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Abstract: The increased need for energy efficiency in buildings requires sophisticated scheduling
strategies. A considerable challenge when developing such strategies is to address the stochas-
ticity of demand appropriately. In this paper, we propose a day-ahead scheduling technique
for energy storage systems with heat pumps and backup resistance heaters under uncertain
heat demand, which aims to minimize electricity costs as well as power grid congestion. We
employ a Bayesian neural network to model the stochastic consumer demand, which takes
historical measurements as training inputs, and is able to model complex stochastic patterns.
The model is then employed to generate sample demands, which are used to approximate the
expected costs. The minimization of the resulting cost function corresponds to a stochastic
optimal control problem with quadratic costs and mixed integer constraints. In a numerical
simulation of a single-family building, the proposed approach is shown to perform better than
a standard neural network based scheduling scheme.
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1. INTRODUCTION

Improving the performance of building heat, ventilation
and air-conditioning (HVAC) systems is essential to re-
duce overall energy consumption in buildings, as these
correspond to approximately 40% of total building energy
demand (Pérez-Lombard et al., 2008). Moreover, build-
ing HVAC systems have shown considerable potential to
increase grid flexibility and reduce peak system demand
(Kramer et al., 2016; Hao et al., 2014; Zheng et al., 2015;
Aduda et al., 2016; Zhang et al., 2017). In order to harness
the full potential of HVAC systems, day ahead scheduling
strategies are of crucial importance. Such strategies, which
in essence correspond to the solution of an optimal control
problem, are widely employed, most notably in model
predictive control methods (Lautenschlager and Lichten-
berg, 2016; Afram and Janabi-Sharifi, 2014b; Arnold and
Andersson, 2011) and energy market pricing approaches
(Wittmann et al., 2011; Zamani et al., 2016). However,
while the physical properties of HVAC systems are well
understood (Afram and Janabi-Sharifi, 2014a), forecasting
loads is considerably more difficult due to the markedly
uncertain nature of energy demand. Common demand
forecasting tools include first-principles models, statistical
models that correlate energy consumption and system
variables, and neural networks (NNs) (Idowu et al., 2016;
Zhao and Magoulès, 2012; Ahmad et al., 2014). However,
these methods neglect complex stochastic behaviors, e.g.
heteroscedasticity due to varying uncertainty over time or
multimodality due to building occupancy patterns, which
are particularly relevant when considering single buildings
instead of aggregate loads.

Recently, machine learning techniques have been increas-
ingly employed to tackle control tasks, particularly in
settings where uncertainty needs to be quantified and
taken into account in the control design. Examples include
Gaussian processes (Capone and Hirche, 2019; Beckers
et al., 2019) and Bayesian neural networks (BNNs) (De-
peweg et al., 2017). These approaches provide high model
flexibility and have good generalization properties. So far,
Gaussian processes have been applied in different building
control settings (Nghiem and Jones, 2017; Jain et al., 2018;
Yan et al., 2017). However, Bayesian neural networks have
been employed comparatively less often (Chonan, 1996),
despite being able to model more complex distributions
(Depeweg et al., 2016).
In this paper, we present a day-ahead scheduling scheme
for thermal storage systems, which takes complex stochas-
tic patterns in consumer behavior into account. We employ
a Bayesian neural network to compute stochastic demand
forecasts, which are then employed to approximate the
expected cost over a given time horizon. The resulting
problem is a mixed-integer quadratic optimization prob-
lem, for which established solution tools exist.
The remainder of this paper is structured as follows. Sec-
tion 2 describes the general problem setting. In Section 3,
we introduce Bayesian neural networks, and discuss how
they are employed to forecast demand. In Section 4, we
then describe the stochastic optimal control formulation,
which we use to compute the day-ahead scheduling strat-
egy. A numerical illustration is presented in Section 5, after
which we conclude with some final remarks, in Section 6.



2. PROBLEM SETTING

We consider a heat pump system with thermal storage
and a low-efficiency backup resistance heater, which is
described by the energy conservation equation

lp,t + ls,t + lb,t = lc,t, (1)

where t denotes the time step, lc,t ∈ R+ is the consumer
load, lp,t ∈ R+ is the heat pump power output, ls ∈ R is
the charge and discharge rate of the thermal storage, and
lb,t ∈ R+ is the power output of the electric backup heater.
Here R+ denotes the positive real numbers. The heat
demand lc,t is a time-dependent stochastic variable and is
sampled according to an unknown probability distribution
p(lc,t). The heat pump power output lp,t, the rate ls,t, and
the backup heater power output lb,t are controllable system
inputs, and are subject to the power constraints

0 ≤ lp,t ≤ Lp (2)

−Ls ≤ ls,t ≤ Ls (3)

0 ≤ lb,t ≤ Lb, (4)

where Lp ∈ R+, Ls ∈ R+, and Lb ∈ R+ are the maximum
output power of the heat pump, thermal storage and
backup heater, respectively. The thermal storage dynamics
are given by the difference eqution

κt+1 = κt + lc,t∆t, (5)

where κt is the level of charge of the thermal storage at
time t. Moreover, the thermal storage is subject to the
capacity constraint

0 ≤ κt ≤ K, ∀ t ∈ {0, · · · , N} , (6)

where K ∈ R+ is the thermal storage capacity. Note
that even though this model is simple, the techniques
presented in this paper are applicable to more detailed
representations.
The role of the heat pump and backup heater is twofold.
They are employed to charge the thermal storage when
necessary, while simultaneously guaranteeing that demand
is met by covering demand that is not covered by the
thermal storage. As such, they are not controlled directly,
but are rather only employed when the thermal storage
output is not enough to satisfy demand. Moreover, we
assume that the heat pump has higher efficiency than the
backup resistance heater. Hence, the backup heater is only
employed to satisfy peak demand when the combination
of heat pump and storage output are not sufficient. This
is guaranteed by introducing the nonlinear constraint

(lp,t − Lp)lb,t = 0, (7)

which enables the backup heater output lb,t to be zero only
when the heat pump output lp,t is equal to its maximum
output Lp. We assume that the thermal storage charge
and discharge rate ls,t is not subject to energy losses, and
is computed as

ls,t =


lc,t − Lp − Lb if ρt ≤ lc,t − Lp − Lb
lc,t if ρt ≥ lc,t
ρt otherwise

(8)

where ρt is given by the bounded feedback control law

ρt =


−Ls if κ̃t−κt

∆t ≤ −Ls
Ls if κ̃t−κt

∆t ≥ Ls
κ̃t−κt

∆t otherwise

(9)

Equation (9) aims to steer the thermal storage charge level
κt towards a desired level κ̃t at every time step t, whereas

(8) ensures that the power constraints (2)-(4) are satisfied.
Note that κ̃t is a reference input, and as such is not subject
to constraints. Moreover, the following holds:

Proposition 1. Let κ̃t, t ∈ {1, · · · , N} be the desired
charge level, and assume 0 ≤ κ̃t ≤ K holds for all t.
Moreover, let κt be given by (5), (8) and (9), and assume
κ0 satisfies 0 ≤ κ0 ≤ K. Then constraint (6) is satisfied
by all κt, t ∈ {1, · · · , N}.

Proof. Assume the contrary is true. Then there exists a
κt, such that either 0 > κt or κt > K holds. Consider the
case where 0 > κt holds. Without loss of generality, we
assume 0 ≤ κt−1 ≤ K. Then, due to (6), this implies
(0 − κt)/∆t > ls,t = (κ̃t − κt)/∆t, which in turn is
equivalent to 0 > κ̃t, which is a contradiction, i.e., 0 ≤ κt
holds. A similar argument leads to κ̃t > K, which implies
the desired statement.

Hence, by choosing the desired charge levels such that
0 ≤ κ̃t ≤ K holds, (6) is satisfied automatically, i.e., the
capacity constraints do not need to be enforced directly.
Let κ̃s := (κ̃1, · · · , κ̃N ) denote the subsumption of the
desired storage charge levels. Furthermore, let νc, νb ∈ R+

respectively denote the heat pump coefficient of perfor-
mance and the thermal efficiency of the backup heater. We
aim to devise a charging strategy that minimizes electricity
costs, while simultaneously reducing electricity consump-
tion peaks. The latter requirement is of particular signif-
icance to avoid congestion and guarantee power system
stability. This is achieved by minimizing a cost function of
the form

C(κ̃s) = E

[
N∑
t=0

ct

(
lp,t
νc

+
lb,t
νb

)
+ η

(
lp,t
νc

+
lb,t
νb

)2
]
,

(10)

where ct is the electricity price at time t, which we assume
to know. The scalar η > 0 is a design parameter that
penalizes electricity consumption peaks.
In order to obtain a charging strategy that minimizes (10)
efficiently, we require an accurate load forecast. To this
end, based on Depeweg et al. (2016), we approximate the
heat demand as

lc,t ≈ f(t, zt,W ), (11)

where the function f : R× R× Rdw is a NN with weights
W ∈ W ⊆ Rdw , and zt ∼ N (0, 1) is an unobservable
stochastic variable. In order to compute the weights W ,
we assume to have N historical measurements consisting
of time labels t = (t(1), · · · , t(N)) and corresponding load

measurements Y =
(
y(1), · · · , y(N)

)
, where y(i) = l

(i)
c,t+ε

(i)

are noisy demand measurements with ε(i) ∼ N (0, σ) and
σ > 0.

3. BAYESIAN NEURAL NETWORK MODEL

We now introduce Bayesian neural networks (BNNs) and
discuss how they are employed to model loads. We begin by
reviewing classical feedforward artificial neural networks
(NNs), after which BNNs are discussed.

3.1 Standard Artificial Neural Networks

Given a time step t ∈ R, an artificial feedforward NN
computes an output l ∈ R, whose corresponding input-



output relationship is given by

l = oL (12)

where L denotes the number of layers in the NN. The
variable oL denotes the output of the L-th layer, which is
computed recursively as

oi,j = φi,j

(
Ui−1∑
k=1

wi−1
k,j oi−1,k

)
, (13)

i = 1, · · · , L, j = 1, · · · , Ui (14)

o0 := t, (15)

where L denotes the number of layers in the network, oi,j
is the i-th component of the output of the j-th NN layer,
Ui denotes the number of neurons in the i-th layer, and
wli,j is a weight corresponding to the l − 1-th layer.
Typically, artificial NNs are trained by adjusting the
weights using gradient descent, such that the output fits
the training data or minimizes an ojective function tailored
to the problem (Werbos, 1974).

3.2 Bayesian Neural Networks

A BNN extends the notion of NNs to accommodate
stochastic variables. This is achieved by sampling the
weights wli,j from a probability distribution, i.e., wli,j ∼
p(wli,j). We treat the weights

W =
{
wli,j

}
l∈{1,··· ,L},i∈{1,··· ,Ul},j∈{1,··· ,Ul−1+1} , (16)

as independent and identically distributed stochastic vari-
ables, and assume that every weight has a normal prior
distribution with mean zero and variance λ, i.e.,

p(W ) =

L∏
l=1

Ul∏
i=1

Ul−1+1∏
j=1

N (0, λ). (17)

After having collected N training samples t and Y , the
posterior distribution of the weights W and stochastic
features z =

(
z(1), · · · , z(N)

)
is computed using Bayes’

rule as

p(W , z | t,Y ) =
p(Y |W , z, t) p(W ) p(z)

p(Y | t)
. (18)

Hence, the likelihood of obtaining the output data Y is
given by

p(Y |W , z, t) =

N∏
n=1

pN
(
f(t(n), z(n);W ),σ

)
. (19)

p(y∗ | t∗, t,Y ) =∫∫∫
W z z∗

pN
(
y∗ | f̃(t∗, z∗;W ),σ

)
pN (z∗ | 0, γ)

dz∗ p(W , z | t,Y ) dz dW ,

(20)

where

pN (a|m, v) :=
1√

2πv2
e−

(a−m)2

2s2 (21)

denotes the normal probability distribution with mean m
and variance v evaluated at a.

3.3 Weight Training

In general, optimizing (20) with respect to the weights is
intractable. Hence, based on Depeweg et al. (2016), we ap-

proximate the exact posterior distribution p(W , z | t,Y )
as

q(W , z) =

L∏
l=0

Ul∏
i=1

Ul+1−1∏
j=1

pN

(
wli,j |mwl

i,j
, vwl

i,j

)
×

N∏
n=1

pN

(
z(n) |mz(n) , vz(n)

)
.

(22)

In order to compute the means m and the variances v of
the Gaussian factors of q(·), we minimize the α-divergence
between p(W , z | t,Y ) and q(W , z) (Minka et al., 2005;
Depeweg et al., 2016)

Dα [p(W , z | t,Y )‖q(W , z)]

=
1

α(α− 1)

(
1−

∫
p(W , z | t,Y )αq(W , z)(1−α)

)
dW dz,

(23)

where α ∈ R+. The α-divergence measures the discrepancy
between the true probability p(W , z |, t,Y ) and the ap-
proximation q(W , z), and corresponds to a generalization
of Kullback-Leibler divergence (Van Erven and Harremos,
2014). Since minimizing (23) is generally intractable, we
employ black-box α-divergence minimization (Hernández-
Lobato et al., 2016), which aims to approximate the min-
imum of (23) by minimizing

Eα(q) = − logZq −
1

α

×
N∑
n=1

logEq

[(
pN
(
y(n) | f(t(n), z(n);W ),σ

)
g(W )h(z(n))

)α]
,

(24)

where

logZq =

L∑
l=0

Ul∑
i=1

Ul+1−1∑
j=1

(
1

2
log (2πvwl

i,j
) +

m2
wl

i,j

vwl
i,j

)

+

N∑
n=1

(
1

2
log (2πvz(n)) +

m2
z(n)

vz(n)

)
,

(25)

g(W ) = exp

(
L∑
l=0

Ul∑
i=1

Ul+1−1∑
j=1

1

N

×

(
λvwl

i,j

λ− vwl
i,j

(wli,j)
2 +

mwl
i,j

vwl
i,j

wli,j

))
,

(26)

h(z(n)) = exp

(
γvz(n)

γ − vz(n)

(z(n))2 +
mz(n)

vz(n)

z(n)

)
, (27)

and Eq[·] indicates that the expected value is computed
according to the surrogate posterior distribution (22).
Furthermore, the expectation term in (24) is approximated
by Monte Carlo integration

Eq

[(
N
(
y(n) | f(t(n), z(n);W ),σ

)
g(W )h(zn)

)α]

≈ 1

K

K∑
k=1

(
N
(
y(n) | f(t(n), z(n,k);W (k)),σ

)
g(W (n,k))h(z(n,k))

)α
.

(28)

This approach scales to large datasets, as (24) can be min-
imized by employing gradient-descent Hernández-Lobato
et al. (2016).



3.4 Load Forecasting with BNNs

After computing the weights W , as described in Section

3.3, we are able to forecast consumer loads δ
(i)
c,t by sampling

ζ(i) ∼ N (0, 1) and computing

δ
(i)
c,t = f(t, ζ(i),W ), i ∈ N. (29)

Here we use δ
(i)
c,t and ζ(i) to denote samples that are drawn

after training the NN weights W , and should not be

confused with the training samples l
(i)
c,t, z

(i).

4. STOCHASTIC OPTIMAL CONTROL

We now provide a stochastic optimal control formulation
that approximates the minimizer of (10). By computing
M sample consumer load forecasts as described in Section
3.3, we are able to approximate the expected cost (10)
using Monte Carlo integration. By additionally taking the
system constraints (1)-(9) into account, we obtain the
stochastic optimization problem

min
κ̃s

M∑
i=1

N∑
t=0

ct

(
l
(i)
p,t

νc
+
l
(i)
b,t

νb

)
+ η

(
l
(i)
p,t

νc
+
l
(i)
b,t

νb

)2

,

s.t. ∀ t ∈ {1, · · · , N} , ∀ i ∈ {1, · · · ,M} ,
δ

(i)
c,t + l

(i)
p,t + l

(i)
s,t + l

(i)
b,t = 0,

(l
(i)
p,t − Lp)l

(i)
b,t = 0,

κ
(i)
t+1 = κ

(i)
t + l

(i)
s,t∆t,

l
(i)
s,t =


δ

(i)
c,t − Lp − Lb if ρ

(i)
t ≤ δ

(i)
c,t − Lp − Lb

δ
(i)
c,t if ρ

(i)
t ≥ δ

(i)
c,t

ρ
(i)
t otherwise

ρ
(i)
t =


−Ls if

κ̃t−κ(i)
t

∆t ≤ −Ls
Ls if

κ̃t−κ(i)
t

∆t ≥ Ls
κ̃t−κ(i)

t

∆t otherwise

0 ≤ l
(i)
p,t ≤ Lp

0 ≤ l
(i)
b,t ≤ Lb,

0 ≤ κ̃(i)
t ≤ K, ∀ τ ∈ {0, · · · , N}

δ
(i)
c,t = f(t, ζ(i),W ),

(30)

where ζ(i) ∼ N (0, 1), i ∈ {1, · · · ,M} are sampled before
the optimization and are treated as fixed parameters.
This corresponds to a mixed-integer quadratic program,
for which established solution methods exist Misener and
Floudas (2013).

5. NUMERICAL EXPERIMENTS

We employ the techniques detailed in Sections 3 to predict
the heat demand of a single family home on a weekend day
and on a weekday, and design a corresponding thermal
storage charging strategy.
The maximum power output of the heat pump, thermal
storage, and backup heater are Lp = 20 kW, Ls = 15 kW,
and Lb = 50 kW, respectively. The thermal storage has a
capacity of K = 10 kWh. The heat pump has a coefficient
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Fig. 1. Forecasts superimposed over actual consumer de-
mand curves.

of performance of νc = 4, whereas the backup resistance
heater has an efficiency of νb = 0.95. The consumer
demand is generated by a mathematical model of the form

ls,t = βt +

Na∑
k=1

εk,ta
T
k,t(Rk,t + I)(ψk,t + rk,t), (31)

where βk,t ∈ R+, ak,t ∈ Rdp+ and ψk,t ∈ Rdp+ are fixed
parameters, εk,t are binary random variables, and the
entries of Rk,t and rk,t are sampled from a uniform distri-
bution between 0 and 1. The parameters are chosen such
that the demand (31) for weekdays generally feature peak
consumptions during the morning and the evening hours.
Moreover, times of peak correspond to a higher demand
variance, whereas less variance is present at times of low
demand. The binary random variables εk,t are chosen
such that weekend days are bimodal, which reflects the
possibility of consumers not being at home. Hence, the
demand probability distribution exhibits heteroscedastic-
ity and multimodality.
We perform load forecasts using a Bayesian NN with
25× 25 hidden neurons, for which we employ 100 demand
curves as training data. In order to emphasize the benefits
of the proposed approach, we compare both the demand
forecast as well as the scheduling results to those obtained
with a standard NN with an identical architecture. The
BNN and NN were trained by applying Adam (Kingma
and Ba, 2014) for 8 · 103 and 20 · 103 epochs, respectively.
The forecast results obtained with a BNN and a stan-
dard NN are respectively shown in the top and bottom
plots in Figure 1. The left-hand side plots correspond to
demand on a weekday, whereas the plots on the right-
hand side are forecasts on a weekend day. In order to
illustrate the accuracy of the predictions, we superimpose
over the forecasts six demand curves that were not used
for training. Both on weekdays and on weekend days, the
BNN is able to capture complex stochastic phenomena,
such as bimodality and heteroscedasticity. However, on
the weekdays, the BNN data fit is tighter and generates
less outliers than on the weekend day, which is due to the
less complex nature of the stochastic variables. Moreover,
on the weekend day, the two modes are relatively close
to each other between 4 o’clock and 5 o’clock, which
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Fig. 2. Electricity price during simulation.
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Fig. 3. Desired charge level and mean charge level of
thermal storage obtained using BNN and standard
NN.

causes the resulting samples to overlap slightly. However,
the data fit follows the qualitative patterns of the test
data. By contrast, the standard NN only approximates
the mean of the data. Moreover, it assumes that the mean
corresponds to the correct prediction with full confidence.
This shortcoming is particularly accentuated on weekend
days, where the predicted trajectory fails to cover any of
the modes of the data.

5.1 Optimal control

We consider a setting where the electricity price changes
every 4 hours, as given in Figure 2.

We employ a BNN with 25× 25 hidden neurons, and use
M = 50 Monte Carlo samples to approximate the expected
cost (10). In order to illustrate the advantages of the BNN-
based forecast, we compare the optimal control strategy to
the one obtained using a standard NN prediction with the
same network architecture.
We perform 60 simulations to approximate the true ex-
pected cost (10) for a weekend day and a weekday. The
resulting desired charge levels κ̃ and the mean charge levels
κt are given in Figure 3. The corresponding mean heat
pump and backup heater power outputs are provided in
Figures 4 and 5, respectively.
The BNN-based algorithm produces mean electricity costs
of 7 Euro on the weekday, and 4 Euro on a weekend day.
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Fig. 4. Mean heat pump power output obtained using BNN
and standard NN.
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Fig. 5. Mean backup heater output obtained using BNN
and standard NN.

The corresponding penalties for peak demand are 3 · 105

and 2 · 105, respectively. By contrast, when employing
a standard NN, electricity costs of 10 Euro and 5 Euro
are achieved respectively on weekdays and on weekends,
with corresponding peak demand penalties of 7 · 105 and
3 · 105. Hence, the BNN-based algorithm performs better
than the standard NN-based one, both with respect to
electricity costs and peak shaving. A direct cause of this
discrepancy lies in the usage of the backup heater, which
is employed more frequently and at higher output power
by the NN-based solution on both days. This happens
because the BNN provides information about the demand
uncertainty at every time step, which in turn makes the
resutling scheduling strategy less susceptible to deviations
from the mean. This contrasts with the NN-based strategy,
which assumes that the mean is fully correct at every time
step. Similarly, the BNN-based strategy aims to have a
fully charged thermal storage before the final period of
the simulation on both days, which is when the electricity
price is highest. During the high price period, the storage
is discharged, which helps alleviate the overall costs. This



differs from the NN-based strategy, which is less accentu-
ated in this aspect.

6. CONCLUSION

We presented a Bayesian neural network-based day-ahed
scheduling strategy for thermal storage systems with heat
pump and backup resistance heater. The proposed tech-
nique leverages stochastic load forecasts to approximate
the expected system cost function using Monte Carlo
integration, and subsequently optimizes over the storage
schedule. In numerical simulations, we have shown that the
Bayesian neural network accurately approximates complex
stochastic consumer behavior, which in turn leads to bet-
ter performance in day-ahead scheduling compared to a
standard neural network-based approach.
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