Performance Optimization of a
Multiresolution Compressible Flow Solver

Currently, biotechnological and biomedical pro-
cedures such as lithotripsy or histotripsy are
used successfully in therapy. In these meth-
ods, compressible multiphase flow mecha-
nisms, such as shock-bubble interactions are
utilized. However, the underlying physics of the
processes involved are not fully understood.
To get deeper insights into these processes,
numerical simulations are a favorable tool.
In recent years, powerful numerical methods
which allow for accurately simulating discon-
tinuous, compressible multiphase flows have
been developed. The immense numerical cost
of these methods, however, limits the range of
applications. To simulate three-dimensional
problems, modern high-performance comput-
ing (HPC) systems are required and need to
be utilized efficiently in order to obtain results
within reasonable times. The sophisticated sim-
ulation environment “ALIYAH,” developed at
the Chair of Aerodynamics and Fluid Mechan-
ics, combines advanced numerical methods—
including Weighted Essentially Non-Oscillatory
{(WENOJ) stencils and sharp-interface treatment

(Level-Set) in a Multiresolution Finite-Volume
FrameworkR with Total-Variation-Diminishing
(TVD) Runge-Kutte (RK) time integration—to
solve the Euler equations for compressible mul-
tiphase problems.

Exemplarily, the simulation result of a collaps-
ing gas bubble near a deformable gelatin inter-
face is shown in Figure 1. This configuration
mimics the dynamics of an ultrasound-induced
gas bubble near soft tissue as model for in vivo
cavitation effects. The bubble collapse is asym-
metrical and induces a liquid jet towards the gel-
atin that eventually ruptures this material. The
detailed understanding of such phenomena is
the overall scope of our research.

The baseline version of ALIYAH runs a block-
based MR algorithm as described in [5]. The
code is shared-memory parallelized using Intel
Threading Building Blocks (TBB). The perfor-
mance crucial (parallelizable) loops are distrib-
uted among the threads using the TBB affin-
ity partitioner. Thus, the load is dynamically

Fig.1: Bubble collapse near deformable Gelatin interface: Interface visualization from simulation with ALIYAH.

Vol.15 No.2

78

re-evaluated every time the algorithm reaches a
certain function.

Much of the computational cost in the consid-
ered simulation comes from the modeling of the
interface between fluids. In our approach the
interface is modeled by a conservation ensuring
scalar level set function [1], and the interactions
across the interfaces need to be considered; this
is done with an acoustic Riemann solver which
includes a model for surface tension [3]. For the
non-resolvable structures—i.e., droplets, bub-
bles, or filaments with diameters close to the cell
size of the finite volume mesh—scale separation
of [4] is used.

Performance and scalability test cases
The simulation tests were performed for two
cases: A small generic case ("synthetic case”),
which executes all methods described in the
previous section but with a coarse resolution of
only 4096 cells, and the second case (“restart
case”), which is a real-application case with a
high resolution in all three spatial dimensions.
Duetoits long run time, only one timestep of this
case is analyzed.

The restart case scenario uses an axis-sym-
metric model, to simulate cylindrical channel
geometries in a Cartesian grid. The simulation
is conducted with a quarter-model of the full
problem; i.e, the Y- and Z-planes are cut into
halves with imposed symmetry conditions.
Since a full simulation’s runtime is too large to
be profiled, the measurements are obtained for
just one timestep on the coarsest level. To still

capture a relevant and representative timestep,
the simulation is advanced until time ts = 3.16us

without profiling the code. The corresponding
physical state of the bubble break-up is shown
in Figure 1,

P: 1.0E+05 2.0E+07 4.0E+07 6.0E+07 8.0E+07 1.0E+08

Fig. 2: Pressure distribution P in Pa and mesh resolution

(shown are blocks - each consisting of 16 cells) during
the bubbie break-up in the Restart Case at time ts.

Code analysis

We conduct our analysis and optimization on a
dual-socket Intel Xeon E5-2697 v3 (codenamed
Haswell). Computational results are presented
for an Intel Haswell system at 28 cores. The pro-
cessor has 2.6 GHz frequency, 32 KB/256 KB L1/
L2 caches and 2.3 GB RAM per core.

With the baseline version of the code the two test-
cases—restart case and synthetic case,described
above—were simulated in a wall clock time of
589 seconds and 666 seconds, respectively.

inGiDE | Autumn 2017

To find promising starting points for code opti-
mization, a node-level analysis is performed
using the Intel VTune Amplifier. To reduce the
amount of collected information the Amplifier
analysis as well as all subsequent optimiza-
tion runs are performed using eight threads.
The hotspot analysis for the restart case is pre-
sented in Figure 2 and for the small synthetic
case in Figure 3.

Hence, a focus is laid on the non-straight-for-
ward optimization of the get_subvolume and
check_volume functions.

An essential ingredient to utilize HPC architec-
tures efficiently is the usage of single instruc-
tion multiple data (SIMD) instructions in the
computationally intensive parts of the code.
SIMD instructions allow processing of multi-

ple pieces of data in a single

|

CPU Time =)

step, speeding up throughput

Function/ Call Stack

I» LevelSetCell get_subvolume

b SolverSpace::initialize

(benchmarky).

Effective Time by Utilization¥
Bide JPoc LOF PI... POve

5.0% D

Fig. 3: Bottom-up view of the function call stack for the Restart Case

for many tasks. Compilers can
auto-vectorize loops that are

p LevelSetCell::check_volume 13.5% (s . .

= | considered safe for vectoriza-
b SoiverSpace:: WENOS5_P | 7.4%))
» SolverSpace: WENO5_M 6.2% IS tion. In the case of the here-used

Intel compiler version 16.0, this
happens at default for optimiza-
tion levels -O2 or higher.

;< [l

CPU Time ™

Function/ Call Stack | Effective Time by Utilization? '~
I;‘ fidi §Poc (O I... POve

To analyze the auto-vectorized
code the Intel Advisor XE tool

b SolverSpace:: WENO5_P

FFig. 4: Bottom-up view of the function call stack the Synthetic Case.

One can clearly identify the functions get_
subvolume, check_volume, and WENOS5_* as
the hotspots. The optimization of WENO5_*
requires only small reorganization of the corre-
sponding source code. In contrast to the WENO
methods, the time spent in the get_subvol-
ume function does not increase linearly with
the problem size (c.f, relative time spent for the
small synthetic case and the larger restart case).

Vol.15 No.2

1229 NN [i used The analysis revealed

P SolverSpace:WENOS_M 101 I o -

» SoiverSpace::Initialize | 7.9% IR the functions listed in Figure 4
P LevelSetCell.get_subvolume | 5.6% D to be the most time consuming
» LevelSetCaell::check_volume | 52% D

non-vectorized ones. In the fig-
ure, “self time” represents the
time spent in a particular pro-
gram unit and “total time” includes “self time”
of the function itself and “self time” of all func-
tions that were called from within this function.
As seen, the function get_subvolume, which is
called recursively from the function get_volume,
is the most time-consuming non-vectorized
function. In contrast to compilers assumption,
the examination of get_subvolume’s source
code reveals no crucial dependency problems.

79

80

(=] Function Call Sites and Loops

29 [loop in LevelSetCell: get_subvolume at level_set_cell.cpp:602]
415 [loop in (TBB Dispatch Loop at custom_scheduler.h:413)

41¢5 [loop in Meshlevel::Update_tags(Meshlevel&)::{lambda(tbb::bl...
25 [loop in SolverSpace: Initialize at solver_space.cpp:182]

[+¢5 [loop in BlockAndPackageTags::UpdatePackagelnterfacePro...
4 {loop in BlockAndPackageTags::UpdatePackagelnterfacePro ...
41¢5 [loop in LevelSetCell: get_subvolume at level_set_cell.cpp:601]
2 (loop in LevelSetCell::get_subvolume at level_set_cell.cpp:600]

41O [loop in LevelSetN ode::GetincrementForReinitialization at lev...

goooooooag) =

W Vector Issues Self Timew Total Time \

@ 1 Assumed dependency prese... 231.177sll 3810.722s
228.349s @ 231.398s |

@ 1 Assumed dependency prese... 126.556s] 126.656s (

@ 1 Opportunity for outer loop ve... 125.308s 8 125.308s (

¢ 1 Assumed dependency prese... 68.673s1 68.673s |

¢ 1 Assumed dependency prese... 60.704sl 60.704s [

@ 1 Assumed dependency prese... 45.179sl 3855.900s

@ 1 Assumed dependency prese... 39.763sl 3895,6645

@ 3 Assumed dependency prese... 38.644s1 38.644s (

Fig. 5: Survey analysis of the vectorization in the baseline version of ALIYAH.

Results

Since it is a recursive call automatic vector-
ization or OpenMP-SIMD, annotations cannot
be applied directly to the body of the function
get_subvolume. Moreover, due to the presence

of the relatively large amount of nested loops
with small trip counters the declaration of get_
subvolume as “vectorizable” is not an optimal
strategy in this case. On Haswell, SIMD instruc-
tions process four elements (double precision)
at once. This means loops with a trip counter of
two underutilize the vector registers by a factor
of two. It appears OpenMP-SIMD is not able to
collapse the two nested loops and apply vector-
ization automatically. As auto-vectorization fails
even with the usage of OpenMP paragmas we
follow the more aggressive approach, described
below.

The function get_subvolume performs tem-
porary subdivisions of the cubic grid cells
based on linear interpolation to approximate
the volume one phase occupies. Due to the
recursive call with a local stopping criterion
the data flow in each local volume evaluation

is complex. To apply SIMD vectorization, we
combine linear interpolation on several ele-
ments into one call. This is profitable since
the operation on two neighbor grid points is
the same, albeit with different data from the
vector. We program vectorized loops directly
using Intel AVX instructions.

The explicit SIMD vectorization with intrinsics
allows us to reduce the number of micro-opera-
tions from 185 for the baseline version down to
88. The block throughput is also reduced from
48 cycles to 24 cycles. The total time spentin the
get_subvolume function is reduced by a factor of
0.7, which means a gain in performance of 40%.
CPU time of the two functions get_subvolume
and check_volume after optimization is reduced
by a factor of 0.5 compared to the baseline ver-
sion. Moreover, the wallclock time of the AVX
version is reduced to 531 sec and 558 sec for the
restart case and the synthetic case, respectively.
For the whole simulation this corresponds to a
speedup of 11% for the restart case and 19% for
the synthetic cases, correspondingly.

I | AN O e ey

Acknowledgment

The authors gratefully acknowledge the Kompe-
tenznetzwerk flir wissenschaftliches Hochstle-
istungsrechnen in Bayern for the KONWIHR-II|
funding. S. Adami and N.A. Adams gratefully
acknowledge the funding from the European
Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation
program (grant agreement No 667483).

References
[l X.Y.Hu,B.C.Khoo,N. A. Adams, and F. L. Huang:

“A conservative interface method for compressible
flows,”). Comput. Phys., vol. 219, no. 2, pp.553-578,
Dec. 2006.

[2] R.P.Fedkiw, T.D. Aslam, B. Merriman, and 5. Osher,

“A Non-oscillatory Eulerian Approach to Interfaces
in Multimaterial Flows (The Ghost Fluid Method),” J.
Comput. Phys,, vol. 152, pp. 457-492, 1999,

[3] R.Saurel,S. Gavrilyuk, and F. Renaud:

“A multiphase model with internal degrees of free-
dom: application to shock-bubble interaction,” J.
Fluid Mech., vol. 495, pp. 283-321, 2003.

[4] J.Luo, X.Y.Hu,and N. A. Adams:

“Efficient formulation of scale separation for muiti-
scale modeling of interfacial Alows,” J. Comput. Phys.,
vol. 308, pp. 411-420, Mar. 2016.

[5] L.H.Han,X.Y.Hu,and N. A. Adams:

"Adaptive multi-resolution method for compressible
multi-phase flows with sharp interface model and X . | X 5
pyramid data structure,” J. Comput. Phys., vol. 262, Written by Nils Hoppe', Igor Pasichnyk?,

.131-152, Apr. 2014, .
PP-131-152, Apr Stefan Adami', Momme Allalen3, and
NiRolaus A. Adams'

' Lehrstuhl fur Aerodynamik und Stromungsmechanik,
Technische Universitat Minchen,
BoltzmannstraRe 15, 85748 Garching
?IBM Deutschland GmbH,
Boltzmannstrale 1, 85748 Garching
i Leibniz-Rechenzentrum der Bayerischen AkRademie
der Wissenschaften,
BoltzmannstraiRe |, 85748 Garching
Contact: momme.allalen@irz.de

Vol.15 No.2
Bt wimeee o - e

Performance Evaluation of a Parallel HDF5
Implementation to Improve the Scalability of
the CFD Software Package MGLET

82

This paper presents a performance evaluation
for an implementation in parallel HDF5 inside
the MGLET code.

The computational fluid dynamics (CFD) code
“MGLET" is designed to precisely and efficiently
simulate complex flow phenomena within
an arbitrarily shaped flow domain. MGLET is
capable of performing direct numerical simu-
lation (DNS) as well as large eddy simulation
(LES) of complex turbulent flows. It employs a
finite-volume method to solve the incompress-
ible Navier-Stokes equations for the primitive
variables (i.e. three velocity components and
pressure), adopting a Cartesian grid with stag-
gered arrangement of the variables. The time
integration is realised by an explicit third-order
low-storage Runge-Kutta scheme. The pres-
sure computation is decoupled from the veloc-
ity computation by the fractional time-stepping,
or Chorin's projection method. Consequently,
an elliptic Poisson equation has to be solved for
each Runge-Kutta sub-step.

The current version of MGLET utilises a paral-
lel adaptation of Gauss-Seidel solver as well as
Stone’s Implicit Procedure (SIP) within the mul-
tigrid frameworR, both as the smoother during
the intermediate steps and the solver at the
coarsest level. Such separate usage is justified
by the fact that the former is very effective in
eliminating low-frequency error predominant
over the successive coarsening stage of multi-
grid algorithms, whereas the latter can be used
to solve the Poisson problem at the coarsest
level with a broad spectrum of residual error.

Geometrically complex surfaces, or arbitrarily
curved, can be represented by an immersed
boundary method (IBM). MGLET offers several
sub-grid scale models for LES simulation, such
as Smagorinsky’s model, two versions of the
dynamic formulations and the WALE model.
MGLET is written in FORTRAN and the parallel-
isation strategy is based on Message Passing
Interface (MPI).

The code is currently being used by several
research groups: At the Chair of Hydrome-
chanics of the Technical University of Munich,
for instance, turbulent flow through complex
geometries, flow in porous media, and fibre
suspensions in fluid media have been investi-
gated using MGLET. The groups of Prof. Helge
Andersson and Prof. Bjernar Pettersen (both
NTNU Trondheim) use the code to predict
and analyse bluff-body flows primarily using
DNS and IBM. At the Institute for Atmospheric
Physics (DLR Oberpfaffenhofen), aircraft wake
vortices are investigated, including their inter-
action with atmospheric boundary layers and
ground effects. These applications demon-
strate MGLET's excellent numerical efficiency
and adaptability to the diverse hydrodynamic
problems.

Continuous improvement of its parallel scalabil-
ity has been, and will remain, critically important
for the MGLET development programme, as it
allows us to simulate ever-more realistic and
engineering-relevant turbulent flows at an ade-
quate resolution of motion. For example, there is
a trend towards higher Reynolds humbers, more

inSiDE | Autumn 2017

