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Zusammenfassung

Die Palette der Strukturen, die mit additiver Fertigung (AM) hergestellt werden kénnen,
ist extrem breit. Im letzten Jahrzehnt hat diese Technologie ein betrachtliches Wachs-
tum erlebt. Ein bemerkenswerter Aspekt der AM ist die Moglichkeit, hochkomplexe
Mikrostrukturen herzustellen, die auf traditionelle Weise nur schwer zu erzeugen wéren.
Trotz des groflen Potenzials miissen vor einem breiten produktiven Einsatz von AM noch
zahlreiche Fragen gelost werden. Einer dieser Aspekte ist das Entstehen von prozessin-
duzierten Defekten. Da die Prozessparameter aufgrund der zugrundeliegenden Physik nur
schwer prézise zu kontrollieren sind, kann die Mikrostruktur signifikante Abweichungen
der gefertigten geometrischen Form im Vergleich zum Entwurf aufweisen. Diese Unter-
schiede konnen die Qualitat und Leistung des Endprodukts erheblich beeintrachtigen, was
mogliche Anwendungsbereiche von AM-Strukturen in Frage stellt.

Numerische Simulation bietet eine einzigartige Moglichkeit, die Auswirkungen von
prozessbedingten Defekten zu bewerten, das strukturelle Verhalten von gefertigten und
entworfenen Produkten zu vergleichen, einen Einblick in die mégliche Optimierung von
Prozessparametern zu erhalten und die durch diese Imperfektionen verursachte Unsicher-
heit abzuschétzen. Allerdings wird es oft als undurchfithrbar angesehen, die aus Comput-
ertomogrammen erhaltenen as-manufactured-Geometrien in die traditionelle rechnerische
Finite-Element-Analyse zu integrieren, da die Vernetzungsprozedur fir solche hochauf-
losenden geometrischen Modelle zu komplex ist und die numerischen Kosten zu hoch sind.
Daher zielt diese Arbeit darauf ab, ein numerisches Framework vorzuschlagen, das fir die
Analyse von as-manufactured AM-Produkten geeignet ist. Es wird die Moglichkeit unter-
sucht, die Auswirkungen von prozessinduzierten Defekten auf das endgiiltige Bauteilver-
halten zu bewerten und eine Unsicherheitsquantifizierung der mikrostrukturellen Variabil-
itdt durchzufiihren. Im Rahmen dieser Kriterien wird der Verifizierung und Validierung
der vorgeschlagenen Techniken grofie Aufmerksamkeit gegeben.



Abstract

The range of structures that can be produced with additive manufacturing (AM) is ex-
ceptionally vast. The last decade witnessed a considerable growth of this technology.
A remarkable feature of AM is the possibility to produce highly complex microarchitec-
tured structures that are difficult to manufacture traditionally. Despite its potential, AM
still faces challenges that have to be addressed before it can be widely used in produc-
tion lines. One of these aspects is the occurrence of process-induced defects. As process
parameters are difficult to precisely control due to the underlying physics, the microstruc-
ture can exhibit significant deviations of as-manufactured shapes from as-designed ones.
These discrepancies can seriously alter the final part quality and performance, putting
uncertainty on possible application areas of AM structures.

Numerical simulation provides a unique possibility to evaluate the effects of process-
induced defects, compare the structural behavior of as-manufactured and as-designed
products, gain an insight into possible optimization of process parameters and estimate
uncertainty introduced by these imperfections. However, it is often considered infeasi-
ble to integrate the as-manufactured geometries into the traditional computational Finite
Element analysis due to the complexity of the meshing procedure for such high-resolution
geometrical models and the prohibitive numerical costs. Thus, this thesis aims at estab-
lishing a numerical framework suitable for the analysis of as-manufactured AM products.
The present work’s objective is to investigate the possible way to evaluate the effects of
process-induced defects on the final part performance and perform uncertainty quantifi-
cation of microstructural variability. Within the framework of these criteria, significant
attention is given to the verification and validation of the proposed techniques.
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Chapter 1

Introduction

1.1 Motivation

Additive manufacturing (AM) has drawn significant interest both in industry and re-
search due to the unique possibility to produce complex structures for a wide range of
applications (see, e.g., [18, 114, 139]). The term "additive manufacturing" refers to mul-
tiple techniques [72], in which a structure is produced by successively adding material
in a layerwise fashion. These techniques can be classified according to the process and
used materials. An example of an AM method suitable to manufacture metal structures
is Laser Powder Bed Fusion (LPBF), which is the main focus of this thesis.

In the LPBF process, a high-power density laser melts a material powder layer by layer
to form the final product. In this manner, highly complex metal structures with sophis-
ticated microstructural architecture can be produced. Lattice structures (see, e.g., Fig-
ure 1.1) are a classic example of such components that are difficult to manufacture by
traditional methods [103] . These regular, usually periodic designs are attractive for many
industries due to the possibility of largely decoupling their effective stiffness and strength
from their relative density [32, 124, 152, 187|. Lattices are also very important for indus-
trial applications due to their lightweight design, their exceptional mechanical, acoustic,
and dielectric properties (e.g. [11, 23, 45, 153, 188]), and the possibility to relate their
mechanical properties to the truss topology and geometry (see e.g. [32, 92, 124, 162]).

Figure 1.1: An example of lattice structures produced using Laser Powder Bed Fusion.
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Although the LPBF allows the production of such challenging lattice shapes, this design
freedom comes with the difficulty of controlling the underlying physics. In particular,
process-induced features, even defects, often occur in the produced structures. Some of
the most common imperfections are the change in the lattice strut thickness, its shape,
or its connectivity, which arise from the size of the melt pool [7, 26]. Another process-
induced defect that typically occurs in the manufactured parts is the surface roughness
caused by the attachment of the unmelted powder to the struts [31, 34, 47, 179]. Due to
the lack of fusion, internal porosity can also occur in the final specimens (e.g. [52, 77, 186]).
Finally, material can accumulate on the inclined and overhanging parts of the lattice, as
the size of the melt pool strongly depends on the fraction of solid and powder parts in
the layer [106]. To indicate the presence of these process-induced defects, the printed
geometries are often referred to as as-manufactured shapes, while the original models as
as-designed. Surely, such changes in the structure have a certain effect on their quality,
applicability, and performance. Thus, the field of these defects’ characterizations has
received significant attention in the past years (see, e.g., [103, 98, 107, 106, 138, 7]).

Overall, the process-induced defects can considerably alter the mechanical behavior of
final parts (e.g., [26, 37, 40, 62, 101, 103]). Therefore, a reliable evaluation of the mechan-
ical behavior of printed LPBF lattice components is crucial for determining their field of
application. This has motivated many experimental investigations to evaluate AM final
parts’ mechanical properties (see, e.g., [56, 163, 103] ). However, since the defects are
specific for different designs, materials, and process parameters, a strong interest in in-
corporating as-manufactured geometries into the numerical analysis has emerged. There
is a considerable amount of research directed to the characterization of the mechanical
behavior of additively manufactured lattice structures (e.g., [26, 35, 98, 130, 132, 162]).
Such investigations aim to compare the behavior of as-manufactured and as-designed com-
ponents and characterize the influence of the process-induced defects on the final parts’
behavior. Yet, efficient incorporation of as-manufactured shapes into the computational
simulation remains a challenge.

Another level of complexity is added by the fact that such predictive evaluations of the
as-manufactured geometries do not take into account the effects of the geometrical vari-
ability introduced by the LPBF process. This, however, is an important research question
to improve the quality of the as-manufactured products, establish a relation between the
process parameters and the final result of a printing, and predict the possible spread of
the obtained mechanical characteristics. At present, the most common approach to per-
forming such characterization is to use statistical models. To this end, a set of considered
defects, such as, e.g., strut waviness, diameter, or a cross-sectional shape change, is usu-
ally defined. Commonly, the effects of one group of defects or a combination of a few are
considered in the numerical analysis. However, efficient analysis of the possible variation
of lattice’s mechanical behavior due to the combination of all geometrical process-induced
defects remains an open research question.

1.2 Objectives and contributions

In light of the above motivation, this thesis aims to establish an efficient and reliable
computational workflow to characterize as-manufactured AM products’ mechanical be-
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havior. To achieve this, a basic understanding of the manufacturing challenges and the
as-manufactured shape acquisition should be gained. These insights will also help to iden-
tify the challenges in AM product simulation and to define the requirements to the math-
ematical models and numerical approaches, which can incorporate the as-manufactured
geometries into the analysis.

Having identified the significant demands on the path of AM product simulation, the
first main objective of this work is to propose an image-to-material-characterization work-
flow. As the utmost goal is to establish a technique helping to assess the quality of the
produced parts, the proposed methods’ reliability is a central part of this research. Thus,
the verification and experimental validation of the investigated techniques are of crucial
importance for this work. Furthermore, to apply this workflow to industrial applications,
the proposed methods’ efficiency and flexibility are critical. Hence, three main techniques
with increasing levels of complexity are investigated. In particular, beam theories, nu-
merical homogenization, and direct numerical simulation are analyzed and compared on
two examples of manufactured lattices with different microstructural scales.

Although such a predictive workflow can be employed to analyze and compare the me-
chanical behaviour of designed and printed parts, the essential question of how the arising
manufacturing defects can affect the printed structures’ overall behaviour remains unan-
swered. It is crucial to understand whether such shape deviations can also be modelled
and incorporated into the established workflow. Thus, the second main objective here
is to propose a stochastic model to mimic the process-induced defects and assess their
influence on the variability of the mechanical behaviour of as-manufactured AM products.

Even though the primary focus of this thesis is to investigate the linear elastic me-
chanical behavior of lattices structures, the proposed approach is neither limited to the
linear regime, nor to the type of used structures. Therefore, the range of applicability
and possible limitations of the proposed methods will be thoroughly discussed in the
manuscript.

The contributions presented in this work have been published and submitted to publish-
ing in several scientific journals. The first idea of the image-to-material-characterization
workflow was introduced in [85]. In this article, verification and validation of the
numerical homogenization and the direct numerical simulation on the microarchitectured
lattices were presented. Next, the proposed idea was applied to compare as-designed
and as-manufactured octet-truss lattice structures produced at a larger scale in [84].
Then, the applicability of the beam models and the validation of the proposed workflow
was investigated on an example of AM lattice beams in bending in [83]. Finally, a
stochastic model for investigating the influence of microstructural variability on the
mechanical behavior of AM lattice structures was introduced in [86]. Thus, throughout
the thesis, the following footnotes are used to reference the original publications, literal
transposition and adjusted text version*P¢defe,

2The following chapter/section/paragraph is based on [85]. The main scientific research and the
textual elaboration of the publication were performed by the author of this work.

PThe following chapter/section/paragraph is based on [84]. The main scientific research and the
textual elaboration of the publication were performed by the author of this work.

“The following chapter/section/paragraph is based on [83]. The main scientific research and the
textual elaboration of the publication were performed by the author of this work.

dThe following chapter/section/paragraph is based on [86]. The main scientific research and the
textual elaboration of the publication were performed by the author of this work.
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1.3 Outline

This work is organized into eight chapters, which are outlined as follows. Chapter 2
starts with describing the basic idea of additive manufacturing of lattice structures. In
this section, the main challenges of the AM product simulation are defined. Then, the
image-based numerical workflow proposed in this thesis is presented.

In chapter 3 the basic fundamentals needed to perform the direct numerical simula-
tion of AM products is presented. In particular, classical and strain gradient continuum
foundations are introduced. Then, the assumptions of the classical and strain-gradient
beam theories are discussed. This chapter recaps the theory needed for a direct numer-
ical simulation of AM products and the evaluation of bending quantities by using the
simplified beam theories. Then, the Finite Cell Method for material characterization of
as-manufactured structures is presented in Chapter 4. Due to the nature of the considered
problems,; special attention is given to an efficient integration technique of discontinuous
integrands in the scope of the image-to-material characterization workflow and to parallel
linear system solutions.

Chapter 5 discusses another possible technique to characterize the mechanical behavior
of AM products. The first-order mean-field computational homogenization technique al-
lows to reduce the required computational costs to evaluate the overall structural response.
First, the fundamental homogenization concepts are introduced. Then, the necessary ap-
proximations and relations are thoroughly discussed. As the structures considered in this
thesis are lattices, the implications of having voids in the geometry are introduced. To
this extent, the window method, a specific technique aiming to treat the problematic void
inclusions in the considered structures, is described. Finally, this section is concluded
with numerical investigations. The considered examples help to identify the applicability
area and the boundaries of the numerical homogenization approach demonstrated in this
chapter. In chapter 6 the validation and verification of the presented numerical workflow
is performed. In particular, two manufactured lattices at two different printing scales are
shown.

Chapter 7 presents the proposed binary random field model used to assess the effects of
AM product microstructural variability. This chapter starts with the formulation of the
random binary field model, followed by a description of the design parameter identifica-
tion procedure. Then, the random field generation concepts and the method to perform
uncertainty quantification are discussed. Finally, this chapter is concluded with the im-
pact assessment of the process-induced geometrical defects on the mechanical behavior of
the structures presented in chapter 6. Lastly, the summary of this thesis and the outlook
are presented in chapter 8.

¢According to Elsevier publishing agreement [43], the text/part in the following chapter/section/para-
graph is taken in an adjusted form from [85]. The main scientific research and the textual elaboration of
the publication were performed by the author of this work.

fAccording to Elsevier publishing agreement [43], the text/part in the following chapter/section/para-
graph is taken in an adjusted form from [84]. The main scientific research and the textual elaboration of
the publication were performed by the author of this work.

g According to Elsevier publishing agreement [43], the text/part in the following chapter/section/para-
graph is taken in an adjusted form from [83]. The main scientific research and the textual elaboration of
the publication were performed by the author of this work.



Chapter 2

Numerical characterization of
additively manufactured products

As briefly outlined in section 1.1, products produced by Laser Powder Bed Fusion can
suffer from multiple process-induced defects, which strongly affect the quality and perfor-
mance of manufactured structures. Relating these imperfections to the final mechanical
behaviour of AM products is a challenging task. This chapter aims to identify the chal-
lenges in performing a versatile mechanical analysis of imperfect manufactured products.
The first part focuses on a general description of Laser Powder Bed Fusion and outlines
possible process-induced defects. Thereby, a particular focus is provided to lattice struc-
tures. In the following part, the main challenges of as-manufactured shape acquisition
are discussed. Special attention is given to computed tomography (CT) and related CT
imaging problems. In this context, a deep learning segmentation technique to address
these issues is proposed. Then, the possible methods for mechanical analysis of the as-
manufactured structures are elaborated. Finally, considering all defined challenges, an
image-to-material-characterization workflow is presented.

2.1 Metal Laser Powder Bed Fusion for lattices

Powder Bed Fusion (PBF) was initially established at the Univesity of Texas at
Austin [51]. This process, among other AM processes, was the first to attract the in-
terest of the industry. The general idea of PBF is schematically depicted in Figure 2.1
and can be described as follows. A layer of chosen powder, e.g., stainless steel or nickel
alloy, is deposited on the powder bed from the feed region with the help of a rolling (re-
coating) mechanism. A high-energy power source, in Figure 2.1 a laser beam, is directed
to the powder bed to partially fuse the powder with the layer below. The laser follows
a pre-defined pattern to form a designed part. This pattern is usually defined based on
the computer-aided design (CAD) model of the final product. Finally, the build platform
is lowered opposite to the printing direction, and a new powder layer is deposited. This
procedure is repeated until the part is completed.

Multiple specific techniques share the PBF operating scheme. However, the three most
commonly used ones are Selective Laser Sintering (SLS), Electron Beam Melting (EBM)
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and Selective Laser Melting (SLM). These methods are different by the powder which
is used for manufacturing, by the origin and the intensity of the energy source, and by
the manufacturing atmosphere. SLS process employs a lower laser power and operates
in chambers filled with nitrogen to maximize oxidation. As in this technique the powder
is not fully melted, it is often applied to produce polymer structures. By contrast, EBM
and SLM allow to manufacture metal parts by fully melting the powder with a much
stronger energy source. The difference between them is that the EBM process employs
an electron beam, whereas the SLM process uses a laser beam. In this manner, much
higher temperatures are reached, requiring a longer cooling time of the finished parts. As
opposed to the SLM process, where the manufacturing happens in a chamber with an inert
atmosphere, EBM occurs in a vacuum environment. One additional aspect of the EBM
and SLM techniques is the need to introduce support structures. As the high energy
source causes high thermal gradients, a structural distortion can arise due to residual
stresses. Furthermore, the overhanging features often change their shape under gravity,
which requires additional supports to preserve the designed geometry. Overall, SLM is
cheaper than EBM and has fewer limitations on the produced parts. In the following, the
primary focus is placed on SLM, or also called Laser Powder Bed Fusion (LPBF).

Laser beam

Powder feed
region

Powder bed

Rolling
mechanism

Manufactured
part

Powder supply Printed part
direction movement

Figure 2.1: A scheme of Laser Powder Bed Fusion process.

The LPBF manufacturing technique has a few advantages and disadvantages. The
main benefit, which makes this process so attractive to industry, is its material versatility
and relatively low costs. With the SLM process, many Al-based, Ti-based, Cu-based
or other alloys and their composites can be manufactured (see, e.g., [133, 102, 178]).
Furthermore, this manufacturing process allows the production of high-quality complex
structures [182]. On the downside, LPBF is a slow process primarily governed by the laser
speed needed to produce a specific geometry. The limitations in the manufacturable part
size and geometries are also rather specific for LPBF and are essential to consider. For
example, the enclosed volumes or microarchitectured lattices at a microscopic scale are
nearly impossible to produce with SLM due to the presence of trapped powder and other
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physical phenomena [151]. Besides constraints on printable sizes of geometrical features
and shapes, one further major limitation of this technique is the presence of geometrical
and topological defects, often called process-induced defects. These defects are especially
critical as the deviations in shape can significantly affect the final part quality.

There is a large variety of known process-induced defects in AM products. As the name
indicates, they are caused by a combination of a few process parameters. Gibson et al. [51]
propose to classify these process parameters in four groups:

o Laser parameters, such as e.g., laser power

« Parameters related to scanning technique (e.g., scan speed, hatch distances)
» Powder parameters (e.g., grain size, layer thickness)

o Temperature parameters (e.g., powder bed temperature)

Due to the nature of the underlying physics, all process parameters interact with each
other and significantly impact the final shape. Thus, the optimization of these param-
eters is critical for improving the printing outcome. However, the process parameters
are very sensitive to the used printer, material powder, printed parts and other condi-
tions. Although a deeper understanding of these relations could allow to improve the
quality of manufactured components significantly, process-induced defects would still not
be negligible [103].

Process-induced defects are not only formed by diverse physical mechanisms and are
different for particular materials and types of printed structures, but they also occur at
different scales. For instance, the local material microstructure is strongly affected by
the printing direction and the speed of the solidification process [176]. This can change
the grain structure of the printed material and affect the mechanical behaviour of AM
products. However, as mentioned in [176], a heat treatment procedure after manufacturing
can alter the achieved properties at the cost of other mechanical characteristics. This
defect can be especially significant for solid parts. Yet, for structures with complex
microarchitectures, such as lattices, the geometrical process-induced imperfections have
a more substantial effect on the manufacturing quality [41]. These are surface, internal
porosity, lack of fusion, dimensional inaccuracies and manufacturability defects.

Surface defects occur in AM parts due to two main reasons: the unstable behaviour
of the melt pool caused by the source energy density, and the general orientation of
geometrical details with respect to the build platform. The former usually leads to balling
and splatter of the material. The melt pool dynamics can also produce discontinuities
between the layers, i.e., stair stepping [40]. The latter requires to distinguish between
the down-skin (normal towards the build platform) and up-skin surfaces. The down-skin
surfaces are in contact with the unmelted powder bed (see Figure 2.1). As often they
experience overheating, the unmelted powder particles fuse with the surface and remain
attached after completing the printing process [103]. When lattice structures are printed,
the increase of the inclination angle can hinder this effect [148].

Internal porosity and lack of fusion defects can occur in the final structures because
of an inadequate choice of power density, cooling rates or printing strategies, as well
as gas entrapment in the powder. For example, to improve the speed of the LPBF
process, machines are set to operate at very high power densities and deposition rates.
This, in turn, causes collapses of keyholes or insufficient melting of subsequent layers,
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leading to internal porosity formation [30]. The pores can also be formed due to the gas
entrapment caused by high cooling rates or gaps in the powder bed [40]. Such defects,
especially insufficient melting, can propagate through the layers causing large pores or
even breakages.

Dimensional inaccuracies are often observed at the same scale as microstructural ge-
ometries. They are usually driven by the residual stresses causing warping or shrink-
age [b4], attachment of the unmelted powder or material collection at specific locations.
These effects cause geometrical discrepancies between design and printing outcome, influ-
encing the quality of manufactured structures (e.g., [171, 98]). The most common dimen-
sional inaccuracies in lattices are strut waviness, changes in shape and size of the strut
cross-section, and node material accumulation [40]. The size and the magnitude of these
defects can largely deviate and is utterly hard to control. Especially when the microstruc-
ture of the printed parts is complex, these geometric defects can impact the mechanical
behaviour of these parts, e.g., resulting in a significant reduction of stiffness [103].

Finally, the manufacturability of the designed shapes is a crucial point to remark. Not
all possible dimensions of geometrical parts can be printed without a significant loss
of quality. Although a particular choice of process parameters can allow considerable
design freedom, the minimum printable strut size has been reported to be 300um [131].
Moreover, when structures have an inclination angle to the printing bed, there is a limit
on the maximum possible angle, until which the parts can be printed without additional
structural supports. However, lattices are usually not manufacturable with supports. This
is since the support removal on the post-processing stage becomes practically infeasible
from the internal microstructure.

Undoubtedly, the defects mentioned above affect the result of a printing, putting a
significant uncertainty on the final product confidence levels. To be applicable and stan-
dardized for many industrial applications [151], AM parts should be evaluated on the
presence of such defects and assessed for possible application areas. To achieve this, the
first question to be answered is how to detect these defects. Traditional approaches do not
suffice to provide comprehensive information about the internal structure of AM parts,
thus, bringing up the first significant challenge on finding an appropriate technique to
acquire the manufactured geometries.

2.2 As-manufactured geometries acquisition via
computed tomography

Destructive and non-destructive methods can be applied to assess process-induced geo-
metrical defects. As the AM imperfections are specific for different structural designs,
process parameters and post-treatment techniques, the destructive approach is rather un-
favourable. In this way, many possible combinations of influencing factors would have
to be investigated. Thus, non-destructive methods to analyze the as-manufactured AM
shapes have become especially popular (e.g., [37, 41, 137]).

An overall classification of the existing methods is shown in Figure 2.2. A more thorough
overview of non-destructive testing techniques can be found in [10]. From this classifica-
tion, a very attractive approach could be optical or scanning microscopy, which was also
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extensively applied to the analysis of AM structures (see, e.g., [3, 137, 146, 155]). These
techniques provide a high resolution allowing to detect even the smallest process-induced
defects. However, they only provide observable surface information, thus, requiring to
destroy the products with internal microstructure. For lattices it is crucial to assess all ef-
fects, especially the ones arising in the areas inaccessible to surface measurements. Thus,
the most attractive approach is X-ray computed tomography (CT) (see Figure 2.2).
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Figure 2.2: Methods for defect detection in manufactured geometries (adapted by permis-
sion from Springer Nature Customer Service Centre GmbH: Springer Nature, The Journal
of The Minerals, Metals & Materials Society [151]).

CT scans are known initially from medical applications but have also been extensively
applied in metrology and in the field of additive manufacturing [36, 37, 40, 179]. In
this approach, two-dimensional cross-sectional images with a predefined resolution are
acquired by measuring attenuation coeflicients of a scanned body [109]. These attenuation
coefficients are then converted to so-called Hounsfield Units (HU). The result of this
procedure is a set of grey-scale two-dimensional images approximating the boundaries of
a scanned object. An example of such 2D image is shown in Figure 2.3. The resolution of
acquired images is entirely defined by a scan resolution, or a voxel size, a three dimensional
smallest spatial block over which the acquired data is averaged. The main advantage of
this technology is the possibility to capture all geometrical defects discussed in section 2.1.
The only limiting factor is the possible CT scan resolution, as features smaller than the
voxel size cannot be detected. However, the provided span of possible scan resolutions is
rather large and is sufficient for most industrial applications. This aspect makes computed
tomography a preferable choice for the acquisition of the as-manufactured geometry.
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Figure 2.3: An example of a two-dimensional slice of CT scan of a metal lattice structure.

Nonetheless, there is a major challenge arising when CT methods are applied to assess
the process-induced defects of AM products. As shown in Figure 2.3, the image slices do
not provide exact information about the object’s geometrical boundary. Instead, a grey-
scale distribution is achieved. Thus, to reliably identify the location of the geometrical
boundaries, an image segmentation technique is required.

The process of image segmentation is well-established in the field of medical imaging.
Although the main application area of this work is metal CTs, algorithms similar to those
established for medical imaging can be applied. One of the most straightforward tech-
niques to detect the geometrical boundary is the single threshold technique (see, e.g., [122]
and the literature cited therein). When CT scans of metal materials or other one-material
objects are obtained, the contrast of the acquired images is very high, i.e., there is a large
difference between the HU in the material and non-material areas. This is also true for
multiple materials when their attenuation properties are further apart from each other.
For one-material objects, the CT images have a bimodal histogram of the HU values.
Thus, the object’s geometrical boundary can be obtained by setting a single threshold
HUjpres- All other HU values above (or below) correspond to the material, while the rest
represent voids. To simplify the identification technique of H Uy, multiple mathematical
approaches can be employed. For bimodal histograms, Otsu’s global thresholding technique
is recommended [122]. This provides a reasonable estimate of the necessary value relying
on the fact that the CT image histogram has two large HU units clusters. Of course,
there is a particular transition area that justifies a slightly varying HUyes. However, the
determined threshold values can be used "as is" without any necessary modification.

Still, it is well known that different artefacts can be encountered in the CT images [15].
Ring artefacts, noise, beam hardening, etc., can obscure geometrical boundaries and make
the single threshold technique inapplicable. Another critical obstacle is the presence of
trapped powder in the enclosed volumes, as mentioned in section 2.1. The attenuation
properties of the melted metal and its powder are similar. Consequently, they result in
very close HU values in the CT scan challenging the single thresholding technique. Fur-
thermore, the CT image acquisition of metal objects can lead to the presence of severe
metal artefacts. They arise due to the high attenuating material properties of the metal
itself and the metal edges [14, 105]. The question of artefacts reduction for a better
reflection of the real objects is a separate research area. Many different methods, e.g.,
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projection completion strategies, multidimensional adaptive filtering, or the metal dele-
tion technique, were introduced ([15, 76, 134] and the literature cited therein). However,
to overcome these challenges in the scope of this work, an alternative deep learning seg-
mentation technique is proposed. This approach allows preparing the CT images to the
single thresholding technique, such that no geometrical boundaries are obscured. In the
following, the proposed method is briefly explained.

2.3 CT image segmentation using Convolutional
Neural Networks®

Artificial Neural Network (ANN) is today’s best-known tools of artificial intelligence and
machine learning. ANNs are widely used in a variety of ways when a task is needed to
be learnt. A Convolutional Neural Network (CNN) [88] is different from the structure of
other neural networks since CNN’s include mainly image processing functions and can also
handle different types of input (e.g., image, video, voice). A typical use case of CNNs is
to provide image data to the network as input and, based on this information, to perform
the necessary classification.
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Figure 2.4: Segmentation pipeline of CT scans of microarchitectured metal structures.

For the segmentation of CT image slices which inhibit the imaging artefacts, a U-
Net-based [143] deep convolutional network is adopted. Figure 2.4 summarizes the main
stages of the proposed segmentation approach. The proposed network consists of 6 blocks
containing convolutional, max-pooling, dropout and merge layers. An overview of these
convolutional layers (depicted in Figure 2.4) can be seen in Figure 2.5. The type of
operation and the number of convolutional kernels are noted above the boxes. The height,
width and depth of the boxes are representative of the convolutional layers’ output shape.
Such architecture is implemented in Keras [22]. To activate the layers, the Rectified
Linear Unit (ReLU) activations are utilized, except for the last layer where a sigmoid
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function is used. For optimization, an adaptive moment estimation (Adam) [82] with
a binary cross-entropy loss function is employed. Depending on the task, three or four
original two-dimensional CT slices are required. They usually contribute to less than 1%
of the overall CT scan size. To this extent, these slices have to be manually segmented
to provide labeled data, so called gold standards, for the CNN. The training data is then
formed by these few original grey-scale CT slices and the corresponding gold standard
binary masks. The test dataset consists of the remaining non-segmented slices of the CT
scan.

To further increase the number of training images, the input data is cut into pixel
patches of size n X n, where n is chosen from a certain interval such that the remainder of
the integer division image_ width/n is minimum. After the classification, the CT slices are
reassembled from the patches. Since some false negatives and false positives may appear
on the patches outer parts, they are padded on all sides to have a result of 100 x 100 pixel
size. The specimen may contain some powder in it, which has a very similar intensity to
the foreground pixels, so that it might cause wrong classification results on a pixel level.
Thus, some patches — in which powder is present — are shown twice to the neural network
to overcome this problem.

The network output is a probability distribution, where the resulting values are expected
to be very close to 0 or 1, so they can be interpreted as binary pixel values. As a post-
processing step, a single thresholding technique is applied.

Finally, either the single threshold or the deep learning segmentation technique can be
applied to determine the scanned object’s geometrical boundary. To this extent, the CT
images provide comprehensive information about a large variety of geometrical process-
induced defects discussed in section 2.1. Although CT images do not give information on
features smaller than the scan resolution or about the effects of the change in the material
grain microstructure, they help to identify the manufacturing imperfections and compare
the as-manufactured geometries to the as-designed ones.
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Figure 2.5: An overview of the convolutional layers of the U-Net network.




2.4. Numerical characterization of AM products 13

2.4 Numerical characterization of AM products

The assessment of the process-induced defects with the help of the techniques described
in the previous sections can help to understand how the process parameters affect the
printing result and imperfections. But this information is not sufficient to describe the ef-
fects of defects on the performance of the final products. A traditional approach would be
to collect this data through many experimental tests on manufactured sample products.
However, the process-induced defects differ significantly from one structure to another.
Thus, a large number of all possible combinations of these parameters would be required to
characterize the effects of occurring imperfections altogether. Furthermore, some defects
can be critical for one application while well-accepted in another. For example, surface
roughness is typically not desirable in engineering, but can be advantageous in biomedical
applications [136]. Also, the pores’ criticality or dimensional inaccuracies could be po-
tentially more significant when structures are loaded in shear rather than in tension. For
these reasons, the numerical analysis of the AM products became especially attractive.

The key in numerical AM products characterization is to define the overall properties
of final products establishing the possible application areas. For example, typical required
mechanical quantities are Young’s modulus, bending rigidity, yield strength, fatigue limits,
or other specific properties for different applications, such as e.g., thermal conductivity or
permeability. Apart from these fundamental characteristics, the overall behaviour under
various loading conditions is often required. Undoubtedly, the incorporation of imperfect
AM geometries into numerical analysis delivers a better prediction of these properties
(e.g., [26, 50, 95, 98, 101, 175]).

There are two main approaches to incorporate geometrical information from CT scans
into the numerical analysis’: a full 3D model reconstruction from the obtained CT data,
(e.g., [26, 65, 50, 175]) and a statistically equivalent CAD model generation based on
the detected imperfections (e.g., [95, 98, 101]). Both methods encounter three main
challenges. First, the reconstruction of a 3D model from a CT scan is quite demanding
since it requires a lot of manual effort before the analysis [26]. Second, a boundary
conforming mesh, needed for the numerical analysis, is not trivial to generate. Finally,
due to lattices’ complex geometrical features, a numerical study of these structures is
generally computationally expensive. Hence, most of the research focuses on incorporating
a specific set of geometrical defects, limiting it to, e.g., strut waviness and strut diameter
variation, or reducing the computational domain to a smaller size.

The next challenging task is to choose an appropriate numerical analysis type. The
most versatile and complex technique to analyze the imperfect AM structures is to perform
three-dimensional (3D) Finite Element Analysis (FEA). In the following, it will be referred
to as Direct Numerical Simulation (DNS). A full structure is analyzed with this method
numerically under predefined loading. For example, experimental tensile testing can be
repeated numerically to obtain an overall Young’s modulus of the structure. This approach
can provide the most realistic approximation of the AM product behaviour. Furthermore,
DNS can be theoretically applied to any kind of physics, e.g., to analyze lattices’ thermal
behaviour. This technique is currently considered highly computationally demanding for
numerical analysis of lattices with small-scale details. To address these issues, beam
elements are often used (e.g [26, 95, 98]) even though the 3D solid models remain the
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most accurate.

Thus, for these kinds of structures, numerical homogenization methods are often pre-
ferred to the DNS of the considered experimental setup. This approach evaluates the
macroscopic behaviour of the structure by considering a Representative Volume Element
(RVE). In general, this method is especially efficient when highly complex geometries need
to be analyzed. It can be applied to cheaply determine the linear elastic characteristics,
thermal or permeability quantities of a full structure. However, when the imperfections
are highly irregular, or the structures become non-periodic with a high voids content, this
approach faces multiple challenges on the boundary conditions applications. In particular,
the question of a RVE existence, which represents the behaviour of the whole structure,
arises.

To reduce the computational costs even further®, one-dimensional (1D) beam theories
can be employed. This technique represents an engineering extreme, as it provides a
quick approximation to the structure’s mechanical behaviour. However, the conventional
continuum beam theories are not necessarily applicable to evaluating imperfect lattice
components’ effective behaviour. They strongly rely on the assumption of the separation
of scales, i.e., the microstructural characteristic length should be much smaller than the
representative volume element’s size. Nevertheless, it has been determined experimentally
and numerically that conventional continuum models cannot describe these components,
such as e.g. by using Euler-Bernoulli or Timoshenko beam theories. They are mostly inap-
plicable when the periodic cell size approaches the typical wavelength of the macroscopic
mechanical fields’ variation. Such deviations are typically referred to as size effects. These
effects can arise at different scales. When lattice or foam-like structures are considered,
size effects can occur at the scale of millimetres [125]. If this scale is comparable to the
component dimension, size effects are crucial for evaluating the part’s behaviour. In meta-
materials, size effects become especially pronounced when the corresponding structures
are loaded in shear or bending [181]. For example, when lattice beams are considered, the
relative bending rigidity increases significantly when the size of the lattice’s representative
cell approaches the thickness of the beam structure. This occurs when the beam structure
is composed of very few layers of lattice cells in the thickness direction [79, 80].

Having these characterization methods at hand, a predictive assessment of final AM
parts’ behaviour can be performed. Although this is already a crucial step towards under-
standing the effects of the process-induced defects in manufactured components, it is also
essential to evaluate the variability they can cause in the final properties. For example,
when a lattice structure is printed multiple times with fixed process parameters and the
same machine, should a variability in the final Young’s modulus be expected? Or how
does this variability change with the scale of the produced lattice?

There is a wide amount of research also going towards this direction (e.g., [20, 21, 95,
98])4. A general focus is placed on a statistical analysis of the process-induced defects and
their consequent incorporation into a CAD model for facilitating the subsequent numerical
analysis. The former is typically achieved by statistical modelling of certain defects. Yet,
only single imperfections or a combination of a few is commonly incorporated. A flexible
description of many of the occurring geometrical and topological variations can be very
challenging within this approach.
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2.5 Proposed workflow

The challenges mentioned in sections 2.1, 2.3 and 2.4 are addressed in this thesis by
proposing an image-to-numerical-characterization workflow. In this scheme, as-designed
and as-manufactured traditional numerical characterization approaches are marked with
black arrows, while the proposed workflow is visualized with green lines in Figure 2.6.

First of all, to overcome tedious steps of traditional boundary conforming FEA on CT
scans, an immersed boundary method, the Finite Cell Method (FCM) [39], is employed.
This approach separates the geometrical representation from the applied discretization,
thus, eliminating the necessity of 3D geometry reconstruction from CT images and sim-
plifying the mesh generation process. It allows performing the numerical analysis directly
on CT images of imperfect geometries without further additional steps. The only essential
requirement is the availability of CT segmentation. The proposed deep learning segmen-
tation or a simple thresholding technique described in section 2.3 provide a solid basis for
this method.

Although the Finite Cell Method in its core provides an effective solution to the numer-
ical analysis on non-standard geometries, such as CT scans, one more challenge needs to
be considered. Process-induced defects, especially on AM lattices, can have a significantly
smaller size than the overall structural size. The numerical models of these geometries are
still very large. Thus, in this thesis, a parallel version of the Finite Cell Method with an
efficient integration technique is introduced. This approach is specifically tuned for ana-
lyzing CT-based microarchitectured geometries allowing for fast and efficient evaluation
of mechanical effects of process-induced defects.

In this image-to-numerical-characterization workflow, both the direct numerical simu-
lation of full AM structure and numerical homogenization is feasible. Special treatment
of the manufactured microstructure’s occurring randomness is further introduced in a
particular CT-based computational homogenization approach of this thesis.

The proposed workflow also allows incorporating beam models for fast estimation of
the required mechanical behavior®. To this extent, the strain gradient extensions of the
classical continuum models are introduced [4, 169, 168, 119, 79, 80]. They are proven to
be accurate in predicting the mechanical behaviour of size-dependent lattice structures.
These beam theories are especially relevant when additively manufactured lattices are
analyzed as the produced scales are relatively small.

Finally, the image-to-numerical-characterization workflow includes? a CT-based ap-
proach to incorporate process-induced defects in lattice structures into an uncertainty
analysis of the final product’s mechanical behaviour. The presented method does not
require an ideal CAD model of the considered lattice. It employs a non-homogeneous bi-
nary random field model to efficiently generate three-dimensional CT-based statistically
equivalent realizations of the imperfect AM products without limitations on the occurring
type of geometrical imperfections.
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Chapter 3

Two engineering extremes: direct
numerical simulation and beam
theories

The most basic and the most common test to characterize the behavior of newly produced
materials or parts is to determine their Young’s modulus. To achieve this, a tensile

experiment is usually performed.

Figure 3.1: Example of a tensile experiment on manufactured AM lattice structure [86].

However, these conditions can also be simulated numerically on a geometrical repre-
sentation of the same structure as shown in Figure 3.2. A field of continuum mechanics
provides fundamental means to create a mathematical model of this physical phenomena.
To this extent, all bodies are assumed to be composed of a continuous medium without
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any gaps or empty spaces. This assumption disregards molecular structure of matter
and is, thus, valid for length scales greater than inter-atomic distances [104]. Then, by
applying the loads similar to the experimental setting, a comprehensive mathematical
description can be established. In the following, only the key steps to achieve this are
recapitulated. A more thorough explanation and necessary derivations can be found in a
large amount of literature (e.g., [16, 69, 100, 104]).

(!
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z

Figure 3.2: Numerical setup of a tensile experiment on manufactured AM lattice struc-
tures.

Although such a mathematical model provides an extensive description of a bodies’
physical behavior under certain conditions, the solutions to these problems usually can-
not be established in a closed-form. A standard approach to obtain these solutions is
by using the Finite Element Method (FEM). As this approach is well-established, only
the fundamental points are mentioned in this chapter to prepare for a discussion on an
immersed method to solve these equations in the next chapter.

All things considered, a virtual experiment based on classic continuum theory pro-
vides accurate results for most engineering examples. However, when the structures
possess microarchitecture such as considered lattices, their mechanical response under
specific loading can differ for small and large specimens. These so-called size effects
bring the classical continuum theory to its boundaries, as the mathematical models be-
came inaccurate. To represent such effects, a strain gradient continuum theory can be
introduced [9, 79, 119, 70]. In section 3.2, the most significant differences with classical
continuum theory are briefly discussed.

Figure 3.3: Numerical setup of a bending experiment on manufactured AM lattice struc-
tures.

These size effects are especially pronounced when the bending characteristics of lattice
structures are determined. In particular, for a three-point bending experiment as depicted
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in Figure 3.3, the lattices can exhibit much larger bending rigidities when the height of the
specimen approaches the characteristic size of the geometrical details. Although one can
expect that a full direct numerical simulation of this setup can provide an accurate and
realistic solution of the complex mechanical behavior often, a fast prediction is essential
for an early analysis stage. One of the approaches to obtain this quick solution is to use
beam theories. On that account, the fundamental simplifications of both classical and
strain gradient continuum theories are discussed.

3.1 Direct numerical simulation using classical
continuum theory

Kinematics

Suppose an elastic body with volume 2 and boundary I" moves from its original config-
uration to a deformed state x(2) with boundary x(I') as depicted in Figure 3.4. Then,
the difference between an initial and current position of a material point of this body is
expressed by a displacement vector u as

u=x—X (3.1)

with @ = (z,y,2) being a cartesian coordinate vector of a spatial point in deformed
configuration and X a coordinate vector in initial configuration.

Figure 3.4: Motion of material point in classic continuum: E and e indicate the Cartesian
unit vectors in initial and deformed configurations respectively.

To indicate an instantaneous direction of this motion and establish the mapping between
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the initial and reference configurations, a deformation gradient tensor F' is defined:
F=1+Vyu (3.2)

where V denotes the vector differential operator with respect to initial or current config-
uration as

Vx() =22 and V() =22 (3.3)

In this work, the small deformation theory is employed, as the displacement of every
material point of body €2 is assumed to be much smaller than its representative dimensions.
Thus, the distinction between the reference and current configuration is not necessary and
Vx(:) = Va(-) = V().

However, for engineering applications, a different measure of deformation is often pre-
ferred. The Green-Lagrange strain € is a common choice, as a rigid body motion imposed
on the body would not lead to any non-zero strain components. Following the same
assumption of the small deformation theory, i.e., |[Vu| << 1, the strain tensor can be
defined as follows:

e=-(Vu+V'u) (3.4)

1
2

Constitutive relations

In response towards an action of surface forces ¢ or body forces b, an internal force
distribution, or stresses, arise. The relation between stress and strain in the body can be
defined through a strain energy density function VW [53]. Assuming linear elastic material
this quadratic function is only the function of strain [55]:

W(e) = %e :C e (3.5)

where C'is the fourth-order elasticity tensor. Then, the Cauchy stress tensor o is defined
as work conjugate to the strain tensor as

_OW(e) _ .
U—T—C.E (3.6)

The elasticity tensor C' can represent various degrees of material symmetry, i.e., the
variation of the material’s properties with respect to a direction at a fixed point in the
structure. In a fully anisotropic case, this tensor has 21 independent characteristics.
When the body possesses similar material properties in all directions, the behavior is called
isotropic, and the tensor has only two independent coefficients. In this work, all structures
are considered to be linear elastic with isotropic material symmetry. However, when the
homogenized properties are analyzed, the effective material symmetry can change, which
will be further discussed in chapter 5.
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Boundary value problem

In the following, inertia effects are neglected. Thus, applying the law of conservation of
linear momentum, the Cauchy’s equations of equilibrium for elastostatics read:

V-o+b=0 on 0 (3.7)

However, these equilibrium equations are incomplete without Boundary Conditions (BC's)
to model a physical problem drafted in Figures 3.2 and 3.3. Usually the primary unknowns
are displacements u that occur in the body under specific loading. Thus, the following
boundary conditions are additionally formulated:

o-n=t on I'y
u

(3.8)

o on I'p

where n is the outward unit normal vector on I', @ and ¢ are prescribed displacement
and tractions, I'p indicates a part of the domain boundary where Dirichlet conditions
are applied, while I'y refers to Neumann domain boundary such that I' = I'p U 'y and
pNTy=0.

The Finite Element Method

Equations 3.7 and 3.8 can be solved numerically using the Finite Element Method [71].
This method requires to transform the strong formulation of the elastostatic problem into
a weak form. The most commonly used weak form reads as follows:

Find w € § such that B(v,u) = F(v) Vv eV (3.9)

where v is the test function. The bilinear form B(-,-) and the linear form F(-,-) are
defined as:

B(v,u) = /s(v) :C(x) : e(u) d)

]-"('v):/v~bdﬂ+/’v~deN

Q Ty
The function spaces S and V are defined as follows:

V:{UZ‘EHI(Q)ZUZ‘:O VGZEFD} ‘
where H'(-) denotes the Sobolev space of degree one [7T1].
The probably most well-known approach to approximate these equations numerically
is the Galerkin approach [71]. In this approach, the function spaces S and V are approx-
imated by finite dimensional subspaces S"C S and V"C V respectively. These subspaces
are characterized by a finite element mesh, the elements’ polynomial degrees, and the
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mapping functions [160]. Then, an approximated solution to Equation 3.9 can be deter-
mined by solving the following finite dimensional problem:

Find upgp € S" such that B(v",upg) = F(v") Vo' € V" (3.11)

where upg is an approximation to u and v" are the finite dimensional trial functions [159].

The quality of the finite element approximation is determined by the finite element
space, the elements’ polynomial degree p and the mapping functions. The finite element
space can be defined by different sets of basis functions, also called shape functions. They
should be hierarchic, have a minimum number of shape functions vanishing at vertices,
edges and faces, and should be constructed such that the underlying polynomial functions
fulfill certain orthogonality properties [160]. In this thesis, the integrated Legendre poly-
nomials are used [39, 159]. Compared to the classical shape functions defined by the set
of Lagrange polynomials, the integrated Legendre polynomials do not lead to a drastic
increase of stiffness matrix condition number when the polynomial degree p is elevated.
Furthermore, the set of basis functions of polynomial degree (p+1) includes the set of
shape functions of polynomial degree p [160].

To improve the finite element approximation of the solution, the finite elements spaces
can be enlarged using multiple strategies. In this work, the following three methods are
considered [39, 160]:

o h—refinement: the polynomial degree of the elements p is kept constant while re-
ducing the size of the used elements.

o p—refinement: the polynomial degree of the elements p is progressively increased
while keeping the element size constant.

o hp—refinement: the polynomial degree of the elements p is progressively increased
while reducing the element size.

The choice of these methods depends on the nature of the solution to be approximated.
Although the h—refinement is probably the most commonly used method, the numeri-
cal approximation converges to the analytical solution at a comparably slow rate. The
p—refinement can lead to a faster convergence especially for smooth problems. However,
when non-smooth problems are considered, such as, e.g., in the presence of singularities,
the convergence of the latter method decays and is only slightly better than the conver-
gence of the h—refinement. In this case, the hp—refinement provides a significantly higher
accuracy for the same number of unknowns [184].

Summary

All in all, these aspects complete the necessary fundamental formulation of a direct nu-
merical simulation. Equation 3.9 can be solved numerically by applying a different set of
boundary conditions. For example, in the case of a virtual tensile experiment as shown
in Figure 3.2 Dirichlet boundary conditions are employed on both sides of the speci-
men, whereas no traction is prescribed. In the case of a bending experiment as depicted
in Figure 3.3 both Dirichlet conditions at the supports and non-homogeneous Neumann
condition are necessary to impose. Other types of direct numerical simulation can require
to derive other types of constitutive relations. For example, the continuation of a tensile
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experiment in the non-linear regime would require plasticity laws in the direct numerical
simulation. Nonetheless, the derivations and fundamentals are somewhat similar and can
be found in the textbooks.

3.2 Direct numerical simulation using strain
gradient continuum theory

Kinematics

In contrast to the classical continuum theory, strain gradient theory introduces an ad-
ditional micro-volume €’ with boundary I attached to every material point as shown
in Figure 3.5.
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Figure 3.5: Motion of material point and micro-volume in strain gradient continuum.

In this frame, the initial micro-point coordinate X’ is pushed to its deformed config-
uration ' with the help of micro-deformation mapping x’. Analagously to the classical
kinematic relation, the micro-displacement vector w4’ is then defined as follows:

u=x-X (3.12)
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Figure 3.6: An example of micro-deformations (adapted by permission from Springer
Nature Customer Service Centre GmbH: Springer Nature, Archive of Rational Mechanics
and Analysis [110]).

The micro-deformations are also assumed to be small. Thus, the micro-strain tensor ~y
can be formulated as

- % (V' + (V'!)T) (3.13)

with V' being the vector differential operator in micro-coordinates. Apart from defin-
ing the microscopic kinematic relations, one additional connection must be established.
In particular, the connection between classic continuum scale and microscale can be de-
scribed using the following equation:

x#=Vu—-~y (3.14)

This describes the relative deformation 3¢ of a microscopic point with respect to a macro-
scopic one. Similarly, the micro-deformation gradient can be formulated as

© =Vxy (3.15)

An example of few entries to this micro-deformation gradient tensor ® are shown in Fig-
ure 3.6.

Constitutive relations

The strain energy density formulated for a classical Cauchy continuum as in Equation 3.5
is enriched for the micromorphic continuum W)y, by assuming it to be dependent on
macro-strain €, relative deformation between the scales 3 and micro-deformation gradient
©® as follows:

WMM = WMM(E,%, @) (316)

providing the definitions of standard Cauchy stress o, relative stress € and double stress
L as

. 8WMM(5, r, @)
B de ’

. 6WMM(€, ”, @)
n ox

B aWMM(EI, ”, @)
B 00

o (3.17)

§

s L
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Overall, there are 1764 independent constitutive coefficients in a fully anisotropic case.
For isotropic elasticity, this number is reduced to 18 independent variables.

The next important simplification is the introduction of vanishing relative deformation
between the scales, i.e., the micro-medium merges with the macro-medium gradient and
»= 0 [185]. This allows to express the strain energy density in terms of macroscopic
displacements w. This implies that

v = Vu, ® = Ve (3.18)

With this in mind, the strain energy density Wy;(-) is only dependent on the macroscopic
strain and the third-order micro-deformation gradient tensor ©:

1 .. ..
W[[:W]](€,@>:§€ZCZ€+§®ZAZ@ (319)
which is known as the strain energy density of Mindlin’s Form II gradient elasticity [110].
Mathematical operations of contractions are defined such that Equation 3.19 is written
in the index notation as follows:

Wi = %Cijk:lgijgkl + %Amijnklamgijanekl (3.20)
where C' is the standard elasticity tensor and A is the sixth-order gradient-elastic tensor.
Assuming linear isotropic material, the gradient-elastic tensor A has five gradient-elastic
constants, or also called length scale parameters. This tensor holds the information about
both material anisotropy and anisotropy of length scale effects [93].

The high-order material parameters are usually difficult to determine, which, in turn,
complicates the use of strain gradient elasticity for large-scale applications. Thus, an-
other assumption is usually made. This is the assumption of weak non-locality [93], or,
separation of material and length scale anistropy. In this context, the high-order material

tensor A can be decomposed as a product of elasticity tensor C' and a length scale matrix
v

A=P¥ gCP (3.21)

with Py and P, being permutation tensors such that A;;xymn = ¥5Cjgmn, and ¥ having
dimensions of m?2. This length scale matrix reflects the discrete nature of continuum and is
not present in standard anisotropic elasticity. The properties of this tensor are related to
non-local anisotropic effects at the micro-scale [94]. For example, the length scale tensor
can indicate different crystal symmetries. For a cubic crystal symmetry it takes the form:

v2 0 0
=10 02 0 (3.22)
0 0 U

Finally, plugging in Equation 3.21 into Equation 3.19 yields the simplified form of the
strain gradient elasticity theory formulation.



26 3. Two engineering extremes: direct numerical simulation and beam theories

Boundary value problem

Similar to Equation 3.7, the strong form of the strain gradient elastostatic equilibrium
equations can be formulated as follows:

V- (e6-=V-1)+b=0 on Q (3.23)

with ¢ being the double stress tensor defined in Equation 3.17 with Equation 3.19. The
boundary conditions are extended to the following form [8, 49]:

n-(a—V-L)—Vsurf-(n-L)+(VSWf-n)n®n:L:f on L'y

u="1u on PD,cl (3 24)
nen:t=4q on I'norr ‘
n - Voéu = du,, on I'pir

where Vg, p =V —n®mn -V is the surface gradient operator, ¢ is the prescribed double
stress traction vector, and d, is the prescribed normal directional derivative of the dis-
placement . The boundary is composed of four parts as I' = I'p y UT'y o UT'p ;1 UT' N 11
The Neumann part of the domain boundary is then formed as I'p =I'p ;; UI'p 4 and the
Dirichlet part as 'y = 'y ;;Ul v . Similar to the classical elasticity theory: T'pNI'y = (0.
These boundary conditions resemble the classical boundary conditions defined in Equa-
tion 3.8. In particular, the first two indicate the traction and displacement boundary con-
ditions, while the last two correspond to non-classical traction and displacement derivative
conditions.

Galerkin approach

Equation 3.23 indicates the presence of high order derivatives. Thus, the Galerkin method
should comply with this high regularity condition. In particular, the Non-Uniform Ratio-
nal B-Splines (NURBS) basis function could be employed to resolve this problem. More
details about the derivation of the weak form and the requirements can be found in [120].
The demand of higher continuity shape functions makes the numerical solutions of full-
scale 3D strain gradient problems scarce. In this work, the use of strain gradient elasticity
theory will be limited to dimensionally reduced models in bending. Thus, all the details
about the numerical solution of 3D strain gradient elastostatic equations are omitted.

3.3 Classical and strain gradient beam theories®

Some engineering problems allow to apply simplified numerical models. For example,
bending rigidity characterizes the structural resistance to bending deformation. Typi-
cally, it can be determined by a three-point bending experiment schematically depicted
in Figure 3.3. In this case, well-established beam theories are preferred to the full 3D
analysis. The most common approaches are to employ the Euler-Bernoulli or the Tim-
oshenko beam model. When slender beams with a small thickness-to-length ratio are
considered, an Euler-Bernoulli model is more suitable to evaluate bending rigidity. By
contrast, the Timoshenko beam theory is more appropriate when shear effects are not
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negligible. Detailed derivation and thorough discussion on these techniques can be found
in, e.g., [174]. In the following, only the fundamental relations needed for this work are
recalled.

For example, the full 3D model of a three-point bending test as in Figure 3.3 can be
reduced to a simplified 2D problem where the structure deforms in the zz-plane (see the
2D sketch of the problem in Figure 3.7).

Lo |
JAN JAN

Figure 3.7: A 2D sketch of a three-point bending setup [83].

z

The displacement components u= (u,, u,, u,) are assumed to obey the following rela-
tionships:

u, =0, u, = w(x) (3.25)

where z is the coordinate along the main axis of the beam, z is the direction perpendicular
to it, and y is the out-of-plane coordinate, as depicted in Figure 3.7. This leaves the
transverse deflection w as the only unknown.

When utilizing the symmetry of this test set up in the axial direction and, accordingly,
modelling the left half of the structure as a uniaxial beam bending problem, the boundary
conditions of the resulting beam problem read as follows:

w(x =0) =0, M(z=0)=0, w’(:c:g>20, Q(ng)zg(&%)
where the z-coordinate runs along the central (neutral) axis of the beam and x = 0 is the
coordinate of a fixed left support, w is the deflection of a central axis of the beam, F' is the
total applied force (evaluated from the distributed traction t applied in 3D case Figure 3.3
) at the symmetry point 2 = L/2, L is the distance between supports, whereas M and @,
respectively, are the standard bending moment and shear force of the beam.

3.3.1 Classical beam theories

Given the previously defined bending problem, the dimensional reduction to the Euler-
Bernoulli beam theory is performed. The classical Euler-Bernoulli solution delivers the
maximum deflection at = = L/2:

FL3
WwEB — e (3.27)
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where L is the length of the beam between supports, E~ is the effective Young’s modu-
lus, and I= (bh?)/12 is defined as an effective moment of inertia of a rectangluar cross
section having the outer dimensions (width b and height h) of the original structure. The
last two effective quantities are not straightforward to obtain when lattice structures are
considered. The two most common ways to determine them are to perform experiments
or to use a first-order numerical homogenization. The latter will be in details discussed
in chapter 5 of this thesis.

To account for shear deformations for higher thickness-to-length ratios, the solution of
classical Timoshenko beam theory for three-point bending can be formulated as follows:

, FL}® FL

= — 4+ — 3.28
A8E' I 4G A (3.28)

where G is the effective shear modulus and A is the cross-sectional effective area. Then,
the main characteristic of the bending behavior is the bending stiffness or bending rigidity
D. Tt defines the resistance of the specimens to bending deformations:
F
D=— (3.29)
w
where [ is the applied load and w the determined displacement.
With the help of the classical beam theories solutions, this quantity can be determined
analytically when all other parameters are known. The classical Euler-Bernoulli bending
rigidity DF® for the considered problem yields:

F A8E" T B AE"bh3

EB __
D o wEB I3 I3

(3.30)

where b is the depth and & is the height of the homogenized rectangular cross section.
Analogously, the classical bending rigidity using the Timoshenko beam theory DT is
defined as:

F DEB DEB
T wl L 12E°T 1+E* (h)2
G AL? G\ L

(3.31)

Equation 3.31 shows that for a fixed length L, the bending rigidity D’ approaches
DB when thickness approaches zero, whereas for constant thickness-to-length ratios, the
Timoshenko and Euler-Bernoulli rigidities stay apart.

3.3.2 Strain gradient beam theories

The formulation of the strain gradient Euler-Bernoulli beam theory starts with the same
displacement relations as defined in Equation 3.25. The strain gradient energy density
has been formulated above in Equation 3.19. In this case, the only non-zeros strain and
stress components are €, and 0,, = Cre,, with Cp, = Cyrpre. Accordingly, the strain
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gradient model has to incorporate strain gradients components €, , and e, . only, with
the corresponding two high-order elasticity constants A, = Ayrpeee and A, = Apprpr, Of
a full high-order material tensor defined in Equation 3.19 [161]. Thus, the variation of
the strain energy density defined corresponding to Equation 3.19 simplifies to:

) / Wi d§) = / (Crera0€ss + As€r2.20€00. 5 + As€ra 20645 ) dS2 (3.32)
Q Q

and further to a 1D energy expression over the main axis of the beam:

L L
02 (dw) OM 93(6w)
_ 2 2 OM
) / WidS) = / (M + ¢2R) 557 dx + / 95 B3 (3.33)
Q 0 0
with a generalized moment R=R(z) written out as follows:
00 (2, Y, 2) d*w
= | — 2 ZdA=C,A— 34
R(x) / 9% d Cy T2 (3.34)
A

where A is the cross-sectional area of the beam.

Applying Hamilton’s principle the strong formulation of the two-parameter strain gra-
dient Euler-Bernoulli elasticity model can be formulated. The differential equation reads
in terms of moments, or in terms of deflection with constant material parameters, respec-
tively, as follows:

(M+g?R—(g2M")Y'=f or (B I+¢@E A" +g?E'Iw"" =f  Vre(0,L)
(3.35)

where f is the externally applied transversal loading and E*I stands for the classical
bending rigidity with E* = C,, whereas the two length scale parameters g, and g, are
defined following the weak non-locality approximation defined in Equation 3.21 as A, =
g2E" and A, = ¢?E", respectively. The higher-order term ((g2M’))", (or g2E" Tw™"),
can be related to boundary layer effects specific for certain boundary conditions and
the crucial stiffening effect can be traced back essentially to the additional lower-order
term g*R, (or G E" Aw™ ) (see [119]). The governing equation can be written in a simple
lower-order form [79, 80:

(E'I + E"Ag>)w" = f  Vaxe(0,L) (3.36)

where only one length scale parameter g = g, is present.
The analytical solution of Equation 3.36 under the absence of body load with the
boundary conditions described in Equation 3.26 takes the form:

EB FL?
AR (EI+ ETAg?)

(3.37)

Equation 3.37 compared to the solution of the classical Euler-Bernoulli theory in Equa-
tion 3.27 leaves the only intrinsic length scale parameter g which acts as a representative
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high-order material parameter of length scale matrix ¥* defined in Equation 3.21. This
parameter depends on the unit cell’s microstructure and characterizes the size-dependent
beam behavior when the beams with a low thickness-to-length ratio show a stiffening
effect.

The solution of the strain gradient Timoshenko beam theory can be derived in a similar
manner taking into account the respective assumptions [79, 80]:

. FL3 FL

e 3.38
Y TS (BT EAg®)  1GTA (3.38)

Equation 3.38 is also similar to the solution of the classical Timoshenko theory except
for the presence of the intrinsic material parameter g. The bending rigidities (with rect-
angular cross sections A = bh) corresponding to these deflections can be shown to follow,
respectively, the formulae:

DEB — DFB (14 19 <g>2
gar h

pr = pT (1 +12 (%>2>

revealing the size effect for decreasing values of A with a fixed value of g.

To sum up, both the classical and the strain-gradient theories could provide a quick
estimate of the considered beam-like lattice structures’ bending behavior. In the scope
of this thesis, the predictions provided by these theories will be compared to the full
3D numerical and experimental analysis in chapter 6. Furthermore, their accuracy and
applicability will be evaluated with the help of experimental three-point bending tests.

(3.39)
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Chapter 4

Finite Cell Method for image-based
numerical characterization

8As explained in section 2.3 the as-manufactured geometries are often acquired via com-
puted tomography. Such geometrical models challenge the meshing procedure of the
conventional FEM approach. To perform a direct numerical simulation described in chap-
ter 3, a suitable 3D model must be reconstructed. Then, a boundary conforming mesh
must be generated. However, these two steps involve a lot of manual labor and neces-
sary computational power. Furthermore, when the lattice structures are analyzed, the
high level of microstructural details makes the preparation to the numerical analysis very
costly. Hence, to address these challenges, the Finite Cell Method, an immersed bound-
ary method [38, 39, 129], is introduced. This approach allows not only to circumvent the
challenge of incorporation the CT-based geometrical models into the numerical analysis
but also to exploit the inherent structure of the C'T scans to make the numerical analysis
of as-manufactured geometries efficient and feasible. In the following, only the main ideas
of the FCM are recapitulated.

4.1 The main concept®

The main idea of the Finite Cell Method is illustrated in Figure 4.1.

Q\Q
Q Q) a=1 I
oS
(a) Physical domain Q (b) Extended domain €, (¢) FCM mesh (in bold) and indicator

function

Figure 4.1: The idea of the Finite Cell Method [83].
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First, a complex domain €2 is immersed in a simplified box-like domain €2.. Note that the
strong and the weak formulation of the elastostatic problems as in Equations 3.7 and 3.9
are defined on the physical domain §2. Due to the simplicity of the fictitious domain 2., it
can be trivially discretized with a structured grid of cuboids, further referred to as finite
cells. As opposed to the conforming finite element mesh, the finite cell mesh does not aim
at approximating the boundary of the physical domain I'. In turn, it just discretizes a
simple cuboid. These elements provide the support for shape functions which are chosen
to be integrated Legendre polynomials of order p as mentioned in section 3.1.

Second, the original boundary value problem must be recovered on the actual, physical
domain. To achieve such a result, an indicator function a(zx) is introduced into the
problem formulation. It is defined to be equal to one on all points of the physical domain
(2 and to a small positive value in the domain Q.\€2. Then, the classic weak formulation
defined in Equation 3.9 is modified as follows:

Find uw € § such that BY(v,u) = F(v) Vv eV (4.1)
where  B%(v,u) = [ e(v): a(z)C(zx) : e(u) dQ.
Qe
Fov)= [v-a(@)bd2+ [v-tdly
Q. Ty

The introduction of the indicator function a(x) in this formulation ensures equivalency

of Equation 4.1 to the classical formulation Equation 3.9 in terms of energy with the
modeling error proportional to y/a. The mechanical meaning of this function can be
described as the value of a(x) V& € Q.\Q corresponds to the addition of a material with
vanishing stiffness in the void domain €2.\€2.

As the geometries under consideration stem from CT images, the spatial scalar function
a(x) can be conveniently related to the acquired Hounsfield Units. After applying the
single thresholding technique explained in section 2.3, the threshold value of Hounsfield
units HUyyes can directly be used to define the indicator function as follows:

a(z) = (4.2)

1 lf HU Z HUthres
<<1 if HU < HUyes

Although the indicator function simplifies the meshing procedure drastically, it also
introduces additional challenges to the numerical procedure. In particular, four major
points needs to be discussed:

e Boundary condition application

» Refinement strategies

o Accurate integration of cut finite cells
o Conditioning problems

As mentioned above, the finite cells do not approximate the geometrical boundary of
the domain. However, on the physical domain boundary I', the boundary conditions
are defined (see Equation 3.8). Like in the conventional FEM, homogeneous Neumann
boundary condition is automatically satisfied by choosing the indicator function close
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to zero. Non-homogeneous Neumann conditions are also naturally incorporated in the
formulation of Equation 4.1. However, the essential boundary conditions are not possible
to be applied traditionally. As opposed to the conforming nodes at the domain boundary
in FEM, the geometric boundary does not contain the necessary degrees of freedom.
Thus, the most common approach is to apply Dirichlet boundary conditions in a weak
sense by using Nitsche’s method (see, e.g., [121]), Lagrange multipliers (e.g., [60]) or
Penalty approach [6]. The latter will be further used in this work.

The traditional refinement procedures, such as h- or p-refinement, can also be applied
in the Finite Cell Method. Similarly, the background grid’s size can be reduced, or the
polynomial degree of the shape functions can be elevated. Furthermore, the hp-refinement
is also possible and can be advantageous when singular solutions are considered or local
solution features have to be resolved. This technique has been extensively studied in the
scope of FCM by [149, 184].

As indicated in Equation 4.1, the indicator function can make the domain integrands
discontinuous. In the extended domain, there are so-called cut cells, which are overlapping
both the physical domain 2 and the fictitious domain Q\Q.. In this case, a special
integration technique must be applied to achieve a reasonable accuracy of the domain
integrals. For this purpose, multiple techniques have been proposed (see, e.g., [1, 90]).
However, as the geometrical domains in this thesis stem from CT scans, the underlying
voxel structure can be exploited to perform this integration efficiently. This scheme will
be discussed further.

Finally, the presence of cut cells, especially when the portion of the fictitious overlap
is large, can lead to a high condition number of the stiffness matrix. This is particularly
challenging when iterative solvers are used to obtain the numerical solution. As in this
thesis most of the problems are large, the iterative solver remains the best possible choice
for the solution of linear systems. Thus, the solution to this conditioning problem will be
briefly mentioned in the following sections.

4.2 Efficient numerical integration of discontinuous
integrands?®

For numerical domains stemming from CT scans and linear physical problems, the compu-
tational efficiency of the FCM can be optimally exploited using a pre-integration technique
on a voxel level introduced in [180]. Consider a 3D voxel-based domain of size I, x I, x [,
length units. A slice of this domain is depicted in Figure 4.2 as an example. The numer-
ical domain is discretized with n, x n, x n, finite cells. Every cell contains v, X v, X v,
voxels with dimensions s, X s, X s, length units.

The Hounsfield Units are piecewise constant in a voxel. Hence, the domain integrand
in Equation 4.1 is discontinuous at the boundary of the voxels within every finite cell.
Therefore, the integration is carried out piecewise, i.e., in a composed fashion on each
voxel separately. Then, the composed integration of the cell stiffness matrix after dis-



34 4. Finite Cell Method for image-based numerical characterization

2D Slice of a CT scan Finite Cell
b \
{QN
| =
3 @
S i
. D
& )
<
g -
y L] | /
l, =ny vy S, Uy * Sy

Figure 4.2: 2D Slice of a CT scan with an example of a finite cell.

cretizing Equation 4.1 reads:

K, = / B" (a(x)C(x)) BdQe =Y > Y / BT (a(x)C(x)) B dQ, (4.3)

Vo Uy Uz

where B is the matrix containing shape functions derivatives, €2, is the finite cell domain,
and €, is the domain of one voxel.

Transferring Equation 4.3 to a local coordinate system of one finite cell, the integral
can be written as follows:

K.= /1 /1 /1 B” (a(x)C(x)) BdetJ drdsdt

-1-1-1

=>"3 Z / / / BT (a(x)C(x)) BdetJ drdsdt

v, (%
z v Tks kt

where k,.k; and k; indicate the local coordinate limits of integration for every voxel within
a finite cell. They depend on the number of considered voxels per dimension v, x v, X v,.

Then, exploiting the structure of the integral indicated in Equation 4.4, the voxel
stiffness matrix contributions can be pre-computed in an offline stage using a standard
(p+1)® Gaussian quadrature rule resulting in v,(p+1) X v,(p+1) X v,(p+ 1) integration
points per finite cell. These contributions are then multiplied with the indicator function
a(x) defined through the Hounsfield Units in Equation 4.2.

This pre-integration technique allows for fast integration of the global stiffness matrix.
However, the storage of the dense v, X v, X v, matrices increases the memory consumption
(see [180]). In this thesis’s scope, the memory cost for storing these matrices is negligible
compared to that of the rest of the simulation (e.g., the storage of the global stiffness
matrix).
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4.3 Linear system solution and conditioning
considerations

Although the Finite Cell Method combined with a voxel-based pre-integration technique
provides a powerful tool to perform numerical analysis directly on CT images, the linear
systems size, especially for the DNS tests, remains considerable. To address this issue,
a hybrid parallelization of the high-order FCM is used. This parallelization strategy is
based on a modified version of the approach presented in [74, 75]. In this section, only
the novelty of the utilized parallel framework will be briefly highlighted.

The main idea of the hybrid parallelization framework is based on both distributed and
shared memory parallelism. The numerical solution is obtained on different computational
units, or nodes. The original technique proposed in [74] and employed in [75] was repli-
cating the entire mesh data structure on all participating nodes, i.e., every computational
node, the entire finite cell mesh in all detail, and only selects a subset of these elements
for further processing. This method was employed in [74, 75] due to its simplicity. Tt
automatically delivers consistent management of all degrees of freedom of discretization.
However, it not only requires a large amount of memory to store the mesh structure, but
the size of the largest computable problem is limited by the amount of memory one single
node can allocate. This memory limitation does not allow for a DNS computation of the
examples discussed in chapter 6.

In the scope of this thesis, a new version of this approach is employed. The limitations
of the techniques presented in [74, 75| is lifted by an advanced mesh handling strategy.
This strategy is based on a fully-parallel adaptive Cartesian mesh and is similar to the
parallel mesh generation routines in packages such as P4est[19]. At the start of the mesh
generation process, a coarse lightweight Cartesian grid is generated, see Figure 4.3a. This
grid structure is computationally inexpensive to create and store as it only holds every
grid cell’s location indices. It allows determining the mesh part containing the geometrical
model’s physical domain €2 and discard possible inactive coarse grid cells. Then, these
grids are partitioned among the computational nodes, as indicated in Figure 4.3b. Each
node then "forgets" the overall mesh structure, storing only the domain’s necessary part.
Every computational unit can independently refine its local grid cells until a predefined
depth to capture more geometrical details, as shown in Figure 4.3c. After this refinement,
some processes can end up with a larger number of grid cells than others. Hence, a
second load balancing step is performed on the refined grid cells using Zoltan to eliminate
this imbalance. Finally, a numerical simulation can be performed independently on every
computational node. The only remaining ingredient to complete this framework is to
allow a suitable communication of numerical data among the processes. In the current
implementation, overlapping ghost layers, as shown in Figure 4.3d, provide an analysis-
suitable discretization in which every degree of freedom has a unique global number. This
parallelization strategy uses the concept of ghost elements, an additional overlapping
element layer between the computational nodes. Therefore, the distributed linear system
of equations can be computed without communication. At this point, the new algorithms
nicely allow for subsequent usage of the methodologies for the distributed solution of
equations as presented in [75].
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Figure 4.3: An example of parallel mesh handling for two computational nodes.

To solve these distributed systems, highly optimized parallel linear algebra capabilities
of Trilinos for parallel matrix-vector multiplications and matrix storage are extensively
used. Nonetheless, the conditioning issues arising due to the small fraction cut cells still
have to be addressed. To this extent, the parallel Conjugate Gradient solvers from Trilinos
library are extended with the custom Additive Schwarz-based preconditioner, which was
specifically designed to treat conditioning problems associated with the cut elements in
FCM. A detailed description of this approach can be found in [29, 75].
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Chapter 5

Computational homogenization

This chapter describes computational homogenization as a numerical tool to characterize
the macroscopic material behavior of complex structures. Computational homogenization
is a cheaper alternative to direct numerical testing addressed in chapter 2.

The effective material properties can be either determined analytically or numerically.
However, only a few analytical solutions for unique geometrical configurations exist. The
most generic approximations of effective properties applicable to any setup are described
in section 5.1.

When the effective material properties are determined numerically, the computational
homogenization theory is applied. According to [118], this method includes the following
main ingredients:

o The concept of Representative Volume Element (RVE)
o Principle of separation of scales

o Averaging theorems

e The Hill-Mandel macro-homogeneity principle

o Boundary conditions

In sections 5.2 to 5.5, each of these crucial concepts is discussed in greater detail.

Although computational homogenization is widely used to characterize the linear and
non-linear behavior of materials, porous non-periodic structures’ material characterization
remains challenging. In this case, the homogenization boundary conditions become crucial
for the accuracy of the obtained homogenized quantities. Furthermore, when the voids are
randomly crossing the boundary, averaging theorems and application of boundary condi-
tions becomes rather cumbersome [33, 116, 158]. This issue is addressed in section 5.6,
where a novel solution provided by the FCM is presented.

An alternative way to homogenize non-periodic porous structures is to employ the
window method, eliminating the need for specific void treatment. This method was
introduced and employed in [58, 150, 189]. However, it shows a few limitations, which are
extensively discussed in section 5.7.

In the following, the concepts of computational homogenization are described based
on linear elasticity. Generally, thermal, permeability or viscoelastic homogenization is
performed in the same way. However, the important differences are briefly discussed
in section 5.8.
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While numerical homogenization does not require any prior assumptions on a macro-
scopic material law and provides a complete macroscopic material tensor at once, the
final result is governed by the applied boundary conditions and might not deliver the best
approximate. Numerical examples at the end of this chapter (see section 5.9) investigate
these phenomena in greater detail and provide an extensive discussion on the applicability
of the computational homogenization theory. The examples are chosen such that the two
most common groups of the materials are considered. In particular, structures consisting
of one material with voids and composites are investigated. The first group is represented
by considering a periodic cubic cell with a cubical void. In this case, the internal void’s
size is not fixed but varied throughout the studies. To further verify the computational
homogenization results, the larger structure is artificially constructed by a cubic cell’s pe-
riodic repeating. The composites are considered by investigating a two-material particle
reinforced cubic cell. Similar to the first example, this cell is considered to be ideally
periodic.

5.1 Analytical bounds

To determine the effective behavior of materials with complex microstructure analytically,
only a handful of solutions exist. In the following, only Voigt and Reuss bounds and the
Hashin-Shtrikman bounds are recapitulated. They rely solely on the macroscopic porosity
and do not consider any geometrical or topological specifications of the microstructure.
These bounds are considered the simplest models to evaluate the range where the effective
properties fall.

There are more analytical estimates to determine effective properties, such as Mori-
Tanaka model, Dilute distribution, Differential scheme, Self-consistency method, etc.
[55]. These estimates do not provide the bounds but a value approximation for spe-
cific microstructures. These models require knowledge about inclusion’s position, form,
properties, and influence on one another. These assumptions limit its application in the
scope of this work and will not be considered further.

Voigt and Reuss bounds (Hill bounds)

Consider a matrix (£2,,,) and another material (£2;)m which are perfectly bonded to-
gether (see Figure 5.1).

Q

Figure 5.1: Representative volume domain, boundaries and normals definitions.
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As the volume consists of two phases, the overall average stress can be written out using
the subdomain expansion as follows:

=1 (5.1)

where « is a considered phase,
n is the total number of phases. i.e subdomains, in this case n = 2,
¢,, - volume fraction of a subdomain:
_ 9 n _
Co=-gand ) |  cq=1,
< - > is a volume averaging operator.

If the considered volume is representative of the overall macroscopic behavior, a unique
relation between an average quantity within the mixture and a single phase exists:

<€>Qm =L, (€)q (0'>Qm = M,, (o)
<€>Qh = Ly (€)g <U>Qh = M, (o)
where L and M are fourth-order influence tensors expressing the dependence of the

field average over one subdomain on the prescribed macroscopic quantity [55]. Substitut-
ing Equation 5.2 into Equation 5.1 gives:

(5.2)

(o) = C"- (e)q, where C" =c¢,CLLy, + ¢nCo L, (5.3)
or equivalently for the strains:
(€)g=D":(o)y  where D" =c,DyMj + cyDi My, (54)

If an average uniform strain through the mixture is assumed (L;, = L,, = I), Equa-
tion 5.3 reduces to the Voigt estimate [173]:
(o) = C; 1 (€)q where C*V =c,Ch + ¢ Chy (5.5)

While for the average uniform stress state in the mixture (M}, = M,,, = I), Equation 5.4
is a Reuss estimate [142]:

* 1 Ch Cm
(0)g=C:(e)q where C; = + C. (5.6)

When the void phase is present in the mixture, the lower bound can be estimated as
follows:
* . ChCm

@ha=0 Ce= i, e, o0
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Physically, the Voigt estimate implies that tractions at the phase boundaries are not in
equilibrium, while the Reuss approximation suggests that inclusion and matrix are not
remaining bonded.

Both Reuss and Voigt estimates provide a wide range of bounds for a general type of
mixture. In case one phase is either rigid or weak, compared to the other, the difference
between these two values becomes quite large [68]. The Voigt and Reuss bounds provide
an exact solution only for the special cases depicted in Figure 5.2.

Z

L

o ln

(a) Exact Voigt Bound (b) Exact Reuss Bound

Figure 5.2: Special cases for which Voigt and Reuss bounds provide exact effective prop-
erties (load is applied in z-direction) [111].

Nevertheless, it was proven that the Voigt and Reuss estimates are always bounding the
effective elasticity tensor as follows [67]:

c.<Cc <C (5.8)

Hashin-Shtrikman bounds

The base of variational Hashin-Shtrikman bounds is the comparison of a microscopically
fluctuating response with a homogeneous reference material [61]. These bounds are exact
for a composite sphere assemblage.

If the mixture consists of n phases with bulk modulus K, and shear modulus G,,, the
Hashin-Shtrikman bounds are written as follows:

A
1+ agA
1 B
21+ 3B

Kusp 2 Ko+
(5.9)
Gusp 2 Go +

where Ky, G are either the largest material characteristics of a phase in the mixture
yielding an upper bound, or the smallest mixture characteristics leading to a lower bound.
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And ag, By, A, and B are constants defined as follows:

3
@0 = _3K0 + 4G,
By = — 3 (Ko + 2Gy)
* 7 5G, (3K, + 4Gy)
=, (5.10)
A=Yy ——— -
r=1 K,—Ko 0

r=n

B=) —t

r=1 Q(GT—GO)

Substituting n = 2, K; > Ky and G; > Gg for a two-phase mixture in Equation 5.9,
the following equation for the effective bulk and shear moduli can be obtained:

c
Kgsp- = Ko+ — 1 3co
Ki1—-Ko + 3Ko+4Go
" (5.11)
Gusp- = Go+ — 6(Ko+2Go)co

G1—Go + 5Go(3K0+4Go)

Co

KHSB+ =K+ 1 i 301
Ko—K1 3K144GH

o (5.12)

1 + 6(K1+2G1)C1
Go—G1 5G1(3K1+4Gh)

GHSB+ = Gl ‘|‘

If one of the phases has vanishing stiffness K = 0, G = 0, then the limits can be simplified
as follows:

. C1

KHSB— = lim KO -+ c =

Ko,Go—0 KliKO + 3K03+(ZGO

K, — Ky) (3Ky + 4G
= lim Ko+cl( - 0) (3o + 0):
Ko,Go—0 3Ko+ 4Gy + K, — K, (5 13)
C1 ’

Gusp- = Go + 1 6(Ko0+2Go)co -

G1—Go 5Go(3K0+4Go)
501G0 (3KQ + 4G0) (Gl — Go)

= i G =0
Ko,lGr?—m 0 + 5G0 (3K0 + 4G0) + G1 — Go
C
KHSB+=K1+_A+O 31
K 3K1+4G
L (5.14)

Gpsp+ = G +

R
G1 5G1(3K1+4G1)

For the case of a void phase Equation 5.14 and Equation 5.13 provides the same estimate
as the Reuss model (see Equation 5.7). As an example of this distribution, consider a
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two-phase material with £ = 200 GPa, v = 0.3 with the voids. As shown in Figure 5.3,
when the voids are present, the lower Hashin-Shtrikman bounds and the Reuss bound
provide the same results. However, the overall Hashin-Shtrikman bounds provide a tighter
estimate of the overall effective properties for materials not following any special cases
mentioned before.

200
150 | =
Ly 100 | 8
50 - =
— V-R bounds
— H-S bounds
0 | | | | | |

0 01 02 03 04 05 06 07 08 09 1
C1

Figure 5.3: Hashin-Shtrikman and Voigt and Reuss bounds for two-phase material with
the voids.

5.2 Representative Volume Element

The overall macroscopic behavior of complex structures is strongly influenced by the
defects arising on different levels. Defects cause inhomogeneous stress and strain dis-
tribution through the material, which is called eigenstress and eigenstrain respectively.
The eigenstress is defined as stress in a body with the applied surface or body forces
[140]. Eigenstrains can be defined as nonelastic strains from thermal expansion, phase
transformation, initial strains, plastic strains, or misfit strains [112].

Thus, the following classification of inhomogeneities by nature of eigenstrain can be
considered [55]:

o Inclusions and dislocations, which are the sources of eigenstrains and eigenstresses
themselves. These, for example, can be inclusions with the same elastic properties
as the matrix but undergoing some internal deformations.

o Inhomogeneities, which are the sources of equivalent eigenstrain and eigenstress. It
can be, for example, a crack or void in a homogeneous matrix. Such material’s total
mechanical response is composed of a uniform field induced in a defect-free material
and a fluctuating field generated by the defect presence. The fluctuating fields in
such materials are called the equivalent eigenstrains or equivalent eigenstresses [55].

When macroscopically homogeneous structures have microstructural inclusions or in-
homogeneities, the mechanical or flow problems become challenging and can be solved
analytically only in exceptional cases. As this work focuses on the macroscopic behavior
of additively manufactured structures, the most common defects in the structures are
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inhomogeneities. The changes in microstructural geometries and their properties may
seriously affect the effective behavior and change macroscopic response, e.g., microstruc-
tural damage and crack propagation. For this case, only a handful of analytical solution
exists, which is not directly applicable to all considered cases.

A common concept to determine the macroscopic response of heterogeneous components
is homogenization. In this method microstructures are treated as a macroscopic material
point characterized by effective material properties (see Figure 5.4). The response of these
microstructures is "communicated" to the structure by appropriate averaging procedures
and is referred to as homogenization [55].

Ceft

Figure 5.4: Concurent homogenization concept.

The central concept of the homogenization theories is RVE. An RVE must fulfill the
following prerequisites [68]:

o Be representative of the macroscopic object on average.

o Contain a sufficient number of inhomogeneities to determine the overall behavior,
which is independent of the surface values of traction and displacement.

o The effective response should be independent of the chosen macroscopic location
and the size and shape of the chosen volume.

When the structure is highly irregular, the last requirement imposes an RVE to contain
a statistically large number of defects and has a much larger dimension. The size of
the RVE (lgrvg) should be chosen in such a way that it contains a sufficient number
of heterogeneities (I) to represent an overall macroscopic behavior. At the same time,
an RVE corresponds to a material point on the macroscopic scale (L). Therefore, the
following scale separation principle can be formulated

| <<lpyg << L (5.15)
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A characteristic dimension of a microstructure is a defects’ size or a distance between
them. Then, fluctuations in the microstructure’s internal fields vary with the so-called
'wavelength" [. A dimension L is identifying the size of the macroscopic structure.

Such strict bounds on a dimension of RVE questions its existence in some cases. Further-
more, the size of an RVE depends on the macroscopic loading conditions, the boundary
conditions imposed on the RVE and the presence of local physical phenomena, e.g., strain
localization. If the size of representative volume element cannot be determined, a volume
of a smaller size is usually extracted. In this case, the macroscopic mechanical proper-
ties obtained by performing homogenization on this smaller volume are called apparent
properties.

5.3 Averaging theorems?

The homogenization theory’s central postulate is that an RVE is a macroscopic material
point. Thus, its fluctuating fields on average should be equal to those present on a
macroscopic scale [55]:

o = (o), = é/a(m)dQ
(5.16)

2|

eV = (e), = = 7e(w)dQ

The notation ()™ identifies the fields on the macroscopic level, while the fields without
a superscript refer to those on the microscopic level. It is important to note that the
averaging volume {2 is the total microscopic volume occupied by the matrix €2,, and the
heterogeneities €y, ie., Q = Q,, U ;. Such heterogeneities may be inclusions, voids,
cracks, etc. (see Figure 5.1, where m indicates matrix material and h - heterogeneities).

The divergence theorem plays an important role in the homogenization theory. Inte-
grals stated in Equation 5.16 can be transformed to surface integrals fulfilling necessary
requirements. The divergence theorem can be formulated as follows:

If Q) is the volume bounded by a closed surface dU' and A is a vector function of position
with continuous derivatives, then:

/V-AdQ:/(A-n)dF (5.17)

Q dl’

where m is the positive normal vector to dI' [156].

According to the separation of scales defined in Equation 5.15, the RVE is small, the
inertial and body forces are neglected at the microscopic scale. Thus, assuming o, = 0
and z; = 0, the following equation holds:

(Tj0ik) & = TjxTik + TjOipk = 0j (5.18)

where the coordinate system is positioned in the center of the RVE. If the volume €2 is
closed and bounded, has a piecewise smooth boundary and the stress field o is contin-
uously differentiable within the domain o, then Equation 5.16 for the stresses can be
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formulated in terms of a surface integral:

1 1
O'M = <Uij>Q = 5 /O'U<£C>dQ = 5 (l'jo'ik),de =
Q Q
1 1

1

dr’ dVv dr’

(5.19)

where the definition of traction forces t; = o1 is used.

In order to convert the volumetric integral over the strain field to a surface one, assume
that the tensor Fjjj, exists, which is defined as Fjj; = u;0,;. Then multiplying this tensor
by a normal vector n yields:

F -n=Fn,=udjn,=un;=u®n (5.20)

where ® indicates the Kronecker product of two vectors. Applying the divergence theorem
from Equation 5.17 to a divergence of tensor Fj;i, the following equality can be written:

/V-FdQ - /(F-n) dr (5.21)

Q dr

Using the definition of the tensor Fjj, left side of the Equation 5.21 can be simplified as
follows:

/v FdQ = /Z - dQ = /Z o = [ S2d2= [ VudQ (5.22)
Q o k o kK Q ! Q

If the right side of the Equation 5.22 is replaced by Equation 5.20, the following equation
can be formed:

/Vu dQ = /(u ®@mn)dl (5.23)
0 dr

If vector w in Equation 5.23 is considered to be a displacement vector, then strains € can
be defined as follows:

1
€ =¢; = 5 (Ui’j + uj,i) = Vs'u, (524)
where operator V; is a symmetric gradient of vector w. Thus, using Equation 5.23 the
weighted average integral of the strains over the volume can be expressed similar to the
integral over stress field:

1 1 1

M — .. e e e

e™ = (eij)q Q/e(a:) dQ Q/VsudQ Q/(u ®sm)dl (5.25)
Q % dr

where ®; is a symmetric Kronecker product.

Equation 5.19 and Equation 5.25 can be used to compute volumetric averages of strains
and stresses over the RVE. The main assumption of continuously differentiable stress
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and strain fields does not necessarily hold for heterogeneous materials due to a material
discontinuity over the boundary I', (see Figure 5.1). However, applying the sub-domain
expansion as in Equation 5.1 and assuming equilibrium and displacement continuity along
the surface I'y, ()" = th and ul! = ul"), the general form of Equation 5.19 and Equation 5.25
remains valid.

To prove this, consider two domains with discontinuous material properties Cp, # C,,
shown in Figure 5.1. The volumetric stress integral must be first split in two integrals
over the volume €2, and €2,,. The divergence theorem applied to the volumetric integral
over €2, will consist of two integrals over the surface I';, and I',, [156]:

/(.> dQ—/(-) dQ+/(-) dQ—/(-) ar + /(.) dF+/(-) dr (5.26)

Q Q h Q m r h m r h

In Equation 5.26 the integral over the surface I';, comes twice, however it is different only
by the normal vector n of this surface. Considering n; = —n,, Equation 5.19 can be
rewritten:

Q
1

m 1—‘h

!

Under the condition that the equilibrium along surface T, is fulfilled (¢* = t! ), the
second surface integral in Equation Equation 5.27 vanishes and the following equality for
two domains with different material properties holds:

1 1

Q Im
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Equation 5.25 can be rewritten analogously:

1 1
5 [ev@aa=5 [ [a@in+ [e@in) -
Q h Qm
1 1
5/5 win; +u;n;) dl'+
h
1 1 1
5 um] + u]nl) dl’ — 5 (uinj + ani) dl’ | =

T'n

1 1 1
-a / 3 (win; + u;jn;) dI' + / 5 ((ui1 —u")n; + (u;l — u;”) n;) dI
m Lp

(5.29)

The last integral accounting for the jump in the displacements vanishes due to the conti-

nuity requirement over the interface I'j, (u? - ul™) and the following boundary integral is
valid:

1
) /8” = —/ (win; + u;n;) dI' (5.30)

Q

Considering yet a Finite Element or Finite Cell approximation, a continuous equilib-
rium is not necessarily established along I'j, if the displacement-based approximations
are applied to obtain the primary variables. While C° continuity across the primary
variables’ element boundaries is guaranteed, only discontinuous stresses and strain fields
can be expected. Taking into consideration Equations 5.19 and 5.25, displacements and
tractions at the boundary of evaluation need to be continuous. The direct computation
of the tractions in the boundary integral of Equation 5.19 involves a lower degree of the
stress extrapolation than the order of the shape functions used for the discretization of
the primary variables. This results in poor accuracy and a lower convergence rate of the
first derivatives of the primary variables.

This problem can be tackled by many approaches, for example using NURBS as basis
functions to ensure higher continuity between the elements. However, as the nodal force
equilibrium always holds for any finite element or finite cell mesh for standard approxi-
mations [12], the following equation is used:

Nnodes

(a’)Q:é/tQ@mdF— Zt@az (5.31)

where

tel = /BTO' dQel (532)



48 5. Computational homogenization

For numerical reasons, it is convenient to evaluate Equation 5.32 after the computation
of the finite cell solution as Ku and extract the corresponding nodal tractions during a
postprocessing step. This approach is described in a greater detail in [27].

5.4 Hill-Mandel macro-homogeneity principle?

In order to connect macroscopic and microscopic quantities the Hill-Mandel condition can
be formulated. The general Hooke’s law on a microscopical level is expressed by:

oij(x) = Cijra(x)en(x) (5.33)

Given the definition of the effective material properties in Equation 5.16 the effective
elasticity tensor C:jkl can be introduced relating the macroscopic fields:

o =CLucil (5.34)

vy

To allow an interpretation of C’ijkl as a material characteristic on the macroscopic level,

the condition of strain energy equality must be satisfied [55]. The average strain energy
density in the Representative Volume Element () must be equal to the strain energy
density in the macroscopic point:

1 1
50545% = / §Jij€kldQ (5.35)
Q

Equation 5.35 can be rewritten using the definition in Equation 5.16 as:

(0ij)q (Er)g = (Tijert)q (5.36)

Equation 5.36, known as a Hill condition [68] can be expressed in a more conventional
form. Let us assume that a split of total microscopic fields on an average and a fluctuating
part exists:

oij(x) = (0ij) o + 04j(x)
gij(@) = (ij)q + &ij(x) (5.37)

Inserting Equation 5.37 into Equation 5.36 yields:
<(<Uz‘j>g + 5@‘(@) (<5ij>g + gij(m>)>g = <Uij(w)>g (er(x))q
(gij(x)ij(x)) + (0ij)q (Eij(®)) g + (5.38)
(Gij () (€ij)g + (04(®)) o (En(®)) g = (045(@)) ¢, (Eri ()

As the average strain fluctuations and average stress fluctuations are zero due to the
definition of RVE, Equation 5.38 is reduced to the following equation:

(0ij(®)e;(x))q = 0 (5.39)
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Equation 5.39 requires the stress fluctuations not to do any work on the strain fluctuations
on average.
Consider Equation 5.18, Equation 5.23 and the following identity of tensor calculus:

div (Ab) = div (A)-b+ A : grad (b) (5.40)

where the commutativity of the double-dot product allows a swap of the last term to
grad (b) : A [24]. Rewriting Equation 5.39, the following can be obtained (for simplicity
oij(x) and g;;(x) are replaced by o;; and ¢;;):

(x)
2 [ 0= o) (- o) an =0

1
ﬁ /O-ijgij dQ) — / Uzg Eij dQ) — /Uij <€ij>g d) + / <O-ij>Q <5ij>Q df) =0
Q Q

Q

1
" /qudQ /@m>2w”+%gaz—
Q Q
1
) / azkazj (€ik)q A2+ /:Ekj Tij)q (€ik)q A2 | =0
Q
1
) /uzawn] I’ — /(JU>Q 5 (winj + u;n;) dI‘}
r r
1
o) Trong (k) AU+ | xpng (04j) g (€ik)q dI' | =0
) r r
ﬁ / (Uio'ij — U; <Uij>Q — O'ij <5zk>Q T + <Uij>Q <é‘,k>Q J,’k) nj dl' = 0
- (5.41)
) / (ui — (eir)q @) (03 — (0ij)) nj dl' =0
r

Equation 5.41 shows that the fluctuations of the micro-fields along the boundary of an
RVE must be energetically equivalent to their averages (see Figure 5.5).

Eak ERRRRRN

% | — F—>

éﬁgﬁ & « [ ]
o 5 s
VLM) LYY i yyiy

Figure 5.5: Equivalence of the fluctuating fields and average ones.
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5.5 Boundary conditions in homogenization theory?

The Hill-Mandel macro-homogeneity principle can be satisfied a priori defining appropri-
ate boundary conditions for the microscopic initial boundary value problem [68]. The
following boundary conditions are widely used and are further referred as conventional
boundary conditions in this thesis [128]:

« Kinematic Uniform Boundary Conditions (KUBC)

ulr = eMa (5.42)
« Static Uniform Boundary Conditions (SUBC)
tlr = oMn (5.43)

 Periodic Boundary Conditions (PBC)

u(xzh)|r —u(z)|r =¥ Ax

Ha e+t ) = 0 (5:44)

The averaging stress theorem (see Equation 5.19) is only meaningful if self-equilibrating
forces are applied through Equation 5.43 (see [113]). However, for the uniform kinematic
condition as in Equation 5.42, a requirement of them to be self-compatible is not necessary.
Furthermore, it was proven that the rigid-body rotations or translations’ presence does
not influence the relation between the average stresses and strains [113].

It is important to note that there is a group of Mixed uniform boundary conditions
(MUBC), which also satisfy the Hill condition. However, this group is finely tuned for a
specific RVE structure and the material tensor symmetries (e.g., [63]). Therefore, they
will not be considered in this work.

Although, all three boundary conditions satisfy the Hill-Mandel principle a priori, they
do not lead to the same effective estimates. The size of the RVE as it is stated in section 5.2
is influenced by applied boundary conditions. Only under the condition that the numerical
volume is an actual representative volume element, all of the estimates converge to the
effective tensor [144]:

Csusc = Cxupc = Cppe = C” (5.45)

However, in most applications, the size of RVE is not known a priori and sometimes
even hard to be defined. But there exist inequalities relating the results of the effective
estimates via different boundary conditions [64]. The so-called boundary conditions hi-
erarchy provides bound estimates for the analyzed volumes’ intermediate size. The first
relation indicates that an effective elasticity tensor is always bounded by the apparent
tensors estimated by KUBC and SUBC:

Csupc < C" < Cxupe (5.46)
Operator < in Equation 5.46 for Voigt notation means that the matrix quadratic forms:
Qi=0"(C"—Csypc) o (5.47)
Q=0" (CKUBC* — C*) o (5.48)
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should be positive semi-definite [64]. The semi-positive definiteness of the quadratic forms
can be determined either by the eigenvalues or the semi-positivity of the principal minors
of the matrix (C* — CSUBC) and (CKUBC — C*) .

Next, for periodic microstructures, the exact effective stiffness can be estimated with
the application of PBC (see e.g. [127, 147]). The gap between Ckppc and Csppe remains
significant [157]. The hierarchy relation is then summarized as follows:

Csvpc < Cppo < Ckupce (5.49)

Thus, KUBC always overestimates, while SUBC underestimates the effective properties
for the volumes smaller than an actual RVE size. The position of the PBC concerning
the effective material tensor is not known. Only for fully periodic structures, they deliver
an exact estimate, i.e., " = Cppc. However, it is widely accepted that the periodic con-
ditions can also be applied to non-periodic geometries, thus, leading to reliable estimates
also in this case [115].

Although the definition of the appropriate boundary conditions completes the formu-
lation of the homogenization theory, it is important to identify, how they are applied to
compute the whole material tensor. In a general case, an anisotropic effective elasticity
tensor C™ contains 36 (21 unknowns due to the considered symmetry) unknown constants:

1
*
*

* * * * n

-0%- 0;111 0;122 C’i133 0;112 0;123 C’gﬁng [ 511\{ ]
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The shear strains are multiplied with two in Equation 5.50 due to the transition to Voigt
notation. By applying one of the above-mentioned boundary conditions, only one pair of
(o) and (e), will be obtained, which leads to 6 equations with 21 unknowns. Therefore,
usually 6 independent loading cases need to be constructed [189]. The following is an
example of construction of such cases for KUBC (see Equation 5.42), where the initial
macroscopic strains are varied by a small increment de:

g =M + dee (5.51)

where vector e; denotes the vector with a 1 in the [—th coordinate and 0’s elsewhere.
Other types of boundary conditions are applied in the same way.

The first approach to solve the problem of determining an effective elasticity tensor C*
is to construct the following system of equation:

(o), =C"{e), (5.52)

where (o), , (€), are matrices with every column representing the averaged stress and
strain fields for load case [. In this case, there are enough equations to have C* uniquely
defined via a direct inversion.
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Another approach is to apply a finite difference scheme, where 7 loading cases are
constructed with an addition of a "no-increment" loading case to the ones from above. As
an example, by subtracting the response of case 0 from case 1, the following relation can
be obtained:

(o), — (a), = C" - ee (5.53)
which can be uniquely reduced to the following generalized equation:

<Uij>z,Q - <Uij>l—1,Q

| <€>l,Q - <€>l_]_7Q 2, (5.54)

Ciji =

where [ - indicates the column of the elasticity tensor and the corresponding load case.
The denominator of Equation 5.54 is considered as an L, norm of a vector difference
of two load cases, which in an ideal case would reduce to the small increment de from
Equation 5.53.

These two approaches will provide an equivalent solution up to numerical precision for
a linear elastic homogenization using conventional boundary conditions. However, when
the window method is used, the last approach will deliver a slightly different result, which
will be discussed in section 5.7.

5.6 Voids in the Representative Volume Element

Voids as inhomogeneities in an RVE require special consideration.

Figure 5.6: Voids in the Representative Volume Element.

For simplicity, first, consider an RVE with the cavity, completely enclosed in the vol-
ume (see Figure 5.6, left ). Following [157] voids are assumed to be an infinitely soft
heterogeneity with vanishing stiffness:

C,=C,~0 (5.55)

The total volume of an RVE () consist of the volume of the void (£2,) and the matrix
(€n):

Q=0,UQ, (5.56)
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The boundary of the void (I',) does not intersect the boundary of an RVE (I'), i.e. I',NI" =
(). The matrix’ volume boundary I',, consists of two parts: an outer boundary which
coincides with the boundary of the RVE I') and an interior boundary, which coincides
with the boundary of the void. For clarification, Figure 5.7 shows a 2D view on this
problem with the definition of the normals (adapted from [113]). The normals are defined
as positive if they point outwards of the volume they bound — and as negative otherwise.
The notation in Figure 5.7 should not be confused with the gap between domains, i.e., I,
and I',,, are coinciding, however, depicted with the gap in order to clarify the n definitions.

n

T, T
AN

Lo,
F/

v —n

Figure 5.7: Definition of normals and boundaries.

If the cavity is truly void, the strain field in the cavity is ambiguous. However, using the
definition of the void from Equation 5.55 and the sub-domain expansion Equation 5.16,
the strain average over the total volume can be rewritten as follows:

0 0
<Uij>Q = Cm <0—ij>Qm + CU%: Cm <O—i]'>Qm = /tZ.CEJdF + /j/;a;]df = /tza:]dF
T

I r

1
(€ij)q = cm (Eij)q,, + Cv (Eij)g, = tm (Eijlq,, T / 5 (wing +uyni) dU' = e (eij),, + (€)q,

Ty
1 1 1
F Fm F’U
1
T

(5.57)

If the cavities are traction free, then the average macro-stress is equal to the weighted
stress average in a matrix. However, the strains are not vanishing within the cavity
subdomain and can be called a cavity strain . (see Section 5 in [113]). The cavity
strain is an average of additional strain fluctuations induced by the deformation of the
cavity boundary compared to the deformation state of a purely homogeneous domain [48].
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Thus, the cavity strain represents an equivalent eigenstrain as introduced by Eshelby (refer
to [55] and [113]).

Equation 5.57 shows that when cavities are completely inside an RVE and do not
intersect with its boundaries, overall average strains and stresses are entirely determined
through the fields residing at the outer boundary of the RVE T,,.

When an intersection between a boundary of a void and a boundary of an RVE is not
empty, i.e., I', N T # (), the averaging relations in Equation 5.57 remain valid. However,
its definitions in terms of boundary integrals become rather cumbersome as a split into
I,NT,and I'/(T', N T") needs to be considered.

Nevertheless, the definition of the void as an infinitely soft medium provides a unique
definition of the strain and stress fields in the required segment I',NI". Using the Finite Cell
Method described in chapter 4 for this case is advantageous as it mimics the assumption
of the voids being a material with vanishing stiffness (see Equation 5.55). The indicator
function () in the Finite Cell Formulation can be interpreted as the inclusion of an
infinitely soft material. A displacement field in the void domain is, thus, computed
naturally. An extension of a displacement field to the void domain must be consistent
with the formulation of the boundary value problem. Thus, strain energy consistency is
preserved naturally in the Finite Cell Method [129].

The boundary conditions mentioned in section 5.4 are also affected by the presence of
the voids at the RVE boundary. The Kinematic Uniform Boundary Conditions are not
required to be self-compatible (see section 5.4) and can be applied to the cases with the
voids in the boundary in a standard way. In this case, the average macroscopic strain is
defined naturally in terms of the macro-strains applied at the boundary:

<@Q:/£Mmm:sM (5.58)

r

assuming a compatible extension of the displacement field to the void domain.

The case of antisymmetric positioning of the voids on the boundary of an RVE was
mentioned in [33], where the specific mixed boundary conditions were proposed. As KUBC
are usually overestimating the effective stiffness (see Equation 5.46), the mixed boundary
conditions could take advantage of the order relation and get a closer approximation.
However, for the case of random voids intersection, this condition is complex to derive.

Static Uniform Boundary Conditions are very difficult to apply in such cases. When
the voids are crossing the boundaries antisymmetric, the only meaningful way to prescribe
this boundary condition is as follows:

t=c"n on r/(r,nr)

(5.59)
t=0 on r,nr

Then the SUBC are not fulfilling the requirement of the static equilibrium and are not
self-equilibrating as described in section 5.4:

/amﬁzo (5.60)

T
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When the voids are symmetrically crossing the boundary of the RVE, the static equi-
librium is fulfilled, and the applied loads are self-equilibrating. However, by applying
this condition to the material with vanishing stiffness, the numerical solution is almost
unattainable. Furthermore, the average strain can only be computed if an extension of
the displacement field into the void domain is assumed (see Equation 5.57). Even when
the volumetric integral is expressed with the help of a boundary integral, the part of this
integral over I', N I" has to be computed (see, e.g., [17]).

The Periodic Boundary Conditions are widely used even if the periodicity requirement
does not hold (see [115] and the literature therein). The application of the PBC requires
identical meshes on the polar RVE surfaces (z* and x~, see Figure 5.8). This becomes
rather cumbersome and sometimes even impossible when the RVE has a non-periodic
microstructure. There is broad research in this field. The periodic boundary condition
for the problems with the arbitrary non-conforming meshes was studied by [183] through
a master/slave concept, by [91] using weak enforcement of PBC and by [170] using the
local implementation. However, these methods do not solve the problem of PBC when
there are many voids present at the boundary. Nguyen introduced a method treating such
cases based on a polynomial interpolation [117].

Nevertheless, the finite cell mesh consists of Cartesian grids with coupled nodes on all
six surfaces of an RVE independently on its microstructure. Figure 5.8 shows a simplified
representation of a volume with an immersed mesh of 4 x 4 elements. The boundaries
opposite to each other are indicated as I't and I'". On these boundaries, the n vectors are
pointing in the opposite directions. However, they are of the same size. Due to a natural
construction of the mesh, the nodes &+ and x~ are always coupled. This simplifies the
search of such coupled nodes and allows to apply PBC without any additional effort.

n- nt
~XK >K—
xt eI T et

xt el

n

Figure 5.8: Application of Periodic Boundary Conditions with FCM (adapted from [115]).
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5.7 Window method

Another method to perform numerical homogenization on the RVE with random pores at
the boundary is to apply window method. This method was extensively studied by Hain
[58], and Sehlhorst [150] and in the literature cited therein.

—
N
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\ NV,

N

Figure 5.9: The concept of a window method.

The window method resembles the self-consistency approach from analytical homog-
enization techniques. An RVE () is embedded into a larger domain €2, with a priori
unknown effective properties, which have to be determined iteratively. Then, the follow-
ing boundary value problem for a micro-structure can be formulated:

div(o) =0 on 2, U
: Q
o - {C(:I;) e on ),

C' e on (5.61)
e=V,u
uw VI, =Mz onT,

The boundary conditions in Equation 5.61 can be replaced by any other boundary condi-
tion satisfying Hill criteria, e.g. Equation 5.43, Equation 5.44 etc.. The only difference is
that the boundary conditions are now applied on the window domain’s outer boundary
I'y. In the following, these boundary conditions will be referred to as window boundary
conditions.

This is advantageous for non-periodic RVEs, as the window domain is homogeneous
and void-free. Thus, the boundary conditions are straightforward to apply. Furthermore,
it is proven that the boundary effects causing large dispersion between KUBC and SUBC
with the increase of the window size vanish:

w(0) w(1) w(2) * w(2) w(1) w(0)
CSUBC < CSUBC < CSUBC’ <0< < CKUBC < CKUBC < CKUBC

where window size w(i) is smaller than w(i + 1). Therefore, even for a KUBC applied
at the window’s boundary, the effective properties converge faster towards the effective
estimate.
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Moreover, the same hierarchy of the boundary conditions holds [165]:
Csvpc < Csype < Cppe < Crype < Crusce (5.62)

The position of an apparent elasticity tensor Cppge in the order relation is unknown [165].

An important requirement of the window method is the self-consistency of the window.
The elastic property of the window must be C* under convergence of the iterations. Only
if this condition is satisfied, the domain of averaging can be either 2 or QU2,,. Following
[166] and assuming no self-consistency holds:

(0)aua, = Cu(O)q, + crvE (O)g = cuCu : (€)g. + crvEC : (€)q, =

) o } b (5.63)
=C (cwaC (€)q, + crVE <€>Qw> #C : (€)qua,

As the averaging needs to be performed at every iteration, the domain of averaging dur-
ing the iteration procedure must be the RVE itself to satisfy the Hill condition in Equa-
tion 5.36. The averages of the strain and stress fields are, thus, computed according
to Equation 5.25 and Equation 5.19. It is important to note that when the voids cross the
boundary, the average strains can be determined considering the window’s inner boundary
instead of the outer boundary of the RVE. This is valid due to the compatibility of the
displacement fields across the boundary. However, the stress fields must be computed on
the outer boundary of the RVE itself.

As mentioned before, the homogenized quantity can be determined either using a direct
inversion of constructed average stress and strain matrices as in Equation 5.52 or using a
finite difference scheme from Equation 5.54. These two approaches lead to an equivalent
result if (¢, — g;_1) =~ fe;. However, this does not hold for the iterative process when the
window domain is present. Therefore, the denominator in Equation 5.54 is formulated
in the Ly norm. This formulation will provide an approximation to a C", which is quite
close to the one computed by a direct inverse. However, this approach must be carefully
considered for the window method as the order relation formulated in Equation 5.62 does
not hold anymore. Although the error is relatively small, the bounds in Equation 5.62
are swapped. This phenomenon will be further illustrated in the numerical examples.

Together with the self-consistency requirement the window method is complete in its
formulation. However, this makes the boundary value problem in Equation 5.61 a non-
linear one. The most-straightforward approach to solve this is to use the fixed-point
iterations:
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Algorithm 1 Determine C* with the fixed-point iteration

Set C’;
while ec prop > TOL do

Solve boundary value problem as in Equation 5.61 with 6 loading cases as in Equa-
tion 5.51

Average field quantities over the RVE domain using Equation 5.19 and Equa-
tion 5.25

Estimate effective material tensor C’Z with Equation 5.52

* *
]\C & Nirven
n n—1
Compute an error as e.g. ec prop = ——————
C

n

end while

The first estimate of the effective material tensor is governing the convergence speed
of this algorithm. A better approximation for the starting point is the Hashin-Shtrikman
bound. The fixed-point iterations could converge slow, especially if the first guess is far
from the effective value. In this case, the Aitken A? can lead to a faster convergence
process (see [66]). The iteration results can be written in a sequence form:

s={c,c,..c _.C} (5.64)

where C” is written as a vector containing all elasticity tensor values.

Although the window method overcomes the shortcomings of the boundary condition
applications and the non-periodicity of the RVEs, it should be applied prudently. Re-
sembling the self-consistent analytical homogenization, the window method provides rea-
sonable estimates for the low volume fractions of inhomogeneities [2, 189]. In case the
inhomogeneities are voids, unrealistic results are obtained for the volume fraction larger
than 50%. For the case of infinitely rigid inclusions, the estimates are not valid after the
volume fraction reaches 40%. The window method’s effects were not investigated earlier
and will be shown in few examples in the consequent section.

5.8 Other types of computational homogenization

The homogenization procedure described above is valid for any type of linear physics,
i.e., thermal problems, permeability, or viscoelasticity. As an example, the permeability
homogenization is briefly discussed. In order to determine effective permeability of the
produced specimen, the microscopic initial boundary value problem based on Darcy’s law
is solved:

V(-KVp) =0 on )
p="pp onTp (5.65)

where K is Darcy’s permeability tensor
pp is the prescribed pressure
vy is the prescribed Darcy’s velocity
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In contrast to linear elastic homogenization boundary conditions, the application of the
prescribed strains (see Equation 5.42) is replaced with the pressure boundary condition
as follows:

plr = VpMa (5.66)
For SUBC, the following equation is used:

(v-n)r =v"n (5.67)
Displacement-driven Periodic Boundary Conditions are then reformulated as follows:

p(a)|r —pla”)|r = Vp'e
(v-n)(xz")+(v-n)(x")=0 (5.68)

Similarly, the effective permeability is formulated in terms of the microscopic averages:
<v>o= K.y <Vp>q (5.69)

In this case, only four load cases are required to determined the effective permeability
tensor.

To sum up, linear computational homogenization presented in this thesis can be sim-
ilarly formulated for any other problem. The corresponding averaging theorems and
homogenization boundary conditions should be adjusted accordingly. Furthermore, the
number of necessary load cases strongly depends on the considered field quantity, i.e. the
number of the field components.

5.9 Numerical investigations®

In this section, numerical examples to verify and investigate the numerical homogeniza-
tion are shown. The numerical homogenization was implemented in the in-house code
AdhoCH++.

To test correctness of the implementation, two unit test cases must be considered for all
types of homogenization, i.e.; linear elastic, thermal or viscoelastic. The first setting is a
homogenization of a homogeneous cube with arbitrary dimensions. In this case, the result
of any conventional or window boundary condition should coincide with the bulk material
properties. For example, the homogenization of a linear elastic isotropic homogeneous
cube with Young’s Modulus F = 200 GPa and Poisson’s ratio v = 0.3 should lead to the
same values independent of the applied boundary conditions. The second setup considers
two special cases of layered composites depicted in Figure 5.2. These two setups have
an analytical solution shown in Equation 5.5 and Equation 5.6. These cases will not be
detailed in the following. Instead, more complex setups are considered.

5.9.1 Unit cell with a cubical void

In the following, an example of a cubic RVE with a cubic pore is considered. The material
of the matrix has a Young’s modulus £ = 190 GPa and a Poisson’s ratio v = 0.294. The
cubical RVE has the size of 10 x 10 x 10 mm.
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Integration of homogenized quantities

As described in section 5.6, the integration of the homogenized quantities can become
especially important in the case of the voids crossing the boundary of the RVE. Thus, the
different integration techniques are compared. In this study, the centered cubic pore is
set to 8 X 8 x 8 mm. This corresponds to a moderate porosity of ¢ = 0.512.

Dlsplacament
0.00e+00 0.5 2 2.57e+00

) Finite Element mesh (c) Displacement field
vMises
0.0e+00 50000 100000 150000 200000 2.9e+05
.

b)Finite cell mesh ) Von Mises stress field

Figure 5.10: Unit cell with a cubical void: numerical approximation of the displacement
magnitude and von Mises stresses without the window under KUBC (8 x 8 x 8 elements,
p=>5,d=2).

First, the example is solved using FEM with a high-order mesh of polynomial degree
p = 5, which boundary conforms to the boundary of the void (see Figure 5.10a). To
resolve the singularities at the edges of the void, an hp—refinement with depth k£ = 3 is
performed. Figures 5.10b and 5.10d show representative displacement field in the shear
load case under KUBC and the corresponding von Mises stress distribution.

Second, the unit cell with the cubic hole is discretized in an immersed way utilizing
FCM. RVE is meshed with 6 x 6 x 6 finite cells of polynomial degree p = 5 with the same
hp—refinement towards the singular edges. The inner cells in the void are not filtered.
The indicator function is a(x) = 107%, which imitates the void being a very soft material
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as stated in section 5.6.

The KUBC are applied directly to the unit cell outer boundary. In this case, the
prescribed macroscopic strain tensor is required to be equal to the average strain values
over the RVE boundary or over the whole volume as shown in Equation 5.25. Thus, the
integration of the homogenized strain is performed in the following way:

o Strain integration over the RVE volume - referred to as "Volume int." (first part
of Equation 5.25 )

o Strain integration over the RVE boundary - referred to as "Surface int." (second part
of Equation 5.25 )

o Strain integration over the RVE volume combined with the surface integration over
the internal pore boundary - referred to as "Combined int."(as in Equation 5.57)

The immersed study, in turn, has only the volumetric integration and the surface inte-
gration available.

e | e mm <e>, mm - FEM <e>, mm - FCM
e Volume int. | Surface int. | Combined int. | Volume int. | Surface int.

€11 0.1000 0.029 (71%) 0.1000 0.1000 0.1000 0.1000
€99 0.1000 0.029 (71%) 0.1000 0.1000 0.1000 0.1000
€33 0.1000 0.029 (71%) 0.1000 0.1000 0.1000 0.1000
€19 0.1000 0.028 (72%) 0.1000 0.1000 0.1000 0.1000
€93 0.1000 0.028 (72%) 0.1000 0.1000 0.1000 0.1000
€13 0.1000 0.028 (72%) 0.1000 0.1000 0.1000 0.1000

Table 5.1: Unit cell with a cubical void: Comparison of the different integration ap-
proaches for the FEM and the FCM discretization of the prescribed KUBC for constant
macroscopic strain of 0.1 mm.

Table 5.1 summarizes the results of the homogenized strain integration. The bound-
ary conforming discretization shows that only the surface integration or the volumetric
integration and the integration over the pore’s inner surface deliver the expected result.
This observation supports the definition of the cavity strain as in Equation 5.57. The
volumetric integration in the absence of the elements in the void provides a lower value
of the homogenized strain.

However, due to the natural definition of the void as a continuum with a vanishing stiff-
ness for the FCM discretization (see Figure 5.10c), the volume averaging can be performed
with the same precision as the surface integral over the outer boundary. The formulation
of the averaging theorems becomes consistent with the discretization method used, and
the knowledge about the inner boundaries is not required. The stress comparison for any
of the boundary conditions is not shown here as the stress is not affected by the internal
voids’ presence.

To gain a further understanding of this phenomena, consider the same setup but with
a shifted cubic void of 8 x 8 x 8 mm as depicted in Figure 5.11.

The example is studied in the same manner as above. For the FEM computation, it is
assumed that the displacement field in the void is zero as proposed in [33]. For the FCM
complete numerical field, including the fictitious part is taken for averaging the fields.



62 5. Computational homogenization
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Figure 5.11: Unit cell with a shifted cubical void: numerical approximation of the dis-
placement magnitude and von Mises stresses without the window under KUBC (8 x 8 x 6
cells, p =5, d = 2).

Table 5.2 shows that one needs reasonable assumptions for the displacement fields
in the void for the Finite Element discretization. The surface integration in the area
where the void is crossing the boundary does not provide the expected quantities. If
the displacement is assumed to be zero in the void, then the homogenized strain values
do not agree with the prescribed macroscopic ones. A more elaborated way would be
to introduce a prolongation of the displacement fields in the void by extrapolating the
computed values from the cavity boundary. This approximation can be achieved via,
e.g., a polynomial interpolation. However, in the case of complex void networks crossing
the boundaries, this assumption becomes impractical. In contrast, the FCM provides the
natural extension of the primary fields into the void domain, thus removing the correct
interpolation necessity.

Overall, this study shows the importance of the correct integration of the strain fields.
When PBC or KUBC are applied directly to the RVE boundary, evaluation of the homog-
enized strain is not necessary. These values are naturally equivalent to the macroscopic
strains applied at the boundary and set a priori. However, the integration approach
becomes essential for a few cases.
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e | e mm <e>, mm - FEM <e>, mm - FCM
P Volume int. | Surface int. | Combined int. | Volume int. | Surface int.

€11 0.1000 0.0293 (71%) 0.1000 0.1000 0.1000 0.1000
€99 0.1000 0.0293 (71%) 0.1000 0.1000 0.1000 0.1000
£33 | 0.1000 | 0.0305 (69%) | 0.068 (32%) | 0.068 (32%) 0.1000 0.1000
€19 0.1000 0.0286 (71%) 0.1000 0.1000 0.1000 0.1000
€3 | 0.1000 | 0.0311 (69%) | 0.084 (16%) | 0.084 (16%) 0.1000 0.1000
€13 | 0.1000 | 0.0311 (69%) | 0.084 (16%) | 0.084 (16%) 0.1000 0.1000

Table 5.2: Unit cell with a shifted cubical void: Comparison of the different integration
approaches for the FEM and the FCM discretization of the prescribed KUBC of constant
macroscopic strain of 0.1 mm

First, when SUBC is directly imposed on the boundary of the RVE, the computation of
the homogenized strain tensor is required. The quality of the achieved results depends on
the correctness of the integration procedure. In particular, if a volumetric integration is
chosen, the necessity of complex treatment of the inner boundaries arises. For a cheaper
surface integration, one needs to account for the void crossing the RVE boundary.

Second, when the PBC, KUBC or SUBC are applied at the window, both homogenized
strains and stresses must be evaluated over the internal RVE boundary. This averag-
ing can be done by evaluating the quantities at the window’s internal boundary in the
boundary conforming FEM, which mixes the micro-macro separation concept. Moreover,
as mentioned in [165], the domain of integration for the window method can be either,
window or an RVE, only on the convergence of iterations. The FCM provides a remedy
for such problem by introducing a material with vanishing stiffness and removing the
problems computing the strain integral within the void zone.

Brief summary:

« Correct strain integration is crucial for the quality of the homogenization when voids
cross the RVE boundary.

o Surface integration is the most efficient approach for both, FEM and FCM to obtain
homogenized quantities.

o For PBC or KUBC without a window, the homogenized strain is equivalent to the
macroscopic strain tensor.

o SUBC without a window requires strain integration. In this case, a surface inte-
gration is recommended. In the FCM the elements adjacent to the RVE boundary
should not be filtered. Such an approach provides the correct strain values.

« KUBC, PBC, SUBC with the window require strain and stress integration over the
RVE boundary. Again, a surface integration is recommended. The same holds for
the adjacent elements in the FCM. The best results are achieved when they are not
filtered.
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Direct numerical tensile test: reference values

For verifications purposes a tensile experiment is performed. The unit cell remains the
same as shown in Figure 5.10 with the exception of the size of the internal void. The
size of the void is increased to 9 X 9 x 9 mm. This corresponds to a porosity state of ¢
= 0.729. To achieve reliable homogenization results, the tensile specimen is constructed
by repeating this unit cell 10 x 3 x 3 times. The tensile loading is then applied along
the longest direction of the specimen. For the speed and simplicity of this test, a voxel
geometry representation is chosen. In this way, an efficient pre-integration technique can
be utilized as described in section 4.2. Every unit cell is represented with 100 x 100 x 100
voxels allowing for an exact representation of the void. An example of the deformed state
under tensile loading is shown in Figure 5.12.

The tensile sample is discretized with 100 x 30 x 30 finite cells of degree p = 5 with
10 x 10 x 10 integration partitions. The integration partitions correspond to the voxels
of the considered geometry. In every partition, then, the standard integration rule with
(p+1)? Gauss points per partition. The bulk material properties are kept at £ = 190 GPa
and v = 0.294. In this load case, only a directional Young’s modulus can be computed.
The following homogenized Young’s modulus has been determined:

E* = 38446.12 MPa

Displacement vMises

J\s< :<
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Figure 5.12: Numerical tensile test of a fully periodic specimen with cubical voids of size
I, = 9.0 mm (deformed state is scaled with the factor of 20).

Conventional boundary conditions: influence of the porosity value on the
homogenized elasticity tensor

The cubical RVE has the size of 10 x 10 x 10 mm. The discretization is kept the same as
in the case of direct tensile test, i.e. 10 x 10 x 10 finite cells of order p = 5 with 10 x 10 x 10
integration partitions.

First, the same porosity value of ¢ = 0.729 is solved with different boundary conditions.
Figure 5.13 shows observed deformation patterns in tension under different boundary
conditions. KUBC and PBC show a similar deformation pattern to the one observed in
the tensile specimen Figure 5.12. However, the SUBC shows a different deformation state
that does not resemble the full specimen’s deformation state.



5.9. Numerical investigations 65

le13 002 004 o0 008 01 0. 001 00200 004 005 006 0. 001 002 055 004 005 006 0.07
— e— U — — s — — e | —
(a) KUBC (b) PBC (¢) SUBC

Figure 5.13: Unit cells with a cubical void: Deformation patterns under different boundary
conditions of a unit cell with a cubical void of size 9.0 mm in tension (scale factor for
deformations is 20).

Then, the homogenized Young’s modulus obtained by different boundary conditions is
compared. The following results are obtained:

*

EKUBC

=38945.72 MPa E,, =38404.53 MPa FE_ . =2014.61 MPa

An example of a homogenized tensor for porosity ¢ = 0.729 with PBC is shown below:

[41117.46 8212.73  8117.19 0.00 0.00 0.00
8117.19 41117.46 8117.19 0.00 0.00 0.00
* 8117.19  8117.19 41117.46  0.00 0.00 0.00

0.00 0.00 0.00 8073.21  0.00 0.00
0.00 0.00 0.00 0.00  8073.21  0.00
0.00 0.00 0.00 0.00 0.00  8073.21]

Curiously, the result obtained using KUBC is close to the solution delivered by PBC.
When compared to the quantities computed via DNS, the PBC shows a relative error of
0.10%), while the kinematic conditions - 0.13%. The SUBC results are much further apart,
highly underestimating the homogenized quantity. These results are closely related to the
observed deformation patterns of the unit cell.

Finally, the influence of the porosity value on the computed homogenized quantities is
investigated. As in this case, there are no reference solutions available, the obtained results
are compared to the analytical Voigt, and upper Hashin-Shtrikman bounds described
in section 5.1. As the second phase of this unit cell is the void, the lower bounds deliver
zero. In the following, two entries of the homogenized elastic tensor, C11; and (313, are
monitored.
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Figure 5.14: Unit cells with a cubical void: Sensitivity study of homogenized properties
to the conventional boundary conditions.

Figure 5.14 summarizes the achieved results. The first important observation is that
the Voigt bound delivers a conservative prediction of the homogenized quantities. This
is an "ultimate" upper bound. As all other numerical solutions lay underneath the curve,
the results agree with the literature. The next interesting result is that the Hashin-
Shtrikman bound seems to deliver a result in the first homogenized entry, which is quite
close to the one determined in the numerical studies with PBC and KUBC. However, when
the shear-dominated entry is observed, the analytical approximation is getting further
apart. Lastly, all numerical boundary conditions are following the expected hierarchy,
ie. Csype < Cppec < Ckypce. A gap between the kinematic and periodic boundary
conditions is not observed in the tension-dominated entry, while for the shear one - the
conditions are apart from each other.

Brief summary:

o All numerical boundary conditions follow the expected boundary condition hierar-
chy.

o PBC homogenization solution entirely agrees with the direct tensile test performed
on the full specimen.

o For larger porosity states, the influence of the applied homogenization boundary
conditions is significant.

e The shear dominated entries are more sensitive to the applied boundary conditions.

Conventional boundary conditions: sensitivity of the homogenized quantities
to the number of unit cells

To further understand the importance of the applied boundary conditions, the effect of
the number of considered unit cells is studied. In the following, the size of the cubic void
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is fixed to 9 mm, which leads to a porosity state ¢ = 0.729. The unit cells are discretized
with the same parameters as in the study above. Then, the number of unit cells is
increased from 1 to 4 in every direction. This means that for 3 unit cells per direction,
nine cubic cells with a cubic void are composed together, after which the homogenization
procedure is performed.

Chii1, [MPa]
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Figure 5.15: Unit cells with a cubical void: Sensitivity study of homogenized properties
to the number of considered unit cells.

Figure 5.15 shows the achieved numerical results. First, it is important to note that the
PBC result remains constant independent of the considered number of unit cells. As it
was mentioned in section 5.4, the periodic conditions are the most accurate when periodic
structures are considered. They are independent of the considered number of cells and
deliver the exact result, demonstrated in this study. Second, as expected, with the increase
in the number of considered unit cells, all boundary conditions tend to converge to the
same value. A very significant change is observed when the SUBC are applied. As KUBC
already deliver similar results to the periodic conditions, the homogenized result seems
to converge to the PBC faster. Finally, the same difference in the tensile- and shear-
driven behavior of the homogenized quantity is observed. The hierarchy of the boundary
conditions is more pronounced in the shear term of the effective tensor. The gap between
the KUBC, PBC and SUBC is larger when one cell is considered. Only at the end of the
study, the kinematic conditions seem to deliver a similar result to the PBC one.

Brief summary:

o PBC homogenization result remains independent on the number of considered unit
cells.

e The gap between the KUBC and SUBC is reducing with the increase of the unit
cells.
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Window boundary conditions: sensitivity of the homogenized quantities to
the window width

As explained in section 5.7, the window method can be advantageous when the voids
randomly cross the boundary of the RVE. However, it is important to investigate the
window width’s influence on the homogenized values and verify the achieved results. For
this study, the porosity ¢ = 0.729 is considered. The discretization level is the same as
in the previous studies. Then, the window width [,, is varied from 0 to 20 mm. This
value indicates the window box’s width in every direction, i.e., with the window size of
l, = 10 mm, the computational domain becomes 30 x 30 x 30 mm. Finally, all boundary
conditions - KUBC, PBC and SUBC - are applied at the window frame. According
to Equation 5.52 and Equation 5.54 the final homogenized tensor can be computed either
by finite difference or by direct inversion. Figure 5.16 shows the achieved homogenized
quantities when Equation 5.52 is used, while Figure 5.17 represent the solution when the
homogenized quantities are computed with Equation 5.54.
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30000 | n @ 8000 |
[a W)
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20000 N =2
» —
© 6000 | .
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| | | | | | | | | |
0125 5 7.5 10 20 40000 125 5 7.5 10 20
Window width ,,, [mm] Window width l,,, [mm]
-o- KUBC & PBC - SUBC -o- KUBC & PBC - SUBC

Figure 5.16: Unit cell with a cubical void: effect of the window width on the homogenized
quantities computed by direct inversion.

These graphs show that with the window size increase, the problem becomes insensitive
to the applied boundary conditions. Already at the window size nearly equal to the overall
RVE dimension, all three results deliver almost the same value. Interestingly, both direct
and approximate inversion leads to similar homogenized quantities for this setup. One
observes no visual difference between the two figures.

However, as noted in Equation 5.62 when the window method is applied, the hierar-
chy of the boundary conditions must be preserved. To further check this requirement,
the eigenvalues of two homogenized tensor differences is computed as indicated in Equa-
tion 5.48. While the eigenvalues of the difference of homogenized tensors are always
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Figure 5.17: Unit cell with a cubical void: effect of the window width on the homogenized
quantities computed by numerical differentiation.

positive for direct inversion as shown in Figure 5.18a, approximate inversion leads to a
reverse hierarchy of the boundary conditions as depicted in Figure 5.18b. For window
sizes bigger than half of the size of RVE, the results violate the expected hierarchy of
the boundary conditions (see Equation 5.62). Moreover, for window size [,, = 10 and [,
= 20 mm there are difficulties reaching convergence of the window method with the toler-
ance of le~®. However, for the direct inversion, neither of these phenomena are observed
(see Figure 5.18a).

Finally, as all boundary conditions deliver almost the same value when the window size
is large, the deformation patterns and the homogenized tensor at a window size of [,, = 10
mm applying KUBC are compared to the one achieved with conventional BCs. Figure 5.19
shows a distinct deformation pattern compared to the one observed in Figure 5.13 and
in a direct numerical tensile test. The presence of the window allows the RVE to deform
unconstrained. Thus, a "bubble" deformation is seen when tension is applied. However,
this pattern does not seem to resemble the one observed in the tensile experiment.

The following homogenized tensor is computed for this setup:

[23358.58  2860.33  2860.33 0.00 0.00 0.00
2860.33  23358.58  2860.33 0.00 0.00 0.00
* 2860.33  2860.33 23358.58  0.00 0.00 0.00

¢ = 0.00 0.00 0.00 6371.38  0.00 0.00
0.00 0.00 0.00 0.00  6371.38  0.00
0.00 0.00 0.00 0.00 0.00  6371.38]

which corresponds to Exype., = 22734.49 MPa.
This result is 41% lower than the one achieved by the direct numerical tensile experiment
and by homogenization without the window. The reason for such a large difference is
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the applicability of the self-consistent methods for high-porosity values as mentioned
in section 5.7. As the porosity is high for the considered case, the final tensor is mainly
underestimating the homogenized tensor. This will be further investigated in the next
study.
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-0~ KUBC-PBC - PBC-SUBC -0~ KUBC-PBC - PBC-SUBC
(a) Direct inverse (b) Approximate inverse

Figure 5.18: Unit cell with a cubical void: Smallest eigenvalue of the tensor differences.
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Figure 5.19: Unit cells with a cubical void: Deformation patterns of a unit cell with a
cubical void of size 9.0 mm in tension with window boundary conditions (scale factor for
deformations is 20).

Brief summary:

o Homogenization results become independent of the applied boundary condition for
a larger window width (as a rule of thumb for a window size larger than the size of
the RVE itself).
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o The deformation pattern obtained with the window boundary conditions does not
resemble the one observed in a direct numerical tensile test.

o Inversion through numerical differentiation violates the prescribed hierarchy of the
boundary conditions.

o For high porosity states, the window method significantly underestimates the effec-
tive quantities.

Window boundary conditions: Sensitivity of the homogenized quantities to
the porosity states

In the following, the size of a cubical void is varied. The discretization parameters are the
same as in the previous study. As it was demonstrated above, all boundary conditions at
large window width deliver similar results. Thus, in the following only KUBC are applied
at the window frame. The width of the window is fixed to [,, = 10 mm, which corresponds
to one size of the RVE [, /lgryve = 1.

Figure 5.20 summarizes the homogenization results for a few porosity states. The results
achieved by applying conventional PBC without a window are shown for comparison.

This study confirms that for lower porosity states, the homogenized quantities agree well
with the conventional boundary conditions. However, when the porosity is increased, the
window boundary conditions deliver lower values. Interestingly, the behavior is different
for tensile and shear-driven homogenized entries. Underestimation of the homogenized
quantities appears earlier for the first entry to the effective stiffness tensor C'11; than for
entry 01313.
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(a) Window size 1, /lrye =1 (b) Window size L, /lrye =1

Figure 5.20: Unit cell with a cubical void: Sensitivity study of homogenized quantities to
the window boundary conditions.
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Brief summary:

o There is a good agreement between conventional and window boundary conditions
for lower porosity.

o Both the tensile- and shear-driven quantities are underestimated for higher porosity
states. However, there is larger gap in the tensile-driven elasticity tensor entry.

Window boundary conditions: Sensitivity of the homogenized quantities to
the number of unit cells.

Finally, the effect of the number of unit cells on the effective tensor is studied. Unit cell
is discretized with 10 x 10 x 10 finite cells of polynomial degree p = 5. Then, the number
of cells is increased in every direction. The window size is modified such that ,/lgy g = 1
for all cases. This, in turn, significantly increases the number of degrees of freedom with
every additional cell per direction.

Figure 5.21 shows that with the increase of the number of unit cells, the results achieved
applying window boundary conditions tend to converge to a lower value than the one
achieved with conventional PBC. Although there is a convergence towards the correct
homogenized value, the results even at 4 x 4 x 4 unit cells are lower. This configuration is
very computational demanding due to the presence of the window. Any further increase
in the domain size would result in prohibitively high computational costs.
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Figure 5.21: Unit cell with a cubical void: Sensitivity study of homogenized properties to
the increase of the unit cells applying window boundary conditions.

Brief summary:

o The window boundary conditions converge to a lower value than the one delivered
with the conventional PBC.

o Large configurations with the window boundary conditions become prohibitively
costly.
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5.9.2 Two-phase particle reinforced composite

An example of a centered rigid spherical inclusion inside a soft cubic unit cell is considered.
This example covers a slightly different area when no voids are present in an RVE. The
setup used for the following numerical investigations is indicated in Figure 5.22. The
reference solutions are taken from [57, 108].

R

L

L Displacement von Mises

E,.,=3GPa Ep =70GPqg 00 002 004 006 008 01 00 20 40 60 80  100.0
_— e o — e c—
V=035 v, =02

L =10mm c, = 26.78%

(a) Setup (b) Representative (c) Representative von Mises
displacement field stress distribution

Figure 5.22: Hard spherical inclusion in a soft matrix.

This periodic unit cell is computed using the high-order Finite Cell Method (chapter 4)
in combination with the Smart-Octree integration described in [90]. Due to the presence
of a material interface, two meshes are employed to discretize the problem. The interface
condition between the two materials is enforced weakly with a penalty parameter of
B3 = 108, while the fictitious indicator function is kept as a(x) = 1079 [42].

Conventional boundary conditions: convergence study and verification of the
developed method

The convergences curves using 4 X 4 x 4 and 5 x 5 x 5 cells are presented in Figure 5.23.
The polynomial degree is raised fromp=1top=17.

Figure 5.23 shows that the Finite Cell Method combined with the Smart-Octree in-
tegration benefits from an exact resolution of geometry on the integration level. The
error between the computed homogenized quantity applying PBC with 4000 DOFs and
the reference solution is smaller than 5% for C;;; and less than 1% for Csqq. In this
setting, the best resolution is achieved with an accuracy of 0.22% in the effective elastic
tensor of C117 and the insignificant difference in the off-diagonal entry Cse17 with 50 736
DOFs for five finite cells of polynomial order p = 7. As the errors in the achieved results
are relatively small for configurations with more than 4000 DOF, in further studies, the
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Figure 5.23: Convergence studies of two entries into the elasticity tensor Ciy11, Ca211.

discretization with 5 x 5 x 5 finite cells of polynomial degree p = 5 resulting in 22356
DOF is fixed.

“p N Crin | Coonn | Commn | Caazs | Cronn | Casos | Clans
[—] [GPa] | [GPal] | [GPa] | [GPa) | [GPa] | [GPa] | [GPd
[57] | 0.2678 | ~3.4-10% 8.069 - 8.075 | 8.072 | 1.839 | 1.834 | 1.835

tet. /sphere
[108] | 0.2678 | 240% pixels | 7.867 | 3.321 - - - - -
This | 0.2678 | 50736 DOFs | 7.851 | 3.321 | 7.851 | 7.851 | 1.780 | 1.780 | 1.780
work

Table 5.3: Two-phase composite: homogenized elastic constants ([57], [108])

The achieved results are summarized in Table 5.3 to show the achieved homogenization
quantities quantitatively.

Brief summary:

« Homogenized results for two-phase composite with PBC agree well with the reference
values.

« For implicit geometries homogenization with Smart-Octree provides a reliable solu-
tion with few DOFs to determine effective quantities.

Conventional boundary conditions: sensitivity of the homogenized quantities
to different volume fraction states

In the following, the radius of the inclusion is varied. The maximum inclusion volume
fraction is ¢; = 0.52, where the sphere is nearly touching the unit cell’s boundary. The
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radius of the sphere is r = 4.99 mm while the cell size is [gyr = 10 mm. Then, conventional
BCs are applied for all achievable volume fractions.

Ci111, MPa
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Figure 5.24: Two-phase composite: homogenized quantities for different porosity states.

Figure 5.24 shows the numerical results achieved with conventional boundary conditions
together with the analytical bounds from section 5.1. In this case, as both phases are not
voids, the Reuss and the lower Hashin-Shtrikman approximations are computed. Overall,
all conventional boundary conditions deliver reasonable estimates between the Voigt and
Reuss bounds and between a tighter approximation of Hashin-Shtrikman bounds. Similar
to the example of a cell with a cubical void, the boundary conditions’ hierarchy is more
pronounced in the shear-driven effective quantity. Curiously, the SUBC does not have
such a pronounced gap as in the cubical void. These boundary conditions also deliver the
estimates which are close to the other solutions.

Brief summary:

o Similar to the cubical void unit cell shear-driven effective quantities show a more
distinct hierarchy of boundary conditions.

o All numerical results lay between the analytical bounds.

o SUBC underestimates the homogenized quantities. However, its values are closer
to the other boundary condition results than the RVE where the second phase is a
void.

Window boundary conditions: sensitivity of the homogenized quantities to
the window size

In this study, the window boundary conditions are investigated for two volume fractions
of the hard inclusion, in particular ¢; = 0.2678 and ¢; = 0.521. In contrast to the
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previous example, only the direct inversion is used to provide reliable estimates of the
final quantities.

Figure 5.25 depicts two homogenized quantities C7117 and Ci313 with respect to the
chosen window width for all BCs for the first volume fraction. The results for the increased
size of the inclusion are shown in Figure 5.26.

Similarly to the example of a cubical void, all window BCs converge to one value with
the increasing window size. The results do not change significantly after the window size
l,, = 10 mm which corresponds to one RVE size. Furthermore, the change in the inclusion
size does not change the necessary window size. Thus, this parameter can be considered
independent of the problem type. Finally, the results are compared quantitatively with
the results delivered by conventional PBC. In the case of a small inclusion, the difference
with the PBC is 3% for Ci111 and 7% for Ci313. However, for a larger inclusion size,
the results are further apart with a difference of 18% in C411; and 4% for Ci313. These
results support the observation made in the case of a cubic void. With the increase of
the volume fraction inclusion, the window boundary conditions tend to underestimate the
homogenization results independently of the phase type (e.g., void or another material).

Brief summary:

e The window width is independent of the inclusion size.

o Window BCs deliver close results to the one achieved with conventional PBC.

o The gap between the window BCs and conventional periodic ones increases with
increasing the inclusion size.

Cii11, MPa
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Figure 5.25: Two-phase composite: window size sensitivity for ¢; = 0.2678.
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Figure 5.26: Two-phase composite: window size sensitivity for ¢; = 0.521.

Window boundary conditions: sensitivity of the homogenized quantities to
the volume fraction states

To further investigate the homogenized quantities’ behavior when window boundary con-
ditions are applied, the size of the inclusion in the unit cell is varied to a maximum value
of r = 4.99 mm. The window size is fixed such that [, /lgyr = 1. As the boundary
conditions are not important in the window method, KUBC are applied.

Figure 5.27 shows that good agreement between the homogenized quantities for low
volume fraction values is achieved. Curiously, the volume fraction’s value, where the
window boundary conditions start to underestimate the results, is lower compared to
the cubical void example. Thus, it is problem-dependent. In the literature, as indicated
in section 5.7 it is emphasized that when the second phase of the unit cell is void, incorrect
results can be observed for the volume fraction larger than 50%. While for rigid inclusions,
the homogenized quantities are not valid after the volume fraction reaches 40%. This
statement entirely agrees with the results observed in Figure 5.27. The tensile-driven
homogenized entry starts to diverge at about 40% of the inclusion volume fraction.

Brief summary:
e The window method provides good estimates for two-phase unit cells only with a
low volume fraction of the inclusion.
Window boundary conditions: sensitivity of the homogenized quantities to
the inclusion hardness

Self-consistency methods are also considered to be sensitive to the inclusion hardness. This
can be characterized by a ratio Fi,cusion/ Fmatriz- For all examples above, this ratio was
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fixed to 23.33. In the following, the Young’s Modulus of the inclusion is varied to achieve
different inclusion hardness. The radius of the spherical inclusion is kept at r = 4.77 mm.
This corresponds to the volume fraction ¢; = 0.435 in Figures 5.24 and 5.27. The window
size is kept so that 1, /lpyp = 1.

Cii11, MPa
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Figure 5.27: Two-phase composite: homogenized quantities for different porosity states
using window BCs.
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Figure 5.28: Two-phase composite: influence of the ratio
properties.
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Figure 5.28 indicates that with the increase of the ratio between the Young’s Modulus
of the inclusion and the matrix, the gap between the homogenized value obtained by
conventional PBC without the window and KUBC with the window also increases. Thus,
the applicability of the window method also depends on the properties of the considered
inclusion.

Brief summary:

o The applicability of the window method depends on multiple factors. These are
type of the inclusion (e.g. void or another material), volume fraction and inclusion
hardness (void is an infinitely soft inclusion).

e Overall, the window boundary conditions deliver reasonable estimates for smaller
volume fractions and smaller inclusion hardness.
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Chapter 6

Validation and verification of
additive manufacturing product
simulation

As mentioned in chapter 2, the metal additive manufacturing process often introduces
geometrical and topological variations in the final parts. These process-induced defects
depend not only on the process parameters but also on the printed scale. The smaller
the scale of the smallest features, the less reproducible the result of the manufacturing
process becomes. Thus, in the following, the representative structures of two opposite
groups will be considered.

The first example is a periodic octet-truss lattice structure discussed in section 6.1.
This part is produced at a scale, which allows for good control of the process parameters.
The size of the smallest design feature is 0.4 mm. This dimension for the considered
metal steel powder leads to a reproducible structure with preserved geometrical features.
Furthermore, it allows for better control of the experimental investigations. Thus, it
provides a strong basis for validating the proposed numerical workflow shown in Figure 2.6.

The second example is the grid-like microarchitectured structure demonstrated in sec-
tion 6.2. In this case, the size of the printed struts is 96 um. In contrast, to the first
example, this scale is microscopic in the additive manufacturing process. The conse-
quences of choosing such small geometrical features and the numerical and experimental
results will be briefly discussed in section 6.2.

6.1 Periodic octet-truss lattice structureP:

The work described in this section was carried out in close collaboration with Computa-
tional Mechanics and Advanced Material group at the University of Pavia and Department
of Civil Engineering at Aalto University. Their contribution, in particular, of Massimo
Carraturo, PhD, Gianluca Alaimo, PhD, Prof. Ferdinando Auricchio, Prof. Alessandro
Reali, Seyeed Bahram Hosseini and Prof. Jarkko Niiranen is gratefully acknowledged.

A few samples of a periodic octet-truss lattice structure have been produced to validate
the proposed numerical workflow for material characterization experimentally. The de-
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tails on the design and the additive manufacturing process are provided in section 6.1.1.
Then, these specimens have been experimentally investigated. Three main characteristics
have been measured: macroscopic porosity of the printed structures, effective Young’s
Modulus, and the bending rigidity. The experimental setup is further explained in the
consequent section 6.1.2.

Although the considered periodic octet-truss lattices are produced at a larger scale, the
manufacturing process causes significant deviations from the designed geometry. Thus,
the designed CAD models are compared to the printed specimens in section 6.1.3. The
comparison is performed qualitatively via a visual identification of the overall geomet-
rical variations and quantitatively by estimating the geometric characteristics, such as
macroscopic porosity.

Then, the material characterization numerical workflow is applied to evaluate the me-
chanical behavior of the considered lattice. In the following, the path indicated with green
arrows in Figure 2.6 is closely followed. In particular, all proposed techniques are applied
and compared to both the experimental values and the path results indicated with black
arrows.

The comparison starts by investigating the octet-truss lattices’ behavior in tension
in section 6.1.4. Numerical simulations of the tensile test are performed on both as-
manufactured and as-designed geometries and compared to experimental values. The
former is analyzed employing FCM introduced in chapter 4, whereas the latter using
conforming mesh finite elements based on the CAD geometry. Furthermore, the first-
order homogenization technique presented in chapter 5 is also employed to simulate the
tensile test again using both as-manufactured and as-designed geometries and compare
them to DNS results.

Numerical homogenization faces a few significant difficulties when applied to these
octet-truss samples. In contrast to the examples shown in section 5.9, the structures
under consideration are not strictly periodic. Due to the geometrical irregularities, the
octet-truss lattices can only be considered macroscopically periodic, i.e., within and be-
tween the unit cells, there is a broad spectrum of the observed variations. Moreover, the
octet-truss lattice shows many irregular voids crossing the boundary of RVE. Following
the conclusions from the simplified examples discussed in section 5.9 and despite in a
strict sense non-periodic underlying geometry, the best estimate of the effective Young’s
Modulus can be achieved via the application of the periodic boundary conditions. In
this case, their application in the conventional mesh-conforming way would be rather
tricky. Instead, the proposed way to apply the PBC (see section 5.6) is employed. This
approach allows for flexibility in the geometrical variations of the considered volumes.
Furthermore, it is essential to mention that the octet-truss lattices under investigation
have a large macroscopic porosity. Thus, in the following, the window method will not
be employed.

Finally, the bending behavior of the octet-truss structures is studied in section 6.1.5.
Like the tensile test, the direct numerical three-point bending test results on both as-
manufactured and as-designed geometries are validated against the experimental values.
Further, using the first-order numerical homogenization results from section 6.1.4, appli-
cability of the beam theories described in section 3.2 is investigated. Both the classical
and the strain-gradient Euler-Bernoulli and Timoshenko beam theories are applied to
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analyze the behavior of both as-designed and as-manufactured octet-truss lattice beams.

6.1.1 Manufacturing of octet-truss lattices

The numerical and experimental investigations are carried out on an octet-truss lat-
tice structure. The specimens for experimental testing were produced in the laboratory
3DMetal@UniPV. The contribution of Eng. Alberto Cattenone and Prof. Stefania Mar-
coni of the 3DMetal laboratory of the Department of Civil Engineering and Architecture
of the University of Pavia for providing facilities for additive manufacturing and experi-
mental testing is gratefully acknowledged. The manufacturing and experimental testing
is performed by Gianluca Alaimo, PhD, and Massimo Carraturo, PhD, at the University
of Pavia. Their effort is gratefully acknowledged.

The specimens were produced with SS316L metal powder, using a Renishaw AM400
LPBF system. The adopted LPBF process parameters are detailed in Table 6.1; in
particular, a 200 W laser power is used, and a layer thickness of 50 pm.

Process parameters Value
Build plate temperature 170°C +1°C
Chamber temperature 35°C £5°C
Layer thickness 50 pm £+ 1 pm
Hatch spacing 110 pm £ 2 pm
Scan speed 1200 mm/s +2 mm/s
Laser power 200 W £0.1 W
Laser spot size 70pum £1 pum

Table 6.1: Process parameters for octet-truss manufacturing [84].

The unit cell is shown in Figure 6.1 with three orthogonal views indicating main di-
mensions. The overall cell size is 4 X 4 mm, the horizontal strut thickness is 0.8 mm, and
the inclined struts are 0.4 mm.

4.00

Figure 6.1: Octet-truss unit cell (dimensions are shown in mm) [84].

The first goal of these numerical and experimental investigations is to validate the ma-
terial characterization workflow in tension. Thus, a tensile specimen is constructed from
12 x 2 x 1 unit cells. As one of the further objectives of this work is the investigation of
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the lattice bending behavior, an octet-truss unit cell indicated in Figure 6.1 is also used
to construct the four beam-like structures shown in Figure 6.2. These beams have the
same length of 128 mm (32 cells) and the same width of 8 mm (2 cells) but different
heights (thicknesses): 4, 8, 12, and 16 mm, respectively (1,2,3, and 4 unit cells). Then,
the upper and the lower side of the beams was completed to contain the full strut size
of 0.8 mm (see zoomed side of a representative specimen in Figure 6.3). These com-
plements were added for the printing resolution and for the assumption that possible
applications would most probably include such complements. According to CAD-based
FE-simulations, trusses with and without these complements behave almost identically,
both qualitatively and quantitatively. Therefore, the total heights of the specimens are
4.8, 8.8, 12.8, and 16.8 mm. Thus, the constructed thickness-to-length ratios are 0.03,
0.06, 0.09, and 0.13 respectively.

(c) Beam 2 x 32 x 3 (d) Beam 2 x 32 x 4

Figure 6.2: Investigated CAD models of the octet-truss beam structures [83].

Figure 6.3: Zoom on the completed upper and lower struts of the beam 2 x 32 x 2 [83].

According to the material data sheet provided by the powder producer [141], the con-
sidered setup leads to a bulk material with Young’s modulus 190 GPa + 10GPa along the
longitudinal direction with the density of p = 7.99 g/cm3. This value as indicated in the
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data sheet depends on the printing direction. In the orthogonal direction to the printing
the Young’s modulus is reported to be 197 GPa + 4GPa. As these two values are fairly
close to each other, in the following an isotropic material with the Young’s modulus being
190 GPa is assumed.

The produced tensile specimens after heat treatment at 400°C' in the chamber
Nabertherm LH120/12 for 2 hours are shown in Figure 6.4. The bending specimens
are depicted in Figure 6.5.

Figure 6.4: Printed tensile specimens after heat treatment [84].

Figure 6.5: Printed bending specimens after heat treatment [83].

After printing, tensile and bending specimens were subjected to a computed tomography
before experimental testing. The geometry acquisition was performed with the CT scanner
Phoenix V. The tensile specimen was scanned resulting in a voxel resolution of 27 um,
while the bending specimens were acquired with 61 pm.

6.1.2 Experimental setup

For a comprehensive experimental study of the printed specimens four main investigations
are undertaken. First, to evaluate the difference between overall as-manufactured and
as-designed structures, the samples dimensions are measured. Second, to characterize as-
manufactured macroscopic geometrical variations the overall porosity is measured. Third,
the tensile specimens are tested under tensile loading to evaluate the effective directional
Young’s modulus. Finally, the bending rigidities of four printed bending specimens are
measured [84, 83].
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As-manufactured samples dimensions

As deviation of the as-manufactured from as-designed overall dimensions is expected,
the corresponding measurements are performed experimentally. In particular, an overall
width, height and the length of the printed beam specimens is measured with the help
of a digital caliper. Table 6.2 summarizes the experimentally determined values together
with the designed characteristics. As there is no repetitive measurement available, the
measurement uncertainty of the used instrumentation is provided. The measurement
uncertainty is computed according to [73] using the uncertainty propagation of the used
instrument’s precision. As the dimensions of the as-manufactured samples are measured
with the digital calipers, the instrumentation error of this device is used to evaluate the
measurement error. The results are indicated in Table 6.2.

Specimen Width, [mm] Height, [mm] Length, [mm]

D M D M D M
2x32x11{8.00]822=£0.001| 480 | 496 £0.002 | 128.00 | 128.82 &+ 1le — 4
2x32x2|8.00|822=£0.001| 880 | 8.89 £0.002 | 128.00 | 128.83 £ le — 4
2x32x3(8.00822=£0.001|12.80 | 12.89 £ 0.001 | 128.00 | 128.91 & 1le — 4
2x32x41]8.00|822%£0.001 | 16.80 | 16.96 £ 0.001 | 128.00 | 128.91 £ le — 4

Table 6.2: Dimension comparison of the beam specimens (D stands for as-designed, M
stands for as-manufactured) [83].

The values shown in Table 6.2 are used in this thesis to compute the effective cross-
sectional area A and the effective cross-sectional moment of inertia I of the as-designed and
as-manufactured specimens. Both, A and I are determined by using the outer dimensions
of the beams. Furthermore, these values are used to identify the as-manufactured porosity
as described in the following paragraph.

Porosity of the printed structures

The overall porosity of the lattice structures is measured for two reasons. The first mo-
tivation is to compare the experimentally determined porosity value to the as-designed
CAD-based ones, thus, providing the first estimate on the geometrical variations of the
as-manufactured geometries with respect to the original CAD models shown in Figure 6.1
and Figure 6.2. The second reason is to experimentally verify the porosity values deter-
mined from the acquired CT scan of tensile specimen and beams.

The porosity values are determined for the beam specimens by evaluating their mass
m. Then, considering the printed density p indicated in [141] the overall porosity can be
calculated as:

1 — — 6.1
% % (6.1)

The overall volume V' was then determined by measuring the dimensions of the bending
specimens. The volume occupied by the material V,, was computed in two steps. First,
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the printed specimens were weighted to determine their mass. Then, the volume was
calculated according to the bulk density specified by the powder producer [141]. The
measurement uncertainty of the porosity values ¢ was estimated based on the accuracy
of the used instrumentation.

Tensile experiment

To experimentally validate the proposed numerical framework for the mechanical evalu-
ation of lattice components, a tensile test was performed. For the aim of this work, only
the elastic regime was investigated. Herein a brief description of the experimental setup
is provided.

The lattice specimen was tested under displacement control, at room temperature, on
an MTS Insight test system, with computer control and data acquisition. The strain is
measured with a video extensometer (ME-46 video extensometer, with 1 mm resolution
and a camera field of view of 200 mm) at the mid-section of the specimen (gage section).
Following ASTM E111 recommendations, the displacement rate is set to 2 mm/min and it
is selected to produce failure between 1 and 10 minutes. The Young’s Modulus was then
computed according to ASTM E111 standard [5] with the corresponding measurement
erTor.

Bending rigidity

The final experimentally determined value is the bending rigidity of the octet-truss lat-
tice beams as defined in Equation 3.29. This quantity describes the characteristic overall
(global) resistance of the structure against the bending deformation. The values of bend-
ing rigidity of the four 3D printed structures of Figure 6.4 is experimentally measured
by a three-point bending test under quasi-static conditions and displacement-controlled
velocity (see Figure 6.6). The span (L) between the supports is 120 mm, while the ap-
plied point load (F') is transferred in the middle of the span of the beam. During the
experiment, the imposed displacement and the corresponding force are recorded. The
bending rigidities of the beams are then computed by using Equation 3.29. All tests are
performed in both elastic and plastic regime. However, for the aim of this work only
the elastic characteristics are considered. Experimental results will be discussed together
with the numerical values in the following sections.

6.1.3 Geometrical comparison of as-designed and
as-manufactured specimens

At first, the as-manufactured tensile specimen is compared to the as-designed CAD model
used for its printing. The CT scan, obtained with the help of single thershold technique
described in section 2.3, was converted to a point cloud and overlayed with the designed
CAD model. To achieve the best possible fit of these two models, a two-step procedure
is employed. First, a coarse alignment of the point cloud to a CAD model is performed.
In this step, the model bounding boxes are aligned, followed by the point pairs pick-
ing. Then, the fine registration is run to achieve the best possible fit of the two models.
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The geometrical manipulations are performed with the open-source software CloudCom-
pare. The distance between the point cloud and the CAD model is computed as the
nearest neighbor distance (see Figure 6.8). The specimen was printed in the z—direction
shown in Figure 6.8. An important observation is that there are partially melted powder
particles hanging on the diagonal struts (having axes out of the yz-plane) as depicted
in Figure 6.8c,d and, on the horizontal struts in Figure 6.7.

Then, the as-manufactured geometry of bending specimens extracted from CT scan
images and the as-designed geometric model are compared in Figure 6.9. The follow-
ing geometrical features of as-manufactured geometry can be observed in the bending
specimens compared to the as-designed ones:

o larger truss thickness;

o partially melted material powder particles in overhanging surfaces opposite to the
build direction;

o excess material collection in the nodes.

ey /7

24

(c) Beam 2 x 32 x 3 (d) Beam 2 x 32 x 4

Figure 6.6: Bending of beam specimens [83].
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Figure 6.7: Partially melted powder grains attached to the horizontal struts in the octet-
truss tensile specimen. The arrow is pointing in the build direction [84].
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Figure 6.8: Comparison of as-manufactured and as-designed tensile specimen [84].



90 6. Validation and verification of additive manufacturing product simulation

These features are well-known side effects of the LPBF printing process. It is also
established in literature [21, 37|, that these geometrical features have a strong influence
on the numerical results, and thus as-designed models lead to a quite inaccurate prediction
of the mechanical behavior of lattice structures.

s
Signed distances, (mm) [ [y

0.650
[ 0.4

L 02

l -0.390

Figure 6.9: Comparison of as-manufactured and as-built octet-truss bending specimen
2 x 32 x 2 (build direction marked with the black arrow) [83].

Then, the CT-based porosity is compared with the CAD-based and experimental values
in Table 6.3. The experimental results together with the estimated instrumentation error
are determined according to the procedure described in section 6.1.2. The CAD-based
porosity is measured using an as-designed geometrical model of the specimens as shown
in section 6.1.1. The CT-based results are obtained similarly using computed tomographic
images of the corresponding as-manufactured specimens.

As expected, the CAD-based porosity is always larger than the printed one. This is
also supported by the geometrical comparison of the CAD and CT-based model (e.g., Fig-
ures 6.7 and 6.9). One of the reasons why the as-designed parts have higher porosity values
is that the struts with axes in the yz-plane are always larger in the printed components
than in the designed ones. This is because partially melted powder particles remain at-
tached to the surface of the manufactured component opposite to the build direction.
Such defects are a well-known natural side-effect of the melting process together with the
excess material collection in the nodes, where higher temperatures occur. Overall, the
CT-based porosity is in good agreement with the experimental values, making us confident
in the sufficient accuracy of the as-manufactured geometry representation provided by CT
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scan measurements. However, the porosity value of the thickest beam differs from the
experimentally determined value by 6.5%. Although there is a certain possibility to vary
the threshold value of the CT scan, the experimental porosity value cannot be achieved
within a reasonable range of variation of HUyyes. Curiously, the beam with 2 x 32 x 3 cells
indicates an increase in the experimental porosity compared to other specimen, which is
also observed in the CT scan. This tendency, however, seems to be reversed in the case
of the thickest beam.

Specimen | CAD-based porosity, [-] | Experimental porosity, [-] | CT-based porosity, [-]
2x32x1 0.756 0.638 + 0.006 0.647
2% 32x2 0.770 0.630 + 0.004 0.639
2x32x3 0.775 0.677 £+ 0.003 0.679
2x32x4 0.777 0.630 £ 0.002 0.671

Tensile 0.756 0.646 £ 0.002 0.668

Table 6.3: Porosity comparison of the printed specimens [84, 83].

6.1.4 Numerical tensile test of an octet-truss lattice structure

CT-based direct numerical simulation of a tensile test

Herein, the computed tomography of the tensile specimen is investigated numerically
by using FCM as described in chapter 4. The middle part of the obtained CT scan is
presented in Figure 6.10. To correctly compute the numerical results, the value of the
spatial scalar function «(x) defined in Equation 4.2 needs to be accurately evaluated. In
the present work - as the material of the product is metal - the indicator function can be
directly deduced from the CT scan since the contrast between material and void is very
high. To distinguish among the holes where the indicator function «a(x) is set to 107!
for further numerical investigations and the metal where a(x) = 1, the threshold level
of the Hounsfield units is set to be 14 500. The standard single thresholding technique
described in section 2.3 was sufficient in this case and resulted in the model with the
porosity indicated in Table 6.3. All gray values above the limit are considered to be
material, while everything below is classified as void.

Figure 6.10: CT scan data image of the middle part of the tensile specimen [84].

Having defined the indicator function, a convergence study of the effective Young’s
modulus is performed. The results of this analysis are summarized in Figure 6.12. Given
two different FCM discretizations with 73 x 44 x 442 and 146 x 88 x 884 (i.e., embedding
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4 x4 x4 and 2 x 2 x 2 voxels in one finite cell, respectively), a convergence study is
carried out increasing the polynomial order of the approximation space. An example of
the displacement and stress field arising in such specimen is shown in Figure 6.11. In the
following, the numerical results obtained directly computing a tensile experiment on the
full specimen are referred to as CT-based DNS results. The relative error is determined
with respect to an overkill numerical resolution, where every voxel is an element with
the polynomial degree of p = 2 resulting in 390112 737 DOFs. The reference solution, in
this case, has a value of 12736 MPa, and took about 22 min on 90 compute nodes. This
overkill result was computed on the SuperMUC cluster of TUM.

Displacement
& 0.000 0.001 0.002 0.003 0.004 0.005
Y
Z —— o

(a) Displacement field along the build direction (z-axis) in mm

von Mises
0.0 20.0 40.0 60.0 80.0 100.0120.0 150.0

=z e o

%

(b) Von Mises stress distribution in MPa

Figure 6.11: CT-based numerical analysis: Representative displacement and stress fields
in the middle part of the tensile specimen [84].

The final results for the CT-based numerical simulations are shown together with the
experimental and CAD-based values in Table 6.4. As a final estimate, Young’s modulus of
13081 MPa is chosen. This value corresponds to a Finite Cell discretization of 146 x 88 x
884 cells of polynomial degree p = 3 resulting in 98 316 435 DOFs. Overall simulation time

TThe authors gratefully acknowledge the Gauss Centre for Supercomputing e.V. (www.gauss-
centre.eu) for funding this project by providing computing time on the GCS Supercomputer SuperMUC-
NG at Leibniz Supercomputing Centre (www.lrz.de).
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for this case is 52 min on 40 nodes on the CoolMUC cluster of TUM?. The final numerical
value is 4.4% different from the experimental value and within the limits of the estimated
instrumentation error. Moreover, the results of these analyses show a clear convergence
trend of the numerical solution and the method presents a robust behavior even for coarse
and low-order discretizations. The above observation confirms the possibility to adopt
such an approach for material characterization of as-manufactured AM lattice structures.
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Figure 6.13: Stress-strain curve of the octet-

Figure 6.12: Convergence of the effective truss lattice structure [84].

Young’s modulus E* [84].

Specimen | CAD-based E, [MPa] | Experimental E, [MPa] | CT-based E, [MPa]
Octet-truss 7 356 12 533 + 751 13 081

Table 6.4: Comparison of experimentally and numerically determined Young’s modulus
of the octet-truss specimen [84].

CT-based numerical homogenization results

Due to the high computational costs of the DNS numerical analysis, it was decided to
investigate less demanding (at least from a computational point of view) approaches. The
first-order homogenization technique using the Periodic Boundary Conditions described
in chapter 5 is employed. However, the unit cells of the octet-truss lattices are not strictly
periodic. In contrast to the numerical examples considered in section 5.9, the periodicity

¥The authors gratefully acknowledge the Leibniz Supercomputing Centre for funding this project by
providing computing time on its Linux-Cluster.
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requirement does not necessarily hold for these samples. The unit cells, due to the man-
ufacturing process, strongly differ from one another. Furthermore, the tensile specimen
is very thin in two directions. Thus, the Periodic Boundary conditions are expected to
deliver only apparent properties, i.e., represent an approximation of the effective behav-
ior. It is important to note that the order relation of the boundary conditions indicated
in Equation 5.49 always holds. Thus, the obtained results should be the closest estimate
to the effective tensile behavior. To further relax the periodicity requirement and account
for the unit cells’ variability in the structure, several volumes n are extracted from the
whole structure. Then, every unit cell is homogenized which delivers an apparent material
tensor C . The whole structure’s final response is then determined as a statistical aver-
age of all computed tensors together with the standard deviation, indicating the spread
of the quantities in the whole domain. The statistical average can be computed in two
ways. The first approach is to determine an element-wise mean value of the homogenized
elasticity tensor. The second approach is to invert the computed effective material ten-
sors, extract the directional effective Young’s Modulus, and then average this quantity.
The latter will be further used in this thesis.

The results of all tests are shown together in the stress-strain graph in Figure 6.13.
The homogenization is performed on n = 24 existing unit cells and the mean value and
standard deviation is indicated with the black line in Figure 6.13. The deviation from the
mean value is computed by considering the spread of the homogenized Young’s modulus
through the computed unit cells. An example of the displacement and stress distribution
in one of the as-manufactured unit cells is shown in Figure 6.14.

The homogenized material tensor for the depicted unit cell is determined as follows:

(22665 4967 14366 —328 —66 328 |
4967 13396 5968 —287 —65 —50
. 14366 5968 23035 -7 84 300
n=12 71328 —287 -7 5351 —-80 -9
—66  —65 84 —80 6280 )
328 =50 300 -9 5  13120]

The depicted tensor suggests that the octet-truss unit cell possesses the orthotropic mate-
rial symmetry. The off-diagonal entries in lines 4-6 are relatively small and can be treated
as zero. When all of the unit cells are considered, it can be observed that the mean value
of the homogenized numerical solution deviates by 5.3% from the one determined by us-
ing DNS tensile test on the CT scan, but - due to the large geometrical variations in
the as-manufactured specimen - the octet-truss unit cells provide a considerable standard
deviation from the mean value as shown in Figure 6.13 and in Table 6.5. The resulting
interval of confidence includes both experimental and CT-based DNS simulation results.
The homogenization with FCM is a less memory expensive operation than homogenization
with Voxel-FEM. Furthermore, it does not require high-performance computing resources
in contrast to the DNS simulation (see Table 6.5). In light of the above results, it can
be concluded that the first-order homogenization based on the statistically periodic as-
manufactured geometry can be a reliable technique to predict the tensile behavior of AM
lattice structures.
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Homogenization E*[MPa] Computational | CPU per node | Wall-clock
setup nodes time
FCM 13769 4 1942 1 40 80 min

Voxel-FEM* 13804 4+ 1985 1 40 82 min

Table 6.5: Comparison of the results and the computational resources for numerical ho-
mogenization (i - memory extensive computation) [84].
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(a) Displacement field for the load case in (b) Von Mises stress distribution in MPa
x—direction
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(¢) Displacement field for the load case in (d) Von Mises stress distribution in MPa
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Figure 6.14: CT-based numerical homogenization: Representative displacement and stress
fields on one unit cell for tensile and shear load case [84].

CAD-based direct numerical simulation of a tensile test

As a next step, the same numerical studies are performed on the original CAD model
used for specimen printing. For the direct numerical simulation, quadratic solid tetrahe-
dral elements are chosen to perform analysis in Ansys®. The converged solution shown

fThe numerical computations of the full tensile specimen in Ansys were performed by Gianluca
Alaimo at the University of Pavia. His contribution is gratefully acknowledged.
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in Table 6.4 is achieved with 10954 356 DOFs. The total number of DOFs, in this case, is
considerably lower than the one used for the CT-based computations. This arises due to
the geometrical complexity of the considered CT scan. In the as-manufactured geometry
many more small features are present, such as e.g. overhangs as indicated in Figure 6.7.
Thus, a higher resolution is required to capture the mechanical contribution of such geo-
metrical details to an overall part behavior.

As expected from the higher porosity value measured in section 6.1.3, the ideal CAD
model delivers a much smaller Young’s modulus than the experimental one. This relates
to the geometrical differences of the as-manufactured and as-designed specimens pre-
sented in section 6.1.3. This already demonstrates that the high discrepancy between as-
manufactured and as-designed porosity values lead to an inaccurate prediction of Young’s
modulus based on CAD geometries (see Table 6.4). The values of the Young’s moduli
are even further appart than the difference between as-manufactured and as-designed
porosity.

CAD-based homogenization with an equivalent porosity

To investigate in detail the observed discrepancy among CAD-based results and experi-
mental measurements a further study on the CAD geometry is undertaken. The geomet-
rical features of the unit cell depicted in Figure 6.1 are varied linearly to achieve different
porosity states ¢. Such a study can be performed using different approaches. The main
geometrical feature of the considered unit cell is the strut diameter. In Figure 6.1 all struts
horizontal to a printing direction are 0.8 mm, while the struts inclined to the printing
direction are 0.4 mm. Thus, the dimensions of the struts could be varied freely to achieve
different porosity values. However, to reduce the dimension of the undertaken study both
strut diameters are increased by the same increment, e.g. 0.2 mm. In particular, the
diameter of the smallest struts is increased from 0.4 to 1.0 while the largest diameter -
from 0.8 to 1.4.

Then, the first-order homogenization technique described in chapter 5 in combination
with the Finite Cell Method is applied to evaluate the effective Young’s modulus based on
the modified CAD models. The dependency of the homogenized Young’s modulus E* on
the porosity is depicted in Figure 6.15. As expected from the literature, a change in the
porosity does not cause the same change in the Youngs modulus. Instead, the obtained
relation E*(¢) is indirectly proportional but its exact determination is too elaborate to
be predicted analytically.

Under the assumption that the overall porosity is the only determining factor for
Young’s modulus, an experimentally determined porosity of 0.668 delivers a value of
16 178 MPa. This is much higher than the results of CT-based numerical analysis (13 081
MPa) as well as the experimentally measured value of 12 533 MPa. Therefore, the porosity
can not be the only determining factor.

The strong variability in the printed struts and nodes could explain this difference
raising the importance of the incorporation of the precise as-manufactured geometries
into the numerical analysis. First of all, there is a significant geometrical deviation of
the printed struts from as-designed boundaries. Next, the non-homogeneity of material
properties of the manufactured component, due for instance to voids and inclusions is
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present within the printed structure. These inhomogeneities are shown in Figure 6.16 on
one of the slices of the obtained CT scan.

These topological and geometrical defects introduce an additional level of complexity in
the mechanical characterization of AM lattice structures, which cannot be merely modeled
with an equivalent CAD-based geometrical model, but it necessarily requires a numerical
approach (DNS or homogenization) able to take into account the actual geometry of
the manufactured part. The presented numerical framework naturally incorporates the
as-manufactured components thus considering the arising defects.
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Figure 6.15: Porosity study of the ideal CAD-based unit cell using the Finite Cell
Method [84].

Figure 6.16: Representative slice of the CT scan with a zoom on arising inhomo-
geneities [84].
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6.1.5 Numerical bending test of an octet-truss lattice
structure

Direct numerical simulation of three-point bending test

In order to further support the above observations, a numerical simulation of the three-
point bending test described in section 6.1.2 was carried out. Numerical experiments
are performed for each one of the four specimens on both as-designed (CAD) and as-
manufactured (CT) geometrical models. In both cases, the same boundary conditions and
load cases are applied as in the experimental setup. The simulation of the as-designed
geometry is carried out by using Comsol™ with quadratic tetrahedral Finite Elements?,
whereas as-manufactured geometry is simulated using the high-order Finite Cell Method
as described in chapter 4 with finite cells of polynomial degree p = 3 containing 2 x 2 x 2
voxels. A representative discretization is depicted in Figure 6.17. The latter is performed
directly on the complete CT image. A complete scan of every beam specimen is immersed
in a grid of finite cells of polynomial degree p = 3 containing 2 x 2 x 2 voxels. An
example of the used discretization for the analysis of the beam specimen in Figure 6.9 is
depicted in Figure 6.17. Figure 6.17 shows a complete finite cell mesh with two consequent
zooms on the corner of this model. As an example, for this specimen a total number of
51 x 524 x 32 cells is used. It should be emphasized, that no simplifications are carried
out to incorporate the as-manufactured geometry in the direct numerical analysis.

Representative displacement and von Mises stress distributions for an as-manufactured
beam specimen are shown in Figure 6.18.
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Figure 6.17: Finite Cell mesh with 51 x 524 x 32 cells for 2 x 3 x 32 beam specimen [83].

The numerical bending rigidities are, then, computed using Equation 3.29 and their
values are compared to the experimental ones in Figure 6.19. To provide an insight
into the necessary computational resources, the simulation of the as-designed beam of

fThe CAD-based numerical experiments were performed by Seyyed Bahram Hosseini at Aalto Uni-
versity. His contribution is gratefully acknowledged.
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2 x 3 x 32 is performed on a standard workstation with i7-9700K processor and 64GB of
RAM using shared memory parallelism. The total wall clock time for the computation
amounts to 2 minutes including pre- and postprocessing. By contrast, the simulation of
the as-manufactured geometry on the cluster using the distributed memory parallelism on
40 28-way Haswell-based nodes with 64GB RAM takes 37 minutes. This large difference
is due to the fact that the latter model incorporates many more small scale details.

x Displacement X z von Mises
k -0.013 -0.010 -0.0060 -0.0020 0.0013 A[,; 0.0 10. 20. 30. 40.
> —_—— - — » -_— —
(a) Displacement field in mm in the load direc- (b) Von Mises stress in MPa
tion

Figure 6.18: Displacement and von Mises stress distributions for as-printed beam 2 x 3 x 32
utilizing the Finite Cell Method [83].
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Figure 6.19: Comparison of bending rigidity obtained by numerical bending tests on the
original as-designed geometry and on the as-manufactured geometry obtained from CT
scan data [83].
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The qualitative comparison of these results shows that the as-designed and as-
manufactured geometries follow the same tendency of a higher rigidity value for thicker
beams. Nevertheless, quantitatively the relative errors of as-designed bending rigidity
value are always above 40%. This gap is largely driven by the geometrical difference be-
tween the as-manufactured and as-designed geometries. As the CT-based and experimen-
tal porosity values shown in Table 6.3 are lower than the designed ones, the as-designed
bending rigidity should agree with this trend. According to the results in Figure 6.19
the as-manufactured bending rigidity is larger than the designed one, thus, supporting
the described tendency. Furthermore, the numerical simulation on the printed geometry
via computed tomography provides an excellent agreement with the experimental tests,
with a relative error always below 4%. Interestingly, although the porosity determined
by a CT scan for the thickest beam is lower than the porosity determined experimentally
(see Table 6.3), the numerical bending rigidity for this specimen is slightly higher than
the experimental value. The dependency between the porosity and the bending rigidity
of the samples is, in general, non-linear. This is similar to the tensile characteristics, such
as the homogenized Young’s modulus (see [84]). However, the results are "reversed" in
this case. As the experimental value is obtained by measuring one specimen, this could
suggest that the CT-based porosity provides a more accurate estimate. Furthermore, this
would support the trend of a slightly higher porosity value for thicker beam setups as
described in the previous section.

Experimental validation of strain gradient beam theory for octet-truss
lattices

Since in a three-point bending it is often desired to predict the mechanical behavior by
dimensionally reduced beam models, a more careful investigation of the applicability of
the beam models described in section 3.2 to octet-truss lattice structures is undertaken.

The beam models rely on the identification of effective quantities, such as Young’s mod-
ulus E* and shear modulus G*. There are two ways to obtain the necessary quantities.
For the as-designed geometries, only the first-order homogenization can be applied, as
there is no possibility to perform experimental tests on it, while for the as-manufactured
structures, the effective Young’s and shear modulus can be measured experimentally. The
as-manufactured Young’s modulus of octet-truss lattices was experimentally evaluated in
earlier section, whereas the effective as-manufactured shear modulus is now determined
by means of the first-order homogenization technique described in chapter 5. To account
for non-periodic as-manufactured cells, homogenization is performed through the whole
structure, taking the mean value of the homogenized shear modulus similar to the identi-
fication procedure of the homogenized Young’s modulus described earlier in section 6.1.4.
Table 6.6 summarizes the effective quantities used in the following.

Furthermore, to apply the beam theories described in section 3.3 the effective cross-
sectional area A and the moment of inertia I have to be computed. These quantities
are dependent on the overall dimensions of the beam specimens. The as-designed and
as-manufactured values as indicated in Table 6.2 are different. Thus, the values indicated
with D in Table 6.2 are used to compute the effective geometrical characteristics of as-
designed models, while the ones indicated with M in Table 6.2 of as-manufactured shapes.
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Effective quantity | As-designed | As-manufactured
E", MPa 7356 12533 £ 7517
G", MPa 2742 5651

Table 6.6: Effective mechanical quantities of the octet-truss specimens (fExperimental mea-
sure) [83].

Figure 6.20 shows the normalized bending rigidity D/DE? with respect to the beam
height h (see Equation 3.30). The normalization is performed following the Euler-
Bernoulli bending rigidity DF? solution as follows:

EB EB
D _ Dw _w (6.2)
DEB F w
where w”? is the classical Euler-Bernoulli solution for three-point bending as in Equa-
tion 3.27, w is the experimentally recorded maximum deflection, and D is the compared
bending rigidity.

As the as-manufactured and as-designed geometries have different effective properties,
the bending rigidities are normalized with the Euler-Bernoulli solutions using the respec-
tive quantities from Table 6.6 and, thus, they are plotted separately in Figures 6.20a
and 6.20b.
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Figure 6.20: Normalized bending rigidities of the octet-truss lattice beams with respect
to the beam height [83].

In both plots of Figure 6.20, the bending rigidity values are normalized with the an-
alytical Euler-Bernoulli solution using the as-manufactured effective Young’s modulus



102 6. Validation and verification of additive manufacturing product simulation

from Table 6.6. The brown dots in Figure 6.20b indicate the CAD-based results of the
numerical bending test and again the results are normalized with the Euler-Bernoulli so-
lution with the as-designed effective Young’s modulus from Table 6.6. Since as-designed
geometry allows for further reduction of the considered thickness-to-length ratios, an ex-
tra point is added at the height of 2.4 mm. This setup leads to a thickness-to-length ratio
of 0.015.

Classical beam theory using as-manufactured and as-designed geometry

As the normalization is performed with respect to the corresponding classical Euler-
Bernoulli solution, the dashed black lines remain at the value 1 for both as-manufactured
and as-designed geometries. If the octet-truss lattice beams were to follow this behavior,
all bending rigidities would lay on a straight line. However, neither as-manufactured nor
as-designed values comply with the assumptions of the Euler-Bernoulli theory. Thus, the
classical Euler-Bernoulli theory cannot be applied to the characterization of the bending
behavior of the considered octet-truss lattices.

The classical Timoshenko beam theory indicated with the green dashed line converges
to the Euler-Bernoulli theory with the decreasing beam height. These states correspond
to extremely slender beams, thus, making shear effects of minor importance. The as-
manufactured geometry results as shown in Figure 6.20a propose that only the thickest
specimen with 2 x 32 x 4 cells and the thickness-to-length ratio of 0.13 follows the Timo-
shenko theory. However, the rest of the points do not follow this curve. The as-designed
bending behavior as depicted in Figure 6.20b shows a similar trend, where for the thickest
specimens the points lay on the curve. Although the Timoshenko beam theory provides
a better solution compared to Euler-Bernoulli, none of them can capture the observed
bending behavior well.

Strain gradient beam theory using as-manufactured geometry

Figure 6.20a indicates the presence of a stiffening effect. When the height of the beam
is close to the characteristic size of the unit cell, the size effects affect the macroscopic
bending behavior of the components and cause stiffer behavior in comparison to a stan-
dard prediction of the classical beam theories. This size-dependent bending phenomenon
is precisely captured by the strain gradient beam theories on the as-manufactured geome-
tries.

The strain gradient beam theories as described in section 3.2 introduce an additional
material parameter g. This high-order parameter is unknown a priori and can only be
determined by a calibration of the solid lines to the obtained numerical and experimental
solutions (or by other generalized homogenization procedures [70]). As mentioned in [79)],
this intrinsic length parameter behaves as a material parameter and it is independent of
loading, problem type, or the beam model. This quantity only depends on the underlying
geometry. Thus, it must be the same for both strain gradient Timoshenko and Euler-
Bernoulli theories. The value of the high-order material parameter g is determined as
0.349 mm for the as-manufactured octet-truss lattice (see Table 6.7). This intrinsic length
parameter characterizes the size effects in the octet-truss lattice structures via both Euler-
Bernoulli and Timoshenko strain gradient beam theories. Its order is close to the smallest
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strut size diameter of the unit cell of 0.4 mm.

Although both strain gradient beam theories capture an overall stiffening trend, it is
important to know which theory is applicable. The numerical solution indicated with
crosses seems to rather follow the Euler-Bernoulli approximation. However, the exper-
imental data indicated with blue dots do not give a clear direction of which theory to
follow. The first three points lay on the strain gradient Euler-Bernoulli theory, while the
last point corresponding to the thickness-to-length ratio 0.13 is away from it. This can
suggest that for the last configuration the strain-gradient Timoshenko theory is more ap-
propriate. However, the measurement error bars on the experimental data indicate that
both theories could be applicable for this setup and the last point can as well lay on the
black solid line. Furthermore, the CT-based porosity value for the thickest beam is fur-
ther away from the experimental one. Thus, it could lead to uncertainty in the computed
bending rigidity. To further clarify this let us look at the as-designed results.

As-designed g, [mm] | As-manufactured g, [mm]
Octet-truss beam 0.244 0.349

Table 6.7: Comparison of as-designed and as-manufactured high-order intrinsic length
parameter of the octet-truss specimen [83].

Strain gradient beam theory using as-designed geometry

As already pointed out, the effective quantities obtained on the as-designed model are far
from the experimentally determined bending rigidity and are depicted separately in Fig-
ure 6.20b.

Curiously, for the as-designed geometry, a weaker stiffening effect is observed. For the
thickness-to-length ratio of 0.03 (i.e., for the thinnest beam), the CAD-based results show
about 8.4% stiffening compared to the thickest observation, while the as-printed analysis
indicated 9.5%.

This is also reflected in the intrinsic high-order material parameter g. It is determined as
g = 0.244 mm in the same manner as for the as-manufactured geometries (see Table 6.7).
The most remarkable observation is that this high-order material parameter is lower than
the one for as-manufactured geometries, similarly to the behavior already observed in
the porosity values, the effective quantities, and the bending rigidity of the octet-truss
specimens.

Furthermore, the as-designed numerical results clearly follow the strain gradient Tim-
oshenko theory, whereas the strain gradient Euler-Bernoulli curve does not provide an
accurate solution to the overall bending behavior. Although it should be noticed that for
the thickness-to-length ratios of two thinnest specimens (h < 5 mm) the strain gradient
beam models are already very close to each other.

Comparison between as-manufactured and as-design results

All in all, the overall stiffening tendency is similar to the one observed from the exper-
imental and as-manufactured numerical analysis. But the as-manufactured values are
about 50% higher than the designed ones as shown in Figure 6.19. The as-manufactured
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computations always lie within the uncertainty range of the experimental measurements,
whereas as-designed numerical results never fall in this range. This rather large difference
has been observed in similar studies conducted by the same authors on tensile behaviors
of octet-truss lattices [84].

Moreover, when a closer study on the as-manufactured and as-designed geometries is
undertaken, the stiffening trend differs. First, it was observed that the considered octet-
truss beams experience size effects, such that classical beam theories are not applicable
to approximate the bending behavior, whereas strain gradient beam theories provide a
much more accurate description. Secondly, the as-manufactured bending rigidities show a
stronger stiffening effect than the designed ones, as also reflected in the intrinsic material
parameter determined for both geometries. This observation correlates well to all other
material characteristics determined for the octet-truss lattice structure.

6.2 Square grid microarchitectured structure?®

To further identify the proposed methodology’s opportunities and limitations, lattices
at a much smaller scale are investigated. Specimens 300 and 600 are produced using
Inconel®718 powder with the in-plane square grid cell. The samples’ names are given to
identify an overall grid size of 300 pm and 600 pum, respectively. As shown in Figure 6.21a,
specimen 300 has a square grid rotated in-plane. In comparison, the other sample is
produced entirely orthogonal to the printing direction (see Figure 6.21b). The designed
strut size in both cases is 96 ym.

(a) Specimen 300 (b) Specimen 600

Figure 6.21: Overview of the printed specimens with square grid microstructure [85].

In the following, only the key findings are discussed. The numerical and experimental
approach for analyzing these specimens is similar to the one described in section 6.1.
Thus, the details about the experimental testing setup, the acquired CT data, and the
numerical methods are omitted in this section. The full description of this example can
be found in [85]. The work described in this section was carried out in close collaboration
with Research and Technology Center of Siemens AG Corporate Technology. Lattice
manufacturing together with its experimental testing and CT scanning was realized in
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their facilities. Their contribution, in particular, of Dr. Daniel Reznik, is gratefully
acknowledged.

Manufacturing at a microscopic scale

As the designed lattice structures have a much smaller scale of geometric features than the
ones present in the octet-truss lattice, the manufacturing process faces multiple challenges.
The process parameters for the LPBF are much harder to control to manufacture a repro-
ducible microstructure. In particular, except for a common set of process-induced defects
discussed in section 6.1.3, the structures show a very high irregularity, grid breakages,
and trapped powder.

(a) Slice 1: Breakages in the grid structure

(b) Slice 2: Trapped powder in the middle of the specimen

Figure 6.22: Specimen 300: 2D slices of a square grid microstructure.

The samples have the strut thickness of 96um, thus requiring the laser tracks to be
narrow. In particular, if the laser input is lowered, the width of the molten pool becomes
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small. This, in turn, can result in an insufficient overlap of the laser tracks and lead to
the lack of fusion [186]. Such unmelted parts can further propagate their effects in the
build direction, causing severe breakages in the lattice. Figure 6.22a shows an example
of a 2D slice from specimen 300. The as-designed square grid can be achieved only in
particular areas of the specimen (shown at the bottom), while in the remaining part of
the sample there is a very high grid’s irregularity (shown at the top).

Furthermore, there is a considerable effect due to the small distance of 300um be-
tween the center of the struts. Because of the nature of the manufacturing process, there
are unmelted particles attached to the melted tracks, which are usually removed in the
post-treatment stage. However, as the cell size is microscopic, it is difficult to remove
the powder from the specimen, especially in the middle slices. Figure 6.22b shows the
trapped powder areas in the lattice. In turn, this effect complicates the C'T imaging and,
consequently, the numerical analysis.

In contrast, the specimen with a larger grid size does not have trapped powder inside
the sample. In this case, the grid structure is better preserved with a fewer breakages
occurring (see Figure 6.23).

Figure 6.23: Specimen 600: 2D slice of a square grid microstructure [85].

Experimental testing of square grid lattices

The experiments are performed on three similar specimens from both sizes, i.e., specimen
300 (S1-S3) and 600 (L1-L3). The tensile testing is held with optical microscopy, where
two orthogonal cameras are installed tracking the lateral extension. One camera is frontal
to the specimen, following the extension of the region of interest at the wide side of the
sample. Simultaneously, the other camera is tracking the extension from the narrow side
of the testing specimen. The experimental results are summarized in Table 6.8.

As it is depicted in Table 6.8, the square grid lattices exhibit significant variations
in the final mechanical properties. This is again due to the difficulty in controlling the
process parameters at the microscopic level. As shown above, the manufactured lattices
have significant deviations from the as-designed geometries. Although only one CT image
from every group is available, a considerable inter-specimen geometrical variability is
expected. The same process parameters and the same nominal geometry could lead to a
different as-manufactured geometry, causing a large spread in the mechanical quantities.
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Specimens E*, [MPa] vy, -] vy, |-]
300 S1-S3 18 844 — 32447 | 0.27 - 0.35 | 0.23 — 0.32
600 L1-L3 15339 — 26 731 | -0.04 — 0.13 | 0.05 - 0.14
600 L2 narrow 20 851 -0.04 0.08
600 L2 wide 25 915 - -

Table 6.8: Square grid lattice: Experimental results of a tensile test [85].

CT images of microscopic metal lattices

The microscopic scale of the considered specimens and the presence of trapped powder
also significantly affect the acquired CT images. For both square lattices, one CT scan
is taken from each group. It is important to note that the images for specimen 300 are
obtained from a similar sample, which was not tested experimentally, i.e., it does not
belong to S1 — S3 in Table 6.8. In contrast, for large grid size, the CT is taken from
specimen 600 L2 before the tensile testing as shown in Table 6.8.

In both samples low contrast of Hounsfield units is observed (see 2D slices in Figure 6.22
and Figure 6.23). It is well-known that such imaging issues can occur when metal objects
are scanned [14, 15, 105]. Severe metal artifacts, such as ring artifacts, noise, beam
hardening, etc., obscure these specimens’ geometrical borders. They arise due to the high
attenuating material properties of the metal itself and the metal edges. Especially when
the microscopic scale is considered, the effects can be significant. Thus, it is difficult
to detect the object’s shape and prepare it for further numerical analysis. Furthermore,
the presence of the trapped powder as indicated in Figure 6.22b leads to the Hounsfield
units of the metal powder to be very close to the ones of fully melted material. Thus, the
identification of the melted object’s geometrical boundary in these areas is cuambersome. A
single thresholding technique would assign these areas together with the trapped powder
to be fully melted. However, the unmelted powder does not contribute to the tensile
behavior of these parts. Thus, such segmentation would negatively affect the accuracy of
numerical results.

To overcome these imaging artifacts, the deep learning segmentation technique de-
scribed in section 2.3 is applied. As opposed to the single thresholding technique, this
approach leads to a reliable geometrical model suitable for numerical analysis.

Numerical investigation of tensile behavior

Similar to the analysis of the octet-truss lattices in section 6.1.4, both a direct numerical
tensile test and numerical homogenization are performed on the square grid structures.
The results for specimen 300 are summarized in Table 6.9. The homogenized Young’s
modulus determined via a CT-based direct numerical tensile test is different from the
experimental values. However, as the analyzed CT scan does not belong to any of the
specimens S1 — S3, these deviations are to be expected. The inter-specimen geometrical
variability can lead to a significant spread in the mechanical properties. This conclusion
can be drawn from already available experimental test results on three similar specimen.
Although they have the same as-designed geometry and the same process parameters,
the mechanical response of these samples significantly differs from one another. Thus,
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to achieve accurate results of the numerical analysis, an exact as-manufactured geometry
should be incorporated. Once more, it supports the importance of the process-induced
geometrical defects in the numerical modeling of as-manufactured lattices.

Method Erean, [MPa] | CV, [%]
Experiment 18 884 — 32 447 -
CT-based DNS( 100 x 60 x 124 cells, p =5 ) 39 351.31 -
CT-based homogenization with PBC 38 417.80 15.50

Table 6.9: Specimen 300: Quantitive comparison of the numerical results for the homog-
enized Young’s modulus E* and its coefficient of variation CV [85].

To reduce the required the computational resources to perform a numerical tensile test
on a full specimen, the numerical homogenization technique described in chapter 5 is
applied. Although the as-designed geometry is periodic, the as-manufactured structure
is highly irregular due to multiple breakages. As opposed to the octet-truss lattices, it
is difficult to define a unit cell, which is statistically repeated throughout the sample.
Thus, the RVE size and its existence become questionable. Hence, the homogenization
procedure for specimen 300 is performed on 168 RVEs of the size 84 x 84 x 80 voxels
independently of the underlying microstructure. To estimate the quality of the obtained
results, a coefficient of variation is computed as follows:

o

V=2 (6.3)

where o is the standard deviation of the homogenized Young’s modulus in a statistical set
of 168 homogenized values, and p is the mean value of this quantity through the whole set.
As mentioned in [44] when this coefficient is up to 15%, the size of the RVE is considered
to be satisfactory for the numerical analysis. Certainly, when the size of the homogenized
volumes is increased, the coefficient of variation should decrease. As shown in Table 6.9,
the homogenized Young’s modulus variability is within these bounds, thus it can be
accepted as a final result. Despite the discrepancies between numerical and experimental
results, an accurate agreement between the effective Young’s modulus determined by
the tensile test and the homogenization procedure is observed. The Periodic Boundary
Conditions delivered the estimate, which deviates from the numerical tensile experiment
by 2.4%.

In the case of larger grid size, the analyzed CT scan corresponds to the specimen
L2, which is tested before numerical investigations. It is noteworthy that the CT-based
DNS results are now in an exceptional agreement with the experimental tests as shown
in Table 6.10. These findings suggest that the difference between the numerical and
experimental results for the previously described specimen 300 indeed arise from the
expected geometrical variability in the printed structure. When as-manufactured geomet-
rical models are incorporated, the proposed workflow delivers a good agreement with the
experimental tests.

In this case, the CT-based homogenization also delivers results, that are less than 5%
different from the DNS values (see Table 6.10). The coefficient of variation for specimen
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600 is also smaller. In particular, the orthogonal grid structure with fewer breakages
allows making a better guess on the size of the RVE.

Method Erean, [MPa] | CV, [%]
Experiment 20 851 — 25 915 -
CT-based DNS( 200 x 92 x 200 cells, p =6 ) 25 881.40 -
CT-based homogenization with PBC 27 176.42 12.20

Table 6.10: Specimen 600: Quantitative comparison of the numerical results for the
homogenized Young’s modulus E* and its coefficient of variation CV [85].

All in all, the investigations on the lattices manufactured at the microscopic scale have
indicated that the proposed workflow can be applied at any size of the structure. Both the
direct numerical simulation of the whole specimen and numerical homogenization show
an excellent agreement with each other. Thus, both methods can be used to perform
material characterization of lattice structures. Furthermore, incorporating the process-
induced defects into the numerical analysis undoubtedly leads to a better prediction of the
mechanical behavior of as-manufactured parts. However, the main challenges at a smaller
scale are the manufacturing process and image acquisition. These aspects strongly affect
the quality of the numerical results. It was demonstrated that a good agreement could be
achieved only when an exact geometrical description of the analyzed specimen is available.
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Chapter 7

Uncertainty quantification of
process-induced defectsd

The previous chapters have presented a numerical framework to perform numerical char-
acterization of printed structures. This deterministic evaluation of the AM product me-
chanical behavior provides an insight into the achieved quality of the final structure and
allows to compare the designed and achieved quantities. This final chapter aims to extend
this numerical framework such that an uncertainty quantification of the process-induced
defects is possible. In particular, this extension should enable the evaluation of the vari-
ability of the mechanical response subject to geometrical uncertainties in the underlying
microstructure.

To begin with, a binary random field model is proposed in section 7.1. This model allows
generating statistically similar geometrical models to the printed structures. In particu-
lar, the only necessary input to this approach is the CT image of the analyzed structure.
Through the fitting procedure described in section 7.2 the design parameter space of the
binary random field can be determined. These parameters control the periodicity of the
underlying structure, smoothness, internal voids, and other small geometrical features. A
numerical procedure to generate the statistically similar geometries is described in sec-
tion 7.3. Once these geometries are generated, the remaining point to be discussed is
how they can be analyzed. In this work, a Multilevel Monte Carlo (MLMC) approach is
employed in section 7.4. This approach is slightly different from the traditional way of
estimating the mean values of the quantity of interest. In particular, this study aims to
estimate the variability of the mean value of the homogenized Young’s modulus of AM
products and its standard deviation. Furthermore, other higher-order central moments
could be of interest when the effects of the process-defects on the mechanical behavior
are investigated. Thus, a specific formulation of MLMC is introduced, allowing to incor-
porate the estimation of arbitrary order of central moments in the analysis. Finally, the
proposed model is evaluated in section 7.5 on the examples of octet-truss and square grid
lattices described in the previous chapter. The work described in this chapter was carried
out in close collaboration with Engineering Risk Analysis Group of Technical University
of Munich. Their contribution, in particular, of Dr.-Ing. Tason Papaioannou, is gratefully
acknowledged.
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7.1 Binary random field model for geometrical
description of periodic structures

As discussed in section 2.3, after applying the single thresholding segmentation technique
the CT images have a clear distinction between metal and void. Thus, only of values 0
and 1 are present in the final segmented images, with 1 indicating metal and 0 indicating
void. Two lattices structures described in chapter 6 are considered in the following. Their
representative two-dimensional slices are shown in Figure 7.1.
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Figure 7.1: 2D slices of the segmented CT scans of AM periodic lattice structures (white
pixels represent material and black pixels represent void) [86].

A natural choice to describe such geometrical models is through a binary random field
model. A binary random field V() represents an infinite collection of binary random
variables, i.e., variables taking outcomes in {0, 1}, indexed by a spatial coordinate x €
2, where 2 C R"™ denotes a spatial domain [172]. This model is then used to generate
realizations, i.e., artificial geometries which are statistically similar to a physical structure
recorded through CT images. The properties of the random field model should be such
that the generated realizations retain certain important geometrical features while their
remaining characteristics are varying. In particular, the lattices considered in this work
are periodic as shown in Figures 6.4 and 6.23. Thus, the proposed model should preserve
a general repetitive periodic cell structure, while the individual small features within a
cell, e.g., surface roughness, internal porosity, strut sizes, should vary.

A common way to formulate the binary random field is to define a parent (or latent)
underlying continuous random field, which is clipped in the consequent step with the
pre-defined threshold d. The parent field is assumed to be a real-valued homogeneous
Gaussian random field U(x) with zero mean value py = 0, unit standard deviation
oy = 1, and auto-correlation function pyy(x1,x2). Commonly, the cut-off level d is
assumed to be homogeneous, i.e., constant with respect to the spatial coordinate (see,
e.g., [97, 81, 87, 123, 135, 172]). However, the use of homogeneous threshold would lead
to a random porous geometrical model. The generation of periodic structures as shown
in Figures 6.4 and 6.23 would not be possible. Thus, in this work, the threshold is chosen
to vary with respect to the spatial location, i.e., d(a), which allows us to control the
overall periodic structure of the lattices. Hence, the binary random field V(x) can be
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expressed in terms of the Gaussian field U(x) as

Vie) = {0 for U(z) € (—o0, d(x)) 1)

|1 for U(x) € [d(z), 00)

where d(x) is the truncation threshold depending on the spatial location. As the Gaussian
random field U(x) has zero mean and unit variance, U(x) is completely characterized by
its auto-correlation function pyy (1, 2) = E[U(x1)U(x2)]. Hence, the binary random
field V() is defined by the threshold function d(x) and the function pyy (@1, x2). These
functions should be identified such that the generated geometrical models attain a similar
lattice structure. A graphical illustration of the proposed model is given in Figure 7.2. The
figure shows the process of generation of a random realization from the binary random
field V(x) for a single unit cell of lattice structure. Given the function pyy(x1,x2),
realizations from the Gaussian field U(x) can be generated, which can be transformed to
realizations of the field V' (x) based on the threshold function d(zx). The parameters I and
v shown in Figure 7.2 are parameters of the function pyy (21, 2), which will be discussed
in detail further below.

The design parameter space of the binary random field model, including the threshold
level d(x) and the auto-correlation function pyy (1, 2), can be identified based on match-
ing sample estimates of the first and second moment functions of V' (x) obtained from the
CT images of sample structures. In the following, the expressions for these functions in
terms of the model parameters are provided. Note, that for the case of a homogeneous
threshold, expressions for the second moment function of the binary field as a function of
puu (1, 2) and the (homogeneous) threshold d are given, e.g., in [167, 78, 135, 97].

10 20 30 39
x, [voxels] x, [voxels| x, [voxels]

Figure 7.2: Graphical illustration of the proposed non-homogeneous binary random field
model and the process of generation of a random realization from the model (in dark red:
—oo values, light blue: oo values). Lower left: one realization of the Gaussian random
field U(x); lower middle: threshold function d(x) acquired from CT image of a sample;
lower right: one realization of a binary random field V() [86].
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The marginal probability mass function (PMF) of V() is

) e(d(=x)) forv=20
pv(v @) = {1 —®(d(x)) forv=1 (7.2)

where @ is the standard normal cumulative distribution function (CDF). Hence, the mean
of V(x) is given as follows:

pv(x) =1 — o(d(z)) (7.3)

and the variance function is:

oy (@) = [1 — 0(d(z))] ®(d(x)) (7.4)

The covariance of the binary random field with spatially varying thresholds can be
written as

puu(1,22) 1 d(x1)? + d(x2)? — 2d(x)d(xs) 2
LCyy (21, x2) = /0 /=2 exp | — 21— 22) dz (7.5)

A full derivation of this result can be summarized as follows. The second-order PMF of
V(x) is given as (cf. [172])

Fyy (d(z1), 21; d(2), 22) for vy = vy =0
pryv(vi, 1509, To) = O(d(z2)) = Fyu (d(@1), 215 d(@2), @2) for v, = 1,09 =0
( (x1)) — Fyu (d(z1), 21; d(22), T2) for v, = 0,0y =1
O(d(x2)) — P(d(x1)) + Fyu (d(x1), 215 d(22), 22)  for vy = vy =1
(7.6)

where Fyy(uy, @15 u, ©2) = P (u1, us, puy (1, 2)) is the second-order CDF of U(x) and
®y(-, -, 7) is the joint CDF of the bivariate standard normal distribution with correlation
parameter r. Hence, the mean-of-product function E [V (x,)V (22)] is given as:

1 1
E[ ZZUUJPVV 'Ul)wlvvjan)
i=0 j=0 (7.7)

=1-o d( )) ( ( 1)) + @ (d(ml)vd(mQ)vaU(mlaa:?))

For the auto-covariance function of V' (x), I'yy (21, x2) = Cov(V (1), V(21)), it holds:

Lyv (@1, @2) = E[V(x)V(22)] — pv (1) v (2) (7.8)

Plugging in Equation 7.7 and Equation 7.3 into Equation 7.8 the following result is ob-
tained:

Lyy (1, @2) = @y (d(1), d(2), pov (T, @2)) — P(d(21))® (d(22)) (7.9)
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The bivariate joint CDF can be expressed in terms of a single-fold integral, as follows
[126]:

1 u? + ud — 2uyusz

Dy (U1, us, 1) = —————eX
2 (t1, 42, 7) /Ozﬁm T

Then, combining Equation 7.10 with Equation 7.9 leads to the final equation for the
covariance of the binary random field in Equation 7.5.
The auto-correlation function of V'(x) is then obtained as:

dz 4+ ®(up)®(uy)  (7.10)

Fvv(l‘l, 332)
UVV(ml)UVV($2)

Ryv(xy1, ®2) = (7.11)

with oyy (@) as defined in Equation 7.4.

The functions d(x) and pyy (1, x3), which define the binary field V(x), can be esti-
mated by comparing sample estimates of the mean and auto-covariance functions of V()
with the expressions in Equations 7.3 and 7.5. Such estimates can be obtained based on
CT images of manufactured AM products. Before describing this identification procedure,
the modeling process can be further simplified by introducing a parametric correlation
model for the function pyy(x1,x2), based on the Matérn model. The one-dimensional
Matérn correlation model reads [59]:

21—V ( Ax

P o) = 500 WT) B (m%) (712)

where Az = |r; — x5 indicates the spatial lag, [, is the correlation length parameter, v,
is a non-negative smoothness parameter, I'(-) is the gamma function, and K,(-) is the
modified Bessel function of the second kind. The design space for the one-dimensional
Matérn correlation model includes two parameters, namely the correlation length [, and
smoothness parameter v,. The smoothness parameter provides great flexibility to describe
spatial correlations. When v, tends to zero, the spatial variation is rather rough, while
large values of v, lead to a smooth spatial process. Furthermore, it combines a wide range
of other parametric correlation models. For example, for [, = 0.5 the exponential model
is recovered, while for [, — oo the Gaussian correlation kernel is obtained.

The separability assumption on the correlation function is introduced, such that as
discussed in section 7.3 the generation of the random field U(x) is greatly simplified. The
product family of the correlation kernels can be formulated as follows [145]:

puu (1, 2) = pur (21, 22) par (Y1, Y2) par (21, 22) (7.13)

Thus, the design space for the binary model in Equation 7.1 with Equations 7.12 and 7.13
consists of the following set of parameters: the threshold function d(x), the correlation
length vector = (I, 1,,(.) and the smoothness vector v = (v,, v, ;) as depicted in Fig-
ure 7.2. Given CT scans of the produced lattice structures, these parameters can be
determined directly from the segmented images. The procedure for the parameter identi-
fication will be described in the following section.



116 7. Uncertainty quantification of process-induced defects

7.2 C(CT-based binary random field model parameter
identification

The next step is to select the design parameters d, I, and v of the proposed random binary
field model that lead to geometric models that are statistically similar to the structures
depicted in Figures 6.4 and 6.23. Thus, a procedure to identify these parameters is
established such that the overall macroscopic periodic structure, together with the process-
induced defects, are retained by the model in a statistical sense. The available CT images
of already produced lattices serve as a basis to learn these features because they contain
all necessary data to proceed with the model generation.

First, the threshold d can be identified from available CT images. As mentioned in sec-
tion 7.1, this function primarily controls a general macroscopic shape of the structure. As
an example, if the threshold level d = const, it regulates a macroscopic volume fraction of
the voids or inclusions in the generated geometry. In contrast, when it is dependent on the
spatial coordinate, structure-specific information can be incorporated. In the considered
case, the periodicity of the lattice cells must be retained. Thus, the threshold level can
be identified by taking advantage of the repetition of the unit cells.

A local unit cell is introduced with the attached local coordinate system x! = (2, !, 21).
This is shown in Step 1 of Figure 7.3 on a two-dimensional slice. The size of this cell
depends on the design geometry of the structure. The mapping between the local and
the global coordinate system is defined inherently due to the existing periodicity. Then,
the underlying voxel structure of the CT scan can be exploited (Step 2 in Figure 7.3).
In particular, as the segmented values are constant within one voxel, the threshold d
becomes piece-wise constant. It can be evaluated at a discrete set of local coordinates
X' = [zl;.. ;2! ] located at the center of every voxel (see step 2 in Figure 7.3).

Then, as the CT image consists of many local unit cells N,qs, all of them can be collected
in a pool of realizations of the binary random field defined at the voxels of the local cells
{0} (&Y, i=1,..., Neenis}. In this way, the mean function of V at the discrete grid points
X' in the local coordinate system can be estimated as follows (step 3 in Figure 7.3):

Neens
vl (7.14)

=1

A l
MV(X ) Ncells
where (A) indicates the estimated quantity. Note that the computed mean values coincide
with the estimates of the probabilities Pr(V (X") = 1). In particular, the black voxels in
step 3 in Figure 7.3 indicate that there is always a void at these locations in all periodic
cells. By contrast, the white-coloured voxels are always filled with the material in the
whole structure. This grey value distribution is considered representative of the AM
process for the considered lattice structure itself.

The global mean values fi,,(X’), are then obtained through performing the inverse map-
ping of the local coordinate system to the global one (step 4 in Figure 7.3). Using Equa-
tion 7.3, the thresholds d(x) then are piece-wise constant with the values evaluated at
the set of coordinates X as follows:

d(X) = 07! (1 — iy (X)) (7.15)
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where @1 is the inverse of the standard normal CDF.
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unit cell, an estimate of the covariance for a given lag Az (;;) is obtained as follows:

Ncells
~ 1 R .
Fvv(wﬁ,wﬁ») N N Z (Ué(mi) - Nv(mi)) (Ué(xé) - Mv(mé)) (7.16)
cells kzl

The auto-covariance of the binary random field is stored as a vector depending on the
spatial lag Az ;) together with the corresponding threshold values d(z!) and d(z!). For
a certain spatial lag Ax(;j), there is a total of (k; — nuags)ky k. covariance entries with
kz,ky.k. being the number of voxels in every spatial direction within one unit cell and
Niags Deing the total number of considered lags (see Step 2 in Figure 7.3). The problem
can be further reduced by only considering the points with intermediate probability values
larger than zero and smaller than one. For voxels with probability zero or one, correlation
is not defined. This filtering interval is further enlarged to remove the extreme data sets,
i.e., the sets for which fi,.(z!) < 0.1 and fi (2}) > 0.9.

Assume, that the covariance data after filtering the extreme data sets has the total
size Ngata. Hence, the collected data set consists of the estimated covariance of the bi-
nary field Tyy (&), 2} at the respective pair of spatial coordinates (! . ) with
m = 1,..., Nqata- The set is fitted to the considered analytical Matérn model by in-
serting Fquation 7.12 into Equation 7.13 and then plugging into Equation 7.5. The
optimization problem is then formulated as a standard least-square minimization:

Naata Ndata
min (5*(l;, v;)) = min (Z r2 (I, yx)> = min (Z (fvv(azllm, xb ) —Tyy(x),, zclzm)>

m=1 m=1

(7.17)

L) is the estimated covariance

where S indicates the total formulated residual, Dy (2, 2}
of the observed binary random field according to Equation 7.16, and Tyy (2!,,, x5,,) is
the chosen model correlation computed by combining Equation 7.12 with Equation 7.13

and plugging in to Equation 7.5.

7.3 Efficient random field simulation for large data
sets

To analyze the impact of the random microstructure on the output quantities of interest,
realizations of the binary random field as in Equation 7.1 need to be generated. The lat-
ter requires the simulation of the underlying standard Gaussian random field U(x). This
can be done by a number of methods — a comprehensive review is given in [99]. Unlike
methods based on approximate representations of the random field (e.g., Fourier repre-
sentations [154], Karhunen-Loeve expansion [13]), the Cholesky decomposition method
generates samples from the true random field at a number of spatial locations [177]. How-
ever, this approach is rarely used as its computational cost is O(n?), with n denoting
the number of locations, which is prohibitively expensive for large n. Furthermore, the
necessary memory storage for the whole covariance matrix before its decomposition is
exceptionally large for practical examples. The size of the problems at hand results in a
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simulation of more than 100 million random variables in three dimensions. This would
not be feasible unless approximation methods are used or the assumption of separability
as in Equation 7.13 is made. If the covariance function is assumed to be separable, the
exact stepwise technique based on the covariance matrix decomposition proposed in [96]
can be applied. This approach drastically reduces the computational costs and memory
requirements for the generation of a three-dimensional Gaussian random field. In the
following, the main steps of this method are recapitulated.

Recall that the Gaussian random field U () is to be simulated at a number n of spatial
points X = [x1;...;®,], corresponding to the voxel centers. This requires the simulation
of a Gaussian random vector U with zero mean, unit variance and prescribed correlation
matrix R = [pyy(xi, x;)], ... The vector U can be decomposed as follows:

U=LW (7.18)

where W is the vector of n-independent standard normal variables and L is the lower
triangular matrix derived from the Cholesky decomposition R = LLT [46]. Since the
correlation function is assumed to be separable as in Equation 7.13, the total correlation
matrix R can be written as a Kronecker product of correlation matrices corresponding to
1D correlation functions:

R=R.®R,®R, (7.19)

where ® is the Kronecker product, R, = [p.(7s, ))]n,xne, By = [0y(Yis Ys)]nyxnys Bz =
[0:(2is 2))|n.xn. and @; = [x;,y;, 2;]. In contrast to the size of the total correlation matrix
R of (nynyn, x ngnyn.), the matrices corresponding to the one-dimensional correlation
models have a much smaller size of (n, X n,), (n, x n,), and (n, X ng).

Using the mixed-product property of the Kroenecker product, the lower triangular
matrix L can be written as the Kroenecker product of the lower triangular matrices of
the Cholesky decompositions corresponding to each one-dimensional model:

L=L.,®L,®L, (7.20)

Equation 7.20 simplifies the computation of the Cholesky decomposition of a large matrix,
which is both time-consuming and prone to round-off errors due to the poor conditioning
of the covariance matrix [46]. Inserting Equation 7.20 into Equation 7.18 gives:

U=(L.®L,L,)W (7.21)
Equation 7.21 is still rather expensive, as a large matrix multiplication is involved.

However, if matrix-array multiplication is introduced the equation can be written out in
its equivalent form as follows [96]:

U= L. x5 [L, x5 (L, x; W)] (7.22)



120 7. Uncertainty quantification of process-induced defects

where U and W are vectors U, W respectively reshaped to the matrices of size (n, x
ny X n) and X; is the matrix-array multiplication defined in the following generic way:

Cipqg = Zajkbkpq ifi=1
k

Cpjqg = Z jkbprg 1f @ = 2 (7.23)
k

Cpgj = E @jibpgr if © = 3.
k

This approach reduces the computational costs of the covariance decomposition to
O(n3 4+ n3 + n?) and of the random field generation to O [ngnyn.(n, + n, +n.)] [96].
Moreover, it avoids evaluation and storage of the full correlation matrix R. Hence, it
enables generating the large scale Gaussian random fields required in this work. The
required computational times will be further addressed in section 7.5.

7.4 Multilevel Monte Carlo method for AM
product characterization

For a given realization of the binary random field representing the material microstructure,
the Quantity of interest (Qol), Q, or in this case the homogenized Young’s modulus,
can be approximated numerically. In particular, the setup shown in Figure 3.2 can be
used to characterize a homogenized tensile behavior of the lattices, with & denoting the
applied uni-axial displacement. Then, the homogenized Young’s Modulus in the applied
displacement direction can be computed by dividing the average occurring stress by the
applied strain.

The effect of microstructural variability on the effective Young’s modulus can be eval-
uated by application of the Monte Carlo (MC) method. In the crude MC method, the
statistical moments of the Qol (e.g., mean and variance) are estimated based on repeated
evaluations of the Qol for a number of realizations of the uncertain geometrical input.
Due to the large overall size of the considered structures and the small scale of the local
geometrical variations, in a traditional FEM a detailed resolution is typically required
to achieve an accurate approximation of the Qol. Thus, the numerical analysis for each
realization with standard FEM results in significant manual labour and high computa-
tional cost. This is because every change of the underlying geometry would require a
new mesh generation to resolve the generated geometry. Furthermore, the realization
and the original specimens are CT images that bring an additional level of complexity to
the traditional FEM for numerical analysis. In particular, before the mesh for a model
can be generated, a complex geometry reconstruction must be run, which results in a
large manual involvement. Thus, the Finite Cell Method described in chapter 4 is ap-
plied. However, the computational effort for estimating the statistical moments using a
combination of the FCM with the crude MC method still remains high. The necessary
computational cost for obtaining accurate moment estimates can be further reduced by
employing the MLMC method. Instead of evaluating a large number of samples with a
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fixed fine discretization of the Qol, the MLMC method considers a hierarchy of (£ + 1)
numerical approximation levels. Every subsequent level has a better approximation qual-
ity. The levels can be chosen, e.g., such that every subsequent level has a finer mesh or
a higher polynomial degree of the element shape functions. MLMC reduces the overall
computational cost for a target accuracy of the obtained moment estimates by performing
many numerical simulation runs at low approximation levels while decreasing the required
runs on every subsequent level. Thus, only a few solves at high levels are necessary.

For the characterization of the variability of the homogenized Young’s Modulus, both
the mean value ug = E[Q] and the second central moment, i.e. the variance, pg o =
E[(Q — po)? = Var[Q], are considered. The MLMC method is well established for
estimating the mean value (or other raw moments) of the Qol (e.g [25, 164]). However, the
estimation of central moments is not trivial. Recently, MLMC was extended to include
the estimation of central moments of the Qol of any order [89]. In the following this
method is reviewed, starting with a summary of the standard MLMC procedure for the
mean value estimation.

The MLMC estimator for the mean value pg = E [Q] can be written as follows:

c
N N
m{\/[LMC - Z (QNzaMe o QszMz—l) (7'24)
(=0
where
¢ 1 &
Ny, = N, Z Qim, (7.25)
i=1
and @(J)VO,M_l = 0; QgVZ,MMg = (Qi:Me)z‘:l,...,N, is the collection of N, independent and

identically distributed (i.i.d.) realizations of the quantity of interest Qs at numerical
approximation level £ and M, is the corresponding number of degrees of freedom at level ¢.
The estimator quantities with the same superscript ¢ are computed with the same input
samples whereas estimators with different superscripts are computed with a different set
of i.i.d. input samples.

The accuracy of the estimator in Equation 7.24 can be assessed by the mean-square
error, which is formulated as:

L
~/f ~/f
MSE(m™ ™€) = (jg,,, — #0)* + > Var | Q, ar, = Qnnr,, (7.26)
=0

where [Qur, denotes the mean of the Qol at the final approximation level £. The first
term in Equation 7.26 is the bias contribution and evaluates the approximation error at
level £, while the second term is the sampling (statistical) error. The bias contribution
for the mean value can be approximated as follows:

~0 ~0
‘MQML - MQ’ R ’QNZ,MZ - QN@,Mg,l (7.27)

The variance terms can be estimated using the available samples through the standard
variance estimator.
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The number of approximation levels £ and the number of samples at each level N, can
be determined such that a small mean-square error is achieved with a low computational
cost. To approach this problem, an assumption is typically made on the behavior of the
bias, variance and computational cost at each level. In particular, they are assumed to
follow relations:

‘MQMZ - NQ‘ < ca(Me) ™"
Ve < eolMp)? (7.28)
cost(Qnr,) < cy(My)”

where M, is the number of degrees of freedom for level ¢, V, := N,Var [/Q\i\fe,Mg — QN |

cost(Qyy,) is the computational cost of evaluating the Qol at level ¢, and ¢,, @, cg, 5, ¢y,
are the problem-dependent constants. These constants are determined by employing a
screening procedure. An initial small number of samples N, are evaluated at a few coarse
levels £. Then, the constants are fit via a least-squares procedure and used to extrapolate
the costs and variance at the subsequent levels.

The number of degrees of freedom at the maximum level £, M., can be estimated for
a prescribed relative tolerance ¢, through:

Mg > (cai/ﬁ)é (7.29)

where ¢ & €, - m mruc. Then, by solving an optimization problem to minimize the
variance of the estimator for a fixed computational cost, the optimal sample size at every
level can be estimated as:

N, > \/ t
t= LQ \/ cost( QMz cost(Qu, Vi

where the terms V; and cost(Qyy,) can be estimated with Equation 7.28.

Having described the standard MLMC procedure for estimating the mean value of
the Qol, the estimation of its central moments can be discussed. The most important
quantity is the second central moment, i.e., the variance of the Qol, which is a measure
of its variability. It is possible to employ the standard MLMC estimator for these cases if
the central moments are expressed in terms of raw moments. However, an approximation
of the r-th central moments through the raw moments can lead to a large sampling error.
In [89] an MLMC estimator of central moments is proposed that employs h-statistics. The
h-statistics is an unbiased central moment estimator, which provides a minimal variance
for the level contributions. This approach allows to evaluate any central moment using
closed-form expressions. In this approach, the MLMC estimator for the r-th central
moment (with » > 2) is expressed as follows:

MLMC ZAf

(7.30)

Mh

(P (@) = hr(@nr, ) (7.31)

=0



7.5. Numerical investigations 123

where h,(Q) is the r-th order h-statistic of @ and hr(Q?VO7M_1) :=0.
The difference of two h-statistics between two consecutive levels for the second central
moment is formulated as:

Nfsf,l - S(l;,lsf,()
(Ne — 1)N,

Ach, = (7.32)

In Equation 7.32 a power sum notation S}, between the levels is introduced. It can be
computed via the sample sum Sf\,j and the sample difference Sé\,; as follows:

Ny
Sty = Sap(SK,8%,) =) _(Si%,) (Siw,) (7.33)
=1

with

b+ y4 l
SNe - QNz,Mz + QNZ’MZ—l
gl — O Al

Ny = =NgM, Ng,Mg_q

The mean-square error of the MLMC estimator of section 7.4 can then be formulated:

c
2
MSE(mMEME) — <,LLT7QM£ —;LnQ) + E Var [Ash,] (7.34)
=0

where Ir. Oy, is the r-th central moment of the Qol at level £. The expressions for the
bias contribution and the variance terms for central moments of any order r can be found
in [89].

The optimal number of the levels and the required sample number can be determined
through a similar screening procedure to the one described above. In particular, Equa-
tion 7.28 can be used to fit the problem-dependent constants, the only difference being
the expressions for the estimation of the bias and the variance terms.

7.5 Numerical investigations

In this section, the proposed workflow is applied to previously analyzed lattices in sec-
tions 6.1 and 6.2. The binary random field model parameter fitting and generation of sta-
tistically equivalent CT images are performed on a standard workstation with ¢7 — 65000
CPU and 16 GB of RAM. The numerical simulations of mechanical behavior of all spec-
imens has been performed on the Linux Cluster CoolMUC-2 at Leibniz Supercomputing
Centre of Technical University of Munich?.

¥The authors gratefully acknowledge the Leibniz Supercomputing Centre for funding this project by
providing computing time on its Linux-Cluster.
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7.5.1 Octet-truss lattice

To gain confidence in the proposed workflow, an octet-truss lattice structure is considered.
The size of the considered example is 292 x 176 x 1768 voxels with the spacing of 2.69um.

3D model parameter identification

First, the local probabilities of the underlying local cell are evaluated. The size of the
unit cell is 146 x 176 x 146 voxels as indicated in Figure 7.4. Overall, 20 cells are extracted
to evaluate the probabilities at every local coordinate according to to Equation 7.14.

Figure 7.4: An example of a periodic unit cell with its local coordinate system in the 3D
octet-truss lattice [86].

Second, the correlation parameters are determined. In this case, convergence was not
achieved for any number of considered spatial lags. It appears that with the increase of the
number of lags, the smoothness parameter v is continuously increasing. Such behavior
was observed in all directions. Thus, to gain further insight into the behavior of the
residual in Equation 7.17, the residual on the grid of correlation length and smoothness
values is evaluated. The objective function’s behavior in all directions is somewhat similar.
Figure 7.5 shows an apparent plateau in the smoothness parameter, explaining the lack
of convergence. As the residual appears to decrease with increase of the smoothness
parameter, the Gaussian model is chosen to be fitted, which is a particular case of Matérn
correlation function when v — oo.

Having fixed the smoothness parameter, the convergence study on the achieved corre-
lation length is performed. Figure 7.6 shows that the convergence in x direction can be
achieved relatively quickly as the correlation length parameter changes only slightly with
the increasing number of lags. However, there is a significant change in other directions.
The results converge after 100 spatial lags.
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Figure 7.6: Convergence of the estimated correlation parameters for the octet-truss lat-

tice [86].

The qualitative fitting as shown in Figure 7.7 shows that the trend is only captured
on average. The extreme values of the observed binary correlation are not well contained
in the proposed structure. It is important to note, that due to a very large size of the
data set, it is hard to visualize it. The computed correlation coefficients for every lag
follow a distribution, i.e. large amount of data points are concentrated around a value.
The fitting procedure captures this value, or homogenizing the spread of the possible
correlation parameters. Quantitatively, the results presented in Table 7.1 seem to have a
relatively small standard deviation indicating a good fit.

Considered lags

Lz, [vozels]

ly, [voxels]

L., [voxels]

100 lags

12.23 £ 0.03

17.50 £ 0.05

15.91 £ 0.05

Table 7.1: Correlation parameter identification for the octet-truss lattice [86].

Based on the fitted parameters, 3D samples of the microstructure are generated ac-
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cording to the procedure described in section 7.3. One sample takes about 10 seconds
to be generated. A representative realization is compared to the original image in three
orthogonal views in Figures 7.8 to 7.10. Visually, the structures are similar to the original
image and the periodic structure of the underlying octets is well-captured.

: 20 30 20 30 40 5
Az, [voxels] Ay, [voxels| Az, [voxels]

0

Figure 7.7: Fitted and computed auto-correlation of the octet-truss structure ( blue -
sample correlation; red - squared exponential model fit) [86].
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Figure 7.8: An example of a realization based on fitted correlation parameters: coronal
slice 290 of the octet-truss lattice [86].

2 2

(a) Original sample Realization

Figure 7.9: An example of a realization based on fitted correlation parameters: axial slice
872 of the octet-truss lattice [86].
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Figure 7.10: An example of a realization based on fitted correlation parameters: axial
slice 77 of the octet-truss lattice [86].
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Multilevel Monte Carlo analysis of the homogenized mechanical behavior

The original octet-truss lattice is analyzed both experimentally and numerically. The
results for deterministic evaluation are shown in section 6.1. The numerical analysis of
the CT scan of the octet-truss lattice was performed with fewer hierarchy levels than the
example above. The coarsest discretization level £ = 0 consists of 73 x 44 x 442 finite
cells with the polynomial degree p = 1. At the level £ = 1 h-refinement is performed to
obtain 146 x 88 x 884 finite cells with the polynomial degree p = 1. With every higher
level, £ > 2, the finite cells’ polynomial degree is raised from p = 1 to p = 3. The results
achieved based on the analysis of the original CT scan are presented in section 6.1.

To evaluate the number of necessary samples for the MLMC, the screening was per-
formed (see Figure 7.12). The procedure showed that four hierarchy levels with the
sample numbers larger than N, > (5413,298, 145,27) are required to achieve a relative
error of 2.5% for the estimated variance. The mean value can be evaluated with the same
relative error with four levels and sample numbers larger than N, > (70,3,1,1). The
number of samples for the mean estimation is much smaller as a fast convergence for
provided discretization is expected. Again, both estimates are combined and the number
of samples is updated during the computation procedure to achieve a relative accuracy of
g, = 0.025 for both the mean and the variance, which results in the number of samples
Ny = (5479, 396, 166, 43) meaning 5479 simulations with the coarsest and 43 simulations
with the finest discretization. To get a better understanding of the final distribution,
the third and the fourth moments are estimated without evaluating the optimal sample
number for these central moments.
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(a) Original sample (b) Realization

Figure 7.11: An example of a realization based on fitted correlation parameters: full 3D
model of the octet-truss lattice [86].
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Figure 7.12: Results of MLMC screening procedure for the octet-truss lattice [86].
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Table 7.2 summarized the achieved results. To get a visual overview of the estimated
distribution, it is approximated with the normal distribution based on the estimated first
and second moments. The estimated skewness and kurtosis as indicated in Table 7.2 are
close to the values for the normal distribution.

Hy [MPa] g, [MP&] 77[_] '%7[_]
12807 164 —0.16 | 3.66

Table 7.2: The estimated moments from the MLMC procedure for the octet-truss lattice
(v indicates skewness, whereas k kurtosis) [86].
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Figure 7.13: Results of MLMC on the homogenized Young’s modulus for the octet-truss
lattice. Normal fit based on the estimates of the first two moments. The shaded areas
plot the intervals covering the 90%, 95%, 98%, and 99% of the probability mass [86].

For this example, the Young’s modulus evaluated numerically with the original specimen
is at the border of the estimated 90% interval. The estimated mean value agrees well
with the experimentally obtained values. However, the standard deviation appears to be
relatively small 0 = 164. This phenomenon points once more to the nature of the additive
manufacturing process. As indicated, the octet-truss lattice is produced at a much larger
scale than the square one. Thus, the as-manufactured geometries are expected to exhibit
smaller relative variability than for the square grid lattice structure. This behavior is
mirrored in the results of the MLMC procedure: a much smaller variability is observed
in the final homogenized Young’s modulus due to the present geometrical variations.
The considered structure is much smoother with a smaller number of geometrical and
topological defects.
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7.5.2 Square grid lattice

3D model parameter identification

First, the whole CT scan of the square lattice structure is analyzed using the proposed
model (section 6.2). The total size of the considered model is 400 x 800 x 368 voxel with
the same voxel spacing 14.71um. The size of the local cell is 40 x 40 x 368 voxels with
local coordinates z! € [0,39], y' € [0,39] and 2! € [0, 368] (see Figure 7.14).

Figure 7.14: An example of a periodic unit cell with its local coordinate system in the 3D
square lattice structure [86].

The local probabilities are computed in a similar manner as for the 2D case considering
the local unit cells extracted from the volume. As the data set already becomes very large,
not all spatial lags can be considered in the fitting procedure for the parameters of the
correlation model. To estimate the necessary number of spatial lags, a convergence study
on the correlation parameters is performed. To this end, the number of spatial lags is
increased in every direction and observe the estimated correlation parameters’ behavior.

Figure 7.15 indicates that after 30 spatial lags both the correlation length and the
smoothness parameters in x and y directions do not change significantly. Thus, for fur-
ther computations 30 spatial lags are considered. However, Figure 7.16 shows that the
correlation length in z direction is constantly increasing with the number of considered
lags. The smoothness parameter v, can be considered converged after 300 lags. This
could potentially indicate that the objective function in Equation 7.17 is rather flat in
the achieved minimum of the smoothness parameter. Thus, the change in the correlation
length for the fixed smoothness parameter does not change the behavior of the residual
significantly. To further investigate this, the residual as in Equation 7.17 is computed for
300 lags on a pre-defined grid of values for correlation length and smoothness parameter.
Figure 7.17 reveals a manifold of near-optimal values of (., v,), indicating that there is a
number of combinations of the two parameters that leads to near-optimal parameter fit.
The non-identifiability of unique smoothness and correlation length parameters of corre-
lation models belonging to the Matérn class has been discussed elsewhere, e.g., in [28].
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The plot also shows that there exists a minimum for the smoothness parameter, which
corresponds well to the results obtained above. However, the objective function remains
almost constant once the smoothness minimum is achieved for I, € (2000, 10000). The
large values of the correlation length in z direction are related to the technique used to gen-
erate the AM product. In particular, the square grid structure is produced such that the
in-plane grid is extruded in z direction. Thus, it is natural to expect a larger correlation
length in this direction. The optimal value obtained in this case is (I,,v,) = (0.104, 4187).
For further computations the number of spatial lags in z direction is fixed to 300.
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Figure 7.15: Convergence of the estimated correlation parameters in z and y direction [86].
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Figure 7.16: Convergence of the estimated correlation parameters in z direction [86].
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Figure 7.17: Behavior of the objective function for fitting the correlation function in
z-direction with 300 lags [86].

The achieved fit of computed covariance and the considered model of Matérn covariance
for 30 spatial lags in x and y direction and 300 lags in z direction is shown in Figure 7.18.
Similar to the 2D case, the model qualitatively follows the trend of the binary covariance.
Nevertheless, the model does not capture the spread in the correlation values but rather
homogenizes the solution. The design correlation parameters are summarized in Table 7.3
together with their standard deviations.
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Figure 7.18: Fitted and computed auto-correlation of a 3D model (blue - sample correla-
tion; red - Matérn model fit) [86].

ly, [voxels] | 1, [voxels] l., [vozels] Ve, [—] vy, [—] v, [—]

25.17£0.02 | 13.08 = 0.01 | 4186.99 £ 10.31 | 0.728 £ 0.001 | 0.770 £ 0.001 | 0.104 £ 0.001

Table 7.3: Correlation parameter identification for a 3D structure using 300 lags [86].




7.5. Numerical investigations 133

Having determined the correlation parameters, the method described in section 7.3
is applied to generate realizations of the 3D random microstructure. The generation of
every volume takes on average 6 seconds for the considered domain size. A representative
realization is shown in Figures 7.19 and 7.20. The original sample together with one
realization are depicted in Figure 7.21.

Visually, the overall geometry is similar to the original specimen. The underlying
structure is well preserved, while the small features are varied. The distribution of the
porosity computed with 5000 samples is shown in Figure 7.22. The porosity of the original
specimen is ¢ = 0.7293, which is close to the mean value computed with samples from the
proposed model. The computed standard deviation again appears to be relatively small.
However, the macroscopic porosity is not the only determining factor for the macroscopic
mechanical behavior. The topological features, such as the strut connectivity, can have a
significant influence on the response of the final product.
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(a) Original sample (b) Realization

Figure 7.19: An example of a realization based on fitted correlation parameters: coronal

slice 71 in the 3D volume [86].
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Figure 7.20: An example of a realization based on fitted correlation parameters: axial
slice 213 in the 3D volume [86].
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(a) Original sample (b) Realization

Figure 7.21: An example of a model realization based on fitted correlation parameters:
full 3D model [86].
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Figure 7.22: Porosity distribution for 3D square lattice realizations [86].
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Multilevel Monte Carlo analysis of the homogenized mechanical behavior

In the following, the influence of the geometrical variability on the homogenized Young’s
modulus for this specimen is evaluated. The numerical analysis of the CT scan of the 600
L2 specimen was performed through applying the FCM directly on the provided image.
The coarsest discretization level £ = 0 consists of 100 x 46 x 100 finite cells with the
polynomial degree p = 1. At the level £ = 1 the h-refinement is performed to obtain
200 x 46 x 100 finite cells with polynomial degree p = 1. With every higher level, £ > 2,
the finite cells’ polynomial degree is raised from p = 1 to p = 5. These levels correspond
to the numerical investigations discussed in section 6.2. Thus, the mechanical analysis of
all 3D realizations with the correlation parameters determined above is performed using
the same Finite Cell discretization levels as for the original CT image. As the constants ¢
in Equation 7.28 are not known a priori for this problem, the screening procedure is held
to evaluate the optimal hierarchy parameters.

For the screening procedure, a few samples on the levels £ = {0,1,2,3,4,5} are eval-
uated. The fit of the constants for Azh,, V,, and cost(Qy,) are performed assuming an
exponential dependence as in Equation 7.28 and then extrapolated to the higher levels.
Using Equations 7.29 and 7.30 the optimal number of hierarchy levels together with the
optimal number of samples at each level are estimated for different relative tolerances ¢,.
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Figure 7.23: Results of MLMC screening procedure for the square lattice [86].

Figure 7.23 depicts the number of necessary samples for the mean and variance estima-
tion of the homogenized Young’s modulus. The mean value estimation requires a lower
value of optimal levels than the variance estimation. The screening procedure shows that
seven hierarchy levels with sample numbers larger than N, > (367,232,114,56,19,11,11)
are required to achieve a relative error of 0.05 for the estimated variance. The mean
value can be evaluated with the same achieved error with six levels and sample numbers
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larger than N, > (424,104,41,45,3,1). The final number of samples used to obtain the
estimates of the moments is updated to achieve the target accuracy of ¢, = 0.05 giving
N, = (621,250, 146, 99, 38, 19, 15). Although the screening procedure is performed for the
first two moments, the third and the fourth moments are evaluated with the provided
number of samples to get an idea about the final distribution.

The results of the MLMC algorithm are summarized in Table 7.4.

1, [MP&] g, [MP&] 75 [_] R, [_]
20625 1619 —0.20 | 2.68

Table 7.4: The estimated moments from the MLMC procedure for the square grid lattice
(v is skewness, whereas k is kurtosis) [86].

In Figure 7.24, a normal fit of the probability density function of the homogenized
Young’s modulus based on the estimated mean and variance together with the intervals
that cover the 90%, 95%, 98%, and 99% of the probability mass. The determined skewness
~ and kurtosis x as in Table 7.4 are close to the one expected for the normal distribution
(0 and 3 respectively). However, these estimates have significant uncertainty. Considering
the sampling uncertainty related to the moment estimates, the plot shows a conservative
visualization of the distribution and intervals.

The Young’s modulus evaluated with the original sample falls into the 99% interval
(shown as the dashed line in Figure 7.24). Overall, the performed MLMC procedure seems
to capture the observed spread in the experimentally determined homogenized Young’s
modulus. Due to the additive manufacturing process’s underlying complex physics, there
are many geometrical and topological variations to be expected for such microscale lat-
tices. Undoubtedly, these defects play a significant role in the final part’s mechanical
behavior, which is supported by this analysis.
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Figure 7.24: Results of MLMC on the homogenized Young’s modulus for the square
lattice. Normal fit based on the estimates of the first two moments. The shaded areas
plot the intervals covering the 90%, 95%, 98%), and 99% of the probability mass [86].
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Chapter 8

Concluding remarks

Additive manufacturing technology has undergone significant development in the past
years. It allowed for the production of complex designs, especially lattices, which were
impossible to produce traditionally. Alongside numerous advantages and improvements,
this development has opened a wide range of unanswered questions and challenges. One
of them is the analysis of process-induced defects. In fact, as-manufactured structures can
exhibit significant variations from the design due to the manufacturing process. Undoubt-
edly, this change in the geometry influences AM products’ quality and puts uncertainty
on their applicability areas. To this extent, diverse questions have to be confronted. For
example: what is the most suitable way to evaluate the process-induced defects? Can
their effects be estimated numerically? Is there a connection between process parameters
and arising deviations? The list of possible challenges can be extended much further.
Thus, this thesis focused on addressing a few demands in additive manufacturing product
analysis.

In this work, a numerical workflow to evaluate additively manufactured structures’
structural behavior has been proposed. This research suggested several courses of action to
enable easy and efficient analysis of the final parts. In particular, the following challenges
have been explored:

o The acquisition of as-manufactured geometries via computed tomography (CT) pro-
vides all necessary information about process-induced defects up to a scan resolu-
tion. Nevertheless, these imperfections can be detected accurately only when the
geometrical boundary is correctly deduced from CT images. Metal AM products
can be complicated in this context. In the proposed framework, the standard single
threshold technique is extended by a deep learning segmentation discussed in sec-
tion 2.4. It was demonstrated that this technique provides reliable results when
microarchitectured AM lattices with trapped powder are considered.

e The incorporation of CT-based geometrical models in the numerical analysis requires
additional steps, which are commonly highly laborious. These steps can be avoided
by using the Finite Cell Method, an immersed boundary approach. To this extent,
a numerical integration scheme tuned explicitly for the CT-based analysis has been
presented in section 4.2. Combining the FCM with the voxel-based pre-integration
technique has shown a significant reduction of the necessary computational effort
for CT-based numerical analysis.
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8. Concluding remarks

e The Direct Numerical Simulation of a virtual experiment, especially on CT images,

was mainly considered impossible. Thus, many investigations focused on smaller
domain sizes or other simplifications. However, the parallel implementation of the
FCM presented in section 4.3 allows pushing the computational boundaries further.
It was demonstrated that with this approach, the full-scale simulation with mi-
croscopical geometrical defects is possible in a reasonable time. Furthermore, this
opened possibilities to compare the as-designed and as-manufactured behavior at
full scale.

To allow further flexibility in choosing the numerical methods in this workflow,
the computational homogenization technique has been introduced in chapter 5. As
the imperfect AM products can demonstrate high irregularities, random internal
porosity, and general high macroscopic porosity, the necessary modifications to the
traditional homogenization approach have been investigated. It was shown that
the proposed CT-based numerical homogenization technique provides an excellent
agreement with both full-scale numerical simulation and experimental data, even
for highly irregular structures.

Another necessary computational advance built upon all previous points is the pro-
posed use of strain gradient beam theories for numerical characterization of AM
products. The methods introduced in sections 3.2 and 3.3 were for the first time
used in the scope of as-manufactured AM product analysis and have been proved
to provide more accurate results in comparison to the classical approaches. As the
required input to these theories is a reliable homogenization procedure, the com-
bination of these beam theories with the CT-based computational homogenization
introduced in chapter 5 allowed for a more accurate and much quicker evaluation of
the mechanical behavior of AM structures.

All proposed tools and methods have been finalized with a novel approach to quan-
tify the uncertainty introduced by the process-induced defects in chapter 7. It has
been demonstrated that with the CT-based random field model, all geometrical
defects up to the scan resolution can be incorporated and reproduced efficiently.
The numerical results have indicated that with this approach, a certain spread of
the mechanical quantities can be estimated without the need to manufacture many
samples. Additionally, the obtained estimates indicate that the obtained spread
corresponds to the experimentally determined data.

All in all, the proposed numerical workflow has been thoroughly investigated and validated
on three printed metal lattices. However, the prospect for being able to fully understand,
improve and evaluate the effects of the process-induced defects on the performance of
AM products efficiently serves as a continuous stimulus to explore the following possible
future directions in the context of the proposed numerical workflow:

o This thesis has focused on the evaluation and validation of the workflow in linear

physics. Yet, the characterization of the AM products in non-linear regimes or
other conditions such as, e.g., determination of yield stress, fatigue life, have to be
investigated. To this end, the necessary extensions to the parallelization strategy of
the FCM have to be looked at. In particular, the non-linear full-scale simulations
would require storing a large amount of data about the internal variables. Thus, an
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appropriate algorithm should be found to alleviate these memory-extensive compu-
tations.

Another possible direction of research is an investigation of other computational
homogenization techniques. In this work, mean-field homogenization has been used.
However, the efficiency and applicability of other methods, such as FFT-based or
asymptotic homogenization, in the scope of AM product simulations have to be
addressed. In this context, the Periodic Boundary Conditions used in this thesis
can be formulated in a weak form to facilitate their application for highly irregular
structures further.

The proposed binary random field model for uncertainty quantification of process-
induced defects assumes the Matérn correlation model for the underlying Gaussian
random field. A potential future direction would be to investigate alternative cor-
relation models, e.g., models that introduce a periodic correlation structure. Ad-
ditionally, a Bayesian approach could be applied for estimating the parameters of
the correlation model. Thereby, a challenge that would need to be addressed is the
increased computational cost for parameter fitting.

Another essential direction is extending the proposed workflow to evaluate the intra-
specimen variability induced by the manufacturing imperfections. The current ran-
dom field model enables modeling such intra-specimen variability. An important
future research step would be to incorporate multiple CT images of similar parts
produced with different process parameters into the proposed model. This would al-
low evaluating the uncertainty introduced by a specific group of process parameters
and provide necessary insights into the final parts’ confidence levels. Furthermore,
this direction would open up many possibilities in the optimization of process pa-
rameters.
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List of Symbols

The notation used in this thesis is summarized in the following. Bold letters refer to
tensor entities, while the medium ones to scalar values. The symbols and abbreviations
are ordered by logical units in the order of appearence throughout this work.

Classical continuum mechanics

Volume or domain of the body
Domain boundary
Deformation mapping
Displacement vector
= (z,y, 2) Cartesian coordinate vector of a spatial point in the deformed
configuration
=(X,Y,2) Cartesian coordinate vector of a spatial point in the initial con-
figuration
Unit vector in the deformed configuration
Unit vector in the initial configuration
Deformation gradient tensor
Vector differential operator
Green-Lagrange strain tensor
Cauchy traction vector
Body load vector
Classical strain energy density function
Elasticity tensor
Cauchy stress tensor
Outward unit normal vector
Dirichlet part of the domain boundary
Neumann part of the domain boundary
Prescribed Cauchy traction vector on Neumann boundary
Prescribed displacement vector on Dirichlet boundary
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Finite Element Method

Bi-linear form

Linear form

Test funciton

Collection of test functions
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< e Yy
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S Collection of trial solutions functions

H'(") Sobolev space of degree one

ph Finite element sub-space of V

Sh Finite element sub-space of S

" Finite-dimensiona trial functions

Qu Domain of a finite element

(r,s,t) Local coordinates of a finite element

P Polynomial degree of element shape functions

Strain gradient continnum theory

Q' Micro-volume or micro-domain attached to every material point
of the body

I’ Mciro-domain boundary

X Micro-deformation mapping

x’ Coordinate vector of a micro-spatial point in the deformed con-
figuration

X' Coordinate vector of a micro-spatial point in the initial configu-
ration

u’ Micro-displacement vector

\% Vector differential operator defined in micro-coordinates

¥ Micro-strain tensor

x Relative deformation, i.e., the difference between the macroscopic
displacement gradient and micro-strain tensor

G Micro-deformation gradient

W (+) Micromorphic strain energy density function

13 Relative stress in micromorphic continuum

L Double stress in micromorphic continuum

Wri(+) Strain energy density of Mindlin’s Form II gradient elasticity

A Sixth-order gradient-elastic material tensor

v Second-order strain-gradient length scale tensor

Vourf =V —n®@mn -V Surface gradient operator

q Prescribed double stress traction vector

du, Prescribed normal directional derivative of the displacement u

Classical and strain gradient beam theories

Total applied force at the middle of the beam

Vertical deflection of a central axis of the beam

The distance between fixed and roller support in three-point
bending test

Bending moment of the beam

Shear force of the beam

Effective Young’s Modulus

Effective moment of intertia

Width of the beam

Height of the beam
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G Effective shear Modulus

A Effective cross-sectional area of a beam
D Beam bending rigidity
D

D

EB (Classical Euler-Bernoulli bending rigidity
T Classical Timoshenko bending rigidity
DgETB Strain gradient Euler-Bernoulli bending rigidity
D}, Strain gradient Timoshenko bending rigidity
R(z) Generalized moment of the beam
g High-order (directional) intrinsic length scale parameter

Finite Cell Method

Qe Extended domain representing the union of the fictitious and
physical domain in the Finite Cell Method

Q. Volume/Domain of a finite cell

Q, Volume/Domain of a voxel

B&(-,-) Extended bi-linear form in the Finite Cell method

F() Extended linear form in the Finite Cell method

a() Indicator function

B Matrix of derivatives of shape functions

(Sz, Sy, Sz) Voxel dimensions

(Ngy My, M) Number of finite cells

(Vgy Uy, V) Number of voxels in one finite cell

K, Stiffness matrix of a finite cell

J Jacobian matrix

(ky, ks, k) Local coordinate integration limits of every voxel in a finite cell

Computational homogenization

0] Porosity
0 Effective/homogenized quantity
v Poisson’s ratio
E Young’s Modulus
<> Volume averaging operator
()M Macroscopic fields
L Window size (frame width)
lrvE Size of the representative volume
k Refinement depth
Uncertainty quantification
V(x) Binary random field
v(x) Outcome of the binary random field
d(x) Threshold of the binary random field
U(x) Gaussian random field
u(x) Outcome of the Gaussian random field

1 Mean value
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o Standard deviation

p(xy, T2) Auto-correllation coefficient function of a random field

E[] Mathematical expectation operator

= (ls,1,,1,) Vector of correlation length parameters

X =[x .52

R = [pUU(miij)]an

™~

AM
LPBF
HUthres
CcT
PBF
CAD
SLS
EBM

Vector of smoothness parameters

Probability mass function

Standard normal cumulative distribution function

Covariance of a random field

Joint cumulative distribution function of the bivariate standard
normal distribution with correlation r

Second-order cumulative distribution function

Auto-correllation function

Gamma function

Modified Bessel function of the second kind

Cartesian coordinate vector of a spatial point in the local system
of a periodic unit cell

A set of local coordinates

Total number of local periodic unit cells in the structure
Estimated quantities

A set of global coordinates

A vector of Gaussian random field

Correlation matrix of a Gaussian random field with correlation
coefficient pyy (a1, x2)

Lower triangular matrix from Cholesky decomposition of the cor-
relation matrix R

Vector of n-independent standard normal variables

Quantity of interest in Multilevel Monte Carlo method

Total number of discretization levels in Multilevel Monte Carlo
method

Number of degrees of freedom at level ¢

Number of independent and identically distributed realizations at
level ¢

h-statistics for central moment r

Skewness coefficient

Kurtosis coefficient

List of abbreviations

Additive manufacturing

Laser Powder Bed Fusion
Hounsfield Units threshold value
computed tomography

Powder Bed Fusion
computer-aided design

Selective Laser Sintering
Electron Beam Melting
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SLM Selective Laser Melting

HU Hounsfield Units

ANN Artificial Neural Network

CNN Convolutional Neural Network

FEA Finite Element Analysis

DNS Direct Numerical Simulation

RVE Representative Volume Element
FCM Finite Cell Method

FEM Finite Element Method

BC Boundary Condition

NURBS Non-Uniform Rational B-Splines
KUBC Kinematic Uniform Boundary Conditions
PBC Periodic Boundary Conditions
SUBC Static Uniform Boundary Conditions
DOF Degree of Freedom

MLMC Multilevel Monte Carlo

Qol Quantity of interest
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