion) to Dynamic Movement
Primitives (DMP).

• A programming framework for non-expert users

1.3 Procedure

in the following is the procedure depicted, which has been followed during this thesis:

1) Implementation of the hand-pose estimation algorithm by installing and mod-
ifying all the necessary ROS packages and writing launch files.

2) Observing human demonstration: Track the human hand pose and object
poses in the workspace using ROS packages and a Kinect sensor.

3) Modify data; filtering, calculate transformation matrices, create mapping be-
tween robot gripper and hand

4) Training HMM models with multiple demonstrations and create segmentation
procedure

5) Extracting Movement Primitives (MP) from human demonstration: Segment
the demonstration data by identifying if an object has been grasped or released.
The used segmentation mechanism is based on object proximity and without
explicit human commands [6]. The robot should independently recognize e.g.
if the gripper has successfuly grasped the object.

6) Define and parameterize robot skills using the segmented data.

7) Retargeting from human to robot: Define a mapping between finger poses
(i.e. the finger positions when grasping the object) and robot gripper fingers
in order to grasp different objects with the robot

8) Execution of learned MPs: Reproduce the demonstrated task within a robot
simulator (V-REP)

9) Execution of the trajectory generated from DMP

10) Create a programming by demonstration framework

8 CHAPTER 1. INTRODUCTION

Figure 1.1: Introduction: Learning by demonstration

9

Chapter 2

State of the Art

In the following section the problem stated in this paper is been divided into several
aspects and examined individually. For each aspect, it introduces and explains
approaches in the past, some of them inspired this framework and some of them using
a different methodology to solve a similar problem. A comparison and evaluation
of other approaches with my proposed framework will expose the limitations and
advantages of this framework.

2.1 Learning from Demonstration

Learning from demonstration is a popular technique to transfer task knowledge to
the robot. The teacher creates demonstrations with data sets [ACVB09]. Although
the basic principle of learning from demonstration is given, the approach can vary
distinctively.

In this paper [CSFL19] the author presents a framework, which uses an attentional
system and methods from kinesthetic teaching to teach the robot to execute demon-
strated tasks. Kinesthetic teaching is a method to transfer tasks knowledge by
physically guiding the robot to the desired pose. The proposed framework has two
major components: a Robot Manager (RM), which is responsible for teaching and
the execution of tasks, and an attentional system, which provides the possibility to
coordinate the execution of complex tasks and the monitoring of human activities.

In this paper [DXW+16] the author presents a motion sensing-based framework to
create robotic applications. This framework uses a Kinect sensor as motion-sensing
device to perform gesture recognition and manipulates the robot. The proposed
framework can track gestures including poses and joint angles, to perform the map-
ping from human demonstration with robot manipulation and is compatible with
various hardware devices, including the motion sensor and the robot. In the core of
the framework, the author designs ROS (robot operation system) modules to handle
several tasks, including information and model management, control and visualiza-

10 CHAPTER 2. STATE OF THE ART

tion.

In this paper [DZML12] the author uses a Kinect sensor to track the demonstra-
tor’s hand movement to achieve teleoperation. This approach sends whole task
information to the robot, instead of sending limited commands like gestures. After
processing RGB and depth images from the Kinect sensor, including the separation
of the forearm, the position of thumb tip and index finger tip is used to generate
a small coordinate system. This hand coordinate system is used to calculate 3D
anatomical position and orientation of the demonstrator’s hand.

In this paper [LC15] the author focuses on hand gesture recognition to teach the
robot pick-and-place tasks. The author defines seven types of hand gestures and
each one of them represents a basic skill (e.g. transport, grasp, release). With a
CNN-based gesture recognition system, the robot can understand the skill sequence
from a demonstration. After extracting the robot movement primitives, the author
employs the Extensible Agent Behavior Specification Language (XABSL) program-
ming platform to realize pick-and-place tasks.

2.2 Human Motion Segmentation

In this paper [CSFL19] the author applies a simple segmentation mechanism that
comprises distance measuring and explicit human commands. Each object is at-
tached with a proximity area, i.e. a sphere, and each time the robot enters or exits
this area, the trajectory will be segmented. Human commands are also used to
control the robotÂ´s components like the gripper. This segmentation method dis-
tinguishes between two control mode: while the robot is within the proximity area
trajectory will be calculated more carefully (e.g. with Dynamic Movement Primi-
tives) to guarantee precise reproduction of the demonstration, on the other hand,
if the robot is far away from the object, a simple linear point-to-point motion is
sufficient to fulfill the task.

In this paper [LK13] the author employs a two-stage recognition process to per-
form segmentation. One of the challenges in the segmentation procedure is the
variability in human motions, i.e. the same motion can differ significantly between
every demonstration, therefore, the author uses a probabilistic approach with HMM
(Hidden Markov Model) to identify segments. The author trains different HMM
models beforehand with exemplary data and performs template matching with new
data. Further, the author monitors zeros-velocity crossings (ZVC), which will occur
if the joint changes movement direction, to determine the framing windows for the
template matching.

2.3. ROBOT SKILLS 11

2.3 Robot skills

In this paper [PNA+16] the author introduces a task-level programming paradigm
that enables non-expert users to create robot applications. The author divides the
programming into three layers: the primitive, skill and task layer. The primitive
layer consists of primitive motions like move or close gripper. Skill is defined as
the combination of primitives and includes movements like pick or place. Task is
always related to a specific goal, for example assembly or machine tending. After
establishing the structure, the author argues that the skill should further have the
following properties: parametric (always performs the defined action), able to pre-
estimate whether the skill can be executed and able to evaluate the success after
execution.

2.4 Summary

Our mapping function is inspired by this paper’s idea to create a hand coordinate
system [DZML12]. However, because of the novel hand-pose estimation algorithm
[LL19] we can create a much more robust coordinate system using our index finger-
tip, index finger ankle, and thumb tip. The execution of the demonstration in the
simulator shows how stable correct our mapping function is.
In our approach the skill formalization is also object-centered, i.e. a skill is always
defined with an object, The spatial relationship and interaction with an object are
used to characterize a skill. However, unlike the approach introduced in [PNA+16]
the movements are not further divided into primitives or tasks. I believe the sep-
aration into different layers will further increase the difficulty of the segmentation
process.
Our segmentation process has been inspired by the two-tiered recognition process
from [LK13]. However, we are integrating the concept of skills into the segmentation
process, unlike the author who only monitors the zeros-velocity crossings but does
not give the segments a semantic meaning. I believe by labeling segments with the
concept of skills we can further improve the demonstration by incorporating expert
knowledge.

12 CHAPTER 2. STATE OF THE ART

13

Chapter 3

Main Part

3.1 Solution design

In the block diagram 3.1 there is the structure of the technical implementation
depicted. Generally the solution can be divided into five sub processes: data gener-
ation, data processing, mapping, segmentation and execution.

Figure 3.1: Block diagram: structure

14 CHAPTER 3. MAIN PART

Framework usage This section is designed to provide the reader with informa-
tion about how to use the framework and how the solution is implemented. The
reader will have a better understanding of the train of thought. In addition, a real
demonstration has been made and this example is intended to give the reader a
more vivid understanding of the implementation.

3.2 Environment

In this section, the mainly used tools and environments will be introduced to provide
the reader the possibility to understand the process and reproduce the work.

3.2.1 ROS

Robot Operating System (ROS) is a modular, tools-based framework, which simpli-
fies the development of robot applications by providing a structured communication
layer. For example, the hand-pose estimation algorithm relies on ROS and program-
mer in general can profit from its open-sourced packages, libraries and tools. Some
major components, which are used within this paper, are introduced here [QCG+09]:

• Node: a single computation process
• Topic: communication between nodes take place via topics
• Message: a strictly defined data structure
• Launch: a tool to start multiple nodes with parameters
• Package: a program, which can contain source code, launch files, message

definitions etc. documentation

Ar stack alvar is a AR tag tracking library, which enables the user to generate
AR tags and to identify and track the pose of the generated AR markers [NS]. A
launch file has been created to pass the program the necessary information about
the marker size, the camera calibration and the relative output frame to make a
precise identification and calculation of the markers’ pose.

dl pose estimation [LL19] Deep learning hand pose estimation algorithm using
Permutation Equivariant Layer (PEL) to estimate the hand pose. After informations
about indiviual points have been gathered, it uses a voting-based scheme to merge
them into complete hand pose (21 points). More Info! The benefit of this algorithm
is it provides the information about fingertips and finger ankles, which e.g. enables
our program to calculate hand pose and hand gesture. This has proven to be a
major advantage in the following mapping and segmentation process.

record position is a package, which is created within this paper to provide the
spatial pose and time information of the markers and the hand. This program

3.2. ENVIRONMENT 15

records the coordinate transformation from object frame to camera frame, the po-
sition of hand and all the objects (in camera frame). Three ”callback” functions
are implemented to subscribe the marker information (and modify them. The time
information is calculated by setting the time stamp of the first recorded object as
”start time” (value 0) and the time information is calculated by the difference be-
tween current time and start time converting from nano-seconds into seconds. For
each time stamp, all the information about markers are saved. After the recording
has finished, the program modifies the data into a form, which can be used directly
to generate ”.csv”-files.

3.2.2 MATLAB

The main part of this work has been implemented in MATLAB R2019b. MAT-
LAB is a programming plattform designed to analyze data and develop algorithms.
The reason for choosing MATLAB as the main programming platform is because
it provides powerful tools to facilitate the data processing process and is compatible
with the robot simulator CoppeliaSim. Several toolboxes were used to process
the data, before it can be passed to the robot simulator: Robotics System Tool-
box: which enables the program to convert between quaternions, transformation
matrices and Euler anlges (quat2eul, makehgtform etc). Curve fitting toolbox:
was used to generate spline functions and calculate the values (e.g. cscvn) and Sig-
nal Processing Toolbox was used to filter the data points. Further, a library
called SMOOTHN [Gar] has been employed to generate a fast, automatized and
robust discretized spline smoothing for data of three dimensions. One advantage of
SMOOTHN is it can deal with missing (NaN) values, which often occur during the
recording.

3.2.3 CoppeliaSim/V-REP robot simulator

V-REP, or CoppeliaSim is a versatile, scalable, general-purpose robot simulation
framework and can simulate complete demonstrations, with embedded components
including robots, grippers, vision sensors, force sensors, cameras etc. Our experiment
includes the following components:

• a KUKA LBR iiwa 14 robot

• a Baxter gripper

• a resizable table

• several items (primitive shapes, like cuboids)

V-REP programms can be implemented as embedded scripts, add-ons, plug-
ins, ROS nodes and remote API clients [RSF13]. In this paper, the simulation
is controlled via remote API clients, because it can be embedded as footprint code

16 CHAPTER 3. MAIN PART

Figure 3.2: Demonstration: simulator Figure 3.3: Demonstration: real

in other programms like Matlab programms and is therefore better integrated in our
framework. The robot in the simulation can be easily controlled by calling matlab
scripts with remote API functions (e.g. simxSetObjectPosition, simxSetObjectOri-
entation). However, using this kind of control method has the drawback that only
a limited remote API functions are available and the delays in data transmission
increases the duration of task execution.
Two scenes called ”LBR4p demo scenario.ttt” and ”LBR4p demo scenario DMP.ttt”
are used to run the simulation. The first scene is used to display the reproduced
and segmented version of the demonstration, while the latter one is designed for
DMP. The robot is mounted on a table and all objects are on the table to imitate
the demonstration in the real world (see 3.2).

3.3 Data Generation

The first step is to perform movements while recording with a depth camera to
generate demonstrations. In this thesis, an ASUS RGB and Depth sensor is
used to do the recording. After the demonstration 3 files are generated separately:
hand trajectory.csv, object trajectory.csv and coordinate frame.csv, after
importing these files three matrices are created A, B and C. These three matrices
build the core of this framework and all the functions and subroutines, including
the generation of DMP, the calculation of transformation matrices, the generation
of simulation, the generation of HMM templates etc., are all based on these three
matrices:

Ai,j =


a1,1 a1,2 · · · a1,j
a2,1 a2,2 · · · a2,j

...
...

. . .
...

ai,1 ai,2 · · · ai,j

 , 1 ≤ j ≤ 105

3.3. DATA GENERATION 17

Bk,l =


b1,1 b1,2 · · · b1,l
b2,1 b2,2 · · · b2,l

...
...

. . .
...

bk,1 bk,2 · · · bk,l

 , 1 ≤ l ≤ 40

Cm,n =


c1,1 c1,2 · · · c1,n
c2,1 c2,2 · · · c2,n

...
...

. . .
...

cm,1 cm,2 · · · cm,n

 , 1 ≤ n ≤ 64

Note that A has 105 columns and records the positions of all 21 hand points (5
columns per point: time stamp, numbering, coordinates) for each time stamp. B
has 40 columns and records the positions of the markers numbering from 0 to 7 (5
columns per marker: time stamp, numbering, coordinates). If one marker has not
been detected, then the belonging block is 0. C has 64 columns and records the
transformation matrix cTo of the markers numbering from 0 to 7 (8 columns per
marker: time stamp, translation, quaternion). If one marker has not been detected,
then the belonging block is 0. The user has to manually delete the entire row because
zero is not a valid quaternion value to calculate the Euler angles.
Because of the deep learning algorithm that the hand pose estimation algorithm
uses the A matrix will always have the least number of measuring points (rows).
Therefore, the first step is to align the three matrices. For all time stamps in A,
search the counterpart in B and C (the time stamp with the minimal deviation).
After the alignment, A, B and C will have the same number of measuring points
(number of rows), i.g. for every time stamp we will have the position of the hand,
the position and transformation matrix of each object detected.

Important: Firstly, the minimum number of data samples recorded for the hand
must exceeds 30 (because of the usage of filtfilt-filter. Secondly, the system expects
at least 1 object during execution.

Notes on the demonstration: Several things should be paid with great attention
during the demonstration to accelerate the demonstration process and increase the
success rate. Firstly, the ambient light. I noticed that the recognition of markers
is more stable under a dim environment while the hand pose estimation is more
stable under a bright environment. Overall I noticed that the best recording time
is in the morning or in the afternoon and natural light is better than artificial light.
Another thing that has to be checked is to measure the camera with a spirit level
before the recording to make sure that the camera is horizontal. It occurred during
the experiment that because of the camera the whole recording was inclined and
therefore could not be used.
The demonstrations are recorded with the SimpleScreenRecorder to create video

18 CHAPTER 3. MAIN PART

Figure 3.4: Screencast Figure 3.5: RVIZ

files and all the demonstrations data and recordings can be found in the attached
CD.

3.4 Data processing

3.4.1 Transformation

Idea: The positions of the objects are in the camera frame and thus cannot be
passed into the robot simulator directly. The data has to be converted into a defined
reference frame first. There is a marker with the marker id 0 attached on the desk
and serves as the reference frame of the system, i.e. the position of all the objects
and the hand are described in this reference frame. We also define a point coordinate
system in the simulation, which is attached to the table, as our reference frame.
Because the data recorded with the camera are within the left-handed coordinate
system, but the frames in the robot simulator CoppeliaSim are right-handed, the
conversion between those coordinate system has to be calculated first. The conver-
sion from left handed coordinate system to right handed coordinate system is give
by: êxêy

êz

 =

 ez
ey
−ex

 (3.1)

In the following there is an overview of all the transformations calculated and em-
ployed within this thesis:

3.4. DATA PROCESSING 19

The Transformation is given by:

1) Transformation matrix from object frame to camera frame:

cp =

[
cRo r
fᵀ w

]
· op = cTo · op (3.2)

2) Transformation matrix from camera frame to reference frame:

rTc ⊂ oTc (3.3)

3) Transformation matrix from hand frame to reference frame:

rp =

[
rRh r
fᵀ w

]
· hp = rTc · hp (3.4)

4) Transformation matrix from object frame to reference frame:

rp = rTc · (oTc)−1 · op = rTo · op (3.5)

5) Transformation matrix from hand frame to object frame:

op = (rTo)
−1 · rTh · op = oTh · hp (3.6)

6) Transformation matrix from hand frame to reference frame based on oTh (DMP):

rTĥ = rTo · oTô · oTh (3.7)

7) Inverse homogeneous transformation matrix:

(aTb)
−1 =

[
(aRb)

ᵀ −(aRb)
ᵀr

fᵀ w

]
(3.8)

where R is the rotation matrix.

As mentioned in the previous section, we have the information about the transla-
tion and quaternion from C. Quaternion is a mathematical notation to describe
the orientation and rotation of objects. To create the transformation matrix, the
quaternions have to be converted to Euler angles first. The rotation matrix can
be calculated with (3.13). After the rotation matrix has been calculated, it can
be cascaded with the translation vector into the homogeneous transformation
matrix:

aTb =

[
aRb r
fᵀ w

]
(3.9)

which converts a point form the coordinate system b to the coordinate system a.

20 CHAPTER 3. MAIN PART

The resulting transformation matrix is cTo (3.2).
As mentioned earlier, the reference system is defined as the coordinate system of
the marker 0, i.e. it’s transformation matrix from the camera frame to the reference
frame is a subset of the object transformation matrix (3.4). Other transformation
matrices can be calculated with matrix multiplications.
The transformation matrix rTo is important for the simulation: the initial transfor-
mation matrix is used to setup the demonstration in the simulator and others are
used to set the target pose in the DMP.
The transformation matrix rTo is only relevant for the calculation of DMP: after the
demonstration has been segmented, the object will be moved to another position.
The new target position requires the robot to grasp this object from a new pose (in
a reference coordinate system perspective), but still remains the old relation (in a
target coordinate system perspective). The new pose of the robot gripper can only
be obtained by the multiplication of cTo and oTh.

Additional information: If we want to test if the Euler angles have been calcu-
lated successfully we can multiply our general frame with the transformation matrix
R and determine wether these two matrices are aligned. R is defined as the rotation
around an arbitrary unit vector u = (ux, uy, uz) by the angle θ [Col15]. Note the
new coordinate system has to be in the origin because this function does not causes
translation:

R =

 cosθ + ux
2(1− cosθ) uxuy(1− cosθ)− uzsinθ uxuz(1− cosθ) + uysinθ

uyux(1− cosθ) + uzsinθ cosθ + uy
2(1− cosθ) uyuz(1− cosθ)− uxsinsθ

uzux(1− cosθ)− uysinsθ uzuy(1− cosθ) + uxsinθ cosθ + uz
2(1− cosθ)


(3.10)

If we pass the calculated Euler angles directly into the robot simulator, we can
observe an uncontrolled shaking of the robot gripper and the objects (see the plot
3.6), because the Euler angles jump sporadically from positive to the negative and
back again. The gripper tries to follow the Euler angle values and therefore result
in the uncontrolled shacking. The Euler angles have to be filtered before passing to
the robot simulator. First, the Euler angles have to be consistent in the sign except
near zero, this is based upon the assumption that the demonstration takes place
gradually, i.e. without sudden twisting or shaking. We can observe the sporadic
changing of signs for values around π. Secondly, sporadic variations are considered
to be noises during the demonstration and therefore have to be filtered out.

Important: The Euler angles convention will be later explained but it is impor-
tant to remember that the robot simulator uses the XYZ convention to use the
Euler angles, therefore, it is important to calculate throughout the framework with
the XYZ convention, including from quaternion to Euler angles and from rotation
matrix to Euler angles.

3.4. DATA PROCESSING 21

0 10 20 30 40 50 60

Time [s]

-4

-3

-2

-1

0

1

2

3

4

A
ng

le
 [r

ad
]

Euler angles filtering: gripper

alpha
alpha filtfilt
beta
beta filtfilt
gamma
gamma filtfilt

Figure 3.6: Euler angles filtering gripper

3.4.2 Mapping

Idea: The correspondence problem can be solved by identifying a mapping func-
tion between the teacher (demonstrator’s hand) and learner (robot gripper) [ACVB09].
Our found mapping function is onesided, i.e. the information can only be transferred
from the teacher to the learner. In order to control the robot in the simulator, the
pose of the robot gripper has to be calculated beforehand. The idea is that the
robot gripper in the simulator should reproduce the human hand demonstration as
precise as possible. Because a pose normally consists of the the position and orien-
tation, a hand coordinate frame has been defined to calculate the orientation of the
hand. As mentioned before in the previous section, the data after transformation is
in the reference frame, i.e. to reproduce the hand movement, a point reference has
been stationed on the demonstration desk (please refer figure 3.3). The pose of the
gripper is equivalent to the pose of the Tool Center Point (TCP) in reference frame.
The hand is constructed with the positions of the index finger tip (I), the thumb tip
(T) and the index finger ankle (B), with the index finger ankle as the origin. The
middle point between the index finger tip and the thumb tip corresponds to the TCP
of the robot gripper. The z-axis is defined as the line through the origin and the
TCP, while the x-axis and y-axis are calculated through cross product. Together,
they form a right-handed coordinate system 3.7.

The rotation matrix which rotates a reference coordinate system to a new coordinate
system can be obtained with the unit vector of the new coordinate system:

22 CHAPTER 3. MAIN PART

Figure 3.7: Hand coordinate system [Fus]

bRa =

 ubx1 ubx2 ubx3
uby1 uby2 uby3
ubz1 ubz2 ubz3

 (3.11)

The Euler angles convention in CoppeliaSim is defined as:

Q = Rx(α) ·Ry(β) ·Rz(γ) (3.12)

Q =

 1 0 0
0 cosα −sinα
0 sinα cosα

 ·
 cosβ 0 sinβ

0 1 0
−sinβ 0 cosβ

 ·
 cosγ −sinγ 0

sinγ cosγ 0
0 0 1

 (3.13)

For a rigid body, the transformation can be obtained by the rotation about the ab-
solute reference frame in the following order: ZYX. This can also be understood
as the intrinsic rotation around the Tait-Bryan angles XYZ. Intrinsic rotation is
the rotation about the axes of the rotating coordinate system, which changes its
orientation after each elemental rotation, unlike the original coordinate system. In
our case, it is the rotation of α about own X, followed by a rotation of β about own
Y, followed by a rotation of γ about own Z. We use this quality to test our Euler
angles and to calculate the robot gripper pose in the simulator.

3.4. DATA PROCESSING 23

3.4.3 Data filtering

One of the major drawbacks of using a vision system to record the demonstration,
e.g. in comparison with kinesthetic teaching, lies upon the instability of the recorded
data. Not every demonstration after recording is suitable and therefore requires the
framework to handle the exception and eliminate undesirable effects. There are three
major problems, which often occur during the demonstration recording: detection
problem of the markers, deformation of hand and noises.
If one of the markers cannot be detected for a short time span than it will result in an
empty line within the ”coordinate transformation.csv”- or ”object trajectory.csv”-
file. This phenomenon can be noticed by plotting the raw data: several straight
lines occur pointing from the trajectory to the origin of the graph.
The hand can always be detected and therefore does not disappear during the demon-
stration, however, if the hand has not been detected properly, this will result in an
uncontrolled deformation of the hand.
The noises-problem is the major challenge in the demonstration and has significantly
impeded the functionality and progress.

The data filtering process uses the command cscvn from the Signal processing
toolbox [KSL94] to calculate the periodic interpolating cubic spline curve out of
data points in ppform. A univariate piecewise polynomial is defined through a
break sequence and a coefficient array. The result can be understood as a set of
different forth order polynomial equations modeling and each of them modeling one
data point. The major benefit with the calculation of ppforms is its convenience
and reliability in the calculation of velocity and acceleration and are to resample
the data to meet the demand.

pj(x) =
k∑

i=1

(x− ξ)k−iaji , 1 ≤ j ≤ l (3.14)

k∑
j=1

a(j)xk−j = a(1)xk−1 + a(2)xk−2 +
... + a(k)x0 (3.15)

with ξ1 as breaks and aji as the local polynomial coefficients.

In this thesis, Butterworth filter in combination with filtfilt has been repeatedly
used to filter out noises for 2 dimensional data. Butterworth filter is an Infinite
Impulse Response Filter (IIR) which has the advantage that it works recursively
and therefore creates the same slope of a filter with a clearly lower order [ABRW14].
The MATLAB command butter(n, Wn) returns the coefficients of an nth-order
lowpass digital filter with normalized cutoff frequency Wn. In this paper, the order
and cutoff frequency are adapted to the concrete scenario. The major benefit of the
filtfilt filtering is it eliminates phase distortions.

24 CHAPTER 3. MAIN PART

The calculation of the velocity and acceleration is required for the DMP:

0 10 20 30 40 50 60

Time

-5

-4

-3

-2

-1

0

1

2

3

4

5

V
al

ue

Velocity profile of object 5 in x direction

pos [m]
vel [m/s]

acc [m/s2]

(a) X: pos, vel, acc

0 10 20 30 40 50 60

Time

-3

-2

-1

0

1

2

3

V
al

ue

Velocity profile of object 5 in y direction

pos [m]
vel [m/s]

acc [m/s2]

(b) Y: pos, vel, acc

0 10 20 30 40 50 60

Time

-1.5

-1

-0.5

0

0.5

1

1.5

V
al

ue

Velocity profile of object 5 in z direction

pos [m]
vel [m/s]

acc [m/s2]

(c) Z: pos, vel, acc

Figure 3.8: Position, Velocity, Acceleration in X-, Y-, Z-direction

3.4.4 Summary data transformation and filtering:

Sample demonstration: The sample demonstration is to pick up the object 5
and place it on the table, afterward to pick up the object 3 and stacks it on the
object 5.
A short summary of the data processing process is depicted in plots 3.9: at the
beginning we can see the data floating within the graph and we are not able to tell
what kind of demonstration we are analyzing. After the transformation process,
the trajectory stands vertical above the XY-plane and we can observe the TCP ap-
proaches the objects and picks and places of the objects. At the end returning to the
initial position. After the filtering, the TCP trajectory and the object trajectories
are more smooth and has fewer variations. The processed data can now be passed
to the segmentation process.

3.4. DATA PROCESSING 25

Figure 3.9: 1) Original raw data 2) Transformation from camera to reference frame
3)Transformed and filtered data

26 CHAPTER 3. MAIN PART

3.5 Data pre-processing for HMM

One of the major challenges in the classification is the temporal and spatial variations
between the trained templates and the newly generated data. Therefore, all the
data, including data to train HMM, has to be modified before the classification with
HMM.

3.5.1 Dynamic Time Warping

Dynamic Time Warping (DTW) can eliminate the temporal distortions and creates
non-linear alignments between time series that have similar characteristics but lo-
cally out of phase [RK04]. The idea is to construct a matrix out of the two sequences
and try to find a path within this matrix, which minimizes the cumulative distance
between them. In the following graph 3.28 there is the finger tip distance before and
after the modification with DTW depicted: the red line is calculated by the means
of the corresponding HMM model (from skill Pick up), the yellow line represents
the demonstration data and the green line represents the data after modification.
We can notice that the modified data is better adapted to our HMM model.

DTW [RK04] aligns the following two time series Q and C with different lengths:

Q = q1, q2, ..., qi, ..., qn (3.16)

C = c1, c2, ..., cj, ..., cm (3.17)

γ(i, j) = d(qi, cj) + min{γ(i− 1, j − 1), γ(i− 1, j), γ(i, j − 1)} (3.18)

where γ(i, j) is the cumulative distance and d(i, j) is the current distance.

Figure 3.10: Dynamic Time Warping

3.6. FEATURES 27

3.5.2 Rescaling

The idea is to reduce the spatial variations by rescaling every point between 0 and
1. For example, different people have different hand size and stretches the fingers
differently during demonstration (e.g. by grasping), so that the absolute value of
the distance between the fingertips might vary significantly, even though they are in
fact executing the same movement. After rescaling, the maximal stretching during
the grasping will be uniformly 1:

x̂ =

[
x− xmin

xmax − xmin

]
(3.19)

0 2 4 6 8 10 12

Time

0.07

0.075

0.08

0.085

0.09

0.095

0.1

V
al

ue

Dynamic Time Warping

model mean
splined model mean
data
model mean DTW
data DTW

Figure 3.11: DTW data filtering

3.6 Features

To classify segments, 8 different features are defined and are used to characterize
a skill, 6 of them are distance based and measures the position and 2 of them are
velocity based and monitors the velocity. Like the implementation above, the filter is
constructed with Butterworth and filtfilt, however, the cutoff frequency is higher,
because it is desired to keep the characteristics of the features, unlike the filtering
of euler angles, where a smooth transition is desired.

3.6.1 Distance Based Metrics

Distance between thumb tips and index fingertips: This diagram provides
the information about the distance between the index fingertip and thumb finger-

28 CHAPTER 3. MAIN PART

tip during the demonstration. The fingertips distance provides information about
whether an object has been held in hand. One basic assumption is that the finger
can have two basic states: closed and opened. Because of the different hand sizes
from demonstrator or different object sizes, the fingertip distance can vary massively.
Therefore, no fixed threshold has been defined, but rather the program calculates
the mean of the fingertip distance as threshold and divides the data points into high
and low values (yellow line). The closed state is associated with low values. The
positions, where the gripper changes from high to low or vice versa, indicates a
closing or opening of the fingertips and might serve as possible segmentation points.

0 10 20 30 40 50 60

Time

0.05

0.06

0.07

0.08

0.09

0.1

0.11

D
is

ta
nc

e

Distance between finger tips: Sample

unfiltered marker
IIR filtfilt
gripper closed/opend

Figure 3.12: Distance between fingertips

Target object profile: This diagram provides the target object during the demon-
stration by measuring the distance between the reference marker and all other ob-
jects. The idea is based on the assumption that all the objects have two states:
static and dynamic. Because the demonstrator performs the demonstration with
the right hand, there can only be one object that can be handled at one time. The
velocity, which is represented by the derivative of the trajectory, is calculated and
also plotted in the diagram (the straight lines around zero). Only when the velocity
significantly differs (ṡ > 10−3) from zero for a time period (at least 15 out of 20
data points due to noise) we consider it as moving and label this section of the time
vector t with the moving object as the target object. Other programs will use this
information and only consider the characteristics of the target object, e.g. in the
template matching.

3.6. FEATURES 29

0 10 20 30 40 50 60

Time [s]

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

D
is

ta
nc

e

Distance between object 0 and other objects

unfiltered object 3
filtfilted object 3
derivative object 3
unfiltered object 4
filtfilted object 4
derivative object 4
unfiltered object 5
filtfilted object 5
derivative object 5
modified object 3
modified object 4
modified object 5

Figure 3.13: Target object profile

Proximity area profile: The diagram provides the distance between the TCP
and all the objects during the demonstration. We can observe that the distance
between the TCP and the is comparably small while it has been held by the demon-
strator. This feature provides the user with the information about how close is the
object near the hand and if the hand is approaching or leaving an object. However,
this is one of the most unstable features and is therefore only suitable to a lim-
ited extent for the classification. We can observe in the following graph that even
though the demonstrator only holds the object in the hand while moving, the value
can still have a variance of several centimeters. Depending on the velocity of the
hand movement, the variances can become even bigger.

TCP in object frame: The diagram provides the position of the TCP in the
target object frame. This feature is designed as a supplement to the proximity area
profile feature because it also provides the information about the approaching or
departing direction.
Because of the limitations of the hand pose estimation algorithm, the object can only
be grasped from above (e.g. Pick up) or approached from laterally (e.g. Push), it
is sufficient to only evaluate the position in the X-direction to determine from which
direction is the hand approaching. This is only valid if the object is has been placed
with the y-Axis pointing above. An additional function should be implemented to
determine the orientation of the object and depending on the orientation change the
observing axis.

30 CHAPTER 3. MAIN PART

0 10 20 30 40 50 60

Time [s]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

D
is

ta
nc

e
Proximity area profile: Sample

unfiltered object 0
filtfilted object 0
unfiltered object 3
filtfilted object 3
unfiltered object 4
filtfilted object 4
unfiltered object 5
filtfilted object 5

Figure 3.14: Proximity area profile

0 10 20 30 40 50 60

Time [s]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

D
is

ta
nc

e

TCP position in object frame: Sample

unfiltered in object frame 3
filtfilted in object frame 3
unfiltered in object frame 4
filtfilted in object frame 4
unfiltered in object frame 5
filtfilted in object frame 5

Figure 3.15: TCP position in object frame

Distance between objects and table: This diagram provides information about
the distance between the object and the table during the demonstration. The object
height is mostly constant and changes only if it has been handled by the demonstra-
tor. This feature is primarily designed to separate the Place-skill and the Stack-
skill from each other. In this demonstration, the object 4 has been stacked over the
object 5 and therefore has a constant value around 0.07 m towards the end of the

3.6. FEATURES 31

demonstration. However, because the demonstrated objects are cubes, the height
difference is not very clear-cut, it should be a more distinctive feature if the objects
have other shapes (e.g. cuboid).

0 10 20 30 40 50 60

Time [s]

0

0.05

0.1

0.15

0.2

0.25

0.3

D
is

ta
nc

e

Object height profile: Sample

unfiltered object 0
filtfilted object 0
unfiltered object 3
filtfilted object 3
unfiltered object 4
filtfilted object 4
unfiltered object 5
filtfilted object 5

Figure 3.16: Object height profile

TCP rise and fall profile: The diagram provides the TCP height profile and
TCP height changing profile during the demonstration and segments the trajectory
if the hand changes the movement direction from rising to falling or vice versa. This
feature is crucial in the separation of the skills Move to and Move with from other
skills (see skill definition). The derivative of the movement has been calculated to
determine the moving direction. The threshold is by zero.

3.6.2 Velocity Based Metrics

Velocity profile hand: The diagram provides the velocity profile of the hand
during the demonstration by measuring the changes in the TCP position. This
feature is originally designed to be the main segmentation, because of the assumption
that the hand velocity will automatically slow down if the demonstrator tries to
execute a delicate action or by the transition between two skills. In figure 3.18 we
can observe the wavy course of the hand velocity.

Velocity profile objects: This diagram provides the velocity information of the
all the objects during the demonstration by calculating the derivative of the object
positions. In the previous data filtering process because the SMOOTHN library

32 CHAPTER 3. MAIN PART

0 10 20 30 40 50 60

Time [s]

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

D
is

ta
nc

e
TCP rise and fall profile: Sample

unfiltered
filtfilted
derivative

Figure 3.17: TCP rise and fall profile

0 10 20 30 40 50 60

Time

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

V
al

ue

Velocity profile of the hand

vel [m/s]
vel filtfilt [m/s]

Figure 3.18: Velocity profile hand

cannot calculate the objects’ position trajectory which barely moves, a threshold
for displacement has been defined under which the velocity is considered to be
zero. This will result that the velocity of the target object during a skill execution is
often characteristically zero, because the object might not be touched (e.g. pick up).
However, in a demonstration which comprises of multiple skills, the object will often
be moved. The result is a poor recognition rate in the later template matching

3.6. FEATURES 33

process. Therefore, in this section, the filtered velocity of objects under a certain
threshold, which implies an inactivity, will be considered zero.

0 10 20 30 40 50 60

Time

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

V
al

ue

Velocity profile of object 4

vel [m/s]
vel filtfilt [m/s]

(a) Velocity object 4

0 10 20 30 40 50 60

Time

0

0.02

0.04

0.06

0.08

0.1

0.12

V
al

ue

Velocity profile of object 5

vel [m/s]
vel filtfilt [m/s]

(b) Velocity object 5

0 10 20 30 40 50 60

Time

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

V
al

ue

Velocity profile of object 0

vel [m/s]
vel filtfilt [m/s]

(c) Velocity object 0

0 10 20 30 40 50 60

Time

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

V
al

ue

Velocity profile of object 3

vel [m/s]
vel filtfilt [m/s]

(d) Velocity object 3

Figure 3.19: Object velocity profile

3.6.3 Features selection and weighting

The most important question after determining the features is how to select or
weight the extracted features to improve the efficacy of segmentation. There are
basically two approaches: only use several features or use all the features for each
skill. Further, how to weight the selected features: do all the features have the same
importance or are some features more distinctive than others and therefore should
have a bigger influence on the classification? The reasoning behind this is intuitive:
some features appear more important to a skill than others, some features appear
nearly marginal to some skills. For example, the fingertip distance is crucial in the
classification of the place-skill but does not characterize the move-skill. On the other
hand, how do we compare the likelihood of the skills if they are examined under
different conditions?

34 CHAPTER 3. MAIN PART

Skill segmentation

Pick up Place Move Move
(with)

Stack Push Locate

Hand velocity profile
√ √ √ √ √ √ √

Object velocity profile
√ √ √ √

Target object profile
√ √ √ √ √ √

Fingertips distance profile
√ √ √ √ √

Proximity area profile
√ √ √ √ √

TCP rise/fall
√ √ √ √ √ √ √

TCP in object frame
√ √ √ √ √

Object height profile
√ √ √ √ √ √

Table 3.1: Features consideration during classification

However, in order to use all the features, the features have to be defined globally
and invariantly. In this thesis there is no systematic examination of this two ideas,
but rather a small-scale comparison between these two strategies:
In the table 3.1 we have examined each skill individually with the template data
(see next section) and have reached the conclusion that what features are important
for each skill: The following three feature selection and weighting methods haven
been compared:

• Equally weighted, all features
• Differently weighted, selection of features
• Differently weighted, all features

The best segmentation result was achieved by the third method. For example as
stated earlier, the Move to and the Move with skill have the property that the
TCP is actually rising while all the other skills have a constant TCP height profile
or the height of the TCP is actually decreasing. This is an example for a distinctive
skill in the segmentation and has to be examined first. Other skills, for example
Locate also have distinctive features. After examining these features, some skills
will be excluded from the examination and the for the rest of the skills the template
matching will be performed for all features equally weighted.
An advantage is the comparison between different skills is possible and plausible
because all the skills are examined under the same condition.

3.7. SKILL DEFINITION 35

3.7 Skill definition

Idea: task is comprised of skills, each skill has a typical time period +- 2s from
template. A skill can be understood as a simple atomatic motion and can be used to
form more complex behaviours [PNA+16]. In this thesis, skills are used to describe
the observed demonstration. However, unlike the approach introduced in [PNA+16]
the motions are not further divided into primitives or tasks.

Template: Each skill has to be demonstrated multiple times in order to generate
the model. In this framework, each demonstration lasts between 7 to 12 seconds
with different velocity, height and approaching direction. One skill comprises of
exactly 9 demonstrations.

Challenge: varying recording values During the implementation, the varia-
tion of the recorded data has massively impeded the progress and reliability of this
program. For example, by recording the same object simply lying on the table and
calculating the distance between object marker with the table, the height has an
oscillatory behaviour and the value can vary between 1.5 cm to 3.8 cm, depending
on the ambient light. Another problem occurred during monitoring the distance be-
tween TCP and object while moving the object holding in hand. Before the actual
implementation it was assumed that the distance should be constant and the value
should be near 0, however, because of the different velocity in the data processing,
the actual value varies significantly depending on the velocity of the movement.
Generally are the variances and distances much higher if the hand moves faster. On
the other hand, because the data has been filtered in the previous step, the variances
and instabiliy are reduced.
In total there are 7 skills defined, however, the user can use the same procedure to
add more skills to the model:

Figure 3.20: Semantic evaluation of skill sequence

36 CHAPTER 3. MAIN PART

Pick up: This skill is defined as approaching an object with stretched fingers from
any position and pauses in the proximity of the target object. The demonstrator
holds the grasping pose and moves the thumb and index finger slowing towards each
other until the object has been grasped. This skill has the following characteristics:

• Distance between fingertips: reducing at the end of the skill
• Proximity area profile: reducing all the time, steady towards the end
• Object movement profile: constant during the whole execution
• Object height profile: constant during the whole execution
• TCP rise and fall profile: negative all the time, steady towards the end
• TCP position in object frame: reducing all the time, steady towards the end

0 2 4 6 8 10 12 14
0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

0.105
Distance between finger tips: Pick up

data1
data2
data3
data4
data5
data6
data7
data8
data9

(a) Distance between fingertips

0 2 4 6 8 10 12 14
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Proximity profile: Pick up

data1
data2
data3
data4
data5
data6
data7
data8
data9

(b) Distance between TCP and target ob-
ject

0 2 4 6 8 10 12 14
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Distance between objects: Pick up

data1
data2
data3
data4
data5
data6
data7
data8
data9

(c) Object movement profile

0 2 4 6 8 10 12 14
0.018

0.02

0.022

0.024

0.026

0.028

0.03

0.032

0.034

0.036
Object height profile: Pick up

data1
data2
data3
data4
data5
data6
data7
data8
data9

(d) Object height profile

0 2 4 6 8 10 12 14
-20

-15

-10

-5

0

5
10-3 TCP rise and fall profile: Pick up

data1
data2
data3
data4
data5
data6
data7
data8
data9

(e) TCP rise and fall profile

0 2 4 6 8 10 12 14
0

0.05

0.1

0.15

0.2

0.25

0.3
TCP in object frame: Pick up

data1
data2
data3
data4
data5
data6
data7
data8
data9

(f) TCP position in object frame

Figure 3.21: Pick up features

3.7. SKILL DEFINITION 37

Place: This skill is defined as moving with closed fingers, while holding an object
in the hand, and approaches the target position on the desk surface. After the
demonstrator arrives the desired position and places the object on the desk surface,
the demonstrator moves the thumb and index finger from each other while the hand
remaining the same pose. This skill has the following characteristics:

• Distance between fingertips: increasing towards the end of the skill
• Proximity area profile: nearly constant during the whole execution
• Object movement profile: reducing all the time, steady towards the end
• Object height profile: negative all the time, steady towards the end
• TCP rise and fall profile: negative all the time, steady towards the end
• TCP position in object frame: nearly steady all the time, within marker range

0 2 4 6 8 10 12 14
0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11
Distance between finger tips: Place

data1
data2
data3
data4
data5
data6
data7
data8
data9

(a) Distance between fingertips

0 2 4 6 8 10 12 14
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Proximity profile: Place

data1
data2
data3
data4
data5
data6
data7
data8
data9

(b) Distance between TCP and target ob-
ject

0 2 4 6 8 10 12 14
-0.018

-0.016

-0.014

-0.012

-0.01

-0.008

-0.006

-0.004

-0.002

0
Distance between objects: Place

data1
data2
data3
data4
data5
data6
data7
data8
data9

(c) Object movement profile

0 2 4 6 8 10 12 14
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Object height profile: Place

data1
data2
data3
data4
data5
data6
data7
data8
data9

(d) Object height profile

0 2 4 6 8 10 12 14
-20

-15

-10

-5

0

5
10-3 TCP rise and fall profile: Place

data1
data2
data3
data4
data5
data6
data7
data8
data9

(e) TCP rise and fall profile

0 2 4 6 8 10 12 14
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
TCP in object frame: Place

data1
data2
data3
data4
data5
data6
data7
data8
data9

(f) TCP position in object frame

Figure 3.22: Place features

38 CHAPTER 3. MAIN PART

Move to: This skill is defined as the movement of the hand from a lower position
to a higher position, without any objects held by the demonstrator. This skill has
the following characteristics:

• Distance between fingertips: no obvious characteristic, mostly steady
• Proximity area profile: no obvious characteristic, mostly increasing
• Object movement profile: constant during the whole execution
• Object height profile: constant during the whole execution
• TCP rise and fall profile: positive all the time
• TCP position in object frame: no obvious characteristic, mostly increasing

0 2 4 6 8 10 12
0.064

0.066

0.068

0.07

0.072

0.074

0.076

0.078

0.08

0.082

0.084
Distance between finger tips: Move to

data1
data2
data3
data4
data5
data6
data7
data8
data9

(a) Distance between fingertips

0 2 4 6 8 10 12
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55
Proximity profile: Move to

data1
data2
data3
data4
data5
data6
data7
data8
data9

(b) Distance between TCP and target object

0 2 4 6 8 10 12
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Distance between objects: Move to

data1
data2
data3
data4
data5
data6
data7
data8
data9

(c) Object movement profile

0 2 4 6 8 10 12
0.023

0.024

0.025

0.026

0.027

0.028

0.029

0.03

0.031

0.032

0.033
Object height profile: Move to

data1
data2
data3
data4
data5
data6
data7
data8
data9

(d) Object height profile

0 2 4 6 8 10 12
-2

0

2

4

6

8

10
10-3 TCP rise and fall profile: Move to

data1
data2
data3
data4
data5
data6
data7
data8
data9

(e) TCP rise and fall profile

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6
TCP in object frame: Move to

data1
data2
data3
data4
data5
data6
data7
data8
data9

(f) TCP position in object frame

Figure 3.23: Move to features

3.7. SKILL DEFINITION 39

Move with: This skill is simply defined as the movement of the hand from a lower
position to a higher position, with an object held by the demonstrator. This skill
has the following characteristics:

• Distance between fingertips: steady during the whole execution
• Proximity area profile: nearly steady all the time
• Object movement profile: no obvious characteristic, mostly increasing
• Object height profile: increasing during the whole execution
• TCP rise and fall profile: positive all the time
• TCP position in object frame: no obvious characteristic, within marker range

0 2 4 6 8 10 12
0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08
Distance between finger tips: Move with

data1
data2
data3
data4
data5
data6
data7
data8
data9

(a) Distance between fingertips

0 2 4 6 8 10 12
0.03

0.04

0.05

0.06

0.07

0.08

0.09
Proximity profile: Move with

data1
data2
data3
data4
data5
data6
data7
data8
data9

(b) Distance between TCP and target object

0 2 4 6 8 10 12
-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01
Distance between objects: Move with

data1
data2
data3
data4
data5
data6
data7
data8
data9

(c) Object movement profile

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Object height profile: Move with

data1
data2
data3
data4
data5
data6
data7
data8
data9

(d) Object height profile

0 2 4 6 8 10 12
-2

0

2

4

6

8

10

12
10-3 TCP rise and fall profile: Move with

data1
data2
data3
data4
data5
data6
data7
data8
data9

(e) TCP rise and fall profile

0 2 4 6 8 10 12
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
TCP in object frame: Move with

data1
data2
data3
data4
data5
data6
data7
data8
data9

(f) TCP position in object frame

Figure 3.24: Move with features

40 CHAPTER 3. MAIN PART

Stack: This skill is defined as as moving with closed fingers, while holding an
object in the hand, and approaches the target object. The demonstrator adjusts the
hand pose to align the holding object with target object. After the object has been
placed, demonstrator moves the thumb and index finger from each other while the
hand remaining the same pose. This skill has the following characteristics:

• Distance between fingertips: steady all the time, increasing towards the end
• Proximity area profile: nearly steady during the whole execution
• Object movement profile: negative all the time, constant towards the end
• Object height profile: falling all the time, constant towards the end
• TCP rise and fall profile: negative all the time, steady towards the end
• TCP position in object frame: nearly constant all the time, within marker

range

0 2 4 6 8 10 12
0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

0.105
Distance between finger tips: Stack

data1
data2
data3
data4
data5
data6
data7
data8
data9

(a) Distance between fingertips

0 2 4 6 8 10 12
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Proximity profile: Stack

data1
data2
data3
data4
data5
data6
data7
data8
data9

(b) Distance between TCP and target object

0 2 4 6 8 10 12
-0.025

-0.02

-0.015

-0.01

-0.005

0
Distance between objects: Stack

data1
data2
data3
data4
data5
data6
data7
data8
data9

(c) Object movement profile

0 2 4 6 8 10 12
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Object height profile: Stack

data1
data2
data3
data4
data5
data6
data7
data8
data9

(d) Object height profile

0 2 4 6 8 10 12
-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005
TCP rise and fall profile: Stack

data1
data2
data3
data4
data5
data6
data7
data8
data9

(e) TCP rise and fall profile

0 2 4 6 8 10 12
-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06
TCP in object frame: Stack

data1
data2
data3
data4
data5
data6
data7
data8
data9

(f) TCP position in object frame

Figure 3.25: Stack features

3.7. SKILL DEFINITION 41

Push: This skill is defined as approaching an object with closed fingers from any
position and pauses in the proximity of the target object. The demonstrator pushes
the target object from any position while keeping the same hand pose, this will result
the object to glide along the desk surface. This skill has the following characteristics:

• Distance between fingertips: no obvious characteristic, mostly steady
• Proximity area profile: falling all the time, steady towards the end
• Object movement profile: no obvious characteristic, mostly steady
• Object height profile: mostly steady during the whole demonstration
• TCP rise and fall profile: steady all the time, around zero
• TCP position in object frame: falling all the time, steady towards the end,

out of marker range

0 2 4 6 8 10 12
0.056

0.058

0.06

0.062

0.064

0.066

0.068

0.07

0.072

0.074
Distance between finger tips: Push

data1
data2
data3
data4
data5
data6
data7
data8
data9

(a) Distance between fingertips

0 2 4 6 8 10 12
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Proximity profile: Push

data1
data2
data3
data4
data5
data6
data7
data8
data9

(b) Distance between TCP and target object

0 2 4 6 8 10 12
-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01
Distance between objects: Push

data1
data2
data3
data4
data5
data6
data7
data8
data9

(c) Object movement profile

0 2 4 6 8 10 12
0.015

0.02

0.025

0.03

0.035

0.04
Object height profile: Push

data1
data2
data3
data4
data5
data6
data7
data8
data9

(d) Object height profile

0 2 4 6 8 10 12
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
10-3 TCP rise and fall profile: Push

data1
data2
data3
data4
data5
data6
data7
data8
data9

(e) TCP rise and fall profile

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
TCP in object frame: Push

data1
data2
data3
data4
data5
data6
data7
data8
data9

(f) TCP position in object frame

Figure 3.26: Push features

42 CHAPTER 3. MAIN PART

Locate: This skill is defined as gliding with closed fingers from any position along
the desk surface, with approximately the same height and pose, towards the target
object and avoids the object from above. After passing through the object the
demonstrator glides along the surface for a short time period. This skill is intended
to determine dimensions within the demonstration. For example, the camera only
registers the position and orientation of the marker, but not the size of the object,
on which the marker is attached. This information could be used in the obstacle
avoidance.
• Distance between fingertips: no obvious characteristic, mostly steady
• Proximity area profile: falling all at the beginning, increasing towards the end
• Object movement profile: constant during the whole execution
• Object height profile: mostly constant during the whole demonstration
• TCP rise and fall profile: steady all the time, around zero
• TCP position in object frame: falling all at the beginning, increasing towards

the end

0 2 4 6 8 10 12 14
0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06
Distance between finger tips: Locate

data1
data2
data3
data4
data5
data6
data7
data8
data9

(a) Distance between fingertips

0 2 4 6 8 10 12 14
0.05

0.1

0.15

0.2

0.25

0.3

0.35
Proximity profile: Locate

data1
data2
data3
data4
data5
data6
data7
data8
data9

(b) Distance between TCP and target ob-
ject

0 2 4 6 8 10 12 14
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Distance between objects: Locate

data1
data2
data3
data4
data5
data6
data7
data8
data9

(c) Object movement profile

0 2 4 6 8 10 12 14
0.021

0.022

0.023

0.024

0.025

0.026

0.027

0.028
Object height profile: Locate

data1
data2
data3
data4
data5
data6
data7
data8
data9

(d) Object height profile

0 2 4 6 8 10 12 14
-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02
TCP rise and fall profile: Locate

data1
data2
data3
data4
data5
data6
data7
data8
data9

(e) TCP rise and fall profile

0 2 4 6 8 10 12 14
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
TCP in object frame: Locate

data1
data2
data3
data4
data5
data6
data7
data8
data9

(f) TCP position in object frame

Figure 3.27: Locate features

3.7. SKILL DEFINITION 43

3.7.1 Skill semantic order

The idea is that a skill sequence should be semantic meaningful. For example, the
algorithm has discovered a place skill, which implies that there is no object currently
holding in hand. If the next recognized skill is a stack, this suggests a failure at least
in the recognition. The relationships between skills are summarized in the following
graph 3.20. An arrow indicates a logical meaningful next skill.
The knowledge about the skill semantic order can be used to reduce the computing
effort or to evaluate the success of a segmentation. In this paper, the semantic order
of skills has been implemented during the segmentation process to sort out certain
skills before the classification and segmentation.

3.7.2 Template matching: Hidden Markov Model

Hidden Markov Model is a probability statistical classifier, which can return the
probability that an observation can be assigned to a particular class. The idea can
also be formulated as: find the class that can best reproduce the given observation.
This is a great advantage of using HMM as the classifier: there is no fixed threshold
defined, which determines whether the observation belongs to a certain class. For
example, because the author generated the template for classification, it is natural
that the author might get higher scores in the classification, considering the hand
size or typical movement velocity. This will distort the result. A HMM-Model can
be described with three elements [Rab89]:

1) State transition probability distribution matrix A:

aij = P [qt+1 = Sj|qt = Si] , 1 ≤ i, j ≤ N (3.20)

2) Observation symbol probability distribution matrix B:

bj(k) = P [vkatt|qt = Sj] , 1 ≤ j ≤ N, 1 ≤ k ≤M (3.21)

3) Initial state distribution π:

πi = P [q1 = Si] , 1 ≤ i ≤ N (3.22)

We can apply the Baum-Welch algorithm to make an estimation of parameters
which define a HMM model based on an observed data set. Baum-Welch Algorithm
is a method designed to iteratively adjust the parameters A, B and pi to maximize
the probability of the occurrence of the obeserved sequence O [Rab89]. The Baum-
Welch Algortihm requires the forward variables and the backward variables, which
are calculated through the Forward Algorithm and Backward Algorithm:

44 CHAPTER 3. MAIN PART

The Forward Algorithm [Rab89] is given by

αt(i) = P (O1O2...Ot, qt = Si|λ) (3.23)

1) Initialization:
α1(i) = πibi(O1) , 1 ≤ i ≤ N (3.24)

2) Induction:

αt+1(j) =

[
N∑
i=1

αt(i)aij

]
bj(Ot+1) , 1 ≤ t ≤ T − 1 , 1 ≤ j ≤ N (3.25)

3) Termination:

P (O|λ) =
N∑
i=1

αt(i)aT (i) (3.26)

where αt(i) is the forward variable, which entails the probability of the observation
sequence O1O2...Ot and state Si at the current time t with the given HMM model
λ.

The Backward Algorithm [Rab89] is given by

βt(i) = P (Ot+1, Ot+2, ..., OT |qt = Si, λ) (3.27)

1) Initialization:
βT (i) = 1 , 1 ≤ i ≤ N (3.28)

2) Induction:

βt(i) =
N∑
j=1

aijbj(Ot+1)βt+1(j) , t = T − 1, T − 2, ...1, 1 ≤ i ≤ N (3.29)

where βt(i) is the backward variable, which entails the probability of the observation
sequenceOt+1Ot+2...OT and state Si at the current time t with the given HMM model
λ.

The observation symbol probability distribution B is generated by a set of multivari-
ate Gaussians, where each Gaussian mean represents the position of the calculated
state and the covariance matrix represents the variance and covariance [LK13]:

fX(x) =
1√

(2π)pdet(
∑

)
exp(−1

2
(x− µ)ᵀ

∑−1
(x− µ)) (3.30)

The probability of the given sequence O: this HMM model leads with the proba-
bility P (O|λ) to the given observation O. P (O|λ) is crucial to determine to which

3.8. HUMAN MOTION SEGMENTATION 45

class belongs the observation. P (O|λ) can be efficiently calculated with the forward
algorithm.

The Baum-Welch Algorithm [Rab89] is given by

ξt(i, j) =
αt(i)aijbj(ot+1βt+ 1(j)

N∑
i=1

αt(i)βt(j)

(3.31)

γt(i) =
N∑
j=1

ξt(i, j) (3.32)

where βt(i) is the backward variable, which entails the probability of the observation
sequenceOt+1Ot+2...OT and state Si at the current time t with the given HMM model
λ.

Summary: In this thesis, each feature from each skill has an own HMM model,
making a total of 56 (7x8) HMM models. Each HMM model can provide the infor-
mation about what is the possibility that the observation belongs to skill X if we
only consider this feature.

3.8 Human Motion Segmentation

In the following there is structure of the segmentation process depicted. The segmen-
tation procedure is a two-tiered segmentation process: the first step is the segment
point modelling, which over-segments the motion and in the next step template
matching will be applied to reduce the over-segmentation and gives the extracted
segments semantic meaning.

3.8.1 Segment Point Modelling

The main segmentation forms the basic structure of the human motion segmentation
(windowing) [LK13].

• single criteria, e.g. hand velocity profile
• multiple criteria

The problem of considering the segmentation based on single criteria is its lack of
comprehensiveness. At the beginning, the author assumed that the velocity pro-
file of the hand is sufficient to segment all the skills from each other. The idea is

46 CHAPTER 3. MAIN PART

Figure 3.28: Block diagram: segmentation

that it is a natural way of behaviour to reduce the velocity while demonstrating
delicate skills like ”place” or ”push” and possesses a much higher velocity during
casual movements. However, a simple demonstration unveils the limitations of this
single-criteria segmentation. A simple ”pick and place”-task has performed and one
might observe a small velocity decrease around 17 seconds 3.18, this is caused by
the switching from a move with skill to a place skill. However, a normal hu-
man demonstrator can easily switch swiftly between two skills, which are physically
coherent. Even by adjusting the threshold value this way of segmentation is not
sufficient to separate all skills robustly.
The main segmentation has to be determined by considering multiple criteria at the
same time. This will automatically leads to over-segmentation, but the number of
segments can be reduced with template matching.

3.8.2 Segmentation algorithm

After the main segmentation has been found, it is now the task to reduce the number
of segments with a strategy. As mentioned before, the demonstration should be fully
divided into skills after the segmentation. The first segment comprises the first data
segment, the second segment comprises of the first and second data segment and so
forth. The last segment comprises all the data segments. The algorithm applies the
template matching procedure to all the segments and calculates the score of each
skill for all the segments. Afterward each segment is labeled with the skill witch
achieves the highest score. At the end, every segments will be compared and the
segment with the highest score will be cut off and forms the first skill. This process

3.8. HUMAN MOTION SEGMENTATION 47

Figure 3.29: Segmentation algorithm

will repeat until the whole segment has been divided into skills.
Some additional steps have been implemented to facilitate this algorithm. First,
the data should be modified before passing to the template matching process: as
mentioned before, each skill is defined over its own property and the interaction with
a target object. For example, during the place skill, we want to examine the data
array ”distance between the TCP and the object” (d tcp o), it will be misleading
if we falsely calculate the distance between the TCP and a random object, which
is not held by the hand. In the segment point modelling process we have labeled
all the data points with an object number. We use this information to cascade our
new d tcp o out of old d tcp o segments, i.e., the first 30 points we extract from the
array distance between TCP and object 1, the last 50 points we extract from the
array distance between TCP and object 3, etc. Further, in the definition of skills
we have mentioned the semantic order of skills, we also take this idea into account
when we apply the segmentation algorithm to save computing power.
Further the algorithm modifies the time vector of the demonstration data segment
to be aligned with the template (mostly between 10s to 12s). Without this step,
we may notice that the calculated score is extremely low, because the algorithm
always tries to find values between 0 and approx. 10s, but our data segment might
be outside of this time range.
The following graph depicts a section of the template matching process. The dis-
tance between fingertips data from the demonstration (red line) is passed into the
corresponding HMM model. In this section the program calculates the score for the
each data segment with the HMM model from the Pick up - skill. In this case, the
data segment 2 will have the highest score. This result implies that the first two
data segments combined are most likely than all other combinations of segments to
be a Pick up skill, if we solely consider the course of the distance between finger-

48 CHAPTER 3. MAIN PART

tips. This procedure will be extended to the whole demonstration trajectory and
for each skill multiple features are considered (see section 3.6.3). Possible results of
the segmentation can be seen in the experiment chapter.

1
2

3

4
5

6

7

8

(a) Data segment 1

1
2

3

4
5

6

7

8

(b) Data segment 2

1
2

3

4
5

6

7

8

(c) Data segment 3

1
2

3

4
5

6

7

8

(d) Data segment 4

1
2

3

4
5

6

7

8

(e) Data segment 5

1
2

3

4
5

6

7

8

(f) Data segment 6

Figure 3.30: HMM Template Matching: Distance between fingertips - Pick up

3.9 Dynamic Movement Primitives

After the program has successfully segmented trajectory and extracted the skills,
the robot can use this information to be more adaptive to the environment. In this
framework, the user has the possibility to choose one of the objects and and changes
the position and the robot will still be able to perform the same task.
One of the major challenge in the implementation is to calculate the target gripper
position and orientation after the object has been displaced. The idea is to calculate
the transformation matrix from the hand frame to the object frame and use this
transformation matrix to calculate the new hand poses (3.7). One of the calculated
new hand pose is the new grasping pose. The new grasping pose of the hand is used

3.9. DYNAMIC MOVEMENT PRIMITIVES 49

as the target pose of DMP.

Dynamical movement primitives encodes a movement primitive into a second
order, non-linear dynamical system [CSFL19]:

Spring-damper system with a nonlinear forcing term [CL17]:

ẍ = kp(µT − x)− kvẋ + f(s) , f(s) =
K∑
k=1

φk(s)sFk (3.33)

φ̃k(xn
I) = exp

(
−1

2
(xn

I − µk
I)ᵀΣk

I−1(xn
I − µk

I)

)
(3.34)

φk(xn
I) =

φ̃k(xn
I)

K∑
i=1

φ̃i(xn
I)

(3.35)

Wk = diag(φk(xI
1), φk(xI

1), ..., φk(xI
1)) (3.36)

XO = XIA (3.37)

Â = (XIᵀWXI)−1XIᵀWXO (3.38)

where XI is the input data, Xo is the output data, φk(xn
I) as the weighting func-

tions, W as the weighting matrix, µT represents the end-point, kp is stiffness, kv is
damping and f(s) embodies the forcing term with s as phase variable.

In (3.38) the phase variable s is represented by the expression ṡ = −αs, which
means that the phase variable converges towards 0. The forcing term can also be
encoded with Gaussian Mixture Model (GMM), which uses a the EM algorithm to
learn the means and covariances of the GMM and therefore does not require the
basis function [PL18].
The Euler angles and the translation have to be filtered before passing to the robot.
In this framework, the user has the possibility to change the position of an object
and the robot will still be able to perform the same demonstration. Before modifying
the object positions, the segmentation procedure has to be completed first.
In a simple user interface, the system provides the user with the information about
the available objects and the total number of segments. After the user has specified
a segment and an object, the user can relocate the target object with a x- and y-
offset. In this demonstration, there are two sequentially ordered segments: Pick up
- segment and the Move with - segment. The user chooses to change the position
of an object in the Pick up - segment. The new pick up position, which can be

50 CHAPTER 3. MAIN PART

0 10 20 30 40 50 60

Time [s]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

A
ng

le
 [r

ad
]

Euler angles filtering: oTh object 4

alpha
alpha filtfilt
beta
beta filtfilt
gamma
gamma filtfilt

(a) Transformation from hand to object 4:
Euler angles filtering

0 10 20 30 40 50 60

Time [s]

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

V
al

ue
 [m

]

Translation filtering: oTh object 4

x
x filtfilt
y
y filtfilt
z
z filtfilt

(b) Transformation from hand to object 4:
translation filtering

0 10 20 30 40 50 60

Time [s]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

A
ng

le
 [r

ad
]

Euler angles filtering: oTh object 5

alpha
alpha filtfilt
beta
beta filtfilt
gamma
gamma filtfilt

(c) Transformation from hand to object 5: Eu-
ler angles filtering

0 10 20 30 40 50 60

Time [s]

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3
V

al
ue

 [m
]

Translation filtering: oTh object 5

x
x filtfilt
y
y filtfilt
z
z filtfilt

(d) Transformation from hand to object 5:
translation filtering

Figure 3.31: Transformation hand frame to object frame filtering

calculated with coordinate transformation from hand frame to object frame, becomes
the new target position of the Pick up - segment and the new start position of the
’Move with’-segment. The original (grey color) and the calculated object position
and euler angles trajectories are shown in the following graphs:

Figure 3.32: Application of DMP to generate new trajectory

3.9. DYNAMIC MOVEMENT PRIMITIVES 51

(a) DMP for segment 1: position

(b) DMP for segment 2: position

(c) DMP for segment 1: euler angles

(d) DMP for segment 2: euler angles

Figure 3.33: DMP position and euler angles

52 CHAPTER 3. MAIN PART

53

Chapter 4

Experiment

4.1 Experiment: Segmentation algorithm

In the previous chapter we have shown how the framework is used and how to
understand the result in each step. In the second experiment we will apply the same
procedure to test the proposed segmentation algorithm.

Idea: The idea is to test the reliability of the proposed algorithm by designing
experiments, which can be segmented into skills according to the definitions. The
development of this algorithm is time consuming, because it requires the demon-
stration

4.2 Experiment design

Four scenarios with each four demonstrations are designed to test the effectiveness
and correctness of the proposed segmentation method. The proposed method and
two other segmentation schemes are compared with the ground truth.

• finger-distance-based segmentation
• proximity-area-based segmentation
• proposed approach
• ground truth

The finger-distance-based segmentation monitors the finger tip distance and seg-
ments if the finger tip distance crosses a threshold. The proximity-area-based seg-
mentation segments if the TCP enters or leaves the proximity region of an object.
The ground truth method is a segmentation method based on human observation:
the human segments there, where he thinks it represents a semantic meaningful
segment. A meaningful segmentation is if the result resembles the ground truth
segmentation.
The four scenarios are designed to cover all the defined skills and are complex enough

54 CHAPTER 4. EXPERIMENT

to require an effective segmentation strategy. Each skill is represented by a color
and the legend of the color usage can be found in the figure 4.1. Proximity area
segmentation and Gripper distance segmentation charts only have two col-
ors: orange and blue. This is because in these two approaches no semantic meaning
could be derived, these two colors only indicate the state of the robot gripper. A
segment with the color yellow indicates a near object state or a closed gripper state
and a segment with the color blue indicates a far object state or a opened gripper
state.

0 0.2 0.4 0.6 0.8 1

Pick up

Place

Move to

Push

Stack

Locate

Move with

Figure 4.1: Skill legend

4.3 Experiment execution

As mentioned before, one of the major drawback using a vision system, e.g. in
comparison with kinethetic teaching, is the instability of the recorded data. Even
though the framework can compensate some of the undesired effects, nevertheless,
the demonstrator should be extremely careful about the following aspects to have a
higher success rate in the generation of data:

Detection of marker and hand: due to light reflections and the environment
in which the the hand estimation algorithm has been trained, the demonstrator
should always monitor the demonstration with RIVZ during the execution. If the
demonstrator notices e.g. a marker has disappeared or the deformation of the hand
pose, he should repeat the demonstration. Filtered data has been used to
calculate segmentation.

Three cuboids are used to perform the demonstration. Each one of them has the
size of approx. 6 cm x 6cm x 6cm and is attached with an AR track marker (5 cm
x 5cm). Each marker has an individual number (3, 4, 5) and a reference marker (0)
has been attached on the table. The camera is positioned in such way, so that the
reference marker’s vertice is parallel to picture frame. The demonstrations from the
same experiment have been performed as different as possible, i.e. the duration of
the demonstration, the target objects, the velocity of the hand movement etc.

4.4. EVALUATION 55

Result evaluation: The similarity between a segmentation approach with the
ground truth is an indication of the efficacy of this segmentation approach. However,
a segmentation according to the ground truth is not the only way of segmenting
human motions, other segmentation might also be valid. For example there are two
skills ordered sequentially: Movet with and Place. The length of the skill Move
with is not decisive for the success of the segmentation, a relative long Movet with
skill followed by a relative short Place skill is from the reproduction perspective the
same as a relative short Movet with skill followed by a relative long Place skill.
Therefore, the results should be further tested in the simulator.

4.4 Evaluation

Experiment 1: Pick up, Place, Pick up, Stack The second experiment in-
cludes a Pick up - skill, a Place - skill, a Pick up - skill and a Stack - skill. This
experiment is also designed to test the DMP calculations, because of the nature of
the skills, it is very convenient to change the position of an object without affecting
other objects.
The major difficulty during the demonstrations was the shadowing, i.e. if the shadow
of the hand overlaps the marker, this will sometimes cause the marker to disappear
for several seconds. We can see that the Proximity area segmentation and
Gripper distance segmentation are suitable approaches to segment the human
motions. Although sporadic gripper opened states within the gripper closed states
might cause the robot to stop and manipulates the gripper, the overall result is
acceptable considering the simplicity to implement these two approaches.

Experiment 2: Locate, Pick up, Stack, Push The second experiment in-
cludes a Locate - skill, a Pick up - skill, a Place - skill and a Push - skill.
This demonstration is the most difficult one among the four, not only the segmen-
tation has the lowest success rate among the demonstrations, but was also the most
difficult one to perform the demonstration. The algorithm some times cannot dis-
tinguish between a Place - and a Stack - skill, because the characteristics of Place
and Stack are actually similar, apart from the object height profile. However, be-
cause the objects are relative small and the height of a stacked object does not
differ significantly. However, the other two approaches are not suitable, because the
distance between finger tips or distance to object are not the primary features to
separate the skills Locate and Push from other skills.

Experiment 3: Pick up, Stack, Push The third experiment includes a Pick
up - skill, a Stack - skill and a Push - skill.
The segmentation results from our approach of this experiment are rather stable
and the segmentation often matches the ground truth. perhaps because of the

56 CHAPTER 4. EXPERIMENT

comparably simple scenario and the features are more distinguishable. The other
two approaches are not suitable for the same reason as above.

Experiment 4: Push, Pick, Place, Push The fourth experiment includes a
Push - skill, a Pick up - skill, a Place - skill and a Push - skill. This experiment
is designed to test the algorithms’s ability to recognize skills which occurs repeatedly.
Our proposed approach has difficulty to find the segmentation point that separates
theMove to skill and Push skill. The reason is in the definition of Push the
segment before actually touching the object has similar characteristics with the
Move to skill, however, this will not impede the actual execution in the simulator.

(a) Experiment 1 (b) Experiment 2

(c) Experiment 3 (d) Experiment 4

Figure 4.2: Reproduction trajectory and Segmentation trajectory

4.4.1 Objective metrics

The experiment result was further evaluated under other objective metrics. However,
because of the limitedness of the data, there is no systematic evaluation available.

4.4. EVALUATION 57

Path length One of the advantage of the segmentation is switching between dif-
ferent control forms: in this thesis, the program replace all data segment labled with
the Move to or Move with with linear point-to-point movement. Theoretically the
robot can execute of these segments with a higher velocity to further facilitate the
demonstration, however, because the robot becomes still after executing each seg-
ment to secure data transmission, monitoring the execution time is not meaningful
in this case. Instead, the path lengths have been calculated to prove the advantage
of switching between control schemes:

Experiment 1 Experiment 2 Experiment 3 Experiment 4
Reproduction 2.0204 2.1774 1.5876 1.9319
Segmentation 1.8930 2.1187 1.5035 1.6281

Ratio 93.69% 97.30% 94.70% 84.28%

Table 4.1: Path length comparison

4.4.2 Subjective metrics

Simulator success rate After the segmentation process, the segmented motion
trajectory with the skill information will be passed into the simulator to evaluate
the efficacy and correctness of the segmentation algorithm. It was clear that the
segmentation procedure has to be further improved. For example, if a data segment
has been labled with the skill name Pick up, the program will follow this trajectory
segment and send a signal to close the gripper. If the demonstration was fast which
means the periode of time for closing the gripper is short, the robot might not be
able to successfully grasp the object, because even if the segmentation

Understanding the movement The major advantage of our approach is it give
the user a better understanding of the demonstration and based on the knowledge
to create more sophisticated tasks. The extracted skills serve as the fundamental
for an intuitive programming of robot application of non-expert users.

58 CHAPTER 4. EXPERIMENT

Segmentation comparison

0 50 100 150 200 250 300 350

Gripper distance

Proximity area

0 50 100 150 200 250 300 350

Our Methode

Ground truth

(a) Demonstration 1

Segmentation comparison

0 50 100 150 200 250 300 350

Gripper distance

Proximity area

0 50 100 150 200 250 300 350

Our Methode

Ground truth

(b) Demonstration 2

Segmentation comparison

0 50 100 150 200 250 300 350

Gripper distance

Proximity area

0 50 100 150 200 250 300 350

Our Methode

Ground truth

(c) Demonstration 3

Segmentation comparison

0 50 100 150 200 250

Gripper distance

Proximity area

0 50 100 150 200 250

Our Methode

Ground truth

(d) Demonstration 4

Segmentation comparison

0 50 100 150 200 250 300 350

Gripper distance

Proximity area

0 50 100 150 200 250 300 350

Our Methode

Ground truth

(e) Demonstration 5

Segmentation comparison

0 50 100 150 200 250 300 350

Gripper distance

Proximity area

0 50 100 150 200 250 300 350

Our Methode

Ground truth

(f) Demonstration 6

Figure 4.3: Segmentation result: Pick up, Place, Pick up, Stack

4.4. EVALUATION 59

Segmentation comparison

0 50 100 150 200 250

Gripper distance

Proximity area

0 50 100 150 200 250

Our Methode

Ground truth

(a) Demonstration 1

Segmentation comparison

0 20 40 60 80 100 120 140 160 180 200

Gripper distance

Proximity area

0 20 40 60 80 100 120 140 160 180 200

Our Methode

Ground truth

(b) Demonstration 2

Segmentation comparison

0 50 100 150 200 250

Gripper distance

Proximity area

0 50 100 150 200 250

Our Methode

Ground truth

(c) Demonstration 3

Segmentation comparison

0 50 100 150 200 250

Gripper distance

Proximity area

0 50 100 150 200 250

Our Methode

Ground truth

(d) Demonstration 4

Segmentation comparison

0 20 40 60 80 100 120 140 160 180 200

Gripper distance

Proximity area

0 20 40 60 80 100 120 140 160 180 200

Our Methode

Ground truth

(e) Demonstration 5

Segmentation comparison

0 50 100 150 200 250

Gripper distance

Proximity area

0 50 100 150 200 250

Our Methode

Ground truth

(f) Demonstration 6

Figure 4.4: Segmentation result: Locate, Pick up, Stack, Push

60 CHAPTER 4. EXPERIMENT

Segmentation comparison

0 50 100 150 200 250 300

Gripper distance

Proximity area

0 50 100 150 200 250 300

Our Methode

Ground truth

(a) Demonstration 1

Segmentation comparison

0 20 40 60 80 100 120 140 160 180 200

Gripper distance

Proximity area

0 20 40 60 80 100 120 140 160 180 200

Our Methode

Ground truth

(b) Demonstration 2

Segmentation comparison

0 20 40 60 80 100 120 140 160 180 200

Gripper distance

Proximity area

0 20 40 60 80 100 120 140 160 180 200

Our Methode

Ground truth

(c) Demonstration 3

Segmentation comparison

0 20 40 60 80 100 120 140 160

Gripper distance

Proximity area

0 20 40 60 80 100 120 140 160

Our Methode

Ground truth

(d) Demonstration 4

Segmentation comparison

0 20 40 60 80 100 120 140 160 180 200

Gripper distance

Proximity area

0 20 40 60 80 100 120 140 160 180 200

Our Methode

Ground truth

(e) Demonstration 5

Segmentation comparison

0 20 40 60 80 100 120 140 160 180 200

Gripper distance

Proximity area

0 20 40 60 80 100 120 140 160 180 200

Our Methode

Ground truth

(f) Demonstration 6

Figure 4.5: Segmentation result: Pick up, Stack, Push

4.4. EVALUATION 61

Segmentation comparison

0 50 100 150 200 250

Gripper distance

Proximity area

0 50 100 150 200 250

Our Methode

Ground truth

(a) Demonstration 1

Segmentation comparison

0 20 40 60 80 100 120 140 160 180 200

Gripper distance

Proximity area

0 20 40 60 80 100 120 140 160 180 200

Our Methode

Ground truth

(b) Demonstration 2

Segmentation comparison

0 20 40 60 80 100 120 140 160 180 200

Gripper distance

Proximity area

0 20 40 60 80 100 120 140 160 180 200

Our Methode

Ground truth

(c) Demonstration 3

Segmentation comparison

0 20 40 60 80 100 120 140 160 180 200

Gripper distance

Proximity area

0 50 100 150 200 250

Our Methode

Ground truth

(d) Demonstration 4

Segmentation comparison

0 20 40 60 80 100 120 140 160 180 200

Gripper distance

Proximity area

0 20 40 60 80 100 120 140 160 180 200

Our Methode

Ground truth

(e) Demonstration 5

Segmentation comparison

0 20 40 60 80 100 120 140 160 180 200

Gripper distance

Proximity area

0 20 40 60 80 100 120 140 160 180 200

Our Methode

Ground truth

(f) Demonstration 6

Figure 4.6: Segmentation result: Push, Pick, Place, Push

62 CHAPTER 4. EXPERIMENT

63

Chapter 5

Conclusion

5.1 Conclusion

In this paper we have presented a Learning by Demonstration algorithm, which
uses a motion sensing device to record human demonstrations. A hand-pose esti-
mation algorithm has been applied to determine the position of the demonstrator’s
finger tips and ankles. The position and orientation of the objects are tracked with
AR tags. Further, the program has managed to define a robust mapping between
the robot’s gripper and the demonstrator’s hand by creating a coordinate system
around the demonstrator’s hand and calculates the necessary transformation matri-
ces. After calculating the relation between the demonstrator’s hand position and
orientation and the reference frame a robot in the simulator can be taught to re-
produce the demonstration. Further, we propose a segmentation algorithm based
on the Hidden Markov Model (HMM) to segment the human demonstration into
semantic meaningful motion primitives, so-called skills. With the segmentation, the
program can optimize the demonstration by automatically controlling the gripper
and switching between different control modes. The efficacy of the segmentation
algorithm has been tested with multiple demonstrations. At the end, with the help
of DMP algorithms, the program exceeds the mere reproduction and offers a more
generalized approach.

5.2 Limitations

Despite the benefits that our approach offers, the are still some major limitations
in the proposed approach: First, the demonstration has to be conducted with great
caution, generally a better recognition rate will be achieved under lower velocity.
The reason is the templates were generated with low velocity, because the minimum
number of data is 30 and therefore requires a demonstration to be at least 7 to 8
seconds.
Secondly, the segmentation procedure. Because the human motion segmentation is

64 CHAPTER 5. CONCLUSION

based upon templates, which are defined and generated by the author, the segmen-
tation is not generalized enough. If the program has detected unknown movements,
it will try to find an existing skill to represent the observed movement and thus
deliver meaningless segmentation.

5.3 Future Work

Though the proposed LfD policy provides a possibility to transfer task knowledge
to a robot, there still exist many limitations, which require further research.

Demonstration: data recording The major limitation and the biggest chal-
lenge during the implementation was the data generation process, i.e. how to gen-
erate reliable data, that meets all the requirements, is the major issue. Depending
on the lightning conditions, more than half of the recorded demonstrations are not
usable, this has significantly impeded the data generation process. The problem
is not only caused by the physical environment, but also because of the algorithm
used. The hand-pose estimation algorithm [LL19] was trained without holding an
object, the result is during the demonstration the demonstrator has to be extremely
careful and constantly monitor the motion velocity and hand pose, otherwise the
deformation of the hand will cause the recorded data to be unusable. This also
hindered the implementation and the possibility of the program.

Template For each skill 9 demonstrations were used to generate a template HMM
model. The reason for this relative small number of demonstration is the instability
of the data recording. In order to generate 9 demonstrations which contain the
characteristics of the skill, several dozens of demonstrations were made. However,
a larger data set of demonstrations will certainly cover more variations of the skills
and contributes to a better segmentation procedure.

Task parameterized GMM At the beginning of this thesis it was actually in-
tended to use Task-parameterized Gaussian Mixture Models (TP-GMM) to make
the learned demonstration more adaptive and generalized, however, because of the
relative small work space DMP is also able to provide reliable and correct trajectory
calculation and also the limited time range, TP-GMM has not been implemented.
By applying the methods like TP-GMM, the learned demonstrations will certainly
be more robust in complex environments and other challenges like obstacles avoid-
ance could also be tackled.

LIST OF FIGURES 65

List of Figures

1.1 Introduction: Learning by demonstration 8

3.1 Structure . 13
3.2 Demonstration: simulator . 16
3.3 Demonstration: real . 16
3.4 Screencast . 18
3.5 RVIZ . 18
3.6 Euler angles filtering gripper . 21
3.7 Hand coordinate system . 22
3.8 Pos Vel Acc . 24
3.9 Data transformation filtering . 25
3.10 DTW . 26
3.11 DTW filtering . 27
3.12 d i t . 28
3.13 d o o . 29
3.14 d tcp o . 30
3.15 d tcp in o . 30
3.16 d o t . 31
3.17 d tcp t . 32
3.18 v h . 32
3.19 v . 33
3.20 Skill sequence . 35
3.21 Pick up . 36
3.22 Place . 37
3.23 Move to . 38
3.24 Move with . 39
3.25 Stack . 40
3.26 Push . 41
3.27 Locate . 42
3.28 Segmentation Structure . 46
3.29 Segmentation algorithm . 47
3.30 HMM Template Matching . 48
3.31 o T h . 50

66 LIST OF FIGURES

3.32 DMP program . 50
3.33 DMP pose . 51

4.1 Skill legend . 54
4.2 Com. Rep. and Seg. 56
4.3 Experiment 1 . 58
4.4 Experiment 2 . 59
4.5 Experiment 3 . 60
4.6 Experiment 4 . 61

LIST OF FIGURES 67

Acronyms and Notations

HRC Human-Robot Collaboration

HRI Human-Robot Interaction

HRT Human-Robot Team

68 LIST OF FIGURES

BIBLIOGRAPHY 69

Bibliography

[ABRW14] Anne Angermann, Michael Beuschel, Martin Rau, and Ulrich Wohl-
farth. MATLAB-Simulink-Stateflow: Grundlagen, Toolboxen, Beispiele.
Walter de Gruyter, 2014.

[ACVB09] Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Brown-
ing. A survey of robot learning from demonstration. Robotics and au-
tonomous systems, 57(5):469–483, 2009.

[Cal16] Sylvain Calinon. A tutorial on task-parameterized movement learning
and retrieval. Intelligent Service Robotics, 9(1):1–29, 2016.

[CL17] Sylvain Calinon and Dongheui Lee. Learning control. 2017.

[Col15] Ian R. Cole. Modelling cpv, Jan 2015. URL: https://hdl.handle.
net/2134/18050.

[CSFL19] Riccardo Caccavale, Matteo Saveriano, Alberto Finzi, and Dongheui
Lee. Kinesthetic teaching and attentional supervision of structured
tasks in human–robot interaction. Autonomous Robots, 43(6):1291–
1307, 2019.

[DXW+16] Hao Deng, Zeyang Xia, Shaokui Weng, Yangzhou Gan, Peng Fang, and
Jing Xiong. A motion sensing-based framework for robotic manipula-
tion. Robotics and biomimetics, 3(1):23, 2016.

[DZML12] Guanglong Du, Ping Zhang, Jianhua Mai, and Zeling Li. Markerless
kinect-based hand tracking for robot teleoperation. International Jour-
nal of Advanced Robotic Systems, 9(2):36, 2012.

[Fus] Matt Fussell. How to draw hands - the ultimate guide. [Online; ac-
cessed March 12, 2020]. URL: https://thevirtualinstructor.com/
how-to-draw-hands.html.

[Gar] Damien Garcia. Retrieved March 12. URL: smoothn(https://

www.mathworks.com/matlabcentral/fileexchange/25634-smoothn)

,MATLABCentralFileExchange.

https://hdl.handle.net/2134/18050
https://hdl.handle.net/2134/18050
https://thevirtualinstructor.com/how-to-draw-hands.html
https://thevirtualinstructor.com/how-to-draw-hands.html
smoothn (https://www.mathworks.com/matlabcentral/fileexchange/25634-smoothn), MATLAB Central File Exchange
smoothn (https://www.mathworks.com/matlabcentral/fileexchange/25634-smoothn), MATLAB Central File Exchange
smoothn (https://www.mathworks.com/matlabcentral/fileexchange/25634-smoothn), MATLAB Central File Exchange

70 BIBLIOGRAPHY

[KSL94] Thomas P Krauss, Loren Shure, and John Little. Signal processing
toolbox for use with MATLAB R©: user’s guide. The MathWorks, 1994.

[LC15] Hsien-I Lin and YP Chiang. Understanding human hand gestures for
learning robot pick-and-place tasks. International Journal of Advanced
Robotic Systems, 12(5):49, 2015.

[LK13] Jonathan Feng-Shun Lin and Dana Kulić. Online segmentation of human
motion for automated rehabilitation exercise analysis. IEEE Transac-
tions on Neural Systems and Rehabilitation Engineering, 22(1):168–180,
2013.

[LL19] Shile Li and Dongheui Lee. Point-to-pose voting based hand pose es-
timation using residual permutation equivariant layer. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 11927–11936, 2019.

[NS] Scott Niekum and Isaac IY Saito. Ar track alvar ros package. URL
http://wiki. ros. org/ar track alvar, 3(4).

[PL18] Affan Pervez and Dongheui Lee. Learning task-parameterized dy-
namic movement primitives using mixture of gmms. Intelligent Service
Robotics, 11(1):61–78, 2018.

[PNA+16] Mikkel Rath Pedersen, Lazaros Nalpantidis, Rasmus Skovgaard An-
dersen, Casper Schou, Simon Bøgh, Volker Krüger, and Ole Madsen.
Robot skills for manufacturing: From concept to industrial deployment.
Robotics and Computer-Integrated Manufacturing, 37:282–291, 2016.

[QCG+09] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y Ng. Ros: an open-source
robot operating system. In ICRA workshop on open source software,
volume 3, page 5. Kobe, Japan, 2009.

[Rab89] Lawrence R Rabiner. A tutorial on hidden markov models and selected
applications in speech recognition. Proceedings of the IEEE, 77(2):257–
286, 1989.

[RK04] Chotirat Ann Ratanamahatana and Eamonn Keogh. Making time-series
classification more accurate using learned constraints. In Proceedings of
the 2004 SIAM international conference on data mining, pages 11–22.
SIAM, 2004.

[RSF13] Eric Rohmer, Surya PN Singh, and Marc Freese. V-rep: A versatile and
scalable robot simulation framework. In 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 1321–1326. IEEE,
2013.

LICENSE 71

License

This work is licensed under the Creative Commons Attribution 3.0 Germany License.
To view a copy of this license, visit http://creativecommons.org or send a letter to
Creative Commons, 171 Second Street, Suite 300, San Francisco, California 94105,
USA.

http://creativecommons.org/licenses/by/3.0/de/

	Introduction
	Introduction
	Problem statement
	Procedure

	State of the Art
	Learning from Demonstration
	Human Motion Segmentation
	Robot skills
	Summary

	Main Part
	Solution design
	Environment
	ROS
	MATLAB
	CoppeliaSim/V-REP robot simulator

	Data Generation
	Data processing
	Transformation
	Mapping
	Data filtering
	Summary data transformation and filtering:

	Data pre-processing for HMM
	Dynamic Time Warping
	Rescaling

	Features
	Distance Based Metrics
	Velocity Based Metrics
	Features selection and weighting

	Skill definition
	Skill semantic order
	Template matching: Hidden Markov Model

	Human Motion Segmentation
	Segment Point Modelling
	Segmentation algorithm

	Dynamic Movement Primitives

	Experiment
	Experiment: Segmentation algorithm
	Experiment design
	Experiment execution
	Evaluation
	Objective metrics
	Subjective metrics

	Conclusion
	Conclusion
	Limitations
	Future Work

	List of Figures
	Bibliography

