[

TECHNISCHE UNIVERSITAT MUNCHEN

Lehrstuhl fiur Sicherheit in der Informationstechnik
an der Fakultat fiur Elektrotechnik und Informationstechnik

High Precision Electromagnetic Analysis of
Leakage Resilient Cryptographic Constructions

Florian Unterstein

Vollstandiger Abdruck der von der Fakultét fiir Elektrotechnik und Informationstechnik
der Technischen Universitat Miinchen zur Erlangung des akademischen Grades eines
Doktor-Ingenieurs (Dr.-Ing.) genechmigten Dissertation.

Vorsitzende: Prof. Dr.-Ing Antonia Wachter-Zeh

Priifer der Dissertation:
1. Prof. Dr.-Ing. Georg Sigl

2. Prof. Dr. rer. nat. Frank Kargl

Die Dissertation wurde am 12.04.2021 bei der Technischen Universitat Miinchen eingere-
icht und durch die Fakultat fiir Elektrotechnik und Informationstechnik am 12.07.2021
angenomimen.

Abstract

Information security is the foundation of today’s connected digital world. Whether we
think of electronic payment solutions or intellectual property and counterfeit protec-
tion, all those applications rely on secure and confidential processing of data. While
the mathematical side of cryptography is well understood and there is a plethora of
secure algorithms available, the implementation security against side-channel attacks is
still an arms-race between designers and attackers. Advances in the quality of measure-
ment equipment and increased computing power for post-processing forces manufactur-
ers to invest more and more into adequate countermeasures. Since attack equipment is
nowadays available for few thousand USD, such attacks not only threaten high-security
smartcards, but also the low-cost devices of the Internet of Things that we interact with
every day. Typically, the deployed side-channel countermeasures are designed ad-hoc
and try to reduce the information leakage in the side-channel traces. This is supposed
to raise the number of traces that an attacker would need to acquire for a successful
attack to a number that is not feasible anymore.

Leakage resilient cryptography, in contrast, is a more formalized approach towards
side-channel security. Its aim is to design algorithms that are intrinsically resilient
against a certain amount of leakage and to proof their security in a certain leakage model.
Ideally, this model is generic enough to cover all possible side-channel attacks and thus
the established security level is independent of the concrete attack and measurement
method that is used. However, such a model naturally has to be based on assumptions
about the physical behavior of the device and the emanated information leakage.

The contribution of this thesis in this regard is threefold: First, we analyze if such
leakage assumptions hold in practice when facing an attacker capable of high precision
electromagnetic (EM) measurements. Specifically, we analyze a leakage resilient pseudo
random function (LR-PRF) based on the Advanced Encryption Standard (AES) which
depends on two leakage assumptions: limited data complexity and algorithmic noise
from equally leaking parallel hardware.

The laboratory analysis of a field programmable gate array (FPGA) implementation
of the scheme shows, that the equal leakage assumption does not hold and that the
implementation is vulnerable to multivariate template attacks. We identify that in
addition to the spatial resolution of the used EM probe, the high temporal resolution
is also a contributing factor to the attack’s success. It allows exploiting differences in
the signal propagation of the different S-boxes which are caused by small imbalances in
the the placement and routing. This is a significant result since these effects are hard
to control on FPGA devices. It is hence unlikely that a secure implementation of the
LR-PRF can be achieved on the analyzed FPGA or similar devices.

As a second contribution, we therefore propose an improved version of the LR-PRF

that uses additional key entropy to retain an acceptable security level even against high-
end attacks. The additional key entropy is introduced into the internal state of the LR-
PRF in chunks of 128 bits in one or multiple preprocessing steps. The number of required
steps depends on the side-channel leakage of the underlying AES implementation and
has to be determined through laboratory evaluation. Since the preprocessing re-uses
existing hardware, the number of steps can be implemented as a run-time parameter
and then be adjusted after the evaluation on the respective platform.

Finally, we demonstrate the practicality of our solution by hardening two applications
against side-channel attacks in case studies: bitstream decryption for FPGA system-
on-chips (FPGA SoCs) and firmware updates for microcontrollers. FPGA SoCs are
powerful systems that combine a CPU and configurable hardware on one die. The hard-
ware configuration (called bitstream) is usually stored in encrypted form in external
memory and needs to be authenticated and decrypted for secure boot. Manufactur-
ers do provide dedicated cryptographic cores for this task, but previous publications
showed that they are often vulnerable to side-channel attacks. Since those cores cannot
be updated, there is no straightforward mitigation available to users once a security
issue is identified. By implementing our LR-PRF as part of the configurable logic, we
achieve authenticated decryption of bitstreams that is fully updatable and only relies on
manufacturer provided cryptography for public key signature verification. We provide
a prototype implementation with full security evaluation and give clear instruction on
how to port this concept to other platforms.

In the second case study, we explore firmware decryption for microcontrollers. For
secure updates to devices in the field, side-channel secured authenticated decryption of
firmware is mandatory. In order to generate the algorithmic noise from parallel hardware
that is required for the LR-PRF, we use AES co-processors which are already present on
many modern microcontrollers. This novel approach allows us to leverage features that
are intrinsic to hardware implementations in a software-only implementation. By using
hardware accelerators for the security critical operations we thus achieve high security
levels and at the same time benefit from improved performance and a small code base.

i

Kurzfassung

Informationssicherheit ist das Fundament der vernetzten digitalen Welt. Egal ob elektro-
nische Bezahlsysteme oder der (Falschungs-)Schutz von geistigem Eigentum betrachtet
werden, all diese Anwendungen verlangen nach sicherer und vertraulicher Datenverar-
beitung. Wahrend die kryptographische Sicherheit bereits gut verstanden ist und eine
Vielzahl von sicheren Algorithmen zur Verfiigung steht, besteht bei der Implementie-
rungssicherheit gegen Seitenkanalangriffe weiterhin ein Wettriisten zwischen Entwick-
lern und Angreifern. Die Fortschritte, die bei Messinstrumenten erzielt wurden, sowie
die hohere Rechenleistung fiir die Nachverarbeitung zwingen die Hersteller dazu, mehr
und mehr in Gegenmafinahmen zu investieren. Da die Ausstattung fiir Angriffe mittler-
weile auch fiir wenige tausend USD verfiigbar ist, betrifft dies nicht mehr nur hochsichere
Smartcards, sondern auch die giinstigeren Geréte des Internet of Things, mit denen wir
jeden Tag interagieren. Ublicherweise werden die eingesetzten MaBnahmen gegen Sei-
tenkanalangriffe ad-hoc entworfen und versuchen, das Informationsleck (Leakage) in den
Seitenkanalmessungen zu reduzieren. Dies soll die Anzahl der Messungen, die Angreifer
fiir einen erfolgreichen Angriff benétigen, so weit hoch treiben, dass dieser nicht mehr
praktisch durchfiithrbar ist.

Im Gegensatz dazu ist leakage resilient cryptography ein stéirker formalisierter Ansatz
um Seitenkanalsicherheit zu erreichen. Das Ziel ist dabei, Algorithmen zu entwerfen,
die inhérent robust gegeniiber einem gewissen Mafl an Leakage sind, und deren Sicher-
heit in einem Leakage Modell zu beweisen. Idealerweise ist dieses Modell so generisch,
dass es alle denkbaren Seitenkanalangriffe einschliefit und das erreichte Sicherheitsniveau
deshalb unabhéngig vom konkreten Angriff und der Messmethode ist. Jedoch muss so
ein Modell notwendigerweise auf Annahmen {iber die physikalischen Eigenschaften des
untersuchten Geréts und dessen emittierter Seitenkanalinformation basieren.

Der Beitrag dieser Dissertation umfasst diesbeziiglich drei Teile: Zunéchst wird un-
tersucht, ob solche Annahmen {iber das Leakage in der Praxis haltbar sind, wenn An-
greifer hochprizise elektromagnetische-(EM-)Messungen anwenden. Im Detail wird eine
auf dem Advanced Encryption Standard (AES) basierende, Leakage resiliente pseudo-
zufiillige Funktion (LR-PRF) analysiert, deren Seitenkanalsicherheit auf zwei Annahmen
iiber das Leakage aufbaut: limitierte Datenkomplexitét und identisches Leakage paraller
Hardware.

Die Laboruntersuchung einer field programmable gate array (FPGA) Implementie-
rung dieses Schemas zeigt, dass die Annahme iiber identisches Leakage verletzt wird
und die Implementierung durch multivariate Template Attacken angreifbar ist. Neben
der ortlichen Auflosung identifizieren wir die hohe zeitliche Auflésung der genutzten EM
Sonde als wesentlichen Faktor, der zum Erfolg des Angriffs fithrt. Durch diese kénnen Un-
terschiede in den Signallaufzeiten der S-boxen ausgenutzt werden, die durch geringfiigige

111

Unausgewogenheiten der Platzierung und des Routings verursacht werden. Dies ist ei-
ne bedeutende Erkenntnis, da solche Effekte auf FPGAs schwer kontrollierbar sind. Es
ist daher unwahrscheinlich, dass eine sichere Implementierung der LR-PRF auf dem
untersuchten FPGA oder dhnlichen Elementen méglich ist.

Als zweiten Beitrag stellen wir deshalb eine verbesserte Version der LR-PRF vor, die
zusitzliche Schliissel-Entropie nutzt, um ein akzeptables Sicherheitsniveau gegeniiber
High-End Angriffen zu erhalten. Die zusétzliche Entropie wird in den internen Zustand
der LR-PRF in Blocken von 128 Bit und in einem oder mehreren Vorverarbeitungsschrit-
ten eingebracht. Die Anzahl der benétigten Schritte hingt von der Seitenkanalsicherheit
der zugrunde liegenden AES-Implementierung ab und muss durch Laboruntersuchungen
bestimmt werden. Da diese Vorverarbeitung bereits bestehende Hardwareteile nutzt,
kann die Anzahl der Schritte als Laufzeitparameter implementiert werden und nach ei-
ner Untersuchung der jeweiligen Plattform konfiguriert werden.

Abschlielend demonstrieren wir die Praxistauglichkeit unserer Losung, indem wir
zwei Anwendungen in Fallstudien gegen Seitenkanalangriffe hérten: Bitstream Ent-
schliisselung auf FPGA System-on-Chips (FPGA SoCs) und Firmware Updates fiir Mi-
krocontroller. FPGA SoCs sind leistungsfiahige Systeme, die eine CPU mit konfigurierba-
rer Hardware auf einem Chip vereinen. Die Hardwarekonfiguration (Bitstream genannt)
wird iiblicherweise in verschliisselter Form in externen Speichern abgelegt und muss fiir
Secure Boot authentifiziert und entschliisselt werden. Die Hersteller bieten zwar dedizier-
te kryptografische Beschleuniger fiir diese Aufgabe an, frithere Veroffentlichungen haben
aber gezeigt, dass diese oft anfillig fiir Seitenkanalangriffe sind. Da diese Beschleuniger
nicht aktualisiert werden konnen, gibt es fiir den Benutzer keine klare Losung, falls ein
Sicherheitsproblem erkannt wird. Durch die Implementierung unserer LR-PRF als Teil
der konfigurierbaren Logik erreichen wir eine authentifizierte Entschliisselung des Bit-
streams, die vollstandig aktualisierbar ist. Dadurch wird vom Hersteller bereitgestellte
Kryptographie lediglich fiir die Verifikation von Signaturen mit 6ffentlichen Schliisseln
benotigt. Wir stellen eine prototypische Implementierung mit vollstdndiger Sicherheits-
evaluierung vor und beschreiben, wie dieses Konzept auf andere Plattformen portiert
werden kann.

In der zweiten Fallstudie wird die Entschliisselung von Mikrocontroller Firmware un-
tersucht. Damit sichere Updates fiir Gerdte im Feld moglich sind, ist eine seitenka-
nalgesicherte, authentifizierte Entschliisselung der Firmware zwingend erforderlich. Um
das fiir die LR-PRF benttigte algorithmische Rauschen aus paralleler Hardware zu er-
zeugen, verwenden wir AES-Beschleuniger, die ohnehin auf vielen modernen Mikrocon-
trollern vorhanden sind. Dieser neue Ansatz erlaubt es, Eigenschaften, die eigentlich
intrinsisch fiir Hardware Implementierungen sind, in einer reinen Softwarelosung aus-
zunutzen. Durch den Einsatz von Hardware-Beschleunigern fiir die sicherheitskritischen
Operationen erreichen wir somit ein hohes Sicherheitsniveau und profitieren gleichzeitig
von verbesserter Leistung und einer kleinen Codebasis.

v

Acknowledgement

First of all I want to thank my supervisor Prof. Dr.-Ing. Georg Sigl for giving me the
chance to pursue a PhD at Technische Universitdt Miinchen (TUM).

My special thanks go to Dr.-Ing. Johann Heyszl for the scientific supervision, fruitful
discussions and overall support and motivation.

Last but not least, I thank my colleagues at Fraunhofer AISEC, the Chair of Security
in Information Technology at TUM and all paper coauthors that contributed to this
thesis through their valuable input, friendship and support: Dr. Chongyan Gu, Neil
Hanley, Dr.-Ing. Matthias Hiller, Robert Hesselbarth, Stefan Hristozov, Manuel Ilg,
Dr.-Ing. Nisha Jacob Kabakci, Dr.-Ing. Philipp Koppermann, Dr.-Ing. Michael Pehl,
Carsten Rolfes, Dr.-Ing. Fabrizio De Santis, Thomas Schamberger, Marc Schink, Bodo
Selmke, Dr.-Ing. Robert Specht, Silvan Streit, Emanuele Strieder, Martin Striegel, Lars
Tebelmann, Alexander Wagner and Andreas Zankl.

List of Abbreviations

AAD additional authenticated data
AEAD authenticated encryption with associated data
AES Advanced Encryption Standard
AES-128 128-bit key AES

ASIC application specific integrated circuit
AUX auxiliary input model

BBRAM battery-backed RAM

BER bit error rate

BGA ball grid array

BML bounded memory leakage
BRAM block RAM

BRM bounded retrieval model

CML continual memory leakage
COTS commercial off-the-shelf

CPA correlation power analysis

DPA differential power analysis

DUT device under test

DWT data watchpoint and trace

ECB electronic codebook

EFM32 EFM32PG12B500F1024

EM electromagnetic

FIB focused ion beam

FIFO first in, first out

FPGA field programmable gate array
FPGA SoC FPGA system-on-chip

FSBL first stage bootloader

GCM Galois/Counter mode

GMAC Galois message authentication code
IC integrated circuit

ICAP internal configuration access port
IoT Internet of Things

1P intellectual property

IQR interquartile range

List of abbreviations

viil

IV

LDA
LOI
LR-AEAD
LR-PRF
LR-PRG
MAC
MIA
NVM
OCL
OoCM
OFB
PCA
POl

PR

PRF
PRG
PUF
SCA
SNR
SPA
STM32
TA

initialization vector

linear discriminant analysis
location of interest

leakage resilient AEAD
leakage resilient pseudo random function
leakage resilient pseudorandom generator
message authentication code
mutual information analysis
non-volatile memory

only computation leaks
on-chip memory

output feedback

principal component analysis
point of interest

partial reconfiguration
pseudorandom function
pseudorandom generator
physical unclonable function
side-channel analysis
signal-to-noise ratio

simple power analysis
STM32F215RET6

template attack

List of figures

2.1.
2.2.
2.3.
2.4.

2.5.

2.6.

2.7.

3.1.
3.2.
3.3.

3.4.
3.5.

3.6.

3.7.

4.1.
4.2.
4.3.
4.4.

4.5.
4.6.

4.7.

5.1.
5.2.
5.3.

Analysis of a cipher under the gray-box model. 5
Registers connected with combinational logic. 8
High precision near-field EM probe positioned over a decapsulated chip. . 8

Top: EM Traces for AES round 1, example traces in grey and mean trace
in red. Middle and bottom: SNR and CPOI correlation for S-box 0 output. 11
LDA eigenvectors, sorted by eigenvalue. Calculated for AES round 1
S-box 0 output on the traces shown in Fig. 2.4. 15
Top: EM Traces after LDA transformation for AES round 1 into subspace
with 30 dimensions, example traces in grey and mean trace in red. Middle

and bottom: SNR and CPOI correlation for S-box 0 output. 15
Estimated guessing entropy G Ey, after template attack on AES using key

rank estimation. Shaded area: region between lower and upper bound. . 19
Stateless key update with public IV. 28
Instantiation of a 2-PRG with a block cipher. 29
CHES 2012 LR-PRF. Left: data complexity 2 (n=1), right: data com-

plexity 16 (n=4). 30
Leakage from parallel S-boxes. 31
Unknown inputs leakage resilient pseudo random function (LR-PRF) from

ASTACRYPT 2016. e 32
Leakage resilient pseudorandom generator (PRG) with variable output

length. 33
LR-AEAD implementation (adapted from [53]). 34
Generation of carefully chosen inputs by replication of input bits. 38
AES hardware design. L 38
Layout of one S-box in the Xilinx IDE. 40
Position of 16 S-boxes on the floorplan of the Xilinx Spartan 6 FPGA.

The entire AES is placed within the black box. 40
SNR heat maps for S-box #0 with different placements. 42
Evolution of security levels with varying number of profiling traces and

maximum number of attack traces. L. 45
Evolution of security levels with varying number of attack traces and

maximum number of profiling traces. 45
SNR of S-boxes before and after LDA transformation. 48
Placement of S-boxes compared to resulting measurement locations. . . . 50
SNRs at four LOIs of targeted S-boxes (red). Others in blue. 51

1X

List of figures

0.4.
2.5.
2.6.

6.1.

7.1.

7.2.
7.3.

7.4.
7.5.

7.6.
7.7.

8.1.

8.2.

8.3.
8.4.

8.5.

8.6.

8.7.

8.8.

8.9.

8.10.

Al
A2
A3
AA4.

SNRs after LDA at four LOIs of targeted S-boxes (red). Others in blue. . . . 52
SNR of S-box 6 at different locations. 53
Remaining guessing entropy after simulated attacks on one key byte with

different leakage models (cc=carefully-chosen, ind=independent). 55
Improved LR-PRF construction, dashed parts are optional. 58
Bitstream decryption on FPGA SoCs using manufacturer provided means.

Red: encrypted. Green: decrypted. 65
Fuzzy commitment scheme. L. 67
Updatable bitstream decryption on FPGA SoCs using LR-AEAD. Red:

encrypted. Green: decrypted. 70
Boot flow of the hardened boot process. 71
Placement of the AES core for the SCA. 74
Side-channel secure authenticated decryption. 76
Alternative side-channel hardened authenticated decryption. 78

Microcontroller running an LR-PRF using an integrated AES hardware

accelerator. L 88
Correlation-based leakage test on the AES S-box input for 100,000 traces
with known plaintexts and keys.o 92
Positioning of the EM probes. L. 95
Correlation-based leakage test on the key transfer for 100,000 traces with
known random keys.o 95
Security level for 1,000 random keys subject to a template attack on the
key transfer. 96

Median key rank of the 16 key bytes subject to a template attack on the
AES S-box input for 10 random keys with random plaintexts for varying
number of traces. 97
Median security levels from 300 random keys subject to a template attack
on the AES S-box input for varying number of traces and data complexities. 99
Security levels of 300 random keys subject to a template attack on the
AES S-box input for 30,000 (STM32) respectively 10,000 (EFM32) traces

and different data complexities. 100
Performance evaluation of the LR-PRF implementation for different op-

timization levels and varying data complexities. 102
Performance evaluation of the LR-AEAD implementation for different

data complexities and varying ciphertext sizes. 103
SNR heat maps of unconstrained placement. 123
SNR heat maps of dense hard-macro placement. 124
SNR for S-boxes O to 7.. 125
SNR for S-boxes 8 to 15. 126

List of tables

4.1.
7.1.
8.1.

B.1.

B.2.

B.3.

Estimated security levels after the attacks. 44
Resource utilization. 81
Code size in bytes of the LR-PRF and LR-AEAD implementations. . . . 104

Execution time in clock cycles of the LR-PRF implementation for different
optimization levels and varying data complexities. 127
Execution time in clock cycles of the LR-AEAD implementation (op-
timization level Os) for different data complexities (DCs) and varying

ciphertext sizes. L 127
Execution time in clock cycles of the function calls used by the LR-AEAD,
including input/output. 128

x1

Contents

Abstract
Kurzfassung
Acknowledgement
List of abbreviations
List of figures

List of tables

1. Introduction and research questions

2. Background on side-channel analysis
2.1. Categorization of side-channel attacks

2.2. The EM side-channel . . .

2.3. Leakage detection and of locations/points of interest

2.3.1. Signal to noise ratio

2.3.2. Correlation based leakage test

2.33. t-Test

2.3.4. Dimensionality reduction 0oL

2.4. Template attacks

2.5. Evaluating the security level after an attack

2.6. Countermeasures

3. Leakage resilient cryptography

3.1. Overview of research in leakage resilient cryptography
3.2. Leakage resilient pseudorandom functions

3.2.1. Preliminaries . . .

3.2.2. CHES 2012 and ASTACRYPT 2016 LR-PRFs
3.3. Leakage resilient authenticated encryption from LR-PRFs.

4. High precision EM Analysis of LR-PRFs
4.1. Hardware design and measurement setup
4.1.1. LR-PRF hardware design

4.1.2. Measurement setup

vii

23
23
27
27
29
33

37
37
37
39

xiil

Contents

Xiv

4.2. Side-channel evaluation of CHES 2012 LR-PRF on Xilinx Spartan 6 FPGA 41

4.2.1. Identifying locations of interest 41

4.2.2. Template attack with limited data complexity 43
4.3. Summary . . .o oL 46
Understanding how high precision EM attacks break LR-PRFs 47
5.1. Leakage resilience holds with current measurements 47
5.2. Leakage resilience fails against high-resolution EM measurements 49
5.3. Effect of different leakage functions in cases with low data complexity . . 54
5.4. Summary and design recommendations 56
Improving the security of LR-PRFs 57
6.1. Improved design with refilled key entropy o7
6.2. Security discussion 59

6.2.1. Part 1: Mitigating the loss of entropy in the 2-PRG 59

6.2.2. Part 2: Security of the unknown-inputs GGM tree 60
6.3. Summary 61

Case study: Secure and updatable bitstream decryption for FPGA System

on Chips 63
7.1. FPGA SoCs require side-channel secure configuration and updatability . 65
7.2. Building blocks: Device intrinsic key generation and partial reconfiguration 66

7.2.1. Physical unclonable functions (PUFSs) for key generation 67
7.2.2. Partial reconfiguration (PR), 69
7.3. Concept for secure and updatable bitstream decryption 69
7.4. Leakage resilient decryption of bitstreams 73
7.4.1. Side-channel analysis of LR-PRF on Xilinx Zyng-7020. 74
7.4.2. AES-OFB based LR-AEAD 75
7.4.3. FGHF’ based LR-AEAD 78
7.4.4. Resource utilization and performance 80
7.5. Towards software encryption and runtime security 82
T.6. SUMMATYo 83
Case study: Retrofitting LR-AEAD to off-the-shelf microcontrollers 85
8.1. Related work 86
8.2. LR-AEAD on COTS microcontrollers 87
8.3. Devices under test: STM32 and EFM32 92
8.4. Side-channel evaluation 93
8.4.1. Attacker model and measurement setups 93
8.4.2. Template attacks on key transfer 95
8.4.3. Template attack on unprotected AES 97
8.4.4. Template attacks on LR-PRFs with different data complexities . . 98
8.5. Performance analysis 101
8.6. Summary 105

Contents

9. Conclusions 107
Bibliography 111
Appendix A. EM analysis of LR-PRF on FPGA 123
A.1. SNR heat maps of all S-boxes 123
A.2. SNR traces of all S-boxes L 125

Appendix B. Performance of LR-PRF and LR-AEAD on microcontrollers 127

XV

1. Introduction and research questions

The proliferation of smart devices and the ubiquitousness of networked devices in ap-
plications like automotive or industry 4.0 make information security more crucial than
ever. Considering the track record of such security sensitive devices, the classical “cryp-
tographic security”, i.e. the resistance to cryptanalysis, is well studied and usually not
the failing point. However, since the scenarios in which these devices are deployed allow
attackers direct access to the device, the implementation of these algorithms needs to
resist physical attacks. A lack of implementation security, unfortunately, regularly leads
to vulnerabilities and hacks of commercial products using side-channel attacks. Side-
channel attacks comprise all attacks that extract information about a processed secret
over a side channel, such as the power consumption, electromagnetic (EM) emanation,
and timing behavior. Such attacks still regularly cause security incidents despite two
decades of research into side-channel analysis (SCA) and countermeasures. These in-
cidents can be explained by either a negligence of implementation security, e.g. due to
budget or time-to-market constraints, or the error-prone implementation of (insufficient)
countermeasures.

There are several common approaches to reduce the information that can be extracted
over these channels, the so called side-channel leakage: Obfuscating sensitive values with
random values (masking), randomizing the order of computation during the execution of
the algorithm and interleaving it with dummy operations (shuffling/hiding), or balancing
the power consumption by processing each sensitive value in parallel to its inverse (dual-
rail implementations). These countermeasures require specialized hardware and high
quality random numbers, which can be found on security controllers, but are unlikely to
be designed into commercial off-the-shelf (COTS) microcontrollers. This leaves a large
class of devices without hardware supported countermeasures. Even on devices with
configurable hardware like field programmable gate array (FPGA) devices, designers are
limited due to the given layout of the internal building blocks of the device. This makes
it notoriously difficult to implement secure masked or dual-rail implementations and
requires a designer with experience in side-channel analysis. One method to mitigate
this problem is to focus on countermeasures that work on an algorithmic level and place
very little requirements on the hardware.

Certain concepts from the field of leakage resilient cryptography fit that niche as
they only require that the underlying hardware does not “excessively” leak information
about the secret during a single execution. This assumption does have its caveats which
will be thoroughly discussed in this work, but in fact the same requirements apply to
any cryptographic implementation: if a given platform leaks the entire secret within
one execution, then there is nothing we can do to fix it. Without randomization, we
can only prevent attackers from accumulating and combining information over multiple

1. Introduction and research questions

executions.

Originally, leakage resilient cryptography gained popularity among the cryptographic
community as a more formalized approach in contrast to the the rather ad-hoc nature of
existing countermeasures. The goal was to anchor implementation security on the basis
of a formal model of a device’s leakage and to derive security guarantees without making
too many assumptions about the hardware. This has the advantage that, given the model
is sound, a tight security level can be derived. In contrast, for other countermeasures the
achievable security level is often not clear and only defined in the number of traces that an
attacker requires to break the device. As this is highly dependent on the measurement
equipment and the actual device, drawing general conclusions about the side-channel
security of an implementation is hard.

Unfortunately, some of the proposed solutions in the field of leakage resilient cryptog-
raphy are technically provable secure, but the implementation is cumbersome or based
on non-standardized cryptographic primitives that are not common in off-the-shelf hard-
ware. The intent of this work is to bridge the gap between the theory (leakage models
and assumptions about the hardware) and practice (the evaluation of the security level
of an implementation when facing a state-of-the-art attacker). Therefore it focuses on
constructions which can be instantiated with a common cryptographic primitive, namely
the Advanced Encryption Standard (AES) block cipher.

The target of the analysis are pseudorandom functions (PRFs), which are an im-
portant building block in many cryptographic protocols and enable, e.g., symmetric
encryption or message authentication. Specifically we start by analyzing a construction
that has first been proposed at the Conference on Cryptographic Hardware and Em-
bedded Systems (CHES) in 2012 [65]. The security of the proposed leakage resilient
pseudo random function (LR-PRF) is based on limited data complexity, a widespread
principle in leakage resilient cryptography, and a novel method named “carefully chosen
inputs”. The data complexity denotes the number of different operations that a secret
key is used in. In general, differential side-channel attacks require the attacker to ob-
serve many different operations to succeed, which is prevented when the data complexity
is limited. Additionally, side-channel attacks typically divide the secret key in smaller
parts which are computationally manageable, e.g., bytes, and attack them separately.
This is achieved by exploiting the relation of key bytes to known inputs such as plaintext
bytes. Using “carefully chosen inputs” means to construct the known inputs to the crit-
ical operation in a way that generates correlated noise from parallel hardware to hinder
such divide-and-conquer attacks. In practice, these inputs are constructed such that all
bytes have the same value. That makes it impossible for the attacker to link a (secret)
key byte to a specific (known) input byte since all input bytes are equal. If in addition
all key bytes are processed simultaneously in parallel hardware, then an attacker that
observes the power consumption of the device cannot separate the contributions of the
individual key bytes and consequently divide-and-conquer is not possible. In this thesis
we deal with AES-based constructions and the critical function blocks that need to be
carefully implemented in parallel hardware are the S-boxes.

The crux of this concept is that it assumes that the measured leakage of all S-boxes is
perfectly synchronous and that the leakage function, i.e., the mapping of the computed

operation to the observed leakage, is identical. If there are differences in the timing
behavior or leakage function then this can be exploited to separate the leakage of the
S-boxes and once again mount divide-and-conquer attacks. Initially, it is unclear if
these assumptions hold in face of high precision EM measurements, which are generally
capable of isolating parts of a circuit in a measurement. Also, designing equally leaking
S-boxes on configurable hardware is, at least, challenging due to limited control over the
internal routing and imbalances in wiring caused by different physical locations on the
die. Starting with these observations, the contribution of this thesis is threefold:

1. We evaluate, if the leakage assumptions and consequently the security of such con-
structions hold, even when facing adversaries with state of the art, high precision
EM measurement equipment.

2. After finding that the security is insufficient, we analyze, what effects enable such
measurements to break the implementation security and derive an improved con-
struction secure even against such attacks.

3. Finally, we transfer our results into practice and give two case studies where
we deploy the improved LR-PRF in applications for FPGA system-on-chips
(FPGA SoCs) and on COTS microcontrollers where we re-use existing hardware
accelerators.

Outline Chapter 2 gives an overview of the methodology used for SCA and key recovery
attacks. It also introduces the electromagnetic side-channel and discusses its properties.
The state of the art in leakage resilient cryptography is discussed in Chapter 3 where we
give an overview of the different approaches towards leakage resilient cryptography and
evaluate their relevance for real applications. It introduces LR-PRFs and the fundamen-
tal Goldreich, Goldwasser, Micali construction that is used to build random functions
from a pseudorandom generator (PRG). Finally, we discuss the CHES 2012 LR-PRF [65]
and its improvement that was presented at the ASTACRYPT 2016 conference [66] which
are the starting points for our analysis.

In Chapter 4 we give results of a full EM analysis of the implementation of that scheme
on a Xilinx Spartan-6 FPGA. We successfully mount a multi-variate template attack in
order to recover the secret key with brute force effort of a level that is computation-
ally feasible with current hardware. This establishes that the security of this LR-PRF
implementation is insufficient against high precision EM analysis.

Following up, Chapter5 analyzes which effects lead to the successful attack. We
compare attacks using power measurements and EM measurements and conclude that for
the case of power measurements the countermeasure is effective. For EM measurements
however, we find that not only the spatial resolution and the isolation of parts of the
circuit is enabling the attack, but also the high temporal resolution. This is one of the
major findings of this work, because it has drastic consequences for hardware designers.
While spatial resolution can be countered with tighter designs and smaller feature sizes,
it seems much harder to control timing differences in the internal signal propagation. To
derive design recommendations for an improved construction, we also revisit the “equally

1. Introduction and research questions

leaking S-boxes” assumption originally made in [65]. To quantify the relevance of the
S-boxes’ leakage functions we run simulated template attacks on a single key byte and
vary the leakage functions. We find, that the leakage function is almost irrelevant for
cases with very low data complexity which means that in such cases the S-boxes do not
have to be designed to leak equally. This enables tighter integration of the hardware
circuit and leads to a higher security level.

We make use of these insights in Chapter 6 and propose an improvement of the original
construction that withstands even high precision EM attacks. This improved construc-
tion incorporates a mechanism to “refill” key entropy which was lost due to side-channel
attacks by introducing additional key material in a particular way. We demonstrate
the relevance for real applications in Chapter 7 by providing a solution for secure and
updatable bitstream encryption for FPGA SoCs. The bitstream is encrypted and au-
thenticated by combining our improved LR-PRF with AES in output feedback (OFB)
mode of operation and Galois message authentication code (GMAC) authentication.
The key is generated by a physical unclonable function (PUF) during runtime and thus
no secure key storage is required. This makes the proposed design almost completely
independent from manufacturer provided security mechanisms and has the additional
benefit that all parts, even the decryption engine itself, can be updated. Chapter8
pursues the idea of using cryptographic accelerators which are already present in many
COTS microcontrollers, but are not protected against side-channel attacks, to construct
an LR-PRF. By means of two example devices, we evaluate the side-channel security of
LR-PRF when implemented around existing hardware accelerators. We find that it is
feasible to build efficient and secure constructions, which enables side-channel protection
for these devices with very little overhead in code size.

Finally, Chapter9 concludes our findings. Drawing from the experience that was
gathered when implementing the two use-cases, we discuss the benefits and difficulties
that arise when integrating leakage resilient primitives into actual applications.

Previous publications This thesis is in parts based on research papers that were pre-
viously published at peer-reviewed conferences and in collaboration with the respective
co-authors. Specifically, Chapters 4,5 and 6 are based on results published in [100] and
[101]. Chapter 7 is based on [102] and [103], and Chapter 8 on [104].

2. Background on side-channel analysis

Side-channel attacks are one of the most prevalent threats to information security, es-
pecially in the context of embedded systems and the Internet of Things (IoT) where
attackers often have physical access. Side-channel attacks comprise all attacks that ob-
serve some characteristic of the device under attack and then derive information about an
internal secret, either directly or by applying statistical methods. These so called imple-
mentation attacks exploit specifics of the implementation of a cryptographic algorithm,
rather than cryptographic weaknesses of the algorithm itself. Possible side-channels in-
clude the power consumption [52], timing behavior [51], EM emanation [30] or photonic
emission [27]. These attack vectors motivated the use of the so called gray-box model
for cryptanalysis (Fig. 2.1). In contrast to the traditional black box model, that gives
the attacker knowledge over the in- and outputs, the gray-box model additionally pro-
vides the attacker with a leakage function that gives information about the internals of
the algorithm. This work focuses on power measurements and high precision EM mea-
surements, specifically of CMOS devices, to capture and evaluate the leakage function.

plaintext

v

cipher
key ‘l'QI

* L(key, plaintext)

ciphertext

Figure 2.1.: Analysis of a cipher under the gray-box model.

In this chapter, we first provide a categorization of the different types of side-channel
attacks and their prerequisites in Section 2.1. We discuss the inherent properties of the
EM side-channel in Section2.2. Typically, a side-channel evaluation consists of three
steps:

1. Identifying leaking operations.
2. Mounting the most powerful attack available on intermediate values.
3. Assessing the remaining security level.

We describe the necessary tools and the methodology for these steps in Sections 2.3
through 2.5. Finally, the most common countermeasures are introduced in Section 2.6.

2. Background on side-channel analysis

Nomenclature In the following equations, lowercase letters denote vectors or scalars,
depending on context. Matrices are written in bold uppercase letters, constants in
regular uppercase. Calligraphic uppercase letters denote sets.

2.1. Categorization of side-channel attacks

Passive and active attacks Side-channel attacks can be broadly divided into two cat-
egories, namely passive and active attacks. Passive attacks only observe the device while
it is operating under normal conditions, whereas active attacks also influence the behav-
ior of the device, e.g. by manipulating its operating frequency or by inducing current
into the circuit using laser beams. In this work only passive attacks are considered.
However, it is in scope for a passive attacker to remove the package of an integrated
circuit (IC) in order to be able to take measurements closer to the die surface. While
this requires grinding down the package and removing the residue with acid, modern
ICs usually also can be bought in a ‘naked’ flip-chip package. In that case the backside
of the die is directly accessible and no preparation is required. This is why allowing
the removal of the package is reasonable when considering a worst-case analysis of the
security level, even though the attacker is in general limited to passive attacks.

Simple and differential attacks Attacks can be further classified as simple power
analysis (SPA) attacks or differential attacks which can both be either profiled or un-
profiled. With SPA attacks, the secret can be directly derived from observing the side-
channel [51, 58, 73]. Contrary to SPA attacks, differential attacks recover only a part
of the secret with each observation. Usually many observations, so called traces, with
different inputs are necessary to fully recover the secret. Attacks that fall into this cate-
gory include the classic differential power analysis (DPA) [52], correlation power analysis
(CPA) [10], and mutual information analysis (MIA) [32] attacks. The number of traces
with different inputs, but the same secret (e.g. encryptions of different plaintexts under
the same key), that an attacker can observe is called the data complexity. Simple attacks
thus work with data complexity 1, differential attacks with higher data complexity. In
both cases an attacker can usually repeat the observation(s) with the same inputs to
reduce measurement noise.

Profiled and unprofiled attacks Profiled attacks such as Gaussian template at-
tacks [15] and the linear regression based stochastic approach [83] require the attacker to
have full control over a device during a profiling stage. During this profiling, the leakage
behavior of the device for all realizations of the secret value is characterized. Then this
knowledge is used to attack an unknown secret on a different device by comparing the
traces to those profiles. Unprofiled attacks require no a-priori classification of the exact
leakage behavior. Instead, a leakage model is used that connects the processed value
with the side-channel observation. In case of e.g. CPA, the leakage model is chosen
explicitly by selecting a leakage function, such as the Hamming weight, for the interme-
diate value that is attacked. In other attacks, e.g. MIA, only the targeted internal value

2.2. The EM side-channel

is specified and no leakage function is defined. During the attack, an ad-hoc leakage
characterization of the traces is performed. Profiled attacks are the most powerful kind
of attacks since they most accurately capture the leakage behavior of the device and thus
are able to extract the most information from the observed traces. Gaussian templates
are the most generic approach and the optimal attack if the noise is actually Gaussian,
as observed in most practical cases. The stochastic approach, in comparison, requires
the evaluator to define a set of equations that model the leakage and then fits the weight
coefficients which determine how much they influence the overall leakage. This reduces
the parameter space and consequently the sampling complexity but the quality of the
evaluation greatly depends on the evaluators capability to chose an adequate leakage
model. Both approaches can either exploit the leakage of a single or multiple points in
time, leading to univariate and multivariate attacks, respectively.

To achieve a worst-case analysis of the security level, we use multivariate template
attacks in this work for the evaluation of the side-channel security. They are introduced
in Section2.4. The preprocessing steps to identify points of interest (POIs) and to
reduce the dimensionality are discussed in Section2.3. In cases where the key cannot
be recovered fully, it is necessary to estimate the remaining brute force effort which is
discussed in Section 2.5. This chapter concludes with an overview of countermeasures
against SCA attacks in Section 2.6.

2.2. The EM side-channel

The EM side-channel offers some unique properties compared to the power side-channel.
To discuss the differences, it is helpful to first understand what causes the leakage on
CMOS devices. CMOS logic dissipates the most power when there is switching activity
and a cell changes its state. This causes the load capacitances on the output to be
charged or discharged (dynamic power consumption). The static power consumption is
small in comparison! and consists of leakage currents that lead to some power loss of
the transistors even when there is no switching activity. This part of the overall power
consumption is not data dependent and therefore only contributes to the background
noise of the measurements. In digital logic, the design is clocked and consists of registers
with combinational logic in between (Fig. 2.2). On a rising clock edge, the registers store
the value that is present at their inputs and output the new values. The new value then
propagates via multiple paths through the combinational logic which usually consists of
multiple layers of logic gates. After the time duration equal to the critical path delay,
i.e. the delay of the longest possible path through the combinational logic, all signals
settle and the circuit remains idle until the next clock edge. This period of activity
is smaller than the time between two clock edges, which means that changes in power
consumption and leakage can be observed only directly after a clock edge. The signal
propagation and the toggling frequencies of the logic gates is independent from the clock
frequency and depends only on the manufacturing technology.

'However, with shrinking feature sizes and manufacturing technology going in the deep sub-micron
range, the static power consumption becomes substantial.

2. Background on side-channel analysis

logic gates

Figure 2.2.: Registers connected with combinational logic.

Power measurements are usually taken using a differential probe and a shunt resistor
that is placed between the supply voltage rail and the device under test (DUT). They
capture the power consumption of the entire device which can lead to significant back-
ground noise. The measurements are also affected by parasitic capacitances, both in the
supply lane and within the DUT, which is why the measured power consumption is a
low-pass filtered version of the currents that are caused by the chip internal switching
activity. Global EM measurements can be taken with large coils that either cover the
entire chip or smaller coils that are placed over a decoupling capacitor. Those EM mea-
surement yield results that are comparable to power measurements via shunt resistors.
High precision EM measurements, also called localized EM measurements, use near-field
probes with coil diameters that are smaller than 1 mm and go down to 100 pm (Fig. 2.3).

Figure 2.3.: High precision near-field EM probe positioned over a decapsulated chip.

With these probes it is possible to isolate parts of the circuit by placing them over the
respective region of the die, this is the spatial isolation aspect. As the measurements are
less affected by parasitic capacitances and the probes have a frequency range going up to
6 GHz, the temporal resolution is also much higher compared to power measurements.
This allows temporal isolation of signals that would be interfering with each other when
using low bandwidth measurements, a topic that will be discussed in greater detail in
Chapter 5. To achieve a high signal-to-noise ratio (SNR), the distance to the target

2.3. Leakage detection and of locations/points of interest

signal is crucial [88]. If the chip comes in a package, the package therefore has to be
removed. Measurements can be taken from the front or backside. On the frontside,
the probe is closest to the metal layers on top, on the backside it is closer to the logic
gates and the lower metal layers. The substrate can be thinned to further reduce the
distance when measuring from the backside. It is hard to predetermine where leaking
circuit parts are located and which side works best, but often times the packaging of
the chip decides which side is accessible. For ball grid array (BGA) packaging it is e.g.
not possible to measure from the frontside as it is blocked by the solder balls. When
conducting a high precision EM analysis, the most time consuming part is finding the
best probe location over the die. Often the chip layout is unknown, but even when it is
known it is not trivial to determine the optimal measurement location. Therefore grid
scans and leakage tests are used to find the optimal location for the targeted signal.
This is discussed in the next section.

2.3. Leakage detection and of locations/points of
interest

In case of EM measurements, the location has a high influence on the quality of the
analysis. Therefore, a specific measurement location is selected for each targeted signal.
The selection of those locations of interest (LOISs) can be done using leakage tests based
on different metrics. This work differentiates between time and location by using the
term POIs for time samples and LOIs to refer to the placement of the probe. Technically,
leakage detection and the selection of POIs are tasks with different goals. Leakage
detection is used in security evaluations and refers to identifying any data-dependent
leakage in measurements, disregarding if this leakage can be exploited in an attack. The
goal is to provide sufficient proof for the absence of leakage. The selection of POIs on the
other hand is a preprocessing step for an actual side-channel attack. In this scenario,
the leakage tests should be tailored to be sensitive to the same kind of leakage that
will be used in the attack. However, it is common practice to use leakage detection
tests as a first step to find LOIs and reduce the search space and then more specific
leakage tests for the selection of POIs. For leakage detection, the t-test recently has
gained a lot of attention from industry [33] and academia [85, 89, 62] and is becoming
the de facto standard tool. Common tests for the task of POI selection are the SNR [60]
of the targeted signal and the correlation-based leakage test described by Durvaux and
Standaert [23] (in the following called CPOI). Others use a mutual information based
distinguisher [32] or are based on linear regression of a leakage model [49].

At the start of an evaluation, little is known about the leakage characteristics of the
device. Yet, some assumptions need to be made about the leakage when designing a
leakage test. All tests partition the traces in subsets based on the value of some internal
state variable. Which variable is chosen for this partitioning determines what kind of
leakage is targeted by the test. More specific tests like the SNR and CPOI partition
into many sets, e.g. one set for all values of a byte at an S-box output in case of AES.

2. Background on side-channel analysis

Broader tests such as the t-test partition only in two sets, e.g. one with fixed inputs and
the other with random inputs. The advantage of the t-test is that it has a low sampling
complexity as it only needs to estimate parameters for two sets of traces. It also covers
more possible leakage sources, thus reducing the risk of not detecting leakage due to
an inadequate target signal. A positive t-test however does not always mean that the
leakage is exploitable. The SNR and CPOI correlation coefficients, conversely, directly
translate into the success rate of an actual attack. The more specific tests also require
more traces for a meaningful result which can lead to prohibitive trace acquisition times.
A general strategy is therefore to conduct grid scans using tests that require less traces,
like the t-test, in order to keep measurement times low and then move towards specific
tests in the course of the analysis. After evaluating the leakage of a device and de-
termining the LOIs, the time samples can also be reduced to only include time points
with significant leakage. POIs can be selected by cutting out all samples for which the
leakage exceeds a certain threshold or by using dimensionality reduction algorithms like
principal component analysis (PCA) [75] and linear discriminant analysis (LDA) [28].
These algorithms transform the trace into a subspace with lower dimensionality while
retaining the leakage. In the transformed subspace, the leakage is concentrated in the
first dimensions and thus the later dimensions can be ignored. Reducing the dimension-
ality speeds up all following processing steps and reduces the amount of data that needs
to be stored. In the following we introduce the techniques which are used in this thesis:

the SNR, CPOI, t-test and LDA.

2.3.1. Signal to noise ratio

We use the definition of the SNR used by Mangard et al. [60] to quantify the exploitable
signal for an SCA. To compute the SNR over time (called the SNR trace) of a target
variable that takes values in 0,...,c¢ — 1, the traces are partitioned according to the
values of this variable and the SNR is computed with the estimated mean trace u; and
variance trace o? over all traces with value i:

_ Var(Signal) — Var(po, ..., e-1)

SNR = = .
Var(Noise) Mean(o?,...,0%)

(2.1)

The SNR can be calculated if the evaluator has control over the inputs of the device and
knows all relevant internal values. The target value and how the inputs are chosen has
an effect on the outcome of the test, as there might be bijections of the target value that
lead to the same trace partitioning. Considering AES S-box inputs as example, then
the value of the S-box input is the XOR combination of the corresponding plaintext and
key byte. Ideally, both the key and the plaintext are randomized during the collection
of the traces. If this is not possible, e.g. because the key is immutable, then all possible
inputs to the S-box can still be generated by randomizing only the plaintext. In that
case, however, there is a bijection between the plaintext byte and the S-box input. The
leakage test will then also be sensitive to all operations which are dependent on the
plaintext byte alone. These effects can be observed with all similar leakage tests and
should be kept in mind in order to correctly interpret the results.

10

2.3. Leakage detection and of locations/points of interest

2.3.2. Correlation based leakage test

200 F
G150 L A
g VA 7 @
= 100 F

50F

SNR
N W A VO

CPOI Correlation

0 10 20 30
Time in ns

Figure 2.4.: Top: EM Traces for AES round 1, example traces in grey and mean trace
in red. Middle and bottom: SNR and CPOI correlation for S-box 0 output.

The correlation based leakage test was put forward by Durvaux et al. [23] and has sim-
ilar prerequisites and sampling complexity as the SNR test. It was originally published
as a black box test that works without knowing the key by exploiting the bijections
between plaintext bytes and internal, key-dependent values. Like the SNR test it can,
however, be applied to arbitrary internal values if the key is known to the evaluator.
The test uses a Pearson correlation based distinguisher with k-fold cross validation. The
procedure is very similar to a profiled CPA with the difference that the values of the
target variable are known and no key guesses are necessary. The trace set T is split into
k disjoint sets T,, u € [0,k — 1], of equal size. One set is chosen as the test set, the
others form the profiling set:

ﬁest = 7:;
Erofiling = U 7; (22)

v|vel0,k—1]v#u

This is repeated for all values of u, and for each of these k-possible divisions the following
steps are computed:

First, a leakage model is estimated from 7,4 fiiing. For each possible value of the target
variable, the mean trace over all traces with this value in the profiling set is calculated.
Let t;; be all traces with target value i € [0,c — 1] and index j € [0, N; — 1] where N;
denotes the number of traces with target value ¢ in 7y, fiting. The leakage model m then

11

2. Background on side-channel analysis

consists of all ¢ mean vectors p; and the overall mean 7:

L Nl
Ui = N Z ti; with t;; € Tprofiting

jfo (2.3)
Z tij with t; ; € Tprofiting

,: l i

Second, the sample Pearson’s correlation between the model m and the traces t € Tios
is calculated. We denote the N; traces in Ties with t* with u € [0, N; — 1] and the
mean trace over the test set with ¢. Each trace in the test set is correlated with
the profiled mean trace of the corresponding target value?. We denote these pairs
(0, 10y, ..., (N pNem) If for example trace t° was measured with the target value
being k, then it is correlated with py, and p° = py, .

The correlation trace is defined as:

\/ZNt 1 \/ZM Yt —)2

Finally, the correlation traces of all k£ cross validation sets are averaged to get an unbiased
result.

Figure 2.4 gives an example of the SNR and CPOI correlation traces for the output of
S-box 0 during the first AES round in case of EM measurements. On top, 10 example
EM traces are shown in gray and the mean trace over all traces in red. The significant
dip around sample 10 corresponds to the rising clock edge that triggers the calculation of
the AES round. For around 30 samples activity in the EM traces can be observed, after
that the traces settle down and do not show any more significant features. This time
period is when the combinational logic is evaluated and wires inside the hardware are
switching. The middle and lower subplots show the SNR and CPOI correlation traces,
respectively. They are similar in shape and show leakage at the same points in time.
While the value of the SNR is unbounded, the correlation is limited to values between
—1 and 1 and almost maxes out with value 0.91 at sample 20. The CPOI shows a second
region with leakage from sample 70 to 90 which is hard to spot in the SNR plot due to
the axis scaling. In fact, the SNR trace also exhibits a small peak of around 0.03 in that
region. We conclude that both leakage tests are generally capable of detecting POlIs.

2.3.3. t-Test

Welsh’s t-test [107] is a statistical test that checks the null hypotheses that two sets (pop-
ulations) have equal mean (i.e., the difference between them is zero). It was proposed in
the context of side-channel leakage detection by Goodwill et al. [33] and rapidly gained

2For comparison, in a (profiled) CPA the correlation with the mean traces of all key candidates would
be calculated. However, since the key is known during evaluation, in this scenario only the correct
mean value is considered.

12

2.3. Leakage detection and of locations/points of interest

popularity due to its simple design and low sampling complexity. The test statistic is
defined as follows:

P (2.5)
90 of
No + Ny

where Ny and V; are the number of traces for the respective sets. As a rule of thumb, a
threshold of |t| > 4.5 is used to reject the null hypotheses with a confidence > 0.99999.
The actual value of ¢ however has no significance with respect to the quantification of
leakage and grows with the number of traces used (just as the confidence grows). This
is in contrast to the SNR and CPOI where the results directly translate into success
rates of a side-channel attack and can be used to compare implementations. Tests can
be conducted as fixed vs. random (non-specific t-test) or fixed vs. fixed tests (specific
t-test). In a fixed vs. random test, the target value, e.g. the key, is static in one set and
randomized in the other. Fixed vs. fixed compares trace sets that were acquired with
two static values. The latter test has been shown to require even less traces [23]. If
by chance the two sets exhibit the same leakage behavior (and consequently the same
mean trace), e.g. if they have the same Hamming weight, then the t-test would show no
leakage. To mitigate this, multiple fixed values should be tested. There can also be false
positives when data-dependent leakage is detected, but cannot feasibly be exploited in
an attack. One such case arises if leakage is detected that depends on the entire key
or, considering AES or similar round-based block ciphers, if leakage is present only after
a couple of rounds where the intermediate values are already dependent on too many
key bits. These issues were mentioned in the original proposal and are summarized and
discussed in detail by Standaert [89]. Nevertheless, its sensitivity to all manifestations
of data-dependent first order leakage without being restricted by a chosen leakage model
and the low sampling complexity make it a good choice to begin an evaluation.

2.3.4. Dimensionality reduction

A common way to decrease computational effort and simplify the analysis is to reduce the
number of time-samples in a trace, i.e. the dimensionality of the trace. A straightforward
approach is to drop all time samples for which the detected leakage is below a threshold
set by the evaluator. This inevitably leads to some loss of information. Bruneau et
al. [12] showed that the ideal compression is a linear combination of the time samples
and that both PCA and LDA are close to the optimal solution in practical scenarios.
Those methods transform the traces into a lower dimensionality subspace such that the
information is compressed in fewer samples, i.e. the sample-wise SNR is higher. This
allows for dimensionality reduction without significantly reducing the success probability
of side-channel attacks.

PCA is an unsupervised technique that requires no knowledge about any internals of
the data. It finds principal components in the directions that explain the most variance
in the data. In the case of side-channel measurements, these directions may not always
be the desired ones, especially if the traces are noisy and most of the variance is caused
by noise.

13

2. Background on side-channel analysis

Fishers’s LDA [28] on the other hand is a supervised method and requires a profiling
phase where the traces are partitioned according to the value of the target variable.
When aiming for a worst-case evaluation of the security of constructions, the focus is
therefore on LDA because it is guaranteed to give the optimal transformation with regard
to the targeted leakage.

LDA has been proposed for dimensionality reduction in the context of side-channel
attacks by Archambeau et al. [4] and for EM measurements in particular by Standaert
et al. [90]. It has later been shown by Bruneau et al. [12] that this is in fact the optimal
strategy to reduce the dimensionality of leakage traces. LDA also has the advantage that
the transformation makes template attacks more robust against measurement campaign-
dependent variations caused by temperature or environmental noise [17].

LDA stems from statistical classification and is a linear transformation of a dataset
onto a lower-dimensional subspace with good class-separability. It calculates a transfor-
mation matrix W, which maximizes the ratio of between-class to within-class scatter. As
introduced before, let the target variable have ¢ values, or classes, with range 0, ...,c—1.
Let t; ; be all traces with target value ¢ and j € [0, N; — 1] where NN; denotes the number
of traces with target value i. Further, pu; = NL Zjvzal

, ti; is the estimated class mean
vector and p = %Zf;é 1; the estimated overall mean vector. Then LDA calculates
the within-class scatter matrix S,,, between class scatter matrix S;, and W, such that

criterion J is maximized.

c—1 Ni—l

Sw=>_ > (tij— i)t —)" (2.6)

i=0 =0

Sp = 2_: Ni(pi — p) (i —)" (2.7)

WIS, W

TW) = wrs.w

(2.8)

It can be shown that the solution that maximizes J are the eigenvectors of Sw 'Sy. The
columns of W are the eigenvectors, sorted by descending eigenvalue. The within-class
scatter matrix Sy, is asymptotically equal to the pooled covariance matrix calculated over
all traces. This assumes that all classes share the same covariance matrix (homoscedas-
ticity), which is justified by the intuition that the covariance values are determined by
the influence of measurement noise, which should in most practical cases be independent
of the inputs. For traces with length n and c classes, the transformation matrix W has
the dimensions n x ¢ — 1. The trace matrix T with IV traces is transformed into a ¢ — 1
dimensional subspace by multiplying it with the transformation matrix:

T =T x W (2.9)

Nxc—1 Nxn nxc—1

The dimensions can be further reduced by dropping the last columns of W, i.e. the
eigenvectors with the lowest eigenvalues.

14

2.3. Leakage detection and of locations/points of interest

o

Vector 0
)
bob

S
[

Vector 1
o
o un

N 05 A'
—
.8 0 e
(6]
L.o5
2 os
—
% OWWMWWWMWMW
g—O.S
Q osf
% OW—*W*MW,—WNWWMWW
g-O.S-
0 10 20 30

Time in ns

Figure 2.5.: LDA eigenvectors, sorted by eigenvalue. Calculated for AES round 1 S-box 0
output on the traces shown in Fig. 2.4.

200 F
100

-100
-200

Traces after LDA
o

SNR

CPOI Correlation

0 5 10 15 20 25
LDA dimension

Figure 2.6.: Top: EM Traces after LDA transformation for AES round 1 into subspace
with 30 dimensions, example traces in grey and mean trace in red. Middle
and bottom: SNR and CPOI correlation for S-box 0 output.

15

2. Background on side-channel analysis

To give an example, we transform the traces shown in Fig. 2.4 and run the SNR and
CPOI leakage detection on the transformed traces. Each point in the transformed trace
is a linear combination of all samples in the original trace and the weights are given
by the aforementioned eigenvectors, i.e. the columns of W. The traces are transformed
from 200 samples into a subspace with 30 dimensions and the results are shown on top
in Fig. 2.6. Again, the figure shows 10 example traces in the new subspace in grey and
the mean trace over all transformed traces in red. We utilize the first (ranked by their
eigenvalue) 30 eigenvectors and W has dimensions n x 30. Figure 2.5 shows the first 3
eigenvectors and eigenvector 19 and 29. The high ranked eigenvectors show the highest
weights at samples where we also see leakage in Fig. 2.4. Lower ranked eigenvectors 19
and 29 show smaller weights in general and especially eigenvector 29 does not contain
any area with detected leakage. Thus, we expect the leakage to be concentrated in the
first dimensions of the LDA transformed trace. This is demonstrated in Fig. 2.6 which
shows the SNR and CPOI correlation of the transformed trace. The plots confirm that
the leakage is in fact concentrated in the first dimensions and continuously degrades
with higher dimensions. Interestingly, many lower dimensions show significantly higher
leakage than any single sample in the original trace. This is reasonable since every
dimension contains a combination of multiple dimensions from the original trace. The
SNR in dimension 0 is 9.77 compared to a maximum of 5.24 in Fig. 2.4, the CPOI
reaches 0.95 compared to 0.91. Therefore, the leakage can be exploited more efficiently
using less samples.

2.4. Template attacks

Template attacks are multivariate, profiled attacks [15, 17]. They can be mounted using
only a single trace in the attack or with multiple traces, then the attack is also called
‘template based DPA’. Template attacks are the most powerful side-channel attack, but
can be computationally expensive and fragile regarding the trace alignment and inter
device portability [17]. In general the analysis and characterization of data sequences
like power traces is complex and expensive if no assumption is made about the distri-
bution of the sample points. In case of template attacks, the trace is modeled as a
multivariate normal distribution. The trace is viewed as realization of n random vari-
ables X1, Xs, ..., X, which are assumed to be jointly normal distributed. The probability
density function f of a realization vector ¢ is then given as

1 1 T -1
1) = St (g (=T B 0-) 210

where X is the covariance matrix and g the mean vector. The distribution is fully
defined by the tuple (1, ¥). The attack consists of two phases: the profiling phase and
the attack phase. During the profiling, the attacker has full control over the device and
can set all inputs and the key; during the attack, the key is fixed and unknown. The
attacker selects a target function f(p, k) which combines (part of) a known input p with
(part of) the key k& and that takes values in [0,c — 1]. In case of an attack on AES, p

16

2.4. Template attacks

and k are typically bytes of the plaintext and key, respectively. The target function is
e.g. the output of the first round S-box, where the plaintext byte is already combined
with one byte of the key. In the profiling phase the attacker builds templates (u;, %),
with i € [0, ¢ — 1] for all ¢ output values of the function f(p, k). In the attack phase, the
attacker measures a trace ¢ and, knowing the input v, calculates f(v, k) for all possible
key candidates. For each key candidate /%, the likelihood that the trace t is taken out
of the respective template, i.e. stems out of the corresponding Gaussian distribution, is
calculated:

p(t) [t~ N(Nf(p k) 2 fp 1})) = f(t| (Mf(p,/%)a Ef(p,l%))) (2.11)

If the key candidates do not have equal a-priori probabilities®, then the result must be
multiplied by the a-priori probability. This factor is omitted in the following for the
sake of clarity. This procedure is repeated for all subkeys. The result of the attack is
a list with candidates and corresponding probabilities for all subkeys. In a successful
attack, the correct subkeys are ranked highly in all of the lists. If all correct subkeys are
ranked first, then the attack is immediately successful. Otherwise, the attacker has to
put in some brute force effort to recover the correct key. How the exact security level is
determined in such cases is discussed in the Section 2.5.

As the interest lies within the relative ranking of the candidates, and not the actual
probabilities, simplified discriminant functions can be used as long as they preserve the
order. The log-likelihood is often used to avoid numerical issues:

1 n _

Choudary et al. [16] derive a discriminant function for a key candidate k under the
observation of a trace ¢ from this:

1 Tws—1
5= 1) i i) (2.13)

~ 1
diog(k | 1) = —51085 | Zph | 5

The largest value determines the most probable key candidate. The calculation is further
simplified by making use of the homoscedasticity assumption that is also used for LDA,
i.e. the assumption that the individual covariance matrices are only dependent on the
noise and thus asymptotically equal. Then a single pooled covariance matrix is calculated
instead of one covariance matrix per template:

pooled Z Z (214)

zEOc 1]

In practice, using a pooled covariance matrix also makes the calculation more robust.
The covariance matrix 3 grows quadratically with the length of the trace. Typically, the
covariance values are very small and the matrix becomes close to being singular, which
makes it numerically difficult to invert. A necessary condition for ¥ to be non-singular is
that the number of traces used in its estimation is larger than the number of samples in

3This is for instance the case when the Hamming weight of an intermediate value is targeted.

17

2. Background on side-channel analysis

the trace. However, the traces can be highly correlated so more may be needed. When
using the pooled matrix, this requirement is relaxed because all collected traces can
be used in the estimation. Another option is to omit the estimation of the covariances
altogether and substitute the covariance matrix with the identity matrix. Then the scores
only depend on the estimation of the mean trace, but not all available information can
be exploited. It is possible to use more than one trace in the attack phase by either
averaging the traces beforehand (for all traces where p is equal) or by calculating the
joint likelihood. The joint likelihood in case of the logarithmic discriminant function
djoq 1s given by the sum of the individual scores of each trace.

2.5. Evaluating the security level after an attack

The result of a template attack (or similar attacks) is a sorted list of candidates for
each subkey where each candidate has a probability (or similar score). In a real attack,
the attacker then has to assemble and test the full key to see if it is correct. If the
correct subkeys are not ranked first in each list, this requires a strategy to test the most
probable combinations. A naive approach is to simply test all combinations of the first
n candidates of each list. The probability of finding the correct key in this set is called
n-th order success rate in literature. The problem is, that the security level is completely
unclear if the correct key is not found. For an attacker this is not an issue, since the only
goal is key recovery and a failure is a failure. Evaluators, on the contrary, have a strong
interest in determining the real security level that remains after an attack. The security
level, which is often also called guessing entropy or brute force/enumeration effort, is the
determining metric which decides if the device under test is considered secure enough
to withstand the attack. Thus, it is important to estimate the guessing entropy after
an attack when evaluating a device for which key recovery attacks do not reveal the full
key.

During evaluation, the correct key and the ranks of the correct subkeys are known.
Lower and upper bounds for the guessing entropy can be directly estimated from the
subkey ranks. The lower bound assumes that an attacker has an oracle that is queried
with subkey candidates and returns if it is correct or not. Therefore, in each subkey list
all candidates up to the the correct one have to be tried. Let rg,7q,...,7,_1 be the key
ranks of all n subkeys. The minimum guessing entropy, in bits, is given as:

n—1
GEpin = log, [[i (2.15)
=0

For the upper bound, which is closely related to the n-th order success rate, the attacker
has no such oracle available. Instead, all combinations of the first two candidates for
each subkey are tried, then all combinations of the first three, four and so on. The upper
bound is determined by the highest key rank of all subkeys:

GPEpar = logymaz(ro, 1, ..., Tp1)" (2.16)

18

2.5. Evaluating the security level after an attack

These estimates can be useful, but neglect the probabilities attached to the key candi-
dates.

128 T T T T 1T T 177 T T T T T 17T T T T T 1T T 177

Guessing entropy in bits

1 10 100 1000
Traces

Figure 2.7.: Estimated guessing entropy G E}, after template attack on AES using key
rank estimation. Shaded area: region between lower and upper bound.

Key rank enumeration algorithms [105, 78] improve upon that by taking the proba-
bilities into consideration to derive an optimal search strategy. However, this approach
is limited by the computational resources of the evaluator. If the correct key lies out-
side the enumeration capabilities, then it is unknown if one more guess would have led
to success or if a million guesses would have been necessary. To estimate the guessing
entropy in cases where enumeration is not computationally feasible, key rank estimation
algorithms [106, 34, 8] are used.

In this work, the key rank estimator of Glowacz et al. [34] is used. Instead of enumer-
ating all keys from most to least probable until the correct one is reached, the idea is to
group keys with similar probabilities and ignore the order within that group. Obviously
this adds an estimation error that is determined by the group size, but it saves the
computation of exact probabilities of the full keys.

To implement this, we estimate a probability histogram of all (full) keys. Each bin
represents a range of probabilities and accounts for the number of keys that fall into that
range. Knowing the probability of the correct key (by multiplication of the probabilities
of all correct subkeys), the key rank is estimated by counting all keys that are in the
same bin as the correct key or in bins with higher probabilities. To avoid numerical
issues, logarithmic probabilities are used. Let LP, = log (Pr(kf | T) be the list of

19

2. Background on side-channel analysis

logarithmic probabilities of candidates for subkey i after an attack which observed the
set of traces 7. In case of, e.g., 128-bit key AES (AES-128) the number of subkeys N, is
16 and hence i € [1,16]. The logarithmic probability (peorrect = log (Pr(k | T)) denotes
the probability of the correct key, i.e. the sum of the logarithmic probabilities of the
correct subkeys. For each list LP; a histogram H; = hist(LP;, Ny;,) with Ny, equally
sized bins is calculated. A higher number of bins leads to tighter error bounds, but
longer runtime. The probability histogram of the full key is estimated by convolution
of all subkey histograms. To calculate the estimated rank of the correct key, all keys
starting from the bin of the correct key, bin(Ipee), are counted. The whole key rank
estimator is specified by Algorithm 1, taken from [34].

Algorithm 1: Key rank estimation(LFP;, Ipeorrect, Noin)

1 fori=1to N, do
3 end
4 Heyrr = H17
5 for i =2 to N, do
6 ‘ H yrr = convolution(H ., H);
7 end
Np-Nyin—(Np—1)
8 estimated_rank ~ Z H e [i];

i=bin(Ipcorr)

9 GEy, = log,(estimated_rank);

The guessing entropy expressed in bits is the binary logarithm of the estimated key
rank. Figure 2.7 shows the estimated guessing entropy GEj, in case of a template
attack on AES in red?. The shaded area is bound by the minimum and maximum
estimates GFE,,;, and GE,,.,. Especially for a lower number of traces, a big discrepancy
of around 40 bits between the minimum and maximum estimates can be observed.
Asymptotically G FEy, approaches GFE,,;,, but for cases where few traces are available
GE,.in significantly underestimates the guessing entropy. In these cases the minimum
and maximum estimates are insufficient and key rank estimation must be performed to
better estimate the real security level.

2.6. Countermeasures

Every successful differential side-channel attack is reliant on three conditions:
1. The attacker needs to predict internal values that depend on the key and some
input.

2. The variations of those internal values need to be reflected in the side-channel
measurements.

4The example is taken from Section4.2.2, with m = 4 and dense placement.

20

2.6. Countermeasures

3. It must be possible to combine information over different traces.

Countermeasures against SCA can also be categorized in three categories, according to
which of these prerequisites they prevent: Masking, hiding and leakage resilience.

Masking Masking countermeasures break the relation between the intermediate values
of the algorithm and the values that are actually processed in the device. The reasoning
is that if the attacker cannot predict the intermediate values, then it is also not possible
to exploit leakage that they might create. Masking schemes apply random masks to
the sensitive values and then perform all calculations on the masked values. In the
end, the mask is removed and the correct result retrieved. A boolean masking scheme
for DES was first proposed by Goubin et al. [37]. This and similar approaches [3, 36]
can suffer from leakage induced by glitches in the hardware [61], thus designers have
to take care during the implementation. Threshold implementations [72] are masking
schemes that also took inspiration from secret sharing and multi-party computation.
The intermediate values and calculations are split up into several (randomized) shares
such that the actual values cannot be recovered without knowing all shares. This makes
them inherently more robust against hardware glitches. Domain oriented masking [38]
is similar to threshold implementations, but can more efficiently be extended to higher
protection orders.

Hiding The goal of hiding countermeasures is to disconnect the power consumption
from the processed value. This is realized by e.g. introducing additional noise and
adding random stall or dummy operations to the execution [96]. The addition of noise
and the shuffling of instructions ultimately only reduce the SNR and raise the number of
traces which are required for the attack. Therefore they are mostly used in conjunction
with other countermeasures like masking [18, 59]. Dual-rail implementations use logic
styles that lead to a balanced power consumption regardless of the processed value [82].

However, they are costly to implement and have been shown susceptible to EM attacks
when implemented on FPGAs [44].

Leakage resilience Leakage resilience cryptography prevents the attacker from accu-
mulating information about the secret over multiple traces. This is discussed in detail
in Chapter 3.

21

3. Leakage resilient cryptography

In this chapter we first give an overview of the state-of-the-art in leakage resilient cryp-
tography and discuss different approaches in Section3.1. In Section 3.2, we introduce
LR-PRFs as an important building block for many applications and study their founda-
tions. This concludes with a discussion of the two proposals for LR-PRFs by Medwed
et al. [65, 66] in Section 3.2.2. These are the constructions which we will analyze, and
improve upon, throughout the course of this thesis. Finally, we show how a leakage
resilient AEAD (LR-AEAD) scheme is realized using LR-PRFs as building block in
Section 3.3. We use this construction in case studies to decrypt FPGA bitstreams and
microcontroller firmware updates in Chapters 7 and 8, respectively.

3.1. Overview of research in leakage resilient
cryptography

In modern cryptography, the security of an algorithm is based upon assumptions about
computational complexity and guaranteed by rigorous security proofs and computational
complexity bounds. Typically, these proofs consider the execution of the algorithm inside
a black box, i.e. the attacker only sees (and, depending on the security notion, controls)
the inputs and outputs to the algorithm. Cryptographic reductions allow to break down
systems into collections of well understood primitives and thus to proof the security of
complex cryptographic systems against large classes of adversaries. These assumptions
and reductions are the foundation for all modern crypto systems that we use on a daily
basis.

Motivation With the advent of physical attacks started by Kocher et al. [51, 52],
the significance of those security notions got challenged: What good is a provably se-
cure algorithm if the actual implementation can be broken by observing e.g. the power
consumption or timing? Reacting to the fact that suddenly most cryptographic imple-
mentations were vulnerable against this new class of attacks, several approaches were
proposed to break the link between the secret and the leakage of an implementation (see
Section 2.6). However, initially those countermeasures were designed ad-hoc to protect a
specific implementation against a specific attack. From a cryptographer’s point of view,
this situation is very unsatisfying compared to the state of the art in theoretic cryptog-
raphy, because it is not exactly clear, what security guarantees are actually achieved.
The natural next step is to come up with new models and assumptions that include
the threat of physical attacks against the implementation. If this succeeds, then an

23

3. Leakage resilient cryptography

argument can be made that proves a construction secure against all attacks of a certain
class. It would even cover attacks that are not known at the time of analysis and it
would relieve designers from evaluating the security of their design against all known
attacks. This is the ultimate goal of “Leakage Resilient Cryptography” as described in
the paper of the same name by Dziembowski and Pietrzak [25].

While the appeal of this approach is clear, it is not trivial to define a model that
adequately captures the capabilities of all thinkable side-channel adversaries and still
leaves room for cryptography. It is intuitively clear, that the black box model has to be
augmented in order to allow the attacker insight into the internals of the implementation.
This is modeled through a leakage function, that gives an attacker information dependent
on the internal state of the algorithm. The main challenge is the definition of this leakage
function: If it is too powerful, then no provable security can be achieved at all. If it is
too weak, then there is a risk that attackers exploit leakage that is not captured by the
model, which makes the security proofs pointless.

Different approaches to leakage models To position our research, we categorize the
existing work following the structure used by Kalai and Reyzin [48]. This is by no
means an exhaustive list, but it should help to get the greater picture of the field and
to understand the different research directions. On the highest level of abstraction, the
research can be partitioned into two broad fields by considering the source of the leakage
in the respective models: memory leakage or computation leakage.

Memory leakage models consider key leakage arising from memory. Typically the
amount of leakage available to the attacker, i.e. the length of the output of the leak-
age function, is bounded. Dziembowski and Di Crescenzo et al. [24, 19] proposed the
bounded retrieval model (BRM), which allows the attacker to compute any polynomial-
time leakage function on the secret key, as long as the output of that function is limited
in the number of bits. Secure constructions can then be achieved by increasing the key
length, whereby the computational complexity is only allowed to grow logarithmically
with the key length to avoid inefficient constructions. This line of work was extended by
Akavia et al. [2] who introduced the bounded memory leakage (BML) model for public
key cryptography. Here, the bound for the leakage is not an absolute value but a func-
tion of the key length. The bounded leakage models do not translate well into reality, as
usually an attacker can measure many bits of information about the secret key, be it by
using multiple measurements, various target variables or different measurement setups.
Dodis et al. [22] acknowledge this fact in their auxiliary input model (AUX) model and
allow an unbounded amount of leakage. The constraint is that the leakage function is
hard to invert, or in other words, given the (large) amount of leakage, it should still
be hard to calculate the secret key. The continual memory leakage (CML) model by
Brakerski et al. [9] and Dodis et al. [21] is similar in that it also allows the total leakage
to be unbounded. The idea is that the initial secret key is continuously updated and
the amount of leakage of any such temporary key has to be bounded, a concept related
to what is also known as fresh re-keying [64, 6].

From a practitioners point of view, the approach that (only) the memory leaks seems

24

3.1. Overview of research in leakage resilient cryptography

hard to justify. Real world attacks usually target instances where the key is used in some
calculation and measure leakage caused by switching activity of combinatorial logic.
Although comprehensive results are certainly possible under memory leakage models, it
seems more natural to model leakage that arises from computations. These so called
computation leakage models form the second big research subfield. The computation
leakage models introduced by Chari et al. [14] and Ishai et al. [45] both consider leakage
from wires of a circuit. The noisy wire mode [14] gives the attacker a noisy view of
all activity in the device, whereas the wire-probing model [45] allows the attacker to
directly read out a limited amount of wires. This view lends itself naturally to the
construction of masking schemes because the addition of random masks makes internal
values dependent on more signals. The only computation leaks (OCL) model by Micali
and Reyzin [68] has become the most popular model and variations of it have been
used to analyze all constructions that are used in this thesis. The premise is, that the
algorithm runs in discrete steps and during every step only the active calculation leaks.
Consequentially, values that are not touched and reside in memory do not contribute
to the leakage. This is modeled by a polynomial-time computable leakage function that
depends on three parameters:

1. The current configuration C' of the machine. This includes every part of its inter-
nals that is measurable and is "touched’ during this step.

2. The settings of the measurement apparatus M, which is a specification of what
the attacker chooses to measure.

3. A random string R that represents the noise within the measurements.

In the most powerful attacker model, the measurement setting M can be set by the
attacker before every step of the algorithm and in reaction to what was learned in pre-
vious steps. The leakage function is then called adaptive. It was suggested by Standaert
et al. [93] that an adaptive, polynomial-time leakage function might be too powerful
and limits the efficiency of the achievable constructions. For example, nothing stops
the attacker from choosing a leakage function that leaks about future values, which is
clearly unrealistic in a physical setting. Another issue is that the leakage function is in
part determined by the measurement apparatus M. In this model, this is an input that
is chosen by the attacker. While the measurement setup or the positioning of probes do
affect the leakage, it is however mostly defined by the physical properties of the device
itself. This leads to an inevitable trade-off, as the authors of [93] remark, between the
generality of the leakage function and the connection to the physical world. Generic
leakage functions make it hard to achieve positive constructive results. An extremely
specific leakage function, on the other extreme, can be tailored to fit an experiment on
a device, but has questionable validity outside that experiment.

Towards practical leakage resilient cryptography In an attempt to circumvent the
difficulty of formally modeling the leakage function and to make leakage resilience more
accessible to practitioners, Standaert et al. [91] in a separate work propose a framework to
analyze the side-channel security of implementations and countermeasures. They build

25

3. Leakage resilient cryptography

upon the principles introduced by Micali and Reyzin [68], but give up some generality
and only consider key recovery adversaries. The idea is to separate the analysis of
the implementation and the adversaries’ capabilities to allow fair comparisons between
countermeasures independently of the attack. Consequentially, they suggest the usage of
two different metrics for these subproblems: To answer the question how much is leaked
by the implementation, an information theoretic metric, the Mutual Information, is used.
To evaluate how much leakage is exploitable by a concrete adversary, the (n-th order)
success rate and the guessing entropy are used. Most importantly, both metrics require
a practical evaluation. This is in contrast to the other approaches that theoretically
model the leakage and find provably secure constructions.

For the estimation of the Mutual Information, they suggest using the “best possible
tools” which typically means that the underlying leakage distributions are estimated
with template attack style measurements. This step is considered to be the work of
an evaluator with deep knowledge of the device and under close to ideal conditions. To
assess the security against a concrete adversary, the actual attack is mounted against the
implementation. Depending on the defined computational capabilities of the adversary,
the result is either given as the n-th order success rate, i.e. the probability that the correct
key candidate is within the n highest ranked candidates, or as the remaining guessing
entropy, i.e. the number of steps that need to be calculated in a brute force manner in
order to reach the correct key. However, it is noted that while the mutual information is
a useful tool in many practical scenarios, there exist cases where more information does
not lead to better attacks. The authors therefore stress that the information theoretic
analysis always should be followed by a security evaluation. This approach is a step
away from strong generalization as witnessed in e.g. the work of Micali and Reyzin [68]
and is intended to formalize practical evaluations and comparisons of implementations
and adversaries. However, the fact that both the evaluation of the implementation and
the adversary require taking measurements of the device (potentially using the same
equipment) and are subject to the same technical and computational limitations (e.g. in
case of very long traces), weakens the separation between the two cases.

Criticism There has also been criticism of the fundamental idea that it is reasonable to
model all kinds of side-channel attacks in one theoretical model. For example, Koblitz
and Menezes [50] state that leakage resilience cryptography can lead to overly complex
constructions that are inefficient and harder to protect which can make them even less
secure than traditional constructions. Also, the reliance on (inadequate) leakage models
might give the developer a false sense of security, and thus, in their opinion, the only
way to reach side-channel security is through extensive ad-hoc testing and constant re-
evaluation if new attacks appear. This last point is somewhat in line with the work
of Standaert et al. [91], which also demands experimental testing of newly developed
schemes. After presenting the results of this thesis, Chapter9 comes back to this criti-
cism and discusses the merits and difficulties when implementing and evaluating leakage
resilient constructions.

26

3.2. Leakage resilient pseudorandom functions

Summary and positioning of this work Summarizing, the systematic modeling of se-
curity in a setting with side-channel leakage has received a lot of attention of the crypto-
graphic community in recent years. Due to the heterogeneous landscape of side-channel
attacks, which ranges from cold boot attacks [40] over remote cache attacks [109, 55] to
high precision EM attacks, the modeling of a leakage function that is generic enough to
capture all these scenarios and still allow positive deductions is inherently difficult. As
of now, this gap between theory and practice still has to be overcome in a generic and
meaningful setting. While this problem remains unsolved for now, there exists a line
of work such as the examples by Medwed et al. [65, 66] and Standaert et al. [91] that
gives up some generality in order to bridge this gap towards easier implementation and
evaluation. This work positions itself more on the side of practitioners who are tasked
with implementing and evaluating leakage resilient constructions. The goal is to analyze
specific constructions and verify, if the underlying leakage model and assumptions hold
when facing an adversary with high end equipment. The conclusions drawn from the
results are twofold: First, they give a hint about the applicability of leakage resilience
and the actual robustness of provably secure constructions. Second, the results can
be used to engineer improved constructions. The word engineer is used purposefully
because the modifications are based on laboratory evaluations of real devices, and not
rigorous proofs. For that cause we utilize the framework of [91] to assess the security in
terms of guessing entropy. Due to the questionable informativeness of the information
theoretic metric and the aforementioned fuzzy separation of implementation and attack,
the mutual information is not considered.

3.2. Leakage resilient pseudorandom functions

In this section we first give some context as to why PRF's are important building blocks
for cryptographic protocols and define the used primitives. Then we introduce the
concrete LR-PRF instantiations that this work builds upon.

3.2.1. Preliminaries
A PRF is defined as follows:

Definition 1. Pseudorandom function

A pseudorandom function is a function F : {0,1}* x {0,1}? +— {0,1}9 that takes a key
and a message and outputs a pseudorandom string. The function is indistinguishable
(with significant advantage) from a random function for an adversary that is allowed to
make queries to it. We denote the execution of F(k,x) with Fy(x).

To motivate the practical importance of PRF, we first consider a common initializa-
tion problem in stateless communications protocols. Stateless protocols are protocols,
for which no session information is stored between the communication parties. All inter-
actions need to be self-contained and include all necessary information. In the context
of cryptographic primitives, this means that the primitives are typically initialized with

27

3. Leakage resilient cryptography

public inputs. Consider the example of session key derivation for secure (side-channel
protected) communication between to parties, e.g. to deploy encrypted updates to the
firmware of a microcontroller.

The parties will first exchange an initialization vector (IV) to derive the session key
from a pre-shared long-term secret. After this step, the communication is encrypted
with the session key. As shown in Fig. 3.1, the natural attack vector for a side-channel
adversary is the processing of the IV, since it can be observed or even controlled by an
adversary if no further authentication is deployed. This secure initialization problem is

e

Y

l

decryption
,| stateless — yp on-
key update > —> authentication
~
longterm pseudorandom
secret secret state

Figure 3.1.: Stateless key update with public IV.

one example that can be solved using LR-PRFs. The LR-PRF takes the IV as input
and calculates the session key while protecting the longterm secret from being leaked to
an attacker.

Next, we define PRGs in order to be able to understand the PRF construction of
Goldreich, Goldwasser and Micali [35] (also called GGM-PRF and GGM tree). This is
the foundation for the LR-PRFs by Medwed et al. which are discussed in Section 3.2.2.

Definition 2. Pseudorandom generator

A pseudorandom generator is a function G : {0,1}? — {0,1}? with ¢ > p that takes
a seed as input and outputs a longer pseudorandom string such that statistical tests
cannot differentiate the output from a string sampled from the uniform distribution (with
significant advantage). If the output length q is a multiple of p, we call it a 1/pPRG. For
q = 2p for example, the PRG 1is called 2-PRG or length-doubling PRG.

The main difference between a PRG and a PRF is that a PRG is stateful. After
setting the seed of a PRG, random access to parts of the output string is not possible
without computing all bits up to the desired section®. In contrast, a PRF allows direct
random access by taking a message as a second input. This allows the construction of
e.g. symmetric encryption or message authentication code (MAC) schemes: For message
authentication, the tag ¢ for message m is calculated as t = Fj(m). To encrypt m,
first a random string r is generated. Then the output of the encryption is Ency(m) =

5Specific implementations may allow random access at some granularity, such as the block cipher based
PRG introduced in Section 3.2.2. However, this is not reflected in the interface which has no input
to request only parts of the output.

28

3.2. Leakage resilient pseudorandom functions

(Fx(r)@®m,r). PRFs can be constructed from PRGs with the construction by Goldreich,
Goldwasser and Micali [35].

Definition 3. Goldreich, Goldwasser and Micali (GGM) PRF

Let G be a length-doubling PRG. Denote the two halves of the output as Gy and Gy:
G(m) = Go(m)||G1(m). The bits of the input x are denoted as xy...x;—y. Then a PRF
s constructed as follows:

Fk(ZE) = Fk(xo,l’l, Ce ,ZEi_l) == Gzi_1<. .. Gml(GzO(k)) -)

The input z is evaluated bit by bit and for each bit, either Gy or G is selected to
seed the PRG for the next iteration. Initially, the PRG is seeded with the secret key k.
This is the foundation for the LR-PRF's discussed in the next section.

3.2.2. CHES 2012 and ASIACRYPT 2016 LR-PRFs

At CHES 2012, Medwed et al. presented an LR-PRF which is based on the GGM-
PRF [65]. It was later improved at ASTACRYPT 2016 [66]. They are constructed using
a block cipher as the primary building block. Specifically, AES-128 is used but any
other substitution—permutation network block cipher (e.g. PRESENT) is also possible.
Both LR-PRFs have in common that they limit the data complexity (the observable
operations of each key) to prevent differential side-channel attacks.

CHES 2012 LR-PRF We first observe in Fig. 3.2, that a 2-PRG can be implemented
using a block cipher that encrypts two different inputs under the same key [93]. The
encryption key is the seed to the PRG, the two plaintexts py and p; are static param-
eters that can be public. Regarding side-channel attacks, this construction is naturally
“2-limiting”, which means that the key is only used in two different operations, the
encryption of py and p;. This 2-PRG can be extended to a n-PRG by encrypting n
instead of 2 different plaintexts. This is the building block with which the LR-PRF is
instantiated.

seedl(key)

2-PRG l—‘—l

block p.—] block
cipher 1 cipher

| |
{ !
S <

Figure 3.2.: Instantiation of a 2-PRG with a block cipher.

Po—

The left side of Fig. 3.3 shows the dataflow graph of the resulting LR-PRF instantiated
using this block cipher based 2-PRG. As is the case with the GGM-PRF, the input is
processed bit by bit. In the initial stage 1, the long-term key £ is used as seed to the 2-
PRG, i.e. key for the block cipher. If the first bit of the input is zero, the left part of the

29

3. Leakage resilient cryptography

2-PRG output, i.e. Encg(po) is used as key for the next iteration. Otherwise, Encg(p1)
is used. The plaintexts are public and pre-determined, but of a special form which will
be explained later. This process continues until all bits of the input are processed. The
dataflow can be seen as a walk through a binary tree structure where the result of the
LR-PRF is the leaf of the tree. This gives the following equation for the LR-PRF. To
make it more readable we write Enc(k, x) for Encg(x):

Fi(z) = Fy(zo, 21, ..., xi-1) = Enc(Enc(... Enc(Enc(k,peg)sDey -«)s Pais)s Pai_y)

IV = 0b10100...1 IV = 0xA48C...3

stage 5...127
"""""'_'"""""""""""""""':\:\ """""""""""""""""""""""" % ,'/: """""""""""""""
stage 128 Po—] BC P1—{ BC stage 32 P3— BC
whitening Po— BC whitening Po—{ BC

PRFi(IV) PRF(IV)
Figure 3.3.: CHES 2012 LR-PRF. Left: data complexity 2 (n=1), right: data complex-

ity 16 (n=4).

An execution of this LR-PRF requires one AES encryption per bit of the input, which
can be a significant overhead for some applications. This is why the authors of [65]
proposed an alternative which is more efficient in terms of latency. Instead of evaluating
one bit of the input per stage, n bits are evaluated and consequentially one out of
2" plaintexts is encrypted. To process an input with a length of ¢ bits, the LR-PRF
evaluation takes [7/n] block cipher encryptions. The trade-off is that this also increases
the data complexity for side-channel attacks. The right side of Fig. 3.3 shows the case
of n=4, where 32 block cipher executions are required for a 128 bit input and the data
complexity for a side-channel attack is 16.

The leakage resilience of this PRF is based on two principles: Limited data complexity
and algorithmic noise through parallel S-boxes with chosen inputs. The data complexity

30

3.2. Leakage resilient pseudorandom functions

of every key is limited by the PRG that is evaluated on every level of the tree. In case
of n =1 (Fig. 3.3, left side), it only allows the encryption of two distinct plaintexts,
depending on the corresponding input bit. For n= 4 (Fig. 3.3, right side), 16 plaintexts
can be encrypted. This is in contrast to regular side-channel attacks, where an attacker
typically observes many different inputs under one key. The number of bits n processed
per stage thus has a direct impact on the security and the performance of the construc-
tion. On the one hand, the data complexity for an attack is determined by n, as each
key is used with 2" different plaintexts. As will be discussed in detail in Section4.2.2,
low data complexity makes differential SCA attacks harder. Therefore, from a security
point of view, n has to be kept low. On the other hand, the performance of the LR-PRF
deteriorates with lower n because more iterations are necessary to process the input.
Hardware designers and evaluators have to find a trade-off in n between security and
efficiency.

Limited data compexity as countermeasure against side-channel attacks is only effec-
tive if the observation of 2" distinct encryptions is not enough to successfully recover any
key inside the GGM tree. To make key recovery attacks harder, an additional counter-
measure leverages parallel hardware and the algorithmic noise it generates. Algorithmic
noise is generated by parts of the implementation which are executed at the same time,
but are not represented in the attackers target variable. To increase the algorithmic
noise in the LR-PRF, the implementation of the AES is required to exhibit parallelism
in the S-boxes. In a fully parallel AES hardware implementation as shown in Fig. 3.4,
all 16 S-boxes are evaluated in parallel. In the figure py...p15 and ky ... k;5 indicate
the bytes of the plaintext and key, respectively. Each S-box produces leakage which is a
function of the S-box calculation on p; @ k;. The observable leakage is a combination of
the leakage from all S-boxes, which gives Ly = Z;io L(Sbox(p; @ k;)). This leakage
model implicitly assumes that all S-boxes have identical leakage functions; we refer to
this as the equal leakage assumption. While attacking one byte of the AES key during
the S-box operation, all other key bytes generate algorithmic noise in the leakage traces.
Unlike electrical noise this form of noise cannot be removed by averaging over multiple
traces. Usually, the attacker is able to randomize the S-box operations by changing the
plaintext input and is able to remove the algorithmic noise that way. In the LR-PRF
construction, this is prevented because the attacker cannot directly chose the plaintexts
which are encrypted. Instead, pre-determined plaintexts are selected depending on the
input of the LR-PRF. All plaintexts are chosen such that all bytes have the same values,
ie.pgp=p1 = =nps (eg pp=0% and p; =1'% for n=2).

Po P1 P14 P15
ko=@ k1@ k14-® k15—@
L(Sbox(kp+pp)) L(Sbox(ki+p1)) L(Sbox(k14+p714)) L(Sbox(kis5+p75))

Figure 3.4.: Leakage from parallel S-boxes.

31

3. Leakage resilient cryptography

In Fig. 3.4 data which is known to the attacker is printed in green, secret data in red.
For the algorithmic noise from parallel S-boxes to be effective, we need to assume that the
attacker measures Ly, and cannot resolve the leakage of the individual S-boxes. As the
attacker only knows the plaintext bytes p;, this is the only way to distinguish between
the leakage of the different S-boxes (given a parallel implementation where they are
evaluated simultaneously). If all bytes of the plaintext are equal, then it is not possible
for an attacker to determine which leakage belongs to which S-box. Consequentially, in
a divide-and-conquer attack on the key bytes, an attacker has no means to identify the
leakage of a specific key byte k; in the measured leakage L. Then, even if all key bytes
would be recovered correctly, the attacker still needs to find the correct order of the key
bytes. This adds significant brute force effort with super-exponential complexity in the
number of S-boxes. In case of AES with its 16 S-boxes, this results in an additional
security margin of 16! ~ 2% bits. However, this countermeasure is only effective for
attacks on the first AES round. The S-box inputs of all following AES rounds and
especially the ciphertexts are naturally random and do not exhibit this structure. While
the state of intermediate rounds is hidden, the ciphertext of the last stage is also the
output of the LR-PRF and is exposed to the attacker. To prevent DPA attacks on the
last round of the AES using the ciphertext, the authors of [65] propose an additional
output whitening step. This step is realized as an additional stage of the GGM tree which
always encrypts the same plaintext. With this whitening step the output of the LR-PRF
is (necessarily) still random, but the data complexity for this attack vector is always 1,
regardless of the value of n. Thus no differential side-channel attacks on the last round
are possible. The only requirement is that the implementation withstands SPA attacks.
Due to the fact that the first and last round of the AES lead to comparable leakage, it is
reasonable to assume that if an implementation withstands a 2-limited attack on the first
round, it should also withstand a 1-limited attack on the last round. The easiest attack

vector, and the sufficient object of investigation for a security evaluation, is therefore
the first round of the AES.

X
Pso -+ Psn l
Po—
LR-PRG : GGM | k0
p;— : tree
long-term key k derived key k'

Figure 3.5.: Unknown inputs LR-PRF from ASTACRYPT 2016.

ASIACRYPT 2016 LR-PRF At ASTACRYPT 2016 an improved version of this scheme
was proposed [66] which is shown in Fig. 3.5. It is based around the same GGM-PRF
instantiated with the AES-based PRG. The difference is how the plaintexts inside the
GGM tree are chosen. In the original proposal, they are public, i.e. known to the
attacker, but of a special form to hinder key recovery. The ASTACRYPT version of the
LR-PRF goes a different way and hides the plaintexts from the attacker. An additional

32

3.3. Leakage resilient authenticated encryption from LR-PRFs

P block D, block | P block
0™ cipher 0™ cipher 0™ cipher
K I - F
k
P block P block P block
1 cipher 1 cipher 1 cipher
T I I
k
Pso Ps1 k'

Figure 3.6.: Leakage resilient PRG with variable output length.

preprocessing step using a leakage resilient pseudorandom generator (LR-PRG) [92]
derives the secret plaintexts pyg . ..ps, and the key k' for the GGM tree from a long-
term key k. The LR-PRG is shown in Fig. 3.6 and uses the same block cipher based
2-PRG as the LR-PRF. Starting with the long-term key k, it encrypts two (public)
plaintexts per iteration. One ciphertext is used as key for the next iteration, the other
is the output of the LR-PRG. These outputs, i.e. the plaintexts for the GGM tree, are
unknown to the attacker. Therefore the data complexity of the tree can be securely
increased which enables more efficient implementations which require less stages. The
attack vector is shifted to the LR-PRG stage, because this is the starting point where an
attacker still knows the inputs to the block cipher. However, the data complexity at this
point is always limited to 2 due to the construction of the LR-PRG. When evaluating
the side-channel security of this construction, the analysis is equivalent to the evaluation
of the original proposal with the lowest possible data complexity n=2.

The overlapping leakage of S-boxes and the plaintexts with equal bytes are novel con-
cepts by the authors of [65] for which the security guarantees are not immediately clear.
They provide results for power analysis attacks on a microcontroller implementation as
well as results from simulated attacks. In those cases, the security of this construction
holds. However, they leave localized EM attacks for future work and only briefly discuss
the effects. This work picks up there and provides a laboratory analysis in Chapter 4.

3.3. Leakage resilient authenticated encryption from
LR-PRFs

For many applications such as secure boot with encrypted firmware an authenticated
encryption with associated data (AEAD) scheme is mandatory. An AEAD scheme is
defined as follows:

Definition 4. Authenticated encryption with associated data (AEAD)

An AEAD scheme is defined by an encryption algorithm Enc and a decryption algorithm
Dec. The encryption algorithm Enc takes a key k, message m, associated data a and
nonce n as input and outputs a tag t and ciphertext c. The decryption algorithm Dec

33

3. Leakage resilient cryptography

takes k, ¢, a, n and t as input and outputs either the decrypted message m or the invalid
symbol L if the tag is incorrect.

Enc:kxmxaxn (ct)
Dec:kxexaxnxt—mU.L

AEAD schemes can be implemented using dedicated constructions or build from com-
mon primitives such as block ciphers and MACs through generic composition. In order
to utilize the presented LR-PRFs, we make use of the results of Krimer and Struck [53].
In their work they revisit the so called FGHF’ construction that was proposed by
Degabriele et al. [20] in the context of sponge based constructions. The FGHF' con-
struction is a composition LR-AEAD scheme and comprises four building blocks: Two
functions I and F’, a PRG G and a hash function H. An overview of the FGHF’
scheme is shown in Fig. 3.7. It comprises of two parts: (1) encryption using F' to gen-
erate the seed for the PRG G, which generates the key stream and (2) authentication
using the hash H to condense a variable length input into a fixed length input to F”
which calculates the tag. Note that the key k in this case consists of two keys k.. and
kmae which are used for the stream cipher and MAC part of the scheme, respectively.

m
n > F —> G () » C
kenc T
» H > F’ >t
a >
kmac T

Figure 3.7.: LR-AEAD implementation (adapted from [53]).

In order for the construction to be leakage resilient, the security analysis of De-
gabriele et al. originally requires both F' and F’ to be pseudorandom under leakage
and F’ to be unpredictable under leakage in addition. Note that without considering
leakage these two notions imply each other, but under side-channel leakage this is not
the case as discussed in e.g. [53]. The hash function and PRG can be instantiated with
unprotected primitives. However, the security analysis in [20] implies that the PRG
resists SPA attacks. This requirement is intuitively clear since leaking the seed of the
PRG would allow an attacker to recreate the key stream and decrypt the message.

Kramer and Struck simplify the security notion and show that for the FGHF’ con-
struction unpredictability under leakage of F” is actually not required and that both F'
and F’ can be implemented using LR-PRF's. In the context of our work, this allows us to
use one of the AES based LR-PRF that are introduced in this chapter as building block
for both F and F’. The PRG G can be implemented using the AES based LR-PRG of

34

3.3. Leakage resilient authenticated encryption from LR-PRFs

Standaert et al. [92] (Fig. 3.6). We discuss the security implication of using this block
cipher based construction for GG in the case study presented in Section 7.4.3. The hash
function H, e.g. SHA-256, can either be realized using hardware accelerators, if they
are present, or implemented in software. Since it does not process sensitive inputs, no
side-channel resistance is required.

35

4. High precision EM Analysis of
LR-PRFs

In Section 3.2.2 we discussed the theoretical side-channel security of the CHES 2012
and ASTACRYPT 2016 LR-PRFs [65, 66] and established that the practical security
level depends on overlapping leakage of S-boxes and effects caused by limited data com-
plexity. This chapter evaluates, whether these assumptions hold against high precision
EM analysis. We implemented the CHES 2012 LR-PRF on a Xilinx Spartan 6 FPGA
and provide results from template attacks on the S-boxes of the first AES round and
for different configurations of the LR-PRF regarding the data complexity. We describe
the implementation and measurement setup in Section4.1 and the results of the side-
channel evaluation in Section4.2. When comparing results acquired from power traces
with results from high precision EM analysis, we find that the countermeasure is ef-
fective against power analysis attacks. However, in case of EM analysis the maximum
achievable security level is only 20 bits. In an attempt to increase the algorithmic noise
of S-boxes, the experiment was repeated with different hardware placement and rout-
ing. In this design, the S-boxes are implemented as hard macros with equal internal
structure and placed closely together. We find that this increases the security level, but
the maximum is still only 48 bits which is in range of brute force attacks and, thus, not
acceptable.

4.1. Hardware design and measurement setup

This section describes the hardware design of the LR-PRF and the power and EM
measurement setup that was used to acquire the traces.

4.1.1. LR-PRF hardware design

For the implementation of the CHES 2012 LR-PRF test design, we used a Xilinx Spar-
tan 6 XC6SLX9-3TQG144C FPGA manufactured in a 45 nm process technology. A con-
trol state machine reads the input in chunks of n bit (depending on the configured data
complexity) and generates the plaintext inputs to the block cipher by replicating those
bits, thus fulfilling the ‘carefully chosen plaintexts’ condition (Fig. 4.1). This method
saves registers because it is not necessary to pre-compute and store the plaintexts if they
are generated on the fly by replication.

At the core of the LR-PRF is an AES block cipher in electronic codebook (ECB) mode.
As parallelism in the S-boxes is required by the LR-PRF, we implemented a fully parallel

37

4. High precision EM Analysis of LR-PRFs

1% n bits { 2" n bits Last n bits
(e.g. 1/2/4)

replicate replicate replicate
128 bits 128 bits 128 bits

Block Cipher Block Cipher Block Cipher

— PRF,(X)

Figure 4.1.: Generation of carefully chosen inputs by replication of input bits.

AES-128 as shown in Fig. 4.2. The design comprises 16 parallel Canright S-boxes [13]
in the datapath and 4 additional S-boxes in the key schedule which are all operating at
the same time. We used Canright S-boxes because only S-boxes synthesized from logic
gates allow the required placement flexibility, contrary to RAM-based S-Box designs.
Also, Canright’s proposal is state of the art when implementing S-boxes efficiently in
combinational logic. Each AES round takes one clock cycle and the intermediate state
is stored in a 128 bit wide register.

Key Schedule

SBox 0

round- .o |sBox 1] ...
key

Box 2
key SBox

SBox 3

AddRoundKey SubBytes ShiftRows MixColumns

N =
piin D state |

ot
l-.

cipher
text

Figure 4.2.: AES hardware design.

We synthesized the design in two ways, (1) without any routing constraints, and
(2) with the 16 S-boxes in the datapath implemented as hard-macros and placed as dense
as possible. Since the S-boxes in the key schedule are not targeted by our differential
attacks, we let them be placed without constraints. The unconstrained design is spread
evenly over most of the FPGA die surface and the area covered by the logic is roughly
3mm by 3mm large. For the densely placed design, we first placed and routed one
S-box as depicted in Fig. 4.3. Then we utilized Xilinx’s relative location (RLOC) and

38

4.1. Hardware design and measurement setup

area constraints to clone and place this 'hard-macro’ as dense as possible (Fig. 4.4).
This is intended to help fulfilling the equal leakage assumption (all S-boxes should have
identical leakage functions, c.f. Section 3.2) of the S-boxes as closely as possible because
S-boxes are equal to a higher degree (apart from the routing to/from the S-box) and
the area is generally smaller, which should make localized EM attacks more difficult. In
addition, we constrained the placement of the rest of the AES to a confined area (black
box in Fig. 4.4) in an attempt to make the routing to the mix-columns logic as short
as possible. Based on the reports of the design tools, the estimated die area occupied
by the AES is about 0.5mm? For both placement options, we synthesized designs
with data complexity 2 and data complexity 16. To avoid synthesizing logic overhead
for the configuration of the data complexity this parameter is first set at synthesis
time. As a result, we generated and analyzed four different hardware configurations (i.e.
bitstreams).

The design is controlled over a RS232 serial interface and outputs a trigger signal for
the oscilloscope before the beginning of every encryption. In addition to being used as
part of the LR-PRF, the AES core can also be used alone in OFB mode. This allows
the encryption of arbitrary plaintexts regardless of the configured data complexity and
is used during the profiling phase of the template attack. We emphasize that the block
cipher core remains the same (it shares the same hardware), only the inputs are different
between the two modes. OFB mode was chosen over, e.g., ECB mode because the output
of one iteration is fed back and XORed with the plaintext as input to the next iteration.
In order to observe (pseudo-)random plaintext encryptions it suffices to initialize the
mode with one random plaintext and then keep the plaintext of consecutive rounds
zero. This is used to significantly speed up trace acquisition during profiling: Only the
initial plaintext is sent over the serial interface, all other plaintexts are generated on-chip
inherent to the mode of operation. For each encryption, only a start command is sent
and the ciphertext is received. To ensure that control PC and the FPGA are still in sync,
the ciphertext is compared to the expected result. This additional standalone mode of
the AES is only included to speed up trace acquisition for the security evaluation. On
a real device, which does not allow direct access to the AES, the profiling step can
be conducted by varying the key instead of the plaintext. This also randomizes the
inputs to the S-box, but requires that a new key is set for every iteration, which leads
to additional communication overhead.

4.1.2. Measurement setup

The parallelism of S-boxes and their desired equal leakage characteristics are crucial to
the effectiveness of the original construction. Thus a high precision EM measurement
setup is especially relevant. Our assumption is that the localization capability allows a
spatial separation of the leakage of the individual S-boxes and the exploitation of even
subtle differences in their characteristics. We use a state of the art high-end setup with
a Langer ICR HH 100-27 100 pm diameter EM probe which is positioned about 10 pm
over the decapsulated die surface (similar to the setup shown in Fig. 2.3). In addition
to the built-in 30 dB amplifier of the probe, another Langer PA303 30 dB pre-amplifier

39

4. High precision EM Analysis of LR-PRFs

| e 1o | [P R il FFIE T :
C Oe o Zn de e v [N I R CeOr 00 .
(N1 1 I I I e I} o rs
i mI =0 a3 mu T Trl orenens
[N 1 1 o N LoL X
0l Zn O 32 @3 ZiC| Cooioe .
mi -0« TN 17 mm “ir Cerer N
[T R S T I N T TR Lol b .
ol e 1130 1 2 JrZ Zic LoD O .
mi = T 71nl 1- MW~ Zir| remems
[NI 1 I L [(I IR ,
Zk Qdn 130 j Q3 Z ZiC C: OO .
_n 1 - 110 4 _ [[I OO Oy .
C mI =0 1A 3171 MW TIr| fenem :
1 [N 1 1 o i Lo Ll L
C ol Zh 130 i Oz ZiC CC O
r ma = TR 17 M Tir monem
“n mi = 1710 1- MW~ Tir| remem
] [T T T U A i [T N
o1 Zn 3ol 31 o ZiC C: OO
m1 T 1 N et
g _n ul a1 - W_ _vLfoLowuy
o3 e T30 Ju | o e [} ZiC C-O:0O1
e 1 I [‘lll. ||_ il (R RER AR
U o [T Urdr o Ly Lo
o3 e T30 1z ar ZiC C:Or 0O
(NI 1 I [mn il e e
C Ll | Ll | Ll L LoLe
v o1 -+ 1 10| 1 -1 ma- JJry ooneme
b el 1 | [1l | Foolie
T W3 e 110 J_.AE_I.S__L CoDoD
C W1 e Joloa e Toraro Zjol oo
Zt _n [y e Zfoyp Cooooe
il &Fu g:@ mu= e remene
' I ~ o 1 [RNID
" e (e [y) A oz ZfjcC LoD O
T e N o e B B s T rp renerm
; o w1 [NTRS TR NI TR RN
T 0 12| ooz ZjC C:OrO¢
sy w0l 1 s maZ Zjcl coooo
. -] [N 1 LU e
';%JZ 1 o3z ZJC C: OO
T i 1 mm - r rener
[ATI S I TN TR S B [N TR NI TR RN
L [L] J uear - L Lot
1 0 g o3z ZjC C:O:Ov
] v mon I [AENAEND
|2 - e . I Lt
G] T T C|oy Ceoemn
I g;_ mon 1 (IR
] B b or L LoD O
T T TS om T el renene
j 0 - | p [T 1 (RN
-ﬁr o 1 Lo Ll L
Zu Al . _} Qo Zjc) Cooooe
i T e T e Y O [Tl N BN e P ol
_n 1 —v 1 T] O - L LoLn e
C ol e 1130 i [n [[C-O-O¢
“r mT ~s T 1~ MW" TR T
ma i T 1 m B s s
[TR T I [(R L Y TN R
o3 e T30 R [n e [OO O
[e 100 #o0n (B s 1 vl [RERRERNL]
L e JF 0 d¢ v 0 dE L Lyt

Figure 4.4.: Position of 16 S-boxes on the floorplan of the Xilinx Spartan 6 FPGA. The
entire AES is placed within the black box.

40

4.2. Side-channel evaluation of CHES 2012 LR-PRF on Xilinx Spartan 6 FPGA

is employed. A LeCroy WavePro 725Zi oscilloscope with 2.5 GHz bandwidth and a
sampling rate of 5 GS/s records the measurements. The FPGA-based design is clocked
at 20MHz and this clock is synchronized to the oscilloscope. An X-Y-table is used
to collect measurements on multiple locations over the die surface. The measurement
positions are located within an area of about 2.8 mm by 2.8 mm, which covers most, but
not all of the floorplan because the probe movement is limited by the bonding wires.
This setup was chosen to examine the effectiveness of the algorithmic noise against a
measurement setup with high localization capabilities. Therefore it allows for a worst-
case analysis of the achieved security level.

4.2. Side-channel evaluation of CHES 2012 LR-PRF on
Xilinx Spartan 6 FPGA

The goal of this section is to analyze the effect of the unique spatial localization capa-
bilities of near-field EM measurements on the security of the LR-PRF. The idea is to
isolate the leakage of an individual S-box by placing the probe at the location where this
S-box’s leakage is high. If this succeeds, then the algorithmic noise and carefully chosen
inputs are rendered ineffective and an attack is possible by moving the probe from S-box
to S-box and attacking them separately. Our analysis is thus split into three tasks: (1)
the localization of the measurement locations with the maximum SNR for each S-box,
(2) the profiling phase, and (3), the attack phase.

It is common practice to allow profiling for a meaningful implementation security
analysis which represents a scenario where adversaries may use their own devices where
they could choose keys for profiling. In this profiled setting, the adversary is able to
compute all internal states of the implementation.

Both calculating the SNR and profiling the templates for individual S-boxes requires
control over the inputs to the S-boxes. For evaluation purposes, we achieve this by using
the AES in a regular block cipher mode where we can set the plaintext and key. In the
real LR-PRF implementation the control over the inputs is very limited. The only way
an attacker can observe all values at the S-boxes is by changing (and knowing) the key,
which is only possible if a device with unconstrained access is available.

4.2.1. Identifying locations of interest

Finding the location with the maximum leakage for each S-box is the most time con-
suming task of the attack since it requires a full scan of the die surface. Considering that
the measurement time grows quadratically when reducing the step size, we partitioned
the measurement area in a grid of 20x20 for the unconstrained design and 40x40 for
the dense design, which corresponds to a step size of 140 pm and 70 pm, respectively.
We used a larger step size for the unconstrained design since we expect the logic of the
S-boxes to be spread over a bigger area. At each location, we acquired 10,000 traces
with the AES in OFB mode and random inputs. With our setup, the measurement takes
roughly one day for the 20x20 grid and four days for the finer grid. At each location

41

4. High precision EM Analysis of LR-PRFs

we calculated the SNR for each of the S-boxes in the data path. The result is a trace of
many SNR values (SNR trace) which we evaluated within the timespan where the first
AES round is computed. In our case one clock cycle corresponds to 250 samples, and
the interesting part, i.e. the part where there is activity after the clock edge, is around
50 samples (10 ns) wide. A detailed discussion of the SNR traces and the leakage behav-
ior is given in Chapter 5, for now we are only concerned with finding the best possible
attack. There are several options how to chose locations from this part of the SNR trace.
We found that in some cases, the locations with the highest peak SNR value gave the
best results, and in others, the locations with the highest mean SNR (calculated over
the 50 samples in the interesting region of the SNR trace) performed better. In cases
where those metrics gave different locations or were ambiguous due to multiple peaks
of similar amplitude, we conducted the rest of the analysis on all such locations for this
S-box and kept the best result.

0 48 ° 0.64

2 0.56

5 36 10 0.48

30 15 0.40

10 24 20 0.32
1.8 25 0.24

15 1.2 30 0.16
06 35 0.08

0 5 10 15 00

10 15 20 25 30 35

(a) Unconstrained placement. (b) Dense hard-macro placement.

Figure 4.5.: SNR heat maps for S-box #0 with different placements.

Using the SNR analysis, we were able to localize useful measurement locations for all
S-boxes. Figure 4.5 shows one example SNR heat map of S-box 0 on the two different
placements of the design with data complexity 2. An overview of the heat maps of all
S-boxes is found in Figs. A.1 and A.2 in the appendix. Each colored pixel represents the
peak SNR value of the SNR trace at that measurement location for this S-box. In both
maps, regions with the highest SNR are clearly distinguishable and most likely corre-
spond to the actual physical location of the logic of S-box 0. An important observation
is that the SNR values of the design with the densely placed hard-macro S-boxes are -
on average - by a factor of 2 smaller than the ones from the unconstrained placement.
The average peak SNR of the S-boxes on the dense placement is 0.87, compared to
1.61 on the unconstrained placement. In the example shown in Fig. 4.5 the difference
is even higher, with a SNR over 4.8 on the unconstrained placement and only 0.64 on
the dense placement. In the case of dense placement, where SNR values are generally
smaller, there are multiple locations which exhibit a relatively high SNR. As described
earlier, we evaluated all such locations for the corresponding S-box in the attack instead

42

4.2. Side-channel evaluation of CHES 2012 LR-PRF on Xilinx Spartan 6 FPGA

of choosing just one, which increased the measurement time of the attack.

4.2.2. Template attack with limited data complexity

Next, we mount template attacks on the S-box calculations of the first AES round
at their respective locations. In two separate acquisition campaigns, we collected the
profiling and attack traces. We performed profiling using the block cipher in OFB mode
of operation instead of the LR-PRF mode. The attack traces, contrarily, were acquired
in LR-PRF mode with limited data complexity, i.e., 16 for n = 4, and 2 for n = 1.
For both the profiling and attack phases, traces are acquired at all previously identified
locations. Therefore at least 2-16 sets of traces are collected (more if there is ambiguity
regarding the best location due to similar SNR). During the attack each S-box is profiled
and attacked at its own location. In practice, this requires moving the probe between
the locations and restarting the measurement at each location. It is important to note,
that this is always possible in case of stateless constructions such as the analyzed LR-
PRF. The long-term key does not change, an attacker can always reset the entire device
to restart measurements. After acquisition, the traces are cut to contain only the time
span where the first AES round is calculated. To further reduce the number of samples
included in the templates, we use LDA [28] as dimensionality reduction algorithm.

We compute full estimated Gaussian templates for each S-box and each of their S-box
input values. As stated in Section 2.3, for LDA to be applicable, the traces belonging
to one S-box are assumed to share a common covariance matrix, regardless of the input
value. In this case, it suffices to calculate a single pooled covariance matrix for all tem-
plates belonging to one S-box. This gives a better estimate of the actual distribution
and drastically reduces the computational effort for the template matching. Our experi-
ments suggest that the assumption holds in our case and gave better results when using
the pooled matrix compared to separate covariance matrices. Thus, all our presented
attacks were conducted using pooled covariance matrices.

During the attack phase, the traces are matched against the templates in a template
based DPA. Since we are using the pooled covariance matrix, we can make use of sim-
plifications detailed in Section 2.4 and calculate the logarithmic score. To combine the
score of multiple attack traces, we sum the scores and calculate the average. This results
in a list with scores for each subkey candidate. Due to the design of the LR-PRF, the
input controlled by the attacker only has a limited effect on the actual inputs to the AES
encryption, i.e. few known bits determine the 16 byte inputs. This leads to an inevitable
template mismatch, as each template for a byte of the target variable has been profiled
while randomizing all other bytes. This is different from a regular template attack where
the input bytes can typically be chosen randomly by the attacker. Hence, in a regular
template attack the divide-and-conquer approach works better because each byte be-
haves independently of the others and the attacker may target specific bytes one at a
time. When the data complexity is limited, this separation due to uncorrelated values
is reduced. As a result, the individual bytes can no longer be attacked independently as
they are affected by each others correlated leakage. A way to counteract this is to build
larger templates that span multiple bytes, but this approach is not feasible because the

43

4. High precision EM Analysis of LR-PRFs

measurement complexity grows quadratically with the number of bits in the template.
Due to this limitation in the attack, it is expected that correct key byte candidates
are not determined without doubt and that an attacker has to try the most probable
combinations until the full key is recovered. In order to calculate the remaining security
level, we use key rank estimation as described in Section 2.5.

Table 4.1.: Estimated security levels after the attacks.

S-box placement Data complexity Estimated security level in bit
Unconstrained 2 20

Dense 2 48

Unconstrained 16 0

Dense 16 0

For the profiling phase, we used a maximum of 65,000 traces per location for the
unconstrained design and 650,000 traces for the dense design in an effort to compensate
for the lower SNR.. During the attack, up to 100,000 traces were used per S-box. Table 4.1
summarizes the results of the attacks using all available traces. With a data complexity
of 16 during the attack, all key bytes are successfully recovered (i.e. the security level is
0), regardless of the placement. This is a result which is similar to the findings of Belaid
et al. [6].

As expected, a data complexity of 2 leads to more secure results. Several subkeys are
not ranked first and consequentially, a higher security level of 20 bit remains for the
unconstrained placement case with data complexity 2. However, as an important result,
this is an obvious insufficient level of security.

The dense design improves the security significantly and provides a higher security
level of 48 bit compared to 20 bit. However, in all cases the achieved security level is
insufficient, which is the main result of our investigations. This means that a minimum
data complexity of 2 together with parallel S-boxes and carefully chosen inputs is not
suited to achieve meaningful leakage-resilient constructions, at least under the present
circumstances of a 45 nm feature size FPGA implementation.

While the security level is established to be insufficient, an interesting question is,
whether more profiling traces would further improve the attack, or whether the lower
bound is reached. We repeated the attack with different numbers of profiling traces while
using all available attack traces. The results for all designs are shown in Fig. 4.6. It
can be noted that the gain of using more traces for profiling diminishes and the security
levels seem to approach a lower bound at about 20 bit for the unconstrained, and about
48 bit for the dense design. Note that the plot for the dense design has a logarithmic
scale since it takes significantly more traces for the security level to settle. We conclude
that increasing the number of profiling traces even further seems useless and that the
efficiency of the attack is in fact limited by the leakage-resilience, and not by insufficient

44

4.2. Side-channel evaluation of CHES 2012 LR-PRF on Xilinx Spartan 6 FPGA

profiling. In other words, we expect that other uncorrelated noise sources are averaged
out sufficiently.

128
112
96
80
64
48
32
16 : : : : : f !
0 | | | | | | sl
10000 20000 30000 40000 50000 60000 100000
Profiling Traces Profiling Traces

(a) Unconstrained design. (b) Dense design.

Security Level

Figure 4.6.: Evolution of security levels with varying number of profiling traces and
maximum number of attack traces.

112 [roemmmmmmebemm b n=1 ——

Security Level
Security Level

1 10 100 1000 10000 1 10 100 1000 10000
Attack Traces Attack Traces
(a) Unconstrained design. (b) Dense design.

Figure 4.7.: Evolution of security levels with varying number of attack traces and max-
imum number of profiling traces.

In a similar manner, we investigated the number of traces required for the attack. In
a real-world scenario, adversaries may have full access to one device for profiling, but
limited access to the attacked device. Figure 4.7 shows the influence of the number of
attack traces on the security level when using templates built from the maximum number
of available profiling traces (65k and 650k, respectively). As an interesting observation,
we report that the security level seems to reach its lower bound after only about 100
and 1,000 attack traces for the unconstrained and dense design, which is a surprisingly
low number. Hence we conclude, that the remaining entropy is actually caused by the
leakage resilience of the construction, and not by a lack of traces.

To verify the efficiency of the leakage-resilient construction against regular power
attacks, we also conducted a template attack where we measured the global power con-
sumption over a resistor in the power line with a differential probe. For increased SNR,

45

4. High precision EM Analysis of LR-PRFs

all capacities were removed from the board. Despite using 1,000,000 profiling traces,
the attack fails to result in any significant reduction of the security level. Interestingly,
the correct subkeys were not even ranked highly but instead were distributed evenly
across the subkey list. This is far from optimal for the attacker, ideally the correct
subkeys would be ranked in the first 16 locations in all subkey lists and leave only the
permutation complexity for the enumeration of the whole key. For the case of unlimited
data complexity, i.e., when using the AES in a standard mode of operation like OFB
mode, we report that an univariate CPA using the Hamming distance leakage model
already succeeds with 20,000 traces. The Hamming distance model was chosen as the
implementation does not exhibit leakage for the Hamming weight model. Even though
this aspect was not the focus of our research, this discrepancy is an encouraging result
when adversaries are limited to global (power) attacks.

4.3. Summary

Our results demonstrate that the achieved security level of the CHES 2012 AES-based
LR-PRF employing minimum data complexity and S-box parallelism is insufficient in
the high precision EM scenario, at least in cases similar to our FPGA with 45 nm feature
size. In particular, we were able to isolate the leakage of individual S-boxes and attack
them separately using LDA-based, profiled, multivariate attacks. This proves that with
this setup ‘equally leaking’ and ‘correlated algorithmic noise’ assumptions no longer
hold. We were able to completely recover the correct key for all designs with data
complexity 16. A data complexity of 2 proved to be more resilient, but we were still
able to reduce the security level to 20 bit and 48 bit for the unconstrained and dense
placement, respectively. For power analysis attacks, in contrast, we found that the
countermeasure works efficiently.

These results also extend to the ASTACRYPT 2016 LR-PRF if implemented on similar
FPGA platforms. As discussed in Section 3.2.2, the plaintexts which are encrypted inside
the GGM tree are secret and generated by an LR-PRG. The attack vector is therefore
shifted to the LR-PRG. Attacks on the LR-PRG are always 2-limited by construction
and thus the outcome corresponds to the results for data complexity 2 in case of the
CHES 2012 LR-~PRF. In conclusion, both proposals are vulnerable to high precision EM
attacks if no further measures are taken.

46

5. Understanding how high precision
EM attacks break LR-PRFs

The previous chapter provided results of a profiled attack against the CHES 2012 LR-
PRF and by inference the ASTACRYPT 2016 LR-PRF and established that they cannot
withstand high precision EM attacks on the analyzed FPGA platform. This chapter
takes a deeper look at the effects that enable such a successful attack. We compare
the leakage behavior in case of power and EM measurements and the distribution of
the leakage across the time samples in Section5.1 and 5.2. Additionally, we analyze
the leakage distribution before and after LDA transformation. The main result is, that
EM measurements are capable of separating the leakage of different S-boxes in part
due to their high temporal resolution and not only, as previously suspected, due to the
spatial positioning of the probe over the chip. This is a challenging result for hardware
designers, because tiny timing differences in signal propagation are hard to control,
especially on devices with limited control over the hardware layout such as FPGAs. To
further explore the effect of parallel S-boxes, we provide results from simulated attacks
for different leakage models in Section5.3. We find that for low data complexities, all
evaluated leakage functions of the S-boxes lead to very similar results. In those cases,
designers can disregard the ‘equal leakage’ design paradigm and instead place S-boxes
as densely as possible. Dense placement should lead to more temporal (and spatial)
overlap of the S-box leakages and to a degree hinder temporal separation through EM
probes. However, for strong security guarantees against high precision attacks it seems
unavoidable to improve the construction. Thus, we use these insights and propose an
improved LR-PRF in Chapter 6 that uses additional key entropy to compensate for losses
due to side-channel attacks.

5.1. Leakage resilience holds with current measurements

Before analyzing the reasons why EM measurements break leakage-resilient construc-
tions, we look at the case of current measurements. For such measurements, we reported
in Section 4.2.2 that template attacks are not successful and do not lead to a significant
reduction in key entropy. This means that the algorithmic noise from the parallel hard-
ware and the limited data complexity work as intended. In other words, the algorithmic
noise from the respective other S-boxes makes attacks on individual S-boxes infeasible.

Naturally, with current measurements, there is only one measurement location and
set of traces. Figure 5.1a shows the SNR traces, calculated as explained in Section 2.3,
of all 16 S-boxes around the time where the S-box function of the first AES round

47

5. Understanding how high precision EM attacks break LR-PRFs

0.05

S-box 0 ——
S-box1 —
S-box 2 —
0.04 S-box 3 ——
S-box 4 —
0.03
o -
=2
Z -
0.02 —
0.01 :
0 f T T T T T 1
450 500 550 600 650 700 750
Samples
(a) SNR in current measurement.
0.14 4 0.14 4
S-box 0 —— S-box 0 ——
0.12 1 Shoxr — 0.12 | Shoxr —
S-box 3 —— S-box 3 ——
S-box 4 —— S-box 4 ———
0.1 s-bgisi 0.1 s-bgisi
S-box 6 —— S-box 6 ——
B S-box 7 —— B S-box 7 ——
o 0.08 S_ggzs o 0.08 s.gﬁis —
®0.06 shorlo - 410,06 - shox 10 ——
S-box 11 ——— ’/ \ g-gox E e
S-box 12 —— Al - R
0.04 S-bg: 13 —— 0.04 FAN S-bE: 13 ——
S-box 14 ——— A S-box 14 ———
0.02 S-box 15 ——— 0.02 1 S-box 15 ———
0 0
0 5 10 15 20 10 15 20
LDA dimensions LDA dimensions
(b) SNR after LDA transformation in subspace (c) SNR after LDA transformation in subspace
calculated for S-box 0 in red. calculated for S-box 10 in red.
Others blue. Others blue.

Figure 5.1.: SNR of S-boxes before and after LDA transformation.

is computed. One clock cycle takes 250 samples and the positive edge of the clock
approximately occurs at sample number 460. The signals of all S-boxes stretch over a
time period which is almost the entire clock cycle. This is expected with such kinds of
measurements due to the high amount of parasitic capacitances and inductivities which
low-pass filter the signal. Most importantly, we note that the signals of most S-boxes
are uniform in shape and amplitude and that the maximum SNR values of about 0.01
to 0.02 are relatively low. The only outlier is S-box 10 which shows similar shape but
slightly higher SNR of 0.035. The reasons for this are unknown and most probably based
on specifics of the placement in the FPGA fabric. We did not further investigate since
the attack was ultimately not successful despite the increased SNR. The fact that all
S-boxes emit their signal at about the same time means that every S-box will effectively
produce noise for every other S-box, thus, leading to the generally low SNR. This is
exactly what the construction was meant to achieve.

48

5.2. Leakage resilience fails against high-resolution EM measurements

Furthermore, we inspect the SNR after LDA transformation for two cases. One case is
S-box number 10 which exhibits the highest SNR values as observed from Fig. 5.1a. The
other case is S-box number 0, which is one of the S-boxes from the group that exhibits
similar SNR values. Figure 5.1b and 5.1c¢ depict the SNR values after LDA for these
two cases. The signal of the targeted S-box is plotted in red, while the signals of the
other S-boxes are plotted in blue. It is important to note that for each individual figure,
first the LDA transformation that fits the signal of the targeted S-box is calculated
and applied to the traces. Then the SNR of all S-boxes is calculated in that subspace.
The expectation is that in this subspace the SNR of the S-box for which the LDA
transformation was calculated is maximized and other signals are suppressed. The case
of S-box 0 in Fig. 5.1b is representative of the most frequent situation and shows that
the signals of all S-boxes are in a similar range. Hence, the targeted signal of S-box 0 is
similar or even lower than the signals of the other S-boxes which produce noise. Even
the single best case of S-box 10 in Fig. 5.1c shows that the signals of the other S-boxes
are relatively high (at approximately % to % of S-box 10) which also leads to significant
noise for this best case. With respect to the LDA transformation this means that the
subspace fails to separate signal contributions of different S-boxes. The reason can be
observed from Fig. 5.1a: All S-boxes leak at the same time samples, thus rendering it
impossible for the LDA transformation to find a linear combination that separate them.
This explains why attacks in such cases are unsuccessful, i.e. the algorithmic noise works
as intended.

5.2. Leakage resilience fails against high-resolution EM
measurements

The goal of this section is to explain why the parallelism of S-boxes for leakage resilience
fails when using localized EM measurements. A natural assumption is that the high
precision setup would lead to measurements where, at the location of a specific S-box,
only this S-box exhibits a high SNR while all others exhibit negligible SNR. We show
that this is rarely the case, therefore we need another explanation.

We use the EM grid scan measurements from Section 4.2 and select the LOI for each
S-box based on the SNR as described previously. Out of the four different designs we
evaluated earlier we now restrict analysis to the case of data complexity 2 and dense
hard-macro placement. This design configuration is the most resilient to attacks, but
still vulnerable. Figure 5.2 shows the physical placement locations of the S-boxes on the
FPGA floorplan in Fig. 5.2a and the best measurement locations of the same S-boxes
(LOIs) in Fig. 5.2b. The measurement positions are shown as a grid within a quadratic
area of about 7.8 mm? in between the bonding wires of the decapsulated FPGA. It is
hard to match the two areas exactly, but the measurement grid (right) covers most of
the floorplan (left). Since the positioning of the probe is limited by the bonding wires, a
small margin around the edges cannot be covered. However, we cannot determine exactly
which areas of the floorplan are left out and how well the floorplan actually represents

49

5. Understanding how high precision EM attacks break LR-PRFs

iz E T EH HH B B EH il
:
=
e
(£
XOV3 |
T =
|| EE Omm 2.8mm _
- - > S
alk: [3
Hi— = oo
e e | H
' [l o
FE] [E
Rad 1 =]
T 15 @ 3) ©
: =
5 || 5 e = i
= | e = aa:
- B CIER oS
sl - E ; = ™
- . - o @ ©
el analllan \ H i @ 3
xovo [@ [T TT 11 3
(a) Placement on FPGA. (b) Measurement locations (LOIs).

Figure 5.2.: Placement of S-boxes compared to resulting measurement locations.

the physical layout and hence refrain from overlaying the grid over the floorplan. What
is interesting while comparing the two figures is that apart from a general similarity
that all S-boxes are situated and measured on the lower left, there is no reasonable
placement-to-measurement correspondence. This already hints that we measure signals
at the LOIs which have propagated through the circuit from their origin in the S-box,
e.g. through the power grid.

Figure 5.3 depicts the SNR of all S-boxes at four LOIs, which have been selected to be
best for S-boxes 15, 10, 0, and 2. The four shown cases are representative of the 16 LOIs
in total which are given in the appendix in Figs. A.3 and A.4. The figures each show
the SNR of the targeted S-box in red and the SNR of all other S-boxes in blue. As a
first observation it should be noted that all detectable signals extend over a significantly
shorter time period compared to the power analysis. Specifically, they extend over about
50 time samples which corresponds to a time span of 10ns. This is short compared to
the clock cycle duration of 50ns (250 samples). In fact, it is close to the critical path
delay of 15 ns reported by the synthesis tool. This is similar to the findings of Heyszl et
al. [43] and confirms that there are only a few parasitics in the measurement chain.

As an important observation, the SNR values in Fig. 5.3 are very high compared

20

5.2. Leakage resilience fails against high-resolution EM measurements

1.2 S-box 0 —— 1.2 S-box 0
S-box 1 —— S-box 1
1 S-box 2 —— S-box 2
S-box 3 —— S-box 3
S-box 4 —— S-box 4
S-box 5 —— "
0.8 Shoxs —— Shoxs
o S-box 7 —— S-box 7
= 06 S-box 8 —— S-box 8
n S-box 9 —— S-box 9
S-box 10 —— S-box 10 ——
0.4 S-box 11 —— S-box 11 ——
. S-box 12 —— S-box 12 ——
S-box 13 —— S-box 13 ——
S-box 14 —— S-box 14 ——
0.2 S-box 15 ——— S-box 15 ——
0 A Ao
460 480 500 520 540 460 480 500 520 540
Samples Samples
(a) LOI of S-box 15. (b) LOI of S-box 10.
12 S-box 0 12 S-box 0
S-box 1 S-box 1
1 S-box 2 1 S-box 2 ——
S-box 3 S-box 3 ——
S-box 4 S-box 4 ——
S-box 5 S-box 5 ——
0.8 Sbox 6 Sbox 6 ——
o S-box 7 S-box 7 ——
= 0.6 S-box 8 S-box 8 ——
0 S-box 9 S-box 9 ——
S-box 10 —— S-box 10 ——
0.4 S-box 11 —— S-box 11 ——
. S-box 12 —— S-box 12 ——
S-box 13 —— S-box 13 ——
S-box 14 —— S-box 14 ——
02 oAl e — e —
0 T : : T : 0 : : : . T
460 480 500 520 540 460 480 500 520 540
Samples Samples
(¢) LOI of S-box 0. (d) LOI of S-box 2.

Figure 5.3.: SNRs at four LOIs of targeted S-boxes (red). Others in blue.

to the results from the current measurement in Fig. 5.1a. The SNR reaches values of
1.2, compared to the maximum of 0.035 which was observed for current measurements.
Figure 5.3a depicts the situation of S-box 15 which confirms the assumption, that an
isolation of S-box signals can, in cases, be achieved through location-dependence. The
SNR of S-box 15 is high while the SNR of the other S-boxes is minimal. The case of
S-box 10 in Fig. 5.3b is very different. The SNR of this S-box is again isolated, but only
at a certain and precise time. There are times (sample points), where the SNR of other
S-boxes is also significant. But at the time samples where the SNR of S-box 10 is highest
the others tend to zero. Figure 5.3¢c and 5.3d depict more cases where there is a strong
overlap of signals from different S-boxes. However, again, at certain time-samples the
SNR of other S-boxes is small compared to the SNR of the targeted S-box.

In order to make visual inspection easier, we provide the SNR after LDA in Fig. 5.4.
It can generally be noted how LDA compresses the available SNR into the highest
dimensions. Unsurprisingly, in cases where the separation, in terms of relative proportion
of targeted signal to the other signals, before the LDA transformation has already been
high, this becomes significantly more visible after LDA. Figure 5.4a depicts S-box 15
and Fig. 5.4b depicts S-box 10. The high SNR values of the targeted S-boxes, 2.5 and
1.3, and very low SNR values of the other S-boxes in the first dimensions are significant
and lead to the assumption that attacks on these S-boxes will succeed with very high

o1

5. Understanding how high precision EM attacks break LR-PRFs

2.5 2.5
S-box 0 —— S-box 0 ——
S-box 1 —— S-box 1 ——
S-box 2 —— S-box 2 ——
2 S»bg: 3 — 2 S-bg: 3 —
S-box 4 —— S-box 4 ——
S-box 5 —— S-box 5 ——
15 Freol— 15 Frol—
< S-box 8 —— < S-box 8 ——
) S-box 9 —— 0 S-box 9 ——
1 Shox1) —— 1 For—
-box _ -box N
S-box 12 —— S-box 12 ——
S-box 13 —— S-box 13 ——
0.5 S-box 14 —— 0.5 S-box 14 ——
S-box 15 ——— S-box 15 ———
0 0
0 5 10 15 20 0 5 10 15 20
LDA dimensions LDA dimensions
(a) LOI of S-box 15. (b) LOIT of S-box 10.
2.5 2.5
S-box 0 — S-box 0 ——
S-box 1 —— S-box 1 ——
S-box 2 —— S-box 2 ——
2 S-box 3 —— 2 S-box 3 ——
S-box 4 —— S-box 4 ——
s-bg: 5 —— vaE: 5 ——
S-box 6 ——— S-box 6 ———
” 1.5 S»bg:7— " 1.5 S»bg§7—
= S-box 8 —— = S-box 8 ——
) S-box 9 —— 0 S-box 9 ——
1 Shox1l —— 1 Shox1) ——
-box _ -box N
S-box 12 —— S-box 12 ——
0.5 ook yu— 0.5 ool —
. -DOX — . -DOX —
S-box 15 ——— S-box 15 ———
0 0 @Aﬁ‘
0 5 10 15 20 0 5 10 15 20
LDA dimensions LDA dimensions
(c) LOT of S-box 0. (d) LOT of S-box 2.

Figure 5.4.: SNRs after LDA at four LOIs of targeted S-boxes (red). Others in blue.

probabilities. However, also for S-box 0 in Fig. 5.4c the proportion of its signal to other
signals seems exploitable in this view, despite the overlap in the time domain. Even for
the case of S-box 2 in Fig. 5.4d the LDA-transformed SNR hints that there is exploitable
SNR.

SNR over different locations and time

In order to examine the leakage behavior of one S-box when observed at different mea-
surement locations, we consider the SNR of S-box 6 as an example. Specifically, we
analyze the SNR at several LOIs of other S-boxes. The selected positions are depicted
in Fig. 5.5b. The SNR of S-box 6 at those positions is shown in Fig. 5.5a. It can be
observed, that the SNR reaches higher values as observed in current measurements at
all positions. Depending on the location, it appears in different amplitude and different
shape over time. In other words, one S-box exhibits very different leakage behavior when
observed from different measurement locations.

Discussion

The most important observation from our analysis is that the leakage signals of dif-
ferent S-boxes are very different when observed with high precision, low-parasitic EM

52

5.2. Leakage resilience fails against high-resolution EM measurements

Omm 2.8mm
X 3
Yl 3
0.4 i
@location of S-box 0 ——
location of S-box 1 ———
0.35 Glocation of S-box 3
@location of S-box 5 ——
0.3 @location of S-box 6 ———
@location of S-box 11
0.25
o
5) 0.2
0.15 ® ©
®
0.1
0.05
oo © (6]
0 T T T T T N
460 480 500 520 540 %°
Samples i €)INNNNENNNE NN RN RN 3
(a) SNR of S-box 6 at different locations. (b) Measurement locations.

Figure 5.5.: SNR of S-box 6 at different locations.

measurements. This difference is especially remarkable since the S-boxes were carefully
designed with equal internal structure and routing. The leakage signal of different S-
boxes is in fact detectable at different time samples within a very short time range. To
the best of our knowledge, the reasons are within-circuit signal propagation delays, or
race-conditions. Hence, depending on circuit differences and depending on the position
of the measurement relative to the source of the signals which propagate through the
circuit, the timing of different S-boxes is different. As an important insight, we derive
that a successful isolation of S-box signals is partly due to the timing of their propaga-
tion over the circuit. Hence, the success of attacks on parallel constructions should not
be solely attributed to spatial isolation. In fact, a combination of spatial and temporal
separation leads to exploitable leakage with distribution over time being dependent on
the measurement location. In addition, we found that the leakage behavior of an S-box
changes significantly if the measurement probe is moved to another location.

An interesting question is whether these effects are captured by the leakage models
that are fundamental to the theoretical security of leakage resilient constructions. If not,
then the modeling is obviously incapable of matching the reality and proofs conducted
under such assumptions would not bear any meaning. In this matter we recall the
OCL model of Micali and Reyzin as an example. The theoretical leakage model has the
measurement apparatus as an input to the leakage function. Therefore localized EM
attacks can be reflected in the model by having the position of the probe as an input
to the leakage function. Then, the result of the leakage function changes according to
positioning. We conclude that it is in general possible to capture the observed effects in
formal leakage models. Even so, this example shows the dangers of relying on wrongly
made assumptions about the leakageS.

6As far as we know there is no formal security proof that takes the equal leakage and correlated noise
into consideration, the discussion in [65] is more informal.

53

5. Understanding how high precision EM attacks break LR-PRFs

However, our results make us question if equally leaking S-boxes can ever be achieved
in practice. The hardware design would need to be constructed in a way where at all
measurement locations every S-box exhibits the same leakage 7. Such a design is only
imaginable in a technology where the feature size is small enough such that no differences
between S-boxes can be resolved by the EM probe. Additionally, all wires to and from
the critical logic need to be densely packed and the timing strictly controlled to guarantee
that all leakage is in sync and overlaps. This seems hard to achieve with an application
specific integrated circuit (ASIC) design and even harder on FPGA devices where the
internal routing options are limited by the given function blocks of the configurable logic.

5.3. Effect of different leakage functions in cases with
low data complexity

Our EM measurements clearly show that the leakage of the S-boxes is separable because
their signals do not overlap enough to generate effective algorithmic noise. One way
to increase signal overlap is to place the design closer together. The area occupied by
the AES in the evaluated design is dominated by the hard-macro placement of the S-
boxes, which was originally used with the intent to achieve similar leakage functions.
If the individual S-boxes were placed without this constraint, they could be placed
interleaved and packed much tighter. This would inevitably violate the equal-leakage
design paradigm, but lead to more signal overlap.

Previous contributions on the CHES 2012 LR-PRF [65] and ASTACRYPT 2016 LR-
PRF [66] also argue the security based on this equal-leakage assumption. Hence, our
question is, whether equal leakage is really required in this context or if we can sacrifice
it in exchange for tighter, interleaved placement. In this section, we show that S-boxes
do not necessarily need to have equal leakage characteristics when the data complexity
is low.

Medwed et al. [66] simulate a profiled univariate template attack on noise free traces
where the leakage of each S-box is exactly the Hamming weight of its output. The leakage
trace, i.e. sample, since it has only a single point, is the sum of the leakage of all S-boxes.
This setting represents the worst case for an attacker since the signals from all 16 S-
boxes perfectly overlap, hence, produce noise. We extend this simulation by considering
more realistic leakage models, which consider that due to the hardware design itself and
the positioning of the probe relative to the internals some bits contribute more to the
leakage signal than others. We modify their simulation by using different probability
mass functions for the leakage of the different S-boxes, which we randomize such that
they deviate from the Hamming weight leakage. In our model, every S-box possesses its
own leakage function which is in contrast to Medwed et al. where all leak equally. Similar
to the Hamming weight model, we assume that the total leakage of the S-box is the sum
of the contribution of all the bits of the output value. However, for each S-box and each

Tt is not necessary that an S-box exhibits the same leakage behavior regardless of the location, as
long as at any given location all S-boxes leak the same.

o4

5.3. Effect of different leakage functions in cases with low data complexity

of its output bits, we draw the value from a discrete normal distribution A/ (100, o).
We increase the leakage’s codomain so that all distributions and calculations can remain
discrete, otherwise the computational cost becomes prohibitive. This model is realistic
in the sense that we expect the leakage to be somehow dependent on the bit values,
albeit some bits will have a stronger and different impact than others. As a corner case,
we also perform an (unrealistic) simulation where we randomly assign leakage values to
S-box output values.

Hamming weight leakage, cc-plaintexts ——

Random bit leakage, variance 10, cc-plaintexts —&—
Random bit leakage, variance 100, cc-plaintexts —&—
Random bit leakage, variance 200, cc-plaintexts —=—
Uniformly distributed random leakage, cc-plaintexts —7—
Hamming weight leakage, ind-plaintexts ——

log2(guessing entropy)
o = N w H ul (0)} ~ oo

2 16 32 64 96 128 160 192 224 256
Np

Figure 5.6.: Remaining guessing entropy after simulated attacks on one key byte with
different leakage models (cc=carefully-chosen, ind=independent).

We simulate attacks on single key bytes and report the remaining security level in
terms of guessing entropy. On average, an uninformed attacker guessing randomly will
find the correct key byte after 128 tries, i.e. the maximum guessing entropy is 7 bit.
Figure 5.6 depicts the guessing entropy of one key byte after the simulated template
attack in relation to the number of observable plaintexts N, for different simulations.
We perform 100,000 simulations using random keys per data point and average the
guessing entropy. For comparison, we include the equal-leakage Hamming-weight model
with both carefully-chosen plaintexts, where all bytes are equal, and randomly-chosen
plaintexts with independent bytes.

The curve of the equal-leakage Hamming-weight model forms the upper boundary of
the guessing entropy; this is the best we can expect and equivalent to the experiments of
Medwed et al. In general, the guessing entropy goes down with the number of different
plaintexts that an attacker can observe. If we randomize the bit leakage, i.e. make the
leakage behavior increasingly dissimilar, then the guessing entropy reduces at a faster
rate. While the difference for variance 10 is minor compared to the Hamming-weight
model, for variance 100 and 200 this effect becomes obvious. The extreme case of this is
the uniformly distributed random leakage, which is in line with the curve of the Hamming
weight model with randomly-chosen plaintexts. This is expected because if either the

%)

5. Understanding how high precision EM attacks break LR-PRFs

S-box input or the resulting leakage is random, then there can be no correlation between
the leakage of S-boxes and, thus, no correlated algorithmic noise. That is the best case
for an attacker and leads to the lowest guessing entropy. We can observe and conclude
that, for very low data complexities (e.g. 2 or 4), the leakage model does not make a
difference on the security of parallel constructions.

5.4. Summary and design recommendations

Our experiments and analyses clearly show that state-of-the art EM measurement equip-
ment is able to separate signal contributions of individual S-boxes from parallel FPGA
implementations. We investigated the reason for this and derive that the combination
of spatial and temporal separation leads to exploitable leakage.

For parallelism to work in the intended way, the S-boxes’ leakage should be small
and not separable in the time or space domain to achieve security against localized EM
attacks. This seems hard to achieve on certain FPGAs because of the limited influence
that the hardware designer has on the immutable internal structure of the building blocks
and the routing options. While further investigation of the concrete design and layout of
the hardware implementation seems possible, we are pessimistic about its benefit. The
reason for this is, that even if S-boxes could manually be placed in a smaller area, and
one could argue that a location-dependent isolation may be impossible, the timing of
signals of different S-boxes may still be different, allowing an isolation of said signals over
time. Moving to platforms with smaller feature sizes and tighter integration could help
to realize designs with sufficient overlapping leakage. In fact, we present an analysis on a
28 nm FPGA where the AES implementation does resist attacks with data complexity 2
in Section 7.4.1. Yet, this approach is not applicable when dealing with existing platforms
or retrofitting side-channel protection to devices in the field.

On a more optimistic note, we found that with limited data complexity it does not
matter if the leakage behavior of the S-boxes is equal. This gives hardware designers
more freedom when placing the design since no effort has to be made to craft S-boxes
with similar leakage functions. Hence, when implementing an LR-PRF on a Xilinx
Spartan 6 FPGA or similar device, as a design recommendation we state:

1. The data complexity should be limited to the minimum of 2.

2. Parallel S-boxes should be concentrated and densely packed, while interleaving the
S-boxes with no regard for their individual layout.

In this way the signals of at least a subset of the S-boxes should overlap and cause as
much algorithmic noise as possible. This should be sufficient to reach acceptable security
levels for this part of the construction so that the improvement presented in the next
section can leverage on this to achieve a high overall security level. Nevertheless, it
seems unavoidable to perform practical investigations, such as the ones described here,
to ensure that the algorithmic noise is effective. We do not expect that any model of
the hardware design is able to adequately emulate the EM emanation in order to predict
the measured leakage signal.

26

6. Improving the security of LR-PRFs

In this chapter we use the insights that we gain from the analysis in Chapter5 and
propose an improved version of the LR-PRF scheme that resists high precision EM
attacks. Section 6.1 describes the proposed design changes. In Section 6.2 we discuss the
side-channel security of the construction by analyzing the relevant attack vectors. We
find, that security against key recovery attacks can be achieved by introducing one or
more additional keys to ‘refill’ the entropy. The introduction of the additional key(s) is
done using a 2-PRG in a way that does not create new attack vectors nor increase the
data complexity for an attack. The only requirement is that the underlying block cipher
maintains a certain amount of key entropy after attacks on one iteration of the 2-PRG,
i.e. attacks with data complexity 2. Depending on the amount of entropy left, one or
more additional stages and keys need to be added.

6.1. Improved design with refilled key entropy

There are two options to improve existing LR-PRFs with respect to high precision EM
attacks: trying to prevent the loss of entropy with increased hardware design efforts
(placement, routing and timing constraints) or compensating the lost entropy by adding
extra key-material. As argued in Chapter 5, it seems hard to design a device in which
all S-boxes leak perfectly synchronous and where S-boxes cannot be separated spatially
or temporally.

Instead, we propose to modify the ASTACRYPT 2016 LR-PRF [66] (see Fig. 3.5) so
that additional key entropy is added to compensate the entropy loss when the construc-
tion is subjected to high precision EM attacks. We specifically propose to use their
construction with two or more long-term keys instead of one, depending on the amount
of entropy loss. Similar to the original construction, the unknown inputs are generated
using 2-PRGs. However, we do not use them as LR-PRG (see Fig. 3.6), but concatenate
one or more 2-PRG as shown in Fig. 6.1. Multiple stages of the 2-PRG can be used to
further increase the entropy. In that case, another new key is introduced with each such
stage. An additional key is used for the subsequent GGM tree.

Formally, we construct an LR-PRF Fy(x)=y with k=(k, ..., k;,kprr) where ¢ > 0.
Consequently, the minimum required key length with =0 is 256 bits in case of AES-128.
Our proposed modified construction is depicted in Fig. 6.1. The initial 2-PRG stage
uses known inputs py and p, valued 02 and 1'%%, and encrypts them with key kq. This
is the part of the construction, where due to the reasons explained in Chapter 5, parts
of the key entropy will be lost in a side-channel attack. Depending on the quality of
the implementation, hence, the amount of lost entropy, we then use ¢y and ¢; as either:

57

6. Improving the security of LR-PRFs

X
LR-PRF
0 L
0—1 > - > P > - —>
2-PRG |c; | 2-PRG ' 2.pRG | | GCM ki
p1—> —>- - -~ - :——->p51—> tree
e L___1____l
I : : I
Ko Ky Ki Kpre

Figure 6.1.: Improved LR-PRF construction, dashed parts are optional.

(1) unknown plaintexts in subsequent iterations of the same 2-PRG stage, while each
time introducing a new key ki,...,k; to further increase the entropy, or (2), as the
unknown inputs ps and ps; to the GGM tree. This GGM tree is configured with data
complexity 2, i.e. two possible branches in each stage and 128 iterations to process an
input x with 128 bits (see left side of Fig. 3.3). In the end, an additional whitening
step is carried out where py is encrypted regardless of the input. This prevents attacks
on the output of the last stage of the GGM tree with data complexity 2 which could
directly reveal the GGM tree key.

The idea is that the remaining key entropy of the 2-PRG stages, which is contained
in pso and ps1, carries over to the subsequent unknown-input GGM stage and hinders
an attack on kpgpr. As argued in [66], attacking the construction with unknown inputs
would require second order attacks and there is no straightforward way of testing key
candidates. A potential attacker would first need to learn p,y and p, before being
able to launch an attack on kpgrp using first order DPA. A similar reasoning applies to
all potential 2-PRG stages which use unknown inputs as well. How many stages and
keys are needed depends on the leakage of the circuit and has to be evaluated through
laboratory analysis. Conveniently, the number of necessary repetitions of the 2-PRG
stage can for instance be a matter of configuration after the evaluation of a concrete
hardware implementation. We expect that for many designs (as the one we analyzed
here) one 2-PRG stage is sufficient because no additional entropy is required and the
security level is already raised to an acceptable level. However, the overhead of adding
stages lies solely in key memory and execution time. The entire construction can be
implemented using only a single AES core for the GGM tree and the 2-PRG stages.

Note that this construction does not allow to increase the data complexity of the
GGM tree stages for more efficiency. The reason is that the generation of more than two
unknown plaintexts is not possible without losing additional entropy. Consider the LR-
PRG used in the unknown-inputs LR-PRF proposal which iterates the 2-PRG multiple
times, using ¢y as key for the next iteration and returning ¢; as output (see Fig. 3.2).
Since the plaintext inputs are always known, attacks can be launched on every iteration
and the resulting key candidate lists can be matched across the stages. Because of this,
we accept limited efficiency in exchange for improved security.

o8

6.2. Security discussion

6.2. Security discussion

The security of the construction is discussed along two major attack paths which connect
in the middle:

1. The first attack path targets the 2-PRG with known inputs, which is the first part
in Fig. 6.1. This is where we provided an improvement to cope with the loss of
entropy due to our findings, and explain how this additional key entropy increases
the overall security level.

2. The second attack path targets the GGM tree in Fig. 6.1, or more generally, all
2-PRGs with unknown inputs within this tree, as well as in the optional part in
Fig. 6.1. Regarding this part, we revisit the argumentation of Medwed et al. [66],
and argue that a recent attack on secret inputs from Unterluggauer et al. [99] can
be reduced to the same case.

6.2.1. Part 1: Mitigating the loss of entropy in the 2-PRG

An attack on the first part, i.e. the 2-PRG with known inputs, has been shown to reduce
the key entropy of kg in Fig. 6.1 to lower levels than originally expected. We denote the
remaining key entropy of kg in Fig. 6.1 as 2. In the attack on an FPGA implementation
provided in Chapter 4, this amounts to ~ 2°° which is within enumeration levels. Hence,
it requires an improvement because ky had been the single source of long-term key
entropy.

With our tweak, the first 2-PRG with known inputs is followed by either the GGM
tree or one or more 2-PRG stages with unknown inputs and additional key entropy. For
this analysis the first stage of the unknown-inputs GGM tree can be seen as a 2-PRG
with unknown inputs and key kpgrpr. The reason is that inside the GGM tree each stage
is similar to the 2-PRG because it consists of two possible block cipher encryptions®. In
that sense the subsequent GGM tree stages can also be seen as concatenation of 2-PRGs
with different keys, which are, however, all depending on kprpr and thus add no entropy.
Therefore they do not add additional side-channel security and we can ignore them.
This simplifies the analysis since we can view the entire construction as a concatenation
of two or more 2-PRG where each uses its own key.

With our modifications, an attacker has no way of verifying key candidates resulting
from an attack on the known inputs 2-PRG since the outputs are not accessible. Instead,
the attack must continue along the chain of 2-PRGs where it encounters new key entropy
(at least additional 128 bit). Contrary to the first 2-PRG, all later 2-PRGs operate on
unknown inputs. A valid strategy for an attacker is to attack the first 2-PRG and
enumerate possible candidates for ky. Starting with the most probable candidate, the
outputs of the stage are calculated. For each candidate, an attack on the next stage is
mounted using the calculated outputs as hypothetical inputs.

8 Note that during an evaluation of the LR-PRF, only one of the plaintexts is actually encrypted
depending on the bits of the input. However, if we assume that an attacker can manipulate the
input then both encryptions can be observed by flipping the corresponding bit.

99

6. Improving the security of LR-PRFs

The attack on the next iteration has to be repeated for 2¢ candidates so that, by
expectation, the guess of kg is correct in one of the attacks. The attacker has, however,
no means of detecting whether the correct ky has been used and must continue until the
output of the GGM tree to verify key guesses. The attack on the second 2-PRG will,
hence, add the same amount of entropy, i.e. 2¢ out of the full additional key entropy. As
a result, after those two stages, a total entropy, or attack complexity, of 2¢ - 2¢ = 22¢ is
achieved. This can be generalized over n 2-PRG stages which results in a total remaining
entropy of 2"¢. Obviously, the entropy of the construction is upper bound by the length
of kprr, i.e. 128 bit. The value of e, and, consequently, the number of required stages, is
highly dependent on the exact implementation and can be estimated only by conducting
an attack on the final device.

As a note, the attack on the second 2-PRG and, optionally, subsequent 2-PRGs, differs
in that the plaintexts are not carefully chosen but random. Hence, there is no correlated
noise of S-boxes. But the simulation in Section 5.3 shows, that with data complexity 2,
the expected guessing entropy per key byte is practically the same and we can disregard
this difference.

6.2.2. Part 2: Security of the unknown-inputs GGM tree

Next we discuss attacks on the GGM tree. Unterluggauer et al. [99] describe, how the
Unknown-Plaintext Template Attack [41], which is a second-order profiled DPA, can
be modified to fit the case of leakage-resilient constructions with unknown inputs by
switching the role of key and plaintext. Their goal was to retrieve unknown plain data
from encryptions with frequent key updates. This directly applies to the unknown-inputs
construction in [66]. For the attack, they require full control over a device for profiling
and build two sets of templates: one for the key bytes and one for the outputs of the S-box
transformation. During the attack phase, the key and the outputs of the S-boxes vary
while the plaintext is constant. Since the combination of the two templates determines
the corresponding plaintext, a differential attack on the (constant) unknown plaintext is
possible. They present a practical attack on a microcontroller implementation of AES
without parallel noise and succeed with about 2.000 traces. The changing keys are not
recovered in this setting which is acceptable for their attack goal.

At first glance, this seems a potential threat also for our construction, specifically
to the unknown-inputs GGM tree. However, their attack leads to the recovery of the
unknown inputs only which cannot be directly used by an attacker to predict the LR-
PRF’s output. Hence, a second first-order DPA attack using the resulting guesses for
the plaintexts needs to be used to attack the key. This corresponds to an attack on the
2-PRG as discussed in the previous part 1. More importantly, contrary to the setting of
Unterluggauer et al., the correlated algorithmic noise from the parallel setting is effective.

To address attacks on unknown inputs and key when such noise from parallelism is
present, Medwed et al. [66] use simulations of second-order template attacks on the key
using templates for the unknown plaintexts and the S-box outputs (see Fig. 5, right
part in [66]). This experiment is equivalent to the attack described by Unterluggauer et
al. only with switched roles for plaintexts and keys. The results of Medwed et al. [66]

60

6.3. Summary

in Fig. 5, suggest that noise from 2 or 4 “overlapping” S-boxes is sufficient to achieve
a guessing entropy per byte greater than 4 and 6 bit, respectively. Considering our
practical results, this is equivalent to at least 2, or 4 S-box signals overlapping at every
location and point in time. This seems to be a reasonable requirement, as these effects
are the same as the ones which are exploited in an attack on the known-inputs 2-PRG
and cause the remaining entropy of 2¢. We therefore tend to believe that such attacks
are unsuccessful in practice, but leave a thorough analysis for future work.

Finally, note that at the end of the GGM tree a whitening step is computed where py
is encrypted. Otherwise the last step would be susceptible to an attack with two known
ciphertexts, which is equivalent to the known input attack on the initial 2-PRG stage.
This step is necessary in the common attacker model where the attacker is assumed to
know the in- and outputs of the LR-PRF. In use cases where the output is not exposed
to the attacker, this whitening step can be left out to decrease latency.

A Cautionary Note The security of the proposed construction is based on the fun-
damental assumption that enough entropy remains after an attack on the first 2-PRG
stage as shown. This assumption can only be verified empirically by proper laboratory
side-channel evaluations. The number of stages can be configured according to the re-
sults of this analysis. If no entropy remains after localized EM attacks in the first stage,
i.e. kg can be recovered without doubt, then our construction only increases the effort
of the attacker who has to repeat measurements and attacks on the second and further
stages. For a remaining entropy of e bits after an attack on ky and a targeted security
level of s bits, [s/e]| 2-PRG stages and keys are necessary. Whether this is practical is
determined by the design constraints of the system.

6.3. Summary

In Chapter5, we investigated the reasons why state-of-the-art high precision EM at-
tacks are able to successfully isolate the leakage of parallel S-boxes within LR-PRFs.
We found that design choices can increase the robustness to side-channel attacks, but
on certain devices improved constructions are necessary. Thus, we present an extension
to the ASTACRYPT 2016 LR-PRF which introduces additional key entropy to mitigate
the entropy loss due to high-resolution EM attacks under verifiable empirical assump-
tions. It comes at a reasonable overhead and only requires additional key storage and no
particularly stringent design constraints, i.e. it can be instantiated on devices with lim-
ited control over the underlying process technology, such as FPGAs. With this building
block at hand, we can implement leakage resilient applications on devices where earlier
proposals failed to establish side-channel security. In Chapters7 and 8 we explore two
case studies where we deploy the LR-PRF to realize bitstream decryption on FPGA
SoCs and LR-AEAD on microcontrollers.

61

7. Case study: Secure and updatable
bitstream decryption for FPGA
System on Chips

In Chapters4 through 6 we analyzed the practical side-channel security of LR-PRFs,
found weaknesses against high precision EM attacks and proposed an improved con-
struction. In this and the following chapter, we deploy leakage resilience in two concrete
use cases and explore the specific difficulties and solutions in case studies.

First, we consider the example of secure configuration of FPGA SoCs in the field.
Typically, the configuration bitstream of FPGA SoCs is stored in external non-volatile
memory (NVM) and thus has to be encrypted to protect against malicious readouts. As
part of the secure boot process the bitstream is decrypted using built-in cryptographic
engines. However, reported examples have shown that such cryptographic engines may
become insecure against side-channel attacks at any later point in time. Such attacks
may allow to recover secret encryption keys and thus compromise the confidentiality of
the configuration.

This leaves already deployed systems vulnerable without any mitigation option. To
solve this, we propose using an LR-AEAD engine within the FPGA logic instead of
the built-in one for the crucial task of bitstream decryption. The actual user intellec-
tual property (IP) cores are then decrypted at runtime and deployed using a feature
called dynamic partial reconfiguration (PR). It allows reconfiguration of parts of the
FPGA without interrupting the operation of the other parts. Our proposed concept
allows to securely update the main FPGA functionality and even allows to update the
cryptographic engine itself (i.e. to use a different algorithm later).

We provide two options for the LR-AEAD engine which are both based on an LR-
PRF. The first uses the improved LR-PRF presented in Chapter 6 in conjunction with
AES in OFB mode for decryption and GMAC for authentication. This option is suitable
for devices where the CHES or ASTACRYPT LR-PRF do not provide sufficient practical
side-channel security. The second is an implementation of the FGH F" LR-AEAD scheme
introduced in Section3.3. Compared to the AES-OFB based solution it requires less
hardware resources and has favorable properties in cases where parts of the plaintext
can be guessed by the attacker. However, it is only viable on hardware platforms where
the CHES or ASTACRYPT LR-PRF provide a high enough security level after an attack.
In other words, in order to use the second option the AES implementation on the target
platform must resist attacks with data complexity 2. Depending on a side-channel
evaluation of the LR-PRF on the target platform, either the LR-AEAD scheme with

63

7. Case study: Secure and updatable bitstream decryption for FPGA System on Chips

additional side-channel countermeasures or a more efficient F’'GHF’ based variant can
be deployed.

As proof of concept, we describe an application to the Xilinx Zyng-7020 FPGA SoC in
detail. We provide an analysis and implementation of both options and discuss the differ-
ences in terms of side-channel security and hardware resources. For the analyzed Zyng-
7020 FPGA SoC we find that both LR-AEAD schemes can be securely implemented and
provide high security levels. For complete independence from manufacturer-provided se-
cret key storage, and since many devices do not allow access to a dedicated key storage
facility from the FPGA logic, we use a PUF-based secret key storage in the FPGA logic.
Note that in the case of the targeted Xilinx Zyng-7020 device, there is no secret key
storage which is accessible from FPGA logic. Hence PUF-based key storage is the only
option for alternative bitstream decryption engines. PUFs provide a mechanism for key
storage by leveraging the manufacturing differences of an integrated circuit to derive a
device intrinsic secret. This eliminates the need for a secure NVM.

The initial bitstream consisting of our decryption engine and PUF do not need to be
encrypted but have to be authenticated to be protected from tampering. Otherwise, an
attacker could modify or replace those initial hardware parts to leak secret keys. This
makes using built-in bitstream authentication features unavoidable. However, when
using public key signatures (e.g. the Xilinx Zyng-7000 series supports RSA signature
authentication), this only requires storing and processing public keys on-chip. No secret
private keys are stored on-chip, hence, leading to minimal additional attack surface. In
our concept, the integrity of the bootloader and initial FPGA configuration containing
the LR-AEAD, PUF, and PR handling are verified in this manner. The actual user logic
is dynamically configured during runtime and is decrypted and authenticated using our
LR-AEAD core.

Outline In Section 7.1 we introduce FPGA SoCs and motivate the need for side-channel
secure cryptography for secure boot and field updates. Section 7.2 describes the required
building blocks, specifically a PUF for on-chip key generation and PR to re-configure
parts of the FPGA fabric with decrypted IP cores at runtime. In Section 7.3 we describe
our approach towards secure and updatable bitstream decryption on FPGA SoCs on a
conceptual level and an application on the Xilinx Zyng-7020 FPGA SoC in particular.
We discuss two different options for the LR-AEAD core in Section 7.4 and provide the
accompanying side-channel analysis and a comparison of the resource utilization. Our
design currently does not include software decryption as this poses a different set of
challenges than bitstream decryption and we discuss those differences in Section 7.5. We
summarize our results in Section 7.6.

64

7.1. FPGA SoCs require side-channel secure configuration and updatability

7.1. FPGA SoCs require side-channel secure
configuration and updatability

FPGA SoCs are powerful computing platforms that combine one or multiple application
processor cores with programmable FPGA fabric on a single chip. They offer versatile
and flexible hardware acceleration for demanding applications such as image processing
or machine learning and are widespread in e.g. the automotive and aviation industry.
In these applications the devices are often deployed in locations where adversaries have
physical access. Additionally, the lifetime of these devices is often long and updates to
the functionality may become necessary. Therefore a secure configuration and update
mechanism is required to protect the IP from theft and tampering.

CPU CPU
Processor
encrypted AN
bitstream
decrypt. > P P
engine Core Core Core
Configurable FPGA Fabric
external NVM FPGA SoC

Figure 7.1.: Bitstream decryption on FPGA SoCs using manufacturer provided means.
Red: encrypted. Green: decrypted.

FPGAs (i.e. SRAM-based ones) are configured with the hardware implementation at
every power-up and the respective bitstream must be stored in a chip-external NVM.
To protect IP, FPGA devices usually provide bitstream encryption and authentication
features using dedicated built-in hardwired cryptographic engines as shown in Fig. 7.1.
During the secure boot process, the encrypted bitstream is loaded from the external
NVM and then authenticated and decrypted by the manufacturer provided decryption
core.

Unfortunately, it has been shown for several devices from different manufacturers
that such cryptographic engines can be attacked using SCA [70, 71, 86, 87, 94]. Another
security issue can arise from hardware design flaws, as is evident by the work of Ender et
al. [26]. They uncovered a hardware bug in the Xilinx 6 and 7 series FPGAs that allows
them to read out user IP after it is decrypted by the built-in hardware cryptographic
engine. As with the SCA vulnerabilities of hardwired engines, this bug can not be
fixed and requires a new revision of the hardware. Due to this, it is highly advisable

65

7. Case study: Secure and updatable bitstream decryption for FPGA System on Chips

to have a concept for retrofitting and updating the cryptographic engine which is used
for bitstream decryption. This applies even if no successful attack is currently known
against the cryptographic engine of a certain device.

As a solution, we implement a side-channel protected engine within the FPGA logic
instead of using the built-in hardwired engine. To configure the FPGA with the de-
crypted IP cores, we use dynamic PR. While PR is helpful and available on all major
platforms, on-chip key storage for symmetric decryption keys is often not accessible
from the FPGA logic. Furthermore, it has been shown that readout of both eFuses and
battery-backed RAM (BBRAM), which are commonly used to implement key storage,
can be possible with state of the art equipment [97, 56]. For this reason we use a PUF
to embed a key into the device. The PUF leverages tiny manufacturing variations to
generate entropy as explained in Section 7.2.1.

Related work Xilinx outlines the idea of using custom cores for decryption in [77] and
describe a system consisting of an AES core together with a PUF and dynamic PR.
They do not provide an implementation or security analysis. An implementation of that
scheme was later published by Jacob et al. [46] where they use AES in Galois/Counter
mode (GCM) for decryption and authentication with a twisted bistable ring PUF for
key storage, but no side-channel protection.

Owen et al. [74] follow a similar approach, but use the PUF to generate a key in a
way that is sensitive to all changes within the bitstream to achieve a self-authenticating
design. While they therefore do not require the manufacturer provided authentication,
they do however need physical access to the chip for the encryption of images since it
can only be performed on-chip using a separate bitstream that contains the encryption
core. This makes their proposal unsuitable to provide updates for devices in the field as
it would entail that said devices need to be brought back to a secure environment for
the update.

In contrast to the work of Owen et al., we use the PUF to embed an external secret

key, thereby allowing off-chip encryption of updates. We extend the work of Jacob et
al. and implement leakage resilience as side-channel countermeasure where required.

7.2. Building blocks: Device intrinsic key generation
and partial reconfiguration

Apart from the actual bitstream authentication and decryption core, secure non-volatile
key storage is mandatory. In Section7.2.1 we describe how to use a PUF to embed a
user generated key into the device in a way that prevents readout by adversaries. As we
use our decryption core in FPGA fabric we need to configure parts of the FPGA with
the decrypted user IP cores at runtime. For this task, we use PR which we explain in
Section 7.2.2.

66

7.2. Building blocks: Device intrinsic key generation and partial reconfiguration

7.2.1. Physical unclonable functions (PUFs) for key generation

A PUF is a security primitive that utilizes manufacturing process variations to generate
a unique digital fingerprint intrinsic to a physical piece of hardware [31]. As this natural
variation between otherwise identical silicon devices is outside the control of even the
manufacturer, PUFs are inherently difficult to clone. Constructions can be broadly
split into two categories; challenge-response type PUFs which produce a device unique
response for a given input challenge, and identity-generator type PUFs which produce
few or just a single response for the device. For the use case of bitstream decryption we
only require the PUF to generate 256 bits of key material, therefore we use an identity-
generator type PUF.

: Enroll : : Reconstruct :
: : Helper Data : :
Key ——| Encoder > P : : (P »| Decoder ——Key
: : : :
1 1 1 1
- (1
: PUF : Noise ; DA PUF :
1 1 1
1 1 1

Figure 7.2.: Fuzzy commitment scheme.

The PUF architecture used in this work is based on that in [39] which creates a
cross coupled feedback loop contained within a single slice of an FPGA to generate a
single PUF bit. The prototype implementation of our system was a joint work with
Neil Hanley and Chongyan Gu (Centre for Secure Information Technologies, Queen’s
University Belfast) who contributed the PUF implementation and evaluation. Hence,
this section only gives a brief summary of their results, for full details refer to the original
publication [102].

To be able to enroll a key chosen by the user into the PUF we use a fuzzy commitment
scheme. As shown in Fig. 7.2, during enrollment a user generated key is first encoded
using an error correcting code to add redundancy. This is necessary because there is
an intrinsic error probability when reproducing the PUF response. The encoded key
is then masked with the PUF response to derive what is called ‘helper data’. The key
enrollment is done once in a secure environment. Since the helper data is masked by
the PUF response, it does not need to be kept secret. Once generated, this helper data
is then incorporated as part of the bootloader to enable key reconstruction in the field.
Key reconstruction uses a decoder stage to regenerate the key from the helper data and
the (noisy) PUF response. We use a (23,12,7) Golay linear block code which encodes
every 12-bit of the key into 23-bit codewords and is able to correct up to three errors
per codeword. A Golay encoder can be implemented very efficiently in hardware using
a shift register, with the decoder block utilizing the same encoder block combined with
an additional 12-bit look-up table of depth 2048.

67

7. Case study: Secure and updatable bitstream decryption for FPGA System on Chips

Side-channel attacks on PUFs SCA attacks on PUF designs can be categorized into
attacks on the core PUF instance, and attacks on the post-processing. While attacks such
as directly reading out PUF bits using a focused ion beam (FIB) are outside the scope
of the attacker model, there has been work on directly attacking the generation of the
PUF output. For example, delay based arbiter designs are attacked using power analysis
in [5], while recovering frequencies from ring oscillator PUF designs is investigated in [67].
However, the PUF design used in this work evaluates all bits in parallel in a single clock
cycle. Due to the algorithmic noise and the compact design of each cell, which should
lead to generally low SNR, we do not expect the core bit generation to be susceptible
to (SPA) attacks.

Of greater threat are attacks on the post-processing stage [67, 95]. Typically such at-
tacks are differential attacks and require the attacker to manipulate the helper data. In
our proposal, the helper data is authenticated before use and thus protected from tam-
pering. This greatly reduces the number of different observable traces that an attacker
can obtain, with differences only generated due to PUF response errors. The Golay
error correction block consists of linear operations, and a single, constant time, table
look-up indirectly based on the PUF response error. Linear operations have been shown
to require a large number of side-channel traces to obtain information [79], hence are not
considered practical in this scenario. While many attacks against block ciphers target
look-up tables, this is as their non-linearity makes them a suitable attack point [79]. In
the implementation here, the look-up table is linear, and is used to both speed up and
ensure constant time syndrome decoding by mapping the decoding error into memory.
These errors are sparse vectors and, similar to the linear operation stage, the reduced
number of different observable traces should prevent any power or EM based differential
SCA. Under these restrictions, SPA attacks using only a single or few traces, are likely
infeasible. Both encoder and decoder architectures run in constant time, hence timing
side-channel attacks are also not applicable.

In this work we do not conduct a side-channel analysis of the PUF since the focus is
on the leakage resilient decryption and the prototype implementation serves mostly as
a proof-of-concept. However, for the reasons explained in this section, we do not think
that such attacks have a significant chance of success.

Characterization on the Xilinx Zynq 7000 platform The properties of a PUF are
naturally dependent on the platform they are implemented on. To assess the suitability
of the PUF architecture for our side-channel protected secure boot design, we therefore
characterized the PUF using an array of 20 Xilinx Zyng-7000 devices. The two most
important metrics are reliability and bias, i.e. the distribution of zeroes and ones in the
PUF response. Ideally, the reliability should be high and the average value of a bit
should be 0.5. In addition, the average difference in response bits of different devices
should also be 0.5. Hence, a comparison of multiple devices is mandatory to ensure that
different responses are generated on different devices.

Analyzing the reliability of each bit, we found that approximately 80% of bits on
each device returned a stable value across all evaluations. The average value of a bit

68

7.3. Concept for secure and updatable bitstream decryption

in our evaluation is 0.498 when averaged over all responses and devices. The expected
fractional Hamming distance between the outputs of two different devices was empiri-
cally estimated to be 0.497. These positive results suggest that the quality of the PUF
is sufficient for our purpose and that responses generated on different devices will be
sufficiently independent.

Given the configuration of the used Golay encoder, the total bit error rate (BER) of
the generated key is 1.4 x 1072, The BER could be further lowered by concatenating a
repetition code with the Golay encoder or through majority voting of the PUF response.
For the prototype implementation we did not further pursue this.

7.2.2. Partial reconfiguration (PR)

PR is a feature of modern FPGAs that allows changing parts of the functionality at
runtime. A conventional bitstream contains the complete FPGA configuration and if
parts of it need to be changed it entails replacing the bitstream entirely and reconfiguring
the whole FPGA after a reset. This is different when PR is used. Then the bitstream is
divided into the so called ‘static’ bitstream and ‘partial’ bitstreams. The static bitstream
is configured at startup and contains the basic functionality and all parts that are not
expected to change frequently. It includes slots that are prepared to be configured with
partial bitstreams. The partial bitstreams consist of IP cores that can be swapped in
and out of the slots in the static bitstream during runtime without interrupting the
operation of the rest of the FPGA. This feature is used for updating functionality of 1P
cores, e.g. to support new standards and protocols, and time sharing FPGA resources.
On Xilinx FPGA SoCs, the reconfiguration is handled either through an interface
that is accessible from software or from within the FPGA fabric itself through the
internal configuration access port (ICAP) interface. In our use case, the static bitstream
contains the PUF, the LR-AEAD engine and a PR controller that interacts with the
ICAP interface. The PR controller receives the authenticated and decrypted partial
bitstream from the LR-AEAD core and then passes it to the ICAP interface.

7.3. Concept for secure and updatable bitstream
decryption

In this section we show how user IP cores in the FPGA design can be protected using
leakage resilient cryptographic cores on an FPGA SoC. Custom cores are used for secure
key storage and decryption instead of the manufacturer provided built-in key storage
and decryption core. To demonstrate the practicality of this approach, we provide a
reference design for the Xilinx Zyng-7020 FPGA SoC.

Figure 7.3 provides an overview of the secure configuration on FPGA SoCs using
custom cryptographic cores. All modules that participate in the secure configuration
are depicted in orange. This includes the bootloader U-boot and the cryptographic
cores, namely the PUF, LR-AEAD, and PR controller. These cores are part of the
initial static configuration of the FPGA and are independent of the so-called user design

69

7. Case study: Secure and updatable bitstream decryption for FPGA System on Chips

encrypted AN
bitstream PEN
U-Boot [CPU CPU
l | —
Processor
external NVM
decrypt. N/ Partial Modules
engine LR- PR 1
PUF || AEAD [T CErI | 1P core
Key IP Core
IP Core

Configurable FPGA Fabric

FPGA SoC

Figure 7.3.: Updatable bitstream decryption on FPGA SoCs using LR-AEAD.
Red: encrypted. Green: decrypted.

which contains the IP cores that fulfill the application’s purpose. All respective user
IP cores (depicted in green) are loaded using dynamic PR only once they have been
successfully decrypted and authenticated using the initial static parts.

Device initialization and key enrollment Prior to deployment of the device, a user
supplied encryption key is linked to the PUF as a one-time operation. A dedicated
software routine is loaded onto the device which generates the PUF helper data for that
key. During that process, the PUF internally creates a device intrinsic secret which in
combination with that helper data is later used to regenerate the supplied encryption key
(this process is illustrated in Fig. 7.2). Neither the encryption key nor the PUF secret
are permanently stored on the device which means that the secret cannot be recovered
via offline attacks. After embedding the encryption key, an RSA public key is burned
into the eFuses of the device and authenticated boot is enforced. This prevents the
execution of an unauthentic boot loader and, importantly, also stops adversaries from
embedding their own key into the PUF after the device is deployed. If attackers would
be able to embed their own key, then they could load malicious (partial) bitstreams
and either take over the system or gather information about genuine designs which are
already configured. This does not prevent an authentic user who is in possession of the
RSA private key from changing the key at a later point in time if required, but that
requires a secure environment.

70

7.3. Concept for secure and updatable bitstream decryption

Stage 0 Stage 1 Stage 2 Stage 3
Power-up Time
BootROM |—— First Stage Bootloader ——> Second Stage Bootloader |— User
Software

Static FPGA
Configuration Partial FPGA
Configurations
PUF Key
Reproduction Secure

Storage

Authenticated using RSA

|:| Encrypted and authenticated using hardened AES core

Figure 7.4.: Boot flow of the hardened boot process.

Secure boot in the field Figure 7.4 describes the boot flow of our Xilinx Zyng-7020
implementation once it is deployed. It shows the different stages of the secure boot
process starting from power-up until the system has successfully booted and user software
is running. After power-up the boot process begins with the hardwired BootROM
code in the CPU that is provided by the manufacturer. To establish a chain of trust
the first software and logic configuration that is loaded onto the system needs to be
protected against manipulation by an adversary. As a result, the BootROM code has
to be able to authenticate the first user provided boot code before control is handed
over. The BootROM code itself cannot be altered. Hence, all implementations must
rely on manufacturer-provided authentication of the first stage bootloader (FSBL), in
our case RSA signature verification. However, since the signature check only requires
the public part of the RSA key pair, no secret keys are stored or processed. Our concept
is only based on the assumption that manufacturer-provided storage for the public key
can be trusted. The FSBL, static bitstream and second stage bootloader (U-boot) are
authenticated using this RSA verification routine. After verification, the FSBL is loaded
to the on-chip memory and control is handed to it.

The FSBL is a modifiable bootloader that initializes the system, peripherals and
FPGA fabric, following which it authenticates and loads the static configuration to the
FPGA fabric. We extend the FSBL to transfer the helper data to the PUF module and
trigger the regeneration of the encryption key. The helper data is publicly accessible
and is stored and authenticated together with the FSBL®. Following the successful re-
production of the encryption key, the PUF is locked until the next reset. This prevents
any entity from misusing the PUF at a later instance of time in order to attempt to
reproduce the key. The encryption key generated by the PUF is directly transferred to
the LR-AEAD engine and does not leave the FPGA fabric as can be seen in Fig. 7.3.

9This design choice requires the FSBL to be replaced to include updated helper data if the key that
is embedded into the PUF is changed.

71

7. Case study: Secure and updatable bitstream decryption for FPGA System on Chips

It remains in the hardware and can be used by the LR-AEAD engine, but never read
or accessed by the CPU. The LR-AEAD core is now capable of authenticating and de-
crypting user hardware IP. The boot process continues with the FSBL authenticating
and loading the second stage bootloader, U-boot.

U-boot is an open-source bootloader commonly used for embedded systems whose
functions include system initialization and loading the kernel. In addition to this, we
use U-boot to securely load the partial bitstreams. After completing the system initial-
ization, U-boot begins sending encrypted partial bitstreams containing user IP to the
LR-AEAD core for tag validation and decryption. Upon successful verification, the plain
partial bitstreams are transferred from the LR-AEAD core directly to the PR controller,
i.e. they never leave the FPGA fabric and are not transferred on any shared resources
of the FPGA SoC. The PR controller dynamically reconfigures the relevant part of the
FPGA without interrupting other regions and services. Depending on the application,
those user cores may for example contain secret data for higher software layers. The last
step in the boot process is for U-boot to load the software stack on the CPU. In this
concept the software is only authenticated and not encrypted; this is explored in greater
detail in Section 7.5.

Remote updates To update a user IP core, the new version is encrypted off-chip using
the encryption key that was previously embedded during the enrollment process. The
encrypted partial bitstream is then sent to the device as remote update without requiring
physical access. Remarkably, the LR-AEAD core for actual bitstream decryption can
also be remotely updated by updating the static bitstream. When changes to the core
are made, a new version of the entire static bitstream is generated, signed with the
RSA private key and then transferred to the device to replace the old one. In contrast,
updating the PUF requires a secure environment. Due to its nature, changes to the PUF
design will most likely change the intrinsic PUF response and prevent the recovery of the
encryption key with existing helper data. In that case, the encryption key enrollment
has to be repeated as it was done for a fresh device.

Attack vectors In general, three major attack vectors can be identified:
1. Attacks on the boot process (FSBL, U-boot).
2. Attacks on the PUF.
3. (Side-channel) Attacks on the bitstream decryption.

To mitigate attacks on the boot process, the FSBL and U-boot are authenticated using
RSA before being executed. This prevents attackers from running their own modified
software which may attempt to bypass the implemented security mechanisms. On the
Xilinx Zynq 7020, the authentication is enabled by burning an eFuse and cannot be
disabled thereafter.

Attacks on the PUF can be further divided into machine learning attacks, side-channel
attacks and attacks that exploit the interface. Machine learning attacks require querying

72

7.4. Leakage resilient decryption of bitstreams

the PUF to collect different responses and thus do not apply to identity generator type
PUFs. As discussed in Section 7.2.1, we expect that side-channel attacks do not have a
significant chance of success. An attacker with full access to the PUF interface, however,
could exploit this to recover the PUF secret and consequentially the encryption key. As
can be seen in Fig. 7.2, the helper data that is generated during key enrollment is an XOR
combination of the encoded encryption key and the PUF secret. If an attacker could
enroll his own keys, then it is trivial to calculate the PUF secret from the retrieved helper
data of two different keys. In our concept, this is prevented by only allowing authorized
FSBL code to be executed on the device. This code does not allow key enrollment in the
field and additionally access to the PUF is locked after the decryption key is generated.

Another major threat, and the main motivation for this work, are side-channel attacks
on the bitstream decryption engine. To thwart such attacks we deploy an LR-AEAD
engine. We analyze the side-channel security in Section 7.4. Apart from trying to ex-
tract the secret key, an attacker may also aim at damaging the device by trying to
configure invalid bitstreams. This is especially relevant if the device offers an interface
for remote updates, then this could be exploited to insert bitstreams (without knowing
the encryption key) that get decrypted into random data. It was noted by Moradi and
Schneider [71] that configuring random data can lead to shorts in the circuit and can
potentially damage the device. Thus, we authenticate the bitstream before configuration
and, if necessary, buffer the decrypted bitstream until authentication is complete.

7.4. Leakage resilient decryption of bitstreams

In this section, we describe how to build an LR-AEAD scheme based on LR-PRF for
bitstream decryption and authentication. As established in Chapter4, the choice of
LR-PRF (and consequentially, the choice of LR-AEAD scheme) depends on the side-
channel security of the underlying AES implementation on the target device. If the AES
implementation resists side-channel attacks with low data complexity, more efficient
constructions in terms of latency and hardware overhead are possible. Otherwise, as
is the case with the Spartan 6 analyzed in Chapter4, constructions with additional
measures such as the LR-PRF with added key entropy that is presented in Chapter 6
are necessary to provide a secure construction.

Therefore, as first step, we provide a side-channel analysis of a synthesized AES core
on the Xilinx Zyng-7020 device in Section7.4.1. Contrary to the case of a Spartan 6
FPGA, we find that this implementation resists EM attacks when configured with data
complexity 2. Hence no additional entropy is necessary and e.g. the CHES 2012 LR-PRF
(configured with data complexity 2) can be used securely and without modifications.

Nevertheless, for the sake of generality we present two alternatives for the LR-AEAD
cores in Sections 7.4.2 and 7.4.3: one scheme for the case when additional key entropy is
necessary and another for this case where the AES resists attacks with data complexity 2.
The first is based on the improved LR-PRF with AES-OFB for decryption and GMAC for
authentication. The second is an implementation of the F'GH F’ scheme (see Section 3.3)
and uses the CHES 2012 LR-PRF, an LR-PRG and a SHA-256 hash function. The hash

73

7. Case study: Secure and updatable bitstream decryption for FPGA System on Chips

function is implemented in software, therefore this option uses less hardware resources.
We compare the required hardware resources in Section 7.4.4. With these two options at
hand, side-channel secure bitstream decryption is applicable to a wide range of platforms.

7.4.1. Side-channel analysis of LR-PRF on Xilinx Zynq-7020

To assess the security level of LR-PRF's on our target device, we analyze the side-channel
security of a fully parallel AES core with data complexity 2. We implemented the LR-
PRF using the AES core with parallel S-boxes presented in Section4.1 on the Xilinx
Zyng-7020 device. Following the design recommendations that we state in Section 5.4,
we did not use hard-macros for the S-boxes and placed the AES as dense as possible as
shown in the floorplan in Fig. 7.5.

UART
Interface

GMAC

S-boxes

Authenticated
decryption
core

Figure 7.5.: Placement of the AES core for the SCA.

We conduct an EM analysis using a near-field EM probe placed on the decapsulated
die using the setup and following the same procedure as described in Chapter4. We
first identify the locations of the S-boxes through a grid scan and then mount template
attacks on them using measurements from those locations. For each S-box we collect
400,000 traces for profiling and 100,000 traces for the attack at its respective location.

74

7.4. Leakage resilient decryption of bitstreams

We empirically found this number to be sufficient and that an increase in either the
profiling or the attack set does not improve the attack. We use key rank estimation [34]
to determine the security level.

We find that the remaining security level after an attack with data complexity 2 is
still 2129 or 120 bits. This is significantly higher than the results reported on the Xilinx
Spartan 6 platform in Section 4.2 where the security level is only 2% and we attribute
this difference to the smaller feature size (28 nm compared to 45nm) and the different
placement strategy. Note that these results were achieved with a standalone FPGA
design that includes only the AES and interface and not the entire system. We expect
that the increased noise generated by the full design will only make attacks harder. We
conclude that the remaining entropy of the AES core after an attack is sufficient to
securely implement the CHES 2012 LR-PRF configured with data complexity 2 or the
ASTACRYPT 2016 LR-PRF without additional countermeasures.

7.4.2. AES-OFB based LR-AEAD

First, we present an LR-AEAD scheme that is also applicable had the security level of
the AES been insufficient for data complexity 2. We include this option for generality, as
we will show in Section 7.4.3 that this platform allows a more efficient alternative. The
scheme is based on the improved LR-PRF with added entropy and carefully designed
such that in the remainder of the construction keys are only used with secret inputs
or data complexity 1. This ensures that the LR-PRF is the ‘easiest’ attack vector and
hence it suffices to analyze attacks on the LR-PRF to determine the overall security
level. Figure 7.6 shows a dataflow diagram of the LR-AEAD scheme that consists of
three components: a side-channel secure stage with an LR-PRF, decryption using AES
in OFB mode and authentication using the GMAC.

We designed this LR-AEAD scheme following the principle described in [76]: As
shown in Fig. 7.6, we rely on an initial ‘leak-free’ stage using an LR-PRF (green box). It
establishes a pseudo-random intermediate state (represented in IVofb and Ivgmac) that is
unknown to the attacker and allows us to use unprotected decryption and authentication
for the actual workload. For common SCA attacks the precondition is that the attacker
can guess some internal value of the algorithm that depends on the secret and an input
(in most cases the ciphertext) that is known to the attacker. The general idea behind
our construction, as outlined in [76], is that only the initial LR-PRF stage needs to be
side-channel secure (through means of leakage resilient cryptography), because behind
it, no public inputs are processed by the block cipher. This gives no surface to mount
an SCA attack on the unprotected stages as there are no known inputs and guessing
internal values is not possible. The only viable attack vector is thus the LR-PRF stage
and the security level of the LR-AEAD scheme is determined by the security level of the
LR-PRF.

AES-OFB decryption After the LR-PRF stage, we use AES in OFB mode for the
actual decryption of the bitstream. We opted for the OFB mode, instead of, e.g., GCM
mode, because the plain- and ciphertext are no direct input to the block cipher. As

)

7. Case study: Secure and updatable bitstream decryption for FPGA System on Chips

v LR Vofb | block block block | __,| block
ofb PRF cipher cipher cipher cipher
T T T N T
(Kaprg.K) k k k k
Co—P G—D Ch1
AES-OFB Decryption Po Py Pn-1
AAD, AAD;
SCA
protected GF-mult| & GF-mult] & [GF-mult| ,& __IGF-mult] g |GF-mult
x h x h x h x h x h
len(AAD) | len(ctxt)—
v | LR Vomac| block | GF-mult
gmac PRF cipher x h
t f
(kZprg,k) k /R
GMAC Authentication tag

Figure 7.6.: Side-channel secure authenticated decryption.

long as an attacker does not know both plain- and ciphertext, the in- and outputs to
the block cipher remain secret and provide no surface for side-channel attacks. This is
important because even partial knowledge, as is the case, e.g., in counter modes where
the initial counter value may be unknown but the increment of the counter is known,
can be sufficient to mount an attack [47]. However, if on any platform portions of the
plaintext are known, e.g. because they are all zeros, we propose not encrypting those
parts and instead adding them to the authenticated data. An open question remains
considering the effect of plaintexts that are unknown, but not uniformly random because
they consist of opcodes or addresses that do not utilize the entire value space. We are
not aware of any published attacks that exploit this scenario and imagine such an attack
to be hard; nevertheless it remains as an interesting topic for future research.

GMAC authentication For message authentication we chose GMAC [63] because it can
be efficiently implemented in hardware since it only requires an additional Galois field
multiplier. This MAC is typically used with the GCM block cipher mode of operation,
but can also be combined with other modes or used standalone. Differing from the
specification, where the MAC key h is derived by encrypting a plaintext with all zeros,
we derive the MAC key by processing another public IV g, with the LR-PRF and then
encrypt the resulting Ivgmac to get h. We divert from the specification here because, as
previously explained, we need to prevent any unsecured encryption where the inputs are
known to the attacker. This is achieved by processing the public IV yp,q. with the side-
channel protected LR-PRF first. The resulting Ivgmac is then unknown to an attacker
and can be encrypted with k without any additional countermeasures.

76

7.4. Leakage resilient decryption of bitstreams

LR-PRF configuration For the initial LR-PRF stage, we use the improved LR-PRF
described in Section 6.1 which consists of the GGM tree and one or more length-doubling
2-PRGs (see Fig. 6.1). Both the GGM tree and the (one or more) 2-PRG stages are
implemented using the same hardware AES core that is also used in the stream cipher
module. This means we only need to instantiate a single AES core that is then time-
shared between the different modules.

The number of 2-PRG stages is a design choice that allows to compensate entropy loss
after successful side-channel attacks on the very first AES execution which inevitably
has to operate on public inputs. The required number of stages depends on the leakage
behavior of the device and can be determined through laboratory analysis. Each stage
adds a fresh 128-bit key to increase the remaining entropy within the internal secret
state.

On the Zyng-7020, we determined that the entropy after an attack is high enough
such that no additional 2-PRG stages would be necessary. However, to provide an
implementation that remains secure even when implemented on devices which exhibit
a low security level similar to the Spartan 6 we opted for one 2-PRG stage. Thus we
require two 128-bit keys which we denote ks, and £'°. The key k., is used only for the
initial 2-PRG stage, k for the rest of the construction, i.e. AES-OFB decryption and the
generation of the MAC key. Reusing k in this manner is acceptable because all usages
of k operate on unknown inputs. Therefore no additional leakage is made available to
the attacker.

Buffering of decrypted partial bitstreams A general problem when decrypting and
authenticating data in one pass is that the authentication tag can only be checked after
processing all the data. Sending unauthenticated data to the PR controller, in our case
the Xilinx ICAP, can be dangerous. Configuring the FPGA with unauthentic data could
damage the FPGA due to short-circuits caused by false or malicious configurations as
stated in [71]. Hence, we need to buffer the decrypted data until it is verified before
we pass it on. This buffering has to be done in on-chip memory (OCM), otherwise it
would be prone to manipulation, for example by probing of the memory bus. Therefore
we implement a first in, first out (FIFO) buffer immediately prior to the PR controller
that releases data only after its tag has been verified. To keep the allocated block RAM
(BRAM) for the FIFO small, we split the bitstream into segments which are decrypted
and authenticated individually. While the FIFO is sending authenticated data to the
PR controller, decryption of the next segment is concurrently being performed, thus
reducing the latency. To prevent IV re-use, the IV must be unique for every segment.
For this purpose, IV, is split up into a 96-bit random value and a 32-bit counter value
that is incremented with every segment. That requires that at the beginning of every
segment, the LR-PRF is evaluated to generate a fresh IVO - Updating IV g4, in between
segments is not necessary because it is only used to generate the GMAC key h which
we keep constant for the entire bitstream. Note that in the original GMAC scheme, h

0The keys koprg and k correspond to keys ko and kp,¢ in Fig. 6.1. We renamed them in this context
to clarify the scope of each key.

7

7. Case study: Secure and updatable bitstream decryption for FPGA System on Chips

is always derived by encrypting an all zero plaintext regardless of the value of the IV.
Put differently, in the original scheme h is constant for a given key, in our scheme it is
constant for a given bitstream.

U-boot only continues the boot process if the verification of all the segments of the
partial bitstream succeeds. If the verification of any of the segments fails, U-boot aborts
the boot process and system goes into a secure lockdown mode. A power cycle is
necessary to leave this state.

7.4.3. FGHF' based LR-AEAD

Processor FPGA Fabric
U-boot BN P

Input: iv, tag, aad, ctxt

/* authenticate */ Kmac
hash = SHA256(iv, aad, ctxt) < \
ta
write_to_hardware(hash) LR-PRF 9 V;a“%7
write_to_hardware(tag) - —‘
read_from_hardware(tag_valid) "
/* decrypt */ 2 Kenc Flo Fig Flo LR-PRG]
if tag_valid = true then: 2
write_to_hardware(iv) < LR-PRF AES AES } AES ‘
write_to_hardware(ctxtg) P, P, P,
write_to_hardware(ctxtq) 4 4 4
AES + AES }~ AES +
PtXto PR Ctrl.

D
@

write_to_hardware(ctxtp)
- & _PEEcap
L : . ptxt,

+P
o v

Figure 7.7.: Alternative side-channel hardened authenticated decryption.

The AES-OFB based scheme is motivated by the results in Section 4.2 that demon-
strate that on FPGAs, it is possible to recover the key of an AES implementation in
a side-channel attack even if only two different operations can be observed (the case
of data complexity 2). However, the remaining security level after such attacks is de-
pendent on the layout and manufacturing process of the device, where smaller feature
sizes usually make localized EM attacks harder. In the security evaluation on the Xilinx
Zyng-7020 device we found, that the AES implementation resists EM attacks in case
of data complexity 2 and retains a high security level of 120-bit. This allows us to de-
ploy an alternative construction that is easier to implement and requires less hardware
resources.

Architecture In this second implementation option, we drop the 2-PRG stage inside
the LR-PRF, therefore we now require only a 128-bit key for the LR-PRF. We also
replace the stream cipher part, i.e. the AES in OFB mode, and the GMAC authenti-
cation. Instead, we implement an LR-AEAD scheme based on the results of Kramer
and Struck [53] who propose that an LR-AEAD scheme can be built using an LR-PRF,
an LR-PRG, and a hash function as introduced in Section 3.3. In reference to the in-
troduction of this scheme in [20] we refer to it as FGH F’'-based LR-AEAD and to our

78

7.4. Leakage resilient decryption of bitstreams

original scheme as AES-OFB-based LR-AEAD. Figure 7.7 shows the hardware/software
partitioning and the building blocks for the proposed FFGH F’-based LR-AEAD scheme.
The left side describes the software implementation in pseudo code and makes references
to the hardware on the right whenever data is transferred between the two partitions.
The right side describes the dataflow in the hardware implementation in a way similar to
Fig. 7.6. Note that there is still only one hardware instance of the LR-PRF and that the
(one) AES core used in the LR-PRG part is shared with the LR-PRF. The construction
uses a single IV and two 128-bit keys, ke and kepe.

Interestingly, the hash function in this construction does not need to be protected
against side-channel attacks as it only processes public inputs and no secrets. Therefore
the authentication part of the scheme can be split between hardware and software. First,
a hash function, here SHA-256, calculates the hash of the IV, additional authenticated
data (AAD) and ciphertext. This is implemented in software as part of U-boot. The
hash is truncated to 128 bits and processed by the LR-PRF with key k,,.,. to calculate
the tag.

For this side-channel critical operation, the evaluation of the LR-PRF, we still rely
on a protected hardware-engine. The tag is now calculated over the entire bitstream
at once and checked before decryption is started instead of calculating tags for multiple
segments of the bitstream separately. This is different to our previous construction,
where authentication and decryption are calculated in parallel hardware and requires
a hardware FIFO to buffer the plaintext until the tag is verified. In this new scheme,
only the 128-bit hash is sent to the hardware during authentication. As the tag of the
entire bitstream is now verified before decryption, the FIFO in front of the ICAP is not
necessary and the decrypted bitstream can be directly configured.

Decryption of the bitstream is still implemented in hardware. If the tag is correct, the
IV is processed by the LR-PRF using a second key, ke,.. The result is used as key for
an LR-PRG which produces the key stream to decrypt the ciphertext. The LR-PRG is
based on AES and consists of a concatenation of 2-PRG stages (see Fig. 3.6). Within
each stage, an all-zero plaintext py and an all-one plaintext p; are encrypted with the
same key, and the results are used as the key for the next iteration and as part of the
key stream, respectively.

Side-channel security In Section7.4.1 we give results of a side-channel attack on an
AES with data complexity 2 implemented on our target platform Xilinx Zyng-7020. For
the new construction we identify two attack vectors which we show to be equivalent to
the case in Section 7.4.1:

Side-channel attack on the LR-PRF: Keys k,,,. and k.,. can be targeted in an
attack on the LR-PRF. Since we are not using the 2-PRG stage in front of the GGM tree
PREF, the relevant attack vector is the first iteration of the GGM tree. In the context
of an attack, this iteration behaves identically to a 2-PRG stage: it consists of an AES
encryption that uses either all-zeros or all-ones as plaintext input.

Side-channel attack on the LR-PRG: According to the security analysis of the
LR-AEAD scheme by the authors of [20] the PRG is not required to be secure against

79

7. Case study: Secure and updatable bitstream decryption for FPGA System on Chips

differential side-channel attacks since its key is generated on the fly and is only valid
for one message. Thus, if we consider the PRG as a black box, each key is only used
for one operation and the only valid attacks are attacks with data complexity 1, i.e.
SPA attacks. However, since we use a block cipher based PRG, this single operation
in fact consists of multiple sensitive block cipher encryptions which increases the data
complexity for an attack. It is also intuitively clear that the seed to the PRG, i.e. the
initial key to the AES, must not be leaked in order to protect the confidentiality of the
individual message.

Fortunately, the practical side-channel security of the PRG equals the security of the
LR-PRF in our case!! because one iteration of the PRG has the identical side-channel
attack surface as one iteration of the LR-PRF in case of data complexity 2. The LR-
PRG consists of multiple 2-PRG stages and changes the key between the stages. It is
initialized with a key that is derived from the IV of the bitstream. Hence, an attack can
at most recover the ephemeral key to decrypt one specific bitstream, and not one of the
long-term keys k,qc OF kene. An attack on the LR-PRG can be mounted targeting any
2-PRG iteration, i.e. any intermediate key. However, in all cases the attack is limited
to data complexity 2 and there is, to the best of our knowledge, no way to combine
information gathered from attacks on different iterations.

Both attack vectors are identical to the case investigated in Section 7.4.1. Therefore
we can apply the results of the side-channel evaluation there to this construction here.
As a result, the remaining entropy after a side-channel attack on k¢, kene and the
ephemeral LR-PRG keys is 120-bits per key. Since there is no meaningful way to combine
the results of attacks on the different keys, the security level of the entire construction
is thus 120-bits.

7.4.4. Resource utilization and performance

Here, we describe the prototype implementation of both variants for the Xilinx Zyng-
7020 FPGA SoC. The resource utilization of the building blocks is provided in Table 7.1.
The Zyng-7020 device is among the smaller, low-cost devices of the Xilinx Zyng-7000
product range. Nevertheless, we only use around 22 % of the available slices and 1.5 %
of the available BRAM in case of the AES-OFB variant and 18 % of slices and 0.7 % of
BRAM in case of the FGHF" based variant. Hence, 78 % and 82 %, respectively, of the
slices of this lightweight device are still available for user IP cores.

The AES-OFB LR-AEAD scheme requires a FIFO buffer for the decrypted, but not
yet authenticated partial bitstreams. As the BRAM modules on the Xilinx Zyng-7000
series are each 4.5 KB large, we split the partial bitstreams into segments of 4 KB with
an additional 16 bytes for the tag appended to each segment. This configuration leads
to a storage overhead of less than 0.4 percent. Note that for optimization the BRAM
could potentially be shared between the PUF and FIFO, but this requires additional

"The theoretical side-channel security is not equivalent since the security proof for LR-PRG, contrary
to the LR-PRF, requires use of the random oracle model. However this is only to prevent so called
future computation attacks and has no practical significance.

80

7.4. Leakage resilient decryption of bitstreams

Table 7.1.: Resource utilization.

Module Slices BRAM
LUTs Registers RAM36

AES-OFB based LR-AEAD incl. FIFO 4667 2934 1
FGHF' based LR-AEAD 3137 1779 0
PicoPUF incl. error correction 3917 4179 1
PR Controller 50 53 0

control logic and breaks separation between the modules, thus we did not pursue this
option.

The FGHF' LR-AEAD scheme allows moving parts of the authentication, the hash
calculation, to software which significantly reduces the hardware overhead. The LR-
AEAD hardware requires 3137 LUTs and 1779 slices, compared to a total of 4667 LUTs
and 2934 registers for the AES-OFB based scheme and FIFO combined. This is a
reduction of 33% and 39%, respectively. The LR-AEAD hardware also does not require
any BRAM blocks as no buffering is required (previously the FIFO used one RAM36
block). In addition, the size of the encrypted bitstream is slightly reduced because only
one tag for the entire bitstream is stored instead of one tag per segment.

As the performance, i.e., the latency when decrypting one partial bitstream, is depen-
dent on the concrete implementation parameters, we only provide an informal discussion.
We give a detailled performance comparison of the two LR-AEAD constructions in a
similar setting in Section 8.5. For the AES-OFB based LR-AEAD, decryption of one par-
tial bitstream requires two initial LR-PRF executions and one initial AES encryption.
The subsequent decryption of each 128-bit block of data requires one AES encryption.
Since the decrypted bitstream has to be buffered in a FIFO, it is potentially split up
into multiple segments if it exceeds the size of the buffer. For each new segment, an
additional evaluation of the LR-PRF and an AES encryption is required. The duration
of one LR-PRF evaluation is significant and depends on the configuration, as explained
in Section 3.2. Depending on the hardware platform, it can consist of up to 130 AES
encryptions. How many LR-PRF evaluations the AES-OFB based LR-AEAD actually
requires depends on the size of the FIFO and length of the partial bitstream.

For the FGH F’-based LR-AEAD, initially the hash has to be calculated in software
and the LR-PRF is evaluated twice. Then for each 128-bit block of data two AES en-
cryptions are necessary. Hence, the F'GH F'-based LR-AEAD requires double the AES
encryptions per 128-bit data block, but potentially less LR-PRF evaluations. Never-
theless, we expect that reconfiguration on such systems is a task that is most probably
performed only once per boot. Therefore we suspect that designers will aim for lower
hardware footprint instead of lower latency.

81

7. Case study: Secure and updatable bitstream decryption for FPGA System on Chips

7.5. Towards software encryption and runtime security

Our proposal is currently limited to bitstream decryption. User software is authenticated
but not encrypted because this different use-case can lead to new attack vectors as
discussed in this section. For many applications this is sufficient, since rarely is the entire
software stack confidential. If full confidentiality is desired for software, this usually goes
hand-in-hand with runtime integrity protection and encryption of chip external RAM,
which are hard problems on their own. However, if our AES-OFB based core is to be
used for software decryption, the OFB mode of operation might not be the best choice
and could lead to new attack vectors. The side-channel security of the decryption core
relies on the fact that an attacker does not know the inputs to the underlying block
cipher. In OFB mode this holds, as long as the attacker cannot observe both plain-
and ciphertext. Otherwise, the XOR of both reveals the output of the block cipher.
With that information a regular DPA on the last round of the cipher becomes possible.
In the case of bitstream encryption, the decrypted bitstream is directly sent to the PR
controller, i.e. the plaintext never leaves the hardware and is not exposed to the attacker.
For software decryption, this is hard to guarantee since the plaintext is transferred back
to the CPU and potentially ends up in external RAM.

A straightforward mitigation is to use key whitening to hide the in- and outputs to
the cipher from the attacker. XEX [80] and XTS [1] are modes of operation that achieve
this. However, there are several published side-channel attacks on those constructions.
Luo et al. show an attack on the tweaking function of XTS that exploits the simple
structure of the Galois field multiplication by 2 [57]. This attack can be prevented by
using XEX which uses multiplications with arbitrary values. In contrast, Unterluggauer
et al. attack AES in such a scenario directly by concatenating DPA attacks on the last
two rounds [98]. This attack is feasible irrespective of the tweaking function but it
requires the attacker to change the input while keeping the IV constant (e.g. writing
the same sector multiple times in the case of disk encryption). Whether or not this is a
relevant attack vector depends on the application.

In cases where the second, FGHF' based LR-AEAD core is applicable, this attack
vector is prevented by the LR-PRG that is used instead of AES-OFB. Similar to AES-
OFB, each block of ciphertext is decrypted by XORing with one block of the keystream.
However, the main difference is that in case of the LR-PRG the key changes from block
to block. This means that the attacker cannot mount DPA attacks even if multiple plain-
and ciphertext pairs are known because for every key, only one encryption is observable.
This corresponds to an attack with data complexity 1, which is effectively an SPA attack.
Since we already require that the AES implementation has to resist attacks with data
complexity 2 in a side-channel evaluation, this attack is not feasible as it is even harder
for the attacker.

We conclude, that only the LR-AEAD core based on an LR-PRG is capable of pro-
tecting firmware decryption where we expect that the attacker can guess large parts of
the plaintext. Nevertheless, protecting the confidentiality of software demands much
more than only secure decryption. For example, external memory is vulnerable to cold-
boot attacks [40] and code can be reverse engineered by observing its behavior [84]. To

82

7.6. Summary

provide a sound solution for software encryption, these issues need to be addressed and,
depending on the specific use case, additional measures have to be taken which are out
of the scope of this thesis.

7.6. Summary

As a step towards a vendor agnostic solution, we present an SCA secure and fully up-
datable mechanism to securely configure the FPGA logic starting from power-up until
the whole system is booted and running. To achieve this, we leverage the PR options of
FPGAs, in conjunction with a PUF generated device intrinsic key and a leakage resilient
authenticated decryption core to securely load hardware IP cores. While we target a
Xilinx Zyng-7020 FPGA SoC for our proof-of-concept, the method is agnostic to a spe-
cific FPGA manufacturer/family as long as it provides certain common functionalities.
The two key requirements to port this design are that the target provides:

1. Authentication and integrity checking of the static bitstream using public key
cryptography

2. Partial reconfiguration

In the initial boot step, an authenticity and integrity check of the static bitstream
containing the custom cryptographic cores is necessary. We use signature verification
with public key cryptography on the Xilinx Zyng-7020 device to achieve this. Public key
cryptography for this purpose is a widely adopted feature and is present in the majority
of FPGA SoCs that are currently available. The benefit of using public key cryptography
is that no additional secret key material is necessary and the operation does not need
to be protected against key-recovery attacks. PR is necessary to reconfigure parts of
the FPGA fabric at run-time with user IP cores that were decrypted by our protected
engine. This feature is supported by the leading manufacturers of FPGA SoCs such as
Xilinx and Intel (formerly Altera). Thus this design can be ported to these devices with
low effort.

As the Xilinx Zyng-7000 series devices do not provide any user key storage (only 32
bits of general purpose eFuses are available), we opted to use a PUF for key storage.
Newer devices, however, often provide user accessible secure key storage. Some devices
like the Xilinx Zynq Ultrascale+ and Stratix 10 from Intel even include hard-core PUF's
and allow secure boot using these PUFs. In such cases the custom PUF can be omitted
if the key storage is trusted to be secure.

For the LR-AEAD core we provide two options which are applicable depending on
the side-channel security of an AES core implementation on the target platform. Hence,
when porting the design to a different technology, the leakage behavior of the decryp-
tion core can change and the side-channel security has to be re-evaluated. On platforms
that only provide little side-channel resistance, we deploy the AES-OFB based scheme
that uses our improved LR-PRF design. The lack of key entropy is mitigated by adding
additional 2-PRG stages and key material. If the AES core resists attacks with data

83

7. Case study: Secure and updatable bitstream decryption for FPGA System on Chips

complexity 2, then the FGHF’ scheme can be used. In that case part of the authen-
tication can be implemented in software which reduces the hardware footprint by more
than 30 %.

The presented work, to the best of our knowledge, is the first that allows side-channel
secure field updates of user IP cores and the decryption engine without relying on any
manufacturer provided secret key storage. The concept requires very limited trust in the
manufacturer and provides the necessary flexibility if demands change or new attacks
arise. This approach is orthogonal to upgrading to newer and more expensive feature-
rich devices, and is also suited to retro-fit older devices as it uses features that are already
widespread in current hardware.

84

8. Case study: Retrofitting LR-AEAD
to off-the-shelf microcontrollers

As a second use case, this chapter considers the side-channel protection of COTS micro-
controllers which are increasingly popular in IoT applications. Specifically, we examine
the interesting problem of applying methods from leakage resilience to microcontrollers
where we have no control over the hardware implementation and can only modify the
software.

In general, the security of [oT devices relies on fundamental concepts such as protected
firmware updates. In this context attackers usually have physical access to a device
and therefore side-channel attacks have to be considered. The microcontrollers that
are typically used may have hardware accelerators for cryptographic operations, but
usually no built-in countermeasures against side-channel attacks. We demonstrate how
the FGHF' based LR-AEAD scheme, which consists of an LR-PRF, PRG and hash
function, can be implemented using such unprotected hardware AES engines.

Our concept relies on parallel S-boxes in the AES hardware implementation to achieve
the algorithmic noise required for the LR-PRF. Fortunately, this feature is present in
many microcontrollers as a measure to increase performance, although not all acceler-
ators are fully parallel and implement 16 S-boxes. To analyze the effect of differing
parallelism on the security level, we implement the LR-AEAD scheme for two popular
ARM Cortex-M microcontrollers with 16 and 4 parallel S-boxes, respectively. The pro-
posed design uses the AES hardware accelerator to instantiate both the LR-PRF and the
PRG, which means that most of the work load is handled efficiently in hardware. Exist-
ing hardware accelerators for the hash function can be used where available, otherwise
the hash function can be implemented in software.

We evaluate the protection capabilities in realistic IoT attack scenarios, where non-
invasive EM measurements are employed by the attacker. We show that the concept
provides the side-channel hardening that is required for the long-term security of IoT
devices. For comparison, the unprotected AES engines on both tested microcontrollers
can be broken (i.e., the security level is reduced to 0 bit) after 2,500 traces when used in a
standard mode of operation. After implementing the CHES 2012 LR-PRF on the same
hardware with our proposed method, the cryptographic operation withstands similar
side-channel attacks using the same measurement setup and results in security levels
above 100 bits given our attacker model and measurement equipment.

We also provide an implementation and performance evaluation of the full LR-AEAD
scheme for both controllers. On one controller we can make use of an existing SHA-256
accelerator to instantiate the hash function, on the other we use a software implemen-
tation. Since all modifications are software-only, our concept can be used to retrofit

85

8. Case study: Retrofitting LR-AEAD to off-the-shelf microcontrollers

existing designs. The fact that the only hardware requirement is an AES with parallel
S-boxes makes this solution applicable to a wide range of microcontrollers. It is therefore
highly relevant when adding side-channel protection to existing devices, especially when
no true random noise sources are available. In such cases, masking or hiding is even
impossible and this concept is without alternatives.

Outline First, we discuss the difficulties of protecting COTS microcontrollers and ex-
isting approaches towards securing them in Section8.1. In Section 8.2 we outline the
implementation details and trade-offs of LR-PRFs on microcontrollers with hardware
acceleration. We also describe the hardware-software partitioning of the LR-AEAD
scheme and discuss relevant attack vectors. Subsequently, Section 8.3 gives details about
the two microcontrollers that are evaluated.

We present the results of our side-channel evaluation in Section 8.4: After introducing
the attacker model and measurement setup in Section8.4.1, we show in Section 8.4.2
that the key transfer to the hardware accelerators is not vulnerable, which is a necessary
requirement for the proposed solution. Next, Section 8.4.3 demonstrates that the AES
accelerators are in fact vulnerable to template attacks (TAs) using our setup which il-
lustrates the need for countermeasures. Finally, Section 8.4.4 discusses the side-channel
security of the LR-AEAD), which is determined by an analysis of the LR-PRF with differ-
ent configurations. Section 8.5 assesses the performance overhead of the implementations
in terms of runtime and code size. We summarize our findings in Section 8.6.

8.1. Related work

The information security of inexpensive IoT devices is especially important due to their
high quantity, prevalence, and as a result the potentially high impact of attacks. Ar-
guably the most important feature for such devices are secure firmware updates. They
are needed to mitigate software vulnerabilities which are uncovered while a device is in
the field.

Ronen et al. [81] highlight the implications of unprotected update mechanisms by using
a side-channel attack to extract an AES master key from a smart light bulb which is
used to protect firmware updates for an entire device family. Using this extracted update
master key, a worm is created that automatically infects and maliciously replaces the
firmware of similar devices within a 100 m radius. Evidently, these low-cost devices also
require secure updates and protection against physical attacks.

Secure updates can either be achieved by digital signatures (as suggested by the au-
thors of [81]) or by symmetric AEAD schemes. The advantage of using AEAD schemes
is that they also provide confidentiality, not only authenticity as in case of signatures.
This is often necessary to, e.g., protect IP or credentials in the firmware or to hide se-
curity issues that are fixed in new versions. Otherwise, the vulnerabilities are exposed
to adversaries that inspect the differences between the versions and can be exploited in
downgrading attacks.

86

8.2. LR-AEAD on COTS microcontrollers

Unfortunately, protecting cryptographic implementations against side-channel attacks
is challenging, especially when dealing with existing hardware implementations without
built-in protection. So far, the only countermeasure that can be retrofitted without
giving up hardware acceleration, and therefore significantly reducing performance, is
time-based hiding, i.e., inserting random delays or dummy operations before or after
the critical operation. Such countermeasures require true randomness and are limited
in their effectiveness because deliberate timing variations can often be filtered by signal
processing. Particularly for COTS devices it has been shown that the cryptographic
operation can be identified despite hiding countermeasures [42].

An alternative is to use a hardened software implementation instead of the existing
cryptographic hardware accelerator and giving up its provided efficiency. The inherent
difficulty of this task is evident in the following example. A team from the French ANSSI
published an open-source implementation of a side-channel protected AES targeted for
COTS microcontrollers [7]. As it is state of the art, they combine masking and shuffling
countermeasures to protect against side-channel attacks and provide leakage tests that
do not show leakage after 100,000 traces. Despite these seemingly positive results, Bron-
chain and Standaert [11] published an attack that succeeds with only 2,000 traces, which
highlights the issues of combined countermeasures on these devices. In the same paper,
they also put forward the general difficulty of securing COTS microcontrollers using
masking or shuffling due to the lack of noise when countermeasures are implemented in
software.

In this work, we therefore make use of existing hardware accelerators for cryptographic
operations and use concepts from leakage resilience that leverage algorithmic noise and
limited data complexity. We show the soundness of our proposal through actual side-
channel attacks and give concrete security levels. Contrary to the previous example,
there is no easy way to circumvent parts of the countermeasure since the source of the
algorithmic noise which prevents key recovery is rooted in hardware.

8.2. LR-AEAD on COTS microcontrollers

This section describes how to achieve LR-AEAD for COTS microcontrollers. First, we
explain how to implement an LR-PRF and LR-PRG utilizing a hardware AES engine.
We specifically describe the partitioning between software running on the CPU and the
hardware accelerators. Second, we describe how to use these building blocks together
with a hash function in the LR-AEAD scheme of Degabriele et al. [20]. We provide
pseudo code for all operations and point out the security critical operations which we
analyze in the side-channel evaluation in Section 8.4.

The main aspect of our proposal is to benefit from existing hardware accelerators with
parallel S-boxes on microcontrollers to realize an LR-PRF. A typical architecture of a
microcontroller with integrated cryptographic coprocessor is outlined in Fig. 8.1. The
AES coprocessor is attached to the main CPU via a bus and can run independently and
in parallel. It is typically controlled through memory-mapped registers. Commands and
data values are exchanged over the bus.

87

8. Case study: Retrofitting LR-AEAD to off-the-shelf microcontrollers

------------------------- ciphertext «--------w-e-eeeee- o
LR-PRF

CPU 32-bit bus > AES

14

Software .
--------------------- > key, plaintext -—--w---www-eeeees

Figure 8.1.: Microcontroller running an LR-PRF using an integrated AES hardware ac-
celerator.

P

For our analysis we implement the original CHES 2012 LR-PRF since it has the least
implementation overhead and is best suited to analyze the security impact of different
data complexity configurations. For this LR-PRF, the available data complexity in
an attack depends on the configuration and ranges from 2 up to 256. However, we
emphasize that the analysis of this LR-PRF with data complexity 2 also covers the
ASTACRYPT 2016 LR-PRF and the LR-PRF with added key entropy presented in
Chapter 6. As long as the case of data complexity 2 is shown to be secure for a given
implementation of the CHES 2012 LR-PRF, all variants of the LR-PRF can be used.
The goal of a laboratory evaluation is to find the highest data complexity, i.e., the most
efficient configuration, which still achieves high security levels.

The LR-PRF program is executed on the CPU and the hardware accelerator is queried
for the necessary block cipher encryptions. The process follows Algorithm 2, where the
boxed operations are executed inside the hardware accelerator, while the rest is executed
by the CPU. Inputs are the key k, the data input x and the data complexity expressed in
the number of bits n that are processed per stage (e.g., for data complexity 4, n equals
2). The expression (nbits|...|nbits)'?® denotes a concatenation of bits nbits until the
string contains 128 bits, 012 is an all zero bitstring with length 128.

We use the 2-PRG based LR-PRG presented in [92] and give the pseudocode descrip-
tion in Algorithm 3. The functionality is split into two functions: An initial seeding of
the LR-PRG that sets the key for the first iteration and an iterate function that returns
one block of pseudorandom data per call and updates the key state internally. We iden-
tify two types of security critical operations in Algorithms 2 and 3. The first type are the
AES encryptions (AES_encrypt). This is expected from all conceptual considerations.

The second type is implementation-specific, i.e., the bus transfers (write_to/read -
from accelerator) of the key. This attack vector is attributed to the use of a non-
security controller without builtin countermeasures. In the case of commercial security
controller, these bus transfers are masked by random values. In our case of unpro-
tected microcontrollers this attack vector needs to be considered. Wouters et al. [108]
demonstrate the effectiveness of such attacks and recover the transponder key of a car
immobilizer in a profiled attack on the key transfer to a coprocessor. Therefore, to es-
tablish SCA secure LR-PRFs on such microcontrollers we evaluate two attack vectors
in this work: i) Attacks on the bus transfer of the key in Section8.4.2 and i) attacks
on the AES accelerator with different data complexity in Section 8.4.4.

We give a detailed SCA of both types of operations in Section 8.4. Algorithm 4 puts
the building blocks together and describes the encrypt and decrypt operations of the

88

8.2. LR-AEAD on COTS microcontrollers

LR-AEAD. This does not add any additional attack vectors, as all sensitive operations
are located within the LR-PRF and LR-PRG. The hash function in particular does not
require countermeasures as it does not process any sensitive values.

Side-channel security of the LR-PRG As discussed in Section 7.4.3, the security proof
of the LR-AEAD does not require the PRG to be leakage resilient or, in general, resistant
to differential side-channel attacks. However, our block cipher based LR-PRG uses the
same key twice during a single execution and thus provides the attacker an attack vector
with data complexity 2. For all practical purposes this is equivalent to an attack on the
LR-PRF, hence a secure LR-PRF with data complexity 2 implies the security of the LR-
PRG.

89

8. Case study: Retrofitting LR-AEAD to off-the-shelf microcontrollers

Algorithm 2: LR-PRF

1 Function LR-PRF (x, k, n):

B B =R &L S M

©

10

11
12

13

14
15

/* Initialize with long term key */
key + k;

/* Iterate through the PRF stages */
for i<« 1to 128/n do

nbits < read next n_bits(x);
plaintext < (nbits| ... |nbits)?®;
write_to_accelerator (key, plaintext);

ciphertext <— AES_encrypt (key, plaintext) |;

read _from accelerator (ciphertext);
key < ciphertext;

end

/* Whitening step */

plaintext < 028
write_to_accelerator (key, plaintext);

ciphertext <— AES_encrypt (key, plaintext) |;

read_from_accelerator (ciphertext);

return ciphertext;

Algorithm 3: LR-PRG

N =

10

11
12
13
14
15
16

global key;
Function LR-PRG_seed(s):

r

/* Initialize with seed */
key < s;

eturn
Function LR-PRG_iterate():

/* Update key */
plaintext < 028;
write_to_accelerator (key, plaintext);

ciphertext <— AES_encrypt (key, plaintext) |;

read_from accelerator (ciphertext);
next_key < ciphertext;

/* Generate output block */
plaintext « 1128;
write_to_accelerator (key, plaintext);

ciphertext <— AES_encrypt (key, plaintext) |;

read_from_accelerator (ciphertext);
key < next_key;

return ciphertext;

90

8.2. LR-AEAD on COTS microcontrollers

Algorithm 4: LR-AEAD

1 Function LR-AEAD encrypt (msg, adata, nonce, Kepe, Kpac, n):

/* Encrypt message block by block */

seed <— LR-PRF (nonce, ke, 1) ;

LR-PRG_seed (seed);

ctxt < [];

foreach msg_block in msg do
ctxt_block <— LR-PRG_iterate () @& msg_block;
ctxt <— ctxt|ctxt_block;

end

/* Calculate tag */

9 hash < SHA-256 (nonce, adata, ctxt);

10 tag <— LR-PRF (hash, k., n);

11 return ctxt, tag;

12 Function LR-AEAD decrypt (ctxt, adata, nonce, tag, Kene, Kmac, 1)

/* Calculate and compare tag */

13 hash < SHA-256 (nonce, adata, ctxt);

14 tag’ < LR-PRF (hash, kyac, 1) ;

15 if tag’ # tag then

16 ‘ return _;

17 end

/* Decrypt message block by block */

18 seed <— LR-PRF (nonce, Kepe, 1) ;

19 LR-PRG_seed (seed);

o g o Ok woN

20 foreach ctxt_block in ctxt do

21 msg_block <— LR-PRG_iterate () & ctxt_block;
22 msg <— msg|msg_block;

23 end

24 return msg;

91

8. Case study: Retrofitting LR-AEAD to off-the-shelf microcontrollers

8.3. Devices under test: STM32 and EFM32

We use two different COTS microcontrollers for our proof of concept, namely the
STM32F215RET6 (STM32) and EFM32PG12B500F1024 (EFM32) microcontrollers
which are both widely used in IoT applications. Both devices are manufactured in
a 90 nm technology and feature a 32-bit ARM Cortex-M4 and Cortex-M3 processor, re-
spectively, and an AES hardware cryptographic accelerator that is not hardened against
side-channel attacks. The cryptographic accelerators are different in their level of inter-
nal parallelism.

The datasheets lack information about the concrete implementation, but based on the
number of clock cycles the cryptographic coprocessors take for a single AES operation
we assume that the STM32 implements 16 parallel S-boxes to perform the 10 rounds
of an AES-128 and the EFM32 implements four parallel S-boxes. This assumption is
confirmed by the results of a correlation-based leakage test shown in Fig. 8.2a for the
STM32 and in Fig. 8.2b for the EFM32.

S-box 0-3 S-box 0-3

0.10 [\ 0.0501,

0.04 T 0.017 PPk
E ‘ S-box 4-7 ‘ E ‘
g 004 3 0.017 A . ﬂ
S} o L— : ‘
© S-box 8-11 © S-box 8-11
5§ 0.101 N 8 0.050]
TZ 0.04 T %j 0.007
5 S-box 12-15 5
© 0104 i © 0.050

0.04 J\ 0.017 ikl b, Sl S JA‘

1 2 3 4 1 2 3 4
Time in clock cycles Time in clock cycles
(a) STM32 (b) EFM32

Figure 8.2.: Correlation-based leakage test on the AES S-box input for 100,000 traces
with known plaintexts and keys.

In both figures the correlation for the input of the different S-boxes of an AES-128
encryption is depicted for known plaintext and key values. In Fig. 8.2a the maximum
correlations for all 16 S-boxes of the STM32 occur at the same point in time indicating
a fully parallel design. In Fig. 8.2b it can be observed that groups of 4 S-boxes behave
similarly. This confirms that the accelerator implementation of the EFM32 processes
32-bit words of the AES state simultaneously which corresponds to four parallel S-boxes.
The words exhibit two distinct peaks in subsequent clock cycles which overlap with the
following word. This behavior is consistent with leakage caused by writing or overwriting
a shared buffer register. For some S-boxes, e.g., S-box 12-15 at clock cycle 6, additional
correlation peaks can be observed. This behavior is also visible several cycles after the
computation of the current AES round. A reasonable explanation for these additional

92

8.4. Side-channel evaluation

peaks is the complex structure of the cryptographic coprocessor of the EFM32, which
contains an ALU with dedicated instruction memory and data registers. The peaks could
possibly stem from internal buffers or the switching of multiplexers between register
banks.

In order to implement the LR-AEAD as described in Section 3.3 we utilize the SHA-256
hardware accelerator of the EFM32. Unfortunately, the STM32 only provides a SHA-
1 accelerator that we opted to ignore, as practical attacks against SHA-1 have already
been shown [54]. Instead, we use a software implementation of SHA-256 provided by the
open source library tinycrypt [69], which is specifically designed for constrained devices.

8.4. Side-channel evaluation

In this section we present the results of a side-channel analysis of LR-AEADs on two
microcontrollers. As explained in Section 8.2, the analysis of the LR-AEADs is reduced
to an analysis of the LR-PRFs with different data complexity configurations. We are
covering two attack vectors on the LR-PRF: Attacks on key transfers from CPU to the
hardware accelerator and attacks on the AES accelerator which is used as part of the
LR-PRF implementation. In that regard we first demonstrate that the key can be fully
recovered if the AES is used in a standard mode where the data complexity for the
attack is not limited. Within the LR-PRF, however, the AES is only used with limited
data complexity, i.e., with a limited number of different plaintext inputs under one key.
Thus, we provide results of attacks with different data complexities and give estimates
of the remaining security level:

e We find that attacks on the key transfer do not lead to exploitable security levels.

e For the attacks on the AES, we observe that the security level decreases with rising
data complexity.

e However, for both microcontrollers we find configurations that lead to high security
levels greater than 100 bit.

We describe our attacker model and measurement setup in Section 8.4.1. In Section 8.4.2
we provide result of the attack on the key transfer, Section 8.4.3 and Section 8.4.4 cover
attacks on the AES with unlimited and limited data complexitiy, respectively.

8.4.1. Attacker model and measurement setups

In general, an evaluator uses the best attack and equipment that an attacker is expected
to have access to. Therefore the attacker model has a big influence on how the secu-
rity level is determined. The same concept applies to certification schemes like common
criteria, where higher certification levels assume attackers with more resources and ex-
pertise. In the security evaluations that we presented so far we used the best equipment
that is available to us, namely high-end equipment for EM near-field measurements that
additionally require decapping of the chip.

93

8. Case study: Retrofitting LR-AEAD to off-the-shelf microcontrollers

This effort might not be justified in all cases, in particular not when dealing with low-
cost unprotected microcontrollers that, by default, provide no side-channel security at
all. If we can secure these devices against large classes of side-channel attacks, then this
is already a significant success. Applications which are so critical that they need to be
secured against the most sophisticated attacks available will hopefully be implemented
on dedicated security controllers instead. Hence, we define a more relaxed attacker
model and, consequentially, use slightly less powerful equipment, which is cheaper to
acquire and easier to use.

Attacker model For the discussed use-case, we do not consider invasive, high precision
EM analyses that use equipment worth around 100,000 USD, excluding the equipment
for decapping the chips before analyses. Instead, we assume attackers with consider-
able technical know-how, but moderate capabilities in terms of laboratory equipment.
We assume that attackers have access to EM measurement probes allowing measure-
ments close to the packaged chips with manual positioning of the probe. Along with a
preamplifier and a USB oscilloscope, such a setup can be built for a few thousand USD.

Since samples of the analyzed devices can be bought without restrictions, attackers
may chose to perform profiling with known keys on one or more devices under their
control. To reflect this fact in our analysis and in order to avoid inter-device deviations,
we perform profiling and attacks on the same device (can be seen as worst case), even
though this would not be possible in a real scenario where an attacker has limited control
over the attacked device.

Measurement setups The measurement setup for the STM32 is depicted in Fig. 8.3a
and consists of a CW308T-STM32F target board mounted on a CW308 UFO Board
running at a clock frequency of 10 MHz. A PicoScope 6402D USB-oscilloscope is used
for the data acquisition at a sampling rate of 1.25 GHz. The EM emanations are captured
using a passive Langer RF-U 2.5-2 near-field probe that is connected to a Langer PA 303
preamplifier adding a gain of 30dB. The EFM32 setup consists of an EFM32 Pearl
Gecko PG12 Starter Kit running at its default clock frequency of 19 MHz. A LeCroy
WavePro 7 Zi-A 2.5 GHz oscilloscope operating at a sampling rate of 5 GHz is used for
the data acquisition. We use the same near-field probe and preamplifier as in the STM32
setup.

Consistent with the attacker model the probes are positioned manually. Different
positions close to pins, capacitors and on top of the package were tested by inspecting
signal amplitudes and qualitative indicators, e.g., if the AES round structure is visible.
In case of the CW308T-STM32F target board, the probe is located on Pin 31 (c.f.
Fig. 8.3a). For the EFM32 the probe is located in between two decoupling capacitors
as shown in Fig. 8.3b. We demonstrate the efficiency of the setups in Section 8.4.3 by
successfully attacking the AES core on both devices.

94

8.4. Side-channel evaluation

.uudstqnd: 404
pJeog 8bae| JZEWLS

T S T =

(a) STM32

Figure 8.3.: Positioning of the EM probes.

Key bytes 0-3 Key bytes 0-3
0.40 kk . 0.40]
0.20 1 0.20 1 [
0.02 | e ‘ ‘ ‘ 0.05 = h‘”‘ ! u ““““““ TR
‘q;::' Key bytes 4-7 % Key bytes 4-7
3 0.40] S 0.40]
g 020, i ﬂL) g 00 T
g0 ; ‘ ST g (02Froramnrecenet Rey Tyras BT
S 0.40] S 0.40]
= 0.201 [3 0201 i L
g e 1215 g 0P Ry Bytes 1215
© 040 © 040/
0.201 JL 0.20 1
0.02 ; " ; : i - J‘ " OOZM-MJ‘M-‘h
1 2 3 4 5 6 7 8 9 1 5 10 15 20 25 30
Time in clock cycles Time in clock cycles
(a) STM32 (b) EFM32

Figure 8.4.: Correlation-based leakage test on the key transfer for 100,000 traces with
known random keys.

8.4.2. Template attacks on key transfer

Protecting a cryptographic operation is only feasible if the key is not easily recoverable
through SCA of the key transfer from the CPU to the cryptographic accelerator. We
perform an evaluation of the key transfer for both microcontrollers and confirm that the
leakage cannot be exploited to recover the key.

The AES hardware accelerator on both devices is connected to the CPU as a memory-
mapped device. During the initialization the key has to be written to a register of the
accelerator as four 32-bit words for a key size of 128 bits. The key transfer on the
internal bus can be observed by an attacker, enabling a TA on the key bytes with a data
complexity of 1. As the key is static, differential attacks are not possible.

95

8. Case study: Retrofitting LR-AEAD to off-the-shelf microcontrollers

Although the key is transferred in words of 32 bits, building templates for 32-bit
values is not feasible due to the time which is required to collect a sufficient number of
measurements for all 232 templates. With the acquisition rate of our setup of about 50
traces per second, it would take roughly 10,000 years to collect the required traces, even
for 16-bit values it takes over 60 days. The TAs carried out in the following sections are
therefore based on 8-bit templates.

In a first step, a correlation-based leakage test on the key transfer is conducted to find
the POIs for the TA. The correlation for the values of the different key bytes is depicted
in Fig. 8.4a for the STM32, and in Fig. 8.4b for the EFM32. For both figures we use
100,000 traces with known random keys. Both devices show relatively high correlation
values of approximately 0.4, which is expected for unprotected microcontrollers. Fig-
ure 8.4a shows that the duration of the entire key transfer is eight clock cycles and the
leakage of the words is partly overlapping. The leakage test for the EFM32 looks similar
except for the difference that the four 32-bit transfers do not overlap at all.

The POIs for the TA on the different words are obtained by using all samples that
exhibit a correlation higher than 0.02 for the STM32. For the EFM32 we use a threshold
of 0.05 for the first four key bytes and 0.02 for the other key bytes. Both thresholds
have been determined visually as being just above the noise floor and are marked with
a dashed line. The templates for the 256 possible values are generated from a total of
2,000,000 traces with known random keys in the case of the STM32, and 1,000,000 traces
in the case of the EFM32. The difference in the number of traces stems from different
acquisition rates on the two setups.

To evaluate the entropy reduction by the TA, 1,000 attacks with different random
keys are performed where for each key 1,000 traces are recorded. We found that already
for this number of traces per key, the results are stable and more traces per key do not
further improve results.

35 T 35 T
---- Median security level = 120.09 | ---- Median security level = 113.15
301 i 301
© 251 i 2 251
(9] (<5}
i~ i+
%5 201 5 201
—qg 151 —qg 151
g g
5 5
Z 10+ Z 10+
51 51
0+— v i —L 0-
92 96 100 104 108 112 116 120 124 128 92 96 100 104 108 112 116 120 124 128
Security level in bits Security level in bits
(a) STM32 (b) EFM32

Figure 8.5.: Security level for 1,000 random keys subject to a template attack on the key
transfer.

96

8.4. Side-channel evaluation

256 256
294 294
1921 o 1921
g 5
£ 1601 £ 1601
> >
< 108 < 108
= =
g g
g 96 g 96
64 6418
321 32 {\.\\\
0 0 \\\\.‘{“E\é"_’i‘:;-“_:.
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Number of traces Number of traces
(a) STM32 (b) EFM32

Figure 8.6.: Median key rank of the 16 key bytes subject to a template attack on the
AES S-box input for 10 random keys with random plaintexts for varying
number of traces.

The results for both devices are depicted in Fig. 8.5. The median security level is
120.09 bits for the STM32 and 113.15 bits for the EFM32. Even the key with the worst
security level in our experiments has a remaining entropy of 107 bits and 97 bits for
the STM32 and EFM32, respectively. Summing up, while a TA on the key transfer
reduces the entropy of the key, it does not compromise the security to an extent where
a protection of the cryptographic operation would be pointless.

8.4.3. Template attack on unprotected AES

The idea of retrofitting protection for AES hardware accelerators is motivated by the
assumption that the devices are vulnerable to SCA. Hence, we perform TAs on the
hardware AES of the EFM32 and the STM32 to verify this assumption. Additionally, a
successful attack result serves as a confirmation that the side-channel measurement setup
including the manual positioning of the probe is effective. The evaluation also provides
a baseline for comparison during the evaluation of the applied protection mechanism in
Section 8.4.4.

As an intermediate value we target the S-box input of the first AES round, which
is common practice for attacks on AES. The results of a correlation-based leakage test
depicted in Figs. 8.2a and 8.2b are used to select suitable POlIs. Again, the dashed
line marks the threshold for the POI selection. For the STM32 and the EFM32 the
threshold is set to 0.04 and 0.017, respectively. In the profiling phase, we acquired
2,000,000 traces (STM32) and 1,000,000 traces (EFM32) with random keys and random
plaintexts. Multivariate templates are computed for each of the 256 possible intermediate
values of all 8-bit templates. During the attack phase, 10 random keys are evaluated
using up to 30,000 traces with random plaintext inputs.

In contrast to the attack on the key transfer in Section 8.4.2, where all processed values

97

8. Case study: Retrofitting LR-AEAD to off-the-shelf microcontrollers

are constant and increasing measurements merely reduce noise effects, variable input
values allow the attacker to increase the success probability by increasing the number of
traces. Figures 8.6a and 8.6b depict the median key rank based on 10 random keys for
an increasing number of traces. Each line represents the median key rank for one of the
16 key bytes (determined by attacking the corresponding S-boxes). The key rank denotes
the position of the correct value if the results are sorted according to their likelihoods.
A rank of 1 equals a successful recovery, while higher ranks require key enumeration
effort by the attacker. For the STM32 the key byte ranks decrease to 1 after about
2,500 traces, i.e., a full key recovery is achieved. In the case of the EFM32, more traces
are needed to achieve low key ranks. However, not all key bytes converge to a rank of 1
and therefore a low effort in key rank enumeration is still necessary. Summarizing, both
AES engines are clearly vulnerable to SCA and protection mechanisms are required.

8.4.4. Template attacks on LR-PRFs with different data
complexities

This section provides the side-channel evaluation of the proposed retrofitted protection
mechanism based on LR-PRFs. The security level is determined by a side-channel at-
tack on the initial use of the long-term secret, i.e., an attack on the first stage of the
LR-PRF. The number of different plaintexts which are used in the LR-PRF construction
is a trade-off and affects the data complexity of a side-channel attack and the runtime.
All proposed LR-PRF constructions are able to use a varying number of parallel S-boxes
that determine the amount of algorithmic noise. These contributions originally assume
dedicated hardware designs where this choice can be made deliberately, whereas in our
case the level of parallelism depends on the choice of the controller. Hence, an eval-
uator’s goal is to determine the security of a hardware implementation (with a fixed
number of parallel S-boxes) in relation to the data complexity. Then, the LR-PRF con-
struction with the best trade-off between security (security level subject to an attack)
and efficiency (implementation cost and runtime) is chosen.

We analyze the security level of the implemented concept for different trade-offs by
performing TAs with different data complexities. A side effect of the limited data com-
plexity is that certain combinations of key bytes are easier to attack than others, de-
pending on the leakage behavior of the device. For regular differential attacks with
unlimited data complexity, this effect is compensated when observing many traces with
different inputs. Hence, we test several keys and estimate the distribution of the re-
sulting security level. The same profiling set as in Section8.4.3 is used. Data com-
plexities of {2,4,8,16, 32,64, 128,256} are used and for each 300 different random keys
are attacked. All plaintexts are of the form that all 16 bytes are equal as described by
Medwed et al. [65]. For each of the 300 attacked keys, we collected a high number of
traces to reduce the measurement noise. Specifically, we recorded 30,000 traces in case
of the STM32 and 10,000 traces in case of the EFM32. We found that the attack does
not achieve further significant improvement with higher numbers of traces.

98

8.4. Side-channel evaluation

47 Data complexity * 7 Data complexity
2 2

Median security level in bits
D
=

Median security level in bits
D
=

481 — 4 481 — 4
— 8 — 8
Rt — 9 Rt — 8
— 64 — 64
161 128 161 128
— 256 — 256
0 v T T T T 0 v v v v
5000 10000 15000 20000 25000 30000 2000 4000 6000 8000 10000
Number of traces Number of traces
(a) STM32 (b) EFM32

Figure 8.7.: Median security levels from 300 random keys subject to a template attack
on the AES S-box input for varying number of traces and data complexities.

Figures 8.7a and 8.7b present the attack results as a median security level'? of the
full key in bits (after key rank estimation) over the number of traces and for different
data complexities. As expected, the security level generally decreases with increased
numbers of traces. However, importantly, the security levels do not approach 0 bit
security because of the protection mechanism. Contrarily, the security levels stagnate
and do not decrease further after a certain number of traces, which proves that the
protection mechanism is effective. Note that a data complexity of 256 means that all
values are used per plaintext byte. However, all plaintext bytes are still equal for the
parallel S-boxes. This is the important difference to a regular attack scenario as described
in Section 8.4.3 and the prevalent reason for the working protection in these cases.

The security level of individual keys depends on their concrete value in the case of
limited data complexity. Keys are chosen at random and the resulting security levels
after attacks vary accordingly. It is therefore important to not only consider the median
security level but the whole distribution as the outliers determine the worst-case security
level. We show this variance in Figs. 8.8a and 8.8b. The figures present attack results
after the maximum number of traces, i.e., 30,000 traces for the STM32 and 10,000 traces
for the EFM32. Hence, this focuses on the rightmost verticals of Fig. 8.7. Each vertical
on the x-axis contains the security levels from 300 attacks for this data complexity and
the fixed number of attack traces.

12The median is used instead of the mean as it denotes the security level that an attacker achieves in
50% of the cases. However, as the security levels are nearly normally distributed depicting the mean
would result in similar values.

99

8. Case study: Retrofitting LR-AEAD to off-the-shelf microcontrollers
128 1 1281
o 1121 o 1121
)] i)]
g 2% ¥
T 801 T 80y 8
2 2 eyl
> 041 >, 04 8
5 481 5 481
o ° o
@ 32 ¥ 321
[}
16 1 161
01— : : : - . : : 01— : : : : : : :
2 4 8 16 32 64 128 256 2 4 8 16 32 64 128 256
Data complexity Data complexity
(a) STM32 (b) EFM32

Figure 8.8.: Security levels of 300 random keys subject to a template attack on the AES
S-box input for 30,000 (STM32) respectively 10,000 (EFM32) traces and
different data complexities.

The distribution of the 300 attack results is visualized as a box plot. The red lines
in the center of the boxes denote the median for the respective data complexity (this
corresponds to the data shown previously on the rightmost vertical). The boxes include
50 % of the values within the quartiles Q1 and Q3'3. All whiskers of the boxplots are
drawn at 1.5 IQR or at the extrema. Outliers that diverge more than 1.5 IQR from the
box edges are denoted as circles.

As most important observation we note that for data complexities up to 16, security
levels including outliers are higher than 96 bits, which is a very positive result. In com-
parison, for this number of attack traces, the attack on the unprotected AES results in a
security level close to 0 bit. As expected and observed in the previous results, the security
level decreases with increasing data complexity, i.e., if the number of observable plain-
texts is extended. Interestingly, the distribution is rather broad with high differences
between the median security level and the worst case of individual keys. Considering the
STM32 implementation configured with data complexity 128 as an example, a median
security level above 90 bits is achieved but individual cases are as low as 70 bits. The
variance is similar for both microcontrollers which reinforces the assumption that the
choice of key values, not the measurement setup or hardware implementation, is the
main reason for this observation.

The two AES engines have different numbers of parallel hardware S-boxes. The
EFM32 includes four parallel S-boxes while the STM32 is fully parallel with 16 S-boxes.
This means that the desired key dependent (algorithmic) noise from parallel structures
is higher for the STM32. This explains the observation of higher resulting security levels
at lower data complexities (2 to 64) as can be observed when comparing Figs. 8.7a and
8.7b. The results confirm that the higher parallelism provides better protection. For

13Q1 and Q3 are defined as the points where 25 % of all values are below Q1 and 25 % above Q3. The
interquartile range (IQR) is the distance between Q1 and Q3.

100

8.5. Performance analysis

the EFM32 with four parallel S-boxes the algorithmic noise provides less protection.
Nevertheless, the security level still remains above 100 bits for data complexities smaller
than 16.

Note that the median security level for the data complexity of 256 is lower for the
STM32. This is in contrast to the described reasoning and can, in our opinion, be
explained using Fig. 8.6, which shows that the TA on the unprotected EFM32 does not
converge to a key rank of one for single bytes. For higher data complexities, attacks
generally become more comparable to attacks on the unprotected AES. The results in
Fig. 8.6 for the unprotected case show that the EFM32 is harder to attack judging by
the required number of traces and the partially imperfect key recovery. This could be
the reason why the security level of the EFM32 does not decrease at the same rate for
high data complexities. Thus we note that the device which was easier to attack without
any countermeasures, the STM32, proves to be the more secure platform to implement
LR-PRFs due to the higher level of parallelism of the hardware accelerator. In other
words, the higher parallelism clearly leads to comparably better protection with the
LR-PRF concept despite the fact that the same device is less secure when unprotected.

In summary this evaluation shows that secure LR-PRFs, and consequentially secure
LR-AEAD, can be achieved on both devices. High security levels above 100 bit are
achieved for all experiments with data complexities up to 16 on the STM32 and up
to 8 on the EFM32. This shows that for protection in IoT scenarios, it is sufficient
to use the CHES 2012 LR-PRF as long as the data complexity is within the discussed
boundaries for the targeted security level. Comparing the two devices at hand, the
fully parallel AES implementation of the STM32 allows for more efficient constructions
while retaining a higher security level. Naturally, the unknown-inputs and the improved
LR-PRF shown in Chapter 6 can also be used since they are limited to data complexity
2 by design and hence their side-channel security is equivalent to those cases shown
here for the CHES 2012 LR-PRF. However, they come with the downside of additional
preprocessing steps and the requirement to temporarily store secret plaintexts.

8.5. Performance analysis

In this section we evaluate the performance of our LR-PRF and LR-AEAD implementa-
tion with respect to execution time and code size on both microcontrollers. We analyze
the impact of different data complexities, however, we only consider LR-PRF configu-
rations that process a number of bits per stage that is a divisor of 128 (i.e., n=1,2,4,8
corresponding to data complexities of 2,4,16,256). This avoids having a last LR-PRF
iteration that does not use the full data complexity.

In order to measure the execution time of the LR-PRF and LR-AEAD, we use the
data watchpoint and trace (DWT) debug component of the ARM Cortex-M processor.
This feature allows for non-invasive and cycle accurate execution time measurements.
Non-invasive in this case means that it is not necessary to modify the code under test
to perform the timing measurements.

101

8. Case study: Retrofitting LR-AEAD to off-the-shelf microcontrollers

1200001 Data complexity 120000 1 Data complexity
256 Il 256
100000 1 100000 1
16 Il 16
% 8000p{ - 4 % 8000p{ - 4
S o =S - 2
= 60000 < 60000
S R
< 40000 < 40000
20000 A 20000 A
0- 0-
03 Os 00 03 Os 00
Compiler optimization Compiler optimization
(a) STM32 (b) EFM32

Figure 8.9.: Performance evaluation of the LR-PRF implementation for different opti-
mization levels and varying data complexities.

Single LR-PRF execution Figure 8.9 depicts the number of clock cycles required for
a single LR-PRF execution with varying data complexities and different compiler op-
timization levels. We use three different optimization levels: no optimization (O0),
optimization for size (Os) and optimization performance and size (O3). The results
are also included in tabular format in Table B.1 in Appendix B. Note that a particular
optimization level choice does not have an impact on the side-channel security, as the
AES hardware accelerator is not influenced by the compiler. The same holds for the
key transfer over the bus. The diagram shows that the number of clock cycles grows
logarithmically with increasing data complexity (i.e., linearly with the number of input
bits processed per iteration). This is expected since an increasing data complexity leads
to a decreasing number of required iterations in the LR-PRF tree.

Contrary to our expectation, Fig. 8.9 does not reflect the performance difference be-
tween the AES coprocessors of the devices. Even though the STM32 has a fully par-
allel AES core, the LR-PRF implementation is only slightly faster than the one on the
EFM32. We would expect a factor of about four because a fully parallel implementation
is capable of calculating an AES round in one cycle whereas an implementation with
four S-boxes requires four cycles. We assume that the difference results from the dif-
ferent low-level software libraries used for accessing the accelerators and differences in
the interfacing protocols. For both microcontrollers, the optimizations Os and O3 result
in a 2 and 3 times faster execution time, respectively, in comparison to the baseline
without optimization (O0). Given the fact that the difference in performance is only
marginal for practical applications, we suggest using the optimization Os as it comes
with the additional benefit of a reduced code size. Therefore, we evaluate the LR-AEAD
performance with optimization level Os.

Complete LR-AEAD execution For the evaluation of the complete LR-AEAD, we
measure its execution time for different data complexities and varying ciphertext sizes

102

8.5. Performance analysis

107 107
Data complexity Data complexity
B 256 256
I 16 |}
6 6
8 10 . 2 8 10 . 2
o o
5 5
< <
= =
© 10°; O 5.
104 104
0.5 1 2 4 8 16 32 64 0.5 1 2 4 8 16 32 64
Ciphertext in KiB Ciphertext in KiB
(a) STM32 (b) EFM32

Figure 8.10.: Performance evaluation of the LR-AEAD implementation for different data
complexities and varying ciphertext sizes.

on both microcontrollers. We use the Os optimization level for the evaluation depicted
in Fig. 8.10. We evaluate the LR-PRF with the minimum and maximum data com-
plexity of 2 and 256 on both controllers. Additionally, we evaluate the LR-PRF with
a data complexity of 4 and 16 for the EFM32 and STM32, respectively. These values
turned out to be a suitable trade off between execution time and security in Section 8.4.4
(disregarding configurations for n that are not a divisor of 128). These results and addi-
tionally the required clock cycles to process a single 16-Byte block of data are also listed
in Table B.2. The necessary clock cycles for the basic function calls, AES_encrypt (),
LR-PRG_seed () and LR-PRG_iterate(), are given in Table B.3.

On the EFM32 the implementation makes use of the SHA-256 hardware accelerator
whereas on the STM32 the hash is implemented in software [69]. This leads to a de-
creased performance of the STM32 in the LR-AEAD case despite the fact that it has
a slightly faster AES core. For smaller ciphertexts one can clearly see the advantage
of a higher data complexity, however, the difference vanishes with increasing ciphertext
lengths. The reason is that the LR-PRF is only evaluated twice, regardless of the length
of the ciphertext, and thus the overhead amortizes with increased length. In the con-
text of firmware updates, we usually deal with encrypted firmware images larger than
16 KiB, hence, the performance penalty from decreased data complexity is low. Assum-
ing a core clock frequency of 4 MHz, a data complexity of two and a firmware update
size of 64 KiB, the decryption process takes around two seconds on the STM32 and less
than a second on the EFM32. These results are quite practical for a secure firmware
update in IoT applications.

Code size Besides the execution time of the LR-PRF and the LR-AEAD, their code
size is an important parameter, especially for constrained embedded devices. In order
to determine the code size required to retrofit the LR-AEAD to an existing application,
we look at the additional code size of both functions when added to a simple baseline

103

8. Case study: Retrofitting LR-AEAD to off-the-shelf microcontrollers

application. This application consists of only a main function with an endless while loop
together with the necessary initialization routines such as stack initialization. We use
the example code from the microcontroller manufacturers as a template for the baseline
application and implement both the LR-PRF and LR-AEAD on top. The additional
code size, i.e., the code size required for the LR-PRF and the full LR-AEAD (including
the LR-PRF) is listed in Table8.1.

Table 8.1.: Code size in bytes of the LR-PRF and LR-AEAD implementations.
STM32 EFM32
Code Os 03 00 Os 03 00

LR-PRF 544 604 976 576 668 1,144
LR-AEAD 2236 3,236 3,992 1,720 2,872 3,076

The LR-AEAD implementation occupies between 0.43 % and 0.76 % of the STM32’s
512 KiB flash memory, depending on the optimization level. For the EFM32, the imple-
mentation needs between 0.16 % and 0.29 % of the microcontroller’s 1024 KiB flash mem-
ory.

Comparison to a protected software implementation As a comparison, we
measure the performance of a side-channel protected software implementation of AES
developed by the ANSSI [7]. They implement affine masking as described in [29] in
combination with several hiding countermeasures. We measured around 108,000 cycles
for one call to the protected aes() function on an ARM Cortex-M4 microcontroller
similar to their reference platform (optimization Os). For the example of 64 KiB firmware
updates, we can give a rough estimate of the runtime by considering only the AES calls
that are required to decrypt the firmware. This significantly underestimates the real
runtime because it neglects the overhead that arises when implementing a block cipher
mode of operation and the MAC calculation. It does also not include the collection of the
randomness that is required for the countermeasures. Nevertheless, with an estimate of
more than 442 Mio. clock cycles this alone is a factor 208 and 45 slower compared to the
complete LR-AEAD with data complexity 2 on the EFM32 and STM32, respectively.
This means that a secured firmware update would take in the range of minutes instead
of single seconds which is significant. The code size of 6,392 bytes is also about three
times larger.

Note that none of our implementations were optimized for performance and our aim
was not to compare to the fastest possible implementation. The numbers given only
serve the purpose of estimating the overhead of our solution compared to software-only
countermeasures. There is significant potential for performance optimization for our
implementation, e.g., by replacing the manufacturer provided API calls to the AES with
optimized low level register accesses. However, this kind of optimization was not the
focus of this work and we show that even a basic implementation of the provided scheme
performs well in comparison.

104

8.6. Summary

In summary, the runtime overhead and the flash memory footprint of the LR-PRF and
the LR-AEAD implementation are low in comparison. Thus our solution is applicable
for secure firmware updates in resource constrained scenarios such as IoT applications
where alternative protection exhibits prohibitive runtime. The overhead of using lower
data complexities to achieve higher security levels becomes less significant if the length
of the payload increases.

8.6. Summary

In this chapter we explored how to use concepts from leakage resilient cryptography
to tackle the difficult problem of securing COTS microcontrollers against side-channel
attacks. We propose to implement an LR-AEAD scheme using a block cipher based LR-
PRF as the underlying side-channel hardened primitive. Specifically, we implement the
LR-PRF in software and use existing hardware accelerators to leverage the algorithmic
noise of parallel implementations to protect against side-channel attacks. In a case study
on two ARM Cortex-M controllers with AES accelerators we analyze the side-channel
security of our construction and find that it resists profiled attacks and retains security
levels above 100 bits. We give concrete results for a configuration parameter that allows
a trade-off between security level and performance. The overhead in code size is small
and occupies only about 1 percent of the available memory on the two controllers.
Compared to an exemplary side-channel protected software AES implementation, the
runtime of our proposal is up to 200 times faster with a memory footprint of only one
third. Our solution is applicable to any microcontroller that has an AES accelerator
with parallel S-boxes. Therefore, it enables retrofitting side-channel protection to a
wide range of devices. This will help to realize root of trust security mechanisms such
as secure firmware updates for low-cost IoT devices.

105

9. Conclusions

This thesis started by revisiting the LR-PRF by Medwed et al. [65]. Its resilience to side-
channel attacks relies on novel assumptions: limited data complexity and equal leakage
of parallel hardware. We evaluated, whether these leakage assumptions hold against
high precision EM analysis and showed that one of the crucial requirements for the side-
channel resistance, the “equal leakage of S-boxes”, is violated in the examined FPGA
designs. As an important finding, our laboratory analysis showed that this can not only
be attributed to the high spatial but also to the high temporal resolution of the utilized
equipment. It is unlikely that this can be mitigated on FPGA devices by routing or
placement changes alone because, unlike on ASIC devices, the actual physical hardware
layout cannot be changed. Indeed, despite significant effort to equalize placement and
routing of the individual S-boxes we were unable to achieve equal leakage. Thus we
conclude, that on the examined FPGA device no secure implementation of this scheme
is possible with the means available to the designer. Not even the most secure LR-PRF
configuration with minimum data complexity is able to provide an acceptable security
level.

Based on the insights of this laboratory analysis, we proposed a modification of the
LR-PRF that allows the secure introduction of additional key material to raise the overall
security level. This improved version of the LR-PRF also resists high-end attacks on
devices that previously failed to achieve high security levels, all at the cost of longer
keys and increased latency.

We demonstrated that an application of this LR-PRF is practical by means of two
case studies: bitstream decryption for FPGA SoCs and firmware updates for microcon-
trollers. In case of bitstream decryption, we achieve authenticated decryption that is
fully updatable and requires almost no trust in manufacturer provided cryptographic
cores. In case of microcontroller firmware decryption, we proposed a novel implementa-
tion approach that uses AES co-processors which are already present on many modern
microcontrollers. This has the unique benefit that it allows leveraging algorithmic noise
from the parallel hardware of the AES core while requiring only software modifications.
Typically, software-only countermeasures like masking suffer from the fact that the noise
level of the microcontroller’s CPU is low. By using hardware accelerators for the secu-
rity critical operations we circumvent this problem and at the same time benefit from
improved performance. These examples show that practical applications can be secured
against side-channel attacks through the LR-PRF and with very limited requirements
on the hardware platform.

Leakage resilient constructions require practical evaluation However, the results
presented in this thesis also highlight the main difficulty of leakage resilient cryptography

107

9. Conclusions

in practice: the modeling of a leakage function for the theoretic analysis that translates
into empirically verifiable assumptions in practice. In the provided security evaluations
we resorted to the most powerful attacks using high-end equipment and extensive chip
preparation to determine the security level. This requires expensive equipment and
expert knowledge, yet, it is still difficult to achieve general results as the quality of the
attack is dependent on many factors such as the time allocated for the measurements
(i.e., the number of tested measurement locations) and the noise level in the traces after
signal processing. The expertise of the hardware designer also has a strong impact on
the achieved security level. We observed that for different design strategies the security
levels vary by a large margin and that the best strategy is not immediately clear.

These practical findings contrast the idea of leakage resilience as coined by Dziem-
bowski and Pietrzak [25], which is defined by a move away from ad-hoc countermeasures
and evaluations towards a more thorough theoretical treatment resulting in tight security
bounds. However, this observation is also consistent with the current state of research
which comprises two major strains: There is the work coming out of the cryptology
community which directly follows Dziembowski and Pietrzak and introduces new modes
and provides the theoretical treatment and proofs. Typically, this comes down to some
construction with limited data complexity and the security bounds often rely on the
bounded leakage per execution. Then there is the practitioners track of research, com-
ing from people with a background in practical side-channel analysis. This is where the
work of Medwed et al. and also this thesis is situated. Here, the theoretical treatment
is often neglected in favor of more heuristic security notions.

The results presented in this thesis showcase that this second, more practical strain of
research is equally as important as the theoretical foundation. As of now, the leakage of
integrated circuits still seems to be too complex to be fully captured by a mathematical
model without it becoming too generic and thus allowing unrealistic attack scenarios.
Considering, e.g., the equal leakage of S-boxes that we analyzed on FPGA designs.
For the same hardware description, we observed varying leakage behavior with different
placement strategies. We saw that this behavior is rooted in minuscule changes in the
timing behavior of signals relative to each other and requires sophisticated measurement
equipment to be made visible. An evaluator using simpler equipment might not be able
to pick up these differences and could fail to attack the design, hence overestimating
the achievable security level. Of course attackers face the same problems, but from
an evaluators point of view this all-or-nothing scenario is undesirable because it does
not allow extrapolating results from a given setup. As including all these factors in a
leakage model seems to be an intractable problem, determining the practical security
level requires a skilled evaluator using adequate equipment.

Comparison to masking countermeasures The most prominent and widely deployed
countermeasure against side-channel attacks is currently masking. In a direct com-
parison, the analyzed LR-PRF offers certain benefits: It does not require high quality
random numbers which might not be available on a given platform or can be expensive
to generate. Also it does not require specialized hardware; as shown in the two case

108

studies a standard AES accelerator is sufficient to implement the scheme. That makes
it applicable to a wide range of (legacy) devices.

Finally, the achievable security level is independent of the order of the attack. Masking
schemes are usually categorized by the order of protection, e.g. a first-order secure scheme
processes data that is split up into a masked value and the mask. This is secure against
attacks that exploit leakage of any one of the two shares, but can always be broken by
combining the leakage of the two shares. Exploiting more than one intermediate variable
at once in a side-channel trace is more prone to noise and hence requires a lot more traces
for a successful attack. Yet, in practice a combination with noise amplification methods
and hiding countermeasures is often necessary to meet security requirements, which are
often defined as the number of traces that an attacker is allowed to evaluate.

This is fundamentally different for leakage resilient constructions that rely on limited
data complexity such as the discussed LR-PRF. By design, the information about the
secret that is exposed to an attacker is limited to what is contained in the very few
different traces that are available. Increasing the number of traces only reduces the
amount of noise for those traces, but does not expose new information to the attacker.
The attacker’s goal is then to extract as much of this information as possible by deploying
the most powerful measurement and analysis methods. There is, however, an intrinsic
limit on the amount of information that can be extracted which is dependent on the
device and the measurement equipment. Contrary to the case of masking, there is no
further gain when acquiring more traces beyond the removal of (measurement) noise.
There are also no straightforward higher-order attacks that break the construction and
to the best of our knowledge multivariate first-order attacks are the most efficient tool
in this scenario. The security level is therefore fully determined by the extractable
information of the few unique traces and independent of the order of the applied attack,
which seems a more generic approach.

Future work A factor that could hinder the adoption of leakage resilience as a counter-
measure is the high effort that is required for a sound practical evaluation. As conducted
in this thesis, the evaluation includes profiling and conducting a full template attack in-
cluding key rank estimation to determine the security levels. Further, this has to be
repeated for a sufficient number of different keys since in the low data complexity sce-
nario the actual values of the key bytes have a big influence on the attack efficiency.
Therefore research into “shortcuts” that speed up evaluation would be beneficial. For
masking countermeasures, e.g., a (first-order) leakage test is sufficient to prove the ef-
fectiveness of the measure and for standard differential attacks the success rate can be
estimated from the correlation coefficient. Finding a similar, easy to determine, metric
(maybe based on the multivariate SNR) would help to formalize the evaluation.

Another interesting research direction is to further explore how to use exist-
ing hardware accelerators on common microcontrollers for side-channel hardened
hardware/software-codesigns. We made a first step by utilizing an AES accelerator
to benefit from its algorithmic noise. Similarly, leakage resilient constructions could be
designed that use, e.g., hash accelerators as building blocks.

109

Bibliography

1]

2]

IEEE standard for cryptographic protection of data on block-oriented storage de-
vices. IEEFE Std 1619-2007, pages 1-32, 2008.

A. Akavia, S. Goldwasser, and V. Vaikuntanathan. Simultaneous hardcore bits
and cryptography against memory attacks. In Theory of Cryptography, 6th Theory
of Cryptography Conference, TCC 2009, San Francisco, CA, USA, March 15-17,
2009. Proceedings, volume 5444 of Lecture Notes in Computer Science, pages 474—
495. Springer, 2009.

M. Akkar and C. Giraud. An implementation of DES and AES, secure against some
attacks. In Cryptographic Hardware and Embedded Systems - CHES 2001, Third
International Workshop, Paris, France, May 14-16, 2001, Proceedings, volume
2162 of Lecture Notes in Computer Science, pages 309-318. Springer, 2001.

C. Archambeau, E. Peeters, F. Standaert, and J. Quisquater. Template attacks in
principal subspaces. In Cryptographic Hardware and Embedded Systems - CHES
2006, 8th International Workshop, Yokohama, Japan, October 10-13, 2006, Pro-
ceedings, volume 4249 of Lecture Notes in Computer Science, pages 1-14. Springer,
2006.

G. T. Becker and R. Kumar. Active and passive side-channel attacks on delay
based PUF designs. TACR Cryptology ePrint Archive, 2014:287, 2014.

S. Belaid, F. De Santis, J. Heyszl, S. Mangard, M. Medwed, J.-M. Schmidt,
F.-X. Standaert, and S. Tillich. Towards fresh re-keying with leakage-resilient
PRFs: cipher design principles and analysis. Journal of Cryptographic Engineer-
ing, 4(3):157-171, 2014.

R. Benadjila, L. Khati, E. Prouff, and A. Thillard. Hardened library for AES-128
encryption/decryption on ARM Cortex M4 achitecture. https://github.com/
ANSSI-FR/SecAESSTM32, Commit: 39af47f.

D. J. Bernstein, T. Lange, and C. van Vredendaal. Tighter, faster, simpler side-
channel security evaluations beyond computing power. TACR Cryptology ePrint
Archive, 2015:221, 2015.

7. Brakerski, Y. T. Kalai, J. Katz, and V. Vaikuntanathan. Overcoming the hole
in the bucket: Public-key cryptography resilient to continual memory leakage. In
51th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010,

111

https://github.com/ANSSI-FR/SecAESSTM32
https://github.com/ANSSI-FR/SecAESSTM32

Bibliography

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[18]

112

October 23-26, 2010, Las Vegas, Nevada, USA, pages 501-510. IEEE Computer
Society, 2010.

E. Brier, C. Clavier, and F. Olivier. Correlation power analysis with a leakage
model. In Cryptographic Hardware and Embedded Systems - CHES 2004: 6th
International Workshop Cambridge, MA, USA, August 11-13, 2004. Proceedings,
volume 3156 of Lecture Notes in Computer Science, pages 16-29. Springer, 2004.

O. Bronchain and F. Standaert. Side-channel countermeasures’ dissection and the
limits of closed source security evaluations. TACR Trans. Cryptogr. Hardw. Embed.
Syst., 2020(2):1-25, 2020.

N. Bruneau, S. Guilley, A. Heuser, D. Marion, and O. Rioul. Less is more - di-
mensionality reduction from a theoretical perspective. In Cryptographic Hardware
and Embedded Systems - CHES 2015 - 17th International Workshop, Saint-Malo,
France, September 13-16, 2015, Proceedings, volume 9293 of Lecture Notes in Com-
puter Science, pages 22-41. Springer, 2015.

D. Canright. A very compact S-box for AES. In Cryptographic Hardware and
Embedded Systems - CHES 2005, 7th International Workshop, Edinburgh, UK,
August 29 - September 1, 2005, Proceedings, volume 3659 of Lecture Notes in
Computer Science, pages 441-455. Springer, 2005.

S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi. Towards sound approaches to
counteract power-analysis attacks. In Advances in Cryptology - CRYPTO 99, 19th
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 15-19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer Sci-
ence, pages 398-412. Springer, 1999.

S. Chari, J. R. Rao, and P. Rohatgi. Template attacks. In Cryptographic Hard-
ware and Embedded Systems - CHES 2002, Jth International Workshop, Redwood
Shores, CA, USA, August 13-15, 2002, Revised Papers, volume 2523 of Lecture
Notes in Computer Science, pages 13—28. Springer, 2002.

O. Choudary and M. G. Kuhn. Efficient template attacks. In Smart Card Re-
search and Advanced Applications - 12th International Conference, CARDIS 2013,
Berlin, Germany, November 27-29, 2013. Revised Selected Papers, volume 8419 of
Lecture Notes in Computer Science, pages 253-270. Springer, 2013.

O. Choudary and M. G. Kuhn. Template attacks on different devices. In Con-
structive Side-Channel Analysis and Secure Design - 5th International Workshop,
COSADEFE 2014, Paris, France, April 13-15, 201/. Revised Selected Papers, volume
8622 of Lecture Notes in Computer Science, pages 179-198. Springer, 2014.

C. Clavier, J. Coron, and N. Dabbous. Differential power analysis in the presence
of hardware countermeasures. In Cryptographic Hardware and Embedded Systems

[19]

[20]

[21]

[22]

[23]

[24]

Bibliography

- CHES 2000, Second International Workshop, Worcester, MA, USA, August 17-
18, 2000, Proceedings, volume 1965 of Lecture Notes in Computer Science, pages
252-263. Springer, 2000.

G. D. Crescenzo, R. J. Lipton, and S. Walfish. Perfectly secure password protocols
in the bounded retrieval model. In Theory of Cryptography, Third Theory of
Cryptography Conference, TCC 2006, New York, NY, USA, March /-7, 2000,
Proceedings, volume 3876 of Lecture Notes in Computer Science, pages 225-244.
Springer, 2006.

J. P. Degabriele, C. Janson, and P. Struck. Sponges resist leakage: The case
of authenticated encryption. In Advances in Cryptology - ASIACRYPT 2019 -
25th International Conference on the Theory and Application of Cryptology and
Information Security, Kobe, Japan, December 8-12, 2019, Proceedings, Part II,
volume 11922 of Lecture Notes in Computer Science, pages 209-240. Springer,
2019.

Y. Dodis, K. Haralambiev, A. Lépez-Alt, and D. Wichs. Cryptography against
continuous memory attacks. In 51th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA,
pages 511-520. IEEE Computer Society, 2010.

Y. Dodis, Y. T. Kalai, and S. Lovett. On cryptography with auxiliary input. In
Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC
2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages 621-630. ACM, 2009.

F. Durvaux and F. Standaert. From improved leakage detection to the detection
of points of interests in leakage traces. In Advances in Cryptology - EUROCRYPT
2016 - 35th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part I,
volume 9665 of Lecture Notes in Computer Science, pages 240-262. Springer, 2016.

S. Dziembowski. Intrusion-resilience via the bounded-storage model. In Theory of
Cryptography, Third Theory of Cryptography Conference, TCC 2006, New York,
NY, USA, March 4-7, 2006, Proceedings, volume 3876 of Lecture Notes in Com-
puter Science, pages 207-224. Springer, 2006.

S. Dziembowski and K. Pietrzak. Leakage-resilient cryptography. In 49th Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2008, October 25-
28, 2008, Philadelphia, PA, USA, pages 293-302. IEEE Computer Society, 2008.

M. Ender, A. Moradi, and C. Paar. The unpatchable silicon: A full break of the
bitstream encryption of Xilinx 7-series FPGAs. In 29th USENIX Security Sym-
posium, USENIX Security 2020, August 12-14, 2020, pages 1803-1819. USENIX
Association, 2020.

113

Bibliography

[27]

28]

[29]

[30]

31]

32]

[33]

[34]

114

J. Ferrigno and M. Hlavac. When AES blinks: introducing optical side channel.
IET Information Security, 2(3):94-98, 2008.

R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals
of Eugenics, 7(7):179-188, 1936.

G. Fumaroli, A. Martinelli, E. Prouff, and M. Rivain. Affine masking against
higher-order side channel analysis. In Selected Areas in Cryptography - 17th Inter-
national Workshop, SAC 2010, Waterloo, Ontario, Canada, August 12-13, 2010,
Revised Selected Papers, volume 6544 of Lecture Notes in Computer Science, pages
262-280. Springer, 2010.

K. Gandolfi, C. Mourtel, and F. Olivier. Electromagnetic analysis: Concrete re-
sults. In Cryptographic Hardware and Embedded Systems - CHES 2001, Third
International Workshop, Paris, France, May 14-16, 2001, Proceedings, volume
2162 of Lecture Notes in Computer Science, pages 251-261. Springer, 2001.

B. Gassend, D. E. Clarke, M. van Dijk, and S. Devadas. Silicon physical random
functions. In Proceedings of the 9th ACM Conference on Computer and Commu-
nications Security - CCS 2002, Washington, DC, USA, November 18-22, 2002,
pages 148-160. ACM, 2002.

B. Gierlichs, L. Batina, P. Tuyls, and B. Preneel. Mutual information analysis.
In Cryptographic Hardware and Embedded Systems - CHES 2008, 10th Interna-
tional Workshop, Washington, D.C., USA, August 10-13, 2008. Proceedings, vol-
ume 5154 of Lecture Notes in Computer Science, pages 426—442. Springer, 2008.

B. J. Gilbert Goodwill, J. Jaffe, P. Rohatgi, et al. A testing methodology for
side-channel resistance validation. In NIST Non-invasive attack testing workshop,
2011.

C. Glowacz, V. Grosso, R. Poussier, J. Schiith, and F. Standaert. Simpler and more
efficient rank estimation for side-channel security assessment. In Fast Software
Encryption - 22nd International Workshop, FSE 2015, Istanbul, Turkey, March
8-11, 2015, Reuised Selected Papers, volume 9054 of Lecture Notes in Computer
Science, pages 117-129. Springer, 2015.

O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions
(extended abstract). In 25th Annual Symposium on Foundations of Computer
Science, West Palm Beach, Florida, USA, 24-26 October 198/, pages 464—479.
IEEE Computer Society, 1984.

J. D. Golic and C. Tymen. Multiplicative masking and power analysis of AES. In
Cryptographic Hardware and Embedded Systems - CHES 2002, jth International
Workshop, Redwood Shores, CA, USA, August 15-15, 2002, Revised Papers, vol-
ume 2523 of Lecture Notes in Computer Science, pages 198-212. Springer, 2002.

[37]

[41]

[42]

Bibliography

L. Goubin and J. Patarin. DES and differential power analysis (the ”duplication”
method). In Cryptographic Hardware and Embedded Systems, First International
Workshop, CHES’99, Worcester, MA, USA, August 12-13, 1999, Proceedings, vol-
ume 1717 of Lecture Notes in Computer Science, pages 158-172. Springer, 1999.

H. Gro8, S. Mangard, and T. Korak. Domain-oriented masking: Compact masked
hardware implementations with arbitrary protection order. In Proceedings of the
ACM Workshop on Theory of Implementation Security, TISQCCS 2016 Vienna,
Austria, October, 2016, page 3. ACM, 2016.

C. Gu and M. O’Neill. Ultra-compact and robust FPGA-based PUF identifica-
tion generator. In 2015 IEEE International Symposium on Circuits and Systems,
ISCAS2015, Lisbon, Portugal, May 24-27, 2015, pages 934-937. IEEE, 2015.

J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Calan-
drino, A. J. Feldman, J. Appelbaum, and E. W. Felten. Lest we remember: Cold
boot attacks on encryption keys. In Proceedings of the 17th USENIX Security
Symposium, July 28-August 1, 2008, San Jose, CA, USA, pages 45—60. USENIX
Association, 2008.

N. Hanley, M. Tunstall, and W. P. Marnane. Unknown plaintext template at-
tacks. In Information Security Applications, 10th International Workshop, WISA
2009, Busan, Korea, August 25-27, 2009, Revised Selected Papers, volume 5932 of
Lecture Notes in Computer Science, pages 148-162. Springer, 2009.

B. Heinz, J. Heyszl, and F. Stumpf. Side-channel analysis of a high-throughput
AES peripheral with countermeasures. In 2014 International Symposium on In-
tegrated Circuits (ISIC), Singapore, December 10-12, 2014, pages 25-29. IEEE,
2014.

J. Heyszl, D. Merli, B. Heinz, F. D. Santis, and G. Sigl. Strengths and limitations
of high-resolution electromagnetic field measurements for side-channel analysis. In
Smart Card Research and Advanced Applications - 11th International Conference,
CARDIS 2012, Graz, Austria, November 28-30, 2012, Revised Selected Papers,
volume 7771 of Lecture Notes in Computer Science, pages 248-262. Springer, 2012.

V. Immler, R. Specht, and F. Unterstein. Your rails cannot hide from localized EM:
how dual-rail logic fails on FPGAs - extended version. Journal of Cryptographic
Engineering, 8(2):125-139, 2018.

Y. Ishai, A. Sahai, and D. A. Wagner. Private circuits: Securing hardware against
probing attacks. In Advances in Cryptology - CRYPTO 2003, 23rd Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 17-21,
2003, Proceedings, volume 2729 of Lecture Notes in Computer Science, pages 463—
481. Springer, 2003.

115

Bibliography

[46]

[47]

[52]

116

N. Jacob, J. Wittmann, J. Heyszl, R. Hesselbarth, F. Wilde, M. Pehl, G. Sigl,
and K. Fischer. Securing FPGA SoC configurations independent of their manu-
facturers. In 30th IEEFE International System-on-Chip Conference, SOCC 2017,
Munich, Germany, September 5-8, 2017, pages 114-119. IEEE, 2017.

J. Jaffe. A first-order DPA attack against AES in counter mode with unknown
initial counter. In Cryptographic Hardware and Embedded Systems - CHES 2007,
9th International Workshop, Vienna, Austria, September 10-13, 2007, Proceedings,
volume 4727 of Lecture Notes in Computer Science, pages 1-13. Springer, 2007.

Y. T. Kalai and L. Reyzin. A survey of leakage-resilient cryptography. In Providing
Sound Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio
Micali, pages 727-794. ACM, 2019.

M. Kasper, W. Schindler, and M. Stottinger. A stochastic method for security
evaluation of cryptographic FPGA implementations. In Proceedings of the Interna-
tional Conference on Field-Programmable Technology, FPT 2010, 8-10 December
2010, Tsinghua University, Beijing, China, pages 146-153, 2010.

N. Koblitz and A. Menezes. Another look at security definitions. Adv. in Math.
of Comm., 7(1):1-38, 2013.

P. C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In Advances in Cryptology - CRYPTO ’96, 16th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 18-22,
1996, Proceedings, volume 1109 of Lecture Notes in Computer Science, pages 104—
113. Springer, 1996.

P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In Advances
in Cryptology - CRYPTO 799, 19th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 15-19, 1999, Proceedings, volume 1666 of
Lecture Notes in Computer Science, pages 388-397. Springer, 1999.

J. Kramer and P. Struck. Leakage-resilient authenticated encryption from leakage-
resilient pseudorandom functions. In Constructive Side-Channel Analysis and Se-
cure Design - 11th International Workshop, COSADE 2020, 2020.

G. Leurent and T. Peyrin. From collisions to chosen-prefix collisions application to
full SHA-1. In Advances in Cryptology - EUROCRYPT 2019 - 38th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
Darmstadt, Germany, May 19-23, 2019, Proceedings, Part III, volume 11478 of
Lecture Notes in Computer Science, pages 527-555. Springer, 2019.

F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. Last-level cache side-channel
attacks are practical. In 2015 IEEE Symposium on Security and Privacy, SP 2015,
San Jose, CA, USA, May 17-21, 2015, pages 605-622. IEEE Computer Society,
2015.

[56]

[57]

[58]

[62]

[63]

[64]

[65]

Bibliography

H. Lohrke, S. Tajik, T. Krachenfels, C. Boit, and J. Seifert. Key extraction us-
ing thermal laser stimulation: A case study on Xilinx Ultrascale FPGAs. TACR
Transactions on Cryptographic Hardware and Embedded Systems, 2018(3):573-595,
2018.

C. Luo, Y. Fei, and A. A. Ding. Side-channel power analysis of XTS-AES. In
Design, Automation € Test in Europe Conference € FExhibition, DATE 2017, Lau-
sanne, Switzerland, March 27-31, 2017, pages 1330-1335. IEEE, 2017.

S. Mangard. A simple power-analysis (SPA) attack on implementations of the
AES key expansion. In Information Security and Cryptology - ICISC 2002, 5th
International Conference Seoul, Korea, November 28-29, 2002, Revised Papers,
volume 2587 of Lecture Notes in Computer Science, pages 343-358. Springer, 2002.

S. Mangard. Hardware countermeasures against DPA? A statistical analysis of
their effectiveness. In Topics in Cryptology - CT-RSA 2004, The Cryptographers’
Track at the RSA Conference 2004, San Francisco, CA, USA, February 23-27,
2004, Proceedings, volume 2964 of Lecture Notes in Computer Science, pages 222—
235. Springer, 2004.

S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks. Springer, 2008.

S. Mangard, T. Popp, and B. M. Gammel. Side-channel leakage of masked CMOS
gates. In Topics in Cryptology - CT-RSA 2005, The Cryptographers’ Track at the
RSA Conference 2005, San Francisco, CA, USA, February 14-18, 2005, Proceed-
ings, volume 3376 of Lecture Notes in Computer Science, pages 351-365. Springer,
2005.

L. Mather, E. Oswald, J. Bandenburg, and M. Wdjcik. Does my device leak
information? An a priori statistical power analysis of leakage detection tests. In
Advances in Cryptology - ASIACRYPT 2013 - 19th International Conference on
the Theory and Application of Cryptology and Information Security, Bengaluru,
India, December 1-5, 2013, Proceedings, Part I, volume 8269 of Lecture Notes in
Computer Science, pages 486-505. Springer, 2013.

D. A. McGrew and J. Viega. The Galois/Counter Mode of Operation (GCM).
NIST.

M. Medwed, F. Standaert, J. Grofischadl, and F. Regazzoni. Fresh re-keying:
Security against side-channel and fault attacks for low-cost devices. In Progress in
Cryptology - AFRICACRYPT 2010, Third International Conference on Cryptology
in Africa, Stellenbosch, South Africa, May 3-6, 2010. Proceedings, volume 6055 of
Lecture Notes in Computer Science, pages 279-296. Springer, 2010.

M. Medwed, F. Standaert, and A. Joux. Towards super-exponential side-channel
security with efficient leakage-resilient PRFs. In Cryptographic Hardware and Em-
bedded Systems - CHES 2012 - 14th International Workshop, Leuven, Belgium,

117

Bibliography

[66]

[68]

[69]

[70]

[71]

[72]

118

September 9-12, 2012. Proceedings, volume 7428 of Lecture Notes in Computer
Science, pages 193-212. Springer, 2012.

M. Medwed, F. Standaert, V. Nikov, and M. Feldhofer. Unknown-input attacks
in the parallel setting: Improving the security of the CHES 2012 leakage-resilient
PRF. In Advances in Cryptology - ASIACRYPT 2016 - 22nd International Con-
ference on the Theory and Application of Cryptology and Information Security,
Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part I, volume 10031 of Lec-
ture Notes in Computer Science, pages 602623, 2016.

D. Merli, D. Schuster, F. Stumpf, and G. Sigl. Side-channel analysis of PUFs
and fuzzy extractors. In Trust and Trustworthy Computing - 4th International
Conference, TRUST 2011, Pittsburgh, PA, USA, June 22-24, 2011. Proceedings,
volume 6740 of Lecture Notes in Computer Science, pages 33—47. Springer, 2011.

S. Micali and L. Reyzin. Physically observable cryptography (extended abstract).
In M. Naor, editor, Theory of Cryptography, First Theory of Cryptography Con-
ference, TCC 2004, Cambridge, MA, USA, February 19-21, 2004, Proceedings,
volume 2951 of Lecture Notes in Computer Science, pages 278-296. Springer, 2004.

R. Misoczki. Tinycrypt cryptographic library. https://github.com/intel/
tinycrypt/, Commit: 5969b0e.

A. Moradi, A. Barenghi, T. Kasper, and C. Paar. On the vulnerability of FPGA
bitstream encryption against power analysis attacks: extracting keys from Xil-
inx Virtex-II FPGAs. In Proceedings of the 18th ACM Conference on Computer
and Communications Security, CCS 2011, Chicago, Illinois, USA, October 17-21,
2011, pages 111-124. ACM, 2011.

A. Moradi and T. Schneider. Improved side-channel analysis attacks on Xilinx bit-
stream encryption of 5, 6, and 7 series. In Constructive Side-Channel Analysis and
Secure Design - Tth International Workshop, COSADE 2016, Graz, Austria, April
14-15, 2016, Revised Selected Papers, volume 9689 of Lecture Notes in Computer
Science, pages 71-87. Springer, 2016.

S. Nikova, C. Rechberger, and V. Rijmen. Threshold implementations against side-
channel attacks and glitches. In Information and Communications Security, Sth
International Conference, ICICS 2006, Raleigh, NC, USA, December 4-7, 2006,
Proceedings, volume 4307 of Lecture Notes in Computer Science, pages 529-545.
Springer, 2006.

R. Novak. SPA-based adaptive chosen-ciphertext attack on RSA implementation.
In Public Key Cryptography, 5th International Workshop on Practice and Theory
in Public Key Cryptosystems, PKC 2002, Paris, France, February 12-14, 2002,
Proceedings, volume 2274 of Lecture Notes in Computer Science, pages 252—262.
Springer, 2002.

https://github.com/intel/tinycrypt/
https://github.com/intel/tinycrypt/

[74]

[75]

[76]

[79]

[80]

[31]

[82]

Bibliography

D. Owen Jr., D. Heeger, C. Chan, W. Che, F. Saqib, M. Areno, and J. Plusquellic.
An autonomous, self-authenticating, and self-contained secure boot process for
field-programmable gate arrays. Cryptography, 2(3):15, 2018.

K. Pearson F.R.S. Liii. on lines and planes of closest fit to systems of points in
space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal
of Science, 2(11):559-572, 1901.

O. Pereira, F. Standaert, and S. Vivek. Leakage-resilient authentication and en-
cryption from symmetric cryptographic primitives. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security, Denver,
CO, USA, October 12-16, 2015, pages 96108, 2015.

E. Peterson. Leveraging asymmetric authentication to enhance security-critical
applications using Zyng-7000 all programmable SoCs. Xilinx, 2015.

R. Poussier, F. Standaert, and V. Grosso. Simple key enumeration (and rank es-
timation) using histograms: An integrated approach. In Cryptographic Hardware
and Embedded Systems - CHES 2016 - 18th International Conference, Santa Bar-
bara, CA, USA, August 17-19, 2016, Proceedings, volume 9813 of Lecture Notes
in Computer Science, pages 61-81. Springer, 2016.

E. Prouff. DPA attacks and S-boxes. In Fast Software Encryption: 12th Inter-
national Workshop, FSE 2005, Paris, France, February 21-23, 2005, Revised Se-
lected Papers, volume 3557 of Lecture Notes in Computer Science, pages 424-441.
Springer, 2005.

P. Rogaway. Efficient instantiations of tweakable blockciphers and refinements
to modes OCB and PMAC. In Advances in Cryptology - ASIACRYPT 2004,
10th International Conferenceon the Theory and Application of Cryptology and
Information Security, Jeju Island, Korea, December 5-9, 2004, Proceedings, volume
3329 of Lecture Notes in Computer Science, pages 16—-31. Springer, 2004.

E. Ronen, A. Shamir, A. Weingarten, and C. O’Flynn. [oT goes nuclear: Creating
a ZigBee chain reaction. In 2017 IEEE Symposium on Security and Privacy, SP
2017, San Jose, CA, USA, May 22-26, 2017, pages 195-212. IEEE Computer
Society, 2017.

H. Saputra, N. Vijaykrishnan, M. T. Kandemir, M. J. Irwin, R. R. Brooks, S. Kim,
and W. Zhang. Masking the energy behavior of DES encryption. In 2003 De-
sign, Automation and Test in Europe Conference and Ezxposition (DATE 2003),
3-7 March 2003, Munich, Germany, pages 10084-10089. IEEE Computer Society,
2003.

W. Schindler, K. Lemke, and C. Paar. A stochastic model for differential side
channel cryptanalysis. In Cryptographic Hardware and Embedded Systems - CHES

119

Bibliography

[84]

[85]

[86]

[87]

[33]

120

2005, volume 3659 of Lecture Notes in Computer Science, pages 30—46. Springer,
2005.

M. Schink and J. Obermaier. Taking a look into execute-only memory. In A. Gant-
man and C. Maurice, editors, 13th USENIX Workshop on Offensive Technologies,
WOOT 2019, Santa Clara, CA, USA, August 12-13, 2019. USENIX Association,
2019.

T. Schneider and A. Moradi. Leakage assessment methodology - A clear roadmap
for side-channel evaluations. In Cryptographic Hardware and Embedded Systems
- CHES 2015 - 17th International Workshop, Saint-Malo, France, September 13-
16, 2015, Proceedings, volume 9293 of Lecture Notes in Computer Science, pages
495-513. Springer, 2015.

S. Skorobogatov and C. Woods. Breakthrough silicon scanning discovers backdoor
in military chip. In Cryptographic Hardware and Embedded Systems - CHES 2012
- 14th International Workshop, Leuven, Belgium, September 9-12, 2012. Proceed-
ings, volume 7428 of Lecture Notes in Computer Science, pages 23-40. Springer,
2012.

S. Skorobogatov and C. Woods. In the blink of an eye: There goes your AES key.
IACR Cryptology ePrint Archive, 2012:296, 2012.

R. Specht, J. Heyszl, and G. Sigl. Investigating measurement methods for high-
resolution electromagnetic field side-channel analysis. In 2014 International Sym-
posium on Integrated Circuits (ISIC), Singapore, December 10-12, 2014, pages
21-24. IEEE, 2014.

F. Standaert. How (not) to use welch’s t-test in side-channel security evalua-
tions. In Smart Card Research and Advanced Applications, 17th International
Conference, CARDIS 2018, Montpellier, France, November 12-14, 2018, Revised
Selected Papers., volume 11389 of Lecture Notes in Computer Science, pages 65-79.
Springer, 2018.

F. Standaert and C. Archambeau. Using subspace-based template attacks to com-
pare and combine power and electromagnetic information leakages. In Crypto-
graphic Hardware and Embedded Systems - CHES 2008, 10th International Work-
shop, Washington, D.C., USA, August 10-13, 2008. Proceedings, volume 5154 of
Lecture Notes in Computer Science, pages 411-425. Springer, 2008.

F. Standaert, T. Malkin, and M. Yung. A unified framework for the analysis of side-
channel key recovery attacks. In Advances in Cryptology - EUROCRYPT 2009,
28th Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Cologne, Germany, April 26-30, 2009. Proceedings, volume
5479 of Lecture Notes in Computer Science, pages 443—-461. Springer, 2009.

[92]

[93]

[96]

[100]

Bibliography

F. Standaert, O. Pereira, and Y. Yu. Leakage-resilient symmetric cryptography
under empirically verifiable assumptions. In Advances in Cryptology - CRYPTO
20183 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-
22, 2013. Proceedings, Part I, volume 8042 of Lecture Notes in Computer Science,
pages 335-352. Springer, 2013.

F. Standaert, O. Pereira, Y. Yu, J. Quisquater, M. Yung, and E. Oswald. Leak-
age resilient cryptography in practice. In Towards Hardware-Intrinsic Security -
Foundations and Practice, Information Security and Cryptography, pages 99-134.
Springer, 2010.

P. Swierczynski, A. Moradi, D. Oswald, and C. Paar. Physical security evaluation
of the bitstream encryption mechanism of Altera Stratix IT and Stratix III FPGAs.
ACM Trans. Reconfigurable Technol. Syst., 7(4):34:1-34:23, 2015.

L. Tebelmann, M. Pehl, and G. Sigl. EM side-channel analysis of BCH-based error
correction for PUF-based key generation. In Proceedings of the 2017 Workshop
on Attacks and Solutions in Hardware Security, ASHESQCCS 2017, Dallas, TX,
USA, November 3, 2017, pages 43-52. ACM, 2017.

K. Tiri, M. Akmal, and I. Verbauwhede. A dynamic and differential CMOS logic
with signal independent power consumption to withstand differential power anal-
ysis on smart cards. In Proceedings of the 28th European Solid-State Clircuits
Conference, pages 403-406, 2002.

S. Trimberger and J. Moore. FPGA security: Motivations, features, and applica-
tions. Proc. IEEFE, 102(8):1248-1265, 2014.

T. Unterluggauer and S. Mangard. Exploiting the physical disparity: Side-channel
attacks on memory encryption. In Constructive Side-Channel Analysis and Secure
Design - Tth International Workshop, COSADE 2016, Graz, Austria, April 14-15,
2016, Rewvised Selected Papers, volume 9689 of Lecture Notes in Computer Science,
pages 3—18. Springer, 2016.

T. Unterluggauer, M. Werner, and S. Mangard. Side-channel plaintext-recovery
attacks on leakage-resilient encryption. In D. Atienza and G. D. Natale, editors,
Design, Automation & Test in Europe Conference & Exhibition, DATE 2017, Lau-
sanne, Switzerland, March 27-31, 2017, pages 1318-1323. IEEE, 2017.

F. Unterstein, J. Heyszl, F. De Santis, and R. Specht. Dissecting leakage resilient
PRFs with multivariate localized EM attacks - A practical security evaluation
on FPGA. In Constructive Side-Channel Analysis and Secure Design - 8th In-
ternational Workshop, COSADE 2017, Paris, France, April 13-14, 2017, Revised
Selected Papers, volume 10348 of Lecture Notes in Computer Science, pages 34—49.
Springer, 2017.

121

Bibliography

[101]

[102]

[103]

[104]

[105]

[106]

[107]

108

[109]

122

F. Unterstein, J. Heyszl, F. De Santis, R. Specht, and G. Sigl. High-resolution
EM attacks against leakage-resilient PRF's explained - and an improved construc-
tion. In Topics in Cryptology - CT-RSA 2018 - The Cryptographers’ Track at the
RSA Conference 2018, San Francisco, CA, USA, April 16-20, 2018, Proceedings,
volume 10808 of Lecture Notes in Computer Science, pages 413-434. Springer,
2018.

F. Unterstein, N. Jacob, N. Hanley, C. Gu, and J. Heyszl. SCA secure and up-
datable crypto engines for FPGA SoC bitstream decryption. In Proceedings of the
3rd ACM Workshop on Attacks and Solutions in Hardware Security Workshop,
ASHES@QCCS 2019, London, UK, November 15, 2019, pages 43-53. ACM, 2019.

F. Unterstein, N. Jacob, N. Hanley, C. Gu, and J. Heyszl. SCA secure and up-
datable crypto engines for FPGA SoC bitstream decryption: extended version.
Journal of Cryptographic Engineering, pages 1-16, 2020.

F. Unterstein, M. Schink, T. Schamberger, L.. Tebelmann, M. Ilg, and J. Heyszl.
Retrofitting leakage resilient authenticated encryption to microcontrollers. TACR
Trans. Cryptogr. Hardw. Embed. Syst., 2020(4):365-388, 2020.

N. Veyrat-Charvillon, B. Gérard, M. Renauld, and F. Standaert. An optimal key
enumeration algorithm and its application to side-channel attacks. In Selected
Areas in Cryptography, 19th International Conference, SAC 2012, Windsor, ON,
Canada, August 15-16, 2012, Revised Selected Papers, volume 7707 of Lecture
Notes in Computer Science, pages 390-406. Springer, 2012.

N. Veyrat-Charvillon, B. Gérard, and F. Standaert. Security evaluations beyond
computing power. In Advances in Cryptology - EUROCRYPT 2013, 32nd Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Athens, Greece, May 26-30, 2013. Proceedings, volume 7881 of Lecture
Notes in Computer Science, pages 126-141. Springer, 2013.

B. L. Welch. The generalization of ‘student’s’ problem when several different
population varlances are involved. Biometrika, 34(1-2):28-35, 1947.

L. Wouters, J. V. den Herrewegen, F. D. Garcia, D. Oswald, B. Gierlichs, and
B. Preneel. Dismantling DST80-based immobiliser systems. TACR Trans. Cryp-
togr. Hardw. Embed. Syst., 2020(2):99-127, 2020.

Y. Xiao, X. Zhang, Y. Zhang, and R. Teodorescu. One bit flips, one cloud flops:
Cross-VM row hammer attacks and privilege escalation. In 25th USENIX Security
Symposium, USENIX Security 16, Austin, TX, USA, August 10-12, 2016, pages
19-35. USENIX Association, 2016.

A. EM analysis of LR-PRF on FPGA

A.1. SNR heat maps of all S-boxes

0 5 10 15
sbox10
0 —1.05
0.90
m- I
0.4
19
0.15

s00%13 sbox14

‘ 032 o 14
{0.2a 12
(024 N 1.0

0.20
203

o .16)

06

0.12
S (.08 15 o
0.04 02

E E 0 5 10 15

Figure A.1.: SNR heat maps of unconstrained placement.

123

A. EM analysis of LR-PRF on FPGA

124

g

25

sbox1 sbox3

8 5 10 5 20 25 0 B

1.20
) 105
030
075
080
045
0.30
015

d 5 10 15 20 25 30 3

sbox7

0 5 10 15 20 25 30 25
sbox11

10 15 20 25 a0
sbox9 sbox10

1015 20 %5 20 3%

A.2.: SNR heat maps of dense hard-macro placement.

0.50

0.75

0.60

A.2. SNR traces of all S-boxes

A.2. SNR traces of all S-boxes

1.2 1.2
S-boxd —— S-boxd ——
S-box L S-box 1
1 Sbox 2 —— 1 Sbox 2 ——
Hebae 5 —— Hebax § ———
S-box 4 —0 S-box 4 ———
Sbox i —— Sbox s ——
0.8 Sbox s —— 0.8 Slbx s ——
Sbox T — S-box 7 ——
EIZ: 0.6 S-box 8 —— E'z: S-box B ——
I S-box 9 —— I Sbox g ——
S-box 10— S-box 180 ——
S-box 11 —— S-box 11 ——
Shbuxl2 —— Shbuxl2 ——
S-box 13 —— S-box 13 ——
S-box 14 —— S-box 14 ———
Sbox 15 —— Sbox 15 ——
520 540 460 480 500 520 540
Samples Samples
1.2 1.2
S-boxw) —— S-box) ——
S-box L —— S-box L
1 Sbox 2 —— 1 Sbox 2 ——
H-box 3 —— He-box 3 ——
S-box 4 —— S-box 4 ——
Sbox 5 — Sbox 5 ——
0.8 Sboxd —— 0.8 ‘ Shboxd ——
S-box 7T —— S-box T ——
% S-box B —— DZ: 0.6 | S-box B ——
5 Stox 5 —— s v F A' S-tox 5 ——
S-bo 10 ——— | S-box 10 ———
S-box 11 —— 0.4 - . r | S-box 11 ——
Sbux 12 —— . U h Shbux 12 ——
S-box 13 —— Se-bose 13 ——
S-box 14 —— iy S-box 14 ——
Sbox 15 —— 0.2 4 Sbox 15 ——
4] T
520 540 460 480 500 520 540
Samples Samples
1.2 1.2
G-hose) —— Gebose) ——
S-boxl —no S-box 1 ———
1 Sbox 2 —— 1 Sbox 2 ——
Sbow 3 —— Sk 3 ——
S-box 4 —— H-bord ——
Ebox5 —— 0.8 Sbox5 ——
Shoxd — : Shoxd —
S-box T —— S-box T ——
DZ: S-box B —— % 0.6 - S-box B ——
I Sboxd —— - Shoxd ——
S-box 10 —— S-box 10 ——
S-box 11— _ 5box 1l ——
Sbux 12 —— Sbux 12 ——
Sebox 13 —— Seboe 15 ——
S-box 14 ——— S-box 14 ———
Sbux 15 —— Sbux 15 ——
0 Hasy : AT
460 480 500 520 540 460 480 500 520 540
Samples Samples
12 1.2
Gebase) —— Gebae) ——
S-box Ll —— S-boxl ——
1 S-box 2 —— 1 Sbox 2 ——
Sbox 3 —— Sbox 3 ——
H-box 4 —— He-bord ——
4 E-box 5 —— J Sbox5 ——
0.8 Shboxd —— 0.8 Shbuxd ——
H-bow § —— S-bax § ———
o o
d S-box § —— = | 5-box B =——
%Ob 5boxs —— %O'b 5boxd ——
S-box 10 —— S-box 10 ——
S-box 1L 0.4 - S-box 11
Sbox 12 —— . Sbox 12 ——
S-box 13 —— S-box 13 ——
S-box 14— 0.2 S-box 14 ———
Sbuxls —— £ Shuxls ——
0 ! i AN s
460 480 500 520 540 460 480 500 520 540
Samples Samples

Figure A.3.: SNR for S-boxes 0 to 7.

125

A. EM analysis of LR-PRF on FPGA

1.2 1.2

S-boxd —— S-boxd ——
S-box L S-box 1
1 Sboxz —— 1 Sboxz ——
H-box 3 —— Hebox 3 ——
S-box 4 S-box 4 ———
Sbox i —— Sbox s ——
0.8 Sbox s —— 0.8 Slbx s ——
o S-box 7T — S-box 7 ——
z i — 2 S —
b —— e p—
w S-box 10 —— N S-box 10 ——
Sbox 1L —— Sbox 11 ——
Shboxl2 —— Shoxl2 ——
S-box 13 S-box 13 ——
S-box 14 —— S-box 14 ———
Sbox 15 —— Sbox 15 ——
460 480 500 520 540 460 480 500 520 540
Samples Samples
1.2 1.2
S-baxd —— Sebox) ——
S-box L e S-box 1
1 Sboxz —— 1 S-boxz ——
H-baox 3 He-box 3 ——
S-box 4 —— S-box 4 ——
Sbox5 —— Sboxs ——
0.8 \‘ Sboxd —— 0.8 Shboxd ——
o | S-box 7 —— o S-box T ——
E-box B —— E-box B ——
& 0.6 Shoxd —— & 0.6 Shoxd ——
S-box 10 —— S-box 10 ——
Sbox 1L —— Sbox 11 ——
Sbox 12 —— C Sbox12 ——
S-box 13 Se-bose 13 ——
S-box 14— S-box 14 ——
Sbox 15 —— Shbox 15 ——
T 4] T T
460 480 500 520 540 460 480 500 520 540
Samples Samples
1.2 1.2
S-baxdl —— H-bax) ——
S-box L —r S-boxl —
1 S-hox 2 —— 1 Sbox 2 ——
Sebax 3 —— Sebox 3 ——
G-box 4 —— LS-box 4 ——
0.8 Sbox5 —— Sbox5 ——
: Shoxd — Shoxd —
S-box T —— S-box ¥ ———
DZ:Oa' S-box B —— % S-box B ——
: ShoKd —— 5K ——
" S-box 10 —— N S—bnx)slﬂ _—
Sbox 1L —— Sbox 11 ———
' \ - Sbox 12 —— | Sbox 1z ——
i J‘ S-box 13 Se-bose 15 ——
S-box 14— S-box 14—
| by Sbux 15 —— Sbux 15 ——
0 2
460 480 500 520 540 460 480 500 520 540
Samples Samples
12 12
S-bax) —— Gebae) ——
S-box L —— S-boxl ——
1 S-box 2 —— 1 \ S-box 2 ——
Sbox 3 —— ‘ Sbox 3 ——
H-bo 4 H-bow 4 ——
Ebox 5 —— 0.8 M‘ Sbox5 ——
Sboxd —— : Shbuxd ——
ER G-boe ¥ ——
DZ: S-box B — 02:06- ‘ Sbox B —
Shoxd —— : Shoxd ——
" S-box 10 —— N S—bnx)slﬂ _—
S-box 1L 0.4 - S-box 11
Sbox 12 —— . Sbox 12 ——
S-bose 13 Se-bow 15 ——
S-box 14— 0.2 4 S-box 14—
Sbux 1 —— . Shbux 1l ——
' ' 4] v i
460 480 500 520 540 460 480 500 520 540
Samples Samples

Figure A.4.: SNR for S-boxes 8 to 15.

126

B. Performance of LR-PRF and
LR-AEAD on microcontrollers

Table B.1.: Execution time in clock cycles of the LR-PRF implementation for different
optimization levels and varying data complexities.

STM32 EFM32
Data complexity O3 Os 00 03 Os 00
256 2,491 3,908 11,973 3,094 4,636 12,750
16 4875 7,668 24,149 6,134 9,036 25,469
4 10,411 16,244 51,861 13,142 18,892 53,790
2 24,558 37,620 120,725 30,573 42,847 121,972

Table B.2.: Execution time in clock cycles of the LR-AEAD implementation (optimiza-
tion level Os) for different data complexities (DCs) and varying ciphertext

sizes.

STM32 EFM32

Ciphertext size DC 256 DC 16 DC 2 DC 256 DC 4 DC 2

16 B 15,194 22,746 82,842 10,429 19,214 21,165
0.5 KiB 80,777 88,329 148,425 27,578 55,898 103,514
1 KiB 145441 152,993 213,089 44,008 72,328 119,944
2 KiB 274,769 282,321 342,417 76,968 105,288 152,904
4 KiB 533,425 540,977 601,073 142,888 171,208 218,824
8 KiB 1,050,737 1,058,289 1,118,385 274,728 303,048 350,664
16 KiB 2,085,361 2,092,913 2,153,009 538,408 566,728 614,344
32 KiB 4,154,609 4,162,161 4,222.257 1,065,768 1,094,088 1,141,704
64 KiB 8,293,105 8,300,657 8,360,753 2,120,488 2,148,808 2,196,424

127

B. Performance of LR-PRF and LR-AEAD on microcontrollers

Table B.3.: Execution time in clock cycles of the function calls used by the LR-AEAD,
including input/output.

STM32 EFM32
Function call 03 0Os OO0 03 0s 00
AES _encrypt () 87 87 207 126 132 319
LR-PRG_seed () 20 19 49 18 17 44

LR-PRG_iterate() 217 227 479 309 327 716

128

	Abstract
	Kurzfassung
	Acknowledgement
	List of abbreviations
	List of figures
	List of tables
	Contents
	Introduction and research questions
	Background on side-channel analysis
	Categorization of side-channel attacks
	The EM side-channel
	Leakage detection and of locations/points of interest
	Signal to noise ratio
	Correlation based leakage test
	t-Test
	Dimensionality reduction

	Template attacks
	Evaluating the security level after an attack
	Countermeasures

	Leakage resilient cryptography
	Overview of research in leakage resilient cryptography
	Leakage resilient pseudorandom functions
	Preliminaries
	CHES 2012 and ASIACRYPT 2016 LR-PRFs

	Leakage resilient authenticated encryption from LR-PRFs

	High precision EM Analysis of LR-PRFs
	Hardware design and measurement setup
	LR-PRF hardware design
	Measurement setup

	Side-channel evaluation of CHES 2012 LR-PRF on Xilinx Spartan 6 FPGA
	Identifying locations of interest
	Template attack with limited data complexity

	Summary

	Understanding how high precision EM attacks break LR-PRFs
	Leakage resilience holds with current measurements
	Leakage resilience fails against high-resolution EM measurements
	Effect of different leakage functions in cases with low data complexity
	Summary and design recommendations

	Improving the security of LR-PRFs
	Improved design with refilled key entropy
	Security discussion
	Part 1: Mitigating the loss of entropy in the 2-PRG
	Part 2: Security of the unknown-inputs GGM tree

	Summary

	Case study: Secure and updatable bitstream decryption for FPGA System on Chips
	FPGA SoCs require side-channel secure configuration and updatability
	Building blocks: Device intrinsic key generation and partial reconfiguration
	Physical unclonable functions (PUFs) for key generation
	Partial reconfiguration (PR)

	Concept for secure and updatable bitstream decryption
	Leakage resilient decryption of bitstreams
	Side-channel analysis of LR-PRF on Xilinx Zynq-7020
	AES-OFB based LR-AEAD
	FGHF' based LR-AEAD
	Resource utilization and performance

	Towards software encryption and runtime security
	Summary

	Case study: Retrofitting LR-AEAD to off-the-shelf microcontrollers
	Related work
	LR-AEAD on COTS microcontrollers
	Devices under test: STM32 and EFM32
	Side-channel evaluation
	Attacker model and measurement setups
	Template attacks on key transfer
	Template attack on unprotected AES
	Template attacks on LR-PRFs with different data complexities

	Performance analysis
	Summary

	Conclusions
	Bibliography
	Appendix EM analysis of LR-PRF on FPGA
	SNR heat maps of all S-boxes
	SNR traces of all S-boxes

	Appendix Performance of LR-PRF and LR-AEAD on microcontrollers

