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Abstract: Although machine learning techniques are increasingly employed in control tasks,
few methods exist to predict the behavior of closed-loop learning-based systems. In this paper,
we introduce a method for computing confidence regions for closed-loop system trajectories
when a learning-based control law is employed. We employ Monte Carlo simulations and exploit
system properties to prove that the confidence regions are correct with high probability. In
a numerical simulation, we show that the proposed approach accurately predicts the correct
confidence regions up to small outliers.
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1. INTRODUCTION

Technological advances have led to increasingly challeng-
ing control tasks, where first-principles models cannot be
obtained either due to prohibitive complexity or lack of
model knowledge. In such settings, model uncertainty is
generally high, which leads to poor control performance
if conventional model-based control techniques are ap-
plied. In order to address these issues, machine learning
techniques have been increasingly employed (Deisenroth
et al., 2015; Capone and Hirche, 2019; Umlauft et al., 2017;
Chowdhary et al., 2015; Berkenkamp et al., 2017). These
tools effectively deal with a large variety of model uncer-
tainties, and exhibit good control performance in complex
settings, provided that enough system data is available.
Particular techniques which have recently garnered at-
tention within this context are learning-based model pre-
dictive control (Koller et al., 2018; Kamthe and Deisen-
roth, 2018; Maiworm et al., 2018), as well as gain-varying
parametric state feedback control (Beckers et al., 2019;
Berkenkamp and Schoellig, 2015) based on learned models.
Learning-based model predictive control often employs
stochastic, nonparametric models such as Gaussian pro-
cesses to update prior models in real-time. Since the em-
ployed machine learning techniques significantly compli-
cate theoretical analysis, learning-based model predictive
control typically either provide no guarantees (Kamthe
and Deisenroth, 2018) or very conservative ones (Koller
et al., 2018). However, the simulation of stochastic models,
which are controlled based on models updated in real-
time, is an open research question, such that there are no
reliable simulation based evaluation methods for learning-
based model predictive control. In contrast, stability is
often formally proven for parametric state feedback con-
trol with learned models by exploiting robust control ap-
proaches. However, control performance is typically not
analyzed such that control parameters such as gains (Beck-
ers et al., 2019) or cost function parameters (Berkenkamp

and Schoellig, 2015) must be tuned manually. Therefore,
a method for simulating learning-based controllers with
models updated in real-time is required.
In order to address this open problem, we introduce a
multi-step ahead prediction algorithm for learning-based
control laws that enables to determine how learning in-
fluences the control performance over a long time horizon.
We employ unrestrictive assumptions and prove important
properties for Gaussian process state space models, which
in turn are employed to obtain confidence regions for the
closed-loop system trajectory. In a numerical simulation of
the cart-pole balancing problem, we show that the com-
puted confidence region holds up to small errors. Moreover,
the confidence region illustrates how system uncertainty is
expected to decrease over time due to the learning-based
nature of the control law.
The remainder of this paper is structured as follows.
The problem statement is given in Section 2, after which
we introduce Gaussian processes, in Section 3. Section 4
describes how the confidence regions are obtained, and
provides corresponding guarantees. A numerical cart-pole
experiment is given in Section 5, and Section 6 provides a
conclusion and discussion.

2. PROBLEM STATEMENT

Consider a nonlinear system of the form

xt+1 =f(xt,ut) + g(xt,ut) +wt :=

f(x̃t) + g(x̃t) +wt,
(1)

where xt ∈ X = Rdx and ut ∈ U ⊆ Rdu respectively
denote the system’s state and control input at time t ∈ N.
The initial condition x0 is fixed and known. The function
f : X × U 7→ Rdx corresponds to the known component
of the system dynamics, whereas g : X × U 7→ Rdx is
unknown. The system is perturbed by independent and
identically distributed (iid) process noise w ∼ N (0,Q),

with Q = diag(σ1, · · · , σdx) ∈ Rdx+ . Here R+ denotes



the positive real numbers. The augmented state x̃t =
(xT
t ,u

T
t )T concatenates the state and input vectors, and is

introduced for notational simplicity. We assume that the
entries of f(·) are continuously differentiable and exhibit
at most polynomial growth, i.e.,

Assumption 1. The entries fi(·) of f(·) are continuously
differentiable and are bounded by a known, positive,
isotropic and monotone polynomial function π : R 7→ R,
i.e., fi(x̃) ≤ π(‖x̃‖2) ∀ x̃ ∈ X̃ , where ‖·‖2 denotes the
Euclidean norm.

This is not a very restrictive assumption, as multiple
physical systems, such as robotic and electrical systems,
are described by functions that satisfy Assumption 1,
e.g. polynomial functions. Moreover, the case where no
prior model information is available, which is given by
f(xt) = xt, also satisfies this assumption.
We consider a learning-based control law that collects
measurements of the system dynamics and employs them
to update itself. This is formally expressed as

ut := ut(x0, · · · ,xt), (2)

where the functions ut : X t+1 7→ U depend on the current
state xt and the measurement data collected up to time t.
This definition applies to all adaptive control laws and also
accomodates more general learning-based control laws. We
make the following assumption with respect to the input
space:

Assumption 2. The input space U is bounded, with
‖u‖2 ≤ umax for all u ∈ U and some fixed scalar umax > 0.

This is generally the case in practice, as the input ut is
often constrained due to safety or physical limitations.
Let X := (xT

1 , · · · ,xT
T )T ∈ X T denote an T -step sample

closed-loop trajectory of the true system (1). We wish to
obtain a confidence region S ⊆ X T for X, such that

P(X ∈ S) ≥ 1− δ, (3)

holds for a fixed δ ∈ (0, 1).

3. ANTICIPATING LEARNING USING GAUSSIAN
PROCESSES

We now introduce Gaussian process (GP) models, and
illustrate how they are emplyed to model (1). A GP
is a collection of random variables, of which any finite
subset is normally distributed (Rasmussen and Williams,
2006). A GP is fully characterized by a mean function

m : X̃ 7→ R and a symmetric positive definite kernel
function k : X̃ × X̃ 7→ R, and is denoted GP(m, k). In
this paper, we set m ≡ 0, which corresponds to a setting
where no prior knowledge about g(·) is available, and
is applicable without loss of generality (Rasmussen and
Williams, 2006). The kernel k(·, ·) encodes information
about the unknown function g(·), such as differentiability
and periodicity. In settings where little is known about
the characteristics of g(·), universal kernels are often
employed, as they uniformly approximate any continuous
function in a closed subset of X̃ (Micchelli et al., 2006).
If the state space is one-dimensional, i.e., dx = 1, given
system measurement data Dt = {X̃t,yt}, where X̃t :=

(x̃T
1 , · · · , x̃T

t )T and yt = (g(x̃1) + w1, · · · , g(x̃t) + wt)
T

,
the posterior mean and variance of the GP are computed
as

µ(x̃t|Dt) =kT(x̃t)
(
K + σ2I

)−1
yt (4)

σ(x̃t|Dt) =k(x̃t, x̃t)− kT(x̃t)
(
K + σ2I

)−1
k(x̃t), (5)

where k(·) = [k(x̃1, ·), · · · , k(x̃n, ·)]T and K is the covari-
ance matrix with entries Kij = k(x̃i, x̃j).
If dx > 1, we model each entry of g(·) using a separate
GP, i.e.,

g(x̃t) ∼ N
(
µ(x̃t|Dt),σ2(x̃t|Dt)

)
, (6)

where

µt(x̃t) := (µ(x̃t|D1,t) · · · µ(x̃t|Ddx,t)) , (7)

σ2
t (x̃t) := diag

(
σ2(x̃t|D1,t) · · · σ2(x̃t|Ddx,t)

)
(8)

and the data Di,t = {X̃t,yi,t} used to model the i-

th entry is chosen as X̃t = (x̃T
1 , · · · , x̃T

t )T and yi,t =

(gi(x̃1) + w1,i, · · · , gi(x̃t) + wt,i)
T

. This corresponds to
assuming that the entries of g(·) are conditonally inde-
pendent.
The requirements for modelling (1) are summarized as
follows:

Assumption 3. The entries of the unknown function g(·)
correspond to samples from a GP with mean m ≡ 0 and
a known, bounded, and continuously differentiable kernel
k(·, ·) ≤ kmax, i.e., gi(·) ∼ GP(0, k) holds for i = 1, · · · , dx.

The choice of kernel is typically carried out with some
knowledge of the system at hand. Since universal kernels
exist that are bounded and continuously differentiable,
such as the Gaussian kernel (Micchelli et al., 2006), the
required kernel characteristics pose few restrictions on
g(·).
For the described setting, the following result applies:

Proposition 1. Let Assumption 3 hold, and choose kmax

accordingly. Moreover, let σmin := mini∈{1,··· ,dx} σi be the
smallest entry of the process noise covariance matrix Q.
Then, for any i ∈ {1, · · · , dx} and a corresponding data

set Di,t = {X̃t,yi,t},

|µ(x̃t|Di,t)| ≤
√
dx
kmax

σmin
‖yi,t‖2, (9)

σ2(x̃t|Di,t) ≤ kmax. (10)

Proof. We begin by proving (9). Let λ−1
min

(
K + σ2I

)
denote the smallest eigenvalue of

(
K + σ2I

)
. From (4),

it follows that

|µ(x̃t|Di,t)| = kT(x̃t)
(
K + σ2I

)−1
yi,t

≤ ‖kT‖2λ−1
min

(
K + σ2I

)
‖yi,t‖2

≤ kmax

√
dxσ

−1
min‖yi,t‖2,

(11)

where the last inequality is due to the symmetrict posi-
tive semi-definiteness of K, i.e., K only has nonnegative
eigenvalues. This proves (10).
The inequality (10) also follows straightforwardly from the
symmetric positive semi-definiteness of K, i.e.,

kT(x̃t)
(
K + σ2I

)−1
k(x̃t) ≥ 0.

The result then follows straightforwardly from (5). �

3.1 Multi-step ahead predictions

Under Assumption 3, the one step dynamics are given by

xt+1 = f(x̃t) + µt(x̃t) + σt(x̃t)ζt, (12)



where ζt ∼ N (0, I). The mean µ(·|Di,t) and variance
σ2(·|Di,t) for each entry i at time t are obtained by
sampling a new data point from the GP and updating
the measurement data with the resulting state, i.e.,

yi,t+1 =

(
yi,t

µ(x̃t|Di,t) + σ2(x̃t|Di,t)ζi,t

)
. (13)

Hence, the closed-loop trajectory X is fully specified by
T random samples ζ0, · · · , ζT−1, i.e., it is a function of
ζ0, · · · , ζT−1. In fact, since X = Rdx , the corresponding
mapping is defined for all ζ0, · · · , ζT−1 ∈ Rdx and is
bijective:

Lemma 2. LetX = (x1, · · · ,xT ) ∈ X T . Then there exists
a unique set of samples ζ0, · · · , ζT−1 ∈ Rdx , such that (12)
is satisfied.

Proof. Since σt(x̃t) is a diagonal matrix with positive
diagonal entries, it is invertible. Hence,

ζt = σ−1
t (x̃t) (xt+1 − f(x̃t)− µt(x̃t)) (14)

holds for all t, i.e., the samples ζ0, · · · , ζT−1 ∼ N (0, I)
that satisfy (12) for a fixed trajectory X are unique. �

We denote the corresponding bijection as Φ : X T 7→ X T ,
Φ(Z) = X, where Z := (ζ0, · · · , ζT−1). Moreover, the
following holds:

Lemma 3. Let Assumption 3 hold. Then Φ(·) is differen-
tiable and the corresponding Jacobian JΦ(Z)) is continu-
ously differentiable and nonsingular for all Z ∈ X T .

Proof. Since the known function f(·) and the kernel k(·, ·)
are continuously differentiable, we can employ the chain-
rule to differentiate the states xt, t = 1, · · · , T with
respect to the samples ζi, i = 0, · · · , T − 1, and the
resulting matrices dxt/dζi are continuous. Hence, Φ(·) is
continuously differentiable. Moreover, the components of
the Jacobian JΦ(·) are given by

dxt
dζτ

=


0, τ ≥ t
diag(σ2

t−1(x̃t−1)), τ = t− 1
t−1∑
i=τ+1

dxt
dx̃i

dx̃i
dζτ

, τ < t− 1

. (15)

Hence, the Jacobian JΦ(·) is a lower triangular matrix with
determinant

det JΦ(Z) =

T∏
t=1

dx∏
i=1

σ2(x̃t|Di,t) 6= 0. (16)

�

Corollary 4. Let Assumption 3 hold. Then the probability
density function p(X) of the trajectory X is continuously
differentiable.

Proof. Due to Lemma 3, the inverse function theorem
is applicable, and the inverse mapping Φ−1(·) from the
sample space to the trajectory space is continuously dif-
ferentiable. Hence, by the change of variables formula, the
probability density function of X is given by p(X) =
p(Z)|det(JΦ−1(Z))|, where det denotes the determinant
operator and JΦ−1 is the Jacobian of Φ−1(·). Since the
samples ζt are normally distributed, p(Z) is continuously
differentiable. As Φ−1(·) is also continuously differentiable,
this implies the continuity of p(X). �

We introduce the expected system trajectory

E[X] =
(
E[x1]T, · · · ,E[xT ]T

)T
, (17)

where the mean of a multi-step ahead prediction E[xt] at
an arbitrary time step t is given by

E[xt] =

∫
X̃ t

xt

t−1∏
τ=0

p(ζτ )dζτ . (18)

Here p(·) is a probability distribution and the state xt
is computed recursively using (12). The variance of the
trajectory (19) is then given by

V[X] =

∫
X̃T

(X − E[X])(X − E[X])T
T−1∏
t=0

p(ζt)dζt. (19)

We now prove the existence of (18) and (19). For this the
following result is essential.

Lemma 5. (Tsagris et al. (2014)). Let ζ ∼ N (0, 1) be a
random variable. Then

E[|ζ|N ] =

∫
R

|ζ|Np(ζ)dζ (20)

is finite-valued for all N ∈ N.

Furthermore, the Euclidean norm of the measurement data
vectors yi,t are bounded by the samples ζt as shown in the
following lemma:

Lemma 6. Let Assumption 3 hold, choose i ∈ {1, · · · , dx},
and let yi,t+1 be given as in (13). Then

‖yi,t+1‖2 ≤
t∑

j=0

(1 +
√
dx
kmax

σmin
)t−jkmax|ζi,j | (21)

holds.

Proof. Due to (13), Proposition 1, and the Cauchy-
Schwarz inequality,

‖yi,t+1‖2 =
√
‖yi,t‖22 + (µ(x̃t|Di,t) + σ2(x̃t|Di,t)ζi,t)2

≤ ‖yi,t‖2 + |µ(x̃t|Di,t)|+ |σ2(x̃t|Di,t)ζi,t|

≤ (1 +
√
dx
kmax

σmin
)‖yi,t‖2 + kmax|ζi,t|.

(22)

Applying (22) t times yields

‖yi,t+1‖2 ≤(1 +
√
dx
kmax

σmin
)(t+1)‖yi,0‖2

+

t∑
j=0

(1 +
√
dx
kmax

σmin
)t−jkmax|ζi,j |

=

t∑
j=0

(1 +
√
dx
kmax

σmin
)t−jkmax|ζi,j |.

(23)

Here the last equality holds because no data is available
at the beginning of the simulation. �

Hence, the growth of the data vector depends only on the
random samples ζt, and not on the trajectory itself. Note
that, due to Proposition 1, this directly implies

µ(x̃t|Di,t) ≤
√
dx
k2

max

σmin

 t∑
j=0

(1 +
√
dx
kmax

σmin
)t−j |ζi,j |


(24)

for all x̃t ∈ X̃ . We then obtain the following result:



Lemma 7. Let xt+1,i denote the i-th entry of (12), and let
Assumptions 1-3 hold. Then, for every t∈{1, · · · , T}, there
exists a polynomial function πt : Rdx×t 7→ R, such that

|xt+1,i| ≤ πt (ζ0, · · · , ζt) . (25)

Proof. Choose the polynomial function π(·) as in As-
sumption 1. Then, due to Lemma 6, there exist positive
constants ã0, · · · , ãT , such that for all t ∈ {1, · · · , T} and
all i ∈ {1, · · · , dx},
|xt+1,i| = |fi(x̃t) + µ(x̃t|Di,t) + σ(x̃t|Di,t)ζi,t|

≤ |π(‖x̃t‖2) + µ(x̃t|Di,t) + σ(x̃t|Di,t)ζi,t|

≤π(‖x̃t‖2) +

t∑
j=0

ãj |ζi,j |

≤π

 dx∑
j=1

|xt,j |+
du∑
j=1

|ut,j |

+

t∑
j=0

ãj |ζi,j |

≤π

 dx∑
j=1

|xt,j |+ duumax

+

t∑
j=0

ãj |ζi,j |

(26)

holds, where umax is chosen as in Assumption 2. Applying
(26) recursively yields the desired result. �

We are now able to prove the existence of (17) and (19).

Lemma 8. The expected value E[X] and variance V[X] of
the system trajectory as given by (17) and (19) exist and
are bounded.

Proof. Due to Lemma 7, the integrands of (18) are
bounded by πt (ζ0, · · · , ζt), where πt(·) is a polynomial
function chosen as in Lemma 7. Moreover, due to Lemma
5 and the fact that ζ0, · · · , ζt are independent, the integral∫

X̃T

πt (ζ0, · · · , ζt)
T−1∏
t=0

p(ζt)dζt (27)

is finite-valued. Hence, E[xt] is finite-valued. Similarly, the
entries of the integrand of (19) satisfy(

(X − E[X])(X − E[X])T
)
i,j

≤(πt (ζ0, · · · , ζt) + ‖E[xt]‖∞)2,
(28)

where i, j ∈ {1, · · · , dx} denotes the i-th row and j-th
column and ‖·‖∞ corresponds to the maximum norm.
Since this corresponds to a polynomial function, Lemma 5
implies that the entries of V[X] are finite-valued. �

Moreover, the variance V[X] satisfies the following prop-
erty:

Proposition 1. The trajectory variance V[X] as given by
(19) is symmetric positive definite.

Proof. We prove the result by contradiction. Assume
V[X] is not symmetric-positive definite. Due to Lemma
8, V[X] is finite valued. It is easy to see from (19) that
V[X] must be symmetric positive-semidefinite. Hence,
there exists an α ∈ RdxT , α 6= 0, such that αTV[X]α = 0.
Due to (19) and the continuity of X with respect to the
samples ζ0, · · · , ζT−1, this implies

αT(X − E[X])(X − E[X])Tα = 0 (29)

holds for all X ∈ X T . This in turn holds only if (X −
E[X])Tα = 0, i.e.,

T−1∑
t=0

dx∑
i=1

α(tdx+i)

(
f(x̃t)+µ(x̃t|Di,t)+σ2(x̃t|Di,t)ζi,t

)
= 0.

(30)

Let νdx + ρ := J = maxj j, αj 6= 0 be the highest index
corresponding to a nonzero entry of α, where ν and ρ are
the corresponding time step and dimension, respectively.
We rewrite (30) as

ν∑
t=0

dx∑
i=1

α(tdx+i)

(
f(x̃t)+µ(x̃t|Di,t)+σ2(x̃t|Di,t)ζi,t

)
= 0.

(31)

Since varying the value of ζν,ρ does not affect the states
up to time step ν, i.e., x̃1, · · · , x̃ν , (31) implies

σ2(x̃t|Dν,ρ)ζν,ρ = 0, (32)

which is a contradiction due to σ2(x̃t|Di,t) > 0 for every i
and t. Hence, V[X] is symmetric positive definite. �

4. MONTE CARLO SIMULATION

Computing (18) and (19) analytically is generally in-
tractable. Hence, we resort to a Monte Carlo simulation
to approximate (18) and (19), i.e.,

E[xt] ≈
1

M

M∑
m=1

x
(m)
t , (33)

with

x
(m)
t+1 = f(x̃

(m)
t ) + µ

(m)
t (x̃

(m)
t ) + σ

(m)
t (x̃

(m)
t )ζ

(m)
t , (34)

where the superscript (i) refers to the i-th Monte Carlo
simulation, and M is the number of Monte Carlo simula-
tions. We define a sample trajectory as

X(m) :=

((
x

(m)
1

)T

, · · · ,
(
x

(m)
T

)T
)T

. (35)

The estimated mean and unbiased sample variance of a
trajectory obtained by the Monte Carlo simulation are
given by

X̄M :=
1

M

M∑
i=1

X(i), (36)

Σ̄M :=
1

M − 1

M∑
i=1

(
X(i) − X̄M

)(
X(i) − X̄M

)T

, (37)

and are employed to approximate the true mean and
variance of the trajectory. We now prove the following:

Lemma 9. Let Assumptions 1-3 hold, let X(1), · · · ,X(M)

be M sample trajectories obtained using (12) and (35) and
let X̄M be given as in (36). Assume M ≥ Tdx and Tdx > 1
and let X(m1), · · · ,X(mdxT ), m1, · · · ,mdxT ∈ {1, · · · ,M}
be dxT arbitrary sample trajectories. Then, with proba-
bility 1, X(m1), · · · ,X(mdxT ) are linearly independent and
X(m) − X̄M 6= 0 holds for all m.

Proof. Assume the contrary is true and assume, without
loss of generality, m1 = 1, · · · ,mdxT = dxT . Then there
exist scalars α1, · · · , αdxT and an m ∈ {1, · · · , dxT}, such
that

dxT−1∑
m=1

αiX
(m) = αTdxX

(Tdx), (38)



where we assume X(Tdx) 6= 0 and αTdx 6= 0 without loss
of generality. Define

H :=

{
X ∈ X

∣∣∣∣∣ X =

dxT−1∑
m=1

αmX
(m), αm ∈ R

}
. (39)

Note that H is a hyperplane in RdxT , hence has measure
zero. Due to Corollary 4, the probability density function
p(X) is continuous. The probability that (38) holds for
some αdxT ∈ R is then given by

P
(
X(Tdx) ∈ H

)
=

∫
H

p(X)dX = 0, (40)

where the last equality because p(X) is continuous and H
has measure zero. If X(m) − X̄M = 0 holds for some m,
due to M > 1, then this implies

X(m) +
M − 1

M2

M∑
j=1
j 6=i

X(j) =: X(m) + X̄M\m = 0. (41)

This holds with probability

P
(
X(m) − X̄M = 0

)
=

∫
X̄M\m

p(X)dX = 0 (42)

because X̄M\m is a vector, hence has measure zero. Ap-
plying the union bound to both events yields

P
(
X(Tdx) ∈ H

⋃
X(m) − X̄M = 0

)
≤ P

(
X(Tdx) ∈ H

)
+ P

(
X(m) − X̄M = 0

)
= 0.

(43)

�

Corollary 1. Let Assumptions 1-3 hold and let Σ̄M be
given as in (37) with M ≥ dxT . Then Σ̄M is invertible
with probability 1.

Proof. Let X(1), · · · ,X(M) be the samples used to com-
pute Σ̄M and consider the first dxT arbitrary samples
X(1), · · · ,X(dxT ). Note that if X(1), · · · ,X(dxT ) are lin-
early independent and X(i) − X̄M 6= 0 for all i, then the
difference vectors

(
X(n1) − X̄M

)
, · · · ,

(
X(ndxT ) − X̄M

)
are linearly independent. Due to Lemma 9 this holds with
probability 1. Hence, for any α ∈ RdxT ],

αΣ̄Mα
T =

1

M − 1

M∑
m=1

((
X(m) − X̄M

)T

α

)2

≥ 1

M − 1

dxT∑
m=1

((
X(m) − X̄M

)T

α

)2

> 0

(44)

holds with probability 1, i.e., Σ̄M is symmetric positive
definite, which implies that Σ̄M is invertible. �

4.1 Choosing sample size

We now give a theoretical analysis of the Monte Carlo
method and provide a confidence region for the trajectory
of the real system. Since the unbiased sample variance Σ̄M

is invertible, it produces a confidence ellipsoid as follows:

Proposition 10. (Stellato et al. (2017)). LetM > dx. Given
M + 1 iid samples X(1), · · · ,X(M),X, if Σ̄M is nonsingu-
lar, then for all η > 0, it holds that

Algorithm 1 Confidence Regions for Anticipation of
Learning in Multi-Step Predictions

Input: x0, δ, η, such that η ≥
√
dx/δ

Solve M̃2(δη2 − dx) + 1− M̃η2 = 0 for M̃

Set M ≥ M̃ , M ∈ N
for m = 1, · · · ,M do

for t = 1, · · · , T do

Compute x̃
(m)
t =

((
x

(m)
t

)T (
u

(m)
t

)T
)T

Sample ζ
(m)
t N (0, I)

Compute µ
(m)
t (x̃

(m)
t−1), σ

(m)
t (x̃

(m)
t−1) as in (7), (8)

Compute x
(m)
t+1 by solving (12)

end for

Set X(m) =

((
x

(m)
1

)T

, · · · ,
(
x

(m)
T

)T
)T

end for
Compute Σ̄M , X̄M as in (36) and (37)

Output: Σ̄M , X̄M

P
((
X − X̄M

)T
Σ̄−1
M

(
X − X̄M

)
≥ η2

)
≤min

{
1,
dx(M2 − 1 +Mη2)

M2η2

} (45)

Note that, because T ≥ 1, the right-hand side of (45)
is greater or equal to dxη

−2, which effectively imposes re-
strictions on the radius of the confidence regions associated
with high confidence levels. In particular, η ≥

√
dx must be

chosen in order to obtain meaningful confidence regions.
These results are summarized in Algorithm 1. We now
state our main result:

Theorem 11. Let Assumptions 1-3 hold. Choose δ and
η, such that η ≥

√
dx/δ and let Σ̄M , X̄M be given by

Algorithm 1. Then Σ̄M is invertible with probability 1
and the ellipsoid

S =
{
X ∈ X T | (X − X̄M )Σ̄−1

M (X − X̄M )
}

(46)

corresponds to a 1 − δ a confidence bound for a sample
trajectory X of the true system (1).

Proof. This follows straightforwardly from Corollary 1
and Proposition 10.

5. NUMERICAL SIMULATION

We evaluate the performance of the proposed approach
in a numerical simulation of a cart-pole. The pendulum
dynamics are given by

(mc +mp)ẍ+mplθ̈ cos(θ)−mplθ̇
2 sin(θ) = u (47)

mpl
2θ̈ +mpgl sin(θ) = −mplẍ cos(θ), (48)

where x denotes the cart’s position, θ is the pendulum’s
angle, and u is the horizontal force applied to the cart. The
cart’s and pendulum’s masses are given bymc = 0.5 kg and
mp = 0.5 kg, respectively The parameter l denotes the
pendulum’s length. The discrete-time dynamical system
form (1) is obtained by sampling the continuous system
(47) every 0.05 seconds. The prior model f(·) corresponds
to the linearized dynamics around the origin, where in-
correct masses mc = mp = 0.4 kg are assumed. Addi-
tionally, we consider discrete process noise w ∼ N (0,Q),
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Fig. 1. Expected trajectory, confidence region of cart
position x and pendulum angle θ forM = 100, η = 10,
and simulation results of the real closed-loop system.

with Q = 0.01I. The cart position must stay within the
boundaries −5 ≤ x ≤ 5, and we assume that the pendulum
hits the floor once it gets to the horizontal position, which
corresponds to the contstraints −π/2 ≤ θ ≤ π/2. We
employ the safe learning-based control law from Koller
et al. (2018) to safely move the cart position from x = 0
to x = 0.3 while simultaneously learning the system dy-
namics. The control law employs model predictive control
and exploits the knowledge about the system dynamics to
minimize the 3-step cost function

3∑
t=1

(xt − 0.3)2 + 0.1ẋ2
t + 0.1θ2

t + 0.1θ̇2
t . (49)

Simultaneously, it aims to guarantee that safety con-
straints are not violated with high probability, and that a
safe region is always reachable, where a safe backup LQR
controller stabilizes the system.
We consider the performance of the closed-loop system

over T = 100 steps, which corresponds to 5 seconds. We
employ M = 100 Monte Carlo simulations and choose
η = 10, which yields a confidence level of 1−δ ≈ 0.955. The
expected trajectory and confidence region of the position x
and angle θ are shown in Figure 1. Moreover, a simulated
trajectory of the true system is shown. As can be seen, the
trajectory of the true simulation lies entirely within the
confidence region, except for very small deviations at the
beginning of the simulation. The confidence region is larger
towards the end of the simulation due to the propagation
of system uncertainty. However, a slight decline in size
in the portion of the confidence region corresponding to
the position x takes place after t = 80 time steps. This
is because the system dynamics are learned during the
simulation such that the posterior variance of the Gaussian
process decreases in the proximity of the reference. The
decline in model uncertainty in turn is expected to lead to
a successful stabilization of the system around x = 0.3.

6. CONCLUSION

An algorithm for computing confidence regions of multi-
step ahead predictions of closed-loop learning-based con-
trol systems is presented. We show that the algorithm
is applicable almost surely, and that the corresponding
confidence region is correct with high probability. In a
numerical simulation of a cart-pole system, the confidence
region is shown to contain a trajectory of the real system
entirely, except for small outliers. Moreover, the effect of
learning is shown to lead to an expected decline in system
uncertainty over the simulation horizon.
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