Fakultät für Architektur

Lehrstuhl für Restaurierung, Kunsttechnologie und Konservierungswissenschaft

Physikalische Untersuchungen an historischen Tapisserien

Verformungsverhalten und Schräghängung

Diplomarbeit von Gisela Trosbach

München, April 2002

Technische Universität München

Inhaltsverzeichnis

Abbildungsverzeichnis Tabellenverzeichnis			
			Zusam
1	Einleitung	1	
A G	rundlagen	5	
2	Mechanisches Verhalten der Faser	7	
2.1	Feinbau der Faser	7	
2.1.1	Wolle	8	
2.1.2	Seide	10	
2.2	Struktur der Faser und ihre Eigenschaften	10	
2.3	Kristalline und amorphe Bereiche	11	
2.4	Viskoelastisches Verhalten und strukturelle Veränderungen	13	
2.5		14	
2.5.1 2.5.2	Faserschädigung und Abbauprozesse	15	
3	Historische Tenisserien	10	
3.1	Technik	19	
3.2	Material	21	
3.3	Der Webstuhl	21	
3.4	Hängung	23	
3.5	Schäden an historischen Tapisserien	23	
D D.		25	
b Pi	uimetnoden	23	
4	Kraft-Dehnungs-Diagramme	29	
4.1	Einleitung	29	
4.2	Probenmaterial	29	
4.3	Prüfverfahren Kraft-Dehnungs-Diagramm	30	
4.4	Versuchsdurchführung	31	
4.5	Versuchsergebnisse	33	
4.6	Auswertung der Versuchsergebnisse	33	

Ι

5 5.1 5.2 5.3 5.4 5.5 5.6 6 6.1 6.2 6.3 6.4 6.5 6.6 6.6.1 6.6.2 6.6.3	Retardations-Messung Einleitung	39 39 40 41 45 47 47 51 52 55 56 57 62 62 62 63 66
C K	onservierungsmethoden	71
7 7.1 7.2 7.3 7.4 7.5 7.6 8 8.1 8.2	Schräghängung und Reibung Ziel Materialien Methode Versuchsdurchführung Versuchsergebnisse Auswertung der Versuchsergebnisse Stützlinien Überblick Aufgenähte Stützgewebe	 73 74 76 78 79 79 83 84
D Di	iskussion	87
9	Diskussion und Ausblick	89
A B C D E Danks:	Anhang Ergebnisse der Kraft-Dehnungs-Messungen Ergebnisse der Theodoliten-Messungen Digitalaufnahmen mit Olympus E-10 Scannerkamera Bezugsquellen	91 91 100 110 112 113 115

Abbildungsverzeichnis

1.1	Typischer Schaden an einer Tapisserie 3
2.1 2.2 2.3 2.4 2.5	Aufbau einer Wollfaser (nach [bal95a]).9Aufbau einer Seidenfaser10Wolle – Kraft-Dehnungdiagramm15Wolle – Höchstzugkraft und Bruchdehnung15Feuchtigkeit16
3.1 3.2 3.3 3.4 3.5	Tapisserie Aufbau - Foto19Schlitzverbindungen20Verhängte Verbindung und Gimpe20Verzahnte Verbindung21Wirker am Webstuhl22
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10	Versuchsaufbau Kraft-Dehnungsdiagramm32Kraft-Dehnungs-Diagramme33Kraft-Dehnungs-Messung an Fragment P134Proben vor und nach einer Kraft-Dehnungs-Messung34Kraft-Dehnungs-Messung an Fragment P235Proben vor und nach einer Kraft-Dehnungs-Messung35Kraft-Dehnungs-Messung an Fragment P336Proben vor und nach einer Kraft-Dehnungs-Messung36Proben vor und nach einer Kraft-Dehnungs-Messung37Proben vor und nach einer Kraft-Dehnungs-Messung37
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8	Kraftverteilung in einer hängenden Tapisserie39Proben für die Retardationsmessung42Die Kriechkurve43Mechanisches Modell zum Kriechverhalten44Kraft-Dehnungs-Diagramm – Versuchaufbau45Kraft-Dehnungs-Diagramm – Detail46Retardations-Messungen – Graphen48Retardations-Messungen – Maximale und Restdehnung49
6.1 6.2 6.3 6.4 6.5 6.6	Tapisserie "Der Generalstab"52Tapisserie "Hortus Conclusus"54Versuchsaufbau: Prüfverfahren Theodolit, Generalstab56Versuchsaufbau: Prüfverfahren Theodolit, Hortus56Ergebnisse Theodolit, Generalstab, Referenzpunkte58Ergebnisse Theodolit, Generalstab, Ober- und Unterkante58

6.7	Ergebnisse Theodolit, Generalstab – Reihe 1
6.8	Ergebnisse Theodolit, Generalstab – Reihe 8
6.9	Ergebnisse Theodolit, Hortus Conclusus – Lage der Punkte 60
6.10	Ergebnisse Theodolit, Hortus Conclusus – Referenzpunkte 60
6.11	Ergebnisse Theodolit, Hortus Conclusus – Punkt 1, links 61
6.12	Ergebnisse Theodolit, Hortus Conclusus – Reihe 1
6.13	Ergebnisse Theodolit, Hortus Conclusus – Reihe 7
6.14	"Hortus Conclusus", Olympus E10 – Lage der Meßpunkte 62
6.15	"Hortus Conclusus", Olympus E10 – Meßpunkt-Detail 63
6.16	"Hortus Conclusus", Olympus E10 – Ergebnisse
6.17	"Hortus Conclusus", Olympus E10 – Ergebnisse
6.18	Praktica Scan 500
6.19	"Hortus Conclusus", Scannerkamera – Meßpunkt-Detail
6.20	Vergleich Olympus/Praktica Scan 500
6.21	Vergleich Scanner und Theodolit
6.22	Schematische Darstellung eines Speckle-Interferometers
6.23	Aufbau für Speckle-Interferometrie
6.24	Ergebnisse der Speckle-Interferometrie
7.1	Schräghängung einer Tapisserie (Beispiel)
7.2	Materialien zur Reibungszahl-Bestimmung - Bezugsstoffe
7.3	Materialien zur Reibungszahl-Bestimmung - Objektrückseite
7.4	Die schiefe Ebene
7.5	Reibungskraft an der schiefen Ebene
7.6	Versuchsaufbau Reibung
7.7	Reibungszahlen der getesteten Materialien
7.8	Relative Reduzierung des Hangabtriebs in Abhängigkeit vom Winkel 81

Tabellenverzeichnis

4.1	Kraft-Dehnungs-Versuch - Versuchsparameter	32
5.1 5.2	Retardationsmessung.	46 47
6.1	Beschreibung der Tapisserie "Der Generalstab"	47 53
6.2 6.3	Beschreibung der Tapisserie "Hortus Conclusus"	55 64
7.1 7.2	Ergebnisse der Reibungszahl-Bestimmung (Winkel)	79 79

Zusammenfassung

Tapisserien sind bei Lagerung und Ausstellung vielfältigen Gefahren ausgesetzt. Schädlinge, Lichteinwirkung und Klimabedingungen können zu irreversiblen Schäden an den Objekten führen. Mechanische Kräfte verursachen Verformungen, die auch irreversibel sein können. In der Textilrestaurierung und im Ausstellungsbereich werden verschiedene Konservierungsmethoden angewandt, um Schäden zu vermeiden.

Ziel dieser Arbeit ist es, grundlegende Aussagen über das Materialverhalten von Tapisseriegeweben und über die aus der Hängung der Objekte resultierenden Schäden zu gewinnen. Auf dieser Grundlage kann eine Beurteilung spezieller Konservierungsmethoden, insbesondere der Hinterfütterung und Schräghängung, von Tapisserien erfolgen.

Kraft-Dehnungs-Diagramme von 66 Proben zeigen, daß ein Bruch des Gewebes im allgemeinen erst bei sehr hohen Spannungen von 5000 N/m auftritt¹. Dagegen öffnen sich Schlitzverbindungen schon bei wesentlich geringeren Spannungen von 1500 N/m. Beide Werte liegen aber weit über der Belastung, die durch das Eigengewicht einer aufgehängten Tapisserie erreicht wird. (Kapitel 4). Diese Ergebnisse bestätigen Messungen von Bilson et al. [bil97].

Allerdings können aus Kraft-Dehnungs-Messungen keine Schlüsse auf viskoelastisches Dehnungsverhalten gezogen werden. Dazu sind z.B. Retardationsmessungen nötig, die im Rahmen dieser Arbeit ebenfalls durchgeführt wurden (Kapitel 5). Sie erlauben Aussagen über eventuelle Langzeit-Schäden der ausgestellten Tapisserien. Es zeigt sich, daß das Verhalten der Proben bei den Retardationsmessungen stark von den vorhandenen Schlitzverbindungen beeinflußt wird. Eine Probe ohne Schlitzverbindungen zeigte eine sehr geringe Dehnung unter der größten anzunehmenden Belastung und relaxierte nach Entlastung vollständig auf die Ausgangslänge zurück.

Um Aussagen zum Verhalten von Originalobjekten zu gewinnen, wurden Tapisserien mit optischen Methoden unter stabilen Klimabedingungen im aufgehängten Zustand überwacht (Kapitel 6). Messungen mit einem Theodoliten an einer hinterfütterten Tapisserie zeigten, daß nur geringe Verformungen auftraten. Auch eine ungefütterte Tapisserie zeigte überraschend geringe Längenänderungen. Über einen Zeitraum von 3 Wochen wurden die Änderungen stetig kleiner und kamen schließlich an der überwiegenden Zahl der Meßpunkte zum Stillstand. Dies entspricht dem bei den Retardationsmessungen festgestellten Verhalten.

Weiterhin wurde die Anwendbarkeit einer interferometrischen Methode (ESPI) auf Verformungsmessungen erfolgreich geprüft. Damit können Verformungen bereits im

¹ Es wird die Kraft angegeben, die pro Längeneinheit auf die Tapisserie wirkt. Die angegebene Spannung bedeutet also, daß 5000 N auf einer Breite von 1 m angelegt werden. Die Materialstärke wird hier nicht betrachtet.

 μ m-Bereich nachgewiesen werden. Diese Methode würde sich z.B. für eine genauere Untersuchung des Einflusses von Stützlinien eignen.

Zur Beurteilung der Aufhängetechniken wurden Reibungskoeffizienten typischer Materialien bestimmt (Kapitel 7). Ziel ist die Reduzierung der Zugkräfte, die auf die aufgehängte Tapisserie wirken. Es zeigt sich, daß speziell in Kombination mit einer Schräghängung die besten Ergebnisse ohne Hinterfütterung der Tapisserie erreicht werden können.

Aufgrund dieser Arbeit können deutliche Verbesserungen in der Konservierung der Tapisserien vorgenommen werden. Einerseits kann auf die zeitaufwendige Hinterfütterung der Bildteppiche in vielen Fällen verzichtet werden, andererseits ist durch geeignete Materialwahl des Plattenbezugsstoffes eine deutliche bzw. vollständige Gewichtsentlastung von schräggehängten Tapisserien möglich.

Es konnte auch gezeigt werden, daß trotz der unterschiedlichen Vorgeschichte der Tapisserien und deren inhomogenen Aufbaus dennoch allgemein gültige Aussagen zum Materialverhalten gemacht werden können. Moderne optische Verfahren können für eine breiter angelegte Untersuchung genutzt werden. Speziell die Entwicklung neuartiger Verfahren zur sicheren Erkennung von Gewebeschäden und zur Langzeitüberwachung ergibt sich als wichtiges Ziel weiterer Forschung aus dieser Arbeit.

1 Einleitung

Als "geschlagen werk" werden Wandteppiche in Inventaren des 16. Jahrhunderts bezeichnet [wil72]. Man unterscheidet damit ihre Herstellungsmethode von der "gezogenen" Arbeit anderer gemusterter Textilien. Tapisserie-Hersteller wurden deshalb auch als Wollschläger bezeichnet (Ratsverordnung von 1259, Regensburg). Beim Wandteppich wird der Einschlagfaden dem Muster entsprechend in die Kette geführt und angeschlagen. Die Einschlagfäden oder Schüsse binden dabei nur soweit mit der Kette, als es das Muster erfordert und kehren dann wieder um. Eine bestimmte Farbpartie in der Bildwirkerei wird also von einem fortlaufenden hin und her geführten Faden gebildet.

Heute wird als Tapisserie sowohl die Gattung der Bildwirkerei als auch das dabei angewandte Verfahren bezeichnet [dur86].

In Bayern findet man frühe Beispiele aus dem 14. und 15. Jahrhundert vorallem im Raum Nürnberg und Regensburg. Zu Beginn des 15. Jahrhunderts ist ein Einfluß Flanderns auf die Nürnberger Teppichherstellung festzustellen. Auch die niederländische Malerei und Tapisserieherstellung wird bald zum Vorbild genommen.

Im 16. Jahrhundert übernimmt die Niederlande die Vorherrschaft in der europäischen Tapisserie-Herstellung, um 1700 tritt Frankreich an die erste Stelle.

Die erste Münchner Manufaktur wird in Zusammenhang mit dem Bau der Münchner Residenz durch Kurfürst Maximilian gegründet. 1610 werden zwanzig Personen an sechs Webstühlen beschäftigt. Meist stammen sie aus Brüssel. Die Manufaktur existiert bis 1615. Erst unter Max Emanuel beginnt 1718 ein neuer Betrieb mit Wirkern aus Paris.

Die Problemstellung für die vorliegende Arbeit ergab sich aus Restaurierungsarbeiten in den Werkstätten des Bayerischen Nationalmuseums in München. Bei einem umfangreichen Bestand von etwa 200 Tapisserien, wie ihn das Bayerische Nationalmuseum München besitzt, nimmt die Restaurierung von historischen Tapisserien einen wichtigen Stellenwert ein. Tapisserien sind besonders wegen ihrer Größe problematische Objekte im Hinblick auf Konservierung, Lagerung und Ausstellung. Schlechte Resultate früherer Restaurierungen führen immer wieder zum Überdenken der verschiedenen üblichen Restaurierungsmethoden. Besonders in den letzten Jahren werden die verschiedenen Konservierungsansätze, wie Einweben, partielle nähtechnische Sicherung, sowie die Schräghängung (Montage der Objekte auf einer schrägen Platte zur Gewichtsentlastung) international diskutiert.

Punktuelle Befestigung der Bildteppiche, mittels Nägeln an der Oberkante führen oft zu einer Girlandenbildung im Gewebe und sind Beispiele für grobe Schäden, die sich aus unsachgemässer Aufhängung ergeben können. Negativeffekte sind auch bei Befestigung der Kanten mit Klettbändern zu erwarten. Frau Dipl.-Rest. Diane Lanz konnte mir ein Beispiel für die Resultate einer solchen Befestigung nennen, mit deren massiven

1

Folgeschäden sie konfrontiert war. Bei fünf Tapisserien aus dem Besitz der Oberfinanzdirektion Karlsruhe, Referat Staatliche Schlösser und Gärten, war es nach einer früheren Restaurierung zur Bildung einer Querfalte gekommen. Die Bildteppiche wölbten sich nach langjähriger Ausstellung über die mit Klettband fixierte Unterkante und bildeten dort eine Art Bauch. Um die verlorene Spannung wieder zu erreichen, wurden die Seitenkanten nachfolgend immer weiter nach außen nachgespannt, was durch die Klettbefestigung leicht möglich war. Die Tapisserien wurden abgenommen und die Schäden vermessen. Die Längenänderung zwischen Seitenkante und Mitte betrugen 6 bis 9 cm im schlimmsten Fall. Ein Beispiel ist in Bild 1.1 gezeigt.

Worauf diese starken Deformationen zurückzuführen sind ist unklar. Bei einem Längenzuwachs des Gewebes in vertikaler Richtung ist nicht offensichtlich, ob dieser auf Veränderungen in der Faserstruktur zurückzuführen ist. Die Ursachen können auch in den Eigenschaften der Gewebebindung und/oder in besonderen Konstruktionsmerkmalen (z.B. offene Schlitzverbindungen) zu suchen sein. Zudem ist dieser Fall auch ein gutes Beispiel dafür, daß verschiedene Einflüsse die Veränderungen des Gewebes oder der Faser bewirken können. Zum einen werden Gewebe und Faser durch das Eigengewicht der Tapisserie belastet, zum anderen kann aber auch das Nachspannen des Gewebes der Hauptgrund für die Verformung sein.

Einige Autoren behaupten, daß die mechanische Belastung durch das Eigengewicht immer eine Schädigung der Faser zur Folge hat. De Graaf führt die Zerstörung der oberen belasteten Gewebepartien, das Öffnen der Schlitzverbindungen und sogar Brüche in den Garnen auf die große Gewichtsbelastung der Tapisserien an der Oberkante zurück und warnt vor den Zeiteffekten besonders an Tapisserien, aber auch an anderen hängenden Objekten [gra80].

Da bei Tapisserien, bis auf wenige Ausnahmen die Schußfäden in vertikaler Richtung (Hängerichtung der Objekte) verlaufen, liegt die Kette horizontal im Bild. Somit werden bei der Aufhängung von Bildteppichen die Schußfäden durch das darunterliegende Eigengewicht belastet.

Die Gewichtskraft ist an der Oberkante am größten, da diese die gesamte unter ihr hängende Masse tragen muß. Nach unten hin nimmt sie dagegen stetig ab. Die Flächengewichte von Tapisserien werden durchschnittlich mit 780-1000 g/m² angegeben ([mal95], [bil97]).

Über die Restaurierung historischer Tapisserien ebenso wie über Ursache und Ausmaß von Schadensbildern bestehen große Meinungsunterschiede. Viele Restauratoren sind auf Grund ihrer Erfahrungen der Überzeugung, daß bei einer senkrechten Hängung große Deformationen am Gewebe zu erwarten sind.

Vergleicht man aber die auftretenden Kräfte mit den Bruchkräften von gealterten Woll- bzw. Seidenfasern, so würde man daraus schliessen, daß durch die relativ kleine Hängebelastung keine Schäden an der Einzelfaser zu befürchten sind, solange die Faser nicht bereits stark geschädigt ist. Verformungen, die an Tapisserien beobachtet werden, könnten auch durch Verschiebungen in der Gewebestruktur zustande kommen, wie bereits Bilson et al. [bil97] vermutete, oder durch ein Öffnen der Schlitzverbindungen.

Um die Tapisserie zu stabilisieren und um einem Längenzuwachs entgegenzuwirken wird zum Beispiel am Bayerischen Nationalmuseum München nach Restaurierungs-

Abbildung 1.1: Die Tapisserie "Täuschung der Mnemosyne" (Brüssel, Mitte 17. Jhr.) aus dem Besitz der Oberfinanzdirektion Karlsruhe, Referat Staatliche Schlösser und Gärten. Der Bildteppich ist nach jahrelanger Ausstellung stark verformt. Die linke Kante hat ein Länge von 348,5 cm. In der Mitte mißt man 360 cm und rechts 353,5 cm. Foto: Atelier Karlsruhe.

maßnahmen, wie Unterlegen und Sichern von Fehlstellen, oder dem Schließen offener Schlitzverbindungen, zusätzlich ein Stützgewebe auf der Rückseite der Bildteppiche aufgenäht [bru92]. Bei der Ausstellung wird darüberhinaus durch Schräghängung der Tapisserie versucht eine Reduzierung der Gewichtskraft zu erreichen.

Umfassende Untersuchungen zum Materialverhalten von historischen Tapisserien könnten helfen Schadensbilder besser zu verstehen. Die Eigenschaften und das Verhalten ungealterter Gewebe und Materialien dürfen nicht einfach auf gealterte Materialien übertragen werden, besonders wenn die Objekt eine so inhomogene Gewebestrukturen und unterschiedliche Materialien aufweisen, wie historische Tapisserien dies tun. Auch zu den gängigen Konservierungsmethoden sind noch viele Fragen offen.

Diese Arbeit soll durch grundlegende Untersuchungen zum Materialverhalten von historischen Tapisserien zur Verbesserung der gängigen Restaurierungspraxis beitragen. Darüberhinaus wurde nach Möglichkeiten zur Langzeituntersuchung und Überwachung der Objekte gesucht.

A GRUNDLAGEN

2 Mechanisches Verhalten der Faser

Die makroskopischen Eigenschaften von Fasern werden durch deren Feinbau bestimmt. Der Feinbau der Fasern beeinflußt auch das Verhalten der Garne und diese wiederum das Verhalten der Gewebe. Der Feinbau wird durch die chemische Zusammensetzung bzw. durch die Struktur der Makromoleküle bestimmt, aus denen sie aufgebaut sind.

Im folgenden sollen die strukturellen Besonderheiten der Textilfasern, insbesondere diejenigen, welche für die Dehnungseigenschaften der Fasern verantwortlich sind, dargestellt werden. Dabei wird vor allem auf die Eigenschaften der natürlichen Fasern Wolle und Seide eingegangen, da diese in historischen Bildteppichen meist das kraftaufnehmende Schußmaterial bilden.

Die mechanischen Eigenschaften können durch verschiedene äußere Einflüße wie Temperatur, Luftfeuchte und durch die Alterung der Faser verändert werden. Auf diese Faktoren wird im Hinblick auf die durchgeführten Untersuchungen kurz eingegangen. Schließlich werden Herstellungstechnik und Materialien von historischen Tapisserien beschrieben und die wichtigsten Schadensbilder kurz umrissen.

2.1 Feinbau der Faser

Die Grundbausteine natürlicher organischer Fasern sind lange Kettenmoleküle, sogenannte *Polymere*. Diese bestehen aus relativ einfachen Atomgruppen, den monomeren Grundeinheiten, die in vielen Fällen periodisch angeordnet sind.

Die Kettenmoleküle sind sehr flexibel. Einfach-Bindungen erlauben eine Vielzahl sterischer Anordnungen. Diese Flexibilität wird beinflußt durch Seitenketten, durch die Anzahl der Bindungen, die eine Rotation erlauben, aber auch durch Nachbarketten in der Faser.

Die einzelnen Ketten bestimmen durch ihre Geometrie und ihre Flexibilität die Anordnung der gepackten Ketten.

Zwischen den Kettenmolekülen können im gepackten Zustand schwache van der Waals Kräfte auftreten, aber auch Wasserstoffbrücken und sogar kovalente Bindungen.

Das Keratin der Wolle oder das Fibroin der Seide besteht aus verschiedenartigen Monomeren, den *Polypeptiden*, die als Proteine aus Abfolgen von bis zu 20 verschiedenen Aminosäuren bestehen (Heteropolymere). Diese Eiweißmoleküle werden als Skleroproteine¹ bezeichnet.

¹ Skleroproteine sind feste Gerüstproteine, die zu unterscheiden sind von globulären Proteinen, wie z.B. Enzymen.

Die Aminosäuren, aus denen die Proteine bestehen, haben die allgemeine Formel

$$\begin{array}{c} \mathrm{NH}_2 - - \mathrm{C} \ \mathrm{H} - -\mathrm{COOH} \\ | \\ \mathrm{R} \end{array}$$

Durch Peptidbindungen² können aus Aminosäuren Polypeptid-Ketten (dazu gehören auch die Proteine) entstehen. Charakteristisch für eine bestimmte Aminosäure ist der Seitenrest (-R). Für die Aminosäure Glycin ist der Seitenrest z.B. ein H-Atom.

Wolle und Seide unterscheiden sich zunächst in der relativen Häufigkeit der auftretenden Seitenreste. In Seide gibt es einen hohen Anteil von Alanin (33 Gewichts-Prozent; Seitenrest: -CH₃) und Glycin (41,2 Gewichtsprozent) und etwas weniger Serin (16,2 Gewichtsprozent; -OH-CH₂) und Tyrosin (11,4 Gewichtsprozent; -CH₂-C₆H₄-OH). In Wolle (Keratin) gibt es eine stärkere Gleichverteilung der 20 Aminosäuren. Am häufigsten kommen vor: Glutaminsäure (15,0 Gewichts-Prozent; Seitenrest: -CH₂-CH₂-COOH), Cystein (11,3 Gewichts-Prozent; Seitenrest: -CH₂-SH) und Arginin (10,5 Gewichts-Prozent).

Zwischen den Polypeptiden kann man starke intermolekulare Wechselwirkung erwarten [pet59]:

- Van der Waals Wechselwirkung aufgrund des Abstandes von 4-5 Å.
- Wasserstoffbrücken zwischen NH und CO der Peptidbindungen.
- Basische und saure Seitenreste können neutralisieren (Salz, ionische Bindung).
- Im Fall von Cystin können kovalente Schwefelbrücken entstehen.

2.1.1 Wolle

Wolle besteht zu einem großen Anteil aus dem Skleroprotein Wollkeratin. Die Primärstruktur³ des Wollkeratins enthält eine große Anzahl von Aminosäuren mit langen Seitenketten. Diese erzwingen eine Faltung und Verdrehung des Proteins, weil nur so mit außenliegenden Seitenketten eine stereochemisch stabile Position erreicht werden kann. Es resultiert als Sekundärstruktur eine spiralförmige Anordnung (Helix), die über Wasserstoffbrücken und Disulfidbindungen stabilisiert wird. Wollkeratin besteht zum größten Anteil aus Proteinen in α -Helix-Konformation, zu geringerem Anteil aus der weniger stabilen γ -Helix.

Bild 2.1 zeigt den Aufbau der Wollfaser.

In den kristallinen Bereichen des Wollhaars verwinden sich drei α -Helices zu einer Superhelix, die Protofibrille⁴ genannt wird (Tertiärstruktur). Nach neueren Forschungen formieren sich 9 Protofibrillen um weitere 2 Protofibrillen gelagert, zu einer Mikrofibrille

² Eine Peptidbindung entsteht durch Kondensation der Carboxylgruppe (-COOH) einer Aminosäure mit der Aminogruppe (-NH₂) einer weiteren Aminosäure unter Wasserabspaltung.

³ Die Primärstruktur bezeichnet die Abfolge der Aminosäuren in den Proteinen (Aminosäurensequenz), die Sekundärstruktur deren räumliche Anordnung als Helix oder in Faltblattstruktur, die Tertiärstruktur die relative Anordnung einzelner Bereiche mit unterschiedlich definierten Sekundärstrukturen, sowie die Quartärstruktur die Bildung größerer Einheiten aus mehreren Einzelproteinen.

⁴ Fibrillen sind langgestreckte, straffe Strukturen aus Eiweißen oder Polysacchariden, die man im Lichtmikroskop sehen kann.

Abbildung 2.1: Aufbau einer Wollfaser (nach [bal95a]).

(Quartärstruktur). Zwischen die Mikrofibrillen ist eine cystinreiche amorphe Proteinsubtanz als "Bindemittel" eingelagert, die sogenannte Matrix. Durch die Matrix werden die Mikrofibrillen zu bandartigen Aggregaten verbunden. Mehrere dieser Makrofibrillen bauen – von einer Membran umgeben – die spindelförmigen Kortikularzellen auf, die zusammen den Kortex (Faserstamm) des Haars ergeben⁵. In diesem können Ortho- und Parakortex unterschieden werden. In den Kortikularzellen des Orthokortex überwiegen viele gut ausgebildete Makrofibrillen, während der Parakortex mehr Matrixsubstanz und darin eingebettete einzelne Mikrofibrillen enthält. Bei gekräuselter Wolle liegen die Orthokortexzellen an den Aussenbögen, die Parakortexzellen dagegen innen. Sie zeigen ein unterschiedliches feuchte-physikalisches Verhalten. Der Orthokortex nimmt Wasserdampf leichter⁶ auf, quillt dabei auf und bewirkt, daß die Faser in ihre ursprüngliche Form zurückspringt.

Der Kortex wird umhüllt von der Cutikula oder Schuppenschicht. Sie besteht aus dachziegelförmig übereinanderliegenden flachen Epithelzellen, die eine äussere Schutzschicht bilden.

⁵ Der Kortex (Rinde) umschliesst bei manchen Fasern eine Medulla (Mark), nicht so jedoch bei dünnen Fasern wie der Wollfaser [wul99].

⁶ Im Keratin sind viele hydrophile Säureamidgruppen (-CO-NH-) enthalten, die der Grund für das hygroskopische Verhalten von Wolle sind.

2.1.2 Seide

Seidenfibroin ist die Fasersubstanz der Kokonfäden des Seidenspinners *Bombyx mori*. Das *Fibroin* besteht zu über 90% aus den Aminosäuren Glycin, Alanin und Serin. Es kommen also kaum basische und saure Seitenreste vor; Cystin fehlt im Gegensatz zur Wolle völlig. Die Wechselwirkung zwischen den Ketten ist daher sehr schwach. Es kommen hauptsächlich Wasserstoffbrückenbindungen vor.

Abbildung 2.2: Aufbau einer Seidenfaser (links) und Faltblattstruktur der Seidenfaser (rechts).

Bei der Rohseide sind zwei Fibroineinzelfäden durch ein wasserlösliches Protein, das Sericin, verkittet. Das natürliche Seidenfibroin bildet als Sekundärstruktur eine β -Faltblattstruktur (β -Keratintyp). Sie ist in Bild 2.2 (rechts) dargestellt.

In kristallinen Bereichen liegen die Ketten lamellar nebeneinander und sind über Wasserstoffbrückenbindungen miteinander verbunden. Die Ergebnisse von Röntgenbeugungsexperimenten werden mit voll gestreckten Ketten in den Kristalliten interpretiert [hol59].

Wie bei der Wolle verbinden sich die Mikrofibrillen zu Fibrillenbündeln und bilden schliesslich den Fibroineinzelfaden (Bild 2.2). Im Gegensatz zur Wolle hat Seide keine Zellstruktur, sondern besteht aus einem Endlosfaden.

2.2 Struktur der Faser und ihre Eigenschaften

Die Gebrauchseigenschaften einer Naturfaser werden wesentlich durch die Länge der Makromoleküle mitbestimmt. Dieser wird durch den Polymerisationsgrad, d.h. die Anzahl der Monomereinheiten, festgelegt. Häufig wird als Maßzahl die *Molmasse* eines Polymers angegeben. Die mittlere Molmasse von Wolle beträgt 9 000-60 000, die mittlere Molmasse von Seide 218 000. Einem Polymeren kann keine exakte Molmasse zugeordnet werden, da der statistische Charakter der Reaktionsschritte bei der Synthese bewirkt, daß ein Gemisch von unterschiedlich langen Kettenmolekülen entsteht [elo41].

Die Konformation beschreibt die unterschiedlichen räumlichen Anordnungen der Kettenmoleküle. Diese sind möglich, da sich die Moleküle um C-C Einfachbindungen frei drehen können. Durch diese Rotatation sind Kettensegmente frei beweglich und das Polymere wird flexibel, ohne daß chemische Bindungen gelöst werden müssen. Jedoch kann sowohl innerhalb der Kette (z.B. durch große sperrige Seitengruppen bzw. sterische Behinderung), als auch durch Wechselwirkungen im Kettenverbund die Beweglichkeit eingeschränkt werden. Die Kettenbeweglichkeit beeinflußt wiederum die Schmelztemperatur und das Kristallisationsverhalten von Polymeren, und damit auch die mechanischen Eigenschaften die mit der Ausbildung kristalliner Bereiche in der Faser zusammenhängen [pet59a].

2.3 Kristalline und amorphe Bereiche

Die Kettenmoleküle der meisten Fasern besitzen die Fähigkeit unvollkommen zu kristallisieren, wenn sie mit anderen Ketten zusammengepackt werden. Die Kettenmoleküle ordnen sich dabei bevorzugt in Faserrichtung an. Voraussetzung dazu ist eine weitgehend periodische Anordnung ihrer Baugruppen. Kristallisation bedeutet bei Fasern, daß Bereiche, sogenannte *Kristallite*, entstehen, in denen die Kettenatome der (linear gestreckten oder parallel gefalteten) Makromoleküle ihren höchstmöglichen Ordnungsgrad in alle drei Raumrichtungen hin einnehmen. In diesen kristallinen Bereichen, in denen die Ketten dicht gepackt aneinander liegen, können intra- und intermolekulare Wechselwirkungen am besten wirksam werden.⁷

Daneben existieren in der Faser auch nicht-kristalline (amorphe) Bereiche. In den amorphen Bereichen liegen die einzelnen Polymerketten in ungeordnetem Zustand vor. Zwischen den kristallinen Bereichen mit höchster Ordnung und den amorphen Bereichen mit höchstmöglicher Unordnung können alle Übergangsformen auftreten. Eine klare Trennung ist nicht möglich. Insgesamt wird der Zustand als partiell-kristallin bezeichnet [bob93a].

Die submikroskopisch kleinen Kristallite, die bei der Kristallisation entstehen, werden bei den Fasern auch als *Micellen* bezeichnet. Die Anordnung, Ausrichtung und Größe der Micellen lassen sich mit Hilfe der Röntgenstrukturanalyse untersuchen. Die Größe der Kristallite kann in der Größenordnung der Länge der Kettenmoleküle (einige 10000 Å) liegen. Meist werden sie jedoch kürzer sein, da nur Teile der Ketten die notwendige periodische Anordnung haben [pet59a].

Die Kristallisation in der Faser wird durch verschiedene Faktoren gehemmt bzw. gefördert. Die Beweglichkeit der Ketten oder Kettensegmente ist eine wichtige Voraussetzung dafür, daß sich die Moleküle in alle drei Raumrichtungen ausrichten, orientieren und ordnen können. Ein hoher Grad an Symmetrie in den Makromolekülen, sowie eine dichte Anlagerung der Ketten aneinander, bewirken, daß intermolekulare Kräfte optimal wirksam werden können und fördern somit das Kristallisationsvermögen der Fasern. Am besten werden die Anforderungen dann erfüllt, wenn die Polymere über eine stereoreguläre räumliche Gestalt verfügen. Diese ermöglicht sehr stabile Kristallstrukturen, in denen die Ketten optimal dicht gepackt, ihren energetisch günstigsten Zustand (Energieminimum) einnehmen können. Sperrige Seitenketten und Kettenverzweigungen, die die Makromoleküle insgesamt versteifen, schränken die Beweglichkeit ein und hemmen den Kristallisationsprozeß.

Ein Beispiel dafür ist die Wolle, bei der die Kettenmoleküle wegen der vielen sperrigen

⁷ Als Kristallstrukturen können hexagonale, trigonale, rhombische, monokline oder trikline Gitter ausgebildet werden. Kubische Gitter können wegen der Anisotropie der Atomabstände in den Faser nicht entstehen.

Seitenketten keine gestreckte Form annehmen können, sondern räumlich gesehen in einer voluminösen Helixstruktur vorliegen. Der Anteil der kristallinen Strukturen in der Wolle ist entsprechend gering und beträgt etwa 30% oder weniger. Im Fibroin der Seide in dem die Ketten hingegen eine optimal gestreckte Form annehmen können, kann der Anteil der kristallinen Bereiche bis zu 60% ausmachen.

Kristallisation ist sogar möglich, wenn nur schwache van der Waals Kräfte existieren und der Abstand zwischen den Ketten gering ist (4-5 Å). Stabilere Kristalle erhält man natürlich mit periodisch angeordneten aktiven Gruppen.

Die Kristallisation erfolgt bei pflanzlichen oder tierischen Fasern während des Wachstumsprozeßes. Zunächst bilden sich Kristallkeime, welche zu Kristallen anwachsen, die unter Orientierungseinflüssen längliche fibrilläre Form annehmen.

Bei der Seide, bei der die Kettenmoleküle gestreckt vorliegen, erfolgt die Keimbildung durch Zusammenlagerung von gestreckten Kettenmolekülen. Aus ihnen bilden sich sogenannte Fransenkeime und schließlich die Fransenkristallite.

Bei der Wolle, bei der die Keratin-Ketten keine vollkommen gestreckte Form annehmen können, lagern sich die gefalteten Polymermoleküle zu Faltungskeimen zusammen. Bei weiterem Wachstum der Keime, bilden sich die sogenannten Faltungkristallite.

Die übermolekularen Strukturen, die sich in einer Faser ausbilden, wirken sich wesentlich auf die mechanischen Eigenschaften der Faser aus. Mit steigender Kristallinität der Faser werden intra- und intermolekulare Wechselwirkungen stärker wirksam. Die Beweglichkeit der Molekülsegmente nimmt ab und die Faser wird fester und beständiger. Desweiteren sind in den meisten Kristalliten die Ketten nahezu vollständig gestreckt, während sie im amorphen Bereich in der Regel gefaltet sind. Die kristallinen Bereich sind deshalb in erster Näherung nicht weiter dehnbar [ber93]. Allerdings können sich Polypeptid-Ketten von Proteinfasern (besonders Keratin) so regelmässig falten, daß es zur Kristallisation kommt. Solche Kristalle zeigen ein ungewöhnliches Dehnungsverhalten, da jetzt auch die kristallinen Bereiche Ursache für eine Längenänderung sein können. Im allgemeinen wird es aber zur Streckung und Ausrichtung der Kettenmoleküle in den amorphen Bereichen kommen [pet59].

Das Keratin der Wolle weist dieses besondere Dehnungsverhalten auf. Kommt es zu einer Dehnung in den kristallinen Bereichen, so kann sich die α -Helix-Struktur der Kettenmoleüle in eine β -Helixstruktur umwandeln. Diese ähnelt in ihrem Aufbau der Faltblattstruktur von Seide, was Röntgenbeugungsuntersuchungen an Wolle zeigen. Die Umwandlung ist vollkommen reversibel. Dies erklärt die besonderen Rückformungs-Eigenschaften von Wolle.

Darüberhinaus wird das Sorptionsverhalten der Faser vom Anteil der kristallinen Strukturen bestimmt. In den kristallinen Bereichen kann Wasser schlecht eindringen, während es in die amorphen Strukturen leicht aufgenommen werden kann. Der Anteil an kristallinen Strukturen beeinflußt das Sorptionsverhalten der Fasern und diese wiederum deren Dehnungseigenschaften, die sich mit der Aufnahme von Wasser verbessern [bal95a].

2.4 Viskoelastisches Verhalten und strukturelle Veränderungen unter Zugbelastung

Festkörper zeigen in gewissen Grenzen elastisches Verhalten. Bei Textilfasern findet man zusätzlich ein Verhalten, das mehr dem einer Flüssigkeit gleicht. Die Kombination beider Verhaltensweisen bezeichnet man als *viskoelastischen Zustand*.

Ein interessantes Beispiel wird in [cow91] beschrieben. "Springkitt", ein Silikonpolymer, verhält sich bei schneller Krafteinwirkung elastisch wie ein Gummiball, bei langsamer Krafteinwirkung fließt das Material wie eine viskose Flüssigkeit.

Alle Fasern zeigen Zeiteffekte unter Belastung. Die einfacheren Effekte sind:

- langsame Deformation bei konstanter Zugspannung (Kriechen, engl. creep)
- Abnahme der Zugspannung bei konstanter Deformation (Relaxation)

Bei konstanter Belastung dehnt sich eine Faser erst schnell und dann langsamer. Hebt man die Belastung auf, so nimmt die Dehnung ebenfalls erst schnell und dann langsam ab. In einigen Fällen geht die Dehnung vollständig zurück, in anderen bleibt eine Restdehnung (siehe dazu auch Abschnitt 5.3).

Es gibt zwei Hauptprozesse, die zu einer Dehnung führen:

- Dehnung von Bindungen (speziell zwischen den Ketten und zwischen aktiven Gruppen eines Moleküls)
- Ausrichten der Kettenmoleküle (Entfalten der Ketten)

Beide Effekte sind stark vermischt (Ausnahme: Gummi).

Bindungsdehnung

Dehnung von Bindungen wird i.a. nur intermolekulare Bindungen und schwache intramolekulare Bindungen zwischen Molekülsegmenten betreffen. Veränderungen der Bindungslänge oder des Bindungswinkels in intramolekularen kovalenten Bindungen wurden nie beobachtet.

Bei zunehmender Dehnung nimmt die Spannung zu bis ein Maximum erreicht wird, an dem die Bindung "aufbricht". Bei Wasserstoffbrücken und van der Waals Bindungen ist dieses Maximum bei einer Dehnung von 10 % bis 20 % erreicht. Dies ist die Grenze des reversiblen elastischen Bereichs.

Komplizierter wird das Verhalten dadurch, daß die Bindungen oft nicht in Dehnungsrichtung ausgerichtet sind. Im Modell betrachtet man dazu "Bindungsketten", die zwei Punkte in der Faser verbinden. Allgemein läßt sich dann sagen:

- Bindungen müssen zuerst in Faserrichtung orientiert werden. Dies kann zu einen irreversiblen Beitrag führen.
- Kurze Bindungsketten werden zuerst richtig orientiert sein. Damit können beim Bruch der Bindungen in den kürzeren Ketten die längeren, die sich später orientieren, die Spannung aufnehmen. Da sich dann die gebrochenen Bindungen nicht beliebig

auseinanderbewegen können, ist sogar ein Wiederaufbau dieser Bindungen möglich, wenn die Zugbelastung wegfällt.

Weiterhin ist es auch möglich, daß sich neue Bindungen ausbilden. Dies läßt sich durch verschiedene stabile Gleichgewichtszustände für das Netz von Bindungen beschreiben. Dies führt zum Fließen unter Zugbelastung. Dieses Fließen ist reversibel. Ursache dafür können die noch vorhanden ungebrochenen Bindungen sein, die die Faser "zurückziehen".

Gründe für ein irreversibles Verhalten können sein:

- Orientierung der Bindungen (s.o.).
- Unvollständige Kontrolle des Bruchs von Bindungen durch parallele Ketten (s.o.).
- Ausbildung neuer Bindungen
- Kristallisation

Diese Effekte hängen von der Umgebung ab, wie z.B. den Wassergehalt. Sie sind auch Ursache für Zeiteffekte.

Relaxation bei Fasern, die bei einer bestimmten Dehnung fixiert werden, ist durch Bindungsbruch und Bindungsbildung zu erklären. Reversibles und irreversibles Verhalten ist möglich, wie oben beschrieben.

Kettenausrichtung

Reversible Verformung kann auch aufgrund der statistischen Anordnung der Kettenmoleküle erklärt werden. Dies entspricht einer Änderung der Entropie des Systems.

Gummi ist das Musterbeispiel für den Entropieeffekt. Intermolekulare Bindungen und aktive Gruppen sind kaum vorhanden. Die Bindungen machen die Moleküle sehr flexibel. Eine dichte Packung ist aber nicht möglich. Die Ketten sind sehr mobil und es ergibt sich ein idealer amorpher Zustand. Durch Zugbelastung richten ich die Molekülketten aus und erhöhen die Ordnung bzw. erniedrigen die Entropie. Bei Entlastung wird der ungeordnete Zustand aufgrund der Temperaturbewegung wieder hergestellt. Das typische Verhalten von Gummi kann also durch die Entropieänderungen beim Be-und Entlasten erklärt werden. Eine intermolekulare Bindung ist allerdings immer vorhanden, die das unkontrollierte Fliessen des Materials verhindert.

Eine gewisse Rolle sollte der Entropieeffekt in amorphen Bereichen immer spielen.

Als Spezialfall sei noch Wolle erwähnt. Die Kettenmoleküle der Fasern liegen hier gefaltet vor. Ein Beitrag der Entropie wird also eine Rolle spielen, allerdings sind die Ketten regelmässig gefaltet, so daß es bei der Dehnung auch zur Entropieerhöhung kommen kann (negative Spannung). Die starke Wechselwirkung zwischen den Ketten garantiert aber immer einen dominanten Beitrag der inneren Energie.

2.5 Einflußfaktoren

Bei allen Untersuchungen, die an textilen Materialien vorgenommen werden, können Einflußfaktoren wie Temperatur und Luftfeuchte das Materialverhalten entscheidend verändern und müssen daher beachtet werden. Auf Grund von Faseralterung und Abbau-

prozessen kann das mechanische Verhalten gealterter Fasern vom Verhalten neuer Fasern abweichen.

2.5.1 Temperatur und Luftfeuchtigkeit

Durch eine Erhöhung der Temperatur verbessern sich die Dehnungseigenschaften von Fasern. In der Praxis spielen Änderungen der Temperatur keine große Rolle, da sehr große Temperaturschwankungen praktisch nicht vorkommen. Dagegen führen Schwankungen der relativen Luftfeuchte zu einer gravierenden Veränderung der Kraft-Dehnungseigenschaften.

Bild 2.3 zeigt die Kraft-Dehnung für verschiedene Temperaturen. Um Zimmertemperatur ergeben sich kaum Veränderungen im Verlauf wie man aus Vergleich der Kurven für $T = 20^{\circ}$ C und $T = 91^{\circ}$ C schließen kann.

Bild 2.4 zeigt die Veränderug der Höchstzugkraft und der Bruchdehnung mit der Temperatur. Auch hier zeigen sich nur geringe Änderungen⁸.

Abbildung 2.3: Kraft-Dehnungdiagramm von Wolle bei verschiedenen Temperaturen. Im praktisch interessierenden Bereich um Zimmertemperatur findet man nur geringe Änderungen im Verhalten. Bild nach [bal95].

Abbildung 2.4: Höchstzugkraft und Bruchdehnung von Wolle. Die Änderungen im Bereich der Zimmertemperatur sind nur gering. Bild nach [bob93].

Wasser kann vor allem in die amorphen Bereiche der Faser eindringen und diese

⁸ Die angebenen Werte für die Zugkräfte stimmen in den verschiedenen Quellen allerdings nicht überein.

aufquellen. Es wird dann locker über van der Waals- oder Dipolkräfte gebunden und liegt als Lösung in der Faser vor.

Die Absorption von Wasser hängt von Temperatur und relativer Luftfeuchte ab, aber auch von der Dauer der Sorptionsperiode. Die Wasseraufnahme erfolgt zunächst schnell, verlangsamt sich dann und erreicht schließlich einen Gleichgewichtszustand. Das Zurückhalten des gebundenen Wassers bedeutet für die Faser einen energetisch stabilen Zustand, während die Desorption Energieaufwand erfordert. Die Geschwindigkeit der Feuchteabgabe wird bestimmt durch die Faserfeinheit und die spezifische Oberfläche, die Packungsdichte der Fasern im Garn und Gewebeverband, Gegenwart von Fremdstoffen und Luftbewegung. Der Wassergehalt einer Faser ist bei einer bestimmten relativen Luftfeuchte während der Desorption höher als bei der Absorption. Wasseraufnahme und -abgabe zeigen also ein Hystereseverhalten.

Durch Feuchteaufnahme verändern sich die Faserabmessungen. Feuchteaufnahme vergrößert in erster Linie den Faserquerschnitt, die Längsquellung ist zu vernachlässigen. Durch Quellungen entstehen Spannungen in den Faserkrümmungen, die zu flacheren Bögen und zu einer Längung des Gewebes führen können. Hygrale Expansion ist eine reversible Längenveränderung, die bei Feuchteaufnahme bzw. -abgabe von Stoffen eintritt. Andererseits können eingefrorene Spannungen aus der Verarbeitung freigesetzt werden, was mit Schrumpfen verbunden ist, sogenannte Relaxationsschrumpfung. Dies tritt bei gealterten Geweben meist nicht mehr auf.

Während Wolle und Seide im nassen Zustand ihre Festigkeit verlieren, steigt die Naßfestigkeit bei Leinen und Baumwolle⁹.

Durch Gefügeauflockerung wird das Gleiten von Kettensegmenten erleichtert. Besonders hygroskopische Naturfasern werden weicher geschmeidiger und dehnbarer. Bild 2.5 zeigt die Veränderung der Kraft-Dehnungs-Kurven von Wolle und Seide bei unterschiedlichen relativen Luftfeuchten.

Abbildung 2.5: Kraft-Dehnungdiagramme von Wolle und Seide bei unterschiedlicher relativer Feuchtigkeit.

⁹ Wegen des höheren Radialdrucks in der Faser im gequollenen Garnverband liegt die Höchstzugkraft im nassen Zustand über der Höchstzugkraft der Faser im trockenen Zustand (spiralige Anordnung der Fibrillen in den Lamellen, der Primärwand und Sekundärwand.)

2.5.2 Faserschädigung und Abbauprozesse

Alterungsprozesse an Fasern entstehen durch die Einwirkung von Strahlung, Wärme, Luftfeuchtigkeit, Mikroorganismen und Chemikalien. Es kommt zu chemischen Abbaureaktionen wie photooxidativem und thermooxidativem, oxidativem oder hydrolytischem Abbau der Fasersubstanz. Begleitsubstanzen wie Farbstoffe können die Abbauprozesse verzögern oder beschleunigen.

Elektromagnetische Strahlung kann Fasern schädigen. Eine photochemische Reaktion findet dann statt, wenn die Energie ausreichend hoch ist, um die Bindungen aufzubrechen.

Schädigungen werden vor allem von UV-Licht verursacht. Bei cromophoren Systemen treten aber auch Schäden durch sichtbares Licht auf.

Durch die Absorption elektromagnetischer Strahlung wird der photooxidative Abbau in Gang gesetzt. Es bilden sich zunächst in einem ersten Schritt Radikale durch Abspaltung von H-Atomen. Mit Sauerstoff aus der Luft bilden sich weitere Peroxid- und Polymerradikale, die zu neuen Brüchen in benachbarten Ketten führen. Im einem zweiten Schritt wird nur noch Wärme benötigt, um die entstandenen schwachen Peroxydbindungen weiter aufzubrechen. Das bedeutet, daß der Abbauprozeß nicht mehr durch elektromagnetische Strahlung angestoßen werden muß und somit auch ohne Licht ablaufen kann. Schließlich führen Quervernetzungen und Neukombination zu zahlreichen Abbauprodukten und zum Ende der Kettenreaktion.

Enthalten die Abbauprodukte cromophore Systeme, so resultiert daraus lediglich eine Veränderung der Farbe. Werden dagegen kovalente Bindungen im Rückgrat der Polymerkette aufgebrochen, so nimmt der Polymerisationsgrad der Faser und ihre mechanische Festigkeit durch den Abbau ab.

Die Photooxidation hängt von der Dauer und Intensität der Bestrahlung sowie von der Temperatur ab. Katalysatoren können den Prozess beschleunigen (Enzyme, Schmutzpartikel, Mikroorganismen). Eine hohe relative Luftfeuchte kann ebenfalls einen beschleunigten Abbau der Faser verursachen.

Durch Faseralterung kommt es zu einer Versprödung der Fasern, die sich im Kraft-Dehnungsdiagramm wiederspiegelt. Oxidationsprozesse führen zu einer Veränderung des Anteils bestimmter Aminosäuren in den Proteinfasern Wolle und Seide. Dadurch entstehen veränderte intermolekulare Wechselwirkungen. Die mechanischen Eigenschaften ändern sich, die Faser versprödet [mal95].

3 Historische Tapisserien

3.1 Technik

Die Wirkerei (syn. Tapisserie oder Gobelin) wird in der Systematik der Textiltechnologie zu den höheren stoffbildenden Verfahren gezählt. Diese zeichnen sich dadurch aus, daß bei der Herstellung des Stoffes stets ein Fadensystem passiv bleibt, meist die Kette, während das andere System aktiv in die gespannten Kettfäden einarbeitet. Innerhalb der höheren stoffbildenden Verfahren lassen sich die Kettenstoffverfahren, das Halbweben und schließlich das Weben unterscheiden. Die Wirkerei zählt zu den Kettenstoffverfahren mit passiver Kette im Gegensatz zu denen mit aktiver Kette, z.B. Sprang, und kann als Sonderform des Eintragsflechten angesehen werden. Sie ist eine Übergangsform zum eigentlichen Weben. Beim Wirken können mit der Weberei identische Bindungen hergestellt werden. Die Bildwirkerei wird normalerweise in Leinwandbindung ausgeführt, sehr selten auch in Köperbindung. Im Unterschied zum Weben erfolgt der Eintrag im Prinzip ohne automatische mechanische Fachbildung [sei91].

Abbildung 3.1: Das Bild zeigt das Eintragen zweier verschieden farbiger Schußfäden, die an der Farbgrenze eineinander einhängen.

Während beim Weben ein fortlaufender Eintrag benutzt wird, der über die gesamte Webbreite läuft und dann jeweils an der Webkante umkehrt, wird der Eintrag beim Wirken nicht über die gesamte Stoffbreite, sondern nur über eine bestimmte Anzahl von Kettfäden hin und her geführt. Der Schuß bindet dann nur so weit ein, als es das Muster erfordert. Er ist aber innerhalb eines einfarbigen Bereiches fortlaufend. Durch verschiedenfarbige Schußmaterialien entsteht ein Muster. Die Bildwirkerei besitzt damit die Möglichkeit zur bildlichen Darstellung unabhängig vom Rapport oder der Wiederholung. Die meist stärkere Kette wird dabei vollständig vom Schuß verdeckt und bleibt unsichtbar. Es entsteht eine rippenartige Struktur des Stoffes [wil91].

Abbildung 3.2: Bildung von längeren und kurzen Schlitzen an Farbgrenzen. Bildquelle: Seiler-Baldinger, [sei91].

Treffen Schußfäden im Stoff aufeinander, so bilden sich offene *Schlitze* (Bild 3.2), wenn die Fäden um den jeweils benachbarten Kettfaden zurückgeführt werden. Sehr kurze Schlitze bleiben häufig offen und können auch gezielt zur Gestaltung des Bildteppichs eingesetzt werden. Längere Schlitzverbindungen werden nachträglich zugenäht. Es existieren verschiedene Techniken um Schlitzbildung zu vermeiden. Die Schußfäden zweier angrenzender Farbpartien können vor dem Umkehren miteinander verhängt werden (Bild 3.3). Zwei angrenzende Farben können um einen gleichen gemeinsamen Kettfaden umkehren, man spricht dann von verzahnter Wirkerei (Bild 3.4). Eine weiter Möglichkeit besteht darin einen Kettfaden zwischen zwei umkehrenden Einträgen auszusparen. Der freie Kettfaden wird mit einem andersfarbigen Schußfaden umwickelt. Diese als *Gimpenbildung* bezeichnete Technik wird häufig zur Konturierung von Formen eingesetzt (Bild 3.3). Für Verzahnung, Einhängen und Gimpenkontur stehen wiederum viele unterschiedliche Möglichkeiten zur Verfügung, die vom Wirker gezielt eingesetzt werden und ihm gestalterische Freiheit geben. Weiter können die Schußfäden nicht nur horizontal zur Kette eingetragen werden, sondern auch schräg im Gewirk verlaufen [hei63].

Abbildung 3.3: Einhängen von Schüssen ineinander (links) und Gimpenbildung (rechts). Bildquelle: Seiler-Baldinger, [sei91].

Abbildung 3.4: Einfache (links) und gruppierte (rechts) verzahnte Verbindung. Bildquelle: Seiler-Baldinger, [sei91].

3.2 Material

Für die Fertigung hochwertiger Tapisserien war die Herstellung von qualitativ gutem Material von großer Bedeutung. Während das Kettmaterial aus ungefärbter Wolle oder Leinen besteht, verwendete man für den Schuß eine Vielzahl fein abgestufter Farbtöne. Als Material für den Schuß wurde überwiegend Wolle, schon ab dem 15. Jahrhundert auch Seide und in besonders kostbaren Teppichen auch Metallfäden (Gold und Silberlahn um eine Seidenseele gewickelt) verwendet. Qualitativ hochwertige Wolle wurde in den Niederlanden von England eingeführt, während für die Herstellung von Seide im 16. Jahrhundert Seide aus Granada, im 17. und 18. Jahrhundert hochwertige italienische Organzinseide geschätzt wurde. Die Stadt Arras war für die Wollfärberei und die Wollfäden als "fin fille d'Arras" bekannt. Vom 15. bis zum 16. Jahrhundert wurde die Anzahl der abgestuften verwendeten Farbtöne immer mehr gesteigert. Im 18. Jahrhundert wurde eine Skala von über 30 000 Farbwerten verwendet. Diese Feinabstufungen wurden durch Beigabe von Grau und durch die Mischung von Farben erreicht. Die Lichtbeständigkeit des Materials wurde dadurch sehr viel schlechter, was sich besonders bei den heute stark verblichenen Wirkereien des 18. Jahrhunderts zeigt. Bis zu Beginn des 20. Jahrhundert wurden aber ausschließlich Naturfarben verwendet [hei63].

3.3 Der Webstuhl

Die Wirkerei kann entweder auf einem Hochwebstuhl ("haute lisse") mit senkrechtem Kettfadenverlauf oder auf einem Flachwebstuhl ("basse lisse") mit waagrechtem Kettfadenverlauf gearbeitet werden. Beide Webstuhlarten waren im 18. Jahrhundert im Gebrauch [did51],[cof71]. Der Wirkstuhl besteht im Prinzip aus zwei Walzen oder Balken, zwischen denen die Kettfäden gespannt werden. Welche Technik verwendet wurde, läßt sich später im fertigen Gewirk nicht bestimmen.

Der Kartonnier (Kartonzeichner) hat die Aufgabe den Entwurf des Malers in einen Karton umzusetzen, der vom Wirker als Vorlage benutzt werden kann. Diese Vorlage steht hinter den gespannten Kettfäden. Umrißlinien und Konturen werden vom Weber auf die Kette gepaust und übertragen. Um die Fäden leichter teilen zu können, werden

Abbildung 3.5: Wirker am Webstuhl. Bildquelle: Diderot, [did51].

im oberen Bereich der Kette Stäbe eingeführt, die gerade und ungerade Kettfäden trennen, so daß ein erstes Webfach entsteht. Alle geraden Fäden werden mit Litzen verschnürt und können über eine Zugvorrichtung bewegt werden. So kann der Weber mit der linken Hand das zweite Webfach öffnen. Die Schußfäden befinden sich auf den Farbspulen oder Flieten und werden von Hand eingetragen. Die losen Enden werden nach Beendigung einer Farbpartie vernäht und auf der Rückseite des Bildteppichs lose hängen gelassen. Beim Eintrag orientiert sich der Weber am Karton. Die Kettfäden verlaufen üblicherweise im Bild liegend, so daß an der Vorlage um 90° gedreht gearbeitet wird. Dafür werden verschiedene Gründe angenommen. Zum einen war die Verwirklichung sehr großer Wirkstühle, wie es die großen Breitformate gefordert hätten, unpraktikabel. In den Bildteppichen überwiegen senkrechte gerade Konturen gegenüber den waagrechten, so daß die Wirkerei in dieser Form für die Verteilung der Schlitze Vorteile bringt. Die Kette steht auf dem Webstuhl unter Spannung und schrumpft nach dem Abnehmen des Bildteppichs, so daß bei Bildverlauf senkrecht zur Kette, die Figuren in der Längsachse schrumpfen würden, was weit auffälliger ist, als in Querrichtung [hei63].

Im 14. und 15. Jahrhundert werden Tapisserien im Verlagsgeschäft hergestellt. Im 16. Jahrhundert wird auch der Verkauf von den Wirkern selbst übernommen, die sich zu Großunternehmern entwickelten. Sie leiteten nun große Manufakturen und unternahmen Herstellung, Handel und Verkauf selbst. Lange Herstellungszeiten und hohe Materialkosten führten dazu, daß monumentale Serien nur in großen Ateliers gewirkt werden konnten und brachten viele Betriebe in Schwierigkeiten.

Bis zur Fertigstellung eines Bildteppichs waren viele Berufsgruppen beteiligt. Der Entwurf entstand durch einen Maler. Er wurde wiederum von einem eigenen Berufszweig den Patronenmalern oder Kartonniers zu einer Arbeitsvorlage in Orginalgröße umgesetzt, wobei die Bedürfnisse der Technik berücksichtigt wurden. Der Wirker setzte den Entwurf mit dem ihm von der Technik zur Verfügung stehenden gestalterischen Möglichkeiten um. Vor allem die farblichen Übergänge mussten in der Wirkerei, die nicht wie die Malerei mit Farbmischungen, sondern nur mit einem Nebeneinander von Farben arbeiten konnte, durch den Wirker gelöst werden. Für Modellierungen, Schattierungen und Übergänge wurde die Schraffentechnik ("hachures") entwickelt. Selbst im Beruf des Wirkers fand eine Differenzierung nach verschiedenen Tätigkeiten statt, so daß die Wirker je nach ihrem Können speziell für die Umsetzung von Kopf, Gewand oder Naturdarstellung zur Verfügung standen.

1528 wurde von der Stadt Brüssel ein Erlaß zur Signierung der Bildteppiche erlassen, 1544 wurde die Bestimmung auch für andere niederländische Städte gültig. Die Bildteppiche wurden am Gallon mit Stadtmarke und Meistermarke des Ateliers gekennzeichnet. Damit wollte man eine Qualitätssicherung erzielen, um Mängel wie Verziehen aus dem Viereck, Einbuchtung der Seiten oder Wellenbildung und andere Qualitätseinbußen zu kontrollieren und zurückzuweisen [hei63].

3.4 Hängung

Die Hängung historischer Tapisserien wurde häufig mittels Ringen an der Oberkante vorgenommen. Häufig finden sich auf der Rückseite historischer Tapisserien aufgenähte Leinenstreifen, die vermutlich die Bildteppiche stabilisieren sollten.

3.5 Schäden an historischen Tapisserien

Tapisserien weisen meist Alterungsschäden auf, die von einer Verschmutzung des Gewebes, bis hin zum Faserabbau, Rißbildung und zum Verlust ganzer Gewebebereiche reichen können. Dabei entstehen die massivsten Schäden durch sehr lange Ausstellungsperioden. Die Bildteppiche können wegen ihrer Größe schwer vor Staub geschützt werden, so daß Objekte, die über Jahre ausgestellt waren, meist massiv verschmutzt sind. Die Faser verhärtet und versprödet. Durch Lichteinwirkung kommt es zum Verblassen der Farben, dagegen findet sich auf der geschützten Rückseite meist noch die orginale Farbigkeit. Dabei zeigen die Materialien Schadensbilder, die farbtonabhängig sind. Besonders häufig sind die dunklen Wollpartien spröde und brüchig. Der Faserabbau durch Alterungsprozesse kann so weit fortschreiten, daß es schließlich zu einen völligen Verlust der Schußfäden kommt. Es bleiben nur mehr die Kettfäden stehen. Massive Schäden zeigen häufig auch die Metallfäden, bei denen die Korrosion des Lahns zur Schädigung und zum Verlust der Seidenseele führen kann. Ubrig bleibt der Lahn ohne innere Stabilisierung durch die Seele. Gewebeverluste können auch durch Insektenbefall und Mikroorganismen entstehen. Offene Schlitzverbindungen, Risse und Fehlstellen können zur Instabilität des Gewebes führen. Weitere Probleme sind schlecht ausgeführte Reperaturen an Schlitzen und massive Einwebungen, die das orginale Gewebe zerstören.

B PRÜFMETHODEN
Im folgenden Teil dieser Arbeit werden praktische Versuche zum Materialverhalten von Tapisseriegeweben beschrieben, die an natürlich gealtertem Probenmaterial oder direkt am Objekt durchgeführt wurden.

Ziel der Untersuchungen war es, Prüfverfahren zu finden mit denen genauere Kenntnisse zum Deformationsverhalten von historischen Tapisserien gewonnen werden können.

Bei einer längerfristigen senkrechten Hängung werden großformatige Tapisserien einer konstanten Zugbelastung durch das Eigengewicht des Bildteppichs ausgesetzt. Auf diese Belastung des Materials werden viele Schäden, die von Restauratoren an den Objekten beobachtet werden, zurückgeführt. Zur Vermeidung solcher Spätschäden werden unterschiedliche Konservierungsmaßnahmen durchgeführt. Dabei fehlen jedoch noch genauere Kenntnisse zum Materialverhalten von historischen Tapisseriegeweben. Die Ergebnisse der durchgeführten Prüfverfahren sollen, zusammen mit den im Grundlagenteil beschriebenen bekannten Kentnissen zum Materialverhalten, zur Klärung der in der Literatur und in der Diskusssion verschiedener Konservierungsansätze immer wieder aufgeworfenen Fragestellungen beitragen.

- Kann tatsächlich von einer Schädigung der Gewebestruktur durch Zugbelastung ausgegangen werden?
- Wie groß sind die Kräfte, die eine Dehnung oder das Reißen des gealterten Gewebes bewirken?
- Kommt es, wie häufig angenommen wird, zu einer Deformation bzw. Längung des Gewebes durch Aufhängung des Bildteppichs über einen längeren Zeitraum?
- Aus welchen Strukturen resultiert der beobachtete Längenzuwachs des Gewebes?
- Wo liegen die Schwachstellen im Gewebe? In welchen Bereichen sind zuerst Schäden in Folge einer Krafteinwirkung zu erwarten?
- In welcher Größenordnung und in welchem Zeitraum sind Schäden zu erwarten?
- Sind die beobachteten Effekte reversibel oder stellen sie eine irreversible Schädigung des Gewebes dar?

Die beiden ersten Prüfverfahren Kraft-Dehnungs-Meßung und Retardation sind in der Textilprüfung übliche Verfahren. Während die Kraft-Dehnungs-Untersuchung das Verhalten unter kurzfristiger Krafteinwirkung untersucht, erfasst die Retardationsprüfung Effekte die aus längerdauernder Krafteinwirkung am Objekt zu erwarten sind. Schließlich wurde eine Messung des Deformationsverhaltens am Objekt selbst mit Hilfe eines in der Vermessungstechnik üblichen Theodoliten durchgeführt. Diese Methode wird zur Untersuchungen des Kriechverhaltens von Geotextilien eingesetzt. Mit ihr kann eine Langzeituntersuchung der Tapisserien unter realistischen Bedingungen erfolgen. Spannungsunterschiede, die innerhalb des Gewebes auftreten, können vermessen werden.

4 Kraft-Dehnungs-Diagramme

4.1 Einleitung

Der einfache Zugversuch untersucht das Materialverhalten einer Meßprobe unter einer bestimmten in Zugrichtung kurzzeitig einwirkenden Kraft. Dies entspricht einer kurzfristigen Belastung des Gewebes mit steigender Kraft, welche schließlich zum Bruch des Materials führt. Die Beanspruchungsart, welcher Tapisserien in der Realität ausgesetzt werden, kann hingegen als statische Dauerbelastung charakterisiert werden [reu00b]. Das bedeutet, daß die Kraft ihre Größe nicht verändert und ohne Unterbrechung, nämlich über den gesamten Zeitraum der Hängung auf das Gewebe einwirkt.

In der Kraft-Dehnungs-Untersuchung sind Langzeiteffekte, wie sie in Folge von statischen Dauerbeanspruchungen auftreten können, nicht ablesbar. Mit Hilfe von Kraft-Dehnungs-Untersuchungen können aber grundlegende Kennwerte über das Verhalten des Gewebes unter Zugbeanspruchung, wie Dehnung, Höchstzugkraft und Bruchkraft, aber auch Eigenschaften wie die Sprödigkeit des Materials ermittelt werden. Als Prüfverfahren eignet sich der Streifenzugversuch, bei dem die Zugprüfung am Gewebe durchgeführt wird. Auf eine Prüfung von Garnen wurde verzichtet, da bei einer Testung von Garnen die konstruktiven Merkmale der Gewebestruktur vernachläßigt werden. Die Eigenschaften der Garne können daher den Gewebeeigenschaften nicht gleichgesetzt werden.

4.2 Probenmaterial

Alle untersuchten Prüflinge wurden aus sieben verschiedenen Tapisseriefragmenten entnommen, die als rückseitige Flicken bei Restaurierungsmaßnahmen angefallen waren und keinem Objekt mehr zugeordnet werden konnten. Aus diesen Fragmenten wurden je nach Erhaltung und Größe des Gewebestückes 5-11 Prüflinge zugeschnitten, wobei der Tapisserieschuß jeweils in Zugrichtung, also in Längsrichtung des Prüflings verläuft. Die Prüflinge wurden möglichst aus intakten Gewebepartien entnommen. Das Maß der Prüflinge in der Breite beträgt ≈ 20 mm, in der Höhe mindestens 50 mm, so daß eine gleiche Einspannlänge von 30 mm für sämtliche Gewebestreifen gewählt werden konnte. Alle Prüflinge wurden nummeriert und im Vorzustand fotografisch dokumentiert. Innerhalb einer Serie befinden sich Prüflinge mit und ohne Schlitzverbindungen, sowie mit unterschiedlicher Farbe und unterschiedlichem Material.

Fragmente 1 und 2 Die Gewebefragmente 1 und 2, datiert 18. Jahrhundert, weisen eine dichtere Bindung als die übrigen Fragmente auf und bestehen aus Wolle und zu einem größeren Anteil aus Seide.

Ursprung:	Rückseitig aufgenähter Flicken von Tapisserie Inv.Nr. G7700,
	Christus-Serie, Besitz Oberfinanzdirektion Karlsruhe, Referat Staat-
	liche Schlösser und Gärten, datiert 18. Jahrhundert.
Konstruktion:	
Kette:	Wolle, Zwirn, S-Drehung 2fach, naturfarben, 7-8 Fäden/cm
Schuß:	Wolle, Zwirn, S-Drehung 2fach, Rot- und Brauntöne, 38-42
	Fäden/cm, Seide, Zwirn, S-Drehung 2fach, gelb- und Beigetöne, 28-
	30 Fäden/cm
Bindung:	Leinwand, gewirkt, die dünneren Schüsse arbeiten innerhalb der
	Farbgrenzen um die dickere Kette, die eine rippenartige Struktur
	des Gewebes hervorruft und bedecken diese vollständig. Die Schüsse
	binden nur so weit ein, als es das Muster erfordert.

Fragment 3 und 4 Die Fragmente 3 und 4 sind mittelalterliche Tapisseriefragmente und werden um 1400 datiert. Sie sind beide gröber und weniger dicht gewirkt. Die im Schuß verwendeten Garne sind schwächer gedreht.

Fragmente 3 und 4

Ursprung:	Rückseitig aufgenähter Flicken von Tapisserie Inv.Nr. AB2, Teppich
	der "Thronenden Minne", um 1410/20, aus dem alten Rathaus Re-
	gensburg, historisches Museum der Stadt Regensburg.
Konstruktion:	
Kette:	Leinen, Zwirn, S-Drehung 2fach, naturfarben, 4-5 Fäden/cm
Schuß:	Wolle, Zwirn, S-Drehung 2fach, polychrom, 18-19 Fäden/cm
Bindung:	S.O.

Fragment 5, 6 und 7 Die Fragment 5, 6 und 7 sind Tapisseriefragmente datiert um 1600. Sie bestehen überwiegend aus Wolle und anteilsmäßig weniger Seide.

Fragmente	5,	6	und	7
-----------	----	---	-----	---

Ursprung:	Loser Flicken BNM, München, 17. Jahrhundert.
Konstruktion:	
Kette:	Wolle, Zwirn, S-Drehung 3fach, naturfarben, 8-9 Fäden/cm
Schuß:	Wolle, Zwirn, S-Drehung 2fach, polychrom, 22-25 Fäden/cm, Seide,
	Zwirn, S-Drehung 2fach, polychrom, 22-26 Fäden/cm
Bindung:	S.O.

4.3 Prüfverfahren Kraft-Dehnungs-Diagramm

Im einfachen Zugversuch (Kurzzeitversuch) wird das Zug-Deformationsverhalten von Textilien mit einer Zugprüfmaschine untersucht. Die Meßprobe wird bis zu ihrem Bruch auf Zug beansprucht. Das Deformationsverhalten des geprüften Materials kann entweder in Form einer Zugkraft-Längenänderungs-Kurve oder als Zugkraft-Dehnungs-Kurve¹ aufgezeichnet werden [bob93]. Um die Ergebnisse reproduzierbar zu machen, wird die Prüfung bei Normklima, Temperatur: $T = 20 \pm 2^{\circ}$ C und relative Luftfeuchte $f = 65 \pm 2\%$

Fragmente 1 und 2

¹ Als Dehnung ε bezeichnet man die relative Längenänderung in Prozent.

(DIN EN 20139, ISO 139) durchgeführt, da sich die physikalischen Eigenschaften des Materials insbesondere durch einen Anstieg der relativen Luftfeuchte stark verändern können.

Die von uns verwendete Zugprüfmaschine arbeitet mit konstanter Verformungsgeschwindigkeit, bzw. konstanter Dehnungszunahme, dem sog. CRE-Prinzip (engl: constant rate of specimen extension).

Die Meßprobe wird zwischen zwei Einspannklemmen der Zugprüfmaschine befestigt von denen eine feststeht. Durch die Verbindung der feststehenden Klemme mit einem Kraftmeßwandler wird die Zugkraft gemessen und aufgezeichnet. Die bewegliche Klemmvorrichtung ist mit einer Zugtraverse verbunden, die sich mit konstanter Geschwindigkeit von der feststehenden Klemme wegbewegt. Beim einfachen Zugversuch beträgt die Geschwindigkeit² weniger als 1 m/min. Die Längenänderung wird über einen Wegmeßwandler erfaßt.

Die Prüfergebnisse können von verschiedenen Faktoren beeinflußt werden. Die wichtigsten sind die Beanspruchungsgeschwindigkeit, die Einspannlänge und die Vorspannkraft, sowie Art der Prüfmaschine und Klima. Zur Vergleichbarkeit verschiedener Prüfungen werden diese Größen angegeben.

Mit zunehmender Einspannlänge nimmt die Höchstzugkraft ab, da die Wahrscheinlichkeit, daß sich Schwachstellen im Gewebe finden, zunimmt. Mit zunehmender Beanspruchungsgeschwindigkeit wird beim einfachen Zugversuch die Höchstzugkraft größer. Die Vorspannkraft verändert die gemessene Dehnung, da bereits eine Vordehnung der Probe stattgefunden hat.

Für die Prüfung von Fasern, Garnen und textilen Flächengebilden gelten jeweils unterschiedliche Vorschriften. Gewebe können mit dem Streifenzugversuch nach DIN EN ISO 13934-1 oder im Grab-Zugversuch DIN EN ISO 13934-2³ geprüft werden [reu00a].

4.4 Versuchsdurchführung

Die Versuche wurden an der Fachhochschule Münster bei Herrn Prof. Dr. Müller-Rocholz und Frau Dipl.-Ing. Bettina Keller durchgeführt. Es wurden Streifenzugversuche nach DIN EN ISO 13934-1 durchgeführt. Für den Grab-Zugversuch, der für die Prüfung von Flächengebilden ebenfalls möglich wäre, benötigt man größere Prüflinge und damit eine große Menge an Probenmaterial. Die Länge des Probenstreifens beträgt nach DIN EN ISO 13934-1 üblicherweise 350 mm, die Breite beträgt für Schußstreifen 70 mm. In diesem Fall wurde eine kleinere Probengröße gewählt, um mehr Prüflinge aus den Gewebefragmenten zuschneiden zu können. Die Streifenbreite beträgt 20 mm, die Länge wurde so gewählt, daß eine freie Einspannlänge von 30 mm für alle Prüfling eingehalten werden konnte.

 $^{^2}$ Die Klemmengeschwindigkeit kann bei modernen Geräten bis zu 400 m/min betragen, man spricht dann nicht mehr vom einfachen Zugversuch, sondern von Hochgeschwindigkeitszugversuchen.

³ Im Grab-Zugversuch wird nicht die gesamte Breite, sondern nur der Mittelteil der Probe, belastet. Die Probenbreite muß daher wesentlich größer als die Klemmbreite sein. Dadurch läßt sich die Querkontraktion der Meßprobe verhindern; alle Fäden werden gleichmäßig belastet. Die Höchstzugkraft liegt im Grab-Zugversuch etwas höher als im Streifenzugversuch, während die Höchstzugkraftdehnung etwa gleich hoch ermittelt wird.

Tabelle 4.1: Versuchsparameter bei den Kraft-Dehnungs-messungen.

Einspannlänge L_0	30 mm
Verformungsgeschwindigkeit dS/dt	30 mm/min
Vorspannung $F_{\rm V}$	$pprox 0,48 \ \mathrm{N}$
Temperatur T	$(20 \pm 2)^{\circ}$ C
Luftfeuchte f	$(65\pm2)\%$

Für die Versuche sollen die Schußproben, wie in DIN 53857-T1 angegeben, an den Längskanten seitlich ausgeriffelt sein, indem 3-4 Fäden ausgezogen werden. Damit soll verhindert werden, daß Kettfäden beim Zugversuch seitlich aus dem Gewebeverbund springen, damit nicht mehr am Zugversuch teilnehmen und das Prüfergebnis verfälschen.

Auf das Ausriffeln der Fäden wurde ebenfalls verzichtet. Da bei Tapisserien der Schuß nicht durchgängig ist, lassen sich die Ränder nur schwer gleichmäßig ausfransen und der Probenstreifen würde durch das Ausriffeln beschädigt. Eine Vorbereitung des Probenmaterials in dieser Weise erschien deshalb nicht sinnvoll. An den Meßproben zeigten sich nach dem Zugversuch kaum ausgefranste Ränder, die Probenkanten blieben intakt.

Die Einspannlänge L_0 ergibt sich aus dem Abstand der Klemmen, nachdem die Vorspannkraft aufgebracht wurde. Die Geschwindigkeit der Zugtraverse beträgt jeweils 30 mm/min. Meist reißen nicht alle Fäden des Streifens gleichzeitig, so daß im Kurvenverlauf mehrere Kraftmaxima zu sehen sind. Im Zugversuch werden die Höchstzugkraft F_{max} und die Längenänderung der Probe S für diese Kraft abgelesen [lat74].

Bei Zugprüfmaschinen, die nach DIN 51221 für die Textilprüfung zugelassen sind, darf der Meßfehler höchstens 1% betragen.

Die wichtigsten Versuchsparameter sind in Tabelle 4.1 zusammengestellt.

Abbildung 4.1: Das große Bild zeigt eine der Proben und die verwendeten Einspannklemmen. Das kleine eingefügte Bild zeigt einen Überblick über den Versuchsaufbau für die Kraft-Dehnungs-Messung, allerdings wurde der Aufbau hier für eine andere Messung vorbereitet.

4.5 Versuchsergebnisse

Eine Zusammenstellung aller Ergebnisse findet sich in Anhang A. In der Tabelle sind die genauen Maße der Proben, die Höchstzugkraft, sowie die Längenänderung bei Höchstzugkraft angegeben. In den darauffolgenden Bildern sind die Kurvenverläufe für alle Proben graphisch dargestellt. Dabei ist die Längenänderung in Dehnung umgerechnet (Gl. 4.1).

4.6 Auswertung der Versuchsergebnisse

Bild 4.2 vergleicht Zeit- und Dehnungsabhängigkeit der Kraft. Die Kurven beinhalten die gleichen Informationen, wie in der Bildunterschrift erläutert wird.

Im folgenden wird, wie allgemein üblich, die Dehnungsabhängigkeit der Kraft gezeigt. Die Dehnung ε wird in relativen Einheiten angegeben und wurde nach

$$\varepsilon = \frac{\text{Längenänderung}}{\text{Einspannlänge}} \cdot 100 \tag{4.1}$$

berechnet.

Abbildung 4.2: Kraft-Dehnungs-Diagramm. Links ist die Abhängigkeit der Kraft von der Dehnung dargestellt. Links ist die Zeitabhängigkeit der Kraft gezeigt. Die Kurven beinhalten die gleiche Information, da bei konstanter Zuggeschwindigkeit eine geringere Zunahme der Kraft mit der Zeit nur durch ein Nachgeben des Gewebes (z.B. beim Auftreten kleiner Risse) verursacht werden kann.

Abrupte Änderungen in den Kurven (Bild 4.2) sind auf Brüche im Gewebe zurückzuführen. Dies kann durch aufgehende Schlitzverbindungen oder Geweberiße verursacht sein. Aus der Vielzahl von Proben können einige typische Beispiele gewählt werden, an denen die auftretenden Effekte im folgenden erläutert werden.

Bild 4.3 zeigt das typische Verhalten zweier Proben aus dem Fragment P1 (17. Jahrhundert).

Bei Probe P1.4 ist die Höchstzugkraft (hier gleich der Bruchkraft) $F_{\text{max}} = 74,730$ N, bei Probe P1.11 dagegen $F_{\text{max}} = 321,110$ N. Bild 4.4 zeigt beide Proben vor und nach der Messung. Im Fall der Probe P1.4 ist das Reißen durch die Öffnung der Schlitzverbindung verursacht. Dies ist auch bei allen anderen Proben, die bei vergleichbarer

Abbildung 4.3: Ergebnis der Kraft-Dehnungs-Messung an den Proben P1.4 und P1.11. Zu beachten ist die unterschiedliche Skalierung der beiden Graphen. Die Höchstzugkraft F_{max} ist für Probe P1.11 deutlich höher. Eine Interpretation dieses Verhaltens wird im Text gegeben.

Höchstzugkraft F_{max} reißen, klar erkennbar (siehe Anhang A). Bei Probe P1.11 ist auf einer Seite eine Farbgrenze erkennbar. Zweifellos stellt dies eine Schwachstelle dar, an der das Reißen beginnt. Anschließend reißt das Gewebe. Die Kurvenform nach Beginn des Reißens ist durch die inhomogene Struktur des Gewebes bestimmt. Genauere Aussagen hierüber können nicht gemacht werden. Ein entsprechendes Experiment mit Videoaufzeichnung würde genauere Aussagen erlauben. Dies war im Rahmen dieser Arbeit nicht durchführbar.

Abbildung 4.4: Die Proben P1.4 und P1.11 vor und nach der Kraft-Dehnungs-Messung. Bei Probe P1.4 öffnete sich die Schlitzverbindung, während bei Probe P1.11 die Farbgrenze den Ort des Reißens bestimmt, das sich dann im Gewebe fortsetzt. Die Höchstzugkraft ist beim Geweberiß deutlich höher (Bild 4.3).

Die Kraft-Dehnungs-Experimente an den Proben aus Fragment P1 zeigen eindeutig, daß in diesem Fall ein Reißen des Gewebes unter normaler Beanspruchung unmöglich ist. Die notwendigen Zugkräfte, mit denen die Streifen belastet wurden, liegen im Bereich von 100 N bis 300 N. Die Tapisserie müsste pro Meter mit einer Masse von 300 kg bis 900 kg belastet werden, um einen Gewebebruch zu verursachen.

Bild 4.5 zeigt die Ergebnisse der Messung an zwei Proben des Gewebefragments 2.

Abbildung 4.5: Ergebnis der Kraft-Dehnungs-Messung an den Proben P2.1 und P2.7. Die Höchstzugkraft F_{max} ist typisch für Brüche entlang von Schlitzverbindungen. Der Kurvenverlauf ist durch die Geometrie der Schlitzverbindung (P2.1) bzw. durch Qualität der Vernähung bestimmt (P2.7).

Anhand der in Bild 4.6 gezeigten Proben läßt sich hier gut das Zustandekommen des Verlaufs dieser Meßkurven verstehen. Offensichtlich haben sich bei Probe P2.1 versetzte Schlitzverbindungen (die Farbgrenzen sind bei der unbeschädigten Probe gut erkennbar) bei unterschiedlicher Belastung geöffnet.

Bei Probe P2.7 ist der Verlauf der Meßkurve auf die Vernähung des Schlitzes zurückzuführen. Die Fäden zogen sich bei diesem Versuch aus dem Gewebe, was zu einer größeren Bruchdehnung führte.

Abbildung 4.6: Die Proben P2.1 und P2.7 vor und nach der Kraft-Dehnungs-Messung. Der Bruch erfolgt in beiden Fällen entlang der Schlitzverbindungen.

Bild 4.7 ist das Ergebnis der Messung an Probe 7 des Fragmentes 3. Es handelt sich um einen Riß des Gewebes, der hier bei einer ungewöhnlich niedrigen Höchstzugbelastung von $F_{\text{max}} = 17,35$ N zu beobachten war.

In Bild 4.8 sieht man, daß in diesem Fall die Schußfäden aus dem Gewebe gezogen wurden. Die Gewebebindung war hier offensichtlich stark geschwächt. Das linke Bild (Probe vor der Messung) zeigt an der "Bruchstelle" auch Unregelmässigkeiten in der Gewebestruktur.

Abbildung 4.7: Ergebnis der Kraft-Dehnungs-Messung an den Probe P3.7. Die Höchstzugkraft F_{max} ist für einen Bruch des Gewebes sehr niedrig. Vermutlich war das Gewebe bereits geschädigt (siehe Bild 4.8).

Abbildung 4.8: Die Probe P3.7 vor und nach der Kraft-Dehnungs-Messung. Im linken Bild sind Veränderungen der Gewebestruktur am späteren Bruchort erkennbar.

Auch die in Bild 4.9 gezeigten Meßkurven zweier Proben des Fragments 4 sind durch stark unterschiedliche Höchstzugkräfte gekennzeichnet. Beide haben Schlitzverbindungen, aber im Fall von Probe P4.3 verläuft der Schlitz in einem sehr spitzen Winkel zur Zugkraft. Der Bruch erfolgt nahezu symmetrisch zum Schlitz im Gewebe. Probe P4.12 hat dagegen eine Schlitzverbindung senkrecht zur Zugrichtung und wie bei den anderen Fragmenten erfolgt der Bruch am Schlitz.

Zusammenfassend erhält man folgende allgemeine Aussagen:

- Schlitze senkrecht Zugrichtung öffnen sich in allen Fällen zuerst bei Kräften von 30 N bis 70 N. Dies entspricht einer Zugspannung von 1500 N/m bis 3500 N/m.
- Die zum Öffnen einer Schlitzverbindung notwendige Kraft hängt vom Winkel zwischen Schlitzverbindung und Zugrichtung ab.
- Versetzte Schlitze und unterschiedliche Qualitäten in der Vernähung führen zu speziellen Kurvenverläufen und gelegentlich zu größeren Bruchdehnungen. Die Höchstbruchkraft wird kaum beeinflußt.
- Gewebebrüche treten erst bei relativ hohen Zugkräften auf.

Eine Aussage über die Dehnung bei typischen auftretenden Kräften ist aus diesen Messungen nicht möglich. Bei einer angenommenen Flächendichte von 1 kg/m^2 und Kraftübertragung in Schußrichtung ergibt sich bei einer Probe von 20 mm Breite eine

Abbildung 4.9: Ergebnis der Kraft-Dehnungs-Messung an den Proben P4.3 und P4.12. Bei Probe P4.3 kam es zum Gewebebruch, bei Probe P4.12 dagegen zum Öffnen einer Schlitzverbindung.

Abbildung 4.10: Die Proben P4.3 und P4.12 vor und nach der Kraft-Dehnungs-Messung. Bei Probe P4.3 bleibt die Schlitzverbindung erhalten, da sie in einem spitzen Winkel zur Zugrichtung verläuft.

Gewichtskraft von 0,8 N. Die Vorspannkraft betrug bei diesen Messungen bereits \approx 0,48 N. Der erste Meßpunkt lag bei \approx 1,5 N bis \approx 3,0 N.

5 Retardations-Messung

5.1 Einleitung

Schadensbilder, wie Deformationen des Gewebes, Längung, oder Rißbildung, werden häufig nach einer längeren Ausstellungsperiode an historischen Tapisserien beobachtet. Sie werden auf die Zugbelastung, die durch das Eigengewicht des Gewebes ausgeübt wird, zurückgeführt. Bei flachen frei hängenden Textilien tritt die höchste Gewichtsbelastung an der Oberkante des Gewebes auf. Die Last nimmt nach unten hin stetig ab. Wenn man vereinfacht von einer gleichmäßigen Verteilung der Zuglast im Gewebe ausgeht, so wirkt an jedem Einzelpunkt für sich betrachtet die Gewichtskraft der gesamten unter diesem Punkt hängenden Masse (Bild 5.1).

Abbildung 5.1: Kraftverteilung in einer hängenden Tapisserie. Es wird angenommen, daß die Kraft linear mit dem Abstand von der Oberkante abnimmt.

Im Zusammenhang mit der Zugbelastung durch das Eigengewicht ergeben sich verschiedene Fragestellungen:

- Kann die Gesamtdehnung, die in einem Tapisseriegewebe nach einer bestimmten Hängeperiode erwartet werden muß, eingeschätzt werden?
- Inwieweit ist diese Längenänderung reversibel?

- Unter welchen Bedingungen treten irreversible Deformationen auf?
- Nach welcher Zeit kann kein meßbarer Längenzuwachs im Gewebe mehr erwartet werden?

Die Zugbelastung, die auf eine Tapisserie einwirkt, kann als statische Dauerbelastung charakterisiert werden. Durch Kurzzeitprüfungen wie Kraft-Dehnungs-Untersuchungen, die mit einer stetig steigenden Zugbelastung arbeiten, kann das Verhalten der Textilien unter Dauerbelastung nicht ausreichend charakterisiert werden, weil diese Prüfverfahren die Ermüdung bzw. Erholung der Textilien in Abhängigkeit von der Zeit nicht berücksichtigen.

Das viskoelastische Verhalten von textilen Materialien läßt sich mit statischen Dauerzugversuchen besser erfassen. Dauerzugversuche lassen sich unter konstanter Dehnung (Relaxations-Messung) oder unter konstanter Belastung (Retardations-Messung) durchführen. Mit beiden Verfahren kann das viskoelastische Verhalten von textilen Materialien, wie Kriechdehnung und Fließen erfaßt werden, wobei die Parameter beider Prüfverfahren austauschbar sind. Bei der Retardationsprüfung wird jedoch entsprechend der wirklichen Situation die Längenänderung unter gleichbleibender Gewichtsbelastung gemessen. Die Probe wird bis zu einer definierten Beanspruchungsgrenze belastet, die Beanspruchung bzw. die Gewichtsbelastung wird über eine bestimmte Zeit konstant gehalten und der zeitliche Verlauf der sich verändernden Zugdehnung aufgezeichnet.

5.2 Probenmaterial

Die Prüfung wurde an Gewebeproben durchgeführt. Dies entspricht der üblichen Vorgehensweise in der Textilprüfung. Die Ergebnisse aus Untersuchungen von Einzelfasern oder Garnen lassen sich nicht ohne weiteres auf textile Flächengebilde übertragen. So müssen die veränderten Eigenschaften durch die Drehung der Faser zum Garn berücksichtigt werden, wie auch die Einarbeitung des Garnes im Gewebe, die zu zusätzlichen kraftaufnehmenden Elementen (z.B. Bindungspunkte) führt.

Zweifellos ist für eine umfassende Aussage eine große Anzahl von Proben notwendig. Dies war im Rahmen dieser Arbeit nicht möglich, da die experimentelle Ausstattung in der zur Verfügung stehenden Zeit die Untersuchung von nur einer Probe pro Gewichtsbelastung erlaubte. Zudem erscheint es sinnvoll vor Beginn einer breiter angelegten Untersuchung die verwendeten Methoden kritisch zu prüfen, um das wertvolle und nicht unbegrenzt zur Verfügung stehende Probenmaterial, das für die Retardationsprüfung in Streifen zugeschnitten werden muß, sinnvoll einzusetzen.

Als Probenmaterial wurden nur natürlich gealterte Gewebe verwendet. Es standen verschiedene, für das 17. Jahrhundert sehr typische, Tapisseriefragmente zur Verfügung. Die Vorgeschichte der Fragmente ist nicht bekannt, da Aufzeichnungen fehlen. Der haptische Eindruck – die Gewebe sind relativ sauber und weich – läßt darauf schließen, daß die Fragmente gewaschen wurden. Aus den Gewebestücken wurden sechs Probenstreifen der Größe 200 mm×50 mm zugeschnitten, wobei die Längskante (spätere Zugrichtung) in Schußrichtung des Gewebes verläuft. Bei systematisch vergleichenden Untersuchungen sollte das Probenmaterial in seiner Beschaffenheit möglichst gleichartig und repräsentativ gewählt werden. Im diesem Fall stand jedoch nur eine geringe Menge an Probenmaterial zur Verfügung, da kleinere Fragmente von Tapisserien sehr selten sind. Häufig stammen sie von Zweitverwendungen oder von rückseitig aufgenähten Flicken, die nach der Restaurierung nicht mehr zugeordnet werden können.

Die Meßproben dürfen normalerweise keine Abweichungen von der für das Gewebe typischen Struktur aufweisen, wie Fehlstellen, Knicke etc.. Anders, als üblicherweise zur Prüfung kommende Gewebe, sind Tapisseriegewebe in sich sehr inhomogen. Sie weisen zwar eine einheitliche Gewebebindung auf, doch führen die Farbgrenzen im Gewebe, partieller Schußeintrag, unterschiedliche Materialien, sowie die zahlreichen Schlitzverbindungen zu einer ungleichmäßigen Gewebestruktur. Hinzu kommen Veränderungen durch Schäden und Alterung.

Bei der Auswahl der Streifen wurde auf eine möglichst homogene Verteilung der Schlitzverbindungen in den sechs Proben geachtet. Schadhafte Partien wurden möglichst nicht verwendet. Da die Probestücke trotzdem sehr viele offene Schlitze und ausgebesserte Stellen enthalten, wurde für die höchste Gewichtsbelastung (180 g-Gewicht, 1,8 N) ein zweiter Prüfling aus einem relativ intakten Bereich entnommen. Im folgenden sind die Proben charakterisiert. Bild 5.2 zeigt die untersuchten Objekte.

11000101011011	• (
Ursprung:	Bayerisches Nationalmuseum, 17. Jahrhundert
Breite:	50 mm (Kettrichtung)
Länge:	200 mm (Schußrichtung)
Konstruktion:	
Kette:	Wolle, Zwirn, S-Drehung 3fach, naturfarben, 8 Fäden/cm
Schuß:	Wolle, Zwirn, S-Drehung 2fach, polychrom, 24-30 Fäden/cm, Seide,
	Zwirn, S-Drehung 2fach, polychrom, 22-26 Fäden/cm
Bindung:	Leinwand, gewirkt, die dünneren Schüsse arbeiten innerhalb der
	Farbgrenzen um die dickere Kette, die eine rippenartige Struktur
	des Gewebes hervorruft und bedecken diese vollständig. Die Schüsse
	binden nur so weit ein als es das Muster erfordert.

Probenstreifen 1-6 (Tapisseriefragment 2-4)

5.3 Prüfverfahren Retardation

Um Vorhersagen über das Langzeitverhalten von Tapisseriegeweben treffen zu können, eignet sich als Prüfverfahren am besten die sog. Retardations- oder Dehnungsrelaxationsprüfung. Die Retardation gehört zu den statischen Prüfverfahren oder den sog. Zeitstandversuchen. Es wird das Dehnungs-Zeitverhalten unter konstanter Kraft untersucht. Die Dehnung ε ist definiert als relative Längenänderung

$$\varepsilon = \frac{\mathrm{d}x}{x_0}.\tag{5.1}$$

Die gemessene Länge ist $x = x_0 + dx$.

In Bild 5.3 ist der typische Verlauf der Dehnung bei Einwirkung einer konstanten Kraft, sowie das Verhalten nach der Entlastung dargestellt.

Abbildung 5.2: Proben für die Retardationsmessung: Die sechs Probenstreifen wurden aus möglichst intakten Partien verschiedener Tapisseriefragmente in Schußrichtung entnommen. Die Nummerierung der Streifen entspricht den Probennummern in den nachfolgenden Tabellen.

Abbildung 5.3: Schematische Darstellung einer Kriechkurve nach [cow91]. Die Kurve kann im Belastungsfall in folgende Bereiche unterteilt werden:

a: Elastisches Verhalten; b: Kriechbereich; c: irreversibles viskoses Fließen.

Nach der Entlastung geht zunächst die elastische Dehnung verloren (a = a'). Danach erfolgt ein langsamer Rückgang bis auf c' = c.

Unter der Einwirkung einer äußeren Kraft F dehnt sich das Probenmaterial augenblicklich um $\varepsilon = a$. Dieser Anteil an der Gesamtdehnung des Gewebes ist elastisch und wird auch als Sofortdehnung bezeichnet. Es ist üblich die Kraft pro Einheitsfläche $\sigma = F/A$ zu betrachten. Diese Größe heißt Spannung σ . Der lineare Zusammenhang zwischen Dehnung ε und Spannung σ im elastische Bereich wird durch das Hookesche Gesetz beschrieben:

$$\sigma = E\varepsilon. \tag{5.2}$$

Dabei ist E der Elastizitätmodul (Young-Modul). Die Probe verhält sich in diesem Bereich also wie eine ideale Feder¹.

Unter weiterer Einwirkung der Zugkraft ähnelt das Verhalten des Materials dem viskosen Fließen einer Flüssigkeit, wie es für hinreichend kleine Spannungen durch das *Newtonsche Gesetz* [cow91]

$$\sigma_{\rm S} = \eta \frac{\mathrm{d}\varepsilon_{\rm S}}{\mathrm{d}t} \tag{5.3}$$

beschrieben wird. Dabei ist σ_S die Scherspannung, η die Viskosität und das Verhältnis $d\varepsilon_S/dt$ die Schergeschwindigkeit. Das zur Feder im elastischen Bereich analoge mechanische Modell ist ein Dämpfer, bei dem sich ein Stempel in einem Zylinder mit einer viskosen Flüssigkeit bewegt. Beim viskosen Fließen geht die Energie in Form von Wärme verloren. Das beobachtete Verhalten des Materials wird als Kriechen (kalter Fluß)

¹ Es sei noch bemerkt, daß textile Werkstoffe i.a. als isotrope Körper behandelt werden und zudem die Querkontraktion bei Dehnung vernachlässigt wird.

bezeichnet. Darunter versteht man die verzögerte Dehnung bei schneller Zugbeanspruchung.

In Bild 5.3 werden die Dehnungen b und c durch das Kriechen verursacht. Dehnung c ist durch eine stark verminderte, aber konstante Geschwindigkeit gekennzeichnet. Der Kriechvorgang ist erst für $t \to \infty$ beendet.

Bei Entlastung der Probe geht die Dehnung um den Anteil a' = a der Sofortdehnung (elastische Dehnung) augenblicklich zurück. Es folgt ein langsamer Rückgang, der nie ganz vollständig ist. Die Probe bleibt um den Betrag der Restdehnung c' = c irreversibel verformt.

Dieses Verhalten wird oft durch ein mechanisches Modell beschrieben. Es ist in Bild 5.4 gezeigt. Die Feder E₁ steht für den elastischen Bereich. Sie dehnt sich zur Zeit t = 0 um den Betrag (σ/E_1) = a. Die Parallelschaltung von Feder E₂ und Dämpfer η_2 führt zum reversiblen Kriechen. Die Zeitabhängigkeit der Dehnung wird beschrieben durch

$$\varepsilon(t) = \frac{\sigma_0}{E_2} \cdot \left[1 - \exp\left(-\frac{t}{\tau_{\rm R}}\right) \right]. \tag{5.4}$$

 $\tau_{\rm R}$ ist die *Retardationszeit*. Sobald die Feder E₂ vollständig gestreckt ist, wird der Dämpfer η_3 deformiert, der keine parallel geschaltete Feder (rücktreibende Kraft) hat und somit zu einem irreversiblen Anteil der Dehnung führt. Nach der Entlastung bleibt er im gedehnten Zustand.

Abbildung 5.4: Mechanisches Modell zur Beschreibung des Kriechverhaltens nach [cow91]. 1) Unbelasteter Fall.

2) Elastischer Bereich entsprechend der Dehnung a in Bild 5.3. Nur die Feder E₁ wird gedehnt.

3) Viskoses Fließen im Bereich *b* und *c* von Bild 5.3. Bereich *b* entspricht der durch η_2 gedämpften Dehnung der Feder E₂. Der Bereich *c* der Streckung des Dämpfers η_3 .

4) Nach der Entlastung wird zunächst die Feder E_1 entspannt, d.h. die Gesamtdehnung geht um a' = a zurück.

5) Die Feder E₂ wird durch η_2 gedämpft (also zeitlich verzögert) entspannt. Auf η_3 wirkt keine rücktreibende Kraft, was einer irreversiblen Dehnung entspricht.

5.4 Versuchsdurchführung

Der Dauerbelastungsversuch wird mit einer einfachen Meßvorrichtung, einem sog. *Retardometer* durchgeführt. Der Versuch kann einfach nachgestellt werden, sofern ein konstantes Prüfklima mit einer relativen Luftfeuchte von (65 ± 2) %, und einer Temperatur (20 ± 2) °C gehalten werden kann. Die Meßvorrichtung besteht aus zwei Stativen und einer Querstange. Auf den Probestreifen werden in möglichst großem Abstand zwei Meßmarkierungen angebracht. Der Abstand zwischen den beiden Markierungen wird als Ausgangslänge festgehalten. Die Gewebestreifen werden nun an ihrem oberen und unteren Ende in Klemmen eingespannt und vertikal hängend mit entsprechenden Gewichten belastet. Das Eigengewicht der Klemme muß dabei berücksichtigt werden. Bild 5.5 zeigt den Versuchsaufbau.

Abbildung 5.5: Der Versuchaufbau zur Erstellung eines Kraft-Dehnungs-Diagrammes. Gemessen wurde die zeitabhängige Dehnung bei konstanter Kraft und anschließend im entlasteten Zustand die Relaxation.

Im Dauerbelastungsversuch soll die Gewichtsbelastung einer 4 m langen Tapisseriebahn an unterschiedlichen Orten nachgestellt werden. Die einzelnen Proben repräsentieren also Flächenelemente aus verschiedenen Bereichen dieser Tapisserie. Die Gewichte werden so ausgewählt, daß sie dem entsprechenden Eigengewicht einer Tapisserie mit einem ungefähren Flächendichte von 900 g/m² an den gewählten Orten entsprechen. Es wurde angenommen, daß die Kräfte nur senkrecht, d.h. in Schußrichtung, übertragen werden. In der Höhe *h* wirkt also auf einen 50 mm breiten Streifen die Gewichtskraft

$$|F| \approx h \cdot 0.05 \,\mathrm{m} \cdot 0.9 \,\frac{\mathrm{kg}}{\mathrm{m}} \cdot 9.81 \,\frac{\mathrm{m}}{\mathrm{s}^2}.\tag{5.5}$$

Bild 5.6 zeigt zwei der Proben im Detail.

Abbildung 5.6: Zwei der Meßobjekte im Detail. Es handelt sich um die Streifen 3 und 4.

 Tabelle 5.1: Retardationsmessung.

Flächendichte:	$pprox 900 { m g/m^2}$
Belastungsgewichte:	$180 \text{ g} \ (\equiv 4 \text{ m}), \ 144 \text{ g} \ (\equiv 3,20 \text{ m}), \ 108 \text{ g} \ (\equiv 2,40 \text{ m}), \ 72 \text{ g}$
	$(\equiv 1,60 \text{ m}), 36 \text{ g} (\equiv 0,80 \text{ m})$
Belastungsdauer:	4 Wochen
Entlastungdauer:	1 Woche nach Ende der Belastung
Prüfklima:	relative Luftfeuchtigkeit: $(65 \pm 2)\%$, Temperatur: $(20 \pm 2)^{\circ}$ C

Gemessen von der Unterkante einer 4m langen Tapisserie entsprechen die Proben folgenden Orten und Massen bzw. Gewichtskräften:

Streifen	1	2	3	4	5	6
Ort [m]	4,00	3,20	2,40	1,60	0,80	4,00
Masse [kg]	0,180	0,144	0,108	0,072	0,036	0,180
Kraft [N]	1,77	1,41	1,06	0,71	0,35	1,77

Die Streifen 1 und 6 entsprechen also Orten an der Oberkante der Tapisserie. Streifen 6 liegt 80 cm über der Unterkante der Tapisserie, die anderen dazwischen. Die Längung (in mm) der Meßprobe, gemessen zwischen den Markierungen, wird über einen Zeitraum von vier Wochen verfolgt und zu verschiedenen Zeiten festgehalten. Nach Ende der Belastungdauer wird die Rückformung der Meßproben über einen Zeitraum von einer Woche beobachtet. Dabei werden die Proben horizontal liegend vollständig entlastet und erneut die Abstände vermessen.

Tabelle 5.1 faßt die wichtigsten experimentellen Parameter zusammen.

Probe	1	2	3	4	5	6
Belastungsmasse [g]	180,0	144,0	108,0	72,0	36,0	180,0
Ausgangslänge [mm]	157,0	160,5	156,5	154,5	152,5	162,5
Länge [mm] nach						
5 min	160,5	163,0	158,0	157,0	153,0	162,0
15 min	161,0	164,0	159,0	157,0	154,0	164,0
30 min	161,0	164,0	160,5	157,5	154,0	164,0
60 min	161,0	164,0	160,5	157,5	154,0	164,0
2 h	161,0	164,0	160,5	157,5	154,0	164,0
4 h	161,5	164,0	160,5	157,5	154,0	164,5
8 h	162,0	164,0	160,5	157,5	154,0	164,5
24 h	162,0	164,5	160,5	158,0	154,5	165,0
2 d	162,0	165,0	161,0	158,5	154,5	165,5
4 d	162,0	165,0	161,0	158,5	154,5	165,5
1 Wo	162,5	165,5	161,5	158,5	154,5	165,5
2 Wo	162,5	165,5	161,5	159,0	154,5	165,5
3 Wo	163,0	165,5	161,5	159,0	154,5	166,5
4 Wo	163,0	165,5	161,5	159,0	154,5	165,5
Gesamtlängung [mm]	6	5	5	5	2	3

Tabelle 5.2: Dauerbelastung über vier Wochen.

5.5 Versuchsergebnisse

Die Versuchsergebnisse sind in Tabelle 5.2 und Tabelle 5.3 zusammengestellt.

Probe	1	2	3	4	5	6
Ausgangslänge vor Belastung	157,0	160,5	156,5	154,5	152,5	162,5
Länge nach 4 Wochen Belastung	163,0	165,5	161,5	159,0	154,5	165,5
Länge [mm] nach						
0 min	163,5	163,0	159,0	157,0	153,5	163,0
8 h	160,5	163,0	159,0	156,5	153,5	163,0
24 h	160,0	162,5	159,0	156,5	153,5	163,0
2 d	160,0	162,5	159,0	156,5	153,5	163,0
3 d	160,0	162,5	159,0	156,5	153,5	163,0
4 d	160,0	162,5	159,0	156,5	153,5	163,0
1 Wo	159,5	162,0	158,5	156,0	153,5	162,5
Restdehnung nach 1Wo [mm]	2,5	1,5	2	1,5	1,5	0

Tabelle 5.3: Rückformung nach Entlastung, gemessen über eine Woche.

5.6 Auswertung der Versuchsergebnisse

Bild 5.7 zeigt alle Versuchsergebnisse in einer graphischen Darstellung. Es handelt sich um Kriechkurven wie in Bild 5.3 gezeigt.

Wie aus den Meßwerten zu ersehen ist, längen sich die Prüflinge in der ersten Woche

Zeit [min]

Abbildung 5.7: Ergebnis der Retardationsmessungen. Diese Kurven entsprechen der in Bild 5.3 dargestellten Kriechkurve. Es wurde eine logarithmische Zeitachse gewählt, um den Verlauf bei kleinen Zeiten besser darstellen zu können. Probe 6 hat keine Schlitzverbindungen und zeigt deshalb die Dehnung eines intakten Gewebes.

am meisten, danach nicht mehr wesentlich. Vermutlich geht der größte Anteil der Längung auf offene Schlitzverbindungen und das Auseinandergleiten von ausgebesserten Stellen im Gewebe zurück. Deutlich wird diese visuelle Beurteilung aus der geringen Längung von Streifen 6, der wie Streifen 1 mit 0,180 kg belastet wurde, aber nur eine Gesamtlängung von 3 mm aufweist, während Streifen 1 sich um insgesamt 6 mm gelängt hat.

Die Längung der Streifen ist bei allen Meßproben größtenteils reversibel. Streifen 6, der die Gewichtsbelastung an der Oberkante simuliert, hat nach einer Woche sogar wieder seine Ausgangslänge erreicht.

Abbildung 5.8: Maximale Dehnung und Restdehnung der Probenstreifen. Streifen 6 ist ein intaktes Gewebe ohne Schlitzverbindungen. Die Streifen 1-5 haben eine unterschiedliche Zahl von Schlitzverbindungen.

Bild 5.8 zeigt die Maximaldehnung und die Restdehnung in Abhängigkeit von der Gewichtskraft. Trotz der großen Unterschiede im Probenmaterial ist die Abhängigkeit von der Gewichtskraft klar erkennbar. Eine Ausnahme bildet Streifen 6, der ein Beispiel für ein intaktes Gewebe ohne Schlitzverbindungen ist. Er zeigt die geringste Dehnung und geht nach Entlastung wieder auf die Ausgangslänge zurück. Insgesamt scheinen die wenigen und wahrscheinlich zu inhomogenen Probenmaterialien aber nicht geeignet, um einen genaueren Zusammenhang zwischen Längenänderung und Gewichtskraft herzustellen.

Aus diesen Ergebnissen ist für eine Tapisserie eine Dehnung zwischen 2% und 4% zu erwarten. Das bedeutet bei einer Höhe von 4 m eine Längung um 0,08 m bis 0,16 m.

Da ein großer Teil des Längenzuwachses wohl aus dem Öffnen der Schlitzverbindungen resultiert, kann das Ergebnis nicht ohne weiteres auf die Längung großformatiger Tapisserien übertragen werden. Bei diesen ist eine Stabilisierung der Schlitzverbindungen durch das umgebende Gewebe zu erwarten. Eine entsprechende Messung konnte im Rahmen dieser Arbeit aber nicht mehr durchgeführt werden.

6 Optische Methoden zur Bestimmung von Verformungen

6.1 Einleitung

Mit Prüfverfahren wie der in Kapitel 4 beschriebenen Kraft-Dehnungs-Untersuchung und der in Kapitel 5 beschriebenen Retardationsmessungen kann das Materialverhalten gealterter Tapisseriegewebe untersucht und beschrieben werden. Da dabei aber nur relativ kleine Gewebefragmente untersucht werden, kann jedoch das mechanische Formveränderugsverhalten großformatiger Objekte, die aus sehr unterschiedlichen Materialien bestehen können, nicht ausreichend erfaßt werden. Zur Spannungsverteilung und zum Dehnungsverhalten innerhalb großformatiger Objektes können nur eingeschränkte Aussagen gemacht werden.

In der Literatur finden sich verschiedene Beobachtungen zur Längenänderung historischer Tapisserien. M. Ballard gibt als "Rekord" eine Längung von 34 cm (13,5 inch) an, leider ohne Angabe der Objektmaße [bal95]. K. Marko weist auf nicht unerhebliche Längenänderungen (0,05 m bei einer Höhe des Objekts von 3,2 m) aufgrund von Änderungen der relativen Luftfeuchtigkeit hin [mar95].

Messungen des Verformungsverhaltens mit Hilfe optischer Meßverfahren können hingegen das unterschiedliche Materialverhalten verschiedener Gewebepartien im Objekt erfassen. Mit optischen Verfahren können Materialverformungen an ausgewählten Meßpunkten – prinzipiell an jedem Punkt im Gewebe – über einen längeren Zeitraum verfolgt werden. Sie haben zudem den Vorteil, daß direkt am Objekt untersucht werden kann. Besonders bei Tapisserien ist die Beschaffung von natürlich gealtertem vergleichbarem Probenmaterial ein großes Problem.

Es wurde nach einem Vermessungsverfahren gesucht, das für die Langzeitbeobachtung möglichst kleiner Veränderungen an einem gewirkten Textil einsetzbar ist. Es soll sich für eine systematische Untersuchung einer größeren Objektzahl eignen. Schließlich soll dadurch ein Vergleich verschiedener Restaurierungsmethoden möglich werden.

Bei folgende Meßverfahren wurde jeweils ein ungefütterter und ein mit Stützliniensystem (siehe Kapitel 8) rückseitig abgefütterter Bildteppich vermessen:

- 1. Die Vermessung von Einzelmeßpunkten mit Hilfe eines elektronischen Theodolit (Tachymat) über Winkelvermessung.
- 2. Digitale Fotografie in festgelegten Zeitabständen.
- 3. Fotografie mit einer Scannerkamera in festgelegten Zeitabständen.

Die Meßgenauigkeit und Eignung dieser drei Methoden können damit vergleichend beurteilt und ausgewertet werden.

Ein viertes interferometrisches Meßverfahren (ESPI) wurde an einem dafür präparierten ungefüttertem Tapisseriefragment durchgeführt.

6.2 Probenmaterial

Tapisserie "Der Generalstab"

Vermessen wurde eine großformatige Tapisserie (Breite: 4,10 m, Höhe 3,30 m) "Der Generalstab" (INV. T 3940 Bayerisches Nationalmuseum München), aus der Serie "Kriegskunst", die für Kurfürst Max Emanuel von Bayern in Brüssel (Josse de Vos) gefertigt wurde. Die Tapisserie ist datiert 1724 (Bild 6.1).

Abbildung 6.1: Die Tapisserie "Der Generalstab". Rechts sind die Meßmarken zu sehen. Sie dienten zum Anpeilen mit einem Theodolit und wurden zur Auswertung der digitalen Bilder benutzt. Der Kamerastandort konnte nicht genau mittig gewählt werden, so daß eine Verzerrung der Aufnahme unvermeidbar war.

Eine Beschreibung der Tapisserie ist in Tabelle 6.1 zusammengestellt.

Der Bildteppich befindet sich in überwiegend gutem Erhaltungszustand, so daß eine senkrechte Hängung vertretbar erschien.

Offene Schlitzverbindungen sowie fragile Gewebepartien, die bei Belastung zu reißen drohen, sind kaum vorhanden. Lediglich an der rechten Seite ist eine etwa $5 \text{ cm} \times 5 \text{ cm}$ große Gewebepartie verschlissen. Hier ist der Schuß vollständig ausgefallen und der

. . .

 Tabelle 6.1: Beschreibung der "Der Generalstab".

Generalstab	
Ursprung:	Brüssel 1724
Breite:	Oberkante 4,09 m, Unterkante 4,10 m (Kettrichtung)
Höhe:	Rechte Seitenkante 3,28 m, Linke Seitenkante 3,38 m (Schußrichtung)
Konstruktion:	
Kette:	Wolle, 8-9 Fäden/cm, Zwirn S-Drehung, 3-fach ungefärbt
Schuß:	Wolle, 20-38 Fäden/cm, Zwirn, S-Drehung, 2-fach, polychrom Seide,
	18-40 Fäden/cm, Zwirn, S-Drehung, 2-fach, polychrom
Bindung:	Wirkerei in Leinwandbindung, die Schüsse verschiedener Farbe bin-
	den nur so weit mit der Kette als es das Muster erfordert. Innerhalb
	einer Farbparie wird der Faden fortlaufend hin und her geführt. Stoßen
	die Schüsse verschiedener Partien aneinander werden verschiede-
	ne Verbindungen gewirkt. (Schlitzwirkerei, verzahnte und verhängte
	Wirkerei, und Gimpenkontur, Zusammenfassen der Schußfäden in
	Gruppen und Rückführung über den gleichen Kettfaden.) [cie71]

Gewebezusammenhalt wird nur mehr durch die bloßgelegten Kettfäden gewährleistet. Diese Stelle wurde vor dem Aufhängen der Tapisserie mit einem Stützgewebe hinterlegt und vorübergehend gesichert. Alle anderen Fehlstellen sind grob geflickt, so daß sich aus diesen Schäden keine akute Gefährdung für das Objekt durch das Aufhängen ergibt.

Das Gewebe wurde nicht gewaschen, es ist stark verschmutzt, die Fasern sind hart und besonders in den dunklen Wollpartien stark versprödet.

Alle Farben sind an der Vorderseite der Tapisserie stark verblichen und umgeschlagen, so daß Materialschäden in der Faser durch Lichtschäden (photooxidativer Abbau) zu erwarten sind.

Der Bildteppich lagerte seit 1970 aufgerollt und lichtgeschützt im Depot des Bayerischen Nationalmuseums. Frühere Restaurierungsmaßnahmen sind nicht dokumentiert, es finden sich aber einige gröbere Reparaturen im Randbereich. Auf der Rückseite sind quer entlang der Oberkante und in Hängerichtung in größeren Abständen ≈ 30 cm breite Leinenstreifen aufgenäht.

Als Meßbereich wurden nur diejenigen Partien ausgesucht, die rückseitig nicht durch Futterstreifen abgestützt sind. Die erste Reihe Meßmarken wurde unterhalb des querverlaufenden Leinenstreifens angebracht und die Abstände der Meßmarken zur Unterkante hin erhöht.

Als Meßmarken wurden Scheiben aus Papier mit einem Durchmesser von 15 mm verwendet. Ein Zielkreuz wurde mit einem Rapidographen (0,1 mm) aufgezeichnet. Die Meßmarken wurden mit Insektennadeln fixiert. Ihre Anordnung ist in Bild 6.1 zu sehen.

Die Montage der Tapisserie erfolgte mit Klettband an einem Holzbrett.

Tapisserie "Hortus Conclusus"

Im Rahmen der durchgeführten Untersuchung wurde eine zweite Tapisserie vermessen. In diesem Fall wurde ein Bildteppich ausgewählt, der rückseitig mit einem System von Stützlinien auf einen Baumwollnessel aufgenäht ist. Die Tapisserie wurde vom Bayerischen Nationalmuseum München für die Untersuchung zur Verfügung gestellt. Es handelt sich um den Bildteppich "Mystische Verkündigung", "Maria mit dem Einhorn im Hortus Conclusus", Inventarnummer T 1687, Entstehungslandschaft Niederrhein, datiert um 1500 (Bild 6.2).

Abbildung 6.2: Die Tapisserie "Hortus Conclusus". Die Meßmarken waren über die gesamte Tapisserie verteilt.

In diesem Fall handelt es sich um einen relativ kleinformatigen Bildteppich. Bei einem Vergleich der beiden Messungen, entspricht die Belastung unmittelbar unterhalb der Oberkante ungefähr der Belastung eines Punktes in 1,44 m Höhe des großformatigen Bildteppichs "Der Generalstab", Inv. T 3940.

Die Kette der Tapisserie besteht aus Wolle, der Schuß überwiegend aus Wolle und zu einem geringeren Anteil aus Seide. Es wurden in der Vergangenheit bereits mehrere Restaurierungen durchgeführt. Die erste dokumentarisch festgehaltene Maßnahme stammt von 1970. Die Tapisserie wurde damals gewaschen, Notsicherungen durchgeführt und an einigen Stellen mit neuem Schussmaterial eingewebt. In den Jahren 1981, 1986 und 1993 wurden weitere Maßnahmen durchgeführt. Die rückseitige Abfütterung mit einem Stützgewebe aus Baumwolle, das mit sehr eng gesetzten vernähten Stützlinien auf das Original aufgenäht ist, wurde im Zuge der Restaurierung von 1981 aufgebracht. Der Erhaltungszustand des Objektes ist bis auf geringfügige Ergänzungen in den braunen Konturen und Inschriften sehr gut; das Gewebe ist in sich stabil. Seit der letzten Deponierung 1993 bis zum Zeitpunkt der Untersuchung lagerte der Bildteppich gerollt und lichtgeschützt im Bayerischen Nationalmuseum München. Der mittelalterliche Bildteppich "Mystische Verkündigung", "Maria mit dem Einhorn im Hortus Conclusus", greift thematisch die im gesamten Mittelalter gültige Legende von der Einhornjagd auf. Das Einhorn, ein Wesen mit übernatürlichen Kräften, kann nur im Schoß einer Jungfrau bezähmt werden. Die Legende wird hier christlich symbolisch ausgelegt und die Szenerie mit der jungfräulichen Muttergottes im Mittelpunkt in den Paradiesgarten "Hortus Conclusus" versetzt. Weitere Symbole im Paradiesgarten beziehen sich auf Textstellen des Alten Testaments. Detaillierter ist die Bedeutung der Symbole z.B. in [bnm68] und [dur86] beschrieben.

Eine Beschreibung der Tapisserie ist in Tabelle 6.2 zusammengestellt.

Tabelle 6.2:	Beschreibung	der "Hortus	s Conclusus"	•
--------------	--------------	-------------	--------------	---

Ursprung:	Niederrhein um 1500
Breite:	143,3 cm (Kettrichtung)
Höhe:	143,7 cm (Schußrichtung)
Konstruktion:	
Kette:	Wolle, Zwirn, 2-fach, S-Drehung, polychrom, 6-7 Fäden/cm
Schuß:	Wolle Zwirn, 2-fach, S-Drehung, polychrom, 26-28 Fäden/cm Seide,
	Zwirn, 2-fach, S-Drehung, polychrom, 40-46 Fäden/cm
Bindung:	Wirkerei in Leinwandbindung, die Schüsse verschiedener Farbe bin-
	den nur so weit mit der Kette als es das Muster erfordert. Innerhalb
	einer Farbparie wird der Faden fortlaufend hin und her geführt. Stoßen
	die Schüsse verschiedener Partien aneinander werden verschiede-
	ne Verbindungen gewirkt. (Schlitzwirkerei, verzahnte und verhängte
	Wirkerei, und Gimpenkontur, Zusammenfassen der Schußfäden in
	Gruppen und Rückführung über den gleichen Kettfaden.) [cie71]

Hortus Conclusus

Über die gesamte Tapisserie verteilt wurden Meßmarken im Abstand von zehn Zentimetern zueinander in Reihen angebracht (Bild 6.2). Von der Oberkante zur Unterkante wurden zunehmend größere Abstände zwischen den Reihen gewählt. Da in den oberen Bereichen eine stärkere Verformung angenommen wurde, sollten die Meßmarken hier dichter gesetzt werden. Es wurden Abstände von 10 cm, 15 cm, 20 cm, und 3 mal 25 cm gewählt. Als Meßmarken wurden Insektennadeln (Nadel: Durchmesser 0,23 mm; Länge 38 mm; Kopfdurchmesser 0,78 mm) im Gewebe verteilt, wobei als Meßpunkt jeweils die Einstichstelle der Nadel im Gewebe diente. Um die Meßpunkte rascher mit der Meßapparatur auffinden zu können, wurden zusätzlich weiße Papiermarken über den Nadeln angesteckt. Die Montage der Tapisserie erfolgte mit Klettband an einer Metallleiste.

6.3 Prüfverfahren Theodolit

Theodolite werden im Vermessungswesen verwendet. Ein Theodolit erlaubt die Bestimmung des Horizontalwinkels und des Vertikalwinkels eines Meßpunktes bezüglich des Standortes des Theodoliten. Dies wird in der Vermessungstechnik z.B. zur Abstandsbestimmung verwendet. Ist die Ausdehnung eines Objekts (Messlatte) bekannt, so kann sein Abstand mittels Triangulierung aus der Winkelgröße berechnet werden. Ist umgekehrt, wie bei diesen Messungen, der horizontale Abstand des Theodoliten zum Meßobjekt bekannt, so kann mittels Triangulierung der Ort verschiedener Meßmarken auf dem Objekt bestimmt werden.

Für die Messungen wurde ein Theodolit T1600 der Fa. Wild, Heerbrugg verwendet.

Der Theodolit mißt in Neugrad. Ein Neugrad ist der 100-te Teil eines rechten Winkels, d.h. $1g = 0.9^{\circ} = \pi/200$ rad. Im folgenden wird die Bezeichnung "Neugrad" für die Einheit verwendet, um Verwechslungen vorzubeugen.

6.4 Versuchsdurchführung

Die Versuchsaufbauten zeigen die Bilder 6.3 und 6.4.

Abbildung 6.3: Versuchsaufbau zur Vermessung der Tapisserie "Der Generalstab" mit einem Theodolit.

Abbildung 6.4: Versuchsaufbau zur Vermessung der Tapisserie "Hortus Conclusus" mit einem Theodolit der Fa. Wild.

Die Versuche wurden in der Textilwerkstatt ("Der Generalstab") bzw. im Röntgenraum ("Hortus Conclusus") des Bayerischen Nationalmuseums durchgeführt. Der fensterlose Röntgenraum erwies sich als geeigneter für optische Methoden. Die großformatige

Tapisserie "Der Generalstab" konnte aber aus Platzgründen nur in der Textilwerkstatt aufgehängt werden.

Temperatur und Luftfeuchtigkeit wurden in beiden Räumen ständig überwacht und betrugen:

	Temperatur	rel. Luftfeuchtigkeit
Textilwerkstatt	$(24,5 \pm 1)^{\circ}C$	$(48 \pm 2)\%$
Röntgenraum	$(26,5 \pm 1)^{\circ}{ m C}$	$(52\pm2)\%$

Aufgezeichnet wurde die Bewegung der Meßpunkte mit der Zeit. Für jeden Punkt gibt es Höhenwinkel und Horizontalwinkel zu verschiedenen Zeiten. Die Horizontalwinkel werden zur weiteren Auswertung nicht benutzt.

Referenzpunkte an der Oberkante der Tapisserie sollten als statisch angenommen werden können und deshalb zur Korrektur eventueller Einstellfehler des Theodoliten bzw. Veränderungen in der Aufhängung der Tapisserie dienen. Bei der Tapisserie "Generalstab" konnten zusätzlich Referenzpunkte an der Holzplatte oberhalb der Tapisserie angebracht werden.

Zur Bestimmung der Längenänderung aus den gemessenen Winkeln muß der horizontale Abstand l des Theodoliten zur Tapisserie bekannt sein. Die Abstände l sind: Generalstab 4,40 m±0,10 m

Hortus Conclusus $8,72 \text{ m} \pm 0,01 \text{ m}$

Die Längenänderung S ergibt sich dann zu:

$$S = \tan \phi \cdot l. \tag{6.1}$$

Für die Tapisserie "Generalstab" folgt daraus, daß eine Winkeländerung von 0,01 Neugrad einer Längenänderung von 0,691 mm entspricht. Bei Berücksichtigung des Fehlers¹ der Abstandsmessung ergeben sich $0, 691 \pm 0, 15$ mm.

Für die Tapisserie "Hortus Conclusus" ergibt sich aus einer Längenänderung von $\approx 1,370 \pm 0,001$ mm eine Winkeländerung von 0,01 Neugrad.

6.5 Versuchsergebnisse

Generalstab

Die Meßergebnisse sind für jeden Punkt getrennt graphisch dargestellt. Einige Punkte weichen stark ab. Sie sind auf Übertragungsfehler bei der Datenaufnahme zurückzuführen.

Bild 6.5 zeigt die Ergebnisse der Messungen an den Referenzpunkten (Holzplatte). Die Änderungen liegen in der Grössenordnung von 0,004 Neugrad. Alle drei Punkte zeigen einen qualitativ ähnlichen zeitlichen Verlauf, so daß ein Meßfehler unwahrscheinlich erscheint.

Auch im linken und rechten Meßpunkt der Oberkante spiegelt sich dieser Verlauf wieder (6.6). Allerdings waren diese Punkte sehr schlecht anzupeilen. Dies lag zum einen am

¹ Leider herrschen in der Werkstatt keine Laborbedingungen, so daß ein Verrücken des Theodoliten zwischen Abschluß der Meßreihen und der Abstandsmessung Theodolit-Holzplatte nicht vermieden werden konnte. Daraus erklärt sich der relativ große Fehler.

Abbildung 6.5: Die Referenzpunkte waren oberhalb der Tapisserie an einem Holzbrett angebracht. Auffallend ist das vergleichbare qualitative Verhalten aller Meßpunkte.

ungünstigen Beobachtungswinkel, zum anderen an den Markierungen, für die in diesem Fall Insektennadeln verwendeten wurden, die bei den Lichtverhältnissen sehr schlecht zu sehen waren.

Abbildung 6.6: Meßpunkte an der Ober- und Unterkante der Tapisserie "Generalstab". Der Abfall beim linken und rechten Punkt der Oberkante zeigt sich auch in den Referenzpunkten (Bild 6.5). Die Punkte der Oberkante waren sehr schlecht anpeilbar. An der Unterkante konnte die größte Längenänderung beobachtet werden.

Bild 6.7 und Bild 6.8 vergleicht die Ergebnisse der ersten und achten Reihe. Bei der ersten Reihe ist zum Teil noch die Abnahme bei grossen Zeiten beobachtbar, die auch bei den Referenzpunkten und der Oberkante auffällt. Die achte Reihe zeigt eine typische Längenänderung von 0,025 Neugrad. Dies entspricht etwa 1,7 mm.

Eine vollständige Zusammenstellung der Graphen findet sich in Anhang B.

Abbildung 6.7: Meßpunkte der Reihe 1. Auffällig ist auch hier der Abfall bei den Punkten 1 bis 4.

Abbildung 6.8: Meßpunkte der Reihe 1. Die typische Längenänderung von 0,025 Neugrad entspricht etwa 1,7 mm.

Abbildung 6.9: Hier benutzte Meßpunkte der Tapisserie "Hortus Conclusus".

Hortus Conclusus

Im Fall des "Hortus Conclusus" wurden nur die Punkte der ersten und letzten Meßreihe ausgewertet, da sich aus den übrigen Daten keine signifikante Aussage über die Längenänderung ergab. Alle Meßwerte sind in Anhang B aufgelistet.

Bild 6.9 zeigt die Lage der Meßpunkte, deren Lageänderung in den folgenden Bildern dargestellt ist. Die obere Reihe stellt die Referenzpunkte dar.

Abbildung 6.10: Daten der Referenzpunkte der Tapisserie "Hortus Conclusus" bei der Messung mit dem Theodoliten.

Die Daten der Referenzpunkte sind in Bild 6.10 dargestellt. Die Winkel ändern sich nur um 0,002 (rechts) bis 0,004 Neugrad (links). Dies entspricht einer Längenänderung von $\approx 0,27$ mm bis $\approx 0,54$ mm. Der typische steile Anstieg (elastischer Anteil) ist in diesen Kurven nicht zu sehen. Möglicherweise liegt die Ursache für die Winkeländerung in der Befestigung mit dem Klettband.

Bild 6.11 zeigt typische Kurven von Meßpunkten am Rand der Tapisserie. Diese Punkte zeigen ein ungewöhnliches Verhalten. Ob dies z.B. mit Faltenbildung in Zusammenhang steht, läßt sich aus den Daten nicht rekonstruieren.

Bild 6.12 und Bild 6.13 zeigen einige ausgewählte Punkte der obersten und untersten Reihe. Die Änderungen liegen im Bereich von 0,01 bis 0,02 Neugrad. Dies entspricht einer Längenänderung von 1,4 bis 2,8 mm.

Abbildung 6.11: Meßpunkt 1 von Reihe 1 und Reihe 7.

Abbildung 6.12: Ausgewählte Meßpunkte der Reihe 1.

Abbildung 6.13: Ausgewählte Meßpunkte der Reihe 7.
6.6 Vergleich mit anderen Prüfverfahren

Digitale Fotografie und Scannerkamera wurden als mögliche alternative Untersuchungsmethoden eingesetzt. Im Fall der Tapisserie "Der Generalstab" waren die Lichtverhältnisse aber so ungünstig, daß eine sinnvolle Auswertung der Daten unmöglich war. Deshalb werden im folgenden nur die Messungen an der Tapisserie "Hortus Conclusus" beschrieben.

6.6.1 Prüfverfahren Digitale Fotografie

Methode

Die Messungen wurden mit einer Spiegelreflex-Kamera *Olympus E10* durchgeführt. Diese Kamera ist mit einem 2/3 inch CCD-Chip mit 4 Millionen Bildpunkten ausgestattet. Sie hat ein fest eingebautes Zoom-Objektiv (F2,0-2,4; 9-36 mm). Der Brennweitenbereich entspricht dem Bereich 35-140 mm bei einer Kleinbildkamera. Die Kamera war mit einem IBM Microdisk Laufwerk ausgestattet. Die Bilder wurden im manuellen Modus aufgenommen, um gleichbleibende Fokussierung und Belichtung sicherzustellen.

Abbildung 6.14: Lage der Meßpunkte bei der Tapisserie "Hortus Conclusus". Es wurde nur eine Auswahl der Markierungen mit Hilfe der Pixelkoordinaten ausgewertet. Die Nummerierung erfolgte von links nach rechts und von oben nach unten.

Die Ortsauflösung kann aus den Bilddateien bestimmt werden. Der linke Rand befindet sich in Pixelkoordinaten bei x = 421, y = 121, der rechte Rand bei x = 1756, y = 147. In *x*-Richtung beträgt die Breite also 1335 Pixel. Aus der Breite von 1433 mm ergibt sich somit eine Auflösung von 1,073 mm/Pixel.

Ergebnisse

Die Aufnahmen im TIFF-Format wurden mit Photoshop 6.0 geometrisch ausgewertet. Das Programm Photoshop gibt im Fenster "Info" Pixelkoordinaten aus, wenn unter Voreinstellungen im Datei-Menü die Maßeinheiten auf Pixel eingestellt werden. Eine Auswertung kann also pixelgenau erfolgen.

Eine Verzeichnung aufgrund der optischen Abbildung wurde nicht berücksichtigt. Durch Projektion eines Gitters könnte eine entsprechende Korrektur durchgeführt werden. Die Meßpunkte sind in Bild 6.14 gezeigt. In Anhang C sind die Aufnahmezeiten und die Dateinamen der Originaldaten aufgelistet.

Abbildung 6.15: Meßpunkt 3 (rechts oben) bei der Tapisserie "Hortus Conclusus". Das Kreuz ist 5 Pixel breit und 5 Pixel hoch.

Bild 6.15 zeigt einen Meßpunkt im Detail (Punkt 3, rechts oben). Die Insektennadeln (Kopfdurchmesser 0,78 mm) waren nicht auffindbar. Grund dafür ist wohl das Reflexionsvermögen des Nadelkopfes, der deshalb mit seiner Umgebung "verschwimmt". Anhand der Umgebung (Farben, Farbgrenzen) konnten die entsprechenden Bildpunkte in den Bildern identifiziert werden und ihre Koordinaten wurden aufgezeichnet. In Anhang C sind alle Koordinaten tabelliert.

Abbildung 6.16: Zeitliche Änderung der Koordinaten zweier Bildpunkte. Punkt 1 ist die Markierung links oben und Punkt 8 die Markierung unten mitte.

Bild 6.16 zeigt die zeitliche Verschiebung von Punkt 1 und Punkt 8. Wie man sieht, verschieben sich beide um etwa 9 Pixel. Dies entspräche einer Längenänderung von mehr als 9 mm. Dies wurde bei der Theodoliten-Messung nicht beobachtet.

Um Veränderungen der Kameraposition zu korrigieren, wurde die oberste Reihe als Referenz benutzt. Bild 6.17 zeigt Kurven, die sich aus der Differenz der Pixelkoordinaten von Reihe 8 und Reihe 1 ergeben. Es ist hier kein eindeutiger Hinweis auf eine Längenänderung zu finden. Die Auflösung der Digitalkamera ist also zu gering, um damit die Längenänderung von Tapisserien zu überwachen.

6.6.2 Prüfverfahren Scannerkamera

Methode

Die technischen Daten der Scannerkamera sind in Tabelle 6.3 zusammengestellt. Bild 6.18 zeigt das Gerät. Es besteht aus der eigentlichen Kamera und einer sog. Scanbox mit

Abbildung 6.17: Zeitliche Änderung der relativen Koordinaten von drei Bildpunkten. Es wurden die Punkte 1-3 (oberste Reihe) als Referenz benutzt.

Elektronik und Computer-Interface. Es können Objektive mit Nikon-Bajonette eingesetzt werden. Für die Aufnahmen wurde als Objektiv ein *Mikro-Nikkor 105 mm* verwendet. Anordnung und Größe des Bildsensors sind so gewählt, daß der Aufnahmewinkel dem einer Kleinbildkamera mit entsprechenden Objektiv entspricht.

Die Steuerung erfolgte mit Hilfe eines MacIntosh Laptop-Computers. Die Aufnahmen wurden mit maximaler Auflösung gemacht. Es wurde der gewünschte Bildausschnitt per Software ausgewählt.

Praktica Scan 500					
Hersteller	Pentacon Gmbh Foto- und Feinwerktechnik, Dresden				
Gerätetyp	Scannerkamera mit abgesetzter Scanbox				
Sucher	Spiegelreflexsucher, Scharfeinstellung über Bildfeldlinse				
	mit Tripelmeßkeil, Mikroraster und Mattring				
Bildsensor	trilineare CCD-Zeile				
Pixelgröße	$8\mu\mathrm{m}$				
Scanfläche	29 mm×37 mm				
optische Auflösung	3640×4624×3 Pixel				
interpolierte Auflösung	7288×9249×3 Pixel				
Farbtiefe	12 Bit				
Belichtung	mittels Blendenvorwahl und einstellbarer Integrationszeit				
Scanzeit	ca. 120 s für Vollbild				
Dateigröße	bis 386 MB				
Anschluß	PC über SCSI-Adapter				
Abmessung	Scannerkamera: 180 mm×75 mm×90 mm				
	Scanbox: $250 \text{ mm} \times 170 \text{ mm} \times 60 \text{ mm}$				

 Tabelle 6.3: Technische Daten der Scannerkamera Praktica Scan 500. Die Kamera ist in der verwendeten

 Ausführung nicht mehr lieferbar. Die Daten wurden einem Informationsblatt der Fa. Pentacon entnommen.

Wie schon bei der digitalen Kamera Olympus E10 wird auch hier die Ortsauflösung aus den Bilddateien bestimmt werden. Der linke Rand befindet sich in Pixelkoordinaten bei

Abbildung 6.18: Die verwendete Scannerkamera Praktica Scan 500. Die Scannerkamera wurde mit einem Objektiv der Fa. Nikon benutzt. Die Scanbox wurde über eine SCSI-Schnittstelle an einem Computer angeschlossen. Mit der Software SilverFast 4.x (Photoshop Plug-in) wurden die Aufnahmen gesteuert.

Abbildung 6.19: Meßpunkt 3 (rechts oben) bei der Tapisserie "Hortus Conclusus". Das Kreuz ist 5 Pixel breit und 5 Pixel hoch.

Abbildung 6.20: Vergleich Olympus E10 (links) und Scannerkamera Praktica Scan 500 (rechts). Der Bildausschnitt demonstriert deutlich die höhere Auflösung der Scannerkamera.

x = 189, y = 73, der rechte Rand bei x = 7200, y = 118. In x-Richtung beträgt die Breite also 7011 Pixel. Aus der Breite von 1433 mm ergibt sich somit eine Auflösung von 0,204 mm/Pixel.

Der Raum muß konstante (Kunst-) Lichtverhältnisse aufweisen, da die Scanzeit bis zu 2 min betragen kann.

Ergebnisse

Es wurde wiederum eine Auswahl von Bildpunkten ausgewertet. Auch hier konnten die Insektennadeln nicht verwendet werden (siehe Seite 63). Die Lage der Bildpunkte entspricht den Punkten, die bei den Olympus-Aufnahmen verwendet wurden (Bild 6.14). Bild 6.19 zeigt exemplarisch die Lage eines Bildpunktes. Dies ist zu vergleichen mit Bild 6.15. Die Kreuze sind in beiden Fällen fünf Pixel hoch und fünf Pixel breit. Bild 6.20 zeigt einen weiteren Vergleich der beiden Kameras.

Abbildung 6.21: Vergleich der Daten, die mit der Scannerkamera bzw. dem Theodoliten aufgenommen wurden. Die Effekte sind vergleichbar.

Bild 6.20 zeigt die Daten des mittleren Meßpunktes der unteren Reihe im Vergleich zur Messung mit dem Theodoliten. Es ergibt sich eine vergleichbare Veränderung des Meßpunktes. Es ist zu erwarten, daß mit gut erkennbaren Meßmarken die Scannerkamera die Ergebnisse mit dem Theodoliten vollständig reproduzieren kann.

6.6.3 Prüfverfahren Speckle-Interferometrie

Methode

Beobachtet man eine reflektierende Oberfläche mit einem Laser, so erscheint die Oberfläche körnig. Die kleinen, ungeordnet verteilten Lichtflecken bezeichnet man als "Speckle" (engl.: kleine Flecken). Die Größe der Flecken hängt von der Wellenlänge und dem Auflösungsvermögen des beobachtenden Instruments (zum Beispiel Auge) ab. Speckle entstehen durch die lokale Rauhigkeit der Oberfläche.

Verformt man die Oberfläche, so ändert sich auch das Speckle-Muster. Die reflektierten Lichtstrahlen werden entsprechend der Verformung auch eine Phasenverschiebung erleiden, die durch Überlagerung mit einem Referenzstrahl nachgewiesen werden kann. Bild 6.22 zeigt schematisch den Aufbau eines Speckle-Interferometers.

Das mit dem Referenzstrahl überlagerte Speckle-Muster wird vor (Referenz-Bild) und nach der Verformung aufgenommen und von einem Computer-Programm verarbeitet.

Die durch die Phasenverschiebung verursachten Helligkeitsunterschiede können so der Verformung zugeordnet werden. Durch einen beweglichen Spiegel (Piezo-Spiegel) ist eine Eichung der Anordnung möglich, so daß quantitative Messungen gemacht werden können.

Versuchsdurchführung

Ziel war es die Anwendbarkeit der Speckle-Interferometrie auf Verformungsmessungen an Tapisserien zu überprüfen. Interferometrische Meßverfahren stellen hohe Anforderungen an die Stabilität des Aufbaus. Zudem stellen die Oberflächen der Tapisserien hohe Anforderungen bezüglich einer brauchbaren Ausleuchtung.

Die Messungen wurden in Zusammenarbeit mit der Fa. Steinbichler Optotechnik GmbH, D-83115 Neubeuern, durchgeführt. Die Messungen wurden mit einem ESPI System durchgeführt. Als Lichtquelle dient ein Nd: YAG Laser mit 200 mW. Bild 6.23 zeigt links den Meßaufbau bei der Fa. Steinbichler.

Abbildung 6.23: Links ist der Aufbau bei der Fa. Steinbichler gezeigt. Es handelt sich um ein ESPI System. Als Lichtquelle dient ein Nd: YAG Laser mit 200 mW. Rechts die verwendete Probe (Fotos: Fa. Steinbichler).

Ein Tapisserie-Fragment wurde am oberen Ende fest eingespannt und am unteren Ende mit Bleigewichten belastet (Bild 6.23, rechts).

Durch die Gewichtskraft der Gewichte wurde das Muster verformt. Die sog. "out-of-plane Verformung" wurde erfasst. Prinzipiell sind auch dreidimensionale Verformungsmessungen möglich. Ein entsprechendes System stand aber nicht zur Verfügung.

Um unterschiedliche Belastungen zu simulieren wurden einzelne Gewichte entfernt. Die Messungen wurden während des Kriechens des Versuchsmuster durchgeführt. Es handelt sich dabei um Doppelbelichtungsaufnahmen, die die relative Verformung des Musterteiles zwischen zwei Zuständen ermitteln.

Ergebnisse

Bild 6.24 zeigt die Ergebnisse der Messungen.

In allen Fällen konnte die Verformung eindeutig nachgewiesen werden. Dabei liegen die Verformungen im Bereich von μ m. Unter Laborbedingungen sind die Messungen problemlos möglich. Im Ausstellungsbereich könnte die hohe Empfindlichkeit der Methode zu Problemen führen. Ein Einsatz in Werkstätten zur Erkennung kleinster Schäden erscheint sinnvoll, aber dazu sind weitere Untersuchungen notwendig.

Abbildung 6.24: Ergebnisse der Speckle-Interferometrie. Oben die Verformung innerhalb 5 s nach Belastung der Probe. Die mittleren Bilder zeigen die Verformung nach dem Entfernen von Gewichten in der Mitte. Unten die Verformung nach Entfernen von Gewichten der rechten Seite. (Bilder: Fa. Steinbichler).

C KONSERVIERUNGSMETHODEN

7 Schräghängung und Reibung

7.1 Ziel

Ein konservatorischer Ansatz, um Spätschäden an großformatigen Wirkteppichen zu vermeiden, ist die Ausstellung der Tapisserien auf zur Wand hin schräggestellten Auflageplatten. Dies wird als *Schräghängung* bezeichnet. Durch die Reibung zwischen Objekt und Auflagefläche, die durch eine möglichst flache Auflage verstärkt wird, kann das Kunstwerk von seinem Eigengewicht teilweise entlastet werden. Ein weiterer Vorteil der Schräghängung besteht darin, daß Faltenbildung, wie sie bei frei senkrecht hängenden Tapisserien häufig auftritt, durch die Auflage vermieden wird.

Im Idealfall sollte der Winkel so gewählt werden, daß die Tapisserie ohne weitere Befestigung nur aufgrund der Reibung genügend Halt findet. Ästhetische Beweggründe setzen allerdings häufig den konservatorischen Überlegungen und Argumenten Grenzen. Besonders in historischen Gebäuden wird die Schräge im Gesamteindruck des Raumes oft als störend empfunden und daher abgelehnt. Hinzu kommt, daß der Bildeindruck für den Betrachter bei sehr flacher Präsentation stark verzerrt wird. Lösungsansätze, wie z.B. eine Erhöhung des Betrachterstandpunkts mit Hilfe von Tribünen (Kloster Lüne), scheitern oft an Kosten oder räumlichen Vorgaben.

Im Bayerischen Nationalmuseum München wurden Tapisserien in den letzten Jahren ausschließlich in Schräghängung präsentiert. Auch in vielen anderen Werkstätten in Deutschland werden großformatige Objekte mit Hilfe von schrägen Auflageplatten für Dauerausstellungen rückseitig abgestützt. Als Beispiel sind hier die großformatigen Wirkteppiche im Kloster Lüne oder die mittelalterlichen Tapisserien im historischen Museum der Stadt Regensburg zu nennen.

Für die Schräghängung werden hier meist Winkel um die 5° Auslenkung aus der Senkrechten (bzw. 85° zwischen Boden und Auflageplatte) gewählt (Bild 7.1 zeigt ein Beispiel aus dem Bayerischen Nationalmuseum in München). Die Auflageplatten (Tischlerplatten) werden mit einem *Bezugsstoff* überzogen.

Da mit einem Winkel von 5° keinesfalls eine optimale Entlastung erreicht werden kann, wird die Methode häufig mit zusätzlichen Konservierungsmaßnahmen kombiniert. Dazu gehören das rückseitige Abfüttern der Tapisserie und die Fixierung des Teppichs mittels Stützliniensystem auf dem Futter. An der Oberkante der Objekte ist dann eine Montage mit Klettband notwendig. Damit soll eine Krafteinleitung vom Objekt in den *Futterstoff* und über diesen in die Aufhängung erfolgen, so daß die lokale Belastung für das Gewebe reduziert wird.

Die Effekte, die durch die einzelnen Maßnahmen erreicht werden, sind nur schwer voneinander zu trennen.

Abbildung 7.1: Schräghängung einer Tapisserie. Die Tapisserie ist relativ steil aufgehängt, um den optischen Originaleindruck weitgehend zu erhalten. Meist wird der Winkel zwischen senkrechter Wand und Auflagefläche angegeben, der hier 5° beträgt. Für das Experiment und die Berechnungen ist es aber üblich den Winkel α zu benutzen, der hier entsprechend 85° beträgt. Beim gezeigten Beispiel handelt sich um die Montage der Paulus-Folge im Bayerischen Nationalmuseum, München.

Im folgenden werden die Reibungszahlen zwischen verschiedenen textilen Materialien mit Hilfe einer schiefen Ebene bestimmt. Damit kann die mögliche "Gewichtsentlastung" bei der üblichen Schräge von 5° berechnet werden.

Durch Auswahl der Materialkombination (Bezugsstoff – Futterstoff) mit der höchsten Reibung kann die Gewichtsentlastung für das Objekt erhöht werden.

Darüberhinaus sollen die Ergebnisse als Ausgangsbasis zur Diskussion und zum Vergleich der verschiedenen Restaurierungsansätze dienen.

7.2 Materialien

Da die Reibung eine materialspezifische Eigenschaft ist, muß sie für jeden Stoff, bzw. für jedes Stoffpaar neu ermittelt werden [bob55]. Zur Testung wurden nur die Materialien ausgesucht, die derzeit in der Tapisserierestaurierung in ausgewählten Werkstätten zum Einsatz kommen.

Als Plattenbezugsstoffe wurden getestet:

- Baumwollmolton Fa. Anita Pavani Naturstoffe,
- Polyestervlies Fa. Lohmann, Paramoll N 260/150 dicke Qualität
- Polyestervlies Fa. Lohmann, Paramoll N 334/150 dünnere Qualität
- Babykordstoff aus Baumwolle Fa. Meterweise

Abbildung 7.2: Die zur Reibungszahl-Bestimmung als Plattenbezugsstoff verwendeten Materialien. Beim Babykord ist die Gleitrichtung durch den Pfeil gekennzeichnet.

Bild 7.2 zeigt die Plattenbezugsstoffe.

In der Vergangenheit wurde fast ausschließlich Molton als Plattenbezugsstoff für Tapisserien benutzt. Die Verwendung eines Vlieses der Firma Lohmann ist für die Montage von Tapisserien in größerem Umfang in Mannheim geplant [man02].

Die beiden Polyestervliese [vli02] der Firma Lohmann mit unterschiedlichem Flächengewicht bzw. unterschiedlicher Vliesdicke wurden im Germanischen Nationalmuseum Nürnberg untersucht [ger02]. Das Untersuchungsergebnis [gnm99] zeigt für den dickeren Vliesstoff PE 260 einen höheren Anteil mobilisierbarer Komponenten als PE 334. Vor allem wurden auch Weichmacher (Glykole) festgestellt, die im Bereich der Restaurierung natürlich vermieden werden sollten. Der dünnere Vliesstoff PE 334 erzielt wohl aufgrund einer thermischen Nachbehandlung weit bessere Ergebnisse. Auf Grund der Untersuchungsergebnisse wurde das dünnere Vlies ausgewählt. Zum Vergleich soll auch das dickere getestet werden.

Der Baumwollbabykord wird derzeit im Bayerischen Nationalmuseum München als Plattenbezugsstoff für die Präsentation mittelalterlicher Tapisserien verwendet. Er soll in Zukunft auch als Plattenbezugsstoff für die Präsentation großformatiger Tapisserien verwendet werden.

Tapisserie Rückseite	Einschütte DC50 Soft Fa. Becker&Bernhard	Einschütte EF70 gefärbt Fa. Sandner	
And the second sec			

Abbildung 7.3: Die zur Reibungszahl-Bestimmung als Futterstoff verwendeten Materialien. Es wurde auch die Rückseite eines Tapisserie-Fragments geprüft. Die Gleitrichtung entsprach dabei der Schußrichtung (im Bild die senkrechte Richtung).

Die vier ausgewählten Plattenbezugsstoffe wurden gegen folgende Materialien getestet:

• Rückseite eines Tapisseriefragmentes, datiert 17. Jahrhundert

- Baumwolleinschütte¹ DC 50 Soft Firma Becker & Bernhard
- Baumwolleinschütte EF 70 gefärbt Firma Sandner GmbH & Co

Bild 7.3 zeigt die Futterstoffe.

Die Bestimmung der Reibungszahl zwischen den vier ausgewählten Plattenbezugsstoffen und der Rückseite des Tapisseriefragmentes entspricht der Ausstellung einer ungefütterten Tapisserie.

Da häufig auch gefütterte Objekte auf schräggestellten Platten montiert werden, wurden alle vier Materialien gegen zwei Futterstoffe getestet. Die Einschütte der Firma Becker wurde im Bayerischen Nationalmuseum in der Vergangenheit in größerem Umfang verwendet. Die Einschütte der Firma Sandner wird derzeit als Futterstoff im Bayerischen Nationalmuseum verwendet.

7.3 Methode

Bei der Schräghängung liegt die Tapisserie auf einer schiefen Ebene auf. Betrachtet man einen Körper auf der schiefen Ebene, so wirkt auf ihn die Gewichtskraft $\vec{F}_{\rm G} = m \cdot \vec{g}$, wobei m die Masse des Körpers ist und g die Erdbeschleunigung. Bild 7.4 zeigt die auftretenden Kräfte an einer schiefen Ebene mit Neigungswinkel α . Die Gewichtskraft kann in die Normalkraft $\vec{F}_{\rm N}$ und den Hangabtrieb $\vec{F}_{\rm H}$ aufgeteilt werden.

Abbildung 7.4: Bei der schiefen Ebene kann die Gewichtskraft in den Hangabtrieb und die Normalkraft aufgeteilt werden.

Für die Kräfte gilt:

$$|\vec{F}_{\rm H}| = |\vec{F}_{\rm G}| \sin \alpha$$

$$|\vec{F}_{\rm N}| = |\vec{F}_{\rm G}| \cos \alpha.$$
(7.1)

Zusätzlich wirkt auf den Körper eine Reibungskraft $F_{\rm R}$, die dem Hangabtrieb entgegen

¹ Bei Einschütten handelt es sich um besonders dichte Gewebe, wie sie z.B. für Federbetten verwendet werden. Sie werden meist in Leinwandbindung gefertig.

wirkt (Bild 7.5). In erster Näherung ist die Reibungskraft der Normalkraft F_N proportional. Es gilt das Coulombsche Reibungsgesetz

$$|\vec{F}_{\mathbf{R}}| = \mu \cdot |\vec{F}_{\mathbf{N}}|. \tag{7.2}$$

 μ heißt Reibungszahl oder Reibungskoeffizient. μ ist als Verhältnisgröße dimensionslos [sto95].

Abbildung 7.5: Die Reibungskraft wirkt dem Hangabtrieb entgegen. Die Reibungskraft ist der Normalkraft proportional. Im Bild ist $F_{\rm R} < F_{\rm H}$ und der Körper K würde sich hangabwärts bewegen. Es wirkt dann die sog. Gleitreibung. Bei ruhenden Tapisserien muß dagegen die Haftreibung betrachtet werden. Dies ist im Text genauer beschrieben.

Der Reibungskoeffizient μ ist für ein Paar zweier Körper konstant. Dabei ist die Reibung unabhängig von der geometrischen Größe der Berührungsflächen. Sie hängt dagegen vom Material ab.

Es zeigt sich, daß man zwischen *Haftreibung* und *Gleitreibung* unterscheiden muß. Die Haftreibung muß überwunden werden, um einen Körper in Bewegung zu setzen. Die Gleitreibung wirkt der Bewegung entgegen, sobald der Körper über die Oberfläche gleitet. COULOMB fand heraus, daß die Haftreibung größer ist als die Gleitreibung [how59].

Zwischen relativ zueinander ruhenden Körpern tritt Haftreibung auf. Die damit verbundene Reibungskraft muß bei der Schräghängung von Tapisserien betrachtet werden. Typische Haftreibungszahlen μ_h sind z.B. 0,04 für Teflon auf Teflon oder 0,9 für Glas auf Glas. Für Textilien sind natürlich grössere Werte zu erwarten, da durch die Oberflächenbeschaffenheit der Materialien eine größere effektive Kontaktfläche entsteht.

Mit Hilfe einer schiefen Ebene kann die Haftreibungszahl bestimmt werden. Der Neigungswinkel der Ebene wird so lange erhöht bis ein Körper, der sich zunächst in Ruhe befindet, zu gleiten anfängt. Der Hangabtrieb ist dann gerade genauso groß wie die Haftreibungskraft. Es gilt für diesen Maximal-Winkel α_{max} also

$$|\vec{F}_{\rm H}| = |\vec{F}_{\rm R}| = \mu_{\rm h} \cdot |\vec{F}_{\rm N}|. \tag{7.3}$$

Mit Hilfe von Gleichung 7.1 folgt für den Maximal-Winkel α_{\max}

$$|\vec{F}_{\mathrm{H}}| = |\vec{F}_{\mathrm{G}}| \cdot \sin \alpha_{\max} = \mu_{\mathrm{h}} \cdot |\vec{F}_{\mathrm{N}}| = \mu_{\mathrm{h}} \cdot |\vec{F}_{\mathrm{G}}| \cdot \cos \alpha_{\max}$$

$$\rightsquigarrow \quad \mu_{\rm h} = \frac{\sin \alpha_{\rm max}}{\cos \alpha_{\rm max}} = \tan \alpha_{\rm max}.$$
 (7.4)

7.4 Versuchsdurchführung

Die Bestimmung des Grenzwinkels mit Hilfe der schiefen Ebene kann mit einem sehr einfachen Versuchsaufbau erfolgen (Bild 7.6).

Abbildung 7.6: Versuchsaufbau zur Bestimmung der Reibungszahlen.

Eine Tischlerplatte wurde mittels zweier stabiler Ösen an der Oberkante an einem elektrischen Flaschenzug in Schrägstellung aufgehängt. Die Unterkante liegt auf einem Tisch auf (mit der Wasserwaage austariert). Ein Querholz verhindert, daß die Unterkante der Platte nach vorne weggleiten kann, wenn der Neigungswinkel der Platte verändert wird. Die Platte darf durch die spätere Bewegung des Flaschenzuges nicht in Schwingung geraten. Durch langsames Hochziehen des Flaschenzuges kann die Platte zunehmend aufgerichtet werden. Mit Hilfe von doppelseitigem Klebeband wird einer der beiden Stoffe des Materialpaares falten- und spannungsfrei auf die Platte aufgebracht. Der andere Stoff wird mit Klebeband auf einer Metallplatte befestigt. Damit der Winkel bestimmt werden kann, muß der Körper (Metallplatte) zu rutschen beginnen. Wenn das Gewicht des Körpers nicht ausreicht, und der Prüfkörper bei vollständig senkrechter Stellung der Platte nicht zu Rutschen beginnt, muß das Gewicht des Körpers weiter erhöht. Dazu können weitere Metallplatten mit doppelseitigem Klebeband auf der Rückseite des Prüfkörpers befestigt werden.

Die Winkel wurden mit einem Winkelmesser (Meßgenauigkeit 1°), der auf der Platte befestigt wurde, bestimmt. Die Winkel wurden außerdem mit Hilfe einer Schreinerschmiege und einem Geodreieck zwischen Tischlatte und Schräge bestimmt. Während der Versuchsdurchführung wurde ein konstantes Raumklima von 22°C und 50% relativer Luftfeuchtigkeit eingehalten.

_

7.5 Versuchsergebnisse

Der Versuch ergab die in Tabelle 7.1 gezeigten Maximal-Winkel α_{max} . Daraus ergeben sich nach Gleichung 7.4 die in Tabelle 7.2 zusammengestellten Reibungszahlen μ_{h} .

Tabelle 7.1: Ergebnisse der Reibungszahl-Bestimmung. Angegeben sind die Maximal-Winkel α_{max} . Der angegebene Werte sind Mittelwert und Standardabweichung, die sich aus jeweils 20 Messungen ergaben.

Bezugsstoff	Futterstoff		
	Tapisserie	Einschütte DC50	Einschütte EF70
Molton	56,5±1,8	46,5±2,9	48,9±4,9
Polyestervlies, dick	$73,2\pm 3,0$	41,9±4,0	48,1±4,5
Polyestervlies, dünn	$56,9{\pm}1,4$	37,1±1,5	43,6±1,1
Babykord	55,6±1,5	53,9±2,0	54,9±3,3

Tabelle 7.2: Ergebnisse der Reibungszahl-Bestimmung. Angegeben sind die Haftreibungszahlen μ_h , die nach Gleichung 7.4 berechnet wurden.

Bezugsstoff		Futterstoff	
	Tapisserie	Einschütte DC50	Einschütte EF70
Molton	1,51	1,05	1,15
Polyestervlies, dick	3,31	0,90	1,11
Polyestervlies, dünn	1,53	0,76	0,95
Babykord	1,46	1,37	1,42

7.6 Auswertung der Versuchsergebnisse

Bild 7.7 vergleicht die Ergebnisse der durchgeführten Messungen.

Die Haftreibung führt zu einer Verminderung der entlang der Schräge nach unten wirkenden Kraft, die hier als *effektiver Hangabtrieb* $|\vec{F}_{\rm H}^{\rm eff}|$ bezeichnet werden soll. Es ist also

$$|\vec{F}_{\rm H}^{\rm eff}| = |\vec{F}_{\rm H}| - |\vec{F}_{\rm R}| = |\vec{F}_{\rm H}| - \mu_{\rm h} \cdot |\vec{F}_{\rm N}|.$$
(7.5)

Die typische Flächendichte einer Tapisserie beträgt $0,9 \text{ kg/m}^2$. Die Gewichtskraft pro Flächeneinheit ist also etwa 9 N/m^2 .

Bei einer Schräghängung von 5° (der Winkel α beträgt dann also 85°) ergibt sich also für eine Fläche A der Tapisserie:

$$\frac{|\vec{F}_{\rm H}|}{A} = \frac{|\vec{F}_{\rm G}|}{A} \cdot \sin \alpha = 0,900 \,\frac{\rm N}{\rm m^2} \cdot \sin 85^\circ = 0,896 \,\frac{\rm N}{\rm m^2}$$
(7.6)

$$\frac{|\vec{F}_{\rm N}|}{A} = \frac{|\vec{F}_{\rm G}|}{A} \cdot \cos\alpha = 0,900 \,\frac{\rm N}{\rm m^2} \cdot \cos 85^\circ = 0,078 \,\frac{\rm N}{\rm m^2}.$$
(7.7)

Abbildung 7.7: Reibungszahlen der getesteten Materialien im Vergleich. Mit allen Bezugsstoffen liefert die ungefütterte Tapisserie das beste Ergebnis.

Der effektive Hangabtrieb pro Flächeneinheit berechnet sich daraus für die günstigste Kombination zu:

$$\frac{|\vec{F}_{\rm H}^{\rm eff}|}{A} = \frac{|\vec{F}_{\rm H}|}{A} - \mu_{\rm h} \cdot \frac{|\vec{F}_{\rm N}|}{A} = 0,896 \frac{\rm N}{\rm m^2} - 3,31 \cdot 0,078 \frac{\rm N}{\rm m^2}$$
$$= 0,638 \frac{\rm N}{\rm m^2} \qquad \text{für Tapisserie - Polyestervlies, dick}$$

und für die ungünstigste Kombination zu:

$$\begin{split} \frac{|\vec{F}_{\rm H}^{\rm eff}|}{A} &= \frac{|\vec{F}_{\rm H}|}{A} - \mu_{\rm h} \cdot \frac{|\vec{F}_{\rm N}|}{A} = 0,896 \; \frac{\rm N}{\rm m^2} - 0,76 \cdot 0,078 \; \frac{\rm N}{\rm m^2} \\ &= 0,837 \; \frac{\rm N}{\rm m^2} \qquad \mbox{für Einschütte DC50 - Polyestervlies, dünn.} \end{split}$$

Die relative Reduzierung des Hangabtriebs $\Delta |\vec{F}_{\rm H}| / |\vec{F}_{\rm H}|$ beträgt 28,8% für die ungefütterte Tapisserie auf einem dicken Polyestervlies und nur 6,6% für eine Einschütte DC50 als Futterstoff auf einem dünnen Polyestervlies.

Die relative Reduzierung des Hangabtriebs in Abhängigkeit vom Winkel α kann nach folgender Gleichung berechnet werden (die relative Reduzierung ist unabhängig von der Fläche A):

$$\frac{\Delta |\vec{F}_{\rm H}|}{|\vec{F}_{\rm H}|} = \frac{\mu_{\rm h} \cdot |\vec{F}_{\rm N}|}{|\vec{F}_{\rm H}|} = \frac{\mu_{\rm h} \cdot |\vec{F}_{\rm G}| \cdot \cos \alpha}{|\vec{F}_{\rm G}| \cdot \sin \alpha} = \frac{\mu_{\rm h}}{\tan \alpha}.$$
(7.8)

Bild 7.8 zeigt diese Abhängigkeit für $\mu_h = 3,31$ und $\mu_h = 0,76$.

Diese Ergebnisse zeigen, daß die Auflage der ungefütterten Tapisserie auf den Bezugsstoff bei Schräghängung die größte Entlastung der Tapisserie bewirkt. Die beste Lösung stellt

Abbildung 7.8: Relative Reduzierung des Hangabtriebs in Abhängigkeit vom Winkel gerechnet für die Haftreibungszahl $\mu_h = 3,31$ und $\mu_h = 0,76$.

der dicke Vliesstoff PE 260 dar, der allerdings aufgrund der Weichmacher-Rückstände nicht empfohlen werden kann.

8 Stützlinien

8.1 Überblick

Bis in die 70er Jahre war das Einweben (lokales Fädeneinziehen in schadhafte Bereiche) als Restaurierungsmethode weit verbreitet. Das Einweben wird heute überwiegend abgelehnt, weil in der Vergangenheit viele Gewebeschäden durch die Kettfäden entstanden sind, welche in Fehlstellen eingezogen werden müssen. Spannungsprobleme waren häufig die Folge. Auch die Reversibilität der Maßnahme ist fraglich.

Heute ist man deshalb in sehr vielen Werkstätten dazu übergegangen schadhafte Partien partiell mit Stützgeweben zu hinterlegen und diese nähtechnisch zu sichern. Nach Konservierung der fragilen Partien wird auf der Rückseite oft ein volles Stützgewebe aufgebracht. Die Idee dabei ist, das Gewicht des Objektes in den Futterstoff einzuleiten und schwache Gewebepartien zu überbrücken. Um Objekt und Futter aufeinander zu fixieren, werden sogenannte Stützliniensysteme angelegt. Kurze Nähte, die Futter und Objekt verbinden, werden über das Objekt verteilt angeordnet.

Eine einheitliche Konservierungsmethode konnte sich allerdings bisher nicht durchsetzen. In Italien und Belgien wird auch heute noch vorwiegend eingewebt. Andere Werkstätten wiederum verzichten auf eine vollständige Stützung von Tapisserien durch ein Gewebe von der Objektrückseite, sichern aber partiell.

Einige Restauratoren sind der Meinung, daß durch die Fixierung zweier unterschiedlicher Materialien aufeinander neue Spannungsprobleme durch die Kombination und Fixierung von Materialien mit unterschiedlichen Eigenschaften entstehen können.

Bilson, Howell und Cooke befürworten, auf Grund von Untersuchungen über Höchstzugkraftbelastung an gealterten Fäden, einen minimalen konservatorischen Eingriff, der sich auf die partielle Unterstützung fragiler Bereiche beschränkt. Der Verzicht auf ein Stützgewebe wird damit begründet, daß viel höhere Zugkräfte nötig sind um einen Gewebebruch zu bewirken. auftreten, als in der Praxis jemals auftreten.

Alle Methoden, die ohne Stützgewebe auskommen, haben den Vorteil, daß die Rückseite des Objektes, die oft noch die ursprüngliche Farbigkeit aufweist, nicht verdeckt werden muß.

Während einige Restauratoren die Eigenbewegung des Objektes nicht behindern wollen, sind andere der Überzeugung, daß Bewegungen zwischen den unterschiedlichen Materialien zu Schäden führen können und verhindert werden sollten. Alle Stützliniensysteme verfolgen das Ziel die Belastung des Bildteppichs durch sein Eigengewicht zu vermindern, indem das Gewicht auf ein Stützgewebe übertragen wird.

8.2 Aufgenähte Stützgewebe

Die Stützliniensysteme, die für die Fixierung des Futterstoffes notwendig sind, werden sehr uneinheitlich angelegt und ausgeführt. Dazu werden außerdem unterschiedliche Materialien für das Futter gewählt. Einige wichtige Systeme die Nähte auf dem Gewebe zu verteilen werden hier kurz beschrieben.

In England, Deutschland und der Schweiz hat sich größtenteils die Stützung des Objektes mit einem über die gesamte Rückseite reichenden Gewebe durchgesetzt. Üblicherweise wird ein Material verwendet, welches formstabiler ist, als das Objekt selbst. Wenn Restaurierungsmaßnahmen, wie Unterlegen und Sichern von Fehlstellen, oder das Schließen offener Schlitze abgeschlossen sind, wird das Gewebe auf der Rückseite ohne Spannung aufgenäht. In der englischsprachigen Literatur wird betont, daß beim Aufnähen Stoff zugegeben wird, um Spannungen zu vermeiden, während in der Schweiz die Meinung vertreten wird, das Futter solle möglichst fest aufgenäht werden, um die Stützfunktion zu gewährleisten.

Senkrechte Linien Die Verbindungsnähte werden senkrecht versetzt, in Reihen untereinander angeordnet. Alle verbindenden Nahtlinien, bestehen aus Vorstichen die auf der Vorderseite sehr kurz auf der Rückseite lang ausgeführt werden. Auf der Vorderseite sind die sehr kurzen Stiche kaum sichtbar. Oberkante und Futter werden mit einer Quernaht verbunden. Besonders zu Beginn, als die Stützlinien am Anfang und Ende fest vernäht wurden, zeichneten sich diese sehr schnell matrazenartig ab. Deshalb werden heute Anfang und Ende jeder Naht nicht vernäht. An Tapisserien, die mit dieser Methode konserviert wurden, sind bislang keine sichtbaren Probleme entstanden. Nachteilig ist die komplette Abdeckung der Rückseite.

Horizontale Zick-Zack-Linien In der ehemaligen DDR existierte die gleiche Methode mit einem abgewandelten Nahtsystem. Die Linien wurden sehr eng vertikal, vereinzelt auch horizontal in Zickzackreihen angeordnet. Die Idee war, auch die Bereiche zu entlastet, die bei der oben beschriebenen vertikal versetzten Anordnung über die ganze Senkrechte ohne kraftaufnehmende Naht zwischen den Stützlinien hängen bleiben. Häufig ergaben sich Spannungsprobleme aus der Nähmethode. Eine gleichmäßige Anordnung und Ausführung über grosse Gewebeflächen hinweg ist schwer durchzuführen. Zwischen den Zickzack Linien zeichneten sich mit der Zeit starke Blasen und Überweiten ab.

Rautenförmig aufgenähte Stützgewebe Reste von Nahtlinien in Form eines rautenförmigen Netzes finden sich immer wieder an historischen Tapisserien und scheinen eine übliche Methode gewesen zu sein, um rückseitige Futter aufzunähen. Es wurde beobachtet, daß solche Tapisserien häufig in einem sehr guten Erhaltungszustand sind. In den USA werden Stützgewebe in gleicher Weise nach diesem System aufgebracht. In der Schweiz wurden mehrere Tapisserien mit diagonalen ununterbrochenen Nähten abgestützt, ohne daß sich nach einer Ausstellungsdauer von sieben Jahren negative Effekt gezeigt hätten. Indem jeder Schußfaden bei einer anderen Länge fixiert ist soll das Entstehen von Überweiten verhindert werden. **Mögliche Untersuchungen** Mit den in dieser Arbeit hauptsächlich verwendeten Meßmethoden war eine Untersuchung der Tapisserie im Bereich der Stützlinien nicht möglich. Die Speckle-Interferometrie sollte dazu aber Möglichkeiten bieten. Dabei könnte die Verformung in der Nähe einer Stützlinie beobachtet werden, um daraus Aussagen über die Krafteinleitung zu gewinnen.

Daraus ließe sich zum einen der optimale Abstand der Stützlinien zueinander bestimmen und zum anderen könnte die Frage nach dem idealen Stützliniensystem beantwortet werden.

D DISKUSSION

9 Diskussion und Ausblick

Diese Arbeit hat gezeigt, daß zur Beurteilung möglicher Schäden an Tapisserien die Eigenschaften des ganzen Gewebes untersucht werden müssen. Mit den einheitlichen Kurvenverläufen, besonders überraschend waren hier die Ergebnisse der Theodolitenmessung, konnte weiter gezeigt werden, daß eine Systematik trotz der Inhomogenität von Tapisserien möglich ist. Die Effekte unterschiedlicher Materialien in verschiedenen Gewebepartien egalisieren sich im Gewebe, so daß ein relativ einheitliches Deformationsverhalten verschiedener Partien resultiert.

Die verschiedenen Messungen ergeben übereinstimmend, daß bei gleichmässiger Belastung nur geringe Schäden zu erwarten sind. Ein Hinterfüttern von Schwachstellen sollte in den meisten Fällen eine ausreichende Konservierungsmaßnahme darstellen. Besonders auch im Hinblick darauf, daß das zeitaufwendige Anbringen von Stützlinien eine große Belastung für das Objekt darstellt, ist dies ein wichtiges Ergebnis. Zudem würde bei einer Schräghängung im Idealfall bereits eine um 10° flachere Schräge ausreichen, um das Objekt vollständig zu entlasten.

Kraft-Dehnungs-Messung

Die Kraft-Dehnungs-Messung hat gezeigt, daß sich das Verhalten der Proben vorhersagen läßt. Trotz des inhomogenen Aufbaus und der unterschiedlichen Vorgeschichte der Objekte scheint es also möglich zu sein, allgemeine Aussagen zu machen. Das könnte ein wichtiger Ansatz zur Entscheidung über sinnvolle Restaurierungsmaßnahmen werden.

Weitere Messungen sind zur Bestätigung dieser Aussagen wünschenswert. Interessant wäre es vorallem den zeitlichen Verlauf der Messung mit Hilfe einer Videokamera zu dokumentieren, um damit die Interpretation der Meßkurven zu untermauern.

Retardation

Die Retardations-Messungen zeigen, daß intaktes Gewebe ohne Schlitzverbindungen vollständig relaxieren kann. Die Prüfung eines größeren Probenumfangs bei gleicher Gewichtsbelastung wäre wünschenswert.

Der Vergleich mit den Messungen an großflächigen Objekten weist auf eine Stabilisierung der Schlitzverbindungen durch das angrenzende Gewebe hin. Dies sollte durch Retardationsmessungen an entsprechend breiten Probestreifen verifiziert werden.

Desweiteren eignet sich die Methode gut, um den Einfluß der Luftfeuchtigkeit näher zu untersuchen. Der Einfluß der Luftfeuchte auf das Dehnungsverhalten läßt sich am ausgestellten Objekt kaum untersuchen.

Optische Methoden

Der Einsatz eines Theodoliten zur Vermessung von Tapisserien erwies sich als einfache und genaue Methode. Allerdings war die manuelle Datenerfassung sehr zeitaufwendig. Es ist auch notwendig Meßmarken anzubringen, da das Ausnutzen von Farbgrenzen oder sonstigen markanten Punkten im Bild keine ausreichend genauen Messungen zuließ. Die Vermessung historischer Tapisserien sollten als langzeitmesssungen fortgeführt werden, bis eindeutig über einen längeren Zeitraum kein meßbarer Längenzuwachs mehr zu verzeichnen ist.

Die Scannerkamera, wie auch die Digitalkamera, konnten die Meßmarken nicht einwandfrei erfassen. Vermutlich verursachten Reflexionen das Problem. Es gilt geeignete Meßmarken für die Scannerkamera zu finden. Die Digitalkamera erwies sich als ungeeignet.

Die Scannerkamera könnte sich dann auch für den Einsatz in der Ausstellung eignen. Dies gilt auch ür den Theodoliten, der allerdings mit einem Computer-Interface verwendet werden sollte.

Besonders interessant erscheint eine genauere Untersuchung der Stützlinien. Aus dieser Arbeit kann man folgern, daß die Speckle-Interferometrie (ESPI) hierfür eine erfolgversprechende Methode ist.

Anhang

A Ergebnisse der Kraft-Dehnungs-Messungen

Probe	Dimension	Einspannlänge	Höchstzugkraft-Verformung	Höchstzugkraft
	$B \times H[\text{mm}]$	$L_0[mm]$	$A_{\max}[mm]$	$F_{\max}[\mathbf{N}]$
P 1.1	22×80	30,0	11,086	64,210
P 1.2	23×76	30,0	14,016	50,350
P 1.3	22×78	30,0	8,416	41,510
P 1.4	21×70	30,0	8,816	74,730
P 1.5	22×70	30,0	13,016	41,480
P 1.6	21×53	30,0	10,176	51,780
P 1.7	20×70	30,0	7,916	45,370
P 1.8	21×54	30,0	10,216	109,170
P 1.9	22×72	30,0	7,256	56,270
P 1.10	23×76	30,0	11,436	284,340
P 1.11	21×59	30,0	11,666	321,110
P 2.1	20×52	30,0	8,046	70,170
P 2.2	21×55	30,0	9,526	139,970
P 2.3	20×70	30,0	13,046	62,550
P 2.4	20×52	30,0	5,037	39,920
P 2.5	20×51	30,0	4,616	25,030
P 2.6	20×54	30,0	6,456	30,890
P 2.7	21×44	30,0	9,476	48,530
P 2.8	21×74	30,0	7,787	37,320
P 2.9	22×75	30,0	6,107	27,800
P 2.10	23×62	30,0	4,777	27,120
P 3.1	19×74	30,0	11,797	209,300
P 3.2	23 imes 69	30,0	6,637	21,800
P 3.3	25×68	30,0	10,217	173,400
P 3.4	21×72	30,0	12,808	19,760
P 3.5	25×61	30,0	12,386	20,050
P 3.6	25×81	30,0	12,897	238,930
P 3.7	23×73	30,0	8,706	17,350
P 3.8	25×89	30,0	12,676	123,210
P 3.9	20×87	30,0	8,696	108,930

Probe	Dimension	Einspannlänge	Höchstzugkraft-Verformung	Höchstzugkraft
	$B \times H[\text{mm}]$	$L_0[mm]$	$A_{\max}[mm]$	$F_{\max}[\mathbf{N}]$
P 4.1	22×92	30,0	11,056	104,310
P 4.2	19×94	30,0	15,736	97,690
P 4.3	24×90	30,0	14,016	134,670
P 4.4	22×74	30,0	13,656	106,640
P 4.5	20×85	30,0	10,626	137,730
P 4.6	23×74	30,0	14,416	137,790
P 4.7	24×72	30,0	13,406	194,740
P 4.8	23 imes 66	30,0	11,936	50,200
P 4.9	23×73	30,0	12,566	31,900
P 4.10	18×74	30,0	15,466	141,940
P 4.11	24×76	30,0	12,576	21,370
P 4.12	23×75	30,0	9,696	23,600
P 5.1	23 imes 69	30,0	10,196	147,500
P 5.2	21×62	30,0	5,086	8,660
P 5.3	22×70	30,0	9,897	39,030
P 5.4	21×67	30,0	8,516	185,540
P 5.5	19×70	30,0	7,836	25,820
P 5.6	20×75	30,0	11,106	98,360
P 5.7	20 imes 79	30,0	9,466	65,980
P 5.8	22×64	30,0	11,596	55,630
P 5.9	20×61	30,0	14,626	47,420
P 6.1	19×70	30,0	10,066	89,320
P 6.2	21×73	30,0	10,086	21,950
P 6.3	20×88	30,0	13,596	30,650
P 6.4	20×78	30,0	7,206	17,950
P 6.5	21 imes 93	30,0	6,626	6,890
P 6.6	19×71	30,0	13,006	65,170
P 6.7	19 imes 65	30,0	5,596	10,150
P 6.8	23×70	30,0	13,196	92,780
P 6.9	23×59	30,0	13,926	23,340
P 6.10	21×71	30,0	17,106	30,520
P 7.1	20×53	30,0	17,846	68,670
P 7.2	20×75	30,0	12,986	25,050
P 7.3	21×73	30,0	7,836	8,170
P 7.4	18×73	30,0	14,346	6,940
P 7.5	20×55	30,0	8,376	25,48

Versuchsergebnisse der Proben aus Fragment 1.

Versuchsergebnisse der Proben aus Fragment 2.

Versuchsergebnisse der Proben aus Fragment 3. Das Reißen des Gewebes zeigt sich in einer relativ hohen Kraft. Das Öffnen von Schlitzverbindungen erfordert weit geringere Kräfte. Die eingefügten Graphen zeigen weitere Details im Fall kleiner Kräfte.

Versuchsergebnisse der Proben aus Fragment 4.

Versuchsergebnisse der Proben aus Fragment 5.

Versuchsergebnisse der Proben aus Fragment 6.

Versuchsergebnisse der Proben aus Fragment 7.

B Ergebnisse der Theodoliten-Messungen

Generalstab

Ein Balken gibt zum vereinfachten Vergleich jeweils den Achsenabschnitt 0,01 Neugrad entsprechend $\approx 0,69$ mm an.

Die Daten werden in Abschnitt 6.5 besprochen.

Referenzpunkte oberhalb der Tapisserie "Generalstab".

Ober- und Unterkante der Tapisserie "Generalstab".

Reihe 1 der Tapisserie "Generalstab".

Reihe 2 der Tapisserie "Generalstab".

Reihe 3 der Tapisserie "Generalstab".

Reihe 4 der Tapisserie "Generalstab".

Reihe 5 der Tapisserie "Generalstab".

Reihe 6 der Tapisserie "Generalstab".

Reihe 7 der Tapisserie "Generalstab".

Reihe 8 der Tapisserie "Generalstab".

Generalstab

Im folgenden sind die Meßergebnisse tabelliert wiedergegeben. Auf eine graphische Aufbereitung wurde verzichtet. Beispiele sind in Abschnitt 6.5 zu finden.

	1-1	1-2	1-3	2-1	2-2	3	4	5	6	7
Zeit	13:10h	14:45h	16:20h	11:00h	15:45h	12:40h	10:45h	10:30h	12:45h	13:20h
Min	5	95	190	1310	1595	2850	4175	5600	7175	8650
Refere	enzpunkte									
1	1		100,8975	100,8994	100,8992	100,8987	100,9002	100,9001	100,9003	100,9016
m			100,9594	100.9592	100.9585	100.9599	100.9616	100,9600	100.9612	100.9612
r			100.9749	100.9751	100.9752	100.9753	100.9756	100.9754	100.9763	100.9761
Reihe	1									
1	101.6900	101.5598	101.5561	101.5522	101.5830	101.5809	101.5645	101.5651	101.5696	101.5568
2	101.5586	101.5542	101.5600	101.5508	101.5621	101.5609	101.5615	101.5624	101.5613	101.5616
3	101,5654	101.5669	101.0560	101.5562	101.5660	101.5618	101,5630	101.5643	101,5660	101,5673
4	101 5642	101 5519	101 5554	101 5553	101 5642	101 1561	101 5648	101,5609	101 5615	101 5182
5	101,5565	101,5637	101,5658	101,5635	101,5678	101,5686	101,5691	101,5696	101,5708	101,5701
6	101,5665	101,5531	101,5541	101,5523	101,5563	101,5574	101,5587	101,5563	101,5562	101,5553
7	101 5492	101,5665	101 5668	101 5467	101 5654	101 5574	101,5656	101 5640	101 5654	101 5659
8	101,5492	101,5605	101,5600	101,5170	101,5622	101,5571	101,5603	101,5670	101,5630	101,5623
9	101,5132	101,5606	-	-	-	-	-	-	-	-
10	101 5149	101,5000	101 5140	101 5082	101 5167	101 5185	101 5167	101 5163	101 5174	101 5199
11	101 5470	101 5412	101 5469	101 5454	101 5475	101 5472	101 5481	101 5482	101 5485	101 5512
12	101,5170	101,5704	101,5683	101 5621	101,5695	101,5702	101,5708	101,5694	101,5711	101,5512
13	101 5801	101 5834	101,5820	101 5831	101 5809	101 5823	101 5803	101 5187	101 5833	101,5835
14	101,5001	101,5054	101,5020	101,5051	101,5009	101,5823	101,5005	101,5107	101,5055	101,5845
15	101,5034	101,5700	101,5720	101,5545	101,5770	101,5011	101,5707	101,5720	101,5752	101,5045
Reihe	2	101,5710	101,5725	101,5152	101,5724	101,3723	101,5707	101,3721	101,5752	101,5750
1	102 2999	102 2985	102 2991	102 2961	102 2992	102 2986	102 2993	102 3307	102 3012	102 3021
2	102,2999	102,2903	102,2991	102,2901	102,2992	102,2900	102,2993	102,3507	102,3012	102,3021
3	102,3055	102,2000	102,3605	102,3000	102,2997	102,3075	102,3098	102,3057	102,3000	102,3070
4	102,9100	102,3103	102,3005	102,9103	102,3110	102,3113	102,3502	102,3151	102,3151	102,3111
5	102,2553	102,3695	102,3593	102,2522	102,3633	102,3033	102,3362	102,3004	102,3630	102,3643
6	102,3333	102,3095	102,3373	102,3377	102,3041	102,3012	102,3107	102,3037	102,3022	102,3043
7	102,2035	102,2945	102,2939	102,2920	102,2934	102,2909	102,2954	102,2977	102,2900	102,2977
8	102,2950	102,3914	102,2047	102,3070	102,3933	102,3002	102,3062	102,3059	102,3037	102,3071
0	102,5005	102,3012	102,2777	102,3044	102,3031	102,3031	102,5001	102,3057	102,3047	102,3047
10	102,3130	102,2502	102,2470	102,2478	102,2013	102,2003	102,2542	102,2005	102,2042	102,2057
11	102,3015	102,3007	102,2959	102,2772	102,3001	102,3001	102,3079	102,3030	102,3071	102,3000
12	102,3003	102,3030	102,3052	102,3074	102,3002	102,3191	102,3080	102,3070	102,3099	102,3100
12	102,5170	102,3050	102,3032	102,3132	102,3047	102,3102	102,3182	102,3100	102,3184	102,3195
13	102,0851	102,5001	102,5192	102,5185	102,5101	102,3200	102,5178	102,3197	102,3200	102,3212
14	102,1104	102,1102	102,5155	102,1125	102,1120	102,1155	102,1103	102,3139	102,1104	102,1134
Baiba	102,3032	102,3031	102,0285	102,3042	102,3075	_	102,3079	102,3070	102,3080	102,3084
1	102 4202	102 1008	103 4020	103 4105	103 4100	103 4110	102 /119	102 /180	103 4122	102 4121
2	103,4302	103,4098	103,4029	103,4103	103,4100	103,4110	103,4116	103,4109	103,4122	102,4131
2	103,4191	103,4227	103,4204	103,4108	103,4204	103,4223	103,4234	103,4323	103,4249	102,4250
3	103,4033	103,4073	103,0934	103,3624	103,4102	103,4112	103,4131	103,4113	103,4134	103,4104
4	103,4398	103,4328	103,4323	103,4333	103,4040	103,4047	103,4011	103,4383	103,4040	103,4719
5	103,4901	103,4933	103,4001	103,4944	103,4000	103,4955	103,4954	103,4990	103,4908	103,4992
7	103,4130	103,4130	103,4150	103,4171	103,4131	103,4100	103,4108	103,4173	103,4183	103,4177
0	103,4224	103,4232	103,4237	103,4271	103,4243	103,420/	103,4200	103,4207	103,4292	103,4200
0	103,4080	103,4100	103,4110	103,4038	103,4140	103,4100	103,4203	103,4103	103,4101	103,4181
9	103,3302	103,3368	103,3333	103,3370	103,3397	103,3338	103,3008	103,3378	103,3390	103,3001
10	103,41/1	103,4281	103,4118	103,4128	103,4891	103,4190	103,4203	103,4190	103,4193	103,4200
11	103,4244	103,4192	103,4241	103,4244	103,4231	103,4249	103,4270	103,4203	103,4204	102,4280
12	103,4232	103,419/	103,4133	103,4100	103,420/	103,4213	103,4200	103,4277	103,4233	103,4288
13	103,4126	103,4213	103,4240	103,4218	103,4243	103,4232	103,4207	103,4277	103,4291	103,4291
14	105,4110	105,4114	105,4150	105,4000	103,41//	105,4142	105,4107	103,4149	105,4150	105,4154

	1.1	1.2	1.2	2.1	2.2	2	4	5	6	7
7-14	12.105	1-2	1-5	2-1 11.00b	2-2 15:451-	10.40h	4	10.201	12:451	12.201
Zeit	13:10h	14:45n	16:20h	11:00n	15:45n	12:40h	10:45h	10:30h	12:45n	13:20h
Min	3	95	190	1310	1595	2850	41/5	5600	/1/5	8650
Reihe	4	1011100	1010016	1010000	1010011	1010015	1010005	1010000	1010051	1010010
1	104,8995	104,1492	104,9016	104,0903	104,9014	104,9015	104,9006	104,9027	104,9054	104,9048
2	104,8955	104,8940	104,8941	104,8935	104,9284	104,8965	104,9006	104,8974	104,9001	104,8998
3	104,8927	104,8941	104,8964	104,8980	104,8941	104,8948	104,8941	104,8976	104,8995	104,8973
4	104,9232	104,4938	104,9438	104,9270	104,9219	104,9461	104,9465	104,9469	104,9485	104,9491
5	104,9893	104,9915	104,9922	104,9923	104,9923	104,9948	104,9948	104,9951	104,9973	104,9964
6	103,8936	104,8898	104,8941	104,8919	104,8959	104,8946	104,8971	104,8959	104,8994	104,8994
7	104,8929	104,8954	104,9011	104,8949	104,9015	104,9028	104,9047	104,9032	104,9052	104,9048
8	104,863	-	-	-	-	-	-	-	104,8753	104,8767
9	104,8685	104,8622	104,8729	104,8733	104,8725	104,8727	104,8744	104,8733	104,8415	104,8396
10	104,8303	104,8401	104,8364	104,8392	104,8357	104,8378	104,8402	104,8381	104,9236	104,9244
11	104,0189	104,9023	104,9176	104,9189	104,9195	104,9203	104,9224	104,9229	104,9058	104,9067
12	104,8988	104,8996	104,9017	104,9050	104,9044	104,9042	104,9074	104,9048	104,8591	104,8563
13	104.8587	104.8857	104.8544	104.8552	104.8936	104.8553	104.5874	104.8586	104.9044	104.8983
14	104.8398	104.8975	104,8940	104.8968	104.8948	104.8963	104.8967	104.8969	104.8662	104.8755
15	104.8610	104.8865	104.8703	104.8641	104.8720	104.8736	104.8747	104.8724	106.7375	106.7358
Reihe	5	101,0000	101,0700	10,0011	10.,0720	10 1,0700	10 1,07 17	10.,072.	100,7070	100,7000
1	106 7332	106 7295	106 7331	106 7325	106 3710	106 7342	106 7347	106 73/13	106 7/30	106 7423
2	106,7303	106,7255	106,7551	106,7323	106,7385	106,7342	106,7347	106,7545	106,7459	106,7423
2	106,7393	106,7535	106,7413	106,7407	106,7585	106,7411	106,7482	106,7570	106,7390	106,7598
4	106,0728	106,7555	106,7555	106,7501	106,7545	106,4570	106,7580	106,8114	106,8133	106,1155
-+	106,8085	106,7951	106,8008	106,0893	106,8091	106,8188	106,8133	106,8303	106,8320	106,0317
5	100,8271	100,8204	100,8238	100,8287	100,8280	100,8323	100,8292	100,7403	100,7491	100,4703
07	106,7417	106,7637	106,7418	106,7455	106,7440	106,7450	106,7408	106,7474	106,7458	106,7449
/	106,7353	106,7300	106,7357	106,7405	106,7404	106,7432	106,7434	106,7070	106,7093	106,708
8	106,7028	106,7027	106,7038	106,7054	106,7039	106,7065	106,7071	106,6759	106,6762	106,6767
9	106,6/33	106,6636	106,6591	106,6681	106,6715	106,6731	106,6749	106,7496	106,7516	106,7519
10	106,7409	106,7332	106,7351	106,7450	106,7452	106,7494	106,7508	106,7463	106,7475	106,7432
11	106,7381	106,7297	106,7398	106,6743	106,7410	106,6463	106,7460	106,7308	106,7343	106,7312
12	106,7243	106,7264	106,7278	106,7802	106,7295	106,6370	106,7310	106,6955	106,6082	106,6975
13	106,6865	106,6923	106,6964	106,6969	106,6955	106,3974	106,6959	108,5530	108,5546	108,5555
Reihe	6									
1	108,5837	108,3594	108,5493	108,5531	108,5507	108,5499	108,5519	108,5992	108,5874	108,5908
2	108,5795	108,5785	108,5906	108,5867	108,5878	108,5898	108,5912	108,5935	108,5944	108,5956
3	108,5854	108,5925	108,5884	108,5904	108,5913	108,5924	108,5952	108,6631	108,6654	108,5591
4	108,6596	108,6617	108,6607	108,6610	108,6612	108,6631	108,6639	108,6555	108,6594	108,6561
5	108,6510	108,6505	108,6522	108,6549	108,6553	107,6537	108,6578	108,5752	108,5767	108,5780
6	108,5700	108,5729	108,5700	108,5731	108,5735	108,5726	108,5764	108,5660	108,5666	108,5656
7	108,5593	108,5448	108,5604	108,5605	108,5630	108,5640	108,5661	108,5081	108,5114	108,5115
8	108,5017	108,5014	108,5059	108,5073	108,5063	108,5085	108,5097	108,5878	108,4718	108,4720
9	108,4585	108,4582	108,4625	108,4647	108,4648	108,4668	108,4677	108,5421	108,5180	108,5447
10	108,5135	108,5321	108,4950	105.8868	108.5343	108,5402	108,5405	108,5713	108,5743	108,5770
11	108,5613	108,5540	108,5646	108,5644	108,5666	108.5735	108,5747	108,5503	108.5516	108.5518
12	108,5419	108,5410	108,5467	108.5462	108.5482	108.5502	108,5518	108,5050	108,5063	108,5061
13	108,5000	108,5105	108,5037	108,5090	108,5043	108,5052	108,5074	110.3649	110.3669	110.3667
Reihe	7	100,0100	100,0007	100,0070	100,0010	100,0002	100,007 .	110,0019	110,000)	110,0007
1	110 3655	110 4643	110 3662	110 3683	110 3650	110 3637	110 3665	110 / 100	110 417	110 /185
2	110,3055	110,4045	110,3002	110,3083	110,3059	110,3037	110,3005	110,4190	110,417	110,4175
2	110,4090	110,4120	110,4144	110,4140	110,4136	110,4145	110,4200	110,4104	110,4104	110,4173
5 1	110,1403	110,4139	110,4143	110,4142	110,4144	110,4139	110,4012	110,4003	110,4908	110,4092
4	110,4870	110,4484	110,4803	110,4870	110,4800	110,4002	110,4901	110,4900	110,4938	110,4922
5	110,4880	-	110,4803	110,4894	110,4883	110,4903	110,4928	110 2026	-	110 2052
6	110,3698	110,3693	110,3783	110,3788	110,3798	110,3823	110,3358	110,3826	110,3883	110,3852
7	110,3502	110,4337	110,3491	110,3554	110,3531	110,3553	110,3580	110,3544	110,3577	110,3584
8	110,2841	110,2882	110,2906	110,2923	110,2931	110,2940	110,2976	110,2963	110,2990	110,2988
9	110,2621	110,2615	110,2713	110,2658	110,2697	110,2669	110,2699	110,2693	110,2585	110,2741
10	110,3450	110,3442	110,3488	110,3604	110,3530	110,3539	110,3598	110,2563	110,3620	110,3614
11	110,3576	110,3606	110,3601	110,3603	110,3612	110,3629	110,3667	110,3669	110,3684	110,3726
12	110,3520	110,5310	110,3518	110,3515	110,3535	110,3529	110,3568	110,3556	110,3581	110,3581
13	110,3431	110,3481	110,3451	110,3424	110,3458	110,3485	110,3490	110,3511	110,3471	110,3479

Hortus Conclusus

Im folgenden sind die Meßergebnisse tabelliert wiedergegeben. Auf eine graphische Aufbereitung wurde verzichtet. Beispiele sind in Abschnitt 6.5 zu finden.

Theodol	it - Hortus (Conclusus								
TAG	1-1	1-2	1-3	2-1	2-2	3	4	5	6	7
ZEIT	13:10 h	14:45 h	16:20 h	11:00 h	15:45 h	12:40 h	10:45 h	10:30	12:45 h	13:20 h
Ref 1h			221,5952	221,595	221,5947	221,5949	221,5928	221,5908	221,5876	221,5837
v			100,8975	100,8994	100,8992	100,8987	100,9002	100,9001	100,9003	100,9016
Ref 2h			226,3203	226,3226	226,3225	226,3203	226,3183	226,3191	226,3165	226,3112
v			100,9594	100,9592	100,9585	100,9599	100,9616	100,96	100,9612	100,9612
Ref 3h			231,3021	231,3037	231,3037	231,3047	231,3016	231,302	231,2964	231,293
v			100,9749	100,9751	100,9752	100,9753	100,9756	100,9754	100,9763	100,9761
Reihe 1										
h	221,2012	221,3444	221,3421	221,3453	221,3494	221,3454	221,343	221,3437	221,3387	221,3361
v	101,69	101,5598	101,5561	101,5522	101,583	101,5809	101,5645	101,5651	101,5696	101,5568
h	221,95	222,0909	222,0908	222,0931	222,0922	222,0914	222,09	222,0891	222,0857	222,0798
v	101,5586	101,5542	101,5600	101,5508	101,5621	101,5609	101,5615	101,5624	101,5613	101,5616
h	222,6987	222,8405	222,8304	222,8395	222,84	222,8389	222,8377	222,8687	222,8326	222,8289
v	101,5654	101,5669	101,0560	101,5562	101,566	101,5618	101,563	101,5643	101,566	101,5673
h	222,6952	223,5795	223,5784	223,5798	223,5085	223,5805	223,5767	223,5773	223,5739	223,568
v	101,5642	101,5519	101,5554	101,5553	101,5642	101,1561	101,5648	101,5609	101,5615	101,5182
h	223,4393	224,334	224,3346	224,3323	224,3356	224,33327	224,3318	224,3311	224,328	224,3237
v	101,5565	101,5637	101,5658	101,5635	101,5678	101,5686	101,5691	101,5696	101,5708	101,5701
h	224,1887	225,0688	225,0875	225,0854	225,0885	225,0865	225,0843	225,0837	225,0801	225,0753
v	101,5665	101,5531	101,5541	101,5523	101,5563	101,5574	101,5587	101,5563	101,5562	101,5553
h	224,9455	225,8303	225,8291	225,83	225,8317	101,5648	225,8287	225,8281	225,8242	225,8209
v	101,5492	101,5665	101,5668	101,5467	101,5654	101,5574	101,5656	101,564	101,5654	101,5659
h	225,6893	226,5583	226,5605	226,5605	226,5632	226,5606	226,5589	226,5574	226,5543	226,5502
v	101,5492	101,5617	101,5626	101,557	101,5622	101,5648	101,5603	101,562	101,563	101,5623
h	226,4181	226,5583								
v	101,5532	101,5606								
h	227,1666	227,3075	227,3071	227,3072	227,3088	227,3095	227,3074	227,3063	227,3022	227,2987
v	101,5149	101,514	101,5140	101,5082	101,5167	101,5185	101,5167	101,5163	101,5174	101,5199
h	227,9129	228,0537	228,0555	228,0533	228,056	228,0553	228,0526	228,0524	228,0486	228,0445
v	101,547	101,5412	101,5469	101,5454	101,5475	101,5472	101,5481	101,5482	101,5485	101,5512
h	228,6441	228,2817	228,7875	228,7849	228,7873	228,7873	228,7834	228,7841	228,7797	228,7752
v	101,5654	101,5704	101,5683	101,5621	101,5695	101,5702	101,5708	101,5694	101,5711	101,5718
h	229,366	229,5096	229,5078	229,5087	229,5112	229,5091	229,5083	229,5086	229,5033	229,5012
v	101,5801	101,5834	101,5820	101,5831	101,5809	101,5823	101,5803	101,5187	101,5833	101,5835
h	229,9812	230,1242	230,1228	230,1244	230,127	230,1246	230,1233	230,1225	230,1198	230,1135
v	101,5654	101,576	101,5720	101,5545	101,577	101,5811	101,5731	101,5726	101,5752	101,5845
h	230,7051	230,8454	230,8439	230,8488	230,8472	230,8455	230,8451	230,8464	230,8403	230,8363
v	101,5637	101,571	101,5729	101,5152	101,5724	101,5723	101,5707	101,5721	101,5752	101,573

1	0́	7
---	----	---

Theodol	it - Hortus (Conclusus								
TAG	1-1	1-2	1-3	2-1	2-2	3	4	5	6	7
ZEIT	13:10 h	14:45 h	16:20 h	11:00 h	15:45 h	12:40 h	10:45 h	10:30	12:45 h	13:20 h
Reihe 2										
h h	221 2016	221 2451	221 2744	221 2455	221 2457	221 2452	221 2420	221 2425	221 2274	221 226
п	221,2010	221,3431	221,3744	221,3433	221,3437	221,3432	221,3429	221,3423	221,5574	221,550
v	102,2999	102,2985	102,2991	102,2961	102,2992	102,2986	102,2993	102,3307	102,3012	102,3021
h	221,9493	222,0931	222,0904	222,0911	222,0922	222,0899	222,0892	222,0874	222,0847	222,0798
v	102,3055	102,2038	102,3022	102,3066	102,2997	102,3075	102,3098	102,3037	102,308	102,3078
h	222,6852	222,8283	222,8285	222,8269	222,8285	222,8275	222,8226	222,8245	222,8192	222,8162
v	102.3166	102,3109	102,3605	102,3103	102.3118	102.3149	102,3088	102.3154	102.3151	102.3144
h	223 4401	223 5831	223 7505	223 5706	223 5811	223 58	223 5704	223 5785	223 5734	223 5702
	102 2006	102 2052	102 2025	102 2022	102 2052	102 2022	102 2502	102 2064	102 2056	102 2047
v	102,2996	102,3055	102,3025	102,2922	102,3053	102,3033	102,3502	102,3064	102,3056	102,3047
h	224,1937	224,3367	224,3379	224,337	224,3354	224,3362	224,3331	224,3338	224,3298	224,3253
v	102,3553	102,3695	102,3593	102,3577	102,3641	102,3612	102,3167	102,3637	102,3622	102,3643
h	224,9641	225,1501	225,1933	225,1068	225,1065	225,1064	225,1044	225,1036	225,1001	225,0972
v	102,2833	102,2945	102,2939	102,292	102,2954	102,2969	102,2954	102,2977	102,298	102,2977
h	225.69	225,8349	225,8232	225,8332	225,8369	225,8347	225,2897	225,8312	225,8279	225,8223
	102 2026	102 2014	102 2847	102 307	102 2022	102 2062	102 2062	102 2050	102 2050	102 2071
v	102,2930	102,3914	102,2647	102,307	102,3933	102,3002	102,3002	102,3039	102,3039	102,5071
п	226,4055	220,5511	220,5482	220,5485	220,5514	220,55	226,5497	226,5469	226,5442	220,5384
v	102,3005	102,3019	102,2977	102,3044	102,3031	102,3031	102,3061	102,3059	102,3047	102,3049
h	227,1434	227,2855	227,2855	227,2855	227,2877	227,2877	227,2849	227,2845	227,2818	227,277
v	102,515	102,2502	102,2248	102,2478	102,2615	102,2605	102,2542	102,2609	102,2642	102,2637
h	227.8938	228.0399	228.0401	228.0374	228.0412	228.0399	228.037	228.0376	228.0324	228.0285
v	102 3013	102 3007	102 2959	102 2992	102 3061	102 3061	102 3079	102 3056	102 3071	102 3066
h	228 6302	22,3007	228 7720	228 7710	22,3001	22,3001	228 7718	228 7706	22,3071	228 7618
11	228,0302	102 2056	100,2050	220,7719	102 2062	102 2101	220,7710	228,7700	228,705	220,7010
v	102,3065	102,3056	102,3052	102,3074	102,3062	102,3191	102,308	102,3076	102,3099	102,3106
h	229,3473	229,4899	229,4892	229,4898	229,4919	229,4895	229,4879	229,4876	229,484	229,4795
v	102,317	102,303	102,3052	102,3132	102,3047	102,3162	102,3182	102,3166	1002,3184	102,3195
h	229,9686	230,1115	230,1115	230,1104	230,1147	230,1123	230,1098	230,1106	230,1075	230,1023
v	102.6831	102.3061	102.3192	102.3183	102.3161	102.32	102.3178	102.3197	102.3206	102.3212
h	230 4154	230 5555	230 5565	230 5552	230 5577	230 5564	230 5567	230 5536	230 5515	230 5478
11	102 1104	102 1102	102 5122	102 1125	102 1126	102 1122	102 1162	102 2120	102 1164	102 1154
v	102,1104	102,1102	102,5155	102,1125	102,1120	102,1155	102,1103	102,3139	102,1104	102,1154
п	230,6947	230,8338	230,8598	230,835	230,8355		230,8341	230,8328	230,8304	230,8262
v	102,3032	102,3031	102,6285	102,3042	102,3075		102,3079	102,3076	102,308	102,3084
Reihe 3										
h	221,1885	221,3319	221,3315	221,3311	221,3332	221,3311	221,3304	221,3277	221,2345	221,3219
v	103,4302	103.4098	103.4029	103,4105	103.41	103.411	103.4118	103.4189	103.4122	103.4131
h	221 9405	221 0827	222 0836	222 0817	222 0839	222 0827	222 0808	222 0786	222 0734	222 0707
N N	103 /101	103 4227	103 4204	103 /168	103 4204	103 4223	103 4254	103 4325	103 4240	103 4236
v h	222 6604	222,7825	222,8207	222,8002	222 8141	222,9129	222 8104	222 8086	222 8041	222 8017
п	222,0094	222,2825	222,8207	222,8093	222,8141	222,8128	222,8104	222,8080	222,8041	222,8017
v	103,4033	103,4075	103,6954	103,3824	103,4102	103,4112	103,4131	103,4113	103,4134	103,4164
h	223,4076	223,5474	223,5453	223,545	223,5469	223,5454	223,5463	223,5436	223,5411	223,5355
v	103,4598	103,4528	103,4525	103,4553	103,4646	103,4647	103,4611	103,4585	103,4646	103,4719
h	224,4123	224,356	224,3518	224,3559	224,3561	224,5537	224,3525	224,3516	224,3476	224,3431
v	103.4901	103.4955	103.4881	103,4944	103.4888	103,4955	103,4954	103.499	103.4968	103.4992
h	224 9692	225 1081	225 1100	225 1068	225 1008	225 1101	225 1081	225 1076	225 1043	225 0008
11	102 415	102 412	103 4150	102 4171	102 4151	102 416	102 4169	102 4175	102 4192	102 4177
v	105,415	105,415	105,4150	105,4171	105,4151	105,410	105,4108	105,4175	105,4185	105,4177
n	225,6917	225,8324	225,8331	225,8304	225,8341	225,8316	225,8811	225,8301	225,8261	225,8224
v	103,4224	103,4252	103,4257	103,4271	103,4245	103,4267	103,428	103,4287	103,4292	103,4286
h	226,3946	226,5364	226,5334	226,5339	226,5381	226,5368	226,5355	226,5338	226,5313	226,5281
v	103,408	103,41	103,4116	103,4038	103,414	103,4166	103,4205	103,4165	103,4161	103,4181
h	227,1156	227,2578	227,2566	227,2559	227,259	227,2573	227,2559	227,2553	227.2522	227,2475
v	103 3562	103 3588	103 3555	103 3576	103 3597	103 3558	103 3608	103 3578	103 359	103 3601
, h	202,2502	228 0062	228 0072	228 0044	228 0002	228 0000	228 0064	228 0057	228 0020	227 0021
11	227,0040	220,0002	220,0072	220,0000	220,0002	220,0009	220,0004	220,0037	220,0028	102 12
V	103,4171	103,4281	103,4118	103,4128	103,4891	103,4196	103,4205	103,4196	103,4195	103,42
h	228,6048	228,7464	228,7464	228,7489	228,7479	228,784	228,7457	228,7455	228,7432	228,7382
v	103,4244	103,4192	103,4241	103,4244	103,4251	103,4249	103,427	103,4265	103,4264	103,428
h	229,3424	229,4847	229,4872	229,485	229,4854	229,4871	229,4843	229,4816	229,481	229,4764
v	103.4252	103.4197	103,4155	103,4166	103.4267	103.4215	103,4266	103.4277	103,4255	103.4288
, h	229 9358	230 0769	230 0742	230 0774	230 0775	230 0776	230 6773	230 0771	230 0735	230,0679
11	103 /129	103 4212	103 4246	103 4219	103 4245	103 4252	103 4267	103 4277	103 4201	103 4201
V I	103,4128	105,4215	103,4240	103,4218	103,4243	103,4232	103,4207	103,4277	103,4291	103,4291
h	230,6584	230,8001	230,7989	230,8033	230,8012	230,7994	230,7991	230,7981	230,7954	230,7905
v	103.4116	103.4114	103.4130	103.408	103.4177	103.4142	103.4167	103.4129	103.4156	103.4154

108 Anhang

Theodol	it - Hortus (Conclusus								
TAG	1-1	1-2	1-3	2-1	2-2	3	4	5	6	7
ZEIT	13:10 h	14:45 h	16:20 h	11:00 h	15:45 h	12:40 h	10:45 h	10:30	12:45 h	13:20 h
Reihe 4										
h	221,2402	221,3152	221,3838	221,3825	221,3834	221,3797	221,378	221,3775	221,3715	221,369
v	104,8995	104,1492	104,9016	104,0903	104,9014	104,9015	104,9006	104,9027	104,9054	104,9048
h	222,0315	222,1734	222,1743	222,1721	222,1721	222,1709	222,1695	222,1676	222,1638	222,16
v	104,8955	104,894	104,8941	104,8935	104,9284	104,8965	104,9006	104,8974	104,9001	104,8998
h	222,6824	222,8248	222,8250	222,824	222,8527	222,8256	222,2809	222,8206	222,8172	222,8141
v	104,8927	104,8941	104,8964	104,898	104,8941	104,8948	104,8941	104,8976	104,8995	104,8973
h	223,4337	223,575	223,5720	223,5781	223,5765	223,5736	223,5695	223,5706	223,5668	223,5625
v	104,9232	104,4938	104,9438	104,927	104,9219	104,9461	104,9465	104,9469	104,9485	104,9491
h	224,2972	224,4408	224,4384	224,4389	224,4407	224,4408	224,4372	224,4372	224,4334	224,4284
v	104.9893	104,9915	104.9922	104,9923	104.9923	104,9948	104,9948	104,9951	104,9973	104,9964
h	225.0227	225,1621	225,1657	225,1636	225,1636	225,1663	225,1613	225,1699	225,1579	225,1532
v	103.8936	104.8898	104.8941	104.8919	104.8959	104.8946	104.8971	104.8959	104.8994	104.8994
h	225.7235	225.8673	225.8638	225.8665	225.8663	225.8668	225.8626	225.8622	225.8574	225.8554
v	104 8929	104 8954	104 9011	104 8949	104 9015	104 9028	104 9047	104 9032	104 9052	104 9048
h	224 4521	10 1,050 1	10 1,9 011	10 1,02 12	101,9010	10 1,9 020	101,9017	101,0002	226 5909	226 5852
v	104 863								104 8753	104 8767
h	226 4536	226 5078	226 5026	226 5022	226 5030	226 5053	226 5042	226 503	227 248	227 2454
v	104 8685	104 8622	104 8720	104 8733	104 8725	104 8727	104 8744	104 8733	104 8415	104 8396
v h	227 100	227 2527	227 2407	227 2518	227 2524	227 2538	227 2530	227 2508	228.007	228 0016
II V	104 8303	104 8401	104 8364	104 8302	104 8357	104 8378	104 8402	104 8381	104 9236	104 9244
v h	227 867	228 0126	228 0080	228 0116	228 0107	228 0117	228 0114	228 0078	228 7081	228 7046
11	104 0180	104 0022	104 0176	104 0180	104 0105	104 0202	104 0224	104 0220	104 0058	104 0067
v h	228 5705	104,9025	228 7120	104,9169	104,9195	104,9203	104,9224	104,9229	220 5727	104,9007
11	104 8088	104 2006	104 0017	104 005	104 0044	104 0042	104 0074	104 0048	104 8501	104 8562
V h	104,0900	104,8990	104,9017	104,905	220,4066	104,9042	104,9074	104,9046	220.0524	104,6505
II V	229,4329	229,3739	104 8544	104 8552	104 8036	104 8553	229,3704	229,373	250,0524	250,048
V h	104,0307	220.0585	220.0547	220.059	220.057	220.0571	220.0565	220.0562	104,9044	104,0903
11	104 8208	250,0385	230,0347	230,038	250,057	250,0571	230,0303	250,0505	230,7471	250,7459
V h	104,6396	104,6975	104,8940	104,8908	104,8948	104,8905	104,8907	104,8909	104,8002	104,8733
11	230,0078	230,7303	230,7303	104 9641	230,7309	230,7333	104 9747	230,7400	106 7275	106 7259
V Daiba 5	104,801	104,8805	104,8705	104,8041	104,872	104,8750	104,8747	104,8724	100,7575	100,7558
Keine 5	221 2051	221 4244	221 4070	221 4221	221 4247	221 4225	001 4010	221 4204	222 1107	222 1172
n	221,2951	221,4344	221,4070	221,4331	221,4347	221,4335	221,4313	221,4294	222,1107	222,1172
v	106,7332	106,7295	106,7331	106,7325	106,371	106,7342	106,/34/	106,7343	106,7439	106,7423
n	221,9892	222,3135	222,1311	222,131	222,1318	222,1285	222,1259	222,8148	222,8099	222,8064
v	106,7393	106,7356	106,7413	106,7407	106,7385	106,7411	106,7482	106,757	106,759	106,7598
h	222,678	222,8231	222,8249	222,8195	222,8203	222,8194	222,8173	223,5086	223,5049	223,4995
V	106,6728	106,7535	106,7535	106,7561	106,7543	106,457	106,7586	106,8114	106,8135	106,1133
n	223,3704	223,5212	223,5140	223,5115	223,514	223,5133	223,509	224,471	224,4686	224,4638
V	106,8083	106,7931	106,8068	106,6895	106,8091	106,8188	106,8133	106,8303	106,832	106,6317
h	224,3315	224,478	224,4783	224,4762	224,4753	224,4754	224,7438	225,2354	225,2325	225,2279
v	106,8271	106,8264	106,8238	106,8287	106,828	106,8325	106,8292	106,7463	106,7491	106,4763
h	225,0962	225,2538	225,2401	225,2367	225,237	225,2388	225,2368	225,9226	225,919	225,9179
v	106,7417	106,7637	106,7418	106,7453	106,744	106,745	106,7468	106,7474	106,7458	106,7449
h	225,7855	225,9299	225,9255	225,9262	225,9297	225,9249	225,9245	226,6153	226,6148	226,6126
v	106,7353	106,736	106,7357	106,7405	106,7404	106,7432	106,7434	106,707	106,7093	106,708
h	226,4743	226,6177	226,6188	226,6186	226,6175	226,6195	226,6178	227,1954	227,1936	227,1894
v	106,7028	106,7027	106,7038	106,7054	106,7039	106,7065	106,7071	106,6759	106,6762	106,6767
h	227,7063	227,1971	227,2003	227,1973	227,1974	227,1973	227,1977	228,0281	228,0244	228,0223
v	106,6733	106,6636	106,6591	106,6681	106,6715	106,6731	106,6749	106,7496	106,7516	106,7519
h	227,8858	228,0308	228,0299	228,031	228,028	228,0295	228,0275	228,7284	228,7246	228,7213
V	106,7409	106,7332	106,7351	106,745	106,7452	106,7494	106,7508	106,7463	106,7475	106,7432
h	228,5854	228,7264	228,7303	228,73	228,728	228,7286	228,7278	230,0469	230,0455	230,0413
v	106,7381	106,7297	106,7398	106,6743	106,741	106,6463	106,746	106,7308	106,7343	106,7312
h	229,9039	230,0455	230,0465	230,4082	230,0474	230,0495	230,0487	230,7199	230,7145	230,7126
v	106,7243	106,7264	106,7278	106,7802	106,7295	106,637	106,731	106,6955	106,6082	106,6975
h	230,5781	230,7174	230,7181	230,7206	230,7188	230,7213	230,7197	221,4535	221,4445	221,4416
v	106,6865	106,6923	106,6964	106,6969	106,6955	106,3974	106,6959	108,553	108,5546	108,5555

Theodol	it - Hortus (Conclusus								
TAG	1-1	1-2	1-3	2-1	2-2	3	4	5	6	7
ZEIT	13:10 h	14:45 h	16:20 h	11:00 h	15:45 h	12:40 h	10:45 h	10:30	12:45 h	13:20 h
Reihe 6										
h	221,3171	221,4559	221,4591	221,4581	221,4575	221,4556	221,454	222,0761	222,0726	222,0686
v	108,5837	108,3594	108,5493	108,5531	108,5507	108,5499	108,5519	108,5992	108,5874	108,5908
h	221,9436	222,0842	222,0840	222,0847	222,0835	222,0806	222,0777	222,7844	222,78	222,7772
v	108,5795	108,5785	108,5906	108,5867	108,5878	108,5898	108,5912	108,5935	108,5944	108,5956
h	222,6488	222,7918	222,7945	222,7906	222,7919	222,7882	222,7852	223,5819	223,577	223,5855
v	108,5854	108,5925	108,5884	108,5904	108,5913	108,5924	108,5952	108,6631	108,6654	108,5591
h	223,445	223,5882	223,5906	223,5891	223,5876	223,5858	223,5827	224,5263	224,5214	224,519
v	108,6596	108,6617	108,6607	108,661	108,6612	108,6631	108,6639	108,6555	108,6594	108,6561
h	224,3905	224,5321	224,5314	224,5316	224,531	224,5318	224,5276	225,2519	225,2472	225,2454
v	108,651	108,6505	108,6522	108,6549	108,6553	107,6537	108,6578	108,5752	108,5767	108,578
h	225,1101	225,2533	225,2562	225,254	225,2546	225,2541	225,253	225,9386	225,9362	225,933
v	108,57	108,5729	108,5700	108,5731	108,5735	108,5726	108,5764	108,566	108,5666	108,5656
h	225,7994	225,9546	225,9417	225,9421	225,9413	225,9411	225,9388	226,6123	226,6095	226,6069
v	108,5593	108,5448	108,5604	108,5605	108,563	108,564	108,5661	108,5081	108,5114	108,5115
h	226,4695	226,6145	226,6156	226,6155	226,6142	226,6153	226,614	227,1212	227,122	227,1174
v	108,5017	108,5014	108,5059	108,5073	108,5063	108,5085	108,5097	108,5878	108,4718	108,472
h	226,982	227,1291	227,1259	227,126	227,1256	227,1268	227,1264	228,0212	228,0196	228,0124
v	108,4585	108,4582	108,4625	108,4647	108,4648	108,4668	108,4677	108,5421	108,518	108,5447
h	227,8797	228,0221	228,0214	228,0196	228,0206	228,0227	228,022	228,7103	228,7086	228,7044
v	108,5135	108,5321	108,4950	105,8868	108,5343	108,5402	108,5405	108,5713	108,5743	108,577
h	228,5659	228,712	228,7085	228,7117	228,7709	228,7114	228,712	229,6914	229,9576	229,955
v	108,5613	108,554	108,5646	108,5644	108,5666	108,5735	108,5747	108,5503	108,5516	108,5518
h	229,8196	229,962	229,9603	229,9622	2289,9593	229,9616	229,9611	230,6614	230,6602	230,6565
v	108,5419	108,541	108,5467	108,5462	108,5482	108,5502	108,5518	108,505	108,5063	108,5061
h	230,5189	230,665	230,6641	230,6623	230.6545	230.6618	230,6631	221,4642	221,4566	221,4536
v	108,5	108,5105	108,5037	108,509	108,5043	108,5052	108,5074	110,3649	110,3669	110,3667
Reihe 7										
h	221,3308	221,4746	221,4738	221,4697	221,4702	221,4719	221,4661	222,0684	222,0642	222,0596
v	110,3655	110,4643	110,3662	110,3683	110,3659	110,3637	110,3665	110,419	110,417	110,4185
h	221,9369	222,0795	222,0773	222,0758	222,077	222,0735	222,0698	222,774	222,768	222,7662
v	110,4096	110,4126	110,4144	110,414	110,4158	110,4145	110,4206	110,4164	110,4184	110,4175
h	222,4621	222,7831	222,7844	222,7817	222,7818	222,7779	222,7762	223,6598	223,6543	223,6531
v	110,1403	110,4139	110,4145	110,4142	110,4144	110,4159	110,4812	110,4803	110,4908	110,4892
h	223,5274	223,6638	223,6680	223,6693	223,6662	223,6632	223,661	224,5643	224,5595	224,555
v	110,4876	110,4484	110,4863	110,487	110,4866	110,4882	110,4901	110,4906	110,4938	110,4922
h	224,4266		224,5699	224,5675	224,5684	224,5671	224,5624			
v	110,4886		110,4863	110,4894	110,4883	110,4905	110,4928			
h	225,1493	225,5284	225,2917	225,2878	225,2889	225,2904	225,2878	225,2874	225,284	225,2772
v	110,3698	110,3693	110,3783	110,3788	110,3798	110,3823	110,3358	110,3826	110,3883	110,3852
h	225,8941	225,9661	225,9675	225,9635	225,9646	225,9637	225,9635	225,9631	225,9584	225,9568
v	110,3502	110,4337	110,3491	110,3554	110,3531	110,3553	110,358	110,3544	110,3577	110,3584
h	226,4929	226,6381	226,6389	226,6371	226,6386	226,6378	226,6392	226,638	226,6364	226,6329
v	110,2841	110,2882	110,2906	110,2923	110,2931	110,294	110,2976	110,2963	110,299	110,2988
h	226,9708	227,7128	227,1175	227,1183	227,1171	227,1165	227,1161	227,1159	227,1135	227,1106
v	110,2621	110,2615	110,2713	110,2658	110,2697	110,2669	110,2699	110,2693	1110,2585	110,2741
h	227,9135	228,0175	228,0570	228,0586	228,0567	228,0565	228,0562	228,056	228,0528	228,0503
v	110,345	110,3442	110,3488	110,3604	110,353	110,3539	110,3598	110,2563	110,362	110,3614
h	228,568	228,7083	228,7119	228,7103	228,7104	228,7103	228,7119	228,7092	228,7091	228,7045
v	110,3576	110,3606	110,3601	110,3603	110,3612	110,3629	110,3667	110,3669	110,3684	110,3726
h	229,7606	229,9033	229,9069	229,9044	229,906	229,9065	229,9072	229,9061	229,9043	229,8995
v	110,352	110,531	110,3518	110,3515	110,3535	110,3529	110,3568	110,3556	110,3581	110,3581
h	230,4531	230,5951	230,5973	230,5975	230,59777	230,5964	230,5963	230,595	230,5953	230,5916
v	110,3431	110,3481	110,3451	110,3424	110,3458	110,3485	110,349	110,3511	110,3471	110,3479

C Digitalaufnahmen mit Olympus E-10

In Abschnitt 6.6.1 ist die Messung beschrieben.

TIFF-Dateien, Tapisserie "Hortus Conclusus"

Die Zeiten sind die Datei-Daten - 1 h, da die Kamera Sommerzeit benutzte.

Monta	ng, 4. Februar 2002	Diens	tag, 5. Februar 2002
14:19	P2040851.TIF	12:42	P2040862.TIF
14:29	P2040852.TIF	13:19	P2040863.TIF
14:37	P2040853.TIF		
14:58	P2040854.TIF		
15:31	P2040855.TIF		
16:04	P2040856.TIF		
16:33	P2040857.TIF		
16:43	P2040858.TIF		
17:12	P2040859.TIF		
17:42	P2040860.TIF		
18:11	P2040861.TIF		
Mittwo	och, 6. Februar 2002	Donner	rstag, 7. Februar 2002
15:16	P2040864.TIF	12:46	P2040865.TIF
		12:48	P2040866.TIF
Freita	g, 8. Februar 2002	Monta	ag, 11. Februar 2002
13:08	P2040867.TIF	14:56	P2040868.TIF

Ergebnisse an	der Tapisserie	"Hortus	Conclusus"
---------------	----------------	---------	------------

Olympus E	C-10, Hor	tus Conc	susu														
Zeit	14:19	14:29	14:37	14:58	15:31	16:04	16:33	16:43	17:12	17:42	12:42	13:19	15:16	12:46	12:48	13:08	14:56
Datum	4.2.02	4.2.02	4.2.02	4.2.02	4.2.02	4.2.02	4.2.02	4.2.02	4.2.02	4.2.02	5.2.02	5.2.02	6.2.02	7.2.02	7.2.02	8.2.02	11.2.02
$\Delta t [min]$	5	10	18	39	72	105	134	144	173	203	1343	1380	2937	4227	4229	5689	10117
Punkt 1 x	461	461	461	461	461	461	461	461	461	461	461	447	456	467	466	590	589
y	214	214	214	214	213	214	213	213	212	213	213	217	217	219	218	218	219
Punkt 2 x	1028	1028	1028	1028	1028	1028	1028	1028	1028	1028	1028	1022	1033	1032	1032	1155	1154
y	215	215	215	215	215	215	215	215	215	215	220	219	222	221	221	219	220
Punkt 3 x	1664	1664	1664	1664	1664	1664	1664	1664	1664	1664	1649	1658	1668	1668	1668	1792	1792
У	220	220	220	220	221	220	220	219	220	220	224	222	226	224	224	220	221
Punkt 4 x	463	462	462	461	462	462	462	462	462	462	462	448	457	468	467	591	589
y	625	625	625	625	625	625	625	624	625	625	625	629	628	631	630	629	630
Punkt 5 x	1126	1125	1125	1125	1125	1125	1125	1125	1125	1125	1111	1125	1119	1130	1129	1252	1251
y	641	642	642	642	642	642	641	642	642	642	646	642	645	647	647	645	646
Punkt 6 x	1645	1645	1645	1645	1645	1645	1645	1645	1645	1645	1631	1640	1650	1650	1649	1774	1773
y	642	642	642	642	642	642	642	641	641	642	645	644	647	646	646	644	645
Punkt 7 x	478	477	477	477	477	477	477	477	477	477	477	463	472	484	482	909	604
У	1328	1328	1328	1328	1328	1328	1328	1328	1328	1328	1328	1332	1331	1333	1333	1329	1331
Punkt 8 x	1128	1127	1127	1127	1127	1127	1127	1127	1127	1127	1127	1114	1123	1133	1133	1255	1254
y	1329	1330	1330	1330	1330	1330	1330	1329	1329	1329	1329	1333	1332	1335	1335	1334	1335
Punkt 9 x	1624	1624	1624	1624	1624	1624	1624	1624	1624	1624	1624	1611	1619	1629	1630	1754	1754
y	1333	1333	1333	1333	1334	1333	1332	1333	1333	1333	1333	1336	1335	1337	1337	1337	1334

D Scannerkamera

PSD-Dateien, Tapisserie "Hortus Conclusus"

Die Daten wurden im Photoshop-Format gespeichert. Aufgrund der hohen Auflösung beträgt die Dateigröße etwa 150 MByte.

Montag, 4. Februar 2002	Dienstag, 5. Februar 2002
13:13 13_13_MO.PSD	10:40 10_40_DI.TIF
13:40 13_40_MO.PSD	11:30 11_30_DI.TIF
14:30 14_30_MO.PSD	
15:00 15_00_MO.PSD	
15:40 15_40_MO.PSD	
16:20 16_20_MO.PSD	
17:00 17_00_MO.PSD	

Ergebnisse an der Tapisserie "Hortus Conclusus"

In Abschnitt 6.6.2 ist die Messung beschrieben.

Scannerkamera, Hortus Conclusus									
Datum	4.2.02	4.2.02	4.2.02	4.2.02	4.2.02	4.2.02	4.2.02	5.2.02	5.2.02
Zeit	13:13	13:40	14:30	15:00	15:40	16:20	17:00	10:40	11:30
$\Delta t \; [{\rm min}]$	5	32	82	112	152	192	232	1292	1342
Punkt 1 X	407	407	406	407	407	407	408	409	480
Y	584	584	584	584	584	583	583	584	579
Punkt 2 X	3370	3370	3369	3370	3370	3369	3370	3371	3443
Y	516	516	514	516	515	514	516	516	511
Punkt 3 X	6715	6717	6715	6716	6717	6715	6716	6718	6719
Y	562	563	561	562	563	561	562	564	565
Punkt 4 X	463	463	461	463	463	461	463	464	535
Y	2759	2758	2756	2757	2757	2756	2756	2759	2756
Punkt 5 X	3908	3908	3906	3908	3908	3907	3908	3909	3982
Y	2757	2755	2754	2755	2754	2733	2753	2757	2753
Punkt 6 X	6654	6654	6652	6654	6654	6652	6653	6654	6732
Y	2763	2761	2759	2760	2760	2758	2758	2762	2758
Punkt 7 X	604	605	603	603	604	602	604	604	674
Y	6496	6495	6493	6494	6493	6493	6493	6493	6494
Punkt 8 X	3985	3985	3985	3985	3986	3985	3986	3987	4061
Y	6426	6426	6424	6425	6425	6423	6424	6427	6429
Punkt 9 X	6585	6586	6584	6586	6586	6584	6586	6586	6665
Y	6477	6476	6475	6475	6475	6474	6474	6476	6479

Tel 02689/926114 Fax 02689/926110

E Bezugsquellen

Babycord Fa. meterweise	<i>BW-Molton</i> Fa. Anita Pavani
Stoffe aus Naturfasern Breite Strašse 35 33602 Bielefeld Tel 0521/178273 Fax 0521/178205	Ludwig-Rinn-Straëse 14-16 35452 Heuchelheim Tel 06419/62820 Fax 06419/62161
Einschütte Sandner EF 70 gefärbt Fa. Sandner GMBH & Co Naschstr. 2 49553 Bransche Tel 05461/804-0 Postfach 1363	<i>Einschütte DC50-Soft</i> Fa. Becker & Bernhard & Co. Hitdorferstr.10 4018 Langenfeld
Paramoll N 260/ 150 und Paramoll N334/150 Lohmann Vliesstoffe GmbH & Co KG Postfach 1251 564264 Dierdorf	

Danksagung

Bei Prof. Emmerling bedanke ich mich für die Annahme des Themas und die finanzielle Unterstützung dieser Arbeit.

Besonders herzlich möchte ich mich bei meinem Betreuer Dr. Andreas Kratzer, Fakultät für Physik an der Technischen Universität München bedanken. Er stand mir bei der Planung, Durchführung und Auswertung der Meßergebnisse meiner Arbeit mit unermüdlichem Einsatz und Begeisterung zur Seite. Sein großes Interesse an Restaurierungsproblemen zusammen mit seinem Wissen und seiner Erfahrung in der Experimentalphysik trugen in außerordentlichen Maße zum Erfolg der Arbeit bei. Diese Zusammenarbeit könnte darüberhinaus auch für weitere Projekte beispielgebend sein. Des weiteren möchte ich mich für die hilfsbereite Unterstützung bei Herrn Wenzel Schürmann bedanken, Fotograf der Fakultät für Physik, der mir bei der Vermessung der Tapisserien und bei der Bearbeitung des Bildmaterials sehr geholfen hat

Eine große Hilfe fand ich in Frau Susanne Schwarz, Kollegiatin des städtischen St. Anna-Gymnasiums. Sie unterstützte mich bei den optischen Vermessungen der beiden Tapisserien und bei der Auswertung der Daten. Ohne ihre hohe Einsatzbereitschaft und praktische Unterstützung wären Messungen in diesem Umfang nicht möglich gewesen. Für Tapisserien ließ sie sich so begeistern, daß sie sogar ihre Physik-Facharbeit diesem Thema widmen wird. Viel Erfolg dabei und vielen Dank.

Herzlich bedanken möchte ich mich weiterhin bei Herrn Prof. Dr.-Ing Jochen Müller-Rochholz, Institut für textile Bau- und Umwelttechnik GmbH an der Fachhochschule Münster, der mich aufgrund seiner Erfahrung umfassend zur Methodik der Langzeitvermessung des Verformungsverhaltens von Textilien beraten hat und damit wesentliche Anregungen zum experimentellen Teil der Arbeit gab. Vielen Dank für den sehr hilfreichen Diskussions-Nachmittag und die enorme Anzahl von Meßdaten, die Frau Dipl.-Ing. Bettina Keller für mich aufnahm.

Frau Prof. Dr. Elisabeth Finnimore vom Textilforschungsinstitut Hof/Münchberg danke ich für ihre freundliche und ausführliche Beratung zur Methodik und Praxis der Retardationsprüfungen sowie für ihre Bereitschaft, sich ausführlich mit meiner restauratorischen Problemstellung auseinanderzusetzen. Frau Dipl.-Ing. Sachser danke ich für die Durchführung der Retardationsprüfung.

Prof. Dr. Ing. Thomas Wunderlich und Herr Dr. Maurer vom Lehrstuhl für Geodäsie ermöglichten durch die Überlassung eines Theodoliten die wichtigsten Meßreihen an den beiden Tapisserien. Auch für ihre Hilfe bei der Suche nach weiteren Methoden herzlichen Dank.

Herr Sixt und Herr Dr. Steinbichler haben mich mit modernen optischen Verfahren beeindruckt und mich von den phantastischen Möglichkeiten dieser Methoden im Bereich der Restaurierung überzeugt.

Weiter möchte ich mich herzlich bei Frau Dipl.-Rest. Uta Hack, Leiterin der Restaurierungswerkstätten des Bayerischen Nationalmuseum bedanken, die es mir ermöglichte, die Messungen in der Textilrestaurierungswerkstatt über mehrere Wochen hinweg durchzuführen. Der gesamten Textilrestaurierungswerkstatt gilt mein Dank für die hilfsbereite Unterstützung während der dort durchgeführten Untersuchungen. Insbesondere Frau Hanne Eichler, Frau Elfriede Näher und Herrn André Brutillot, die mir stets in praktischen Fragen und mit ihrem Wissen und ihrer großen Erfahrung zur Seite standen, möchte ich für ihre Hilfe und Geduld herzlich danken. Auch an die Gemäldewerkstatt und das Fotoatelier herzlichen Dank für die Bereitstellung der Fotoausrüstung. Die Mitarbeiter der Metall- und Holzwerkstatt des Bayerischen Nationalmuseums Herr Helmut Wildgruber, Herr Rudi Sachser und Herr Walter Küstner haben mich jederzeit sehr hilfsbereit bei technischen Problemen des Versuchsaufbaus unterstützt. Ohne sie wären meine Experimente nicht so schnell und problemlos machbar gewesen. Vielen Dank für ihre Hilfe.

Für die Bereitstellung des schwer verfügbaren Probenmaterials möchte ich mich vor allem für die rasche und unkomplizierte Hilfe von Frau Annette Kurella, Gemälderestauratorin am historischen Museums der Stadt Regensburg, bei Dipl.-Ing. Frau Diane Lanz, Emmendingen und beim Bayerischen Nationalmuseum München bedanken.

Ein ganz herzlicher Dank gilt auch meinen Eltern, Maria und Fritz Trosbach, die mich während meiner praktischen Ausbildung und meines Studiums stets in all meinen Plänen unterstützt haben.

Sicherlich sind jetzt nicht alle erwähnt worden, die in der einen oder anderen Art am erfolgreichen Abschluß dieser Arbeit Anteil hatten. Ihnen soll an dieser Stelle gedankt werden.

Allen Studienkollegen und Freunden danke ich für ihr Verständnis und ihre Unterstützung.

Literaturverzeichnis

- [bal95a] Ágnes Tímár-Balázsy & Dinah Eastop, Chemical Principles of Textile Conservation, Butterworth-Heinemann, 1998.
- [bal95] Mary W. Ballard, Lining and Backing / The support of Paintings, Paper and Textiles, The United Kingdom Institute of Conservation of Historic and Artistic Works (Hrsg.), 34 (1995).
- [ber93] Werner Berger: Struktur der textilen Faserstoffe, in *Textile Faserstoffe*, Wolfgang Bobeth (Hrsg.), Springer-Verlag, 9 (1993).
- [bil97] Thomas Bilson, Bill Cooke and David Howell, *Textile Symposium 97 Fabric of an Exhibition: An Interdisciplinary Approach*, 63 (1997).
- [bnm68] Führer Bayerisches Nationalmuseum, 1868.
- [bob55] Wolfgang Bobeth, Wolfgang Böhme und Jürgen Techel, Anorganische Textilfaserstoffe, VEB Verlag Technik, Berlin (1955).
- [bob93] Peter Fischer in: *Textile Faserstoffe*, Wolfgang Bobeth (Hrsg.), Springer-Verlag, 164 (1993).
- [bob93a] Wolfgang Bobeth in: Textile Faserstoffe, Wolfgang Bobeth (Hrsg.), Springer-Verlag, 164 (1993).
- [bru92] André Brutillot, Zeitschrift für Kunsttechnologie und Konservierung, 6/2, 367 (1992)
- [cie71] C.I.E.T.A., Vokabular der Textiltechniken, 72 (1971).
- [cof71] Maurice Pianzola, Julien Coffinet, *Die Tapisserie*, Les Éditions de Bonvent, Genf (1971).
- [cow91] J.M.G. Cowie, Chemie und Physik der synthetischen Polymere, Verlag Vieweg (1991).
- [did51] Diderot, d'Alembert, Encyclopédie ou Dictionnaire raisonné des sciences, des arts et des métiers, (1751-1772).
- [dur86] Saskia Durian-Ress, Meisterwerke mitteralterlicher Textilkunst im Bayerischen Nationalmuseum, Verlag Schnell & Steiner, München, Zürich, 1986.
- [elo41] Egon Elöd und Helmut Zahn, Der Feinbau der Textilfasern, in Handbuch der Werkstoffprüfung, 2. Auflage, **Band V**, 1 (1941).
- [gra80] A.J. de Graaf in: Conservazione E Restauro Dei Tessili, Edizioni C.I.S.S.T. -Sezione Lombardia, Milano, 54 (1980).
- [ger02] Germanisches Nationalmuseum Nürnberg, private Mitteilung.
- [gnm99] Labor im GNM, Kartäusergasse 1, 90402 Nürnberg, Abteilung 08/Textil, Ana-

lysenergebnis 99/03/1.

- [hei63] Dora Heinz, Europäische Wandteppiche I, Von den Anfängen der Bildwirkerei bis zum Ende des 6. Jahrhunderts, Braunschweig, 12/13 (1963).
- [hol59] D.R. Holmes, X-Ray Techniques, in *Physical Methods of Investigating Textiles*, R. Meredith and J.W.S. Hearle (Hrsg.), Textile Book Publishers, 1 (1959).
- [how59] H.G. Howell, K.W. Mieszkis, D. Tabor, *Friction in Textiles*, Butterworths Scientific Publications, Kap. 1 (1959).
- [kur26] Betty Kurth, Die deutschen Bildteppiche des Mittelalters, Wien 1926.
- [lat74] Peter M. Latzke und Rolf Hesse, *Textilien prüfen, untersuchen und auswerten*, Schiele und Schön Verlag, 148 und 159 (1974).
- [mal95] Annerose Mally, ADR Arbeitsblätter, 2, 213 (1995).
- [man02] Diplom-Restauratorin Diane Lanz, Mannheim, private Mitteilung
- [mar95] Kasynia Marko, *Lining and Backing / The support of Paintings, Paper and Textiles*, The United Kingdom Institute of Conservation of Historic and Artistic Works (Hrsg.), 1 (1995).
- [pet59] L. Peters and H.J. Woods: Protein Fibres, in *The Mechanical Properties of Textile Fibres*, R. Meredith (Hrsg.), North-Holland Publishing Company, 153 (1959).
- [pet59a] L. Peters and H.J. Woods: Introduction, in *The Mechanical Properties of Textile Fibres*, R. Meredith (Hrsg.), North-Holland Publishing Company, 3 (1959).
- [reu00a] Ralf-Dieter Reumann in: *Prüfverfahren in der Textil- und Bekleidungstechnik*, Ralf-Dieter Reumann (Hrsg.), Springer-Verlag, Kap. 6.3 (2000).
- [reu00b] Ralf-Dieter Reumann in: *Prüfverfahren in der Textil- und Bekleidungstechnik*, Ralf-Dieter Reumann (Hrsg.), Springer-Verlag, Kap. 2.2.1 (2000).
- [sei91] Annemarie Seiler-Baldinger, *Systematik der textilen Techniken*, Basler Beiträge zur Ethnologie Bd. 32, Wepf & Co. AG Verlag, Basel, 75 (1991).
- [som56] H. Sommer, Faserforschung und Textiltechnik, 7, 1 (1956).
- [sto95] Werner Stolz, *Starthilfe Physik*, B.G. Teubner Verlagsgesellschaft, Stuttgart, Leipzig, Kap. 3 (1995).
- [vli02] Technisches Datenblatt der Firma Lohmann für Paramoll N260/150.
- [wil72] Leonie von Wilckens in: Bayern Kunst und Kultur, Michael Petzet und Charlotte Angeletti (Hrsg.), Verlag Prestel, München (1972).
- [wil91] Leonie von Wilckens, Die textilen Künste, Verlag C.H. Beck, München, 260 (1991).
- [wul99] Stefan Wülfert, Der Blick ins Bild, Ravensburger Buchverlag (1999).