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1 Introduction and basic formulation

The Finite Cell Method (FCM) is an immersed-boundary method based on higher order shape
functions. The primary goal of the method is to avoid having to generate boundary-conforming
meshes. Nevertheless, it provides high-order convergence rates.

Immersed-boundary methods have been in the focus of research in Computational Mechanics
and Numerical Mathematics for decades. Even if the term “immersed-boundary’ seems to have
appeared in [1] for the first time, similar approaches — such as embedded domain or fictitious
domain methods — were proposed as early as in the 1960s, see, e.g. |2, 3]. Furthermore, XFEM
(eXtended Finite Element Methods) [4] and EPUM (Extended Partition of Unity Methods),
see, e.g. [5, 6, 7], are closely related. A review on immersed-boundary methods is given in
e.g. 8,9, 10]. Common to all these techniques is the idea of embedding a given domain of
computation into a larger one with a simple shape (e.g. a square or a cube), which can be
meshed trivially e.g. in a regular grid. Their difference lies in the underlying discretization of
the unknown variables.

Whereas the large majority of immersed-boundary methods use low-order finite elements or,
in some cases, spectral elements, the Finite Cell Method, which was introduced in [11, 12],
combines the fictitious domain idea with high-order finite elements. To this end, the physical
domain (),;ys is embedded into the fictitious domain {lg;. The resulting €2y can then be
discretized easily, thus preventing a complex mesh generation for Qppys. The original problem
is recovered by multiplying the element integrands with the indicator function a of the domain
1y, as depicted in fig. 1. For points located inside the domain €2y, the indicator function
equals & = 1. Otherwise, it is set to o = 0 or to very small positive values to avoid conditioning
problems. The resulting non-boundary-conforming high-order elements are denoted as cells,
giving the method its name. The benefits of this approach are (as for all immersed-boundary
methods) a dramatically reduced effort for mesh generation and, specific to the FCM, high
convergence rates due to the use of high-order Ansatz functions — which usually leads to
excellent accuracy.
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Figure 1: The idea of the Finite Cell Method: The physical domain €2y, is embedded into the ficti-
tious domain Qgc. The resulting 2 can be discretized easily, preventing a complex mesh generation
for Qpnys. The original problem is recovered by the indicator function « (see [11, 12] for the original
idea, while the picture above is taken from [13]).

The FCM rests on a sound mathematical basis and is able to deliver exponential conver-
gence rates in the energy norm up to a modeling error proportional to /e, see [14] for a
mathematical analysis of a one-dimensional elliptic problem. These favorable properties have
also been verified numerically for a large number of different applications (two- and three-
dimensional).



This treatise is structured into four main sections. This very brief introductory section is fol-
lowed by two sections that are dedicated to the two key ingredients of the Finite Cell Method.
Section 2 lays out the geometric models which can form the basic description of the physical
domain under investigation, and section 3 gives an insight into the type of discretizations
which were recently developed in the scope of the Finite Cell Method. Both of these sections
start with an overview which is intended to give a broader picture and which puts the follow-
ing subsections into context. In order to keep the extent of this treatise within reason, the
subsections cover the related topics as an introduction would — but citing the relevant litera-
ture. The two main sections 2 and 3 then lead up to the final section 4, which is dedicated to
engineering applications of the Finite Cell Method. For selected topics, and in the sense of a
cumulative treatise, these extensions to the Finite Cell Method are presented in detail, which
can be seen as the core of the author’s scientific work in the scope of this treatise.
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2 Geometric models

In the Finite Cell Method, the geometry of the object of interest is described by the function
«, see also fig. 1. This function may have many origins, whereby the following classification
is convenient. o may be:

e generated from explicit geometric models. These can be curves or surfaces of all imagin-
able types — such as explicit, implicit, or parametric functions. Their complexity ranges
from simple surface triangulations, which are e.g. popular for visualization purposes on
graphic cards, to geometrically smoother representations such as NURBS. The latter
are just one popular representative among many other possible spline representations
stemming from Computer Aided Design (CAD) models.

e given by volumetric imaging methods such as Computed Tomographic (CT) scans. Ef-
fectively, « is then represented by a set of discrete values organized in a spatial matrix.

e given in form of point clouds generated from images.

e an unknown function to be computed. Possible examples are topology optimization
or generative manufacturing processes. Herein, the link to more classical phase field
approaches is apparent.

The next section gives a general overview over a broad selection of geometric models for which
the Finite Cell Method has been extended. Specific focus is then given to direct computations
on constructive solid geometry (in section 2.2) as well as flawed (B-rep models section 2.3) by
providing the corresponding journal publications. Section 2.4 then lays out some important
details of how a direct computational analysis on point clouds can be carried out using the
Finite Cell Method, for which a peer-reviewed journal publication is not yet available.

2.1 Overview

The generality with which geometry can be used in the Finite Cell Method was (naturally)
not fully covered in the first publications on the FCM [11, 12], in which implicit analytical
functions (plate with a hole) were used or in which the physical domain was described by
voxels. First extensions were published in [15]. The underlying motivation for this extension
was to apply the FCM to shells that were represented as thin solids. It is still quite challeng-
ing to generate three-dimensional meshes for classic high-order boundary-conforming finite
elements, while two dimensions are, naturally, easier to handle. An extension from two to
three dimensions for the special case of thin solids is published in [16], where a boundary-
conforming meshing of a reference surface in the parameter domain of the geometric model
is proposed. The mesh is then extruded to the third dimension. This proved to be a valu-
able approach, though limited to volumes based on extrusions as well as a fixed number of
shell intersections. Furthermore, the methodology suffers from difficulties caused by strongly
curved boundaries. These can lead to unnecessary local refinements due to involved mapping
procedures in often badly parametrized geometries, and they can cause flipped or overlapping
elements. As a remedy, the application of the FCM to thin solids is proposed in [15], where a
coarse non-boundary conforming computational grid is utilized. This grid is a uniform subdi-
vision of a rectangular patch in the parameter plane. The grid forms the finite cells, which are
then blended' towards those B-spline patches of the CAD model which constitute the upper

by quasi-regional blending



and lower surface of the geometric model. The physical geometry can then be recovered at
integration level by using the trimming curves of the CAD model.

The FCM perfectly complements an alternative approach to integrate analysis and design:
Isogeometric Analysis (IGA) [17, 18]. Its fundamental idea is to use the functions describing
the geometry directly for its computational analysis. This makes sense in the line of its initial
idea — under the assumption that the geometry is drawn in a water-tight boundary conforming
way in which no trimming is necessary. However, trimming can be introduced into IGA by
the FCM. This point is illustrated in fig. 2, which was e.g. presented in [19] to promote the
idea of unifying FCM and IGA specifically for the computational analysis of thin solids.

NURBS model

FEM: generate and compute IGA+FCM: only compute

IGA:

generate new
mesh and
compute:

alternatively:
convert mesh
and compute

Isotopological Analysis?

Figure 2: IGA and FCM in 2011: integration of CAD-CAM from [19]

However, its implication is more general because trimming is commonly used in CAD since it is
inconvenient to compose every geometry out of conforming patches consisting of topological
quadrilaterals or hexahedrals: A designer does not want to draw meshes. Instead, CAD
systems mostly trim patches to represent complicated geometries: a process so natural to the
FCM trimming was introduced to Isogeometric Analysis as a feature on the computational
side of the CAM process. This unification was first addressed in [20]. To this end, B-spline
basis functions spanned on a patch can be used directly as a discretization of the field variables
in the IGA sense, and the true geometry of the system can be carved out using the trimming
curves of the geometric model, see fig. 3.

While many other approaches to trimming in IGA were developed independently at the time,
see e.g. [21], the publication [20] pointed out a further inconvenience in the transfer from
CAD to CAM that was not covered by the initial versions of IGA: trimming of models leads
to changes in the topology of the body, which in turn requires to generate a new computational
mesh. A minimal example is given in fig. 4, where two simple bodies are depicted.
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Figure 3: Trimmed FCM-IGA analysis: (left) NURBS model of the geometry, (center) integration
by octree, (right) eigenvalue computation [20]

They are constructed of the same cylinder, substracted from the same cuboid by application
of the identical corresponding Boolean operation of a difference \ in constructive solid geom-
etry (CSG). In this simple case, not even the trimming operation itself changes. The only
difference is in the positions at which the bodies are located before trimming occurs. Yet, in
a boundary conforming computational method such as IGA (or classic p-FEM), the resulting
mesh topology must be completely different for the two bodies, i.e. a new mesh would have to
be drawn. Instead, if the point of view of the CAD system is directly translated to computa-
tional analysis by means of the FCM, the required point membership test can be carried out
directly on the same CSG-tree used for the Boolean operations to construct the CAD model.

It is long known that boundary representations often lead to non water-tight geometric mod-
els. This flaw was frequently pointed out in several talks concerning IGA. Its most famous
incarnation is the leaking teapot example, which exhibits a gap at the junction of the patch
describing the vessel with the one forming the nozzle. This flaw, among with others, directly
carries over to computational analysis, where gaps unintentionally lead to disconnected bodies
that are unable to transfer fluxes such as forces. To the contrary, a pure CSG design is much
less prone to this type of errors. Additionally, it is not necessary to stick to simple primi-
tive objects such as basic elements in a CSG construction. More complicated primitives can
naturally be allowed, see e.g. fig. 5, which are obtained by sweeps or lofts of two-dimensional
objects along a path.

Robust point membership computations may be defined on these primitives as well, using
ray-tests on their two-dimensional counterparts. The details of these extensions, published
in [22], are laid out in section 2.2, where a water-tight FCM analysis based on extended CSG
geometries is presented. Fully explicit representation of the volume of the geometric model are
used in the entire process — from the design of the model to its computation. Indeed, the main
point of the publication is to demonstrate that issues related to boundary representations may
be avoided completely in the entire CAD to CAM chain by staying within the framework of
constructive solid geometry. An example is depicted in fig. 6, where the results of a direct
analysis of the extended CSG model defined in fig. 5 by FCM are provided.

Unfortunately, this pure CSG approach has its limits: for example, CAD systems require a
reconstruction of the surface of the body, simply for reasons of visualization, and an intersec-
tion (although ‘dirty’ and non-water tight) may be computed faster on explicitly described
boundaries. For these and other reasons, CAD kernels usually maintain B-rep representations



(a) cylinder at two different positions

(b) CSG bodies after Boolean operation

(c) von Mises stresses

Figure 4: Completely different topologies resulting from identical CSG operations — only differing in
the positioning of the bodies relative to each other [20]

in parallel, even if they are based on CSG. Thus, B-rep models continue to be widely used in
the CAD community?.

Despite the CAM community’s efforts to unify CAD and CAM, both are still mostly disjoint.
This is possible because CAM is a downstream application to CAD. It is, thus, rather difficult

ZMoreover, most CAD users are not interested in a volumetric description of the body but rather in its
superficial appearance. Extensions that combine volumetric modeling and surface descriptions in a more
integrated manner have only recently gained attention, see [23]
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Figure 6: Stress computations on extended CSG models [22]

for CAD designers to immediately realize what consequences different modeling choices have
for computational mechanics applications carried out on the same model. Direct connections
between the parametrization of the geometry and the representation of the unknown field
variables (such as displacements in a computational analysis) have further side issues beyond
the problematic features of gaps. For example, singular points in the geometry, such as poles
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(a) STL model (b) Details

Figure 7: Blue lines denote open edges: In many cases, the free edges are fairly close. However, as
can be seen in the detailed views, some of the gaps and openings are quite large.

of a sphere, carry over their singularity to the computational analysis. Because of these and
other issues, the term analysis-aware design [24] was coined.

To the contrary, the FCM offers the possibility to re-interpret analysis-aware design as design-
aware analysis. Surely, the idea of working in CAM with what one obtains from CAD is, by
itself, not exactly revolutionary. An obvious example is that the most common approach to
FE-analysis is to generate a boundary-conforming mesh directly from the CAD geometry.
The underlying problem therein is that, as a consequence, the creation of a mesh relies on the
parametrization of the domain (boundary) itself and fails for flawed models. This dependency
is broken by the FCM. Its idea is to radically disconnect the material description of the
physical space from the description of its primal variables. All that is needed is a robust point
membership test for all integration points in the computational domain.

The key observation is that it is possible to construct such a test even for flawed geometric
models by adding a certain ‘blindness’ to the considered flaws, up to a controllable size within
the point membership tests. This enables a computational analysis on ‘dirty’ (volumetric)
CAD models without first having to heal defects in its topology. Consider the clamp depicted
in fig. 7 as an example on which a classical simulation can not be carried out.

More than 337,000 triangles exhibit a free edge whose roots are gaps between spline patches.
Additionally, a total number of 2,324 triangles are oriented in the wrong direction, and there
are innumerable intersections. Due to the immense amount of flaws, (manual) healing is not
applicable. However, using the approach presented in [25], it is possible to run a simulation
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without healing a single flaw, see fig. 8, for a result of a direct computation on the flawed
model depicted in fig. 7.

Temperature

2.500e+01 634 2.461e+03

1243 1852
) —

Figure 8: Temperature distribution in the bracket due to a point heat source.

Of course, the local accuracy of such computations is limited and proportional to the largest
gap. However, those flaws might not even be situated in a structural engineer’s region of
interest — and the resulting overall accuracy might be good enough for a first design analy-
sis. The point is that a computational analysis can actually be carried out at all. This is
remarkable, especially because the model is actually invalid as no volume is correctly defined.
However, it is only invalid up to the ‘blindness’ of the point membership test, which can be
boiled down to a simple controllable parameter at least for gaps. Furthermore, the FCM can
render the computational model to be absolutely insensitive to other topological flaws in the
geometry, such as overlaps. A detailed discussion of how the Finite Cell Method enables a
direct computational analysis of flawed geometries is given in the publication [26], provided
in section 2.3.

All previously presented geometric models assumed a geometry to originate from a computer
aided design i.e. a designer manually drew an analytic description of the object under inves-
tigation. This may at times be difficult, for example with regard to historic structures with
complex shapes. In these cases, model acquisition may be carried out either by scanning the
object under investigation or by photogrammetric methods. Both are able to provide oriented
point clouds, i.e. a collection of points that represent discrete locations on the surface of the
object. An outward-pointing vector is associated to each point of the object under investi-
gation. This process is called shape acquisition. The most common path to computational
analysis is then to derive a surface model from the point cloud using geometric segmentation
and surface fitting methods. This process is called surface reconstruction. The resulting model
is then stored using standardized geometric representation techniques such as STL, STEP, or
IGES files. This surface description is then used to generate a boundary-conforming mesh.
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Material properties as well as boundary conditions are then assigned, and a finite element
analysis can be carried out.

However, point clouds already provide sufficient information to formulate a reliable point
membership test. Therefore, a computational analysis is possible directly on the point cloud
using the Finite Cell Method. This shortcut in the chain from image acquisition to computa-
tional analysis is depicted in fig. 9 and further discussed in section 2.4.

( Shape acquisition )

Surface reconstructlon)— B N —

m

Mesh generation ) ( Finite cell method )

y

—(Finite element analysis)" )

Figure 9: From point clouds to simulations: the classical path via surface reconstruction and mesh
generation versus a direct computation on point clouds using the Finite Cell Method [27]

Another recent extension of the Finite Cell Method is the possibility of using different ge-
ometric models (CSG, B-rep, and Voxel Models) simultaneously in one computation. Con-
sider fig. 10 where two screws are driven into a vertebra: This situation appears in an or-
thopedic procedure used to stabilize a spinal segment by fusing two vertebrae. The model
of the screw is given by a boundary representation model in form of an STL-file, while the
lower thoracic vertebra is defined by a CT-scan. On the computational mechanics side, each
model is discretized by a non-conforming mesh. The boundary of the physical domain is
only taken into account at the integration level. The FCM discretizations are glued at the
intersection of the physical boundaries using a penalty approach. This work was published
in [28]. This procedure has the interesting additional aspect that the otherwise difficult prob-
lem of computationally representing embedded interfaces, as addressed in section 3.4.1, is
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2.2 Constructive Solid Geometry and the Finite Cell Method

The extensions of the Finite Cell Method to constructive solid geometry are thoroughly laid
out in the following publication.

title:

authors:

published at:

publisher:
year:
volume:
pages:
doi:

Journal Publication

From geometric design to numerical analysis: A direct approach using the
Finite Cell Method on Constructive Solid Geometry

B. Wassermann, S. Kollmannsberger, T. Bog, E. Rank

Computers & Mathematics with Applications

Elsevier

2017

74

1703-1726

https://doi.org/10.1016 /j.camwa.2017.01.027
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Abstract

During the last ten years, increasing efforts were made to improve and simplify the process from Computer
Aided Design (CAD) modeling to a numerical simulation. It has been shown that the transition from one
model to another, i.e. the meshing, is a bottle-neck. Several approaches have been developed to overcome
this time-consuming step, e.g. Isogeometric Analysis (IGA), which applies the shape functions used for the
geometry description (typically B-Splines and NURBS) directly to the numerical analysis. In contrast to IGA,
which deals with boundary represented models (B-Rep), our approach focuses on parametric volumetric mod-
els such as Constructive Solid Geometries (CSG). These models have several advantages, as their geometry
description is inherently watertight and they provide a description of the models interior. To be able to use the
explicit mathematical description of these models, we employ the Finite Cell Method (FCM). Herein, the only
necessary input is a reliable statement whether an (integration-) point lies inside or outside of the geometric
model. This paper mainly discusses such point-in-membership tests on various geometric objects like sweeps
and lofts, as well as several geometric operations such as filleting or chamfering. We demonstrate that, based
on the information of the construction method of these objects, the point-in-membership-test can be carried
out efficiently and robustly.
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1. Introduction

Computer aided engineering in general requires an iterative process to find an optimal design. This iterative
process consists of a modelling phase followed by a numerical simulation and an analysis phase.

Modern CAD tools mainly use two different techniques to create 3D models. A classic method, which is still
commonly used, is boundary representation (B-Rep)[1]. B-Rep describes a body implicitly as a topological
model via its faces, edges, and nodes. Geometric information is then assigned to faces and edges, often using
B-Spline-, or NURBS surfaces and curves. A more recent and natural approach is Procedural Modeling (PM),
which is strongly related to Constructive Solid Geometry (CSG), but extends this concept by providing addi-
tional operations and primitives. Both CSG and PM describe a complex model as a combination of simple or
complex primitives and Boolean operations (union, intersection, difference). Procedural modeling and B-Rep
each have advantages and disadvantages, which are often complementary in such a way that, nowadays, many
CAD systems use a hybrid representation combining B-Rep and PM [2]. In this context, the B-Rep model
provides information necessary e.g. for visualization purposes. PM serves as an underlying model that can
easily be used for parametric and feature-based design [3], for which a description of the construction history,
the dependencies, and the constraints is mandatory. It is noteworthy that it is always possible to derive a B-Rep
model from a PM model, but not the other way round. This is due to the loss of information in the conver-
sion from PM to B-Rep. In addition, B-Rep cannot provide information about the structure of the interior of
the model. However, this information can be crucial, for example in cases of heterogeneous materials or to
describe additive manufacturing processes. Interestingly, fully three-dimensional-computational mechanical
analyses mostly draw the geometrical information of the computational domain from B-Rep models which
are then explicitly converted into a volumetric description by a meshing process. Moreover, in the finite el-
ement method (FEM), elements are required to conform with the physical boundaries of the model, which
often requires a flawless B-Rep description. A practical consequence of these requirements is the often huge
engineering effort to "clean” a CAD model or to "heal’ a finite element mesh before a numerical analysis can
start. At Sandia National Laboratories [4], an estimation of the relative time required for a representative de-
sign process showed that more than 80 % of the engineering effort is allotted to the transition from geometric
models to simulation models that are suitable for analysis.

Various methodologies have been developed to overcome the difficulties involved in this transition process.
The most prominent method in the Computational Mechanics Community is the recently introduced Isoge-
moetric Analysis (IGA) as proposed by Hughes et al. [5]. IGA aims at bridging the gap between the CAD
model and computational analysis by a closer mathematical interconnection between the two worlds. To this
end, the same B-Splines and NURBS representations used to describe CAD are applied as both geometry and
Ansatz functions in FEM. These functions offer several desirable properties such as the possibility of straight-
forward refinements in grid size and polynomial degree, as well as the possibility to control the continuity
within a patch. Most importantly, they guarantee a precise description of the geometry, in contrast to classical
FEM, where only an approximation can be obtained by meshing into tetrahedra or hexahedra. Furthermore, as
B-Splines and NURBS are functions of higher order, they offer the potential to deliver high convergence rates
if the underlying problem possesses smooth solutions. Concerning the modeling processes, IGA was first
applied to B-Reps which consisted of several conforming two-dimensional B-Splines or NURBS patches.
More complicated topologies are usually generated by trimming, which may lead to non-watertight geometric
models. Remedies for this problem range from classic re-parametrization [6] to the use of T-Splines [7].

An alternative, designed to overcome the problems of B-Rep descriptions, are V-Reps, recently proposed
by Gershon et al. [8]. They consist of trimmed trivariate NURBS patches which directly describe the vol-
ume under consideration. A related approach was presented by Zuo et al. [9], who proposed to treat CSG
primitives separately as volumes using IGA and to trim and glue them by using the Mortar Method [10] at
their intersection surface. However, apart from some special numerical pitfalls inherent to domain sewing
techniques, this poses the additional difficulty that an explicit boundary representation needs to be set up for
all inter-subdomain boundaries. Another related approach was presented much earlier by Natekar et al. [11]
who proposed to combine spline-based element formulations with two-dimensional CSG model descriptions.

Journal publication: https://doi.org/10.1016/j.camwa.2017.01.027



https://doi.org/10.1016/j.camwa.2017.01.027 

2.2. Constructive Solid Geometry and the Finite Cell Method

19

However, this approach is also based on heavy use of explicit boundary representations as well as a decom-
position into sub-domains. The same holds also for the design-through analysis procedure presented in [12],
which uses a B-Rep description and relies on a 3D ray-casting test to describe the volume of the model.

This strong reliance on the explicit description of coupling interfaces — or, more generally, surface descrip-
tions in the analysis process — poses a drawback to parametric modeling approaches: Even though a change of
parameters or constraints hardly has any impact on the general structure of the CSG model itself, it often trig-
gers a complete reconstruction of the entire corresponding B-Rep model. Together with the observation that a
CSG or a procedural model is intrinsically watertight and directly provides information about the interior, we
conclude that a desirable simulation technique would have to use the explicit description of volumes by CSG
as often as possible, and its B-Rep representation as little as possible.

To this end, we propose a combination of CSG and the Finite Cell Method for volume orientated modeling
and numerical analysis. We denote this approach as a direct modeling-to-analysis method as it allows, like
IGA, a very close interaction of the (geometric) design process and the (numerical) analysis, where an engineer
can immediately investigate consequences of a variation of the geometric design on the mechanical behavior
of a structural object.

The Finite Cell Method (FCM) [13], which represents the core of this approach, is a high-order fictitious
domain method that embeds an arbitrary complex geometry into an extended domain which can easily be
meshed by a Cartesian grid. The complexity of the geometry is handled only on the level of integration of
element matrices and load vectors. This makes the method very flexible, because the only information the
FCM needs from the CAD model is a reliable and robust point-in-membership test, i.e. whether an integration
point lies inside or outside of the physical model. This point-in-membership test is directly provided by the
CSG model description. The interplay between CSG and FCM was already investigated for simple primitives,
and it proved to be an accurate and efficient method to analyze trimmed NURBS patch structures [14]. The
goal of the present paper is to extend the combination of the FCM and the CSG to more complex geometric
models as well as to solid construction processes of industrial relevance.

This paper is organized as follows: In section 2, a short overview on geometric representations and the Finite
Cell Method is given. In section 3, the relevant methods for the combination of CSG and FCM are presented.
Section 4 provides examples showing the relevance and potential for practical applications before conclusions
are drawn in section 5.
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2. From Geometric Design to Numerical Analysis

2.1. Geometric modelling

In the field of Computer Aided Design (CAD), several different schemes are available to model 3D geometric
objects. Nowadays, 3D CAD systems are usually based on either (i) boundary representation or (ii) procedural
modeling with solid primitives. Next, the two schemes will be outlined — followed by a short section about
the conversion of one into another.

2.1.1. Boundary Representation

Classically, objects are defined by a Boundary Representation (B-Rep), where only the objects’ surfaces with
their corresponding edges and nodes are stored (see fig. 1) [15]. This is motivated by the requirements for
visualization, in the scope of which 3D objects are displayed via their surfaces.

V|
/

Surfaces Edges Nodes
Figure 1: Structure of B-Rep.

Although B-Rep has several advantages, for example the direct access to surfaces, it has also some dis-
advantages, especially with respect to a subsequent numerical simulation. B-Rep models are not necessarily
watertight, which means that a point-in-membership test on these potentially corrupted solids may not be
sufficient to clearly distinguish whether a point lies outside or inside the domain.

Another disadvantage are defective topological descriptions, such as multiple nodes, or edges. Although
such errors do not disturb the visualization, they may render numerical simulations difficult or even impossible.
These ’dirty geometries’ are among to the major reasons for the considerable effort that often goes with
cleaning up a geometric model. This preparation work is necessary to be able to mesh a model into a consistent
finite element model.

2.1.2. CSG and procedural modelling

Alternatively, a 3D object can be described as a procedural model that is strongly related to Constructive Solid
Geometry (CSG) [16]. In CSG, a 3D object is created from a set of primitives, such as cubes, cylinders, cones,
spheres etc. These primitives are combined by the three basic boolean operations: union, intersection, and
difference. The resulting CSG object is stored implicitly in a CSG tree (see fig. 2 ).
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Figure 2: CSG Tree using the three boolean operations: union U, intersection N, difference \ on primitives.

In contrast to CSG, a procedural model stores the construction steps in chronological order as a construction
history. These two different storage schemes, the CSG tree and the construction history, can be converted
one to another. Procedural modeling also comes along with a richer set of operations and primitives, in the
following referred to as extended operations and extended primitives. Extended operations include chamfer,
fillet, drilling a hole, and draft. A closer look reveals that they are in fact just a sequence of the original three
boolean operations — union, difference, and intersection — which are summarized for convenience (see fig. 3).

g

AN

VARERN
Figure 3: Extended operations can be expressed by the classical boolean operations: union, intersection, dif-
ference. The example shows filleting an edge.

However, extended primitives such as extrusions, sweeps, lofts, and solids of revolution can be regarded as
a true extension to the CSG primitive set (see fig. 4).
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BN

Extrusion Solid of revolution

SN " YN

Sweep

Loft

Figure 4: Extended primitives: extrusion, solid of revolution, sweep, loft.

The construction processes of these primitives are all strongly related. On an arbitrary plane, a 2-dimensional
closed contour line is drawn. This is extruded along a sweep path. Depending on the shape of this path, either
an extrusion, a solid of revolution, or a sweep is obtained. Only the construction of a loft differs slightly. Here,
the initial sketch is not just extruded, but is blended along the path into another (final) sketch.

Regarding the aspect of numerical simulation, one big advantage of the procedural model over the B-Rep
model is that it is inherently watertight. All primitives are explicitly described by their volume and always
form a valid closed 3D object. CSG operations combine these valid primitives, and their combination again
results in a valid model.

2.1.3. Conversion between explicit and implicit models

We would like to stress the fact that a conversion from a B-Rep model to a CSG model is usually not possible,
as B-Rep models carry less information. Thus, it is desirable to use an explicit volume description such as
CSG directly for a simulation.

The drawback of the CSG description is that it only provides indirect access to the models’ surfaces, which
might be needed e.g. for visualization. Fortunately, it is always possible to derive an approximate surface
description from the CSG, e.g. by the marching cubes algorithm [17]. This algorithm only needs the infor-
mation whether a point is inside or outside of the model at any point, which is readily available via the CSG
construction tree. Another (practical) possibility is to gather the B-Rep information directly from the CAD
software if needed. This is often possible because many CAD systems maintain a B-Rep model concurrently
to a CSG model and provide direct access to its surface. These derived surface models, even if they are not
perfectly watertight, are a sufficient basis to impose boundary conditions in an analysis by the Finite Cell
Method, which will be described in the next section.

2.2. Finite Cell Method

The finite cell method (FCM) is a fictitious domain approach using high order finite elements. It relies on an
explicit description of the volume of the physical domain and is able to deliver high accuracy [18].
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2.2.1. Classical finite elements

Consider a linear-elastic problem on a physical domain Q,,y with the boundary 6€2 divided into Dirichlet and
Neumann boundary parts I'p and I'y. By applying the principle of virtual work, the weak form of an elliptic
partial differential equation reads [19]

Yu € S(Qphy)

B, v) = F(v) v € V) (1)
with
Bu,v) = f Vv :C: Vu dQppy 2
Qphy
gc(v):f b-Vdehy+ff-vdl"N 3)
Qphy I

where u is the displacement, v the test function, and C the elasticity tensor. b and t denote the body load and
the prescribed boundary traction applied on the Neumann boundary, respectively. S(€2pny) is the trial function
space, which is constructed such that u satisfies the prescribed Dirichlet boundary conditions @

SQpy) =f{u | we H'@uy)u=1 Vxelp}, (4)

whereas V(Qpny) denotes the space of all admissible test functions that satisfy homogeneous Dirichlet bound-
ary conditions
V(@Qpiy) = {V | VEH Q) v=0 ¥ xeTp). (5)

H' denotes the Sobolev space [20] of first order. Both u and v are discretized to yield an approximate solution
using a linear combination of Ansatz functions {N1, N, ..., N,}

w;, = Nu, (6)

where ii; is the degree of freedom of the related Ansatz function ;. Following the Bubnov - Galerkin approach
[21], the test functions v are represented by the same basis as the trial functions v € S(Qpny). This approach
leads to the following system of linear equations:

Ku=f (7N

where K is the stiffness matrix and f the load vector.

2.2.2. Concept of FCM

The original idea of the finite cell method is to extend the physical domain Qp,y by a fictitious domain Qg
such that the resulting domain €, has a simple shape, which can be meshed easily (see fig. 5)[18, 22].

The weak formulation is modified by extending integrals over the domain Q. Additionally, the virtual
work terms are multiplied by a scalar field a(x):

B.(u,v) = f Vv :aC : VudQy, (8)
Qu
ﬁ(v)zf a/b-deU+ff-vl"N 9)
QU FN
8
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I'n
Qﬁct P o = 0.0

Q= Qphy U Qfieq ' J /

+ = —

v a=10

Figure 5: Concept of Finite Cell Method.
with a defined as:
_ 1 Vx € Qphy
= {10—4 Vx € Qi (10)

where, ideally ¢ — oo. In practical applications, it is usually sufficient to choose ¢ = 8 to 10. In essence, the
discontinuous indicator function @ now represents the geometric description of the domain. The convergence
of this scheme is mathematically proven in [23] where it is also shown that the influence of a non-infinite g is
proportional to a (controllable) modeling error.

After discretizing the extended domain Qg into a Cartesian grid, high-order finite elements can be used
for the computation of the displacement field. Several different Ansatz functions for high-order elements are
available, such as integrated Legendre polynomials [22, 24], B-Splines [25, 26], and Lagrange polynomials
[27, 28].

The discontinuity of « necessitates an adaptive integration of the element matrices and load vectors, see
e.g. [29, 30] for a recent overview of possible schemes. The simplest (although not most efficient) choice
is a composed integration by means of an octree in 3D or a quadtree in 2D (see fig. 6) which is used in all
examples presented in section 4.

141
|

Figure 6: Quadtree partitioning of a 2D cell with a partitioning depth of 4. Coloring of quadtree leaves: white
— completely inside, light gray — cut, dark gray — completely outside)

2.2.3. Boundary conditions

In FCM the boundaries of the physical domain €1,y typically do not coincide with the boundaries of the cells
in the extended domain Q. In that case boundary conditions are enforced weakly.
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Homogeneous Neumann boundary conditions need not to be treated in a special manner since they are natu-
rally included in the weak formulation (see equation (8)). Inhomogeneous Neumann conditions can be handled
by integrating the prescribed traction forces t along the boundary I'y (see equation (3)).
Dirichlet boundary conditions, i.e. applying a prescribed displacement u = it Yx € I'p, must be applied in a
weak sense using, e.g., Lagrangian multipliers, the penalty method, or Nitsche’s method, see e.g. [31] [32].
In short, an explicit description of the boundary must only be available where forces or displacements
are imposed (see section 2.1.3). The geometric and topological requirements of these surfaces are much
lower than for mesh-generation as they only need to fulfill conditions for a sufficiently accurate numerical
integration. Therefore, these integration meshes neither have to be conforming or watertight, as it would be
necessary for the basis for a finite element computation.

3. FCM and CSG

3.1. Point-in-membership test

The geometric description of the physical domain is provided by the function @ which is explicitly given by
a point-in-membership test, i.e. if a point lies inside the physical domain p,y or inside the fictitious domain
Qs This test can be carried out on a B-Rep model by ray casting. To this end, a ray is sent out from the
integration point into an arbitrary direction, and all intersections with the surfaces are counted. If the number
of intersections is odd, then the starting point lies inside €1y, otherwise it lies in Qg (see fig. 7). This simple
test, however, can fail for non-water-tight models. Moreover, this approach can become quite expensive for
highly resolved models or models with a complex surface. Even though there are methods available to reduce
the amount of ray castings. !

odd number — inside even number — outside

Figure 7: Ray casting on a B-Rep model.

In contrast, a point-in-membership test can be performed much faster on a CSG tree of classical primitives.
In our implementation the CSG tree is a full binary-tree, i.e. each node has either exactly two or zero child
nodes. There are two different types of nodes: (a) primitives which are always leaf nodes, and (b) bifurcation
nodes which combine their two children with one of the three boolean operations: intersection, union, dif-
ference (see fig. 8). It is also possible to add elements, carrying only one child like unary operations such as
negations, or transformations to the CSG tree. Whereas negations have hardly any application in geometric
modeling of solid mechanics (in contrast to exterior problems, such as fluid mechanics), transformations are
used intensively. To this end, simple transformations, such as translation, scaling and rotation can be handled
directly on the tree nodes, whereas more complex operations, like mirroring, would be preferably represented
by a node, containing the operation and only the respective child to which this operation should be applied.
For a point-in-membership test, first the root node representing the final construction is queried. In the un-

'For example hierarchical bounding boxes, which divide the surface triangles into small chunks. Only if the ray intersects a bounding
box the query is forwarded to the respective next level of bounding boxes and finally to a the relevant chunk(s) of triangles.

10
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likely case that the root node is also a leaf node and, hence, a primitive, this test is carried out directly. In all
other cases, the root element is a bifurcation node. Then, the request is forwarded recursively to its children
until it reaches a primitive, i.e. a leaf node. The pairing leaf node is tested as well. For simple primitives
(treated in section 3.2), this test can be carried out very fast, as an analytical solution is available. Both results
are then combined with the logical operation defined by the parent bifurcation node.
The algorithm can be sped up considerably by the following considerations: Due to the recursive property at
a bifurcation node, the entire branch of the first child is evaluated before the second child is queried. This can
be used with the knowledge that, in case of an intersection or a difference, it is often not necessary to test the
entire tree. Considering a difference

A\B:=PcAAP¢B (11)

i.e. if point P is not in body A, body B needs not to be queried. Hence, entire branches of the CSG tree can be
omitted during the query. The same holds for the intersection. Therefore, it is useful to perform an intersection
test with the bounding box of computationally expensive branches first. This test can be introduced on each
level in the CSG tree.

-

Root node
“ Bifurctation nodes with:
/ \ \ 2 children

1 1 boolean operation

J
N TR
Leaf nodes ‘ / ’ \
Prir(r)lritives ’ \) l / \,

Figure 8: CSG-tree consisting of (a) primitives at leaf nodes and (b) bifurcation nodes at an intermediate or
root node with two children and a boolean operation.

Intermediate nodes

3.2. Point-in-membership test on simple primitives

For classical primitives, a simple analytical description is available. Hence, a point-in-membership test can
be carried out very efficiently. Consider a primitive B; which is created axis-aligned on the x — y plane, and
assume that we define each primitive as a closed body, i.e. the boundary is included in the body. The test
whether a point of interest P = {x, y, z} is inside a primitive reads as follows for a:

o Sphere with center point Csppere and radius ro

Pe BSphere iff ”ﬁSphere”Z < ro, (12)
o for a Cuboid defined by two corner points lying on its diagonal Pgart = [X5, Vs, Z5] and Pendg = [Xe, Ve, Ze]

PeBcuwoia iff  x€[xs,x ] Ay €ys,yel Az € [zg 2], 13)

e for a Cylinder defined by its center point Ccylinder = {Xc, e, Ze = 0}, radius ro, and height A

P e Beyiinder iff  [PCoylinderll < 70 A 2 € 26, 2¢ + o) (14)

11
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where point P = {x, y, 0} is the projection of point P onto the x — y plane,

e a Cone Frustum with the same set up as for the cylinder whose bottom and tip circles are concentric
with radii ry and ry

P € Bcone iff ”PCCOHCHZ <r(z) Az € [2e,2c + hol (15)

with
ry—ro

r(z) =

7+ 0. (16)
If the radius rq is chosen to be zero, a complete cone is obtained.

e and a Pyramid Frustum with a corresponding set up to that of the cone frustum. The rectangular
bounding box at the bottom [x;9, Xe0], [Vs0, Veo] and on the top [Xs1, Xe1], [Vs1, Ye1] have the same center
point.

P € Bpyramia  iff X € [x5(2), X (DI Ay € [¥5(2), ye(D)] A 2 € [2e5 2¢ + ho] (17)
with
Xs1 — Xs50

x5(2) = =7+ xy0 (18)
ho

and x.(2), y5(z), ye(z) correspondingly. If x5 = x.; and ys; = y.; the pyramid frustum becomes a
complete pyramid.

There are also fast analytical solutions for other primitives - such as wedges, four-sided pyramids, or tori —
available.

In general these primitives are not constructed axis-aligned to the x — y plane. At a suitable position, a local
orthonormal coordinate system A (A1, Ay, A3) is thus constructed, where A; denotes the respective base vec-
tors. The oriented primitive can be constructed on the local Aj-A» plane,. To perform a point-in-membership
test, the point of interest P needs to be mapped from the Cartesian coordinate system E (E;, E,, E3) to the
local base A.

P=TP+v (19)

with v the translation vector between the origins of the Cartesian E and local basis system A

v=04 -0 =04 (20)
and the transformation matrix
Alx A2x A3x
T =|A1, Ay Az . 21
Alz A2z A3z

3.3. Point-in-membership test on extended primitives

Point-in-membership tests are more complex, if the primitives are generated by sweeps or lofts, where no
analytical tests are available in general. Nevertheless, it is possible to perform a fast, reliable test on these
geometries as well. The basic idea is to reduce the dimension of the problem, taking advantage of the fact that
these extended primitives are constructed by moving 2D sketches along a curve.We remark that these sketches
are planar which corresponds to the options available in common CSG modeling tools such as Autodesk®
Inventor® and Siemens NX®. The fallback to two dimensional point in membership tests does not compro-
mise robustness because it is much easier to construct such tests in two- than in three dimensions. In the

12
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subsequent sections we present a fast and robust point in membership test based on ray casting. Other robust
alternatives such as a classic winding number test [33] are possible as well.

3.3.1. Coordinate systems

In the following two local basis systems are introduced. First, the local basis A(¢), which belongs to the curve,
e.g. the Frenet base, and changes according to the (sweep or loft) path variable £. Second, the local basis B(¢)
of the sketch. This basis B(¢) and so the sketch change accordingly to the curve basis system A(¢) and thus
depends also on &.

A® (AI®, Ad). As©) (22a)
B() (Bi1(¢), By(&). Bs(4) (22b)
Bs(&)

E3

E, Bs(o)

B>(o)

E,

Figure 9: Coordinate systems: (a) Cartesian basis E. (b) Local coordinate system A(¢) of the sweep path C(¢)
(c) Local coordinate system of the sketch B(¢).

3.3.2. Sweeps

As depicted in fig. 4 most extended primitives can be ascribed to sweeps. Thereby a 2-dimensional sketch is
’swept’ along a 3-dimensional path, forming a 3D object. C(¢) denotes the point on the sweep path C at the
local path coordinate £. The following steps describe a point-in-membership test for a point of interest P and
a sweep for the special case that (i) the local basis A(£) equals the basis of the sketch B(£) and (ii) the local
basis system A(¢) follows the tangent of the path with a suitable description, e.g. the Frenet base. For the
general case, see appendix A.l.

13
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e The closest point C(¢,,) on the sweep path with respect to the corresponding point of interest P, is
computed either analytically, or, if this is not possible, using Newton’s method to find a root of the
function

£© =C©)-(P-C@)=0. (23)

f(&) is the dot product between the tangent vector C(£) and the vector pointing from a curve point C(£)
to the point of interest P. Provided that a suitable starting value is available Newton’s method then
JH1N.

iteratively delivers the corresponding coordinates 55.;1 of ever closer points C(&;,,

f€y o (CEl) P CEy)
f&y 7T CE) @@y +1CE)R

JHl _ g
Scp _fcp_

(24)

where C and C denote the first and second derivative of the sweep path C. The minimal requirement
for continuity of the sweep path is C!.
Remarks:

(i) In our implementation the initial values are found by evaluating the distance to the points of an
approximation polygon.

(i1) It is possible that eq. (23) has multiple solutions. Among the corresponding points on the curve
C(¢&;) the one with the smallest distance to the point P has to be chosen.

(iii) There is the unlikely possibility that eq. (23) delivers multiple solutions C(¢;) with all the same
distance to the point P. For sweeps it does not matter which of theses points is selected to be
C(&cp)- This, however, does not hold for lofts (for a more detailed explanation refer to fig. 10).

(iv) Non-linear cases are possible, where C? can not be provided, i.e. the curvature is not continuous,
or worse cannot even be evaluated (e.g. knot-multiplicity for splines). For that reason we suggest
to compute the first derivative f (see eq. (24)) by finite differences.

.ijfz)

- Je@
CEn S

"«>Cb(52) —AE)

@
O S

h :f:o:::P./

) ; L AGD)

a) - AE) b)

Figure 10: Multiple solutions for eq. (23) C(¢;) with the same distance to P. For sweeps the sketch on plane
A(¢)) coincides with the sketch on plane A(&). Hence, it does not matter on which plane the
point-in-membership test is carried out. However, for lofts (see section 3.3.3) the intermediate
sketches are interpolated according to the arc length. In this case, the sketches at A(£1) and A(&7)
will be different. Consequently all solutions for eq. (23) must be evaluated. The point is defined to
lie inside if one sketch delivers this result. However, these cases occur only in the unusual cases,
where the thickness of the body is large compared to the curvature (see case a)). More likely is

case b) where all ambiguous solutions for eq. (23) lie outside.

e The closest point C(&.,) forms the origin of the newly created local coordinate system A(&,). To this
end, the tangent vector of the curve is evaluated at C(£.,) and provides the z-axis of the local system
A(&.p) using e.g. the Frenet base. Other alternatives are possible and presented in appendix A.1.

14
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e The point of interest P is mapped into the local coordinate system A(¢,,) to get P where P, = 0 (see
eq. (19)).

e For the case that the local system A(¢) coincides with B(£), a point-in-membership test can be performed
with the mapped point P and the sketch contour line as the boundary. To this end, 2D ray casting is
used.

Remark: A considerable speedup, especially for spline contour lines, can be achieved if the sketch is
modeled as quadtree of certain accuracy (similar to fig. 6) for each extended primitive. This can be
carried out once at the beginning of the analysis phase.

3D: Cartesian coordinates

a) b)

2D: Sketch coordinates

intersection with contour lines

point outside o mapped point P

c)

Figure 11: Point-in-membership test of a sweep whose local basis A coincides with the sketch basis system
B: (a) Sweep with point of interest. (b) Form local basis A at closest point C(&.,,) and (c) perform
a point-in-membership test on the 2D sketch plane — here, by ray casting with the contour line of
the sketch.

3.3.3. Lofts

Lofts can be treated very similarly to sweeps. Again, for simplicity, the loft path is considered to be orthogonal
to the starting S and ending S ., sketch. For a loft, in contrast to sweeps, the 2D point-in-membership test

15
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must be performed on both the starting as well as the ending sketch. Additionally, the smallest distances to
both contour lines dy and d,,4 are calculated. If the mapped point P lies inside one sketch and outside the
other, the distance to the intermediate contour line d., is interpolated according to the arclength /., of the
closest point on the loft path (see fig. 12) and the overall length of the loft path /,;. In our implementation,
linear interpolation is used. The distance to the point outside is set negative and, thereby, according to the sign
of the interpolated distance d,,,, the point is outside for negative and inside for positive values. For the linear
interpolation, the point-in-membership test reads

P e By iff di>0 (25)
with

+ (dend - dO)
lall

dep = dy

lep- (26)

Lann

Sep

Figure 12: Point-in-membership test on intermediate sketch S, of a loft.

3.4. Ray-casting with Splines (in 2D)

As presented in fig. 11, a point-in-membership test can be performed with ray-casting on a dimensionally
reduced model, i.e. in 2D. This is by far simpler than carrying out ray-casting in 3D. On the two-dimensional
intermediate sketch, a ray from a point that is definitely outside of the domain P,y to the point of interest
P is cast forth, and all intersections with the contour curves are counted. Possible elements for the contour
lines are straight lines, arcs, or splines (B-Spline, NURBS). Problematic are the unlikely cases, in which the
ray intersects the contour at a corner point (see fig. 13(a)), or in which the ray is collinear with a contour line
(see fig. 13(b)) as the point membership is ambiguous. However, these cases can easily be detected and the
algorithm simply changes the position of the reference point Py;.
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b) O Pout

Figure 13: Problematic ray cast scenarios, where a) the ray intersects at a corner point and b) the ray is
collinear with a contour line. However, a simple shift of the reference point (Poy — Poy) can
resolve these problems.

While there are analytical solutions to find the intersections of the ray and a line or an arc, the evaluation
of the number of intersections between a ray and a spline is not straightforward (see fig. 14). These inter-
sections can be found using a brute force method, which performs an intersection search with a fixed set of
initial parameter values along the ray. This is very inefficient, as it is necessary to perform several closest
point searches, containing several inverse mappings onto the spline, for each intersection search. Moreover,
most of the initial values will find the same intersection points and, furthermore, it is not guaranteed that all
intersections are found. Typically, Newton’s method is used for the inverse mapping. Newton’s method is
highly dependent on the initial value. Hence, two intersections lying close to each other might be detected as
only one intersection. A robust and efficient way to obtain all zeros of Bézier curves with their multiplicity
is presented in [34]. However, the algorithm presented therein is specific to Bézier curves and not tuned to
deliver the parity (i.e. whether the number of intersections is odd or even) of the intersections. The algorithm
presented in this paper can use any spline description such as Bézier curves, B-Splines or NURBS. Moreover,
as only the parity of intersections is needed, in most cases, an evaluation of the intersection points is not nec-
essary. In this context, an efficient and robust method to find the parity of intersections of a (ray) line and a
spline is depicted in fig. 32 and algorithm 2.

As only the parity of intersections is needed, the convex hull property of the splines can be used. Let us
consider cases a) and b) in fig. 14. In these cases, the ray segment (between the point of interest P and the
point outside the model Poy) has the same number of intersections as the infinite ray and, thus, determines
the parity. This is due to the convex hull property which guarantees that the amount of intersection points
between a line and a spline cannot be larger than the amount of intersections with a line and the spline’s
control polygon. There can be less intersections, but this does not change the parity of intersections.

The cases c¢) and d), as depicted in fig. 14, are more sophisticated. Here, the ray segment rg, and an infinite
ray ripr do not have the same number of intersections and, hence, it is necessary to determine intersection
points of the ray with the spline. To this end, suitable starting values are needed for the Newton iteration. For
the determination of these starting values several possibilities are available. One possibility is presented in
appendix A.2. For simplicity of formulation, we assume that the ray corresponds to the positive x-axis. In
other cases, a suitable transformation to a local coordinate system is performed (see appendix A.2). All zeros
which fulfill the following property are intersection points with the spline, and their number determines the
parity for the ray cast.

The cases e) and f), depicted in fig. 14, where the rays intersect with the line segment between the first and
last control point (in the following denoted as ljos.) are covered by an additional intersection test of infinite
ray and line l¢jose. This, of course, leads to a different parity from the (finite) ray segment, and hence results
in an expensive inverse mapping. Thus, it desirable to choose the point P,,; in such a way, that the cases e)
and f) are seldom. The best choice is to place the point P,,; on to the line l.jose (see fig. 14(g) and (h)). This
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| a) Py b) " Pout C)

P d)

infinite ray riy¢

— ray segment I,

line between first and last control
POint lclosc

P,y point certainly outside

T Pout P point of interest

Figure 14: Different ray-cast scenarios: (a) Intersection only with control polygon. (b) Same number of in-
tersections with spline as with control polygon. (c) Point between control polygon and spline (d)
Point inside. In cases (e) and (f) a sole count of intersections with the control polygon will fail. To
this end the infinite ray is also intersected with a line segment between first and last CP. At cases
(g) and (h) the point outside P, is set to be on the closing line Ljoge, thus, avoiding in most cases
an expensive full intersection test.

might however not always be possible. In this context consider a contour, which is constructed of more than
one spline. Even for the simple case of two splines, where most likely an intersection point of both closing
lines exist, i.e. leose; N lelose, # O it is not guaranteed that this point also lies outside of the domain. In these
cases the point outside will be set on l¢jose Of One spline, hence avoiding the expensive point-in-membership
test at least for one spline.

4. Numerical examples

In this chapter, we present three different examples, which are created with extended primitives and extended
operations. They are designed to provide an overview of the possibilities of the modeling approach presented
in this paper.

4.1. Sweep example

The first example involves a coil spring, which is constructed using sweeps (see fig. 15). The spring is
constructed by three primitives, which are combined with two union operations. For all three bodies, a circle
sketch with a radius rgeich = 1 1S swept along the corresponding sweep path which, for the bottom and top
torus, is again a circle of radius riorys = 10. Bottom and top tori are aligned to the x — y plane and located at
Zbottom = 0 and ziop = 24, respectively. The computational domain ranges from z = 0 to z = 1, thus clipping
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bottom and top tori into half-tori. The sweep path of the coil is described by a helical NURBS of degree p = 2,

the knot vector
U=10001,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11, 11,12, 12,12] ,

and the 3D control points with weights w; = 1 or wy = \/Li

Xi 10 10 0 -10 -10 -10 0 10
p.— |2 0 10 10 10 0 -10 -10 -10
"zwlTl0o 1 2 3 4 5 6 7

wi w1 w2 Wwq wo wi wy w1 wo

10 10 0 -10 -10 =10 O 10
0 10 10 10 0 -10 -10 -10
§ 9 10 11 12 13 14 15
wip Wy wi wo w1 wo wq wo

10 10 0 -10 -10 -10 O 10 10
0 10 10 10 O -10 -10 -10 O
16 17 18 19 20 21 22 23 24
wyp Wy wp wo wi wo w1 wo w1

Figure 15: Coil spring model: Depicted are the finite cells (red) on the one side and the octree partitioning
with a refinement depth of k = 4 on the other side (light gray), respectively, for top and isometric

view.

For the simulation, we choose 4x4x24 finite cells with integrated Legendre shape functions and a polyno-
mial degree of p = 7 in the trunc space [24]. Cells that are located completely outside the coil are deactivated,
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reducing the number of active finite cells from 384 to 134. The integration of the element matrices is carried
out using an adaptive octree, whose maximum partitioning depth is preset to k = 6.

In this model, strong Dirichlet boundary conditions are applied at the top and bottom faces of the model,
which correspond to the boundaries of the finite cells. The degrees of freedom here are fixed in all directions,
except for the vertical displacement on the top face which is predefined by @i, = —5. Figure 16 shows the
resulting displacement and the von Mises stresses, which provide a good overall insight into the structural
load carrying behavior. They are smooth throughout most part of the domain and exhibit singular behavior
at the intersection curves of the top and bottom tori with the coil. As in any finite element computation,
an accurate solution of local stresses at singularities can not be accurately resolved without an appropriate
refinement. A local refinement is not carried out for this example, but it is possible, e.g. by application of the
multi-level 4p-method recently proposed in [35].

Displacement Magnitude von Mises Stresses
5.00 20.00

3.75 15

=10

=
looo

Figure 16: Displacements and von Mises stresses of the coil spring under predefined top displacement of
i, = -5.

It is noteworthy that only the CSG model is used in all involved steps, i.e. from the set-up of the model
until the computation itself. A conversion from the CSG-model to an explicit B-rep is only carried out for the
visualization of the results in the post-processing. Here, the marching cubes algorithm [17] is used to derive a
triangulated surface on which the results are post-processed. However, even this conversion for visualization
is not mandatory as volumetric post-processing is a possible option as well.

4.2. Loft example

The second example is a pipe elbow starting with a circular profile and ending with a rectangular cross section.
It is constructed as a procedural model and then transformed to a CSG tree (see fig. 17). It combines several
simple primitives (cylinders and cuboids) and two lofts along a quadratic B-Spline loft path. The dimensions
of the example are depicted in fig. 18.
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Figure 17: CSG tree of loft.

Figure 18: Dimensions of the loft.

Again, two models are created to show another advantage of the FCM and its capability to use the explicit
volume description of CSG models. In parametric design, even a slight change of few parameters may result
in a re-meshing of parts, or even the entire model. In this example, the position of one control point of the
loft path is changed. This results in a slightly different model (see fig. 19). As this only leads to a change in
the geometry, not in the topology, the mesh for a FEM-simulation does not necessarily require a re-meshing
— but it could be morphed. However, in the proposed work-flow, the change in the geometry does not need
any special treatment: As it is only the loft path that changes, the same CSG-tree can be used with the same
computational mesh. The change of the geometry is resolved on the integration level, leading to a different
composed integration.
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a)
Figure 19: (a) Loft path of the first model. (b) Loft path of the second model.

The resolution of the model is chosen to be 20x15x20 cells with integrated Legendre shape functions and a
polynomial degree of p = 5. As in the previous example, it is sufficient to consider cells that contain parts of
the physical domain. The base plate (round, blue) is fixed, and a predefined deflection @ = 1 is applied onto
the left base plate (rectangular, red) using strong Dirichlet boundary conditions. For a precise integration of
the stiffness matrix, the cells are partitioned with an octree to a maximum depth of five subdivisions.

Figure 20 shows the finite cells embedding the structural model and the computed displacements for both
examples. The von Mises stresses are depicted in fig. 21.

Displacement Magnitude

a) b)

Figure 20: Displacements for the (a) original example and the (b) modified example.
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von Mises Stresses
2.000e+02

0.000e+00

a) b)
Figure 21: Von Mises stresses for the (a) original example and the (b) modified example.

As pointed out before, a geometrical change does not influence the proposed work-flow. In this case, even
a topological change has hardly any impact. In a classical FEM-simulation, however, a re-meshing of the
affected region would be required. A simple modification of the model is applied to illustrate a topological
change. The number of holes in the rectangular plate is set to (i) six in the first and (ii) four in the second
case. A Neumann boundary condition is applied to the holes - via added washers at each hole. The loaded
surfaces of the washers are automatically recovered using the marching cubes algorithm. A pressure of p = 1
is deployed to the upper row of washers, and a pressure of p = —1 to the lower row, inducing a moment onto
the rectangular plate (see fig. 22).

a) b)

Figure 22: Different topological models: (a) Rectangular plate with 6 holes (b) and 4 holes.

Figure 23 shows the displacements and fig. 24 von Mises stresses at the rectangular plate for the two
topologically different examples.
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Displacement Magnifude
0.020

b)

Figure 23: Displacements at the rectangular plate for the (a) first example and the (b) second example. (Dis-
placements scaled by a factor 200)

von Mises Stresses
3.000

Eo 750
b) 0.000

Figure 24: Von Mises stresses at the rectangular plate for the (a) first example and the (b) second example.

a)

4.3. Extended operations example

The third example deals with commonly used extended operations. Starting from a cube, four edges are
chamfered, two edges are filleted, three holes are drilled, and one shell operation is applied (see fig. 25).

As mentioned in section 2.1.2, the extended operators fillet, chamfer, and drilling a hole are just a com-
bination of the original three boolean operations. Shells, however, are not a straightforward extension. The
shell operation is applied to one surface, caving the volume while keeping a defined wall thickness to all other
surfaces. In the present model, it is possible to manually model the shell operation with a set of Boolean
operations and additional primitives by user interaction. This, however, is not straightforward for more so-
phisticated cases.

Two almost identical models serve to show the capability of the FCM. In the first model, the (solitary) borehole
1 is created by subtracting a cylinder. In the second model, the hole is created by two extruded half cylinders,
which are shifted by 0.05% w.r.t. to the extension of the entire model (see fig. 26). This shift does not have any
significant influence on the results of the simulation, but it does lead to a considerable increase in the effort
needed for the classical FEM, where body fitted meshes must be used. Figure 27 shows a mesh created by
Netgen [36] and the different refinements in the region around the holes. Although the shift is very small and
only applied at one hole, the mesh of the second model has around 18 times more elements. Moreover, many
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Borehole 2 Borehole 3

Fillet

/7

Shell

\

Borehole 1
Chamfer

Figure 25: Extended operations applied on a cube: chamfer, fillet, drilling a hole and shell operation.

elements are very badly conditioned. Even if this mesh represents the ’exact’ geometry of the CAD model, it
is very probable that it is not the intended finite element discretization. Similarly, there are often seemingly
unmotivated refinements in practical applications, which is why considerable engineering efforts have to be
made to remodel a structure before an efficient numerical analysis can be carried out.

Figure 26: For drilling the borehole 1 in the second model: Two slightly shifted cylinders (Shift here not to
scale!).
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a) c)

Figure 27: Model meshed using Netgen [36]: (a) Global view of the mesh, (b) refinement around the hole,
which is constructed by two slightly shifted half-cylinders and (c) refinement around a hole without
the (unnecessary) geometric detail.

For the FCM simulation, 10x10x10 finite cells using integrated Legendre polynomials of degree p = 5
and a octree partitioning depth of k = 4 are used. Again, the lower face is fixed, and the top face is displaced
downwards by a value of dz = —0.5 using strong Dirichlet boundary conditions. Figure 28 shows the displace-
ments and von Mises stresses of the model. A close-up of the displacements and von Mises stresses around
the shifted hole is depicted in fig. 29. The results of the FCM computation for the two models (full cylinder
versus two shifted half-cylinders to create borehole 1) are identical up to machine precision (10~), proving
that the proposed method is robust against imprecise CAD modeling.

Displacement Magnitude
5.000e-01

EU.375

025
EU.WZS
0.000e+00

Figure 28: Displacements with active cells and von Mises stresses
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Figure 29: Close up at borehole 1: (a) Displacements and (b) von Mises stresses

5. Conclusions

For the industry, integrated design processes and numerical analyses without complex transitions such as
meshing are of high relevance, and many research groups have focused on this topic during the last years.
While Isogeometric Analysis provides an excellent method for the numerical simulation of boundary rep-
resentation models and shell-like structures, this paper focused on models created with Constructive Solid
Geometry. A method has been presented that leads straight from CAD modeling to a numerical simulation
using CSG and the Finite Cell Method (FCM). FCM is able to use the implicit model description provided
by the CSG model directly, which simplies the meshing process significantly. It was shown that point-in-
membership tests can be carried out efficiently for extended primitives like sweeps, bodies of revolution, and
lofts. Also, extended operations such as fillet, chamfer, and holes can be applied to the model easily. Using
FCM as a simulation technique that can deal with the explicit geometry description of CSG models has several
advantageous properties. Following the design-through-analysis idea, a meshing step can be skipped. Also, as
the CSG is inherently watertight, the geometry does not have to be pre-processed. Furthermore, CSG provides
information about the interior of the models.

Although CSG modeling does not support the modeling of free form surfaces and objects, it is still possible
to include these as B-Rep primitives to the CSG tree, provided that they are watertight and thereby support a
reliable point membership classification.

Nevertheless, the presented methodology has also some drawbacks. Shell operations require user action and
are typically not straightforward. Another issue is the conversion from a sequential model to a CSG tree. In
our implementation, the CSG tree is constructed parallel to the information input of the sequential model,
resulting in a sub-optimal tree, which is typically of high depth. However, it is possible to rearrange the CSG-
tree in a way that allows to skip many point-in-membership tests. Further challenges are the complex curve
descriptions for sweeps and lofts by B-Splines and NURBS. As no explicit inverse mapping is available, the
point-in-membership test for bodies defined by these curves can become computationally costly. Several ap-
proaches were made to improve the efficiency, among others the improved intersection test on B-Splines and
NURBS (see Chapter 3.4), which can avoid most of the inverse mappings. Also, the adoption of intersections
of primitives with their bounding boxes led to a considerable speedup.
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A. Appendix

A.1. Rotated local basis system

In contrast to the cases presented in section 3.3 the point-in-membership test is more sophisticated for the
following cases (see fig. 30). Case (a) shows a sweep or loft whose sketch plane is not orthogonal to the
sweep path at the starting point C(&p). Nevertheless, the local basis of the sketch B and the basis spanned
by the sweep path A are fixed in a certain relation, i.e. the dihedral angle ¢ between A and B remains
constant along the path. In case (b), the normal of the intermediate sketches does not follow the tangent of the
sweep path, but both starting and ending sketch remain parallel to each other. Finally, in case (c), the normal
orientation of the sketch is only known at the starting and the ending sketch, and it changes along the sweep
path. This latter case is most likely to occur during the construction of lofts where the normal of the starting
and ending sketch often do not have the same angle to the tangent vector.

Al(é:r)

A (&)
B (&)

b)

Figure 30: Considering a sweep or loft: (a) Sketch rotated local basis system of the sweep path under a certain
constant dihedral angle ¢. (b) Sketches always parallel to starting sketch. (c) Local coordinates
system only known for starting and ending sketch.

For these three cases, an intermediate plane cannot be created at the closest point, but must be created in
such a way that the z-coordinate of the mapped point P is zero. The local sketch basis spanned here is denoted
by B(&,).

X
L 27)
P,=0

~ o

P=

In the following, the steps to determine the intermediate sketch basis B(&,) for the three cases are presented.
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Algorithm 1 Case (a): Rotated local basis systems under constant dihedral angle

1:

—_—
- o

_—

15:

16:
17:

18:
19:
20:
21:
22:
23:
24:

25:
26:
27:
28:
29:

30:
31:
32:

33:
34:
35:

36:
37:

R A R

Let & be the parameter value of the starting point of the sweep path

0. Express at &y the base vectors of the sketch B;(&y) in terms of the local base of the path A;(&y).
Comment: This needs only to be done once at the set-up of the sketch
procedure Finp A-B RELATION
Compute 3x3 transformation matrix T = [T1 T, T3]
for all A; do
for all B; do
T;j = Ai(&o) - Bj(éo)
end for
end for

: end procedure

procedure FIND LOCAL BASIS SYSTEM B(&,)
1. Get an initial guess on the sweep path
Get closest point on curve CEO
Store &/° as initial value for Newton iteration

2. Apply Newton’s method to find B(&,) (see fig. 31).
Let d¢ be a sufficiently small parameter increment for finite differences

Lo
Initialize z-coordinate of (first) mapped point of interest |P;| > g
while |P!| > £ do

2.1 Create local basis of sketch B(ff) at f{ ' ‘
Create local basis system of the sweep path A(&)) at C(£)) (e.g. Frenet base)
for all B;(&)) do _ .
Get basis vectors of sketch base B;(&)) = A& T;
end for

2.2 Create local basis of sketch B(f',/ +dé) at f‘,/ +d¢ '
Create local basis system of the sweep path A&l + d¢) at C(&] + dé) (e.g. Frenet base)
for all B;(&/ + d¢) do . ‘
Get basis vectors of sketch base B;(&] + d¢) = A& + d&) T;
end for

2.3 Map point of interest P to local sketch basis systems B(ff) and B(ff + dé).
First mapped point P! = P — B(&))
Second mapped point P2 = P — B(&/ + dé)

2.4 Next Newton step
Newton step &' = ¢/ — P!/ [(P? - P}y [/ d¢]
end while

return B(&/)
end procedure
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By (/)

By (") A&

Initial Newton step jo Final Newton step jenq

Figure 31: For the case that the dihedral angle ¢ between the local path basis A and the local sketch basis B
remains constant: Find the point on the curve C(¢,) so that P, = 0 with P being the point of interest
mapped to local sketch basis B. Starting with closest point on the curve C(£/°), a Newton iteration
is carried out until P, = 0.

Case (b): According to case (a) (Algorithm 1), a local basis system B(&,) must be found such that 2, = 0. In
contrast to (a), the basis B(£,) can be evaluated easier, as the base vectors B;(¢£) are constant along the sweep
path. Only the origin moves corresponding to the curve point C(&)).

Case (c): As the relations between the local basis system of the path A and sketch B are only known at the
starting and ending points C(&p) and C(&,,4), a transformation matrix for both is set-up, T and T4, similar
to case (a)(Algorithm 1). At each point on the path C(¢;) with both transformation matrices Ty and T4, a
local sketch basis is formed BT0(&;) and BT« (&;). The basis vectors B;(&;) are (linearly) interpolated between
BZ.T" (&) and B;.r“”‘f (&;) using the arc-length of the current point, similar to the point-in-membership test for lofts
(see section 3.3.3).
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A.2. 2D Ray casting on spline curves

In the following, an algorithm for ray-casting with splines in 2D is presented. It also deals with the general
case in which the ray does not coincide with the positive x-axis.

£Q, §Q2 £Qs £Q, é‘:QII §Qz ) ng ) £Qq
L o Eend \ ’ ’
flinf, 1 glinl'.}

flim‘.z

P out

Figure 32: Procedure of ray-casting with splines: a) Mapping the control points to the parameter space £q,.
b) Use linear interpolation to map intersection points with control polygon Iiyr  to spline parameter
space £y,,,.. ¢) Perform linear transformation such that the ray lies on the x-axis and perform a zero
search to obtain the intersections iﬁn’k.

Algorithm 2 Spline ray casting

1: Let C(¢) be a spline defined by its control points P;
2: Let n be the number of control points P;
3: Let the ray rjyr and the segment rg, be defined by a point certainly outside Py, and the point of interest P

4: procedure INITIALIZE SPLINE CURVE
5 0. Obtain for each control point a corresponding parameter value (fig. 32 a)).
6: Comment: This needs only to be done once at the set-up of the spline
7 fori:=1ton do
8 Find the closest point Q; on the spline to control point P; using eq. (24)

9 Find corresponding parameter &g,
10: end for

11: end procedure
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Algorithm 2 Spline ray casting (continued)

12:
13:
14:

20:
21:
22:

23:
24:
25:

26:
27:
28:
29:
30:

31:
32:

33:
34:
35:
36:
37:
38:

39:
40:
41:

42:

43:

44
45:

46:

47:

48:
49:

50:
51:
52:

procedure RAY CAST ON SPLINE
1. Find intersection points between control polygon and finite and infinite ray (fig. 32 b)).
Let j and k denote the j-th and k-th intersection of the control polygon with the ray segment or the
infinite ray respectively.
fori:=1ton—-1 do
Find intersection point I, ; between ray segment rg, and control line P;Pj;q
Find intersection point Ijyrx between infinite ray riyr and control line P;Pj, g
end for
Find intersection point Ijprx between infinite ray riys and line segment ﬁ

2. Check for number of intersections for finite and infinite ray.
if # (Is,) equals # (Ijr) then
2.1 Case: Same number of intersections for finite and infinite ray (fig. 14 a) and b)).

return modulus (#_(Izinf))
else
2.2 Case: Different number of intersections for finite and infinite ray (fig. 14 c) and d)).

3. Interpolate starting values for intersection search (fig. 32 b)).
for all Iinf,k do

Get corresponding control line PjPjq

Make a linear interpolation between £q, and &q,,, to get &,
end for

inf k

4. Transform spline and ray to x-axis (fig. 32 c)).
Let 6 be the angle between ri,r and the x-axis
Get transformed ray ¥ = Poutf’ with f’out =0and P = (P — Pout) Tiot(6)
for all P; do
Get transformed control points P, = (P; = Pou) Tror(6)
end for
5. Newton’s method to find zeros of transformed spline (fig. 32 c)) .
for k := 1 to # (&, ) do

Starting value £ = &,

inf,k

. 1
Initialize 'l > e
while |y/| > & do

7

Get tangent vector on transformed spline C(f‘,f).

Newton step 51{” = f)ﬁ - C(f;i)/ C(f‘;f)
end while

. J
Get point on transformed spline C(.f]i) = (xk].

if x/! < P, then

jmd
Append intersection point of transformed spline and finite ray I, x = [ ’]le).
y

k
end if

end for

return modulus (
end if
end procedure 32
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2.3 B-rep and dirty geometries

As discussed in section 2.1, CSG models are only one possible geometric representation.
Alternatively, and actually most commonly, B-Rep models are used which describe volumes
implicitly by means of their boundary. However, B-Rep models are prone to flaws such as
gaps, multiple entities, or other inconsistencies which lead to mathematically invalid volumes.
These pose serious problems for mesh generators and demand healing the flawed geometries
prior to meshing. A correct healing is often a non-trivial task. Yet, under certain restrictions,
it is still possible to construct a valid point membership test for flawed geometries which can
be used in the framework of the FCM. Thereby, healing may be avoided.

A straight forward definition of a flawed geometry is not directly available. The following
publication, therefore, takes the reciprocal approach. First, it carefully lays out what a
valid B-rep description is. Then, operators are introduced which cause typical, specific flaws.
Finally a point membership test is constructed which robustly delivers valid answers for
geometric models to which those flaws have been introduced. This point membership test is
then used in the framework of the Finite Cell Method. The methodology enables a direct
computation on flawed geometric B-Rep models without the need of mesh generation or mesh
healing.
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This paper proposes a computational methodology for the integration of Computer Aided De-
sign (CAD) and the Finite Cell Method (FCM) for models with “dirty geometries”. FCM, being
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1 Introduction

Product development in the scope of Computer Aided Engineering (CAE) typically involves
Computer Aided Design (CAD) and numerical analyses. The life cycle of almost every com-
plex mechanical product starts with the creation of a CAD model which is then converted into a
suitable format for downstream CAE applications such as Finite Element Analysis, Rapid Pro-
totyping, or automated manufacturing. However, a truly smooth transition from a geometric to
a computational model is still challenging. This is especially the case for numerical simulations
like the Finite Element Method. Very often, complex and time-consuming model preparation
and pre-processing steps are necessary to obtain a decent numerical model that is suitable for
analysis purposes. For complex CAD models, this transition process can take up to 80% of the
overall analysis time [1].

For this reason, various alternative numerical approaches have been developed which seek to
avoid or shorten this costly transition process (e.g., meshing). Isogeometric analysis (IGA) as
the most prominent example aims at easing the transition from CAD to computational analysis
by using the same spline basis functions for geometric modeling and numerical simulation [1, 2].
In a related earlier approach Cirak and Scott [3] presented an integrated design process based on
Subdivision Surfaces. Kagan and Fischer [4] used B-spline finite elements in an effort to join
design and analysis.

However, independent of the respective numerical approach, flaws may appear in the CAD
model during the design-analysis cycle — such as double entities, gaps, overlaps, intersections,
and slivers — as shown in Fig. 1. They are mainly due to data loss while the model is exchanged
between different CAD and/or CAE systems, to inappropriate operations by the designer, or to
approximation steps resulting in incompatible geometries. These model flaws, also called dirty
topologies or dirty geometries, may be extremely small or even unapparent. While they are of no
particular importance to a CAD engineer they may, however, cause serious problems for struc-
tural analyses. In the best case, they merely generate excessively fine meshes in some regions
which are not relevant to structural analysis (e.g., at fillets, etc.) but drive up computational
time unnecessarily. In the worst case, computations fail completely because no finite element
mesh can be created. This is due to the fact that neither classical finite element approaches
nor the newly developed methods mentioned above are designed to handle dirty topologies and
geometries. Thus, extra effort is necessary to repair, heal, or reconstruct the model into an
analysis-suitable geometry [5], even if the affected region is not of special interest to the struc-
tural analyst. This is also a major obstacle for IGA, which heavily relies on flawless geometries.

Solid CAD modeling systems mainly rely on two different representation techniques: Bound-
ary Representation (B-Rep) and Constructive Solid Geometry (CSG)[6] which is often extended
to a so-called procedural modeling. In CSG, a volume is described by volumetric primitives,
whereas in B-Rep it is described via its surfaces. Consequently, B-Rep models provide direct
and easy access to the explicit boundaries. However, B-Rep models are not necessarily valid,
meaning that it might in some cases not be possible to determine whether a point lies inside or
outside (Point Membership Classification). In contrast, CSG models are inherently watertight.
Problems such as non-manifolds, dangling faces, or lines, or Boolean operations on disjoint
objects need to be handled accordingly by the respective CAD system. A novel representation
technique — V-Rep (volumetric representation) — was recently proposed by Elber et al.[7] and
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Figure 1: Cad model of a screw with flaws. Free edges are highlighted in blue.

implemented into the IRIT solid modeler!. V-Reps are constructed of volumetric, non-singular
B-Spline primitives, thus, providing both an explicit volume and explicit surface description.
As the V-Rep models follow the CSG idea of combining valid primitives, this approach can
help to overcome several pitfalls in solid modeling. Within this paper, we focus on flawed or
“dirty” B-Rep models. The most direct way to address CAD model flaws is to heal or repair
the model before meshing. The healing process involves identifying the type of model errors
and fixing them individually. Butlin and Stops [8] listed topological and geometrical inconsis-
tencies. The geometrical inconsistencies relate to their positions in space, while the topological
inconsistencies relate to the connections or relationships among entities. Gu et al. [9] presented
a visual catalog of potential flaws. Petersson and Chand [10] developed a suite of tools for the
preparation of CAD geometries that are imported from IGES files and stored in the boundary
representation for mesh generation; the algorithm can identify gross flaws and remove them au-
tomatically. Yang et al. [11] classified topological and geometrical flaws in CAD models and
proposed a procedural method to verify 19 flaw types in STEP format and 12 types in the IGES
format. Yang and Han [5] conducted a case study to investigate the typical nature of CAD model
flaws. They reported the classification and frequency of each of the six most common error types
that significantly increase the lead times, and they proposed a repair method based on the design
history. Healing methods act either on the CAD model or on the mesh [5]. According to their ap-
proach, these methods can be classified into surface [12], volumetric [13] and hybrid [14] types.
Surface-based geometry repair methods perform local modifications merging and fixing incor-
rect surface patches. Volumetric techniques are used to reconstruct a new global shape without
flaws. However, this approach typically leads to information loss, especially at sharp features

Thttp://www.cs.technion.ac.il/ gershon/Gulrit/
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such as kinks. Hybrid methods combine the advantages of local surface healing and global vol-
umetric healing. To this end, flaws are detected and a volumetric reconstruction is performed
only in their vicinity. These methods have been used for CAD models that are represented in
typical B-Rep formats (e.g., STEP and IGES) as well as for polygonal meshes [15].

Although healing and repair methods have been applied successfully in recent years, healing
can still be very labor intensive and time consuming in the scope of product development. As a
remedy, mesh generation techniques have been developed which have the potential to generate
meshes from flawed geometric models. In this line of research, Wang and Srinivasan [16] pro-
posed an adaptive Cartesian mesh generation method. Herein, the computational grid is created
inside the domain, which then connects to the boundary. Another technique — the Cartesian
shrink-wrapping technique — was presented in [17] to generate triangular surface meshes auto-
matically for 3D flawed geometries without healing. However, to generate a mesh, an initial
watertight shell (called wrapper surface) needs to be constructed. Another line of research pro-
posed by Gasparini et al. [18] is an approach to analyze geometrically imperfect models based
on a geometrically adaptive integration technique that uses different model representations, i.e.
space decomposition, B-Rep, and distance fields. This approach relies on a method that was
first introduced by Kantorovich [19] and that has recently been commercialized [20]. Further-
more, this approach requires computation of a well-defined distance function to the boundaries
— which is non-trivial for dirty geometries, as the orientation of boundary surfaces might be in-
correct or the location of the boundaries is anticipated incorrectly, e.g., due to spurious entities,
or intersections. However, two main issues arise applying geometry healing: (i) In the case that
the geometry is healed locally, i.e. each flaw on its own, it is almost impossible to heal all flaws.
Hence, a subsequent volumetric meshing is likely to fail. (ii) If the model is healed in a volu-
metric sense, i.e. the model is entirely reconstructed, a valid model can be obtained. However,
typically sharp features, such as edges, corners or small details are lost. The automatic assump-
tions which are made during the volumetric healing lead to a changed model which is likely to
be not in the designer’s intent.

In this work, we present an alternative computational methodology which aims at dealing
robustly with dirty topologies and geometries. At its core, it utilizes the Finite Cell Method
(FCM) [21, 22], a fictitious domain method which uses classical linear, or higher-order finite el-
ements. The FCM embeds the physical model into a fictitious domain which is then discretized
by a simple, often axis-aligned grid. This grid does not have to conform to the boundary of
the physical domain. Instead, the physical domain is recovered on the level of integration of
element matrices and load vectors. A Point Membership Classification (PMC) test is carried
out at each integration point to determine whether it lies inside or outside the physical domain.
Hence, the only information needed from the CAD model is a reliable and robust PMC, which
strongly reduces the geometrical and topological requirements on the validity of the geometric
model. This observation allows for a new paradigm in the computational analysis: not to create
an analysis-suitable model and/or to derive a mesh or distance field, but rather o directly com-
pute on geometrically andfor topologically flawed models by a flaw-insensitive computational
method. Thus, it is neither required to heal the flawed geometry nor to construct conforming
meshes or distance fields. Instead, a PMC is constructed which is robust w.r.t. to a large number
of model flaws. The Point Membership Classification test can then be evaluated with a certainty
at least up to a geometric magnitude of the defect itself (as, e.g., in the case of gaps). This is
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important because a subsequent computational analysis can then directly be carried out without
healing. Moreover, the computational analysis may still deliver the necessary accuracy on those
flawed models as their effect on the results of the computation remains local to the flaw itself.
Only, if the local flaw lies directly in the region of interest it must be fixed. This is, however,
only necessary to achieve higher accuracy — an analysis can be carried out either way.

The Finite Cell Method is a widely applicable method itself. While the original publications
concerning the FCM treated linear elasticity in 2D and 3D [22], the scope of application was ex-
tended to various fields, such as elastoplasticity [23], constructive solid geometric models [24],
topology optimization [25, 26], local enrichment for material interfaces [27], elastodynamics
and wave propagation [28, 29, 30], and contact problems [31, 32]. Further developments in-
clude weakly enforced essential boundary conditions [33], local refinement schemes [34], and
efficient integration techniques [35, 36, 37, 38]. Furthermore, the concept of the FCM is inde-
pendent of the underlying approximation method. It does not have to be based on hierarchical
Legendre shape functions but can also be built on a spline-based approximation like in Isoge-
ometric Analysis, or spectral shape functions [39]. In this case, the fictitious domain approach
is an adequate method for trimming Isogeometric Analysis, as presented and analyzed, e.g.,
in [40, 41, 42]. In [43], an efficient method to overcome the inherent problem of bad condition
numbers based on precondition is presented. Approaches very similar to the FCM have been
presented more recently, like the cutFEM method [44], which builds on earlier publications of
Hansbo et al. [45]. Therein, small elements are explicitly stabilized by controlling the gradients
across embedded boundaries connected neighboring cells in the fictitious domain. This is differ-
ent to FCM where a stabilization is achieved to a certain extent by a small but non-zero stiffness
in the fictitious domain.

In this contribution, the FCM is extended in order to directly simulate a CAD model with
flaws. The paper is structured as follows: Section 2 provides a brief overview over geometrical
and topological flaws. The basic formulation of the FCM and the requirements of a numerical
simulation on flawed geometric CAD models are given in Section 3. A robust algorithm for
Point Membership Classification on dirty geometries is presented in Section 4. Several numer-
ical examples for the proposed methodology are presented and discussed in Section 5. Finally,
conclusions are drawn in Section 6.

2 Dirty Topology/Geometry

In this section, we provide a very short general overview of Boundary Representation (B-Rep)
models (sec. 2.1) and necessary conditions for their validity (sec. 2.2). By implication, ’dirty’
geometries, or topologies are models which do not meet these requirements and are therefore
mathematically invalid. To describe the wide variety of different flaws (sec: 2.3), we define
mathematical operators (sec. 2.4) and apply them to a valid B-Rep model, thereby transforming
a ’valid’ into a ’dirty’ B-Rep model (sec. 2.5).

Several of these flaw operators allow introducing a control parameter &, indicating a geometric
size of the respective flaws. Applying a sequence of flaw operators maps a flawless model to
exactly one resulting flawed model. It is obvious that, given some flawed model, it is not possible
to determine on which flawless model it could be based meaning that a class of equivalent
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flawless models can be associated to one ’dirty’ model. Our conceptual approach therefore only
assumes the existence of a flawless model that is expected to be ’close’ to the ’dirty’ one. This
is used as the geometric basis for analysis. Further, it is to be noted that no explicit knowledge
of this flawless model is required.

2.1 Boundary Representation Models

B-Rep objects are described by their boundaries. A model Q can consist of several sub-domains,
which all describe a separate closed volumetric body B;.

Q={B; | iell,..n}} (1)

with n being the number of volumetric bodies. For simplicity of presentation, we assume that
a B-Rep model consists only of one domain Q = B. A B-Rep body consists of topology T and
geometry G [6]:

B(T,G) (2)

The topology T describes the relations or logical location of all entities (2.1.1), whereas the
geometry G provides the physical location of points, consequently defining the actual shape of
the model (2.1.2).

2.1.1 Topology

The topology T(#, ™, r**) provides the logical internal /" = {ri"} and external relations r* =
{ri”’ } between the topological entities ¢ = {t;}, i.e. vertices v;, edges e;, and faces f;. Thereby,
each topological entity #; has its own local, internal relation r;", defining how and from which
underlying topological entities it is constructed. Topological entities are typically represented
by sets:

V={v; | iell,..n}} (3)
E={e | i€f{l,...m}, ei=(Ve,Vp), Varvg €V} )
F={fi | ie{l,..0}, fi=((educta,.p- M) > ex € E) 5)

with n, m, 0 being the number of vertices, edges, and faces, respectively. The ordered pair of
vertices (v, vg) contains the bounding vertices of an edge. A face f; is described by an ordered
pair containing: (i) the boundary edges, denoted by an ordered n-tuple (e,), with n being the
number of boundary edges, and (ii) the respective normal vector n;. In some cases, the normal
vector is provided implicitly by the order of the boundary edges (e,). The external relations
r®* describe the global adjacency relations between the particular entities (e.g., which faces
are neighbors to each other). There are various possible methods to represent the internal and
external adjacency relations, or a combination of both, such as the winged edge model or the
double connected edge list [6]. Thereby, the adjacency relations can be represented by graphs.
Figure 2 shows an exemplary detail of a topology consisting of three triangles. The pure external

relations can, for example, be represented by the adjacency matrix 4. (see equation (6)). The

Journal publication: https://doi.org/10.1016/j.cma.2019.04.017



https://doi.org/10.1016/j.cma.2019.04.017

2.3. B-rep and dirty geometries

59

adjacency matrices for faces and edges rrpp (see equation (7)) and for edges and vertices ryg

(see equation (8)) represent a combination of internal and external relations 2.

010
MY CFxF=|1 0 1 (6)
010
1 1 1 0 0
rrEc FXE=10 1 0 1 1 O (7)
000 O0T1TT11
1 01 0 0 0 O]
1 100110
Figure 2: Example topology with n = 5 rveCVXE=10 1 1 1 0 0 0 (8)
vertices, m = 7 edges, and o = 0001101
T e e T 00000 1 1]

3 faces.

2.1.2 Geometry

The geometry G({g;}) contains the geometric entities g;, i.e. the points P;, curves C;(&), and
surfaces Si(¢,77), which describe the actual physical location of the boundary and, thus, the
shape of the geometry. Curves and surfaces are often expressed in parametric representation:

Pi=(xi,y2)" )
x(&) n;

CiE) =|¥&)| eg. CE)=) Ni(£)-Q, (10)
83 7
x(&) nQ; ng

Si© = &) eg. S =) > N(&) Ne(m)-Qju (1
(€) I

with € € R and € = (¢,7) € R%. N;(¢) denote shape functions (such as Lagrange or Legendre
polynomials, B-Splines, NURBS, etc.) and Q; the associated (control-)points, which can, de-
pending on the curve description, coincide with the geometrical points P;.

Analogous to the topology, the geometry G can be represented by sets:

P={P; | i={l,...n}} (12)
C={C; | i={l,...2-m}} (13)
S={S; | i={l,..,o0}} (14)

2Please note: An entry 1 in the adjacency matrix shows which entity (row) is connected to which other entity
(column). An entry O indicates that no direct adjacency exists.
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where the number of points and surfaces equals the number of vertices n and faces o, respec-
tively. A special case are curves, where at each edge two adjoined faces meet, whose underlying
surfaces have each their own boundary curves. Consequently, the number of curves is 2 - m (see
Fig. 3).

V2

V1

Figure 3: At each edge e; two boundary curves €y and C{ meet.
; ,

2.1.3 Minimal B-Rep and the STL format

The most commonly used B-Rep exchange format between CAD and analysis is STL (STere-
oLithography, or more expressive Standard Tessellation Language). STL can be interpreted as
a minimal B-Rep format, as it provides only the least amount of necessary information. Ad-
ditionally, no explicit separation between topology and geometry is made. STL consists of
independent triangles, which are defined by their three corner points. As geometric information
in form of point coordinates is provided explicitly only for vertices, curves and surfaces are lin-
early interpolated. No adjacency, or ’consistency’ information is provided, which makes STL
quite flexible — but also particularly prone to a variety of potential flaws. The relation between
faces and vertices reads:

FSTE=(fi [ i€l o0}, fi = ((Vas vg V) i) s v €V, [V =30} (15)

Note that — due to the multiple definition of vertices — STL models are, strictly speaking, topo-
logically not valid. Furthermore, the redundancy of point definitions and normal vectors, which
could be derived from the orientation of the face has an eminent impact on the required memory
for storage.

2.2 Conditions for valid B-Rep models

Although intuitively quite apparent, it is not straightforward to define a valid B-Rep model.
Patrikalakis et al. [46] provided a definition: ”A B-Rep model is valid if its faces form an
orientable 2-manifold without boundary.” From this, several requirements can be derived, some
of which are also mentioned by Méntyla [6] and Hoffmann [47].

Topology:

1. Different vertices do have different coordinates (see Fig. 6a).

2. One edge is shared by exactly two faces (see Fig. 4).
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3. Faces at one vertex belong to one surface, i.e. at a vertex it is possible to cycle through all
adjacent faces such that all of the vertex’ edges are crossed exactly once (see Fig. 4).

4. The orientation of faces must follow Moebius’ Rule, i.e. inside and outside must be dis-
tinguishable from each other (see Fig. 6d).

Geometry:
5. A curve must lie on the respective surface whose partial boundary it forms.
6. Both boundary curves at one edge must coincide (see Fig. 7a).

7. Surfaces must not self-intersect. From this — and from 5 — it follows that curves do not
self-intersect either (see Fig. 7b).

8. Surfaces must not touch or intersect with other surfaces except at common edges (see Fig.
7Tc).

a) b)

Figure 4: Vertex with adjoined edges and faces: (a) It is possible to cycle through the faces,
passing each adjoined edge once. Hence, all faces belong to the same surface. (b) Not
all faces belong to the same surface.

2.3 CAD model flaws

Model flaws can originate from different sources, such as mathematical inaccuracies, data con-
version problems between different software systems, mistakes by designers, different design
goals, etc. The probably most famous example of mathematical inaccuracies is the ‘leaking
teapot’ model, as depicted in Fig. 5. The gap between spout and body of the teapot could only
be avoided by more complex spline types (see, e.g., T-splines [48]), or unreasonably high poly-
nomial degrees. The simplification results in a non-watertight geometry, a major obstacle for the
interoperability between CAD and CAE. Figures 6, 7 and 8 provide an overview over the most
common topological and geometrical modeling flaws.

10
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A

AN

Figure 5: Gaps between trimmed NURBS patches of the Utah teapot (Picture taken from [49])

(a) Double vertices (b) Double edges (c) Double faces
T
T =y
i
N
¥
A+ =
Vi fieF
(d) Wrong orientations (e) Missing faces

Figure 6: Topological flaws

11
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(a) Curves at common edge do not (b) Surface and boundary curve self-  (c) Surface intersects with another
coincide intersect surface

Figure 7: Geometrical flaws

(a) Gaps (b) Overlaps (c) Intersections

(d) Artifacts (e) Offsets

Figure 8: Hybrid flaws which consist of topological and geometrical components
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Face

id : int
boundaryEdges : list<Edge> Surface
normal : vector<double> 1
adjacentFaces : list<Face>
0.% geometry : Surface

o]

Edge

id : int Curve

vertice : list<Vertex> )
geometry : Curve

J

Vertex

Point

id : int
geometry : Point 1

Figure 9: UML-diagram of a possible object-oriented B-Rep implementation

2.4 Flaw operators

In the following, we will introduce several operators that perform transformations on a valid
B-Rep model, allowing for a controlled imposition of different flaws. To measure the size of the
flaws, we introduce an error parameter &, indicating the ’dirtiness’ or inaccuracy of the model.

To provide an easily understandable formulation of the operators, we consider an object-
oriented B-Rep data structure. Thereby, the implementation must allow a distinction between
internal and external/adjacency relations. Figure 9 provides a UML diagram of a possible hi-
erarchical implementation. For an introduction to the notation of the UML (Unified Modeling
Language) see, e.g., [50]. Here, the external adjacency relations r** are realized at the faces,
where the adjacent faces are stored in the field: adjacentFaces. All other external adjacency re-
lations (e.g., which edges are adjacent) can be derived from this and from the respective internal
relations r.

Let ' be the B-Rep sub-part, or segment, which corresponds to a topological entity #;, e.g., a
face, an edge, or a vertex. The segment w" consists of all information that is needed to visualize
t;. Hence, it must contain #; and, recursively, all underlying sub-topologies and geometries that
are related by respective internal adjacency relations r (see Fig. 10).

w"(T",G"Yc B (16)

13
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with T (T,pi”t) and G'i(y) being the respective topology and geometry, where 7 = {r;} and
v = {y;} denote the sets of those topological and geometrical entities which are recursively
related by the internal relations p™ = {pﬁ"’}. Consequently, three different segments are possible:
1) vertex segments, b) edge segments, and c) face segments. As topological entities {7;}, a
face segment, for example, contains the face itself and all associated edges and vertices. As
geometric entities {y;}, it holds the corresponding surface with its boundary curves and corner
points. Additionally, all internal relations {pf’”} are contained, i.e. the relations among face,
boundary edges, and vertices, as well as the relations to the geometric entities. Not contained
are external adjacency relations, i.e. those to neighboring faces or edges.

2 e3 V3
m, ]
€4 S €
m, 1
Vi €l 1)
Ty,

Figure 10: B-Rep sub-part /!, which corresponds to face f; and consists of the topology T/
and the corresponding geometry G/1.

In the following, a denotes the object a after the transformation and let dist (a, b) = inf{ ||a, b||» }
be the minimum Euclidean distance between two objects, e.g., the distance between the closest
points on two different surfaces.

1. Let O*¢/“! be a extraction operator, which selects for a topological entity #; the correspond-
ing segment w" from the body B.

Oselect (B, tl) = (,L)ti (17)

Note that the external relations are not extracted. Hence, the segment forgets about its
logical location in the body.

2. Let O/ be a join operator that adds a segment w" to the body B.

0" (B, w'") > B, where B=B U o (18)

3. Let O*"@lowCopy be 3 shallow copy operator that copies an arbitrary entity a;. For a more
detailed description of the object-oriented concept of ’shallow’ and ’deep’ copying see,

14
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e.g., [51]. a; can be a topological entity #;, a geometrical entity g;, or an internal r;."” or

external relation 7§,
shallowCopy . ~ ~ e .
0] (a;) » a;, where a; := a; (19)

The *:=" in (19) is to be understood as the shallow copy assignment, according to [51].
Note that the new object is distinguishable from the old object, e.g., by an updated id, or,
in the context of object-oriented programming, by a different memory address. Yet, it still
uses the same references to other objects as the original segment.

. Let 0%¢PCopy be an internal deep copy operator [51] that performs a deep copy operation

on a segment ' . To this end, a shallow copy operation is carried out on all corresponding
topological and geometrical entities, as well as the internal adjacency relations.

OdeepCupy (a)’i) — ol Tt,-’G”t,-) . with Tt,- (;I«_’ﬁint) L F = OshalluwCopy(Ti)’

pfnt = 0sl1allowC0p)*(p£nt) VTi,p;:m eTh ,

20
and 0

G" () . 3i = 0" ) Wy € G

Note that the deep copied segment ' has no information about its logical location in B,
i.e. it has no external adjacency relations, and that all internal relations are updated to
reference the new topological and geometrical entities.

. Let 0%l be a deletion operator that deletes a face f; and its related geometry g/i C

G consisting of the underlying surface S; and the corresponding boundary curves {Cf" }.
Thereby, the characteristic size of the resulting opening must not exceed a given, e.g.,
user-defined minimal accuracy €. Let ¢ be the diameter of the largest possible inscribed
sphere of the surface S; to be deleted.

0%t (B, f.g") > B(T.G), where F=F\ f; G=G\¢',6<e (1)

Note that, as a deletion of an edge, or vertex would lead to an uncontrollable cascade of
deletions of superior entities, only a face deletion is allowed in this context. A B-Rep
model with a deleted edge or node without deletion of referencing faces would not even
be readable and is not considered in our investigation.

. Let O°*P!°d¢ be an operator that removes all external relations 7' from a body B. This can

be achieved by extracting (17), copying (20), and joining (18) all face segments wy, Y f; €
F. The resulting body B is then described by independent topological sup-parts/segments
wy.

Oexplode (B) = Ojoin (BO, OdeepCOpy (Oextract (B, F))) — B . where Fext — () (22)

where B° is an empty body.

15
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7.

8.

10.

Let O/!P be a topological flip operator that flips the normal #; of a face f;.

O/ (f) > fi, where f; = ((e,), i = —1-n;) (23)

Let O™ be a geometric move operation that moves the point P; within the range &.
Additionally, all adjoined surfaces and curves are adapted consistently such that they form
a 2-manifold without boundaries after the operation. This involves the following adaptions
to the adjoined surfaces S = {Sf"} and curves CPi = {Cf"}:

e The resulting point P; must again lie on the altered surfaces S Pi and curves CP |

o All pairs of the resulting adjoined surfaces (S, 52") must again meet at their com-
mon edge/curve e¢;. Consequently, the two respective boundary curves (C%, C’;k)
must coincide.

The latter condition is omitted in the case of an already broken topology, where an edge
no longer has two adjoined faces/surfaces.

0" (P;, G) — G, where 0 < dist (Pi, i’z) <eg,
and
A¢: 8P = B, v8 A7 G0 =B vEn, @9
and

dist(C5, C) =0 ¥ (85, §5) at v,

Let 0% be a geometrical operator that detaches two adjacent surfaces, S; and S j» which
meet at the edge ¢, (see fig. 7a). To this end, one surface S; and its respective boundary
curve Cg" at e, are changed. Again, the characteristic size of the potentially resulting
opening must not exceed &.

0% (G,e;) > G, where dist (Si,égﬁ(f)) =0,

; (25)
0 < dist(C§, C3(©) < & V& € [€a,é]

with [£,, £p] being the respective interval on which the boundary curve is defined.

Let Q™ersect be a geometric operator that alters a surface S;(£) such that it touches or
intersects with another surface $ ;(17) apart from common edges. Note that we assume that
there is no intersection in the original model, according to the definition of a valid B-Rep
model.

Ointersect (Si(&) — Sl(é‘) , where
A& : dist(S6),S;0p) =0 A dist (Si(f)’ éfi) 70 20
VC‘E"GFS", i#]

with TS being the set of boundary curves of S;.

16
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A special case of intersections are self- intersections:

OrlInersect (S,(£)) > 8i(¢), where 3 (&) : dist(5i€), Sip) =0, £#n  (27)

2.5 Application of flaw operators

We now continue with the definition of a flawed model. To this end, we apply the flaw operators
defined in section 2.4 onto a valid B-Rep model. The ’dirtiness’ of the model is then defined
by &. It should be mentioned that, for models that are drafted by a real-life CAD system, flaws
do not necessarily originate from these operators, yet most flawed models can equivalently be
created by a sequence of these operators.

Let B(T,G) be a valid flawless B-Rep body. Note that operators acting on the body is to be
understood as acting on a segment w’, or single topological, or geometrical entity, or relation.

1. Single topological entities #; and their corresponding segments w;, can be copied and added
to B with a combination of the extraction (17), the deep copying (20), and the joining (18)
operator:

B(T,G) := 0" (B(T,G), 0%PCP (0" (B(T, G), 1;))) (28)

The resulting B-Rep model is invalid as it has multiple entities (refer to Figs. 6a, 6b,
and 6¢), which violates condition 1. As an example, consider the STL format where
each triangle (re-)defines its corner points. Also, multiply defined faces/surfaces appear
frequently in free form CAD models, which leads to a touching/intersection of the surfaces
(refer to Fig. 8c).

2. Application of the deletion operator (21) on a face f;:
B(T,G) := 0" (B, fi.gy) (29)

The deletion of a face violates condition 2 (see Fig. 6e). Thereby, the size of the resulting
opening restricted to be smaller than ¢.

3. Application of the explosion operator (22):
B (T,G) := 0Pl (B(T, G)) (30)

Most B-Rep models are constructed from independent surfaces, which are later joined
into a (hopefully) valid B-Rep model. This join operation corresponds to the inverse of
the explosion operation. It is yet well known that a strict ’join’-operation is not neces-
sarily possible (or maybe not feasible) e.g., in case of an intersection of two NURBS
surfaces [49]. Also, STL models are constructed by independent triangles. Such models
violate the topological conditions 1, 2, and 3. Geometrically, they can still form a closed
2-manifold without boundaries. However, these models are very prone to a variety of
different flaws, as no external adjacency relations are provided explicitly.

17
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4. Application of the flip operator (23):
B(T,G) := 0/ (B(T, G)) 31)

The resulting B-Rep model does not fulfill Moebius’ Rule anymore (see condition 4). This
flaw usually appears if the normal is defined implicitly by the order of the boundary edges
(see Fig. 6d). However, this error also appears quite frequently if the normal is given
explicitly, e.g., in the case of STL.

5. Application of the move operator (24):
B (T,G) := 0""(B(T,G)) (32)

Applied on a valid B-Rep body, the move operator preserves a geometric 2-manifold,
without boundary. However, the orientability can be lost (see condition:4). As an ex-
ample, consider a point P; on surface S;, which is close to surface Sy with distance
dist (P;, Sx) < &. A movement then can lead to an intersection of the two surfaces. This
violates condition 8 (see Fig. 7c).

6. Application of the detach operator (25):
B(T,G) := 0""“N(B(T, G)) (33)

The resulting model violates condition 6. This is likely to happen at the intersection of
free-form surfaces. The boundary curves would require unreasonably high polynomial
degrees to perfectly coincide. Possible flaws can e.g., be openings or intersections (see
Figs. 7a and 7c). As an example, consider the leaking Utah teapot.

7. Application of the intersection operator (26):
B(T,G) := O™"*“'(B(T, G)) (34)

The resulting model may violate conditions 7 or 8. Apart from gaps, intersections fre-
quently appear at patch boundaries as well (see Fig. 7a). Intersections can also occur if
two surfaces are too close to each other. In this case, they additionally violate Moebius’
Rule 4 (see Figs. 7c and 7b). A special case are overlaps, where two surfaces touch each
other (see Fig. 8b).

8. Application of the copy (20) and the move operators (24) to a single face f; :

a)f,- = OdeepCUpy (Oexlracl (B, fz))
&' = 0P e &, G (35)
B(T,G):= 0"" (B, &)

This chain of operations allows to create offsets and artifacts, i.e. entities which do not
belong to the outer hull and lead to a violation of the conditions 3 and 2 (see Figs. 8d and

18
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8e).

9. Application of the explosion (22) and move operators (24):

B(T,G) := 0“*Plode(p)
L L (36)
B(T,G) := 0"(P; € G, G)

Starting from an exploded model, moving one or more points can lead to various common
flaws — such as gaps, intersections, or overlaps (see Figs. 8a, 8c, 8b). As many B-Rep
modeling tools work with exploded models, i.e. with independent surfaces, these flaws
appear very commonly, particularly at patch boundaries. Also, the STL format stores a
body with independent triangles.

Note that, independent of the performed operations, it is imperative for the presented method that
the size of all openings and gaps is restricted to be smaller than a pre-defined €. This is required
not only for each individual flaw operation but also for the resulting model after a sequence of
flaw operations, e.g., a sequence of individual moves of a segment.

The resulting flawed models are invalid in a mathematical sense, which renders a subsequent
conversion into a simulation model either impossible or invalid. The necessity to heal the flaws
can neither be circumvented by meshing, as in the classical FEM, nor by a direct simulation as
in IGA. It is, however, possible to compute ’dirty’ models directly with an embedded domain
method such as the Finite Cell Method (Section 3). To this end, we construct a specially adapted
Point Membership Classification test (Section 4) which is blind to flaws up to a characteristic
size e.

3 Finite Cell Method

The Finite Cell Method is a higher order fictitious domain method. However, the approach
presented within this paper does not rely on higher-order elements. Hence, it can be also appli-
cable for linear fictitious domain methods. FCM offers simple meshing of potentially complex
domains into a structured grid of, e.g., cuboid cells without compromising the accuracy of the
underlying numerical method. For completeness of this paper, the basic concepts are briefly
introduced in this section. We restrict ourselves to linear elasticity — emphasizing however, that
the FCM has been extended to more general partial differential equations [52, 53, 54, 55].

3.1 Basic formulation

In the Finite Cell Method, an n-dimensional open and bounded physical domain €, is embed-
ded in a fictitious domain Q;.; to form an extended domain €y, as illustrated in Fig. 11 in two
dimensions. The resulting domain €, has a simple shape which can be meshed easily, without
conforming to the boundary of Q.

The weak form of the equilibrium equation for the extended domain Q) is defined as

[Lv] aC[Lu] dQ = f viaf dQ + f vitdr (37)
Qy Qy I'ny
19
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Figure 11: The concept of the Finite Cell Method [56]

where u is a displacement function, v a test function, L is the linear strain operator, and C
denotes the elasticity matrix of the physical domain €,,,, yet extended to Q. f and t denote the
body load and the prescribed tractions on the Neumann boundary, respectively. The indicator
function « is defined as

1 VYx € Q)
a(x) = XS oy (38)
1074 Vx € Qpiey

In the limiting case of ¢ — oo, the standard weak form for an elasticity problem on Qs
is obtained. In practical applications, a sufficiently large ¢ = 6..10 (see [21, 22]) is chosen,
introducing a modeling error to the formulation [57], which yet stabilizes the numerical scheme
and controls the conditioning number of the discrete equation system — see [43] for a detailed
analysis. Qg;. is then discretized in ’finite cells’ of simple shape (rectangles or cuboids). In
the context of this paper, we assume for simplicity a uniform grid of finite cells, yet note that
generalizations to locally refined grids [58, 59] and unstructured meshes [60, 61, 62] have been
studied extensively.

3.2 Geometry treatment

In FCM, the physical domain €, (i.e. the geometry) is recovered by the discontinuous scalar
field @. Consequently, the complexity of the geometry is shifted from the finite elements to the
integration of the element matrices and load vectors, which imposes less geometrical require-
ments on the model. It is in fact sufficient to provide a robust Point Membership Classification
(PMCQ), i.e. for every point x € R”, it must be possible to decide whether it is inside or out-
side of Q,,,. This implies that Q,,,; must have a mathematically valid description. Due to
the discontinuity of «, the integrands in cut cells need to be computed by specially constructed
quadrature rules, see, e.g., [35, 38, 63] for a recent overview of possible schemes. To perform
a suitable integration, the domain is approximated by a space-tree 7R;;;. The leaves of TR;,,
are called integration leaves c;,;. Additional information, such as explicit surface descriptions
are only needed for the application of boundary conditions as well as for post-processing (see
Sec. 3.3).

20
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3.3 Boundary conditions

Neumann boundary conditions are applied according to equation (37) in an integral sense on the
boundary I'y. Homogeneous Neumann conditions (i.e. zero traction) require no treatment, as
they are automatically satisfied by setting @ = 0 or, in an approximate sense, to a small value in
Qficr. As the boundary of the physical model typically does not coincide with the edges/faces of
the finite cell mesh, Dirichlet boundary conditions need to be enforced also in a weak sense. To
this end, several methods have been adopted, such as the penalty method, Nitsche’s method, or
Lagrange Multipliers [33, 64, 65, 66].

For the integration of Dirichlet and inhomogeneous Neumann boundary conditions, an explicit
surface description is needed. This can be of poor quality. For the enforcement of Neumann
boundary conditions, however, a surface without multiple faces/surfaces or large overlaps is
required, as these flaws would introduce physically modified boundary conditions (i.e. additional
loads, heat sources, etc.). To this end, we propose the following automatable method to convert
a ’dirty’ surface into a surface without multiple entities or overlaps:

1. Triangulate the respective surface (if not already provided, e.g., with STL).
2. Get the intersection points between the surface mesh and the element boundaries.

3. Create an element-wise point cloud from the intersection points and respective triangle
corner points.

4. Perform an element-wise Delaunay triangulation on the respective point cloud.

The resulting element-wise triangular meshes are used only for integration and can consequently
be independent of each other. Note that the requirements to these local surface meshes are by
far less restrictive than they would be for a surface mesh as a starting point for volume mesh
generation. Note that a potential triangulation of the surface will cause an approximation error.

4 Robust Point Membership Classification for flawed CAD
models

As explained in Section 3, the only geometric information required to setup the system matrices
for the Finite Cell Method is an unambiguous statement about the location of a point, i.e whether
it lies inside or outside of the domain of computation. Considering flawed CAD models (e.g.,
with undesired openings), the concept of ‘inside’ or ‘outside’ is fuzzy — at least up to the char-
acteristic size of the flaw &. In this section, we present a robust Point Membership Classification
method for ’dirty” STL B-Rep models. The presented approach is, however, not restricted to
STL models, and it can easily be extended to other boundary representations.

4.1 Point Membership Classification for valid CAD models

PMC algorithms are fundamental and extensively used operations, e.g., in computer graphics,
computer games, and in geoinformatics [67]. For different geometric representations, various
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PMC algorithms exist. For CSG models, a point is classified against all the underlying primitives
and the resulting boolean expressions (see [24]). Ray casting [67] is often used for boundary
representation models. Further variants are approximation-tree-based algorithms [68], point
cloud methods [69], sign of offset [70], and the swath method [71]. As the space-tree based
approximation and the ray-casting are needed in the following, these aspects will be explained
in more detail:

® Ray casting: The ray casting method is an efficient and suitable algorithm for general
polytopes, and it is extensively used in computational graphics, e.g., for depth maps. To
classify a given point with respect to a geometric model, a ray is shot in an arbitrary
direction and the intersections with the boundary are counted. The parity (even, or odd)
of intersections then provides information on whether the point lies inside or outside. For
flawless models, ray-casting is accurate. For flawed CAD models, however, ray casting
delivers no reliable statement about the point’s domain membership, as almost all flaws
influence the parity of intersections

e Space-tree based PMC: For the tree-based PMC, the domain is discretized by a space-
tree TR;,;, with leaves c,e,. Leaves intersected by the surface are marked as cut. Sub-
sequently, a flood-fill algorithm is applied to the leaves cg,. Starting from a seed point,
whose domain membership is known, all connected leaves are marked as inside or out-
side, respectively. A challenge in this methodology is posed only by undesired openings
or unintentional gaps. In these cases, a too fine approximation with leaves smaller than the
size of the flaws would cause the flood-fill algorithm to mark the entire domain as inside
or outside. Furthermore, despite its robustness against most flaws, the octree TR;,; gives
only a coarse step-wise approximation of the geometry.

4.2 General approach for flawed models

The presented PMC method combines the robustness of space-tree approximation with the ac-
curacy of ray-casting. The general approach works as follows:

1. The CAD model is approximated by a watertight space-tree TR,.,. Watertightness is im-
perative to ensure that the subsequent flood-fill can distinguish between inside and outside.

2. A flood fill algorithm is applied on TR, to mark all connected points as inside and out-
side, respectively. This yields a filled space tree TR,.,. Remark: For all points that are

not on cut leaves, the approximation tree TI\?geO can be used as fast, efficient, and accurate
PMC.

3. An additional ray-casting is only carried out for points lying inside the cut boundary leaves
— in order to approximate the structure more precisely.

Step 1 and Step 3 will now be described in more detail. For a description of the well-known
flood fill algorithm in step 2 we refer to, e.g., [72].
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4.3 Watertight space tree approximation

To ensure that the approximation space-tree Tl\egw is watertight, the size of the smallest leafs
d,,, must not undercut the characteristic size of the largest gap/opening &g

dcgeu > Sgap (39)
Egap 1s typically not known apriori and is determined by an iterative decrease of the cell size,
until the subsequent fill algorithm fills the entire domain. From this, it follows that the maximal
partitioning depth n,,,, of TRgeO is bounded by the ratio of domain size dgymqin Of the tree TRgeo
to the dimension of the gaps/openings gg,:

d main
domai ) (40)

Nmax < 1082( c
gap

This limitation might allow, depending on the size of the gaps/openings only a very coarse
approximation of the true geometry (see Figure 25). Concerning all other types of considered
flaws, a test using the space tree ﬁgeo is robust. Note that the reconstruction tree can be set up
for an arbitrary flaw size &,,,, as long as at least one inner cell can be detected. The quality of
the result will then only be dependent on the secondary PMC test (see Section 4.4).

Note that, generally, the space-trees TR;,,; and ’T]\?ge(, are distinct. While TR;;; is constructed in
order to numerically integrate the discontinuous element matrices for finite cells (see Section 3),
the purpose of ﬁgw is merely to support the Point Membership Classification of the integration
points.

After the surface is approximated by the space tree, the flood fill algorithm [72] can be applied
to mark connected regions. Figure 13 shows the octree approximation of a simple example
(Fig. 12), which has several typical flaws. The size of the opening &,,, allows a maximum
subdivision level of n,,, = 7. Hence, the ratio of the largest gap to overall size is in the range
of:

1 < Egap < 1

— — 41
256  dgomain 128 @1
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double entity

wrongly oriented facet

Figure 12: Example of an STL model with typical flaws.

(a) Part of a 3D octree approximation (b) 2D slice

Figure 13: Octree approximation of the embedded tetrahedral domain. The outer domain (blue)
is separated by the cut leaves (red) from the inner domain (grey). The subdivision
level is ny = 7.

4.4 Point Membership Classification on cut leaves

The space-tree ﬁgw represents the surface only very roughly and, thus, cannot be used for a
precise numerical analysis. Hence, in order to improve the representation of the boundary, an
additional PMC using ray casting is carried out on cut leaves. Let us first assume that the model
is flawless (see Fig. 14a). Then, the ray test for any integration point in an integration leaf c;,,
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yields a unique result without ambiguity, independent of the direction of the ray. In case of
a flawed surface, the result may be ambiguous, depending on the selected direction of the ray
(Figs. 14b-f). To handle this problem, we test rays in different directions, more precisely to the
midpoints of all neighboring non-cut cells, which restricts the intersection tests to be carried out
in the vicinity of the integration point and guarantees that various directions are queried. Hence,
the probability for a correct result is increased. The PMC is then decided *following the vote of
the majority’. Clearly, this 'vote’ can be wrong w.r.t. the (in general unknown) flawless model.
This wrong decision results in an integration error for the computation of element matrices. In a
mathematical sense, we are performing a ’variational crime’ (see, e.g., [73]). For geometrically
small flaws, the smallness of this integration error can be readily assumed — as, by construction
of the two-stage PMC, it can only occur in the smallest leaf ¢, cut by the surface.

We can even bound this error by bracketing, i.e. by solving the elasticity problem (23) — once
under the assumption that all ambiguous integration points are inside, and once assuming them
outside of the domain of computation (see Section 4.5 and Example 5.1), thus ensuring that the
approximation quality of the method is not corrupted.

Surface

NN -
/ /
/ /

4 7

NIV

(a) Flawless model (b) Gap, opening, missing entity (c) Double entity

/ \ \

oy IS e I A V%

o< os| o f

/7 T VAN ) / T
/

7/ 7 7

(d) Several double entities (e) Spurious entity (f) Intersection
Figure 14: Multiple ray casting for different flaws (red: cut leafs, grey: inside, blue: outside). In

these examples d) and f) would lead to indifferent results.

Note that also other possibilities for the secondary PMC test can be applied, such as ray-casting
in only a few, or just one direction, which will lead to a significant speedup but increases the
probability of wrong results. Another possibility lies in the combination with a PMC test based
on point clouds, as this test is sensitive to other types of flaws, such as wrongly oriented normals,
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or intersections.

4.5 Parameter study on the influence of the gap size

As stated in Section 2.5 a flawed model has, in general, no mathematically valid solution. There-
fore it is not possible to define an ’error’ of the computed approximation w.r.t. an exact solution.
Yet, in order to judge the quality we compare for a simple example energies of approximate and
reference solution in dependence of the size of a flaw in the B-Rep model. In particular, we
investigate the influence of the largest gap size g, on the internal strain energy for a cube with
the dimensions 1 X 1 X 1 loaded under self-weight. The cube is clamped at the bottom. It is
embedded in 9 X 9 X 9 elements employing integrated Legendre polynomials of degree p = 3.
The B-Rep model of the cube consists of twelve triangles. One triangle is not properly con-
nected to two of its neighbors resulting in a flawed model with a gap of characteristic size sga »
(see Figure 15). The size of the gap limits the maximum subdivision depth of the reconstruction
tree, meaning that more refined trees would lead to a non-watertight boundary of the tree (see
Section 4.3).

A0

Egap

o T<y
TTIVI7777777777777777 N

(a) (b)

Figure 15: Parameter study on a unit cube: a) Characteristic gap size g44p. b) Reconstruction
tree on the flawed geometry.

The embedding domain used for the reconstruction tree has the dimension 1.6 X 1.6 x 1.6. The
quality of reconstruction not only depends on the depth of the tree but also on the relative position
of the domain of computation (the cube) and the tree. This influence is studied by gradually
’shifting” the origin xo e, 0Of the cube along a diagonal in space:

-0.3 0.05
xop = |-03|+8-[0.05| , (42)
-0.3 0.05
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with 8 = 0...3. Figure 16 shows two different reconstruction trees for different origin posi-
tions.

(b)

Figure 16: Cut through two reconstruction trees for different gap sizes, consequently maximum
subdivision depths and for different origin positions: a) g4y = 0.2, nypax = 3, shift by
B =0.b) ggap = 0.0031, 10, = 9, shift by g = 3.

Figure 17 shows the influence of the characteristic size of the gap g,4, on the error in the internal
energy. The abscissa depicts the characteristic size of the gap compared to the unit length of the
cube in percent. The values correspond to the respective maximum subdivision depths n! . =
9...3 resulting from gap sizes afgap = 2:,.% from left to right. The ordinate shows the deviation of
the internal strain energy U to the reference energy U,.s in percent. The reference energy U,y
is computed on a flawless model. Accurate results in energy are obtained even for large gap
sizes of up to 20% of the domain length. The quality of the solution is confirmed by Figure 18,
showing a plot of principle stresses of the reference solutions and approximate solutions for two

gap sizes.
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Figure 17: Relative deviation of energies depending on the gap size for different positions of the

cube.
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Figure 18: Principal stresses for the flawless model (a) and gap sizes of gg4, = 2.5% (b) and
Egap = 20% (c).

Although this study supports the quality of the presented approach, it cannot guarantee limitation
of an error in energy of even of local solution quantities in general situations. They strongly
depend on the complexity of the model and the amount and type of flaws. A crucial factor is
also the location of the flaw. If it is located in highly stressed regions, the influence will be bigger
than if it were located in regions of low stress. It remains to an engineer to judge the feasibility

of the solution.

5 Numerical examples

To demonstrate the accuracy and robustness of the proposed approach, three examples are pre-
sented. The first simple example serves to verify the proposed method. To this end, a plate
with a hole is simulated and compared to a flawless reference solution. The complex screw in
the second example proves the applicability for sophisticated, defective CAD models. Again,
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a flawless reference model was available. The last example is an engine bracket taken directly
from engineering practice. This model is a perfect example of a flawed geometry, as many
NURBS-patches do not fit together. An attempt to mesh the model showed that 337.544 trian-
gles had a free edge, i.e. are flawed.

5.1 Example 1: Thick-walled plate with circular hole

As a classical benchmark for 3D problems, we choose the thick-walled plate with four circu-
lar holes [21]. The Young’s modulus is set to £ = 10000.0 N, /mm? and the Poisson’s ratio to
v = 0.30. The plate is loaded with a surface traction 7, = 100.0 N/mm?. Symmetry boundary
conditions are used, allowing to simulate only a quarter of the domain (see Fig. 19). The di-
mensions of the model are b = h = 4.0mm and ¢t = r = 1.0mm. To show the robustness of the
proposed method, several flaws — namely intersections, gaps, double entities, and offsets — are
introduced on the surfaces (see Figs. 20 and 21).

4.0 mm L
t, = 100.0 N/mm?

L1t 1t 1 1

t=1.0mm

© 0 O O O

el Figure 20: Flawed B-Rep model contain-
ing several gaps, intersections,
offsets, and multiple entities

6 0 o o o

Figure 19: Thick-walled plate with circular
hole under surface load

.-

(a) Gap (b) Intersection (c) Offset

Figure 21: Flaw details: a) gap b) intersection c) offset of the top surface
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The domain is discretized into 10 X 10 x 1 finite cells employing integrated Legendre polyno-
mials as basis functions. The background grid and the qualitative displacement are depicted in
Figure 22. A convergence study was carried out for p-refinement using p = 1...6. To measure the
accuracy of the approach, the strain energy is computed and passed on to the reference solution
Uex, which was computed with an extensive boundary-conforming finite element analysis. The
minimal size of the cells ¢,, of the geometric tree TI\Qgeo was limited by the size of the largest
gap, allowing a maximum subdivision depth of n,,,, = 5. Note that the tree is also refined at the
"flat’ surfaces of the plate. This results in ~1.33 million cells, of which ~1.15 million cells are
located on the deepest level (see Fig. 23).

Figure 23: Displacement and finite cell dis-

Figure 22: Approximation tree TR, With sub- cretization

division depth n,,4, = 5

Figure 24 plots the strain energy for the different polynomial degrees. Note that the relative
error in the strain energy can only be computed for the valid model, as this is the only possible
basis to compute a reference solution.

14.8 -
14.7°"
g 14.6
s 145¢
> 58—
o0 14.4-F =
(5]
£ 143]
§ 1420
R 7 —ene— valid
14 v —=— flawed
139y —— reference
13.8 ‘ ‘ ‘ ‘ ‘
1 2 3 4 5 6

Polynomial degree

Figure 24: Strain energy norm for polynomial degrees p = 1...6
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In Figure 24, it can be seen, that both models converge to a slightly different value. This is,
of course, to be expected — as both models have a slightly different shape and volume. The
good convergence of the flawed model is attributed to the fact that errors due to flaws are very
localized. This is an inherent property of the proposed methodology.

A detailed investigation of the flawed geometry can be carried out based on the ray-casting
tests, which are applied on the integration cells (see Section 4.4). As an example, we consider
a polynomial degree of p = 3. For the integration of the system matrices, 6 406 920 points
need to be evaluated. From these, a total number of 2 225 641 points (~ 35%) are lying on cut
cells. Typically, 12 to 18 ray-castings are carried out on each of these points. 1 503 636 points
(~23%) are ambiguous, i.e. at least one ray delivers a different result compared to the majority.
In 656 009 cases (~10%), a ’vote for the majority’ is not possible, as the number of rays voting
for inside and outside is equal. This large amount is mainly due to the many double entities. To
compute the upper and lower boundaries of the energy norm, two additional simulations were
carried out — once with all ambiguous integration points counting as inside and once counting
as outside. The energy norm for lower boundary was ~0.4% lower, and for the upper boundary
~2.9% larger compared to the simulation with ’vote for the majority’. Due to the fact that the
error is restricted to the smallest geometrical leaves and the ray-casting errors occur only in the
vicinity of the flaws, the deviation in the strain energy norm is rather small.

5.2 Example 2: Screw

This example demonstrates how the algorithm performs for a more complex geometry. To this
end, we consider the potentially flawed CAD model of a screw, depicted in Fig. 1. The simula-
tion was carried out on 10 X 30 x 10 finite cells using trivariate B-Splines of polynomial degree
p = 3 and the open knot vector U = [0, 0, 0, 0, 1, 2, 3, 3, 3, 3]. The partitioning depth for the
integration of cut FCM cells was set to k = 3. The tip surface was loaded with a constant pres-
sure, and the bottom surface was clamped. At the top, several flaws were introduced, resulting
in gaps, overlaps, and intersections. In the detailed view in Fig. 29, the free edges (i.e. edges
which have only one adjoined face) are highlighted in blue.

Fig. 25 shows the effect of a too fine resolution of ﬁgw. For a subdivision depth n,, = 35,
the flood fill algorithm marks the entire domain as outside.
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s
)
T Ty

(@) Mypax = 5 (b) nypax = 4

Figure 25: Cut through an octree approximation ﬁgeo, with a) too small cut leaves ¢, (black),
so that all (non cut) leaves are marked as outside (light grey). b) with one subdivision
level less leaves inside (dark grey) can be detected.

A visual inspection of the displacements of the flawed and the valid model shows no difference
(see Fig. 26), whereas differences around the flaws can be detected for the von Mises stresses
(see Fig. 27). The stresses at the flawed model are more noisy compared to the valid model.

(a) FCM mesh (b) Flawed (c) Valid, including FCM mesh

Figure 26: Finite Cell mesh and displacement of the flawed and the valid model
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(a) Flawed (b) Valid

Figure 27: Von Mises stresses around the flawed region

5.3 Example 3: Engine Brake

In 2013, a collaboration of Grab Cad and General Electric arranged a competition to find the
optimal design of an engine bracket for a General Electric turbofan [74]. The submitted designs
were then evaluated, and the top ten were produced using additive manufacturing. The model
depicted in Fig. 28 was designed by Sean Morrissey .

(a) Initial design (b) Optimized design

Figure 28: General Electric design challenge for the optimal shape of a jet engine brake

In an attempt to perform a heat diffusion simulation motivated by a local heat source induced
by a laser beam during additive manufacturing it turns out that 337.544 triangles have a free
edge, indicating a gap/opening between the patches. 2324 triangles were oriented in the wrong
direction and innumerable intersections occurred. Due to the immense amount of flaws, geom-
etry healing — and, thus, also the meshing — is not applicable on this raw model. However, using

3https://grabcad.com/sean.morrissey- 1
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the approach presented in this paper, we were able to immediately run a simulation without any
further treatment of flaws.

(a) STL model (b) Details

Figure 29: Blue lines denote open edges: In many cases the free edges are fairly close. As can
be seen in the detailed views, however, some of the gaps and openings are quite large.

We chose 18 x 11 x 6 elements for the simulation. A partitioning depth for the geometry
approximation tree ﬁgeu of n,,.x = 3 on each finite cell was applicable. A laser beam is modeled
by a small heat source where a local refinement of the finite cell grid was applied. Figure 30
shows the resulting temperatures in the specimen.
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Figure 30: Temperature distribution in the bracket due to a point heat source.

6 Conclusions

This work presents a methodology to address challenges flawed CAD models pose to computa-
tional mechanics. Unlike other methods that rely on model reconstruction or geometry healing,
the proposed approach herein allows for a numerical analysis directly on the corrupted ’dirty’
geometry. Certainly, a simulation on broken geometries will inevitably lead to errors, which are
yet of a similar nature to modeling errors due to a representation of a NURBS-based geometry
by faceted surfaces. The size of this modeling error depends on the geometric size of the flaws,
e.g., the width of a gap between patches. The influence of these errors remains local to the flaw
itself. Moreover, the error can be bounded by performing bracketing simulations. Therein, the
upper bound is delivered by a computation considering all ambiguous integration points to lie
inside the physical domain and the lower bound is generated by considering the inverse situa-
tion. Several examples demonstrate the capability of the proposed method, showing that results
of high accuracy can be obtained.
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2.4 From pictures to simulations

Geometric models aren’t always readily available for computational analysis. This is, for ex-
ample, often the case in the field of cultural heritage preservation, as there are usually no
digital CAD models available for historical structures. Moreover, even if schematic drawings
exist, the shape of the object may differ from them — especially if the structure is exposed
to damaging effects such as erosion, floods, earthquakes, or wars. In these cases, other shape
measurement techniques need to be employed. The two most popular methods for this purpose
are terrestrial laser scanning and close range photogrammetry-based reconstructions. FEspe-
cially photogrammetry has gained a lot of attention recently, due to the inexpensiveness of the
required equipment and because of the rapid development of the computational resources as
well as the associated algorithms that allow for efficient, almost real-time reconstructions [29].

As already pointed out at the end of section 2.1, the methods of laser scanning and photogram-
metry both reproduce the shape of the geometry of interest in the form of point clouds: a set
of points representing the surface of the object. Such point clouds are normally not directly
suited for numerical analysis. Instead, it is necessary to employ the reconstruction process
depicted in fig. 9, and the Finite Cell Method is able to provide a suitable shortcut.

This shortcut relies on the construction of a robust point in membership test for point clouds,
which can be constructed quite easily. Consider the domain €y, represented by a set of
sample points p; and their associated normal vectors n;, as depicted in fig. 11. If no outliers
are present, the set of pairs S = {p;, n;} represent a discrete sampling of the boundary 0€Qpy
of the domain.

Each element in S defines a hyperplane that separates the space in two half spaces: the open
half-space €2, on the side of the hyperplane where the normal vector n; points, and the closed
half-space Qj on the other side. For every x € Q;.", the following holds:

(Pi —x) -n; > 0. (1)

Therefore, a simple way to determine whether a quadrature point q lies inside or outside the
domain is to find the p; and the associated n; in S that lies closest to q, and to evaluate the
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Figure 11: Point membership classification on oriented point clouds. The domain is represented
by a set of points p; and associated normals n;. Every such pair locally separates the space along a
hyperplane into two half-spaces: €, and Qj’
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scalar product of eq. (1). This rather simple algorithm, equipped with an efficient nearest
neighbor query, works robustly on complex point clouds as well.

Figures 12 and 13 depict the entire pipeline of how a computation may be carried out starting
from a set of pictures of an object. Figure 12 depicts the step of shape acquisition. A statue
is photographed from several angles. These pictures then form the basis of generating an
oriented point cloud. To this end, it is possible to employ standard computer vision software
such as the open source toolbox OpenMVG [30], for example. The point cloud is then filtered

Figure 12: xyz

in such a way that outliers — i.e. points that are not considered to be part of the hull enclosing
the volume to be computed — are eliminated. These pre-processing steps are common to all
computations based on point clouds, and directly associated to the step of image acquisition,
see also fig. 9. The shortcut of an analysis for computational mechanics using the Finite Cell
Method is then composed of the three stages depicted in fig. 13.

The previous steps of shape acquisition result in the oriented point cloud depicted in fig. 13a
along with its normal vectors. The point cloud is inserted into a grid of finite cells of the size
of the bounding box enclosing the point cloud. The finite cells that don’t contain points are
deleted, see fig. 13b for a visualization of the resulting discretization. Next, Dirichlet boundary
conditions are assigned directly to the cells at the bottom of the statue, and self weight is
assigned as a volume load. The weak form is then integrated using the point membership test
given by eq. (1). For the sake of simplicity, the integration is carried out using an octree. The
finite cell analysis then delivers the Von Mises stresses depicted in fig. 13c. The stresses are
normalized since a homogeneous linear material behavior is assumed.

The extension of the Finite Cell Method to point clouds as geometric models depicted in figs. 12
and 13 is very promising but has not yet fully matured. The basic ideas are published in [31].
Extensions including a more thorough investigation of the convergence of the method and its
sensitivity to outliers — as well as the application of Neumann boundary conditions directly
on the point clouds which, in most cases, do not coincide with the boundary of the discretiza-
tion are published in [27]. Open tasks for research are: the application of Dirichlet boundary
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¥

(a) Oriented point cloud (cleaned (b) Point cloud embedded into (c¢) Von Mises stresses (normal-
from fig. 12) with normal vectors ~ FCM grid ized)

Figure 13: Direct simulation of point clouds with the Finite Cell Method

conditions such as, for example, those presented in section 3.3 and the construction of smarter
integration schemes similar to those presented in section 3.2.
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3 Discretization

3.1 Overview

The wide range of applications and their specific requirements also spurred developments in
the underlying discretizational technology of the FCM itself. First and foremost, contribu-
tions to an improved integration will be pointed out in section 3.2 before the appropriate
handling of Dirichlet boundary conditions is addressed in section 3.3. These first two issues
are of crucial importance for any kind of embedded domain method such as the FCM. This
is followed by a brief discussion of contributions which are not restricted to the FCM but
naturally extend to boundary conforming methods of high order in general. The focus here
lies on challenges for elliptic equations which stem from irregularities in the solution. Two ap-
proaches are possible for their appropriate resolution: a) a direct enrichment using the known
type of irregularity directly at the correct position, and b) an enrichment in the vicinity of
the solution with functions to better approximate the possibly unknown type of irregularity.
Numerous other classifications exist (see, e.g. [32]), but this simple one suffices in the scope
of this treatise. The contributions to these types of challenges are briefly discussed in sec-
tion 3.4 by means of examples. Therein, one type of enrichment, the multi-level hp-method,
is especially highlighted by including the corresponding journal publication in the subsection

The technical possibility to be able to enrich the approximation then leads to questions
of where this enrichment should be carried out, which type shall be used, and how much of
it. The corresponding contribution is briefly summarized in Refinement indicators and error
estimation.

3.2 Integration

Probably the most decisive question concerning efficiency and accuracy of immersed-boundary
methods in general and the FCM in particular is the numerical integration of the bilinear form
for cells cut by a boundary. The bi-linear form defined on these cells exhibits a discontinuity
introduced by «, which is not captured by element boundaries and for which standard Gaus-
sian integration schemes lead to poor accuracy. As a remedy, adapted quadrature schemes
for the FCM have been developed, see for example in [33, 34| [35]. These schemes are based
on adaptive quadtree and octree refinements — or they take the voxelized discretization of
the physical domain into account directly. They can be fully automated because they are
robust with respect to complicated geometries and non-smooth integrands. This is highly de-
sirable, especially considering that the initial goal of the FCM was to peruse a fully automatic
computational analysis.

However, due to the large number of integration points, the related numerical effort may still
be very high. The obvious reason is that quadtrees and octrees solely rely on a point mem-
bership test and only iteratively approximate the boundary of the domain. Still, it is possible
to construct much more efficient schemes using less Gaussian points, for example by means
of moment-fitting methods [36]. These, in essence, construct an individual integration rule
by solving the moment equations for given positions of integration points to compute their
corresponding weights for each individual cut cell. This reduced set of integration points and
corresponding weights can then be used in subsequent computations. The solution of the mo-
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ment equations can be computationally expensive. Therefore, moment fitting especially pays
off in transient computations in which the integration points may be used repeatedly among
with their corresponding weights. Very recently, it was demonstrated that the computation of
the equivalent integration weights can be significantly reduced® such that the computational
effort to obtain the weights is drastically reduced [37]. Thus, the computational time invested
into moment fitting amortizes much earlier as compared to classical tree based schemes — to
the point that moment fitting becomes a favorable choice even for non-transient computations.

An alternative approach to construct smarter integration schemes with less Gaussian points
is to incorporate more knowledge about the boundary of the physical model. The next step
in this direction is to use the locations where the boundary of the physical problem intersects
the computational grid. The most obvious approach in this context is to sub-triangulate
or sub-tetrahedralize cut cells. This was carried out e.g. in [38], in the context of fixed-
grid fluid-structure interaction, or in [39] in the context of the weak imposition of Dirichlet
boundary conditions. However, depending on the geometric complexity of the boundary, this
type of sub-integration may still lead to numerous Gaussian points and, at the same time,
compromises the robustness of this approach.

Interestingly, it is possible to combine the robustness of the integration by a quad- or octree
with a higher accuracy of the integration. The most straightforward starting point is to use
as little integration points as possible and a quadrilateral subdivision. However, this leads to
the infamous 16 marching cubes cases which are inconvenient to handle. They can be reduced
to only two cases under the provision that both triangular and quadrilateral sub-integration
elements are allowed, see fig. 14.

Figure 14: Idea of exact composed integration: Every cut cell is subdivided into two triangles along
a diagonal line. The triangles are further cut by the boundary. Only the depicted two cases need to
be handled because topologically more complex cases are handled by recursive subdivision. [40]

The original robustness of a quadtree is simply added by the following observation: intersec-
tion cases that are topologically more complex all fall back to the two cases depicted in fig. 14.
If a curve exhibits a kink, then the subdivision of the quadrilateral into triangles is carried

3This is achieved by choosing Lagrange functions defined by Gauss-Lobatto points. This leads to a diagonal
coefficient matrix for the moment fitting equations such that solving for the unknown integration weights
becomes trivial.
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out in such a way that the subdivision runs through that kink. A recursive application of
these two steps quickly converges to an accurate integration. These findings were published
in [40] along with a more detailed description and examples.

Unfortunately, this scheme does not directly extend to three dimensions because a division of
one octant of an octee into tetra- and hexahedrals only works well only for smooth surfaces.
Cases in which sharp features in cutting surfaces needed to be incorporated are problematic. A
fallback option into a further refinement does not resolve these cases and, therefore, robustness
is lost. However, a closer look reveals that it is actually not necessary to divide cut cases into
tetrahedrals or other topological entities such as wedges. Instead, it is possible to use the
octree directly in the following simple manner: a) subdivide cut cells regularly into 8 octants
b) move the inner node towards the cutting surface ¢) move the nodes of the cut surface of
the octant into the intersection point with the cutting surface. d) for a high-order version:
blend the surfaces of the octant towards the cutting surface. As an example, consider the case
of an octant subdivided into the two domains g and Qgeq as depicted in fig. 15, then:

e If any of the 12 edges is intersected by the domain 0€Qpnys, it is identified as an active
edge. On active edges, the corresponding edge node is moved to the point of intersection.
If an edge is inactive, its edge node stays in the center.

o If any of the 6 faces is bounded by an active edge, the face is identified as an active face.
On active faces, the face node is moved onto the intersection curve between 9€Qppys and
the face. If the face is inactive, its face node remains in its center.

e The mid-node of the cut cell is moved onto 08 ,pys.

The resulting cells have corners that are either located in {hys or in €ge. This gives a linear
approximation of the boundary. Higher order cases are treated by blending the surfaces of
the corresponding octants towards the surface dividing Qpnysand Qgeg.

Figure 15: Smart octree generation. The nodes on active edges, faces, and the mid-node are moved
onto the interface. For simplicity, only two resulting subcells are shown. The corners of the red
bilinear quadrilateral lie on the interface.[41]

This naturally provides the possibility to treat six kinks in surfaces plus one C® node irreg-
ularity per octree-refinement. If one refinement is not sufficient to treat all present features
at once, the algorithm is applied recursively. This scheme converges extremely fast. Actu-
ally, no more than two refinements are needed in practical engineering applications. Further
algorithmic details were published in [41]. For a comparison between the performance of the
smart octree and moment fitting see [42]

It is yet an open question which of the integration schemes discussed in the beginning of this
section is the most suitable in which case. The most favorable integration scheme will likely
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depend on the geometric model used (CSG, B-rep, voxels, point clouds) regarding the physics
involved (geometrical or material linear or non-linearities, transient or stationary problems).
Another aspect is whether topological changes are expected during the computation.
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3.3 Dirichlet boundary conditions

The treatment of Dirichlet boundary conditions is a common but challenging task for immersed-
boundary methods, since the non-boundary-conforming discretization prohibits a strong en-
forcement in the classical sense. Alternatively, the penalty method [43] or a weak enforcement
strategy, which was first introduced by Nitsche for Laplace problems [44], were extended to
the FCM [45, 39]. They exhibit the problem that a stabilization parameter is needed to
maintain positive definiteness of the system. This parameter can be estimated by a local
eigenvalue computation. At the time, the goal was to avoid this estimation. A promising
alternative was developed for low orders methods in [46] and extended to high-order methods
and curved geometries in [47]. The basic idea is to start with a mixed formulation in which
the material law is discretized with functions in Lo. Their discontinuity at the boundaries of
the cells allows to condense the unknown gradients of the primal variables out of the system
at the discrete level such that they do not have to be computed explicitly. The key point
is that this leads to terms which are equivalent to the classical Nitsche approach — with the
only difference that the stabilization parameter is replaced by a term similar to an inverse
mass matrix defined on Qge;. The discretization of that term depends on the choice of poly-
nomials used to discretize the material law. It could be demonstrated that this term indeed
provides the necessary, automatic stabilization. Furthermore, the boundary conditions were
re-formulated to solve the problem of coupling patches by a trim-and-glue approach, which is
briefly explained in section 3.4.1.
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SUMMARY

We present a parameter-free domain sewing approach fordewvell as high-order finite elements. Its
final form contains only primal unknowns, i.e., the approdoes not introduce additional unknowns at
the interface. Additionally, it does not involve problempéadent parameters which require an estimation.
The presented approach is symmetry-preserving, i.e. thdtireg discrete form of an elliptic equation
will remain symmetric and positive definite. It preserves tiider of the underlying discretization and we
demonstrate high order accuracy for problems of non-madctiiscretizations concerning the mesh gize
as well as the polynomial degree of the order of discretizaii We also demonstrate how the method may
be used to model material interfaces which may be curved andfliich the interface does not coincide
with the underlying mesh. This novel approach is presemtdida context of the p- and B-spline versions of
the finite cell method, an embedded domain method of highrpadel compared to more classical methods
such as the penalty method or Nitsche’s method. Copy@y0000 John Wiley & Sons, Ltd.
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KEY WORDS: Dirichlet boundary conditions, embedded domdaimmmed patches, Isogeometric
Analysis,p-FEM, finite cell method

1. INTRODUCTION

We reconsider the imposition of Dirichlet boundary conditions in the contetiteofinite element
method. We focus on the case, where the Dirichlet boundary conditiersposed independent of
the underlying discretization, i.e., they do not coincide with nodes, edgeses of the mesh but
may cut elements in an arbitrary fashion.
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Whereas this problem has been investigated for decades, it has gairessied attention recently,
for example in the context of Isogeometric Analysis (IGA)Z]. The main motivation in IGA is to
facilitate the transition from geometric models to computational analysis and yhemetber mesh-
generation unnecessary. This is achieved by an isoparametric appbaaed on applying typical
functions (e.g., B-Splines and NURBS) from Computer Aided Design (C&Bjems directly in
order to discretize the differential equations that describe the undenbhiggics. The Dirichlet
boundary conditions, however, are not always associated with threlaouof the geometric model.

Another problem class in which the need for a mesh independent impositriaflet boundary
conditions arises are embedded domain methods. By definition, they dpredeat the underlying
physical domain with a boundary conforming mesh. In this contribution, wasider the finite cell
method B, 4], an embedded domain method of high-order which is also applicable to3A [

Numerous approaches and a vast body of literature exist for the impasitizinchlet boundary
conditions, each of them with different properties, advantages andwvdistages. None of them is
perfect for all applications. Our wish-list for an ideal imposition of Diri¢Hbeundary conditions
would require the method

e to be independent of the underlying discretization not only geometricallgumh that, for
example, a change of the approximation basis does not require a modificbtiemethod;

e to be numerically stable and variationally consistent;

e to preserve a symmetric, positive definite system matrices for elliptic problems;

e to be applicable to hyperbolic and parabolic problems;

e not to introduce additional degrees of freedom;

e not to deteriorate the order of approximation of the underlying discretization

e to be suitable for high-order accuracy;

o to be free from problem-dependent parameters.

We will first provide a quick and non-exhaustive review of some methdashwcomply with at
least some of the properties mentioned above. For a more general regefoisexample,d, 7].
In the contribution at hand we are only interested in methods which werenstwole suitable for
high-order discretizations and/or set the stage for the approach tesenped.

In principle, there are two choices for the imposition of Dirichlet boundanyditions. First,
the Dirichlet boundary conditions may be directly built into the basis functignmbdification,
extrapolation or augmentation of the basis. Methods belonging to the firsp gnclude web-
splines B, i-splines P, 10], max-ent interpolation11], the extended finite element method (X-
FEM), the generalized finite element method (GFEM) and level-set like apbes 12, 13, 14].
Second, one may enforce Dirichlet boundary conditions by augmentingo¥erning equations
with suitable constraint conditions. This second group emanates fromcemgfoconstraints in
variational problems and is, thus, very general. The most commonly usedpstialty methodl[,
16], which is easy to implement and which produces a positive definite systerix fwatelliptic
problems. However, it is not a variationally consistent method which reniier results to be
strongly dependent on the choice of the penalty parameter. Additionallpetne to select a high
penalty value results in an ill-conditioned system of equations.

A classic alternative to the penalty method is to enforce the constraints thicagiange
multipliers [L7]. This produces a variationally consistent method with additional degrées o
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freedom. However, the Lagrange multiplier space must satisfy the infesugition [17, 18]. Thus,
the choice of the discretization of the Lagrange multiplier is not always obvibdepends on the
discretization including the mesh, which turns out to be quite restrictive. @steictions can be
circumvented by means of especially developed stabilized Lagrange multiplieodse They can
be interpreted as an attempt to combine penalty and Lagrange multiplier methiblasvatecome
a popular choice in the context of embedded domain modeliag?p, 21, 22, 23)].

Another attractive and very general alternative is Nitsche's metdd It can be interpreted as
a stabilized Lagrange multiplier technique in which the Lagrange multiplier is diratglytified
to be the flux normal to the Dirichlet boundary. The close relation of Nitsch@thod to the
Lagrange multipliers method was first analyzed by Stenb2s Even though Nitsche’s method
eliminates the need to discretize the Lagrange multipliers with additional varittiestabilization
term remains in the formulation and continues to contain a problem-deperatengter. Nitsche’s
method is much less sensitive to the choice of a stabilization parameter than the pénalty
method. However, for optimal performance, such a parameter still nebesastimated. A suitable
estimation for a lower bound is, for example, given by Griebel and Schevd28] who propose
to solve an auxiliary generalized eigenvalue problem. Beyond the Passegoation originally
investigated by Nitsche, his idea has been extended to other problemscl@absepotential of
Nitsche’s method is nicely laid out in a review article by Hansbjo If has been further extended,
for example, to thin plate problem&7], three-dimensional elasticity2f], thermo-elasticity 29),
and fluid dynamics3qQ].

Recently, different schemes have been proposed that are neitlegrddey on additional degrees
of freedom nor on the solution of auxiliary problems to estimate the stabilizatiorstekmong
these are schemes using degrees of freedom of certain nodes oftthelément mesh to minimize
the difference between the exact and the approximated boundary cari@itio They are robust
but yield a non-symmetric equation, also for symmetric problems. In the cotidribat hand, we
follow a different approach, namely to use Discontinuous Galerkin teaksicHerein, the material
law is discretized with functions being discontinuous across element boesd&he additional
degrees of freedom can then be condensed out at the discrete fievetopthe solution of the
system matrix, so they will not appear in the final formulation. These appesecan yield automatic
stabilization terms, i.e., terms that add stability without the need to compute auxilizyvelge
problems, see e.g7]. The method proposed i8] is a recently proposed variant but again leads to
unsymmetric systems for symmetric problems. However, the formulation was syiaedetr [33].
This formulation will mark the point of departure in the paper at hand in whiehail start by
investigating its suitability for high-order embedded domain discretizations.

Imposing Dirichlet boundary conditions is also of importance for weak lbogipf different
discretizations. Geometric models in CAD systems, for example, are usuallyrisethpf many
trimmed patches of splines of all types, such as B-Splines, NURBS, T-Spéte These trimmed
patches should serve as the geometric model in IGA. If this model is to belgitemsferred
to computational analysis without mesh generation, the trimmed patches havegltetet their
common and usually non-matching interface by means of enforcing continfuibe ainknowns
and/or their derivatives to yield a consistent computational model.

The same task needs to be addressed in embedded domain analysis. & pmp@ar for
geometries which are difficult to mesh or for cases in case a geometry dogédogy changes
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over time. Chimera approaches, for example, resolve the domain with ondtilenoverlapping
meshes each of which represents a different physical domain. Thimwitn at their common
boundary is then enforced either iteratively or monolithically. Througltbist treatise, we only
consider monolithic coupling, i.e., the coupling terms will directly appear in theltieg system
matrix and the solution of the coupled system is obtained in one step only.

Monolithic approaches using Lagrange multipliers to satisfy continuity cantdralong the
domain interfaces are mostly named Mortar methods. Many variants of thisgaehmave been
proposed 34, 35, 36, 37, 38|, to list just a few. As in the case of the weak imposition of Dirichlet
boundary conditions with Lagrange multipliers, its straightforward applicatésults in rather
restrictive stability conditions, which is why stabilized versions are advdcaigain, an alternative
for monolithic coupling is to use Nitsche’s method to impose the constraints. Ehef ditsche’s
method to couple subdomains was extensively analyse39jd]. Hansbo et al.41] extended this
concept to overlapping domains. It was also used to represent stnongesak singularities42].
The concept of using Nitsche’s method for coupling domains has bedie@ppa variety of fields
such as linear elasticity}B, 44], contact j5] and fluid-structure interactiortf]. As in the case of
imposing Dirichlet boundary conditions, using Nitsche’s idea for couplérgires the solution of
an auxiliary generalized eigenvalue problem for an estimation of the optinbéizttion parameter.
In this contribution, we derive a method which sets out to eliminate the needlfong auxiliary
equations to estimate stabilization parameters and, at the same time, leads to synystetnic s
matrices for elliptic problems.

In order to set up our main field of application of our proposed technigadegin with the
introduction of the finite cell method in sectiéghbefore continuing with the weak imposition of
Dirichlet boundary conditions in sectid) embarking from classical Nitsche’s formulation. Next,
we recall the recently introduced boundary conditions for PoissooBlgm as presented i3]
but put them in the context of the finite cell method. We show that the corned8] can be
straightforwardly utilized in the framework of high-order finite elements inegeh We investigate
the performance of the boundary conditions and compare their resultsgeriatty method as well
as to Nitsche’s method for Poisson’s equation in one and two dimensiondwbh@imensional
examples are computed by discretizing the continuous problems with the digssiesion of
the finite element method utilizing the hierarchical integrated Legendre polylsasiantroduced
in [47]. Additionally, we evaluate the performance of this new type of boundangitions in the
context of patches of B-Splines which form the basis for IsogeometratyAis.

Section4 is devoted to the new, parameter-free and symmetry-preserving weaknepof
domains. Again, we start by recalling the more classical Nitsche’s methatidgsroblem under
consideration. The derivation of the new scheme is carried out in sectiGrad4.4. We prove
the scheme to be stable in sectibb and show that in all tested cases the resulting discrete system
is positive definite. Utilizing the presented methodology, we demonstrate higleigence rates
in all cases. Specifically, we first evaluate the new method’s capabilitieBd@son’s equation
with non-conform discretizations ih and p and constant coefficients in a boundary-conform
setting (sectiont.6.1) before we move to an overlapping discretization with an inclined coupling
boundary (sectiont.6.2. We then demonstrate the method for a bimetal strip. Naturally, this
example possesses discontinuous coefficients and we apply nonroorgaiscretizations i and
p (section4.6.3. The last example is an inclusion problem. It has discontinuous coet&céem

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn@000)

Prepared usingimeauth.cls http://mc.manuscriptcentral.com/nme DOI: 10.1002/nme

Journal publication: https://doi.org/10.1002/nme.4817



https://doi.org/10.1002/nme.4817

108

Page 5 of 33

International Journal for Numerical Methods in Engineering

WEAK COUPLING OF TRIMMED PATCHES 5

we discretize it in a Chimera-like fashion by using an overlapping discretim(®ection4.6.4).
All examples are computed by using B-Spline patches and clagsieBM and are compared to
Nitsche’s method. Finally, we draw conclusions in secéon

2. FINITE CELL METHOD

2.1. Applications of the finite cell method

The finite cell method was first introduced i3, [4], where its potential was demonstrated
for linear-elastic examples in two and three dimensions. Various extensibrieeoFCM
confirm its versatility in the context of topology optimizatiod8], geometrically nonlinear
continuum mechanics4p], adaptive mesh-refinemens(, 51, 52, computational steering5p,
54], biomedical engineering5p], numerical homogenization5f], elastoplasticity $7], wave
propagation in heterogeneous material][ local enrichment for material interfaced4],
convection-diffusion problemssp, 60], thin-walled structures€l], design-through-analysis and
isogeometric analysi$[, 52, 5], and multi-physical application2§].

A free FCM-MATLAB-toolbox is provided aht t p: // f cnl ab. ci e. bgu. t um de/ under
the GNU Licence along with extensive online documentat&if} s well as numerous examples.
It serves as a library to solve one-, two-, and three-dimensional edtetio-and elasto-dynamic
problems. It utilizes advanced software development techniques subksign Patterns6f)] to
provide maximum flexibility to users as well as Unit Testing to ensure codeastensy throughout
the development process.

2.2. Formulation

The finite cell method is an embedded domain method based on higher orger fshations.
The primary goal of the method is to avoid the generation of boundaryooirig meshes.
Nevertheless, it provides high-order convergence rates. For thoge, it assumes a three-
dimensional physical domaift and an embedding domain, such thatQ. > Q whereby(, is
of a simpler, typically rectangular shape. Their boundaries are defsved & I" andof2. = T..

Let us consider the following bilinear forgn, ), defined ort,:

(u,v)g, = /Q [Lov]T CY [Lu] d 1)

in which is a scalar- or vector-valued functiomijs a test function, and is a differential operator.
The material matrix of the embedding domain is definedCgds= «C whereC is the material
matrix of the physical domaift and« is an indicator function defined as:

1 VzeQ
a(x) = (2
0 VeeQ. \Q

The finite cell method is depicted in fig. It is important to note that eq2) implies a (z) =
1.0 Va €T as, otherwise, it would not be possible to apply non homogeneous bywratalitions
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Figure 1. The finite cell method: Physical dom&irmnd embedding domain..

onT. Furthermore, the definition af (x) in eq. ) ensures that the bilinear forms defined on the
embedding domaif. and on the physical domain are equivalent:

(u,v)q, = /!2 [Lv]T aC [Lu] dO 3)
= / [Lv]" C [Lu] dQ + / [Lv]" 0 [Lu] d© 4
Q Q.\Q
= / [Lv]" C [Lu] dQ 5)
Q
= (u,v)q (6)

The linear functionalF

(]—',v>:/ o7 (af) dQ-I—/ vt dl = (F,v)® )
Q. r,
is identical for the extended and the physical domain and also takes the vetumoesf inside(2
and prescribed fluxels= o - n on the Neumann part of the boundary of the physical doairio
account. The solution of

(u,v)q, = (F,v)¢ ®)

is equivalent to solvingu, v), = (F, v). In the sequel we will, therefore, drop the subindexless
we want to specifically stress one viewpoint or the other.

A discretized view of the finite cell method is depicted in figFor the numerical approximation
of eq. @) it is convenient to define a computational grid on the extended dofaiThis grid
forms the support of the basis functions. In principle, we can use aroni@artesian grid, as was
applied in the first implementations of the FC®] f]. Hierarchically refined grids can be defined
alike [64, 65, 66, if local features of the solution are to be resolved in more detail. Note tleat th
boundary of the physical domain is not resolved or even approximat#uebyrid. In order not to
change the problem, the geometry needs to be recovered at the integnagioi leatural strategy
is the following:

Let us denote elements of the computational grid such as Qell$o distinguish them from
classical finite elements. It is convenient to categorize cells into threedifféypes which are
depicted in fig2:
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Qe Qc1: a(x) = 0 — not computed
Qca: a(x) = 1 — treated as regular FEM
Qcs: o (x) = 0 or 1 — adaptive integration

— and 2-field problem, iffT" p
Qc2

I'p

Figure 2. The discrete point of view of the finite cell methdte cellsQ~ provide the support of the shape

functions much like finite elements do. The important cas@ g In addition to an adaptive integration

we advocate solving the 2-field problem 0g-3 if and only if a Dirichlet boundary condition is imposed

onT parts of it (see sectio.2). The part ofl" on which Dirichlet boundary conditions are imposed is
labeledl' .

1. Q¢i: Cells wheren(xz) =0 Va € €., which are not computed.

2. Qco: Cells wherea(z) =1 Va € ., which are computed as if they were regular finite
elements.

3. Q¢3: Cells cut by the boundary’, which receive special treatment as described in the
following.

Cells of typeQ¢s are decomposed into two pais-,, in which a(x) =1, andQr,,, in which
a(x) = 0. In practical computations, we assume the paramstey not to be exactly zero. Instead,
we choses < 1 to ease numerical round-off issues in the solution process. Thus, phieitx
accept a modeling error of the ordewhich is controllable as it tends to zerceibpproaches zero.
We usually choose to have very small magnitude, typically abdwt® smaller than the material
constant.

The numerical integration of the bilinear form must be carried out acdyrat@ugh on the cut
cells as to recover the bilinear form of e§) @t the discrete level. For this purpose, the integration
of the bilinear form is ideally only carried out dir-, . One way to perform the domain-integration
numerically is to approximat@r,, adaptively by recursive bisection, allowing for a simple and
efficient refinement towards the bounda6g[5, 67]. Geometrically more involved, but also more
efficient schemes utilize straight sided triangles, —see, e2fj]. Precise numerical integration
schemes for complex geometries based on the blending function mé@jaid also possible.

Homogeneous Neumann boundary conditions are easy to deal with. Theggaivalent to
assuming material with zero stiffness in the donfain, Q and, therefore, need no special treatment
in the framework of the finite cell method. Inhomogeneous Neumann boymndaditions are
realized by including the second term in €d), (.e., by directly integrating over. The integrand
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is simply a product of a function living on the surface (the load) and thpeshanctionsu defined
over the cells, yet evaluated at the surface

The imposition of Dirichlet type boundary conditions Bror on parts of it, i.e.I'p cutsQ¢s, is
a central topic of this paper and is discussed in se&ion

3. WEAK IMPOSITION OF DIRICHLET BOUNDARY CONDITIONS

3.1. Nitsche’s method

We consider the following scalar-valued single field problem:

—kAu=f inQ 9)
u=1u onl'=09Q (20)

For simplicity, we assume a pure Dirichlet-problem,I.g. = T. If Dirichlet conditions are imposed
only on parts of the boundary, corresponding integrals in the followingdtations have to be taken
only over these parts. If the boundary conditions &6) &re imposed by Nitsche’s methaz¥], the
potential corresponding to eg®) @nd (L0) reads:

H(u,o’):/ﬂ (%k(Vu)Q—fu)dQ—/Fn~o'(u—E)dF+%6'A(u—ﬂ)2df (1)

The first term in eq.X1) is clearly the potential associated to ef). (The second term enforces
the boundary conditions of eql@ by means of a Lagrange multiplier which has already been
identified to be equal to the fluxes at the boundart —n - o. This allows a formulation in primal
variables, i.e., no additional degrees of freedom are needed to appatex. However, the negative
sign of the Lagrange multiplier may lead to a loss of coercivity which is restoyete third term

in the potential of eq.1(1) which again enforces to be equal ta: atT' by means of a penalization.
Coercivity is only restored for a sufficiently high choice @fUnfortunately, a closer look reveals
that the penalty parametgris problem-dependent. Fortunately, it has turned out that the precise
choice ofs does not have a large influence on the solution above a certain threkloaldver, an
optimal value forg is not easily obtained and the threshold above which its influence on tHe resu
is of only minor importance is unknown a priori.

The weak form of the imposition of the boundary conditions by Nitsche’s nuethay either be
obtained by multiplication of eqs9) and (L0) by a suitable test function and integration by parts,
or by variation of the potential given in ed.). In any case, both approaches lead to the following
weak form p4]:

k(Vu,Vv)g —k(n-Vu,v)r — k(u,n - Vo)p + kB (u,v)r = (f,v)o — k@, n - Vo)r + kB4, v)r
(12)

where we used the common short hand notation offth@roduct(-,-) and< -,- > denotes the
integral of two functions over a domain.
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A lower bound to estimate the parametein eq. (L2) to ensure coercivity may be obtained by
solving the following auxiliary eigenvalue problem as, for example, sugdes [69, 28]:

Ax = ABzx (13)

A= /(Vu -n)(Vv - n)dl

B= [ (Vu-Vuv)dQ
Q

3.2. Alternative to Nitsche’'s method

The symmetric form of the imposition of boundary conditions presented in tkisoaeclosely
follows the work of Baiges et al3f] but puts the methodology into the context of the finite cell
method. Even though the presentation starts from a mixed-field formulatiomatgdrm contains
only the primal unknowns.

3.2.1. Weak fornEquations ¢) and (L0) can be recast into the following two-field problem:

—kAu=f inQ (14)
%o’ =Vu inQr,, (15)
U= onl’ (16)

As usual for mixed-field formulations, ando in egs. (4) to (16) are discretized independently.
The associated potential to egs4)(to (16) is

II(u,0) = lk (Vu)? = fu)dQ— | n-o(u—u)dl - " (o — kVu)® dQr,
o \2 r 2nk Jq,. "
7

wheren is any real number greater than two. The only difference betweerd &gaiid eq. 17) is
that the latter enforces the boundary condition with the help of the materialflag: ¢L5) which is
imposed weakly o2, . In essence, the potential eq.7f enforces the Lagrange multiplier to be
the trace of the unknown in a least squares sense.

The variation of the potential given in edlq) leads to the following weak form of eqsl4)
to (16):

1 1
kE(Vu,Vv)g — (n-o,v)r + - (Vv,0)q, — TLk (Vv,Vu)q. = (f,v)a (18)
1
ol

— T,0)q. -+ % (T, V), —(T-nur=—(T nar (29)

in

F?n

This formulation still contains the primal unknowrand the flux variabler. However, as we shall
see laterg can be condensed out at the discrete level in such a way that no additidmewns
will be necessary to impose the boundary conditions.
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3.2.2. Discretization in the context of the finite cell methdde finite element subspaces are
constructed to ensure thadj, ¢ H! (Qh)d, so V,, consists of continuous functions. Further, we
constructs;, ¢ L? (Q,,,)d. Functions inS;, are considered to be discontinuous only within the
elements cut by and are zero elsewhere. The discretized weak form given in &gsafd (L9)

now reads:
1 1
k (V’U,h, VU;—L)Q — <TL . O'h,vh>[‘ + E (Vvh, O‘h)QFm — Ek (VU/—“ Vuh)ﬂrm = <f7 Uh>!2 Yo, € V,
(20)
1 1 _
- (Th, U”')Qrm + - (Th, V“’h)ﬂrm —(mh -nyup)r = —(1h -, u)r V1, €S},
(21)

At this point it is worthwhile to discuss the meaning of discontinuity in the contettteofinite cell
method. The primary goal is to simplify the implementation process as far as lgolsgibeusing
the shape functions fro, for Sj,. In the context of the finite cell method, the first term in exf))(
reads

(Vun, Vor)g, =3 / [Lon)T «C [Luy] d9 (22)
c=1 Qe

The following, alternative view is naturally possible:
(Vun, Vor)g, = / [Loyv/a]" C [Luyv/a) do (23)
c=1 Qe

Hereby, the shape and the weighting functienandv are both multiplied by the square root of
the indicator functiorx defined in eq.Z%). We now have two views on the discontinuity@@andwv:

(a) we may view them temoothly extendcrosd" into the embedding domain under the condition
that this extension does not contribute to the energy described by the biiimea Clearly, this
view is expressed in eq2®). (b) we might view the shape functiong andv,, to exhibit a jump to
zero from whatever value that satisfies the conditionk orternal toQ2¢3. This view is represented
in eq. 3). From the implementational point of view there is, thus, no need to defines @e&teof
discontinuous shape functions for the discretization of eitheor 7,,. Instead, one may simply
reuse the shape functions from the discretization,0éndv, for the discretization oé; and ;.
Thus, we discretiza;, andv;, in a Bubnov-Galerkin sense as follows:

up = NU = { Niei ... N, ] : (24)

on =NV = [ Niey ... N, ] : (25)

Vi=n

N N Gi=1z Oi=1y
o,=NX=| =t = (26)
Niz1 ... Ni=p R .
Oi=nz Oi=ny
Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn@000)
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variational ean.|| k (Vun, Von)g apim | —7r (Th: @)ap | 5 (Ths Vu)gém = (Von,on)q,,
algebraic form K, U K, X K, U K., .X
variational eqgn. —<0’h ‘N, ’Uh>1'* —<‘l’h ‘n, u>1'* -<n ©Th, ﬂ)p <f, ’Uh>Q
algebraic form G2 G, U 9oi b

Table I. Terms concerned with the internal part of each doragihe discrete variational and algebraic form
of egs. 0) and @1).

T =nNT =

R Ti=1z Ti=ly
no :|

P Ve N | (27)

Ti=nz Ti=ny

for scalar-valued Poisson’s problem. In eq&4)(to (27) N; denote thei* shape function
andn = (p+1)¢ for a tensor product space i dimensions. The corresponding coefficients
Ui, U;, i, Oy, Timy Tiyy Are organized in the respective matridés V', X, andT. We would like

to emphasize that, in the following, we will use an equal order discretizatroalifields and that,
therefore, allN’s given in egs. 24) to (27) are completely identical.

Note that the definition of, includes the multiplication by the normal vectar We apply the
following definition forn: n atT'p is the outward pointing normal vector. Logically, then, inside
Qr,,, n is defined to deliver a smooth extensiortoito Qr, which is obtained by taking to be
the normal vector towards from the considered point ifir,, .

in?

3.2.3. Static condensation and final formulatidiith the definitions given in table the system
given by eqgs.Z0) and Q1) can be written in compact form as:

(1 - %) Kuu Kuo' + Guo U f
= (28)
Ko'u + Go‘u Kncr b)) doa
The fluxes may be computed as follows:
Y= K;al (_ (Krfu + Gau) U+ gmi) (29)

K, is always positive definite and, therefore, invertible. Additionaiy,, must only be computed
on the elements cut Hy. The fluxes may, thus, be condensed out of 2§). &énalytically on element
level prior to computation. Equatio2®), therefore, simplifies to:

[(1 - %) Kuu - (Gucr + Kucr) Ka_(rl (Kcru + Go‘u) U = [.f - (Guo' + Kuo') Kz;dlga'ﬂ] (30)

TThis definition is applied, for example, in the evaluationfof , in egs. 85), (53) and 64).

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn@000)

Prepared usingimeauth.cls http://mc.manuscriptcentral.com/nme DOI: 10.1002/nme

Journal publication: https://doi.org/10.1002/nme.4817



https://doi.org/10.1002/nme.4817

3.3. Dirichlet boundary conditions 115

International Journal for Numerical Methods in Engineering Page 12 of 33

12 S. KOLLMANNSBERGER ET. AL

variational eqn.|| —k (n - Vu,v)p | 55 (vp,up)p | —k (RVos, @) | 25 (vh, @)p

algebraic form G..U GE.U Gua g’
Table Il. Nitsche’s method: Linear and bilinear forms useddq. 36).

The system given in eg30) can be written in a simpler way with the help of the following identities:

lI{uuU = - [KuaK;;Kou] U (31)
n
GLU=-[K.K,;G,,|U (32)
guﬂU = - [Ku(th;glgnﬁ] (33)
GuU = - [Gu K K,,| U (34)
to give:
[Kuu + Guu + Ggu - GUUK;[} Gau} U= [.f + Gou — GﬂaK;;goﬂ} (35)

Equation 85) is the final formulation of the method presented 33][ For means of comparison,
the discrete form of Nitsche’s method is given in €26)(

[+ G + Gl + GLIU = [ £+ gu + 90 (36)

where the linear forms aj,; andg’, and the bilinear forms ofs”, andG?#,, are given in tableél.
Now it can be clearly seen that e5f and eq. 86) only differ in the last terms in the brackets. The
new termsG,, K, G, andG;, K 'g,s are now responsible for counterbalancing the Nitsche
terms resulting from the identified Lagrange multipl@&r,,, and its transpose. Stability of e5)
was proven in the sense of an inf-sup conditior38 for low order discretizations. We will provide
examples to show that the system given by 8§) éven remained positive definite.

It is interesting to note how the method given by €8f)(avoids the estimation of a problem-
dependent parameter. Let us consider the simple case in Whighis small. Then, the magnitude
of K;! is large and the tern@,, K,.!G,, automatically adds the needed stabilization. In this
process, the dependency of the penalty term on a characteristic mesh azka specifigp is
respected quite naturally.

3.3. Two-dimensional Poisson’s problem

In this section, we investigate the 2D Poisson’s problem proposetDjnThe same example was
studied in the context of the finite cell method B8] as well, and is depicted in fid. It consists

of a square domain with edge= 1 andk = 1. Homogeneous Dirichlet boundary conditions are
imposed on the left, right and upper boundary of the domain while0) = sin(wz) is imposed on

the lower boundary. We discretize the domaingoy 8 elements using both theversion and the
B-Spline version of the finite cell method and study ppmefinements, keeping the discretization
grid as it is. All boundary conditions are imposed weakly as presentectaiiier by the Nitsche'’s
method or by eq.35). For Nitsche’s method, we estimate the penalty parameter for each polynomial
degree as suggested 69 and multiply it by two. We expect the solution to converge to the
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Figure 3. two-dimensional Poisson’s problem as propos¢ddn

analytical one given in eq3{) which has the strain energy given by egg)

Uexr(x,y) = (cosh(my) — coth(m) sinh(my)) sin(mwx) 37)

Uer = %W coth(m) (38)

With no singularities in the solution, we expect an exponential convergienttee energy norm
under purep-refinement.

We begin by studying the case where the discretization of the domain confmati$oundaries.
A first overall impression of the solution is given in fig, where the casg = 3 is considered. The
exact solution is not depicted as the approximation is already so close to &. iN&ight is only
gained by looking at the convergence of its energy, as depicted idlfigAll methods converge
exponentially as expected. With no even-odd behavior present, almasffex@nce in thep- or
B-Spline version of the finite cell method is observable. This is not surgrasnve are performing
a purep-extension on both meshes starting withl and, therefore, stag® continuous at inter-
element level for both discretization schemes. It is explicitly pointed out that@the example is
computed to numerical accuracy for all methods. Figlrélepicts the error in the energy norm in
per cent. The absolute difference of the analytic strain energy to its nuapgioximation is in the
order of10~!2. Figure4c depicts the condition number of the stiffness matrix. It is of no surprise
that thep-version has a clear advantage over B-Splines in terms of conditionirtgisoboundary
conforming example. The minimum eigenvalues of the overall stiffness mattixding its weak
boundary conditions are depicted in figl. They decrease to small values but always stay positive.

We now look at the performance of the boundary conditions for an enelggaidblem which we
solve using the finite cell method. We use the same mesh consisting of a sindlenit#itg x 8
elements for the B-Spline version 8x 8 p-elements. The discretization is plotted along with the
integration mesh and the solution in fige. Note that there are now all three types of célls,,
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(a) solution and discretization (b) convergence behaviour
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polynomial degree polynomial degree
(c) condition number of left hand side of e§5} (d) smallest eigenvalue

Figure 4. 2DAa = 0 (conforming boundary conditions).

Qc2, andQe3 and that the computations are carried out as described in séctiba cells inQ¢;

are located completely outside the physical domain and are neither computassembled. The
cells inQ¢2 are computed as regular finite elements of high order. The cellginare adaptively
integrated. As we chose a very favorable situation — namely that the bguRdats the cells in
Qc3 exactly in half — an adaptive integration on a quadtree is chosen, leadingi@at integration
already at the first level of refinement. Figiraexplicitly depicts the entire solution, including the
integration tree and the unphysical solution in the fictitious dongaip,, outside the boundary
depicted by a thick black line. The physical solution is similar to the non-emidece, only the
color-scale is shifted due to the smooth extension. The convergencédredmpercent error in the
energy norm is depicted in figib, whereby the reference solution is the strain energy computed
analytically from the solution given in ed37). The convergence is of higher order upti6, where

it levels off and, in case of the method given by €8p)(version, increases. The increase is non-
physical and clearly shows the limits of the numerics to compute this situation. Atttk the
condition number depicted in fidgic rises abovel0'> which imposes difficulties for the solver
used. This deserves a closer look. Apart from the inversion of theesif matrixk, there are
more places where matrices have to be inverted. For the Nitsche’s vefsimpasing boundary
conditions, one must solve the eigenvalue problem given inl&).as accurately as possible. The
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Figure 5.non-conforming boundary

eigenvalue problem is defined on the cut cells and therefore suftemstfre conditioning problems
as well.

The crucial point for the method given in e®5 is the inversion ofK,,, also defined on the
cut cells. It constitutes the core part of the lower bound for the stability terthe current Matlab
implementation of the method, the inversionkf,, is most stable using the pseudo inverse instead
of the inverse but it is still less accurate than the solution of the corregmpe@jenvalue problem
necessary for Nitsche’s method. It is worthwhile noting that, is similar to a mass matrix and,
therefore, neither basis is optimized to render optimal conditioning herg=Atthe condition of
K, reaches0'® and a correct solution is no longer guaranteed. However, all eigersalithe
overall stiffness matrix of the discrete system are very small but alveagain positive as depicted
in fig. 5d.
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3.4. Curved boundary

We compute the example depicted in figlt consists of a Poisson problem solved on a quarter of
an annulus, embedded in a Cartesian mesh. Two Dirichlet boundary cosditie set weakly at the
inner and outer ring td and3, respectively. The analytical solution in polar coordinates is given by

Y
k=1.0
r; = 0.25
ro = 1.0

u(z,y) =3onT;
u(z,y) =1lonl,

(39)
wherer denotes the radial distance. It possesses a strain energy of

m
Uer = m = 2.266180071.

The results are plotted in fig.. In addition to the Cartesian mesh spanning the shape functions,
we plot the integration mesh in fig8ato 7c. Note that, instead of the adaptive sub-cells we
use sub-triangles here to integrate the cut-cells. This increases tha@cofithe integration and
the solution, see e.@§]. The results are snapshots fore= 3 whereby we do not plot the smooth
extension for the sake of clarity.

The error in the energy norm, the condition number and the smallest eiges\ale depicted
in figs. 7d to 7f, respectively. The new method practically delivers results of compardaeracy
and conditioning for non-conforming, curved boundaries.
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(@) Numerical solution forp =3, discretization, and
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4.1.

integration domains

(c) Numerical flux forp = 3 in y-direction
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Figure 7. Example: Quarter ring, results.

4. PARAMETER-FREE, WEAK COUPLING OF TWO DOMAINS

General setting

17

In the following, we consider two domair@’ and Q!!, which are sewed together along the
common boundary’ = I'Y =TI, On this common boundary, we will demand the continuity of

Copyright© 0000 John Wiley & Sons, Ltd.

Prepared usingimeauth.cls

http://mc.manuscriptcentral.com/nme

Int. J. Numer. Meth. Engn(000)

DOI: 10.1002/nme

Journal publication: https://doi.org/10.1002/nme.4817



https://doi.org/10.1002/nme.4817

3.3. Dirichlet boundary conditions 121

International Journal for Numerical Methods in Engineering Page 18 of 33

18 S. KOLLMANNSBERGER ET. AL

the displacements as well as the continuity of the fluxes in a weak from. Thiewous view of this
general setting is depicted in fig. The coupling conditions g’ and©!’ at the common boundary

Fczt

Figure 8. Two physical domairns’ and!! weakly coupled ar.

T in strong form are:

uwl —uT=0 onT (40)

ol -nf -l . n'f=0 onT (41)

4.2. Weak coupling using Nitsche’s method

Nitsche’s method applied to the coupled Poisson’s system is given by:

1 1
k] (VUI,VUI)QI _ 5 (nI 'kIVUI 777.1[ . k:HVuH,vI)F y_ 5 ( I,nl . k‘IV’UI 7"’11 ) k,IIVUII)F
+ /B (ul - ullvvl)r = <f7UI>QI
(42)

1 nll . Byt _pl . kIVuI’UH)

el (Vu”, V,UH)Q” -5 (

1
P (W', n!T KT — pl kIVvI)F
+ ﬁ (UII - uI7 UII)F = <f, ,UII>Q”
(43)

where the weak boundary conditionsibr,, = (09! U 9Q'!) \ T are not written down for the sake
of simplicity. The use of Nitsche’s method for coupling domains weakly hasi@yrextensively
been studied, for example i139). We refer to p], for an overview of its properties and to the
introduction for further references. Again, an estimatorfds needed and we use the one provided
by eq. (L3), wherein now

A= (44)

and likewise forB.
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variational eqn.|| k (Vun, Von)g grin | — g (Ths o, L7, Vu)gém L(vuy, Tn)ay,
algebraic form K, U K, X K, U K., .X
variational egn. —(op -, vp)r —(Th - n,u)r (fyvn)a
algebraic form G2 G, U Vi

Table 1ll. Terms concerned with the internal part of each donof the discrete variational and algebraic
form of egs. 45) to (48).

4.3. New formulation for parameter-free, symmetry-preserving wealicg

We first reconsider the weak form given in eq80)(and @1) and note that the parts of the
equations o2 and Qr, only concern the interiof2. They may thus be written independently
of each other for each subdomaif and Q/Z. On the contrary, the coupling conditions It
i.e., egs. 40) and @1), are concerned with both domains. For reasons of consistency, wedlyeq
distribute their contribution between both subdomains. Let us define thpaséd®r the unknowns
in each subdomain dg/ c H'(Q!) andV,/ ¢ H'(QLT). Similarly, we defines} c L2(}) and
S < L2(Qf). utilizing egs. ¢0) and ¢1), the variational form of the problem consists of finding
ul € VI, of € SE,uilf € VI, olf € SH such that:

1 1
k (Vug, Vi) o — 5( Ton! ol -n! o)+ = (Vi ot)

ar F

1 I I I I (49)
_ 5k (Vv,b,vuh)% = (f,vn)qu Youi € V!

1 1 1
" nk (Tf{ﬂ{b)ag t (T;{.,Vui)gg B §<TI-{ nlup —up)p =0 V7 € Sp

(46)
1 1

k (VU,ILI, VU{LI)QH — §<a£ -t 4 a',ILI . nH.,v,ILI>F + o (VU,III,G',ILI)(W +

1 II II II - I II 47
- gk (Vvh ,V’Lbh )Ql{f = <f Up, >Q” V’U;L € ‘/h

1 1 1
- (Th,O'h)QIU + - (Th, Vuh)gy — 5(7‘,{[ -t —ulyp =0 vril e SH (48)

where the coupling terms from the respective other domain are marked inTheefirst two
equations correspond to the first subdomain, while the last two equatimespond to the second
subdomain.

Let U and X be the vectors of the unknown coefficients«gf and o, respectively. For the
algebraic version of eqs4%) to (48) we utilize the notation given in tablgl for the terms
only concerned with one domain. The new terms concerned with the sewithg afomains are
collected in tabléV, where we have used the fact thelt = —n/’. Further, we utilize the fact that
GLI = GILI" andGI1 = GL.IT" . The coupled problem written in matrix form then reads:

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn@000)

Prepared usingimeauth.cls http://mc.manuscriptcentral.com/nme DOI: 10.1002/nme

Journal publication: https://doi.org/10.1002/nme.4817



https://doi.org/10.1002/nme.4817

3.3. Dirichlet boundary conditions

123

International Journal for Numerical Methods in Engineering

20 S. KOLLMANNSBERGER ET. AL
Discrete variational eqn| —(a'l - n vl\r | —(a - n!L vl
i I,JIIT 11,11
Algebraic form G, % G5
Discrete variational eqn| — (v - n!l u!D)p | —(rf1 - nl ul)p
; IIIyrII 11,177l
Algebraic form GLHU GIAU

Table IV. Coupling terms of the discrete variational ancehigic form eqs.45) to (48).

(-3 K. K, +3Gl, 0 lgL! U’ 1
|
K!, + 3Gl K! ' LGLI 0 ! 0
77777 EASCCR R oS AR ) M (49)
1 1 1
0 sl (- DKl KiLel [ ot
| sen o i Kh+gen kL [[®0] | o
4.4. Static condensation
We may compute the fluxes in ed.d) as:
— 1 1
= = (ict,) (- (Kb yet) U - Jettut) 0
w1 = () (- (wth+ jert) v - Jenro) 5)

and condens&’! andX /7 out of the system eq40). The equation for subdomain | reads:

1 1 —1 1 1 1
12 VK _ (1! K Kl K @l ) - @l (gl 11,1 I
(( n) uu <2Guo' + uo ( o'o') ou + 2Gau 4Guo' ( UO‘) Ga‘u U
_ 1 1 I I *11 1,11 _1 1,11 1r\—1 11 } II 11
Kua + 2Gua (Karr) 2Gau 2Gu(f (Karr) Kau + 2G0u U
(52)

We then use the definitions given in eq3l), (32) and @4) to simplify the terms only concerned
with domain |. Equation§2) then reduces to:

(st 5 (Gl + (G)7) - J6k (2,) ™ 6L~ falit (20 Gttt U
(7% (K"L’ * %Gia) (K1) Ghl! - %Giﬁl (i)™ (K;ﬂ + %G{,L)) Ul (53)

Likewise, for subdomain Il we have:
1 II,1 71\ 1 I 1 I 1 II 1 I 1\ 11,1 I
7§Guz; (Kmf) K(ru + §G<ru - 5 Kurf + EGua (Kmr) Gml U

(rit - i (2t) " ath (G4 (GH)T) - fats! (il,) Gl ) U o9

uu uu
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variational eqn.|| —k%(Vu,! - nfl vlDr | =k (Vup!l - nd vl)r
algebraic form GILIyg! GLHIyH
variational eqn.|| —k!(Vu,! - nll ulDyp | k1 (Vu, - n! ul)r
algebraic form (GILOTyIT (GLINTy!
Table V. Coupling terms from Nitsche’s method.
Further, we introduce the following identities:
7KII(KII)71GII’IUI — (GI,II)TUI (55)
~GIL (KL, KLU = Gl (50)
7KI (KI )71GI7IIUII: (GII,I)TUII (57)
_GI,II(KII)—IKIIUII:GI,IIUII (58)

which arise from Nitsche’s method as defined in tableEquation §2) then reads (terms in blue
now mark the terms which differ from Nitsche's method, that is, the stabilizationsfe

1 T 1 —1 1 1
(5t g (Gl (GL)7) 6L, (L) 6L et (22) Gttt ) U

(5 (Gl + (G- {6l (K2) 68t~ fat (2t) " ath) Ut (s9a)
Likewise, for subdomain Il we have:
(5 (et + (@ii)") ! (s1,) " 6t (6t (et Gt ) U
(ng 5 (G (@)~ 6l (ki) T Gl -Gl (KA, G{;J’) Ul (59)

It is interesting to note that the penalty terms have a contribution which ar@assistbdomain |
and a contribution from subdomain Il. They ensure the stability of the methitzghendently of the
geometry of the meshes in subdomain | and Il, as proven in settion

4.5. Stability Analysis

In this subsection we prove that the formulation for weak coupling giveadsy 699 and 69b)

is stable. To do so, we follow a strategy similar to the one presente83jnIp order to show
the stability of the method for weak coupling, we will consider the unknowhso vanish on
the external boundarye** of subdomainZ, and the normal component of the stressés to be

null in the external boundary in subdomdif. Further, to keep the proof as concise as possible, we
consider only the case in which the material constart® the same for both domains. Additionally,
we assume the common bound@®y! to be a straight line.
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ul =0 onre (60)
oll.nfl =0 onret (61)

In this setting, we redefin&! c H{(Q1), where the zero subscript denotes functions vanishing
in the external boundary***. We define the norm:

w', of u!f, e |]1? =
B sy + KV B rn) + ol = By + 20| Bagr )+ Tl |2
L2(Ql) L2(QIT) h L2(T") k LQ(Q{,YW) k L2(Ql£fm)
(62)
whereh is the cell size. The bilinear form for the global problem defined on bdtdemnains is:

B ([u,IL,J}IL,u,ILI,U,ILI] , [v,{,r;{,v,{l,‘r,{l]) =

F (Vu{” Vv'i)ﬂl B %<U’€I ' ol o)r + % (VU’€7 Ui{)szgm n %k (V”{u V“i)s)‘r,,ﬂ, *
- % (Tf{7°'}1b)9§m + % (T;{,VU;IL)Q&” - %< }{ '"17“111 - U;ILI>1‘+
k(Vuy', Voi!) g — %(U{L ndl ol .ty o % (Vvil,aff)ﬂﬁn _ %k (Vvélavuﬁl)ﬂf{n n
_ ”ik (T}{I’U;LI)QHW " rll (T’{I’VU{LI)Q& _ %(Trfl R L
We suppose thdt;, and.S;, are such that
Vo, € Vi, 3T €S | 51H'UhH2L2(r) < {7 - nyup)r + Soh|| Vo ||? (64)
I7llzzey = lonllzaey,  llmall® < dahllvonlZa (65)

wheredy, 41, 62 are positive non-dimensional constants which depend on the geometey/rotth.
Conditions in egs.q4) and ©5) are an assumption of the formulation, but these conditions hold for
the most common interpolation spaces ()]

We will show the stability of eq.§3) by obtaining an inf-sup condition in the norm of eg2).
Let us take[v}, 7, vil, 7] = [ul, ot — 2k7] ull, —ol! — 2k7!1], where7! is the function
in ST which makes eqs6@) and 65) hold foru/! — u}, and7[! is the function inS{’ which makes
egs. 64) and 65) hold forul! — u!. g is a dimensionless constant to be defined. We have:

B(Tul ol WIT W11 511 [uI r_Bar ot B srr _
UhsFTh>Up s Up +Th | “h»*"h*; Th+Uh > —%h s Th =

1 1 1
k(Vul ven) el +a£’.n1,u{1>r+;(Vu,ll,a,{’)nl{. -k (Vu,ll,Vu,Il)QlL +
i in

1 I 1/ 1 11 1 1 I
+E(°’h=ah)n] *;("h’v“;)“{“ +5<‘7h n,up, = up ) +

B /.1 I Bk /1 I Bk -1 1 1 Ir
+E("’h*ah)ﬂ{_ *E("hxv“h)ﬂf_ +E<"h'“ »Up — up )T +
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11 11 1o o II 1 _Ir 1 11 i1
k (V“h, » Vup, )Q” —plen ey cupyr 4 — (V“h 1 Th )Q” -k (V“h » Vg, )Q” +
Tin : Tin
1 1 _Ir 1 11 11 11 11 a1 I
+E (crh , R )SZ{,{ - (ah s Vg, )SZIIJ +5<ah snt L uyt =) +
in in
B (~r1 _1r1 Bk /11 II ~I1 _IT IT I
+ ("’h yTh )Q{J vy ("’h » Vg, >Q{J + *("’h smiT up — ) >
ir
1 1
(1—;) KTl + —loh] 2 +
poL/? Bksy/? Bk&l o
- Rl uy,HLz(r)uahu gl =l oy IVull 4 g =gl oy = 5 IV Ga =) 12+
(1—7) FIVeR!I1? + — HU;{IHZ +
B‘szl/2 Ir I 11 5’“5;/2 Ir 57‘51 ﬂkéo 11 I\2
- m““h 71L;1HL2(F)HG;L I = ahl/2 llup,” — “/1HL2(1—~)||V“h I+ — H“h - ”hHLZ(F> — IV (uy —up)ll >
1 1 ﬁkél
(1—;) FIIVuRl® + —llog]1* + (1—;) k||wf’||2+ ey 117+ == i = willZ2 +
53/ pe)/? YR/ sy 52%/2 85/ ; ~h1/2 Bsi/? :
— P RYE YSVEl Huh —U;,H,z(r) W ’1/2\\0';.” W Y Hu], —uhHLgu,) MT h1/2\|Vu,hH +
2 2
1/2 /351/2 T yh1/2 (55 1/2 ‘%1/2 I yh1/2 [1‘5;/2 Ir
mnhl/z [l )L 7“}1”L2(r) 261/2 nhl/QH h H mnhl/z [l h ’“hHLZ(F) - Wm\lvuh Il +
2
— BlksollVup 11> = Bkéo [ Vuj,|I? >
1 Y By 1 2
(1—;—5(;+sn))kuwhu +2 (1——) lloh? +
1 1
(1 Ll (l + 50)) kIVull |2 + = (1 - ﬁ—) Lot +
n 2n n 2 k
265\ k
B (51 - ’an) ;Hu;l,l - “i,HLz(r)
wherey is an arbitrary dimensionless constant. We now take
1
205 . 1--= 2
n>15>—, <min| —w—"%,- |, (66)
ain (35 +d0)
and we take into account that:
I I B ~I IrI Ir B ~II —
11 "m*"’h*;k"’hxuh »—oR — 2 =
o T2 ) 172 ko1 orr2 1 Bo~1 2 Bo~11 2
klIVup 172 qry + kIVup 12 grry + *H“h —up 2y + ;Hah 7k7h” + *H"h - k ol <
k 2 _ kBZ -
KIVarIlGa qry + FIVeRT T2 qrry + 4 lleh = wif Iy + A2 —Ha{ﬂ\\ﬂ =2 <
P k
kIIVapllGe qr) + KIVeR g qrry + 4 (48762 g, — w120y + ||oh|| += Ha,{’\F <

11 2
max(1 + 48282, 2)|||[uf,, o, up’, o 1]

which gives us the following theorem:

Theorem. Suppose that eqs$4) and ©5) hold andn > 1. Then, the bilinear form eq6@) satisfies
that for all[u}, o}, ul!, o] there exis{v}, 7/, v}, /'] anda > 0 such that

B([uévo’f]mu}lll7o'llzl} [U}INT;?U}ILI7Th }) > OC'H [uhval{uuflllvo'h } ||| H| [Uh7Th vh 7Th } H|

4.6. Examples

In this section we present various examples, where the performancemdshmethod is compared
to Nitsche’s method in the framework of bgthand B-spline version of the FCM.
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4.6.1. Constant coefficients, non-conform discretizatiorisand p. This introductory example is
to provide a first insight into the performance of the weak coupling metheehdby eqgs. §99
and 69b). The starting point is the 2D Poisson’s problem with a smooth solution alfgadented
in section3.3. This time, however, the problem is split into two domais and Q! which are
weakly coupled. The continuous situation is depicted inJig.We choose to discretiz@! with

T
- u(z,0) = sin(mx) 08
g 92 u(z,1) =0.0
u(z,1) = 0.0 0.6
u(y,0) = 0.0 -
o = u(y,1) =0.0 '
g i of 0.2
>
[ 0 05 1 0
I 1.0 | X
(a) Continuous view (b) Numerical solution with the BSpline version

and anon-conforming discretization in andp
Q! with p=3 and Q! with p =2) computed with
egs. p99 and 69b)

Figure 9. 2D Poisson’s problem as in figbut consisting of two domair@’ and!!, weakly coupled aF.

8 x 4 elements while)!! is discretized by x 4 elements. The discretization is depicted in fi.
among with a snapshot of the solution. Tihenconformity of the discretization ofi manifests
itself not only in the appearance of hanging nodes. Additionally, we dizer@’ with p andQ!!
with p — 1. The discretizations are, thusprrconforming ink andp across the interface. However,
in a first step, the domains do not overlap, i.e., they are coupled dloii¢pe coupled solution
depicted in fig.9b does not show any (visible) kinks or jumps acr@ssThis demonstrates that
eq. @0) is satisfied.

The corresponding fluxes depicted for both directiorendy are depicted in figl0. They are
smooth acrosE which demonstrates that ed.1j is also satisfied.

Figure 11adepicts the convergence in the energy norm as we incredsam 2 to 9 for Qf
and from1 to 8 for Q7. We consider the- and B-spline version of FCM, using both standard
Nitsche and the method proposed here for patch coupling. The rate wdrgence is exponential
until numerical accuracy is reached and the curves for all methodsactqgally congruent to one
another. The condition numbers are depicted infith. They remain quite low for the-version
and are once again higher for the B-Spline version due to the sub-optimiattig 8Spline basis
with respect to the condition nhumbers. The plot of the smallest eigenvalue atiffness matrix
fig. 11cagain shows that all discrete eigenvalues remain positive.

4.6.2. Constant coefficients, overlapping discretizatiofMe. now change the discretization of the
example given in section.6.], (fig. 9a) such that the domair@! andQ!! are overlapping in the
region(0 < z < 1.0) A (0.45 < y < 0.55). We weakly enforce the continuity (eqg0j and @1)) at
the boundany™ and explicitly note thaf' is now inclined and internal to the discretization of both
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1 a
0.8 2
0.6 L
> 0
04
-1
0.2 I
-2
0
0 0.5 1 B3 0 0.5 1
X X
(a) Numerical flux inz-direction (b) Numerical flux iny-direction

Figure 10. Flux corresponding to figb.

= o-
>
2
2
S 100
£
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S 102
5 —©&— PFEM: eq. §9)
2 —[@— - PFEM: Nitsche
K] —QO— BSpline: eq. $9)
e —mO— - BSpline: Nitsche
1074 -
102 103
DOF

(a) convergence behaviour

25

12 0
—o— PFEM: eq. 69) <
T 10 —@O— - PFEM: Nitsche =
€ —0— BSpline: eq. §9) g
S 8 —moO— - BSpline: Nitsche [}
c (=2}
S v —4
= 1%
5 6 , 2
< [
8 e 6
5 ¢ z —o— PFEM: eq. 69
> o _8 —@— - PFEM: Nitsche
L 2 o —0— BSpline: eq. §9)
—moO— - BSpline: Nitsche
0 —10
2 3 4 5 6 7 8 9 0 2 4 6 8
polynomial degree polynomial degree
(b) condition number of system stiffness matrix (c) smallest eigenvalue

Figure 11. analysis corresponding to fidp

domains. The continuous situation is depicted infiga The solution is depicted in fid.2balong
with its Cartesian discretization and the triangular integration mesh. The integistarried out on
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. T | — |
QII @
1 = 0.8 0.8
S o0 R
r 0.6 0.6
— >
- o0t 3 0.4 0.4
<f o
S f
Ql 0.2 0.2
b, M
| 1.0 | 00 02 04 06 08 1 0
[ I X
(a) Continuous view (b) Numerical solution with the B-Spline versioft{ with

p=3AQ1 withp = 2)

Figure 12. Constant coefficients, overlapping discretimst Both computational domaisy andQ!! have
an extension of x y = 1.0 x 0.55. They overlap orf0 < = < 1.0) A (0.45 < y < 0.55).

Qr,, only. Note thatr, € Q lies belowl" andQr,, € Q! lies abovel'. The obtained numerical
solution is smooth, already at low polynomial orders. This is particularly erhimrethe plot of the
flux in y-direction in fig.13a The plot of the fluxes in x-direction is omitted as it provides no further
insight. Again, we note an exponential convergence inifigh before it levels off at a low strain
energy due to the bad conditioning depicted in figc The corresponding lowest eigenvalues are
depicted in fig13d

4.6.3. Bimetal strip: discontinuous coefficiem@nconforming discretizations ih and p. This
example serves to show that the proposed method has no difficulties iseaping discontinuities
in the derivatives of the solution across material interfaces which arise iftiterial coefficients
jump as well. The first example with jumping coefficients is a bimetal strip on whichapéace
problem is solved. Its solution is depicted in fida Dirichlet boundary conditions are applied
at the lower end:(z,0) = 0 and on the upper end(z, 1) = 1. We split the domain into a lower
part Q; in which the material coefficient i’ = 1vz,y € O/ and an upper pa®!! in which
E'T =2V, y € Q. The interface between the two domaihsy = 0.5 is a straight line, parallel
to the x-axis. We discretiz@’ with 5 x 4 elements withlp = 1 organized in one patch covering all
of Q! and likewiseQ2!! with 3 x 3 elements withp = 1. This results in hanging nodesIat

We expect a linear solution ip and a constant solution in with a kink at the interface.
Since the solution is already represented exactjy-atl, convergence-studies are not carried out.
Figure 14adepicts the numerical solution along with the discretization. The fluxes asx®gto
exhibit a jump afl” and should remain constant within the domains. Figutiedepicts a view of
the fluxes iny-direction along with the chosen discretization. The exact solution is matghéal u
machine-precision, as expected.

4.6.4. Inclusion problem: discontinuous coefficients and embeddedinloiirhe last example aims
at demonstrating the performance of the method given by &§s) and 69b) in an embedded
domain situation. The problem consists of an infinite medium, where the mateefficEnt is
k' =1, with a circular inclusion, where the material coefficient:id = 0.2. A constant flux is
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—
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©

100
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-0 — PFEM: Nitsche Rafs!
—O— BSpline: eq. §9)
—o — BSpline: Nitsche

10-2

relative error in strain energy [%]

1074
102 102
DOF
(a) Numerical flux in y-direction (b) convergence behaviour
0
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5 10 2
k=] 2
c ‘©
S 5 —o— PFEM: eq. 69 & —10
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Figure 13. Analysis corresponding to fitRa
1 1 1 13
08 0.8 08 1.2
06 06 06 1
- 1
04 0.4
0.9
0.2
0
0 0.7
0 0.5 1 0 05 1
X X
(a) discretization and solution (b) discretization and derivative efz, y) iny

Figure 14. Bimetal strip: solution(z, y) and derivative of.(z, y) in y along with discretization

applied along the x-direction at large distances from the inclusion. THgt@aasolution is given

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn(000)

Prepared usingimeauth.cls http://mc.manuscriptcentral.com/nme DOI: 10.1002/nme

Journal publication: https://doi.org/10.1002/nme.4817



https://doi.org/10.1002/nme.4817

3.3. Dirichlet boundary conditions 131

International Journal for Numerical Methods in Engineering Page 28 of 33
28 S. KOLLMANNSBERGER ET. AL
Y
I'p,
k1 =1.0
w
FDZ l_‘D‘ k2 =0.2
r=1.0
w = 3.0
Qg w
Q z
! I FD1 : 'll,(.l‘,y) = kfilkz -
o1 —ko 12 U
Io) 4 Tp, :u(z,y) = (1- 252 oimm) s
I'p, I'p, T

Figure 15. Example: circular inclusion

by

2k =z
ki+ko v

_ ki—ky 12 Nz £ 2 2 2
(1 ki+k2 12+y2)7' if 2 +ty =

if 22492 < r?

u(z,y) = (67)

wherer denotes the radius of the inclusion. Due to its symmetry, only a quarter of thaidas
modeled and the Dirichlet boundary conditions are applied to the boun#fariendI -, according

to the analytical solution. The continuous view of the example is depicted ih5ig-he results are
depicted in figsl6ato 16f. The performance of the new method carries over from the rest of the
examples provided in this section. This example shows how well discontinuitiés iterivatives

are approximated, also in an embedded domain situation (seé@igand160). To clear the view,

we omit depicting the integration mesh and only show the Cartesian discretizatisioh the
shape functions are spanned.

5. SUMMARY, CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEBR

Starting point of this paper was the formulation given 88][for the application of boundary
conditions which must not necessarily conform to the finite element meshattractive in the

sense that there is no need to compute a stabilization parameter. We demanistaathis method
is able to provide results of similar accuracy as the more classical Nitschgisifation which calls

for the computation of stabilization parameters.

We have then used the fundamental ideas provide8drffr the derivation of a new formulation
for the weak coupling of domains. It is, as well, free from problem-ddpah stabilization
parameters which need estimation. The new, coupled formulation worksarelistcretizations of
high order, too. It is not specific to the underlying discretization andepves symmetry. It is thus
well suited for the weak coupling of trimmed B-Spline patches and high-axhredded domain
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1

(a) solution, discretization and integration

(b) derivative ofu(z, y) in x along

¥ 10?
= —o— PFEM: eq. 69)
= o -0 — PFEM: Nitsche
S ‘. —O— BSpline: eq. %9
c 1ot - —O — BSpline: Nitsche
]
1. @

£

- 8 100
@
(]
2
=
2 101

10! 10? 103

DOF

(c) derivative ofu(z, y) in y along (d) convergence behaviour

20 0
—o— PFEM: eq. 69) ™
5 -0 — PFEM: Nitsche =)
-g 15} —o— BSpline: eq. §9) 2 _;
2 - — BSpline: Nitsche _0_,5
c [
S o
= 10 3
2 = —10
3 IS
=% Lo", —O— PFEM: eq. §9) B
= 5 = -0 — PFEM: Nitsche )
] o —15} —o— BSpline: eq. 9
-0 — BSpline: Nitsche
0
1 2 3 4 5 6 7 8 2 4 6 8

polynomial degree polynomial degree

(e) condition number of left hand side of eqg0Xand @1) (f) smallest eigenvalue of left hand side of edX)(and 1)

Figure 16. Circular inclusion, results.

situations. We are able to prove stability and clearly point out the differembltsche’s method.
While this are very nice features, we see some room for improvement as well.

The formulation carries the material matrix in the Nitsche terms as well as in the digoma
stabilization terms. This poses no extra effort as long as geometric noitiegare not considered.
In this case one would need the directional derivative of practically athdeinvolved in the
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entire formulation. If one sets out to perform these analytically, this willltésua complicated
formulation. Automatic differentiation would probably be the best way to go inddse, especially
if one intends to avoid redoing the derivatives for each material law emgpldylee same is true,
of course, for Nitsche’s method but we would like to point out that the r@wflation does not
alleviate this burden.

The most important advantage compared to Nitsche’s method is the avoidathee smlution
of auxiliary eigenvalue problems for the estimation of the stability parameteisisTteplaced by
computing the inverse of a matrix similar to a mass matrix defined on the remainingf plagtcut
element. However, it is to be remarked that both problems are formulated ontteements and
this leads to badly conditioned problems. Throughout the computations wedatigery close
correspondence between the results of Nitsche’s method and the newdnirettie computed
examples.
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Further remarks Other possibilities of avoiding the estimation of parameters emerged
later, see e.g. [48]. However, they do not maintain the symmetry of the system matrices. This
is, of course, not an issue e.g. for convection problems which are unsymmetric by nature.
Another drawback common to all Nitsche-like schemes, including the one published in [47| as
well as [45, 39, 48|, is the fact that the material law appears in some form or another in the
boundary conditions. This dependency is inconvenient — not only because every new material
description needs to be linearized also for the imposition of the boundary conditions, but
also because the number of terms needed for a stable formulation becomes disproportionally
high, see e.g. [49] for a thorough treatment of the subject in the context of fluid mechanics.
This emerging complexity is not in line with the original idea of simplifying the numerical
analysis by means of the FCM. Fortunately, many of the mentioned stability issues appear
only in convection-dominated problems, only where Dirichlet boundary conditions need to be
imposed (i.e. almost nowhere in structural mechanics problems), or in cases of very involved
non-linearities. Therefore, the method of choice still is the penalty approach, which suffices in
most cases. A simple approach to impose Dirichlet boundary conditions to provide stability
for all types of physics on cut cells is still a very active line of research.

3.4 Enrichments

Commonly, the discretization of a domain with finite elements leads to an approximate and
continuously differentiable solution. However, the analytic solution might exhibit local irreg-
ularities or local features which then have to be reflected in the approximation as well. These
local features might be located arbitrarily within the finite elements. To be able to resolve
these local features accurately, enrichments may be used.

The enrichments discussed in this chapter are not restricted to the FCM but naturally ex-
tend to boundary-conforming methods of high order in general. The following schemes are
distinguished: direct local enrichments which require the knowledge of the type of the irreg-
ularity and its exact location and ones which do not. The former are briefly discussed in the
paragraph Direct, local enrichments and how to avoid them, the latter are laid out in the
paragraph Enrichments of h or hp-type.

3.4.1 Direct, local enrichments and how to avoid them

A classic representative of this type of methods are the X-FEM (see [50] for a review) and the
Partition of Unity Method (PUM) [51]. In the context of the FCM, a direct local enrichment
of this type was first introduced in [52]. In this line of research, the underlying idea is to
discretize the field of unknowns v such that

Upp = E U;¢; + enrichment.

]

The enrichment is constructed to directly represent the irregularity in the solution. In the
PUM, it takes the form enrichment = 2;21 N;Fa;, where the functions N; build a partition
of unity, a; are the new degrees of freedom corresponding to the enrichment, and F' is the
enrichment function itself. The most important advantage in this approach is that F' can be
any function that is linearly independent of > . 4;¢;. A disadvantage is that F' is not easily
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constructable for geometrically complex cases in the framework of high-order methods.

For specific situations, however, such as in contact or embedded interface problems, it is
possible to avoid an explicit enrichment. The common feature in these problems is that it
is sufficient to think of F' as being a C" continuous function i.e. a function with a kink at
the interface. This kink can be introduced equivalently by using two meshes, one for each
body under consideration, to trim them at the interface in an FCM-like manner, and to glue
them back together along their trimming surface. This trim-and-glue procedure does not add
degrees of freedom to the problem, and it is not necessary to construct F' explicitly. Figure 16
depicts a comparison between these different ideas for embedded interface problems in the
context of the FCM.

1st approach: X-FEM, level sets etc....
] enrichment

Overlay e, With epyi

tHuncon Joulaian, Duster:
local enrichment of the finite
cell method for problems
with material interfaces
Comp. Mech, 2013

2nd approach: trim and glue
a=1 a=1_0
. «+——————— mesh 1

k1

glue

\ mesh 2

Figure 16: Two approaches to treat embedded interface problems, presented at [53]

a=0 a=1

The trim-and-glue approach is published in [47|, using a combination of the newly devel-
oped coupling technique described in section 3.3. The approach to trim-and-glue is a popular
choice and natural to embedded domain problems. A similar formulation to [47] is, for ex-
ample, derived in [54]. However, this formulation leads to an asymmetric system of equations
for originally symmetric problems, and it was only used for low orders. The extension in
the context of this treatise lies in the fact that a new and variationally consistent coupling
approach was developed for the FCM which preserves the possibility to maintain high-order
convergence rates in embedded interface problems. Further, it is provably stable without
stabilization parameters and delivers symmetric matrices for originally symmetric problems.
Figure 17 shows the concrete problem setup, discretization and solution corresponding to the
situation depicted in the lower part of fig. 16.

The trim-and-glue approach has also become very popular for solving multi-patch problems
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Figure 17: inclusion problem: setup, solution w(z,y) and derivative of w(z,y) in y along with
discretization

in IGA, see e.g. [55] for one of its latest incarnations. Apart from that, it has become the
method of choice in the FCM for contact problems, see fig. 18 as published in |56].

+ 0, \ LV RN

O n.
RN TN

B .
"'/|\ +,\

(a) CSG tree of the (b) CSG tree of the (c) Each physical body (d) stresses in verti-

chain lock chain link is embedded in a re- cal direction on a cut-
fined FCM grid of or- ting plane bisecting the
der p = 5. computational domain

Figure 18: Trim-and-glue approach for contact problems using CSG models and automatically
recovered interfaces. [56]

Further, this approach obviously also exhibits the convenient capability to integrate different
geometric models in one FCM application. As already mentioned in section 2, it is well suited
for the bio-mechanical application depicted in fig. 10. Herein, the non-boundary conforming
(" is represented by the trim-and-glue procedure, while the locally high gradients are treated
by hierarchical enrichments of Ap type, which will be discussed next.

3.4.2 Enrichments of h or hp-type

This paragraph addresses the case where the position or the type of the irregularity in the
solution can not easily be identified or is not explicitly known. Indeed, the original motivation
to introduce refinements of hp-type in the FCM is the fact that the FCM exhibits oscillations
in strongly non-linear problems. These can be pronounced when shape functions spanning the
fictitious domain are not able to adequately represent the change of one boundary condition
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at one end of the cut cell to the boundary condition at the other end of the same cell. In
these cases, the discretization is insufficiently fine. However, the implementation of classical
h- or hp-finite elements is demanding. Part of the underlying challenge in classical hp-finite
elements is that an element marked for refinement is completely replaced by new elements.
This does not only change connectivities in the mesh data structure, but also induces the
necessity of rewiring the local element degrees of freedoms. In this process, hanging nodes,
edges, and faces produce cascades of dependencies which go well beyond the scope of one
single finite element. This renders the necessary data-structures incomprehensible [57, 58|.

Enrichment by hierarchical overlays A conceptually simpler remedy to hp refinement
is offered by the hp-d method. Its underlying idea is to view the total discrete solution urp
as being composed of a part which represents the smooth solution u, and another part uy,
which represents an irregularity, i.e.:

UpE = Up + Uup (2)

Herein, uy, acts as an enrichment®. The smooth part of the solution up is spanned on a base
mesh with relatively large elements, and wy is spanned on a finer mesh overlaying the base
mesh. This idea was first published in [59] and has been picked up numerous times, see
e.g. [60] for an in-depth review of its variants.

The basic concept of the Ap-d method was first applied to the FCM in [61] with the additional
enhancement to enrich towards the irregularity of the solution by organizing these enrichments
on hierarchical grids. To this end, B-spline basis functions were used. The concept was then
transferred to classical hp-methods in [62]. Figure 19 presents the one-dimensional situation
and its two-dimensional counterpart.

® Active Node
Inactive node due to
linear independence

o Inactive node due to
compatibility

— Active Edge

Inactive edge due to

linear independence

Inactive edge due to
compatibility

Active Face
Inactive face due to
linear independence

Inactive face due to
compatibility

Figure 19: The multi-level hp-FEM concept in 1D and 2D as presented in [62]

In general, the enrichment requires a) linear independence of u, and u, and b) the imposition
of homogenous Dirichlet boundary conditions on the boundary of the overlay. The following
simple rules for the construction of hierarchical higher order hp-discretizations suffice to obey

“The same enrichment is, of course, carried out for the test functions v as well, even if only u is mentioned
explicitly in the sequel
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conditions a) and b). Compatibility is ensured by applying homogeneous boundary conditions
on all boundaries of the overlay mesh. In one dimension, this translates to deactivating all
nodal degrees of freedom on the overlay meshes which correspond to the boundary of the
overlay. Linear independence is guaranteed by deactivating the high-order modes on the
lower levels. Thereby, high-order shape functions are h-refined as well. This is a hidden but
important point in the construction of efficient hp discretizations of this type, see e.g. the
investigations in [63]. The simple rule set of activating and de-activating nodal and edge
modes directly translates to two- and three-dimensional discretizations.

The rule set can be kept simple because the connectivity of the base mesh never changes.
Instead, the elements of the base mesh always remain in the discretization. This concept
of refine-by-overlay is contrary to the refine-by-replacement paradigm usually followed in hp-
methods, and it has many implementational advantages. For example, the calls for evaluating
the shape functions can simply be implemented as recursive calls initiated from the base ele-
ment. This concept also eases the management of hp discretizations with multi-level hanging
nodes transiently, i.e. it allows to accurately capture moving singularities, see [60, 64].

The trade-off for the comparatively simple implementation is the interlink of many shape
functions, due to the remaining linear modes of the base elements that are refined. This can
lead to a high number of degrees of freedom within one base element. The complexity of the
algorithm was examined in [62], where it was demonstrated that multi-level hp discretizations
lead to an exponential convergence of the error with respect to the run time concerning the
computation of the stiffness matrix. Thus, the complexity of the involved algorithms does not
limit the convergence with respect to the run time. A further important aspect is that the
conditioning of the resulting linear system could suffer due to the loss of orthogonality of the
shape functions. This case occurs, for example, with non-uniform distributions of material
parameters or skew meshes. Issues related to the solver were closely investigated in [65], but
the effect on the necessary number of iterations of a preconditioned CG solver was found to
be negligible for the investigated cases. Next, the multi-level hp-method is presented in-depth
by including the original journal publication [62].
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Abstract

The implementation of hp-adaptivity is challenging as hanging nodes, edges, and faces have to be
constrained to ensure compatibility of the shape functions. For this reason, most hp-code frameworks
restrict themselves to 1-irregular meshes to ease the implementational effort. This work alleviates
these difficulties by introducing a new formulation for high-order mesh adaptivity that provides full
local hp-refinement capabilities at a comparably small implementational effort. Its main idea is the
extension of the Ap-d-method such that it allows for high-order overlay meshes yielding a hierarchical,
multi-level hp-formulation of the Finite Element Method. This concept enables intuitive refinement
and coarsening procedures, while linear independence and compatibility of the shape functions are
guaranteed by construction. The proposed method is demonstrated to achieve exponential rates of
convergence—both in terms of degrees of freedom and in run-time—for problems with non-smooth
solutions. Furthermore, the scheme is used alongside the Finite Cell Method to simulate the heat flow
around moving objects on a non-conforming background mesh and is combined with an energy-based
refinement indicator for automatic hp-adaptivity.

Keywords: high-order FEM, automatic hp-adaptivity, arbitrary hanging nodes, Finite Cell Method

1 Introduction

One requirement for efficient numerical schemes is the ability to adapt the discretization locally in
domains of interest to improve the quality of approximation. Within the framework of the Finite
Element Method, a major challenge of this adaptivity is to guarantee the compatibility requirements
of the shape functions. In particular, mesh irreqularities caused by hanging nodes must be avoided
in schemes based on the Finite Element Method.

Since the early 1980’s, various refinement strategies have been introduced for this purpose. Their
common idea is to ensure compatibility by appropriately constraining hanging nodes (see e.g [1; 2]).
Although this approach has proven to work well for various applications, the implementation of
the constraints bears challenges. This becomes more difficult in the context of hp-refinement, as
here also edge- and face-modes have to be constrained correctly. For this reason, hp-algorithms
are typically restricted to I-irregular meshes to reduce the implementational complexity (see e.g.
[1; 3; 4; 5; 6; 7; 8; 9]). Only recently, advanced numerical schemes have been implemented that allow
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for arbitrary-level hanging nodes (see e.g. [10; 11; 12; 13]). However, the idea to post-constrain
hanging nodes remains unchanged, which requires a sophisticated algorithmic treatment.

To overcome these challenges, the authors suggest an alternative refinement strategy that avoids
the difficulties associated with arbitrary-level, high-order, hanging nodes. The approach is based on
the idea of hp-d-refinement, in which a high-order base mesh is superposed with a finer h-overlay mesh
in the domain of interest (see [14]). In this way, fine-scale solution characteristics can be captured
accurately on the overlay mesh, while large-scale characteristics are represented by the high-order
base mesh. By applying homogeneous Dirichlet boundary conditions on the overlay mesh, hanging
nodes are avoided by definition. Recently, this approach has been extended in different directions.

Schillinger et al. show that using hierarchical h- and NURBS-overlay meshes allows for adaptive
h-refinement (see [15; 16; 17; 18]). In [19], the hp-d idea is successfully combined with partition of
unity approaches to better approximate discontinuities occurring at material interfaces. In the present
work, the idea is extended to adaptive high-order-refinement by employing a high-order hierarchical
overlay mesh. This multi-level hp-algorithm offers the full capabilities of hp-adaptive-methods, while
allowing for arbitrary irregular meshes and a high flexibility in the discretization.

The essential ideas of this new refinement method will be outlined in detail in Section 2 and its
implementation will be discussed briefly in Section 3. In Section 4, the benefits of this new approach
are discussed. In a first example, it is shown that the suggested multi-level hp-approach yields
exponential rates of convergence for problems with non-smooth solution characteristics. Two further
examples demonstrate that the introduced agile data structure also allows to easily refine and coarsen
the discretization in the course of transient simulations. The work closes with a concluding outlook
in Section 5.

2 The Multi-Level hp-Algorithm

As mentioned in the introduction, a major challenge of adaptivity in the context of Finite Elements
is the problem of mesh irregularities caused by h-refinement. In this section, the idea of the multi-
level hp-algorithm is outlined, which allows for high-order mesh adaptivity without the difficulties
of hanging nodes. Prior to this description, classical refinement schemes are briefly discussed to
motivate the need for a novel discretization scheme.

2.1 Classical Refinement Schemes

Following [21], the most common h-refinement schemes can be categorized in the following three
groups:

Methods based on mesh regeneration create a completely new mesh in the domain of interest.
This approach has the advantage that the new mesh is independent of the old one, which allows
for great flexibility and good mesh quality. In particular, the new mesh can be kept regular, and
the algorithms of the FE-kernel can be kept simple. However, the approach has the disadvantage
that automatic mesh generation in 3D can be difficult. Furthermore, the data transfer between the
different meshes has to be handled.

An alternative possibility for adapting the discretization is to keep the number of unknowns con-
stant but to adjust the node positions instead. This idea known as r-refinement has the advantage
that the mesh can be kept regular (see e.g. [22]). However, this approach is difficult to automize
[21].

The third category is element subdivision. Here, the idea is to replace elements with a high
error contribution by smaller elements, which comply to the boundary of the original element. The
advantage of this idea is that it provides flexibility while allowing for automization of the algorithm.

However, one major difficulty of this approach is the fulfillment of the compatibility requirement.
This demands that patch shape functions are C"~! continuous between interconnected elements and
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[ No Refinement [ Level 1 Refinement [ Level 2 Refinement — Constraints
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Figure 1: Multiply constrained modes occurring in classical hp-refinement strategies (following e.g.
[1; 2; 20])

C™ continuous within an element. Thereby, m denotes the variational index of the problem under
consideration (see e.g. [23; 24; 25; 26]). In the case of element subdivision, the mid-side nodes of a
refined element have no suitable representation in coarse neighboring elements (see Figure 1). These
hanging nodes render the mesh irregular, as the shape functions between the interconnected elements
are no longer C° continuous. This means that the compatibility is no longer fulfilled for e.g. thermal
or elastic problems (m = 1). As this requirement is essential for ensuring the convergence of the
Finite Element Method, hanging nodes require an appropriate treatment.

One way of avoiding such mesh irregularities is to also subdivide the adjacent elements to provide a
transition between the fine and the coarse discretization (see e.g. [27; 28]). Although mesh regularity
can be ensured in this way, the transition elements introduce additional degrees of freedom, with
the result that the refinement looses its local character. Furthermore, the transition elements can
be highly distorted. Both effects possibly have a negative influence on the numerical accuracy and
the rate of convergence (see e.g. [29; 28; 10; 30]). Moreover, an automatic generation of transition
elements is challenging, in particular in case of structured three-dimensional meshes, which typically
demands for templated solution strategies (see e.g. [31; 32]).

An alternative idea suggested by [33; 34] is to enhance the coarse elements with suitable shape
modes, which recover the C° continuity between interconnected elements. Although this idea is very
appealing and leads to optimal convergence, it has the disadvantage that an extension to high-order
shape functions is not straightforward. Furthermore, the formulation requires that the maximum
difference between the refinement level of adjacent elements is limited to one (i.e. 1-irregular meshes).
Although an extension of the approach to k-irregular meshes is possible in principle, the authors do
not know of any published work on this topic.

The most common idea to handle hanging nodes is to allow for irregular meshes during the refine-
ment procedure and to ensure the compatibility requirement by appropriately constraining hanging
nodes in a post-step. The essential idea is to express the fine-scale shape function of the hanging
node in terms of the respective coarse-scale parent modes of the un-refined neighboring element. In
the context of linear shape functions, this can be carried out easily, as the unknown of the hanging
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middle node can be expressed by a simple interpolation between the coarse nodal modes (see e.g.
[1; 2; 20]).

Although the extension of this approach to higher-order Finite Elements (i.e. hp-FEM) follows the
same idea, this step bears some challenges. The major difficulty is that in the presence of higher-
order modes, not only hanging nodes but also hanging edges and faces have to be handled. The main
difference to the linear case is that a simple interpolation between the coarse and fine-scale modes
is not possible for edge and face modes. Instead, constraining them requires a suitable projection of
the fine modes onto the coarse ones. In the literature, different methods have been presented how
this can be achieved most efficiently (see e.g. [1; 2; 10; 11; 13; 20] for more details).

One additional technical challenge arises when hanging (nodal, edge, or face) modes have to be
constrained using parent modes that are constrained themselves (see Figure 1). This typically occurs
when the refinement algorithm requires for a sudden change in the discretizaton accuracy, i.e. a
large difference in the refinement level of adjacent elements. As these multiply constrained modes
significantly increase the implementational complexity, most hAp-Finite Element codes restrict them-
selves to 1-irregular meshes such that only elements with unconstrained modes can be refined (see
e.g. [1;2;3;4;5; 6; 7; 8 9]). This commitment, however, imposes several limitations on the re-
finement flexibility. As noted by [1; 4], 1-irregular meshes introduce unwanted boundary layers as
the refinement has to spread out to insure the compatibility of the basis function. As in the case of
transition elements, the refinement thus loses its local character [4]. In their studies, [10; 13] show
that schemes bound to l-irregular refinements introduce significantly more degrees of freedom than
actually necessary. One possibility to reduce this effect is to use an anisotropic refinement, which in
turn might lead to dead-lock situations, which have to be handled explicitly (see e.g. [1; 35]). New
methods have been published recently which allow for arbitrary hanging nodes and as such avoid
refinement spreads (see e.g. [10; 11; 30; 12; 13]). The idea to post-constrain the hanging modes,
however, remains unchanged so that these approaches still demand for a sophisticated algorithmic
framework.

The present work aims at circumventing these implementational difficulties by avoiding hanging
nodes by definition and in this way allowing for more flexibility, while achieving comparable approx-
imation accuracy. The essential ideas of this approach are outlined next.

2.2 Refinement via Superposition

As discussed in the previous section, classical refinement schemes are based on the idea of replacing
the coarse elements by finer elements in the domain of interest. An alternative approach—followed in
this work—is to keep the base discretization unchanged and to improve the approximation accuracy
by superposing a finer overlay mesh, on which small-scale solution characteristics can be captured.

This idea dates back to the pioneering work of Mote who, in 1971, introduced the Global-Local
Finite Elements by combining the conventional and finite element Ritz method following the idea of
mesh superposition (see [36] and e.g. [37] for a comprehensive review of the method). Since then,
this idea has been extended and applied successfully in the context of e.g. the hierarchic Finite
Element Method (see e.g. [38]), embedded localization zones (see e.g. [39; 40; 41]), the spectral
overlay method (see e.g. [42]), the hp-d-refinement method (see e.g. [14; 43]), the s-version of the
Finite Element Method (see e.g. [44; 45; 46; 47; 48]), and the adaptive local overlaying grid method
(see e.g. [49]). Although originating from a different direction, also partition of unity-based methods
such as the eXtended or the Generalized Finite Element Method can be regarded as superposition
methods, as the standard Finite Element space is augmented by additional functions that capture
special solution characteristics (see e.g. [50; 51; 52] for a review of these methods).

The unifying idea of all these approaches is to decompose the final approximation u into the base
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mesh part u, and the overlay part u,:
U = up + Uop-

The compatibly of the solution is ensured by constraining u, via homogeneous Dirichlet boundary
conditions on the boundary of the overlay mesh. In this way, the global and local scales can be cap-
tured separately without modifications of the base mesh. The idea of mesh superposition, therefore,
allows for a high flexibility in the discretization. In particular, the previously described challenges
of hanging nodes do not arise by construction, as the overlay solution is zero by definition on the
transition between the base and overlay mesh.

The current work extends this idea to combine the simplicity of the superposition methods with
the approximation power of hp-FEM. The aim is to construct hierarchical hp-like meshes to yield
exponential convergence for non-smooth problems without the difficulties of hanging nodes. At the
same time, the method is designed to deliver an agile data structure, such that the discretization
can be refined and coarsened adaptively during transient simulations without any limitations due to
mesh irregularities. Following the chronology of the method, this multi-level hp-approach is derived
in three steps in the upcoming sections.

2.2.1 The hp-d-ldea

As outlined in the previous section, the essential idea of the hp-d-refinement algorithm is to overlay
multiple meshes for approximation purposes. In contrast to the other methods mentioned, large-
scale solution-characteristics are thereby captured on a coarse high-order base mesh, which spans
the full domain of the boundary value problem under consideration. To also capture fine solution
features, this base mesh is overlayed by a finer h-mesh in the domain of interest (see Figure 2).

[ Active Face
[ Inactive Face
Active Edge
Inactive Edge
—e— Active Node

—o— Inactive Node
o...

(a) 1D-Case (b) 2D-Case

Figure 2: The hp-d-approach introduced in [14; 43]: The coarse high-order base mesh captures the
large-scale solution, while fine-scale characteristics are captured using the finer A-mesh that
overlays the base mesh in the respective domain of interest.

Due to this decomposition of the solution, two major aspects demand for special consideration: the
linear independence and the compatibility of the basis functions. However, the hierarchical structure
of the overlay elements renders both requirements easy to fulfill.

The linear independence of the shape functions is guaranteed by first ensuring that the elements
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of the second mesh do not overlap the element boundaries of the base mesh and secondly by “deac-
tivating” all nodal modes in the overlay mesh that are direct descendants of base mesh nodes.

The compatibility of the shape functions is ensured by applying homogeneous Dirichlet boundary
conditions to the overlay mesh, which guarantees that the patch shape functions are C° continuous
between interconnected elements of the respective patch. In this way, the compatibility is ensured
by construction. This simple and yet sufficient approach has the additional advantage that the
problem of hanging nodes can be circumvented completely, as no degrees of freedom are present on
the boundary of the fine overlay mesh. This idea is shown in Figure 2b depicting inactive nodes
as hollow circles, whereas active nodes are filled. Similarly, dashed edges and light-gray faces are
inactive.

It was shown by [14; 43; 53; 54] that this approach can be successfully applied to structural
mechanics, reaction-diffusion, and dimensionally reduced problems.

2.2.2 The Hierarchical hp-d-ldea

The hp-d-approach has been picked up by Schillinger et al. and extended in a hierarchical sense (see
e.g. [15; 16; 17; 18]). This idea is depicted in Figure 3, which shows how the original approach is
extended naturally by superposing different overlay meshes. As in Figure 2b, the direct descendant
and the boundary nodes are deactivated on all levels, whereas the base mesh remains unchanged. In
this way, arbitrary irregular meshes can be created easily by simply arranging the overlay meshes
such that the respective mesh boundaries coincide.

[ Active Face

] Inactive Face
Active Edge
Inactive Edge

—eo— Active Node

(a) 1D-Case (p = 4, k: refinement level, (b) 2D-Case
dashed line: singular point)

Figure 3: Conceptional idea of the hierarchical hp-d-method (following e.g. [15])

Schillinger et al. show that this extension can be applied to significantly improve the approxima-
tion accuracy in the context of geometrically non-linear structural mechanics and fictitious domain
problems. In [15; 18], this idea is extended to the context of isogeometric analysis (IGA) to adaptively
refine B-spline and NURBS elements. In [55], it is shown that this approach also yields excellent
results in the framework of collocation methods.

All these publications, however, focus on applying pure h-refinement on the overlay meshes. Al-
though this approach allows to obtain exponential convergence for smooth problems when increasing
the order of the base mesh, the convergence characteristics turn algebraic when the analytical solu-
tion incorporates singularities (see e.g. [17; 55]). To further improve the convergence properties for
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these non-smooth problems, the aforementioned approach needs to be extended. This is the focus of
the multi-level hp-algorithm, whose details will be outlined in the next section.
2.2.3 The Multi-Level hp-ldea

The essential idea of the multi-level hp-approach is to employ hierarchical, high-oder overlay meshes to
yield the full potential of hp-refinement schemes (see Figure 4). For this extension linear independence
and compatibility of the shape functions have to be reconsidered.

[ Active Face
] Inactive Face

Active Edge

Inactive Edge ’
—e— Active Node 2
——o— Inactive Node? & o/t oA

|
9 |
|
|

(a) 1D-Case (p = 4, k: refinement level, (b) 2D-Case
dashed line: singular point)

Figure 4: Conceptional idea of multi-level hp-FEM

To guarantee a linearly independent basis, the high-order shapes introduced on a new overlay
mesh have to be removed from the respective meshes on lower levels. As shown in Figure 4a for the
one-dimensional case, the high-order shapes are thus distributed over the different levels and only
elements with no further refinements are equipped with high-order shape functions. In contrast, on all
lower elements only linear shape functions are spanned, which ensure the C? continuity between the
different elements and levels. This idea naturally extends to two dimensions as shown in Figure 4b.
Just as for the previous case, all refined edges and faces are deactivated and only non-refined elements
incorporate the high-order modes. In this way, linear dependencies between the shape functions of
the different levels can be easily avoided a priori.

Similar to the hp-d-approach, the compatibility of the shape functions is ensured by applying
homogeneous Dirichlet boundary conditions on the overlay meshes. In the high-order case, however,
this requires not only for “deactivating” the respective nodes but also the edges (and faces in 3D) on
the mesh boundary. In Figure 4b, this is depicted by dashed lines on the mesh edges. Only on the
domain boundary, higher-level edge modes can be active as no compatibility has to be ensured here.
Again, this requires that the respective lower-level edges are disabled to ensure linear independence.

These simple extensions of the aforementioned hp-d-idea allow to formulate a simple hp-refinement
algorithm. In particular, the deactivation of the respective boundary modes of the overlay meshes
circumvents the difficulties of hanging nodes as these are avoided by construction. As depicted in
Figure 4b, the refinement can therefore be adjusted flexibly without any restriction to 1-irregularities.

A similar multi-level superposition approach has been introduced by Fish in [48]. The current work,
however, aims at constructing hp-FEM like discretizations via a clear hierarchy in the mesh structure.
This allows to define a simple set of rules, which ensure compatibility and linear independence by
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construction. These lead to an agile data structure in which a change of the discretization in a
transient simulation comes naturally without posing additional challenges. This process is outlined
in the following section.

3 Aspects of Implementation

As outlined in the previous section, the main challenge of the multi-level hp-refinement is to ensure
linear independence and compatibility of the basis functions. This demands for deactivating the
“correct” topological components. The following section briefly outlines the computational imple-
mentation of this task in the context of an object oriented high-order FEM framework.

3.1 Data Structure

The data structure required for implementing the multi-level hp-algorithm is simple. All that is
needed are four classes that represent the different types of topological components (node, edge, face,
solid) and one class to represent the element (see Figure 5).

i
( Node ) ( Edge | [ Face |  solia | (AnsatzSpace |

Figure 5: UML representation of the multi-level hp-data structure

As in most Finite Element programs, the topological components are used to represent the connec-
tivity information of the mesh. In the context of high-order FEM, these classes additionally handle
the degrees of freedom and the polynomial degree of the associated shape functions (nodal-, edge-,
face-, and volume-/internal-modes). However, the topology does not actually create shape functions.
This is the responsibility of the element class, which is defined on such a topological component (i.e.
its “support”).

Individual topological components can now be “deactivated” by simply setting the polynomial
degree of their modes to zero. In this case, the respective topological component will not allocate
any degrees of freedom, and, accordingly, the element will not create any shape functions associated
with this component. In this way, selected shape functions can be removed easily from the ansatz
space to ensure compatibility and linear independence.

To simplify the organization of this deactivation process, every element knows the topological
component it is defined on, and every topological component holds a list of adjacent elements. This
is depicted in Figure 6a as an example for one node and one edge by the arrows pointing to the
respective neighboring elements.

The data structure is extended in a tree-like manner to also allow for a hierarchical refinement.
Thus, every topological component holds a reference to its sub-components and every element stores
its sub-elements. Finally, every element also knows the refinement level it has been created on.

The individual steps to create these refined objects are described in the next subsection.

3.2 Refinement Procedure

Following the data structure described above, the refinement of the discretization requires to sub-
divide the respective topological components such that new elements can then be defined on this
sub-topology. The different steps of this refinement procedure are discussed in the following.
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(a) Unrefined Base-Mesh (b) Node Refinement

(d) Face Refinement (e) Element Creation (f) Refinement of second Element

Figure 6: Implementation steps of multi-level hp-FEM. The arrows depict the adjacency relation
between the created topological sub-components and the elements.

Node Refinement The first step is to refine the nodes of the element. For this purpose, four new
nodes are created as sub-nodes of their respective parents (see Figure 6b). These sub-nodes are
geometrically identical to their parents and, thus, overlay them on the next refinement level. Most
importantly, the new sub-nodes inherit the list of adjacent elements of their parents and are, thus,
still regarded as being connected to the original coarse element. In Figure 6b, this is illustrated by
the arrows pointing from one new node to the elements from which this node is originating.

Edge Refinement In the second step, the edges are refined. As for the nodes, this requires to
create (two) new sub-edges per parent edge and their corresponding middle nodes. Again, these new
components (sub-edges and mid-nodes) inherit their adjacent elements from their parent edge and
are, therefore, connected to the coarse elements. This is depicted in Figure 6¢ for one new edge and
one new mid-node.

Face Refinement The third step is the face refinement. As in the previous steps, four new sub-faces
are created together with their middle node and edges (see Figure 6d). It is important to note that,
at this point, only the topological components have been subdivided and no new elements have been
created yet. Just as in the previous step, the new components (sub-faces and mid-nodes and edges)
are, therefore, still adjacent to the coarse elements.

Element Refinement In this final step, the actual element is refined. To this end, four new elements
are created using the four sub-faces as their support (see Figure 6e). As outlined in Section 2.2.1,
these new sub-elements do not replace the original element but overlay it instead. The coarse
element is therefore not deleted but still exists on the base level. However, it deregisters itself from

Journal publication: https://doi.org/10.1007/s00466-014-1118-x



https://doi.org/10.1007/s00466-014-1118-x

3.4. Enrichments 153

the newly created sub-topologies and registers the respective sub-elements instead. The new sub-
components are thus now partly adjacent to elements on different levels. This information is essential
to deactivating the correct components, which will be described in the following sub-section.

3.3 Component Deactivation

As discussed previously, linear independence and compatibility of the basis functions is ensured
by deactivating the “correct” topological components. With the setup described in the previous
paragraph, this can be done easily by applying the following simple rules:

Compatibility is ensured by deactivating all topological components of the overlay mesh whose
adjacency list contains elements of different levels. In this way, components of the overlay mesh on
the boundary of the refinement zone will have no degrees of freedom. This ensures C° continuity
between interconnected elements and avoids hanging nodes and edges by construction.

Linear independence is ensured by deactivating all topological components of the base mesh that
have (active) sub-components and all nodes on the overlay mesh directly descending from base nodes.

It is interesting to note that these simple ideas also allow to naturally activate the correct topo-
logical components on the domain boundary. As the topological components at the boundary are
only adjacent to the refined elements, they are activated automatically without the necessity of any
additional adjustments.

Furthermore, if now a second element is refined, the adjacency relations automatically update, and
the new sub-components can be re- or deactivated without any difficulty (see Figure 6f). Finally,
this procedure also allows for multiple levels of overlay meshes by simply applying the algorithm
recursively on the newly created sub-elements.

3.4 Numerical Integration

In addition to the questions of compatibility and linear independence, also the correct numerical
integration of the element stiffness matrix demands for special consideration when following the
idea of mesh superposition. In the context of the hp-d- or multi-level hp-method, however, the clear
hierarchical structure of the overlay elements can be exploited to also simplify this task. In particular,
no complex subdivions of the overlay elements are required as these may only overlap one parent
element. An exact integration only demands for subdividing the integration domain according to
the inner-element boundaries. This poses no implementational difficulties, as the sub-elements are
constructed by recursively bisecting the parent element (see Figure 7). On each of the resulting
sub-domains, standard Gaussian quadrature points are distributed, on which the respective non-zero
shape functions are evaluated to compute the element matrices.

The figure, however, also shows a potential performance bottleneck of the method. As the approx-
imation accuracy is increased by superposing different elements, the number of shape functions with
overlapping support increases. This results in a denser system of equations with a higher bandwidth
compared to a conventional hp-scheme. Furthermore, the superposition leads to more shape func-
tions being non-zero on each integration point. All three effects possibly have negative influences on
the time required for integrating the element matrices and for solving the system of equations.

In the run-time analysis presented in Section 4.1, however, these possible disadvantages do not
materialise. Instead, the multi-level hp-method yields exponential convergence characteristics in the
run-time. This suggests that these negative effects—although present—are more of theoretical nature
and have only a very limited relevance in practice.
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Figure 7: Integration of a multi-level element

4 Numerical Examples

In the following section, the performance of the multi-level hp-approach described in Sections 2 and
3 is demonstrated. The convergence properties for applications with non-smooth solution character-
istics are addressed by the first benchmark. The second and third examples demonstrate that the
agile data structure of the method can be used to adaptively refine and coarsen the discretization
during transient simulations.

4.1 Non-Smooth Solution Benchmark

The aim of this first example is to analyze the convergence properties of the proposed refinement
methods in the context of non-smooth problems. For this purpose, the well known L-shaped domain
problem is considered (see e.g. [56]).

4.1.1 Problem definition

1 1
Iy,
'y 2
1
r
N o )
-1
I'p 1 0 1
0
IF b
N
(a) L shaped domain (b) Analytical Temperature So- (c) Flux Magnitude ¢ = ||V¢||

lution ¢

Figure 8: Setup and solution of L-shaped domain problem

Consider the temperature problem

Ap =0 Y (r,0) €Q
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defined on the L-shaped domain depicted in Figure 8a, with the boundary conditions defined as

b=0 VY (r,0) €Tp
2 4 [zsin(20) — ycos (26)
V¢n—§7" 3 y51n(§9>+xcos(§g) n V(T,Q)GFN

Therein, I'p and I'y define the Dirichlet and Neumann boundaries, respectively, such that

I'pUT'y =092 and I'pnNITy=0.

As shown in e.g. [1], the analytical temperature distribution ¢ can be given in polar coordinates
r and 0 as

2
é(r,0) = 1 sin <39> V(r,0) e Q,
with A = 2/3.

4.1.2 Numerical Results

To approximate the analytical temperature distribution ¢ numerically, the depicted domain is dis-
cretized with an initial element size h = 1/2. This base mesh is then refined using the hierarchical
hp-d- and the multi-level hp-approaches. In both cases, no solution-based refinement indicator is used.
Instead, the refinement is steered geometrically towards the re-entrant corner by always refining the
inner-most element.

The numerical approximation of the analytical heat flux magnitude ¢ = ||V¢|| obtained with the
hp-d- and multi-level hp-approaches are depicted in Figure 9. The comparison to the analytical
solution in Figure 8 shows that the overall solution characteristics are captured correctly by both
strategies. In the case of the hp-d-method, however, the elements near the singularity suffer from se-
vere discontinuities in the flux, which is directly associated with the discretization error (see e.g. [57]).
Increasing the number of recursive refinements reduces this defect, as the effects of the singularity are
bound to the higher refinement levels. But even with ten recursive refinements, the numerical solution
still shows large discontinuities in the flux field. In contrast, the results obtained by the multi-level
hp-approach approximate the singularity significantly better with only minor discontinuities in the
derivative field, which qualitatively shows the advantage of this new approach.

To quantify the quality of the obtained results in more detail, the convergence characteristics are
analyzed. For this purpose, the function space is enlarged by increasing the polynomial order of
the employed shape functions while keeping the element size unchanged. In the context of an hp-d-
refinement, this only effects the order of the base mesh whereas the overlay meshes remain linear. In
the case of multi-level hp, however, the p-refinement leads to an increase of the polynomial ansatz
order on all overlay levels.

Figure 10 depicts the reduction of the relative discretizaton error in the energy norm

| e, — II

fe| %
—_— . 100
H€||E I, 0

versus the number of degrees of freedom (dofs), with I, and II;. denoting the exact and the
approximated energy, respectively. As discussed e.g. in [56; 58], algebraic convergence with a rate
B=A= % is to be expected when p-refinement is applied to the singular problem under consideration.
As shown in Figure 10a, these theoretical values are met when no refinement is employed (i.e. 0
refinements). If the discretization is refined following the hp-d-idea, the first two to three p-refinement
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multi-level hp-refinements level hp-refinements multi-level hp-refinements

Figure 9: Numerical approximation of the flux ¢ obtained with p = 2

13

Journal publication: https://doi.org/10.1007/s00466-014-1118-x



https://doi.org/10.1007/s00466-014-1118-x

3.4. Enrichments 157

S I O Lovels
>, 10t b E N 4 Levels
@ I 6 Levels
é L sl B B Levels |
5 = ] 10 Levels
z. o 115 Levels
° 1 18 Levels
gB S ] 20 Levels
= 2 — — Theo. Rate A
g 100 | —©— 0 Levels | g-i) o e
= — 85— 4 Levels o
= —&— 6 Levels L
=] —A— 8 Levels =
o ——%— 10 Levels o
"5 —&— 15 Levels 1 O
— —#— 18 Levels
m"‘ —P— 20 Levels
1071 n n
10t 102 103
Degrees of freedom p-Refinement Step
(a) Convergence using hp-d-refinements (b) Convergence rates (8 using hp-d-refinements
g 10! | E I O Levels
&, . ¢ Levels
w4l . 6 Lovels ]
S 100 | i g I 8 Levels
5 % ch = 10 Levels
[ 15 Levels
< N o 3t 118 Levels |
b:>510_ 3 1 8 ] 20 Levels
g —o— 0 Levels g — — Theo. Rate
-2 | —8— 4 Levels ] 2 2 ,
&) —O— 6 Levels g
=] —A— 8 Levels =
o —%—— 10 Levels )
‘610*3 ' —&— 15 Levels E O r 1
= — & 18 Levels - —]
LE —p— 20 Levels
104 L L 0
10t 102 103 104
Degrees of freedom p-Refinement Step
(c) Convergence using multi-level hp-refinements (d) Convergence rates 3 using multi-level hp
Figure 10: Convergence results of p-refinement using p=1,2,...,10
10t T 5 T T T T T T T T T
= el
=X [ Multi-level hp
g 100 b J B4l — — Theo. Rate ]
= -~
<
S
~
Zw*l 3 E o 3
>
3]
20 =]
g &
LT%1()*2 3 E 5 2
>
e g
w1073 b ] o !
o
= —©— hp-d
LE —8— Multi-level hp
10—4 : 0
102 103 104 1 2 3 4
Degrees of freedom p-Refinement Step
(a) Convergence curves (b) Convergence rates

Figure 11: Direct comparison of convergence results obtained using hp-d- and multi-level hp-approach
(20 refinements)
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steps yield a significant improvement of the numerical error. For the remaining steps, however, the
convergence rates significantly reduce towards the theoretical value of 8 = 2/3 and asymptotically,
an algebraic convergence is observed (see Figure 10b). In particular, neither the absolute error
value nor the convergence characteristics are affected significantly by the employed number of mesh
refinements. These results confirm the findings of e.g. [17].

The results presented in Figure 10c demonstrate that using multi-level hAp-refinement changes the
convergence characteristics substantially. Although the asymptotic convergence is still algebraic, the
convergence rates continuously increase for the first refinement steps if the mesh grading is strong
enough. The convergence can, therefore, be identified as exponential in the pre-asymptotic range.
Only when the polynomial order of the shape functions exceeds the optimal value for the current
mesh, the convergence rates decrease and tend towards the expected algebraic value of 8 = 2/3
in the asymptotic range. In contrast to the previously presented results, however, the comparison
of different refinement levels demonstrates that this transition point can be shifted significantly to
higher accuracy if more refinement levels are employed. These results thus show that pre-asymptotic
exponential convergence for piecewise analytical functions cannot be achieved exclusively with geo-
metrically graded meshes (see e.g. [56]). The direct comparison between the two methods, depicted
in Figure 11, demonstrates that this new approach improves the approximation accuracy by several
orders of magnitude in the energy norm.

As discussed in Section 3.4, the superposition approach results in a larger support of the shape
functions than a conventional hp-approach. This leads to larger element matrices and a denser system
of equations with an increased bandwidth. Therefore, this section concludes with a run-time analysis
of the hp-d- and the multi-level hp-method.

T T T T
100 | Il Time for Integration

[__] Time for Solution (PCG)
80 |
60 |

40 |

20 |

Normalized Time [%)]

1 2 3 4 5 6 7 8 9 10

Polynomial Order p

Figure 12: Comparison of integration and solution time of the multi-level hp-method (20 refinements)

It is well known that using higher-order shape functions, very high accuracy can be achieved with
a comparable small number of unknowns. At the same time, however, the number of shape functions
per element significantly increases. This raises the time required for integrating the element matrices,
such that it typically dominates the time for solving the final system of equations. To evaluate this
effect, the time required for integrating and the time required for solving the system of equations are
compared in Figure 12. Thereby, a straightforward, non-specialized conjugate gradient solver with
a simple diagonal pre-conditioning was used for solving the system of equations iteratively up to a
residual error of 10715 (see e.g. [59]).

The results show that even when using such non-optimized solver, the time for solving the system
of equations is not dominating. This applies in particular for the pre-asymptotic range (p =1...6),
in which the time for solving does not exceed 20%. As the increase in accuracy is largest in this
range, it can, therefore, be deduced that the increase of the bandwidth and the reduction of the
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sparsity of the final equation system—although present—do not have a significant influence on the
total computation time.

The more relevant question is thus whether the increase in integration time is in balance with the
gain in accuracy. To answer this question, Figure 13a plots the discretization error in the energy norm
versus the required time for integrating and assembling the element matrices in a double-logarithmic
scale.

As in the previous studies, this plot shows that the pre-asymptotic and the asymptotic range can
be clearly identified also in terms of the integration time. Within the pre-asymptotic range, the
time for integration increases by a factor of approximately 35. In the same range, however, the error
reduces by a factor of about 35,000. It is further interesting to note that by doubling the integration
time, the relative error is reduced by a factor of ten, which undercuts the engineering accuracy of

1%.
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10~ 1 Zl(]—l
> >
&0 &0
g g
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£a) £a)
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(a) Double-logarithmic scaling (b) Semi-logarithmic scaling

Figure 13: Convergence of the discretization error depending on the time required for integrating the
element stiffness matrix (20 mulit-level hp-refinements, p = 1...10)

These numbers already indicate a significant performance gain achieved by the high-order overlay
meshes. The results, however, do not allow to judge whether the increase of support described
in Section 3.4 has a negative influence on the method’s run-time complexity. For this purpose, the
following simple complexity model shall be used: For a given discretization, the time t; for integrating
the element matrices depends on the number of integration points n; and the time ¢,, required for
computing the matrix product on the integration points. Using standard two-dimensional Gaussian
quadrature, the number of integration points n; depends on the polynomial order p of the shape
functions as follows:

n; = (p+1)>%
Furthermore, the time ¢,, required for computing the matrix product on each integration point is
2

tm = a - ng,

with n. denoting the number of unknowns per element and « being a positive constant. Furthermore,
it is known that using the full tensor space (see e.g. [56; 58]), the number of unknowns can be
expressed in terms of the polynomial degree as follows:

Ne = (p + 1)27
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which equals the number of integration points n;. As the matrix product has to be computed for
every integration point, the total time required for integration can thus be estimated as

ti:a.ni.ng:a~nz’
thereby neglecting any overhead such as e.g. memory allocation. Inverting the above expression
and, furthermore, assuming that the total number of unknowns n scales linearly with the number of
unknowns per element n. allows to express these as follows:

1
noct?.

The results in Figure 11 show that, in the pre-asymptotic range, the discretization error decays
exponentially with the number of unknowns. Following e.g. [56; 58], the convergence of the error
can thus be written as:

el < k- e,

with k and - being positive constants. According to e.g. [56; 58], it is assumed that 6§ = % for the
two-dimensional problem under consideration. Using these observations, the decay of the error can
be expressed depending on the integration time in the following way:

1
lelle < k-7,

with 4 being a positive constant.

These results allow to judge on the complexity of the implemented multi-level hp-algorithm by
depicting the discretization error logarithmically against the sixth root of the run-time. As shown in
Figure 13b, a linear relation between these entities can be observed for the values of p =1...6.

This demonstrates that the multi-level hp-method yields the theoretical exponential convergence
characteristics for non-smooth problems not only in terms of degrees of freedom but also in terms
of the run-time. Together with the previously discussed results, this shows that the increase of span
has no considerable deteriorating influence on the run-time complexity.

4.2 Muli-Level hp-Adaptivity for Moving Objects on Fixed Meshes

I‘Dl

a = 0.425

a=1 / ;
Tint

= a =0

Figure 14: Setup of rotating ellipse example in the context of the Finite Cell Method

The aim of this second example is to combine the hp-d- and multi-level hp-refinement algorithms
with the idea of high-order fictitious domain methods to capture the temperature distribution around

17

Journal publication: https://doi.org/10.1007/s00466-014-1118-x



https://doi.org/10.1007/s00466-014-1118-x

3.4. Enrichments 161

moving objects on a fixed background mesh. For this purpose, the schemes are employed to simulate
the heat flux around the rotating ellipse depicted in Figure 14 with the model problem defined as
follows:

%quﬁ Ve e Qandte0,2]
p=1 Vz €T'p, and t € [0, 2]
$p=0 Vz €T'p, and t € [0, 2]

Vo -n=0 Vz €'y and t € [0,2]
¢=0 VreQandt=0.

For the temporal discretization, a simple backward Euler approach with 32 equidistant time steps is
used. To spatially discretize the domain, the Finite Cell Method (FCM) is used (see e.g. [60; 61]). The
essential idea of this high-order fictitious domain approach is to embed the actual physical domain
Qphy in a fictitious domain Qy;., such that their union can be discretized easily (see Figure 14). A
scalar field

1 VzeQ
afx) = T E iphy
e Vad Qpy

is used to recover the original problem, with ¢ — 0. This simple idea allows to circumvent the mesh
generation step. Recent publications show that this approach can be applied successfully in the con-
text of linear elasticity [60; 61; 62], topology optimization [63], geometrically nonlinear continuum
mechanics [16; 17; 64], computational steering [65; 66], biomedical engineering [67], elastoplasticity
[68; 69], wave propagation in heterogeneous materials [70], local enrichment for material interfaces
[19], convection diffusion problems [71], thin-walled structures [72], design-through analysis and iso-
geometric analysis [15; 16; 18; 64; 73; 74; 75; 76], and multiphysics applications [77]. Recently, the
convergence properties of the method have been analyzed in detail by [78]. A comprehensive review
of the method and its recent extensions is given in [79)].

In their recent works, Schillinger et al. showed that the Finite Cell Method can also be combined
with hp-d-refinement schemes to significantly increase the approximation accuracy (see e.g. [15; 16;
17; 18]). The studies, however, concentrated on examples in which the geometry of the physical
domain remained unchanged over time. There was, therefore, no need to update the discretization
between the time steps. In the examples under consideration, however, the ellipse is rotating within
the heat field. An fixed a priori adaption is therefore not applicable in this case.

As shown in Figure 15, this reveals some challenges associated with the FCM. Although the
physical behaviour is captured well qualitatively by the simulation, the numerical results suffer from
oscillations. The reason for this problem is that the shape functions of elements incorporating the
interface I';,; cannot capture the solution characteristics correctly within one finite cell. To reduce
the oscillations, the solution space has, therefore, to be increased around this internal interface.

The discussed hp-d- and multi-level hp-methods are well suited for this purpose as the cut cells
can be refined adaptively as soon as I';,; enters the element, and coarsend again when T';,,; leaves the
element domain. As in the example in Section 4.1, the refinement is thus steered geometrically.

As shown in Figure 16, the use of the hp-d-refinement method significantly improves the results.
But minor oscillations are still present when only two levels of refinements are used. The reason
for this seems to be that the oscillations are “broken” at the element edges only and, therefore,
restricted to the finest mesh level. As the discretization is still comparably coarse when applying
only two refinements steps, oscillations can still be observed. Increasing the number of overlay meshes
further improves the results (see Figure 17).

When using the new multi-level hp-method instead, only two levels of refinement suffice to circum-
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Figure 15: Heat flow around the rotating ellipse without using any refinement with p = 4
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Figure 16: Heat flow around the rotating ellipse with p = 4 and 2 levels of hp-d-refinements
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Figure 17: Heat flow around the rotating ellipse with p = 4 and 4 levels of hp-d-refinements
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vent artificial oscillations (see Figure 18). This can be explained by the high-order shape functions
on the overlay meshes, which allow to capture the complex solution at the internal interface more
accurately.

Heat Flux Magmtude Heat Flux Maqmtude Heat Flux Magmtude Heat Flux Hagmtude
U_'_ ‘-1_5 _ _ - _ _ - 0_'_ -15
(a) t =10% (b) t = 30% (c) t =80% (d) t = 100%

Figure 18: Heat flow around the rotating ellipse with p = 4 and 2 multi-level hp-refinements

This comparison shows that the use of the multi-level hp-method significantly improves the result
quality when simulating the heat flow around moving objects on fixed background meshes.

4.3 Automatic Multi-Level hp-Refinement and Coarsening

This example demonstrates the applicability of the multi-level Ap-refinement method to hyperbolic
problems. In particular, the ability of the method to robustly refine and coarsen the discretization
automatically is of interest. For this purpose, the refinement strategy is combined with a simple
energy-based refinement indicator.

4.3.1 Problem definition

I'p

T'n Q T'p

100

'p

Figure 19: Setup of compression wave example
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To simulate the evolution of an acoustic wave, the well-known wave equation (see e.g. [80]) is used:

82
an:Agb—!—s(x,t) Vz € Qandt € [0,100]
$=0 Vo eTp and t € [0,100]
Vo-n=0 Ve eIy and t € [0,100]
¢=0 VereQandt=0
%:0 VreQandt=0,
ot

with Q being depicted in Figure 19. Centered on the point S, the following wavelet-shaped source
term is applied to emit a wave front:

s(x,t) = a(t) - az(2)
_(a=5)?
with a,(7) = Az -e 292

,(t—uz)‘z
a(t) = —Ap- (t—ple 27
and A, = 100, A, = 1000, o, = 6, oy = 1, pu = 10

4.3.2 Numerical Results

The time range is discretized in 200 equidistant time steps using the well-known Newmark time
stepping scheme (see e.g. [24; 23]). The spatial domain is discretized with 10 x 10 elements on which
shape functions with p = 4 are defined. During the simulation, this base mesh is superposed with
a maximum of three levels of overlay meshes with p = 4. The decision on where to employ the
refinement is based on the relative energy contribution of the respective element ¢ in comparison to
the total energy of the current solution:

[l
[l

> tol,

with tol being a user defined tolerance value.

Figure 20 depicts the results of this simulation, with the mesh being warped in the z-direction
according to the current wave amplitude. The time series clearly shows how the discretization
accuracy is following the wave front robustly. In particular, two distinct regions of refinement can be
seen after the wave is reflected from the lower boundary. In-between these compression and expansion
waves, the mesh is coarsened again as here the gradient is significantly smaller.

These results demonstrate that even with this simple solution-based refinement criterion, the multi-
level hp-refinement can be controlled automatically, without any difficulties of hanging nodes or mesh
irregularities.

5 Conclusion and Outlook

In the present work, a novel multi-level hAp-refinement scheme was introduced, which allows to allevi-
ate the challenges associated with the implementation of the compatibility enforcement for arbitrary
hanging nodes in classical hp-schemes. Extending the idea of hp-d-methods, this new approach re-
fines a coarse base mesh by hierarchically superposing it with finer, high-order overlay meshes on
which small-scale solution characteristics can be captured with high accuracy. This multi-level hp-
formulation of the Finite Element Method avoids the difficulties associated with hanging nodes as

21

Journal publication: https://doi.org/10.1007/s00466-014-1118-x



https://doi.org/10.1007/s00466-014-1118-x

3.4. Enrichments 165
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Figure 20: Propagation of wave front and discretization over time (max. three overlay meshes, p = 4)

the compatibility requirements are ensured by construction while yielding the same capabilities as
conventional hp-approaches.

The different examples discussed in this work demonstrated that this new approach is well suited
for problems with non-smooth solution characteristics and can be combined easily with the idea of
fictitious domain methods and automatically controlled refinement procedures. In particular, it could
be shown that the introduced method achieves comparable approximation properties as conventional
hp-schemes and works robustly in the context of elliptic, parabolic, and hyperbolic applications.

In the context of elliptic problems, this could be demonstrated by applying the multi-level hp-
approach to approximate the singular solution of the well-known L-shaped domain benchmark. The
presented results showed that using high-order overlay meshes for refinement significantly improves
the simulation accuracy compared to linear overlay meshes in the hp-d-approach. In particular, the
obtained convergence characteristics are exponential in the pre-asymptotic range.

The second example demonstrated that the agile data structure of the method allows to robustly
refine and coarsen the discretization in every time step of a parabolic simulation. In particular,
it could be shown that, in combination with the idea of fictitious domain approaches (Finite Cell
Method), the multi-level hp-algorithm allows to capture the heat flow around a moving object on a
fixed background mesh.

In the third example, the multi-level Ap-scheme was applied in the context of hyperbolic problems
to capture a propagating wave front more accurately. The presented results show that the refinement
approach can also be combined with a solution-based refinement criterion which allows for automatic
mesh adaptivity.

These three different examples demonstrate the potential of the multi-level hp-approach introduced
in this work. However, further research is necessary to analyze the method in more detail and to
extend its application range.

In a first step, the authors plan to extend the multi-level Ap-method to three dimensions. In the
context of the increasing problem size, it will be interesting to investigate whether the hierarchical
structure of the shape functions can be utilized to improve the efficiency of the equation solver. A
first idea is to apply a multi-grid approach by solving for the respective error components on the
different mesh levels. Similar approaches have been applied successfully in the context of hp-FEM
by e.g. [2; 81; 82]. An alternative idea is to exploit the local nature of the overlay shape functions.
As these modes are not coupled directly to adjacent coarse elements, the efficiency of the solution
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procedure can be improved by a suitable condensation of their associated degrees of freedom (see e.g.
[83; 2]).

A second interesting research direction is to further improve the method’s convergence speed.
Numerical studies show that high-order modes do not contribute significantly to the accuracy in the
direct vicinity of a singularity. This observation is utilized in graded mesh approaches by decreasing
the polynomial degree of the shape functions towards the singularity (see e.g. [84; 56]). The same
idea can also be applied in the context of multi-level hp-refinement by decreasing the polynomial
degree of the shape functions gradually on higher mesh levels (see Figure 21). As a similar idea
proposed in [85] has shown good results for one-dimensional applications, the authors expect that
this will further improve the rates of convergence.

Figure 21: Conceptional idea of graded multi-level hp-FEM (p = 4, k: refinement level, dashed line:
singular point)

A third possible research direction is the formulation of an improved error-based refinement indi-
cator. Additionally, the aspect of smoothness estimation has to be investigated to decide on whether
an h- or p-refinement has a greater effect on the simulation accuracy. The authors conjecture that
this will then allow to also achieve exponential convergence for singular problems in the asymptotic
sense (see e.g. [1; 2; 56; 58; 4]).
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A unified concept for hierarchic enrichments of hp-type Starting point to this line
of research was the pure curiosity of trying to understand whether the multi-level hp concept
constructs the same space of functions as the classical refine-by-replacement hAp methodology.
If this were the case, clearly all proofs of classical hp-methods w.r.t. their convergence prop-
erties would directly apply to the multi-level hp-method. This idea was brought to attention
by Schréder at the HOFEIM workshop in 2014. The approach was to cast the multi-level
hp-method into the concept of a generalized assembly procedure using connectivity matrices.
The concept is depicted in fig. 20.

global basis functions

&1 ®2 ?3 ¢4 P
Ey Es, E; Ey  physical space (2
local element /A
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= 93| 1 0
1 s | 01
reference element F = [—1,1] o5 \ 0 0
(a) One-dimensional example of generic assembly (b) Constrained approximation of

global shape function

Figure 20: Connection between global basis functions and local element shape functions in one and
two dimensions [65]

It is common practice to compose the global shape functions ¢; of an element E from local
shape functions fj defined on a reference element F which is transformed into the physical
space by a geometric mapping W : E — E. The local element shape functions on an element
E are thus given by:

§ =&y 3)

The idea of the generalized assembly is now to define the mapping between the global and
local shape functions by a connectivity matriz 7 of an element E. In this matrix, every row
corresponds to one global shape function ¢; and every column to one local shape function
5]E of the respective element. This allows to express each global basis function as a linear
combination of local shape functions:

Gilp =D _mh¢} (4)
J

whereby | symbolizes the restriction of the global shape functions to that element F. This
allows to define the generalized assembly procedure of the global load vector F' as a sum of
the corresponding matrix vector multiplication of all local element force vectors F¥ in the
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finite element mesh &:
F=>) =«FFF (5)
Ecg
Likewise, the global stiffness matrix K can be assembled as a sum of the local element stiffness
matrices K%, which are pre- and post-multiplied by the corresponding connectivity matrix

7TEZ

K=Y ="K (x")’ (6)
Ee&

This assembly is more general than the standard location matrix procedures because it is pos-
sible to associate to every global shape function — not only one local shape function but frac-
tions of local shape functions. Consider, for example, the global shape function ¢s in fig. 20b.
It can be constructed by combining the first and fourth element shape functions of the sec-
ond element with a weight of 1 and 1/2, respectively. Accordingly, the second row of the
connectivity matrix of element Ej is:

(w§2)j17.._74=<1 0 0 ;) (7)

It is now possible to define the multi-level Ap-method in the framework of the generalized
assembly procedure. To this end, it is first necessary to define the supports of the resulting
global basis functions ¢;. Next, a rule-set needs to be defined, leading to the corresponding
connectivity matrix. This rule set was published in [65], and it turned out to be simpler than
the one needed for classical Ap-methods. Unfortunately, in the course of this work, we found
that the function space spanned by the multi-level Ap-method is similar but not the same as
in the classical hp-method. However, at least the spaces intersect.

It is interesting to note that by recasting the multi-level Ap-method into the concept of the
generalized assembly, in essence, a refine-by-replacement procedure is defined for the multi-
level hp-method. This is due to the fact that the generalized assembly procedure defines
an assembly of the refined basis directly from a reference element — without the recursive
mapping and evaluation procedures, both of which are necessary in the multi-level hp-method.
Of course, this is to the expense of having to set up the corresponding connectivity matrices,
which is a non-trivial task.

The concepts of refine-by-replacement and refine-by-overlay can be considered as two sides of
the same medal, each with algorithmic advantages and disadvantages. This is true at least
for the case in which the overlays are those given by the hierarchic enrichments of multi-level

hp type.

Enrichment by replacement The advantage of composing a global discretization directly
from a reference element is especially desirable if other types of enrichments are to be included
into an already existing code. The corresponding concept to connectivity matrices in isoge-
ometric analysis is Bézier extraction. the one-dimensional element mesh with the associated
hierarchical B-spline basis denoted as HB, as depicted in fig. 21.

It is composed of the B-spline functions defined in B and its two overlays B' as well as
B2. The superscript denotes the concerned level of refinement I. Both of the overlays are
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Figure 21: Hierachical B-spline basis as presented in [66]

generated by knot insertion of the knots bl. Elements of the mesh €; may then be defined as
non-overlapping knot-spans. To facilitate the refinement, they are located on different levels
in B'. An example are the elements marked by the thick red lines on the horizontal axes
in fig. 21. Their union forms the finite element mesh®.

Next, a linearly independent basis needs to be constructed. For this purpose, the set of
active functions B! on each element is defined as the set of all functions with support on
the considered element. From these, a subset of linearly independent functions is chosen. To
this end, the functions in B! are classified into those which overlap coarser elements (B'),
those which overlap finer elements but not coarser ones (Bﬂr), and those which only overlap
with elements of the level corresponding with that chosen element (BL). Figure 21 depicts
the situation for the specific element e3. B! is composed of the dotted functions, and Bi is
composed of the dashed functions. BL is composed of the solid non-gray functions. All other
functions are set inactive, which is symbolized by their solid gray color. The hierarchical
B-spline basis HB is then defined by the union of the B-splines of each level [ whose support
covers only elements of level [ > [ and at least one element of level [. This choice of functions
was shown to deliver a linear independent basis in [67].

The above line of argument still takes the point of view in which the construction of refine-
ments is carried out by hierarchical overlays. However, the refine-by-replacement point of
view, depicted in fig. 22, is possible as well. To this end, the concept of Bézier extraction is
used. It allows to construct standard B-splines directly from Bernstein polynomials defined

Swhich translates to a finite element grid by means of a tensor product to produce discretizations in more
than one dimension
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on a reference element. Further, as published in [66], it is possible to compute a multi-level
extraction operator that composes the multi-level basis for the considered element directly
from the standard B-spline basis. These two operators may be combined to form a multi-level
Bézier extraction operator. This operator is local to the element, and it serves to directly
construct the multi-level basis from a standard reference element upon which Bernstein poly-
nomials are defined.

multi-level local basis
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Figure 22: Basis functions of HB local to the element e5 = (0.25,0.375) of the example in fig. 21,
expressed as linear combination of standard functions in B? with support on es or of Bernstein poly-
nomials on the reference element as in [66].

This multi-level Bézier extraction operator can also be viewed as a type of a connectivity
matrix 7, as introduced in the previous paragraph. It carries out the generalized assembly
of basis functions of a local reference element to form a global basis and ensures the correct
continuity and linear independence of the global discretization.

3.4.3 Refinement indicators and error estimation

The development of the refinement schemes discussed in section 3.4.2 was driven by the need
to resolve small-scale features in the context of the FCM. The next step is to answer the
question of how and where to refine in multi-level hp. In the context of the FCM, refinement
indicators have successfully been used to decide where to refine. For example, an indicator
could simply be to check the second derivative of an approximate solution. High values of
the second derivatives then indicate refinement, medium ones indicate that there is nothing
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to do, and smaller ones indicate coarsening. There are even simpler indicators, such as pre-
refinement at re-entrant corners, changes in the boundary conditions, or rapid jumps in the
material coefficients of the domain. Unfortunately, error indicators do not estimate the error
and, thus, do not provide upper bounds i.e. it is not possible to ensure that the error will be
under a certain threshold. To this end, it is common to employ error estimators that provide
upper bounds °. Numerous types and variants exist, along with a vast body of literature,
see e.g. [68] for a comprehensive introduction. Among these, a-posteriori error estimators are
convenient because they derive the estimated error from an associated residual which can be
computed directly from the numeric approximation to the already computed solution.

The main contribution w.r.t. the multi-level hp-method was published in [69], where it was
demonstrated that a-posteriori error estimators can also be used in the multi-level Ap-method.
The key issue is to correctly interpret what an element actually is in the refine-by-overly. A
correct definition of the extension of an element is crucial because a-posteriori estimators re-
quire an evaluation of residuals on element boundaries. As a remedy, the concept of elements
was extended to integration domains. The integration domains are sub-domains that are
defined by the imprint of all leaf elements upon the base element. The error estimator was
then associated to these integration domains instead of the element. Indeed, this definition
is consistent with the definition of the partition of computational domains into elements of a
classic finite element discretization. Therein, for second order problems, the shape function
must represent exactly all polynomials of order up to one (completeness), be C''-continuous
within each element (smoothness), and be C°-continuous across element boundaries (conti-
nuity). The error estimator can then be enhanced by a standard smoothness indicator to
drive an adaptive scheme using multi-level hp adaptivity. An example is given in fig. 23. This
example stems from a project in field assisted sintering where a copper powder is heated by
a magnetic field and compacted in a die with a punch in order to form a solid artifact.

The improvement of the solution by adapted enrichments still has a lot of potential, especially
in combination with the Finite Cell Method. There are numerous questions that must yet be
addressed theoretically, such as the estimation of errors on badly cut elements for which the
multiplicative constant grows out of bounds. Additionally, it remains an open question how
to construct an efficient error estimator that is able to treat small voids which are situated
inside one finite cell.

Sat least up to a multiplicative constant
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Figure 23: A geometrically complex example for adaptivity using the multi-level hp-method as
presented in [69].
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4 Towards engineering applications of the Finite Cell Method

The previous chapters discussed extensions of the FCM, such as its extension to various ge-
ometric models in section 2 as well as enhancements in the discretization, see section 3. The
underlying motivation for these enhancements are engineering applications. Some of them
were already presented in the methodological sections — including the application for bio-
mechanics, see fig. 10, the computation of stresses in engineering parts constructed by CSG,
as presented in fig. 6, as well as the approach to handle dirty geometries (see e.g. section 2.3).
By contrast, this section discusses engineering applications that benefit from flexibility of the
developed method, using it directly to answer questions of engineering relevance. This includes
the application of the FCM to structural dynamics section 4.1 and large scale simulations on
CT scans section 4.2. Special attention is given to biomedical applications in section 4.3 by
including the corresponding journal publication. This treatise then concludes with a process
model for Additive Manufacturing in section 4.4. The process of additive manufacturing in-
corporates numerous physical phenomena and scales, and it poses many challenges such as
strong traveling gradients and associated phase changes. These phenomena occur on grow-
ing domains. Section 4.4 demonstrates the rather tedious but important cycle of selecting a
physical model, constructing a discretization method for it, verifying its implementation, as
well as its validation back to an update of the physical model to better represent the obser-
vations. To illustrate the details of this scientific work, three publications are included. One
in section 4.4.1 on the treatment of thermal processes including phase changes, another on
the coupled thermo-mechanical aspects in section 4.4.2, and a final publication on validation
in section 4.4.3.

4.1 Structural dynamics

A straightforward extension of the FCM is that towards structural dynamics, with an example
of application in fig. 24. It depicts a chuck of a hammer-action drill as used in a product
of Hilti. The chuck is subject to an impact load. For this class of industrial applications, there
are competitive standard software products that rely on explicit time integration methods —
such as LS-DYNA™ for example. Thus, the most eminent question of interest is whether
the same results can be obtained for the FCM computation using the implicit version of the
Newmark method as compared to the commercial program LS-DYNA™using explicit time
integration.

This comparison might seem a little awkward at first, but it does have practical relevance.
Stress concentrations develop in the smaller radii of the elliptic holes, e.g. at Point B in fig. 24,
for which fine tetrahedral or hexahedral meshes are needed. These, in turn, require very small
time steps in an explicit time simulation within LS-DYNA™ In addition, the maximum of
these stress concentrations occurs at a point in time much later than the load impact on the
red surface in fig. 24a. Therefore, the total number of time steps necessary for an explicit
simulation is very large. This is an ideal setting for an implicit simulation that allows for much
larger time steps. However, the high number of degrees of freedom necessary to resolve the
stresses accurately enough caused the memory to grow out of bounds. One possible approach
to keep the number of degrees of freedom at bay is to seek higher convergence rates, which
are provided by the p-version of the finite element method. However, it turned out to be
non-trivial to impossible to create a boundary-conforming p-finite element mesh. This is why
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Figure 24: Chuck of a hammer-action drill

FCM provides a possible solution. Due to intellectual property rights concerning the chuck
and its specific design, only a case study was investigated. Comparable accuracy was reached
with the discretizations depicted in figs. 24b and 24c. The discretization in LS-DYNA™used
366,097 tetrahedral finite elements with 230,358 degrees of freedom. The explicit dynamics
time integration called for 45,526 time steps. Comparable accuracy is reached with only 533
finite cells at p = 3, which delivers only 54,021 degrees of freedom solved in 400 time steps.
The fact that the FCM achieved comparable results for an example of industrial interest was
presented at conferences 70| and a journal publication [71] in which all results needed to be
normalized, see fig. 25 for an excerpt.
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Figure 25: Chuck VonMisesStresses
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4.2 Large scale structural snalysis of CT scans

Another engineering application of current interest is the computation of stress concentrations
around pores in CT-scanned die casts [72] — for which it is generally possible to employ the
FCM as originally developed for CT-scan based simulations in bio-mechanics in a straightfor-
ward manner [12], [73, 35]. However, straightforward applications like this are not sufficient to
compute locally detailed stress concentrations at pores in these industrial parts. These pores
are inherent to the process of die casting, and they are of industrial interest because they can
reduce the life time of such parts. A detailed analysis of such situations, however, is possible
using the developed hierarchic refinement methods of hp-type described in section 3.4. For
example, let us consider a gearbox housing and its CT-scan, which is depicted in fig. 26a.
Figure 26b provides the corresponding Houndsfield units in the cut in plane C and points out
the pores in the lower corners of the artifact.

CT-number
2.021e+03 1275 16491 Ze+d  2.3946e+04
| |

cut-plane '
=

(a) geometry and plane C (b) Houndsfield units at plane C along with line
A-B

Figure 26: CT-scan of a gearbox housing with pores resulting from a die cast process

The computational analysis is carried out by submerging the gearbox into 34,230 finite cells,
as depicted in fig. 27a. They are of order p = 4 and deliver approx. 1.66 million degrees of
freedom. Homogeneous Dirichlet type boundary conditions are then applied at the dark green
surfaces, and a displacement u, is applied on the red cylindrical surfaces as given in fig. 27b.

Figure 28 depicts the resulting maximum displacements and the Von Mises stress distribution
of the computation. Note how the stresses concentrate around the regions where bolts are
placed in the application. This, unfortunately, coincides with the location of the pores where
a further increase of the stresses is expected.

The discretization is then refined with 4 multi-level hp-refinements towards these pores. This
increases the number of degrees of freedom to 1.8 million. The comparison of the results
is given in fig. 29. The stress concentrations are clearly under-resolved on the coarse mesh.
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(a) Finite Cell discretization (b) boundary conditions

Figure 27: Finite Cell discretization and boundary conditions
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Figure 28: Finite Cell global results for dislpacement magnitudes and Von Mises stresses

Only the local refinements provide an insight into the local stresses. The underresolution is
even more apparent in fig. 29¢, which depicts the Von Mises stresses along the line A-B given
in fig. 26b. At the boundary of a cavity, these concentrations reach approximately twice the
value of the far field — a result well in accordance with engineering intuition. The possibility
to compute stress concentrations locally now opens the door to compute fracture or fatigue
in examples of this scale.

In the more detailed analysis, the number of degrees of freedom increases only marginally
— which is due to the locality of the more detailed discretization resolving the local stress
concentrations.

However, the recent generation of CT scans is able to deliver more detailed (yet much larger)
voxel models. Their direct use in mechanical analysis will result in systems with tens of mil-
lions of degrees of freedoms, requiring memory capabilities beyond the available single-node
version of the code if direct solvers are employed. In these situations, iterative solvers are a
valid option. These, however, require proper preconditioning to work efficiently. Precondition-
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Figure 29: Finite Cell discretization and local Von Mises stresses in the plane C and along the line
A-B

ers for system matrices generated by large-scale FCM analysis combined with a parallelization
of the multi-level hp version of the Finite Cell Method are published in [74, 75].

4.3 Biomedical applications

In the previous section, it was demonstrated by means of examples that the Finite Cell Method
can be favorably applied to voxel-based computations. Voxel-based computations are also of
use in medical applications, where CT scans are frequently consulted to diagnose defects
in bones. However, beyond a geometric assessment of the situation, they may also form a
starting point in computational mechanobiology to assess the spatial distribution of stresses
in bones.

In this field, the Finite Cell Method delivers accurate results for proximal femurs [76]. Several
steps were necessary in this achievement, including a) the use of a material model to map
Houndsfield units obtained by CT scans to local Youngs’ Moduli, and b) to demonstrate that
this material model leads to locally correct strains. Concurrently, an efficient pre-integration
technique was developed [77] which is able to compute stiffness matrixes and local updates
very rapidly. These techniques allow for an interactive analysis of bones by computational
steering, as presented in [78|. Therein, it is demonstrated how principle stress lines in a bone
can be computed and visualized in quasi real time. This can be used to visualize the effects
of a total hip replacement on the stress field in a femur. In this type of orthopedic operation,
the head of the femur is removed and replaced by an implant which is inserted into the shaft
of the femur. The geometric aspect of implants in bones was already discussed in section 3.1,
where it was pointed out how multiple geometric models (here the voxel model for the bone
and the STL model for the implant) may naturally be taken into account within one finite cell
computation (see also fig. 10). However, in order to obtain results which are locally accurate
one must also take the following discretizational aspects into account.
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Firstly, the Young’s modulus of an implant is much higher than that of bone. Therefore,
implants inserted into bone are to be seen as material interfaces. In these cases, the Finite
Cell Method delivers inaccurate results if only the techniques development in |76, 77, 78]
are applied. They must be enhanced with any of the options described in section 3.4.1 to
deliver locally accurate results. Given the geometric complexity of these internal interfaces, the
method of choice is trim-and-glue combined with a simple penalty method. It is demonstrated
in [79] that a reasonable choice of the penalty parameter delivers very accurate results for
material interface problems.

Secondly, the geometrically complex nature of the material interfaces leads to high local
gradients of the strains in the vicinity of the material interfaces. These may be resolved by
the any of the local enrichments discussed in section 3.4.2.
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The following publication serves to demonstrate that a combination of the techniques discussed
above leads to very efficient discretizations for implants — with unprecedented accuracy.
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Abstract

This work presents a numerical discretization technique for solving three-dimensional material in-
terface problems involving complex geometry without conforming mesh generation. The finite cell
method (FCM), which is a high-order fictitious domain approach, is used for the numerical approx-
imation of the solution without a boundary-conforming mesh. Weak discontinuities at material
interfaces are resolved by using separate FCM meshes for each material sub-domain, and weakly
enforcing the interface conditions between the different meshes. Additionally, a recently developed
hierarchical hp-refinement scheme is employed to locally refine the FCM meshes in order to re-
solve singularities and local solution features at the interfaces. Thereby, higher convergence rates
are achievable for non-smooth problems. A series of numerical experiments with two- and three-
dimensional benchmark problems is presented, showing that the proposed hp-refinement scheme in
conjunction with the weak enforcement of the interface conditions leads to a significant improve-
ment of the convergence rates, even in the presence of singularities. Finally, the proposed technique
is applied to simulate a vertebra-implant model. The application showcases the method’s poten-
tial as an accurate simulation tool for biomechanical problems involving complex geometry, and it
demonstrates its flexibility in dealing with different types of geometric description.
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1 Introduction

In engineering problems, an accurate resolution of domains with discontinuous material properties
is often required to ensure a reliable design. Possible applications include the simulation of multi-
phase materials, composite structures and biomechanical problems, where different tissues—often
in combination with implants—are considered.

Problems of linear elasticity show a reduced regularity at the material interfaces, where the
displacement field is in general only C°-continuous. This fits perfectly to the classical finite element
method (FEM) using a C°-continuous approximation space [1, 2], as long as the material interface
is matched exactly by edges (2D) or faces (3D) of the finite element mesh. However, this requires
that the mesh generator is able to follow the material interfaces exactly, which can be cumbersome
in cases of complex geometry. Moreover, high curvatures and kinks along the interfaces induce high
solution gradients and singularities. This requires local mesh refinement for an accurate solution,
which makes the task of mesh generation even more challenging.

Embedded or fictitious domain methods have emerged as an alternative to the boundary con-
forming FEM to avoid complex mesh generation. One example of this class of methods is the finite
cell method (FCM) introduced in [3], which combines the embedded domain concept with high-
order basis functions. The main idea is to extend the originally complex geometry by a fictitious
domain to a much simpler shape, which can be easily meshed using a Cartesian grid. The use
of high-order basis functions, which smoothly extend into the fictitious domain, allows the FCM
to achieve exponential rates of convergence for smooth problems. The FCM has been investigated
and successfully applied in various problems, including three-dimensional solid mechanics [4], linear
thermoelasticity [5], geometrical non-linearities [6], implicit and explicit elastodynamics [7, 8], and
biomechanics [9, 10]. An open-source MATLAB® toolbox for the FCM has been presented in [11]
offering an easy entry point into the topic.

Unfortunately, the standard FCM loses some of its attractive approximation properties for do-
mains with multiple materials [12, 13]. There are two main challenges facing the FCM for embedded
interface problems:

(1) The approximate solution within a finite cell is a polynomial (C°°-continuous) whereas the
exact solution is only C%-continuous. The inability of the smooth polynomials to represent
the discontinuity across the material interface yields an oscillatory solution and a reduction
of the convergence rate.

(2) The use of a uniform Cartesian grid is not suitable for problems with locally high gradients
or singularities, which are expected for material interfaces with complex geometry, as such
problems require local mesh refinement.

To handle the first challenge, the numerical approximation needs to be able to reproduce a
CP-continuous solution. Several finite element approaches emerged that are suitable to handle
weak discontinuities, without generating an interface-conforming mesh. Two major approaches are
the partition of unity enrichment and the weak coupling of non-matching discretizations.

Partition of unity methods (PUM) [14], such as the generalized and extended finite element meth-
ods (GFEM, XFEM) [15, 16] enhance the numerical solution by enriching the basis with specially
constructed functions to approximate the weakly discontinuous solutions [17, 18]. Recent devel-
opments in XFEM and GFEM for material interface problems include the use of adaptive mesh
refinement in conjunction with the level-set method [19, 20], and the interface-enriched GFEM [21-
25]. The local enrichment approach was combined with the FCM as presented by Joulaian and
Diister for two-dimensional problems [13]. This combination leads to a significant improvement in
the convergence rates of the FCM. However, the efficient and robust application of PUM enrich-
ments to complex three-dimensional geometries remains a challenge.

The weak coupling approach allows for non-matching discretizations of the sub-domains, and
it enforces the interface conditions in a weak sense. To that end, it is possible to apply the
penalty method, Lagrange multipliers or Nitsche’s method [26]. Nitsche’s method is commonly
used to weakly enforce interface conditions, as presented by Hansbo and Hansbo [27], and further
developed by Dolbow and Harari [28-31]. The weak coupling approach has also been applied in
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the context of the FCM, using Nitsche’s method [32, 33], or based on a parameter-free coupling
method [34]. There, it has been shown that a weak enforcement of the interface conditions enables
the FCM to recovers its favorable convergence properties for piecewise smooth problems.

To address the second challenge, the finite cell mesh needs to be locally refined. Alternative
versions of FCM make use of unstructured meshes, and apply a local mesh refinement to resolve
local solution features [35-37]. However, these mesh-based refinement approaches sacrifice the
uniform grid structure of FCM, which is particularly useful for image-based geometries that are
common in biomechanical applications.

An attractive alternative is the application of the hp-version of the FEM for the non-uniform
refinement of the underlying FCM meshes. The classical hp-FEM [38-40] is a powerful method
which uses a combination of h- and p-refinement to efficiently approximate non-smooth solutions.
The main idea is to sub-divide the elements close to the singularities in a recursive manner, in order
to achieve a geometrical progression of element size. The resulting mesh has low order elements
of small size close to the singularities, and high order elements of larger size further away from
the singularities to approximate the smooth solution. While numerically efficient, hp-FEM for
two- and three-dimensional problems requires to constrain the hanging nodes, which demands for
a sophisticated discretization kernel [41, 42].

A simpler variant, which we employ in this work, is the recently introduced multi-level hp-version
of the FEM [43, 44]. Instead of the classical refine-by-replacement concept, where an element is
replaced by a set of smaller elements, the multi-level hp-FEM superposes the refined element with a
hierarchy of overlay meshes. Using a simple formulation, in which homogeneous Dirichlet boundary
conditions are enforced on the overlay meshes, the multi-level Ap-FEM avoids the need to constrain
hanging nodes. Thereby, it offers a simpler implementation for arbitrary hanging nodes, making
it readily applicable to three-dimensional problems [45]. The multi-level hp-FEM has also been
applied to cohesive fracture modeling [46], demonstrating its efficiency for propagating phenomena.

In this contribution, we apply the FCM in conjunction a weak enforcement of interface conditions
and the multi-level hp-refinement scheme to solve material interface problems. This combination
of these numerical techniques enables us to handle complex three-dimensional geometries, without
the need for mesh generation. We demonstrate that the multi-level hp-scheme is very well-suited
for the resolution of geometry induced stress concentrations, and presents a natural compliment to
the FCM’s strategy to avoid mesh generation. In particular, we demonstrate in this manuscript
the use of the proposed refinement scheme in the context of biomechanical simulations, where
a combination of heterogeneous tissue material properties and sharp material interfaces between
tissue and osteosynthesis implants often requires a robust and flexible modeling approach to ensure
reliable and accurate analysis results.

This paper is organized as follows: Section 2 offers a brief review of the finite cell method for em-
bedded interface problems. In Section 3, we outline the multi-level hp-refinement scheme, and elab-
orate on the refinement strategy applied for material interface problems. In Section 4, we present
a series of numerical experiments of embedded interface problems with geometry-induced stress
concentrations. The results demonstrate the improved approximation accuracy of coupled FCM
with multi-level hp-refinement. Finally, an application in biomechanics is presented in Section 5,
where a thoracic vertebra with pedicle screws is simulated. The paper closes with a concluding
outlook in Section 6.

2 The finite cell method for embedded interface problems

In this section, we present a brief review of the finite cell method for material interface problems,
outlining the main concept of the method—including a coupling formulation that allows to weakly
impose the interface conditions among sub-domains.

2.1 Model problem

We consider an open and bounded domain, denoted as the physical domain Qpp, C R% d e {2,3},
with the boundary d0Qpny =I'p UT'y, and T'p NT'x = 0 [32]. The physical domain Qppy is subdi-
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vided into n disjoint, open, and bounded subsets Q(*)
n . .
Qpry = [ J P, QDN Q) =9 for i # j. (1)
k=1

The sub-domains Q*) are separated by internal boundaries I';;, denoting the material interfaces
between Q) and QU). The model is governed by the partial differential equations of linear elasto-
statics, given in the strong form of the boundary value problem by:

V.o 1 pd =g vee QW i=1,....n (2a)
o =CO : g(u) veeQ®, i=1,..n (2b)
e(ul) = % (vl + vu®") Ve e QW i=1,...n, (20)

where o is the stress tensor, b is the body load, C@ is the elastic material tensor, € is the
strain tensor, and u( is the displacement vector of the sub-domain Q). The system is subject to
the boundary conditions:

u® = 4@ veell), i=1,...n (3a)
veeTl, i=1,...n, (3b)
where @4 are the prescribed displacements on the Dirichlet boundary, i(i) are the prescribed

tractions on the Neumann boundary, and n(® denotes the outward facing normal vector on the
sub-domain’s boundary dQ() (see Figure 1), and

) =1, 0000 (4a)
) =Ty noat. (4b)

Additionally, the following interface conditions apply along I';;:

ul) = 40 Vo € Iy, (5a)
PN C) RN () ¢ ) I €) Vo € Ty (5b)

The first interface condition ensures the kinematic compatibility between the sub-domains, whereas
the second condition prescribes the equilibrium of normal traction across the interfaces.

2.2 Aspects of the finite cell method

The finite cell method is motivated by the superior convergence properties achievable by the
p-version of FEM. The geometry-conforming p-FEM requires special attention to mesh genera-
tion, which can become prohibitive for problems involving complex geometries. The FCM avoids
the need for complex mesh generation procedures by combining the p-FEM with an embedded
domain approach.

The principal idea of the FCM is to augment the physical domain Qpy, by a fictitious domain
Qfiet to form a simple-shaped domain () = Qphy U Qe In order to recover the original problem,
the influence of the fictitious domain is attenuated by penalization of the material parameters in
the fictitious domain:

Chet =€-Cppy, €ex1 (6)

The modified problem is solved over the extended domain, which can be easily meshed with a
Cartesian grid of finite cells. The FCM makes use of high-order basis functions which smoothly
extend over the embedding domain to approximate the physical solution field. Typical choices
of basis functions are the integrated Legendre polynomials, commonly used in the p-FEM [3],

Journal publication: https://doi.org/10.1002/cnm.2951



https://doi.org/10.1002/cnm.2951 

4.3. Biomedical applications

191

Fi¥dy |1 #

AS
v
AN

Figure 1: Coupling of FCM meshes, following [32].

and B-Splines [6]. For problems with smooth solutions, the FCM achieves exponential rates of
convergence, owing to the underlying high-order basis functions, without the need for a boundary-
conforming mesh [3, 4, 6].

The FCM has two salient differences to the conventional finite element method. Firstly, the
FCM needs a specialized approach for the numerical integration of the weak form. Due to the
discontinuity introduced by the penalization of the fictitious domain, conventional Gauss-Legendre
quadrature performs poorly for FCM. Several approaches have been developed to ensure an ac-
curate and efficient evaluation of the discontinuous domain integrals. One possibility is to use
a fine grid of integration sub-cells to partition each finite cell, with the Gauss-Legendre quadra-
ture applied for each sub-cell [3, 47]. An alternative approach applies recursive sub-division of
the finite cells cut by the boundary, leading to a quadtree of integration sub-cells (octree for the
three-dimensional case) [6]. The quadtree approach is robust and easy to implement, but generates
a high number of quadrature points. More sophisticated integration schemes have been devel-
oped to efficiently evaluate the discontinuous domain integrals for the FCM. These schemes include
the blended partitioning using the smart-octree [48, 49], moment-fitting [50], adaptively weighted
quadratures [51, 52], and quadratic re-parametrization for the tetrahedral finite cell method. [33]

The other principal difference to conventional FEM is the enforcement of Dirichlet boundary
conditions. As the boundary is no longer directly resolved by the finite elements, the Dirichlet
boundary conditions cannot be enforced in the classical manner by manipulating the corresponding
entries of the stiffness matrix and the load vector [53]. The are several possibilities to impose
embedded Dirichlet boundary conditions in the FCM—including the penalty method, and Nitsche’s
method [5, 54, 34].

2.3 Weak enforcement of interface conditions

For material interface problems, the standard FCM—where a single mesh is used to discretize
the entire extended domain—requires additional means to maintain its attractive approximation
properties. The solution exhibits a weak discontinuity across the interface (a kink in the displace-
ment field), and this discontinuity cannot be well represented by the high-order polynomial basis
functions used in the FCM. This leads to an oscillatory solution in the cells cut by the material
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interface, and the convergence is reduced to a slow algebraic rate.
To overcome this challenge, we use a separate FCM mesh for each extended sub-domain:

a0 = ual) (7)

and couple the FCM meshes to weakly impose the interface conditions, as presented in [32]. Fig-
ure 1 illustrates this approach for two sub-domains. The use of a separate set of basis functions for
each sub-domain allows the discretization to approximate the strain fields with different gradients
on each sub-domain. Additionally, the coupling of the FCM meshes recovers the weak discontinuity
(jump in the strain field). Thereby, FCM is able to recover its exponential convergence rates for
piecewise-smooth problems [32, 34]. However, this multiple-mesh approach requires an additional
discretization of the material interfaces I';; for the integration of the coupling terms along the inter-
faces. Fortunately, the discretization of the interface for integration is considerably less demanding
than FEM mesh-generation for multiple sub-domains.

In the present work, we use a pure penalty approach for the coupling of FCM meshes, and
for the weak enforcement of Dirichlet boundary conditions. The penalty method is variationally
inconsistent, and the accuracy depends on the choice of the penalty parameters. However, it is
easy to implement—and it delivers sufficiently accurate solutions (for engineering purposes), as
demonstrated by the numerical experiments presented in Section 4.

Finally, the weak form of the coupled FCM problem reads:

Find u® € S(Q®), i=1,...,n such that:
B(u,v) = F(v) vol) e QW) (8)

with:

B(u,v) Z/s(v V) CD : e(u?)dQ

(3

Q)
+251J/ [[u 7,]dF+Zﬂ / ”) u()d]_" (9&)
Z<_] Fm
Fo) =% / o 0 bO(z)d0 + 3 / L0 30 4
L g Lo
+3 4 [ o0-atar (90)
ey
with the jump operator _
[ulij = u® —ul? (10)
and o
; 1 Vo € QU
(@) =1 g (11)
<1 Voey.

The additional integral along I';; adds a numerical penalty to the displacement jump across the
interface. With a suitable choice of the penalty parameter 3;;, the kinematic compatibility condition
is weakly enforced.
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3 Multi-level hp-refinement

For problems with local solution characteristics such as stress concentration and singularities, hp-
refinement is a powerful method of discretization, as it is more efficient than uniform h- or p-
refinement [38-40]. Smaller elements with low polynomial degree close to the singularities are able
to capture the local solution and confine the discretization error, whereas large elements with high
polynomial degree are best suited to describe the smooth solution further away from singularities.
However, the Cartesian grid nature of the FCM discretization does not easily incorporate local
mesh refinement without having to introduce hanging nodes. In this work, we apply the multi-
level hp-refinement scheme to locally refine FCM grids, without the difficulties of constraining
hanging nodes. Thereby, the method is able to achieve higher convergence rates, while retaining
the advantages of using Cartesian finite cell grids. This section provides a brief review of the multi-
level hp-FEM and elaborates on the refinement strategy used for material-interface problems.

3.1 Basic refinement concept

The principal idea of the multi-level hp-FEM is to enhance the local approximation of the solution
through a local superposition of coarse base elements in the refinement zones with finer overlay
elements. The final approximation u is the sum of the base mesh solution u; and the fine-scale
overlay solution wu,. This refine-by-superposition approach is related to the pioneering work of
Mote [55]. This concept was applied in the context of hp-domain decomposition, to overlay coarse
p-FEM meshes with fine linear h-elements [56], and in the hierarchic hp-d scheme, which adds
several layers of linear meshes [57].

The key feature of the multi-level hp-scheme is the use of high-order hierarchic overlay meshes.
The support of the high-order basis functions is chosen on the finer overlay meshes—instead of the
base discretization, as illustrated in Figure 2. This corresponds to an h-refinement of the high-order
basis functions, as the size of their support is reduced. This limited support—combined with an
adequate geometric grading—has the desirable effect of confining the (global) pollution error in the
smallest elements around the singularities. Consequently, the multi-level Ap-FEM leads to supe-
rior convergence rates for problems with singularities and sharp features. Numerical experiments
demonstrate that the multi-level hp-FEM converges exponentially, for problems including vertex
and edge singularities in two and three dimensions [43, 45, 44].

The multi-level hp-FEM avoids the implementational burden of constraining hanging nodes. A
simple implementation is possible, wherein two requirements are satisfied to ensure convergence:
compatibility of the discretization, and linear independence of the basis functions. The overlay
meshes, generated by recursive sub-divisions of the base mesh, are geometrically incompatible.
To guarantee compatibility of the discretization, homogeneous Dirichlet boundary conditions are
prescribed on the boundary of each layer of overlay meshes. This maintains a C%-continuous approx-
imation by construction. To ensure linear independence of the basis functions, the high-order shape
functions on overlay elements are excluded from their respective parent elements, as demonstrated
in Figure 2. The fulfillment of these requirements leads to a simple yet powerful discretization tech-
nique, that exploits the benefits of the hp-FEM without the burden of constraining hanging nodes.
For an in-depth discussion of the multi-level Ap-FEM for two- and three-dimensional problems,
with elaboration of their implementational aspects, the interested reader is referred to [43, 45, 44]

3.2 Refinement strategy

In general, stress concentration and sharp solution features can be caused either by sudden changes
in the boundary conditions, the applied body load, or sharp geometric features—such as re-entrant
corners. In this work, we mainly consider stress concentrations induced by sharp geometric features
of the material interfaces. To resolve such features, an a priori refinement scheme is applied. Here,
the design of the discretization is guided by existing knowledge of the solution features, based on
engineering experience.
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Figure 2: Conceptual idea of the multi-level Ap-method [45].

3.2.1 h-refinement

Typically, hp-mesh design includes a geometric progression of elements towards the singularities,
with a linear increase in the polynomial degree of the basis functions. In the framework of the
multi-level hp-FEM, the high-order overlay meshes are generated by recursive bisection of the base
mesh. To geometrically grade the mesh towards a point Py = (ps, py, p-), for each leaf element K,
the point is mapped into the index space of the element Qg = [—1, l]d as follows:

P¢, = Q' (Pa), (12)

where P¢ = (pe,py,pc) are the local coordinates of P in the index space of the leaf-element K,
and Q (x) denotes the geometric mapping between the global and local spaces. The element is
sub-divided if the mapped point lies within an extended index space 2, which is slightly larger
than Qp R

P: €Qn (13)

Thereby, not only the elements containing P, are refined, but also the neighboring elements.
By carrying out several recursive refinement steps, this approach produces a geometrically graded
mesh—with decreasing element size towards the point of interest. For Cartesian grid meshes, which
are used in FCM, this inverse mapping carries a trivial computational cost.
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3.2.2 p-distribution

The distribution of the polynomial degree p across the layers determines the convergence properties
of the hp-discretization. The optimum p-distribution is not known a priori.

In one case, the high-order basis functions can be kept on the base mesh, and only linear basis
functions are used on the overlay meshes (Figure 3a). This case corresponds to the hierarchical hp-d
scheme [57], as a special case of the multi-level hp-scheme. The linear overlay meshes introduce
a moderate number of additional unknowns. However, the large support of the high-order basis
functions causes the global error to propagate through the domain, yielding a minimal improvement
in the convergence rates [43].

On the other end of the spectrum, the high-order basis functions are all shifted to the high-
est (finest) overlay mesh (Figure 3b). Obviously, this uniform multi-level hp-approach introduces
significantly more unknowns. However, with the limited support of the high-order functions, the
discretization error is confined to the smallest elements, which yields superior convergence proper-
ties.

E=34>p=1 k=3&p=4 k=34>p=1

k:zélpzl k:2élp:4 k:ZéLPZQ

k_1~~®-p:4 k=1~®p:3

k(]%)% @ p=4 k=0 p=4

) Linear overlay, hp-d-approach ) Uniform multi-level hp-approach (c) Non-uniform multi-level hp-
approach

Figure 3: Comparison of different approaches for hierarchical, high-order refinement [45].

In this work, we adopt the uniform multi-level hp refinement approach, which is equivalent to
uniform p-elevation on a geometrically graded mesh. This scheme has been shown to be robust and
efficient, although it might not be optimal. For boundary conforming problems, an a posteriori
error estimator for multi-level hAp-FEM coupled with a smoothness indicator was developed [58],
where automatically generated multi-level hp-FEM discretizations with non-uniform p-distributions
further improved the efficiency.

4 Numerical experiments

In this section, we examine a series of benchmarks involving material interfaces where the geometry
induces high solution gradients and singularities. This includes the two-dimensional benchmark
of a plate with an elliptical inclusion, where we perform a systematic study of the influence of
the numerical integration accuracy on the quality of the approximation. The second benchmark
considers a circular plate with a sharp inclusion, where the kink in the material interface introduces
a vertex singularity. In three dimensions, we examine the problem of an embedded ellipsoidal
inclusion, as well as a singular benchmark of a cylinder with an embedded cubical inclusion, which
causes a vertex-edge singularity. In all examples, we examine the p-convergence and the numerical
approximation of the first derivatives of the solution.

4.1 Plate with an elliptical inclusion
4.1.1 Problem setup

The first material interface benchmark we study is a plane stress problem of a plate QW with
an embedded elliptical inclusion Q) which has a large aspect ratio, ry/rz = 0.15, and a high

10
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stiffness ratio to the plate, E()/E®M = 10 (see Figure 4a). The displacement field within the
plate is distorted by the curved inclusion, leading to high stress concentration in the plate. The
stress concentration is amplified by the high curvature of the interface at the major axis of the
ellipse (points A and C) as shown in Figures 4c and 4b. The displacement field within the elliptic
inclusion remains smooth. The exact solution for the displacements is piecewise-analytic, i.e. it
can be exactly represented by a Taylor expansion in each sub-domain. An overkill solution was
obtained for reference using a conforming p-FEM mesh which has 26 elements with a uniform
polynomial degree p = 30 and 47,102 degrees of freedom. In the conforming mesh, the elements at
the interface are blended on the ellipse’s exact geometry using a quasi-regional mapping [59]. For
the setup shown here, the strain energy obtained using the overkill discretization is

Uex = 9.10131116644 x 1072 (14)
L
d
—{
d —>|
QM |
o Q2 ™
Ll - N
H A g C D ]
|
o —|
—{
@ >
@ N O N O N O N O B O .
E(l) —9210-103 E(g) —10- E(l) 0006400 atscor | 60cor 944004 000 175.00 35000
v=0.3 [t] = 100 L=2
rez = V0.125 ry =0.15 -1y
(a) Benchmark setup (b) Reference u, displacement (c) Reference o4, stress

Figure 4: Plate with elliptical inclusion

4.1.2 Discretization

The problem was solved numerically based on the FCM and a weak enforcement of the interface
conditions. Two separate FCM meshes were used to discretize the plate and the inclusion. A base
discretization matching the outer boundary of the plate with 4 x 4 finite cells was used. The same
parametrization was used for the inclusion’s mesh, excluding cells that do not intersect the ellipse’s
domain, leaving 2 x 2 finite cells—as shown in Figure 5. The ellipse’s dimensions and the mesh
parameters are setup such that the mesh does not exactly match points A or C for any number
of recursive bisection steps. To adequately describe the local solution in the plate, the mesh was
locally refined using the uniform multi-level hp-refinement scheme. The mesh was refined a priori,
with a geometrically driven grading towards points A and C, as described in Section 3.2. The FCM
mesh of the inclusion was left without local refinement, as the solution within the inclusion Q)
is smooth. To avoid ill-conditioning of the stiffness matrices, the fictitious domain in both meshes
was assigned a low stiffness of FEgt = EM .10~ 14 = 0.3. Since the exterior boundary of the
plate’s mesh conforms to the true geometry, the Dirichlet and Neumann boundary conditions were
enforced in a conventional manner.

For the numerical integration of the finite cells, two possibilities were considered. The first
approach employs a recursive sub-division algorithm for integration sub-cells that are intersected
by the geometric boundary, resulting in a quadtree—as shown in [6], for example. The second
approach considered is the blended partitioning following [48], where the cut cells are automatically
partitioned into boundary-conforming quadrilaterals and triangles, which are blended on the exact

11
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(a) Quadtree partitioning, m = 4, following [57] (b) Blended partitioning, following [48]

Figure 5: Domain discretization for the plate and the inclusion, refinement depth k = 4. The finite
cells’ edges are drawn with thick black lines, whereas the integration meshes are drawn
with thin blue lines.

geometry. The integration meshes for both approaches are displayed in Figure 5.

The penalty method was used to weakly couple the two meshes at the material interface as de-
scribed in Section 2.3. The penalty parameter 813 = 107 was chosen empirically. For the numerical
integration of the interface coupling terms, a linear discretization of the embedded interface was
generated using a marching squares algorithm[60]. The marching squares implementation uses the
implicit geometric description of the ellipse and a grid of ny x n, points per sub-cell (leaf ele-
ment) of the plate’s mesh, yielding a total of neg linear segments, as can be seen in Figure 6a.
An advantage of this approach is that the resulting segments conform to the finite cell edges, re-
sulting in a more accurate evaluation of the interface integral, which the terms of which are only
CP-continuous. Additionally, the segments have the same size relative to the leaf element in which
they lie. Consequently, the adaptive resolution of the FCM mesh carries over to the discretization
of the interface.

An extension to this approach generates high-order segments using Lagrange interpolation poly-
nomials with degree pgeg, by adding (pseg — 1) interpolation nodes within the linear segments. The
implicit geometry description was used in conjunction with a line-search method to correctly place
the additional interpolation points on the interface. This approach finally yields a high-order bound-
ary discretization, as shown in Figure 6b (note that the figure shows only the extreme nodes). For

12
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a more detailed description of this high-order interface recovery algorithm, the reader is referred
to [61]. This convenient approach for embedded boundary parametrization highlights another ad-
vantage of using Cartesian grids for the finite cell meshes and the same mesh parameters for both
domains - in contrast to using unstructured FCM meshes, where the generation of cell-conforming
boundary segments would be more challenging.

(b) Quadratic segments (curved), pseg = 2

Figure 6: Discretization of the elliptical interface, ng = 4, ngeg = 72

4.1.3 Numerical solution

Figure 7 shows the numerical approximation of the axial stresses o,, obtained using the FCM
with weak coupling and multi-level hp-refinement. The plots shown here are the superposition of
the solutions from the physical part of each domain, whereas the solution in the fictitious domain
is omitted. Without applying any local refinement (Figure 7a), the FCM with weak coupling is
able to reproduce the overall solution characteristics. However, the approximation for the stresses
exhibits severe oscillations. In particular, the four finite cells in the plate’s mesh that are intersected
by the interface are affected by the high curvature of the concave geometry at points A and C,
leading to stress concentration. This local solution characteristic cannot be represented well by
the smooth basis functions of the coarse mesh, which leads to an oscillatory approximation of the
stresses. Figure 7b depicts the numerical approximation obtained with the multi-level hp-scheme,
using two levels of overlay meshes with uniform p-distribution. Applying local refinement to the
FCM mesh of the plate improves the numerical approximation significantly. The solution benefits
from the local support of the high-order basis functions with C%-continuity, and the oscillations in
the stresses are confined to the cells on the finest overlay mesh. Increasing the refinement depth
with k& = 4, the quality of the approximation improves further.

Figure 8 examines the stresses along the cutting line B-D (see Figure 4a) in closer detail. Since
the cutting line is orthogonal to the ellipse’s boundary, the exact solution for o,, is continuous
along the cutting line. Hence, jumps in the numerical approximation of the stresses, either at the
interface or at element boundaries, correspond to the approximation error directly. The numerical
approximation obtained without local refinement exhibits severe oscillations and a large jump at
the interface. Due to the coupling condition, the oscillations extend into both domains. Due
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Figure 7: Plate with elliptical inclusion: numerical approximation of the axial stresses o,
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Figure 8: Plate with elliptical inclusion: numerical approximation of the axial stresses ., along
cutting line B-D

to the oscillations, the maximum stresses are overestimated and the local stress distribution is
misrepresented. Applying multi-level hp-refinement to the plate’s FCM mesh enhances the quality
of the approximation appreciably, as the oscillations are mainly restricted to the finite cells on the
finest overlay mesh. The zoomed plot at the interface reveals the fine-scale features of the solution

in the plate. The local solution characteristics are not fully resolved by the refined mesh with k = 4,
which suggests that this problem would benefit from further local refinement.

4.1.4 Influence of domain integral accuracy

To assess the accuracy of the numerical integration for the domain integral, Figure 9 compares the
error in o, along cutting line B-D, based on multi-level hp-refinement of the plate’s mesh with
k = 4, polynomial degree p = 6, and different domain partitioning schemes. The error here is
calculated with respect to the reference solution generated using the overkill p-FEM discretization.
The blended partitioning approach gives a highly accurate evaluation of the domain integrals, as
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it uses the exact geometric description of the interface. Using the quadtree partitioning scheme
with a depth m = 2 leads to high approximation errors. The error is highest in the finite cell
from inclusion’s mesh, which is attributed to the coarser spatial resolution of the integration, as
demonstrated by Figure ba. The high error propagates through the mesh, carrying over to finite
cells which are not cut by the material interface, and to the other mesh through the coupling
condition. Increasing the depth m of the quadtree reduces the approximation error appreciably.
Using m = p+ 1 = 7, the achieved accuracy is comparable to that of the blended partitioning
approach.

104 F T
10° | 0@
o102
. FTTT nx\\\ LT )
§ 101 ? N /"
o B \\//
o1 i E
e 3 ]
5 1071 3
0 & - ]
2 1077 1 N E
% s I ——blended partitioning ]
~ 107 - -—--quadtree depth m = 2 E
10—4 , """""" quadtree depth m =5 é
- ----quadtree depth m =7 E
1075 | ! ! ! ! ! ! ! ! ! | ! ! ! ! E
1 105 11 115 1.2 125 1.3 135 14 145 15 155 16 165 1.7 1.75

xz-coordinate

Figure 9: Error in o,, along cutting line B-D with different domain integration schemes, p = 6,
k=4

4.1.5 Influence of interface integral accuracy

To evaluate the effect of the integration accuracy of the interface integral, Figure 10 plots the
local distribution of the approximation error for the von-Mises stresses o¢q along the interface in
the plate. Using a grid dimension of ng = 4 for the marching squares implementation, ngs = 72
linear segments are generated (see Figure 6a). However, this linear discretization of the curved
interface introduces artificial stress singularities at the interpolation nodes between the segments,
because only GO-continuity is possible—where the segments touch at the extreme nodes but have
discontinuous normals. At ellipse parameter ¢t = 0 (point C), the artificial singularity takes over the
approximation error, causing the entire solution to diverge. To reduce the error at the interface,
h-refinement of the interface’s discretization is carried out by refining the grid for the marching
squares. Figure 10a shows the resulting error distribution with ny = {4,8,16,32,64}, which yields
Nseg = {72,136, 280,564,1120}. The h-refinement of the segments delivers a uniform decrease in
the approximation error, with a maximum error in oeq of approximately 3% using 1120 segments.

Alternatively, p-refinement of the interface segments using Lagrange polynomials, as described
earlier, leads to a faster convergence as demonstrated by Figure 10b. Using 72 quadratic segments
already decreases the error significantly, as the high-order discretization approximates the tangents
at the interpolation nodes with better accuracy, as shown in Figure 6b. Increasing psee further from
3 to 4 in this example, gives a marginal improvement in accuracy, indicating that the numerical
integral at the interface converges. The remaining approximation error is attributed to the FCM
discretization with p = 8, and k¥ = 6. The two refinement schemes for the interface discretization
converge to the same local error distribution.
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Figure 10: Error in o, along the interface using different interface discretizations, p =8, k =4

4.1.6 Convergence study

A uniform p-refinement study was carried out to assess the overall convergence behavior of multi-
level hp-refinement in conjunction with weak coupling. Figure 11a shows the relative error in the
energy norm for different refinement depths

el = M -100%, (15)
Uex

where Upyy denotes the numerically approximated strain energy, and Uex denotes the reference
strain energy. For this study, the blended approach is used for the domain integration, in conjunc-
tion with a high-order parametrization of the interface. As the exact solution is piecewise-analytic,
FCM with a weak enforcement of the interface conditions converges exponentially under uniform
p-elevation, even without applying any local refinement. For a more detailed analysis of the con-
vergence rates, Figure 11b shows the convergence plot in a log—\[ scaling. Here, the linear plots
characterize exponential convergence in the form [62]:

lells < Cexp (13°)  with 0 = % (16)
where C is a positive constant, and 7 is a negative constant describing the convergence rate.
Increasing the refinement depth with the multi-level hAp-scheme for this example leads to a steeper
convergence rate -, allowing for a higher gain in accuracy. To achieve an engineering accuracy of
1% error, the discretization with k = 4 needs approximately five times less the degrees of freedom
than the non-refined case.

4.2 Bi-material inclusion corner

In the next study, we consider a singular material-interface benchmark problem adapted from [63].
The two-dimensional temperature problem is governed by the Poisson equation:

kD V20 = 1 Ve e QW (17)
¢=0 Va € T'p, (18)
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Figure 11: Plate with elliptical inclusion: p-convergence for multi-level hAp-refinement

where ¢! denotes the temperature, £ the thermal diffusivity, Q® and I'p are defined as shown
in Figure 12a. Here, the material interface I';5 has a sharp corner, inducing a vertex singularity.
Moreover, the intersection of the material interface with the Dirichlet boundary I'p for the ap-
plied boundary condition introduces two additional weak singularities, where the solution exhibits
reduced continuity.
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(b) Reference temperature ¢ (c) Reference heat flux |q|

(a) Benchmark setup

Figure 12: Bi-material inclusion corner

The exact solution to this problem is given in radial coordinates (r,6) by [64] :

¢(r,0) = A;r* hy(0) + Aar’2ha(0) + O(r?), (19)
where A; and Ay are scalar constants, h1(0) and ho(6) are smooth sinusoidal functions and
A1 =0.731691779, A = 1.268308221. (20)

For reference, an overkill solution was generated using a conforming p-FEM with exact blending,
where the mesh was geometrically graded towards the vertex singularity. The reference mesh has
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21 elements with polynomial degree p = 30 and 18,991 degrees of freedom. The strain energy for
the setup shown here is
Uex = 1.0168443145 x 1071, (21)

Using FCM with weak coupling, separate meshes were used for the disc and the inclusion, as
shown in Figure 13. Unlike the previous example, where the stress concentration in the plate
was caused by the concave geometry, the singularities affect the solution in both sub-domains.
Consequently, both meshes need local refinement to resolve the singularities. The meshes were
graded towards the vertex singularity, and the two weak singularities on the boundary. The same
refinement depth was applied to all three refinement points. Here, the discretizations match the
singularities with nodes of the FCM mesh.

(a) Inclusion (b) Disc

Figure 13: Bi-material inclusion corner: discretization with refinement depth k = 6

The penalty method was used to couple the FCM meshes along the straight material interface.
Additionally, the embedded Dirichlet boundary condition was weakly enforced on F%) in each mesh.
The fictitious domain was penalized with rge; = £ - 1072, The blended partitioning approach was
used to numerically evaluate the domain integral. The coupling integral was evaluated on linear
segments, whereas the weak Dirichlet boundary conditions were integrated over curved segments,
automatically generated with the same approach described for the previous example.

The magnitude of numerical solution for the heat flux, ¢ = k()V¢  is depicted in Figure 14.
For the first case, without any local refinement of the meshes, the numerical approximations of the
heat fluxes exhibit oscillations within the domain and jumps at element boundaries. The oscillatory
behavior is attributed to the inability of the smooth polynomials to represent the high gradients
in the vicinity of the singularities. For the second discretization, two levels of uniform high-order
overlay meshes are used to grade the meshes towards the three singularities. The C°-continuity of the
high-order basis functions limits the pollution error from the singularities at the finest refinement
level, as revealed in the zoomed plot. Using four refinement levels improves the solution further, as
the geometric progression of element size arrests the propagation of the error, while having larger
elements to describe the smooth solution away from the singularities.

Figure 15a shows the results of a p-elevation study carried out to assess the convergence prop-
erties. Without applying local refinement, the convergence under p-elevation is identified as being
algebraic in the form

el < an?, (22)

where a is a positive constant, and 7 is a negative constant indicating the convergence rate. The
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Figure 14: Bi-material inclusion corner: numerical approximation of the flux |q|

estimate for n &~ —\; matches the theoretical expectation for a discretization where the vertex
singularities are matched by nodes of the mesh [65]. With multi-level hp-refinement the convergence
behavior shows a pre-asymptotic range with a higher convergence rate, and an asymptotic range,
where the behavior returns to being algebraic with the same rate n. Increasing the refinement depth
k extends the pre-asymptotic range, allowing for a significant decrease in the total approximation
error. Changing the scaling to a log- ¢ in Figure 15b, the extended pre-asymptotic range appears
linear, indicating exponential convergence in the pre-asymptotic range.

— —— —— —
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Number of unknowns v/ Number of unknowns
(a) Convergence in log-log scale (b) Convergence in semi-log scale

Figure 15: Bi-material inclusion corner: p-convergence for multi-level hp-refinement

Note the apparent leveling-off of the error in the energy norm around 10~2%, which is attributed
to the use of kget # 0, adding a modeling error to the numerical approximation. Using a smaller
value for kget lowers the leveling-off threshold [66], at the cost of the conditioning of the system.
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4.3 Cube with ellipsoidal inclusion

Next, we consider a three-dimensional example, which is a generalization of the benchmark pre-
sented in Section 4.1. A linear elastic analysis is considered for a cube with an embedded ellipsoidal
(prolate spheroid) inclusion - depicted in Figure 16. The spheroidal inclusion induces stress con-
centration in the cube around the two points on its major axis. The solution within the spheroidal
inclusion remains smooth.

EM =210-10°, E® =EWM .10,
v=0.3, |t|=100, L=1,

rey = V0.125, 1y =71,=0.25 14

Figure 16: Cube with ellipsoidal inclusion

Two FCM meshes were used to discretize the sub-domains, using a base discretization of 4 x 4 x 4
finite cells which match the outer boundaries of the cube. To resolve the stress concentration, the
cube’s mesh was refined towards the two points on the major axis of the spheroid, as shown in
Figure 17. For the inclusion’s mesh, 2 x 2 x 2 elements remain after excluding all cells that are
completely in the fictitious domain. Finite cells that are cut by the interface were further partitioned
for integration using the octree approach described earlier.

The penalty coupling terms were integrated over a surface triangulation, automatically generated
using marching cubes [60]. The implementation is a three-dimensional extension of the high-order
parametrization algorithm used in Section 4.1, where a grid of ng x ng X ngy points per sub-cell was
used for the surface recovery. An example of the resulting triangulation is shown in Figure 17. Note
that the surface mesh is irregular and that the triangles have severe aspect ratios. The high-order
penalty terms are then integrated over the triangles by collapsing one side of the integration domain
(bi-unit square) and mapping it to each triangle. As demonstrated by the two-dimensional ellipse
benchmark the linear parametrization needs a fine resolution to achieve accurate results.

The numerical approximation for the axial stresses o, is depicted in Figure 18. Note that
half of the domain is removed to visualize the internal solution. For the unrefined meshes, the
approximated stresses exhibit oscillations and non-physical jumps at the element boundaries. If
the cube’s mesh, which is affected by the concave geometry, is refined towards the two points, the
stress concentration can be localized quickly. Similar to the two-dimensional case, the solution
within the ellipsoid remains smooth, and does not require local mesh refinement.

The results show that the improvement in accuracy brought on by the multi-level Ap-refinement
scheme also carries over to three-dimensional problems. The example also demonstrates that a
surface mesh for the interface discretization is easily obtained for smooth implicit geometries. The
surface mesh is only used to integrate the penalty terms, and hence can be irregular or have severe
aspect ratios, unlike what is required of an analysis-suitable finite element mesh.

20

Journal publication: https://doi.org/10.1002/cnm.2951



https://doi.org/10.1002/cnm.2951 

206

AL
ViV VA
""ﬁ%{"‘ ZAYAYAY

{

(a) Cube (b) Ellipsoidal inclusion (c) Coupling surface

Figure 17: Discretization of cube and ellipsoid using k = 4 - Section view
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Figure 18: Cube with ellipsoidal inclusion: numerical approximation of axial stresses

4.4 Cylinder with cubical inclusion

The last numerical benchmark for us to consider is a three-dimensional problem with a vertex-edge
singularity. We study a cylinder under axial tension, which has an embedded cubical inclusion.
Due to the symmetry of the problem, we consider only one-eighth of the system. An overkill
solution was generated for reference, using seven conforming hexahedral p-FEM elements with
exact blending, and a local refinement using the multi-level hp-scheme. Using 5 levels of refinement
and a polynomial degree p = 9, the overkill discretization has 506,199 degrees of freedom. The
reference strain energy for the setup shown in Figure 19a is

Uey = 1.037455 x 103, (23)

Two non-geometry-conforming FCM meshes were used for the cylinder and the cubical inclusion.
A coarse base discretization of 2 x 2 x 2 finite cells was used. The dimensions of the mesh were setup
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(a) Benchmark setup (b) Reference oeq in cylinder (c) Reference oeq in inclusion

Figure 19: Cylinder with cubical inclusion

(a) Cylinder (b) Cubical inclusion

Figure 20: Discretization of cylinder and cubical inclusion, k =5

in such a way that the edges of the FCM meshes do not exactly coincide with the cube’s edges.
Similar to the two-dimensional benchmark presented in Section 4.2, the vertex-edge singularity
affects the solution in both domains. Accordingly, both meshes were refined towards the singular
edges, as shown in Figure 20. The symmetry boundary conditions were enforced in a classical
manner on the corresponding faces of the FCM meshes.

The numerical approximation for the von-Mises stresses, oeq, is shown in Figure 21 for the
cylinder and in Figure 22 for the cubical inclusion. The complete domain is clipped diagonally to
reveal the solution at the vertex-edge singularity. Note that the geometry of the cylinder is rotated
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(a) p = 8, no refinement

Teq
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(b)) p=4k=2 (©p=4,k=5

Figure 22: Cubical inclusion: numerical approximation of oeq

to show the solution along the singular edges. Whereas the solution obtained without refinement
is highly oscillatory, the local refinement with the multi-level hp-scheme is able to confine the error
to the finest level of sub-cells.
To assess the convergence behavior, a p-elevation study was carried out. The results, shown
in Figure 23, indicate a slow algebraic rate for coupled FCM without refinement. Applying a
local refinement starting with k& > 2, a pre-asymptotic range can be identified as having a steeper
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Figure 23: Cylinder with cubical inclusion: p-convergence for multi-level hp-refinement

convergence rate. This allows the discretization with k = 5 to achieve an engineering accuracy of
1% error using a moderate polynomial order. This would require at least an order of magnitude
more degrees of freedom with uniform h- or p-refinement. The pre-asymptotic convergence is also
characterized as algebraic, albeit with a higher rate. For vertex-edge singularities, an anisotropic
refinement scheme is necessary to attain exponential convergence [65], which was not applied in
this work. However, this is not always feasible for the general case of embedded vertex-edge
singularities, where the (possibly curved) singular edges might not be parallel to edges of the mesh.
Nevertheless, the improved algebraic convergence brought on by the multi-level hp-refinement allows
for a significant reduction of the approximation error.

5 Application in biomechanics: vertebra with pedicle screws

Having investigated the convergence properties of the proposed refinement scheme for benchmark
problems with stress concentration, we demonstrate the applicability of the refinement scheme for
large-scale problems with complex three-dimensional geometries.

5.1 Problem setup

We consider a lower thoracic vertebra into which two cannulated pedicle screws are inserted. This
is done as part of a procedure to stabilize a spinal segment of by fusing two vertebrae. We assume
that the vertebra-screw interface is in full body contact, and model the contact as a material
interface. We use the FCM with the weak coupling approach to solve the interface problem, and
employ multi-level Ap-refinement to resolve the high gradients around the screws’ threads.

The geometry of the vertebra originates from a CT scan with high spatial resolution, carried out
for a formalin-fixated specimen of the eleventh thoracic vertebra of an 84-year-old donor. She had
dedicated her body for educational and research purposes to the local Institute of Anatomy prior to
death, in compliance with the local institutional and legislative requirements. Images were acquired
by using a whole-body 256-row CT scanner (iCT, Philips Medical Care, Best, The Netherlands)
after 24 hours of degassing. Scan parameters were a tube voltage of 120 kVp, a tube load of
585 mAs, an image matrix of 1024 x 1024 pixels, and a field of view of 150 mm. Transverse sections
were reconstructed with an interpolated voxel size of 146 x 146 x 146 um?®, and the intensity values
of the CT images were calibrated with a reference phantom (Mindways Osteoporosis Phantom, San
Francisco, CA, USA) to derive calcium hydroxyapatite values in (mg/ cm3).

The geometric model of the screws is a B-Rep CAD model of a Viper2-Screw (DePuy Synthes,
Umkirch, Germany), provided by the manufacturer.
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The material properties for the vertebra were resolved on the voxel level, as a threshold was set
to the intensity values to distinguish the trabecular structure. The voxels that are identified as
inside the bone were assigned a Young’s modulus E(") = 10 GPa, and Poisson ratio v = 0.3, which
are commonly used parameters in HR-pQCT based voxel FEM [67]. The material of the screws is
titanium with E() = 100 GPa and v = 0.3.

The considered load case simulates a pull-out test, where the vertebral body is clamped and the
screws are pulled axially outwards—as depicted in Figure 24. The Dirichlet boundary conditions are
defined as clamping of superior and inferior end-plates, whereas the Neumann boundary condition
is defined on the screws head, as a uniformly distributed axial force.

Clamped

S
W F F = 50N

Clamped

(a) Geometry (b) Boundary conditions

Figure 24: Pull-out test

5.2 Discretization
5.2.1 hp-FCM

The complete model of the vertebra-screw system was setup virtually by combining both geometric
models as described in the following. First, the CT-scan was segmented using ITK-SNAP [68] to
obtain a separate model of the vertebral body without the surrounding tissue. This segmentation
only considers the outer boundary of the vertebra, and does not distinguish between cortical and
trabecular bone.

The CAD model of the screws was suitably positioned in the same coordinate space. To carry
out the inside-outside test on the CAD model, a watertight surface triangulation of the screws was
created using Rhinoceros [69]. The surface triangulation was then utilized by a ray intersection
algorithm [70], to determine whether a given integration point lies within the screws’ geometry.

The first FCM mesh is used to discretize the embedding domain of the vertebral body. The
mesh is axis-aligned with the CT-scan. The geometry is defined by applying a threshold to the
CT-scan to define the bone-structure and subtracting the screws through a Boolean operation. To
account for the canals within the screws, an additional cylinder at the central axis of each screw
was subtracted. The numerical evaluation of the domain integrals performs an intersection of the
voxel grid with the refined FCM mesh to give the integration sub-cells.
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To resolve the stress concentration, the mesh is refined using the multi-level hp-scheme towards
the cusps of the screws’ threads (concave geometry) and towards the reentrant corner at the pedicle.
The second FCM mesh is used to discretize the embedding domain of the screws. This mesh is
refined towards the roots of the screws’ threads, where stress concentration within the screws is
expected. The octree scheme is used for the numerical integration on the second mesh.

The complete discretization results in a total of 1,322 finite cells for first mesh and 155 finite
cells for the second mesh. Using polynomial degree p = 3 and k = 3 refinement levels, the
discretization has approximately 1.13 million degrees of freedom. The final refined meshes are
depicted in Figure 25. To avoid ill-conditioning of the stiffness matrices, the fictitious domain in
both meshes is given a stiffness of Egey = 10~* GPa and vge = 0.3.

(a) Vertebra

Figure 25: Discretization using FCM

5.2.2 Material interface

The penalty approach was used to couple the meshes with 8o = 10°. To integrate the coupling
terms, a fine surface triangulations for the bone-screw interfaces was created using Rhinoceros, by
meshing the outer surfaces of the screws. For an accurate and efficient evaluation of the surface
integral, the triangulation was intersected with the refined finite cell grid, as shown in Figure 26.
The triangles were then associated to the finite cell pairs form the two meshes, such that the
coupling terms were added to the assembled stiffness matrices only once per finite cell pair.

5.2.3 Boundary conditions

Dirichlet boundary conditions were applied at the superior and inferior end-plates of the vertebra.
These were weakly enforced using the penalty method, with the penalty terms integrated over a
surface triangulation. The surface description was generated using the marching cubes algorithm
and the segmentation. The penalty value was selected empirically, fp = 107. The Neumann
boundary conditions modeling the axial load on the screws were applied on a surface mesh created
from the CAD model. The surface mesh was also intersected with the faces of the refined FCM
mesh, to allow for a more accurate evaluation of the Neumann integral.

5.3 Solution and numerical results

The resulting system of linear equations was solved using the parallel direct solver Intel® Pardiso
which is provided as part of the Intel Math Kernel Library [71]. The simulation was run on two
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(b) Intersected triangulation

Figure 26: Discretization of coupling surface

eight-core Intel® Xeon® E5-2690 @ 2.9 GHz CPUs. The model takes approximately 40 minutes
for the integration, solution and post-processing. Visualization was carried out using ParaView [72]
on the same hardware.

The surface of the trabecular bone was recovered using ParaView, for an axial and a sagittal
section. The recovered surface was used for the plots shown here. The computed displacements are
depicted in Figure 27. It can be observed that the applied boundary conditions are fulfilled, and
that the displacement field appears continuous across the interface.

|u [u]
0.006400 0.00075 150003 0.00e+00 0.00075 1.50e-03
—— e - ‘.
(a) Sagittal section (b) Axial section

Figure 27: Vertebra with pedicle screws: numerical approximation of displacements

The von-Mises stresses calculated for the screws and the bones are depicted in Figure 28 for
a sagittal and an axial section. The numerically approximated stresses are continuous within
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the screw’s geometry, with no discernible jumps at element boundaries or large scale oscillations.
This indicates a low discretization error. High stresses are visible in the neck region between the
applied load and the vertebra. Additionally, a bending stress distribution is observed for the helical
thread, with the maximum stress occurring at the roots of the thread. In the vertebra, the stress
concentration is localized around the screws, and at the pedicle’s reentrant corner. Similar stress
distribution patterns were also reported for simulations using micro-FE models [73-75].

(a) Sagittal section

0.00 0.5 1.00
[ OB i .

(b) Axial section

Figure 28: Vertebra with pedicle screws: numerical approximation of von-Mises stresses

Altogether, the numerical results are mechanically plausible, and correspond well to the ap-
plied load case. This demonstrates that the proposed refinement technique is suitable for solving
problems involving complex three-dimensional geometries without the need to generate a boundary-
conforming mesh. Furthermore, this application demonstrates the flexibility of the FCM in dealing

with different types of geometric descriptions (CAD and image-based models), without the addi-
tional effort of re-parametrization.
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6 Conclusion and Outlook

In the present paper, we demonstrated that the use of multi-level hp-adaptive refinement for the
finite cell method in conjunction with a weak enforcement of the interface conditions constitutes
an efficient and robust approach for the solution of material interface problems involving com-
plex geometries. The proposed combination of discretization techniques circumvents volumetric
mesh generation for domains with multiple materials, while maintaining—locally—a high model
resolution.

Several numerical benchmarks of two- and three-dimensional material interface problems show
that the convergence behavior is significantly improved by the multi-level hp-refinement scheme for
problems with stress concentration and singularities. The results also highlight the importance of
a high-order accurate geometric description of the interface and the geometric boundaries.

In the context of biomechanical problems, we demonstrated that the proposed scheme is directly
applicable for the simulation of geometrically complex implant-vertebra models. Furthermore, we
demonstrated that the flexible nature of the FCM in dealing with different types of geometric
description allows for an easy combination of the image-based model of the vertebra and the CAD-
based model of the screws. Additionally, the accurate approximation of the mechanical stresses,
which was corroborated by several numerical benchmarks, further illustrates the potential of the
proposed scheme as a simulation tool for bone-implant models.

The results presented here offer several possibilities for further developments. Future work will
address the experimental validation of the vertebra model. Furthermore, extending the vertebra-
implant model to include several vertebral bodies would allow for more realistic boundary conditions
and loading scenarios. Also, the development of a robust and efficient error estimator for FCM
would open the door for automatic refinement.
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4.4 Additive Manufacturing

Additive manufacturing is a process in which an artifact is produced in a layer-wise fashion.
This is in contrast to subtractive manufacturing techniques such as milling, for example, in
which material is subtracted from a larger, usually homogenous block of material to generate
an engineering object. By now, there are so many additive manufacturing processes and such
a large variety of individual techniques that an attempt to classify them is a science in itself
(see e.g. [80] for a functional classification or Wohler’s report [81] for a summary of processes
with relevance to the industry of mechanical engineering.). It is convenient to divide the
computational modeling of additive manufacturing into the modeling of the process itself and
the computational modeling of the products generated by these processes.

The individual types of processes of additive manufacturing are very diverse. Within this
treatise, the focus was placed on metal additive manufacturing because it is the most common
method to produce load bearing artifacts. Specifically, the Finite Cell Method was extended
to simulate the process of selective laser melting (SLM).

Selective laser melting is a powder bed technique. Powder is selectively melted by a rapidly
moving laser beam. The liquid metal then locally re-solidifies before a new layer of powder
is added. The process is repeated until a finished artifact is obtained. The process is multi-
physical by nature as many physical phenomena occur, see e.g. fig. 30 for a graphic depiction
of the process and a selection of the involved physical phenomena.

Phase change Fluid flow
Laser beam
. Scan direction | Radiation
Vaporization
_—
“otal varelor L Conduction
Solidified metal Powder layer
structure Meltingarea
Convection .
i - Marangoni effect
Volume shrinkage Melting/solidification

Figure 30: physical effects involved in the process of selective laser melting

The process also spans many scales. Assuming a typical diameter of the laser spot of 100um,
the simulation of the local solidification needs a resolution of 10um or better, resulting in 3-4
orders of magnitude to reach the size of a (small to moderately large) artifact. A 3D model to
uniformly discretize the structure over the full range of these scales would have to be based on
0(10°-10*2) of the smallest units (voxels) with an edge-length of 10um — which is far beyond
the reach of any conventional transient multi-physics simulation. Therefore, it is common to
split the scales into three different sections with partial overlaps.
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The micro-scale is responsible for resolving the physics below 1mm. It delivers insight into
the melting/phase-change/solidification process whereby individual grains of powder are dis-
cretely resolved. The macro-scale resolves physics from 100um up to the part level at a range
of 1-10e¢m. Its main purpose is to model the thermo-mechanical behavior at part level. In
between lies the meso-scale, which is responsible for the range from 10-50pm up to 1-10mm.

Since no computational method is able to capture the full multi-scale multi-physics nature of
the SLM process in one single computation, a computational model must focus on one scale.
Therein it is only possible to include a few physical effects that are specifically relevant for
the scale under investigation.

A meso-scale model was developed for the simulation of the process of SLM. The physical
effects that were considered to be of relevance at this scale are boxed in red in fig. 30. The
developed meso-scale model is able to bridge a larger scale than classical uniform discretiza-
tions can because it employs the hierarchic enrichments described in section 3.4.2 to resolve
the locally induced strongly changing gradients of the solution fields of the process. To track
the state of the material in space and time, it additionally introduces a hierarchical octree-
like treatment of the state variables (i.e. the material coefficients). This material grid may
refine or coarsen independently of the discretization used for the temperature field, and it
is submerged into the finite cells, see fig. 31 for a visualization of the material grid and the
discretization.

(a) Discretization of the material coefficients: air (b) Discretization of the temperature field of the
in dark-blue, powder in red, solidified domain in computational domain without air.
brown, and base plate in light blue

Figure 31: The separate discretization of material coefficients (upper left) and the temperature field
(upper right) in one simulation by means of two grids

This separation of the treatment of state variables from the treatment of field variables is
motivated by the fact that both exhibit a completely different behavior. The field variables
are diffusive by nature because the high temperature gradients diffuse away once the laser has
passed, until a practically uniform temperature field emerges. By contrast, the state variables
do not diffuse. For example, once metal powder is melted, its state will never convert back
to powder again. Once a residual stress state is introduced, it remains local unless further
heat treatment is involved. This can also occur if the laser passes by again. It is interesting
to note that the separation of state and field variables fully corresponds to, or rather is a
consequent application of the Finite Cell Method. This is due to the fact that, in the Finite
Cell Method, the material (for example the elastic modulus) is also not directly connected
to the discretizations of the field variables themselves. Thus, the proposed methodology is
merely an extension to transient simulations. However, it opens up new modeling possibilities
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since neither lagser scan vectors nor layers of material need to conform to the discretization.

More importantly, the introduced dynamic management of the discretization in an embedded
domain sense allows for a more or less constant number of degrees of freedom throughout the
simulation. This is a crucial point. Otherwise, the required fine discretization around the
laser impact area combined with the growing computational domain due to the subsequent
addition of layers would cause the involved degrees of freedom to grow out of bounds. In the
subsequent chapters the three main aspects of the simulation of selective laser melting are
discussed by including the corresponding journal publication. Section 4.4.1 treats the thermal
evolution of the process. Its coupling to an elasto-plastic model in order to determine the
residual stresses is presented in section 4.4.2. Most importantly, aspects of verification and
validation are discussed in section 4.4.3 at the specific case of forecasting melt pool geometries
and cooling rates.
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4.4.1 Thermal behavior

The computational model of heat transfer is described in detail in [64] and presented next.
From the physical side, it involves the treatment of the phenomena boxed in red in fig. 30.
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Abstract

Computational heat transfer analysis often involves moving fluxes which induce traveling fronts of phase
change coupled to one or more field variables. Examples are the transient simulation of melting, welding or of
additive manufacturing processes, where material changes its state and the controlling fields are temperature
and structural deformation. One of the challenges for a numerical computation of these processes is their
multi-scale nature with a highly localized zone of phase transition which may travel over a large domain of
a body. Here, a transient local adaptation of the approximation, with not only a refinement at the phase
front, but also a de-refinement in regions, where the front has past is of advantage because the de-refinement
can assure a bounded number of degrees of freedom which is independent from the traveling length of the
front.

We present a computational model of this process which involves three novelties: a) a very low number
of degrees of freedom which yet yields a comparatively high accuracy. The number of degrees of freedom is,
additionally, kept practically constant throughout the duration of the simulation. This is achieved by means
of the multi-level hp-finite element method. Its exponential convergence is verified for the first time against
a semi-analytic, three-dimensional transient linear thermal benchmark with a traveling source term which
models a laser beam. b) A hierarchical treatment of the state variables. To this end, the state of the material
is managed on a separate, octree-like grid. This material grid may refine or coarsen independently of the
discretization used for the temperature field. This methodology is verified against an analytic benchmark
of a melting bar computed in three dimensions in which phase changes of the material occur on a rapidly
advancing front. c¢) The combination of these technologies to demonstrate its potential for the computational
modeling of selective laser melting processes. To this end, the computational methodology is extended by
the finite cell method which allows for accurate simulations in an embedded domain setting. This opens
the new modeling possibility that neither a scan vectors no a layer of material needs to conform to the
discretization of the finite element mesh but can form only a fraction within the discretization of the field-
and state variables.
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1. Introduction

The computational analysis of powder bed fusion processes such as e.g. selective laser melting (SLM) is
challenging due to many reasons. The most prominent include:

1. highly localized and moving strong temperature gradients

. non-linearities due to temperature dependent coefficients and phase changes of the material
. growing and possibly geometrically complex computational domains

. large range of scales in both space and time

. coupled multi-physics

T W N

This article presents a methodology for the computational modeling of the temperature evolution in a
powder bed fusion process taking into account the first three issues. While we incorporate the non-linearities
due to temperature dependent coefficients and phase changes of the material using the rather standard latent
heat model first presented in [1], special focus lies on the discretization of the highly localized and moving
strong temperature gradients and on the representation of growing computational domains.

The evolution of temperature fields in space is a diffusion dominated process which can be well resolved
by the finite element method. Many commercial packages are available, of which ABAQUS® and ANSYS® are
two popular choices for applied research. These and other commercial packages provide a wealth of physical
models, but their discretizational technology is mostly limited to linear, at most quadratic finite elements.
Therefore, the resolution of local gradients is limited to h- refinements, i.e. refining the mesh size towards
singularities.

Strong gradients, however, can most efficiently be resolved by hp-finite elements which vary the size of
the element h locally as well as the polynomial degree of the trial/test space p [2, 3]. While hp-fem leads to
efficient discretizations where error estimators are used to drive an adaptive scheme, it also provides excellent
accuracy in cases where the solution characteristic is known a priori. This is the case for the simulation of
powder bed fusion processes because the area of refinement is well defined by the location of the laser spot
where sudden, high temperatures cause phase changes in the material.

Moreover, most simulations of powder bed fusion processes use static discretization schemes, i.e. the
mesh is refined towards the entire laser path and kept fixed at all time-steps. As a consequence, the necessary
number of degrees of freedom is directly proportional to the length of the laser path. However, high gradients
are local to the laser spot itself and not distributed along all of its path. Therefore, the number of degrees
of freedom should be independent of the length of the laser path and at best constant over time. To this
end, transient refinement and de-refinements of the discretization throughout the run time of the simulation
is necessary to keep the refinement local to the current position of the laser. Only recently, discretizations
have appeared that utilize these kind of transient meshes for computational SLM analysis, see e.g. [4, 5, 6]
and references therein. To the authors’ knowledge, all of these contributions exploit h-refinements for low
order polynomials, only. Transient h-refinements for higher order polynomials have not been used in that
context although even transient hp codes do exist along with instructive literature, see e.g. [7, 8, 9, 10] and
the introduction of [11] for a recent overview.

Another important aspect is the treatment of the state variables. While the evolution of temperature
is a diffusive process, the evolution of the material state is not. Solidified material does not diffuse into
regions containing powder. Additionally, material interfaces may not coincide with the boundaries of the
finite elements. For example, material may need to be added in form of powder in a way which does not
necessarily conform to the finite element discretization. In the paper at hand, we propose to provide this
flexibility by discretizing the material coefficients independently of the underlying discretization of the field
variables.

The article is structured as follows: We start by introducing the governing equations in section 2.1
and present its discretized weak from in section 2.2. We then give a quick introduction into the recently
introduced multi-level hp-finite element method [11], which provides hp-discretizations on transient meshes.
To evaluate its accuracy, we first present results for a transient but linear, three-dimensional benchmark
resembling a SLM process in section 2.4.1 before proceeding to evaluate the scheme against a transient
non-linear benchmark involving phase changes and latent heat in section 2.4.2.
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‘We then proceed to combine the multi-level Ap-method with the finite cell method in section 3.1 which was
initially designed to avoid boundary conforming mesh generation for complex domains. We use this concept
to treat state and field variables on different discretizations. Section 3.2 then presents an example computing
the evolving interface of a structure. Herein, two independent and transiently changing discretizations are
used for state and field variables. Their separate treatment combined with the multi-level hp method allows
for a relatively low number of degrees of freedom which stay almost constant throughout the simulation
process.

2. Thermal analysis with phase changes

This section sets out to describe a new discretizational scheme for thermal analysis with phase changes.
To clear the view, we neglect effects of radiation and mass transfer even though they have physical relevance
in practical examples.

2.1. Governing equations

In this spirit, let us consider a domain, 2 C R™ with boundary 02, where n is the number of space
dimensions. The governing nonlinear transient heat conduction equation with phase-change, written in
terms of volumetric enthalpy H = H(T) and temperature T' = T'(x) fields, has been investigated by many
researchers. In the sequel, we closely follow the presentation given in [12] which reads:

OH
— V- (kVT)=Q in Q (1)
ot
where ¢ is the time, k is the thermal conductivity and @ is the heat source. Equation (1) is subjected to the
initial condition
T(x,t=0)=Tp(x) in Q. (2)

Dirichlet, Neumann, convection and radiation boundary conditions can be defined on non-overlapping boun-
daries:

T =Ty(x) on dQr, (3)
(kVT)-n=g(x) on 09, (4)
(kVT) 1 = heono(Too — T(x)) on 0%, (5)
(kVT)-n=oce (T* = T()*) on 09, (6)

where Ty, ¢, hcony and T, are the prescribed temperature, prescribed heat flux, thermal convection coeffi-
cient and ambient temperature, respectively. Further, o is the Stefan-Boltzmann constant and e represents
the emissivity.

The volumetric enthalpy function is defined as

T
HT) = [ pol?) AT+ pLEu(), ™)

Thet

where p,c,L, Tt and f,. denote density, specific heat capacity, latent heat, a reference temperature and a
phase-change function, respectively. The function f,. depends on the nature of the process. In an isothermal
phase change, the temperature T}, stays constant during the phase change and is defined by a heavyside

step function:
. 0 T<T,
c T) = _ s 8
oelT) {1 o Q
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see fig. la for an illustration. For numerical reasons, the function fpc is regularized by a smooth function as

fpc(T):%[tanh<STlfTs (TfTS;_Tl)>+1], 9)

which is depicted in fig. 1b for different values of S which controls the smoothing.

fpc fpc
11 — 1t

—S5=2

—5=3

— S5 =4

0 0 ; :
T T Ts T
(a) Isothermal case (b) Non-isothermal case
Figure 1: Phase change function fpc
A substitution of eq. (7) in eq. (1) leads to the temperature based phase-change model:
oT 0

pegr + pL gjc -V (kVT)=Q in Q. (10)

Equation (10) reduces to the classical transient heat conduction equation, when the latent heat term is
neglected.

2.2. Discretized weak form

The governing partial differential eq. (10) subjected to the initial condition given by eq. (2) and the
Dirichlet, Neumann and convection boundary conditions given in egs. (3) to (5), respectively is now discre-
tized in time and space. For the spatial discretization, the Bubnov-Galerkin finite element method is ideally
suited due to the mainly diffusive nature of the described process. To this end, the set V of admissible
solutions 71" and a set Vy of admissible test functions v is defined as

V={ve HY(Q), v=Ty(x,t) on 8Qr} and Vy={ve H(Q), v=0 on 90r}, (11)
where H'! is the Hilbert space. The weak form of egs. (2) to (5) then reads:
Find T €V, such that

h/l/)pc?;; d9+!¢pL8§§C d9+!vw-(wz‘) dQ_ZdeQ—i- /1/)qu+ /d)h(Too—T) dr.

oy, 0,

(12)
In the framework of the Bubnov-Galerkin finite element method, solution field and test functions are
approximated by the same shape functions N; as follows:

T(x,t) = Th(x,t) = Y Ni(X)Ti(t),  v(x,t) = ¥n(x,t) = > Ni(x)ehi(t), (13)
i=1 i=1
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where T; and 1); are the unknown coefficients. Substituting the approximations eq. (13) into the weak form
eq. (12) yields the following semi-discrete equilibrium equation:

CT+L+KT=F

Ci]‘ = /pCNiN]‘ dQ

Q
L= / pLN; ag;’c dQ
Q (14)
Q a9,

Fi:/NiQdQ+/Niqu+/hNiToo ar
Q a9, Q.

where C is the capacitance matrix, K is the conductivity matrix, L is the latent heat vector, F is the load
vector and T is the temperature coefficient vector. The residual vector R for the transient nonlinear analysis
is obtained by using the backward Euler time integration scheme for the terms L and T in eq. (14):

Tpp1 —Tp Lpyi—L

n !
At At - Kn+1TTL+1 =0. (15)

Roj1 =Fnp1 —Copa

The subscripts n and n + 1 represent evaluations at time ¢ and ¢ + At, respectively. In order to solve this
nonlinear equation, we use an iterative incremental scheme, where the current temperature vector is:

T, = Ti ., + AT (16)

J;+1ATi = Ril+1' (17)

Equation (17) shows the incremental system to be solved, where J is the tangent Jacobian matrix which is
defined as

) OR.|* ) i L’
i _ v — K + n+1 + n+1 (18)
+1 +1
" oT |, 4 " At At
The latent heat contribution L’ of the Jacobian matrix J is:
of
L = /pL a;cNiNj dQ, (19)
Q
where we approximate the temperature derivative of the function f,. as suggested in [12]:
afpc ‘ _ pr(TTiL-‘rl) B pr(Tn) (20)
oT |, 44 T —Th ’

2.3. Multi-level hp-FEM: Discretization of the primal unknowns

It lies in the nature of the SLM process to induce phase change locally by application of a highly focused
laser beam. This heat flux is discretized in F and the induces high temperatures locally which diffuse
rapidly into the domain. The resulting high but non-singular gradients are best captured by hp finite
element schemes.

Implementations of hp-finite elements are widely available in the scientific community, see e.g. [3, 13,
14, 15, 16]. Research in the field of isogeometric analysis has further amplified the available code-basis, see
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e.g. [17]. However, the situation is less comfortable in cases where dynamic hp-discretizations are necessary
in three dimensions. This is due to the fact that handling degrees of freedom on changing mesh topologies
proves to be difficult in 3D. The recently introduced multi-level ~p-method aims at alleviating this burden.
An en-detail description of the method is given in [18, 11, 19] along with a review of other, related methods.

Classic hp-approaches replace finite elements with refined elements and constrain hanging nodes, edges
and faces to re-establish a C%-compatible, global trial and test space. The multi-level hp-method takes a
completely different approach. Its underlying idea is to retain coarse elements in the mesh. The refinement
is then constructed hierarchically such that global C%-continuity and linear independence is maintained by
construction. This renders post-constraining unnecessary. The principle idea is depicted in fig. 2a) in one
dimension. Compatibility is ensured by applying homogeneous boundary conditions on all boundaries of
the overlay mesh. In one dimension this translates to deactivating all nodal degrees of freedom on the
overlay meshes which correspond to the boundary of the overlay. Linear independence is guaranteed by
deactivating the high-order modes on the lower levels. Thereby, high-order shape functions are h-refined
as well and finite element spaces are constructed which are very close those generated by classical hp-finite
element methods [20]. The simple rule set of activating and de-activating nodal and edge modes directly
translates to two- and three-dimensions as depicted in fig. 2b) and ¢) if face and internal modes are accounted
for likewise.

2.4. Fxamples

This section addresses the first two computational challenges stated in the introductory section 1. To
this end we evaluate the accuracy of the multi-level Ap-method by means of a comparison to two semi-
analytical benchmarks, which resemble SLM-typical problems: a moving laser source in linear thermodyn-
amics in section 2.4.1 and a variant of Stefan’s problem involving phase changes in section 2.4.2.

2.4.1. Linear thermal analysis

It was already demonstrated in [11] that strong gradients in a stress field can be captured accurately on
moving discretizations. The paper at hand investigates the (parabolic) heat equation commonly used for
modelling SLM processes. We consider the following simplified form of eq. (21)

pcaa—f —V-(kVT)=q in Q. (21)

where ¢ is the Gaussian surface distributed heat source:.

6 it 2 1 2 — vt)?
q(z,z,t) = lim V3Q exp (73y—) dy X —exp {73:6— — 3(’271})
c a c

2 2 2
b—0 Fﬁa;)) 0 1 b / y (22)
— 3 e a5 3B,
a c a

which is also commonly referred to as an elliptical disk heat source, see e.g [21]. Its distribution parameters
a and c are referred to as its radii and the maximum heat power is denoted by ). The center of the heat
source travels with a constant speed v along the path A—B on the upper boundary of the semi-infinite body
given in fig. 3a. It is depicted in fig. 3b along with its local coordinate system.

The analytical solution of this transient temperature field was first introduced by [21]. Herein, the space
and time dependent temperature T'(z, z,t) is given as the initial temperature Ty plus a time integral from
the start of the process at ¢t = 0 to the time of interest t:

2
t o exp| 3y
T(z,z,t) =Ty + MQ/(phc) X [ ks 2} x 2Adt, (23)
/T 0 V126(t —t) +a2\/12k(t — t)
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(b) Two-dimensional case (¢) Three-dimensional case

Figure 2: Conceptual idea of the multi-level hp-method following [18, 11, 19]

whereby the abbreviation A

—ot’ 2
exp [*3123@1'))“2]

A=Az t,t) = (24)

126(t—t) + ¢
and k = k/(phc) is the thermal diffusivity. The parameters of the setup are chosen in the range of a typical
SLM scanning process and listed in table 1.

Radiation-convection boundary conditions are imposed on the bottom and side surfaces by setting the
environmental temperature to T.,, = 0°C and the convection coefficient to heony = 0.0 [W/m2°C]. This
leads to an approximation of the temperature at the surfaces cutting the considered block out of the half-
domain which would otherwise be given by eq. (23). However, these cut-off surfaces are far enough away for
this approximation to have any notable effect on the temperature distribution along the path A—B. The
time domain was discretized by 500 hundred time steps with At =4 [usec].

The base mesh of the multi-level hp-discretization is depicted in fig. 3a and consists of 2 X 2 X 2 elements.
This base mesh is refined by successively superposing finer overlay elements that halve the size of their
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Q

q= Tac

(a) Geometric dimensions in mm and initial mesh (b) moving heat source with characteristic parameters
of 2 x 2 x 2 hexahedral elements

_3G—u)? 32
(12 a

Figure 3: Problem Setup

Heat Power (Q) | 50.83 W

Laser speed (v) | 0.5 m/s
Half radius a | 0.1 mm
Half radius ¢ | 0.15 mm

Specific heat (h.) | 600 J/(kg°C)
Density (p) | 7820 kg/m?
Heat Conductivity (k) | 29 W/(m°C)

Table 1: Material and load parameters for the benchmark defined in fig. 3

parent. Figure 4 gives an impression of the resulting mesh for five overlays. A possible measure of resolution
is to relate the numbers of elements per twice the smallest distribution parameter of ¢ defined in eq. (22), here
a = 0.1[mm]. For the base mesh, this ratio is 0.2[mm]/2.5[mm]=0.08 which is then doubled by each level of
refinement i.e. levels one to five lead to: 0.16, 0.32, 0.64, 1.28, 2.56 elements per 2a. The refinement is not
carried out uniformly but towards a bounding box which defines the zone of maximum h refinements. It is
initially located at the center of the laser beam, has the initial dimensions 0.125[mm]/0.0625[mm]/0.03[mm],
and is oriented along the global x/y/z-axis. During the scanning process, the rear face of the bounding box
is kept fixed until it has an elongation of 0.7[mm]. The size of the bounding box then stays fixed and the
bounding box follows the laser path with constant dimensions until its end.

The results for the temperature are depicted for different time-steps in fig. 5. While the colors in the
picture correspond to the refinement depth, the discretization is warped in the global z-direction using the
computed temperature field. The picture series demonstrates the dynamic change of the discretization over
time, which allows the refinement zone to stay local to the moving laser spot.

Figure 6a depicts the spatial solution of the temperature along the laser path, i.e. the cutline between
point A and B in fig. 3 for different polynomial degrees. Figure 6b records the temperature history of a
material point located at the coordinates x=0.25, y=0.0, z=0.1. It can clearly be seen how increasing the
polynomial degree p of the approximation helps in increasing the solution accuracy.

To obtain a better insight into the convergence behavior, p-extensions (i.e. sequence of computations
with increasing polynomial degrees) were carried out on different h-refinements. To this end, the analytical
solution given by eq. (23) was computed using the function integral in matlab®. This function performs
an adaptive quadrature with a relative tolerance of le — 6 [22]. The computation was carried out at 1000
equidistant points along the laser path between point A and B!. and its deviation from the numerical
approximation obtained by the multi-level hp-method served as an error measure in the sense of a discrete-
Lo norm:

Z;i(())o (Tsanﬁi - Tz)z

x 100. (25)
1000
Z‘j:O Tszan,j

lellz, =

Lin fig. 3a
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AnsaizOrder

Figure 4: Local 3D multi-level hp mesh

Herein T,y represents the semi-analytical solution of eq. (23), and T; is the temperature obtained by the
multi-level hp-method at the i;, point.

The convergence plots are presented in two forms for the same data. Figure 7a gives the number of
degrees of freedom versus the discrete, relative Ly error computed by eq. (25) whereby both axis possess
logarithmic scale. Figure 7b displays the same data, but the abscissa is scaled by the third root of the degrees
of freedom. The blue line with the filled dots labeled ‘uniform h, p=1° represents the accuracy obtained by
discretizing the domain uniformly starting with a mesh of size 2 x 2 x 2, then 4 x 4 x 4, then 8 x 8 X 8 up
to 32 x 32 x 32 elements. The relative error does not fall below 27% at 35,937 degrees of freedom for this
strategy. This demonstrates how poorly a uniform refinement converges. All other curves are obtained by
performing a multi-level hAp-refinement towards the bounding box as described above. Consider the blue line
with the blue circles labeled ”1 ml, p=1...10”. The mesh here consists of the base mesh plus one refinement.
For each dot, the mesh stays fixed and the polynomial degree is increased from one to ten anlong the line.
The error now drops to 6% for p = 10, and its decrease is exponential. This is indicated by the straight line
in fig. 7b. It is noteworthy that each added level of h-refinement upon which a p-extension is carried out
uniformly leads to better results with less degrees of freedom only until level four. Level five is worse again.
Here, too many degrees of freedom are spent in parts of the domain where the error is already low. This
may be avoided by use of an error estimator. In any case, a very good discretization is obtained using four
refinements with a polynomial degree of four. Here, only 3857 degrees of freedom are needed to obtain an
error of 1.3%. At this point, the results delivered by the multi-level hp-strategy are approximately twenty
times more accurate at ten times less the degrees of freedom than a bold h-refined strategy for this setup.

2.4.2. Melting bar

In this section, we evaluate the numerical approximation to the isothermal phase change model that
is introduced in section 2. We are especially interested in the methods ability to accurately resolve the
interface between liquid and solid parts of the domain. Unfortunately, exact solutions to eq. (10) are only
available for very few idealized situations in a dimensionally reduced setting.

‘We consider the two-phase problem of a one-dimensional semi-infinite bar. The bar is initially solid with
a constant temperature T;. The boundary condition at x = 0 is then suddenly changed to a stationary
temperature 7; which is larger than the melting temperature 7,,. The analytical solution was originally
described in [23] and is known in the literature as Neumanns’s method, see e.g. [24, 25].

The sudden change of the temperature from T to 7} causes the bar to melt. The position of the interface
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(a) Time step 50 (b) Time step 150

(¢) Time step 300 (d) Time step 500

Figure 5: Temperature solution at different time steps and adapted refinements depth

between melt and solid is given by:

X(t) = 22/aut, (26)

where ¢ is the time and o is the diffusivity of the material in its liquid state. The constant A in equation
26 is computed by solving the following non-linear equation

Sty B Stsy/as -
exp(A?)erf(A) /a7 exp(a\2/ag)erfe(A/aq/as) A, @)

where St; and St are the Stefan number of liquid and solid phases respectively. They can be computed as

follows:
Cl(crl - Tm) Cs(Tm - Ts)

L - L
In eq. (28), L is the latent heat of fusion, and C; and C; are the heat capacity of the liquid and solid phases,

St; = (28)
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Figure 6: Temperature solution for 4 multi-level refinements for polynomial orders p = 1...4.
respectively. The analytical temperature distribution over the semi-infinite slab is given by
erf(z/2v/aut)
T - Ty, ————— if =< X(t
1= (T m) erf(\) <X
T(x,t) = (29)
erfe(z/2v/ast
Ts + (T, — arfe(@/2vast) if x> X(¢)

*Terfe(A/ou Jas)

Figure 8 illustrates the dimensions of the bar which is used for validation of the numerical scheme. The
bar consists of pure Titanium and is assumed to have the thermo-physical properties provided in table 2.
These lead to the constant A = 0.388150542167233, which is computed from eq. (27). On the face at © = 0.1
the analytical solution is imposed as a constant Dirichlet boundary condition to emulate the semi-infinite
domain. The simulation was carried out on a base mesh with 10 finite elements of order p = 3 with four
multi-level hp-refinements. The time domain was discretized by a backward Euler scheme with a time step
of dt = 1]s].

Figure 9a shows the corresponding numerical solution of the temperature along the z-direction of the
bar at different time steps together with the analytical solution. The kink in the solution at the melting
temperature T, is clearly visible. It stems from the latent heat contribution represented by L; in the semi-
discrete weak form given in eq. (14). The lens zoom depicts how close the numerical solution resembles its
analytic counterpart. Figure 9b depicts the evolution of the temperature at the point z = 0.01[m] which is
very close to the Dirichlet interface and therefore difficult to catch. The kink at T}, is also clearly visible
and well captured by the numerical scheme.
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Figure 7: Convergence in discrete La-norm starting from a 2 X 2 x 2 base mesh and hierarchically refining in h 2, 3 or 4 times

(used abbreviations: ml = multi-level hp refinement)
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0.01 m

Figure 8: Problem setup of the melting bar

3. Modelling Selective Laser Melting

T 1670 °C
T 2000 °C
T 1500 °C
P 4.51 x 10% kg/m?

c = cs 520 J/(m? °C)
k= ks 16 W/(m °C)
L 325 x 103 J/kg

Table 2: Thermo-physical properties
for Titanium

Goal of this section is to present a method that discretizes dynamically growing structures and in which
refinements are only carried out where necessary. To this end, we first introduce the finite cell method,
an embedded domain method for high-order finite elements, before moving on to a show-case example

demonstrating the features of this approach.

3.1. Finite Cell Method

The main objective of the finite cell method is to avoid boundary conforming meshing of geometrically
complex physical domains. To this end, a geometrically complex domain Q. is extended by a fictitious
domain Q ;. such that the resulting domain €2 has a simple shape and can thus be meshed easily. (see fig. 10)

and [26, 27).
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Figure 9: Melting bar example: evolution of temperature in time and space
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Figure 10: Concept of Finite Cell Method

In the simplest case, the mesh is a grid whose entities are called cells, henceforth the name finite cell
method. It is on these cells where the shape functions are spanned. The original geometry of the domain is
recovered at integration level by use of the following indicator function

. 1 Vx € Qphy
@= {1075] Vx € Qf’i(;t (30)

where, ideally g — oo, although in practical applications it is usually sufficient to choose g = 4. The
equality of a conforming to a non-conforming Galerkin formulation can easily be shown. For example for
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Figure 11: Setup of the process model

the volumetric term of K;; given in eq. (14) it holds:

Ky = / VN, - (kVN;) dQy,
Q

phy

~ / VN; - (1 k‘VN]) dehy + / VN; - (107g kVN]) deict (31)

Qphy Qfict

Q

All other terms involving volume integrals in eq. (14) can be treated likewise. The convergence of this
scheme is mathematically proven in [28] where it is additionally shown that the influence of a non-zero « is
proportional to a (controllable) modeling error.

The discontinuity of o necessitates adaptive integration schemes, see e.g. [29, 30] for a recent overview
of possible schemes. The simplest (although not most efficient) choice is a composed integration by means
of an octree. This variant will be used to compute the examples in this section.

3.2. Multi-level hp method and the finite cell method at work

We now consider the computational modeling of a SLM process as depicted in fig. 11. The computational
domain consists of a solid base plate upon which one powder layer resides. A laser then solidifies the powder
along the path specified in the illustration. A new layer of powder is added and the process repeats until
10 layers are completed. Each layer has a thickness of 50[um]. The three phases powder, solid and melt
are assigned the temperature dependent material coefficients given in fig. 12. The dependency of the heat
capacity is assumed to be the same for all three phases, while the conductivity is assigned individually
to each phase. The initial temperature of deposited material and base plate is T' = 200°C. Radiation
and convection boundary conditions were applied at the top surface using an emissivity of e = 0.8 and a
convection coefficient of Aeony = 5.7 [W/m2°C]. Homogeneous Neumann boundary conditions are applied
elsewhere.
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Figure 12: Temperature dependent material properties

The discretizational treatment of the process itself is best explained by considering a time-step of the
simulation process. Two grids are used. The grid depicted in fig. 13a describes the material in a voxel-like
fashion, while the other grid depicted in fig. 13b spans the high-order shape functions used for finite cell
discretization of the temperature.

On the material side, four types of domains are to be distinguished: air, powder, solid/liquid and the
base-plate. The distinction between air and powder is modeled by using the a defined by the finite-cell
method (see 30). This interface is explicitly defined as a geometric input. The change between powder and
melt, however, emerges as a result of the power input by the laser beam. This locally emerging change in
material properties is modeled similar to the bar example presented in section 2.4.2. The difference is that
once powder has changed to melt it cannot change back to powder; it can only vary between melt and solid
thereafter.

The grid which spans the basis functions discretizing the temperature field depicted in Figure 13b initially
consists of 8x8x5 base finite cells. It is refined by recursively bisecting the elements three times towards a
(moving) bounding box in the close proximity of the impact point of the laser using the multi-level Ap-method
discussed in 2.3. The smallest elements have an element size of half of the layer thickness in z-direction
and 62.5[umlin in-plain direction. This corresponds to 2.42 finite elements of order p = 3 at the impact
point of the laser which. Under the assumption that the accuracy scales with the number of elements within
the impact point of the laser and the chosen polynomial degree as studied in section 2.4.1, it is possible to
obtain a rough estimate on the accuracy of the computation. In that case the same resolution is obtained
for fife multi-level refinements which led to an accuracy of approx. 4[%] at p = 3 (see fig. 7a black line with
pentagon symbols). This is considered to be in the range of other modeling errors which are even more
difficult to track but naturally occur in the modeling of powder bed fusion processes.

The base level of the grid describing the material coefficients is geometrically and topologically congruent
to the one used for the temperature discretization but both grids refine and de-refine independently of one
another. The maximum refinement of the grid discretizing the state variables is one level finer than the
thermal counterpart. It refines towards sudden changes in the material coefficients. This grid is used for a
partitioned integration of the bilinear forms. The emerging structure (logged in that grid) is depicted along
with the temperature in all physical domains at the representative time steps 220, 1000 and 1670 in figs. 14a
to 14c, respectively.

At this point it is interesting to note the difference to other approaches common in the modelling
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(a) Discretization of the material coefficients: air in dark- (b) Discretization of the temperature field on its the com-

blue, powder in red, solidified domain in brown and base putational domain without voxels containing air in a cut

plate in light blue through half of the domain to better visualize the refine-
ment in the vicinity of the laser impact.

Figure 13: Discretization of material and temperature by means of two grids

of powder bed fusion processes or metal deposition: the quiet element method and the inactive element

method. A comprehensive overview of both strategies is found e.g. in [31, 32, 33] including a discussion of

each methods’ advantages and disadvantages. In essence, the inactive element method activates elements
in the sense of including them in the global stiffness matrix only if material was deposited in the region
covered by the element. In the quiet element method, finite elements are active throughout all time steps
of the simulation but are assigned small conductivities and capacities if no material is present. In this
sense, the presented methodology is more related to the quite element method because regions with no
material are assigned low material properties. The difference lies in the fact that by using the finite cell
method sub-regions within finite cells contain material while other regions of the cell may still be void. In
the presented example, in the region of maximum refinement each layer consists of four layers of voxels.
In turn, four layers are themselves contained in one finite cell at base level. One finite cell, thus, contains
up to 16 voxels in z-direction. These voxels don’t contribute to the number of degrees of freedom to be
solved for. Nevertheless, they increase the resolution of the material properties provided that high-order
shape functions are used to discretize the cells. As a consequence, a comparatively low number of degrees of
freedom suffices for an accurate description of the field variables, e.g. the transient temperatures on evolving
domains. The large gradients in the solution are captured accurately by using the multi-level hp-method
and the necessary refinements can be kept local to the impact region of the laser beam. Figure 14d depicts
the number of degrees of freedom for each time step. It varies between six- and eight thousand and increases
only marginally throughout the process. The periodic spikes occur at time steps where the laser jumps from
one scan path to another while the large plateaus show the change from one layer to another. The complete
computation took approximately 10 hours for 2000 time steps on a standard desktop computer whereby only
45 minutes cpu time were actually used for solving the resulting non-linear equation system. This clearly
indicates that there is room for optimizations.

4. Conclusions

The article at hand presents a computational framework for the simulation of powder bed fusion processes.
The scheme is motivated by the fact that the very strong temperature gradients introduced locally by the
laser beam quickly diffuse away while the state of the material does not diffuse. Therefore, the discretization
of the temperature field is separated from the discretization of the material. These two separate meshes can
then refine and coarsen independently of each other. The computational methodology is verified against
two (semi-)analytical benchmarks. It is demonstrated that the combination of local refinements and high
polynomial degree of the discretizations leads to higher accuracies then only decreasing the mesh size.

The closing example serves to demonstrate the discretizational flexibility of the method for the simulation
of the temperature evolution and the phase changes involved in SLM processes. Herein, the material layers
do not conform to the discretization of the temperature field and the number of the degrees of freedom are
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Figure 14: Temperature field and its discretization with emerging structure at different time steps and number of degrees of
freedom for all time steps throughout the process
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decoupled from the length of the laser scan path. This flexibility in the discretization allows for a practically
constant number of degrees of freedom throughout the entire the computation.

Future research will be directed into extending the methodology to include multi-physical capabilities
such as the computation of thermo-elasto-plastic phenomena in multi-layer processes.
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4.4.2 Residual stresses

Further, the computational model was also extended to involve the mechanical behavior in
order to compute residual stresses which are introduced due to the rapid cooling in the close
vicinity of the melt pool. The corresponding publication which explains the modeling details
of this approach is included next.

Clearly, the question whether a physical model is valid or not must be answered by check-
ing the computational results against the physical phenomena observed in experiments in a
quantitative manner. This is an involved process, since measurements are very difficult to
obtain for the small physical scales at hand. For this reason, the validation of the chosen
elasto-plastic model to compute the residual stresses was not carried out against the process
of selective laser melting but against the process of fusion welding. This manufacturing pro-
cess is similar in nature to SLM in the sense that liquid metal solidifies locally to form an
artifact. However, fusion welding possesses larger time and spatial scales. Strictly spoken,
the model presented in section 4.4.2 is, therefore, not yet validated for SLM due to the lack
of experimental data at the considered scale.
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Abstract

This article addresses the research question if and how the finite cell method, an embedded domain finite el-
ement method of high order, may be used in the simulation of metal deposition to harvest its computational
efficiency. This application demands for the solution of a coupled thermo-elasto-plastic problem on transient
meshes within which history variables need to be managed dynamically on non-boundary conforming dis-
cretizations. To this end, we propose to combine the multi-level hp-method and the finite cell method. The
former was specifically designed to treat high-order finite element discretizations on transient meshes, while
the latter offers a remedy to retain high-order convergence rates also in cases where the physical boundary
does not coincide with the boundary of the discretization. We investigate the performance of the method
at two analytical and one experimental benchmark.
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4.4. Additive Manufacturing

1. Introduction

The process of metal additive manufacturing involves a highly localized heat source which moves over a
substrate. Its purpose is to change the state of the deposited metal either from powder to liquid or from solid
to liquid such that the added material bonds with the substrate. The subsequent, rapid cooling of the heat
affected zone induces undesired residual stresses, a process well understood in welding, see for example [1, 2].
The numerous physical phenomena involved in this process range from the simplified view stated above to
models including detailed weld pool dynamics [3], to models resolving the micro-structure evolution in the
cooling phase (see e.g. [4, 5, 6]). The necessary compromise between the complexity of the physical model
and the ever increasing yet limited resources for its numerical resolution is mainly driven by the concrete
question which needs to be answered by the simulation, (see e.g. [7] for a guideline in welding).

In this context, efficient numerical discretizations are desirable of which the finite element method is the
most prominent choice. A simple measure of its complexity is the number of degrees of freedom involved in
the computation. These represent the unknown coefficients of piecewise polynomials spanned on a mesh of
finite elements which resolve the highly localized gradients. Three basic strategies are available to control
the number of degrees of freedom: a) h-refinement, i.e. an increase of the number of finite elements in the
mesh, b) p-refinement, i.e. an increase of the polynomial degree of each finite element or ¢) the combination
of both: hp-refinement. The achievable rate of convergence increases from a) to c) for problems with locally
high gradients. Unfortunately, so does the complexity of the implementation of the respective method.
This is especially the case in transient problems where the necessary adaptions need to be kept local to the
(traveling) heat affected zone.

Numerous approaches are reported in literature for locally h-refined discretizations, see e.g. [8] as a
representative of an early work on the subject in the context of welding and [9] for a recent review of the
available variants applied to metal additive manufacturing including a review of commercial packages for this
purpose. Refinements in p beyond quadratic shape functions are scarce, but e.g. [10] demonstrates that it is
possible to construct efficient discretizations for elasto-plastic problems by using high order discretizations
whose boundary follows the plastic front. The application of hp-adaptive methods in this context is e.g.
discussed in [11] where exponential convergence rates were achieved for boundary-conforming discretization.
Recently, high-order h refinements have also become of interest in the context of Isogeometric Analysis, see
e.g. [12]. All these publications treat boundary conforming discretizations. Extensions to non-boundary
conforming finite element discretizations are presented in [13, 14] in the context of the finite cell method.
Therein, it is demonstrated that high-order convergence rates may also be achieved even if the physical
boundaries of the domain do not coincide with the discretization of the mesh. This is a desirable feature in
the application at hand where the physical domain grows with time. Additionally, highly localized gradients
need to be followed dynamically though the course of the simulation.

As a remedy for an accurate resolution of transient gradients on non-boundary conforming domains
we advocate a combination of both, the multi-level Ap-method and the finite cell method. To this end,
we first introduce these numerical methods in section 2 where we begin by recalling the multi-level hp-
method. It offers a relatively simple management of the degrees of freedom for transient discretizations of
hp-type. Additionally, we present some novel but straight-forward extensions necessary for elasto-plastic
computations on transient discretizations of hp-type. We then present the computation of elasto-plasticity
in the framework of the finite cell method [15] and proceed to a short description of the thermo-elasto-plastic
problem in section 2.3.

After the basics of the numerical methods are presented, we evaluate their performance against three
benchmark examples. In section 3.1 a sphere under internal pressure in which a plastic front evolves is
investigated. While the exact location of the plastic front is known in this specific case, in a more general
setting it would not be unknown. We, thus, chose a grid-like discretization whose boundaries neither coincide
with the evolving plastic front nor with the physical boundaries of the problem setup itself. We demonstrate
that it is possible to capture the plastic front and the stress states on non-boundary conforming domains
using higher order h— refinements and obtain higher order convergence rates. We then move to the thermo-
elasto-plastic setting in section 3.2 to make the point that it is also possible to capture the plastic stress
states in a coupled setting accurately. The final numerical example presented in section 3.3 is chosen to
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Figure 1: Main idea of the multi-level hp-method in different spatial dimensions [16].

demonstrate that the presented methodology is also capable of reproducing stress states of real experiments.
We conclude the article by pointing out the potential and limits of the presented approach in section 4.

2. Numerical Methods

This section serves to introduce and further develop the numerical techniques which are used and evalu-
ated in section 3. To this end, the multi-level hp-method is first presented in section 2.1 followed by a descrip-
tion on the finite cell method section 2.2. They are then combined to solve problems in elasto-plasticity as
introduced in section 2.3. All these sections form the background for solving thermo-elasto-plastic problems
as introduced in section 2.4.

2.1. The multi-level hp-method

The aforementioned multi-level hp-method is a powerful scheme for performing local mesh adaptation
in an efficient manner. It was first introduced in [17] and aims at a simple degree of freedom management
for dynamic discretizations of high order by performing local refinements based on superposition. For this
purpose, an initial discretization of coarse base elements is overlayed locally with multiple layers of finer
overlay elements so as to better capture the solution behavior such as locally high gradients, see fig. 1. This
is in contrast to standard hAp-methods which perform refinement by replacement where coarse elements are
replaced by a set of smaller elements.

The methodology to overlay finite elements as in the multi-level Ap-method requires the enforcement
of linear independence of the basis functions and compatibility of the ansatz space at the boundary of
the refinement zone. This is achieved in a straightforward manner by leveraging the direct association of
topological components (nodes, edges, faces, volumes) with the degrees of freedom. Compatibility and linear
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independence are ensured through the deactivation of specific topological components. This deactivation is
governed by simple rule-sets, which work for different spatial dimensions [17, 16] alike. This forms a key
strength of the method as compared to classic hp-methods as the simplicity of the rule-sets allow for an easy
treatment of dynamic meshes with arbitrary levels of hanging nodes. The multi-level hp-method results in
C°-continuity over the complete refinement hierarchy in base elements while C*°-continuity is obtained in
the leaf elements — elements on the highest refinement level with no children.

2.2. The finite cell method

The ultimate in the scope of this article is to provide a framework which leaves as much geometric and
topological freedom for the emerging additively manufactured artifact as possible. At the same time, the
effort for mesh generation should be kept as low as possible. These are two main features of immersed meth-
ods, a class of advanced discretization techniques that significantly reduce the effort of mesh generation by
utilizing a non-boundary conforming domain discretization. They have, therefore, emerged as the method of
choice to perform numerical simulations on bodies with a complex shape, topology or a combination of both.
The finite cell method (FCM) introduced in [18, 19], is a prominent representative of immersed methods
whose core idea is to combine the advantages of the fictitious domain approach with the computational
efficiency of discretizations of high order. Its basic idea is depicted in fig. 2. A body of complex shape and
topology defined on a physical domain Qs is extended by a fictitious domain Q. Their union yields a
computational domain £ = Qppys U Qge¢ with a simple boundary which can be discretized using well shaped
finite elements. These form the support of the ansatz functions and are termed finite cells as their boundary
is not conforming to the boundary of the original, physical boundary d€Qpnys. The physical domain must
then be recovered at the level of the numerical integration of the associated bi-linear and linear forms. An
indicator function « is introduced to classify points belonging to the physical or fictitious domain. Points
within the physical domain are assigned a value o = 1, whereas points in the fictitious domain have a value
a < 1. While a detailed description of the FCM can be found in [18, 15, 19], the short and concise rehearsal

r
1y Y inct ,""‘\‘ a<<1

O O Q= Qphys ) inct g Do
] I i

N 2 \
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\ -
\ v
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Figure 2: Core idea of the finite cell method.

of its basic ideas above suffices to set the stage for its extension to elasto-plastic problems as laid out in the
next section.

2.3. Elasto-plasticity with the multi-level hp method

The stage is now set to develop an efficient elasto-plastic formulation which combines the multi-level
hp-method with the finite cell method as presented in sections 2.1 and 2.2.

The finite cell method has already been successfully used in the field of plasticity. The work most relevant
to the paper at hand is published in [20] in which the FCM was implemented for the .J; flow theory with
nonlinear, isotropic hardening for small displacements and small strains. Further, in [13] it is demonstrated
that the FCM leads to more efficient discretizations than the standard, boundary conforming h-version of
the finite element method delivers. The FCM has recently also been extended to nearly incompressible
finite strain plasticity with complex geometries, see [14]. All these investigations were carried out on static
discretizations in the sense that no dynamic refinement was applied locally to capture transient plastic fronts.
However, in layered deposition modeling the size of the traveling heat source is comparatively small w.r.t.
the rest of the computational domain. In these applications, a dynamic refinement and coarsening offers
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a discretizational advantage because the computational effort can thereby be balanced with the accuracy
needed locally. However, this requires a dynamic management of primal and internal variables.

To facilitate a comprehensive but concise presentation of this subject, the next sections start with the
classic formulation of J, plasticity in 2.3.1. The standard setting is then cast into the FCM formalism
in section 2.3.2 before the integration of the multi-level Ap-method into the elasto-plastic FCM framework
is treated in section 2.3.3 along with the associated management of primal and internal variables.

2.8.1. Classic Jo plasticity
The classic weak form of equilibrium in a solid body is given by

G(u,n)—ﬂ/e(n):UdQ—Q/nJ)dQ—FZn‘tdF—O, (1)

where w is the displacement field, i is the test function, o the Cauchy stress tensor, € the strain tensor, b
are the body forces acting on the domain, 2, and ¢ is the prescribed traction on the Neumann boundary,
I'ny. When a nonlinear material is utilized, the stress state is not only a function of the instantaneous strain.
Instead, the stress state also depends on the history of the loads the body was subjected to. Consequently,
the weak form (1) becomes nonlinear and is solved incrementally for each time step [tn,¢n4+1]. Within
each time step the internal variables, A, which contain the history of the material, are assumed constant.
Linearization of the weak form with respect to the unknown = around uSﬁrl , which is the solution at
iteration i, is given e.g. in [21] and reads

/s(n) :D:e(du)dQ = —/s(n) : o'n+1(An7€(u£jil)) dQ

O o)
(2)
+/77' bry1dQ + /77 “tpprdl
Q I'n

where the fourth order tensor D is the tangent modulus defined as

60n+1

D= Oe

(3)

(i)

5("n+1)

2.3.2. The elasto-plastic finite cell method
In order to apply the finite cell method, the domain integrals in eq. (2) are multiplied with the indicator
function «a such that

/as(n) :D:e(du)dQ = f/ae(n) : a'n+1()\n,z-:(u£3rl))dﬂ

Q Q
) ()
+/an~ andQJr/n-thdl".
Q I'n

Since the solution in the fictitious domain is unphysical, computing the tangent modulus or stresses in the
fictitious domain causes unnecessary computational overhead. Therefore, the deformation in the fictitious
domain is neglected and stresses are assumed to be zero (o f;c+ = 0). Moreover, the tangent modulus is taken
as the elastic tangent (Dy;, = D). Incorporating these assumptions into eq. (4) provides the following
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1. Linear elastic law:

2. Yield function:

3. Plastic flow rule:

4. Hardening law:

5. Kuhn-Tucker conditions:

Figure 3: Summary of the rate-independent von Mises associative model with nonlinear isotropic hardening

linearized weak form of equilibrium for elasto-plastic problems

/ e(n):D:e(0u)dQ+ / ae(n): D°:e(0u)dQ =
Qphys Qfice

- [ emionnGnela s [an biades [0t
Qphys Q I'n

(5)

In this paper, a rate-independent von Mises plasticity model with nonlinear isotropic hardening is con-
sidered whereby the displacements and strains are assumed to be small. The classic, additive decomposition
of the strain tensor into an elastic and a plastic counterpart is then applied such that

e =¢g°+¢€". (6)
Figure 3 summarizes this model, in which the internal variables A are given by

A={el e’} (7)
where &P is the equivalent plastic strain.

2.8.8. Multi-level hp-adaptivity and the transfer of primary and internal variables

In the case of dynamic multi-level hp-refinements the primary variables given by the displacement field,
u, and internal variables given by A, need to be transferred from the old discretization prior to the refinement
to the new discretization after the refinement was carried out. Since the displacement field over the domain is
discretized by the basis functions, a global C° continuous description is available which is directly transferred
to the new discretization by means of a global Lo-projection. However, in the general elasto-plastic finite

6

Journal publication: https://doi.org/10.1016/j.camwa.2018.10.027



https://doi.org/10.1016/j.camwa.2018.10.027

250

element procedure, the evolution of the internal variables is computed at local integration points via the
plastic flow rule and the hardening law. As no C° continuous discretization is readily available, the transfer
of these variables from the integration points of the old discretization to the integration points of the new
one is more involved.

As a remedy, several strategies have been developed in literature. The simplest is the point-wise transfer
of the internal variables [22]. Therein, an area is associated to each old integration point within which
constant values of the history variables are assumed. This leads to a discontinuous approximation of the
history variables within the concerned finite elements. Another strategy is the element-wise transfer [23],
where the internal variables are interpolated by local functions. This strategy can result in an approximation
with discontinuities over element boundaries. A cure is offered by the large group of strategies involving
nodal projections. Therein the internal variables are first transferred from integration points of the old
discretization to the nodal degrees of freedom of that old discretization. This is achieved in [22] and [24] by
extrapolating the values from integration points to the nodal dofs for each element locally and later averaging
these extrapolated values. Another possibility is to use the super convergent patch recovery technique as
presented in [25, 26, 27, 28|, for the transfer of the values from the integration points of the old mesh to
its nodes. In this approach a patch consists of elements that surround a node and the internal variables
are fitted to continuous polynomials over each patch by a least squares method and are then interpolated
to the nodal points. Independent of how the values are obtained at the nodes of the old discretization, the
next step is to interpolate them to the new nodal points in the new mesh. Finally, the values of the internal
variables at the new integration points are interpolated from the values of the new nodal points. Since this
strategy acts as a smoothing operator, the localized internal variables are smeared out over a larger part of
the domain. This can be a drawback in elasto-plastic analysis, because plasticity is a local effect in most
cases.

Unfortunately, none of these techniques are suitable for the multi-level hp-adaptivity. This is mainly
due to the fact that the high order basis functions are modal functions, which are not associated to specific
nodes. For this reason a modified version of the element-wise transfer [23] is advocated in the paper at hand
in which each component of the internal variables, );, is approximated such that

N = A =P(r,5,t)c (8)

where P is a vector of integrated Legendre polynomials as used in p-version of FEM [29] and c is the
corresponding coefficient vector. It is explicitly pointed out that these polynomials only span the leaf
element, where (7, s,t) denotes the local coordinates of this element. The coefficient vector, ¢ is determined
by applying a least square fit to the discrete integration point values, )\fl(rj, 5;,t;), inside the leaf element.
This is done by minimizing the function, F(c),

Ngp

F(e) =Y (M(ry,s5,t;) = Prj,s5,t5) €), (9)

Jj=1

which is carried out by differentiating F' with respect to c as

oF
—_  —=b—-—Ac=0 10
dc ¢ ’ (10)
with . .
A= "PT(rj,85,t) P(ry,s5,t5), b= PT(rj,s;,4;) M (rj,85,1;). (11)
pst i=1

Equation (10) leads to the following linear system of equations
Ac=Db, (12)
which needs to be solved for each component of the internal variables.

7
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If this projection strategy is applied to the elements that contain the plastic front, i.e. in which only
a group of integration points in the element accumulated plastic strains, then the proposed least squares
approximation may lead to oscillations and spurious values. In some cases it is even possible to obtain
invalid negative values for the equivalent plastic strain. Figure 4 illustrates this for the polynomial order
p = 4 for a simple one dimensional example in which the equivalent plastic strain should be nonzero for the
two plastified integration points and zero for the three elastic integration points. This function cannot be
represented by polynomials and the well known Gibbs phenomenon occurs.

4 I I I I T I
351 least squares projection A

3| @ elastic integration points |
25 B plastic integration points N

equivalent plastic strain
—
¥
I I I
L L

Figure 4: Convergence

In order to circumvent this problem, the values in those elements containing a elastic-plastic interface
are not projected with the least squares method. Instead, for these elements we advocate the following
approach depicted in Figure 5a. Four cases are distinguished and characterized by the location of the
integration points w.r.t. the concerned interpolation point. The first case is given in Figure 5b where the
interpolation point p; is located inside the gray bounding box defined by all integration points. In this
case the internal variables, \; at p; are approximated by a trilinear interpolation from the values of the
eight integration points closely surrounding it. In all the other cases the interpolation point p is located
outside the gray bounding box. Therefore, its projection onto the corresponding surface, edge or corner of
the bounding box, p*, is used for interpolation. Figure 5c depicts the second case in which the projection of
p2 is surrounded by only four points. These are then used for bilinear interpolation. The third case occurs
when the projected point is surrounded by only two points as demonstrated in Figure 5d. In this case
linear interpolation is applied. The last case occurs when the original interpolation point lies in the corner
quadrants of the finite cell. In this case values at the closest integration point are used. We will demonstrate
in section 3 that this approach is feasible for dynamic multi-level hp-discretizations in an elasto-plastic
setting.

2.4. Coupling to thermal problems

Metal deposition is a multi-physics problem, where the highest temperature gradients as well as the
phase changes occur in close vicinity of the moving laser beam. The phase changes between liquid and solid
states are simulated by the model introduced by Celentano et. al. [30] which uses the discretized weak
form of equation (14). Further details regarding this method and its application to thermal analysis of the
selective laser melting process in the framework of multi-level hp-adaptivity can be found in [31].

ar 0 f pe
P TP

— V- (kVT)=Q (13)

A dynamically adaptable data container (multi-level grid) is used to keep track of the physical domain
Qphys during the deposition process. The container represents a dynamic octree. It stores the current
material state of a voxel at all points in time. Material states are stored in this container and not associated
to finite elements. This decoupling of material and discretization facilitates the use of the finite cell method.

8
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Figure 5: Interpolation in interface element

Due to the changes in the temperature during the process, some regions in the domain expand, while
others contract. This generates residual stresses in the part when the thermal load is removed and the
material allowed to cool down to its initial temperature. These stresses are computed by the quasi-static
mechanical model, given in Section 2.3 with the addition of the thermal strain defined as

eth =y AT, (14)

where « is the thermal expansion coefficient and I is the second order identity tensor. Adding the thermal
strain component extends the additive decomposition of strains given in equation (6) to

e=¢e°+ef e (15)

It should be noted that, the von Mises plasticity depends solely on the deviatoric part of the strain tensor
and the thermal strain is purely hydrostatic. Therefore, the basic structure of the elasto-plastic model
introduced in Section 2.3 remains as is. Only the additive decomposition of the strains changes along with
the fact that the yield stress and the thermal expansion coefficient are now temperature dependent functions.

It is assumed that displacements are small and do not produce heat, so that only a one-directional
coupling has to be taken into account, i.e. only the displacement field is affected by the changes in the
temperature field. As shown in Figure 6, a staggered approach is taken for the solution of the thermo-
mechanically coupled problem. For each time step, the multi-level grid is first updated according to the
metal deposition such that the physical domain, 0,4y, is defined for both the thermal and the mechanical
problems. Then, the thermal problem is solved to obtain the temperature distribution. Finally, the resulting
temperature field is used to compute the thermal strains and temperature-dependent material properties
used to solve the mechanical problem before the next time step is computed.
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Figure 6: Thermomechanical coupling

3. Numerical Examples

All presented examples have benchmark character and are chosen thoroughly to test the main aspects
of the proposed methodology. The first example discussed in section 3.1 is chosen to test if higher order
convergence rates are possible in elasto-plastic computations and under what circumstances they decay. To
this end, a dynamic multi-level hp-refinement as presented in section 2.1 is carried out towards the plastic
front in several load steps whereby the plastic front itself is not resolved in a boundary conforming manner
but travels through finite cells. This situation is expected for engineering applications. The example also
tests the finite cell formulation presented in section 2.2 in the elasto-plastic embedded domain setting as
described in section 2.3 by resolving the boundary of the physical domain only on integration level. It also
serves as a test for the transfer of history variables as detailed in section 2.3.3.

The second example given in section 3.2 is chosen to verify the thermo-elasto-plastic coupling procedure
laid out in section 2.4. Both fields are discretized on separate computational grids which are refined and
de-refined individually according to the requirements of the corresponding field variable.

The final example presented in section 3.3 tests the combination of the methodology on a experimental
benchmark used in welding. As such, it constitutes a first step towards a verification of the proposed
methodology for layer deposition modeling.

3.1. Internally pressurized spherical shell

In this example internal pressure, P, is applied in increments to a spherical shell, which is composed of
an elastic perfectly plastic material with a von Mises yield criterion. Figure 7a illustrates the problem setup,
where r;, r, and r, are inner radius, outer radius and the radius of the plastic front, respectively. Hill [32]
provides an analytical solution to this problem. Equation (16) gives the relation between the location of the
plastic front, ,,, and the applied internal pressure, P, wherein o, is the yield stress.

) 3
P:QUyIH(%)—F%(l—%) (16)

The analytical solutions of the normal stresses in spherical coordinates are provided in equations (17) and
(18). The shear components in spherical coordinates are zero.

r 1 3 .
*20'y|:11’1 (71)) + §<17 %)] if r<r,

20,73 (13
y'p o .
- <2 -1 if r>r

3rd \rd P
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(a) An octant of the spherical shell (b) Smart octree integration on 4 X 4 X 4 base mesh

Figure 7: Set up of internally pressurized sphere

1 Tp 1 Tg .
20’y|:§—1n(7>—§< _E if r<r,

To0 = Opp = (18)

2ay7°g rd .
313 (2r3+1) if r>mr

Due to symmetry, only an octant of the whole spherical shell is considered in the numerical model with
the appropriate symmetry boundary conditions. The shell is embedded in a Cartesian grid of size 4 x 4 x 4
elements, where finite cells located completely outside the spherical shell are removed from the computation.
For the numerical simulations the spherical shell is selected to have an inner radius of 50 mm and outer
radius of 100 mm. The Young’s modulus, F, and Poisson’s ratio, v, are set to 10 GPa and 0.3, respectively,
and the yield stress, o, is set to 41.79389833783693 MPa.

The geometry of the spherical shell is captured at the integration level by utilizing the smart octree
algorithm as explained in [33]. Figure 7b illustrates the resulting integration points and cells for base
elements.

Figure 8 shows the distribution of the radial stresses on a dynamically adaptive multi-level hp-discretization
for three load steps, where the polynomial degree of the basis functions is chosen to be p = 4 and maxi-
mum refinement level is set to 3. In each step the elements that are close to the plastic front are refined
and the elements that are further away from the plastic front are coarsened. Moreover, in each step the
primary variables related to degrees of freedom and internal variables at integration points are transferred
as explained in Section 2.3.3.

It can be seen from the equations (17) and (18) that the stresses vary only in r-direction and are constant
in 6- and ¢-directions. Therefore, it is sufficient to compare the computed stresses along the radius of the
spherical shell to the analytical stresses as depicted in Figure 9 and Figure 10. Both radial and tangential
stress results obtained from the numerical simulation match their analytical counterparts for each load step.
The different material behavior in elastic and plastic regions introduces a kink in the stress field, which is
more blatant for the tangential stress. The introduced multi-level hp-refinement towards that elastic-plastic
interface allows the numerical solution to closely capture this behavior.

In order to investigate the convergence properties of this elasto-plastic problem in the framework of

11
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(a) Radial stresses at P = 40 MPa (b) Radial stresses at P = 45 MPa (c) Radial stresses at P = 50 MPa

Figure 8: Radial stresses on a dynamically adaptive multi-level hp-discretization with polynomial degree 4.

the multi-level hp-adaptive finite cell method as described in sections 2.1 to 2.3, p-convergence studies are
performed by uniformly elevating the order p of the polynomial shape functions, while keeping the size of
the base elements fixed. For these studies a 4 x 4 x 4 base mesh is used, which is recursively refined towards
the elastic-plastic interface. Moreover, an internal pressure P = 50 MPa is applied in one load step for each
computation. To this end, the relative error in energy is monitored, which is defined as

|Uez - Unum‘
=4/ ———— x 100 19
e 0. x 100, (19)

with the exact internal energy, U.,, and the numerical internal energy, U, um, computed as

U= /e o dQ. (20)

Q

I\D\H

By using the analytical solutions in equation (20) the exact internal energy for an octant of the spherical
shell is obtained as follows

_ wPoyr} 7‘13) 2 7’3

Figure 11 shows the relative error in energy with respect to the number of degrees of freedom for studies
where the maximum refinement level is increased from zero to three. To rule out any domain integration
errors, all volumetric integrals were evaluated exactly following [33]. The curve without any multi-level
refinement depicts exponential convergence in the pre-asymptotic range until the error is dominated by
the kink in the solution field caused by the elastic-plastic interface. This kink is neither resolved by the
boundaries of the finite cells nor is the error controlled by a refinement in the vicinity of this irregularity in
the solution. Therefore, in the asymptotic range, the error decreases only algebraically when the polynomial
degree is further increased. The kink in the solution field is better approximated by the basis functions as
the elements are refined towards the elastic-plastic interface with hierarchical multi-level refinement. This
can be seen in curves with one and two refinement levels towards the elastic-plastic interface, where the
point at which the convergence levels off to its asymptotic value occurs much later. The curve with three
refinement levels converges exponentially. Here, the error at the interface does not dominate the overall
error.

This demonstrates that the combination of the techniques presented in sections 2.1 to 2.3 is able to main-
tain the expected convergence behavior for higher-order methods even if neither the physical boundaries of
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Figure 9: Radial stresses along radius of the spherical shell

an artifact nor an evolving elasto-plastic front are explicitly captured by the boundaries of the discretization.

3.2. Thermo-elasto-plastic bar example
In this section, the thermo-mechanical model introduced in Section 2.4 is investigated in the framework
of multi-level hp-adaptivity. To this end, an idealized version of the metal casting process is simulated on a
semi-infinite bar. Initially, the bar, which is given in Figure 12, is liquid with a uniform temperature, T;.
Then, the temperature at the boundary x = 0 is instantaneously changed to T}, and kept constant. T}, is
lower than the melting temperature, 7,,. Therefore, the bar starts to solidify from this boundary onwards.
The analytical solution to the thermal part of this problem is described in [34] and is known in the
literature as Neumanns’s method, see e.g. [35, 36]. The position of the liquid-solid interface is given as
X(t) =2\ Vat, (22)
where « is the diffusivity of the material and ¢ is the time. The constant A is computed by solving the
following nonlinear equation

67)\2 e,/\2 (Tm - 712)

_ALyR
orf(N) | erfe(N) (T, — Tw) (23)

c(Tm —Ty)’

where L is the latent heat and c is the heat capacity. The analytical temperature distribution is given in
equation (24) for the semi-infinite bar.

erf(x/2v/at)

w) e

peo) if x<X(t)

Tw + (Tm -

T(z,t) = (24)

T erfe(x/2v/at)

erfe(\) if =>X(t)

E + (Tm

By using the temperature distribution over the body obtained from the Neumanns’s method, Weiner and
Boley [37] developed an analytical solution for the thermal stresses for this problem. They assumed that

13

Journal publication: https://doi.org/10.1016/j.camwa.2018.10.027



https://doi.org/10.1016/j.camwa.2018.10.027

4.4. Additive Manufacturing

30 30 30
20 |- \ 7 20 - /\\
g 5 $
pe] pe e
n 0 n
=] =] =
ERRTIE 4z . :
= =] =
5] 5] 5]
o0 o0 o0
] g g
= = =
0 1 (A 1
—— Analytic Analytic Analytic
- - - Numeric - - - Numeric - - - Numeric
—10 L L L L —10 L L L L —10 L L L L
50 60 70 80 90 100 50 60 70 80 90 100 50 60 70 80 90 100
Radius Radius Radius
(a) P = 40 MPa (b) P = 45 MPa (¢) P = 50 MPa

Figure 10: Tangential stresses along the radius of the spherical shell

the body is composed of an elastic perfectly plastic material with a yield stress, o, which linearly decreases
as the temperature reaches the melting point, where it becomes zero:

Th —T
Opo—r  if T, <T < T,
T — T
oy (T) = (25)

0 if T>T,.
Moreover, the following dimensionless quantities are introduced,

m— (1 —v)oy, D— 1 PO 5o o(l-v)

CYE(Tn —Ty)’ erf(\)’ X(t)’ SE Ty —Tw)’ (26)

where F, v and « are Young’s modulus, Poisson’s ratio and thermal expansion coefficient, respectively. The
analytical solution of the dimensionless normal stress components in y- and z-directions are then given as

m[Derf(Az) — 1] if 0<2<29

m [l — Derf(AZ1)] + D [erf(A &) — erf(A Z)]

2 2.2 X
———=D(1—m)Ad; e % log(— if 2o<2<12
S =anle)={  TyED (TR REEER
m[l — Derf(AZ)] it Z1<2<1
0 if £>1

where the coordinates #; and #2 denote the elastic-plastic interfaces. According to this solution, the solid
material behaves elastic within the range [Z2, #1] and plastic in ranges [0, £3] and [%;, 1]. The positions of
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Figure 11: Convergence in energy norm starting from a 4 x 4 x 4 base mesh with multi-level hp refinement (ml).
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Figure 12: Set up of solidifying bar

these interfaces are obtained by solving the following nonlinear equations

2(1—m) N2y e N (3 — d9) = (L+m) e V%2 — (1 —m)exp(—A222) — m(e > +1),

A 2@% 3 28
2(1 —m) Ay e log(=2) = (1 — m)erf(A21) — (1 + m) erf(Ad2) + 2merf()) =
e L2

The values that are selected for the material properties of this problem are provided in Figure 12. With
these values, the constant A is computed as 0.330825295611989, while the coordinates Z; and & are found
to be 0.45487188 and 0.21570439, respectively.

The transient thermal problem is solved on a base mesh with 32 hexahedral elements of order p = 3
that are distributed in x-direction. Homogeneous Neumann boundary conditions are applied along y- and
z-directions and Dirichlet boundary conditions are applied in the yz-plane at x = 0 and « = 100. In order to
better represent the kink in the temperature field, the elements are dynamically refined three times towards
the solid-liquid interface. The time step for the backward Euler scheme is chosen to be ¢ = 0.1 seconds.

The simulation for the quasi-static mechanical problem is carried out on a base mesh with 16 hexahedral
elements of order p = 4 which are dynamically refined twice towards both the solid-liquid interface and the
elastic-plastic interfaces. During the simulation the liquid part of the bar is treated as a fictitious domain
as explained in Section 2.2 by multiplying E with o = 1078, Extended plane strain conditions are applied
along y- and z-directions such that €,, and €., are constant. This is achieved by constraining all degree of
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Figure 13: Temperature and stress distributions at various time states on dynamically refined thermal and mechanical meshes,
respectively

freedoms corresponding to displacements in y- and z-directions to be equal via Lagrange multipliers. As for
the x-direction, the bar is fixed at z = 0 and left free at = = 100.

Figure 13 presents the results of the thermal and the mechanical problems for the time states ¢ =
{1,5.1,13.2} seconds. For the thermal problem the evolution of the temperature field is provided over the
dynamically adapted thermal mesh. As for the mechanical problem the stress component in z-direction (o)
is given over the dynamically adapted mechanical mesh. The sequence of figures demonstrates how elements
are refined and coarsened during the simulation for thermal and mechanical problems independently.

Figure 14 compares the temperature distribution along the bar to the analytical solution obtained by
the Neumanns’s method. The kink in the temperature field at melting temperature, which is caused by the
latent heat release during the phase change from liquid to solid, is well captured in all time states as well
as the general temperature profile along the bar. The stress component in z-direction (o,) along the bar
is depicted in Figure 15 along with the analytical solution provided by Weiner and Boley. The kinks at the
elastio-plastic interfaces and the solid-liquid interface are well represented due to refinements. Moreover, it
can be seen that the numerical results closely match their analytical counterparts along the bar at all time
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Figure 15: Comparison of the numerical and the analytical stress (o..) distribution along x-axis.

steps of the computation.

3.8. Applications to metal deposition

In this section the performance of the numerical method introduced in Section 2 in simulating metal
deposition processes is investigated against the benchmark problem of a single bead laid down on the top
surface of a plate as published in [38]. This benchmark problem is produced by the European Network on
Neutron Techniques Standardization for Structural Integrity (NeT), whose mission is to develop experimental
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Figure 16: Setup of welding

and numerical techniques and standards for the reliable characterisation of residual stresses in structural
welds. Partners from industry and academia participated in this benchmark by constructing an experiment
and measuring the residual stresses on the plate [39, 40, 41, 42, 43] or predicting the residual stresses through
numerical methods [44, 39, 45, 46, 40, 47]. Smith et. al. compares the residual stress measurements and
predictions of all these groups in [48].

Figure 16 illustrates the setup of the benchmark problem where the plate has dimensions 180 mm x 120
mm X 17 mm in length, width and thickness, respectively. Additionally, the bead that is laid down on the
top surface of the plate has a width of 5 mm, thickness of 0.8 mm and a length of 60 mm.

According to the benchmark protocol, the plate and the bead material is AISI Type 316L stainless steel.
NeT recommends using slightly different temperature dependent material properties for the parent and weld
metal. However, in this work the weld metal is not distinguished from the parent metal. Table 1 provides
the temperature dependent specific heat, conductivity, thermal expansion coefficient and Young’s modulus.
Over the melting temperature of 1400 °C these values are assumed to be constant. In addition to that
the density and Poisson’s ratio are assumed to be constant values of 7966 kg m~ and 0.294, respectively
and latent heat is taken as 260 kJ/kg. Finally, the monotonic tensile test results, which show the true
stress corresponding to the percentage of plastic strain, is given in Table 2 by NeT. The isotropic hardening
behaviour of the material is based on this table.

The heat input from the welding torch, which travels with the speed of 2.27 mm/s, is defined by NeT as
633 J/mm. The moving heat source is based on the Goldak’s [49] ellipsoidal model, which is widely used in
welding simulations. In this model the body load is given as

ie (5 AR ()

- . 29
q(z,y, 2) T e , (29)

where z., y. and z. define the position of the welding torch and 7., r, and r, are the semi-axes of the
ellipsoid. Shan et. al.[44] uses the weld bead profile measurements to decide the semi-axes of the ellipsoid,
which is followed in this work. According to these measurements 7, r, and 7, are assumed to be 1.9 mm,
3.2 mm and 2.8 mm, respectively. Moreover, in equation (29) @ is the power of the heat source, which is
computed from the heat input and the welding speed as 1437 Watt.

The heat loss from the system is modeled with radiation and convection boundary conditions on the
surface of the weld bead and the plate. During the process, the surface is updated as new weld bead is
deposited. The convection coefficient and the emissivity are taken as 10 W/m2K and 0.75, respectively
and they are assumed to be independent of the temperature. Additionally, the ambient temperature is also
assumed to be constant at 20 °C.

Due to symmetry, only half of the plate and the weld bead is considered as shown in Figure 17 for the
numerical model with the appropriate symmetry boundary conditions. The plate and the weld bead are
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Table 1: Material properties of AISI Type 316L stainless steel [44].

Temperature  Specific heat  Conductivity = Thermal expansion  Young’s modulus

[°C] kJ/kg/°C] [W/m/°C]| [x10%® mm/mm/°C] [GPa]
20 0.492 14.12 14.56 195.6
100 0.502 15.26 15.39 191.2
200 0.514 16.69 16.21 185.4
300 0.526 18.11 16.86 179.6
400 0.538 19.54 17.37 172.6
500 0.550 20.96 17.78 164.5
600 0.562 22.38 18.12 155.0
700 0.575 23.81 18.43 144.1
800 0.587 25.23 18.72 1314
900 0.599 26.66 18.99 116.8
1000 0.611 28.08 19.27 100.0
1100 0.623 29.50 19.53 80.0
1200 0.635 30.93 19.79 57.0
1300 0.647 32.35 20.02 30.0
1400 0.659 33.78 20.21 2.0

Table 2: True stress values [MPa] of AISI Type 316L stainless steel at various true plastic strain [40].

Temperature [°C] 0% 0.2% 1% 2% 5% 10% 20% 30% 40%

23 210 238 292 325 393 494 648 775 880
275 150 173.7 217 249 325 424 544 575
550 112 1423 178 211 286 380 480 500
750 95  114.7 147 167 195 216 231 236
800 88 112 120 129 150 169 183

900 69 70 173 76 81

1100 224

1400 2.7

embedded in a Cartesian grid of size 30 x 12 x 7 elements with polynomial order 3 for both the thermal
and mechanical problems. The dimensions of the computational domain are 180 mm, 60 mm and 18.6 mm
in length, width and thickness, respectively. It should be noted that the thickness of the computational
domain is greater than the total thickness of the plate and the weld bead, which is 17.8 mm. The first six
rows of elements in thickness are used to discretize the plate, while the weld bead is embedded in the last
row of elements.

Figure 18 shows a snapshot of the dynamic meshes of the thermal and the mechanical problems with
material states, where red, blue and white (hollow) denote weld bead, plate and air, respectively. It should
be noted that only the mechanical mesh is refined once along the welding line before deposition starts, which
is not coarsened afterwards. Whereas, both meshes are dynamically refined twice towards the weld torch
when material is deposited. The weld torch is set to travel 1.5 mm in each time step. Therefore, the newly
deposited domain near the weld torch can be captured by the sub-element boundaries and the multi-level
grid that keeps track of the physical domain. As the weld torch moves further away, these sub-elements are
coarsened while the multi-level grid is used to remember the deposited domain as explained in Section 2.4.
Figure 19 depicts the dynamic meshes with temperature and longitudinal stress (o) distributions during
the deposition period.
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(a) Mesh of the thermal problem (b) Mesh of the mechanical problem

Figure 18: Meshes used for numerical simulation with material states, where red, blue and white (hollow) denote weld bead,
plate and air, respectively.

Residual stress distributions after the parts are cooled down to the room temperature are given in
Figure 20 over the physical domain. Gilles et. al. [45] measures the longitudinal and transverse residual
stresses with a neutron diffraction technique over the lines AB and CD. These lines can be seen in Figure 17.
Figure 21 and Figure 22 compare the numerically predicted residual stresses to the measurements from
experiment by Gilles et. al. along the lines AB and CD, respectively. It can be seen from these figures that
the measured and the numerically computed stress profiles are in good agreement. However, utilizing the
complete isotropic hardening values in Table 2 results in higher residual stress especially for the longitudinal
stress component, which is also reported by Gilles et. al. [45]. Their explanation for effect is that the
isotropic hardening law which does not consider stress relaxation due to viscoplastic effects or hardening
recovery is not good enough to simulate cyclic loads which occur during the welding process. Therefore, the
isotropic hardening model is modified in this work such that over one percent of plastic strain the material
is assumed to behave elastic perfectly plastic. The results with this modified model match the experimental
values as illustrated in Figure 21.

4. Summary and conclusions

The article at hand evaluates if high-order finite elements may be used in metal deposition modeling. To
this end, the finite cell method, an embedded domain method of high order, was used. It was demonstrated
that this method, combined with the multi-level hp-method, leads to high-order convergence rates even if
neither, the physical boundaries nor the plastic front is resolved by the boundaries of the computational
mesh. Therefore, high-order embedded domain modeling is a valid computational option. Very accurate
results were also achieved in the thermo-elasto-plastic setting. Therein, the thermal and the elasto-plastic
field variables were computed on their own high-order discetizations and coupled by means of a classical
staggered scheme. In all of the computations the state variables were decoupled from the finite cells in an
FCM sense by managing them on another computational grid. This allows for their separate coarsening
and refinement and a simulation where material can be submerged into the computation on a sub-element
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Figure 19: Evolution of the temperature and longitudinal stress longitudinal stress (oz) distributions during the welding
process on dynamic meshes at various time states.
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Figure 20: Residual stress distributions after cooling down to room temperature.
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level i.e. the addition of material is not equal to the addition of finite cells. The methods were thoroughly
verified in semi-analytical benchmarks and then applied to an experimental benchmark of metal deposition.
A good agreement with the experimentally measured residual strains/stresses was found.

While the overall computational methodology leads to very accurate results open research questions
remain. For example, the presented de-refinements in the mechanical part of the simulation are clearly a
valid option to accurately compute the stress states in the vicinity of a plastic front. However, the stress
state in a manufactured part does not only consist of one plastic front and rather smooth stress states to the
side of it. Instead, very complex, local stress states may be present. A straightforward coarsening procedure
of the grid in these regions will cause smoothing effects for variables which are not diffusive by nature. It is
beyond the scope of this paper to study the influence of strong, local coarsening in complex stress states and
their effect in more involved computations. The investigation of this challenge remains open. Since the local
plastic strains are not connected to the finite cells but stored in an extra grid which acts like a computational
database, one option would be not to coarsen them at all. The computational grid, carrying the degrees of
freedom could be coarsened independently. Such a procedure would allow for a constant number of degrees
of freedom throughout the computation while detailed information on the local plastic strains would still be
available if needed even if the finite cells were coarsened.

Next, it is worthwile to investigate the wall-clock time advantages of the computational approach w.r.t.
conventional modeling techniques in detail. This is not easy to some extent because a fair comparison requires
an efficient implementation of both techniques which is not available at present. Clearly, the modeling
flexibility gained by the presented embedded domain method of high order using transient refinements does
introduce a certain implementational as well as a computational overhead as compared to a classical fixed-
grid approaches. The break-even point of refining and de-refining regarding wall-clock time further depends
on the scale of the computations. However, to refine everywhere to the finest level required locally is also
not an option. Thus, refinements and de-refinements must be used for efficient computations. How this is
possible was investigated in the article at hand, but its comparison to other refinement techniques remains
an open question. The current computations hint that the type of microscopic computations in the metal
depositing process presented in the last example pay off in a multi-layer process whereby the refinement and
de-refinement is not carried out at each time increment.

In summary, the article presents the first verified and validated steps of a novel computational method-
ology for the analysis of metal deposition modeling in an embedded domain sense using locally refined,
transient discretizations of hp-type. As such, it demonstrates that this computational methodology is a
valid option for the analysis of metal deposition.
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4.4.3 Forecasting melt pool geometries

It was possible to carry out a thorough validation of the transient thermal-solidification model.
This validation is discussed in detail in [82] and presented next in form of that publication.
The quantities of interest were the width, depth, and length of the melt pool of a SLM
process, as well as the associated cooling rates. The measurements were performed for a
series of benchmarks which were defined and measured very recently at the National Institute
of Standards and Technology in USA [83]. Their goal is to establish industrial benchmarks
for SLM processes precisely to validate physical models of the process.

Before the corresponding journal publication is presented, it is worth to consider some remarks
on the process of modeling itself in computational analysis. All models have to be calibrated
against a fixed reference case. Of course, it is good practice to carry out a model calibration
using only parameters that cannot be measured easily. For example, if the shape of the laser
beam is not well known, it is a valid choice to use the power distribution of the laser to fit
the computational results to the measured results in one reference case. Such a calibration
is only accurate up to a certain deviation from the experiment. It is important to note that
this first calibration step only proves that the model is actually able to replicate the obtained
experimental results. The more interesting task is to determine the range of validity of the
considered model i.e. how robust the predictions are w.r.t. variations of the input parameters.
To this end, the calibrated computational model then has to be executed for different laser
speeds and different laser powers, which again correspond to a set of benchmark experiments.
However, in the sense of a double-blind comparison, the experimental results should not be
available to the computational scientist. This was the case in the computations of the melt
pool geometries presented in section 4.4.3. This double-blind comparison revealed that the
physical model could actually only predict the melt pool shapes up to 5.9% in length, 19.3%
in width, and 18.6% in depth. This large deviation revealed that the physical model required
an update to take the convection inside the melt pool into account. This convection was
first neglected due to the expected large increase in computational complexity for convection
problems. Additionally, even if a corresponding fluid-dynamics model were incorporated, it
would only come along with even more unknown parameters to describe the physical process.
What, for example, would be the viscosity of the molten metal at these high temperatures?
Which turbulence model is valid in these physically extreme situations inside the melt pool?

Therefore, a much simpler approach was chosen. It could then be demonstrated that a simple
and valid remedy to physically model the convection inside the melt pool was to introduce
anisotropic conductivities at the meso-scale. This model update then delivered deviations of
a maximum of only 0.84% for the calibrated case — but it also only led to deviations by a
maximum of 6.5% for all other investigated quantities and cases. It has to be added that this
physical model is computationally only marginally more expensive than the original one. It
is a condensation of local convective effects into just one three-dimensional parameter which
could also be obtained by a micro-scale model. Here, it is demonstrated nicely that insight into
the developing field of simulations of SLM processes is best gained by an interplay between
experiments, computational analysis, and a careful validation of the involved models.
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an anisotropic model enables the prediction of all quan-
tities of interest mentioned above with a maximum de-
viation from the experimental values of 6.5%. We note
that, although more predictive, the anisotropic model
induces only a marginal increase in computational com-
plexity.
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1 Introduction

The shape and thermal history of the melt pool are key
ingredient to determine the physical properties of an ar-
tifact generated through a welding process. Therefore,
the prediction of weld pool dynamics has been a sub-
ject of intensive research in the last decades in both the
experimental and the numerical modeling community
of welding; e.g., recent reviews of this subject are pro-
vided in [8, 23]. Furthermore, it is fundamental to ob-
serve that process-structure-property relationships are
also tightly interlinked and strongly determined by the
characteristics of the weld pool in laser powder bed fu-
sion (LPBF) additive manufacturing technologies [22].
Therefore, an accurate thermal analysis is a key ingre-
dient in the numerical simulations and predictions of
LPBF processes as well.
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To this end, many physical models have been pro-
posed to obtain accurate and reliable numerical approx-
imations of melt pools. Although different in scale, the
basic phenomena in LPBF are similar to those in arc
welding processes, see [11, 15, 24] for an overview. Re-
cent summaries more specific to LPBF processes are
published in [18, 21, 22]. While particle based mod-
els [12] as well as Lattice Boltzmann type approaches [14]
exist, most common are continuum models based on
the conservation of mass, momentum and energy [25].
Continuum approaches allow for modeling the transient
evolution of primal variables (temperatures, pressures,
and velocities) taking into account a large number of ef-
fects, such as the convection inside the melt pool, also
including the one caused by a gradient in the surface
tension (Marangoni effect as well as capillary effects),
vaporization, momentum losses in mushy zones due to
porous media effects, etc.

All these models may deliver very accurate results,
but the more effects they include, the more computa-
tional power they require. Additionally, the abundance
of models comes along with a wealth of parameters:
these may be material viscosity, density, thermal con-
ductivity and capacity, latent heat, etc., most of which
show a non-negligible temperature dependence, such
that their accurate, experimental determination may
be both crucial and critical. Further modeling parame-
ters, such as emissivity or absorptivity or even the ge-
ometry of powder particles, may come into play and
they can be introduced in the model as boundary or
initial conditions. However, accurate measurements of
many of the listed parameters are not publicly avail-
able. This is even true for the most basic parameters,
such as heat capacity or thermal conductivity, that are
not published for the temperatures involved in metal
based LPBF processes. All this drought of information
results in the fact that even the evaluation of several pa-
rameters may itself often rely on models which, in turn,
need to be calibrated against further observations.

The dilemma of choosing a correct model for the
case of limited data is an important issue in statistics.
As an example, George Box [3] stated, somewhat dras-
tically in his well known aphorism, that all models are
wrong and that, therefore, the most complicated model
is not necessarily the best. Instead, it is recommended
to follow the lines of William of Occam, in which an eco-
nomical description of the observations is sought which
‘is as simple as possible, but not simpler’.

Following this line of thought, the purpose of the
present paper is to built and validate an economical
model able to replicate the results obtained by the bench-
mark measurements of a single line laser stroke on a
bear metal plate of IN 625 published in [1]. As stated

in the chapter CHAL-AMB2018-02-MP of the previ-
ous reference, the quantities of interest are the width,
depth, and length of the melt pool. Additionally, we also
monitor the cooling rate as defined in CHAL-AMB2018-
02-CR, even if this quantity is not of primary concern
here. To this end, we employ a heat transfer model
which considers the different phases of the material as a
homogeneous media. This approach is well established
in literature and has proven to be effective also in the
thermal numerical analysis of large scale LPBF pro-
cesses [5, 7, 20]. Other successful attempts in this di-
rection, however with a focus on the scale of the melt
pool, include the very recent publication of Zhang [26],
which provides a summary of previous approaches but
most importantly also incorporates anisotropic conduc-
tivities, as discussed in the paper at hand. The model
proposed in [26] is more elaborate than ours as it also
incorporates a spatially variable laser absorptivity and,
in this sense, it is not minimal w.r.t. the data set we
face. Further, interesting efforts to construct a valid, yet
minimal model, are published in [17] where the linking
of thermal models to experiments is carried out via sur-
rogate modeling based on multivariate Gaussian pro-
cesses.

We begin by introducing the widely used physical
model based on the transient heat equation including
phase changes in section 2. We shortly remark on the
verification of this model in section 3, before we move to
model validation in section 4. The section on model val-
idation is the main section and commences with reciting
the main results of the benchmark cases obtained on
two machines, a commercial machine (CBM) and the
additive manufacturing metrology testbed (AMMT),
both located at the National Institute of Standards
and Technology, USA. In an effort to obtain a minimal
set of modeling parameters, we evaluate the sensitiv-
ities of the quantities of interest to the modeling pa-
rameters given by the physical model. We then select
only the most relevant modeling parameters and use
them to calibrate the physical model towards a simi-
lar benchmark already published as case 7 in [9]. We
then proceed with the evaluation of our model against
the benchmark results on the CBM machine. We ob-
serve that the more accurate measurements of the laser
profile on the AMMT render the model calibrated to
the CBM machine using a double-ellipsoidal heat source
less accurate in the AMMT case in which accurate mea-
surements of the laser profile exist. This observation
necessitates an update of the model. The model up-
date is presented in subsection 4.3 by incorporating
anisotropic conductivity, which is thought to be a sim-
ple way to model the convection inside the melt pool.
Finally, in section 5 we conclude that given accurate

https://doi.org/10.1007/s40192-019-00132-9
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measurements of the profile of the laser, the anisotropic
model provides an increase in accuracy over the tested
parameter range as compared to the simpler, isotropic
physical model.

2 Governing equations

We use a non-linear heat transfer equation as a physical
model to describe the evolution of temperature T =
T(t,x) as a function of space and time. Given a spatial
domain {2 and a time interval 7 = [0, tenq), the heat
transfer equation can be written as follows:

orT 0 fpe
'DCE +pL ot

Therein p and L describe the density and the latent heat
of the material, ¢ = ¢(T, x) and k = k(T, x) are the tem-
perature dependent heat capacity and thermal conduc-
tivity of the material, while f,. = fpe(T') is the phase-
change function describing the solid-to-liquid phase tran-
sition of the material. Therefore, beside the non linear

— V- (kVT) =0 in 2xT. (1)

contribution of the heat capacity and thermal conduc-
tivity, the latent heat term of Equation 1 introduces a
further nonlinearity into the problem.

Equation 1 is completed by the initial condition at
time ¢ = 0:

T(x,0) =Ty in £, (2)
as well as Neumann boundary conditions:

EVT -n=q" +¢ on I'nxT. (3)
Herein, Tj is the initial temperature of the body, n is
the unit normal vector, ¢’ is the heat flux input and ¢”
is the radiation boundary condition defined as:

q =oe(T*+12) (T - T7). (4)

In Equation 4 o is the Stefan-Boltzmann constant, e
is the emissivity of the material, and T, is the ambi-
ent temperature. In our model, convection boundary
conditions are neglected. Further details, specifically
the adopted finite element formulation, are provided
in [4, 13].

2.1 Phase-change model

For iso-thermal phase changes f,. exhibits a jump at
the melting temperature 7,,,, as the temperature changes
the material state from solid to liquid. Since the phase-
change for metals is actually non-isothermal, we regu-
larize this sudden jump between two temperatures T

and T;, with Ty < T;. We can now define the phase
change function f,, such as:

f”C(T):%KstETS (T_TS;ED “}' ®

The parameter S in Equation 5 is adjusted such that
the bulk of the phase change actually occurs between
Ts and T;.

2.2 Heat flux model

In the sequel we consider two variants of the heat flux
input ¢*. The first variant is the double elliptical model
of Goldak [10] described in Figure 1. The front quadrant
as is defined by:

g = 2Qn/fy

rae, P (F2E =20/ + @ = w0)/a), 6)

while in the rear quadrant it takes the form:

2Qn fr
1 2Qnf. ox

Tac,

p (=2 = 20)/2 + (@ = w0} fa®)) . (7)

Herein, @ is the laser power and 7 is the absorptivity
of the material. The geometrical parameters z, and g
define the center of the laser beam on the upper surface
at time ¢, while f; and f, are the fraction of heat de-
posited in the front and the rear quadrant, respectively.

7
z =z—wvt

Fig. 1: Goldak model for the heat flux input. The model
consists in a double-ellipse on which a gaussian profile
is defined.

The second variant the heat source ¢* is not a model.
In fact, ¢' is directly provided to Equation 3 as given
by corresponding measurements.

https://doi.org/10.1007/s40192-019-00132-9
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3 Model Verification

The computational model was verified against the se-
ries of analytical or semi-analytical solutions defined
in [13], where a multi-level hp-discretization was used.
The computational model utilized in the paper at hand
is slightly different, as it uses an IGA discretization
wherein multi-level Bézier extraction is applied to con-
struct an efficient discretization which is refined locally
in the vicinity of the laser beam. This implementation
was verified in [6] in two dimensions as well as in three
dimensions using the same series of problems which
were also used for the verification of the multi-level hp-
basis [13]. Since the focus of the present contribution
is the validation of the model, we will not repeat these
extensive verification studies. Instead, in the next sec-
tion of this paper, we will use the capabilities of the
proposed discretization to directly evaluate the validity
of the physical model given in section 2.

4 Model Validation

As a preamble to this section we want to highlight
the fact that there are situations (e.g. the presence of
highly complex phenomena, problem physics still un-
clear, model uncertainties and difficulties in ascertain
its effectiveness, inability to measure all the model pa-
rameters) in which model validation must consist of two
steps. In the first step (calibration step) the indeter-
minacy of the physical model is investigated and cali-
brated against a first set of experimental evidences; in
the second step (validation step) the numerical results
are compared against a different set of experimental ev-
idences in order to define the range of validity and the
robustness of the numerical model. The case under in-
vestigation is characterized by the inability to measure
all the model parameters, in particular we have lim-
ited information on the absorptivity, emissivity, ther-
mal conductivity and heat capacity of the material at
high temperature, justifying the choice of the previously
defined two-step model validation process.

In subsection 4.1 we will shortly describe and report
the experimental benchmarks published in [1]. Follow-
ing the previously described steps of the validation pro-
cedure, first, in subsection 4.2, we calibrate the isotropic
model of section 2 using the double ellipsoidal heat
source introduced by Goldak [10] and then we validate
the isotropic model using the two heat fluxes described
in subsection 2.2. For the case in which an accurate
measurement, of the laser power distribution is given,
we observe that the isotropic material assumption has
a very limited range of validity. These findings serve as

Parameter values A B C
laser power [W] 150 195 195
laser speed [mm/s] 400 800 1200

laser spot diameter D4o[pm] 100 100 100

Table 1: CBM machine: parameter values

a motivation to extend the physical model by introduc-
ing anisotropic conductivities. This extended model is
then presented in subsection 4.3 where it will be demon-
strated that it predicts weld pool shapes with an im-
proved accuracy.

4.1 Benchmark cases

All benchmark cases are thoroughly defined in the laser
additive manufacturing benchmarks published in [1],
including a detailed report on the measurements. The
benchmarks are obtained through a traveling laser beam
on a bear metal plate of nickel-based alloy IN625. The
experimental quantities we will use to validate our model
are: width, length, and depth of the melt pool as de-
fined in CHAL-AMB2018-02-MP of the above refer-
ence. We also report on the cooling rates defined in
CHAL-AMB2018-02-CR, although they are not the pri-
mal focus in the paper at hand. The benchmarks cited
above and reported in [1] were performed on two differ-
ent machines: a commercial machine (CBM) and the
additive manufacturing metrology testbed (AMMT),
both located at the National Institute of Standards
and Technology, USA. On each machine a set of ten
measurements was carried out for three different cases
(labeled A, B, and C), i.e. for varying laser power and
speed. These cases are specified in Table 1 for the CBM
machine and Table 2 for the AMMT machine. The av-
erages of the experimental measurements for the CBM
machine are reported in Table 3, while average measure-
ments for the AMMT machine are reported in Table 4.
In the first case the cooling rate is defined as:

1290[°C] — 1000[°C]  [mm
CR = Ad[mm)] xv [ ] ’

sec

with v laser speed and Ad distance in the direction of
the laser path, while in the second case as:

CR

_ 1290[°C] —1190[°C] [mm} .

Ad[mm] sec

For the exact definition of v and Ad, as well as for
further details on the experimental benchmarks we refer
to the original website which continues to be updated
as further measurements become available [1].

https://doi.org/10.1007/s40192-019-00132-9
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Parameter values A B C
laser power [W] 1379 179.2 179.2
laser speed [mm/s] 400 800 1200

laser spot diameter D4o[um] 170 170 170

Table 2: AMMT machine: parameter values

case length

cooling rate

[km] [ee
A 659+21 6.20 x 105 +7.99 x 10
B 782421 9.35x 10° 4+ 1.43 x 10°
C 754446 1.28 x 105 +3.94 x 10°

Table 3: CBM machine: experimental measurements ac-
cording to [1], CHAL-AMB2018-02-MP

case length width depth cooling rate
[wm]  [wm]  [pm] LS

A 300 147.9 42.5 1.16 x 108

B 359 123.5 36 1.08 x 106

C 370 106 29.5 1.90 x 108

Table 4: AMMT machine: experimental measurements
according to [1], CHAL-AMB2018-02-MP

4.2 Isotropic conductivity model

The calibration step of the isotropic model is carried
out for case B on the CBM machine, as given in Ta-
ble 1, which is exactly the same configuration as case
7 in [9]. The validation step is obtained comparing the
calibrated model to the cases A, B and C of Table 3
and Table 4. For all the numerical simulations the IN625
material parameters are taken from literature [2, 19]
and are reported in Table 5, Figure 2, and Figure 3.

Table 5: Material and process constant parameters

8.44e-6 [kg/mm>
28¢5 [J/kg
1290 - 1350 [°C

density
latent heat
melting temperature interval

It is noteworthy that material and process param-
eters, necessary to run the numerical simulation, are
not experimentally available for the effective temper-
atures occurring in LPBF processes. For example, the
measurement of the thermal conductivity k in Figure 2
is only available up to 871°C, but the melting range
for IN625 is 1290-1350°C. Likewise, the melting tem-
perature interval the value of k can only be extrapo-
lated. It is important to note that this extrapolation
itself represents a physical model which, in turn, needs

1072
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Temperature [°C]

Fig. 2: Conductivity vs. Temperature

800

200

0
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Temperature [°C]

Fig. 3: Heat capacity vs. Temperature

to be calibrated. This circumstance is used in subsec-
tion 4.3 to better describe the conductivity of the mate-
rial and, consequently, improve the accuracy of the pre-
dicted melt pool geometry. Further coefficients, whose
measurements are only available up to a certain tem-
perature, are the absorptivity n and the emissivity e.
The latter necessary to define the radiation boundary
condition given in Equation 3.

In case of the CBM machine, the benchmark de-
fines the laser spot radius equal to 50um. We utilize
this value for both parameters ¢y and a of the double
elliptical model (see Figure 1). However, our model also
contains the radius ratio ¢,/cy as a model parameter
as well as the power fraction ff/f,, which has the side
condition that f,. + f; = 2. Both these parameters are
additional, potential candidates to calibrate the physi-
cal model.

https://doi.org/10.1007/s40192-019-00132-9
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Model Calibration

Model calibration first requires to identify the sensi-
tivities of the quantities of interest, i.e., length, width,
depth, and cooling rate at the wake of the melt pool
w.r.t. the modeling parameters n, €, ff/fr and ¢, /cy
given by the physical model presented in section 2. To
this end, four studies were carried out, and for each
study a single parameter is varied while the others stay
fixed. In the following we only present the sensitivity
studies w.r.t. the absorptivity n and the emissivity e of
the material due to editorial space limitations of this pa-
per. Figure 4 presents the variation of the length, width,

1072
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Fig. 4: CBM machine. Sensitivity studies w.r.t. the
emissivity of the material €

depth, and cooling rate w.r.t. the emissivity values. The
study clearly suggests that there is practically no influ-
ence of the emissivity on the quantities of interest. At
first sight this result comes as a surprise because the
model of the boundary conditions suggests an influence
of fourth order in the temperature, something that for
sure can not be neglected. Indeed, numerous authors ex-
plicitly include this boundary condition to obtain good
results, see for example [16] and the references cited
therein. However, the investigation at hand considers
the temperature directly under or in close vicinity to
the laser and, therefore, the contribution of the radia-
tion boundary condition is marginal. To illustrate this
effect, we consider the flux caused by radiation at the

melting temperature T3, = 1290°C= 1563.15K, with
an ambient temperature of 7, = 20°C= 293.15K. The
corresponding power loss is

5.67 x 107° x 0.47 (T2 + T72) (T2 — T7)

=1.59 x 10° {%} =0.16 [mVXﬂ] . (8)

which represents a negligible quantity compared to the
peak power density of ¢! = 2.33 x 104 [W/mmz} in
the center of the laser beam. Clearly, under these con-
ditions, radiation itself may be neglected for studies of
temperature fields in close proximity to the laser source.
To the contrary, the absorptivity has a large influence
(see Figure 5), as do the power fraction and the radius
ratiol. An iterative calibration delivers the final choice

]

depth [mm

0 02 0.4 06 0.8 0 02 04 06 [ 1
absorptivity absorptivity

(a) Length (b) Depth

CR[C/s]

0 0.2 01 06 08 0 0.2 0.4 0.6 0.8 1

absorptivity absorptivity

(c) Width (d) Cooling rate

Fig. 5: CBM machine. Sensitivity studies w.r.t. the ab-
sorptivity of the material n

of the parameters: ¢ = 0.47, n = 0.38, f/fr = 0.053
and ¢, /cy = 0.167.

Numerical results for calibration

Numerically computed temperature curves along the
laser path are depicted in Figure 6. The figure reports
also the experimentally measured temperature, carried
out using in-situ thermography, as described in [9]. The

1 The latter two are not depicted due to limitations of space
in this article
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Fig. 6: Computation of the temperature profile cali-
brated to case 7 in [9]

different curves labeled 2mm, 6mm and 12mm indicate
at which position the zero of the abscissa of the plot co-
incides with the laser path. A steady state is reached
already after only 2mm. We specifically note that the
calibration was carried out to best capture the temper-
ature range around the melting temperature. Larger,
even unphysical deviations, are tolerated outside this
region. This kind of calibration towards a process win-
dow is justifiable not only due to the fact that merely
the region of interest needs to be captured with accu-
racy by the computations, but also because the camera
itself delivers its most accurate measurements in that
range. The plot also directly shows where the numerical
model is not valid, namely directly inside the melt pool.
Here, the temperature drastically overshoots to unreal-
istically high values. The very good agreement of the
computation in the range of the melting zone is further
confirmed in Figure 7. This figure overlays the image
of the cross section of the track taken by an ex-situ
measurement of a confocal laser scanning microscope
(CLSM) with the calibrated computation. Both Fig-
ure 6 and Figure 7 demonstrate that it is possible to
obtain an excellent agreement with the experiment us-
ing the simple physical model presented in section 2, if
n, f¢/fr, and ¢, /cy serve as model calibration parame-
ters.

Model validation for the CBM machine

The calibrated model delivers the results depicted in Ta-
ble 6. It can readily be concluded that the model is
able to predict the length of the weld pool up to at
least 7.3% accuracy in the parameter range covered by
cases A to C. The prediction of cooling rates is approx-
imately one order less accurate. It is interesting to note

...... 2mm

. - ———— MM

--- 12mm

Fig. 7: Computation of cross section (red line) cali-
brated to case 7 in [9]

case meas. num. A meas. num. A

lpam] Mwm] (%] CRIZS]  CR[ZZ] (%]
A 659 707 7.3  6.20x10° 8.79x10° 41.8
B 782 812 3.8 9.35x10° 1.35x10% 44.3
C 754 772 2.4 1.28x10% 2.09x10° 63.3

Table 6: CBM machine: obtained weld pool length 1 and
cooling rates cr

that the measured length in [9], i.e., the length towards
which the model was calibrated was 813[um], provided
with a tolerance of +79[um]. However, measurements
performed in [1] for exactly the same case (case B)
were more accurate and are given as 782 & 21[um)], see
also Table 6. Thus, a re-calibration of the model to case
B will likely deliver more accurate predictions for the
cases A and C. However, this was not carried out be-
cause even more accurate measurements are available
for the AMMT machine which lead to the development
of the extended physical model presented in subsec-
tion 4.3.

Model validation for the AMMT machine

Surprisingly, very different experimental results were
obtained with the same scan parameters at the AMMT
machine as compared to the CBM machine. Due to
this reason, more thorough studies were carried out on
the AMMT machine. These include measurements of
the actual laser profile itself. These measurements, now
published in [1], enable their direct application as the
Neumann boundary condition ¢! in Equation 3. Thus,
the physical model presented in section 2 is more tightly
defined. This generates an interesting situation from the
perspective of model validation because two (influen-
tial) calibration parameters, the power fraction fr/ f.
and the radius ratio ¢./cy are now fixed and, there-
fore, can not be used for calibration. Given that the
emissivity e has practically no influence, the absorp-

https://doi.org/10.1007/s40192-019-00132-9
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8
case length width depth cooling rate
lm]  [pm]  pm] S
A 301 119 52 0.91x106
B 360 103 42 1.33x10°
C 348 91 32 2.18x10°

Table 7: AMMT machine: computed values

width
A[%]

depth
Al%)

cooling rate

Al%]

case length

A[%]

A 0.47 19.3 18.6 21.6
B 0.11 16.4 15.8 23.1
C 5.9 14.2 10.1 14.7

Table 8: AMMT machine: deviations from experimental
values

tivity n is the only parameter left for a re-calibration.
For n = 0.086 we obtain the numerical results provided
in Table 7. The corresponding deviations are provided
in Table 8. While the deviations in the length are still
at a maximum of approx. 6%, width and depth are only
predicted to an accuracy of 20%. No further calibration
is possible as there is only one parameter to calibrate
but three values of interest to fit (excluding the cool-
ing rate). This clearly shows the boundaries of validity
of the model presented in section 2 and motivates the
development of the model discussed in the next section.

4.3 Anisotropic conductivity model

Two possible modifications are readily imaginable: a) a
definition of an absorptivity field instead of a scalar
value 17 and b) the definition of an anisotropic con-
ductivity. The former could be motivated by the fact
that the melt pool surface will surely cause the absorp-
tion of the laser energy to be non-constant. However,
to the authors opinion a good model should be as sim-
ple as possible, yet replicate the observed effects as ac-
curately as possible. With this objective in mind, the
definition of an anisotropic conductivity is a more at-
tractive choice. The only change necessary is that the
scalar value k in Equation 1 changes to k, a diagonal
matrix with the entries diag(ky, ky, k.). Further, we
set € = 0. The physical motivation for this model is
that the (transient) diffusion equation given by Equa-
tion 1 does by no means include the effects caused by
convective heat transfer inside the weld pool. This flaw
has already inspired other authors e.g., [16] to use a
strongly increased conductivity k inside the melt pool
to model convective effects. We now extend this idea
by choosing anisotropic values. For simplicity, we in-
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Fig. 8: Scaling of the conductivity in direction i = x,y, 2

case length width depth cooling rate
[wm]  [pm]  [um] S

A 304 146.4 446  0.82x10°

B 362 123.7  36.1 1.23x108

C 346 105.1  27.3 1.88x106

Table 9: Anisotropic conductivity model: computed val-
ues

troduce the scaling factor ¥; where i = {x,y, 2} such
that k = diag(kVs, k¥y, kV.). The values for ¥; devi-
ate from 1 only after the last obtainable measurement
(at T =871°C) of the conductivity as depicted in Fig-
ure 8. After calibration to the AMMT machine B we
obtain the set ¥, = 1.0,9, = 1.4,9, = 0.9. This deliv-
ers very well matching weld pool geometries. While the
effect of the scaling of k is marginal in a temperature
plot along the length (because here 9, = 1.0), its effect
in the cross-section is quite pronounced (see Figure 9
for a direct overlay of the melt pool geometry over the
cross section). In the validation step, we keep the cali-
bration parameters fixed, i.e., 9, = 1.0, ¥, = 1.4, and
¥, = 0.9 and we compute cases A and C of the AMMT
machine. The computed values are provided in Table 9
and the corresponding deviations are provided in Ta-
ble 10. We observe that for the anisotropic model the
maximum deviation of length, width and depth is 6.49%
at worst while, for the isotropic conductivity model it
was merely 19.3%. Even the forecast of the cooling rates
has improved sightly.

https://doi.org/10.1007/s40192-019-00132-9
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Fig. 9: Melt pool cross section micrograph image 50xDF (from https://phasedata.nist.gov/rest/blob?id=
5b102edd4407e700870ff13e) over computed cross sections using isotropic (dashed red line) and anisotropic con-
ductivity (dashed green line)

case length width depth cooling rate
Al%)] A%] A%] A%]

A 1.33 1.0 2.5 29.3

B 0.84 0.02 0.2 13.9

C 6.49 0.8 5.1 1.3

Table 10: Anisotropic conductivity model: deviations of
computed values from experimental values

5 Summary and Conclusions

In this contribution we used the standard heat diffusion
model to predict the length, width and depth of the
melt pool in the laser additive manufacturing bench-
marks CHAL-AMB2018-02-MP published in [1]. The
physical model included a latent heat term as published
e.g., in [4] along with a radiation boundary condition.
Within this model we found the radiation boundary
condition to have little to no influence upon the quan-
tities of interest. This is due to the fact that in close
proximity of the laser beam impact region, the power
lost by radiation is much lower than the applied laser
energy itself.

As a first approach we assumed the laser source to
possess the well known double elliptical shape as pro-
posed for welding by Goldak [10]. We demonstrated
that this model is well suited to predict the shape of
the weld pool as it delivered a maximum deviation from
the measurements of 7.3%. However, in case the shape
of the laser source is given by a measurement, the stan-
dard, transient heat diffusion model only provides ac-
curacies of 19.1% for the investigated benchmark cases.
This renders it practically invalid.

We then extended the isotropic thermal model by
introducing anisotropic conductivities. Their physical
interpretation is to model anisotropic convection in-
side the melt pool. This slight extension enabled the

model to deliver at worst 6.49% deviations in length,
width and depth of the melt pool. Therefore, we con-
clude that the introduction of an anisotropic conductiv-
ity is a simple, yet effective way to improve the physical
model based on transient heat equation including phase
changes and remark that the added computational ef-
fort for this extension is marginal.
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5 Summary, outlook and conclusion

The Finite Cell Method is an embedded domain method of higher order. It was the first of its
kind in the sense that it preserves the higher order accuracy of the underlying finite element
discretization even if the geometry of the physical domain is discretized in a non-boundary
conforming fashion. In recent years, the FCM has matured to a versatile tool in computational
analysis avoiding the burden of mesh generation. It does not stand alone any more. It has had
influence on or even sparked other, rather similar techniques such as the immersogeometric
analysis |84, 85| and in the coarse of its development it was influenced by techniques such
as CUTfem [86]. Other very closely related variants such as the isogeometric B-Rep analy-
sis [87, 88] also set out to integrate CAD and computational analysis. A very recent treatise
by de Prenter [89] nicely relates these close relatives of FCM in the numerical context of
preconditioning the resulting equation systems. Even counting the numerous citations given
throughout this treatise, this short summary remains incomplete but serves to demonstrate
that many scientists continue to unleash the power of embedded domain modeling.

As laid out in this treatise, numerous engineering applications have already proven to benefit
in the context of the FCM. Among these are structural dynamics, large scale structural
analysis of CT scans for mechanical and biomedical applications, as well as the simulation
of production processes such as additive manufacturing. In summary, it may be stated that
there seem to be only little bounds left as to what can be analyzed in the framework of FCM
concerning a forward solution of linear problems.

Yet, no method is perfect for every application and, thus, many challenges remain. Among
these is the treatment of strong non-linearities of the kind that occur in the simulation of
stresses caused by finite strains combined with plasticity. Even though recent contributions
address this problem [37, 90, 91], instabilities might still occur. In these extreme situations a
good preconditioning, the choice of the appropriate continuity of the underlying discretization,
a fine tuned balance between penalizing the material of the fictitious domain w.r.t. the
physical domain, the appropriate numerical integration of the physical domain, a suitable
formulation of the material law in the fictitious domain as well as the cunning combination
of all these numerical techniques help but their interplay and boundaries are not yet fully
understood.

Further open questions are related to bridging scales. It could be demonstrated that the
Finite Cell Method combined with the multi-level hp-method is able to spatially resolve very
large scales. Several ways exist from homogenization techniques to bruit force computations
of very large structures involving astonishing detail. Many of these techniques are further
being developed under the roof of the FCM. However, some applications such as the process
of additive manufacturing also involve vast temporal scales on expanding domains which can
not yet be resolved. To this end, the combination of the FCM with the multi-level Ap-method
in the framework of space-time finite elements promises to offer the possibility to increase the
temporal resolution. First, preliminary work on this subject is now taken up to further push
the boundaries of the method.

Other fields of engineering application seem promising as well. Very recently, extremely
accurate predictions for three-dimensional fracture of solids were possible. It is the hope that
this may be useful in geo-sciences to harvest geothermal energy, for example. Yet another
interesting application which surely will be pursued further lies in structural heritage where
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the fundamental feature of the FCM to connect geometric and computational models is coming
of age in the point cloud version of the FCM.

It will be fun to see where else embedded domain modeling in general, and the Finite Cell
Method in particular, may engender new insights in understanding, replicating and forecasting
the mechanical behavior of artifacts.
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