
Performcince Optimizcition ofci
Multiresolution Compressible FIow Solver

Currently, biotechnological and biomedical pro
cedures such as Iithotripsy or histotripsy are

used successfully in therapy. In these meth

ods, compressible multiphase flow mecha

nisms, such as shocI-bubbIe interactions are

utilized. However, the underlying physics of the
processes involved are not FuIly understood.
To get deeper insights into these processes,

numerical simulations are a Favorable tool.

In recent years, powerFul numerical methods

which allow For accurately simulating discon

tinuous, compressible multiphase Flows have

been developed. The immense numerical cost

oF these methods, however, limits the range of
applications. To simulate Lhree-dimensional
problems, modern high-performance comput

ing (HPC) systems are required and need to

be utilized efllciently in order Co obtain resuits

within reasonable times. The sophisticated sim

ulation environment “ALIYAH,“ developed at

the Chair of Aerodynamics and Fluid Mechan

ics, combines advanced numerical methods—

including ‘Neighted Essentially Non-Oscillatory
(WENO) stencils and sharp-interface treatment

(Level-Set) in a Multiresolution Finite-Volume
Framewor[with Total-Variation-Diminishing
(TVD) Runge-I<utte (RI<) time integration—Co

solve the Euler equations for compressible mul
tiphase problems.

Exemplarily, the simulation result or a collaps
ing gas bubble near a deformable gelatin inter
face is shown in Figure 1. This conFiguration
mimics the dynamics of an ultrasound-induced
gas bubble near soft Cissue as model for in vivo
cavitation effects. The bubble collapse is asym
metrical and induces a liquid jet towards the gel
atin that eventually ruptures this material. The
detailed understanding of such phenomena is
the overall scope oFour research.

The baseline version of ALIYAH runs a bIocI
based MR algorithm as described in [5]. The
code is shared-memory parallelized using Intel

Threading Building BlocIs (TI3B). The perfor

mance crucial (parallelizable) loops are distrib
uted among the Lhreads using the TBB affin
ity partitioner. Thus, the bad is dynamically

Vol.15 No.2 J

re-evaluated every urne the algorithm reaches a

certain function.

Much of the computational cost in the consid

ered simulation comes from the modeling ofthe

interface between fluids. In our approach the

interface is modeled by a conservation ensuring

scalar level set function [1], and the inleractions

across the interfaces need to be considered; this

is done wilh an acoustic Riemann solver which

includes a model for surface tension [3]. For the

non-resolvable structures—i.e., droplets, bub

bles, or filaments with diameters dose 10 the cell

size ofthe finitevolume mesh—scale separation

of[4]is used.

Performance and scalability test cases
The simulation tests were performed for two

cases: A small generic case (“synthetic case“),

which executes all methods described in the

previous section but with a coarse resolution of

only 4096 cells, and the second case (“restart

case“), which is a real-application case with a

high resolution in all three spatial dimensions.

Dueto its long run time,onlyone timestep ofthis

case is analyzed.

The restart case scenario uses an axis-sym

metric model, to simulate cylindrical channel

geometries in a Cartesian grid. The simulation

is conducted with a quarter-model of the full

problem; i.e., the Y- and Z-planes are cut mb

halves with imposed symmetry conditions.

Since a full simulation‘s runtime is too large to

be profiled, the measurements are obtained for

just one timestep on the coarsest level. To still

capture a relevant and representative timestep,

the simulation is advanced until time ts =

without profiling the code. The corresponding

physical state ofthe bubble breah-up is shown

in Figure].

Fig. 2: Pressure distribution P in Pa and mesh resolution
(shown are blochs — each consisting of 16 cells) during
Ihe bubble breah-up in the Restart Case at Lime Is.

Code analysis
We conduct our analysis and optimization on a

duaI-socet Intel Xeon E5-2697 v3 (codenamed

Haswell). Computational results are presented

for an Intel Haswell System at 28 cores. The pro

cessor has 2.6 GHz frequency, 32 l<B/256 l<B UI

L2 caches and 2.3 GB RAM per core.

With the baselineversion ofthe code the two test

cases—restart case and synthetic case, described

above—were simulated in a wall cloc[birne of

89 seconds and 666 seconds, respectively.

P: 1 .OE+05 2.OE+07 4.OE+07 6.OE+07 8.OE+07 1 .OE+08

78

inSiDE Autumn 2017

To Nnd promising starting points ror code opti
mization, a node-level analysis is perormed
using the Intel VTune Amplifier. To reduce the
arnount of collected information the Amplifier
analysis as weIl as all subsequent optimiza
tion runs are perforrned using eight threads.
The hotspot analysis for the restart case is pre
senred in Figure 2 and for the small synthetic
case in Figure 3.

CPU Tirrie
Ftrtion CaO Stck

Hence, a focus is laid on the non-straight-for
ward optimization of the get_subvolume and
chec_volume functions.

An essential ingredient to utilize HPC architec
tures efficiently is the usage of single instruc
tion multiple data (SIMD) instructions in the
computationally intensive parts of the code.
SIMD instructions allow processing of multi

ple pieces of data in a single

step, speeding up throughput

for many iashs. Compilers can
aulo-vectorize loops that are

considered safe for vectoriza

tion. In the case ofthe here-used

Intel compiler version 16.0, this
happens at defaull for optimiza

tion levels -02 or higher.

One can clearly identify the functions get_
subvolurne, chec[_volume, and WENO_* as
the hotspots. The optimization of tNENO5_*

requires only small reorganization of the corre
sponding source code. In contrasc to the WENO
rnethods, the time spent in the get_subvol
urne function does not increase linearly with
the problem size (c.f, relative time spent for the
small synthetic case and the larger restart case).

To analyze the auto-vectorized

code the Intel Advisor XE tool
5 used. The analysis revealed

the functions listed in Figure 4
to be the most time consurning
non-vectorized ones. In the Fig
ure, “seIf time“ represents the

time spent in a particular pro
grarn unit and “total tirne“ includes “seIf Urne“
of the function itself and “self Urne“ of all func
tions that were called From within this FuncUon.
As seen, the function get_subvolume, which is
called recursively From the function get_volurne,
is the most rime-consuming non-vectorized
Function. In contrast to compilers assumplion,
Ihe examination of get_subvolume‘s source
code reveals no crucial dependency problems.

[15.0% 1
LeveISeICell::check_volume
SolverSpace WEN05_P
SolverSpace.:WENO5_M

SolverSpace::Initialize

Effective Tirne by UtiIization
• dl • P •o mi... 1 Ov€

13.5%

7.4%

6.2°,

5.O°i —

Fig. 3: Bottom-up view orihe function call stach for the Restart Case
(benchmarh).

/7‘ II CPU Tiaie
FunDtion, Call Stck Effective Tirne by Utilization!

Ik $Px O II... lOve
Soiverspace::WENO5P 12.2%
SolverSpace::WENO5_M 10.1%
SolverSpace initialize 7 9% —

Lev&SetCell::get_subvoiume 5.8%
LeveiSetCeiI: check_volume 5.2%

Fig. 4: I3otLom-up view of the funclion call stach the Synthetic Case.

79

Vol.15 No.2

Eunction Call Sites and Loops [w Vtor Issues Seil Timo‘. Total Time

[loop in LevelSe{CeIl:gel_subvolume at level_set_cell.cpp:602] LJ 1 Assuml dependency prese... 231. 177s• 3810.722s

[loop in [TBB Dispatch Loop at custornscheduler.h:4131 fl 228.349s• 231,398s 1

(loop in MahlnvnlUxtatetags(Meahtnvel&){lanila(tbbbt. 9 1 Aasumaddnpendency prese .. 126.556s1 126556s1

[loop in SolverSpace: Initialize eI solver_spacecpp:182] El 1 Opportunity tor outer loopve... 125.308s 1 125.308s(

tE (loop in BlkMdPackageTags::UIxlatePackagelnterfacePro .. fl 9 1 Assum&dependency prese.., 68,673s1 6R673sl

ji [loopin lkAndPackageTags::Ux1atePackagelnterfacePro
.. Q 9 1 Assumeddependency prese.,, 60704s1 ßO.704sl

[loop in LevelSetCell:ge_subvolurne at level_5ot_ceII.cpp:601] Q 1 Assurnl depandency prese... 45. 179s1 3855. 900s

[loop in LevelSetCell. get subvolurne at level_setcell.cpp:6001 [J 9 1 Assumed dependency prese... 39.763s 1 3895,664s

5(loop in LevelSelNrxle::GetlncrementRnrPeinitialiiation at ev.. 93 Assvmnddependency preae., 38644s1 3a644s1

Fig. 5: Survey analysis of the vectorization in Ihe baseline version 0fALIYAH.

Resufts
Since ii is a recursive call automatic vector

zation or OpenMP-SIMD, annotations cannot

be applied directly to the body o the Function

get_subvolume. Moreover, due to the presence

oF the relatively large amount of nested loops

with small trip counters Ihe deciaration or get_

subvolume as “vectorizable“ is not an optimal

strategy in this case. On Haswell, SIMD instruc

tions process four elements (double precision)

at once. This means loops with a trip counter of

two underutilize the vector registers by a factor

of two. lt appears OpenMP-SIMD is not able co

collapse the cwo nested loops and apply vector

ization automatically. As auto-vectorization fails

even with the usage of OpenMP paragmas we

follow the more aggressive approach, described

The function get_subvolume performs tem

porary subdivisions of the cubic grid cells

based on linear interpolation to approximate

the volume one phase occupies. Due 10 the

recursive call with a local stopping criterion

the data Flow in each local volume evaluation

is complex. To apply SIMD vectorization, we

combine linear interpolation on several ele

ments mb one call. This is profitable since

the operation on two neighbor grid points is

the same, albeit with different data Prom the

vector. We program vectorized loops directly

using Intel AVX instructions.

The explicit SIMD vectorization with intrinsics

allows us to reduce the number ofmicro-opera

tions from 185 for the baseline version down to

88. The bloch throughput is also reduced from

48 cycles to 24 cycles. The total time spent in the

get_subvolume Funclion is reduced by a facior of

0.7, which means a gain in performance of4O%.

CPU time of Ihe two functions get_subvolume

and chec[_volume after optimization is reduced

by a Factor of 0.5 compared 10 Ihe baseline ver

sion. Moreover, the wallcloc time of the AVX

version is reduced to 531 sec and 558 sec for the

restart case and the synthetic case, respectively.

For the whole simulation this corresponds to a

speedup of 11% for the restart case and 19% for

the synthetic cases, correspondingly.

below.

80

inSiDE 1 Autumn 2017

Achnowledgment
The auhors gralefully achnowledge he Kompe
tenznetzwerh für wissenschaftliches Höchsile
istungsrechnen in Bayern for rhe KONVVIHR-lll
funding. S. Adami and N.A. Adams graiefully
achnowledge the funding from Ihe European
Research Council (ERC) under he European
Union‘s Horizon 2020 research and innovallon
program (granl agreement No 667483).

References
[1] X. Y. Hu, B. C. Khoo, N. A. Adams, and F. L. Huang:

“A conservative interFace method For compressible
flows,“J. Comput. Phys., vol. 219, no. 2, pp. 553—578,
Dec. 2006.

[2] R. P. Fedhiw, T. D. Aslam, B. Merriman, and 5. Osher,
“A Non-oscillalory Eulerian Approach to lnterFaces
in Multimarerial Flows (The Ghost Fluid Melhod),“ i.
Compul. Phys., vol. 152, pp. 457—492,1999.

[3] R. Saurel, S. Gavrilyuh, and F. Renaud:
“A multiphase model with internal degrees ofFree
dom: applicarion to shoch—bubble interactlon,“ i.
Fluid Mech., vol. 495, pp. 283—321, 2003.

[4] J. Luo, X. Y. Hu, and N. A. Adams:
“Efficient Formulation oFscale separation For multi
scale modeling oFinierfacial Flows,“J. Compul. Phys.,
vol. 308, pp. 411—420, Mar. 2016.

[5) 1. H. Han, X. Y. Hu, and N. A. Adams:
“Adaptive multi-resolution method For compressible
multi-phase flows with sharp interFace model and
pyramid data structure,“ J. Comput. Phys., vol. 262,
pp. 131—152, Apr.2014.

Written by Nils Hoppe‘, Igor Pasichnyh2,
Stefan Adami‘, Momme AIlalen3, and
Niholaus A. Adams‘
‘Lehrswhl für Aerodynamih und Strämungsmechanih,
Technische Universität München,
Boltzmannstraße 15,85748 Garching

2 IBM Deutschland GmbH,
I3oltzmannslraße 1,85748 Garching

Leibniz-Rechenzentrum der Bayerischen Ahademie
der Wissenschaften,
Bollzmannslraße 1,85748 Garching

Contact: momme.aIIaIenIrz.de

Vol.15 No.2

Performance Evaluation ofa Parallel HDF5

Implementation to lmprove the Scalcibility of

the CFD Software Package MGLET

This paper presents a perFormance evaluation

For an implementation in parallel HDF5 inside

the MGLET code.

The computational Fluid dynamics (CFD) code

“MGLET“ is designed to precisely and eFFiciently

simulate complex Flow phenomena within

an arbitrarily shaped Flow domain. MGLET is

capable oF perForming direct numerical simu

lation (DNS) as weil as arge eddy simulation

(LES) oF complex turbulent Flows. lt employs a

Finite-voiume method to solve the incompress

ible Navier—Sto[es equations For the primitive

variables (i.e. three velocity components and

pressure), adopting a Cartesian grid with stag

gered arrangement oF the variables. The urne

integration is realised by an explicit third-order

ow-storage Runge—l<utta scheme. The pres

sure computarion is decoupled From the veloc

ity computation by the Fracuional time-stepping,

or Chorin‘s prolection rnethod. Consequently,

an elliptic Poisson equation has to be solved For

each Runge—l<utta sub-step.

The current version oF MGLET utilises a paral

lel adaptation oFGauss-Seidel solver as weil as

Stone‘s Implicit Procedure (SIP) within the mul

tigrid Framewor[, both as the srnoother during

the intermediate steps and the solver at the

coarsest level. Such separate usage is justiFied

by the Facu that the Former is very eFFective in

eliminating low-Frequency error predorninant

over the successive coarsening stage oF multi

grid algorithms, whereas the latter can be used

to solve the Poisson problem at the coarsest

level with a broad spectrum of residual error.

Geometrically compiex surfaces, or arbiurarily

curved, can be represented by an irnmersed

boundary method (IBM). MGLET offers severai

sub-grid scale models for LES simulation, such

as Smagorinshy‘s model, two versions of the

dynamic formulations and the VVALE model.

MGLET is written in FORTRAN and the parallel

isation strategy is based on Message Passing

Interface (MP1).

The code is currencly being used by several

research groups: At the Chair of Hydrorne

chanics of the Technical University of Munich,

for instance, turbulent flow through complex

geometries, Flow in porous medla, and fibre

suspensions in Fluid media have been investi

gated using MGLET. The groups of Prof. Helge

Andersson and Prof. Bjørnar Pettersen (both

NTNU Trondheirn) use the code to predict

and analyse bluff-body flows primarily using

DNS and IBM. At the Institute for Atmospheric

Physics (DLR Oberpfaffenhofen), aircraft wahe

vortices are investigated, including their inter

action with atmospheric boundary layers and

ground effects. These applications demon

strate MGLET‘s excellent nurnerical efficiency

and adaptability to the diverse hydrodynamic

problems.

Continuous improvement ofits parallel scalabil

ity has been, and will rernain, critically important

for the MGLET development programme, as ii

allows us to simulate ever-more realistic and

engineering-relevant turbulent flows at an ade

quate resolution ofmotion. For example, there is

a trend rowards higher Reynolds numbers, more

82

inSiDE Autumn 2017

