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Abstract

On-shell amplitude methods allow to derive one-loop renormalization effects from just tree-level ampli-
tudes, with no need of loop calculations. We derive a simple formula to obtain the anomalous dimensions 
of higher-dimensional operators from a product of tree-level amplitudes. We show how this works for 
dimension-6 operators of the Standard Model, providing explicit examples of the simplicity, elegance and 
efficiency of the method. Many anomalous dimensions can be calculated from the same Standard Model 
tree-level amplitude, displaying the attractive recycling aspect of the on-shell method. With this method, 
it is possible to relate anomalous dimensions that in the Feynman approach arise from very different dia-
grams, and obtain non-trivial checks of their relative coefficients. We compare our results to those in the 
literature, where ordinary methods have been applied.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Effective Field Theories (EFT) are useful tools to describe the relevant physics emerging at 
some given low-energy scale. EFTs are usually defined via Lagrangians, whose terms or lo-
cal operators Oi are organized according to an expansion in derivatives and fields over a mass 
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scale �. This scale � is believed to be associated with some new physics scale, above which 
new degrees of freedom must be incorporated into the theory. The virtue of an EFT is that, for 
low-energy experiments, with E � �, only a few operators are relevant, those with the lowest 
possible dimension, with higher-dimensional operators bringing only small corrections, as they 
are suppressed by powers of E/�.

Although small, the effects from higher-dimensional operators are of crucial interest. In the 
Standard Model (SM), for instance, higher-dimensional operators provide indirect imprints of 
new physics. For this reason, a lot of effort has been devoted to understand their impact in low-
energy experiments.

At the quantum level, operators of equal dimension mix with each other. This mixing is en-
coded in the anomalous dimensions of the corresponding Wilson coefficients COi

, which are 
defined through �L = ∑

i COi
Oi . The anomalous dimensions γi are given by

γi ≡ dCOi

d lnμ
=

∑
j

γij COj
, (1)

where μ is the renormalization scale. The calculation of γi in the SM EFT is important to under-
stand how experiments can determine or constrain the different Wilson coefficients, especially 
when the energy scale of the experiment is much smaller than �.

We would like to follow here an alternative approach based on on-shell amplitude methods. 
In this approach, a theory is defined by its particle content and certain “building-block” on-
shell amplitudes, with no need of Lagrangians. As in the standard EFT procedure, we can also 
organize these building-block amplitudes in an expansion in E/�, and study their mixing via 
quantum loops. By requiring the amplitudes to be independent of the renormalization scale, one 
can obtain the analogue of the anomalous dimensions γi of Eq. (1). In this case, the role of the 
Wilson coefficients COi

is played by the coefficients in front of the building-block amplitudes, 
as we will describe below in detail.

One important advantage of working with on-shell amplitudes is that this set-up naturally 
allows us to implement generalized unitarity methods, extensively developed in the literature 
in recent years [1], to obtain γi without the need of performing loop calculations. Indeed, the 
divergencies of one-loop amplitudes can be obtained from products of tree-level amplitudes (in-
tegrated over some phase space), making the determination of the anomalous dimension quite 
simple.

We will mainly concentrate here in amplitudes at order E2/�2 and consider only mass-
less states.1 Moreover, we will restrict to cases in which IR divergencies are absent, and show 
how their cancellation allows to extract anomalous dimensions from double unitarity cuts of the 
one-loop amplitude, with no need of any further cut. This provides a simpler way to calculate 
anomalous dimensions than previously reported in Refs. [2,3].

One of the main purposes of this article is to analyze the advantages or disadvantages of the 
on-shell method versus the ordinary Feynman approach, especially in cases of phenomenological 
interest. For this reason, we will present in detail the calculation of the anomalous dimensions 
of certain dimension-6 operators of the SM. In particular, we will look at the dipole SU(2)L
operator of the electron, and calculate all contributions to its anomalous dimension.

1 Since we are interested in the UV behavior of the theory, masses can be neglected, allowing the use of massless 
spinor-helicity variables to write down amplitudes.
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We will see that the method is quite efficient, as it essentially only requires the calculation of 
a few SM amplitudes, apart from some trivial angular integration. Moreover, we will see that the 
same SM amplitudes allow to calculate many other anomalous dimensions of the SM EFT. This 
will show the “recycling” advantage of on-shell methods, where new calculations are obtained 
from previous ones, with no need to start the calculation from the beginning, as it is usual in 
the Feynman diagrammatic approach. This will also allow to relate γi that originate from very 
different Feynman diagrams, providing non-trivial checks of previous results in the literature.

The article is organized in the following way. In Section 2 we present what we call the 
building-block amplitudes of effective theories at order E2/�2. In Section 3 we derive a formula 
to calculate one-loop UV divergencies from tree-level amplitudes, and relate it to previous ones 
obtained in the literature. In Section 4 we use the formula to calculate the anomalous dimensions 
of the dimension-6 dipole operator of the SM. We also show the correlation with the anoma-
lous dimensions of ψ4 operators. In Section 5 we provide some conclusions. We implement the 
article with four Appendices. In Appendix A we show how the cancellation of IR divergencies 
leads to the absence of triangle and box contributions in the sum over the double cuts of an am-
plitude, at least at the order we are interested in. In Appendix B we provide our conventions, 
and derive some SM amplitudes that are used in the calculation of the anomalous dimensions. 
In Appendix C we relate our building-block amplitudes to operators in the SM EFT Lagrangian 
and provide a dictionary between them. Finally, in Appendix D we briefly extend our analysis to 
dimension-5 operators.

2. Effective theories via on-shell amplitudes

In the on-shell amplitude approach, a theory is defined from its particle content and scatter-
ing amplitudes. All amplitudes can be constructed from lower-point ones, and the lowest-point 
amplitudes play the role of building-blocks of the theory.

As anticipated, we will consider theories with only massless states, and classify the scattering 
amplitudes by their number of external legs n and total helicity h, with all scattering states chosen 
to be incoming. To write down amplitudes, we will use the spinor-helicity notation [1], where 
momenta and polarizations are written as product of spinors |i〉α and |j ]α̇ , of helicity h = −1/2
and h = 1/2 respectively. Our conventions are found in Appendix B. The purpose of spinor-
helicity variables is to efficiently implement Poincaré covariance of scattering amplitudes. The 
most important property, which is enforced by the little group, is that amplitudes involving a state 
i of helicity h must contain the spinors |i〉 and |i] in such a way that the power of |i] minus the 
power of |i〉 equals 2h. Lorentz invariance imposes that spinors must appear in contractions 〈ij 〉
or [ij ]. This makes the determination of amplitudes quite straightforward.

When the theory is also invariant under some internal symmetry group, amplitudes behave 
as invariant tensors under its action on particle multiplets. In this section we will not bother 
to specify the form of group-tensors, reducing to the so-called “color-stripped” amplitudes [1]. 
In Section 4 we will however consider explicit examples for SM amplitudes, and the invariant 
tensors will be provided. Several SM examples can also be found in Refs. [4–6].

Similarly as it is done for operators, we can consider the building-block amplitudes that define 
the theory as organized according to an expansion in E/�, which means an expansion in powers 
of 〈ij 〉/� and [ij ]/�. When we go beyond the ordinary interactions that arise from dimension-
less couplings (the equivalent of dimension-4 operators), we find extra interactions at any order 
in E/�. Since we will pay special attention to applications in the SM, we will concentrate here 
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in E2/�2 terms, which are the leading corrections to the SM when lepton number is conserved. 
We leave for Appendix D the discussion on terms of order E/�.

For a generic theory of (i) vector bosons V± with helicity h = ±1, (ii) Weyl fermions ψ with 
h = −1/2, and (iii) scalars φ, we have the following building-block amplitudes at order E2/�2

(up to complex conjugation):

• n = 3:

AF 3(1V− ,2V− ,3V−) = CF 3

�2 〈12〉〈23〉〈31〉 , (2)

that has h = −3. It is quite straightforward to see that this is the only amplitude at n = 3. 
Since n = 3 amplitudes have mass dimension one, they must contain 3 powers of either 
brackets 〈ij 〉 or squares [ij ] in the numerator. Moreover, we have the condition 〈ij 〉[ji] =
2pi · pj = 0 (i, j = 1, 2, 3), that forces the vanishing of either all [ij ], in which case we 
can only have Eq. (2), or all 〈ij 〉, that leaves its complex-conjugated version as the only 
possibility. It is important to notice that Eq. (2) is antisymmetric under i ↔ j , and can only 
arise for non-abelian gauge bosons, in which case the full amplitude is proportional to the 
structure constants.

• n = 4: These amplitudes are dimensionless, so they must contain 2 powers of brackets or 
squares. We have the following possibilities, with total helicity h = −2:

AF 2φ2(1V− ,2V− ,3φ,4φ) = CF 2φ2

�2 〈12〉2 , (3)

AFψ2φ(1V− ,2ψ,3ψ,4φ) = CFψ2φ

�2 〈12〉〈13〉 , (4)

Aψ4(1ψ,2ψ,3ψ,4ψ) =
(
Cψ4〈12〉〈34〉 + C′

ψ4〈13〉〈24〉
) 1

�2 . (5)

With h = 0, we have:

A�φ4(1φ,2φ,3φ,4φ) =
(
C�φ4〈12〉[12] + C′

�φ4〈13〉[13]
) 1

�2 , (6)

Aψψ̄φ2(1ψ,2ψ̄ ,3φ,4φ) = Cψψ̄φ2

�2 〈13〉[23] , (7)

Aψ2ψ̄2(1ψ,2ψ,3ψ̄ ,4ψ̄ ) = Cψ2ψ̄2

�2 〈12〉[34] . (8)

• n = 5: On dimensional grounds, these amplitudes must have one power of brackets (or 
squares). We have only one possibility, with h = −1:

Aψ2φ3(1ψ,2ψ,3φ,4φ,5φ) = Cψ2φ3

�2 〈12〉 . (9)

• n = 6: This has dimension mass−2, so it cannot carry any power of momentum. The only 
possibility is a 6-scalar amplitude, with h = 0:

Aφ6(1φ,2φ,3φ,4φ,5φ,6φ) = Cφ6

�2 . (10)

The corresponding complex-conjugated amplitudes are obtained by the exchange 〈ij 〉 ↔ [ji], 
and have opposite helicities, h → −h. We notice that these amplitudes can be unambiguously 
specified by assigning (n, h, nF ), where nF = 0, 2, 4 labels the fermion content.
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As we said, the approach followed here is equivalent to that with operators. In fact, if we 
choose a basis of higher-dimensional operators written in Weyl spinor notation (see for instance 
[7] for the case of the SM), the correspondence between dimension-6 operators and the above 
amplitudes is one-to-one. For example, the amplitudes of Eq. (2) and Eq. (4) correspond to the 
tree-level amplitudes with the lowest number of legs that can be made, respectively, from the 
dimension-6 operators FαβFβγ F

γ
α ≡ F 3 and Fαβψαψβφ ≡ Fψ2φ, and similarly for all the 

others. In Appendix C we give the explicit relation of some dimension-6 operators, written in the 
more usual Dirac notation [8], with the on-shell amplitudes. An advantage of on-shell amplitudes 
versus operators is that we do not need to bother in specifying the operator basis, nor to eliminate 
redundancies by field redefinitions.

We will generically refer to the amplitudes (2)–(10) as AOi
, and their corresponding coeffi-

cients as COi
. These last play a similar role as the Wilson coefficients. At the loop level, they can 

mix and lead to an anomalous-dimension matrix equivalent to that in Eq. (1). Below, we discuss 
how to calculate γi using unitarity methods.

3. Anomalous dimensions from on-shell methods

At the one-loop level, any amplitude can have a Passarino-Veltman decomposition, given by

Aloop =
∑
a

C
(a)
2 I

(a)
2 +

∑
b

C
(b)
3 I

(b)
3 +

∑
c

C
(c)
4 I

(c)
4 + R , (11)

where Im are master scalar integrals with m propagators2 (m = 2, 3, 4) and Cm are kinematic-
dependent coefficients, rational functions of 〈ij 〉 and [ij ]. The master integrals are given by

Im = (−1)mμ4−D

∫
dD	

i(2π)D

1

	2(	 − P1)2(	 − P1 − P2)2 · · · , (12)

where P1, P2, ..., Pm−1 are sums of external momenta. We will be using dimensional regulariza-
tion, D = 4 − 2ε, and always assume massless states. The first three contributions to Eq. (11) are 
called respectively bubbles, triangles and boxes, according to the topology of the scalar integral. 
Terms collected under R are rational functions of the kinematical invariants. They will not play 
a relevant role in our analysis.

The expression Eq. (11) is completely generic. Therefore it is perfectly suited to discuss uni-
versal properties of loop amplitudes. The anomalous dimensions, in particular, are related to the 
logarithmically UV divergent part of the amplitude. This means that they receive contributions 
only from bubble integrals I2, since I3 and I4 are both UV convergent. More explicitly, using 
dimensional regularization, we have

I
(a)
2 = 1

16π2

(
1

ε
+ ln

(
μ2

−P 2
a

)
+ · · ·

)
, (13)

where Pa is the sum of external 4-momenta that enters the bubble.
These UV divergencies must be proportional to tree-level amplitudes, due to the locality of 

the counterterms. Here, we are interested in UV divergencies that appear at order E2/�2 and 
renormalize the coefficients COi

discussed in the previous section. We must then consider one-
loop amplitudes Aloop with the same external legs as the amplitude that we want to renormalize, 

2 Tadpole contributions cancel for massless theories, when using dimensional regularization.
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AOi
, and involving one (and only one) AOj

in each loop. In this case, the sum of the UV 
divergencies of Aloop is expected to be proportional to AOi

:

1

8π2

∑
a

C
(a)
2 ∝AOi

, (14)

where we have used Eq. (11) and Eq. (13). For the brevity of the discussion, we are only consid-
ering here the case where a unique AOi

appears on the RHS of Eq. (14). We will come back to 
this point at the end of the section, where we discuss the more general situation.

One could be tempted to associate the proportionality constant in Eq. (14) to the anomalous 
dimension γi of the coefficient COi

. Unfortunately, this is not so simple. To understand why, we 
must follow the fate of so-called “massles” bubbles, those for which P 2

a = 0.

Massless bubbles do not contribute in Eq. (11) because, for P 2
a = 0, we have that I (a)

2 is di-
mensionless and vanishes. This can be understood as an “unwanted” cancellation between UV 
and IR divergencies, that happens for terms proportional to ln (μUV/μIR), which vanish when 
using dimensional regularization where μUV = μIR = μ. Then, in order to obtain the full con-
tribution to γi , we have to calculate separately the IR divergencies of the amplitude and subtract 
them off. IR divergencies are proportional to the tree-level amplitude, and so the anomalous 
dimension can be expressed as3

γi AOi
= −COi

8π2

∑
a

C
(a)
2 + γIR AOi

. (15)

Fortunately, γIR is zero in many cases. For instance, IR divergencies are absent when calcu-
lating the renormalization of AOi

from another amplitude AOj
with different number of legs, 

helicities or species. Also, they do not appear in renormalizations that only involve 4-vertices, as 
can be the case for scalars (this is because massless topologies are automatically absent in these 
theories). In this article, we will consider only those cases with γIR = 0. We leave for a future 
work the γIR �= 0 case that includes, for example, certain self-renormalization of the coefficients 
COi

.
When IR divergencies are not present, we can calculate the anomalous dimensions from only 

knowing the C(a)
2 associated to “massive” bubbles. These bubble coefficients can be obtained 

by using generalized unitarity methods, as described for instance in Refs. [1,3]. The coefficients 
C

(a)
2 are obtained by performing all possible double cuts (2-cuts) of the loop amplitude, Eq. (11). 

A 2-cut is defined operationally through the Cutkosky rule of putting two loop propagators on-
shell, reducing Aloop to a phase space integral of two tree-level amplitudes. The most relevant 
property of 2-cuts is that they are in one-to-one correspondence with the bubble coefficients. In 
other words, each 2-cut picks up a unique C(a)

2 . The problem is that, in general, 2-cuts can also 
contain terms coming from triangles and boxes.

One way to disentangle C(a)
2 from the rest is to first determine C(c)

4 and C(b)
3 by calculating 

quadruple and triple cuts, and then properly subtract them off from the 2-cut. But this is a lengthy 
procedure.

We will show below, however, that at the one-loop order and for amplitudes at order 1/�2, 
the anomalous dimension of COi

can be simply obtained as a sum over 2-cuts of the one-loop 
amplitude, giving

3 To be precise, mixing through γIR can be present, but is limited to amplitudes differing at most by “color”. For the 
general form of γIR, see for example [9].
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Fig. 1. Potential extra contributions to the anomalous dimension of F
F 2φ2 and F

Fψ2φ
arising from F

F 3 .

γij AOi
(1,2, ..., n) = − 1

4π3

COi

COj

∫
dLIPS

∑
ext. legs
distrib.

∑
	1,	2

ÂOj
(...,−	1,−	2)

×A4(	2, 	1, ...) , (16)

without summation over i, j . Here, ÂOj
are n ≥ 4 tree-level amplitudes containing an order 

1/�2 amplitude AOj
, that we classified in Eqs. (2)–(10), and A4 are tree-level amplitudes made 

from marginal couplings of the theory (dimension-4 operators), with n ≥ 4. The dots in the 
arguments of ÂOj

and A4 stand for the external legs (1, 2, ..., n), that are distributed among 
the two amplitudes. A summation is included over the possible distributions of external legs 
(corresponding to the different 2-cuts). See Figs. 4–8 for examples that we will be considering 
soon. The absence of n = 3 amplitudes in Eq. (16) is due to the fact that they can only lead 
to massless bubbles that, as we said, vanish in dimensional regularization. This fact helps in 
reducing the terms contributing to Eq. (16), simplifying enormously the calculations.

The integral in Eq. (16) is over the Lorentz-Invariant Phase Space (LIPS) associated with the 
two cut momenta, 	1 and 	2:∫

dLIPS =
∫

d4	1d
4	2 δ+(	2

1)δ
+(	2

2)δ
(4)(	1 + 	2 − P) , (17)

where P = p1 + p2 + · · · . The integration measure is normalized as 
∫

dLIPS = π/2, which is 
the reason why Eq. (16) carries an extra factor of 1/π besides the expected 1/π2. Eq. (16) also 
includes a sum 

∑
	1,	2

over all possible internal states with momentum 	1 and 	2. In ÂOj
, these 

internal states carry momentum, helicity and all other quantum numbers with opposite sign with 
respect to those in A4. See Appendix B for conventions and fermion ordering. A factor 1/2 must 
be included when the internal particles are indistinguishable.

As we said, triangle and box contributions, that can be nonzero and pollute the 2-cuts, sur-
prisingly cancel out in Eq. (16) at the order we are working. In Appendix A we give a direct 
proof of this for the cases with ni − nj ≡ �n < 2. We explicitly show how the cancellation of 
the loop IR divergencies, which arise precisely from boxes and triangles, guarantees that their 
total contribution to 2-cuts is zero.

For a generic �n, the proof of Eq. (16) goes as follows. In [2], the following relation was 
derived, rewritten here for our particular case (see also [10]):

γij FOi
(1,2, ..., n) = − 1

4π3

∫
dLIPS

∑
ext. legs
distrib.

∑
	1,	2

F̂Oj
(...,−	1,−	2) ×A4(	2, 	1, ...) ,

(18)

where γij is the anomalous dimension matrix element of the form-factor FOi
associated to the 

dimension-6 operator Oi :
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Fig. 2. Contours of integration in the complex z-plane. The contour CI can be deformed to the contour C + CII .

FOi
(1,2, ..., n) ≡ 〈0|Oi |p1,p2, ...pn〉 . (19)

The total momentum is not assumed here to be zero: p1 + p2 + · · · + pn ≡ Q �= 0. By F̂Oj
we 

again refer to form-factors containing the “elementary” form-factor FOj
. Notice that F̂Oj

can 
be a n = 3 form-factor (as for example the contribution of Fig. 1), since we have Q �= 0 and 
therefore these contributions are not 2-cuts of massless bubbles. Now, taking the limit Q → 0, 
we have

COi

�2 FOi
(1,2, ..., n) →AOi

(1,2, ..., n) , (20)

and the terms in Eq. (18) must match to those of Eq. (16), with the exception of the terms in 
Eq. (18) containing n = 3 form-factors. These latter, in the limit Q → 0, lead to n = 3 ampli-
tudes that are absent in Eq. (16) as we already explained.4 For our particular case where Oi are 
dimension-6 operators, it is easy to realize that the only contributions of this type to Eq. (18) are 
those shown in Fig. 1. We must show that these contributions are zero in order to guarantee that 
the limit Q → 0 brings Eq. (18) to Eq. (16).

The contributions of Fig. 1 correspond to the renormalizations of F 3 to F 2φ2 and Fψ2φ, hav-
ing both �n = 1. But for �n = 1 contributions, we already proved (with the use of Appendix A) 
the validity of Eq. (16). Therefore the limit Eq. (20) must indeed bring Eq. (18) to Eq. (16). 
In other words, the contributions of Fig. 1 must go to zero for Q → 0.5 We have checked this 
explicitly in the example of Section 4.2. This completes the proof of Eq. (16).

Let us also comment here on an alternative method, proposed in Refs. [3,11], to obtain each 
C

(a)
2 individually, using only 2-cuts (for other ways to extract bubble coefficients, see e.g. [12]). 

This is based on a BCFW deformation [13] of the cut legs, sending 	1 → 	1 + qz and 	2 →
	2 − qz, that promotes the integrand of Eq. (16) to a complex function of z. Using the standard 
‘Cauchy trick’, we can rewrite the integrand as a contour integral in z (see Fig. 2) along contour 
CI :

4 We remark that these terms can only contain contributions from triangles or boxes, because the terms in Eq. (16), that 
arise from 2-cuts, already grasp all possible contributions from bubbles.

5 This is not in general true, as can be seen from the examples in [2] where the anomalous dimension of marginal 
operators is calculated.
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ÂOj
(...,−	1,−	2) ×A4(	2, 	1, ...) = 1

2πi

∫
CI

dz

z
ÂOj

(...,−	1(z),−	2(z))

×A4(	2(z), 	1(z), ...) . (21)

The complex integrand is a product of tree amplitudes. Because of this, its singularities can only 
be poles coming from propagators going on-shell. By deforming the contour CI as in Fig. 2, we 
have 

∫
CI

dz = ∫
C dz+∫

CII
dz. The poles that are picked up by CII must be associated to triangles 

and boxes, since they are the only scalar diagrams that remain with uncut propagators (after the 
2-cut). If we drop these, we are left with the integral over C, that selects the pole at infinity. As 
explained in [3], this is precisely due to the presence of bubbles. We then have [3]

γij AOi
(1,2, ..., n) = i

COi

COj

∫
dLIPS

8π4

∑
ext. legs
distrib.

∑
	1,	2

∫
C

dz

z
ÂOj

(...,−	1(z),−	2(z))

×A4(	2(z), 	1(z), ...) . (22)

The integral over C can be equivalently obtained by extracting the constant term in a Laurent se-
ries around ∞ of the z-dependent product of amplitudes. Although Eq. (22) looks more involved 
than Eq. (16), in those cases in which contributions from boxes are nonzero in the individual 
2-cuts, the calculation of the anomalous dimension from Eq. (22) is in practice much easier. 
While for renormalizations with �n = 0 triangle and box contributions are not present (see Ap-
pendix A), and then it is pointless to use Eq. (22), for �n ≥ 1 processes, instead, triangles and 
boxes can appear, and it turns very useful to project them out with Eq. (22). We will see an 
explicit example in Section 4.2.

We close this chapter with few additional remarks. Although the derivation of Eq. (16) came 
from performing 2-cuts of one-loop Feynman diagrams, we do not need to refer anymore to loop 
diagrams when calculating anomalous dimensions. Indeed, Eq. (16) tells us that we just need to 
sum over all possible products of two n ≥ 4 tree-level amplitudes, one made with AOj

and the 
other with SM vertices, with the following conditions satisfied: (i) the two amplitudes must share 
two legs (identical up to a conjugation), the so-called internal legs, (ii) the rest of their legs (the 
external ones) must match those of AOi

. We will see many explicit examples in the next section.
Another thing worth mentioning about Eq. (16) are the following obvious rules that it fulfills:

ni = n̂j + n4 − 4 , (23)

hi = ĥj + h4 , (24)

where ni (̂nj ) is the number of legs of AOi
(ÂOj

) and n4 the number of legs of A4, and similarly 
for the helicities. Since ̂nj ≥ nj and n4 ≥ 4, we derive from Eq. (23):

�n ≥ 0 , (25)

that tells us that COj
can contribute to the anomalous dimensions of COi

only if AOj
has equal 

or less number of legs than AOi
(see Ref. [10] for an extension of this rule to higher loop orders). 

Furthermore, since almost all n = 4 amplitudes made from marginal couplings have h = 0, we 
have that A4, when built from these amplitudes, will fulfill n4 ≥ |h4| + 4. This allows to derive 
together with Eqs. (23)–(24) the selection rule [14]6

6 Selection rules can also be derived using supersymmetry [7] or angular momentum conservation [15]. See also 
Ref. [16] for an alternative derivation.
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�n ≥ |�h| . (26)

The only exceptions to Eq. (26) come from one-loop amplitudes involving the only n = 4 A4

that has |h| > 0: this is the 4-fermion ψ4 amplitude, that has h = −2 and can for example be 
generated in the SM by the exchange of the Higgs. Nevertheless, one-loop contributions from ψ4

can only violate the rule Eq. (26) in the renormalization between amplitudes with very specific 
properties, fulfilling �nF = 0 and |�h| = 2. That is, only between Cψ4 and Cψ2ψ̄2 or between 
CH 3ψ2 and CH 3ψ̄2 . We will see applications of the above selection rules in the next section.

There is also another very useful selection rule which will allow us to derive new non-
renormalization theorems. As Eq. (16) shows, symmetries of the external legs of ÂOj

or A4

must also be symmetries of the renormalized AOi
. This is of course true whenever the symmetry 

property is shared by all the contributions to a given renormalization. This implies, as we will 
see in the next examples, that not only global symmetries, but also (anti)symmetries under the 
exchange of external spinors can lead to interesting non-renormalization properties.

Up to now, we have considered Eq. (16) for the cases in which, for a given amplitude, which is 
determined by the external states, there is a unique AOi

contributing at tree-level. Nevertheless, 
there are certain cases where there can be more than one AOi

contributing, and Eq. (16) must be 
modified. These cases are

• A(1V− , 2V− , 3φ, 4φ) where AF 2φ2 contributes as a contact-interaction, but also AF 3 as a 
sub-amplitude, with one of the V− propagating to end up in a φφ†.

• A(1ψ, 2ψ, 3φ, 4φ, 5φ) where Aψ2φ3 contributes as a contact-interaction, but also AFψ2φ , 
Aψψ̄φ2 and A�φ4 can enter as sub-amplitudes.

• A(1φ, 2φ, 3φ, 4φ, 5φ, 6φ) where Aφ6 contributes as a contact-interaction, but also AF 3 , 
AF 2φ2 and A�φ4 as sub-amplitudes.

Since each AOi
enters with different 〈ij 〉 and [ij ] dependence in the corresponding amplitude, 

we can easily disentangle the contributions to the anomalous dimension of each of them. For 
example, the contributions to A(1V−, 2V− , 3φ, 4φ) from AF 2φ2 and AF 3 are respectively given 
by Eq. (3) and Eq. (42) below. When calculating the RHS of Eq. (16) for this amplitude, we 
will get some terms proportional to Eq. (3), and some others to Eq. (42). Only the first ones 
correspond to the anomalous dimension of CF 2φ2 . We will present examples of this type in a 
future work.

Similarly, when different “flavors” are added, like in the SM, there can be several independent 
coefficients COi

contributing to the same process. Nevertheless, by projecting Eq. (16) on a basis 
of invariant tensors under Lorentz and the global symmetries, it is easy to identify the anomalous 
contribution to each COi

. We will see an example in the next section.
We finally mention that Eq. (16) can also be applied to find the anomalous dimensions of 

dimension-5 operators. This is shown in Appendix D.

4. One-loop anomalous dimensions of the SM dipole operators

As an example of the use, reach and simplicity of Eq. (16), we present in this section the calcu-
lation of all one-loop anomalous dimensions of the SU(2)L dipole operator of the electron (up to 
self-renormalization). This is equivalent to calculate the anomalous dimension of the coefficient 
CFψ2φ , defined in Eq. (4), for the particular case of the SM.
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Fig. 3. Tree-level contribution to the Wa−H †le amplitude.

The amplitude to consider is Wa−H †le, where Wa− is an SU(2)L gauge boson with h = −1, 
H is the Higgs of hypercharge YH = 1/2, and l, e are respectively the SM SU(2)L-doublet and 
singlet leptons, with h = −1/2 and hypercharges Yl = −1/2 and Ye = 1. At tree-level, following 
the notation of Fig. 3, the only contribution to this amplitude is given by

A(1e,2lj ,3Wa− ,4
H

†
i
) = CWHle

�2 〈31〉〈32〉(T a)ij ≡ AWHle , (27)

with T a = σa/2 here. We recall that, for amplitudes involving fermions, respecting the order of 
labels is crucial for getting the signs correct (see Appendix B and references therein). At the loop 
level, the coefficient CWHle receives an anomalous dimension, that we will denote by γWHle. 
Using Eq. (26) we can easily see that only a few COi

can contribute to this anomalous dimension. 
Indeed, since Eq. (27) has n = 4 and h = −2, only AOj

with n = 3 or n = 4, h = −2 can 
contribute. This leaves only the coefficients of Eq. (2) and Eqs. (3)–(5) as potential candidates to 
contribute to the anomalous dimension of CWHle. We already see the usefulness of the amplitude 
method approach, allowing here to easily understand that there are many vanishing contributions 
to the dipole operators. In working within the usual Feynman diagram approach, these zeros 
appear as mysterious cancellations between different one-loop diagrams.

We also notice that Eq. (27) is symmetric under the interchange of spinors 1 and 2. As we will 
see, this property also provides useful selection rules for non-renormalizations, that are often not 
apparent when using higher-dimensional operators in Dirac notation [8].

4.1. One-loop contribution from Cψ4 , CF 2φ2 and CFψ2φ

Let us start with the contributions from n = 4 AOj
amplitudes. We first consider Aψ4 . We 

require at least two SM leptons in order to contribute to Wa−H †le. This leaves, as the only pos-
sible set of negative-helicity fermions forming a SM singlet, the set e, l, q, u, where q and u
are respectively the SM SU(2)L-doublet and singlet quark, with h = −1/2 and hypercharges 
Yq = −1/6 and Yu = 2/3. We have then two possible amplitudes7

Aluqe(1e,2li ,3u,4qj
) = Cluqe

�2 〈23〉〈41〉εij , (28)

and

Alequ(1e,2li ,3u,4qj
) = Clequ

�2 〈12〉〈34〉εij . (29)

Since Eq. (29) is antisymmetric under 1 ↔ 2, it cannot contribute to Eq. (27), that is symmetric. 
We are then left with only Eq. (28).

7 A third possibility ∝ 〈13〉〈42〉 can be reduced to the given ones by the Schouten identity, Eq. (76).
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Fig. 4. Contribution from Cluqe to the anomalous dimension of CWHle .

Fig. 5. Contribution from C
W2H2 to the anomalous dimension of CWHle .

Following Eq. (16), we can easily calculate the contribution to the anomalous dimension of 
CWHle arising from Cluqe. We find that the only possible contribution is the one that is diagram-
matically pictured in Fig. 4, which gives (from now on we drop the i, j SU(2)L indices)

γWHle

〈31〉〈32〉T a

�2 = − 1

4π3

∫
dLIPSAluqe(1e,2l ,3′

u,4′
q) ×ASM(4′̄

q,3′̄
u,3Wa− ,4H †)

= −yug2Nc

4π3 Cluqe T a

∫
dLIPS

〈23′〉〈4′1〉
�2 × 〈34〉〈33′〉

〈43′〉〈3′4′〉 , (30)

where Nc = 3, the dLIPS integration is taken over the primed spinors with p3′ + p4′ = p3 + p4, 
and we have used Eq. (28) and Eq. (88). A very convenient way to simplify this integral is to 
relate the spinors |3′〉 and |4′〉 with the external spinors |3〉 and |4〉, as explained in Ref. [2]:

|3′〉 = cθ |3〉 − sθ e
iφ |4〉 ,

|4′〉 = sθ e
−iφ |3〉 + cθ |4〉 , (31)

where sθ ≡ sin θ and cθ ≡ cos θ . By complex conjugating Eq. (31), we can get similar relations 
for |3′] and |4′], and easily show that p3′ + p4′ = p3 + p4, identically for any (θ, φ). Using 
Eq. (31), the dLIPS integration is simplified to a solid angle integration [2]:

2

π

∫
dLIPS ≡

2π∫
0

dφ

2π

π/2∫
0

dθ 2sθ cθ . (32)

The integration over the angle φ projects the RHS of Eq. (30) into 〈31〉〈32〉, leading to

γWHle = yug2Nc

4π2 Cluqe

π/2∫
0

dθ s3
θ cθ = yug2Nc

16π2 Cluqe . (33)

It is important to notice that we did not have to use momentum conservation in the on-shell 
amplitude Aluqe. Therefore, our calculation would have proceeded in the same way, if we had 
used Eq. (18) with p1 + p2 + p3′ + p4′ = Q �= 0, taking the limit Q → 0 at the end of the 
calculation. This provides a check that Eq. (18) and Eq. (16) agree at this order.

In the same simple way, we can proceed with the contribution from coefficients of type CF 2φ2 . 
The contribution from an internal W is shown diagrammatically in Fig. 5, and gives
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Fig. 6. Contribution from CWHle to the anomalous dimension of Cluqe and Clequ.

γWHle = − �2

〈31〉〈32〉T a

1

4π3

∫
dLIPSAW 2H 2(3Wa− ,4H †,1′

Wa− ,2′
H )

×ASM(1′
Wa+ ,2′

H †,1e,2l )

= yeg2

4π3

CW 2H 2

〈31〉〈32〉
∫

dLIPS 〈31′〉2 × 〈2′2〉〈12〉
〈1′2′〉〈1′2〉

= −yeg2

2π2 CW 2H 2

π/2∫
0

dθ s3
θ cθ = −yeg2

8π2 CW 2H 2 , (34)

where we have used Eq. (31), adapted for relating |1′〉 and |2′〉 with |1〉 and |2〉. Similarly to 
Eq. (34), we have, for the case of an internal B:

γWHle = − �2

〈31〉〈32〉T a

1

4π3

∫
dLIPSAWBH 2(3Wa− ,4H †,1′

B− ,2′
H )

×ASM(1′
B+ ,2′

H †,1e,2l )

= yeg1

4π3

CWBH 2

〈31〉〈32〉
∫

dLIPS 〈31′〉2 ×
(

Yl

〈2′2〉〈12〉
〈1′2′〉〈1′2〉 − Ye

〈2′1〉〈21〉
〈1′2′〉〈1′1〉

)

= −yeg1

2π2 CWBH 2

π/2∫
0

dθ
(
Yls

3
θ cθ − Yesθ c

3
θ

)
= −yeg1

8π2 (Yl − Ye)CWBH 2 . (35)

At this point, it is worth noticing several interesting features of this procedure. First, we can 
see how the two contributions of Fig. 4 and 5, that from the Feynman diagrammatic viewpoint 
look so different, are very similar in the on-shell amplitude method, Eq. (30) and Eq. (34), 
due to similar helicity structure. This universality in one-loop corrections helps to avoid mis-
takes. Furthermore, once one is armed with the SM amplitude ASM(1V a+ , 2H †, 3ψ, 4ψ), one can 
easily calculate all γij non-diagonal terms between the different h = −2 amplitudes, those of 
Eqs. (3)–(5). This is because we can go from one to the other by just multiplying them with the 
same amplitude ASM(1V a+ , 2H †, 3ψ, 4ψ), but taking different sets of internal legs in each case. 
This is an example of the “recycling” power of the on-shell method, in which new calculations 
nurture from previous ones, without the need of starting from scratch, as it is usually the case in 
the Feynman diagram approach. Another example is the one-loop mixing between the amplitudes 
of Eqs. (6)–(8), that can be calculated from the same SM amplitude: HH †ψψ̄ .

As an illustration of this recycling aspect, we consider here the “inverse” of Eq. (30), that is 
the contribution of the dipole coefficient CWHle to 4-fermion amplitudes, Eq. (28) and Eq. (29). 
The contribution is shown in Fig. 6, and it gives

γlequ

Alequ + γluqe

Aluqe = − 1
3

∫
dLIPSAWHle(1e,2l ,3′

Wa− ,4′
H †)
Clequ Cluqe 4π
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Fig. 7. Contributions from CBHle to the anomalous dimension of CWHle .

×ASM(3′
Wa+ ,4′

H ,3u,4q)

= yug2

4π3

CWHle

�2 (T a)2
∫

dLIPS 〈3′1〉〈3′2〉 × 〈34〉〈4′4〉
〈3′4〉〈3′4′〉

= −3yug2

64π2

CWHle

�2 (〈31〉〈42〉 + 〈32〉〈41〉) , (36)

where we have used (T a)2 = 3/4. Notice that the fact that Eq. (27) is symmetric under 1 ↔ 2
assures the form of Eq. (36), i.e. it can only renormalize a combination that is symmetric under 
1 ↔ 2. This selection rule is non-trivial from Feynman diagrams, since there are in principle 
loops in which the leptons of the dipole operator are in the internal lines. Using the Schouten 
identity to project Eq. (36) into the 4-fermion amplitudes Eq. (28) and Eq. (29), we obtain

γluqe = −2γlequ = 3yug2

32π2 CWHle . (37)

Finally, for completeness, we also show the calculation of the only contribution to γWHle

coming from another dipole operator, that involving a B . There are two contributions, as shown 
in Fig. 7. The contribution from (a) gives

γWHle = − �2

〈31〉〈32〉T a

1

4π3

∫
dLIPSABHle(1e,2l ,3′

B− ,4′
H †)

×ASM(3′
B+ ,4′

H ,3Wa− ,4H †)

= g1g2YH

4π3

CBHle

〈31〉〈32〉
∫

dLIPS 〈3′1〉〈3′2〉 × 〈4′3〉〈43〉
〈4′3′〉〈43′〉

= g1g2YH

4π2 CBHle

π/2∫
0

dθ c3
θ sθ = g1g2

16π2 YH CBHle , (38)

where we have used Eq. (90). The contribution from (b) of Fig. 7 gives

γWHle = − �2

〈31〉〈32〉T a

1

4π3

∫
dLIPSABHle(1e,2′

l ,3′
B− ,4H †) ×ASM(3′

B+ ,2′̄
l
,3Wa− ,2l )

= −g1g2Yl

3

CBHle
∫

dLIPS 〈3′1〉〈3′2′〉 × 〈23〉2

′ ′ ′
4π 〈31〉〈32〉 〈23 〉〈3 2 〉
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Fig. 8. Contributions from C
W3 to the anomalous dimension of CWHle .

Fig. 9. Potential extra contribution from C
W3 to the anomalous dimension of CWHle . This should be considered for the 

anomalous dimension of the form-factor FWHle , Eq. (18) (where pb + pc + pa �= 0), but not when using Eq. (16).

= g1g2Yl

4π2 CBHle

π/2∫
0

dθ sθ cθ = g1g2

8π2 YlCBHle , (39)

where we have used Eq. (91). Taking into account that YH = Yl + Ye , the total contribution from 
Eq. (38) and Eq. (39) gives

γWHle = g1g2

16π2 (3Yl + Ye)CBHle . (40)

4.2. One-loop contribution from CF 3

The only n = 3 amplitude at order 1/�2 is given in Eq. (2). In order to contribute to Wa−H †le, 
it must involve W bosons:

AW 3(1Wa− ,2Wb− ,3Wc−) = iCW 3

�2 〈12〉〈23〉〈31〉f abc , (41)

where f abc are the SU(2) structure constants. Its potential contributions to Wa−H †le are given 
by the two diagrams of Fig. 8. Although the contribution from Fig. 9 should not be considered 
in Eq. (16) (it involves an n = 3 amplitude), it would contribute if we were using Eq. (18). We 
have calculated this contribution to FWHle to check that, as expected, it smoothly goes to zero 
as pa + pb + pc = Q → 0, so that both Eq. (18) and Eq. (16) give the same result in this limit.

The LHS amplitudes of Fig. 8 appear for the first time, and must be calculated. Interestingly, 
they can be fully determined by just demanding proper factorization and crossing a ↔ b. We 
obtain

(a) ÂW 3(3Wa− ,4H †,1′
H ,2′

Wb−
) = ig2CW 3f abcT c

2�2

[ 〈31′〉〈42′〉〈32′〉
〈1′4〉 − 〈2′1′〉〈34〉〈32′〉

〈1′4〉
]

,

(42)
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(b) ÂW 3(3Wa− ,2l ,1′̄
l
,4′

Wb−
) = ig2CW 3f abcT c

�2

〈34′〉〈32〉〈24′〉
〈1′2〉 . (43)

With the above formulas and Eq. (88), and after using a couple of times the Schouten identity 
Eq. (76) to reorder the indices inside the brackets, we can write the RHS of Eq. (16) as

(a) r T a

∫
dLIPS 〈12〉

[ 〈32′〉
2

( 〈31′〉
〈2′1′〉 + 〈23〉

〈2′2〉
)

+ 〈43〉
( 〈31′〉

〈41′〉 + 〈32〉〈1′2′〉
〈41′〉〈2′2〉

)]
, (44)

(b) r T a

∫
dLIPS 〈23〉

[
〈34′〉

( 〈11′〉
〈4′1′〉 + 〈41〉

〈4′4〉
)

+ 〈21〉
( 〈31′〉

〈21′〉 + 〈34〉〈1′4′〉
〈21′〉〈4′4〉

)]
, (45)

where r = −g2
2yeCW 3/4π3, and we have used f abcT bT c = iNT a/2 for SU(N) groups. We now 

relate the internal primed spinors to the external ones. Specifically, to |1〉 and |2〉 in (a), and to 
|1〉 and |4〉 in (b). We use relations similar to Eq. (31), and get

(a) γWHle = −πr

2

⎡
⎢⎣1

2
− 〈12〉〈34〉

〈31〉

π/2∫
0

dθ 2sθ

2π∫
0

dφ

2π

1

〈42〉cθ + 〈41〉sθ e−iφ

⎤
⎥⎦ , (46)

(b) γWHle = πr

2

⎡
⎢⎣1

2
+ 〈12〉〈34〉

〈31〉

π/2∫
0

dθ 2sθ

2π∫
0

dφ

2π

1

〈42〉cθ + 〈12〉sθ e−iφ

⎤
⎥⎦ . (47)

The second term of Eqs. (46)–(47) can be calculated using Cauchy’s residue theorem:

2π∫
0

dφ

2π

1

a + e−iφ
= 1

2πia

∮
dz

1

z + 1/a
= 1

a
�

(
1 −

∣∣∣∣1

a

∣∣∣∣
)

, (48)

where the contour travels along the unit circle counterclockwise. This leads to logarithmic terms, 
like

(a)
πr

2

〈12〉〈34〉
〈31〉

π/2∫
0

dθ 2sθ

2π∫
0

dφ

2π

1

〈42〉cθ + 〈41〉sθ e−iφ
= πr

2

s12

s24
ln

s14

s24 + s14
, (49)

indicating the presence of box and triangle contributions (see Appendix A). Nevertheless, when 
adding (a) and (b), the logarithms cancel out, as expected. Surprisingly, also the constant terms, 
the first terms of Eqs. (46)–(47), cancel out, giving γWHle = 0, as found previously in the litera-
ture [17].

The above calculation of γWHle can be greatly simplified by using Eq. (22) instead of Eq. (16). 
The reason is that, as we explained, in Eq. (22) triangle and box contributions are projected out 
with the z integration. Indeed, by performing the BCFW shifts |1′〉 → |1′〉 + z|2′〉 and |1′〉 →
|1′〉 + z|4′〉 respectively in Eqs. (44)–(45), and taking the constant term of the Laurent series at 
z = ∞, the last terms of Eqs. (44)–(45) go to zero, and only the constant terms of Eqs. (46)–(47)
remain. This shows the usefulness of Eq. (22).

The above result can also be used for the contribution of a 3 Gluon (Ga−) amplitude (similar to 
Eq. (41), but with W → G) to the chromodynamic down-quark dipole, that is, to the amplitude 
Ga−H †qd . In this case, only the diagram (b) of Fig. 8 contributes, with W → G, l → q and 
e → d , in addition to a similar diagram obtained from the interchange q ↔ d . The SM amplitude 
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to use in this case is Eq. (87). We find that, while the logarithmic terms cancel as expected, the 
constant term remains, giving

γGHqd = 3g2
3yd

16π2 CG3 . (50)

4.3. Comparison with the literature

We can compare our results for the anomalous dimensions with those reported in the lit-
erature, mainly done using the Feynman diagrammatic approach (see for example [18,19,21]). 
For this purpose, we need to relate the dimension-6 operators of the SM EFT to our ampli-
tudes. This is presented in Appendix C, in the basis of Ref. [8]. Using these relations, we have 
checked that our calculations reproduce the anomalous dimensions of the Wilson coefficient of 
the SU(2)L dipole operator OeW = L̄Lσ aσμνeRHWa

μν found in the literature (see for instance 
[19] and [22]).8 For the 4-fermion operators, using the relations in Appendix C together with 
O(3)

lequ = −8(L̄L iuR)(Q̄Lj eR)εij − 4O(1)
lequ, where O(1)

lequ = (L̄L ieR)(Q̄LjuR)εij , we can relate 
the anomalous dimensions of Eq. (37) with those in Ref. [19]. We find also agreement. We would 
like again to emphasize the similar origin of the anomalous dimensions of CeW and C(3)

lequ, made 
evident via the on-shell method discussed here, that allowed for non-trivial checks of contribu-
tions arising from very different Feynman diagrams.

5. Conclusion

We have initiated here a systematic treatment of effective theories via on-shell amplitudes, 
where the presence of new physics at some scale � is encoded in new “elementary” amplitudes 
AOi

, suppressed by powers of E/�. This approach is an alternative to the usual operator expan-
sion performed using Lagrangians. Here, it is the coefficients COi

in front of the amplitudes that 
play the role of the Wilson coefficients.

The on-shell approach has several advantages. For instance, it avoids the usual problems with 
redundancies present in the Lagrangian approach, and also makes it much easier to understand 
the physical implications of the theory. Furthermore, it allows the use of generalized unitarity 
methods to obtain information about the quantum structure of the theory, without the need of 
explicitly performing one-loop calculations.

The main purpose of this article has been to show the effectiveness of on-shell techniques in 
computing the anomalous dimensions of COi

. We have done this by considering many examples 
in the SM at order E2/�2.9 In particular, we have calculated all anomalous dimensions (except 
for the self-renormalization) of the dipole coefficient CWHle defined in Eq. (27). We have shown 
how one can calculate anomalous dimensions from Eq. (16), that corresponds to just sewing 
together two tree-level on-shell amplitudes via an integration over a two-particle phase-space. 
This integral can be reduced to an angular integration that in most cases reveals to be trivial. 
Apart from the unavoidable intricacies coming from the fact that there are many different species 
of particles in the SM, the on-shell method shows a remarkable simplicity. In particular, several 

8 For Eq. (50) we agree with [20] and the errata of [19].
9 Of course, the use of these techniques is not limited to the SM. The same authors have used them for example to 

investigate some properties of the chiral theory for pions at the one-loop order [23].
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simple selection rules [10,14], such as Eq. (26) but also new ones derived in this paper (see 
Eq. (36)), help to understand certain non-renormalizations.

Moreover, we have seen that the method is quite efficient, as it requires the calculation of 
only a few SM amplitudes, from which one can deduce many different anomalous dimensions. 
This recycling advantage has allowed to relate γi’s that in the Feynman approach originate from 
very different diagrams. In particular, the renormalization of CWHle from Clequ and Cluqe can 
be related to its inverse: the renormalization of Clequ and Cluqe from CWHle. This has provided 
non-trivial checks of previous results in the literature.

In some cases (�n ≥ 1), we have seen that the phase-space integral is less trivial and leads to 
logarithms of ratios of Mandelstam invariants. Nevertheless, these logarithmic terms, which ap-
pear in the individual contributions to γi but cancel in the total sum, can be easily avoided through 
a refined sewing procedure, Eq. (22), that includes a simple contour integral (which essentially 
amounts to performing a trivial Taylor expansion around complex infinity). In Appendix A, we 
have explored what is behind the emergence of these logs. We found that they are due to the 
presence of box topologies in the loop amplitude. We have also shown that the cancellation of 
the logarithms in the anomalous dimensions is guaranteed by the absence of IR divergencies in 
the process.

Here, we have worked under a couple of assumptions: (i) that no IR divergencies are involved 
and (ii) that in the renormalization of an amplitude, only one type of 1/�2 amplitude AOi

appears at tree-level. We hope to report soon on the more general situation.

Note added: After submitting this manuscript we became aware of the work of [24] in which 
the on-shell method is also considered to calculate anomalous dimensions in the SM EFT.
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Appendix A. Cancellation of IR divergencies and absence of triangle and box 
contributions in the sum over 2-cuts

In this Appendix, we consider one-loop mixings AOj
→ AOi

having �n ≡ ni − nj = 0, 1. 
By exploiting the properties of Eq. (11), we show that triangles and boxes do not contribute to 
Eq. (16). The proof relies on the absence of IR divergencies, so it is only valid when γIR = 0.
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Fig. 10. One-loop contribution from an amplitude with nj legs to the renormalization of an amplitude with ni = nj legs.

Let us start by considering the case �n = 0. Apart from bubble integrals, which are IR safe, 
we can also have triangles, as shown in Fig. 10. The reason why boxes are absent is topological: 
there are simply not enough external legs to make them. The relevant triangle integrals are of the 
following form [25]:

I
(IJ )
3 = α(ε)μ2ε

ε2 (−sIJ )−1−ε , (51)

where sIJ = (pI + pJ )2 and

α(ε) = �(1 + ε)�2(1 − ε)

�(1 − 2ε)(4π)
D
2

= 1

16π2 + O(ε) . (52)

We use here I, J, . . . indices for particle labels to help avoiding confusion. In dimensional regu-
larization, the ε−2 pole in Eq. (51) signals that the integral is IR divergent. In fact, on dimensional 
grounds, we know that it is convergent in the UV. Expanding for ε → 0, we have

α(ε)−1 I
(IJ )
3 → − 1

sIJ

(
1

ε2 − 1

ε
ln

(−sIJ

μ2

))
+ O(1) . (53)

Since the IR divergence of the full amplitude is zero by assumption, we have the following 
conditions:

∑
I,J

C
(IJ )
3

sIJ

= 0 ,
∑
I,J

C
(IJ )
3

sIJ

ln(−sIJ ) = 0 , (54)

where we sum over all the distinct triangle topologies. The two conditions come, respectively, 
from the cancellation of the ε−2 and ε−1 poles. Even though the first condition could be satisfied 
for a nontrivial configuration of the triangle coefficients, the second one requires C(IJ )

3 = 0 for all 
I, J . The reason is that the logarithms ln(−sIJ ) cannot be canceling among themselves, unless 
trivially some of the sIJ are equal (see below for the case ni = 4). Technically, this is because the 
C3’s are rational functions of the kinematical variables, while the logarithms are transcendental.

The cases ni = 3, 4 are special. For three particles, sIJ = 0 for each I, J , implying that all 
triangle integrals I (IJ )

3 are scaleless and vanish. On the other hand, in the 4-particle case we 
have s12 = s34, s13 = s24 and s14 = s23, and we cannot exclude the nontrivial configuration 
C

(12)
3 = −C

(34)
3 , C(13)

3 = −C
(24)
3 and C(14)

3 = −C
(23)
3 . Nevertheless, all the triangle contribu-

tions, including the finite parts, cancel in pairs. For example

C
(12)
3 I

(12)
3 + C

(34)
3 I

(34)
3 = 0 . (55)

Either way, we see that the total triangle contribution is required to be zero in order to have an 
IR-safe amplitude. This means in particular that no triangle (nor box) contribution can appear in 
Eq. (16).



20 P. Baratella et al. / Nuclear Physics B 959 (2020) 115155
Fig. 11. One-loop contributions from an amplitude with nj legs to the renormalization of an amplitude with ni = nj + 1
legs.

We now move to the case �n = 1. With one additional external leg, we can build new one-
loop topologies, as displayed in Fig. 11 (we show only those topologies which are associated 
to IR divergent integrals). We have triangles, like (a) and (b-c), and boxes as well (d). The 
corresponding integrals [25] are given, respectively, by Eq. (53) and

I
(IJ |K)
3 = α(ε)μ2ε

ε2

(−sIJ )−ε − (−sIJK)−ε

(−sIJ ) − (−sIJK)
, I

(I |JK)
3 = I

(IJ |K)
3 (I ↔ K) , (56)

I
(IJK)
4 = α(ε)μ2ε

ε2

2

sIJ sJK

[
(−sIJ )−ε + (−sJK)−ε − (−sIJK)−ε

] − 1

16π2 F
(IJK)
4 , (57)

where sIJK = (pI + pJ + pK)2 and

F
(IJK)
4 = 2

sIJ sJK

[
Li2

(
1 − sIJK

sIJ

)
+ Li2

(
1 − sIJK

sJK

)
+ 1

2
ln2

(
sIJ

sJK

)
+ π2

6

]
+ O(ε) .

(58)

We refer to Fig. 11 for the notation.
In this case, the cancellation of IR divergencies could be nontrivial, occurring between trian-

gles and boxes and thus implying a relation among their coefficients, C3 and C4. In other words, 
triangles and boxes could appear in combinations free from IR divergencies, as for example

sIJ sJKI
(IJK)
4 + sIJ I

(IJ )
3 + sJKI

(JK)
3 + (sIJ − sIJK)I

(IJ |K)
3 + (sJK − sIJK)I

(I |JK)
3 , (59)

which is proportional to sIJ sJKF
(IJK)
4 . Imposing this condition, Aloop reduces to

Aloop =
∑
a

C
(a)
2 I

(a)
2 − 1

16π2

∑
c

C
(c)
4 F

(c)
4 , (60)

that shows that a finite contribution from boxes remains in the one-loop amplitude. Nevertheless, 
as we now prove, this second term of Eq. (60) does not contribute to the sum over 2-cuts.

A 2-cut of an amplitude is computed with the Cutkosky rule, that consists in substituting the 
loop propagators 	−2 and (	 −P)−2 with respectively δ+(	2) and δ+(	2 −P). We normalize the 
2-cuts in such a way that the 2-cut of a bubble gives

Cut2[I (a)
2 ] = − 1

. (61)

8π2
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Fig. 12. Quadruple cut in A
W3 → AWHle .

Summing over all possible 2-cuts of Eq. (60), and using Eq. (15) with γIR = 0, we obtain∑
2−cuts

Cut2[Aloop] = γiAOi
− 1

16π2

∑
c

C
(c)
4

∑
2−cuts

Cut2[F (c)
4 ] . (62)

We want to prove that the second term in Eq. (62) vanishes. For the box contribution (d) of 
Fig. 11, we have three possible nonzero 2-cuts, corresponding to cutting out either (IJ ), (JK)

or (IJK) from the rest of states. By applying the Cutkosky rule to the IR-safe combination in 
Eq. (59), we can deduce that these three 2-cuts give, respectively,

Cut(IJ )
2 [F (IJK)

4 ] = 4

sIJ sJK

ln

(
sIJK − sIJ

sJK

)
, (63)

Cut(JK)
2 [F (IJK)

4 ] = 4

sIJ sJK

ln

(
sIJK − sJK

sIJ

)
, (64)

Cut(IJK)
2 [F (IJK)

4 ] = 4

sIJ sJK

ln

(
sIJ sJK

(sIJK − sJK)(sIJK − sIJ )

)
. (65)

Crucially, these three terms add up to zero. This completes the proof that, for IR-finite processes 
with �n = 1, triangle and box contributions vanish in the total sum over 2-cuts.

We stress that box contributions to individual 2-cuts do not have to be zero, and therefore log-
arithms (those of Eqs. (63)–(65)) can be present before the total sum is performed. An example 
of this phenomenon is Eq. (49). Next, we check that it is precisely C4 that fixes the coefficient of 
the logarithm in Eq. (49).

As a final comment, we observe that, for ni = 4, the third cut Eq. (65) vanishes, since sIJK =
0. In fact, in this case the 2-cut is massless.

A.1. Box contributions from quadruple cuts

Here, we calculate the (unique) box contribution to the one-loop renormalization AW 3 →
AWHle, discussed in Section 4.2. Due to the presence of logarithms in Eq. (49), and according 
to the results presented just before, we expect indeed a nonzero coefficient C4.

We will follow Ref. [3], where the box contribution is calculated from a quadruple cut (4-cut). 
Since the relevant amplitude has four external states, after a 4-cut it reduces to a product of four 
n = 3 amplitudes (see Fig. 12), which are completely fixed by the little group. We have

C4 = 1

2
A1(p1, 	

+
41,−	−

12)A2(p2, 	
−
12,−	+

23)A3(p3, 	
+
23,−	−

34)A4(p4, 	
−
34,−	+

41)

+ (− ↔ +) , (66)

where 	±
ij defines the momentum that goes from vertex i to vertex j and, as explained in [3], 

we have two possible sets, labeled by the ±. The two 	± are related by complex conjugation, 
ij
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that is 	−
ij = (	+

ij )
∗, and can be elegantly written in terms of spinor-helicity variables, as found in 

Ref. [26]. For example, we have

	+
12 = 〈23〉

〈31〉 |2]〈1| , 	−
12 = [23]

[31] |1]〈2| , (67)

with similar expressions for the other cut momenta 	±
ij , obtained by cyclic permutation of the 

labels. One can check that they satisfy the on-shell condition (	±
ij )

2 = 0, and relations like 	+
12 +

p2 = 	−
23 (which explain the choices in Eq. (66)).

Let us now move to compute the 4-cut in the process AW 3 → AWHle, as represented in 
Fig. 12. The relevant n = 3 amplitudes are given in Eq. (41) and Eqs. (83)–(86):

A1 = iye〈1	12〉 , A2 = g2
[	12	23]2

[	122] (T b)kj , (68)

A3 = iCW 3

�2 〈	233〉〈3	34〉〈	34	23〉f abc , A4 = g2
[4	34][	41	34]

[	414] (T c)ik . (69)

The product A1 . . .A4 can be manipulated in order to reduce the number of 	ij spinors. We find

A1A2A3A4 = i
g2

2yeCW 3

�2 s12〈23〉〈12〉[2|	23|3〉(T a)ij . (70)

Then, by making use of Eq. (67) we get (notice that only 	+
23 contributes to Eq. (70))

C4 = −g2
2yeCW 3

2�2 (T a)ij 〈31〉〈32〉 s
2
12s23

s13
= −g2

2yeCW 3

2

s2
12s23

s13
AWHle , (71)

where we also multiplied by −i due to the internal fermion line in Fig. 12, as explained in 
Appendix B. We now want to use the above result to obtain Eq. (49), which corresponds to 
taking a 2-cut in the (12)-channel (see Fig. 8, (a)). Using Eq. (63) with I = 1, J = 2 and K = 3, 
we get

Cut(12)[Aloop] = −C
(12)
2

8π2 − C4

4π2s12s23
ln

(−s12

s23

)
⊆ γWHleAWHle . (72)

After dividing by AWHle and using Eq. (71), we find that Eq. (72) agrees with Eq. (49).

Appendix B. SM on-shell amplitudes

B.1. Conventions

We start with the conventions taken in this article. We choose the metric ημν = diag(+,−,−,

−), and the 2-component spinors with h = ∓1/2 to be denoted respectively by |p〉α and |p]α̇ . 
The momentum is given by pαα̇ = |p〉α[p|α̇ , and the contractions are

〈pq〉 ≡ 〈p|α|q〉α and [pq] ≡ [p|α̇|q]α̇ , (73)

where we follow the conventions of Ref. [27] for raising and lowering indices. We also define 
〈i|σμ|j ] ≡ 〈i|α(σμ)αα̇|j ]α̇ , that fulfill the property 〈i|σμ|j ] = [j |σμ|i〉. We also have

p
μ
i = 1 〈i|σμ|i] , 2pi · pj = 〈ij 〉[ji] , (74)
2
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the Fierz relation

〈i|σμ|j ]〈k|σμ|l] = −2〈ik〉[j l] , (75)

and the Schouten identity

〈ij 〉〈kl〉 = 〈ik〉〈j l〉 − 〈il〉〈jk〉 . (76)

Amplitudes are defined with all states incoming. Therefore outgoing states are considered in-
coming states with opposite momentum, helicity and particle ↔ antiparticle. The ordering of the 
fermions in the amplitudes is important. After a 2-cut of a loop amplitude, we have

〈0|A1A2|ψ1...ψi ψi+1...ψj 〉 = 〈ψ̄i+1...ψ̄j |A1A2|ψ1...ψi〉
→ 〈ψ̄i+1...ψ̄j |A1|ψ	2 ψ	1〉〈ψ	1 ψ	2 |A2|ψ1...ψi〉
= 〈0|A1|ψ	2 ψ	1 ψi+1...ψj 〉〈0|A2|ψ1...ψi ψ̄−	1 ψ̄−	2〉
≡ A2(ψ1, ...,ψi, ψ̄−	1, ψ̄−	2)A1(ψ	2,ψ	1,ψi+1, ...,ψj ) , (77)

where in the second line we have reversed the order of the internal fermions to take into account 
the minus sign in fermion loops [2]. Since in the amplitudes we encounter spinors with negative 
momenta, it is convenient to write them back with positive momenta. Following the appendix of 
Ref. [28], we define

| − p〉α = i|p〉α , | − p]α̇ = i|p]α̇ , (78)

that consistently leads to | − p〉[−p| = −p.
The polarizations for incoming vectors with momentum p are given by

ε+
μ = 〈q|σμ|p]√

2〈qp〉 , ε−
μ = −〈p|σμ|q]√

2[qp] , (79)

where q is a reference momentum [1]. We notice that when considering an internal vector in 
Eq. (77), the polarizations come with opposite sign for the momentum in each amplitude A1 and 
A2. Therefore we have

ε+
μ (p)ε−

ν (−p) + ε−
μ (p)ε+

ν (−p) =
∑
h

εh
μ(p)(εh

ν (p))∗ , (80)

where we have used Eq. (78) and Eq. (79). Eq. (80) gives the proper sum over vector polarizations 
that we expect in a propagator. For fermions, however, the situation is different. We have

u∓(p) = P∓
( |p〉α

|p]α̇
)

, v̄∓(p) = (〈p|α [p|α̇
)
P∓ , (81)

respectively for incoming h = ∓1/2 fermions and antifermions, where P∓ = (1 ± γ5)/2. There-
fore, for internal fermions, where the polarizations come with opposite sign for the momentum 
in each amplitude A1 and A2, we obtain

u+(p)ū+(−p) + u−(p)ū−(−p) = i/p , (82)

that leads to an extra i from the expected /p, that we have then to subtract. For this reason, for 
each internal fermion line we must multiply by −i.
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B.2. SM amplitudes

The on-shell amplitude approach is based on building higher-point amplitudes from already 
existing ones of lower n. The basic “blocks” are the n = 3 amplitudes, which are totally fixed 
by their helicities. For the SM gauge boson interactions, using the indices a, b, ... for the adjoint 
representation of the non-abelian groups, and i, j indices for the fundamental representation, we 
have

ASM(1ψj
,2ψ̄i

,3V a−) = ga

〈13〉2

〈12〉 (T a)ij , ASM(1ψj
,2ψ̄i

,3V a+) = ga

[23]2

[12] (T a)ij ,

(83)

ASM(1Hj
,2

H
†
i
,3V a−) = ga

〈13〉〈23〉
〈21〉 (T a)ij , ASM(1Hj

,2
H

†
i
,3V a+) = ga

[13][23]
[12] (T a)ij .

(84)

For the abelian U(1)Y hypercharge we have similar expressions, with (T a)ij → Yiδij . We fix our 
normalization as Tr[T aT b] = δab/2, with YH = 1/2 and real ga . Let us comment that, in fact, 
only one of the amplitudes in Eqs. (83)–(84) is enough to fix the definition of the SM gauge 
coupling. For instance, once the gauge interaction to a fundamental fermion is defined, the gauge 
interaction to scalars can be determined by the consistency condition that n > 3 amplitudes must 
factorize into products of n = 3 amplitudes (this is the equivalent to gauge invariance in the 
Lagrangian approach – see for example [29]). Also, the second amplitudes in Eqs. (83)–(84) can 
be determined from the first using CPT invariance and unitarity.10

We also have Yukawa interactions, that for one family are given by (showing only the SU(2)L
indices)

ASM(1e,2li ,3
H

†
i
) = ye〈12〉 , ASM(1d ,2qi

,3
H

†
i
) = yd〈12〉 ,

ASM(1u,2qi
,3Hj

) = yu〈12〉εij . (85)

These amplitudes fix our definitions of the SM Yukawa couplings yψ , that for one family can 
be taken to be real. The generalization to 3 families is straightforward. By CPT invariance and 
unitarity, we obtain

ASM(1ē,2l̄i
,3Hi

) = ye[12] , ASM(1d̄ ,2q̄i
,3Hi

) = yd [12] ,

ASM(1ū,2q̄i
,3

H
†
j
) = yu[12]εij . (86)

The relation between our gauge and Yukawa couplings, defined via amplitudes, and the usual 
definitions arising from Lagrangians is provided in Appendix C.

From the above n = 3 amplitudes, we can build n = 4 amplitudes. Here, we quote the ones 
that are needed for this work. These are V+Hψψ amplitudes:

ASM(1Ga+ ,2di
,3qj

,4H †) = −yψg3(T
a)ij

[41]2

[42][43] = yψg3(T
a)ij

〈32〉2

〈12〉〈13〉 , (87)

for SU(3)c;

10 Unitarity S†S = 1, where S = 1 + iT and T can be treated as a small perturbation around the identity, is needed to 
derive T = T † + O(T 2) and therefore A = 〈α|T |β〉 � 〈β|T |α〉∗.
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ASM(1Wa+ ,2e,3lj ,4
H

†
i
) = yeg2(T

a)ij
[21][41]
[24][23] = yeg2(T

a)ij
〈23〉〈43〉
〈14〉〈13〉 , (88)

for SU(2)L;

ASM(1B+ ,2e,3l ,4H †) = yeg1

(
Yl

[21][41]
[24][23] − Ye

[31][41]
[34][32]

)
. (89)

for U(1)Y . We also use Wa−B+|H |2 and Wa−B+ll̄ amplitudes, that are given by

ASM(1B+ ,2Hj
,3Wa− ,4

H
†
i
) = g1g2YH (T a)ij

〈23〉〈43〉
〈21〉〈41〉 . (90)

ASM(1B+ ,2li ,3Wa− ,4l̄j
) = g1g2Yl(T

a)ij
〈23〉2

〈21〉〈14〉 . (91)

All these amplitudes can be determined by just demanding proper transformation under the little 
group and factorization into n = 3 amplitudes. Amplitudes for the opposite helicity, with particle 
interchanged with antiparticle, can be obtained by complex-conjugating the above ones.

Appendix C. From the SM EFT Lagrangian to amplitudes

In this Appendix, we provide the relation between our on-shell amplitudes and operators used 
in the common Lagrangian approach for the SM EFT [8].

Let us start with the dimension-4 operators of the SM EFT. From our definition of the SM 
gauge couplings, given in Eqs. (83)–(84), we find that this corresponds to take the covariant 
derivative of a field transforming under the fundamental representation of the SM group as

Dμ = ∂μ − i
g3√

2
T a′

Ga′
μ − i

g2√
2

T aWa
μ − i

g1√
2

YiBμ , (92)

where the generators are normalized as Tr[T aT b] = δab/2, and the hypercharge for the Higgs is 
YH = 1/2. Notice that, as is usual in amplitude methods [1], our gauge couplings carry an extra 
1/

√
2, different from the more common definition of the SM gauge couplings. One can easily 

check that, indeed, the gauge vertices arising from Eq. (92) lead, by using Eq. (81) and Eq. (79), 
to Eqs. (83)–(84).

On the other hand, our Yukawa coupling defined in Eq. (85) corresponds to that arising from 
a Lagrangian term

−yeH
†ēRLL − ydH †d̄RQL − yuH̃

†ūRQL = −yeH
†el − ydH †dq − yuH̃

†uq , (93)

where H̃i = εijH
∗
j , LL = (l, 0)T and ēR = (e, 0), being l and e Weyl spinors of h = −1/2, and 

similarly for the quarks.
At the dimension-6 level, we have

L̄Lσ aσμνeRHWa
μν + h.c. →A(1ē,2l̄i

,3Wa+ ,4Hj
) = 2

√
2(σ a)ij [31][32] , (94)

→A(1e,2li ,3Wa− ,4
H

†
j
) = 2

√
2(σ a)ij 〈31〉〈32〉 , (95)

L̄LσμνeRHBμν + h.c. →A(1ē,2l̄i
,3B+ ,4Hi

) = 2
√

2 [31][32] , (96)

→A(1e,2li ,3B− ,4
H

†
i
) = 2

√
2 〈31〉〈32〉 , (97)

(L̄L ieR)(Q̄LjuR)εij + h.c. →A(1ē,2¯ ,3ū,4q̄ ) = [12][34]εij , (98)
li j
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→ A(1e,2li ,3u,4qj
) = 〈12〉〈34〉εij , (99)

(L̄L iuR)(Q̄Lj eR)εij + h.c. → A(1ē,2l̄i
,3ū,4q̄j

) = −[14][32]εij , (100)

→ A(1e,2li ,3u,4qj
) = −〈14〉〈32〉εij , (101)

Wa
μνW

a μν |H |2 → A(1Wa− ,2Wa− ,3Hi
,4

H
†
i
) = −2!〈12〉2 , (102)

→ A(1Wa+ ,2Wa+ ,3Hi
,4

H
†
i
) = −2![12]2 , (103)

Wa
μνB

μνH †σaH → A(1Wa− ,2B− ,3Hj
,4

H
†
i
) = −(σ a)ij 〈12〉2 , (104)

→ A(1Wa+ ,2B+ ,3Hj
,4

H
†
i
) = −(σ a)ij [12]2 , (105)

Wa ν
μ Wbρ

ν Wa μ
ρ f abc → A(1Wa− ,2Wb− ,3Wc−) = i(3!/√2)〈12〉〈23〉〈31〉f abc , (106)

→ A(1Wa+ ,2Wb+ ,3Wc+) = −i(3!/√2)[12][23][31]f abc . (107)

The above formulas allow to relate the Wilson coefficients with the coefficients of the on-shell 
amplitudes that were used in this article.

Appendix D. Dimension-5 operators and their corresponding on-shell amplitudes

Similarly as with the amplitudes at order E2/�2 (associated to dimension-6 operators), we 
can determine the extra contributions to amplitudes at order E/�. These are given by

• n = 3, h = −2:

AF 2φ(1V− ,2V− ,3φ) = CF 2φ

�
〈12〉2 , AFψ2(1V− ,2ψ,3ψ) = CFψ2

�
〈12〉〈13〉 . (108)

• n = 4, h = −1:

Aψ2φ2(1ψ,2ψ,3φ,4φ) = Cψ2φ2

�
〈12〉 . (109)

• n = 5, h = 0:

Aφ5(1φ,2φ,3φ,4φ,5φ) = Cφ5

�
. (110)

In the SM, only Eq. (109) is allowed by the gauge symmetry for ψ = l, and it violates lepton 
number by two units.

One can show that Eq. (16) can also be applied to calculate the anomalous dimensions of the 
coefficients of these amplitudes. The proof goes as for the E2/�2 case: we know that Eq. (18)
applies to any operator, so we can use it in the limit Q → 0 to get Eq. (16). We only have 
to be careful with potential extra contributions present in Eq. (18) that are not considered in 
Eq. (16). These are the ones involving n = 3 amplitudes. In particular, they could be relevant in 
the renormalizations AF 2φ → Aφ5 and AFψ2 → Aψ2φ2 . However, one can check that, in these 
one-loop renormalizations, all triangles and boxes lead to the same integrals as those discussed 
in Fig. 11, and so we can use the conclusions of Appendix A also here, to claim that the absence 
of IR divergencies imposes a cancellation of boxes and triangles in Eq. (16). Therefore Eq. (16)
must coincide with Eq. (18) in the limit Q → 0.
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