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Abstract

Predictive and personalized models of cancer can enhance the understanding of the disease and
aid in the development of more effective patient-specific treatment strategies. This thesis deals
with computational approaches for such cancer models. Specifically, a group of continuum mod-
els for (a-)vascular tumor growth is developed. The models are based on a thermodynamically
sound description of tumor tissue as a multiphase porous medium including fluid flow, species
transport and solid deformation. One solid phase, the extracellular matrix (ECM), multiple fluid
phases, which in the context of this thesis are cells, interstitial fluid (IF) and blood, and vari-
ous species such as nutrients, growth factors or drugs can be considered. The resulting coupled
nonlinear partial differential equations are brought into an arbitrary Lagrangean-Eulerian (ALE)
formulation to enable a consistent treatment of large deformations of the solid phase. They are
spatially discretized using the finite element method (FEM).

A special focus lies on the vasculature and its interaction with tumor growth. Three different
model types are developed, characterized by a homogenized, discrete and hybrid representation
of the vascular network, respectively. In the homogenized variant, the vasculature is included
as an additional pore space with blood flow and species transport. An evolution equation for
the vascular volume fraction governs angiogenesis and blood vessel remodeling. In the discrete
variant, the vasculature is embedded as a one-dimensional inclusion into the surrounding tissue.
Blood flow and species transport are solved in the 1D domain and coupled with the surrounding
tissue via 1D-3D exchange terms. A centerline- and a surface-coupled variant with correspond-
ing line or surface source terms in the governing equations of the 3D domain are discussed,
implemented and numerically studied. A major advantage of both schemes is that the 1D and the
3D domain can be meshed independently. The rationale behind the hybrid variant is to resolve
larger vessels whose topology and structure can be acquired by non-invasive imaging techniques,
and to homogenize smaller vessels which are not accessible in this way. Thus, the heterogeneity
of blood flow inside the network can be preserved better than in the homogenized variant, and
less anatomic data than in the discrete variant is required. Blood flow and species transport in
the two representations of the vasculature are coupled via constraints which are enforced by a
mortar-type approach with penalty regularization or a Gauss-point-to-segment scheme.

Partitioned and monolithic algorithms are implemented to resolve the coupling between the
single physical fields. Numerical studies reveal that a fully-monolithic scheme is the most effi-
cient and robust one for the tumor growth model over a wide range of parameters.

Several further numerical examples show the validity of the framework and its applicability
to tumor growth. Angiogenesis including chemo- and haptotaxis, oxygen transport, necrosis
and blood vessel remodeling are among the investigated phenomena. Furthermore, nanoparticle-
based drug delivery and hyperthermia treatment are studied as exemplary treatment strategies.

Finally, the hybrid representation of the vasculature is examined in more detail for model-
ing perfusion through solid tumors. It is validated by a comparison with a corresponding fully-
resolved model. Concurrently, its parameters are inversely identified and optimized. All numer-
ical tests are performed on a complex data set of heterogeneous vascular architectures extracted
from three different tumors. Excellent agreement in terms of mean representative elementary
volume blood and IF pressure is demonstrated. Larger errors are present for flow in the smaller
homogenized vessels. A possible strategy to improve the hybrid model by taking the volume
fraction of smaller vessels into account is additionally proposed and tested.



Zusammenfassung

Pradiktive und personalisierte Krebsmodelle konnen das Verstindnis der Krankheit verbessern
und bei der Entwicklung effektiverer patientenspezifischer Behandlungsstrategien helfen. Die
vorliegende Arbeit beschiftigt sich mit numerischen Ansétzen fiir solche Krebsmodelle. Kon-
kret wird eine Gruppe von Kontinuumsmodellen fiir (a-)vaskuldres Tumorwachstum entwickelt.
Die Modelle basieren auf einer thermodynamisch sauberen Beschreibung des Tumorgewebes
als mehrphasiges pordses Medium mit Fluidstromung, Speziestransport und Festkorperdefor-
mation. Es konnen eine Festkorper-Phase, die extrazellulire Matrix (ECM), mehrere Fluid-
Phasen, im Rahmen dieser Arbeit Zellen, interstitielles Fluid (IF) und Blut, und verschiedene
Spezies wie Nihrstoffe, Wachstumsfaktoren oder Medikamente beriicksichtigt werden. Die re-
sultierenden gekoppelten nichtlinearen partiellen Differentialgleichungen werden in eine arbi-
trary Lagrangean-Eulerian (ALE) Formulierung gebracht, um eine konsistente Behandlung von
groflen Deformationen der FestkOrper-Phase zu ermdglichen. Sie werden mit Hilfe der Finite-
Elemente-Methode (FEM) raumlich diskretisiert.

Ein besonderes Augenmerk liegt auf der Vaskulatur und ihrer Interaktion mit dem Tumor-
wachstum. Es werden drei verschiedene Modelltypen entwickelt, die sich durch eine homogeni-
sierte, diskrete bzw. hybride Darstellung des Gefdlinetzes auszeichnen. In der homogenisierten
Variante wird das Gefdlsystem als zusitzlicher Porenraum mit Blutfluss und Speziestransport
eingebunden. Eine Evolutionsgleichung fiir den vaskuldren Volumenanteil bestimmt die Angio-
genese und das Remodeling der BlutgefidBe. In der diskreten Variante wird das Gefal3system als
eindimensionale Einbettung in das umgebende Gewebe eingebracht. Blutfluss und Speziestrans-
port werden im 1D-Gebiet gelost und {iber 1D-3D-Austauschterme mit dem umgebenden Gewe-
be gekoppelt. Eine linien- und eine oberflachengekoppelte Variante mit entsprechenden Linien-
bzw. Oberflachenquelltermen in den vorherrschenden Gleichungen des 3D-Bereichs werden dis-
kutiert, implementiert und numerisch untersucht. Ein groBer Vorteil beider Verfahren ist, dass
das 1D- und das 3D-Gebiet unabhiéngig voneinander vernetzt werden konnen. Der Grundgedan-
ke hinter der hybriden Variante ist die Auflosung groBlerer Gefil3e, deren Topologie und Struk-
tur mit nicht-invasiven bildgebenden Verfahren erfasst werden kann, und die Homogenisierung
kleinerer Gefille, die auf diese Weise nicht zugédnglich sind. Dadurch kann die Heterogenitit des
Blutflusses innerhalb des Netzwerks besser erhalten werden als bei der homogenisierten Varian-
te, und es werden weniger anatomische Daten als bei der diskreten Variante benotigt. Blutfluss
und Speziestransport in den beiden Darstellungen des Gefallsystems sind iiber Zwangsbedin-
gungen gekoppelt, die durch einen Mortar-Ansatz mit Penalty-Regularisierung oder ein Gauss-
point-to-segment-Schema erzwungen werden.

Um die Kopplung zwischen den einzelnen physikalischen Feldern aufzulosen, werden parti-
tionierte und monolithische Algorithmen implementiert. Numerische Untersuchungen zeigen,
dass ein vollstandig monolithisches Schema das effizienteste und robusteste fiir das Tumor-
wachstumsmodell iiber einen weiten Bereich von Parametern ist.

Mehrere weitere numerische Beispiele zeigen die Giiltigkeit des Frameworks und seine An-
wendbarkeit auf Tumorwachstum. Angiogenese einschlielich Chemo- und Haptotaxis, Sauer-
stofftransport, Nekrose und Blutgefd3-Remodeling gehoren zu den betrachteten Phdnomenen.
Des Weiteren werden Nanopartikel-basierte Medikamentenabgabe und Hyperthermie als bei-
spielhafte Behandlungsstrategien untersucht.

il



SchlieBlich wird die hybride Darstellung des Gefdl3systems zur Modellierung von Perfusion
durch solide Tumoren niher beleuchtet. Sie wird durch einen Vergleich mit einem entsprechen-
den vollaufgelosten Modell validiert. Gleichzeitig werden die Parameter des hybriden Modells
invers identifiziert und optimiert. Alle numerischen Tests werden auf einem komplexen Daten-
satz von heterogenen GefaBarchitekturen durchgefiihrt, die aus drei verschiedenen Tumoren ex-
trahiert wurden. Es wird eine ausgezeichnete Ubereinstimmung in Bezug auf den iiber das re-
prasentative Elementarvolumen gemittelten Blut- und den IF-Druck gezeigt. Groere Fehler sind
fiir die Stromung in den kleineren homogenisierten Gefdflen vorhanden. Eine mogliche Strategie
zur Verbesserung des hybriden Modells durch Berticksichtigung des Volumenanteils der kleine-
ren GefdBe wird zusitzlich vorgeschlagen und getestet.
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1 Introduction

"What does mechanical engineering have to do with cancer research?”

This question had to be answered numerous times by the author over the last years. It ex-
presses the, at first sight, reasonable conjecture that the two distinct disciplines do not have
much in common. At second sight, however, multiple points of contact become apparent. (Me-
chanical) engineers have made substantial contributions to the fight against cancer in aspects as
diverse as detection, imaging and treatment. Now, as the physics of cancer and especially the
various mechanical interactions of malignant cells with the surrounding tissue and the impor-
tance of multiscale mass transport for the success of chemotherapy are unraveled, it is evident
that engineers can also improve our general understanding of cancer. A routine task for engineers
is to develop, implement and use models of complex physical systems. Analogously, advanced
computational models of cancer, as the ones developed in this thesis, can be employed to re-
duce its complexity to a manageable set of underlying principles and phenomena and to gain
insight into processes which are not accessible otherwise. The visionary goals of the present re-
search are an individualized prognosis for disease progression including the outcome of different
treatment strategies. This requires mechanistic and predictive mathematical and computational
models of cancer, which are the main focus of this thesis. In the long term, they will enable
medical practitioners to decide on an optimal course of action for the personalized treatment of
patients. Thereby, they can greatly enhance the survival chances of many cancer patients in the
future.

This introductory chapter is structured as follows: A concise review of cancer is given in
Section 1.1. Then, the potentially huge benefits of mechanistic and personalized models for
tumor progression and response to treatment are illustrated, a short overview of cancer modeling
in general is given and the unique features of the present model are outlined in Section 1.2.
The primary achievements of this thesis are stated in Section 1.3. Finally, a brief outline of the
subsequent chapters is given in Section 1.4.

1.1 The Fundamentals of Cancer

The content of the following paragraphs is primarily based on two introductory text books on
cancer [ 106, 274] and common knowledge. References are only given when deemed particularly
necessary. A special focus is set on the physical aspects of cancer progression and mass transport
through solid tumors as these are the effects for which the current model is developed.

A Very Brief Introduction to Cancer Cancer is characterized by abnormal cell growth. It
is not a single disease but a group of diseases with approximately 100 types affecting humans.
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Sustaining proliferative
signaling

Resisting Evading growth
cell death suppressors

Inducing Activating invasion
angiogenesis and metastasis

Enabling replicative
immortality

Figure 1.1: The hallmarks of cancer [99, 100] (reprinted from [100] with permission from Else-
vier)

Tumors can either be benign or malignant. Malignant tumors can acquire the potential to dis-
perse, that is, to invade healthy areas or to metastasize to distant sites in the body (secondary
tumors) from their origin (primary tumor). The majority of tumors in humans or animals are
solid tumors occurring in bones, muscles or organs in contrast to blood cancer which does not
form tumor masses. Subsequently, only solid tumors will be regarded.

Carcinogenesis, that is, the occurrence of cancer in a specific individual is the result of the cu-
mulative effects of DNA mutations. It is a multistage process which might take years or decades
to complete. It is estimated that five to fifteen driver mutations in critical genes, i.e., genes that
regulate cell growth and differentiation or DNA repair, are necessary for its development. These
genetic alterations may either be inherited (5 — 10 % of cases) or occur randomly due to errors in
DNA replication or exposition to carcinogens (90 — 95 % of cases). Factors influencing damage
and mutation in DNA are exposure to radiation, diet, smoking and lifestyle. Also infection by
viruses, bacteria or other microorganisms may cause cancer. There are potent defense mecha-
nisms in place to detect and repair damaged DNA such that genetic errors are not propagated.
However, not all mutations are detected and around one per day is passed on. This is also the
reason why the risk of developing cancer significantly increases with age as DNA mutations
accumulate.

In an effort to rationalize the description of cancer, Hanahan and Weinberg coined the so-
called hallmarks of cancer, which are “distinctive and complementary capabilities that enable
tumor growth and metastatic dissemination” [99, 100]. The original six are illustrated in Fig-
ure 1.1. Via sustaining proliferative signaling and evading growth suppressors, cancerous cells
proliferate at an extremely high rate. They further resist apoptosis, i.e., programmed cell death
by which the body normally kills defective cells. This enables replicative immortality such that
macroscopic clusters of malignant cells, in other words, tumors can be formed. These further
require access to the vasculature to obtain nutrients from the blood stream and clear waste prod-
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ucts. Angiogenesis, which is the growth of new vessels induced by the tumor, guarantees the
supply of the required nutrients. Finally, invasion and metastasis is the ability to migrate and
spread into distant regions in the body. Invasion stands for the direct extension and penetration
of malignant cells into neighboring tissues, whereas metastasis describes the establishment of
new cancer colonies in different parts of the body.

Consequently, tumor progression is a process which inherently involves multiple temporal
and spatial scales. DNA mutations and metabolism occur at the subcellular scale, cell division
and intercellular adhesion on the cellular scale, invasion and angiogenesis on the tissue scale,
and finally, metastasis over the whole body. The same applies for time scales during cancer,
spanning from fractions of seconds for metabolism to hours for cell division and months or years
for invasion and metastasis [155]. Moreover, a precise understanding of cancer is exacerbated
by its enormous heterogeneity leading to extensive genetic and phenotypic variations between
different tumors but also within the same tumor [33].

Cancer is the second leading cause of death with an estimated 9.6 million deaths, or one in six
deaths, globally in 2018. The most common types in men are lung, prostate, colorectal, stomach
and liver cancer and in women breast, colorectal, lung, cervical and thyroid cancer [285].

The Phases of Tumor Growth and Their Interaction with the Micro-Environment
Tumor growth can be divided into three phases, namely, the avascular, the vascular and the
metastatic phase. The initial avascular phase of cancer progression begins after the occurrence
of the previously described DNA mutations. Tumor cells proliferate, interact with and remodel
their surrounding micro-environment in a dynamic process. Biochemical and mechanical inter-
actions between malignant cells and host cells, the surrounding extracellular matrix (ECM),
interstitial fluid (IF) and blood vessels transform the healthy tissue into a biologically and physi-
cally aberrant tumor micro-environment. The ECM is the non-cellular component present within
all tissues and organs which provides not only structural support for the cellular constituents via
a network of collagen and elastin fibers but is also involved in a large number of biochemical
and biomechanical interactions with them [81]. The IF is a body fluid which surrounds the cells,
aids in supplying them with nutrients and removes waste products. It seeps out of capillaries
at the arteriolar end and is drained at the venular end and by the lymph system. The interplay
of tumor cells with their micro-environment and its concurrent manipulation by tumor cells can
create a positive tumorigenic feedback loop [47]. It may be involved in tumor initiation, survival,
propagation and treatment response [ 1 59]. Nowadays, it is well-established that the tumor micro-
environment actively influences disease progression and a deeper insight can only be gained by
a more comprehensive study of cancers including the environment they themselves shape and
reside in. Tumors are not simply masses of cancerous cells but complex “rogue” organs (or cari-
catures of organs) [11, 68]. Also therapeutic responses and resistance may be greatly influenced
by the tumor micro-environment.

In the early avascular stage of cancer, tumors do not have access to the vascular network. Thus,
they rely on diffusion of essential nutrients such as oxygen or glucose and growth factors from
surrounding vascularized tissue to continue their growth. In that regard, a major factor is oxygen
whose diffusion limit in tissue is 100 — 200 um [36]. As the tumor grows radially, the outer
proliferating cells consume the available oxygen such that the cells in its interior lack oxygen,
1.e., they are in a hypoxic state and ultimately die. This process is also known as necrosis, which
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in contrast to normal cell death, is a relatively uncontrolled process. The released chemicals
may lead to inflammation. A characteristic shape of such small avascular tumors emerges with
an inner necrotic core and an outer viable rim. However, such tumors are confined to sizes of
1—2mm as eventually a steady state with a balance between proliferation on the tumor boundary
and cell death in its interior is reached.

For further growth, tumors depend on the previously mentioned angiogenesis [76, 181]. It is
defined as the formation of blood vessels from a pre-existing vasculature [275]. While it also
occurs in other growth processes, it is a fundamental process during tumor growth marking the
so-called angiogenic switch from an avascular to a much more agressive vascular phenotype
with poor prognosis for patients [181]. Angiogenesis is modulated by activator and inhibitor
molecules. If the local equilibrium between positive and negative regulators of angiogenesis tips
in favor of pro-angiogenic factors, angiogenesis is stimulated. Hypoxic tumors cells may pro-
duce these so-called fumor angiogenic factors (TAFs), e.g., vascular endothelial growth factors
(VEGFs), which diffuse in the IF. Reaching pre-existing blood vessels, TAFs stimulate angio-
genesis. Thereby, endothelial cells, which line the existing blood vessels, migrate from the pre-
existing vasculature towards the tumor [141]. The endothelial cells proliferate, sprout and finally
form a new vascular network supplying the tumor with oxygen and other nutrients, the neovas-
culature. As the developed vascular networks are pathological and suffer from several defects as
described below, it is a further prime example of the interplay between tumors and their micro-
environment. Here, the more direct access to nutrients enables much faster cancer progression.
It is well-established that tumor growth is angiogenesis-dependent [76], which underlines that
angiogenesis is an essential trait in cancer progression shared by most tumor types as one of the
hallmarks of cancer [99].

Metastasis is the third phase of cancer progression and in approximately 90 % of cases the
eventually lethal one. Metastases are new colonies of cancer cells which have left the primary
tumor mass, traveled through the blood or lymphatic system and seeded in distant sites through-
out the body. In turn, this requires a complex, multi-step process: First, localized invasion of
cancerous cells into host tissue must occur. Then, they intravasate into blood or lymphatic ves-
sels and are transported with the general circulation to distant sites. There, they may extravasate
into the tissue again and form dormant micrometastases. Finally, these micrometastases may
colonize the tissue, in which they have landed, and develop into a secondary tumor, which is the
most complex step as the foreign micro-environment they encounter may be quite different to
the tumor micro-environment from which they originate. Out of the hundreds to thousands mi-
crometastases found in cancer patients, none might acquire the capability to form a macrometas-
tasis. Overall, the probability for a single cell to successfully complete all these steps is quite low.
However, if cancer metastasizes to other tissues or organs, the prognosis for patients decreases
dramatically.

Treatment of Cancer The increased understanding of the causes and mechanisms of cancer
has only led to relatively minor improvement in treating it. Earlier detection by advanced diag-
nostic techniques and increased screening may lead to sinking death rates. However, if the tumor
is detected in a more advanced stage, only very little progress in terms of treatment success has
been made. This might indicate that the potential of traditional cancer therapy strategies has been
exhausted and significant improvement can only be expected by novel ones.
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The most common cancer treatments are surgery, radiotherapy and chemotherapy. Over de-
cades, these methods have shown that they can extend the survival of cancer patients and even
eradicate certain types of tumors. The goal of surgery is to remove the tumor or even its entire
host organ via excision. However, this is not always possible, especially if it has metastasized,
and it works best if the tumor is contained in one area. Radiotherapy uses ionizing radiation to
kill (cancer and host) cells by damaging their DNA and to shrink tumors. It enables a localized
treatment of cancerous regions and tries to harm as few normal cells as possible. Chemother-
apy refers to chemical treatment of cancer with anti-cancer drugs, so-called chemotherapeutic
agents. These drugs are cyfotoxic, meaning that they kill cells, mostly by affecting cell division.
They are usually systemically administered, circulate in the blood stream and can, in principle,
affect every cell in the body. Not only the primary tumor but also metastases can be eradicated.
However, this may lead to tremendous side effects as drugs are not specific but often target all
rapidly proliferating cells, e.g., hair follicles. Fast growing tumors with high proliferation are,
in general, more sensitive to chemotherapy. Nowadays, combinations of drugs with distinct and
complementary modes of cytotoxicity are used to battle resistance to a single drug.

Subsequently, a short overview of more recent research efforts for cancer treatment is given.
The major goal is a more specific targeting of cancer cells best described by Paul Ehrlich’s con-
cept of a “magic bullet” which selectively kills cancer cells while leaving surrounding healthy
tissue undamaged [69]. Nanoparticle-based treatments could allow for a more targeted drug de-
livery to cancer cells or for more focused hyperthermia treatment, that is, eliminating cancers
via heat. For more details see Section 5.3. A treatment strategy which has recently gained more
attention is immunotherapy with the goal to enhance the immune system’s capability to fight can-
cer. This can be either achieved actively by specifically targeting malignant cells via the immune
system or passively by increasing the activity of the immune system. However, also a target-
ing of the tumor micro-environment and its interactions with cancer may be promising [220].
For instance, antiangiogenic cancer therapies are also under research [181, 275] and some have
been clinically approved. Their goal is to inhibit angiogenesis and, thus, to cut tumors’ supply
of nutrients and their ability to metastasize.

The Role of Physics in Cancer Cancer research has recently experienced a paradigm-shift
from viewing it as a disease of the cell towards a more holistic description including the micro-
environment and especially, the (bio-)physical interactions between its constituents and malig-
nant cells. As the links between cancer biology and physics become more and more apparent, a
multidisciplinary approach bringing together biologists, chemicists, physicists and engineers is
the only option to make further progress in understanding the disease. The following paragraphs
are mainly based on three recent review articles on the role of physics in cancer [168, 171, 180]
and introduce only some findings and concepts which are especially relevant for this thesis.

A very prominent and, quite literally, tangible biomechanical trait of cancer is the increased
stiffness of tumor tissue. Indeed, palpation, that is, feeling for stiffer tissue, is the longest-known
way to detect cancer. One cause for this increased stiffness is extracellular matrix deposition
and cross linking initiated by cancer associated fibroblasts, a cell type abundant in the tumor
micro-environment. A further effect is strain-stiffening of collagen, a main fibrous component of
the ECM. In turn, increased tissue stiffness can activate signaling pathways which promote tu-
mor progression, invasion and metastasis. It is correlated with more aggressive growth and poor
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prognosis in a number of cancer types [47, 81, 144, 191]. A vicious cycle of matrix deposition,
stiffening and malignacy may develop [47, 180] such that the tumor micro-environment becomes
fibrotic and inflammatory. However, these biophysical interactions may also offer novel targets
for therapies.

A further distinct effect are increased solid stresses in tumors. These occur as the added vol-
ume of malignant cells stretches and displaces the solid components of tissue. This leads to
significant mechanical stresses which may compress or even collapse blood and lymphatic ves-
sels inside tumors. In turn, this influences perfusion and may lead to hypoxia and inefficient
delivery of drugs and, therefore, decreased efficacy of treatment.

An additional important physical aspect is that tumor (neo-)vasculature is structurally and
functionally abnormal since tumor vessels are tortuous, dilated and have uneven diameter lead-
ing to chaotic blood flow inside the tumor [36, 68, 117]. In addition, the vessels have a high
permeability. This leakiness has been identified as a reason for elevated IF pressure of tumors
because of increased outflow from the vessels [103, 114]. Together with inefficient drainage
due to non-functional lymph vessels, this causes an IF pressure increase inside tumors. A typ-
ical plateau of IF pressure inside the tumor and a steep decrease across its boundaries induces
an outflow of fluid. This physical characteristic might hamper or even inhibit the success of
drug delivery [114, 115, 117]. The causes for these structural and functional deficiencies of tu-
mor vasculature are the overexpression of pro-angiogenic molecules leading to chaotic network
structures and the continuous remodeling of the vasculature by the growing tumor [68]. The
previously mentioned novel nanoparticle-based therapies aim to exploit these properties of the
tumor vasculature for a more specific targeting of tumor sites [166].

A different, physics-based perspective on cancer is also proposed by transport oncophysics,
a term recently coined by Ferrari et al. [74, 183]. Within this framework, the biological hall-
marks of cancer are unified to one physical principle, which is the deregulation of mass transport
occurring at multiple spatial scales. For instance, tissue invasion is defined as mass transport
deregulation at the interface between cells and the micro-environment. Metastasis is a deregu-
lation of cellular transport at the scale of the organism and angiogenesis completely alters mass
transport through the tumor micro-environment. Malignant cells have to penetrate across biolog-
ical barriers that are normally impassable to spread throughout the body. Biological barriers are
here defined as the separating elements between different compartments, e.g., between vascu-
lature and surrounding tissue. Drugs follow the inverse pathway from administration, transport
through the circulatory system, extravasation and transport through the micro-environment and,
hence, encounter similar obstacles. Transport oncophysics aims to identify, describe and over-
come these barriers to enable a more rational design of drug delivery systems [27]. Physiological
characteristics such as the morphology of tumor vasculature, microvascular flow, the structure
of the extracellular matrix or the IF pressure profile may influence the transport of drugs through
tumor tissue and ultimately the success of treatment [60]. Frequently, the problem of chemother-
apeutic agents is not insufficient toxicity but the fact that cancerous sites are not entirely reached
by drug concentrations at adequate levels. A physical description of the multiscale drug transport
through the body including the encountered biological barriers can give valuable insight into the
causes of this problem and help remedy them by more advanced drugs.

The previously mentioned enormous heterogeneity of cancer is not only caused by genetic
variations but is also augmented by physical interactions with the tumor micro-environment. For
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instance, different ECM stiffnesses, porosities or vascularization and oxygenation patterns may
lead to distinct progressions of growth or responses to therapy.

Unraveling the complexity of cancer requires similar methods as commonly used for other
intricate physical phenomena or sophisticated man-made systems such as weather forecasting,
particle physics or aircraft design. Physicists or engineers tackle such problems via a tight in-
tegration of manipulations, measurements and, in the context of this thesis the most important
aspect, computer simulations. Being complementary to theory and experiments, they enable a
fast, reproducible, accessible and easily controllable environment to predict the outcome of cer-
tain initial states of a system, generate and test hypotheses, elucidate mechanism inaccessible
to other methods and aid in making optimal decisions in uncertain scenarios. Integrating quan-
titative, predictive and physics-based computational models with new theoretical findings and
well-designed experiments may be humanity’s best hope to further the understanding of cancer
and to develop more effective individualized strategies for cure.

1.2 Motivation and Overview of Cancer Modeling

The Need for Mechanistic, Predictive and Personalized Models of Cancer While
tremendous progress has been made in the understanding of cancer and the development of
more effective cures, the progression and response to therapy of an individual, patient-specific
tumor can still not be predicted reliably and reproducibly. This is due to the lack of a validated
mathematical theory to describe the spatiotemporal evolution of cancer and its response to treat-
ment [293, 295]. Formulating such a theory which is capable of forecasting cancer progression
patient-specifically has been termed the grand challenge of Mathematical Oncology [218]. By
contrast, one can argue that ’big data” or “machine learning” approaches, where statistical infor-
mation from a large number of patient cohorts are employed to find statistical patterns indicating
optimal treatments, will fail to make dependable predictions for individual patients [293]. The
enormous heterogeneity of cancer leads to very different manifestations of the disease based on a
unique person’s characteristics, which is hidden in population-based data. This limits their appli-
cability for individualized disease management as the intrinsic heterogeneity of cancer is largely
ignored. Parametric (computational) models, on the other hand, can be based on patient-specific
data and can, thus, predict the occurrence of particular events, such as the outcome of a certain
therapy, with a much higher probability for a specific patient [185]. In predictive medicine or
oncology, such comprehensive methods would get some initial state of a tumor and the patient’s
parameters, e.g., from imaging or a biopsy, as an input to forecast the future progression of the
disease and its response to therapy by help of biophysical, mathematical and computational mod-
els. Even though the goal to find a unifying theory of cancer is extremely complex, mechanistic,
predictive and personalized models tailored for certain issues can be developed and validated
on the way. These can answer questions for individual patients such diverse as the probable fur-
ther progression of a grown tumor to determine if a potentially risky surgery is necessary, to
find an optimal treatment strategy or to quantify the risk of metastasis. Ultimately, such models
could assist oncologists in clinical decision-making by providing accurate personalized predic-
tions of cancer development and treatment response. Hence, they could serve as digital twins
of an individual patient’s tumor for personalized tumor forecasts, in-silico testing of different
combinations of therapies, dosages or schedules and selection of an optimal treatment strategy.
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A Brief Overview of Cancer Models Due to its undeniable potential, mathematical mod-
eling of cancer has been a rich area of research for several decades. Numerous models of varying
sophistication have been suggested, see the comprehensive reviews [5, 58, 157, 221, 229] and
books [48, 57] for an overview. The review paper by Lowengrub et al. [157] from 2010 alone
lists almost 600 references indicating the enormous scientific interest in cancer modeling. Com-
monly, models are classified into three categories as discrete, continuum or hybrid. Subsequently,
a brief introduction into each model category, its use cases and limitations as well as representa-
tive examples of each type will be given. Models can also be discerned based on which phase of
tumor growth, i.e., avascular, vascular or metastatic, is simulated. For a more in-depth overview,
the reader is referred to the previously mentioned reviews.

Discrete models (also called cell-based, agent-based or individual-based models) are valid
on the cellular or subcellular scale. Individual cells or subcellular elements are explicitly mod-
eled. Their spatiotemporal evolution is governed by a set of biological or biophysical rules, e.g.,
for cell-cell or cell-matrix interaction. This enables modeling phenomena occurring at this scale
such as carcinogenesis, proliferation, apoptosis, protein production, cellular metabolism, genetic
instability and natural selection [58, 155, 157]. Therefore, they offer a high level of detail as
biological processes such as mutational events or the cell cycle can be integrated as rules. Never-
theless, they become prohibitively expensive for larger domains at the centimeter scale, which is
of interest when studying tumor progression in humans, and often also for the involved temporal
scales of days to years. Furthermore, model parameters may be nontrivial to obtain [157] as they
have to be measured at the cell scale. The review by Metzcar et al. [167] classifies discrete mod-
els into lattice or off-lattice approaches. Representative examples of lattice models are cellular
automaton [1, 90, 173] or cellular Potts [253] approaches. In cellular automaton models, each
lattice point can only be occupied by one cell. In cellular Potts models, cells may cover several
lattice points. A different approach where single cell migration was modeled within a continuum
framework was presented by Rauch et al. [212].

Continuum models describe tumor tissue as a continuous medium rather than resolving sin-
gle cells [58]. Principles from continuum mechanics such as conservation laws are involved to
formulate a set of potentially nonlinear partial differential equations (PDEs) describing the evo-
lution and dynamics of the system. Thus, these formulations are (almost always implicitly) valid
on the macroscale, meaning that multiple components are superimposed at every point in the
domain of interest. Typical model variables and quantities of interest are cell volume fractions
and density or nutrient, oxygen, growth factor and drug concentrations. Contributions into the
governing equations may often be classified into four categories [155]: diffusion, convection,
reaction and taxis, which is the directed movement in response to a stimulus. Continuum model
parameters are potentially easier to obtain, analyze and control compared to the discrete case
and more accessible through experiments [157]. They are typically employed to study overall
cancer progression, vascularization, nutrient transport and drug delivery on the scale of entire
tumors. Consequently, the modeling of individual cells and discrete events on the cell level is
not possible, but often also not necessary for the question at hand. Treatment such as chemo-
or radiation therapy may be included. For the latter one, the distribution of a specific drug in
the tumor micro-environment can further be studied by additional convection-diffusion-reaction
equations. The effect of treatment on the tumor is frequently incorporated by a damage variable,
an additional reaction term leading to a decrease of tumor mass and/or a deceleration of tumor
growth [50]. A number of different continuum models will be discussed in the next paragraph.
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Figure 1.2: Sketch of a typical composition of the tumor micro-environment with ECM, vascu-
lature, IF, (necrotic and living) tumor cells, host cells and numerous species

Hybrid continuum-discrete models combine both modeling strategies to incorporate their re-
spective strengths. Therefore, via a more realistic coupling of biophysical processes across a
wide range of length and time scales, they have the potential to connect processes from the
micro- or cell-scale to the macro- or tumor-scale [157]. Deisboeck et al. [58] further classify hy-
brid models into composite hybrid and adaptive hybrid approaches. In the former ones, cells are
treated discretely but interact with chemical or mechanical continuum fields such as a continuous
description of nutrient distribution. Also the coupling of continuum tumor growth models with a
discrete description of angiogenesis as in [283, 298] is commonly classified in this category. In
the latter ones, the models are switched dynamically and adaptively between discrete and hybrid
descriptions to achieve higher resolutions when- and whereever necessary but to enable also the
study of larger domains. Representative examples of such approaches where the domains for
each description are pre-specified are [ 124, 247] whereas a dynamic switch between the discrete
and continuum representation is made in the model of [83].

The Concept behind the Present Model Hereafter, the focus will lie on macroscale con-
tinuum models of tumor growth as the here employed and developed group of models is also
of this type. More recent continuum models (and the ones employed here) are of multiphase
type [229]. They accommodate the fact that various distinct phases are present in the tumor
micro-environment, such as different cell types, IF, blood and the ECM as sketched in Figure 1.2.
Moreover, multiple species which are part of these phases, such as oxygen, nutrients, drugs or
growth factors can be included. Thus, these models are very promising as they represent a more
general and natural framework to study the biophysics of solid tumor growth with a much higher
level of detail. Hence, a multiphase model incorporates at least one solid phase and one liquid
phase and can be generalized to incorporate any number of additional phases and species [157].

An extensive review of multiphase models can be found in [229]. For instance, models based
on mixture theory have recently become popular. Such approaches can be classified w.r.t. their
treatment of the interfaces between specific phases. On the one hand, sharp-interface methods,
which have been used in the context of tumor growth modeling by [107, 200, 298], track the
interface between different phases and require imposition of boundary conditions at the inter-
face. On the other hand, diffusive-interface or phase-field models do not explicitly track the
fronts between phases, but a so-called phase field is introduced which models a smooth transi-
tion between different phases via a phase field parameter. A commonly employed phase field
description is the Cahn-Hilliard equation which describes the evolution of the phase field pa-
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rameter as a fourth-order nonlinear PDE. Representative examples of phase field models may be
found in [83, 101, 102, 121, 151-153, 184, 283]. Approaches using isogeometric analysis with
smooth C''-continuous basis functions are also common, see [155, 156, 267, 268, 289, 290] in
the context of tumor growth modeling. However, as argued by Sciume et al. [229], mixture the-
ory lacks a rigorous connection with the microscale, its variables are inadequately defined and
implicit approximations concerning system behaviour are introduced. This is due to the fact that
conservation equations and closure relations are postulated directly at the macroscale and a con-
sistent averaging of known microscale relations is not performed. Thus, cross-scale consistency
is not possible and model errors are difficult to assess and correct.

What is also often overlooked in the formulation of such complex models is the ability to in-
corporate non-invasively available, quantitative spatiotemporal imaging data [294]. These mod-
els are often purely mathematical or phenomenological, for instance, the existence of a generic
nutrient species is postulated as in a number of phase-field models [151-153, 156, 289, 290],
which governs the availability of nutrients via diffusion-reaction type equations. However, as
such a ”generic nutrient” is not present in-vivo, no data is available for its parameters and its dis-
tribution cannot be acquired via imaging for validation. Hence, even though these models claim
a high sophistication, they are often purely phenomenological. Furthermore, a sound theoretical
basis is frequently lacking as model formulation is performed directly at the macroscale without
a clear and firm connection to the microscale in order to guide model closure.

By contrast, recent continuum mechanical tumor growth models have been developed by
Schrefler and co-workers [224, 225, 229-233, 235] in the framework of thermodynamically
constrained averaging theory (TCAT) [93-95, 97, 169]. This theory allows for formulating con-
sistent macroscale models of cancer based upon first principles, i.e., conservation laws, thermo-
dynamics, and a set of mathematical theorems [170]. While not all these advantageous features
of TCAT have been leveraged during derivation of the present model, it offers the possibility
to formulate mechanistic, physics-based models of tumor growth with clear, interpretable and
measurable parameters. A firm connection between micro- and macroscale is guaranteed which
is indispensable when modeling a disease with inherent multiscale characteristics. Additionally,
model simplifications and extensions can naturally be integrated.

In essence, a macroscale description of tumor tissue as a porous solid is formulated using
TCAT as sketched in Figure 1.2. The tumor micro-environment corresponds to the microscale
of the problem where phases and their interfaces are discernible. The governing equations of the
model are then obtained at the macroscale by averaging or homogenizing the respective con-
servation laws from the microscale. The ECM correponds to the sole present solid phase and
its voids to a pore space where cells migrate and IF flows. Cells, IF and blood are the consid-
ered fluid phases. Even though cells themselves may behave as viscous, elastic or viscoelastic
mechanical objects, it is customary to model them as fluids in macroscale tumor growth mod-
els [229]. Species, i.e., chemical sub-components, may be present in all fluid and solid phases.

1.3 Research Objective

In line with the visionary goal of this research, namely, a comprehensive patient-specific cancer
simulation tool, the short-term goals realized in this thesis and its scientific contributions are
listed hereafter. The main research objective of this project is to implement a comprehensive
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multi-physics framework to simulate in-vivo tumor growth. This involves a consistent incorpo-
ration of the vasculature where three distinct variants with designated use-cases are developed.
A further objective is a validation of the general applicability of the model to cancer progres-
sion and a more specific validation of a hybrid embedded/homogenized approach for solid tumor
perfusion which can be applied more directly to modeling mass transport phenomena, e.g., drug
delivery.

1.3.1 Specification of Requirements

Subsequently, the key requirements for a comprehensive vascular tumor growth model are listed:

(i) Sound, Mechanistic and Consistent Description of the Underlying Physical
and Biological Phenomena Insights into the mechanisms underlying cancer progres-
sion can only be acquired with models which have a sound theoretical basis and are capable
of representing its complexity including the interactions with the micro-environment.

(ii) Representation of the Interplay between Different Physical and Biological
Phenomena Cancer inherently is a disease occurring across multiple temporal and spa-
tial scales. Additionally, it involves the interplay of multiple physical and biological phe-
nomena such as deformation, fluid flow, species transport phenomena and taxis. A compre-
hensive model has to take the multi-physics characteristics of tumor growth into account.

(iii) Physics-Based and Measurable Model Parameters It is indispensable that model
parameters are representative of the involved physical phenomena. These are not always
entirely known in a complex system such as cancer and models can actually be applied to
elucidate them. In that case, empirical relationships are often inevitable. Their parameters
still have to be sensible and measureable.

(iv) Verifiability The simulation tool has to deliver physical or biological quantities of interest
which are accessible with current state-of-the-art experiments. Only then a validation and
further fine-tuning is possible.

(v) Cutting-Edge Numerical Solvers Capturing the complexity of cancer with computa-
tional models requires advanced numerical algorithms which are robust and accurate over
a wide range of potentially unknown parameters.

(vi) Flexibility and Modularity of the Framework Both the actual model as well as the
code base have to be flexible and modular to incorporate additional physical phenomena
and support further extensions.

1.3.2 Contributions of this Work

A combination of theoretical and methodological work with software development for high-
performance computing and the actual modeling efforts via well-designed numerical examples
is necessary to achieve the research objective and fulfill the requirements outlined above. The
following is an overview of the main scientific contributions of this thesis:
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Derivation and Implementation of a Group of Models for Vascular Tumor Growth
[135,136] Building on the original avascular tumor growth model of Schrefler and co-workers
[224, 225, 229-233, 235] based on TCAT, a group of vascular models, which differ in their
representation of the vasculature, is developed. Three different concepts are employed to obtain
a homogenized, a discrete and a hybrid variant.

In the homogenized variant, the vasculature is included as an additional porous network with
blood flow and species transport resulting in a double-porosity formulation. Angiogenesis and
blood vessel remodeling is incorporated via an evolution equation for the vascular volume frac-
tion. This model extension is one of the first vascular tumor growth models to take the dynamic
interaction between tumor growth, the vasculature and blood flow and species transport therein
into account.

In the discrete variant, the vasculature is embedded as a one-dimensional inclusion into the
surrounding tissue. Blood flow and species transport is solved in the 1D representation of the vas-
cular network and coupled with the surrounding tissue via 1D-3D (fluid and species) exchange
terms. It is assumed that the embedded blood vessels follow the deformations of the surrounding
tissue such that also large deformations of the vessel network as occurring in-vivo during tumor
growth [236] are considered, which is an additional original contribution of this work.

A further scientific novelty is the hybrid approach, which is a combination of the homogenized
and the discrete representation. Its rationale is to resolve the larger vessels, whose topology and
structure can be acquired via suitable in-vivo imaging techniques, and to homogenize the smaller
vessels, which are not accessible non-invasively. This also allows preserving the heterogeneity of
blood flow inside the network better than for the homogenized variant and minimizes the required
data compared to the discrete one. The two representations of the vascular network are coupled
via constraints which are enforced by adaptations of two well-known strategies, a mortar-type
approach with penalty regularization or a Gauss-point-to-segment scheme. They are transferred
to 1D-3D coupled problems in the author’s pioneering work [136]. Under the constraints of the
resolution of current state-of-the-art in-vivo imaging modalities, the hybrid approach is a very
promising alternative to the discrete one.

Setup of a Flexible Finite Element Framework Supporting Further Extensions A
holistic computational framework for simulating cancer progression is developed. The governing
nonlinear partial differential equations are discretized in time using the one-step-0-scheme and
in space using the finite element method (FEM). An arbitrary number of phases and species can
be specified such that further extensions are easily possible. Species transport in all involved
solid and fluid phases as well as the embedded vasculature can be considered. In addition, the
energy balance equation may be included to simulate hyperthermia treatment. All equations are
formulated in an arbitrary Lagrangean-Eulerian description to enable large deformations of the
solid phase, i.e., the extracellular matrix, which was not possible in the TCAT tumor growth
model before. Deformability can also be neglected, leading to a considerable simplification of
the solution process. To the best of the author’s knowledge, this is one of the most general and
comprehensive frameworks for modeling tumor growth.

Incorporation of Two Different 1D-3D Coupling Concepts for Non-Matching Me-
shes The complexity of tumor vascular networks can be enormous [59, 252]. The discrete
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and the hybrid variant require the resolution of at least the larger vessels of the part of the mi-
crocirculation under consideration via a 1D embedded mesh. The coupling concepts developed
in this thesis allow for employing a non-matching, e.g., a regular 3D mesh for the encompassing
tissue domain. This facilitates the meshing procedure but requires specialized spatial integration
schemes to evaluate the 1D-3D mass transfer terms. In addition, two different 1D-3D coupling
concepts are implemented and investigated, one with a coupling along the centerline of the 1D
embedded vascular domain (and a line source term in the equations of the 3D domain [51—
53, 136]) and one with a coupling at its lateral surface (and a corresponding surface source term
in the equations of the 3D domain [130]). The involved singularity for the former one is shown to
be problematic for cases where the element size of the 3D domain becomes smaller than the di-
ameter of the embedded blood vessels but it is still applicable for practical problems. Previously,
such 1D-3D coupled equations were used for simple perfusion and scalar transport problems.
In the context of multiphase tumor growth models, the first integration of a consistent 1D-3D
coupling between non-matching FEM discretizations is achieved in this work.

Investigation of Different Coupling Algorithms [135] Previously, only a partitioned
coupling algorithm could be applied to solve the resulting nonlinear three-field problem of the
TCAT tumor growth model. In this thesis, two different partitioned and, for the first time, a
hybrid monolithic-partitioned and a monolithic coupling algorithm are implemented and in-
vestigated. Numerical experiments reveal the strong coupling between the different fields and
especially the strong coupling between fluid phases and solid deformation in the model. For ef-
ficient monolithic schemes, the integration of suitable and performant block preconditioners for
iterative linear solvers [263] is required. Then, monolithic algorithms are proven to be superior
compared to partitioned schemes over a wide range of parameters. The latter ones could still be
applied for cases with a weaker coupling though. This significant gain in performance enables
the investigation of much more complex scenarios than previously considered.

Validation of the General Applicability of the Framework for (A-)Vascular Tumor
Growth and Different Treatment Strategies [135, 136, 282] Several illustrative nu-
merical examples show the applicability of the developed framework for simulating (a-)vascular
tumor growth. The examples are designed to showcase its abilities in representing the complex-
ity of in-vivo tumor progression. A special focus is set on the interplay between tumor growth
and the vasculature by investigating angiogenesis including the effects of chemo- and hapto-
taxis, oxygen transport, metabolism and delivery, blood vessel compression and regression, and
increased leakage of fluid from blood vessels into the IF. Further examples are tailored to ex-
amine nanoparticle-based drug delivery and hyperthermia treatment. This represents an original
contribution to rationalize drug design based on the transport phenotype of solid tumors which
is characterized by well-known dimensionless numbers [282].

Validation and Parameter Optimization of the Hybrid Embedded/Homogenized
Representation of the Vasculature for Modeling Solid Tumor Perfusion [137] The
approach with a hybrid embedded/homogenized representation of the vasculature is further in-
vestigated for modeling solid tumor perfusion. Data sets of vascular networks in three solid tu-
mors with a size of up to 420 000 vessel segments and dimensions of up to 6 mm x 8 mm x 11 mm
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are employed. The accuracy of the hybrid model w.r.t. a corresponding fully-resolved one is
quantified and its parameters are optimized. To date, this is the largest and most challenging data
set employed for validating such a hybrid approach. Therefore, this study in itself is one of the
prime scientific novelties of this thesis. Excellent agreement in terms of mean representative el-
ementary volume blood and IF pressure is obtained. Further improvements of the hybrid model
are discussed and the most promising one is implemented and tested.

As denoted above, parts of this thesis have previously been published in the author’s articles
(in chronological order):

[135] J. Krembheller, A.-T. Vuong, L. Yoshihara, W. A. Wall, and B. A. Schrefler. A monolithic
multiphase porous medium framework for (a-)vascular tumor growth. Computer Methods
in Applied Mechanics and Engineering, 340:657—683, 2018.

[136] J. Krembheller, A.-T. Vuong, B. A. Schrefler, and W. A. Wall. An approach for vascu-
lar tumor growth based on a hybrid embedded/homogenized treatment of the vasculature
within a multiphase porous medium model. International Journal for Numerical Methods
in Biomedical Engineering, 35(11):€3253, 2019.

[282] B. Wirthl!, J. Kremheller', B. A. Schrefler, and W. A. Wall. Extension of a multiphase
tumour growth model to study nanoparticle delivery to solid tumours. PLOS ONE, 15(2):
e0228443, 2020.

[137] J. Kremheller, S. Brandstaeter, B. A. Schrefler, and W. A. Wall. Validation and parameter
optimization of a hybrid embedded/homogenized solid tumor perfusion model. Interna-
tional Journal for Numerical Methods in Biomedical Engineering, 37(8):e3508, 2021.

These articles constitute a main contribution of this work and previously published text, figures
or findings (for which permission to reproduce has been obtained from the respective publishers)
are indicated when used. All numerical methods have been implemented in the parallel finite
element code BACI [8] which is jointly developed by several reasearch groups across Germany
and relies heavily on the Trilinos project [105]. The current framework for cancer modeling
builds on a first nested-partitioned implementation of the avascular model variant of Schrefler
and co-workers [224, 225, 229-233, 235] by A.-T. Vuong. In Chapter 6, the software framework
QUEENS [24], provided by the courtesy of AdCo Engineering®V, is employed and, in particular,
the parallelized version of the Levenberg-Marquardt algorithm developed by S. Brandstaeter.
Several post-processing routines were added by the author.

1.4 Outline

The remainder of this thesis is organized as follows:
Chapter 2 contains a concise review of continuum mechanics with a special focus on multi-
phase porous media and a brief introduction into TCAT. The governing equations which serve

This article was co-first-authored with B. Wirthl. Both authors contributed equally to the formal analysis,
investigation, methodology, software, visualization and writing of the paper. In this thesis, only some basic ideas
and illustrations are re-used from this publication for the nanoparticle transport study in Section 5.3.
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as the fundamental building blocks for the group of (a-)vascular tumor growth models are estab-
lished.

These are then employed to construct the different model types in Chapter 3. First, an over-
view of the distinct variants and their specific use-cases is given. Then, the models of increasing
sophistication and complexity are derived.

The computational solution approach for the coupled multi-physics problem is described in
Chapter 4. Time discretization of the governing equations with the one-step-f-scheme and space
discretization with finite elements is performed after deducing the weak forms of the governing
equations. A particular emphasis is put on the numerical evaluation of the 1D-3D coupled terms
which require special treatment. Different strategies to solve the resulting strongly coupled non-
linear problem are described.

Numerical examples of the tumor growth framework are presented in Chapter 5. These are
designed to illustrate its capabilities and to validate its applicability for tumor growth modeling.
It 1s further proven that important physical phenomena and growth patterns occurring during
in-vivo cancer progression and drug delivery can be reproduced. Several additional academic
examples concerning the 1D-3D coupling are presented in Appendix A. Further information
about the employed mass transfer relationships and parameters may be found in Appendix B
and Appendix C, respectively.

Chapter 6 constitutes a standalone part to this thesis. Based on the concept of a hybrid rep-
resentation of the vasculature originally incorporated for modeling vascular tumor growth, a
hybrid approach for tissue perfusion through solid tumors is proposed. It is further verified and
its parameters are optimized by comparing its results to a corresponding fully-resolved model.

Finally, the findings of this thesis are summarized in Chapter 7. Additional promising im-
provements are suggested and a road map towards a validation to enhance the predictive capa-
bilities of the model is laid out.
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2 Continuum Mechanics of Multiphase
Porous Media

This chapter establishes a macroscale continuum description of multiphase porous media. A
brief introduction to porous media with a special focus on TCAT is given in Section 2.1. Basic
concepts from nonlinear continuum mechanics as needed in this thesis are recapitulated in Sec-
tion 2.2. Finally, the governing balance equations, which constitute the building blocks for the
homogenized part of the developed group of tumor growth models, are given in Section 2.3. The
ones for the 1D resolved vasculature are given directly in Chapter 3.

2.1 A Brief Introduction to Porous Media

Porous media are ubiquitous both in nature and in man-made objects, constructions or materi-
als. They are present over a wide range of length scales ranging from hundreds of kilometers in
geotechnical engineering problems to the millimeter scale, for instance, in batteries or biological
tissue. Therefore, disciplines concerned with the study of porous media problems are as diverse
as geophysics, biomechanics, chemistry, agricultural engineering or materials science with appli-
cations such as fuel cells, electrochemical systems, biological tissue and geology [55]. However,
the field was initially coined by geotechnical engineers and geologists studying soil mechanics
and subsurface flows such as Henri-Philibert Darcy (1803-1858), Karl von Terzaghi (1883-1963)
and Maurice Anthony Biot (1905-1985). Many of their fundamental findings and relationships
are still in use today and are also partly used within this thesis. Since then, however, their often
empirically deduced relations have been supplemented by theoretical derivations which enable
modeling of more complex systems. Often, under several simplifying assumptions, the classical
results are obtained. The following sections are based on standard text books [15, 46, 95, 146].

2.1.1 Essential Concepts and Definitions

Porous media contain one solid phase, often also called the skeleton or the solid matrix with a
connected pore space (or void space) filled with one or multiple fluid phases. Since it is com-
monly assumed that the skeleton is always present, multiphase porous media problems as treated
in this thesis involve two or more immiscible fluid phases. The solid phase can be assumed either
rigid or deformable. However, even in the latter case its deformations are small compared to the
ones of the fluid phases. Furthermore, depending on the application, temperature changes might
play a major role or might be negligible under isothermal conditions. The behaviour of porous
medium systems is determined by solving the appropriate (momentum, mass and energy) bal-
ance equations. Thus, depending on the problem of interest, the spatial and temporal distribution
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Figure 2.1: Sketch of different length scales (not to scale): On the left side, a small portion
of the porous medium is sketched, interfaces between solid phase (grey) and two
fluid phases (blue and green) are clearly discernible, cross denotes a point of the mi-
croscale which can be assigned to a specific phase and at which continuum assump-
tion with corresponding balance equations holds. On the right side, the homoge-
nized model is depicted, at each point of the macroscale (denoted by a cross), several
phases with volume fraction ¢ are superimposed. Homogenized balance equations
are formulated for each macroscopic point to determine the behaviour of the system
at the megascale.

of fluid flow, fluid pressure, concentration of a solute, temperature distribution or the stress in
the solid skeleton, can be obtained.

In theory, these quantities could be calculated by acquiring the structure and morphology
of the porous medium and solving the respective equations including interfacial interactions
between the single phases. However, in almost all cases this is impossible since the full topol-
ogy of the porous medium over the domain of interest is unknown, consider for instance a soil
mechanics problem spanning several kilometers. Moreover, such a detailed resolution is also
not of interest in most cases. In geotechnical problems, it is not necessary to resolve the fluid
flow through large domains on a millimeter level. The average flow over several meters or even
kilometers is the quantity of interest. Finally, even if the topology of the porous medium was
completely known, it is infeasible to resolve the entire complex physics of these problems in-
volving complicated flow patterns, changing interfaces and multiphysics phenomena. Thus, in
porous media mechanics, the so-called macroscopic scale, on which balance equations derived
from averaging or up-scaling the microscopic balance equations hold, is of interest. Averaging
the governing equations is a mathematically intricate procedure for which different techniques
exist. Here, the thermodynamically constrained averaging theory (TCAT) coined by Gray and
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Miller [93-95, 97, 169] is employed, see Section 2.1.2 for a short introduction. For now, the
focus is set on defining the length scales of porous media problems. While a more granular def-
inition of scales exists [95], the discussion here will be limited to three distinct length scales,
namely the microscopic, macroscopic and megascopic length scale. They are denominated as
limis lma and [, respectively.

At the microscale, the continuum assumption holds, that is, each phase behaves as a continuum
with the respective balance equations. Thus, at this scale phases and their interfaces are clearly
discernible as sketched in the left part of Figure 2.1. Each (mathematical) point can be assigned
to one specific phase or an interface between different phases, i.e., a common surface, line or
point. A fully-dynamic, microscale continuum formulation with respective governing equations
including interface interactions between different phases may be formulated but is impractical
as described above. Note that this continuum formulation involves already an averaging of the
system behaviour from the molecular scale. As already mentioned in Section 1.2, in the context
of this thesis, the tumor micro-environment corresponds to the microscale of the problems where
different cell types, the vascular network and the structure of the ECM are discernible.

In a macroscopic or homogenized description, phases and their interfaces are not resolved any
more, see Figure 2.1 (right part). The porous medium is modeled as a composition of overlap-
ping or superimposed continua such that multiple phases may be present at every point of the
macroscale. Each of these continua corresponds to one of the present phases which fill up the
entire space and interact with each other. Their behaviour is described via averaged quantities
such as their volume fraction € at a specific point as depicted in Figure 2.1. These quantities
are not present in a microscopic formulation but are obtained when averaging the microscale
properties over the macroscale length scale [,,,,. The up-scaled balance equations are formulated
in terms of these macroscale variables and additional closure relations have to be derived. The
balance equations on the macroscale correspond to the governing equations of the tumor growth
models used in this thesis.

The megascale is the length scale of the domain of interest [95]. It comprises the points of
the macroscale as depicted in Figure 2.1. The macroscopic balance equations hold over the
megascale and boundary conditions for the primary variables of these equations are applied on
the boundaries of the megascale domain. Hence, this domain corresponds to the part of the tissue
or organ, for which tumor progression is modeled.

Another important aspect is that the length scales representing the aforementioned scales have
to be clearly separated which may be stated by the condition

lmi < lma < lme~ (21)

The macroscopic length scale should be sufficiently larger than the microscopic scale such that
it is representative of the average behaviour of the porous medium system. Vice versa, it should
be sufficiently smaller than the domain of interest such that gradients of the macroscale variables
are present and meaningful. Hence, the macroscopic length scale is equivalent to the notion of a
representative elementary volume (REV) which should be large enough to filter out small scale
spatial resolutions yet small enough to represent larger scale fluctuations in the quantities of
interest [56].

This section is concluded by several important definitions based on the book by Gray and
Miller [95]. Therein, four types of entities are defined: phases, interfaces (the regions in the

19



2 Continuum Mechanics of Multiphase Porous Media

Microscale entropy Larger-scale entropy
inequality \ inequality

Microscale Larger-scale
conservation equations \ conservation equations

n

. Evolution
Averaging theorems .
equations

Microscale Larger-scale
thermodynamics thermodynamics

Constrained entropy
inequality

Larger-scale

Microscale equilibrium o "
equilibrium conditions

conditions

Simplified entropy
inequality

Hierarchy of closed,
parameterised models

Subscale modelling and

o Closure relations
applications

Figure 2.2: Elements of TCAT (reprinted and slightly modified from [97] with permission from
Elsevier)

multiphase system at the boundary between two phases), common curves (the regions in the
multiphase system where three phases meet) and common points (the regions in the multiphase
system where four phases meet). Conservation equations may be formulated for each of these
entities. A phase is an entity which is clearly separated from other phases by interphase bound-
aries. Every phase (or in the more general case, every entity) of a porous medium system may
consist of multiple, in some cases even hundreds of species, which are chemical subcomponents
of this phase. Species-based formulations are useful for two different reasons: First, the spatial
or temporal distribution of a species in a phase might be the quantity of interest, for instance,
the distribution of a drug inside a tumor. Second, the composition of a phase might influence the
physical properties of that phase such as the viscosity of blood which depends on the hematocrit
value, i.e., the percentage of red blood cells.

2.1.2 Thermodynamically Constrained Averaging Theory

There exists a large variety of techniques to change the scales of the system, that is, to obtain a
macroscopic description from known microscopic balance equations. A comparison of two very
commonly applied methods, namely, volume averaging and multiscale asymptotics can be found
in [56]. Ancillary closure relations or constitutive equations have to be formulated at some point
during the derivations to obtain a closed, solvable system. The avascular tumor growth model of
Schrefler and co-workers [224, 225, 229-233, 235] and its extensions in this thesis is based on a
different scale-change method termed thermodynamically constrained averaging theory (TCAT).
What makes this approach unique compared to other methods is that thermodynamical relations
are included into the modeling formalism. This is an essential component which ensures that
macroscale quantities, variables and parameters are well-defined in terms of their microscale

20



2.1 A Brief Introduction to Porous Media

counterparts. Thus, models which are consistent across scales may be derived. The description
of this intricate and complex theory is restricted to a conceptual overview here without going
into mathematical details which are given in the works of Gray and Miller [93-95, 97, 169]

For this purpose, the elements involved in TCAT and the procedure for deriving a closed
model have been sketched in Figure 2.2. The following description of TCAT closely follows
the one from the authors of this theory themselves [95, 97]. The yellow boxes on the left side
are the starting point of the derivation. They represent the balance equations, thermodynamics
and equilibrium conditions at the microscale for all entities. Recall that one prominent feature of
TCAT is that entities include not only phases but also interfaces, common lines and points. These
lower dimensional entities allow to more accurately resolve underlying physical mechanisms
than models based upon phases alone because interfaces and common curves form and evolve
in time in multiphase systems. This ability of TCAT makes it especially suited for modeling
biological tissue in health and disease since physical interactions of cells with their environment
occur at the interfaces of cells with other phases and regulate cell behaviour. Examples of these
important mechanisms are the previously mentioned ECM remodeling, cell migration and cell
adhesion. Such effects cannot consistently be included in models based on mixture theory [101,
102, 151153, 184, 185] which do not provide a consistent definition of interfaces, a sound
connection between micro- and macroscale and the thermodynamic coherency of the TCAT.

Using suitable averaging theorems, one obtains five types of larger scale equations denoted
by the purple boxes, which are the larger scale entropy inequality, conservation equations, ther-
modynamics and equilibrium conditions. In addition, evolution equations for geometric densities
such as the volume fraction of a phase or the interfacial area per volume of a phase are developed.
These are averaged measures of geometric quantities at the microscale. The evolution equations
are not conservation equations but rather describe the change of the geometrical configuration
of the system over time and space by employing suitable macroscale measures. Another unique
feature of TCAT is that the averaging theorems are also applied to microscale thermodynam-
ics and microscale equilibrium conditions to obtain their large scale counterparts. This strategy
guarantees consistency of the quantities in the resulting equations. At this point, all necessary
pieces have been gathered but the system is still unclosed, i.e., there are more unknowns than
equations which have to be eliminated by suitable constitutive relationships. The steps neces-
sary for closure are denoted by blue colour in Figure 2.2. First, a constrained entropy inequality
(CED) is derived. Through additional assumptions and manipulations this more general form
is transformed into the so-called simplified entropy inequality (SEI) given in force-flux form
which finally allows closing the system based on thermodynamical constraints and the known
equilibrium conditions, e.g., by postulating a linear relation between heat flux and temperature
gradient. It is important to emphasize that the path from the constrained inequality to the final
closed system is not unique. After deriving a SEI from a CEI, a whole hierarchy of closed, pa-
rameterized models with different sophistication can be obtained based on the assumptions made
in closing the system. If additional experimental data becomes available or if the porous medium
model does not give suitable accuracy since some physical effects which are not represented are
more dominant than expected, one can go back to the SEI and enhance the model with differ-
ent closure terms. In summary, this approach enables a flexible switching between models with
different accuracy depending on the requirements and the present physical effects.

However, it is important to emphasize that not all these eminent and universally applicable
features of TCAT have been leveraged to derive and close the present tumor growth models.
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The reason for that is the involved mathematical complexity of the approach. Even for more
than two fluid phases, which are routinely needed for modeling tumor growth, no simplified
entropy inequality has been derived by experts in TCAT so far. While some equations have
been closed via fulfilling a suitable entropy inequality, only empirical relationships have been
postulated for several other quantities, such as effective diffusivities and mass balance equa-
tions [224, 225, 229-233, 235]. In addition, interfacial effects are not represented via a sound
derivation employing TCAT but closure is achieved by constitutive equations on the macroscale.
First theoretical derivations for two types of models involving two phases (one solid, one fluid)
and three phases (one solid, two fluid) including the interfaces and common curves have been
performed by Miller et al. [170]. However, these are much simpler systems than the ones con-
sidered throughout this thesis, where up to four interacting fluid phases (plus one fluid phase,
which is not explicitly modeled, the lymphatic system), several species including drugs, spatially
varying temperature distributions due to hyperthermia treatment and a deformable solid phase
are incorporated. Also, a computational solution procedure of the related, more complex TCAT
model derived by Miller et al. [170] is still pending. Nonetheless, the present modeling and com-
putational framework has been set up in such a flexible way that these supplemental results can
easily be integrated.

2.2 Review of Nonlinear Continuum Mechanics

Before delving into the depths of poromechanics, a few basic concepts from nonlinear continuum
mechanics are repeated. This section is by no means an exhaustive review of this broad topic
but rather a concise introduction of the most important aspects for later re-use throughout this
thesis. For a more in-depth coverage, the reader is referred to the vast literature in this field,
e.g. [28, 110, 163, 186, 286].

2.2.1 Kinematics

Figure 2.3 shows the two commonly distinguished configurations in nonlinear continuum me-
chanics, namely, the material or reference configuration )y C R"im and the spatial or cur-
rent configuration ), C R™im with ng,, € {2,3}. One global Cartesian coordinate system
{e1, ey, e3} is employed for both configurations. The material configuration is the domain oc-
cupied by material points X at time ¢ = 0. As the continuum deforms, the smooth, nonlinear
deformation map

:{QO—>Qt, X s 02
p (X 1) =z (X,1)

assigns a point X of the material configuration to a spatial point & in the current configuration
(), at time ¢. This map has to be bijective such that a physically reasonable deformation without
gaps or penetrations is obtained, i.e., the inverse map X (z,t) = ¢! (x,t) has to exist. The
current configuration (), is defined as the domain occupied by the continuum at time .

Two different observer positions can hence be distinguished. The first one is the Lagrangean
observer which follows the material particles during their movement. This viewpoint is usually
applied in nonlinear solid mechanics while following the deformation of a fixed set of material
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2.2 Review of Nonlinear Continuum Mechanics

4

Figure 2.3: Cartesian coordinate system, reference configuration €2y, current configuration €2,
and the mapping between the configurations ¢ (sketch after [197, 272])

particles. The second one is the Eulerian observer which remains at a fixed spatial position x
as different material particles X occupy this position over time during the deformation of the
body. This formulation is commonly applied in fluid mechanics. For fluid-structure interaction
problems and, in a certain sense, also poromechanical problems another description is useful, the
so-called arbitrary Lagrangean-Eulerian (ALE) approach, where an additional independently
moving reference configuration is introduced [66, 269, 270]. This special setting in the context
of poromechanics where the Lagrangean observer follows the solid phase and, thus, represents
an independently moving observer for the fluid phases will be introduced in Section 2.3.4.

Essentially, solving a solid mechanics problem involves calculating the time-dependent defor-
mation map ¢ (X, t) describing the motion of a continuum composed of a rigid body movement
and a change in shape, that is, a deformation. More commonly, however, the displacement vector
field w (X, t) is chosen as the unknown of the problem. It is defined as the difference between
the position vectors of current and reference configuration as

u(X,t)=x(X,t) — X. (2.3)
The elementary measure of local deformation is the deformation gradient
oz (X ,t) ou (X, 1)
F=—F"=I+—_-— 24
0X T Tox (24

relating infinitesimal line elements d X in reference configuration with infinitesimal line ele-
ments dz in current configuration via

de =F -dX. (2.5)

Vice versa, its inverse can be employed to map infinitesimal line elements d in current config-
uration to their counterparts in material configuration as dX = F ' - dz. Infinitesimal volume
elements dV/{ in the material configuration can be transformed into volume elements dV" in spa-
tial configuration with the help of the Jacobian determinant of the deformation gradient

J=det F (2.6)
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2 Continuum Mechanics of Multiphase Porous Media

as
AV = J - dvj. 2.7)

Since a physically reasonable deformation map has to be smooth and bijective, the determinant
has to be positive, that is, J > 0. Finally, the deformation gradient can be decomposed into a
rigid motion component and a stretch component using polar decomposition

F=R-U=v-R (2.8)

where R is a volume-preserving orthogonal rotation tensor and U and v are volume-changing
stretch tensors, the material stretch tensor respectively the spatial stretch tensor. They play an
important role in defining objective strain measures which do not depend on the observer and,
thus, do not change when a subsequent rigid body motion is imposed on an already deformed
body. The Green-Lagrange strain tensor defined as

1 1
E:§(C—I):§(FT-F—I) (2.9)

with the right Cauchy-Green tensor
C=F' F=U""R'" - RU=U"U (2.10)

is such an objective strain tensor and is the only strain definition employed here. For alternative
strain measures, the reader is referred to the aforementioned literature on continuum mechanics.

2.2.2 The Concept of Stresses

The concept of stresses is best introduced by defining a conceived surface of size Aa with (spa-
tial) normal vector m cutting through the body in its current configuration. The resulting force
on this internal plane surface is denoted as A f. Taking the limit

Af
t(n,x,t)= lim — 2.11
( T ) Aa—0 Aa ( )
defines a spatial traction vector t, that is, a force measured per unit surface area in current
configuration. Cauchy’s stress theorem states that there exists a unique spatial tensor field defined
as

t=o0- n. (2.12)

Therein, the symmetric second order Cauchy stress tensor o has been introduced. It is the stress
measure with the clearest interpretation in nonlinear solid mechanics representing the internal
stress state in the deformed continuum with diagonal components accounting for normal stresses
and off-diagonal components for shear stresses. However, since the deformed configuration is
not known a-priori it is often more practical to work with stresses defined in the reference con-
figuration. The first Piola Kirchhoff stress tensor is defined as

P=Jo -F 7 (2.13)
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via the pull-back of the Cauchy stress tensor. Like the deformation gradient, it is a so-called two
point tensor with one basis vector in current and one in material configuration and is unsym-
metric. By contrast, the second Piola Kirchhoff stress tensor or material stress tensor is defined
completely in the reference configuration and given by

S=F' P=JF'! o -FT. (2.14)

Note that the previously mentioned symmetry of the Cauchy and the second Piola-Kirchhoff
stress tensor

o' =0 and ST =S (2.15)

can be derived from the local balance of angular momentum. Thus, this balance equation is
typically not solved but the symmetry of the stress tensors is enforced via suitable constitutive
laws.

2.3 Governing Macroscale Equations of Multiphase
Poro-elasticity

In this section a set of macroscale conservation and balance equations for species in a phase
or the phase as a whole is introduced based on the textbook on TCAT by Gray and Miller [95,
Section 6.5]. Lower dimensional entities such as interfaces, common curves and common points
are not included in the derivation. Interfacial effects are accounted for by suitable constitutive
equations in Chapter 3. The phase and species balance equations represent the building blocks
for the homogenized tumor growth models developed in Chapter 3. They are the conservation of
mass, see Section 2.3.1, the conservation of linear momentum, see Section 2.3.2, and the con-
servation of energy, see Section 2.3.3. All these are extensive quantities which are known to be
conserved in physical systems. The balance equations are then brought into the ALE description
which is particularly suited for large deformation poro-elasticity in Section 2.3.4.

Remark 2.1. The entropy balance equation is an additional governing equation of the system.
In the TCAT formalism this is incorporated via the SEI at the macroscale providing closure
relations for the system. As stated previously, a complete SEI for the present multiphase tumor
growth model has not yet been derived, only certain aspects in closing the avascular precursor
model have been addressed [230] and for the remaining model phenomenological constitutive
relations have been employed. For a more consistent derivation in terms of TCAT, the reader is
referred to the theoretical paper on the TCAT tumor growth model [170].

Remark 2.2. 7o be able to precisely define quantities at both macro- and microscale including
mathematical operations on both scales and between scales, TCAT involves a lot of subtle no-
tation. Since no averaging or derivations, for which this notation is important, is performed in
this thesis, a simplified notation employed for the tumor growth model [ 135, 136, 224, 225, 229—
233, 235, 282] is preferred. Throughout this thesis, only macroscale quantities are considered
and denoted by superscripts and all equations are posed on the macroscale.
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2 Continuum Mechanics of Multiphase Porous Media

2.3.1 Conservation of Mass

The macroscale mass conservation equation of a generic species i in a phase «, which in TCAT
notation is denoted by M, may be written as

= (e %t iKk— i .
M = % + V(i) - 3TN - e = 0 (2.16)

z I{cha
with the mass density p® and volume fraction * of the phase « and the mass fraction w’® of the

species 7 in the generic phase « and its velocity v'®. Here, the equation is given in spatial or Eu-

lerian formulation denoted by the spatial coordinate x and derivative at fixed spatial coordinate
9(e)
ot

. Furthermore, the mass transfer of species ¢ between phase o and « is denoted as
€T

IK— i 1K

M =— M. 2.17)

The preceded sum in (2.16) implies a summation of mass transfer terms between all species ¢
in generic phases x with the given species ¢ in phase «. Actually, in the TCAT formalism I,
denotes all interfaces which separate the a phase from adjacent phases. Since the interface is
treated as massless in the present formulation, it is equivalent to a sum over all involved phases.
The last term on the left hand side in (2.16) is the intra-phase production term %7 of species i
in phase «, that is, a source term of the considered species.

By contrast to species, phases are characterized by their volume fraction €* at each macroscale
point. Naturally, the volume fractions have to satisfy the relation

Z =1, (2.18)

a€cly

i.e., all present phases collected in the phase set J, have to sum up to one. The macroscale mass
balance equation M® of a phase « can either be obtained by averaging its microscale counterpart
or by summation of the mass balances of all species ¢ in the species set J; as

9(e"p")

R—Q

Z M = M= —— +V (%) = Y M =0 (2.19)
1€7s T K€Jea
Therein, the velocity v® of the o phase has been defined as
=) W' (2.20)

i€ls
as the sum of all species velocities v*“ weighted with their mass fraction w'® and a generic mass

transfer term from phase « to another phase « as

R—Q TK— 1 a—K

M = Z M =—M. (2.21)

’Lejs

Hence, the sum of all species mass transfer terms between phases « and x must correspond
to the overall mass transfer between the phases. In (2.19) the single mass transfer terms are
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2.3 Governing Macroscale Equations of Multiphase Poro-elasticity

again summed up for all involved mass transfers between different phases . Furthermore, the
following relations can be deduced:

Y wt=1 (2.22)
i€Js

and
> =0, (2.23)
1€ds

i.e., mass fractions of all species in a specific phase o have to sum up to one and no species
mass can be generated in a phase without simultaneous loss of another species. In summary,
equations (2.16) and (2.19) govern the mass balance of a phase and its composition in terms
of all the species which constitute the phase. For the problems considered in this thesis, it is
convenient to employ a slightly different formulation of the species mass balance (2.16) in terms
of the macroscopic diffusion velocity ', which is the relative velocity of the species w.r.t. the
velocity of the phase defined as

U =" —o® (2.24)
Inserting this definition in the species mass balance (2.16) yields an alternative but equivalent
formulation for the mass balance of a species ¢ in phase o

ﬁ_ 8(Eapawia)
MT = ot

. . IK— .
+V~(6°‘po‘wmva)+v~(gapawmum)— Z M —e%r** =0. (2.25)
kg K/EJC(X
Combining the definition of the diffusion velocity (2.24) with the phase velocity (2.20) and the
constraint on species mass fraction (2.22) results in an additional constraint

Z W = () (2.26)

1€Js

for the diffusion velocities of all considered species. Therefore, in a phase composed of N
species only N — 1 are independent. The last mass fraction and velocity can be obtained from
(2.22) and (2.26), respectively.

In the context of tumor growth modeling, it is not possible to resolve the entire composition
of a phase and also not of interest. For instance, the interstitial fluid or cell phases may consist
of numerous species, such as nutrients, macromolecules or chemical signals where only a sub-
part is relevant for the model or the question at hand. Moreover, the phases usually consist of
a dominant water species in biological tissue. Typically, the balance of mass of all phases will
be solved in combination with the balance of mass of the species of interest which are only a
subpart of all present species.

The final species mass balance equation equation can be obtained when applying the product
rule to the temporal derivative in (2.25) which results in

M = e*p” o 0™ - VW' + V- (e*p*DigVuw'®)
xr
IK— . - a
=Y M -t [E (™) + V- (e%p%v*)| =0 (2.27)
KE€Jca ~ T —~ /
0;9) Z nﬁa

K€EJcar
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2 Continuum Mechanics of Multiphase Porous Media

where the balance of mass of the o phase (2.19) has been exploited. Furthermore, the diffusive
flux has been approximated with a Fickian diffusion law as

w'u' = DAV W' (2.28)

with the effective diffusion tensor D' of species i in the a phase.

2.3.2 Conservation of Momentum

The momentum balance equation can also be formulated for a species in a phase or the phase
as a whole. However, the momentum balance of species is not explicitly considered since the
diffusion velocity of a specific species u'® and, therefore, also its velocity v is determined by
the diffusion law (2.28). Thus, only the momentum balance of the entire phase P in spatial
formulation according to Sciume et al. [230]

— 8 A O g

Pa — (6 pv ) +V.(€apoc,va,va)_v_(€ao_a)
ot .
IK— i K—a
— g = ) (Z M v® + T0> =0 (2.29)
K€EJca 1€Js
TK— Q0
is considered hereafter. Therein, g* is a body force, M v the exchange of momentum between
KR—Q a—K

phases « and « due to species mass exchange and Ty = — Ty represents the interaction forces
between adjacent phases since interfaces are not explicitly considered [230]. Furthermore, o
denotes the spatial or Cauchy stress tensor of the a phase at the macroscale. The above equation
can further be simplified by neglecting the inertia terms, that is, the first two terms in the previous
equation, which is justified considering the slow dynamics of tumor growth. In addition, the
domain sizes employed in this thesis are so small that gravitational effects by a body force do
not have to be taken into account. Finally, also the forces occuring as a byproduct of mass transfer
are dropped since they are of the same order of magnitude as the inertial terms [230]. Thus, only
the divergence of the stress tensor and the interaction forces with other phases remain in the final

form
— K—Q

‘}Da = -V - (gao'a) — Z TO =0. (230)

This momentum balance in spatial formulation applies to the solid phase and all involved fluid
phases. However, different closure relations are required which will be given in Section 2.3.2.1
and 2.3.2.2, respectively.

2.3.2.1 Formulation and Closure Relations for Fluid Phases

Closure for the momentum balance equations of a generic fluid phase has been demonstrated
by Sciume et al. [230, Appendix A] based on TCAT which is why the derivation is not repeated
here. It follows that the macroscale stress tensor of a fluid phase f € J; is given by the fluid

pressure p/ as
ol = —p'T (2.31)
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2.3 Governing Macroscale Equations of Multiphase Poro-elasticity

when neglecting also the viscous contribution to the stress tensor on the macroscale. The final
momentum balance equation emerges as

eIyl = —Rf . (vf — vs) (2.32)

. .\ 1
with a second order resistance tensor R. Setting k' Juf = (5f )2 . (Rf> , one obtains the
well-known Darcy-equation for flow through porous media

—ﬁfo =el - (v —v*) (2.33)

with permeability tensor k’ and viscosity ;/ which is the governing momentum balance equa-
tion for a generic fluid phase f in the present model. Note that this does not imply that the fluid
is inviscid but that the resistance acting on the flow is dominated by adhesion to the skeleton.
If the viscous forces of the fluid on the macroscale cannot be neglected, the Darcy-Brinkman
equation is obtained, see [269, 272].

Remark 2.3. The momentum balance equation for a generic solid or fluid phase (2.30) actually
contains a sum over all involved interactions between the different phases, however, in the Darcy
equation only one pair of interactions is considered, namely, between the respective fluid phase
f and the solid phase s. This is due to the fact that interaction forces between different fluid
phases are not taken directly into account but via a constitutive law for the relative permeability
of the fluid phases as proposed by Sciume et al. [230, 232], see also Section 3.2.4.

2.3.2.2 Formulation and Closure Relations for Solid Phase

The momentum balance equation of the solid phase is given by
P =V-(e0")+ Y V(o)) =0 (2.34)
f€ds

Here, the momentum balance equations of all present fluid phases have been inserted into (2.30)
to eliminate the interaction force terms. Another way to obtain the previous equation is to sum
the momentum balance equations of all present phases « € J,, such that the interaction forces
between adjacent phases cancel out. Thus, the previous equation can also be interpreted as the
momentum balance equation of the porous medium system as a whole [95]. This is even more
evident when defining the total stress as the weighted sum of the stress tensors of all entities as

o't = Z e%o”. (2.35)

a€lp
The momentum balance equation (2.34) may then be rewritten as
’Pg —= V . o'tOt = O (2.36)

While the fluid phase stress tensors have already been defined in equation (2.31), the solid phase
stress tensor is yet to be specified. This is achieved via a suitable constitutive law for the elastic
behaviour of the solid phase. For that, the solid phase stress tensor is re-written as

o’ = —z’:‘spSI e —gspsI + a-eﬁ (2.37)
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where p® accounts for the solid phase pressure exerted by the pore fluids on the skeleton. For
now, it will be disregarded and reconsidered in Sections 3.2.2 and 3.3.2 and the second term, the
so-called effective stress tensor o, will be investigated in more detail. This quantity accounts
for stresses due to changes in porosity, spatial variation of porosity, and the deformation of the
solid matrix [86]. Its pull-back in the material configuration is given as

St — Jp.of. T, (2.38)

Under the assumption of constant skeleton density p°, it follows from the dissipation inequality
for the solid phase (see [272] and [46, Section 3.4.1]) that the second Piola-Kirchhoff effective
stress tensor can be obtained as the derivative of a strain energy function V° as postulated in
solid mechanics for hyperelastic materials. For this class of material laws it is assumed that the
strain energy function depends only on the current deformation state of the solid as W*(F') and
not on the history of the deformation. Objectivity dictates that the strain energy function depends
on the stretch component U of the deformation gradient and not on the rotational part R from
its polar decomposition (2.8). In practice, strain energy functions are often given in terms of the
Green-Lagrange strain tensor as W*( E) such that the effective stress may be obtained as

o
- OE’
that is, as the derivative of the strain energy function w.r.t. the Green-Lagrange strain tensor.

Throughout this thesis, only two simple isotropic constitutive laws for the solid phase are
regarded. The first one is the Saint-Venant-Kirchhoff material with the strain energy function

Seff (2.39)

S

A
Svie = 5 (ir (E))?+ °E : E. (2.40)
This material law comprises two parameters, the so-called Lamé constants
Esvs B3

2\ = d s _
A+ —20) 0 T o

(2.41)

which can be calculated from the well-known Young’s modulus E° and Poisson’s ratio v° of the
solid phase. The Saint-Venant-Kirchhoff material law describes a linear relationship between
second Piola-Kirchhoff stress tensor and Green-Lagrange strain tensor. The second constitutive
law is the Neo-Hooke model whose strain energy function reads as

ILLS S

Wi =5 (tr(C) = 3)* — pIn(J) + 5 (In(J))?, (2.42)

thereby postulating a nonlinear stress-strain relationship.

Remark 2.4. In general, any hyperelastic material law can be applied for the ECM. Numerous
more sophisticated constitutive laws can be found in the textbooks [28, 110, 163, 156]. However,
the main focus of this thesis does not lie on modeling the ECM behaviour. A more realistic de-
scription of the ECM can, for example, be achieved via homogenized fiber material models [S7].
Also ECM remodeling by the growing tumor via ECM dissolution, deposition and increased
cross-linking can have a major impact on its constitutive behaviour [47].
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2.3.3 Conservation of Energy

In this thesis, the energy balance equation is only considered in the context of hyperthermia.
Considering its relevant time scales of of 60 minutes or longer [259], a macroscale local equilib-
rium assumption for the temperature can be made [95, Chapter 10.8] meaning that temperature
gradients exist within the system but the macroscale temperature 7" is independent of the entity,
1.e., equal for all present phases and species such that

T =T, for a €. (2.43)

Furthermore, as described by Pesavento et al. [194], viscous dissipation, mechanical work, den-
sity variation and the kinetic energy are negligible in the current case such that an enthalpy
balance for each phase o € J, emerges as

o O(p~e°T)
T

+ V- (p%eTvY) = V- (e*k*VT) — %% = 0, (2.44)

x

where ¢ is the specific heat capacity of the « phase at constant pressure, K its conductivity
tensor and £“s® a heat source term. As in (2.27), the product rule can be applied to the temporal
derivative in (2.44) yielding

K—Q

T
Pt |+ pe v VT = V- (UROVT) — %5 4 T Y M =0. (245

I{cha

Summing this equation over all present phases o € J,, yields the energy balance of the entire
porous medium system

oT
(Cpp)eff ot

+ ) @pe v VT = V- (ke VT)

T €l

Y e Y (c;;T S K]Tf) —0.  (246)

acly a€clp KEJca

with effective heat capacity

(CpP)er = Z prete, (2.47)

a€lp

and effective isotropic conductivity tensor

Keff = Z RS = Z k1. (2.48)

aclp aclp

In the last term of (2.46), each phase mass transfer term is present once positive and once neg-
ative due to (2.21) and the sum over all phases. Therefore, this term can be canceled if the heat
capacities of all phases are equal.
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Figure 2.4: Sketch of configurations and corresponding mappings (after [66, 272])

2.3.4 Final Set of Governing Equations in Arbitrary
Lagrangean-Eulerian Description

In the previous sections, all equations have been written with respect to the spatial configuration
x. As all phases can deform independently of each other, each phase « has distinct kinemat-
ics with its own material configuration X “. In other words, macroscopic material particles of
different phases which occupy the same spatial configuration @ at a specific time ¢ have not
necessarily been at the same material configuration at time ¢ = (. The material point of each
phase o has been at the material configuration X of that phase, see also Figure 2.4. Thus, in
situations where solid deformations are significant but still small compared to the deformation
of the fluid phases, it is important to distinguish between the different configurations such that a
precise definition of material time derivatives with respect to the single phases is possible. This
approach was introduced by [269, 272] for single fluid phase flow through a porous medium and
is here transferred to the case when multiple fluid phases are present. In the previous publications
on the tumor growth model [224, 225, 229-233, 235] this distinction has not been made but was
only introduced in the author’s publication [ 135]. The following section is a recapitulation of the
derivations and explanations in the papers of Donea et al. [66] and Vuong et al. [269] and the
thesis of Vuong [272]. Then, the governing equations for mass transport in the fluid phase, mass
transport in the solid phase and the balance of energy in ALE form are detailed, which are the
essential components of the developed tumor growth models.

2.3.4.1 Recapitulation of Employed Arbitrary Lagrangean-Eulerian Formulation

The different configurations and mappings are sketched in Figure 2.4 for the solid phase s and a
single fluid phase f. The case with multiple fluid phases follows analogously. Here, €2, denotes

32



2.3 Governing Macroscale Equations of Multiphase Poro-elasticity

the current configuration and €2 and Q{; the material configuration of the solid and the fluid
phase, respectively. Three distinct bijective mappings have been defined, namely,

f f
f.{QO%Qt’ X' -z (2.49)

v of (X7t) =z (X7, 1)

which maps a material point of a fluid phase X/ on a spatial point = and

OG0, X
R e G (2.50)
©° (X, t) =z (X, 1)

which maps a material point of the solid phase X * = X on a spatial point  and

S f f
X:(gpf)_lws:{ﬁoéﬁo, )f%X (2.51)
X(X7t> =X (X7t>
which defines a mapping between the two different material configuration. By that, a material
point of the solid phase X is mapped on a material point of the fluid phase X 7.

Material time derivatives describe the change in time of the physical properties of a physical
particle or material element, for instance, the change in temperature of a particle as it is trans-
ported through a certain domain with spatially and temporally varying temperature field. This
is equivalent to the Lagrangean observer following the path of a material element. Since mul-
tiple phases with different material configurations and, hence, different Lagrangean observers
are present, one has to distinguish also between multiple material time derivatives. The material
time derivative of a generic quantity (e) is defined as

d° (o) _ (o)
dt ot

) (2.52)

XC!

for a specific phase «, that is, the temporal derivative of this quantity while keeping the o phase’s
material particle X fixed, i.e., following the material particle of this phase. The material time
derivative with respect to the skeleton phase of a material quantity (e) (X ,t) is then simply
given by

d*(e) (X, 1) _ 9(e) (X, 1)

= ) 2.53
dt ot ‘ < (2-53)
The velocity of the skeleton phase follows as
d*xz Oz
b= = — 2.54
dt Ot |y @9

and the total time derivative of a spatial quantity (e) (x,t) as
d* (o) (z (X, 1)) _ 9(e) (,1) O(e) x| _ O(e) (1)
N x ot X

dt ot ‘ oz ot
where the definition of the solid phase velocity (2.54) has been employed. Therein, the second
part is the typical convective derivative of a spatial quantity which additionally accounts for

+V(e)-v° (255
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the movement of the material particle. Both derivatives are equivalent to classical continuum
mechanics descriptions with a Lagrangean observer following the skeleton.

The material coordinates of the solid phase X move independently of the fluid phase and can,
therefore, be interpreted as an independently moving reference configuration with respect to the
fluid phase similar to an ALE approach [66]. The solid and fluid material reference configura-
tions are related via the respective mappings, i.e., a material point X of the solid phase can be
mapped on the spatial configuration x (X, t) either by application of the solid deformation map
©® or by first mapping it on the fluid reference configuration with the mapping x and then on
the spatial configuration with the fluid deformation map ¢/ as x (X f (X,t), t). We can exploit
this dependency X/ (X, t) to reformulate material time derivatives of a generic spatial quantity
(o) (x,t) with respect to the fluid phase in derivatives with respect to the skeleton phase as

A/ (o) (@ (X.1) _ O(e) (@ <X,t>,t>‘ L0 @(X.0),0 oz
dt ot x ox ot

x/f
J(e) J(e) Ox Ox
— . Nitadl B 2.56
ot |, oz 0X 0t |y (2-56)
From that, the velocity of the fluid phase can be calculated as
'z oz (X,t) ox Ox
f— - ’ _— . = 2.57
BT o | OX Dl |ys (27

Solving the previous equation for the second summand and re-inserting it into (2.56) yields
d’ (o) (z (X,1)) _ O(e)

dt ot

with the skeleton velocity (2.54). This equation establishes a relation for the material time deriva-
tive of the fluid phase as the local time derivative with fixed solid material particle plus an ad-
ditional convective term depending on the relative velocity of the fluid with respect to the solid
v/ — v*. This equation is equivalent to the fundamental ALE equation [66] with the solid phase
as an independently moving reference configuration and its velocity v* as the grid velocity. Two
special cases are contained in this formulation: if the solid does not deform (v°® = 0), this is
equivalent to a Eulerian description with fixed observer. If the solid velocity is equal to the fluid
velocity (v® = v/), the convective term cancels and a Lagrangean point of view is obtained
where the observer follows the movement of a fluid particle. The equation allows reformulating
material time derivatives of the fluid phase in an ALE type formulation with the solid phase
as the reference configuration. Equivalently, local derivatives at fixed spatial position & may be
rewritten as

+ (v —v%) - V(o) (2.58)
X

O(e) (z (X, 1)) | _ O(e) ((X,1))

= —v°-V 2.59
ot ) ot ‘X v V(o). (2.59)
where the relation between local and total time derivative

df X.t 0 X.t

has been employed together with (2.58). In the following sections, this equation will be utilized
to transform the balance equations of the model, which were written in spatial formulation in
Sections 2.3.1, 2.3.2 and 2.3.3, into the ALE description.
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2.3 Governing Macroscale Equations of Multiphase Poro-elasticity

2.3.4.2 Fluid Phases

The balance of mass (2.19) of a generic fluid phase f € J; can be re-cast via the fundamental
ALE equation (2.59) as

@(gfpf)
7 fof fof
5| eV e V(] (o ; W (2.61)
_vs.v(afpf)+v.(gfpfvf) et
Here, the Darcy equation (2.33) can be inserted resulting in
o(efp? o’ A
% t+efpfV v -V (p —Vp ) ; M in Q X [to,te]. (2.62)
r€Jey

This is the final form governing the balance of mass of a generic fluid phase in ALE form. It is
valid in the current domain 2, and in the considered time interval [t, t.| and constitutes an es-
sential building block for the different continuum models for (a-)vascular tumor growth derived
in Chapter 3. Note, however, that this equation is not closed since either a relationship between
the volume fraction e/ (or rather saturation S7) and the pressure p/ or an additional evolution
equation for one of the variables has to be specified, conf. Section 3.2.4 and Section 3.3.1.1.
The species balance of mass (2.27) can equivalently be reformulated with the fundamental ALE
equation (2.59) resulting in

o't . . .7
el pf —gt +efpf ('vf — vs) V'l + V- (6fpri];waZf>
X
ik—if - k—f
=Y M 4+l -y M (2.63)
KEJLf Ne'ch

for a fluid phase f € J;. Again, the convective term can be replaced by the Darcy equation (2.33)
yielding

) if K/ — ) =
el & — —Vp Vil + v <€fojfchw’f>
ot !
1 ik—if H—>f
== M +elr Z in Q x [to, te]
P = S
K€

(2.64)

where fluid density gradients have been neglected to bring p/ to the right hand side. This equation
governing the mass balance of a generic species ¢ in a fluid phase f is another building block of
the different tumor growth models.

2.3.4.3 Solid Phase

As in the previous section, the balance of mass of the solid phase s can be obtained when ap-
plying the ALE equation (2.59), which for the solid phase is actually only the definition of the
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2 Continuum Mechanics of Multiphase Porous Media

material time derivative, to the generic mass balance (2.19) resulting in

d(e°p")
ot

K—S
+V v =Y M in Q x [t L] (2.65)

X KEJcs

Note that unlike in the mass balance of a fluid phase (2.61) no convective term is present which is
typical for the employed formulation with Lagrangean (skeleton) observer. The balance of mass
of a species in the solid phase with mass fraction w’® may be written as

s ow's § s 1 ik—is o is s K—>s
& = X+V( D5V )-(Z M 4 =Wy M

S
p KEJcs KEJcs

) n Qt X [to, te]

(2.66)
where again equation (2.61) has been applied to the generic species mass balance (2.27). Once
more, the convective term cancels.

The balance of momentum of the solid phase was given in spatial form in (2.36). In material
form, it emerges as

Vo (F-8°) =0 in Qg x [to,t] (2.67)
with divergence operator in reference configuration V-, deformation gradient F' and the second
Piola-Kirchhoff stress tensor S™" representing the pull-back of the spatial total stress tensor o°t.
2.3.4.4 Energy Balance

Finally, also the energy or rather enthalpy balance equation (2.46) is brought in the employed
ALE formulation by applying the fundamental ALE relation (2.59):

( p,0 eff ot ‘ + fezj C]];pfgf 5) -VT -V - (K‘,effVT)
£
— Z £%s* + Z (aTZ H]\_/)[a) = 0.
a€cly acly KEJca

(2.68)

Convective terms are only present for all fluid phases f and not the skeleton. These can again be
replaced by the Darcy equation (2.33) resulting in

( pp eff 875 ’ Z Cf f V1T -V . (K;effVT)

fedk
_ Z £ 4 Z ( o Z K]\}a) in Q x [to, te] -
acly aclp KEJca

(2.69)

This is the utilized energy balance equation in ALE form.

36



3 A Group of Continuum Models for
(A-)vascular Tumor Growth

This chapter contains the derivation of the group of continuum models for (a-)vascular tumor
growth based on the governing equations of multiphase porous media introduced in the previous
chapter and topological model reduction of the vasculature to a 1D network of embedded blood
vessels. A short overview of the different model types is given in Section 3.1. Then, the models of
increasing sophistication are developed in Sections 3.2-3.5. Finally, a brief summary collecting
the governing equations of all model types can be found in Section 3.6.

3.1 Overview

Figure 3.1 depicts an overview of the four model types developed in the following sections. The
avascular model variant based on Schrefler and co-workers [224, 225, 229-233, 235] is intro-
duced in Section 3.2. The remaining three model variants are of vascular type but differ in their
incorporation of the vasculature into the tumor growth framework. First, a homogenized variant
is introduced in Section 3.3. Therein, the blood vessels are homogenized and enter the model
as an additional pore space in the ECM, in which blood flow and species transport takes place.
Thus, it combines the original avascular variant with a homogenized representation of the vas-
culature. By contrast, in the second variant, the vascular network is resolved and embedded as a
discrete, one-dimensional inclusion into the surrounding tissue. In this 1D representation, blood
flow and species transport are accounted for by 1D PDEs. Transvascular species or fluid mass
exchange is incorporated via a 1D-3D coupling of the distinct domains. Hence, this variant corre-
sponds to a combination of the original avascular model with a discrete embedded representation
of the vasculature. The third model variant merges the discrete embedded and the homogenized
continuum representation of the vasculature into a hybrid approach for modeling the vascular
network. Only the larger vessels are explicitly resolved and embedded as the previously men-
tioned 1D inclusion. The smaller vessels are again homogenized as a porous network. Blood
flow and species transport in both domains is coupled via suitable constraints. The model with
homogenized representation of the vasculature was introduced in the author’s first article [135]
while the discrete and hybrid variant were introduced in the author’s second article [136].

3.2 The Avascular Tumor Growth Model

The avascular tumor growth model is the simplest model considered throughout this thesis. It
is based on the avascular multiphase model of Sciume et al. [230] with the extensions to three-
phase flow [232] and a deformable ECM [233]. However, in these papers the equations were
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3 A Group of Continuum Models for (A-)vascular Tumor Growth

Avascular tumor growth model

Vascular tumor growth Vascular tumor growth
model with homogenized model with discrete
continuum represen- . embedded represen-
. P Section 3.2 . P
tation of the vasculature tation of the vasculature

Section 3.4
—
Section 3.3

{Section 3.5

Vascular tumor growth model with hybrid
embedded/homogenized representation of the vasculature

Figure 3.1: Schematic overview of the different model types with separate building blocks

not brought to the ALE formulation as in Krembheller et al. [135], which allows for a more
consistent treatment of large solid deformations. The following derivations are based on the
original avascular tumor growth model of Sciume et al. [233] with the additional improvements
in the author’s publication [135] especially concerning the choice of arbitrary primary variables
for the fluid phases.

Four phases as collected in the set of all phases
3, ={s,t,h, 1} (3.1)

are considered in the avascular model. These are the ECM as the sole present solid phase, that
is, the skeleton (indicated as s) and three distinct fluid phases filling the pores of the ECM,
tumor cells (TCs), host cells (HCs) and the interstitial fluid (IF). These are denoted by ¢, h and
[, respectively. They are assembled in the set

J. =3¢ = {t, h,l}, (3.2)
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3.2 The Avascular Tumor Growth Model

extracellular matrix (ECM)
interstitial fluid (IF)
living tumor cells (LTCs)

TCs
necrotic tumor cells (NTCs)

host cells (HCs)

species

J/

Figure 3.2: Sketch of avascular tumor growth model — solid phase (ECM), three fluid phases
(TCs, HCs, IF), NTCs (species of TCs) and generic species

which for the avascular case is equal to the set of fluid phases J;. Summing up the volume
fractions of the single fluid phases yields the porosity € of the ECM as

e=cl+eh 4. (3.3)

This allows us to get the volume fraction of the ECM from the constraint on volume frac-
tions (2.18) as
ef=1—ce. (3.4)

A typical composition of the tumor micro-environment as considered by the avascular model
at the microscale is sketched in Figure 3.2. Note that in this and all other variants it is assumed
that TCs partition into two dominant species, which are living tumor cells (LTCs) and necrotic
tumor cells (NTCs). This implies that only one species mass balance equation has to be solved to
obtain the composition of this phase. As in previous publications [224, 225, 229-233, 235], the
balance of mass of NTCs with species mass fraction w? is chosen. The mass fraction of LTCs
follows from the constraint on mass fractions (2.22) as w®? = 1 — V',

Having established these principal definitions, the governing equations for the fluid phases,
the solid phase and species transport will be developed in Sections 3.2.1, 3.2.2 and 3.2.3, respec-
tively. The building blocks for these equations are the balance of (phase and species) mass and
momentum in ALE description as given in Section 2.3.4.

3.2.1 Governing Equations for the Fluid Phases
Saturations of TCs, HCs and IF are defined as

f
St — % or f =S/, fed, (3.5)
which have to follow the relation
Z St =1. (3.6)
fele

This constraint on the saturations can be obtained from the definition of the ECM porosity (3.3).
Inserting their definition into the mass balance of a generic fluid phase (2.62) yields

957 )

k:f
g +eSipV v -V . (,Ofﬁfo) =Y M. (3.7)

X
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3 A Group of Continuum Models for (A-)vascular Tumor Growth

Next, the product rule can be applied to the temporal derivative, which results in

f kf 1 K—f
—l—é?ai +£SfV‘vS—V~( fo):—f E M. (3.8
p

f f
es §EL. +_5¢ Qf _7
X It |x H

ot | ot

HEij

This equation has additionally been scaled with the inverse of the fluid phase density p/. Density
gradients have been neglected to pull the density also out of the last term on the left hand side,
i.e., the Darcy equation. Subsequently, we want to substitute the temporal derivative of the ECM
porosity. For that, we reformulate the balance of mass of the solid phase (2.65) by inserting
the definition of the solid volume fraction (3.4). Again applying the product rule to the tempo-
ral derivative and dividing through the solid phase density p°® gives a relation for the temporal
derivative of the ECM porosity

K—S
0 1—¢ 0p* M
il <9 +(1—-¢) V. -v°— —Z”EJCS (3.9)
ot | x ps Ot |x p°
which is inserted into (3.8) to obtain
SI opf SI(1—¢) dp° dS7 k!
=2 o e R N L
pf Ot |x p° ot | x ot |« !
E: éﬁ?T K—S8
. M
= €;++sz*’"€”—c;. (3.10)

Remark 3.1. In all presented numerical examples of this thesis, the phases are assumed to be
incompressible with
p* = pg = const, a €, (3.11)

For cells and IF, this is a reasonable assumption as they consist to a large extent of water.
Concerning the ECM, it implies that the Biot coefficient tends to one, see also Remark 3.3.
In principle, the computational framework is capable of including compressibility via simple
equations of state in which the density depends solely on the pressure [233]. These are

1oph 1 1 9pf 1 op’
A R S S (3.12)
pfopf Ky pf ot |x Ky 0t |y

for the fluid phases and equivalently for the solid
1 9p* 1 1 9p* 1 op*
W g = (3.13)
psop* K ps Ot |x Ky Ot |

where Ky is the bulk modulus of a generic fluid phase f and K the bulk modulus of the ECM.
Using the previous equations, one could define a relationship between the density of a phase and
its pressure as

p* —p§

p* =pye Ko, a€l, (3.14)

with reference density of the o phase p{ at reference pressure p§ which can be deduced by solving
the ODEs (3.12) and (3.13). This has so far not yet been realized in the computational framework
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3.2 The Avascular Tumor Growth Model

to calculate the fluid and solid phase densities which appear in the right hand side of (3.10).
In this section, the more general form of the governing equations with compressible phases will
be employed. The incompressible case follows for K, — oo. For the sake of simplicity, the
governing equations of the vascular model types in the subsequent sections will be written for
the incompressible case.

Inserting the relations for the time derivatives of the densities gives

eST opf SI(1 —¢€) op® S’ ; i |
Kf ot X+ K, ot X+€WX+SV"U —V(ﬁVp)
Z "f]\}f K—$
. M
_ =y oS Zﬂejcss : (3.15)

o

In the last two equations the previously mentioned solid pressure p® has been employed. For
now, it can be assumed that it is a macroscale measure of the normal force exerted on the solid
surface by the surrounding fluids [194] and that it depends on the saturations and pressures of
the fluid phases as p* (S7,p/) , f € J..

A crucial step for the tumor growth model is the choice of primary variables for TCs, HCs
and the IF, i.e., for the three present fluid phases in the pores of the ECM. Going back to (3.15),
it is clear that this equation is not closed since a relationship between fluid pressure and fluid
saturation is not stated. Closure is achieved via pressure-saturation relationships based on the
work of Schrefler and co-workers [232, 233, 235], see also Section 3.2.4. However, even if
these relationships have been specified, there is still some flexibility in the choice of the primary
variables. In principle, they can be either fluid phase saturations S7, fluid phase pressures p’ or
pressures differences between two fluid phases defined as p*® = p® — p®, a,3 € J.. In the
earlier publications on the avascular model [230, 232, 233], the equations were written in terms
of a pre-chosen set of primary variables ([S*, S, p'] in [230, 232] and [p', p", p™] in [233]).
In Krembheller et al. [135], a more flexible approach was followed formulating the equations in
terms of generic primary variables

Pl = | (3.16)

Remark 3.2. The primary variables have to be independent of each other. For instance, a choice
¢[t,h,l] _ [St, Sh, SI}T
straint (3.6). Also ¢[t’h’” = [pt, p", pth} " is no valid choice because the third primary variable
(pressure difference between tumor and host cell phase) is a linear combination of the first two. In

is not possible since saturations are not independent due to the con-

. . . . . . h.l T
all numerical examples presented in this thesis the primary variables are 1/)[t’ 1 = [pth, P, pl] .
This is a convenient choice since the pressure-saturation relationships are also formulated in
terms of the two differential pressures p'" and p', see Section 3.2.4.

Without going into the details of the employed pressure-saturation relationships it is only
assumed that a correct choice of primary variables delivers functional dependencies of the fluid
saturation

STyt f e, (3.17)
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3 A Group of Continuum Models for (A-)vascular Tumor Growth

and fluid pressure
p! ("), f el (3.18)

and, thus, also for the solid pressure p° (wt,wh,wl) on the primary variables, see also Re-
mark 3.5. These relations can be used to transform the time derivatives of saturations, fluid
pressures and the solid pressure as well as the spatial fluid pressure gradient in time derivatives
and spatial gradients of the generic primary variables by means of the chain rule

9 ((o) (v', 9", ¢! 0 (o) Oy
() 5 0w)ae?

(3.19)

By inserting it into the fluid mass balance (3.15) the balance of mass of a fluid phase f € J. in
terms of the generic fluid phase primary variables emerges:

ST op! 0P sf 1—¢)  9p° o7 057 oy7 'V v’
Kfaze;aw at‘ ZéW 3t‘ EZQ_WWX%SYV.U
Z ;-;]—>Wf K—S
f KeT. M
( Z gpﬁ ) _ GUL]{ + St Z"“EJC; in € x [t(h ]
BETe v P g
(3.20)

The previous equation is employed as the governing equation for the TC and HC phase in the
considered time interval [to, t.|. The equation for remaining fluid phase, i.e., the IF is treated in
a slightly different way to cancel out several terms. Summing the mass balance equation (3.15)

over all involved fluid phases v € J. yields

eS” 8p7 S7(1—¢) op° 057 . <

> (%l S (e L) E ) T
v€Te €T, v€Te

vETe
K=y %s

—Z( < v>)zz ZL Y (g H% . (321)

v€Je v€Je ~€EJe

Now, the constraint for the sum of saturations (3.6) can be invoked. Thus, the third term on the
left hand side drops out completely. Additionally, the sum of the saturations occurs also in the
second and fourth term on the left hand side and in the last term on the right hand side. The
previous equation can hence be simplified to

eSY op” (1—¢) Op* s k'
> (e Gl e T 2 (7 (e

v€Je v€EJe
”]Q’Y mﬁs
_ Z Hejc'y + ZHEJCS ) (322)
ps

v€Te

Note also that the sum of the mass transfer terms involving the fluid phases, i.e., the first term on
the right hand side could possibly cancel if the densities of two involved fluid phases are equal
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3.2 The Avascular Tumor Growth Model

as each mass transfer term appears once positive and once negative due to the involved sum
over all fluid phases. The summed-up equation is again formulated in terms of fluid pressures
and saturations. Inserting the partial derivatives for the generic primary variables (3.19) for the
temporal derivatives and the gradient results in

op) aw’ ) (1—2) = O awﬁ‘
Z Z + +V.v°
vEIe ( Ky Bed. ou? ot |x K. BeI. oy? ot |x
K=y K—$
> ower, M Dorer. M
—Z V. Z )) = Z i + “ejcss in Q X [to, te] -
~€ETe ( ( BET. 61/)5 ~v€ET. " P

(3.23)

This is the final governing equation for the IF. Together with (3.20) evaluated with f = ¢, h,
three equations govern the flow of the three present fluid phases in the pores of the ECM. Addi-
tionally required constitutive relations and mass transfer terms will be defined in Section 3.2.4
and Appendix B.

3.2.2 Governing Equations for the Solid Phase

The governing equations for the solid phase are its balance of mass (2.65) and momentum (2.67).
However, in all model types, the former one enters the formulation in integral form to obtain its
volume fraction respectively the porosity of the ECM, see equations (3.30)-(3.34).

The remaining equation is the balance of momentum in reference configuration (2.67). This
is a quasi-static formulation since inertia terms have been neglected due to the large time scales
of tumor growth. Subsequently, the solid phase stress tensor has been split into a solid pressure
part and an effective stress part in equation (2.37) where the effective stress part is modeled as
the derivative of a strain energy function as in classical solid mechanics problems. It remains
to specify the solid pressure p® and to combine it with the balance of momentum of the solid
phase. There exist various definitions and interpretations of this quantity as described by Gray
et al. [86, 96]. It can be understood as a macroscale measure of the pressure acting on the solid
phase. For the avascular model, the definition of Lewis and Schrefler [ 146, 147] as the weighted
sum of the present fluid phases

pP=Y_ SIpl =S+ S+ S (3.24)
fe€de

is employed. This definition is equivalent to the one of Bishop [26] if the solid surface fraction
in contact with a fluid phase is assumed to be equal to the saturation of this fluid phase. Inserting
it into the definition of the total stress tensor in spatial description (2.35) yields

o =(1-¢e)(-pI)+ 0T+ —e8/p' T =0 - pI (3.25)
fele

when invoking the definition of the fluid phase stress tensors (2.31). The pull-back into the
material configuration may then be obtained as

Stot — geff _ s jo 1 (3.26)
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3 A Group of Continuum Models for (A-)vascular Tumor Growth

where the first term represents the effective stress tensor in material configuration and the second
term the pull-back of the solid pressure contribution with the inverse of the right Cauchy-Green
tensor C'. This final form of the total stress tensor in material configuration can now be inserted
into the balance of momentum of the solid phase (2.67) yielding

Vo (F- (ST —pJC')) =0 in Qx [to,t]. (3.27)

The balance of momentum may then be closed with the material laws for the solid phase intro-
duced in Section 2.3.2.2.

Remark 3.3. The definition of the solid pressure (3.24) is closely related to the traditional en-
gineering approach in soil mechanics with a single fluid phase, that is, Terzaghi’s principle of
effective stress and its extension by Biot. If multiple fluid phases are present, there exist several
derivations and definitions. In the papers analysing the solid pressure based on TCAT [86, 96]
and the corresponding textbook [95, Section 9.7.1], a close evaluation is performed including
interfacial effects and the compressibility of the solid matrix. Thus, the assumptions which have
implicitly been made here are obtained explicitly. For the sake of completeness, it is stated here
again that the assumptions for the form of the pressure in equation (3.24) are that interfacial
effects can be neglected, the Bishop parameter (the solid surface fraction in contact with the
respective fluid phase) of each phase is equal to its own saturation and the Biot coefficient is
equal to one. The latter quantity relates the compressibility of the solid material with the com-
pressibility of the solid structure including the pore space. If the compressibility of the solid
matrix compared to the bulk structure with pores is negligible, which it is here as we assume an
incompressible matrix, see also Remark 3.1, the Biot coefficient is equal to one.

3.2.3 Governing Equations for Species Transport

The governing equation for a generic species ¢ in a fluid phase f has been defined in equa-
tion (2.64) with primary variable w’/, that is, the mass fraction of species i in fluid phase f.
Here, we only need to insert the definition of saturations (3.5) to obtain

Ot k' - , _
eS? gt — —prf Vil + v <€SfDle]fchwlf>
1
X
1 ik—if . - Kk—f
=— Z M —i—afrlf—wlfz M in Q x [to, te] .
p HEJCf K]jSf

(3.28)

The previous equation is again written in terms of fluid saturations and fluid pressure gradients.
Inserting the functional dependencies (3.17) and (3.18) yields an equation for the species mass
balance in terms of its mass fraction w’/ and the generic fluid primary variables. The mass
balance for a species in the solid phase is given by (2.66). However, no species transport in the
solid phase is considered in the avascular model in this thesis.
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3.2 The Avascular Tumor Growth Model

3.2.4 Closure Relations and Constitutive Equations

Calculation of Porosity For calculating the porosity, the conservation of mass of the solid
phase is considered under the assumption of a vanishing mass transfer term between the solid
phase and all other phases, that is,

K—S

M =0, ke, (3.29)

A material domain U, C 2 is deformed via the solid phase deformation map (2.50) on a spatial
domain Uy C Q; = ¢® (Uy, t). If no mass transfer from the solid phase to other phases occurs,
the solid phase mass has to be conserved, that is, the initial mass of the material domain m§, (Uy)
must correspond to the mass of the spatial domain m® (U, t):

mg Uy) = m® (Us, 1) . (3.30)

Inserting the definition of the solid phase mass as the integral of the volume fraction of the solid
times its density in the respective domain yields

/ pg(l—eo)dVo:/ ps(l—a)dV:/ p* (1 —¢)JdV,. (3.31)
Uo Uy Uy

In the last step, the integral over the spatial domain ¥/, has been transformed in an integral over
the material domain U4, by means of the determinant of the solid phase deformation gradient as
specified in (2.6). Since the equality has to hold for volumes of arbitrary size, it can be pulled out
of the integral yielding a point-wise relationship between current solid phase density ps, porosity
¢, Jacobian determinant .J, reference solid phase density pj, and reference ECM porosity €g:

J-p'(l—e)=p;(1—ep). (3.32)
Solving for the porosity results in

1—eg _»°—78

7 e Ks (3.33)

where the relationship between reference and current density (3.14) has been employed. In case
of an incompressible solid phase, the previous equation simplifies to

e=1

1—80
=1 . 3.34
3 7 (3.34)

A dilation of the domain (J > 1) leads to an increase of the ECM porosity while a compression
(J < 1) decreases the available pore space. In case of an undeformable ECM, the porosity does
not change and remains fixed to the initial value of ;. Note that the balance of mass of the solid
phase (2.65) can actually be derived from (3.31) by taking the total derivative of the mass in the
current configuration [272, eqn. 3.6].

Remark 3.4. As described in Section 1.1, the interaction of the ECM with growing tumors is
an emerging physical trait of cancer. On the one hand, ECM can be deposited leading to a
stiffer, more dense structural phase. On the other hand, ECM degradation and remodeling by
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Figure 3.3: Pressure-saturation relationships (typical values for the coefficients have been in-
serted)

matrix metalloproteinases (MMPs) plays an important role during angiogenesis and metasta-
sis [11, 220]. Both processes would enter the model as mass transfer terms in the ECM mass

balance. For instance, ECM deposition was considered by Santagiuliana et al. [224] via a mass
l—s
transfer term M and the porosity was updated over time using explicit time integration. A more

consistent approach using a varying reference porosity similar to a damage parameter was pro-
posedin [271, 272].

Pressure-Saturation Relationships The pressure-saturation relationships are an impor-
tant ingredient of all considered tumor growth models since they provide the missing link be-
tween fluid pressures and fluid saturations to close the fluid mass balance equation (3.15). Since
a full SEI for three-phase flow has not been achieved with the TCAT formalism, Sciume et al.
[232, 235] have proposed two pressure-saturation relationships for three phase flow, one where
tumor and host cell populations have an equal pressure and one where a pressure difference be-
tween the two cell phases is present. Here, only the more general latter case will be considered.

These relationships have been derived starting from the Young-Laplace equation at the mi-
croscale which relates interfacial tension, pressure difference and interfacial curvature at phase
interfaces. After up-scaling this equation to the macroscale, a macroscopic surrogate for the pres-
sure difference between fluid phases is typically defined via a function of the fluid saturations
in geo-mechanics. Note that these pressure differences do not indicate that the system is not in
equilibrium but are only a statement that pressures in adjacent phases can be different [235]. For
the tumor growth model the derivations can be found in [232, 235] and are not repeated here.
The healthy system (h — [) is defined as the reference and two pressure-saturation relationships
similar to previous heuristic models [189, 190] are postulated as

pht (Sl) =p"—pl=a-tan [g (1 — Sl)b} (3.35)
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and

Pt (St) =p' —ph = aZ® . tan [E (St)b} (3.36)

Ohl 2

relating the HC-IF pressure difference p* with the IF saturation S' and the TC-HC pressure dif-
ference p'" with the TC saturation S¢. Herein, a and b are model constants and o, 5 the interfacial
tension between fluids a and /5. Subsequently, b will be set to one. The TC-IF pressure difference
follows as

ptl (St, Sl) — pt _pl — pth (St) o phl (Sl) ) (337)
Thus, only two of the three pressure differences are independent (and consequently only two
of the three can be chosen as primary variables). The functional dependencies are depicted in
Figure 3.3. IF is present in the entire domain, otherwise p would go to infinity. Vice versa, large
values of the TC saturation lead to very high TC pressures. The functions have been designed

such that they are invertible and the saturations can be obtained via the inverses S (phl) and
S* (p™). The relation for HCs can be derived as

5" () = 1= ' () = 5 () 339

from the constraint on saturations (3.6). This provides the closure relationships between satura-
tions, fluid pressures and primary variables needed for the fluid mass balance (3.15).

Remark 3.5. The common choice of primary variables v,b[t’h’l] = [@Z)t, P, @/Jl} = [pth, phl,pq r
is further investigated here to enhance the understanding of the model. For solving the fluid
mass balances (3.20) and (3.23), the dependency of fluid pressures and fluid saturations on the
generic primary variables 1) including partial derivatives is required. The dependency of the
fluid pressure on the primary variables (3.18) is given by

ot 11 1] [t
plohl <¢[t7h7l]>: ol=10 1 1| |" (3.39)
P 00 1| |«

from which also partial derivatives of the fluid pressures w.r.t. the generic primary variables
needed in (3.20) and (3.23) can be calculated straightforwardly. The dependency of the fluid
saturation (3.17) on the primary variables is given by

St S* (")
glthl <,¢[t,h,l}> _ S/Z N (%t() _h>sl (d’h) (3.40)
S S (¢

when employing the inverses of the pressure-saturation relationships (3.35) and (3.36) together
with (3.38). From that, the derivatives of the saturations w.r.t. the generic primary variables can
be computed and inserted into (3.20) and (3.23). Also second derivatives of the saturations w.r.t.
the primary variables which are required for linearizing the mass balances (3.20) and (3.23) can
be acquired easily. An important aspect is the definition of Dirichlet boundary or initial condi-
tions. It is convenient to specify those in terms of saturations of the phases. The chosen primary
variables p", p'" and p' offer the flexibility to specify the two saturations S* and S' (the third one
follows from the constraint on saturations in (3.40)). The values for the primary variables for the
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3 A Group of Continuum Models for (A-)vascular Tumor Growth

desired saturations can then be obtained from (3.35) and (3.36). Furthermore, the IF pressure p'
can be specified as a boundary or initial condition. However, other choices are possible (which
satisfy the independence of primary variables as described in Remark 3.2): If a saturation is
chosen as primary variable, its dependency on the primary variable is straightforward. For the
dependency of pressure on the saturation, the pressure-saturation relationships (3.35) and (3.36)
have to be invoked.

Permeability Tensor and Viscosity Following Sciume et al. [230, 232] the permeability
tensor of each fluid phase f € J. occurring in the Darcy equation (2.33) is modeled as isotropic
with the relationship

K=k k=K, k- I, (3.41)

rel

where k is the intrinsic permeability tensor of the ECM with scalar intrinsic ECM permeability
k. The relative permeability of each fluid phase f € J. is defined depending on its saturation as

K= (sN)Y (3.42)
where A £ 1s a model coefficient with A ¢ > 1. This ensures that the relative permeability of each
phase and also the sum of the relative permeabilities of all phases is smaller than one. If only one
phase is present, Sf =1 and the permeability of the phase is equal to the intrinsic permeability.
However, the presence of different fluid phases interferes with the flow due to viscous forces at

the interfaces between phases (at the microscale) which makes the domain less permeable for

the considered phase. Thus, this relationship also accounts for the interactions between other
K—Q

fluid phases, that is, the macroscale interaction forces Ty between different fluid phases which
were neglected in the derivation of the Darcy equation (2.33) as stated in Remark 2.3. According
to Sciume et al. [232] this relationship gives realistic agreement with classical porous medium
models [260]. However, such an ad-hoc closure formulation at the macroscale is not consistent
with TCAT. Therefore, this constitutive relationship should be replaced by a more theoretically
sound TCAT formulation considering also interfaces [170].

The viscosities 4/ of the fluid phases are assumed constant but different for each phase
throughout this thesis. In [232] an additional constitutive relationship for the viscosities of the
cell phases has been proposed relating it to the pressure gradient in the fluid to model cell ad-
herence. If a certain pressure gradient is exceeded, the cells start to move which is similar to
the stick-slip behaviour in contact mechanics. This formulation has been implemented in the
employed computational framework [8] by the author but is not considered in the numerical
examples.

Diffusivity Tensor The diffusivity tensor in the species mass balance equation (2.64) and
(2.66) is also isotropic with

&= Dig-1=Dj- ()L (3.43)

This relationship was used in the previous publications on the avascular model [224, 225, 229—
233, 235]. The rationale behind this definition is to model a nonlinear dependency of the macro-
scopic effective diffusivity on the volume fraction €“ of the « phase in which the species ¢
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diffuses. The parameter 6 may then be interpreted as a measure of the tortuosity of the porous
network. The higher its value, the more tortuous the network resulting in a hindered diffusion of
the species under consideration and, therefore, a smaller effective diffusion coefficient. If J is set
to zero, the influence of the tortuosity may be neglected and the effective diffusivity is equal to
the free diffusivity of the species D in the phase «.

Remark 3.6. Structural anisotropy of the ECM has been integrated into the model in the term
paper by Bui [32] under the author’s supervision. Therein, the permeability tensor and the dif-
fusivity tensor was modeled as transversely isotropic, i.e., as rotationally symmetric to the main
ECM fiber direction with higher permeabilites along the fibers. The anisotropy of the permeabil-
ity tensor led to increased growth along the ECM fibers in comparison with the orthogonal di-
rection. Thus, it was possible to reproduce experimental results of [208, 209, 215 ] which showed
that the alignment of collagen fibers facilitates invasion by which cells migrate along these fibers
into healthy tissue. Considering the diffusivity tensor, an anisotropic definition only makes sense
for species whose particle radius is comparable to the fiber radius since only then diffusion is
influenced by the arrangement of the fibers [248].

3.2.5 Summary and Variants of the Model

In summary, the governing equations of the avascular tumor growth model are the mass balances
of TCs ((3.20) with f = t) and HCs ((3.20) with f = h), the sum of the mass balances of TCs,
HCs and IF (3.23), the balance of momentum of the solid phase (3.27) and the balance of species
mass for all involved species (3.28).

The introduction of the avascular model will be concluded by illustrating two different pos-
sible variants of the avascular model. The first one corresponds to the case where no HCs and
ECM are present, that is, only two fluid phases which are TCs and the IF. This case corresponds
to an in-vitro situation of TCs growing avascularly in a quiescent, cell culture medium result-
ing in a so-called multicellular tumor spheroid (MTS). The growth of MTSs has been studied
by Sciume et al. [230, 233] to validate the avascular model. A second variant emerges under
the assumption of an undeformable ECM. In that case, the balance of momentum of the solid
phase (3.27) does not have to be solved. Consequently, solid phase displacements and velocities
are equal to zero. This considerably simplifies the entire model: First, the porosity of the ECM
remains constant (equation (3.34) with J = 1). Second, the divergence of the solid phase veloc-
ity from the governing equations (3.20) and (3.23) is equal to zero. Third, it is not necessary to
apply the ALE formulation which is a significant reduction in complexity. A Eulerian descrip-
tion with fixed mesh emerges for fluid flow and species transport. As will be shown later, the
coupling between fluid phases and deformable solid phase constitutes a significant cost factor
of the entire computational algorithm. Yet another slightly different variant is possible under the
assumption of small deformations. Then, a linear solid mechanics problem may be formulated
whose deformations and velocities do not necessitate an ALE description. Hence, this would
result in a one-way coupled problem where only fluid flow influences the solid phase and not
vice versa. However, this variant is not considered hereafter.
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extracellular matrix (ECM)
homogenized vasculature (HV)
interstitial fluid (IF)
living tumor cells (LTCs)

TCs
necrotic tumor cells (NTCs)

host cells (HCs)

species

J

Figure 3.4: Sketch of vascular tumor growth model with homogenized representation of vascula-
ture — solid phase (ECM), additional porous network (HV), three fluid phases (TCs,
HCs, IF) in the pores of the ECM, NTCs (species of TCs) and generic species (both
in HV and other phases)

3.3 The Vascular Tumor Growth Model with a
Homogenized Continuum Representation of the
Vasculature

The model introduced in the previous section allows to study avascular tumor growth and, hence,
excludes a crucial phase in the progression of tumors, namely the vascular stage. The vascula-
ture is of preeminent importance for cancer progression: As described in Chapter 1, without their
own vascular network, tumors are usually confined to a certain size beyond which they cannot
grow any further and will become necrotic [36, 76, 181]. This can be attributed to insufficient
supply with oxygen or other nutrients which cannot diffuse from the tumor boundary into its
center. However, if tumors have access to nutrients via their own vascular network induced by
angiogenesis, tumor growth can proceed much more rapidly. In summary, modeling the vascu-
lar stage including angiogenesis is crucial since together with metastatic tumor growth it is the
clinically relevant stage in tumor progression, which actually causes the patient to die [221].
The abnormality of tumor vasculature, which ultimately leads to increased IF pressure due to
the interplay of leaky vessels and impaired lymphatic drainage is a further physical phenomenon
which influences therapeutic resistance. It can be studied with the vascular variant which may
be classified as a dynamic vascular tumor growth model in the sense that tumor growth is dy-
namically two-way coupled with the vascular network [157]. On the one hand, tumor growth can
influence the vasculature via angiogenesis and blood vessel remodeling. On the other hand, the
vasculature and the nutrients therein modulate tumor growth.

In the vascular tumor growth model with continuum representation of the vasculature, the
vasculature is represented as an additional porous network in the ECM in which blood flows.
This enhancement of the avascular tumor growth model was proposed in the author’s publica-
tion [135] where blood pressure was set constant and, thus, blood flow was neglected as well
as species transport in the vasculature. Subsequently, in Kremheller et al. [136] blood flow and
species transport in the homogenized vasculature was introduced. Effectively, this formulation
is a double-porosity model with two separate porous networks, the first one is the pore space be-
tween the ECM fibers (as in the avascular model) and the second one the vasculature as sketched
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3.3 Homogenized Continuum Representation of the Vasculature

in Figure 3.4. Thus, the set of all phases may be defined as
Jp, ={s,t,h,l,v} (3.44)

comprising the ECM (solid phase), TCs, HCs, the IF and an additional fluid phase denoted by v
which is either referred to as the vasculature or blood. Now, four fluid phases are present, which
are collected in the set of fluid phases

I ={t,h,l,v}. (3.45)
The original three fluid phases of the avascular model are again assembled in the set
J. ={t, h, 1} (3.46)

indicating that they occupy the pores of the ECM with porosity €. The derivation of the model
equations in the subsequent sections closely follows the author’s publications [135, 136]. Some
minor improvements are included, namely a simple model for blood vessel remodeling as intro-
duced by Wirthl et al. [282] (co-first authored) and haptotaxis which was included in the Master’s
thesis of Wirthl [281] under close guidance by the author.

3.3.1 Governing Equations for the Fluid Phases

In this section the governing equations of all present fluid phases of the vascular tumor growth
model are detailed. This includes, first, blood flow in the homogenized vasculature and an evo-
lution equation for the vasculature volume fraction in Section 3.3.1.1 and, second, the flow
of the original three fluid phases of the avascular model in the pores of the ECM in Sec-
tion 3.3.1.2. Due to the presence of the additional porous network, these equations have to be
slightly adapted [135, 136].

3.3.1.1 Homogenized Vasculature

Blood flow in the homogenized vasculature is governed by the mass balance equation for a
generic fluid phase (2.62), which can be detailed for the vasculature as

K—v

K’ M
+e'V v -V (EV])U> = ZL in Q x [to, t.] (3.47)

oe?
ot | x

when assuming constant blood density p“. Blood pressure p¥ is one primary variable of the
homogenized vascular network. The right hand side term represents a possible mass exchange
with other phases. Typically, this is an outflow of fluid from the vasculature into the IF due to
the increased leakiness of tumor blood vessels.

So far, the volume fraction of the homogenized vasculature € has not yet been specified. It
represents another independent primary variable of the porous medium system which will be
modeled with an additional evolution equation. It is important to emphasize in this regard that
endothelial cells (ECs) are not directly modeled as a phase or species of the system but rather the
vasculature as a whole as represented by its volume fraction at a specific macroscale point. This
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results in the aforementioned double-porosity formulation. The influence of angiogenesis includ-
ing EC migration on the vascular volume fraction is then incorporated by additional flux terms.
Furthermore, in some of the numerical examples of Chapter 5, the homogenized vasculature may
specifically be interpreted as the neo-vasculature formed by angiogenesis and originating from
pre-existing vessels while in others it is a homogenized representation of the (pre-existing and
neo-) vasculature as an additional porous network.

Remark 3.7. The balance of mass of blood (3.47) has been derived from the balance of mass of
a generic fluid phase by assuming the Darcy equation (2.33) for blood flow in the homogenized
vasculature. Thus, v" is the blood velocity within the vasculature. In Kremheller et al. [135], the
notation was different since blood flow was not considered but only constant pressure. Therein,
the HV velocity was also denoted by v". This might be confusing to the reader which is why the
derivation and also notation of the evolution equation is adapted compared to [135]. Instead of
defining a velocity, this term is now denoted as generic flux term 3°.

The following evolution equation is postulated for the vasculature volume fraction:

oe?
ot |,

+V.-3"=—Ceon. (3.48)

Therein, 57° denotes a flux term which is employed to model angiogenesis and C.,; a sim-
ple model for blood vessel collapse. The latter term was introduced by Wirthl et al. [282,
S1 Appendix] and denoted as M.,y there. Here it is rather written as C' to prevent confusion
with a mass transfer term. It accounts for regression, compression and collapse of blood ves-
sels induced by growing tumors. Its exact expression along with further details will follow in
Section 3.3.4. Applying the fundamental ALE equation (2.59) results in

oe?
ot |x

+e'V-v°+ V. (]v —e¥- ’US) = —Ucoll- (3.49)

The flux term is approximated as

§U— 0~ — D'V’ + %Sy (WTAFZ) VWTAFL 4 05y, F s (3.50)
ra;i:)m chen?gtaxis hapt?)?axis
motility

which results in a standard formulation governing angiogenesis similarly also applied in [6, 225].
Herein, the first term on the right hand side represents random motion of ECs at sprout tips
modeled as a diffusion process with diffusivity D" acting on the vascular volume fraction gradi-
ent.
The second term accounts for chemotaxis. In general, this refers to the response of cells to
a gradient of a soluble substance often manifesting itself in directional migration towards this
chemical gradient [141]. Here, it reflects the response of ECs on TAFs produced by hypoxic

TCs. The varying chemotactic coefficient x (wTAF Z) as in [6] depends on the TAF level. Its

exact form is detailed in Section 3.3.4. Dozens of factors such as the aforementioned VEGFs are
involved in triggering EC migration [14 1] and maturation and stabilization of the emerging new
vascular network [181]. This complex interplay of different bio-chemical signals is represented
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3.3 Homogenized Continuum Representation of the Vasculature

as an ancillary TAF species within the IF which represents the excess of pro-angiogenic regula-
tors compared to inhibitory factors [6, 83]. The chemical gradient of the TAF species in the IF
VwT4F ! triggers EC migration towards the tumor following the TAF gradient as described by
the second term in equation (3.50).

The last term is the influence of haptotaxis. This describes the directional migration towards a
gradient of a bound substance, typically an immobilized ECM component [141] which regulates
the adhesion of migrating cells to the ECM. A common example is fibronectin (FN), which
mediates cellular interactions such as migration and adhesion with the ECM [188]. According to
experimental studies [243, 244], haptotactic endothelial cell migration is guided and regulated
by the FN gradient in the ECM Vw!'*. Thus, haptotaxis is included with a similar additional
haptotactic flux in response to FN gradients [6] with constant haptotactic coefficient ©. FN itself
is modeled as an additional chemical species bound to the ECM which does not diffuse. Like
the TAF species, it can be understood as a surrogate of several chemical substances bound to the
ECM and mediating EC migration [141].

The final evolution equation of the homogenized vascular volume fraction emerges as

oe?
ot | x

FEV T = V(D) 4 - (eSy (WTAT) WA
+ V- (8“58@VwF§) = —Ceon in Q x [to, te] . (3.51)

In conclusion, the porous medium model for the vasculature comprises the two equations (3.47)
and (3.51): the first one governs blood flow in the vasculature and the second one governs the
evolution of the vascular volume fraction depending on angiogenic stimuli and blood vessel
collapse due to excessive tumor growth.

3.3.1.2 Tumor Cells, Host Cells and Interstitial Fluid

Incorporating a fifth phase into the model as described above requires several modifications of
the equations of the avascular model. The volume fraction of the ECM is now given as

ef=1—e—-¢" (3.52)

from the sum of all present volume fractions (2.18) and the definition of the porosity of the ECM
as the sum of the volume fractions of TCs, HCs and the IF (3.3). Inserting the solid phase volume
fraction (3.52) into the solid phase balance of mass (2.65) yields

Je|  1—e—¢g Op° e

) R | —e—e)V-v° — 3.53
ot | & e E)tX+< e-e)Vev ot | (3.53)

where the mass transfer term between the solid phase and other phases has been set to zero in
accordance with (3.29) and Remark 3.4. Furthermore, the product rule has been applied to the
temporal derivative as in (3.9) to obtain the temporal derivative of the porosity of the ECM.
Compared to this expression for the avascular case, ancillary terms depending on the volume
fraction € may be identified which account for the presence of the additional porous network.
These are the additional time derivative of the vasculature volume fraction and the time derivative
of the solid phase density and the divergence of the solid phase velocity scaled with the negative
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vascular volume fraction —<”. The time derivative of the ECM porosity may then be inserted
into the mass balance of TCs, HCs and IF which are given by equation (3.8). This results in an
intermediate mass balance equation

f f f _ ) S f v
eSS’ dp +S(1 e—¢") 9p° 5@ _Sfai + 571 -V -v°
oot |y P’ Ot |x Ot |x ot 1x
f > Hl\}f
_V.C%Vﬁ):_lg%——(&ﬂ)
7 p

which under the assumption of incompressible solid and fluid phases can be simplified to
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This is the governing equation for the balance of mass of TCs, HCs and IF, i.e., for f € J_, in
the vascular tumor growth model with homogenized vasculature. The generic primary variables
z/)[t’h’” of these phases as defined in Section 3.2 have been inserted. Compared to the avascular
model (3.20), two additional terms are present: The time derivative of the volume fraction of the
vasculature scaled with the saturation and the additional divergence of the grid velocity scaled
with the negative volume fraction of the vasculature —e”. These terms have been introduced
since the modified balance of mass of the solid phase (3.53) incorporates the temporally varying
vascular volume fraction. Obviously, if no vasculature is present (¢” = 0) the original avascular
model (equation (3.20) with incompressible solid and fluid phases) is recovered. The third gov-
erning equation, the mass balance of the IF, may again be obtained by summing the balance of
mass (3.55) over the TC, HC and IF phase as

K—y
oe” op” D wer, M
1 - WY - v° — — h€ley
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7635 6635 ’Yejs
in Q x [to,t.].
(3.56)

Comparing it to its avascular counterpart (equation (3.23) with incompressible solid and fluid
phases) the additional terms are again the time derivative of the vascular volume fraction and
the additional divergence of the grid velocity scaled with the negative volume fraction of the
vasculature —e"”.

In summary, the fluid part of the porous medium model now accounts for two independent
porous networks. The first one are the pores of the ECM which are filled by three interacting
fluid phases, namely, TCs, HCs and the IF. The second one is the vasculature, which is here
considered in a homogenized way in which one additional fluid phase, blood, flows. This results
in two additional primary variables, the blood pressure p* and the blood vessel volume fraction
€’ on top of the three generic primary variables of the avascular system U Moreover, several
variants of the model are possible, either with static vasculature or without blood flow depending
on the phenomena which are included into the model, see Section 3.3.5
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3.3.2 Governing Equations for the Solid Phase

The presence of an additional fluid phase, namely, blood flowing in the homogenized vasculature
necessitates also a re-definition of the solid pressure accounting for the interaction of all fluid
phases with the solid skeleton. A suitable definition is

€ g? € g?
S = STpl + V= Stpt + Shph 4 S'ph) + v 3.57
P 5+5”g P s+6”p 5+6”( p p p) 6+6“p ( )

which may be inserted into the definition of the total stress tensor (2.35) resulting in

o =(l—c—") (-p D)+ 0T+ —eSp' T —ep'T =0 - p'I (3.58)
— fele

together with the definition (2.31) of the stress tensors of the present fluid phases and the split
into effective stress and solid pressure part (2.37). In equation (3.57), the original definition of the
solid pressure in the avascular model (3.24) as the weighted sum of saturations and pressures is
scaled with the ratio of the ECM porosity € to the total volume fraction of both porous networks
€ + €. The same applies for the homogenized blood pressure, which is scaled with the ratio
of the blood vessel volume fraction € to the total volume fraction of both porous networks
e + &Y. Thus, a classical model of the total stress tensor as effective stress in the solid matrix o*"
plus the combined effect of all fluid phases on the solid matrix collected in the solid pressure is
derived. Furthermore, this definition recovers the solid pressure in the case where no vasculature
is present (¢” = 0) as well as the classical Terzaghi effective stress tensor for ¢ = 0, that is, if
only the vascular network with one single fluid phase, namely blood, is present. The pull-back
of the total stress tensor may again be written as

St = gt pejCt (3.59)
and inserted into the balance of linear momentum of the solid phase (2.67) which yields
Vo (F- (8T —pJC")) =0 in Qx [to,t]. (3.60)

Evidently, the balance of momentum is equivalent to the one of the vascular model given by
(3.27). The only modification is the different definition of the solid pressure from (3.57) such that
the avascular model is conveniently contained within the vascular one for the case ¥ = 0. Again,
the Saint-Venant-Kirchhoff or the Neo-Hooke material law from Section 2.3.2.2 are required to
close the equation through a suitable constitutive model for the effective stress tensor.

The balance of mass of the solid phase again enters the model in integral form via the cal-
culation of the ECM porosity, which also has to be slightly adapted for the vascular case, see
Section 3.3.4.

Remark 3.8. In a related publication on a similar vascular tumor growth model with homog-
enized representation of the vasculature [234] based on the original works of Sciume et al.
[229, 230, 231, 232, 233, 235], a slightly different hierarchy of the two porous networks was
assumed. Instead of defining the vascular network as an additional pore space inside the ECM
(alongside the pores of the ECM), a nested arrangement with the vascular component inside the
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pores of the ECM was derived. Together with the definition of the solid pressure in the avascular
model (3.24) the total stress tensor in the notation of the present thesis was given as

oot — a.eff _ psI +g? <p5 _pv) TI. (3.61)

It is not entirely clear if the nested or the juxtaposed model resembles the in-vivo arrangement
of the networks more closely.

3.3.3 Governing Equations for Species Transport

Compared to the avascular model, species transport in the homogenized vasculature can now
also be considered. The governing equation is the species mass balance equation in a generic
fluid phase (2.64) for each species i dissolved in a fluid phase f € J; with mass fraction w'/.
The respective volume fraction required in this equation is simply the vascular volume fraction

ef =¢v. (3.62)

The pressure gradient Vp/ is the blood pressure gradient Vp', i.e., the gradient of the second
primary variable of the homogenized vascular network and the permeability tensor is the one of
the homogenized vasculature k”. Hence, the balance of mass of a species dispersed in the HV is
given by

ow'® Kk - . -
v — 2 Vpl - V' V - (' DUV w'?
T b D W'+ ("D Vw')
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(3.63)

As before, species transport in TCs, HCs and the IF is considered by (3.28), that is, the mass
balance equation for a species in a generic fluid phase (2.64) with

el =8/, feq, (3.64)

and the respective pressure gradients and permeability tensors as detailed in Section 3.2.
Species transport in the solid phase, e.g., for fibronectin is governed by the mass balance of a
species in the solid phase (2.66).

3.3.4 Closure Relations and Constitutive Equations

Unchanged Closure Relations and Constitutive Equations for TCs, HCs and IF
Pressure-saturation relationships, permeability tensors, viscosities and diffusivity tensors for
TCs, HCs and IF and the species therein are adopted from the avascular model, see Section 3.2.4.
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Calculation of ECM Porosity The calculation of the ECM porosity is equivalent to the
avascular model in Section 3.2.4, where the conservation of mass of the solid phase was consid-
ered under the assumption of zero mass transfer between the solid phase and all other phases.
With the presence of the vascular volume fraction in the definition of the volume fraction of the
ECM (3.52), equation (3.31) may be rewritten as

/pf)(l—so—ag)d‘/o:/ps(l—s—sv)dV:/ p’(1—e—¢e")JdV, (3.65)
Uo Uy Uy

where the left hand side is the solid mass of an arbitrary volume I{, in reference configuration
which has to be equal to the solid mass of its spatial counterpart U; = ¢° (U, t). The quantities
in the previous equation are again the current solid phase density p®, ECM porosity ¢, Jacobian
determinant of the solid phase .J, reference solid phase density p;, reference ECM porosity ¢
and, additionally, the vascular volume fraction €¥ and the vascular volume fraction in reference
configuration €¢. To satisfy mass conservation, the integrands have to be point-wise equal which
gives a relation for the ECM porosity

1—¢e9—¢p

— 1 —
3 € 7

(3.66)
under the assumption of an incompressible solid phase (p§ = p®). This result is equivalent to the
result of the avascular model (3.34) with additional terms due to the presence of the homogenized
vasculature. Now, two mechanisms influencing the ECM porosity are present: First, deformation
with non-constant Jacobian determinant J may de- or increase the ECM porosity. Second, an
increased vascularization decreases the ECM porosity and, vice versa.

Chemotactic Coefficient For the functional dependency of the chemotactic coefficient x on
the TAF mass fraction of equation (3.50) and (3.51) the same receptor-kinetic law as in Anderson
[6] is employed, namely

T/}FZ
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The above equation incorporates a decreasing sensitivity of endothelial cells, or in the present
case, of the homogenized representation of the vasculature to the TAF gradients if the TAF mass
fraction increases. At a mass fraction of wgg‘}‘; !, the sensitivity is exactly half the value of the
constant sensitivity Y. This relationship is more realistic than the constant chemotactic coeffi-
cient of other models [225] where the same response regardless of stimulus or TAF concentration

is assumed [6].

Haptotactic Coefficient The haptotactic coefficient © is assumed constant as suggested
by Anderson [6].

Blood Vessel Compression, Regression and Collapse As described in more detail in
Section 3.4.5, angiogenesis is not the only way how tumors modify and interact with the vas-
culature. Additional relevant effects include blood vessel compression, regression and collapse
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induced by the growing tumor all leading to a decrease of the vascular volume fraction. In the
present model this is incorporated via the right hand side term

Ceoll = Vool * o (pt - pioll,’u) -l (") (3.68)
in the evolution equation of the vascular volume fraction (3.51). H (e) is a smoothed approxima-
tion of the Heaviside function which is beneficial for the convergence behaviour of the numerical
methods as compared to employing the discontinuous Heaviside function. This term is equiva-
lent to the formulation employed by Wirthl et al. [282, Supporting Information] apart from the
additional smoothing of the Heaviside function for the vascular volume fraction. It incorporates
a reduction of the vascular volume fraction based solely on the TC pressure. If it is larger than
a certain threshold p{, ., it decreases with a rate of 7. The second factor with the Heaviside
function ensures that the vascular volume fraction does not drop below zero.

Permeability Tensor, Viscosity and Diffusivity Tensor of Homogenized Vascula-
ture Permeability and diffusivity tensors of the homogenized vasculature are set constant and
isotropic as

kK'=Fk"-1 (3.69)
and

et = Do - I (3.70)
with scalar permeability &V and diffusivity D". In addition, blood viscosity p* is assumed con-
stant. In reality, however, blood behaves as a non-Newtonian fluid due to the presence of red
blood cells. Therefore, the viscosity depends on blood vessel radius R and hematocrit, i.e., the
volume fraction of red blood cells. This is incorporated in the discrete, one-dimensional repre-
sentation of the vasculature in Sections 3.4 and 3.5 via a diameter-dependent viscosity. However,
the information about the morphology including blood vessel diameters is not available in the
homogenized representation which is why a constant blood viscosity is assumed. Averaging the
blood vessel diameter distribution with corresponding viscosities could yield a more physically
reasonable description.

Remark 3.9. Anisotropy of the vascular network was incorporated into the model under the
author’s supervision in the term paper by Bui [32 ] with transversely isotropic permeability and
diffusivity tensors similar to the structural anisotropy of the ECM as described in Remark 3.6.
A special focus was set on the angiogenesis-induced growth of the vasculature. As stated above,
the neovasculature is much more tortuous than a healthy vasculature but still has a preferential
direction following the trigger for growth, namely, the TAF gradient. Thus, the principal direc-
tion of the transversely isotropic tensors was set to be aligned with the TAF gradient Vw 47!,
In discrete models such as [0, 42, 83, 158, 185, 287-289, 298], which completely resolve the
neovasculature formed during angiogenesis, this is inherently included since the full topology of
the blood vessels and specifically their primary direction towards the TAF gradient is resolved.
Using the present homogenized treatment of the vasculature, the anisotropic tensors offer an
alternative to include this behaviour. In [32] the anisotropy was additionally controlled via the
dispersion of the blood vessels around the preferential direction similar to corresponding struc-
tural material models [S7]. This could be a convenient measure of the influence of the TAF
gradient on the structure of the resulting blood vessel network. A small dispersion indicates a
more directed growth of the neovasculature and a larger dispersion a more tortuous result.
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3.3.5 Summary and Variants of the Model

In summary, the governing equations of the tumor growth model with homogenized represen-
tation of the vasculature are the balance of mass of blood (3.47), the evolution equation of the
vascular volume fraction (3.51), the mass balances of TCs ((3.55) with f = t) and HCs ((3.55)
with f = h), the sum of the mass balances of TCs, HCs and IF (3.56), the balance of momentum
of the solid phase (3.60) and the balance of species mass for species in TCs, HCs and IF (3.28),
in the solid phase (2.66) and in the HV (3.63).

The description of the vascular model is completed by illustrating several possible variants
of the model. As for the avascular model, a considerable reduction in computational complexity
may be achieved when neglecting the deformability of the solid phase. In that case, a Eulerian
problem description emerges and the solid phase momentum equation (3.60) does not have to be
solved.

In addition, two different variants concerning the homogenized vasculature are conceivable
and will actually be used. First, blood flow and possibly also species transport in the vasculature
can be neglected. This is equivalent to the model used in the author’s publication [135] where
blood pressure and species mass fractions in the homogenized vasculature were set constant.
Hence, only one governing equation is evaluated for the homogenized vasculature, that is, the
evolution equation for the vascular volume fraction (3.51) whereas the balance of mass (3.47)
yielding the blood pressure distribution is not solved. The second possibility is the variant with
a static vasculature with constant vascular volume fraction ¢ = £f. Consequently, the evolution
equation for the vascular volume fraction (3.51) is not included but only the balance of mass
of blood (3.47) and possibly species transport therein. Such a model can be employed if the
influence of angiogenesis and blood vessel collapse are negligible such that the vascular volume
fraction does not change. In that case, the porosity of the ECM (3.66) is only influenced by the
deformation of the domain.

3.4 The Vascular Tumor Growth Model with a Discrete
Embedded Representation of the Vasculature

In the previous section, the vascular network including flow and species transport therein was
introduced in a homogenized way into the tumor growth model. Here, a second variant, which is
termed discrete embedded approach hereafter, is presented. This was incorporated in the author’s
publication [136], from which major parts of the following sections have been taken. Some im-
provements have been made to the original paper, which is highlighted whenever necessary. The
employed approach follows a common strategy to model flow, species transport and transvas-
cular exchange in the microcirculation via topological model reduction. Thereby, the vascular
domain is shrinked to its centerline resulting in a network of one-dimensional blood vessel seg-
ments which are embedded into the encompassing three-dimensional porous domain. The model
reduction yields one-dimensional PDEs describing blood flow and species transport inside this
1D domain A. The surrounding tissue is represented by the avascular four-phase tumor growth
model and both domains are coupled via transvascular exchange terms of fluid or species from
the embedded vasculature into the IF. The general concept is sketched in Figure 3.5, where a one-
dimensional blood vessel network A; C €); is embedded into the 3D tissue domain ;. At each
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extracellular matrix (ECM)
interstitial fluid (IF)

living tumor cells (LTCs)
necrotic tumor cells (NTCS)}

host cells (HCs)

species

J

Figure 3.5: Sketch of vascular tumor growth model with discrete embedded representation of
vasculature — embedded 1D vasculature A; C €2, is sketched on the left and com-
ponents of the avascular 3D multiphase model on the right with solid phase (ECM),
three fluid phases (TCs, HCs, IF), NTCs (species of TCs) and generic species.

macroscale point of the 3D domain, the avascular multiphase tumor growth model holds. Addi-
tional source terms in the mass balance of fluid and species in the IF account for transvascular
fluid and species mass flux at the position of the embedded vessels.

First contributions to study such 1D-3D coupled transport problems were made by Secomb
et al. [237, 241]. They used Green’s functions which limits the applicability of the method as
nonlinear or transient problems. Arbitrary boundary conditions and domain shapes and hetero-
geneous material parameters cannot be considered [125]. In the context of finite elements, the
papers and the thesis of D’ Angelo [51-53] introduce an approach termed “embedded multiscale
method” where such 1D-3D coupled problems are derived, mathematically investigated and nu-
merically solved. Further applications have been realized such as drug delivery to tumors [38, 39]
and nanoparticle-mediated hyperthermia cancer treatment [177, 178]. The intricacy of this for-
mulation is that the employed 1D line source terms lead to a singularity in the governing equa-
tions of the 3D domain. Thus, two different variants will be employed in this thesis, one where
the source terms are concentrated on the centerline leading to the aforementioned singularity,
and one where they are evaluated on the lateral surface of the 1D inclusions, thus, lifting the
regularity of the solution as proposed by Koppl et al. [130, 131]. An advantageous feature of all
implemented approaches is that they allow for non-matching 1D and 3D discretizations, i.e., the
1D and 3D domain can be meshed independently of each other. Considering the complexity of
in-vivo blood vessel networks, it is very challenging or even unfeasible to perform a discretiza-
tion with matching 1D and 3D grids. To the best of the author’s knowledge, this thesis and the
associated publication [136] constitute the first contributions incorporating a consistent 1D-3D
coupling between non-matching FEM discretization in the context of tumor growth modeling.
In the following, the terms discrete and fully-resolving will be utilized synonymously to refer to
approaches which aim for a full resolution of the vascular network by contrast to the other two
vascular model variants, where at least a part of the vasculature is homogenized.

Numerous such models with a discrete representation of the vasculature have been proposed
as summarized in a number of reviews [58, 157, 160, 185, 216, 245, 267]. Angiogenesis is incor-
porated into these frameworks based on the discrete variant of Anderson and Chaplain [6, 42] or
similar approaches where leading tip endothelial cells guide the formation of vascular networks
sprouting from pre-existing vessels and migrating towards a TAF gradient. This inevitably in-
volves a certain stochasticity, e.g., via a random-walk model of the network tips. Further rela-
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tionships respectively decisions are involved if and when tips sprout, branch or form loops. Such
a discrete angiogenesis model has not yet been incorporated into the present framework but a ho-
mogenized adaptation can be considered with the hybrid version from Section 3.5. Furthermore,
a detailed comparison of the multitude of numerical approaches is beyond the scope of this the-
sis and the reader is referred to the aforementioned review papers. Representative models with
discrete representation of the vasculature include the works of [83, 158, 287-289, 298]. A draw-
back is that they do not explicitly consider blood flow and species transport in the 1D embedded
domain and, thus, no two-way coupling between tumor growth and the availability of nutri-
ents. More recent state-of-the-art fully-resolved blood vessel network models [276-279, 287]
are based on an integrative framework for vascular remodeling [216] including angiogenesis as
well as vessel regression, dilation and collapse during tumor progression. Thereby, the initial
arterio-venous vasculature in host tissue develops into a tumor specific vessel network. How-
ever, this approach does only allow for matching 1D and 3D hexagonal grids together with a
finite difference discretization of the governing equations.

In the following, the vascular variant with discrete embedded representation of the vasculature
will be introduced with a special focus on the terms arising due to 1D-3D coupling for which
the two aforementioned concepts are considered. The governing equations for blood flow and
species transport in the embedded domain are introduced and the adaptation of the avascular
model to take 1D-3D mass exchange into account are outlined. A further novelty of this thesis,
which was not included in the previous publications of the author, is the incorporation of an
empirical relationship for blood vessel network remodeling via blood vessel diameter adaptation.

3.4.1 Problem Setting and Notation

As described above, the computational effort for solving blood flow and species transport in the
vasculature domain can be significantly diminished by a topological model reduction to a one-
dimensional blood vessel network A C () embedded in the 3D tissue domain 2. Under several
assumptions based on the flow physics in the microcirculation, this can be further simplified to a
model of 1D Poiseuille flow in cylinders. Recent experimental data by Seano et al. [236] suggests
that the deformation of blood vessel networks in the brain subject to mechanical stress exerted
by growing tumors may be significant. Therefore, a large deformation approach of the embedded
network inside the tissue, i.e., the extracellular matrix (ECM) is adopted. In the following, the
main assumptions and simplifications and their impact on the model formulation in an ALE
setting are discussed. These are:

(i) Hagen-Poiseuille flow is assumed in the 1D vasculature. In the microcircula-
tion, the Reynolds and the Womersley numbers (relating the frequency of a pulse and the
viscosity of a fluid to each other) are very low [Table 1.7][77]. Thus, inertia terms and
the pulsatility of blood flow are neglible. Body forces such as gravity can also be disre-
garded [131]. Then, the Hagen-Poiseuille equation can be derived from the Navier-Stokes
equations assuming a stationary and laminar flow through cylindrical cross-sections. How-
ever, in the current formulation transcapillary respectively radial flow is present such that
the assumptions of Poiseuille are not rigorously satisfied. Nevertheless, if radial flow is
small compared to axial flow, this is still an acceptable assumption [178].
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(ii) The deformation of the 1D embedded blood vessel network is completely de-
scribed through the deformation of the underlying porous medium domain.
Only smaller blood vessels such as arterioles, venules and capillaries are considered here.
Then, the surrounding ECM acts as a scaffold which provides mechanical integrity to the
enclosed blood vessel [214]. If the scaffolding material deforms, the blood vessel deforms
equally.

(iii) Blood vessel segments have negligible stiffness compared to the ECM. Any
contribution of these small blood vessels to the stiffness of the surrounding ECM is ne-
glected since their wall does not consist of smooth muscle cells but only a thin basement
membrane which provides structural integrity [161].

(iv) The change in area of the blood vessel segments is described via an alge-
braic relationship for blood vessel diameter adaptation. This implies that lateral
deformation of blood vessels induced through the deformation of the ECM is neglected.
Only the deformation of the centerline following the ECM deformation is regarded. For
example, axial elongation of a blood vessel does not evoke any radial constriction and vice
versa. This effect is insignificant compared to the much more substantial influence of blood
vessel adaptation due to other stimuli such as wall shear stess or constriction and collapse
during tumor growth. This can be included through suitable constitutive laws for the blood
vessel diameter as in [261, 287]. The employed algebraic relationships are introduced in
Section 3.4.5.

(v) Time scales of blood vessel area change are large. Neglecting the pulsatility of
blood flow, the only mechanism of blood vessel diameter change is the interaction with the
tumor growth model via blood vessel remodeling as described above. The time scales of
this adaptation process are very large (in the order of days) compared to the time scales of
blood flow and species transport such that the temporal derivatives of the cross-sectional
area can safely be neglected.

(vi) The non-Newtonian behaviour of blood is represented by an algebraic rela-
tionship for its viscosity. The viscosity of blood is either set constant or represented
by a constitutive relationship [201], see also Section 3.4.5.

One could also extend the proposed approach to remove one or all of the above assumptions
but as they appear reasonable for the problems of interest in this thesis, they are introduced to not
artificially complicate the method. For instance, the stiffness of the blood vessel network could
be included by modeling them as one-dimensional beams. On the one hand, this would result in
a 1D-3D beam-to-solid meshtying problem as in Steinbrecher et al. [246] under the assumption
that they move with the surrounding ECM. On the other hand, their deformation could also be
decoupled from the movement of the ECM such that they can move independently.

The notation of the problem is depicted in Figure 3.6. The one-dimensional vasculature and
the 3D tissue domain in reference configuration are denoted as A, and €, respectively. Their
counterparts in spatial configuration are A; and {2;. Assumption (ii) from above holds if a point
XA € Ay on the one-dimensional vasculature reference configuration and a reference point
X9 e )y of the three-dimensional domain, which are at the same location in reference con-
figuration, share a common point (X A) = (X Q) also in spatial configuration * € A,
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XQ,A — mQ,A

Figure 3.6: Notation for 1D-3D coupling. Figure taken from the author’s publication [136].

respectively £ € Q, throughout the deformation. Hence, the superscripts for the distinct do-
mains can be dropped. In addition, a single blood vessel segment will be considered hereafter,
the case with multiple segments follows via the assembly of these segments in the FEM formu-
lation. The arc-length coordinate of each vessel segment in reference configuration is referred to
as S € [0, Ly| and in spatial configuration as s € [0, L,] with the respective lengths L and L;.
The coordinates are related through the deformation of the domain via

5(5) = / IF (2 (X (S)) - to(")]|dS’ 3.71)

with unit tangent vector in reference configuration ¢, and deformation gradient F'. The corre-
sponding unit tangent vector in spatial configuration follows as

F -t

= .
(|

(3.72)
The lateral surface of a blood vessel segment is given by 0D; in spatial configuration and by
0Dy in reference configuration. It is further assumed that the vessel cross-section is circular
and perpendicular to the centerline of the 1D domain and remains so during the deformation.
Its diameter is Dy respectively D;. In the following, quantities such as pressures or velocities
defined in the vasculature domain will be identified by superscript ()” Due to the topological
model order reduction to a one-dimensional network A; these values are area-averaged. Thus,
they are constant over the cross-section of the 1D domain and depend only on the respective
position along the centerline s.

3.4.2 Governing Equations in 1D Vasculature Domain
3.4.2.1 Governing Equations for Blood Flow in 1D Vasculature Domain

According to Peir6 and Veneziani [192] the mass conservation equation for an incompressible
fluid in the vasculature domain may be written as

( A) Ml
A I ( Av?

~ M
- + S 2 on /\ (3 73)
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X =X"
— A

Figure 3.7: Sketch of 1D ALE description — the Lagrangean observer of the solid phase X moves
with a velocity of v; = t; - v*® in tangential direction to the 1D domain A; w.r.t. the
Eulerian observer at fixed spatial position .

with blood vessel area A and area-averaged fluid velocity v? in axial direction. The right hand
side is an outflow of fluid per unit length and unit time across the permeable blood vessel wall.
This mass transfer is denoted as

v—l

M:/ p-w-ndy (3.74)
0Dy (s)

following TCAT notation. Fluid with density p, which is not necessarily equal to blood density
p?, leaves the 1D blood vessel with a relative velocity w w.r.t. to the movement of the vessel wall
in normal direction nn and passes into the IF. This mass transfer term is evaluated as a closed line
integral along the perimeter of the blood vessel 9D, (s) at coordinate s. Further details on the
definition and evaluation of such a 1D-3D mass transfer terms will follow in Section 3.4.3.

As stated above, in the employed ALE formulation, the observer of the 1D vasculature domain
is the Lagrangean observer of the deforming solid phase. Thus, a one-dimensional adaptation of
the fundamental ALE equation (2.59) may be devised as

d(e) 9(e) s 0(e)
ot = ot « Uy - W on At (375)
with the projection of the solid phase velocity v* in the tangential direction ¢, of the blood vessel
segment

T

1
v, =1 - Z/AvsdA%tt-vs. (3.76)

Here, the area-average over the blood vessel cross-section of the solid phase velocity has been
neglected. This allows rewriting equation (3.73) in ALE form as

A o)  O(A(v"—wvp)) i
vg v — v _
e . + A s + 95 = —pﬁ on A;. (3.77)

For illustrative purposes, the employed 1D ALE formulation with the observer of the 1D vascu-
lature moving tangentially to the current 1D domain A, is sketched in Figure 3.7.
By assuming cylindrical blood vessels with radius ?; in spatial configuration and the Poi-
seuille relation )
R} op"
8u? O0s

0 s _
v =) =

s € Ay, (3.78)
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the balance of mass can be rewritten as

0—l

ov: 0 wROop° M
Rt — ! =—— Ay X [to, te 3.79
s Os 8ub s PP on Avxlto, te] (379

where also the temporal derivative of the blood vessel cross-sectional area has been neglected
(Assumption (v)). The Poiseuille equation (3.78) represents the balance of momentum of blood
in the 1D representation of the vasculature. The projection of the skeleton velocity in current
tangential segment direction v; has been included to account for the underlying solid phase
movement. Hence, this term is similar to the Darcy equation (2.33) in a porous medium. The
pressure gradient in the capillaries induces a flow relative to the solid phase movement in axial
vessel direction. Blood viscosity is denoted as ;¥ and either assumed constant or modeled with a
suitable algebraic relationship accounting for the non-Newtonian behaviour of blood (Assump-
tion (vi)), see Section 3.4.5.

Remark 3.10. The employed ALE formulation can alternatively also be derived from the Rey-
nolds transport theorem applied to a tube whose outer boundaries in longitudinal direction move
with the solid phase and whose outer boundaries in radial direction move with boundaries of the
tube as its radius changes. The derivation is analogous to the one given in Peiro and Veneziani
[192] with the additional longitudinal movement.

3.4.2.2 Governing Equations for Species Transport in 1D Vasculature Domain

Blood flow in the one-dimensional embedded vasculature can also transport several species such
as oxygen, anticancer drugs or nanoparticles. These are advected by the flow and may cross the
vessel walls into the IF. The mass balance of a species ¢ dispersed in the blood vessel network
with (area-averaged) mass fraction w’® may be written as

i0—il

(A W — A Diﬁai) _ M A (3.80)
0s PP

awz’@

ot

0

AR

when neglecting the temporal derivative of the blood vessel area (Assumption (v)). Such one-
dimensional diffusion-advection-reaction equations with diffusivity D% have been used previ-
ously in related 1D-3D coupling formulations [38, 52, 131, 177, 178]. However, here the primary
variable is chosen as a mass fraction w’? rather than a (mass) concentration which makes it easier
to couple it to the multiphase tumor growth model where species are generally identified by mass
fractions. The right hand side represents a 1D-3D species mass transfer term from species 7 in
the embedded vasculature to the considered species : in the IF. Again, species mass is transferred
from the embedded vasculature into the IF with a relative species velocity w'? across the blood
vessel wall along the perimeter of the embedded 1D vasculature
10—l .
M = p-w' - -ndy (3.81)
OD¢(s)

equivalent to the mass transfer term for blood flow (3.85). Typically, the term depends on the
mass fractions of the species in the vasculature and in the 3D domain as outlined in Section 3.4.3.
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Furthermore, intra-phase reaction terms have been omitted as those are not present in the current
model. Applying the product rule for the convective term yields

10—l v—l
Ow'? w0 QWP M M
A A-vY- —— ([A-D"Y"— | = —— [ p— A:. (3.82
ot m+ Y s 85( Os ) p° o p° on A (3.82)
——
_ wi'u B(Avv)
Os

Here, the 1D balance of mass of blood (3.73) has additionally been inserted. Next, the fundamen-
tal ALE equation (3.75) may be invoked to transform the temporal derivative on the 1D domain
to a derivative w.r.t. the reference configuration. Inserting into (3.80) results in

Ow'® , Ow'® s 0wt 9 15 Ow'®
TR} o0 . — TR} - D5 + TR}v" - 95 9% (waD 95 ) =
1 io—il ol
—(—]\Z —I—w“’]\}) on A;.
p'U

(3.83)

The convective term in ALE form can then be replaced by the Poiseuille law (3.78), which yields
the final mass balance equation for species ¢

RZ_ e Rt S RQDZ'U_ - M N
LT x 8y ds  Os 9s \ 0s T

Ow'? TR} Op® oWt 0 ( AawiqA’) 1 ( il -ﬁ—ﬂ)
p’U

on Ay X [to,t.]. (3.84)

In summary, equations (3.79) and (3.84) are the governing equations for fluid flow and species
transport in the embedded 1D vascular network. They are coupled in three ways to the multiphase
tumor growth model for the surrounding three-dimensional tissue. First, in a one-way coupling,
the deformation of the ECM induces also deformation of the embedded blood vessels. Second,
the growing tumor remodels the vascular network which is represented by an adaptation of its
diameter. Third, fluid flow and species transport in the pre-existing vasculature and in the sur-
rounding IF are coupled via transvascular exchange over the blood vessel wall. The formulation
of these mass transfer terms will be detailed in the next section.

3.4.3 Two Different Variants for 1D-3D Coupling — Lateral Surface
or Centerline Coupling

In this thesis, two different variants for 1D-3D coupling will be employed. A detailed derivation
of the second one termed lateral surface coupling including the topological model order reduc-
tion to a 1D vascular network may be found in [40, 130, 131], which is why it is only outlined
here. The derivation is based on defining a ’full model” of two distinct domains, one correspond-
ing to the vascular network and the second one to the surrounding tissue. An interface, i.e., the
vessel wall which allows fluid or species mass flux from vasculature into IF separates these two
domains. From that, a "reduced model”, where the vasculature is shrinked to a 1D inclusion and
the porous domain is enlarged such that it encompasses the entire domain, is deduced. The main
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(a) Lateral surface coupling (b) Centerline coupling

Figure 3.8: Comparison between lateral surface and centerline coupling — for lateral surface cou-
pling (left) the values from the 1D embedded blood vessel are projected on the lateral
surface, for centerline coupling (right) the values of the 3D domain are projected on
the centerline of the blood vessel (Figure after [131]).

assumption is that the radius of the vascular network is small compared to the dimensions of
the 3D domain. Thus, a 1D description of blood flow and species transport with uniform, area-
averaged quantities depending only on the position along the centerline s as already presented
in the previous section is possible. Lastly, again under the assumption of small inclusions, the
porous medium domain is identified with the entire 3D domain including the space occupied by
the vascular network such that its equations and primary variables are defined on the entire 3D
domain. This allows embedding the vessels into arbitrary 3D discretizations which do not have
to be fitted to the outer surface of the network. Subsequently, the evaluation of generic 1D-3D
mass transfer terms, for example, an outflow of fluid from the embedded vasculature into the IF
or, for species transport, oxygen exchange or drug release from the embedded vasculature into
the IF, is introduced for the two different coupling concepts.

Hereafter, it will be assumed that the (fluid or species) mass transfer terms are given as a
possibly nonlinear algebraic relationship of the form

p-wi®n = f (¢, (3.85)

that is, the mass transfer depends on species or blood primary variables ©° on the 1D domain
and species or IF primary variables ¢! in the 3D domain according to a generic function f (e).
For instance, a common formulation for outflow of blood plasma from the vasculature into the
IF would read as

F% ) =p k(" —p) (3.86)

depending on the blood vessel wall permeability x and the pressure difference between the two
domains. If an additional osmotic term is added, the well-known Starling equation (B.15) is
obtained. Inserting the algebraic relationship (3.85) back into the right hand side term of equa-
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tion (3.73) respectively (3.80) yields
(‘ N ﬂ'Dt(S) N .
/ p-w”)-ndVZ/ F (" (5,7) 59" (@ (5,7))) dv
OD¢(s) 0

wDy(s)
:/0 F($" ()¢ (@ (5,7)) dv, (3.87)

where the area-averaged quantities defined in the embedded vasculature are constant along the
integral and do not depend on their position at the perimeter as sketched in Figure 3.8a. As an
integral over the lateral surface of the entire vascular network has to be evaluated in this case, it
is termed lateral surface coupling hereafter.

The fluid or species mass flux across the vessel surface goes from the vascular network into
the IF. Consequently, this term is represented as a source term concentrated at the lateral surface
of the embedded vasculature in the balance of fluid or species mass in the IF. For that, it is scaled
with the Dirac measure dgp, wWhich is equal to one on the lateral surface of the 1D vasculature
and zero everywhere else. The resulting term which is added as a right hand side contribution
into the corresponding equations reads as

Sop,p - W = Sap, - f (07 (5,7), €' (= (5,7))) = o, - £ (¢°(5), ¢ (= (5,7))) (3.88)

with the aforementioned Dirac measure accounting for the 1D-3D transvascular fluid or species
exchange over the blood vessel wall. The Dirac term satisfies

Ly wD¢(s)
/ dop, - f () dy = / / f(x(s,7)) dyds (3.89)
o) o Jo

for any function f (x) defined in ;. In summary, blood flow and species transport in the 1D
vasculature is coupled with the balance of fluid and species mass of the IF in the 3D porous
medium domain via transvascular exchange. Fluid or species leaving the 1D vasculature enter
the IF at the lateral surface of the 1D vasculature via a surface source term in its governing
equations.

In the previous publication of the author [136], an alternative coupling along the centerline
was performed. As this corresponds to a projection of the values from the 3D domain onto
the centerline of the one-dimensional embedded vasculature as sketched in Figure 3.8b, this
variant is subsequently termed centerline coupling. It is identical to the lumped approximation
of D’Angelo [52]. However, the mass transfer term into the IF is concentrated as a line source
leading to a singularity of the 3D primary variables along the embedded 1D manifold [130, 131].
Reconstructing the pressure or mass fraction values of the 3D domain via a simple evaluation
at the centerline is, thus, not mathematically sound. Convergence cannot be achieved if the ele-
ment size of the 3D domain becomes smaller than the diameter of the 1D domain [52], see also
Appendix A.l, where different variants are compared and discussed in more detail. In practical
problems, this is usually not the case and the method can be applied for cases with b > D.
Recently, alternative approaches to approximate the Dirac measure by smearing it over a finite
length using kernel functions have also been proposed [125-127].

Under the assumption that the diameter of the blood vessel is very small or in the context of
an FE approximation sufficiently smaller than the characteristic mesh size of the 3D domain, the

68
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values at the lateral surface of the 1D vasculature may be approximated as

o (x(s,7) = ¢ (x(s) Vv (3.90)

1.e., as constant along the perimeter. Thus, the 1D-3D mass transfer term (3.87) simplifies to
/ p-w'® . ndyxaD,-f (9" (s), ¢ (z (s))) (3.91)
0Dy (s)

such that the actual perimeter integral does not have to be evaluated. Hence, also the counterpart
of the mass transfer term appearing as a source term in the governing (fluid or species) mass
balance equation of the IF, i.e. equation (3.88), may be approximated as

Some £ (97 () @' ( (5,7))) ~ Bap,- £ (£ (5) . ( () = B wD(s) £ (7 (5) @' ( (5))

(3.92)
where a further Dirac measure d,, has been introduced. It is equal to one along the 1D centerline
of the embedded domain and zero elsewhere. Analogously to the measure defined on the lateral
surface the following property can be deduced:

Ly

/Q Sa, - f()d = [ f(@(s)) ds. (3.93)

0

Furthermore, if the approximation (3.90) holds, the two Dirac terms are related via

R Ly wDy(s) .
bom - £ (7 (5) . (2 (5))) O, = / / £ (25 (), 6 (@ (s)) dyds

Qi

= [ w1 (6 @ ) ds = [ onwDU) 1 (7 6). @ () a9
t (3.94)

which has been exploited in the last step of the reformulation in (3.92). The Dirac distribution
now correponds to a line source term in the mass balance of the 3D domain leading to the
aforementioned singularity.

In the following, the general notation

(i)o—(4)l
On/op, M (3.95)
will be employed to refer to the 1D-3D mass transfer terms in the IF balance of (fluid or species)
mass. Depending on which variant for 1D-3D coupling is applied, it refers either to lateral sur-
face coupling according to (3.88) or centerline coupling with the approximation (3.92). In Ap-

pendix A.l, both variants are further compared for an academic example and classified w.r.t.
previous approaches.

3.4.4 Governing Equations in 3D Porous Medium Domain

The surrounding three-dimensional tissue into which the vasculature is embedded is still mod-
eled with the avascular multiphase tumor growth model of Section 3.2. The only required modi-
fications are the transcapillary exchange terms of fluid and species mass which represent a mass
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transfer from the 1D embedded vasculature into the 3D tissue domain or, more precisely, into
the IF as described in Section 3.4.3. These adaptations are presented in this section.
As for the avascular model, the set of phases

7, = {s,t,h,1} (3.96)

comprises four different phases. These are the ECM (indicated as s) and the three fluid phases
in its pores, namely, TCs ¢, HCs h and the IF [. They form the set

9. =9 = {t,h, 1}, (3.97)

which for this case is again equal to the set of fluid phases J; in the multiphase porous medium.

3.4.4.1 Governing Equations for the Fluid Phases

For tumor and host cells, the equations are adopted unchanged from the avascular model of Sec-
tion 3.2. Hence, the mass balance equation (3.20) with incompressible fluid and solid phases for
f = t, h is the governing equation for each of these phases. For the IF, the major modification
due to the coupling W1th the one-dimensional blood flow model is the additional transvascular

mass exchange 9y, /op, M from (3.95). As discussed in Section 3.4.3, for the two different cou-
pling concepts it is scaled with the Dirac measure on the centerline of the embedded vasculature
or on its lateral surface. Thus, the balance of mass of the IF is given by

K—l Dl

k:l > M M
1 S _ Hejcl :

BGJ

BeI:
(3.98)

where the additional source term (3.95) due to an outflow of fluid from the vascular network into
the IF has been added to the right hand side. Apart from that, it is identical to equation (3.20) for
a generic fluid phase f € J. with primary variable 1)/ under the assumption of incompressible
solid and fluid phases and without mass transfer to the solid phase. As for the avascular model,
the governing equation for the IF is obtained by summing up the balance of mass of all involved
fluid phases f € J. which results in

k= D=l

s apV Dok Joy M M .
Vv —Z ( ( Z 8wﬁ )) = Z EI.T +6At/89t7 m th[to,te] .

i Hy BET. €L
(3.99)

This equation is again equivalent to the one of the avascular model (3.23) without mass transfer
to the solid phase and incompressible solid and fluid phases. Only the 1D-3D mass transfer term
is additionally present as a (line or surface) source term.

Remark 3.11. Theoretically, one could also consider mass exchange from the 1D embedded
vasculature to all involved fluid phases and not only to the IF. The right hand side of the 1D
blood flow equation (3.79) would then contain the sum over all phases exchanging mass with
the 1D vasculature instead of only mass exchange with the IF. The counterpart in the right hand
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v—f
side of a generic fluid phase [ € J; would comprise an additional term d,, /aptpif M as in the
mass balance of the IF (3.98) and the summed-up equation (3.99) would also contain the sum

D=y
of the 1D-3D exchange terms 65, jop, Y p% M |. The actual implementation of the 1D-3D

v€Je

coupled model is capable of such exchange terms to all fluid phases but they are not considered
here since they are not present and also not biophysically relevant.

3.4.4.2 Governing Equations for the Solid Phase

The governing equation for the solid phase is adopted from the avascular model as it is assumed
that the presence of the embedded vascular network does not influence the deformation of the
ECM. Consequently, it is given by the balance of momentum of the solid phase (3.27) with the
definition of the solid pressure (3.24) of the avascular model. Furthermore, the Saint-Venant-
Kirchhoff material law or the Neo-Hooke material law as given in Section 2.3.2.2 are applied as
material models.

3.4.4.3 Governing Equations for Species Transport

The governing equation for species transport of a generic species ¢ in a fluid phase f € J. has
been defined in Section 3.2.3 by equation (3.28). For species in tumor and host cells, for which
no transvascular exchange is present, this balance of species mass still holds. As elaborated in
Section 3.4.3, species in the 1D vasculature, such as drugs or oxygen, can pass through the blood
vessel wall from the embedded manifold A, into the IF. This enters the species mass balance as
an additional species mass transfer term scaled with Dirac measure 5, /sp, on the 1D manifold
A; or on its lateral surface 0D;:

) il kl . ) -
es! gt S VU i, (aSlD;lﬁvw”) -
U
b's
1 ik—il 1l ii k—l 10—l iZﬁﬁl )
E Z M +er" —w ZM+5At/aDt' M —w'M in Q X [to, te] -
k€I k€I

(3.100)

Therein, the term 0y, /aptw]\_jd is the aforementioned transvascular species exchange which is
the counterpart of the right-hand side term in the 1D species mass balance equation (3.80).
The second term scaled with the Dirac measure arises when applying the product rule on the
temporal derivative of species mass as in (2.27). Then, the balance of mass of the IF, which now
additionally contains the 1D-3D mass transfer term, can again be identified and brought to the
right hand side.

Remark 3.12. In principle, the computational framework is also capable of 1D-3D mass ex-

change to species in all other phases and not only species in the IF. The respective 1D-3D mass
transfer terms can simply be added to the balance of mass of these species.
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3.4.5 Closure Relations and Constitutive Equations

Unchanged Closure Relations and Constitutive Equations for the 3D Multiphase
Porous Medium System Pressure-saturation relationships, permeability tensors, viscosities
and diffusivity tensors for TCs, HCs and IF as well as the calculation of the ECM porosity are
adopted from the avascular model, see Section 3.2.4.

Vascular Network Remodeling via a Blood Vessel Diameter Adaptation and Col-
lapse Model As described above, tumors are greatly influenced by the vasculature which
provides them with nutrients and offers a pathway for metastasis. Vice versa, the vascular net-
work is dynamically remodeled by the growing tumor by means of multiple mechanical and
chemical stimuli. In the present model, this is included via a constitutive model for blood ves-
sel diameter adaptation which will be introduced after a short recapitulation of the mechanisms
involved in tumor vasculature remodeling. The current methodology for blood vessel diameter
adaptation is partly based on preliminary work in the Master’s thesis of Plockl [195].

The most prominent example of vasculature remodeling by the growing tumor is angiogenesis
as described in Section 3.3. However, this is not included in the framework for blood vessel
adaptation employed hereafter as the neovasculature formed by this process is always treated in
a homogenized way either in the variant with homogenized vasculature from Section 3.3 or in
the variant with hybrid representation of the vasculature from Section 3.5. Here, other equally
important physical phenomena affecting the blood vessel diameter by remodeling of the vascular
network are addressed. For a more detailed review of blood vessel remodeling during tumor
growth, the reader is referred to the abundant literature on this topic, e.g. [132, 154, 205, 216].

The concrete consequences of this remodeling are vessel dilation (circumferential growth),
regression, pruning and collapse affecting the morphological and hydrodynamic properties of
the initial network and transforming it into a tumor-specific vasculature [276] with the afore-
mentioned irregularities. Via spatio-temporal changes of blood flow parameters, oxygen/nutrient
supply and growth factor concentration fields an interdependence of tumor growth and vascular
remodeling emerges.

As mentioned above, several growth factors are involved in angiogenesis leading not only to
sprouting angiogenesis but also dilation [70] especially towards the interior of the tumor resulting
in thicker vascular branches there [64]. A further important aspect in the structural adaptation of
the micro-vasculature is the response to blood flow and the generated wall shear stress inside the
vessels [204]. Endothelial cells lining the blood vessels may sense the mechanical stresses [10]
and enlarge the vessel diameter if blood flow increases and, vice versa, decrease the diameter
if blood flow reduces to obtain optimal flow conditions [205]. A further important remodeling
process is blood vessel regression. It may occur during co-opting tumor growth patterns where
an initial tumor grows along pre-existing vessels. Via molecular signaling these vessels are de-
stabilized and regress [291, 296]. ”Trimming” respectively regression of entire vascular branches
is termed pruning [ 132, 205]. This can again depend on hemodynamic forces induced by blood
flow evoking regression of the least blood flow-carrying vessels. However, also too high oxy-
genation by a too dense vascular network might lead to a removal of redundant sub-networks. A
further factor influencing the blood vessel diameter is tumor growth-induced solid stress which
compresses or even collapses the blood vessels embedded in tumors [236, 249]. As argued by
Padera et al. [187], this blood vessel compression is not due to the elevated IF pressure inside
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tumors, which is lower or at most equal to blood pressure, but due to compressive forces exerted
by the growing tumor, which may reach much higher values [249]. All these effects are inter-
related and their study in tumors is further complicated by their abnormal structure and blood
flow patterns. For instance, it is conceivable that a specific vascular segment is collapsed by the
growing tumor or starts to regress. Hence, blood flow is decreased or even completely inhibited
leading to further regression and pruning of neighbouring blood vessels.

Two comprehensive reviews of the numerous mathematical models for vascular remodeling
were performed by Rieger and Welter [216] and Scianna et al. [227]. Here, a few important
contributions are further singled out. Pries et al. [204] considered remodeling based on wall
shear stress induced by flow inside the network and transmural pressure and included further
stimuli based on the local metabolic conditions in [206]. Similarly, vessel remodeling depending
on wall shear stress, intravascular pressure, hematocrit and hydrostatic-induced vessel collapse
was included by Wu et al. [287, 288]. Remodeling of capillary radius, wall thickness and pore
size was incorporated by Vavourakis et al. [261, 262]. In addition, blood vessel collapse above
a certain pressure threshold was considered. A model with vessel remodeling based on VEGF
concentration and collapse according to a pressure threshold value was designed by Cai et al.
[34]. An integrative framework for vascular remodeling including angiogenesis as well as vessel
regression, dilation, and collapse during tumor progression was developed in the works of [82,
216, 217, 276-279].

In this thesis, an empirical model combining the separate influences into a single equation is
employed. Vessel growth is neglected and only radial constriction is allowed. Thereby, the blood
vessel diameter at a time step n + 1 is calculated according to

Dy = Do H (St (Do) — S") + feont * Dis - H (S" = St (Do) (3.101)

C C

from the initial blood vessel diameter D, at the start of the simulation and the blood vessel
diameter from the previous time step D ,,. H (e) again denotes a smoothed approximation of the
Heaviside function. If the TC saturation at the location of the blood vessel, i.e., at a specific point
at its centerline is below a critical saturation S’,,, the diameter remains unaffected and equal to
the initial blood vessel diameter. If, however, the saturation is higher than the critical saturation,
the second summand becomes active and the diameter is decreased by a factor of f.,; < 1 from
the diameter of the previous time step D, ,,. The critical saturation depends on the initial diameter

of the blood vessel via

St (D)—M (Do — Dyin) + S (3.102)
crit 0) — Doy — Do 0 min min .

with the four parameters Dypin, Diax, Shy, and St Thus, initially thicker vascular branches
can sustain higher TC saturations before they are affected by the growing tumor since the critical
saturation, above which collapse sets in, increases linearly. Finally, it is assumed that blood

vessels whose diameter falls below a certain threshold D,y tnresh are entirely collapsed:
Dt,n+1 < Dcoll—thresh — COH&psed (3103)

In Section 4.3.3.3, more details on the actual realization of this approach in the numerical frame-
work will be given. Note that it has so far only been included for the centerline-coupled variant.
In summary, the proposed relationship leads to blood vessel diameter decrease depending solely
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on the TC saturation and the initial diameter. Thus, the single effects described above are not
treated separately as in the more complex models listed above. As will be demonstrated in Sec-
tion 5.5, this rather simple approach already allows a physiologically sensible behaviour leading
to blood vessel regression and pruning as the tumor grows.

Remark 3.13. The implementation of the blood vessel adaptation model is more flexible than
described in the preceding paragraphs. Actually, the dependency of the diameter can be provided
as a generic functional relationship of the form

Dinsr = Jutap (Do, D P41, S14 2, ) (3.104)

depending on phase pressures and saturations, the ECM porosity and blood pressure inside the
embedded vasculature [195]. Thus, more complex realizations of blood vessel diameter adapta-
tion, for instance, depending on the wall shear stress or the pressure difference between blood
and tumor pressure as in the models cited above are easily possible to refine the approach.

Blood Viscosity Due to the presence of red blood cells, non-continuum phenomena occur
in blood flow. The tendency of red blood cells to migrate away from the vessel walls towards
the center causes the Fahraeus-Lindgvist effect leading to a decline of the apparent viscosity
of blood in smaller vessels [240]. Thus, the apparent blood viscosity 1° in general depends on
hematocrit (the volume percentage of red blood cells in blood) and the blood vessel diameter.

A number of empirical relationships depending on these two parameters was derived from
experiments, see e.g. [201, 203]. Here, the one by developed by Pries and Secomb [201] is re-
used. Another important aspect is red blood cell flux partitioning [240]: At diverging bifurcations
this leads to higher hematocrit values in the branches with higher flow. Recently, it was also
studied via a numerical model that the abnormal morphology of tumor vasculature with many
bifurcations leads to disruption of red blood cell flux which further causes heterogeneous oxygen
distributions in tumors [20]. However, such insight can only be obtained by resolving the red
blood cells as particles transported with the flow. This is impractical at the temporal and spatial
scale of interest in this thesis. Thus, the hematocrit distribution is not explicitly modeled but it
is set to a fixed value of 0.45 as in [252] such that blood viscosity depends on the blood vessel
diameter alone. Alternatively, blood viscosity can be assumed constant in the current framework.

3.4.6 Summary and Variants of the Model

In summary, the governing equations of the tumor growth model with discrete representation of
the vasculature are the balance of mass of blood in the 1D embedded vasculature (3.79), the mass
balances of TCs ((3.20) with f = t) and HCs ((3.20) with f = h), the sum of the mass balances
of TCs, HCs and IF (3.99), the balance of momentum of the solid phase (3.27) and the balance of
species mass for species in TCs, HCs (3.28), IF (3.100), and in the embedded vasculature (3.84).

As for the previously presented models, a variant of the vascular model with discrete vascula-
ture emerges when the balance of momentum of the solid phase is disregarded. This again leads
to a significant simplification of the model. As described in Section 3.2.5, the ALE formulation
for the 3D tissue domain becomes obsolete. For the 1D-3D coupling introduced in this section
further simplifications arise: Also the ALE formulation of the 1D domain becomes a Eulerian
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one with fixed 1D domain A,. The velocity divergence term in the 1D balance of mass (3.79)
cancels as well. Finally, the 1D-3D exchange terms can be evaluated with Dirac measure 0, /s,
defined on the 1D reference configuration respectively its lateral surface.

3.5 The Vascular Tumor Growth Model with a Hybrid
Embedded/Homogenized Representation of the
Vasculature

In the previous sections, two different concepts for incorporating the vasculature into the present
tumor growth model were discussed, namely, a homogenized and a discrete embedded approach.
In this section, a third variant, with a hybrid embedded/homogenized representation of the vas-
culature is introduced. This approach was coined in the author’s publications [136, 137], from
which major parts of the following sections have been taken.

The rationale behind such hybrid models of the vasculature, which have concurrently also been
developed by Kojic et al. [128], Koppl et al. [130] and Shipley et al. [242] for less complex tissue
perfusion problems, is that only the larger blood vessels have to be explicitly resolved while the
smaller scales of the vasculature are homogenized. Compared to pure homogenized formula-
tions, their advantage is that the structure of the larger vessels is retained. Therefore, the hetero-
geneity of blood flow and pressure in the major vessel branches is better represented. Moreover,
compared to discrete models, less anatomic data is needed since the morphology of the smallest
vessels is not required. This could also have the additional advantage of a smaller computational
cost and make them applicable to larger domains. Also quantities typically needed for validation
such as tissue perfusion, blood flow or pressures at the resolution of current imaging techniques
can equally be acquired from hybrid models. In Chapter 6, the developed hybrid approach will be
used to study tissue perfusion through solid tumors. Additional details are presented there. Here,
the focus lies on the incorporation of this approach into the entire tumor growth framework. The
general concept is sketched in Figure 3.9. Compared to the fully-resolved variant of Figure 3.5,
now only the larger vessels are resolved and embedded as 1D inclusions into the porous medium
domain. The smaller vessels are homogenized and represented as an additional porous network
in the ECM as in the variant with homogenized representation of the vasculature from Figure 3.4.
Thus, the hybrid variant may be understood as a combination of these two approaches as already
preempted in the overview of the different models of Figure 3.1.

In the context of tumor growth modeling, one possible application is to study angiogenesis
originating from pre-existing vessels. For that case, the resolved, larger 1D vessels correspond
to the pre-existing vessel network and the homogenized vasculature to the neovasculature formed
by angiogenesis. The reason why such a combined approach may be favourable over a full reso-
lution of pre-existing and neovasculature is the abnormal structure and mechanics of tumor neo-
vasculature. It is well-established that tumor-induced angiogenesis results in a tortuous, dilated
blood vessel network with variable vessel lengths and diameters and without the usual vascular
hierarchy of arterioles, capillaries and venules [12, 36]. This causes highly heterogeneous blood
flow [116]. While, at first sight, discrete models such as the ones introduced in the previous
section [58, 157, 160, 185, 216, 245, 267, 276-279, 287] seem to offer more insight into the
formation of the specific network and its structure, this can and should also be challenged. It ap-
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extracellular matrix (ECM)
homogenized vasculature (HV)
interstitial fluid (IF)
living tumor cells (LTCs)
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Figure 3.9: Sketch of vascular tumor growth model with hybrid embedded/homogenized repre-
sentation of vasculature — embedded 1D vasculature Ar,; C €2, (corresponding to
larger vessels) is sketched on the left and components of the vascular 3D multiphase
model on the right with solid phase (ECM), additional porous network (HV, corre-
sponding to smaller vessels), three fluid phases (TCs, HCs, IF) in the pores of the
ECM, NTCs (species of TCs) and generic species (both in HV and other phases).

pears virtually impossible to resolve the complex morphology of the network and the full spatial
and temporal heterogeneity of blood flow inside tumors where almost no relationship between
vessel diameter and flow velocity is present [60, 61]. Furthermore, it is more than questionable if
a fully-resolved blood vessel network offers more information on the actual quantities of interest
especially when considering the inherently stochastic nature of angiogenesis and tumor vascu-
lature remodeling which precludes predicting the specific in-vivo network topology. Relevant
quantities which could be obtained from in-silico models and can actually be acquired through
imaging are microvascular densities, hotspots of vascularization or very badly vascularized re-
gions inside the tumor and averaged transport properties to detect hypoxic and drug resistant
areas [207, 299]. To obtain this information from resolved models averaging over several differ-
ent simulations is necessary [277]. Therefore, a hybrid approach integrating a homogenized or
smeared representation of the neovasculature and a full resolution of the larger vessels, for which
information about structure and blood flow might be available, is a very promising alternative,
which combines the advantages of both methods.

In the subsequent sections, the governing equations of the hybrid variant will be introduced
based on the previously developed models. For the discrete part of the vascular network, the 1D
governing equations are re-used and for the surrounding 3D tissue domain including the smaller,
homogenized vessels, the ones of the variant with porous medium representation of the vascula-
ture. A special focus lies on the coupling between 1D embedded and 3D homogenized represen-
tation of the vasculature. In Section 3.5.3, a constraint of matching blood pressure respectively
mass fraction is formulated to couple both domains along the centerline of the inclusion or on
its lateral surface, again, enabling non-matching 1D and 3D grids.

3.5.1 Governing Equations for Blood Flow and Species Transport
in 1D Vasculature Domain

The governing equations in the one-dimensional embedded vasculature domain which now cor-
responds to the resolved portion of the vasculature, i.e., the larger vessels, remain unchanged
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w.r.t. the discrete model introduced in Section 3.4.2. Thus, blood flow in the 1D domain is still
governed by equation (3.79) and species transport in the 1D domain by (3.84). Also the respec-
tive mass transfer terms into the IF are inherited. The 1D-3D coupling with the porous medium
representation of the vasculature is achieved via a pressure or species mass fraction constraint as
detailed in Section 3.5.3. Enforcing this constraint by suitable coupling methods leads to a fur-
ther 1D-3D (species or fluid) mass transfer term between the two representations of the vascular
network, see Sections 4.3.1.3 and 4.3.3.2.

3.5.2 Governing Equations in 3D Porous Medium Domain

The three-dimensional domain in the hybrid model corresponds to the vascular model includ-
ing the homogenized representation of the vasculature forming an additional porous network as
presented in Section 3.3. The only difference is that the HV now represents only the smaller
vessels and not the entire vasculature, of which a part, namely, the larger vessels, is resolved.
Consequently, the set of all phases is again given by

7, = {s,t.h,1,v} (3.105)

with the ECM (solid phase), TCs, HCs, the IF and the homogenized part of the vasculature
(respectively blood therein). Four fluid phases

Jr ={t,h,l,v}. (3.106)
are defined. TCs, HCs and IF are present in the pores of the ECM and collected in the phase set
J. ={t, h,l}. (3.107)

In the following, the modifications of the governing equations of the vascular tumor growth
model with homogenized representation of the vasculature due to the hybrid modeling approach
with the presence of an embedded one-dimensional vascular network are described.

3.5.2.1 Governing Equations for the Fluid Phases

Homogenized Vasculature The governing equations for the smaller, homogenized vessels
are the balance of mass of blood (3.47) and the evolution equation (3.51) of the vascular model
from Section 3.3. Hence, the primary variables are again the vascular volume fraction £ (now
only representing the smaller vessels) and the blood pressure p¥ therein. The coupling with the
resolved embedded part of the vasculature is formulated as a constraint between blood pressure
p? in the 3D homogenized compartment and blood pressure p° in the 1D resolved compartment
in Section 3.5.3. As will be shown in Sections 4.3.1.3 and 4.3.3.2 this enters the balance of
mass of blood (3.47) as a 1D-3D mass transfer term between the discrete embedded part of the
vasculature and the homogenized part of the vasculature. Apart from that, the equations and
specifically the evolution equation (3.51) are not affected.
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Tumor Cells, Host Cells and Interstitial Fluid The governing equations for tumor and
host cells are also taken from the homogenized vascular model of Section 3.3. Therefore, they
are the fluid mass balance equations (3.55) evaluated for f = ¢, h. However, due to the presence
of the 1D embedded blood vessel network with the corresponding 1D-3D exchange, the balance
of mass of the IF has to be adapted. Its governing equation is given by
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under the assumption of incompressible solid and fluid phases. This is simply the balance of
fluid mass (3.55) of the vascular model with homogenized vasculature plus the 1D-3D mass
transfer term from embedded vasculature into IF scaled with the Dirac delta measure 04, /sp, -
Alternatively, it may be interpreted as the balance of mass of the IF of the vascular model with
discrete vasculature as derived in (3.98) with additional terms due to the presence of the homoge-
nized vasculature. These terms are introduced via the time derivative of the ECM porosity (3.53).
This equation nicely illustrates how the hybrid model can be understood as a combination of the
avascular model with both discrete and homogenized vasculature as sketched in Figure 3.1. Once

more, the balance of mass of the IF enters the system of equations via the sum of the balances
of mass of TCs, HCs and IF, which is
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In summary, the governing equations for TCs, HCs and IF in the hybrid model are equation
(3.108) evaluated for TCs and HCs and the summed-up mass balance (3.109).

3.5.2.2 Governing Equations for the Solid Phase

The governing equation for the solid phase is adopted from the vascular model with homogenized
representation of the vasculature. Consequently, it is given by the balance of momentum of the
solid phase (3.60) with the definition of the solid pressure (3.57) of the vascular model. The
Saint-Venant-Kirchhoff or the Neo-Hooke material law as given in Section 2.3.2.2 are applied
for the ECM.

3.5.2.3 Governing Equations for Species Transport

The governing equations for the balance of species mass in the fluid phases of the 3D porous
medium system may again be derived from the generic species mass balance (2.64). For TCs
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and HCs the respective equations follow by setting ¢/ = ¢S/, f = t, h, i.e., they are equivalent
to (3.28). For the IF, the balance of species mass is identical to the one of the model with discrete
embedded vasculature, that is, equation (3.100) including the additional 1D-3D exchange terms.
For species transport in the homogenized part of the vasculature, the governing equation is the
same as the one of the vascular model with homogenized vasculature from Section 3.3.3, i.e.,
equation (3.63). The only adaptation is the coupling to the 1D embedded blood vessel network
which will be realized via a constraint of matching species mass fractions in Section 3.5.3.
Similar to the coupling of blood flow between the two domains, this will result in an additional
1D-3D species mass transfer term between resolved and homogenized vasculature as will be
shown in Sections 4.3.1.3 and 4.3.3.2.

3.5.3 Coupling between 1D Embedded and 3D Homogenized
Representation of the Vasculature

The main novelty of the vascular model with hybrid representation of the vasculature is the par-
titioning of the vasculature into a part which is resolved via a 1D embedded discretization as
in the discrete model from Section 3.4 and a part which is homogenized and represented as an
additional porous network in the ECM as in the continuum model from Section 3.3. The remain-
ing question is how to couple blood flow and species transport between these two descriptions
of the vasculature. In analogy to mesh tying in solid mechanics, a non-conforming coupling be-
tween blood flow and species transport in embedded and homogenized vasculature was proposed
by Krembheller et al. [136]. This approach aims to reproduce the fact that the pressure or mass
fraction in a smaller vessel branching from a larger vessel at a specific location is equal to the
pressure or mass fraction in the larger vessel at this location. In the hybrid model, such smaller
vessels are homogenized and, thus, removed from the 1D representation. However, blood pres-
sure and species mass fraction in both representations of the vasculature still have to be equal
along the 1D vessel domain. Therefore, the constraint to interconnect the two domains may be
formulated as

g=¢"(5,t) — " (x(s),t) =0 on A, (3.110)

with ) )
¢’ =p” and " =p" (3.111)

for coupling of blood flow or ) 3 .
e’ =w” and " =w" (3.112)

for coupling of species transport. Herein, a "gap” g between blood pressures or species mass
fractions of species 7 in blood in the 1D domain w.r.t. the 3D domain has been introduced. This
pressure or species mass fraction difference has to vanish in order to couple blood flow and
species transport in the embedded blood vessels with the porous medium representation of the
vasculature. Note that the primary variable for blood flow or species transport of the 3D domain
in the definition of the gap has been projected on the centerline of the embedded vasculature
via the approximation (3.90). Hence, this formulation is identical to the coupling variant termed
centerline coupling from Section 3.4.3. Alternatively, it is possible to define the constraint on the
lateral surface of the embedded vasculature as

g=¢"(s,t) —¢" (x(s,7),t) =0  on ID;. (3.113)
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3 A Group of Continuum Models for (A-)vascular Tumor Growth

It couples blood pressure or species mass fractions in the 1D domain, which are constant across
the diameter, with blood pressure and species mass fraction in the homogenized vasculature eval-
uated on the lateral surface of the inclusion. This variant is analogous to lateral surface coupling.
Blood flow in the vasculature on A; is governed by equation (3.79), while the corresponding
equation for the homogenized vasculature in {2, is equation (3.47). The two domains are cou-
pled via the constraint (3.110) respectively (3.113). The same holds for species transport in the
pre-existing vasculature (3.84) and in the homogenized vasculature, which is equation (3.63). In
Section 4.3.1.3 it will be elaborated how to enforce this coupling between the two distinct do-
mains with two penalty-based methods, a Gauss-point-to-segment (GPTS) or a mortar penalty
(MP) approach. Effectively, both approaches result in additional (species or fluid) mass trans-
fer terms between the 1D embedded representation of the vasculature and the 3D homogenized
representation of the vasculature.

Remark 3.14. The non-conforming coupling between the embedded 1D and the homogenized
3D representation of the vasculature (3.110) respectively (3.113) is enforced along the entire
network of 1D embedded vessels. If only the pre-existing vasculature is resolved and the neovas-
culature formed by angiogenesis is homogenized, this allows modeling of angiogenesis. This pro-
cess is initiated laterally from a pre-existing blood vessel through angiogenic sprouting followed
by growth radially away from the pre-existing vessel and subsequent network formation [19].
In Section 5.6 it will be demonstrated how angiogenesis can be triggered from the pre-existing
vessel with the proposed method. In alternative hybrid approaches [128, 130, 242], the coupling
between resolved and homogenized vasculature was realized at the free ends of the larger ves-
sels, i.e., as an outflow at the tips of the 1D discretization into the homogenized 3D vasculature
domain. This was also due to the fact that the employed data sets had a clear vascular architec-
ture of larger arterioles and venules and smaller capillaries such that the split into larger and
smaller vessels was performed with a radius-based criterion. Such an approach is unfeasible due
to the irregular, chaotic and heterogeneous distribution of the radii in tumor vascular networks
and as a clear connectivity between larger and smaller vessels at specific points is lacking from
corresponding imaging data [150]. Thus, a coupling along the entire resolved blood vessel net-
work is advantageous as further elaborated in Chapter 6 where this hybrid variant is employed
to study tissue perfusion through solid tumors.

3.5.4 Closure Relations and Constitutive Equations

Unchanged Closure Relations for the Embedded Vasculature The blood vessel di-
ameter adaptation and collapse model defined by (3.101)-(3.103) and the empirical blood vis-
cosity relationship may be applied for the part of the vascular network which is resolved and
embedded as a 1D network.

Unchanged Closure Relations and Constitutive Equations for the 3D Multiphase
Porous Medium System Including Homogenized Vasculature Pressure-saturation
relationships, permeability tensors, viscosities and diffusivity tensors for TCs, HCs and IF are
adopted from the avascular model, see Section 3.2.4. The calculation of the ECM porosity is
equivalent to the homogenized vascular model from Section 3.3.4. Also the closure relations for
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3.6 Summary of Equations of All Model Types

Solid!® Fluid Species in
model type | TCs HCs IF HV ID | Solid® TCs,HCs IF HV 1D
Avascular (327) [(320) (320) (3.23) - - (266) (328)  (328) - -
Homogenized (3.60) | (3.55) (3.55) (3.56)  (3.47).(3.51) - (2.66)  (3.28)  (3.28) (3.63) -
Discrete (3:27) | (3.20) (3.20) (3.99) - (3.79) | 266) (328) (3.100)  — (3.84)
Hybrid (3.60) | (3.55) (3.55) (3.109) (347,(351) (.79 | 2.66)  (3.28)  (3.100) (3.63) (3.84)

[l Actually, these equations are identical but differ in the definition of the solid pressure for the avascular variant and the variant with
homogenized vasculature, (3.24) and (3.57), respectively.

[ Species transport in the solid phase is so far only considered for fibronectin in combination with the model with homogenized
vasculature. However, in principle, it is also possible for all other versions.

(] Blood flow in embedded and homogenized vasculature is additionally coupled via the constraint of matching blood pressure (3.110)
respectively (3.113) with (3.111).

[ Species transport in embedded and homogenized vasculature is additionally coupled via the constraint of matching mass frac-
tions (3.110) respectively (3.113) with (3.112).

Table 3.1: Summary and overview of the governing equations of the different model variants

the homogenized part of the vasculature, the functional dependency of the chemotactic coeffi-
cient, the constant, isotropic permeability and diffusivity tensor and the model for blood vessel
compression and collapse are applied.

3.5.5 Summary and Variants of the Model

In summary, the governing equations of the tumor growth model with hybrid representation
of the vasculature are the balance of mass of blood in the 1D resolved portion of the vascula-
ture (3.79), the balance of mass of blood in the homogenized part of the vasculature (3.47), the
evolution equation of the vascular volume fraction (3.51), the mass balances of TCs ((3.55) with
f =t)and HCs ((3.55) with f = h), the sum of the mass balances of TCs, HCs and IF (3.109),
the balance of momentum of the solid phase (3.60) and the balance of species mass for species in
TCs, HCs (3.28), IF (3.100), HV (3.63) and in the embedded vasculature (3.84). In addition the
constraint of matching pressure or species mass fractions (3.110) respectively (3.113) couples
blood flow and species mass transport in resolved and homogenized vasculature.

Finally, different variants are also possible for the vascular model with hybrid representation of
the vasculature. Again, the most straightforward one is to neglect the deformability of the ECM,
which simplifies the governing equations to a Eulerian description including the 1D-3D coupling
terms for mass transfer and coupling of pressures and species mass fractions between resolved
and homogenized part of the vasculature. Additionally, the versions for the homogenized vascu-
lature described in Section 3.3.5 are possible, especially the model with static vasculature and
constant vascular volume fraction may be applied.

3.6 Summary of Equations of All Model Types

The different variants of all models described in Sections 3.2.5, 3.3.5, 3.4.6 and 3.5.5 illustrate
again that the framework does not comprise only the four different models with the distinct repre-
sentations of the vasculature and the original avascular model but a whole group of (a-)vascular
models with different use-cases depending on the phenomena which have to be included and
modeled, for instance, a deformable ECM, a dynamic vasculature with varying vascular volume
fractions and/or blood flow and species transport in the homogenized vasculature. Together with
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3 A Group of Continuum Models for (A-)vascular Tumor Growth

the possibility to specify an arbitrary number of species in all involved phases, this gives an
extremely flexible computational framework for modeling (a-)vascular tumor growth.

For easier reference, the governing equations, that is, the balance of momentum of the solid
phase, the mass balances of the single fluid phases and the species mass balances of all model
variants have been summarized in Table 3.1. If hyperthermia treatment is considered, the energy
balance (2.68) is a further governing equation. However, it can currently only be combined with
the avascular model and the vascular model with homogenized representation of the vascula-
ture. An integration into a model with discrete vasculature can be found in [177, 178]. As also
illustrated via the interrelation of the single models from Figure 3.1, the model with hybrid em-
bedded/homogenized vasculature is the most complex one involving both representations of the
vascular network. All other model variants are contained in its governing equations.
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4 Computational Solution Approach

This chapter illustrates the numerical and computational approach to solve the coupled system
of nonlinear PDEs constituting the tumor growth framework. Time discretization as well as
initial and boundary conditions are presented in Sections 4.1 and 4.2. The weak forms of the
governing equations of the variant with hybrid embedded/homogenized representation of the
vasculature are derived in Section 4.3. This variant is chosen as it is the most general of the group
of models introduced in the previous chapter containing both a homogenized and a 1D embedded
vasculature. The governing equations of the other variants may be interpreted as special cases of
the hybrid one and can be obtained from it. A particular focus is set on the spatial discretization
and numerical evaluation of 1D-3D coupling as the arising terms are non-standard and require
special integration techniques. Finally, four different algorithms to resolve the coupling between
the three present physical fields are proposed in Section 4.4.

4.1 Time Discretization

There exist numerous methods for the time discretization of differential equations, conf. the text
book by Quarteroni et al. [210] for a first introduction. Throughout this thesis, the time period of
interest [to, t.| is divided into equidistant steps of length At. For each time step n + 1, its discrete
time level is then obtained as t,,,1 = t,, + At from the time level ¢,, of the previous time step n.
Any present temporal derivatives are approximated by finite difference quotients. In a one-step
time integration method, the generic state y,,.1 = y(t,.1) depends only on the value from the
previous time step y, = y(t,,) and not on earlier time instances. Furthermore, explicit methods
allow for a direct computation of the state at time ¢,,.; from the state of the previous time steps
while implicit methods require a possibly nonlinear solution step to obtain the new state v, 1.
Since implicit time integration methods can be shown to be unconditionally stable and, thus,
generally enable relatively large time steps, they are the method of choice here.

4.1.1 One-step-0-scheme

The sole implicit time integration scheme employed hereafter is the one-step-0-scheme, which is
sometimes also referred to as the generalized trapezoidal rule. This scheme involves one single
scalar parameter 6 € [0, 1] which determines an intermediate time instant ¢,y = (1 — 0)t,, +
0t,.1 at which the equations are evaluated. Since inertia terms were neglected due to the long
time scales during tumor growth, a first derivative is the highest occurring temporal derivative in
all model equations. A general first-order differential equation

y(t) - f(y(t>7 t)? 4.1)
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4 Computational Solution Approach

where the common notation of the temporal derivative with a dot has been employed, is dis-
cretized as

yn—i—@ = fn+0- (42)
The quantities evaluated at the intermediate time step are given by
oro = (1= 0) + Oy ~ ZH20 (43)
and
fn—i—@ = (1 - e)f(yna tn) + 9f<yn+17 tn—i—l)' (44)

The temporal derivative has been approximated with a finite difference quotient. Directly solving
for the time level n + 1 yields the more familiar form of the one-step-6-scheme:

\%/—/
Yn

Here and in equation (4.4), the right hand side was interpolated at the intermediate time ¢,,1¢.
Alternatively, one could also employ the interpolation of the state y,, .9 = (1 — 0)y,, + Oy,41 to
obtain f,,19 = f(Ynte, tnre) Which would yield a slightly different expression for a nonlinear
right hand side. In general, the one-step-6-scheme is an implicit time integration scheme as the
right hand side in equation (4.2) depends on the state at ¢,, ;1 itself. Only the choice ¢ = 0 would
yield the explicit forward Euler scheme. The implicit backward Euler scheme is obtained for 6 =
1. For the choice 6 = 0.5 (also termed Crank-Nicolson scheme or trapezoidal rule), second-order
accuracy in time is achieved whereas all other values of ¢ yield a first-order scheme. Finally,
unconditional stability is guaranteed in the range 6 € [0.5, 1]. Consequently, in all numerical
examples, 6 is chosen from this range.

The governing equations of the tumor growth model are given in ALE formulation. The diffi-
culty which arises in this case is to evaluate time derivatives over moving and temporally chang-
ing domains. Robust and accurate time integration schemes for ALE formulations are discussed
in [78, 79] with the following requirements to fulfill the so-called geometric conservation law:

(1) All spatial integrals have to be evaluated at the same time level.

(i) The time level to integrate is the one at which the new solution is sought, that is, ¢,, .1 for
the one-step-6-scheme.

To obtain the same level of temporal accuracy for the moving mesh scheme as for the non-
moving scheme a further condition arises for the grid velocity:

(iii)) The temporal discretization of the mesh motion has to have the same temporal order of
accuracy as the overall algorithm.

Following this approach, all spatial integrals of the ALE formulation are evaluated at time level
tn41 over the domain €2, respectively A, . Furthermore, the solid phase velocity which is
equivalent to the grid velocity for the porous medium equations in ALE formulation is calculated
as

Vi, = +91 T (4.6)
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4.1 Time Discretization

at time step t¢,,.1 with the solid phase displacements at time ¢,, and ¢,,,; and the velocity of the
previous time step n. This relationship may be obtained from the one-step-6-scheme (4.3). Thus,
second order accuracy can be achieved for the time integration with the choice § = 0.5.

4.1.2 Time-discrete Form

Based on the considerations from the previous section, the time-discrete form of the governing

equations is introduced next. For that, the model with a hybrid embedded/homogenized repre-

sentation of the vasculature is exemplarily regarded since it is the most general of the group of

tumor growth models introduced in Chapter 3. Subsequently, the notation
_ 9(e)

o |, 4.7)

is applied for time derivatives evaluated for the observer moving with the solid phase.

Tumor Cells, Host Cells and Interstitial Fluid The first governing equation is the balance
of mass of tumor and host cells (3.55). For f = t, h, the time-discrete form of this equation with
primary variable )/ is given by

Wl =l AL, =0 in Q 4.8)

with )
flo=—1 =0l +ofl, (4.9)

and

N A B 5TE 4 §T(1 — eV - v
fn+1_ ga_w € Z ¢5¢ e + ( _€> v

el B£]
Kk—f
apf Zﬁejcf M
Z 5 W e . (4.10)
Bed. P

n+1

Note that the previous equation contains the solid phase velocity and temporal derivatives of
generic primary variables and vascular volume fraction evaluated at time step n + 1. The latter
ones can be evaluated as in equation (4.6) using the employed time discretization scheme.

The governing equation for the IF is the sum of the mass balance equation given by (3.109).
Since this equation is stationary in terms of the primary variable of the IF ¢ it can simply be
evaluated at time step n + 1 as

k7
L= —é“—l—(l—e”)V-vs—Z( ( Z N w))—MghS] =0 in Q.
n+1

v€Ie 'Y ﬂejs
@.11)

Therein, the different mass transfer terms have been denoted as M, _ to achieve a more compact
notation.
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4 Computational Solution Approach

Homogenized Vasculature The governing equation for blood flow in the homogenized
vasculature is the balance of mass of blood (3.47) where no temporal derivative of its primary
variable, namely, the homogenized blood pressure p” occurs. Thus, the time discrete form at time
step n + 1 emerges as

K—v

P =84V -V (k—va”) - Z“EU—M =0 in (4.12)

: n+1
Remark 4.1. The time-discrete forms for the IF (4.11) and blood flow in the homogenized vas-
culature (4.12) are stationary in terms of the primary variable of the respective equation but
a temporal derivative of the homogenized vascular volume fraction " is present in both equa-
tions. It has to be evaluated at time t,, .1 which can be done analogously to equation (4.6). After
inserting this definition into (4.11) and (4.12), it can alternatively be interpreted as a one-step-
0-scheme similar to (4.8) for . Hence, only for the avascular model respectively the vascular
model with static vasculature, i.e., constant vascular volume fraction, these equations do not
contain any temporal contributions.

The second governing equation of the homogenized vasculature is the evolution equation
(3.51) for its volume fraction £”. Temporal discretization yields

el =L+ AL, =0 in O (4.13)
with
e =—(1—0) +0f, (4.14)

and
="V 0=V (D'Ve")+ V- <5”55lx (wTAFZ> VwTAFZ> +

V- (e OVWF) + Ccoll] - (4.15)
n+

Solid Phase A quasi-static solid phase is assumed in all cases because inertia effects are
negligible. Thus, the time-discrete form of the balance of momentum of the solid phase, that
is, either equation (3.27) or (3.60) with the respective definitions of the solid pressure (3.24)
and (3.57) is simply given by

fon=[Vo (F-(8T—pJC™)] .. =0in Q (4.16)

n+1

at time step £, 1.

Species Transport in Tissue Domain and Energy Balance Species transport may be
relevant in all present phases of the model. However, the temporal discretization is only shown
generically for a species in a fluid phase f € J; whose governing equation is (2.64). Temporal
discretization yields

Wit =i AL =0 in @ (4.17)
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with , _ ,
f =~ =0 +of, (4.18)
and
, _ k! - A - .
f = [(gf) ' (—Efo V'l -V (afpgf}vwlf) — Mﬁlfs)] : (4.19)
n+1

The term Mﬁffs is a compact notation of the mass transfer terms on the right hand side from (2.64).
If species transport in the IF including 1D-3D mass transfer is regarded, it comprises addition-
ally the respective terms from equation (3.100). Species transport in the solid phase is governed
by equation (2.66). Its temporal derivation follows equivalently as in (4.17)-(4.19) without a
convective term. Finally, the time discretization of the enthalpy balance equation in ALE de-
scription (2.69) is also straightforward and, therefore, not performed here in detail.

Blood Flow in Embedded Vasculature The governing equation for blood flow in the one-
dimensional representation of the vasculature is the stationary Hagen-Poiseuille equation (3.79).
Thus, it can be evaluated at time step n + 1 as

v—

ovi 0 wR}Oop® N M
0s  0s8ub 0s = p°

=0 on A;. (4.20)

n+1

Species Transport in Embedded Vasculature Species transport in the 1D vasculature
is governed by (3.84). Temporal discretization of this equation is achieved via

Wit =Wl + ALfR, =0 on A (4.21)
with - 3 3
frvo = —(L=0)w," +0f%, (4.22)
and
B B R4 apﬁ Ot ? o - Owt? 1 [iv—il D=l
0 = | (xR (—” Lo - = (WR2D“’—) + — ( M —WM)H :
+1 [( ') 8u? ds  Os Os ¢ 0s p? il
(4.23)

Coupling between 1D and 3D Representation of the Vasculature The coupling be-
tween the resolved one-dimensional and the homogenized three-dimensional representation of
the vasculature in the hybrid model has been formulated as a constraint in Section 3.5.3. This
constraint of equal pressures or species mass fractions given by (3.110) for centerline coupling
at time ¢, reads as

In+1 = 902+1 () = pns1 (@ (s)) =0 on Ay (4.24)
For lateral surface coupling, the corresponding time-discrete version of (3.113) is given by
In+1 = <P2+1 () = png1 (@ (s,7)) =0 on JD;. (4.25)

Therein, ¢?,, and ¢, denote blood pressures and species mass fractions at time ¢, as
in (3.111) and (3.112), respectively. The previous two equations represent the time-discrete cou-
pling conditions between the two representations of the vascular network.
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Summary of Time-Discrete Form In summary, the time-discrete form of the governing
equations of the hybrid model is given by equations (4.8), (4.11), (4.12), (4.13), (4.16), (4.20)
and (4.21) together with the coupling constraints (4.24) or (4.25). In case that species in the
solid phase are relevant and/or the temperature distribution, the respective time-discrete form
of these equations, which have not been given here explicitly, additionally enter the coupled
system of nonlinear equations. Finally, if the deformation of the domain is neglected, a standard
one-step-0-scheme of a Eulerian description on fixed domains €2 respectively Ay emerges.

4.2 Initial and Boundary Conditions

In order to complete the description of the employed tumor growth model, appropriate initial and
boundary conditions have to be specified. Initial conditions are applied at the beginning of the
time period of interest ¢y,. Boundary conditions are applied on the boundary of the domains A or
2, which are denoted as I" respectively I'g. The boundary of each domain is further partitioned
into two disjoint subsets as

I =TPur® with T° NnIY =0, (4.26)

that is, into a Dirichlet and a Neumann part of the boundary where the respective conditions are
applied. In the following, the possible boundary conditions on all compartments are presented.

Tumor Cells, Host Cells and Interstitial Fluid TCs, HCs and the IF allow for prescribing
the initial and Dirichlet values of the corresponding primary variables as

W' =4l in Q x {to} for f eI, (4.27)
W =¢f on Tl x [to, tg] for f €. (4.28)

For further information on the choice of primary variables and how to prescribe pressures and
saturations, consider Remark 3.5. In addition, Neumann boundary conditions may be applied as

2 .
=Vpl-n=h" on Iq) x [t tg] for f=1th (4.29)
7
and
K’ 7l N,l
> ﬁVpV n=h on T x [to, ts]. (4.30)

€T,

The latter equation with the sum over TC, HC and IF pressure gradient arises due to the special
treatment of the third mass balance equation as the sum over the single mass balance equations.
Thus, the normal phase velocities scaled with their respective volume fractions can be set with
the help of the Neumann conditions (4.29), (4.30) and Darcy’s law (2.33) for non-moving bound-
aries. If, however, the boundary moves, the Neumann boundary condition represents the relative
normal velocity scaled with the respective volume fraction.
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4.2 Initial and Boundary Conditions

Homogenized Vasculature Initial and boundary conditions for the pressure in the HV may

be applied as
P’ = pp in Q x {to} 4.31)
p’'=p"  on Ig” x [to,tg] (4.32)
—Vp'-mn=~h"  on Iy" x[to,tg] (4.33)
[Ilv t

and for the volume fraction of the HV as

e =&Y  in Q x{ty} (434

gl = ¢v on Fgfv X [to, tg]
(4.35)

(D“Vs” — %S’y (wTAFi) VL TArT 5“55®Vu)F§> n =7 on Fgfv X [to, tEg].
(4.36)

The latter condition enables specifying the normal part of the total flux term (3.50).

Solid Phase For the solid phase, the initial displacement and velocity can be specified as

d* = d in Qg x {to} (4.37)

v =0,  in Qx {t}. (4.38)

However, in all numerical examples considered in this thesis both will be set to zero. Besides,
Dirichlet and Neumann boundary conditions may be assigned to domain boundaries as

d=d on To?® x [to, t5] (4.39)
(F-S8™) N=%" on Iy xlt,tg] (4.40)

Therein, the Neumann boundary condition represents a traction on the entire porous medium
system.

Species Transport in Tissue Domain and Energy Balance For a generic species in a
solid or fluid phase, the initial and Dirichlet boundary conditions may be set as
T in 9 x {to} (4.41)
W= on Tl x [t ). (4.42)
Furthermore, the diffusive normal flux may be defined as

e*DUVW'T . n =1  on T5'" x [ty ] (4.43)

on the Neumann boundary of the domain. Similarly, initial and Dirichlet boundary conditions
for the temperature are

T=Ty, inQx{t} (4.44)
T=T on T x [to, tx] (4.45)
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with a corresponding Neumann boundary condition
ket VT -n=h"  on Tg" x [to, tp] (4.46)
involving the diffusive temperature flux with effective conductivity tensor (2.48).

Remark 4.2. An important aspect regarding the equations for blood flow (3.47) and species
transport in the HV (3.63) is the treatment of certain areas where no HV is present. This can
occur due to blood vessel compression and regression if an initially vascularized area becomes
avascular or during angiogenesis as the neovasculature grows into a previously avascular re-
gion. Naturally, the two aforementioned equations are not valid here but only in the part of the
domain with * > 0. In the current implementation using finite elements, the corresponding
equations are only solved if the HV volume fraction inside a specific element from the last time
step e, is bigger than a threshold value of €}, ., = 0.01. Only in these elements the aforemen-
tioned equations are solved while in the rest of the domain they are not evaluated. This is equiv-
alent to a no-flux boundary condition at the interface between regions in which HV is present
and avascular areas. Considering the underlying physical problem this assumption states that
there is no flux of species or fluid across the sprout tips during angiogenesis or into collapsed
regions with collapsed vasculature, which seems reasonable. The element-wise treatment is only
a very crude approximation of the actual interface but showed to be sufficient here.

Blood Flow in Embedded Vasculature The employed initial and boundary conditions for
blood flow in the 1D vasculature read as

P’ = ph on Ay x {to} (4.47)
P’ = on T'\" x [to, t5] (4.48)
W’f 9 TR>vf = h on TN x [to, t]. (4.49)

Here, the boundary of the 1D domain are simply its free ends. Moreover, the Neumann boundary
condition (4.49) allows specifying the blood velocity defined by the Poiseuille relation (3.78) or,
as the equation is scaled with the blood vessel area, rather the volumetric blood flow at the
possibly moving tips of the 1D domain.

Species Transport in Embedded Vasculature Finally, for species transport in the 1D
representation of the vasculature, the following initial and boundary conditions in the domain
respectively on its tips can be applied:

W =@h" on Ay x {to} (4.50)
w? =" on I\ x [t ] (4.51)

Ot . o
wfm% — B on TN x [to, ). (4.52)

The last equation represents the diffusive species flux at the free ends of the domain.
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4.3 Finite Element Formulation

Using the finite element method (FEM), the spatial discretization of the time-discrete form of
the governing equations derived in the previous section are introduced in the following. Basic
knowledge of the main concepts of the FEM as described in the text books [18, 286, 300-302]
is presumed. For FEM formulations in the context of poro-mechanics, the reader is referred to
[148, 265, 269, 270, 272]. It has to be noted, though, that the present approach uses only the
pressure as the primary variable for fluid flow as the Darcy equation has been directly inserted
into the fluid mass balance to eliminate the fluid phase velocity, refer to Section 2.3.4.2. Such
a formulation lacks accuracy in terms of mass conservation and reconstruction of the velocities
of the fluid phases. This can be remedied by mixed formulations [31] with fluid velocities and
pressures as primary variables including suitable stabilization terms [9, 272] or special exactly
divergence-free finite element spaces [213].

4.3.1 Weak Forms of the Governing Equations

The FEM requires transforming the strong form of the governing equations into a so-called
weak or variational formulation. This is achieved by multiplying the strong forms with suitable
weighting or test function and integrating over the respective domain. Finally, Gauss’ theorem is
applied to terms containing a second spatial derivative to decrease the differentiability require-
ments of the solution function space. In the following, the common notation

(0, 0)0 = / () - (o) dO2 4.53)

will be employed to refer to the inner L? product. Furthermore, function spaces for primary
variables are denoted by S and the respective test or weighting function spaces by V.

Once more, the hybrid model variant will be regarded as it is the most general one. In that case,
fulfilling the constraint of matching pressure between resolved and homogenized representation
of the vasculature leads to a 1D-3D mass transfer term which will be detailed in Section 4.3.1.3.

4.3.1.1 Porous Medium Domain

Tumor Cells, Host Cells and Interstitial Fluid The solution and test function spaces for
TCs, HCs and IF, that is, for f € J. are given by

Sy = {zpf € H' () | ¢/ = ' on TR } and (4.54)
V= {ov/ € H' ()| =0 on THS | (4.55)
Typically, the solution function space must satisfy the Dirichlet boundary conditions defined on

ngf while the corresponding weighting function is zero there. Furthermore, H* is the Sobolev
space of functions with square integrable values and square integrable first derivatives. Thus, the
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weak form of the time-discrete governing equation (4.8) for TCs and HCs is given by

(wf Z(( aw) (¥ - wﬁuemt-zﬁﬁ)))Q
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for f = t, h. Note that partial integration has been performed on the Darcy term such that
the Neumann boundary condition (4.29) naturally arises and is also fulfilled in a weak sense.
Additionally, the inverse pre-factor of (4.10) has been multiplied and terms related to the time
discretization of the TC, HC and IF phase have been grouped in the first term. Actually, this term
collects the definition of the temporal derivative of the saturation evaluated at ¢, ;. The weak
form of the time-discrete summed up equation (4.11) emerges as

— (o, ézﬂ)mng + (00, (1 =) V- v"),p1)

Qtn+1

op?
e (EDR) ) -, -6
n+1 "

Ser. \M jar. 0 +1
tn4+1

(4.57)

when applying the same procedure. Again, the Neumann boundary condition (4.30) is fulfilled
in a weak sense.

The mass transfer term M rhsnt1 May contain 1D-3D coupling terms which require special
attention due to the scaling with the Dirac measure as introduced in Section 3.4.3. The respec-
tive contribution of a generic 1D-3D mass transfer term with arbitrary function f (e) has been
introduced in equation (3.88). The weak formulation of such a term reads as

- (5¢l> 581% : f (QOU (8) ) gpl (CL’ (57 7))))Qtn+1 = - (5¢l> f (90U (S) ) QDZ (CB (87 ,}/))))6/Dtn+1
(4.58)
where the integral over the domain has been re-written as an integral over the lateral surface
of the embedded network. For that, the property of the Dirac function defined on the lateral
surface as given by (3.89) has been invoked. By contrast, for centerline coupling the values of
the 3D porous domain are projected on the centerline of the 1D vasculature by the approxima-
tion (3.90) and not evaluated on the lateral surface. The contribution by mass transfer to the weak
form (4.57) for this coupling variant emerges as

— (00", 6n, - TDu(5) - | (#° (5). ¢ (2 (5)))),
— (00, 7Di(s) - £ (¢ (5), ¢ (2 (9))),, - (4.59)
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4.3 Finite Element Formulation

Here, the property of the Dirac distribution defined along the 1D centerline (3.93) has been
exploited. Thus, compared to equation (4.58), the two-dimensional integration over the lateral
surface of the embedded domain is replaced by a one-dimensional integration along the cen-
terline of the domain. Spatially discretizing and linearizing these two terms requires 2D Gauss
integration of products of shape functions over the lateral surface respectively 1D Gauss integra-
tion of products of shape functions along the centerline of the inclusion. Details will follow in
Section 4.3.3.

Homogenized Vasculature Solution and test function spaces for the pressure in the ho-
mogenized vasculature are defined by

Sp={p € H () |p" =" on TG} and (4.60)
Vo = {0p" € H' (@) |op" =0 on TG} (4.61)

with the corresponding weak form

Qv v v S U kv U
((5]0”,&:““)Q + (5p ,(e'V v )n+1)Q + (Vdp , (—UVp ) )
+1 tnt1 M ntl

tn
Qtn+1
KR—v

M .
Zfi@# _ (5pv’ h”)FN,pv =0 (4.62)
pU Qtn+1
n+1

v
op”,
Qt'n+1

derived from its strong time-discrete counterpart (4.12).
Equivalently, the evolution equation for the vascular volume fraction (4.15) may be trans-
formed into a weak formulation with the following function spaces

S.o = {5” € H' () |e"=¢" on Fgfv} (4.63)
Voo = {0 € H' ()| =" = 0 on T} (4.64)
resulting in

—(1=0)At-22),  +0AL (5", (e"V - v%),,,)

n+1 Qtn+1

LA (V(Se”, (vag” — %Sy (wTAFZ) VAT avas@VwF§> n+1>

v v v
(6", ey —cep o,

Qtn,+l

+OAL (0", Coonnin)g, | — 0D (5", ]") e = 0. (4.65)

Q1

Here, integration by parts is performed on the entire flux term governing angiogenesis. Once
more, the Neumann boundary condition (4.36) for this term arises naturally.

Solid Phase The solution and test function spaces for the displacement field are defined as
S, ={d e [0 (Q)]"" & =d on T} and (4.66)

V, = {od € [H' (2)]"" [5d" =0 on TO; }. (4.67)
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Thereby, the weak form of the momentum balance (4.16)

<6E, (8 — szC'_l)nH) . <5d5,ig°t) —0 (4.68)

N,s
Qo A

may be obtained. Here, 6 E is the variation of the Green-Lagrange strain tensor which may be
expressed in terms of the deformation gradient and the gradient of the variation of the displace-
ments, see e.g. [286].

Species Transport in Tissue Domain and Energy Balance Again, species transport
in a generic fluid phase f € J; serves as a surrogate for the similar equations of species transport
in the solid phase and the energy balance. The weak forms of the latter two equations can be
deduced equivalently. The weak form for species transport in a fluid phase is obtained by means
of the usual function spaces

Sg={w7 e (@)|wT =& on TP} and (4.69)
Vi = {7 € H' () [ 0w =0 on T} (4.70)

as

(5“’2?’ E{H-l <W;E-1 - W;f —(1—-0)At- Wﬁ))
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4.71)

This equation corresponds to the time-discrete balance of species mass (4.17). The volume frac-
tion 5{2 41 has been brought to the left hand side and the diffusive term has been integrated by
parts.

For the case f = [, the mass transfer term MS{S may again contain 1D-3D species mass
exchange from the embedded blood vessel network into the IF. The weak form of these terms
which are scaled with the Dirac delta distribution is obtained just like (4.58) as

—0At (0w £ (¢ (3) ¢ (@ (5,7)))) 4.72)

dD,,
for a generic mass transfer term with function f (e). Again, the integral over the domain of a

term scaled with the Dirac measure has been re-written as an integral over the lateral surface of
the embedded network. The weak form for centerline coupling follows in the same way as

N, (M‘?, 7Di(s) - £ (7 (s) & (x (3)))) . (4.73)

Atn+1
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4.3 Finite Element Formulation

4.3.1.2 Embedded One-Dimensional Vasculature Domain

Blood Flow in Embedded Vasculature To obtain the weak form of equation (4.20) gov-
erning blood flow in the embedded vasculature, the typical function spaces

Sy = {p73 e H (A)|p" =p" on Flit’ﬁ} and (4.74)
YV, = {(5pf’ e H! (Ay) ’ §p® =0 on Fft’@} (4.75)

are defined, this time as the Sobolev space H' (A;) on the 1D embedded vasculature. Then, the
weak formulation is obtained as

D=1
o0p®  (wR} Op® N s [ M R
- — TR v; o', | — — (0p”,h?) v =0.
( ds ’(SMU 9s il o Pz (0p", A" .

Atn+1

Aty n+1 Atyiy
(4.76)
Partial integration has here also been performed on the term containing the spatial derivative of
the solid phase velocity projected on the tangential blood vessel segment direction v;. Thus, the
spatial derivative is transferred to the test function which makes the evaluation of this term after
performing spatial discretization easier. However, an additional boundary term (5p’3, 7 R*v? )FR
t
arises. It is combined in the Neumann boundary term A° from (4.49) together with the pressure
gradient, which also stems from partial integration of the Hagen-Poiseuille term. No actual inte-
gration of the Neumann boundary conditions has to be performed since the boundary of the 1D
domain are simply discrete points at which the respective conditions have to be evaluated.
The transvascular fluid exchange term once more requires the evaluation of 1D-3D coupled

terms with the contribution

n+1

4.77)
of the generic mass transfer term (3.87) to the weak form. In turn, an integral over the lateral
surface of the embedded vasculature has to be evaluated as the variation of the 1D pressure
defined on the centerline of the inclusion can be pulled into the perimeter integral. By contrast,
for centerline coupling the corresponding integral can be simplified to a simple multiplication
of the mass transfer term with the arbitrary function, see (3.91), resulting in the following 1D
integral along the centerline:

R mDy¢(s) . . .
(51)“,/0 F (e (s),¢ (2 (s,7))) dv) = (00", F (¢" (5) ' (x (5,7)))) o,

Atn+1

(6p°, 7Dy - f (" (s), ¢ ( (S)D)A, : (4.78)

‘n+1

These contributions have their counterparts, that is the weak terms (4.58) and (4.59), in the mass
balance of the IF.

Species Transport in Embedded Vasculature Species transport in the one-dimensional
representation of the vascular network is governed by the time-discrete equation (4.21). Defining
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the function spaces
Sip = {w € H' (A) |w'® = &' on rﬁjf’} and (4.79)
Vie = {(w‘ﬁ € H' (A)|0w'® =0 on rﬁ;“’} (4.80)

and integrating the product of the test functions with the strong form over the 1D embedded
domain A, yields the weak formulation

n
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(4.81)

Therein, transvascular species mass transfer terms may again be identified. As the 1D-3D cou-
pling terms for fluid mass transfer, they may be brought into the form

e
OAL <5w”, /0 F (9" (s). ¢ (z(s,7))) dv) =

Atn+l

OAL (5wiﬁ,f ((Pﬁ (3) ,%01 (;p (S,’)/))))aptn_H (482)
for lateral surface coupling and

OAt ((5ww, 7Dy - f (gpf’ (s), o (x (s))))At (4.83)

n+1

for centerline coupling with the previously mentioned integrals.

Remark 4.3. The convection-diffusion-reaction equations for species transport (4.71) and (4.81)
may require additional stabilization terms if convection dominates. In principle, different stabi-
lization formulations are available in the computational framework [8], however, they have not
been used here as spurious oscillations of species transport were not observed with the employed
mesh sizes. By contrast, minor oscillations were present during growth in the primary variables
of the TC phase at the tumor front. This can be explained by the dominating reactive term and the
quite low relative permeability calculated according to (3.42) at the edge of the growing tumor.
Further mathematical analysis might be necessary to investigate the cause of these oscillations
and devise a strategy for stabilization.

4.3.1.3 Constraint Enforcement Strategies

In the following, it will be demonstrated how the constraints (3.110) and (3.113) for coupling
blood flow and species transport between embedded and homogenized vasculature can be ful-
filled through two different constraint enforcement strategies, a Gauss-point-to-segment (GPTS)
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scheme or a penalized mortar-type method, which have been adapted from mesh tying and con-
tact formulations in solid mechanics. These two methods perfectly fit into the finite element
discretization of the transcapillary mass transfer terms as described above. The following sec-
tion was previously published in the author’s article [136]. However, there only the centerline
variant was treated. Here, an adaptation for the surface-coupled variant is additionally presented.

Gauss-point-to-segment approach The first choice to fulfill the centerline constraint
(3.110) of equal pressures or species mass fractions is through a Gauss-point-to-segment ap-
proach. For that, a penalty potential may be defined as

1

Hpen = S€GPTS - /A ¢*ds on A (4.84)

The weak formulation of (4.84) follows as

5Hpen = €GPTS (5906, 90@ - @v)At — €GPTS (580U, oA, - (@6 - 90”))@
= eaprs (09", 9" — ¢"),, — €aprs (69", 0" — ¢") . (4.85)

with corresponding test functions 6p® and d¢v as above. The major benefit of this GPTS ap-
proach is that it can easily be combined with the non-conforming 1D-3D coupling for mass
exchange between embedded vasculature and IF. Indeed, the coupling term may be interpreted
as a 1D-3D mass exchange term between embedded and homogenized vasculature of the form

(i)o— (i)v

M =f (Sﬁﬁa SOU) = €GPTS (ipﬁ - 90”) (4.86)

with very large permeability eqprg such that pressures and species in the two domains immedi-
ately equalize. So, the first term involving the variation of the 1D primary variable from (4.85)
simply has to be evaluated at time ¢,,.; and added to the weak form of the 1D blood flow (4.76)
respectively 1D species transport (4.81). In the latter case, it has to be additionally scaled with
the time factor §At. This guarantees a correct evaluation of the mass transfer term (4.86) at the
intermediate time instant ¢,,. ¢ together with the other right hand side term (4.83). Note that the
evaluation at time ¢,, and the corresponding scaling with the time factor (1 — #)At is done by
evaluating the time derivative of the primary variable at time ¢,, in (4.81). Correspondingly, the
second term involving the variation of the 3D primary variable from (4.85) can be added to the
weak form of the 3D blood flow (4.62) respectively 3D species transport (4.71) (with €¢* = &%)
and again scaled with the time factor #At in the latter case.

For lateral surface coupling, the constraint is defined on the lateral surface of the embedded
vasculature via (3.113). Consequently, the penalty potential is modified to

1

Upen = §€GPTS : /a - g% dvds on 0D, (4.87)

with the corresponding variation

5Hpen — €GPTS (590{}7 SO{) - @U)apt — €GPTS (5901)7 58Dt : (SO{] - SOU)>Qt
= ecprs (09", " — sﬁv)apt — egprs (09", " — @U)apt : (4.88)
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Once more, these terms represent 1D-3D mass transfer terms between embedded and homog-
enized vasculature with permeability eqprg between the two domains. After evaluation at ¢,
and scaling them with the appropriate time factor as described above, they can be added to the re-
spective equations. Now, they are equivalent to the contributions with the lateral surface coupling
variant, that is, equations (4.58) and (4.72) respectively equations (4.77) and (4.82).

The approach has been termed Gauss-point-to-segment approach here since evaluating (4.85)
and (4.88) in their discretized forms will ultimately require Gauss integration of the terms along
the vessel centerline respectively over the lateral surface of A;, see also Section 4.3.3. The draw-
back of such GPTS methods is the penalty parameter egprg. If its value is chosen too low, the
constraint is nut fulfilled with sufficient accuracy. If it is chosen too high, the problem is over-
constrained, see also Section A.2.

Mortar approach with penalty regularization An alternative constraint enforcement
scheme, which does not suffer from the aforementioned shortcomings, is the Lagrange multi-
plier (LM) method whose contribution to the weak form can be written as

on = (N, 09" = 0¢") . (4.89)

for the centerline coupling variant. Again, this allows interpreting the (scalar-valued) Lagrange
multiplier A defined on the embedded domain A, as a mass exchange term between embedded
vasculature and neovasculature, i.e.,

(i)o— (i)v

A= M . (4.90)

Typically, the variational form of the constraint (3.110), which is not given here, additionally
enters the weak formulation of the system, for more details see also Section 6.2.3. Consequently,
the LM formulation transforms the resulting system of equations into a saddle point problem
meaning that its solution will be a maximum with respect to the Lagrange multipliers and a min-
imum with respect to the primary variables. In the context of solid mechanics mesh tying and
contact algorithms such a formulation with a discretization of the Lagrange multiplier field is
usually termed mortar method [17]. The nodal Lagrange multipliers enter the system of equa-
tions as additional unknowns or are condensed out via a dual approach [198, 199]. However,
in the following, a different strategy with a penalty regularization of the Lagrange multiplier
method similar to Yang et al. [292] will be pursued to eliminate the Lagrange multipliers. This
formulation has two major advantages: First, it is formulated in terms of the primary unknowns
of the problem without the additional Lagrange multipliers and, therefore, the original size of the
system is not changed. Second, the resulting system of equations is not of saddle point structure
any more such that standard iterative linear solvers and preconditioners can be applied.

For the lateral surface variant of 1D-3D coupling, one possible weak form of the Lagrange
multiplier method may be written as follows:

. wDy(s) R
5HLM=(M¢”—5¢”)BQ=<A, / 5<P”—590”d7> . (4.91)
0
Ay

Therein, A is again the Lagrange multiplier defined on the centerline of the embedded 1D do-
main A;. Thus, it does not depend on the position on the lateral surface and can be pulled out of
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the perimeter integral. However, this has one major implication: The formulation given in (4.91)
does not enforce the constraint of equal pressure respectively mass fractions at all points on the
lateral surface as dictated by (3.110) but a weaker constraint given by

D¢
g= / 0’ (s,t) — ¢’ (T (s,7),t) dy =0 on A;. (4.92)
0

This requires only that the value of the 3D primary variable integrated along the perimeter of the
inclusion is equal to the respective integrated primary variable of the 1D domain at each point
on the centerline of the embedded domain. Correspondingly, the Lagrange multiplier acts as a
yet to be specified mass transfer term to enforce this constraint.

The employed one-step-f-scheme again dictates that the mass transfer term originating from
the Lagrange multiplier (4.90) has to be evaluated at the correct time instant, i.e., at ¢,,1; and
scaled with the appropriate time factor before adding them to the respective weak forms just as
described above for the GPTS scheme.

4.3.2 Spatial Discretization

For spatial discretization, the two- or three-dimensional tissue domain of interest is approximated
by partitioning it into n.j. non-overlapping subdomains, the so-called elements, as
Nele
QO Q" =[] Q. with Q.NQ=0, e#[. (4.93)
e=1
Here and in the following, a spatially discretized quantity is denoted by the superscript (.)"
and €2, denotes the element domain. The same procedure is applied for the one-dimensional
embedded domain whose spatial discretization A" is given by
Rele
Am A" =[] A with AcnA;=0, e#f (4.94)
e=1
with 7, one-dimensional elements A.. The primary unknowns are then interpolated by defining
shape functions at the 7,,,4es Nodes of the 2D/3D domain 0" as

Mnodes

& ~d"=> N;-d (4.95)
7j=1
Mnodes

Qp[t,h,l] ~ ,(p[t,h,l],h — Z N] . II)‘E.t’h’l] (4.96)
7j=1
Mnodes

e =Y Nj-el (4.97)
7j=1
Mnodes
7j=1
Mnodes

wrw' =Y N;-w; (4.99)
7j=1
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Therein, the shape function at a specific node j is denoted by N;. Identical spatial discretizations
for all unknown fields are used within the present computational approach. Only bi- respectively
trilinear Lagrange polynomials are employed. Note that it has been assumed that ng,.. species
are present in the multiphase model (both in fluid phases and solid phase) which have been
collected in the vector of species mass fractions w € R™vre. The discrete nodal values of the
respective primary variables of all fields are defined by

dS c Rnnodes'ndim7 q)[t7h7l] c Rnnodes'B7 sv c Rnnodes, pU c Rnnodes’ w € Rnnodes'nspec (4100)

as nodal displacements, nodal generic primary variables of TCs, HCs and the IF, nodal HV
volume fraction, nodal HV pressure and nodal species mass fractions. The respective scalar- or
vector-valued nodal value at node j is employed for the interpolation in equations (4.95)-(4.99).

The spatial discretization of the 1D embedded vasculature is performed using 7., elements
and 7,,4es nodes. Thus, the primary unknowns are approximated as

Mnodes

pPrap =Y Nj-p) (4.101)
j=1
. 3 7%nodes R n
W R W= YN (4.102)
j=1

with shape functions on the 1D domain N ;. Linear Lagrange polynomials are used and the nodal
primary variables of the 1D embedded domain are

pf) c Rﬁnodes and wi@ c Rf"bnodes"’iwec7 (4103)
that is, nodal pressures and nodal species mass fractions. Here, it has been assumed that an ar-

bitrary number of species figpec are transported in the 1D domain. Following a Bubnov-Galerkin
approach, the weighting functions are interpolated using the same shape functions as

NMnodes

0d° ~ 6d™" = Y N; - dd; (4.104)
j=1
Mnodes

) s syplthih = N N gl (4.105)
j=1
Mnodes

0" m 6" = Y N; - ¢} (4.106)
j=1
Nnodes

op” ~ opth =" N;-bp; (4.107)
j=1
Mnodes

dwr dwh = Y N; - dw; (4.108)
j=1
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in the porous medium domain and as

Mnodes

op” ~ op™ =Y N;-op} (4.109)
7j=1
Anodes .
dw” ~ bW = Y N; - sw? (4.110)
j=1

in the embedded vasculature domain. The corresponding discrete nodal variations have iden-
tical dimensions as the primary variables defined by (4.100) respectively (4.103). Finally, the
isoparametric concept is applied, thereby approximating material and current coordinates of the
3D domain with the same shape functions as the displacements

Mnodes

X~X"= ) N;-X (4.111)
j=1

Mnodes

T~z = E N;

- X; 4.112)

j=1
where X and x are nodal coordinates in reference and current configuration, respectively.

Remark 4.4. Due to the similarity of the energy balance equation (2.69) to species transport,
it is evaluated together with all involved species. Thus, if the temperature field is relevant, it
is a part of the discrete nodal vector of species primary variables w in the 3D domain. The
corresponding discrete nodal temperature vector T € R"edes and its variation is interpolated
like all other primary variables. Since this is straightforward, it is not shown here in detail.
If species transport is referred to in the following, it may always implicitly contain the energy
balance equation.

4.3.3 Spatial Discretization and Numerical Evaluation of 1D-3D
Coupling

In this section, the spatial discretization of the different contributions to 1D-3D coupling, that is,
transvascular exchange terms, the constraint enforcement between embedded and homogenized
vasculature and the blood vessel diameter adaptation and collapse model is illustrated. An ad-
vantageous feature of the developed methods is that they allow for non-matching meshes in 1D
and 3D domain such that the respective discretizations are completely independent. Constructing
a 3D mesh which conforms with the embedded 1D mesh may become very expensive or even
infeasible considering the complexity of blood vessel networks. By contrast, a regular grid may
be employed here for the 3D tissue domain. It does not have to follow the embedded vasculature,
see also Figure 4.1. However, this complicates the evaluation of the 1D-3D coupled terms which
is why a special focus lies on their numerical spatial integration in the following sections. Note
that the centerline coupling variant can also be applied for problems with a two-dimensional
tissue domain resulting in a 1D-2D coupled problem.
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(a) Gauss points for lateral surface coupling (b) Gauss points for centerline coupling

Figure 4.1: Comparison of Gauss points for lateral surface and centerline coupling — Gauss
points are plotted in red, nodes of 1D embedded vasculature in blue.

4.3.3.1 Transvascular Exchange Terms

The generic transvascular exchange terms require either a two-dimensional integration of these
terms across the lateral surface of the 1D embedded domain, see Figure 4.1a, or a one-dimensio-
nal integration along its centerline, see Figure 4.1b. Similar integrals of non-matching discretiza-
tions have to be evaluated in the context of contact or mesh-tying in solid mechanics. Commonly,
two different approaches are discerned, namely, element-based integration or segment-based in-
tegration, conf. Farah et al. [73] for an extensive review and investigation. In the following, both
variants are transferred to 1D-3D coupled problems and applied where appropriate.

Remark 4.5. Movement of the embedded one-dimensional domain with the ALE formulation
as well as blood vessel compression and collapse is currently only realized for the centerline
coupling variant. Hence, in the following paragraphs the explanations will be given for the
non-moving case, i.e., in terms of X, S and Dy, which are the three-dimensional reference
configuration, the arc-length coordinate of the 1D discretization in reference configuration and
the constant reference element diameter Dy. The case of large deformations of the embedded
vasculature domain is considered in more detail in Section A.3.

Two-dimensional Element-based Integration for Lateral Surface Coupling The
lateral surface coupling variant requires the integration of terms given by the contributions to
the weak forms (4.58), (4.72), (4.77) and (4.82). These terms comprise the product of shape
functions either defined on the 1D domain or on the 3D domain multiplied with a generic mass
transfer term f (” (S), ¢! (X (S,7))). All terms have to be integrated across the lateral sur-
face of the embedded domain to evaluate the potentially nonlinear mass transfer depending on
the respective primary variables. Their linearization then involves products of the corresponding
shape functions.

The strategy to evaluate these terms with an element-based approach is sketched in Figure 4.2.
For every 1D element, Gauss quadrature is employed with a linear mapping of Gauss points
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® 1D node
X Gauss point

Figure 4.2: Sketch of two-dimensional element-based integration for lateral surface coupling —
exemplarily, 3 X 3 Gauss points are defined in the typical two-dimensional parameter
space and mapped onto lateral surface where integration is performed.

(GPs) from the typical parameter space (£,7) € [—1.0, 1.0] x [-1.0, 1.0] onto the lateral surface
of the considered 1D element defined by axial and circumferential coordinate S respectively
7. This yields the 1D primary variable at the axial coordinate ©° (S (£)) (recall that 1D pri-
mary variables do not depend on the position at the circumference) and the reference coordinate
X (S(&),7(n)) of the respective GP. The 3D primary variable of the IF or a species in the IF
o' (X (S (£),v(n))) at this point is required to evaluate the transvascular exchange. It is simply
obtained via FE interpolation as the product of the three-dimensional shape functions inside the
element, in which the coordinate is located, with the corresponding nodal values. Hence, the 3D
element, in which a specific coordinate X (S (), (n)) lies, has to be identified along with the
values of the 3D shape functions at this coordinate. The described Gauss quadrature is applied
for each 1D element. The single contributions to the 1D and 3D governing equations are then
assembled using the standard FEM procedure to evaluate transvascular exchange over the en-
tire discretized 1D domain. As a single 1D element may potentially interact with multiple 3D
elements due to the non-matching discretizations, the mass transfer of a single 1D element is
assembled into the DOFs of multiple 3D elements.

The proposed element-based scheme suffers from the shortcoming that integration over weak
discontinuities, that is, kinks of 3D primary variables and shape functions employed to interpo-
late these primary variables is performed. This occurs as GPs are simply defined on the lateral
surface of the 1D element without accounting for different 3D elements with which it may in-
teract. Correspondingly, integration is performed across boundaries of 3D elements where kinks
of shape functions are present. However, the numerical error introduced by this method can usu-
ally be minimized by employing a higher number of GPs [73]. This will also be done here as a
segmentation, that is, a generation of integration patches, where all 3D shape functions are con-
tinuous, is quite intricate. For strong discontinuities (jumps), however, which would correspond
to a 1D element sticking out of the 3D domain in the present case, the error is much higher
and cannot be remedied by employing more GPs [73]. Therefore, these cases are not possible
with the current implementation. An additional inaccuracy is introduced by the overlap of 1D
elements at junctions. Consider for instance the situation depicted in Figure 4.1a: At the junc-
tion in the middle of the domain the surfaces overlap and protrude into each other which is due
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e 1D node
X Gauss point T
N\ Segment boundary

Figure 4.3: Sketch of one-dimensional segment-based integration for centerline coupling (in 2D)
— exemplarily two Gauss points per segment are defined in the one-dimensional pa-
rameter space and mapped onto the centerline where integration is performed. The
1D element here interacts with three 2D elements which defines three integration
segments. Figure taken from the author’s article [137].

to the approximation of the embedded domain by straight cylinders. Similarly, this occurs at
nodes, where only two non-parallel elements meet with an overlap on one side and a gap on the
other side of the node. A better representation of the lateral surface of the vascular network via
a smooth approximation with GPs defined there could help to prevent this error. In any case, it
can be expected to be much lower than the modeling error.

One-dimensional Segment-based Integration for Centerline Coupling The center-
line coupling variant requires the integration of similar terms which are given by the contri-
butions to the weak forms (4.59), (4.73), (4.78) and (4.83). Again, these terms comprise the
product of shape functions either defined on the 1D domain or on the 3D domain multiplied with
a generic mass transfer term wDo(S) - f (¢° (S) , ¢! (X (5))). The major difference is that these
terms now have to be integrated along the centerline of the embedded domain and not across the
lateral surface and correspondingly depend only on the axial coordinate S. In turn, the lineariza-
tion of the potentially nonlinear mass transfer then involves products of the appropriate shape
functions.

A one-dimensional segment-based integration has been implemented for this variant. The fol-
lowing explanation of this procedure is taken from the author’s publication [137]. As sketched
in Figure 4.3, the 1D integrals are again evaluated with Gauss quadrature. However, at first
each 1D element is segmented by finding the intersections with its 2D or 3D interaction part-
ners. This yields 1D pieces interacting with a single 2D/3D element on which also the shape
functions of the respective 2D/3D element are continuous. Then, GPs are defined in the single
segments, mapped from the element parameter space on the 1D centerline and the 1D primary
variable at the axial coordinate ¢” (S (£)) can again be obtained. In addition, the spatial coordi-
nate X (S (€)) of the respective GP, which is now defined on the 1D centerline and not on the
lateral surface of the inclusion, is required to obtain the 2D/3D primary variable projected on the
centerline as ¢! (X (S (€))). Once more, this requires obtaining the shape function values of the
respective 2D/3D element at this coordinate. The integral for a specific 1D element then emerges
as the sum over the integrals of all its segments and the respective contributions are assembled
into the DOFs of the 1D and the interacting 2D/3D elements.
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The employed segmentation algorithm can also deal with 1D elements protruding out of the
2D or 3D domain. In that case, the protruding part, that is, the protruding segment of this ele-
ment is simply not evaluated for transvascular exchange. Such cases could be of interest if blood
flow or species transport in a larger part of the circulatory system is studied, but transvascu-
lar exchange should only be included for a specific sub-part, possibly an organ where the 3D
distribution of a chemical species is required.

4.3.3.2 Constraint Terms

The second type of interaction between the 1D embedded domain and the multiphase porous
medium system are the coupling terms between resolved and homogenized representation of
the vasculature. They occur only for the hybrid model variant. In Section 4.3.1.3, two differ-
ent approaches were introduced, a Gauss-point-to-segment and a mortar-type approach. It was
further shown that the Gauss-point-to-segment scheme simply represents an additional mass
transfer term between resolved and homogenized vasculature. Therefore, this term is treated as
the exchange terms between embedded vasculature and IF and is evaluated either via the 2D
element-based integration for lateral surface coupling or the 1D segment-based integration for
centerline coupling. Hence, only the discretization of the mortar-type approach and the employed
penalty regularization will be illustrated in the following. The following section was previously
published in the author’s article [136], where only the centerline variant was treated. Here, an
adaptation for the surface-coupled variant is additionally presented.

Subsequently, the LM field )\ is expressed explicitly in terms of the primary variables of ho-
mogenized and embedded vasculature. This can be achieved by a penalty regularization of the
constraint of matching pressures and mass fractions. Consequently, the nodal LMs do not enter
the problem formulation as additional DOFs.

The spatially discretized form of the LM potential (4.89) respectively (4.91) is given by

O = D D N Dudgh — > > A Mydey (4.113)
jES keS jES leM
with the well-known mortar matrices
D[j,k] = Dy = / d; N, ds, M[j, 1] = M; = / ®;N, ds (4.114)
Ab Af
for centerline coupling and

DUj.k = Dy = |

A~ A . wDo(S)
7TD0<S)(I)]deS, M[],l] :Mjl :/ (I)j/ Nld’}/dS
Ab Ab 0

(4.115)

for lateral surface coupling. The latter one is evaluated in reference configuration since a moving
embedded domain has not yet been realized for this variant. In the spatially discretized form
of (4.113) a nodal Lagrange multiplier A;, as well as nodal variations of the primary variables
dp? on the discretized 1D domain A" and nodal variations of the primary variables §? in the
discretized 3D domain Q" were introduced. The indices j and k identify nodes on the discretized
1D domain, while [ is employed for nodes in the 3D domain. S and M denote the subsets of
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nodes on the 1D domain respectively in the 3D domain which actually form the discrete inter-
face. Shape functions in those domains are denoted with Nk and V;, respectively. Furthermore,
the Lagrange multiplier shape function at a node belonging to the 1D discretization is <f>j. Itis as-
sumed that every node of the 1D domain carries a nodal Lagrange multiplier with corresponding
shape function, which has to be chosen from a suitable function space to ensure inf-sup stabil-
ity [17]. In the following, only linear shape functions for both primary variables and Lagrange
multiplier interpolation on the 1D domain will be applied, that is, <I> = N These shape func-
tions of the 1D domain do also not depend on the position at the lateral surface which is why
they can be pulled out of the circumferential integral in (4.115).

For the penalty regularization of the constraint, the discretized weighted pressure or species
“gap” at node j of the discretized one-dimensional domain is defined as

1 .
9= — (Z Dirgp— Y szso}’) (4.116)
J k l
with

Ky = / ®; ds (4.117)
Ah

t

and

K = /Ah 7Do(S)®; dS (4.118)

for the two different variants. As in [292], the scaling with the inverse of (4.117) respectively
(4.118) guarantees consistent units of the weighted ”gap” g;. It can be employed for a penalty
regularization of the nodal Lagrange multiplier \; as

\j = eup - g (4.119)

with (mortar) penalty parameter ey;p. This definition is then inserted into (4.113) to eliminate
the Lagrange multipliers from the global problem. Hence, after scaling with the appropriate
time factor as described above, the discretized weak form (4.113) can be assembled into the
appropriate global DOFs. More details on the exact form of the arising entries in matrix-vector
notation are also given in Section 6.2.3. Again, the penalty parameter determines how accurately
the constraint will be fulfilled. However, as will be shown in Section A.2, the MP method is not
prone to overconstrainment as opposed to the GPTS scheme.

Remark 4.6. It has to be emphasized that the dimensions of the mass transfer equations de-
fined on the embedded domain and the surrounding tissue are different. The balance of mass of
blood (3.79) and species (3.84) are written in terms of [length|?/[time] while the ones of the
3D tissue domain, e.g., (3.99) or (3.100) are formulated in terms of 1/[time]. The coupling be-
tween the equations is achieved via the Dirac terms Oy, or dp, whose dimensions are actually
1/[length]? and 1/[length] according to their definitions (3.93) respectively (3.89). Hence, the
units of the penalty parameters egprs and eyp are [length]?/[time - pressure] for the coupling
of pressures and [length]? /[time)] for the coupling of species in the centerline variant. In the lat-
eral surface variant their units are [length]/[time - pressure] and [length]/[time], respectively,
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Figure 4.4: Sketch of evaluation of diameter for blood vessel diameter adaptation and collapse
(in 2D) — diameter may possibly vary along the element, element diameter Dy, is
evaluated via segment-based Gaussian quadrature.

since the terms are additionally integrated across the diameter. Both definitions make the inter-
pretation of the penalty parameters as permeabilities straightforward. From a modeling point
of view, such finite permeabilities might even be advantageous. For instance, they could be em-
ployed to account for the partition of red blood cell flux between pre-existing and homogenized
vasculature. Red blood cells might preferentially follow the higher blood flow in the pre-existing,
developed vasculature such that hematocrit and correspondingly the oxygen mass fraction in the
homogenized vasculature is lower [240].

4.3.3.3 Blood Vessel Diameter Adaptation and Collapse

The third contribution to 1D-3D interaction is via the blood vessel diameter adaptation and
collapse model introduced in Section 3.4.5. Using the current formulation, the diameter of the
embedded vasculature is shrinked according to the influence of the growing tumor. Thus, the
diameter depends on the primary variables of the surrounding porous medium domain. This
nonlinear dependency has to be evaluated for each embedded 1D element and also linearized
to solve the coupled system of equation with a Newton-Raphson scheme. Preliminary work on
this topic was done under close guidance by the author in a Master’s thesis [195]. Due to the
non-conforming 1D and 3D mesh, also for this type of coupling, which has currently only been
realized for the centerline coupling variant, several interesting aspects arise. Figure 4.4 depicts
that, if the diameter along the 1D element is calculated with the functional dependency (3.101)
or in the more general case with (3.104), it may possibly vary because the primary variables in
the 2D/3D domain change along its length. The average element diameter may be computed via
a segment-based Gauss quadrature along the considered 1D element of length L.

Tlseg NGP

Z > w,- J(&,), (4.120)

i=1 g=1

ele -
ele

with Gauss points ,, weights w, and Jacobian J. This element-wise constant diameter is em-
ployed for all but the 1D-3D exchange terms, i.e., for the first and last term in the weak form of
blood flow (4.76) and all terms except for the exchange terms in the weak form of 1D species
transport (4.81). For evaluating the exchange terms (equations (4.59), (4.78), (4.73), (4.83)),
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Figure 4.5: Different cases occurring during blood vessel collapse

which are scaled with the diameter for centerline coupling, the diameter at the GPs D (&) is
employed. This procedure was proposed in the Master’s thesis by Plockl [195]. As described
in more detail there, on the one hand, the advantage of this formulation is that velocity and
flow inside a specific 1D element are still constant despite the varying diameter (as for the case
where the diameter is constant inside each element). It can be calculated with the Poiseulle
relation (3.78) by employing the average element diameter D). Otherwise, the flow would con-
tinuously change inside each 1D element according to the varying diameter. On the other hand,
employing the GP diameter for the 1D-3D exchange terms does not require the calculation of
additional linearizations from different segments of the same 1D element [195] which would be
a considerable computational effort.

Finally, the treatment of the collapse of 1D elements requires special attention. According
to (3.103), elements collapse entirely if their average element diameter D, drops below the
diameter threshold Do ¢nresh- For the sake of simplicity, these elements are removed and it is
further assumed that they remain collapsed over the subsequent course of the simulation. The
implications for the 1D embedded domain are sketched in Figure 4.5. Starting from the initial
topology of Figure 4.5a, two different cases are illustrated. Let us assume that the inner part of
the network has fallen below the diameter threshold in Figure 4.5b. The corresponding elements
are taken out and, automatically, a no-flux boundary condition is set for blood flow and species
transport in the embedded domain at the newly formed tips. Also from a physiological stand
point, this seems reasonable as vessel occlusion is occupied with flow stasis [132, Figure 2]. A
second case is sketched in Figure 4.5c. Here, connecting elements have collapsed such that a
free-hanging network part, that is, a part which is not connected to boundary conditions on the
initial network tips emerges. Numerically, 1D pressure and species mass fraction are not defined
in this part. Hence, these elements are additionally removed from the 1D blood vessel network.
This approach can also be motivated physiologically: Since this sub-part is not connected to the
rest of the network any more, flow and wall shear stress inside it is zero. Therefore, it will regress
quickly once endothelial cells sense the absence of flow [62]. In the actual implementation, the
removal of these small unconnected sub-parts is realized by sorting the graph associated with the
vessel network into connected sub-components. Separate parts which are not connected to any
in- or outlet are deleted.
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Remark 4.7. In the preceding paragraphs it was assumed that the interaction partners of 1D
and 3D discretization, i.e., the respective elements are known such that the coupling terms can
simply be evaluated by numerical integration and assembled into the respective DOFs. However,
in the actual parallel implementation of the computational framework [8] this is far from trivial.
The following strategy has been devised: Possible interaction partners, i.e., intersecting 1D and
3D elements are determined via a spatial search using an octree. If a 1D and a 3D element
interacting with each other do not lie on the same processor, the 1D element is additionally
“ghosted” on the owning processor of the 3D element. This extended ghosting assures that the
respective 1D-3D contributions can be evaluated and assembled.

4.3.4 Final Discrete System

The final discrete system of equations is obtained with the standard assembly procedure of the
finite element method. A coupled system of discrete nonlinear residuals R at time step n + 1
emerges as

s s [t,h,]
Rn+1 <dn+17ll)n+l ’ n+17 pn+1

[thl] v

) 0 with R, € Rmmdsmam  (4.12])
h l v S
REH ] (dn+171|’n+1 s €1y Pyt Wnitt, pn+1)

0 with RIJ{™ € Rmoeas  (4.122)

spec s [t,h,1] ev
Rn+1 ( n+1a¢n+1 3 n+17 Pn+17 wn+17 +1

0 with RS € Rimodesnee  (4,123)
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[t,h,0]
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S hl 3 n *‘ﬁs ec
R (dnﬂ,xplfﬂ], nﬂ,pnﬂ,wnﬂ,pm,wm) =0 with RTS € Rimaefivee  (4.125)

where the primary variable of each equation has been underlined. The weak form of the bal-
ance of linear momentum (4.68) is entering the system through the discrete residual (4.121). The
multiphase system with the weak forms of the evolution equation for the vascular volume frac-
tion (4.65), the balance of mass of blood in the homogenized vasculature (4.62) and the balance
of mass of TCs, HCs and the IF (4.56)-(4.57) is represented by (4.122). Species transport in
the multiphase system with the respective weak form (4.71) is described through (4.123). Equa-
tion (4.124) corresponds to the Hagen-Poiseuille equation for blood flow in the 1D embedded
vasculature (4.76) while (4.125) constitutes the discretized form of species transport in the 1D
embedded vasculature (4.81).

The nonlinear system of equations (4.121)-(4.125) represents the most general situation if the
hybrid model type is employed. All other variants are included in this formulation, for instance,
the one with homogenized representation of the vasculature corresponds to the first three discrete
nonlinear residuals. In the following, the strategy to solve this coupled system of nonlinear equa-
tions in the employed computational framework is presented. For the solution of the single field
nonlinear residuals in partitioned schemes or the combined solution with monolithic schemes,
the Newton-Raphson algorithm is employed which requires a linearization of the respective non-
linear equations at every Newton step. A detailed description of the necessary linearizations is
omitted here.
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4.4 Coupling Schemes

There exist different solution schemes for nonlinear systems of equations such as (4.121)-(4.125)
originating from a FEM formulation of coupled physical problems. Generally, they can be clas-
sified into partitioned and monolithic schemes. The latter ones solve the entire set of nonlin-
ear equations simultaneously within one nonlinear solution procedure, commonly a Newton-
Raphson scheme, per time step. For strongly coupled problems with bi-directional dependen-
cies, they have been proven to be the most efficient and robust schemes, see e.g. [88, 138] in
the context of fluid-structure interaction problems and [54] in the context of thermo-structure
interaction problems.

Their counterparts are partitioned schemes where the nonlinear sub-problems are solved con-
secutively (with fixed contributions from the other fields). The major advantage of partitioned
solution procedures is their flexibility since different methods or existing solvers for the single
fields, e.g., commercial software codes can be coupled and re-used [263], and their straighfor-
ward implementation compared to monolithic algorithms. They can be further sub-divided into
loosely coupled or staggered schemes and strongly coupled or iteratively staggered schemes [54].
Loosely coupled schemes involve only one nonlinear solution algorithm per field per time step,
i.e., the fields are solved sequentially without any additional iterations between the fields. They
are the method of choice for uni-directional or weak couplings between the fields. By contrast,
strongly coupled schemes involve iterations between the fields until a certain pre-defined conver-
gence criterion is met, see also Figures 4.6, 4.7 and 4.8. For each nonlinear solution procedure
of a single field, the last obtained values from the other fields are applied and this single field
is solved with these fixed contributions for its primary variable. Subsequently, this new solution
is applied to the next field, which is in turn solved with fixed values from all other fields. This
algorithm is continued until convergence is achieved, that is, until all fields are in equilibrium.

Due to the strong bi-directional relations in the five-field problem (4.121)-(4.125), especially
the strong coupling present in large deformation porous medium problems [269, 270, 272], only
strongly coupled schemes are sensible, that is, either monolithic schemes or partitioned schemes
with iterations between the fields. Furthermore, while the residuals are written down as a five-
field problem, from a physical point of view only three fields are present, namely, solid defor-
mation, fluid flow and species transport: Hence, the first field is the structural deformation of the
ECM described by (4.121). The second one is the tumor growth model with interacting phases in
the 3D domain (4.122) coupled with the 1D embedded vasculature with blood flow (4.124). The
third one is species transport in the porous medium system (4.123) coupled with species trans-
port in the 1D embedded vasculature (4.125). Hence, even in the partitioned schemes presented
here the 1D-3D coupled (flow and species transport) subproblems are solved simultaneously as
in other related publications [38, 51, 53, 130, 131, 177, 178].

In the following sections, several coupling schemes will be introduced: two partitioned ones
in Sections 4.4.1 and 4.4.2 with slightly different strategies, one hybrid monolithic-partitioned
scheme in Section 4.4.3 where the porous medium part including skeleton deformation of the
problem is resolved monolithically while the coupling with species transport is treated iteratively
and, finally, the fully-monolithic scheme where the global problem is solved within on global
solution procedure per time step. Except for the nested-partitioned scheme from Section 4.4.2,
the following sections were previously published in the author’s article [135] for the model
variant with homogenized vasculature. Here, the algorithms are extended for the most general
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Figure 4.6: Algorithm for one time step of sequential-partitioned scheme (adapted from the au-
thor’s publication [135])

case of the hybrid model including also a 1D representation of the vasculature with the respective
additional nonlinear residuals (4.124) and (4.125). As before, the other model variants can be
obtained by only solving a subset of its governing equations respectively nonlinear residuals.

4.4.1 Sequential-Partitioned Scheme

The first coupling algorithm is termed sequential-partitioned scheme. Each of the three single
blocks (4.121), (4.122) together with (4.124), and (4.123) together with (4.125) is solved indi-
vidually for its 1D and 3D primary variables. Then, the coupling variables are transferred be-
tween the fields. Figure 4.6 depicts the algorithm for the three-field coupled partitioned scheme.
First, the nonlinear problems of the tumor growth model including the homogenized vascula-
ture (4.122) coupled with blood flow in the 1D inclusion (4.124) at the partitioned step & are
solved with a Newton scheme

aR[t,h,l,v] aR[t,h,l,u] ( Sl 7
PR Op? [All’[t’h’l’v] " RI®LY]

oR" oR” Ap? R - ;
oplt:hitv] op® P I n+lk R n+1,k

n+1,k

(4.126)

p’

~ [t.hlo] T ~ [t.hl0] ] [t,hl0] 7 L
SR
4 n+1k P n+1,k P

n+1,k

for each Newton iteration ¢ — ¢ + 1. Note the block matrix structure of the linearized system of
equations where the main-diagonal terms correspond to linearizations of the respective residual
with respect to its governing primary variable as underlined in (4.121)-(4.125). The off-diagonal
coupling terms here represent the 1D-3D coupled terms, i.e., the mass transfer and constraint
enforcement terms between embedded 1D vasculature and 3D porous tissue. Furthermore, a
nodal primary variable vector P which comprises both the generic nodal fluid primary
variables tl)[t’h’l] of TCs, HCs and the IF as well as the nodal homogenized vasculature primary
variables, that is, the nodal volume fraction €" and nodal homogenized blood pressure p*, has
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been defined as
[t,h,]

Pl — | g : (4.127)
pv

Note that the structure equation does not directly depend on the 1D blood pressure p®. Therefore,
only the solution of the homogenized compartment is then transferred to the structure equation

after performing relaxation with Aitken’s A? method [139, 140].
Aitken relaxation is a simple, flexible and easy to implement method which can significantly
improve the convergence behaviour and stability of generic partitioned schemes. The basic idea
behind this scheme is to employ the secant method with the solutions of the last two partitioned

steps to accelerate the convergence of the partitioned loop. An extensive discussion of the method

for interface-coupled fluid-structure interaction can be found in the thesis of Kiittler [138]. With

this approach, not the actual solution xi)gff,f] of the Newton scheme (4.126) is transferred to the

structural field, but a relaxed state defined as

t,h,l,0] thlw < [¢,h,0,0] t,h,1,]
1"L+1 E = ¢£L+1,kl1 + wg <1|)n+1 k 1|)£L+1 T 1) (4.128)

with Aitken relaxation parameter wj, and the relaxed solution ll)gfil’,:}_l of the previous parti-

tioned step k£ — 1. The relaxation parameter is dynamically adapted. It is defined recursively as

~ [t,h,l,0] t,h,lv] T ~ [t,h,l,0] thlv [t,h,L,v] thlw
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(4.129)

for each partitioned step &k from the two previous solutions of the partitioned loop. The new

relaxed state ll)[tfi ’,f} is transferred to the structure equation (4.121), which is evaluated for this

state and can in turn be solved with a Newton scheme

W = —Wg-1

[GRS Ads ga+1 Rs K ds ji41 ds K

od* ] n+1,k n+1,k — n+1,k> n+1,k = Y n+lk

+Ad (4.130)
for the displacements. Finally, the current solution of the partitioned iteration at step k, i.e.,
displacements d; ., ;, 1D pressures pl 114 as well as (relaxed) fluid primary variables v, ;.
are applied to the 1D-3D coupled species problem (4.123) and (4.125). Again, this nonlinear
equation is solved with a Newton scheme

HRSPec 8Rspec ? qi+1 spec ?
[ as‘gec aw;:c Aw - — [R ]
oR AR i o R SPEC ’
ow Wi n+1,k Aw dn+1k R n+1,k
qi+1 ) i+1
w w Aw
) = [ ] + ) 4.131)
wZU wZ'U (A%
4 n+4+1.k n+1,k n+1,k

for the ngp,e. present species in the homogenized domain and the 7, species in the resolved 1D
domain, i.e., equations (4.123) and (4.125) are solved simultaneously for all considered species.
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Coupling terms between different species arise due to (1D-3D or 3D-3D) mass transfer terms
and the coupling between resolved and homogenized vasculature.

Lastly, only the new 3D species states w1 and the new displacement state d; , , ; is fed
back to the 1D-3D fluid poro sub-problem (4.122) and (4.124) since there is no direct depen-
dency of this problem on the 1D species state w®. This loop is repeated until convergence has
been achieved. Subsequently, the algorithm progresses to the next time step. The convergence
criterion is the relative change in the solution primary variables from one partitioned iteration
step to the next which has to be smaller than a pre-defined tolerance €p,,¢, i.€.,

[t,h,1v] ~ [t,h,l,v]
W e s
H n+1k [thlvn+1,k 1 < e nd ||dnJrl r— Ao 1H < € and
o I v
| Witk — Wyt 1] ||p$z+1,k - Pﬁ+1,k_1H
@ H < €part and H > < €part and
n+1,k pn+1,k||
iv
Hwn+1Hizuwwn‘4‘_1 k—lH < €part. (4.132)
+1,k

Also the single field Newton schemes need a suitable convergence criterion. Naturally, it has to
be defined stricter than the partitioned convergence criterion of (4.132) such that the error in the
single field solvers does not influence the convergence of the partitioned loop. Again, relative
increments from one Newton step to the next with a single field tolerance of

esf = 0.01€part (4.133)

are evaluated. In addition, a further check

[t,h,l,0] spec
R [ IR
Y < €yt and ———— < €of and < €4 and
V Mnodes 5 Vv Mnodes * Tldim v/ Mnodes * Tspec
~ 0 A spec
Rn+1,k H n+1,k
A e and < ey (4.134)

V Mnodes A/ Mnodes * Mspec

guarantees that also the residuals of the single fields have reached convergence within their
Newton loop. Here, the RMS norm is employed to have a mesh-independent quantity.

Remark 4.8. In almost all practical cases investigated for the tumor growth model, convergence
without relaxation was impossible to obtain. A relaxation with constant parameter 0 < w; < 1
was also implemented and tested. Preliminary simulations revealed an improved robustness, see
Section 5.1, but the dynamic relaxation using Aitken’s method was by far more stable and more
efficient.

4.4.2 Nested-Partitioned Scheme

A similar partitioned algorithm is depicted in Figure 4.7. Instead of a sequential solution of
all three fields, an alternative nested solution strategy is performed. The experience of similar
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Figure 4.7: Algorithm for one time step of nested-partitioned scheme

porous medium systems [269, 270] including species transport [212, 271, 272] shows that the
coupling between fluid flow and large structural deformation is much stronger than the coupling
with species transport. Hence, the rationale behind this approach is to first resolve the strongest
coupling between structural deformation and flow in the porous medium, and then to resolve the
coupling between the deformable porous medium problem and species transport therein.

The 1D-3D coupled poro-fluid and structure problem are solved in an inner partitioned loop
with the respective Newton schemes (4.126) and (4.130) in combination with Aitken relaxation
until convergence between the two fields is reached, while the species solution is kept fixed.

The obtained equilibrium configuration, that is, converged solid displacements d; ., ;, tumor

growth model variables 1|;£ff1{;” and 1D blood pressures p® +1,; of the nested loop, is then ap-

plied on the nonlinear 1D-3D coupled species transport problem, which is in turn solved with the
Newton scheme (4.131). Next, the coupled porous medium problem including structural defor-
mation is again iteratively solved with the newly obtained species solution. This is repeated until
convergence in the outer loop is achieved and the algorithm progresses to the next time step.
Convergence checks of partitioned loops and single field solvers are performed as described in
the previous section.

Remark 4.9. The nested partitioned scheme would offer the possibility to add another relaxation
scheme for the outer loop with a respective Aitken scheme by relaxing displacement, multiphase
and 1D pressure state before applying them on the nonlinear 1D-3D species problem (4.131).
However, this approach was not further investigated as the studies from Section 5.1 showed that
convergence in the outer loop was achieved rapidly while the inner loop needed much more
iterations due to the strong coupling between ECM deformation and tumor growth.
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Figure 4.8: Algorithm for one time step of monolithic-partitioned scheme (adapted from the au-
thor’s publication [135])

4.4.3 Monolithic-Partitioned Scheme

As a first improvement to the partitioned algorithms, a hybrid monolithic-partitioned scheme
similar to [212, 271, 272] can be devised. As mentioned above, the strongest coupling is present
for the poro-elasticity sub-problem. Thus, most of the computational time is spent in resolv-
ing the coupling between the structural deformation and the cell respectively fluid flow. Hence,
in a first step, the nonlinear coupling between these two fields (4.121) and (4.122) (plus the
1D problem (4.124)) can be resolved monolithically, while a partitioned scheme is employed
for the coupling with species transport. The corresponding algorithm is depicted in Figure 4.8.
Compared to the nested-partitioned scheme of Figure 4.7, the inner loop between fluid flow and
structural deformation has been replaced by a monolithic coupling. Now, a Newton scheme

OR® OR® 0 i

od® R "Ad? i+1 R® i
HRIEALY]  gRIERLY]  gRIEALY] i hi]
8d5i 81b[t’hjl’vl 6p? AII)A[ U 7U] - _ R{) :
oR" oR" OR" Apv ﬁ
45 At hlol ) L 1,k‘
od ol o n+1k nt n+1,k
[d° o d° i Ad? i+1
l|,[1t,h,l,v] _ Ib[t,hm] + |Aw [t,hl0]
) b P
P n+1,k P n+1,k Ap n+1.k
(4.135)

is applied to simultaneously solve for the unknown nodal displacements d; , , ;, homogenized

fluid primary variables 1p£ffi{’,§ and 1D nodal pressures p2 1, Hence, the single-field Newton

schemes (4.126) and (4.130) are replaced by a monolithic approach. Due to the linearization of
the sub-problems with respect to the primary variables of the other field, additional off-diagonal
blocks in the monolithic system matrix on the left hand side of (4.135) are present, for instance,
the derivative of the solid residual R* w.r.t. the primary variables Ib[t’h L of the homogenized
porous medium system and vice versa. As the residual of the structure does not directly depend
on the 1D pressure, the corresponding off-diagonal coupling block is empty. The monolithic
system is solved with a Newton-Raphson algorithm until convergence is achieved and its solu-
tion is then applied to the 1D-3D species transport problem (4.123) and (4.125), which is again
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Figure 4.9: Algorithm for one time step of fully-monolithic scheme (adapted from the author’s
publication [135])

solved by its Newton scheme (4.131). The calculated species solution is transferred to the poro-
elasticity problem and the iteration is continued until convergence. The convergence check for
the partitioned scheme is given by (4.132) as before. Relative increments and the residual crite-
rion defined in (4.134) are employed to assess convergence of the species field and the monolithic
Newton scheme (4.135) with tolerance e defined by (4.133).

Remark 4.10. Via the deformation of the surrounding tissue, the residual of blood flow in the
embedded vasculature R depends on the ECM deformation d°. So far, this contribution is not
consistently linearized w.r.t. the deformations. The corresponding submatrix in (4.135) is instead
set to zero:

X))

OR

ad*
Neglecting this term did not show any significant influence on the convergence of the Newton
scheme for typical deformations occuring during tumor growth.

=0 (4.136)

4.4.4 Monolithic Scheme

Finally, the coupled nonlinear system (4.121)-(4.125) can be solved with a fully-monolithic al-
gorithm resulting in the following Newton scheme
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(4.137)
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with a corresponding 5 X 5 block structure of the monolithic tangent matrix. Compared to the
monolithic porous medium system (4.135), additional off-diagonal matrices have been added
as well as the main-diagonal tangent matrices of the 1D-3D coupled species problem. Note
also that several zero off-diagonal block matrices reflect the fact that no coupling terms are
present between different fields, e.g., structural deformation is not directly coupled to 1D and
3D species transport and the same applies to blood flow in the 1D discretization. The fully-
monolithic algorithm of Figure 4.9 requires a solution of the monolithic Newton scheme (4.137)
for each time step until the desired tolerance is met. For that, residuals in RMS norm (4.134) as
well as relative increments (4.133) are employed with the Newton loop.

Remark 4.11. Again, the linearization of the blood flow equation on the embedded 1D domain
and, additionally, species transport on the 1D domain w.r.t. the displacements is not consistently
done and the respective contributions in (4.137) are set to zero:

oR" IR

Neglecting these terms did not show any significant influence on the convergence of the Newton
scheme for typical deformations occuring during tumor growth. In addition, the weak form of
species transport in the embedded vasculature (4.81) including the exchange term (4.83) and
its counterpart (4.73) acting on species transport in the tissue domain depend on the radius
of the embedded domain. If blood vessel diameter adaptation in the form of (3.101) or the
more general form of (3.104) is considered, the diameter depends directly on blood pressure
or fluid primary variables of the surrounding tissue domain. The respective linearizations of the
residuals R and R w.rt. the discrete 1D pressure p® and the 3D primary variables """
are also neglected. In preliminary runs, a minor deterioration of the convergence behaviour of
the Newton scheme was observed.

4.4.5 Efficient Solvers for Large Linear Systems of Equations with
Block Matrix Structure

For each Newton step of the monolithic algorithm illustrated in Figure 4.9, a linear system of
equations with 5 x 5 block pattern shown in Figure 4.10 has to be solved. However, also the
partitioned schemes require the solution of block matrix-type systems due to the present 1D-3D
coupling. For instance, the 1D-3D coupled porous medium system is contained in the system
of Figure 4.10 (with main-diagonal blocks [2,2] and [4, 4] and off-diagonal coupling blocks
[2,4] and [4,2]) as well as the 1D-3D coupled species transport system (with main-diagonal
blocks [3, 3] and [5, 5] and off-diagonal coupling blocks [3, 5] and [5, 3]). The same applies to the
monolithic-partitioned scheme with corresponding 3 x 3 sub-system. The sparsity pattern de-
picted in Figure 4.10 is representative of the studied 1D-3D problems where the one-dimensional
discretization usually has considerably less nodes than the 3D mesh. Only partitioned algorithms
for the avascular tumor growth model and the vascular tumor growth model with homogenized
representation of the vasculature do not require the solution of these block matrix systems but of
the single block matrices [1, 1], [2, 2] and [3, 3] from Figure 4.10. For all other model types and
algorithms, at least one such block matrix system has to be repeatedly solved in a corresponding
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Figure 4.10: Typical sparsity pattern of monolithic system (4.137). Submatrices from (4.138) are
set to zero due to missing linearizations.

Newton loop. Efficient solvers for these types of linear equations are vital for the performance of
the tumor growth models since the linear solver time usually constitutes a considerable amount
of the total computational time.

The distinct fields represented by their respective sparse main- and off-diagonal blocks in-
troduce their different physical characteristics and parameters into the system often leading to a
bad conditioning of the global system matrices. Hence, standard iterative linear solvers for sparse
matrices such as the generalized minimal residual method (GMRES) cannot be applied without
sophisticated, problem-specific preconditioners. Powerful preconditioners are a major factor for
improving the performance of the presented algorithms. The preconditioners employed in this
thesis are based on the work of Verdugo and Wall [263], where an efficient solution framework
for an arbitrary number of fields has been developed and applied to thermo- and fluid-structure
interaction. This implementation has been re-used here. Recently, it has also been applied to a
coupled model of the human lung [264] and to three-dimensional, coupled finite element models
of lithium-ion cells [72].

A detailed description of these preconditioning techniques can be found in [72, 263, 264].
Here, only the general idea behind them is outlined briefly. Basically, they consist of a block
Gauss-Seidel (BGS) method combined with an algebraic multigrid (AMG) method. Two vari-
ants were presented by Verdugo and Wall [263]: The first variant is termed BGS(AMG) method
and consists of an outer BGS loop to uncouple the respective subsystems, in the most general
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case the five fields of (4.137) and Figure 4.10. Then, each of the individual fields is separately
preconditioned using the AMG method with corresponding V-cycle. However, the coupling be-
tween the physical fields is only enforced on the finest AMG level through the outer block
iteration and not on its coarser representations of the AMG hierarchies which are independent of
each other. Therefore, Verdugo and Wall [263] developed a second variant termed AMG(BGS)
preconditioner based on earlier work of Gee et al. [88]. This method can be interpreted as the
reversed version of the BGS(AMG) scheme. First, an outer AMG hierarchy for the entire system
is constructed and on each of the AMG levels a BGS iteration is performed. Thus, all AMG
levels are inherently coupled in contrast to the BGS(AMG) method where only the finest level
is.

Both methods have different advantages and use-cases as summarized by Fang et al. [72]:
The BGS(AMG) method is comparably easy to implement in contrast to the more intricate
AMG(BGS) preconditioner. Nevertheless, due to its intrinsic coupling also on coarser levels,
the latter one usually performs better for strongly coupled problems. Vice versa, for weakly cou-
pled problems its overall larger computational effort may lead to a reduced efficiency. In these
cases, the BGS(AMG) scheme might already be sufficient. Furthermore, it offers a more flexible
environment for fine-tuning the method because the single AMG solvers can be tailored to the
specific field and each field can have a different number of levels, which is not possible with the
AMG(BGS) variant. In summary, both methods offer a versatile and robust tool to solve large
block matrix-type systems of equations. Both variants have successfully been employed for the
tumor growth model in combination with the GMRES iterative solver but a detailed performance
comparison of the preconditioners is not the main focus of this thesis.
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This chapter contains several numerical examples of increasing complexity to showcase the ca-
pabilities of the developed tumor growth framework. All model variants are employed to il-
lustrate their different use cases. The presentation of the single examples mirrors the develop-
ment of the distinct models in Chapter 3: The performance of the different coupling schemes
is investigated with an avascular example in Section 5.1. Then, two cases with homogenized
representation of the vasculature follow. One is employed to illustrate the interplay between an-
giogenesis and tumor growth in Section 5.2 and the second one to study nanoparticle-based drug
delivery and hyperthermia in Section 5.3. The model variant with discrete vasculature is used
in Sections 5.4 and 5.5. In the latter one, a special focus lies on the developed methodology for
blood vessel compression, collapse and regression. Finally, the hybrid version and its capabil-
ity to induce angiogenesis from a pre-existing blood vessel network is studied in more detail in
Section 5.6.

However, these examples do not represent a validation of the group of models with clinically
relevant data. Rather, they should be understood as a validation of the models themselves in the
sense that they are capable of all the features introduced in the previous chapters. A further val-
idation to bring them towards clinical applicability was beyond the scope of this thesis which
mainly focuses on their derivation and computational implementation. Nevertheless, it has to be
emphasized that the avascular variant was partly validated and its parameters were fit with exper-
imental data on multi-cellular tumor spheroids (MTSs) by Sciume et al. [230, 233]. Moreover,
the following cases have been designed to replicate physiological phenomena occurring during
tumor growth and parameter values, for which data is available, are based on literature. When-
ever possible, the results are verified with known empirical quantities and relationships such as
the IF pressure range, oxygen and drug distributions, the time scales of angiogenesis or specific
tumor growth patterns. An extensive comment on the necessary next steps for a validation of the
model with in-vitro or in-vivo studies is given in Chapter 7. To enhance the readability of this
chapter without too many technical explanations, the empirical mass transfer relationships and
the model parameters are summarized in Appendix B and C.

5.1 Performance Comparison between Different
Monolithic and Partitioned Coupling Schemes

In this section a concise evaluation of the different coupling schemes introduced in Section 4.4
is performed. It has previously been published in the author’s article [135]. Here, the nested-
partitioned coupling scheme, which was not considered in the original publication, is additionally
investigated. For that, all calculations have been repeated with a more recent version of the
computational framework.
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Figure 5.1: Schematic overview of avascular model and mass transfer relations

The radial growth of a micro-metastasis over 120 hours in host tissue within a deformable
ECM is chosen as a simple yet representative benchmark. Similar cases have been studied by
Sciume et al. [232, 233] and the computational setup and model variant is based on these con-
tributions. Micro-metastases are often compared to the common experimental in-vitro model of
MTSs to study cancer progression and response to therapy even though several conceptual dif-
ferences exist, e.g., the lack of an initial ECM and other stroma components [176]. After being
seeded in a petri dish, cells form spherical clusters, the so-called MTSs. As observed during the
initial avascular growth of a micro-metastasis and in intercapillary tumor microregions, a prolif-
erative outer rim emerges and necrosis may occur towards their center due to a lack of nutrients.
As no vascular network is present after seeding of the micro-metastasis and in corresponding
MTS experiments, the avascular model according to the overview in Figure 5.1 is used. Three
phases (TCs, HCs, IF) are present in the pores of the ECM. In addition, two species are con-
sidered, namely oxygen in the IF and NTCs as part of the TCs. Their respective mass fractions
are denoted as w”! and w™V'*. Here and in the following, it is assumed that TCs partition into two
dominating species, namely, NTCs and LTCs. Then, the LTC mass fraction does not have to be
explicitly solved for as it is simply given by w’? = 1 — w™? from the sum of species mass frac-
tions (2.22). Without loss of generality, oxygen is the sole nutrient considered in all model types
whose local level regulates tumor growth, hypoxia and necrosis. Further nutrients can simply be
added as additional species in the IF. One phase mass transfer relationship corresponding to the
growth of the TC phase is present. Two more species mass transfer relationships, one accounting
for consumption of oxygen by LTCs and one accounting for necrosis, are considered. The exact
expressions are given in Appendix B along with further explanations.

Figure 5.2 depicts geometry, initial and boundary conditions of the benchmark example used
throughout this section. For symmetry reasons only a 9° x 9° segment of the spherical 3D geom-
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Boundary conditions:

St =0, 8" =0.5,
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Figure 5.2: Geometry, initial and boundary conditions of the 3D benchmark problem (not to
scale). Figure taken from the author’s article [135].

etry with radius 0.4 mm is considered with appropriate boundary conditions on its side faces. If a
boundary condition for a primary variable is not explicitly specified, a zero Neumann boundary
condition is automatically assumed here and in the following examples. There is an inner region
with radius » = 0.03 mm with an initial TC saturation of S* = 0.5 and a larger outer region
where it is zero. 250 trilinear 3D elements are employed in radial direction resulting in a system
consisting of in total 9632 degrees of freedom (structure, fluid and species). Before the actual
simulation with 720 time steps is started, pressures are linearly increased from p’, p*, p" = 0 in
10 steps until the desired saturations in the sub-domains as shown in Figure 5.2 are reached. This
is necessary since otherwise the solid pressure p® would act immediately at ¢ = 0. This caused
an unstable behaviour at the beginning of the simulation such that without this initialization pro-
cedure sometimes no convergence was achieved in the first time step. During the initialization,
the structure deforms slightly such that also the porosity increases from the initial value €, to a
value of € ~ 0.8 depending on the material parameters.

The Saint Venant-Kirchhoff material model is employed for the ECM. The parameters of the
benchmark problem have been taken from [233, Table 3, 4, 5] and are here collected in Tables
C.1,C.2,C.4 and C.5. A backward Euler scheme, that is, § = 1, is employed for time discretiza-
tion with 720 steps of At = 600s. The BGS(AMG) method is applied for preconditioning the
monolithic systems (4.135) and (4.137) (without contributions from homogenized and discrete
vasculature as the avascular model is studied) in combination with a GMRES iterative linear
solver. For solving the linear systems of equations of the single fields in the partitioned schemes,
also the GMRES method with AMG preconditioners is used. A strict outer convergence crite-
rion for the monolithic and partitioned schemes of 1 x 107 is employed, which implies that the
single field tolerances for convergence according to (4.133) are e = 1 x 10~%. For the nested-
partitioned scheme depicted in Figure 4.7, the convergence criterion for the inner loop is chosen
as 1 x 1077 such that it is one order of magnitude smaller than the one of the outer loop. For

123



5 Numerical Examples

performance comparison all simulations were run in parallel on two cores of an Intel Xeon E5-
2690 v4 dual socket system which was specially configured to allow reliable time measurements
(cluster-on-die mode and forced CO state).

The primary interest of this section is to assess the efficiency of the proposed algorithms,
which is why only results concerning the performance of the schemes are shown. Figure 5.3
depicts the number of coupling iterations, i.e., the number of Newton steps for the mono-
lithic scheme and the number of (outer) partitioned iterations for the partitioned algorithms,
respectively. The monolithic, monolithic-partitioned and nested-partitioned scheme exhibit a
very similar convergence behaviour with three coupling iterations on average compared to the
sequential-partitioned one, which needs a mean of twelve partitioned steps per time step to con-
verge. Around time step 300 a necrotic core starts to develop, which means that an additional
species, namely, necrotic cells are present. Therefore, the coupling between the fluid phases and
the species becomes stronger, such that more partitioned iterations are necessary, which is why
the partitioned schemes show a peak for their respective number of coupling iterations. Still,
the fully-monolithic scheme converges within three Newton iterations throughout the simulation
except for some time steps at the beginning of the simulation. The number of coupling itera-
tions is closely coupled to the CPU time per time step for monolithic, monolithic-partitioned
and nested-partitioned scheme as shown in Figure 5.3. Evidently, the fully-monolithic scheme is
the most efficient one followed by the monolithic-partitioned solution procedure, the sequential-
partitioned scheme and, the least performant one, the nested-partitioned scheme.

The monolithic-partitioned variant is less efficient in terms of computational time than the
fully-monolithic one even if the same number of coupling iterations is required since more linear
solver calls and element evaluations are needed in total. The small amplitudes in computational
time are related to how often the monolithic fluid-structure system (4.135) has to be evaluated
for each time step, which differs slightly for some steps.

Concerning the two partitioned schemes, the sequential-partitioned one is faster by a factor
of approximately 1.8 for the investigated case. This is due to the large number of inner fluid-
structure iteration steps (approximately 10) per outer partitioned iteration step for the nested-
partitioned coupling. Thus, this algorithm requires on average 3 x 10 nonlinear solver calls for
both the fluid and the solid field per time step and three nonlinear solver calls for species transport
per time step. Thus, on average 63 single-field nonlinear solver calls per time step are made. By
contrast, the sequential-partitioned scheme requires only a total of 36 nonlinear solver calls (12
per time step for all three present fields) and, therefore, out-performs the other variant since the
nonlinear solver time of the different fields is almost equal in the considered numerical example.

Still, both schemes which resolve the fluid-structure coupling monolithically are far superior
than the partitioned ones with an average computational time per time step of 1.3s and 2.0s
compared to 6.0s and 10.9s, respectively. Clearly, this is due to the strong coupling between
fluid flow and structural deformation which is much stronger than the coupling with species
transport. This is also evident from the corresponding number of required partitioned steps (three
outer steps vs. 10 — 12 inner steps or sequential outer steps). It was also tried to induce a small
compressibility of the fluid and solid phases of approximately 10% by reducing their bulk moduli
to 10 000 Pa to test if a slight compressibility was beneficial to the convergence of the partitioned
schemes but only an insignificant gain in performance could be achieved. Only for even smaller,
yet unrealistic bulk moduli, a substantial effect was present.
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Figure 5.3: Number of coupling iterations and calculation time per time step. Figure based on the
author’s article [135], results for nested-partitioned scheme are additionally shown.

For a rigid ECM, i.e., a non-moving mesh (not shown here), the performance of a monolithic
algorithm for fluid-species coupling was also compared to a corresponding partitioned algorithm.
For that, the inner loop of the nested-partitioned scheme from Figure 4.7 respectively the solution
of the solid field for the sequential partitioned scheme from Figure 4.6 may be omitted. In that
case, the monolithic algorithm was still faster, albeit only by a factor of 1.7, which once more
proves that resolving the coupling between solid and fluid phases is the most challenging part.
Hence, this factor seems to be the additional performance gain for resolving the fluid-species
coupling with a monolithic scheme. Actually, it is also almost identical to the difference in
performance between the fully-monolithic scheme and the monolithic-partitioned scheme from
above for a deformable ECM.

To further evaluate the efficiency of the distinct approaches, studies on three key parameters
were conducted. The results are given in Figure 5.4, where on the left side the respective mean
number of coupling iterations per time step and on the right side the mean computational time per
time step is depicted. The first investigated parameter is the Young’s modulus of the ECM which
is varied while all other parameters are fixed to the values of Tables C.1, C.2, C.4 and C.5. The
performances of the different schemes are shown in Figure 5.4a. A softer ECM effects a stronger
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coupling between the fluid and solid phases. Consequently, the performance of the sequential-
and nested-partitioned scheme deteriorates considerably as shown by the average number of cou-
pling iterations and the average CPU time per time step in Figure 5.4a. While the number of outer
coupling iterations for the latter one does not change, the number of inner fluid-structure interac-
tions rises substantially, which explains the worse performance in terms of computational time.
Increasing the stiffness of the ECM has an opposing effect leading to smaller deformations and,
hence, a weaker coupling, which can more easily be resolved by the partitioned algorithms. By
contrast, the performance of the monolithic and monolithic-partitioned algorithm is unaffected
by the choice of the Young’s modulus.

Interestingly, the number of monolithic Newton steps decreases even marginally for a softer
ECM. This hides the effect that the GMRES iterative linear solver with BGS(AMG) precon-
ditioner needs more iterations and more computational time to resolve the stronger coupling
between fluid and structure phases when the ECM is less stiff. In that regard, it is important
to emphasize that for systems of larger size than considered here a suboptimal scaling of the
employed preconditioner could slightly deteriorate the performance of the monolithic schemes.
Even under these circumstances the partitioned algorithms with their large number of coupling
iterations can certainly not compete with the monolithic ones.

A further study was conducted on the intrinsic permeability of the ECM. Results are depicted
in Figure 5.4b. Again, all other parameters are equivalent to Tables C.1, C.2, C.4 and C.5 and
the Young’s modulus is re-set to £° = 400 Pa. A similar picture as in Figure 5.4a emerges.
Lower permeabilities lead to a stronger coupling between fluid phases and the solid phase since
larger pressures and pressure gradients develop in the computational domain. The lower the per-
meability of the ECM, the less efficient the partitioned schemes while both monolithic schemes
do not show any change in performance. As before, three coupling iterations are needed on
average per time step for a wide range of permeabilities while the computational time for the
iterative linear solver increases minimally due to the stronger coupling for lower permeabilities.
The computational time of both partitioned algorithms decreases for higher permeabilities, how-
ever, the monolithic schemes are still faster by at least a factor of 2.6 and 1.8 compared to the
sequential-partitioned scheme, respectively.

Finally, the influence of the time step size At was investigated. This is due to the fact that
Turska and Schrefler [258] found a lower limit for the ratio of time step size and element length
At/h? to guarantee convergence of a partitioned solution scheme for a consolidation problem of
similar type. The existence of this lower limit for a given set of material parameters implies that
the time step size cannot be reduced arbitrarily if the mesh is not refined at the same time [233].
With the aim of triggering this instability, a study on the time step size was performed while leav-
ing the material parameters and the mesh unchanged. The results are depicted in Figure 5.4c. The
behaviour predicted by Turska and Schrefler [258] can be reproduced in this case. Below a time
step size of At = 600 s the number of coupling iterations for the sequential-partitioned scheme
and the number of inner coupling iterations for the nested-partitioned scheme starts to increase.
This indicates that the partitioned schemes become unstable for the given material parameters
and discretization. Still, convergence could be achieved even for the smallest time step size con-
sidered in Figure 5.4c, which is probably due to the employed Aitken relaxation. Both mono-
lithic algorithms exhibit a completely different behaviour. If the time step size is decreased, the
Newton algorithm converges in less iterations and vice versa, just as expected. As also a larger
number of outer coupling iterations is needed for the nested-partitioned scheme, the same effect
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Figure 5.4: Performance of coupling schemes depending on different parameters. Figure based
on the author’s article [135], nested-partitioned scheme is additionally investigated.
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can be observed. It is not present for the sequential-partitioned scheme because the number of
coupling iterations is dominated by resolving the fluid-structure coupling. Nevertheless, even for
the largest time step of At = 4800 s, it cannot compete with the monolithic algorithms.

In summary, the fully-monolithic coupling is the most efficient scheme for a wide range of
parameter sets. For both monolithic schemes the computational cost is nearly independent of
material and simulation parameters. In the context of tumor growth, where many parameters
might be unknown or uncertain, such an efficient algorithm is especially advantageous. How-
ever, only a relatively small numerical example with a comparatively low number of degrees
of freedoms was studied. Nevertheless, it is still of high relevance as it can be employed to
perform sensitivity analysis of the model, see the Master’s thesis of Rodenberg [219] for pre-
liminary investigations, or as a low-fidelity approximation of a more advanced model variant
for efficient uncertainty quantification [22]. Both cases require the repeated evaluation of such a
smaller numerical model. Thus, the overall performance of the algorithms can make a consider-
able difference here. For larger examples, the scalability of the monolithic algorithms depends
strongly on efficient preconditioners, whose performance has been evaluated in [72, 263, 264].
The excellent scalability of both variants was also observed in the larger and more complex ex-
amples investigated in the following sections. There, also the AMG(BGS) preconditioner which
performs better than the BGS(AMG) variant for strongly coupled problem is employed.

Despite the fact that the computational effort of the nested- and sequential-partitioned so-
lution procedures might become prohibitively large for certain parameter combinations, they
have proven to be remarkably stable in combination with Aitken relaxation. In further studies
it was found that no convergence was possible without any relaxation. If a constant relaxation
parameter of w;, = 0.1 was chosen in every partitioned step k instead of the recursive definition
with Aitken relaxation from (4.129), on average three times more partitioned steps were needed
to converge. For larger constant relaxation parameters, no convergence was possible. This un-
derlines the importance of the applied procedure with a dynamic adaptation of the relaxation
parameter. Obviously, the inferior performance of the partitioned algorithms can be attributed
to the strong coupling between incompressible fluid and solid phases. The performance of the
sequential-partitioned algorithm was better than the nested-partitioned one in all examples con-
sidered here. However, the latter one might still have a specific use case if the solution time of
the (non-)linear solver for species transport dominates the overall solution time, for instance,
if a system consisting of a very large number of species is analysed. This could easily be the
case as numerous bio-chemical species are present and relevant during tumor growth. In that
situation, the lower number of evaluations of the species transport subproblem due to the lower
number of (outer) partitioned steps compared to the sequential-partitioned variant could make
the nested-partitioned algorithm competitive.

If arigid ECM is considered, the partitioned algorithm is still slower than the fully-monolithic
one but might be worth considering for a fast implementation of the model. It has to be noted,
though, that the comparison was restricted to a relatively simple example without considering
the vascular system. In more complex scenarios the partitioned algorithms are likely to perform
even worse especially when considering angiogenesis, which represents an additional coupling
between species transport and the vascular volume fraction through chemo- and haptotaxis. Fi-
nally, the monolithic-partitioned algorithm could be a sensible compromise between compu-
tational efficiency and implementational effort for moving meshes. Still, the fully-monolithic
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Figure 5.5: Schematic overview of vascular model with homogenized representation of the vas-
culature and mass transfer relations

algorithm is the most efficient one which is why it will be employed in all subsequent numerical
examples.

5.2 Two-dimensional Growth of a Vascular Tumor
Including Angiogenesis

In this section the growth of a vascular tumor including angiogenesis will be studied by means of
a simplified two-dimensional numerical example. It has been designed to elucidate the interplay
between tumor growth and angiogenesis in the vascular model with homogenized representa-
tion of the vasculature. In that context, the homogenized vasculature may be understood as the
neo-vasculature (NV) formed through the process of angiogenesis. The example was published
previously in the author’s publication [135]. The subsequent description of its setup and the in-
vestigation in Section 5.2.1 is taken from the aforementioned paper. Then, two further effects
are included which were not considered in [135], namely haptotaxis in Section 5.2.2 and blood
vessel compression by the growing tumor in Section 5.2.3.

Since the focus lies on modeling angiogenesis in combination with tumor growth, blood flow
and oxygen transport in the homogenized vasculature is not considered. Rather, blood pressure
and oxygen mass fraction in the homogenized vasculature are set constant. This still implies that
the interrelation between angiogenesis and tumor growth, namely, the more efficient supply with
nutrients, and leakage of fluid from the vasculature into the IF leading to increased interstitial
pressure, may be examined. Only transport and flow in the vasculature is not taken into account.
In summary, the employed model type in this section is the vascular tumor growth model with
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Figure 5.6: Geometry, initial and boundary conditions of the 2D angiogenesis example (not to
scale). Figure taken from the author’s article [135].

homogenized representation of the vasculature from Section 3.3 without blood flow, that is,
without equation (3.47).

A schematic overview with the respective phases and species is given in Figure 5.5. Now,
the homogenized neovasculature is present as an additional porous network inside the ECM. In
addition to the term accounting for tumor growth, two supplementary phase mass transfer rela-
tionships act on the IF. These are the leakage of fluid from the neovasculature due to abnormal
vessel characteristics given by (B.2) and the uptake of IF by the lymph system given by (B.4).
Functioning lymph vessels remove excessive liquid as well as waste products. However, in many
tumors this mechanism is impaired since the proliferating cancer cells compress or even collapse
the lymph vessels [36, 103, 115]. Combined with the increased outflow due to the irregular and
leaky blood vessels this plays a major role for interstitial hypertension in tumors [36, 103, 115].
Until now, the lymph system is not explicitly present in the model as a proper phase but it is
assumed that it continuously drains excessive liquid from the IF throughout the domain with the
exception of the tumor region. A straightforward extension (and one which is actually possible
with the current version of the computational framework) would be to employ a lymphatic den-
sity or volume fraction analogous to [287]. It might then also be possible to model the evolution
of the lymph vessel system with a similar equation as (3.51) to take also lymphangiogenesis [4]
into account.

Three species are present, namely oxygen in the IF (and in the HV where its mass fraction is
set to a constant value), TAF in the IF and NTCs as part of the TCs. In Section 5.2.2 a further
species, fibronectin (FN), which is modeled as a macromolecule of the solid phase, is added.
The transvascular exchange of oxygen from the HV into the IF is modeled with the simpli-
fied transvascular oxygen exchange term (B.12). TAFs are produced by the LTCs if the nutrient
mass fraction falls below the hypoxic limit, see (B.13). Currently, the uptake of TAFs through
endothelial cells [225] has not been included, however, the extension is straightforward if the
results indicate that this term is necessary. The previously introduced terms for oxygen con-
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sumption by LTCs and necrosis are re-used. As a simplification of the mass transfer relations for
species, it is assumed that fluid drainage through the lymph system does not influence the mass
balance of the species dispersed in the IF, i.e., oxygen and TAF, which implies

il—ily - =y
M — ot (—Mdmm) =0. (5.1)

If interstitial liquid is drained, the corresponding species is taken up in equal measure by the
lymph system.

A Neo-Hookean material law whose material parameters are given in Table C.1 is employed
for the ECM. The additional parameters for the other phases and species are given in Tables C.2,
C.3,C.4, C.5 and C.7 together with further explanations.

The geometry of the example including initial and boundary conditions is sketched in Fig-
ure 5.6. A circular tumor with initial radius » = 0.025 mm is growing in healthy tissue. Similar
cases have been studied by Macklin et al. [158] and Santagiuliana et al. [225] for their models
with homogenized and discrete vascular network, respectively. It is assumed that angiogenesis
occurs from a pre-existing vessel (which is not explicitly modeled) on the right side of the do-
main. Here, a Dirichlet boundary condition for the homogenized vasculature volume fraction of
£¥ = (.1 has been set to trigger angiogenesis from the position of the assumed blood vessel. The
left, bottom and right boundary of the domain are fixed and appropriate boundary conditions are
applied to make use of the symmetry of the problem. Note that the oxygen mass fraction in IF
is not prescribed on any boundary of the domain but it is assumed that it is solely provided by
the developing neovasculature via transcapillary exchange. The oxygen mass fraction in the NV
and the blood pressure therein are fixed to w™? = 4.2 x 107% (corresponding to fully oxygen-
saturated blood plasma) and p” = 3000 Pa, respectively. The setup is designed in this way as it
allows to illustrate the capabilities of the model with homogenized vasculature including angio-
genesis. In more biologically realistic scenarios such a large initially non-vascularized domain
would not occur.

The domain is discretized with 240 x 120 bilinear elements in space. The time step size is
At = 1800s for the one-step-theta scheme with # = 0.52 over 1152 time steps, i.e., the total
simulated time is 24 days.

5.2.1 Investigation of the Interplay between Tumor Growth and
Angiogenesis

For this example, the chemotactic coefficient y,, which governs the migration of ECs towards
the tumor and, thus, the formation of the NV, and the transcapillary diffusion coefficient over the
vessel wall thickness Dy./t, which governs the availability of oxygen, are the key parameters.
Three different combinations of these parameters as given in Table 5.1 are studied to exemplify
their effect on the model. In this section, haptotaxis and blood vessel compression and regres-
sion are not considered to investigate only the dynamic interrelation between chemotaxis-driven
angiogenesis and tumor growth.

The evolution of the living tumor cell volume fraction e;p¢ = 5° <1 —wh Z) for case 2 is

depicted in Figure 5.7, where also the vascular volume fraction " is shown via contour lines.
After six days a round tumor emerges while the neovasculature starts to grow slightly into the
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Figure 5.7: Evolution of living tumor cells and neovasculature (contour lines) for case 2. Figure
taken from the author’s article [135].

Quantity Symbol Value Unit
Chemotactic coefficient Xo case 1: 5 x 1073 m?s7!

case2: 1 x 1072 m?s7!
case 3: 2 x 1072 m?s7!
Transcapillary diffusion coefficient over wall thickness D;./t  case 1:2x 1075 ms™!
case 2: 1 x 10™° ms~!
case 3: 5 x 107 ms7!

Table 5.1: Parameters for angiogenesis and transvascular oxygen exchange for the three investi-
gated cases. Table taken from the author’s article [135].
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Figure 5.8: Results of necrotic cells, oxygen in IF, TAF and interstitial pressure for case 2 at
t = 24d. Figure taken from the author’s article [135].

domain and provides oxygen on its right side. This actuates the tumor to evolve unsymmetrically
towards the source of oxygen to the right after twelve days, see Figure 5.7b. A half-moon shape
of LTCs emerges since in the region further away from the blood vessel, necrosis sets in, see
also Figure 5.8a. The tumor continues to progress towards the neovasculature over the course of
the simulation, see Figures 5.7c-5.7d. TAFs are constantly produced by the hypoxic TCs. After
twelve days the chemotactic response of endothelial cells to TAF starts to dominate the growth
of the neovasculature towards the tumor, which results in the shape shown in Figures 5.7¢-5.7d.
Most of the oxygen is needed by proliferating TCs at the symmetry axis of the domain, hence,
here most of the TAFs are produced, see Figure 5.8c, which explains that the neovasculature
grows faster in the region close to the symmetry axis. Finally, after 24 days a hot spot of vascu-
larization with a large number of LTCs emerges. This is consistent with experimental findings
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Figure 5.9: Evolution of living tumor cells and neovasculature (contour lines) for cases 1 and 3.
Figure taken from the author’s article [135].

which indicate that angiogenesis takes approximately 20 days [36]. Qualitatively, these results
are also in good agreement with the similar angiogenesis example of Macklin et al. [ 158].

In addition, the necrotic cell volume (or mass) fraction after 24 days extc = eS'w? tis de-
picted in Figure 5.8a. As already mentioned before, the necrotic region develops on the left in
the zone further away from the emerging vasculature. The oxygen mass fraction in the IF w"' is
plotted in Figure 5.8b. A large area with a very low oxygen concentration exists in the left part
of the domain. During growth the tumor consumes almost all the oxygen there while diffusion
of oxygen generated by the pre-existing blood vessel and beginning angiogenesis is not enough
to sustain its rapid growth. This causes the development of the aforementioned necrotic region.
On the right side of the domain an oxygen-rich region is present due to transcapillary exchange
of oxygen. Finally, the interstitial pressure is shown in Figure 5.8d. An increased pressure can
be observed in the vascular tumor region. This is due to the leakage of fluid from the irregu-
lar neovasculature into the domain. Outside of the tumor region the lymphatic system drains
this excessive fluid via (B.4). However, TCs compress the lymph vessels limiting or completely
inhibiting drainage. Therefore, IF accumulates with the corresponding pressure increase. This
means that there is a net outflow of IF from the vascular tumor region. The increase of intersti-
tial pressure has been physiologically observed and identified as critical to drug delivery to the
tumor [103, 114, 115]. The vascular model with the inclusion of angiogenesis and appropriate
inter-phase exchange terms enable the simulation of this phenomenon. These improvements will
be employed in Section 5.3 to study nanoparticle transport and hyperthermia treatment in the
tumor micro-environment by means of the homogenized vascular tumor growth model similar
to [281, 282].

So far, only the parameter set of case 2 has been examined. Now, results of all cases are
compared. For case 1 and 3, they are given after 24 days in Figures 5.9a and 5.9b, respectively.
The parameter sets from Table 5.1 were chosen such that two distinct scenarios evolve. In the first
case more oxygen is provided by the vasculature while the sensitivity of endothelial cells to TAFs
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is decreased. This results in faster tumor growth compared to case 2 and 3 since more oxygen
is available. At the same time angiogenesis occurs much slower due to the lower chemotactic
coefficient and the overall higher oxygen concentration with less hypoxic cells producing TAFs.
For case 3 the exact opposite behaviour can be observed. Less oxygen is present which slows
down tumor growth. Vice versa, in combination with the higher chemotactic coefficient, this
leads to faster angiogenesis than in case 1 and 2.

For a quantitative comparison of the three cases, the present volume fractions have been eval-
uated at the horizontal symmetry axis. Volume fractions of extracellular matrix (ECM), inter-
stitial fluid (IF), healthy cells (HC), living tumor cells (LTC), necrotic tumor cells (NTC) and
neovasculature (NV) are shown in Figure 5.10. As already evident from the two-dimensional
plots from above, tumor growth progresses fastest for case 1 while the best and quickest vas-
cularization is observed for case 3 due to the chosen parameters as explained before. However,
also the largest necrotic zone develops for case 1 since the larger tumor consumes more oxygen
which is insufficiently provided in the area further away from the tumor. In the early stages of
growth blood vessels start to grow into the domain and displace HCs, IF and to a certain extent
also ECM. This is due to the appearance of the blood pressure p in the definition of the solid
pressure (3.57). As the domain is stretched (. > 1) in this region, the ECM volume fraction de-
creases according to (3.65) and (3.66). If a rigid ECM had been assumed, the volume fraction of
the ECM would have been unaffected by angiogenesis. The inclusion of the homogenized vas-
culature as an additional pore space allows to model the interaction between porosity, ECM and
NV volume fraction. Later, excessive tumor and IF pressure increase the porosity € of the ECM
in the proliferating zone. This is also due to the fact that an important aspect of tumor growth,
namely, ECM remodeling and deposition [47, 81, 144] has not yet been included. This leads to a
stiffer and denser ECM which enhances cell growth and migration [144] and limits penetration
of macromolecules [149]. One further effect of the increased rigidity of the solid phase would
be a decrease in stretch in the tumor area and, thus, a higher ECM volume fraction. First simple
inclusions of these phenomena in mathematical models can be found in [224, 257].

In the region with especially high tumor and IF pressure, for example around z = 0.2 in
Figure 5.10k, also the neovasculature volume fraction ¥ decreases slightly which is the effect of
the grid velocity divergence term from (3.51) which is positive in this area. In reality, the instable
blood vessels of the neovasculature are likely to be compressed by the tumor in this region and
to regress from the proliferating cells. This effect will be included in Section 5.2.3.

5.2.2 Investigation of the Influence of Haptotaxis

Now, the influence of haptotaxis is investigated by adding the fibronectin species in the ECM.
Thus, the governing equation for a species in the solid phase, that is, equation (2.66) is solved
to obtain the mass fraction of fibronectin throughout the domain. The diffusion coefficient of
fibronectin in the ECM is set to zero as proposed by Anderson [6] based on earlier findings
summarized by [25, 111] who state that fibronecin is bound to the ECM. As described in Sec-
tion 3.3.1.1, haptotaxis in response to fibronectin gradients is incorporated as a haptotactic flux
in (3.50) with constant haptotactic coefficient © which enters the evolution equation of the vas-
cular volume fraction (3.51). Furthermore, the uptake and binding of fibronectin by migrating
endothelial cells [111] is included by a simple uptake term as given in Figure 5.5b. The uptake
term is similar to the formulation of Anderson [6] and stated in (B.14) along with further expla-
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Figure 5.10: Volume fractions at symmetry axis (taken from the author’s article [135])
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Figure 5.11: Evolution of living tumor cells and neovasculature (contour lines) for case 2 includ-
ing haptotaxis

nations. The two additional parameters for the fibronectin species are given in Table C.8 and the
employed haptotactic coefficient in Table C.3. The initial mass fraction of fibronectin is set to
w{® =1 x 1071 and no-flux boundary conditions are assigned on all boundaries of the domain.

Results for the parameter set of case 2 including haptotaxis are shown in Figure 5.11 after 18
and 24 days. Comparing them to the same simulation without haptotaxis (Figure 5.7c and 5.7d),
angiogenesis occurs much faster and the new vascular network migrates further to the left. In
turn, the tumor grows more rapidly due to the increased access to oxygen which accompanies
the better vascularization. Therefore, a much larger area of proliferating cells including not only
the outer rim but also a substantial amount of LTCs further away from the right side emerges after
24 days. Also the values for the vascular volume fraction are approximately 1.5 times higher than
without haptotaxis.

The reason for the more sustained angiogenesis lies in the haptotactic response following the
fibronectin gradient. This is visualized in Figure 5.12 via the mass fraction of fibronectin in
the ECM. The uptake by the growing neovasculature causes the shown distribution with lower
values in areas with a high vascular volume fraction. This induces a fibronectin gradient which,
in turn, leads to increased haptotaxis-driven angiogenesis.

The volume fractions of the present phases as well as living and necrotic tumor cells at the
horizontal symmetry axis are given in Figure 5.11. As stated above, compared to the case without
haptotaxis (Figures 5.10e, 5.10h and 5.10k), a much higher volume fraction of LTCs is present.
In addition, the tumor grows much further to the right as a better vascularization is reached
already after 12 and 18 days and, in general, higher values of the vascular volume fraction are
achieved. The combination of these phenomena leads to a higher solid pressure and increased
deformation of the ECM which can be seen from the low solid phase volume fraction €° as the
ECM is stretched in the tumor area.

This numerical example demonstrates the general influence of haptotaxis leading to increased
endothelial cell migration and, therefore, better vascularization, which in turn facilitates tumor
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Figure 5.12: Mass fraction of fibronectin in the ECM for case 2 including haptotaxis
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Figure 5.13: Volume fractions of components at symmetry axis for case 2 including haptotaxis

growth. Here, this is solely due to the fibronectin gradient induced by uptake of ECs. It is well-
known that further ECM components play an important role for haptotaxis [ 14 1]. Their influence
could be included in further studies for a more realistic model of angiogenesis.

5.2.3 Investigation of the Influence of Blood Vessel Compression
and Regression

Finally, the influence of blood vessel compression and regression on this numerical example is
studied. For that, haptotaxis is switched off again while the empirical collapsing and regression
model (3.68) is now present. This term appears negatively in the right hand side of the evolution
equation for the vascular volume fraction (3.51). The two additional parameters of the blood
vessel compression equation are ¢, and p . Both are given in Table C.3. The blood vessel
collapse threshold is set slightly higher than the lymph vessel collapse threshold as it is assumed
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Figure 5.14: Results for case 2 with blood vessel compression after 24 days

that blood vessels can withstand the compression by the growing tumor for a longer period than
the lymphatic vessels. The rate of blood vessel collapse is estimated.

Again, the angiogenesis and blood vessel parameters of case 2 from Table 5.1 are applied to
investigate the influence of blood vessel compression. Until 18 days, tumor growth and angio-
genesis progresses identically as for case 2 in Figures 5.7a-5.7c. Only as the growing tumor front
and the edge of the neovasculature come into contact, the phenomenologically motivated blood
vessel compression and regression term (3.68) becomes active leading to a decrease of the vascu-
lar volume fraction €. This is also obvious from the results after 24 days shown in Figure 5.14:
With the present parameter set, the decrease of the vascular volume dominates over the angio-
genic response of the vasculature leading to a very distinct result compared to Figure 5.7d. Only
the very edge of the growing tumor is well-vascularized whereas blood vessels further inside
regress from the growing tumor mass. Conversely, less oxygen is available leading to a larger
necrotic zone shown on the right in Figure 5.14 in comparison to the case without blood vessel
compression and regression (Figure 5.10k). Additionally, the ECM is not deformed as strongly
as the TC saturation and, hence, also the TC pressure is lower leading to less stretch in the ECM
and higher solid phase volume fractions.

In summary, the combined effects of angiogenesis and the interaction with the growing tumor
mass generate a very-well vascularized outer rim of the tumor whereas its inner core becomes
necrotic. Compared to the examples from the previous sections, the vasculature cannot penetrate
as deeply into the tumor. Nevertheless, as the tumor’s outer rim is still well-vascularized, growth
can proceed rapidly while co-opting, that is, growing along the vascular network [291]. However,
it is obvious that the homogenized variant cannot provide results of this growth pattern with the
same fidelity as a corresponding discrete approach, see Section 5.5 where a similar example
with a discrete treatment of the vasculature with the corresponding framework for blood vessel
compression and regression is studied.
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5.3 Nanoparticle Delivery to a Vascular Tumor and
Hyperthermia Treatment

In this section, the capabilities of the vascular model to study drug delivery and hyperthermia
treatment are demonstrated. A numerical example which is designed similar to the author’s co-
first authored publication [282] is employed for that. Specifically, nanoparticle (NP) delivery to
a solid vascular tumor with subsequent hyperthermia treatment is considered. Here, the tumor
growth model is first employed to achieve a grown tumor state with a physiologically reason-
able transport phenotype before drug delivery is studied. In future work, this first step could
be skipped and imaging data to obtain the transport properties inside a specific tumor could be
employed to directly study the accumulation of drugs. Computational studies on drug delivery
and the success of specific treatment strategies could have a major and direct impact for many
patients and the transition to clinical practice could be achieved much more rapidly than for the
entire growth model.

Background Regardless of the effectiveness of a specific therapeutic agent, chemotherapy
relies on the fact that a large fraction of cancerous cells is actually reached by the administered
drug [60]. Vice versa, its tremendous toxic side effects could be reduced if only tumor cells were
reached and killed and healthy tissue was left intact. However, conventional small molecule
therapeutics are usually distributed non-selectively throughout tissue and target all rapidly pro-
liferating cells. Nanomedicine has a strong potential to overcome this shortcoming and enhance
local drug concentrations at sites of disease while reducing systemic toxicity [142, 149]. This
can be achieved by fine-tuning the properties of nanoparticles, which are solid particles whose
diameter lies in a range of 1 to 100 nm. Advances in material science have made the manufactur-
ing of nanoparticle-based drug delivery systems of various sizes, shapes and surface chemistry
possible to optimize their pharmacokinetics, tumor accumulation and elimination. These nano-
carriers can then be employed to encapsulate a chemotherapeutic substance, to image the extent
of a tumor or for hyperthermia treatment. The selective accumulation of NPs in diseased tissue
can be influenced by active targeting, that is, by decorating their surface such that they specif-
ically adhere to tumor regions. By contrast, passive targeting relies on the so-called enhanced
permeability and retention (EPR) effect exploiting the increased leakage and reduced lymphatic
drainage inside tumors. Unlike smaller molecules which are rapidly cleared via the lymphatic
system, NPs then preferentially accumulate in tumors [166].

Despite these attractive features, a recent meta study suggests that only 0.7 % of the adminis-
tered NPs actually reach the tumor site [280]. This is due to several physiological and technical
obstacles occurring in-vivo during the delivery process. Especially transport barriers encountered
by all NPs are a major bottleneck limiting their efficacy. These include vascular barriers reducing
the extravasation of NPs and micro-environment barriers such as denser ECM structures imped-
ing the movement of NPs within the tumor and the elevated IF pressure inside solid tumors re-
ducing particle penetration into the tumor center [117, 149]. The goal of transport oncophysics,
which views cancer as a physical mass transport phenomenon, is to overcome these barriers
by rational drug design [27, 74]. To that end, tumors are characterized based on their transport
phenotype, i.e., their transport properties for a better understanding of the limitations of current
NP-based delivery systems [183]. It lies at hand to use computational tools to aid in the design
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Figure 5.15: Geometry, initial and boundary conditions of the example for nanoparticle transport
(not to scale)

of drugs whose transport properties are optimized for the tumor micro-environment. Two recent
review papers [63, 164] summarize mathematical models for NP-based drug delivery. Represen-
tative examples of continuum approaches similar to the one employed here are [50, 84, 288].
They aim to predict drug or NP accumulation inside solid tumors.

An alternative cancer treatment is hyperthermia, that is, heating the tumor. The interplay be-
tween heat and tumor regression has been known for centuries and has recently gained renewed
attention. According to van der Zee [259] several treatment modalities are possible. With lo-
cal hyperthermia induced by external or internal energy sources the goal is to increase mainly
the tumor temperature. Regional hyperthermia is applied by perfusion of organs, limbs or body
cavities with heated fluids. Whole body hyperthermia involves heating the entire body and is,
therefore, limited to temperatures of at most 42 °C. Higher local temperatures can be achieved
with local hyperthermia. Temperatures above 50 °C are referred to as thermal ablation leading to
cell death [123]. By contrast, hyperthermia is associated with elevated temperatures in the range
of 40 to 45 °C [43] which is less damaging to the surrounding tissue. In addition, already these
smaller rises may lead to tumor regression as the abnormal tumor micro-environment makes
them more sensitive to heat. Finally, the combination of hyperthermia with traditional therapies
such as chemo- and radiation therapy might be promising due to complementary effects and
enhanced cytotoxicity of chemotherapeutic agents under higher temperatures [43].

Hereafter, only local, nanoparticle-mediated hyperthermia is considered. This can be achieved
using gold or superparamagnetic iron oxide NPs which are administered by direct intratumoral or
intravenous injection. Either via photothermal activation or an alternating magnetic field (AMF),
heat is generated by these types of NPs [43, 123] and rapidly released to the surrounding tissue.
The effect that NPs accumulate preferentially inside tumors and not in healthy tissue is also
beneficial for hyperthermia as it allows a localization of the temperature increase in the tumor.
Hence, also "inside-out” hyperthermia where the deeper regions in which the tumor is located are
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heated more than the body surface is possible. This cannot be achieved with conventional meth-
ods involving heating from outside the body with a heat source [43]. Hence, it is clear that the
biodistribution of NPs in the tumor is also of paramount importance for hyperthermia. Accumu-
lation in tumor tissue enables a more concentrated tumor targeting whereas insufficient delivery
might endanger the success of treatment if the generated temperatures are too low. This offers
another appealing usage of the present model. First, NP transport may be investigated. Then, the
effect of hyperthermia with the obtained NP distribution my be studied. Various approaches for
computational modeling of hyperthermia are summarized in the review papers [7, 120].

Setup The setup and geometry of this numerical example follows common experiments for
NP transport studies in mice models, see e.g. [67, 299]: TCs are injected and seed in a spe-
cific organ. Subsequently, multiple metastases form and continue growing. After 7 — 14 days,
macromolecular drug carriers are injected and their transport in the tumor micro-environment is
imaged. To replicate this, the variant with homogenized vasculature is first employed to study
the growth of a metastasis in vascularized tissue. Thereafter, the transport and accumulation of
several common NPs of different size is investigated followed by a hypothetical hyperthermia
treatment.

The computational domain including initial and boundary conditions for the primary growth
phase is sketched in Figure 5.15. As in Section 5.1 a radially symmetric spherical tumor is
considered. Making use of the symmetry of the problem, only the depicted segment is studied.
Over the entire domain an initial vascular volume fraction of 5 = 0.1 and a blood pressure
of p¥ = 6000 Pa ~ 45 mmHg is set. These values are additionally assigned as boundary con-
ditions on the outer surface of the domain. They lie in the range of the volume fraction inside
solid tumors [252, 299], respectively, blood pressure inside arterioles [77]. A single metastasis
originates in the center of the domain as indicated by the initial TC saturation there. In the rest
of the domain and on its boundaries, the values for healthy tissue from the previous section are
re-used including the IF pressure which is set to zero at the domain boundary. Since the defor-
mation of the domain can be expected to have only a neglible influence on NP transport if no
remodeling with associated decreased penetrability of NPs is included, the ECM is considered
as undeformable. Therefore, the balance of momentum (3.60) is not solved resulting in a stan-
dard Eulerian formulation on a non-moving mesh. As in Wirthl et al. [282], angiogenesis is not
considered as the domain will remain vascularized in this example and its influence is insignif-
icant for the considered time span. However, blood vessel compression by the growing tumor
via (3.68) is included.

An overview of the employed model variant with homogenized vasculature is given in Fig-
ure 5.16. Phase mass transfer terms are equivalent to the previous section. However, now blood
flow in the HV via is explicitly modeled by (3.47). Two species are present in the preliminary
growth phase, which are NTCs as a part of TCs, and oxygen (in HV and IF). The value for
oxygen in blood corresponding to full saturation with £} = 100 mmHg is applied on the outer
surface of the domain. Compared to the previous section, also the advection-diffusion-reaction
equation (3.63) of oxygen in the HV is now solved. For transvascular oxygen exchange across
the blood vessel wall into the IF, (B.11) is employed. As before, oxygen is further transported in

the IF via convection and diffusion and metabolized by the growing tumor. TAFs are not present
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Figure 5.16: Schematic overview of vascular model with homogenized representation of the vas-
culature and mass transfer relations (including nanoparticles)

as angiogenesis is not regarded. The mass transfer relationships for NP transport will be given
in more detail later.

Parameters are again listed in Tables C.2, C.3, C.4, C.5 and C.6. However, in preliminary
simulations it was observed that the TC pressure is much higher for this example than in the
previous examples. Thus, the empirical collapsing thresholds for vasculature and lymph system
are increased to pl;;, = 1000 Pa and pl,; ,, = 2000 Pa, respectively. Also the conductivity for
transvascular flow and lymphatic drainage are slightly adaptedto L,,,, = 4.2 x 10"" mPa~'s™!
and (L,%) ;y = 2-08 x 107 Pa~!s™, which are double the values proposed by Baxter and Jain
[13, 14] but still lie within a reasonable range [282].

The domain is meshed with 1000 trilinear elements in radial direction. Tumor growth is sim-
ulated over 12.5 days. This matches the time range for corresponding experiments [67, 299]. A
step size of At = 1800s and # = 0.5 are chosen for time discretization.

Vascular Tumor Growth The growth of the considered vascular tumor is visualized in Fig-
ure 5.17 with the volume fractions of the respective components along the radius of the spherical
domain. First, note that the volume fraction of the ECM remains constant unlike in the examples
from the previous section. This is due to the assumption of an undeformable ECM such that
the Jacobian J is equal to one and the ECM volume fraction does not change in compliance
with (3.66). Once more, a necrotic core emerges due to insufficient oxygen supply in its center.
By contrast, most of the proliferating TCs are located on the tumor periphery. Due to the com-
pression by the growing tumor and further blood vessel regression, the vascular volume fraction
in the center of the domain has dropped to 0.05, which is half the initial value. After 12.5 days,
the tumor has reached a radius of 0.7 mm.
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Figure 5.17: Volume fractions of components along radius

Figure 5.18 additionally illustrates pressure and oxygen distribution in vasculature and IF.
Blood pressure drops from the outer rim of the tumor towards its center due to leakage of fluid
from vasculature into IF. Vice versa, the IF pressure ascends. As described previously, the el-
evated IF pressure in the tumor center is due to impaired lymphatic drainage as the growing
tumor compresses the lymph vessels. Thus, fluid, which would normally be drained via the
lymphatic system, accumulates in the tumor’s interior. This is further exacerbated by the in-
creased leakiness of tumor vasculature. Outside of the tumor, the lymph system still functions
and drains the excessive fluid which results in the typical plateau of the IF pressure in the central
region [103, 118] as observed in in-vivo experiments by Boucher et al. [30]. A maximum IF
pressure of pl, .~ 1100 Pa ~ 8.25 mmHg emerges in the center of the domain. It lies within
the range of 5 — 10 mmHg stated by Dewhirst and Secomb [60]. Nevertheless, according to
other studies, the increased IF pressure can reach values as high as 37 mmHg [180] or even
60 mmHg [103]. At the tumor periphery, a steep IF pressure gradient emerges as the pressure
drops towards the normal value. This yields an outflow of IF from the tumor which is a major fac-
tor contributing to the insufficient penetration of drugs into tumors [297]. In addition, the oxygen
partial pressure in the IF and the vasculature are plotted in Figure 5.18b. Inside the tumor, both
drop significantly due to the immense oxygen demand of the growing tumor, thus, leading to a
hypoxic and even necrotic inner core. In summary, after 12.5 days of growth, a badly-perfused
necrotic core with increased IF pressure emerges.

Nanoparticle Transport Study NPs are intravenously injected and subsequently trans-
ported by the vasculature. However, while the computational framework is capable of explicitly
modeling transport in the vasculature, this is not considered hereafter but the NP mass fraction
in the vasculature is prescribed via the relationship

_t
WP = P . 0.5T2 (5.2)
with wév Pv — 2.0 x 10~3. This models the decay of NPs in blood over time. The parameter 7} /2
is the plasma-half life which is the time where the mass fraction of the NPs in blood is equal to

half the maximum mass fraction w"'? according to experimental data [67].
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Figure 5.18: Blood and IF pressure and oxygen partial pressure along radius (Dashed line indi-
cates edge of tumor with S* = 0.05)

NPs may extravasate through the semipermeable capillary walls [145] and are subsequently
transported in the IF via convection and diffusion. Two different pathways are possible for the ex-
travasation of NPs into the IF: the transendothelial and the interendothelial pathway [172, 280].
Thus, the mass transfer from the vasculature to the IF is commonly modeled via the Staverman-
Kedem-Katchalsky equation as

NPv—NPI NPv—NPI NPv—NPI

tv = Minter + Mtrans
W L S v l v ! A NP v v P S NPv© NPI v
=p - pTS [p —p—wosm(ﬂ —W)] Wi € +p Ly 5 (W —w -E .

V Vv N
v e
4 ~N~
Interelzirothe]ial Transendothelial

pathway pathway

(5.3)

As sketched in Figure 5.19, the first term describes transport through the interendothelial path-
way which is a convective process as NPs are dragged by the transvascular fluid flow [113]. In
fact, this term corresponds to the leakage of fluid from vasculature into IF, that is the Starling
equation (B.2), scaled with the log-mean concentration within the pore Aw]\y. Therein, L, is the
hydraulic conductivity and S/V the surface-to-volume ratio for transcapillary flow [115, 287].
Furthermore, wogy, (7% — 7rl) is the osmotic pressure difference as described in Section B.1. In
healthy vasculature, endothelial cells around capillary vessels are tightly lined such that larger
molecules are not able to pass through the space between cells. However, in tumor vascula-
ture endothelial cells are poorly aligned [117] resulting in larger gaps between adjacent cells
of 100 — 500 nm in size [280]. The resulting increased fluid extravasation through the leaky
and hyperpermeable vessel walls passively transports NPs from the vasculature through pores or
fenestrations into the IF [172].

The second term in (5.3) corresponds to the transendothelial pathway which is the second
transport mechanism across vessel walls and also depicted in Figure 5.19. It represents the dif-
fusive flux of NPs through the capillary vessel wall, e.g. through interconnected cytoplasmic
vesicles and vacuoles [280]. The flux is proportional to the vascular permeability P* and the
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Figure 5.19: Mechanisms for nanoparticle transport to and from the interstitial fluid (IF). Tran-
scapillary exchange of nanoparticles from the vasculature to the IF consisting of (A)
the interendothelial and (B) the transendothelial pathway; (C) Lymphatic drainage
for transport from the IF to the lymph system. Figure taken from the author’s co-
authored article [282].

mass fraction difference of NPs across the vessel wall w¥*'? — w™F! Macaulay brackets (o)
allow only mass transfer from the vasculature into the IF and not vice versa.

This formulation for NP extravasation was employed by Wirthl et al. [282]. However, here
a slightly different mass transfer exchange is preferred. This is due to the fact that in experi-
ments the direction and magnitude of convection across the blood vessel is often not accessi-
ble [67]. Only the apparent vascular permeability P, .., which contains both the influence of
the transendothelial and the unknown influence of the interendothelial pathway can be measured
from concentration differences across the vessel wall. Thus, following Dreher et al. [67], NP
extravasation is re-written as

NPv—NPI S
~ AU
Mtv ~p o Pv,app . V

<wNPE _ wNPl> e (5.4)
+
The apparent vascular permeability P, .., now contains both diffusive and convective flux.
The third mass transfer contribution for NPs illustrated in Figure 5.19 is drainage via the
lymphatic system. As described above, the lymph vessels absorb extravasated fluid as well as
molecules from the IF. For that, the relationship

NPI—NPly S , IS ) ¢
Mdrain - ,OZ . (va) . <pl — ply>+ . (JJNPZ + (P . V) <C<JNPZ> . 1-— tp
ly ly + Peolt iy N

(5.5)
is employed. Again, the first term represents drainage of NPs via convective flux with the term
for fluid drainage (B.4) and the second term via diffusion into the lymph vessels. As described in
Appendix B.1 it is assumed that the lymphatic pressure is small with p!¥ ~ 0 and that drainage
is impaired by the growing tumor, which is modeled via the last term with a linear decrease until
the collapse threshold Pf;ou,zy above which no drainage is possible any more.

The interplay of excessive leakage, including macromolecules and NPs, into the interstitium
and impaired lymphatic drainage inside the tumor results in the accumulation of NPs in the
tumor. This phenomenon was first described by Matsumura and Maeda [166] in 1986 and termed
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Figure 5.20: EPR effect. Nanoparticles leak from the vasculature to the IF. In the tumor region,
the lymphatic drainage is impaired and hence the particles are not removed by the
lymph system. This results in a passive accumulation of NPs in the tumor. This
phenomenon is called the EPR (enhanced permeability and retention) effect [166].
Figure taken from author’s co-authored article [282].

EPR effect. As depicted in Figure 5.20, it leads to a passive retention of NPs in the tumor as
lymphatic clearance is inhibited there. Over recent years, it has become a gold standard for the
design of anti-cancer agents based on macromolecules and NPs since it is possible to achieve
very high local concentrations inside the tumor (10 — 50-fold higher than in normal tissue) [112].
Thus, tumor sites can be selectively targeted while the damage induced by the anti-cancer drug
to surrounding tissue is minimized.

Hereafter, the distribution of NPs is studied following common experiments [67, 299] where
dextrans of various, clinically relevant molecular weights have been considered. For that, the
grown state after 12.5 days of vascular tumor growth depicted in Figures 5.17c and 5.18 is
employed as a starting point. NP transport in the IF governed by (3.28) is solved for an additional
period of 500 minutes with time steps of At = 20s. The respective mass transfer relationships
accounting for transvascular exchange into and lymphatic drainage from the IF are once more
given in Figure 5.16. The entire tumor growth model is still computed but the quantities such as
saturations and pressures can be considered stationary in the comparably short period in which
NP transport is investigated.

Additional parameters governing NP transport are given in Table C.9 and the parameters de-
pending on the molecular weight of dextran ranging from 3.3kDa — 2MDa are collected in
Table 5.2. In general, larger molecules have smaller diffusivities and vascular permeabilities but
longer half-lives in blood plasma as smaller molecules can extravasate more easily but can also
be cleared more rapidly. As stated above, the NP mass fraction in the vasculature is specified
with the relationship (5.2) depending on the plasma half life 7} /». A no-flux boundary condition
for NPs in the IF is applied on the outer surface of the domain in addition to the no-flux boundary
conditions for symmetry reasons on all other surfaces.

Results for all four studied particle types are shown in Figure 5.21. Therein, the temporal
evolution of the NP distribution in the IF along the tumor radius is displayed. The EPR effect is
evident for all cases as the particles accumulate only in the tumor region. Outside of the tumor
they are drained by the still-functioning lymphatic system. Note the different scale for each sub-
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Molecular Weight [kDa] DJ™"" [m? s~ P, .., [ms™ ™1 Ty 5 [s]™! Pe [—]'€]

3.3 30.83 x 10712 1.54 x 1077 240 12
10 17.28 x 1072 3.2 x 1078 360 22
70 3.0l x 1072 9.8 x107° 1260 124
2000 = 2MDa 0.26 x 10712 1.7 x 107 1800 1434

[ Values from Chou et al. [45].

()] Values from Dreher et al. [67]. There, the plasma half-life is related to vascular fluorescence
intensity. Here, it has been assumed that the vascular mass fraction is proportional to the
vascular fluorescence intensity such that the same half-lives can be employed.

eI Calculated as "

STk Ap!

" H

Pe (5.6)

™|

from (3.28) with mean saturation S! and porosity € over the entire domain computed as
in (5.7). Ap' is pressure difference between center of domain and outer radius such that

length scale chosen as the radius cancels out.

Table 5.2: Properties of dextran at various molecular weights for diffusivity in IF D{F"!, apparent
vascular permeability P, .pp, plasma half-life 7' /, and Péclet number in IF

figure: By far the highest mass fraction is present for the smallest NP. This is effected by its
high apparent vascular permeability. The larger the NP, the lower the values in the domain due
to decreased extravasation. However, the smaller NPs with weights of 3.3 kDa and 10 kDa are
also eliminated from the domain much faster than the larger ones. This has two causes: First,
their mass fraction in the vasculature drops rapidly due to their lower plasma half-life such that
the actual time period in which they may enter from the vasculature into the IF is much shorter
(12min and 26 min vs. 92min and 193 min). Second, their diffusivity is higher. Hence, they
diffuse much faster through the entire domain and, crucially, also out of the tumor where the
lymph system is functional such that they are removed from the domain.

Initially, all particles accumulate at the periphery of the tumor which is the influence of the
higher vascular volume fraction which due to blood vessel compression and regression is ap-
proximately twice as high as in the center of the domain, compare Figure 5.17c. However, the
larger diffusivity of the smaller particles enables also a much more rapid penetration against
the acting pressure gradient towards the center of the domain resulting in a much more uniform
profile over the radius. By contrast, the larger particles remain concentrated at the tumor edge
and can only very slowly reach also the tumor center in higher quantities. The Péclet numbers
for all cases relating the influence of convection and diffusion are given in Table 5.2. Notably,
all cases are convection-dominated due to the high IF pressure gradient. In [282] far less of the
heavier NPs reached the tumor core compared to the results here because an inner area without
any vasculature appeared due to blood vessel compression and regression. Thus, in contrast to
the smaller particles, the larger particles were not able to diffuse into the tumor center. In the
present case, the tumor is still vascularized in its interior, albeit worse than on its outer rim. Nev-
ertheless, this vascularization in the tumor core also makes extravasation of NPs directly into the
core possible, thus leading to a considerable mass fraction there. Via diffusion, the heavier NPs
cannot reach or can only very slowly reach the tumor center.
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Figure 5.21: Distribution of nanoparticles in IF over radius and time (Dashed white line indicates
edge of tumor with S* = 0.05)

The temporal evolution of the mean NP mass fraction in the IF

= 1 -
WNPL = v / BARIN(9) (5.7)

is further investigated in Figure 5.22. Qualitatively, these results are in very good accordance
with experimental data by Dreher et al. [67, Fig. 4 and Fig. 5]. The smaller molecules extravasate
very quickly into the IF but are also drained much faster. By contrast, the heavier particles persist
much longer and their mass fraction remains almost constant after 200 min. This is not supported
by the experimental data where also these particles are being drained after 40 — 100 min. Ad-
ditionally, it seems that the model with the present parameters over-estimates the initial peak
of 3.3 kDa dextran. Potentially, both phenomena are due to an inaccurate model for lymphatic
drainage. If drainage of NPs was present to some extent also in the tumor region where it is
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Figure 5.22: Mean mass fraction of nanoparticles in IF over time

currently completely switched off via (5.5), the initial peak would be not as high and the larger
particles accumulating primarily in the tumor region would be drained more rapidly. All in all,
clearance is much slower than in the experiments of [67]. Thus, while the overall agreement
is very good, proper calibration of the lymphatic drainage of NPs could improve the predictive
capabilities of the model in this respect.

A very common method to measure the exposure of cancer cells to a specific drug is to deter-
mine its so-called area-under-the-curve (AUC) value [67, 280]. It can be obtained by temporal
integration over the curves from Figure 5.22 as

tg _
AUC = / wVPLdt (5.8)

tg —to Ji,
where [to,tg] is the considered time interval of NP treatment (500 min in this case). Hence,
the cumulative exposure of cancer cells to the toxic drug in the extravascular compartment is
calculated. Assuming that the number of cells killed is proportional to the concentration of a
specific drug, it may quantify the success of drug delivery. The AUC values are computed by
trapezoidal integration of the curves from Figure 5.22 and are given there. Hypothetically, 70
kDa dextran would have the best drug delivery efficiency for this example followed by 10 kDa,
3.3 kDa and 2 MDa dextran. This is again supported by the experimental data of [67] where the
AUC was also calculated. Nevertheless, it is highly likely that all values for the AUC are over-
estimated due to the decreased lymphatic drainage as described above since either the initial
value is too high or clearance is not as fast as in the experiments.

A straightforward extension is to include the cytotoxicity of a chemotherapeutic substance
which could either be encapsulated by the NPs or attached to their surface. For high drug con-
centrations, this could be realized by a killing term acting on TCs and for lower concentrations by
a deceleration of tumor growth as proposed by Curtis et al. [50]. Also additional factors leading
to therapeutic resistance such as a denser, remodeled ECM in the tumor region could be incor-
porated. Computational modeling of ”smart” NPs which alter their size and, thus, their transport
properties during different delivery stages [142, 149] to optimize their in-vivo performance could
be an invaluable tool for the design of next-generation NPs. For instance, the break-up of larger
NPs into smaller drugs at the tumor site and their subsequent distribution can be included in the
current framework as additional species transport convection-diffusion-reaction equations.
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Hyperthermia Treatment Finally, the temperature increase during a hypothetical nano-
particle-mediated hyperthermia treatment is investigated. This is partly based on preliminary
work in the Master’s thesis of B. Wirthl [281]. 70kDa dextran is employed as it has a hydrody-
namic radius of 5—7nm [44, 256]. The hydrodynamic radius of common superparamagnetic iron
oxide NPs, for which experimental data about their hyperthermic performance is available [41],
lies also in this range. Thus, the transport properties of these NPs, i.e., their blood half-life, diffu-
sivity and vascular permeability are identical to 70 kDa dextran, and it can be expected that their
distribution in the domain over time is equivalent to the results for 70 kDa dextran presented in
the previous paragraphs. 150 minutes after the NP injection, the mass fraction of 70 kDa in the
IF is almost stationary, see Figure 5.22. Thus, this time instant is taken as the starting point for
simulating hyperthermia treatment for an additional 100 time steps of At = 20s. For that, the
source term in the enthalpy balance (2.68) representing the heating induced by the AMF is set to

D s =l SAR - NP (5.9)

a€lp
depending on the density of the IF, the specific absorption rate of the NPs SAR [W kg™!] and
their mass fraction in the IF. Note that 150 minutes after injection, the mass fraction of NPs in
the vasculature is negligible, otherwise one would also have to take them into account in the
temperature source term as for example done by Wirthl [281]. A heat sink term as proposed in
the Pennes’ bioheat equation [193] is not included due to the controversy associated with this
formulation [281]. Nakayama and Kuwahara [179] compared different bioheat formulations for
the case of a single fluid phase, i.e., blood. Under the assumption of thermal equilibrium with
equal temperatures in blood and tissue, they arrived at an equivalent formulation as the here em-
ployed enthalpy balance (2.46). If thermal non-equilibrium between blood and the other phases
should be considered, a strict derivation with TCAT [95] is warranted. The heat source term
from (5.9) is equivalent to the term employed by Cervadoro et al. [41] such that their experi-
mental data for the SAR, which is the amount of heat generated by applying the electromagnetic
field, can be used. The average mass fraction of NPs in the domain for 70 kDa dextran remains
constant with a value of approximately 5 x 10~° after 150 minutes, see Figure 5.22, and max-
imum values inside the tumor of 1 x 10~%, see Figure 5.21c. Together with the IF density this
corresponds to a NP concentration in the IF of 0.05 mg ml~! respectively 0.1 mg ml~!. The SAR
for heating with a high-frequency field (30 MHz) for these NP concentrations lies in a range of
0.5 x 10" — 3 x 10" Wkg~! [41, Figure 2D].

A Robin boundary condition

ket VT - =—pp- (T —Ty) (5.10)

is applied on the outer radial surface of the domain similar to [177, 178]. This term accounts for
the heat transfer with heat exchange coefficient 57 to the surrounding tissue whose temperature
is equal to the blood temperature 7},; = 37 °C. All required additional parameters are based on
previous hyperthermia studies [41, 177, 178] and are given in Table C.11. As the heat capacity of
all phases is equal, the last term of the energy balance (2.68) cancels in combination with (2.21).
During the simulation of hyperthermia treatment for an additional time period of 2000 s starting
150 minutes after NP injection, the entire tumor growth model including NP transport is still
solved but the values remain almost stationary. The initial temperature in the domain is set to
37°C.
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Figure 5.23: Mean temperature over time during hyperthermia treatment

Due to the small domain size and the high diffusivity, the temperature in the domain is almost
uniform with slightly higher values in the center. The maximum temperature difference between
center and outer surface amounts to 0.8 °C. The mean temperature in the domain over time for
the different SAR values is shown in Figure 5.23. Starting from 37 °C, the domain heats up
over 200 s. Afterwards, the temperature remains stationary at values ranging from 40.5 — 58 °C.
Naturally, higher SARs lead to higher obtained temperature values. In addition, the temperature
ranges for hyperthermia (40 — 45 °C [43]) and thermal ablation (> 50 °C [123]) are designated
illustrating that, depending on the SAR, both ranges can be reached with the present numerical
model for nanoparticle-mediated hyperthermia. Thereby, the principal applicability of the model
to simulate hyperthermia treatment is proven. Further validation is necessary to tune it for clini-
cally more relevant cases. Nevertheless, its promising and unique potential by combining initial
tumor growth with subsequent drug delivery, here exemplarily studied for NPs, and hyperthermia
into one single framework has been showcased.

Remark 5.1. As elaborated by Cervadoro et al. [41], the SAR values may also contain the influ-
ence of non-specific heating of salts through the high-frequency field. For lower electromagnetic
frequencies, this effect is not present and the SAR lies in a range of 4000 — 20000 W kg for
NP concentrations of 1 — 3mgml~—'. As Nabil et al. [177, 178] also used a very high value of
1 x 10°W kg=! and as the heat exchange coefficent 31 is based on their papers, the specified
SAR range is preferred here in line with the goal of this example to illustrate that the model is
generally capable of describing hyperthermia.

5.4 Three-dimensional Growth of a Tumor inside a
Network of Pre-existing Blood Vessel

Subsequently, the growth of a tumor inside a three-dimensional pre-existing blood vessel net-
work is studied. This numerical example was previously published in the author’s article [136]
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Figure 5.24: Geometry, initial and boundary conditions of the example for three-dimensional
vascular tumor growth. Figure taken from the author’s article [136].

and was re-computed here using the lateral surface variant for 1D-3D coupling. Nevertheless,
major parts of the following text are taken from [136] since almost identical results are obtained
with both variants. In Sections 5.2 and 5.6, cases inspired by the classical model of angiogen-
esis where the tumor first grows avascularly and then angiogenesis occurs from nearby vessels
are studied. However, a different mechanism of growth is possible for certain tumor types such
as astrocytomas [19, 108, 109]. They can first acquire access to blood circulation by co-opting
pre-existing blood vessels and growing along them which makes them a non-angiogenic but
nevertheless well-vascularized tumor. Subsequently, the pre-existing vasculature regresses such
that a necrotic core inside the tumor evolves due to a lack of nutrients. Only then angiogenesis
at the tumor boundary is initiated to enable further tumor growth [109]. The goal of the nu-
merical example presented in this section is to illustrate how the model with discrete embedded
representation of the vasculature can capture this co-opting growth pattern.

In Krembheller et al. [136], the centerline variant for 1D-3D coupling was employed to in-
vestigate this numerical example. In this thesis, the surface-coupled formulation is employed
for comparison. The computational domain of Figure 5.24 is considered. Note that the original
volume used in [136] is slightly enlarged such that it encompasses the entire network including
its surface on the tips which would otherwise protrude. Apart from that, the setup is identi-
cal to [136] with the computational domain of Figure 5.24. The depicted blood vessel network
has been obtained from R3230AC mammary carcinoma in rat dorsal skin flap preparation by
Secomb et al. [238] and has been employed in several other publications to study oxygen trans-
port [241], drug delivery [38, 39] and hyperthermia treatment [177, 178]. The network topology
is publicly available [239]. The enclosing 3D tissue domain has been enlarged by 0.01 mm in
positive and negative x- and y-direction and by 0.066 mm in positive and negative z-direction
as compared to the dimensions 0.55 mm x 0.52 mm x 0.188 mm of the network geometry. The
three-dimensional domain is discretized uniformly in space with 114 x 108 x 64 trilinear ele-
ments and the one-dimensional network with 8298 linear elements. Hence, the 3D mesh with
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uniform mesh size h = 5 pm is finer by a factor of two compared to [136]. The meshes of both
domains are completely independent which is the main advantage of the non-conforming 1D-3D
coupling employed throughout this thesis. The 1D network is discretized rather finely compared
to the 3D domain to avoid instabilities due to convection-dominated oxygen transport in this
example. Following Nabil et al. [177, 178] a uniform radius of R = 7.64 um is assumed in the
entire network. Consequently, the diameter of the embedded inclusion is three times larger than
the element size in the 3D domain which necessitates the usage of the surface-coupled version.

Tumor growth is simulated for a time period of 360 h. Time discretization parameters are set to
6 = 0.5 and At = 1800s.

In this example, angiogenesis is not present because the goal is to simulate the first growth
stage along the blood vessel network as described above. Furthermore, deformations of the sur-
rounding ECM and, hence, also of the embedded blood vessels are neglected. In essence, the
model with discrete vasculature introduced in Section 3.4 without the balance of momentum of
the solid phase, that is, without equation (3.27) is considered here. A schematic overview of the
present phases and species is given in Figure 5.25. The original avascular model with three fluid
phases (TCs, HCs, IF) is solved for the tissue domain and blood flow in the 1D embedded do-
main. The Starling equation (B.15) respectively (B.17) accounts for the 1D-3D leakage of fluid
into the IF. Furthermore, two species are present, namely, NTCs and oxygen (in 1D embedded
vasculature and IF). Oxygen is provided via transvascular exchange from the vasculature into
the IF via the 1D-3D mass transfer relations (B.19) and (B.22). Note that oxygen consumption
by the HCs is now also included via (B.7).

Initially, a spherical tumor with radius 7y = 0.03 mm around the point [0.25,0.25,0.11] is
present inside the domain. Primary variables for TC, HC, the IF and for NTCs are fixed on the
entire boundary of the cuboid I'g. Nine open ends of the network are identified as inflows I'y ;
(denoted by red arrows) where pressure and mass fraction of oxygen in the 1D network are fixed.
The remaining eight open ends are outflows I'y , (denoted by blue arrows) with fixed pressure.
This approach has been proposed to prescribe the pressure drop along the network such that a
physiologically reasonable blood velocity is obtained [38, 39, 177].

The parameters employed in this example are the same as given in Tables C.2, C.4, C.5,
C.6 and C.10 apart from the coefficients for oxygen consumption. The oxygen consumption
rate is elevated w.r.t. the examples from the previous section under the assumption that the tis-
sue considered here is well-vascularized which implies a heavy oxygen or nutrient demand.
Therefore, the consumption by TCs is increased to v, = 9.6 x 107 kgm™s~" and 1" =
2.4 x 103 kgm3s7! and for HCs to 13" = 1 x 103 kgm3s™! compared to the values of
Table C.5. Note that all the values applied for oxygen consumption lie in the physiological range

of oxygen consumption rates of 0.01 — 0.3min"" (in terms of oxygen concentration [205]).

The results for tumor growth over the considered time span are visualized in Figure 5.26.
Initially, the tumor grows radially. As more and more oxygen is consumed, tumor growth con-
tinues along the vasculature by co-option of the blood vessels because this is the region with the
highest oxygen concentration in the IF which is provided by the vasculature through transcap-
illary 1D-3D exchange. This behaviour is further visualized in Figure 5.27 where the oxygen
distribution in the IF throughout the computational domain is shown after 90 and 270 hours. The
oxygen mass fraction decreases in radial direction from the embedded blood vessels due to the
consumption by HCs and TCs. In this example, blood vessel remodeling via the blood vessel
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Figure 5.25: Schematic overview of vascular model with discrete representation of the vascula-
ture and mass transfer relations

diameter adaptation model introduced in Section 3.4.5 is not included. Nevertheless, the influ-
ence of blood vessel collapse and regression on the growth of the tumor can be imitated if the
exchange terms between pre-existing vasculature and IF, that is, the mass transfer terms for leak-
age and oxygen exchange are switched off once the tumor has reached a specific embedded 1D
element. This approach is applied here. After 180 hours, a necrotic core starts to appear due to a
lack of oxygen in its interior since nutrient diffusion from the outside to the inside of the tumor
is a limiting factor. This effect is also evident from Figure 5.27b: The region around the inlets
is still well oxygenated. However, the interior region of the domain is hypoxic as oxygen diffu-
sion alone cannot sustain the vast consumption due to rapid tumor growth. Finally, TCs become
necrotic and the aforementioned necrotic core starts to develop while the outer, proliferating
cells of the tumor continue co-opting the vasculature.

These results are almost identical to Krembheller et al. [136, Figure 13] where the centerline-
based 1D-3D coupling variant was employed. This shows that both variants can be applied if the
blood vessel diameter is in the range of the 3D element mesh size. The centerline coupling variant
was also tested for the twice as fine mesh employed here and results were again qualitatively
similar. However, the surface-coupled variant proved to be more robust and required less Newton
iterations per time step with the employed monolithic scheme and showed a more stable and
uniform convergence behaviour. For the centerline variant, convergence could not be achieved
in some Newton steps. This may be due to the fact that the involved singularity may lead to high
oxygen mass fractions in the IF at the position of the embedded vessels. A comparison of both
variants with an academic example is performed in Appendix A.1.

The goal of this example is to highlight the capabilities of the non-conforming coupling to
represent the complexity of in vivo vessel networks and their interaction with the TCAT multi-
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Figure 5.26: Three-dimensional growth of a tumor along a pre-existing blood vessel network
(outline of tumor is visualized in grey with isosurface S; = 0.05, outline of necrotic
core is visualized in olive green with isosurface w™¥? = 0.05). Figure based on the
author’s article [136] but the respective numerical example has been re-calculated
with lateral surface 1D-3D coupling.
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Figure 5.27: Oxygen distribution in IF — planes denote isosurfaces with constant oxygen level

phase tumor growth model. Here, the major advantage of non-matching meshes for the 1D and
the 3D domain becomes evident as a regular mesh can be employed for the 3D domain while the
1D mesh follows the structure of the embedded vasculature. Therefore, the proposed methodol-
ogy for embedding arbitrary blood vessel networks into surrounding tissue can be applied as a
tumor growth model with discrete representation and full resolution of the vasculature. However,
one has to be aware that this example is only the first step towards a more realistic description
of in-vivo tumor growth. For instance, the second stage of angiogenesis on the tumor boundary
occurring after blood vessel regression has not been included. In addition, blood vessel regres-
sion, compression by TCs and adaptation is not modeled satisfactorily in this example but will
be studied in the next section.

5.5 Two-dimensional Growth of a Tumor Including
Blood Vessel Compression

Whereas blood vessel compression was only imitated in the previous section via switching off
exchange terms in the tumor region, it is incorporated in a more consistent way into the model
variant with discrete representation of the vasculature in this section. For that, the empirical
relationships (3.101)-(3.103) of the blood vessel diameter adaptation and collapse model to-
gether with the developed algorithms described in Section 4.3.3.3 is employed. The additionally
required parameters are summarized in Table C.12. These parameters have been estimated to
obtain a physiologically reasonable behaviour. The other parameters are again collected in Ta-
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Figure 5.28: Geometry, initial and boundary conditions of the example for two-dimensional vas-
cular tumor growth including blood vessel compression (radius of embedded vas-
culature not to scale)

bles C.2, C.4, C.5, C.6 and C.10. As in the previous section, two species (NTCs and oxygen) are
present. Oxygen is transported in the 1D embedded vasculature and may pass the blood vessel
wall into the IF. The same mass transfer terms as given in Figure 5.25 are employed. How-
ever, here the centerline variant is used for 1D-3D coupling between embedded vasculature and
surrounding tissue since a two-dimensional example is investigated.

The computational domain as well as the embedded vascular network is depicted in Fig-
ure 5.28. The network topology was obtained from the rat mesentery by Pries et al. [202] and
subsequently used for a number of numerical studies [85, 201, 242]. It is available from [273] and
consists of 546 blood vessel segments which connect 388 unique nodes. The radius of the blood
vessel segments varies from 1.6 um to 30 um with a mean radius of 6.98 um. Several thicker
branches can be identified with smaller connections between them. The original network covers
a domain of 4.563 mm x 7.060 mm. For this example, the entire domain is scaled by a factor
of 1/2 to obtain a denser vascular network than present in the original data set. The radius is
not adapted but the original radius is kept. In addition, the scaled domain is enlarged by 0.5 mm
in z-direction as shown in Figure 5.28. It is assumed that an initial tumor of radius 0.2 mm is
present around the point [1.5 mm, 2.2 mm| measured from the bottom left of the domain. Initial
and boundary conditions are listed in Figure 5.28. For the sake of simplicity, the oxygen partial
pressure in the entire embedded blood vessel network is set to 100 mmHg. Boundary conditions
for the pressure on the tips of the vascular network are estimated with the algorithm of Fry et al.
[85] which is publicly available via [251]. This scheme addresses the problem that it is impos-
sible to measure all or even a significant portion of the blood pressure values on the boundaries
of large vascular networks. Thus, a constrained optimization problem is solved for the incom-
plete pressure boundary data by minimizing the error of pressures and wall shear stress w.r.t.
pre-defined target values.
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Figure 5.29: Detail view of growth during first 100 hours (black bar denotes 200 pm, tumor do-
main in grey, outline of necrotic zones in black, radius of embedded vasculature not
to scale, color scale for element radius as in Figure 5.30)

The 2D domain is discretized with a regular grid of 556 x 706 quadrilateral (bilinear) elements
with an approximate element size of h = 5 um. The mesh of the embedded domain is completely
independent and consists of 6676 linear elements with an approximate element size of h =
0.01 mm. The time step size is set to At = 1800 s and the time integration parameter ¢ to 0.5.
Tumor growth is studied for a period of 360 h, i.e., 720 time steps.

Results for the first 100 hours of growth are shown in Figure 5.29. The tumor is placed in a
sub-network of smaller blood vessels. After 20 hours, it has grown radially outwards. At the same
time, it compresses the embedded blood vessels such that the network in its center collapses. This
leads to the occurence of a necrotic core after 40 to 60 hours since it is depleted of oxygen. Only
the tumor’s outer rim is still well-vascularized and contains a considerable amount of oxygen,
see also Figure 5.31a. The distance between necrotic zones and the tumor front lies between
100 and 200 um which is in good agreement with the diffusion limit of oxygen [36]. The tumor
continues to grow and to collapse the smaller vessels. Consequently, the network regresses from
the tumor center. Some larger vessels are able to withstand the compression by the tumor longer.
Cuffs of LTCs form around these branches and grow along them whereas necrotic areas are
present in the gaps between the vessels.

Tumor growth until 360 hours is further visualized in Figure 5.30. After 100 hours, also parts
of the thicker branches are reached by the growing tumor. With the chosen parameters they
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Figure 5.30: Two-dimensional growth of a tumor including blood vessel compression (black bar
denotes 200 um, tumor domain in grey, outline of necrotic zones in black, radius of
embedded vasculature not to scale)
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are unaffected by the proliferating TCs such that their diameter remains constant. Thus, the
viable regions continue to grow along the thicker branches while further away and between
them necrotic areas form. Simultaneously, the tumor also grows along thinner vascular branches
with small fingers forming its edge. However, these thinner vessels are gradually collapsed such
that the necrotic area increases and consistently follows the tumor front at a distance of 100
to 200 um. At the right side of the domain, where no blood vessels are located, tumor growth
comes to an end and this entire region becomes necrotic. Finally, after 300 to 360 hours almost
all smaller vessels are collapsed. Necrosis has occurred throughout the tumor. Only the area
around the larger branches is free of NTCs.

Oxygen transport is the main driver for this behaviour as it regulates tumor growth and necro-
sis. Therefore, the oxygen distribution in the IF is exemplarily given for ¢ = 60h and ¢ = 240 h
in Figure 5.31. In both pictures, the region without TCs is well-oxygenated. There, the oxygen
distribution closely follows the structure of the embedded vascular network with the highest
oxygen concentration along its branches which provide a source term for oxygen in the IF. Fur-
ther away from the 1D network, it drops to lower values as the oxygen diffuses in the IF and is
consumed by HCs. By contrast, the tumor area is almost entirely devoid of oxygen due to the
vast oxygen consumption of TCs. After 60 hours, only some smaller regions corresponding to
the remaining smaller vascular branches extending into the tumor domain from Figure 5.29d are
well oxygenated. This leads to the emergence of the previously mentioned necrotic zones further
away from these blood vessels. After 240 hours, only the thicker branches remain intact with the
corresponding oxygen distribution around these branches.

Qualitatively, the results for tumor growth and the remaining vasculature in the domain are
again in good agreement with tumor growth patterns and vascular structures observed in-vivo
[64, 65, 108, 109]: There exists a large necrotic area in which only a few larger internal vessels
remain. Around these vessels, cuffs of viable tumor cells form whereas the rest of the domain
becomes necrotic. Exactly this behaviour is reproduced by the model. By contrast, the tumor’s
outer rim is still well-vascularized with smaller vessels. Also this pattern is present in vascu-
lar tumors [109]. However, angiogenesis, which was excluded here, is a major factor for this
phenomenon leading to neo-vascularization with very high vascular densities at the tumor pe-
riphery. Robust angiogenesis is necessary for further tumor growth after the initial host vessel
co-option and regression phase [291]. Here, the better vascularization at the tumor boundary
is solely due to the pre-existing vascular network which is slowly compressed during growth. A
further challenge for the model and a promising extension would be how to include these effects.
Basically, two different approaches seem possible: First, one could also include the influence of
angiogenesis into the model variant with discrete representation of the vasculature similar to the
discrete variant of Anderson [6] and other tumor growth models [83, 158, 185, 287-289, 298].
Second, one could employ the hybrid model to trigger angiogenesis from the grown state with
the remaining vessels after 360 hours as will be illustrated in Section 5.6.

Finally, only the simple empirical relationships (3.101)-(3.103) for blood vessel compression,
collapse and regression have been employed in a first step. As demonstrated, already this simple
approach allows to simulate blood vessel compression, pruning and regression. As stated in Re-
mark 3.13, the much more complex real-life behaviour of vascular remodeling [204—206] and the
transformation of the pre-existing vasculature into a tumor-specific vasculature [216, 217, 276—
279, 287] can theoretically be incorporated in the current framework. Despite these shortcom-
ings, the principal applicability of the extension for blood vessel compression, regression and
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Figure 5.31: Oxygen distribution in IF

collapse has been proven. The open issues summarized above remain to be addressed and might
constitute a promising future research direction in combination with a strict validation of the
vascular variant of the model.

5.6 Two-dimensional Growth of a Tumor close to a
Pre-existing Blood Vessel

This section and the associated numerical example was previously published in the author’s
article [136]. The variant with hybrid embedded/homogenized vasculature is employed to study
the growth of an initially avascular tumor which is located close to a pre-existing blood vessel. By
means of this case the coupling between the discrete embedded vasculature and the homogenized
vasculature is exemplified. The centerline coupling variant is used for evaluating the 1D-3D
coupled terms (or rather 1D-2D coupled as a 2D example is studied). As in Section 5.2, the
HV may be understood as the neovasculature formed through angiogenesis originating from a
pre-existing blood vessel. The 1D resolved part of the vascular network corresponds to the pre-
existing blood vessels from which angiogenesis can occur. The two-dimensional domain with the
embedded simple blood vessel network is depicted in Figure 5.32 where also initial and boundary
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Figure 5.32: Geometry, initial and boundary conditions for tumor growing close to a pre-existing
blood vessel (red). Figure taken from the author’s article [136].

conditions are listed. This setup may either correspond to a vessel-ingrowth scenario where the
whole tumor vasculature grows from outside into the tumor [216] or a case where blood vessels
have regressed after initial tumor growth with only the depicted larger vessels remaining. While
this situation with a distance of the initial tumor spheroid of 0.4 mm to the nearest blood vessel
might be considered non-physiological, the numerical example which has been designed similar
to corresponding discrete models [6, 158, 289] enables the methodological investigation of the
proposed hybrid embedded/homogenized approach described in Section 3.5.

A schematic overview of the hybrid vascular variant and the respective mass transfer relations
is given in Figure 5.33. Now, the vasculature is split into large vessels, represented as 1D in-
clusions, and small vessels, which for this case correspond to the homogenized neovasculature.
Leakage of fluid occurs from both representations of the vascular network, either via the 1D-
3D mass transfer term (B.16) respectively (B.18) or the previously employed leakage from HV
into IF, i.e., equation (B.2). The mass transfer terms for tumor growth with three fluid phases
(TCs, HCs, IF) and one solid phase (ECM) are the same as before. In addition, three species
are present, namely, oxygen (in the IF, the pre-existing and the homogenized vasculature), TAFs
in the IF and NTCs as a part of TCs. Oxygen is transported in both representations of the vas-
culature and transvascular exchange into the IF occurs either between HV and IF via (B.11) or
via the 1D-3D exchange term (B.20) respectively (B.23). The consumption of oxygen by LTCs
and HCs, the production of TAFs by hypoxic LTCs and the necrosis term are equivalent to the
previous examples.

At the beginning of the simulation, the tumor covers a circular area with radius 0.05 mm as
sketched in Figure 5.32. The outline of the 2D domain is fixed but the tissue inside is assumed to
be deformable. At the inflow on the left end of the 1D inclusion a Dirichlet boundary condition
for the pressure in the 1D embedded vasculature p® and the oxygen mass fraction w™? therein
is set. At the two outflows of the vessel domain the pressure is also fixed. Angiogenesis occurs
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Figure 5.33: Schematic overview of vascular model with hybrid representation of the vasculature
and mass transfer relations

from the pre-existing blood vessel network which has a constant radius of R = 0.015 mm. For
that, a boundary condition of € = 0.1 is assumed along the 1D network. To trigger angiogenesis
from the location of the pre-existing blood vessel, this value is applied on all 2D elements which
are “cut” by the blood vessels. Along the 1D inclusion, the pressure in the HV p” as well as the
oxygen mass fraction in the HV w"? are coupled with the values in the 1D domain p® respectively
w™? with the mortar penalty approach developed in Section 4.3.3.2. At this line, from which the
neovasculature originates, the constraint of equal blood pressures and oxygen mass fractions in
the two representations of the vascular network is enforced with penalty parameters of ey;p =
1 x 10719m?2 Pa~! s~ for the coupling of pressures and ey;p = 1 x 1075 m? s~ for the coupling
of species.

The employed model parameters are once more given in Tables C.1-C.7. In addition, the pa-
rameters for the 1D resolved part of the vasculature may be found in Table C.10. Blood vessel
compression and regression (both for homogenized and embedded vasculature) are not consid-
ered and the Neo-Hookean material law is employed for the ECM.

Both domains are discretized in space completely independent from each other. The two-
dimensional domain is meshed with a regular grid of 210 x 140 bilinear elements. The 1D
vasculature is represented by 805 linear elements. The growth of the tumor is studied over 24
days. For time integration, the one-step-6 scheme with § = 0.5 and a time step size of At = 900 s
is applied.

The example of this section is designed to imitate the classical model of the angiogenic
switch [19]. If angiogenesis did not occur from the pre-existing blood vessel, the initial tu-
mor of this example would not grow any further since a steady state of proliferation and TC
death due to the hypoxic conditions would be reached. By contrast, in the case studied here the
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Figure 5.34: Evolution of living tumor cells (in colour), neovasculature (white contour lines)
and necrotic region (inside black contour line with value extc = S'w? t = 0.05),
tumor’s initial center of mass is denoted by white cross, current center of mass by
black cross. Figure taken from the author’s article [136].
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Figure 5.35: Pressure in pre-existing (left) and neovasculature (right) after 24 days. Figure taken
from the author’s article [136].

onset of angiogenesis enables rapid tumor growth. The evolution of the LTC volume fraction

erre = 5S¢ (1 — wN?) is shown in Figure 5.34 as well as the neovasculature volume fraction "

which is visualized with white contour lines. The pre-existing blood vessels are plotted in red.
The behaviour is similar to the case studied in Section 5.2. After six to twelve days a slightly
unsymmetrical growth towards the pre-existing blood vessels can be observed. Oxygen is pro-
vided by the pre-existing network and diffuses in the IF which is why the tumor grows towards
the blood vessel with higher nutrient availability. A necrotic region develops in the part of the
tumor further away from the vessels. Its outline is shown in Figure 5.34 by the black contour
line. Concurrently, the hypoxic TCs constantly produce TAFs which triggers endothelial cell
migration towards the tumor from the pre-existing vasculature where the boundary condition on
the neovasculature volume fraction is set. A small vascular volume fraction is also present below
the pre-existing blood vessel due to the diffusive term in the formulation for angiogenesis (3.51).
After 18 days both angiogenesis and tumor growth have continued such that the neovasculature
has reached the region with a high proliferation of TCs. A characteristic bulge of the vascular
volume fraction towards the tumor starts to develop since the TAF concentration is highest there.
Hence, the time period over which angiogenesis occurs is again in good agreement with litera-
ture data [36]. The higher availability of oxygen enables rapid tumor progression in the interval
between 18 and 24 days. After 24 days the tumor has grown in a similar half-moon shape as
observed in Section 5.2 towards the pre-existing blood vessels. This is further visualized by the
motion of its center of mass. In the period from 18 to 24 days it moves with an average velocity
of 0.013mm/d in direction of the vessel. At the same time the increased TC and IF pressure in
the LTC region leads to a deformation of the ECM. Under the assumption that the blood vessel
network completely follows the movement of the underlying ECM, this induces also a slight
deformation of the initially straight blood vessels which are, in this case, slightly pushed away
from the tumor.
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Figure 5.36: Mass fraction of oxygen in pre-existing (left) and neovasculature (right) after 24
days. Figure taken from the author’s article [136].

To elucidate the coupling between 1D embedded and homogenized vasculature, pressures in
the pre-existing vasculature p® and in the neovasculature p® after 24 days are depicted in Fig-
ure 5.35. Clearly, the constraint of equal pressures on the embedded domain A" is fulfilled such
that flow in pre-existing and neovasculature are coupled. As stated in Remark 4.2 the balance of
mass of blood in the neovasculature (3.47) is only valid in the area the neovasculature has al-
ready reached, which explains the shape of the pressure distribution p* in Figure 5.35 including
the area below the blood vessel. Only those elements where the aforementioned equation can
actually be solved are depicted. In the rest of the domain the equation is not evaluated which
is equivalent to a no-flux boundary condition at the edge of the neovasculature. A considerable
pressure drop from the pre-existing vasculature towards the edge of the neovasculature can be
observed, which is due to the large leakage of fluid from the abnormal neovasculature into the
IF.

Also species transport of oxygen in the 1D embedded and the homogenized vasculature are
coupled via the MP approach. The corresponding distributions are shown in Figure 5.36. Again,
species transport of oxygen in the neovasculature can only be solved in the portion of the domain
where it is present greater than a threshold value of, in this case, €}, = 0.01. As for blood
pressure, this results in a no-flux boundary condition across the edge of the neovasculature in
the species transport equation (3.63). The proposed approach works well in capturing the shape
of the neovasculature domain in this case but for different scenarios the threshold value could
be defined as a certain percentage of the degree of vascularization over the whole domain. Tran-
scapillary exchange of oxygen from the pre-existing and the neovasculature into the IF cause
the depicted oxygen distributions. In the tumor area a lot of oxygen is required due to the vast
oxygen consumption by proliferating TCs. At the beginning of tumor progression oxygen is pro-
vided from the pre-existing vasculature into the IF through transcapillary exchange. Diffusion
in the IF is necessary to reach the tumor. During angiogenesis the developing neovasculature
enables a more efficient transport of oxygen. Oxygen can now also be transported from the
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Figure 5.37: Mass fraction of oxygen in IF (left) and TAF in IF (right) after 24 days. Figure taken
from the author’s article [136].

pre-existing into the neovasculature due to the coupling of species transport and then from the
neovasculature into the IF much closer to the site of the tumor. This behaviour is augmented by
the pressure drop in the HV, which develops due to the large leakage of fluid, such that oxygen
is advected from the inflow through the vasculature. Still, the high oxygen demand leads to very
low oxygen mass fractions in both the HV and the IF, see also Figure 5.37 (left). Also in the
IF most of the oxygen is present close to the pre-existing vasculature while a hypoxic region
emerges inside the tumor. In the right part of Figure 5.37 the TAF mass fraction in the IF which
is produced during hypoxia by LTCs and triggers angiogenesis is additionally shown.

The goal of this numerical example is to demonstrate that the treatment of angiogenesis with
a homogenized representation of the neovasculature and a discrete representation of the pre-
existing vasculature is able to produce biologically and physically reasonable results. The infor-
mation about the structure of the pre-existing vasculature can be preserved while not every single
capillary segment of the neovasculature has to be resolved as in most other vascular tumor growth
models. At least qualitatively the results are in good agreement with ingrowth simulations using
discrete vasculature models [158, 289]. It becomes evident how angiogenesis completely shifts
the supply of the tumor with nutrients from diffusion in the IF to the more efficient transport
in the (neo-)vasculature. One drawback of the model is the difficulty to initiate sprouts from the
pre-existing vasculature. For now, a Dirichlet boundary condition has been set on the pre-existing
vasculature to trigger angiogenesis.

Compared to the experimental results shown for brain tissue by Seano et al. [236], the de-
formation of the pre-existing vasculature during tumor growth is actually quite small due to the
chosen material parameters and boundary conditions. Hence, it might be justified to neglect the
deformability of blood vessels in this case and simply evaluate the respective terms in reference
configuration. Especially the solid velocity term in (3.79) is insignificant since time scales during
tumor growth are quite large. In Appendix A.3 a further example is presented which illustrates
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the capabilities of the framework to include also larger deformations of the embedded vascular
network.

Pre-existing and neovasculature are of comparable scale in this example. Hence, the motiva-
tion for representing one as a 1D inclusion and the other in a homogenized way is not scale
separation but rather the previously described abnormal structure/morphology and function of
tumor neovasculature. Due to these complexities and the associated heterogeneity, the homog-
enized approach for modeling the neovasculature with a blood vessel density rather than single
blood vessel segments is more suitable than a resolved approach. Naturally, quantities of interest
such as microvascular density or average blood flow and species transport are available. Another
possible application of the hybrid formulation apart from angiogenesis is the modeling of larger
tissue domains at the scale of a whole tumors or even organs. Here, it is also possible to model
only the larger vessels patient-specifically as 1D inclusions and treat the smaller blood vessels,
i.e., the capillary bed in a homogenized sense with a hybrid model [128, 242, 266]. This ap-
proach is followed in Chapter 6 to validate the hybrid approach for modeling perfusion through
entire solid tumors.
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6 Validation and Parameter
Optimization of the Hybrid
Embedded/Homogenized
Representation of the Vasculature
with a Study of Solid Tumor
Perfusion

This chapter is concerned with investigating the validity of the previously developed hybrid em-
bedded/homogenized representation of the vasculature. Here, this idea is transferred for model-
ing perfusion through solid tumors where hybrid models relying only on non-invasively available
imaging data can have a major impact for understanding the involved transport mechanisms and
for designing novel therapies. Hence, the employed model is only a part of the entire tumor
growth framework presented in the preceding chapters. The approach is validated and its param-
eters are inversely identified by comparing its results to a corresponding fully-resolved model
with discrete representation of the vascular network based on several suitable metrics. A com-
plex data set of three different tumor types with heterogeneous vascular architectures serves as
a basis to perform these numerical tests. The content of this chapter was previously published in
the author’s article [137].

The subsequent sections are structured as follows: First, a short introduction of the main goals
of this investigation is given in Section 6.1. Then, both model types are introduced in Section 6.2.
The employed tumor vasculature data sets as well as the setup of the models including the as-
signment of boundary conditions and the extraction of the hybrid model from the fully-resolved
one are described in Section 6.3. Numerical experiments to compare the accuracy of the hybrid
model w.r.t. the full model and to evaluate its main errors are conducted in Section 6.4. Several
possible improvements of the hybrid model are illustrated in Section 6.5 before the findings are
summarized in Section 6.6.

6.1 Introduction

A validation with experimental data or even a transfer to clinical practice is extremely complex
for the sophisticated tumor growth models developed in the previous chapters due to the lack of
well-suited experimental data and the involved uncertainties with the thousands of parameters
influencing tumor growth in-vivo. While a comprehensive cancer simulation tool is still desir-
able, a high benefit can also be expected from less complex models. For instance, to evaluate the
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transport phenotype of a grown tumor in a specific patient and to optimize drug delivery based
on this phenotype, it is not necessary to first replicate cancer progression with a suitable tumor
growth framework. A mathematical model of blood flow and mass transport through the tumor
domain suffices to answer highly relevant biomedical questions such as the transport of nutri-
ents, oxygen or drugs across the vascular system and inside the tissue micro-environment. These
methods can ultimately lead to a new rationale for developing and non-invasive testing of novel
therapies [60]. Overcoming the barriers currently encountered by drug delivery systems requires
an integration of such in-silico models with corresponding experiments to aid in cheaper, faster
and more targeted drug design [74, 183].

Therefore, this chapter is concerned with the simulation of blood flow and tissue perfusion
through solid tumors. This includes, first, the vasculature, which is embedded in the encom-
passing tissue, second, passage across the blood vessel walls into the surrounding extravascular
space and, third, flow of the fluid filling this space, namely the interstitial fluid (IF). For that, the
distinct modeling strategies introduced in Chapter 3 for these transport processes, namely with
continuum, discrete or hybrid description of the vasculature are applicable. These approaches
have been extracted from the entire tumor growth framework to build a computational model for
solid tumor perfusion.

As already discussed in Chapter 3, the distinct representations of the blood vessels have differ-
ent use cases: Discrete models can and should be applied when the entire structure of the vascu-
lature including the smallest scales, i.e., the capillaries, is known and its resolution is needed for
the question at hand. This is usually restricted to small domain sizes of an order of several mm?.
By contrast, continuum models are used to simulate mass transport at larger scales, e.g., through
whole organs. Both approaches have advantages and disadvantages: On the one hand, the com-
putational cost of continuum models is usually smaller than for discrete ones which makes the
application to larger domains possible in the first place. On the other hand, the information about
the exact morphology of the vascular network is lost such that blood flow can only be described
in an averaged sense. Discrete models, however, are computationally more expensive. Further-
more, they require the full structure of the part of the vasculature under consideration. This is
usually realized via a graph whose edges are assigned the radius of the blood vessel segments
between nodes. Such high-resolution data including blood vessel radii, connectivity and posi-
tions can at present only be acquired through ex-vivo imaging [242]. In addition, the acquisition
of high-quality data is still challenging and error-prone especially on the finest scales [131]. By
contrast, in-vivo imaging is currently only possible for larger vessels and flow therein [ 150, 242].
Therefore, discrete models rely on data which is not available via non-invasive imaging. An ad-
ditional difficulty is the assignment of blood pressure or flow boundary conditions which can
only be estimated for large networks [85, 252]. In any case, validation of these models is usually
only performed on macroscopic quantities such as tissue perfusion [59] since measuring flow or
pressures inside single micro-vessels is not possible [252].

By contrast, the developed hybrid approach is especially suited for cases where the full vas-
cular morphology is unknown or too large to be modeled with a discrete approach. As in other
hybrid approaches [128, 130, 242], this is achieved by resolving only the larger vessels through
a discrete model while the smaller ones are homogenized. This enables a better representation of
the heterogeneity of blood flow and pressure in the major vessel branches which is lost in purely
homogenized approaches. Moreover, compared to discrete models the morphology of the small-
est vessels which is not available via non-invasive in-vivo imaging is not required. Nevertheless,
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validation is equally possible with quantities such as tissue perfusion, blood flow or pressures at
the resolution of current imaging techniques. A related approach, where no homogenization of
the capillaries is needed, is to generate a discrete surrogate network of the smaller scales based
on the oxygen demand of the tissue [131].

This chapter focuses on the validation of the hybrid embedded/homogenized scheme with
three complex tumor-specific vascular networks based on large tissue samples containing more
than 100 000 blood vessels [59, 252]. A special emphasis is put on the extraction of the larger
vessels from the fully-resolved network data such that it qualitatively matches the topology and
distribution of larger vascular structures inside tumors available via in-vivo imaging. Thus, it is
assured that the hybrid approach is investigated for cases which closely resemble real-life sce-
narios where the structure of the considered part of the microcirculation is not entirely known.
Here, the entire topology of the vasculature in the given tissue domain is known which allows to
generate reference solutions with a fully-resolved model and to quantify the error introduced by
the homogenization in the hybrid model. This error is evaluated by means of several well-defined
metrics involving the agreement of pressures and flow between the two models. Concurrently,
the parameters of the hybrid model are identified such that the correspondence of the models
i1s maximized. Evaluating the model discrepancy of the hybrid model in comparison to a fully-
resolved one is a first and indispensable step towards realistic hybrid models of tumor perfusion
relying only on non-invasively available physiological data. For a full validation and parame-
ter optimization, similar methods as applied herein need to be combined with advanced in-vivo
imaging techniques. The comparison of two purely numerical approaches enables investigat-
ing the hybrid model in a controlled environment unaffected by any further influences such as
uncertainties in experimental or clinical data.

6.2 Employed Model Types and Numerical Methods

In this section, the employed model types to solve the interaction between microcirculation and
interstitial tissue perfusion including their main simplifications are described. The fully-resolved
and the hybrid approach and their discretization by means of the FEM are introduced. The cen-
terline variant for 1D-3D coupling is employed since the diameter of the 1D embedded blood
vessels is sufficiently larger than the element size in the 3D domain in all considered cases, see
also Table 6.1.

6.2.1 Problem Setting

As before, topology and structure of the microcirculation is described by a graph with straight
edges, i.e., blood vessel segments. The segments connect the nodes of the network. A radius Ry,
is assigned to each segment Aj. Available experimental data including the one employed here
is also commonly provided in this format. This 1D embedded blood vessel network is again
denoted with A. Note that a distinction between reference and current domains as introduced in
the previous chapters is not necessary here as only perfusion through the system is considered
and no deformation. Similar to Vidotto et al. [266], the vascular domain is further divided into
two subsets Aj, and Ag which correspond to the larger and smaller vessels in the network such
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(a) Fully-resolved (b) Hybrid

Figure 6.1: Notation for domains and boundaries. Figure taken from the author’s article [137].

that
A= J A Asi= [ Av and A= AL UAg (6.1)
kelr, kels
with the index sets of large and small blood vessel segments /1, and Ig, respectively. This partition
will be detailed in Section 6.3.3. Whereas the larger vessels are kept in the hybrid model, the
smaller scale vessels are replaced by an appropriate homogenized representation as a porous
network occupying the domain €2, C €2, conf. Figure 6.1b.

6.2.2 Fully-resolved 1D-3D Model

Based on the same assumptions as introduced in Section 3.4.1, blood flow in the 1D vasculature
domain is given by

D1
0 7T'R4 8}9{) Mleak
- ~ = —— A 2
ds (&uv 83) pv on ©2)

with the Hagen-Poiseuille law, constant blood density pf’, blood vessel radius R, the pressure
inside the vasculature p® and blood viscosity j°. Again, s is the arc length coordinate along
the 1D blood vessel segment. Throughout this chapter, the algebraic relationship for the non-
Newtonian behaviour of blood developed by Pries and Secomb [201] is applied. As in [252],
hematocrit is fixed to 0.45, thus, the blood viscosity ¥ in each individual blood vessel segment
depends only on its diameter. Finally, the right-hand-side term

00—l

Mk = p' - 20R - Ly - (p" —p' — o (7° — ")) (6.3)

is employed to model leakage of fluid across the blood vessel wall into the interstitium. This
term is equivalent to (B.16), that is, the centerline variant for 1D-3D coupling with Starling’s
law accounting for transvascular flux with hydraulic conductance L, ;, density of blood plasma
o', oncotic reflection coefficient o and the oncotic pressures of blood 7° and the interstitial fluid
(IF) . In summary, the mass transfer from the vascular network into the IF is proportional to the
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pressure difference between vasculature and IF whose pressure in (6.3) is denoted as p'. Note that
the investigated data sets are whole-tumor blood vessel networks where also larger vessels are
leaky [59, 252] which is why the transvascular exchange term (6.3) is applied also on the subset
of larger vessels Ay,. As explained before, the associated increased interstitial fluid pressure may
lead to resistance to efficient drug delivery [13, 103, 114].

The tissue domain (2 is again modeled as a porous medium. However, in contrast to the entire
tumor growth model, now only a single fluid phase, namely the IF, is considered to account for
flow through the pores of the ECM in the 3D tissue domain. Fluid flow therein is governed by
the following Darcy equation

l
v (’“_lvpz) gy Moy g (6.4)
I

with (isotropic) permeability k' = k' - I and IF viscosity z!. Hence, the primary variable for
fluid flow through the tissue is the IF pressure p'. The right hand side represents outflow from
the embedded vessels into the IF scaled with the Dirac term along the centerline of the inclusion.
The weak form of the employed 1D-3D coupled problem may then be written as

v—l

aép{) ﬂ-R4 ap{) o Mleak
g op?, /< =0 6.5
A
k' M.
(Vapl,—lvpl) — [, == | =0 (6.5b)
M Q p A

with test functions dp® defined on the 1D domain and dp' defined on the 3D domain. The inte-
gration of the mass transfer terms along the centerline is once more performed with the segment-
based approach as detailed in Section 4.3.3.1. After space discretization, the nodal primary vari-
ables of both domains are

p{) c RnnodeSA,A and pl c R”nodes,ﬂ7 (6.6)

that is, the nodal blood pressure in the discretized 1D domain and the nodal IF pressure in
the discretized 3D domain, which consist of npodes,a and 7podes, 0. T€Spectively. Details on the
employed boundary conditions are given in Section 6.3.2.1.

Finally, a global system of linear equations arises, which may be written as a 2 x 2 block

matrix » N A X
K’U’U G’U v FU
lHlﬁ Kll} Bz} = [Fl] : (6.7)
Herein, the main diagonal blocks K" comprise contributions from the diffusive term and the
exchange term in (6.5a) and (6.5b) while the off-diagonal submatrices G" and H® contain the
“mixed” contributions from the exchange term. The right hand side terms F' represent the con-
stant contribution to the exchange term stemming from the oncotic pressures in (6.3). To solve

the coupled linear system (6.7) the AMG(BGS) block preconditioner presented of Verdugo and
Wall [263] with a GMRES iterative solver is once more employed.
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6.2.3 Hybrid 1D-3D Model

The main idea behind the proposed hybrid 1D-3D model is the same as in the context of the
tumor growth model with hybrid representation of the vasculature: The full resolution of the
larger vessels Ay, is kept, i.e., these are still modeled as a 1D embedded vasculature. Conse-
quently, the hierarchy, topology and vascular properties such as individual blood vessel radii and
viscosities of each segment are retained, see also Figure 6.1b. The smaller vessels Ag, for which
this high-resolution data might either not be available through non-invasive imaging techniques
or susceptible to errors, are instead represented as an additional porous network. This results in
a double-porosity formulation where the first porous network is, as before, the interstitial space
and the second one the smaller vessels occupying the domain €2,,. In the following, the governing
equations and the spatial discretization of this formulation is presented.

As stated above, the model for the larger vessels does not change. Therefore, the mass balance
equation inside the large vessels is given by

D=1
0 WR4 ap@ Mleak
— . = —— A :
Js (8u” Js ) PP on oL ©8)

with the only difference to (6.2) being that it holds only on the subset A;, C A of bigger ves-
sels. The mass balance equation for the smaller vessels Ag is replaced by a homogenized Darcy
equation in the vascular domain €2, formulated as

-V (k_vpv) = My, (6.9)
0 pY

The unknown in this equation is the blood pressure p” in the homogenized part of the vascu-
lature which is now defined in the entire 3D domain §2,,, thereby replacing the blood pressure
of the smaller vessels in the 1D domain Ag as the variable governing flow inside the smaller
vessels. For simplicity, only an isotropic permeability tensor k" = k" - I is considered for the
additional porous network. This permeability and the averaged blood viscosity ;¥ are the two
model parameters governing this equation together with the right hand side term

vl b Ly (S/V)ag - (p° — 9 — o (7 — 7)) in €,
leak — . . (610)
0 in Q\Q,
This term replaces the outflow of fluid from the smaller vessels into the IF by a homogenized
representation of the Starling equation (6.3) involving the surface-to-volume ratio of the smaller
blood vessels (S/V'), as an additional parameter. The mass balance equation of the IF for the
fully-resolved model (6.4) is adapted as

k! z 1 -1 v—l _
-V - EVp = E 5AL . Mleak —+ Mleak in (611)

in the homogenized formulation. Comparing the two equations, it is obvious that leakage from
the large vessels is still treated equivalently, i.e., the large vessels are still embedded as 1D
inclusions in the tissue with a Dirac measure (now defined only on A;, C A employing the
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centerline-coupled variant). By contrast, leakage from the smaller blood vessels is replaced by
the homogenized mass transfer term (6.10) from the vascular domain €2, into the interstitium,
i.e., from (6.9) into (6.11).

So far, this procedure is analogous to other hybrid approaches [242, 266]. The main difference
to the hybrid embedded/homogenized methodology followed in this thesis lies in the coupling
between the larger vessels Ay, and the homogenized vasculature 2,,. In the aforementioned pub-
lications, this was realized at the free ends of the larger vessels, i.e., as an outflow at the tips of
the 1D discretization into the homogenized 3D vasculature domain. This was possible since the
employed data sets had a clear vascular hierarchy with larger arterioles and venules connected
to smaller capillaries. The here employed vascular networks, which will be described in detail in
Section 6.3.1, have been segmented from solid tumors and, therefore, have a much more com-
plex, disorganized structure including variable vessel lengths and diameters as well as dead ends.
All this is typical for tumor-specific vasculature [12, 36]. As shown in detail in Section 6.3.3, for
this data and the employed methodology to distinguish between large, flow-carrying vessels and
smaller ones, another approach is more sensible, namely, to enforce the coupling between larger
vessels and the homogenized vasculature along the entire 1D representation of larger vessels
Ay, with a line-based coupling instead of a point-based coupling at the tips of the larger vessels
flowing into the capillary bed. Compared to these hybrid approaches, the proposed method also
has the advantage that no additional parameter — apart from the penalty parameter — is involved
for the coupling of the two representations.

So, a line-based constraint of equal pressures in Ay, and €2, is formulated equivalent to (3.110)
as

g=p"—p"=0  on A, (6.12)

which enforces a coupling between pressures p° in the one-dimensional, large vessel domain Ay,
and homogenized pressures p* in the 3D domain €2,,. This aims to reproduce that the pressure in a
smaller vessel branching from a larger vessel at a specific node is equal to the pressure at the same
node. If this smaller vessel is homogenized and, thus, removed from the 1D representation, these
equal pressures should be enforced between the resolved part and the homogenized part of the
vasculature along the 1D vessel domain Ay,. Here, only the mortar scheme with penalty regular-
ization is employed as the Gauss-point-to-segment scheme could suffer from over-constraining
of the system for large penalty parameters see Section A.2 and [134, 136, 246]. In Section 6.3.3,
it will be justified why this constraint is formulated along the entire 1D domain Ay, considering
the connectivity between larger and smaller vessels in the studied cases. Thus, the same strategy
as in the hybrid variant of the vascular multiphase model, see Sections 3.5 and 4.3.1.3, and the
related solid mechanics problem of beam-to-solid mesh tying [134, 246] is employed and the
constraint is incorporated with an additional Lagrange multiplier (LM) field into the weak form
of the hybrid model, which reads as

V=l
Aop® wR* Op® - Mieax A
- op’ . op’;A), =0 6.13
(35’8#“83)A+ p k) +<p’)AL ( a)
Ay
k" M,
(V&pv, _va) + 5]9”, leak _ (5pv’ )\)AL =0 (613]3)
I Qo P’ o
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k! M, M,
(V(Spl, —lel) — | p', ljak — | &', liak =0 (6.13¢)
1 a p p

Ar, Qo

(6, (p° — p“))AL =0 (6.13d)

Therein, the first line is the weak form of flow in the larger vessels (6.8) which is coupled to the
weak form of flow in the homogenized vasculature domain, i.e., the second line (6.13b) with a
continuous LM field A defined along the blood vessel center line. The third line is the weak form
of flow in the IF. Compared to the fully-resolved model, conf. equation (6.5b), the additional
mass transfer term arises due to leakage from the homogenized part of the vasculature into the
IF. The fourth line represents the variational form of the coupling constraint (6.12). The LM field
employed to enforce this constraint can then again be interpreted as a mass transfer term from

the 1D resolved bigger vessels into the 3D homogenized vasculature, i.e., A = v]\?fv.

For the sake of completeness, the spatial discretization of the weak form including a penalty
regularization of a mortar-type method, which was outlined for the hybrid variant of the vascular
tumor growth model in Section 4.3.1.3, is repeated here. The weak form (6.13a)-(6.13d) leads to

a saddle-point problem with nodal primary variables
p6 c Rnnodes,AL , A c Rnnodes,AL7 pl c Rnnodes,ﬂ and pv c Rnnodes,ﬂv’ (6.14)

that is, nodal pressures and nodal LMs in A", nodal IF pressures in Q" and nodal blood pressures
of the homogenized vasculature in QE} In the following, the focus lies on the discretization of the
terms arising due to the LM method. Approximating those contributions with a finite element
interpolation yields a mortar-type formulation where the nodal LMs are additional degrees of
freedom or condensed out with a dual approach [ 199, 284]. Alternatively, a penalty regularization
of the mortar method can be employed to remove the additional degrees of freedom and the
saddle-point structure [292] which is the chosen method here as in previous work on 1D-3D
couplings [ 134, 246]. The contributions to the weak form of the mass balance equations, i.e., the
two last terms in (6.13a) and (6.13b) can be written as

nnodes,AL nnodes,AL nnodes,AL Nnodes, 2y
j=1 k=1 j=1 =1

with the previously defined mortar matrices of the centerline-based coupling variant

D[j, k] = Dji _/ D, Ny, ds (6.16)
A

and

M[j,l]:]\/[ﬂ:/ d; N, ds. (6.17)
Ah

L

The integrals of products of LM shape functions @)j defined on the discretized 1D domain A}
with 1D shape functions N, and with trilinear shape functions NN; defined in the 3D domain Q"

178



6.2 Employed Model Types and Numerical Methods

are again evaluated using a segment-based approach as detailed in Section 4.3.3.1. Linear shape
functions are chosen for both primary variables and the LM interpolation, i.e., <I> = N The
weak form of the constraint (6.13d) can for this case be written in discretized form as

SII% = 6AT (Dp® — Mp*) =: 6A"g (p”, p") , (6.18)

with the weighted pressure gap g at each node in A". As before, this gap is then further used for
the penalty regularization of the mortar method to explicitly define the nodal LMs in terms of
1D and 3D nodal blood pressures as

A=ex"'g(p’,p"). (6.19)

Hence, the LMs are no longer independent variables in the system but depend on the primary
variables p® and p®. This overcomes the two major drawbacks of the LM method, namely, the
increased system size and its saddle-point structure. Depending on the penalty parameter € > 0,
the constraint g = 0 is relaxed and the exact solution is only recovered for ¢ — oo. Additionally,
the nodal LM in (6.19) is scaled with the inverse of the diagonal matrix

k[j,j] = /Ah D, ds. (6.20)

As proposed by Yang et al. [292] this removes the dependency of the nodal LM on its ’gap”,
i.e., in the present case it makes its entries independent of the element lengths associated with its
corresponding node. This can now be used to replace the LM vector such that the matrix-vector
form of the hybrid model emerges as

K”+eD's'D G" —eD'k'M p’ F’
H' K J p'| = |F|. (6.21)
—eM"k D LY K"+ eMTkIM]| |pY F

As in the fully-resolved model (6.7), main diagonal blocks are denoted as K and the coupling
blocks G” and H" stem again from the transvascular 1D-3D exchange term. Additionally, the
coupling blocks J" and L”" account for exchange between homogenized vasculature and IF. The
terms involving the mortar matrices D, M and k couple blood flow in the larger vessels with the
homogenized vasculature using the mortar penalty approach. Obviously, the LMs are no longer
part of the system which is, consequently, not of saddle-point type anymore. The drawback, how-
ever, is that the choice of the penalty parameter influences the accuracy with which the constraint
is fulfilled. Large penalty parameters yield better accuracy in terms of constraint fulfillment but
can lead to an ill-conditioning of the system matrix. A comment on the choice of the penalty
parameter is made in Remark 6.4.

Remark 6.1. The concrete implementation of the hybrid model is slightly different than de-
scribed here for illustrative purposes. The equations for IF flow and blood flow are evaluated
simultaneously on the 3D domain and not assembled into two separate block matrices as writ-
ten in (6.21). This corresponds to the residuum of the vascular multiphase tumor growth model
where primary variables of TCs, HCs and IF are always evaluated together with HV volume
fractions and pressures, see (4.122). Hence, the degrees of freedom are actually re-ordered in a
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LS174T GL261 SW1222 Unit
No. of segments (elements) of 1D network 186 092 120 340 419198 —
No. of nodes of 1D network 178592 110062 385218 —
Tumor volume 190.5 24.6 235.5 mm?
Tumor dimensions 4.5 %76 2.4 x4.6 6.4 x 8.1 mm X mm

x10.9 x5.3 x11.1 Xmm
Blood vessel volume fraction 1.13 4.01 14.90 %
Blood vessel surface-to-volume ratio 1.85 x 1073 6.93 x 1073 7.43 x 1073 um™!
Mean blood vessel diameter =+ std. dev. 220£7.2 176 +10.0 44.6+39.2 pum
Mean blood vessel segment length =+ std. dev. 272+6.8 25477 287T+£9.2 pum
No. of boundary nodes of 1D network on tumor hull 1559 2419 1933 —
No. of boundary nodes of 1D network inside domain 1855 6599 13772 —
No. of elements of 3D domain 15955 142 15141173 13231813 —
No. of nodes of 3D domain 2660273 2524666 2207655 —
Mean element size in 2, 76.4 39.7 78.1 um
Edge length of REV 1250 750 1500 um

Table 6.1: Details on tumor vasculature data sets and discretization

node-wise manner compared to (6.21) such that one row corresponding to the nodal IF pressure
at a node j is followed by a row corresponding to the homogenized blood pressure at this node j.
Therefore, a system which is blocked with 2 X 2 submatrices analogous to (4.126) is solved, where
the upper part corresponds to the resolved part of the vasculature and the lower part to the IF
and the homogenized vasculature. For solving this system, the AMG(BGS) preconditioner [263]
combined with the GMRES iterative solver is once more used.

6.3 Setup of Computational Models

This section describes the setup of the fully-resolved and hybrid model. First, the real-world
tumor data sets which will be employed for all numerical tests are analysed. Subsequently, the
assignment of boundary conditions in both models is described. Then, the creation of the hybrid
model with homogenized vasculature starting from the full topology of the vascular networks
is illustrated. Finally, the definition of representative elementary volumes for homogenization is
introduced.

6.3.1 Analysis of Real-world Tumor Data Sets

For this study, three different vasculature data sets from REANIMATE [59, 252], which is
a framework combining mathematical modeling with high-resolution imaging data to predict
transport through tumors, are examined. More details about the framework and the experimen-
tal procedure are given in the two aforementioned papers. Two different colorectal cell lines,
namely SW1222, LS174T, and one glioma cell line, GL261, were grown subcutaneously for 10
to 14 days in mice, resected and optically cleared, and finally imaged using optical projection
tomography. The data was then segmented to obtain the complete blood vessel networks inside
the tumors in the graph format as discussed before.

The topologies and blood vessel radii of the three distinct cases are illustrated in Figure 6.2
together with representative results of blood vessel and IF pressure of the fully-resolved model.
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Figure 6.2: Full topology and structure of the vascular networks (left, colour-coded by the re-
spective radii), representative results for simulated blood pressures (middle) and IF
pressures (right) in the fully-resolved model (Same spatial scale is used for all three
cases). Figure taken from the author’s article [137].
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Figure 6.3: Mesh of three-dimensional domain for SW1222 tumor. Tumor domain (equivalent to
the domain §2,, on which the additional porous network of smaller vessels is present
in the hybrid model) is depicted in red and has been obtained as the alpha shape of
nodes of the vascular network. Figure taken from the author’s article [137].

Further network data is collected in Table 6.1: All three networks contain more than 100 000
blood vessel segments and nodes. The SW1222 case is the biggest tumor both in network size
and tissue volume. The latter has been calculated by approximating the hull of the tumor using
the alphaShape function of Matlab [165]. The hull is then smoothed, remeshed using Gmsh
(version 4.4.1, [89]) and slightly enlarged to encompass all vasculature nodes. Its enclosed region
is integrated to give the tumor volume, see also Figure 6.3 for the SW1222 tumor. Note that this
tumor domain corresponds to the domain §2,, on which the additional porous network of smaller
vessels is present in the hybrid model and where its additional governing equation (6.9) is defined
and solved. Furthermore, all topologies are rotated such that their principal axes align with the
coordinate axes. The three different cases show distinct vascular architectures, for instance, the
SW1222 network is much denser with a higher blood vessel volume fraction and blood vessel
surface-to-volume ratio than the two other types. In addition, its blood vessel diameters are
generally larger and have a much higher variability. All topologies have a comparable number
of boundary nodes lying on the aforementioned enclosing alpha shape whereas the GL261 and
SW1222 tumors have a much higher number of tips inside the domain than the LS174T tumor.

6.3.2 Assignment of Boundary Conditions

The assignment of physiologically reasonable boundary conditions on large vascular networks is
quite challenging since flows or pressures cannot be measured on the level of individual micro-
vessels. Sweeney et al. [252] developed an algorithm [251] to apply boundary conditions which
match in-vivo measurements of perfusion for the present data set. This framework is re-used
here to generate the boundary conditions for the fully-resolved case and briefly described in
Section 6.3.2.1. Boundary conditions for the hybrid model are detailed in Section 6.3.2.2.
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(a) SW1222 (b) LS174T (c) GL261

Figure 6.4: Exemplary distributions of boundary conditions for homogenized pressure p” on
boundary of vascular domain 052, in the hybrid model variant for all three cases.
Figure taken from the author’s article [137].

6.3.2.1 Fully-resolved Model

For the fully-resolved model, boundary conditions for the blood pressure p°® in the 1D net-
work and the IF pressure p' need to be assigned. For the blood vessel pressure, the approach
of Sweeney et al., which has been made publicly available [251] and is based on earlier work by
Fry et al. [85], is re-used. Thereby, boundary conditions are assigned on the tips of the network,
more precisely, on the boundary nodes of the 1D representation of the vasculature both on the
tumor hull and inside the tumor as given in Table 6.1. The following algorithm is applied: First,
a high or low pressure of 5999.4 Pa or 1999.8 Pa (corresponding to 45 mmHg or 15 mmHg) is
randomly applied to the boundary points on the tumor hull until 5% of all end points of the
1D network have been assigned such a high/low pressure. Additionally, the method prevents that
points which are in close proximity to each other are assigned the far apart pressure values which
would produce unphysiologically large flows. Second, a no-flux boundary condition is randomly
assigned to the interior boundary nodes until 33 % of all boundary nodes have this condition.
This value is consistent with the fraction of dead ends in tumor vasculature estimated from ex-
perimental studies [174]. Third, the remaining 62 % of boundary nodes remain as unknowns in
the flow optimization scheme of Fry et al. [85]. This scheme, which was previously employed in
Section 5.5 to assign pressure boundary conditions, aims at solving a constrained optimization
problem for incomplete pressure boundary data by minimizing the error of pressures and wall
shear stress w.r.t. pre-defined target values. D’Esposito et al. [59] and Sweeney et al. [252] have
shown that this procedure for assignment of boundary conditions ensures that tumor perfusion
is in good agreement with experimental data. Note that the entire algorithm is not deterministic
due to the random selection of nodes for high/low boundary conditions on the external surface of
the tumor and of nodes for no-flux boundary condition in its interior. Therefore, the analyses in
the following sections will be performed on five different sets of pressure boundary conditions
on the 1D network per tumor case.

Concerning the IF pressure, the far-field pressure for the IF is prescribed as p!_ = 0 Pa follow-
ing Sweeney et al. [252]. In order to achieve this within the employed finite element approach,
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the domain (2 is radially enlarged to a sphere of radius 80 mm as shown in Figure 6.3 for the
SW1222 case. This allows setting a Dirichlet boundary condition of p! = 0 Pa on its boundary
0f) and, thereby, to mock the far-field pressure. This approach has been validated in the follow-
ing way for all three vascular networks: The fully-resolved model was solved (for one specific set
of pressure boundary conditions on the 1D network) and the IF pressure solution compared with
a case where the domain was only enlarged to a sphere with radius 40 mm (with corresponding
zero IF pressure Dirichlet boundary condition on its outer surface). No visible differences in the
IF pressure distribution in the domain of interest inside and around the tumor domain could be
detected. This indicates that the enlargement is big enough insofar as the solution in the domain
of interest is not influenced by the size of the enlargement any more. The mesh can also be
gradually coarsened when moving away further from the vascular domain as depicted in Fig-
ure 6.3 since the IF pressure gradient flattens and tends to zero further away from the center of
the domain. This enables using a sufficiently fine mesh for the region surrounding the embedded
vascular network while the computational cost for extending the domain is not too high.

6.3.2.2 Hybrid Model

In addition to boundary conditions for the IF pressure p' and the blood pressure p?, the hybrid
model requires boundary conditions for the pressure in the homogenized vasculature p*. The IF
pressure is treated as in the fully-resolved model and set to zero at the boundary of the domain
02. In the following, the accuracy of the hybrid variant will always be compared w.r.t. the fully-
resolved one for one specific set of pressure boundary conditions on the 1D network obtained
with the procedure described in the previous section. To perform this comparison, the pressure
boundary conditions on the 1D network are transferred from the fully-resolved model to the hy-
brid model in the following manner: The boundary conditions of blood pressure p” on the larger
vessels Ay, can directly be taken from the boundary conditions of the fully-resolved model. If a
node with a Dirichlet boundary condition in the fully-resolved vasculature A is part of the larger
vessels A, this boundary condition on the 1D discretization is kept also in the hybrid model.
Dirichlet boundary conditions on the smaller vessels Ag cannot be assigned on the 1D discretiza-
tion since smaller vessels are homogenized. However, they can be employed to assign boundary
conditions for p¥ on the boundary of the domain of homogenized vessels 0f2, as depicted in
Figures 6.1b and 6.3. Similar to Vidotto et al. [266], these values are smoothed to account for the
homogenization of the smaller vessels: Each condition belonging to a node of the smaller vessels
Ag at the tumor surface is assigned to all 3D nodes lying on the surface 0f2, within a distance
of less than 400 um for the SW1222 and the LS174T tumor and less than 200 um for the GL261
tumor. Nodes of the 3D mesh which lie within this distance of multiple boundary nodes on Ag
are assigned the mean pressure value of all these boundary nodes. On the rest of the surface 02,
a no-flux boundary condition is set. Nodes of the 3D mesh in close proximity to end nodes of the
1D network are excluded since this would mean setting different boundary conditions on nodes
whose pressures should be coupled due to the constraint on pressures p® and p® and, thus, would
lead to an overconstrainment of the system. The resulting distribution of boundary conditions p”
over 052, is illustrated in Figure 6.4 for three exemplary cases.
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(a) full topology (b) 10 % with highest flow (¢) 10 % with largest radius

Figure 6.5: Extraction of large vessels Ay, from the entire network A — Comparison between
flow-based criterion (and sorting out of small connected components) and radius-
based criterion. Figure taken from the author’s article [137].

6.3.3 Distinction between Fully-resolved and Hybrid Model

As previously stated, the hybrid model could be applied in cases where the full structure of the
vascular network is unknown such that only the topology of the larger vessels can be acquired
via non-invasive imaging. However, in the employed data sets the full structure is available. In
line with the main goals of this chapter, namely, to validate the hybrid approach, to quantify the
error with respect to the fully-resolved case and to determine its optimal parameters for perfusion
through solid tumors, the hybrid model is artificially created from the fully-resolved one. In other
hybrid approaches [242, 266] this was realized by a radius-based criterion. Their employed data
sets had a clear hierarchy typical for the microcirculation with larger arterioles branching into
smaller capillaries which in turn connect and form larger venules. Thus, it was possible to exploit
the hierarchical structure of the vasculature by keeping only the larger vessels in the set /7.

For the tumor vasculature data sets of REANIMATE this is not as straightforward. While there
are some thicker vascular branches, especially in the SW1222 case, no clear hierarchical vascular
architecture can be extracted from the topologies in Figure 6.2 with a radius-based criterion. To
illustrate the challenge, the full architecture of the SW1222 network is compared with a network
where only the top 10 % of vessels with the largest radius are kept in Figures 6.5a and 6.5¢. Many
small unconnected clusters of several blood vessel segments appear due to the heterogeneous,
extremely variable distribution of the radius and lack of vascular hierarchy. Branches connecting
these clusters which have a smaller radius are removed. Applying the present or any hybrid
model on this topology would not be possible as hybrid approaches also rely on a ”sensible”
topology for Ay, which preserves the structure of the entire network via one or several connected
subgraphs of larger vessels which feed respectively drain the smaller, homogenized vessels.
Only then, the 1D blood flow model and corresponding boundary conditions can reasonably
be applied on A, together with suitable exchange terms into the smaller vessels. Thus, smaller
and larger vessels are distinguished based on the flow within the vessels. This yields a better
preservation of the network architecture for the hybrid case, see Figures 6.5a and 6.5b. Now,
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case 5% case 10%  case15%  case 20%
mean diameter [um] Dy, Dy, ‘ Dy, Dag ‘ Dy, Dag ‘ Dy, Dag

SW1222 104.7 414|957 389|884 369|815 354
LS174T 28.7 217|276 215|270 212|265 21.0
GL261 28.6 17.1|274 16.6 |26.5 16.1 | 25.7 15.7

Table 6.2: Comparison of mean blood vessel radius in larger vessels Aj, and smaller vessels Ag
(all values indicate the mean taken over five different sets of pressure boundary con-
ditions on the 1D network produced by the methodology described in Section 6.3.2.1,
“case X %” denotes the case where X % of the 1D blood vessels are retained in the
hybrid approach). Table taken from the author’s article [137].

connected subgraphs of larger vessels A, emerge which connect in- and outlets of the main
flow-carrying vessels with the smaller vessels.

Hence, the employed strategy to obtain Ay, is as follows: First, the fully-resolved model is
solved (using the boundary conditions described in Section 6.3.2.1). Then, all elements except
the ones with the highest flow are deleted from the vascular graph, e.g., the top 10 % with the
highest flow are kept. However, some very small clusters consisting of only a few segments
remain in the graph. Connected components in the graph whose overall length is smaller than
250 um, i.e., sub-components which are smaller than ten segments with the average segment
lengths given in Table 6.1, are additionally deleted. This amounts to removing an additional
0.1—0.8 % of segments which are part of these smaller sub-components. This methodology gives
the set [1, of larger vascular branches which are kept in the hybrid approach as exemplarily shown
in Figure 6.5b. Here, only the SW1222 case is depicted but equivalent results hold for the other
two network topologies. In the following, cases where the top X % of elements with highest flow
are kept and the small connected components are removed according to the procedure described
above are denoted as case X %”.

Recall that the assignment of pressure boundary conditions on the fully-resolved vascular
network is not deterministic. Moreover, different boundary conditions produce distinct flow pat-
terns in the vasculature and, hence, also different sets of large and small vessels and a different
topology for Ay,. Therefore, the following analysis will always be performed for five sets of pres-
sure boundary conditions on the 1D network with corresponding distinct sets of large and small
vessels I, and Ig.

In Table 6.2 the mean diameters Dy, and D, of larger and smaller vessels are compared. It
is obvious that the diameters in the set of small vessels /g which are removed from the hybrid
model are considerably smaller than the diameters of the large vessels. This behaviour is most
pronounced for the SW1222 topology where for the case 5 % the mean diameters in Ay, are 2.5
times bigger than in Ag. Naturally, this ratio drops for all topologies when a higher percentage
of segments is kept in the large vessel set. For the LS174T and GL261 data sets the difference
in blood vessel diameters is not as large but this can be attributed to the fact that the diameters
are less dispersed than in the SW1222 topology, see also the mean and standard deviation of the
diameters in Table 6.1. Also in these cases, the mean value of the diameters in Ay, is larger by
approximately one standard deviation of the diameter of the entire vasculature (as in the SW1222
case). In summary, the proposed approach incorporates mainly the vessels with larger radii in
the set /1, whereas also some segments with smaller radii are kept to preserve the main topology
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case 5% case 10 % case 15 % case 20 %
p CVp CVig| ¢ CVp CVig| ¢ CVp CVig | ¢ CVp CVpg
SW1222 0.29 0.39 240 |0.28 045 214 [0.26 050 1.77 024 0.55 1.53
LS174T 0.18 0.23 0.88 | 0.16 0.24 0.85 |0.15 0.24 0.83 |0.13 0.24 0.82
GL261 0.30 035 1.21 [0.29 037 116 |0.28 0.38 1.13 |0.27 040 1.09

Table 6.3: Analysis of connectivity between fully-resolved and homogenized part of vasculature:
 1s the fraction of nodes of larger vessels with a direct connection to smaller vessels,
CVp and CV|qg| are measures of the variability of the diameter and flow, respectively,
in the segments connecting larger and smaller vessels (data includes the mean taken
over five different sets of pressure boundary conditions on the 1D network produced
by the methodology described in Section 6.3.2.1, ”case X %” denotes the case where
X % of the 1D blood vessels are retained in the hybrid approach). Table taken from
the author’s article [137].

of the networks in the hybrid model. Therefore, there is also a significant congruence of the
sets of large vessels [, between different pressure boundary condition cases. For instance, in
the case where 10 % of the blood vessels are kept in the hybrid model, the average percentage
of identical retained segments between two different pressure boundary condition cases is 45 %
for the LS174T tumor, 51 % for the GL261 tumor and 78 % for the SW1222 tumor. Remark 6.3
contains a further comment on how the obtained topologies of larger vessels Ay, relate to real
in-vivo tumor imaging data.

Next, the line-based coupling approach between the large vessels Ap, and the homogenized
vasculature is justified by analyzing the connectivity between larger and smaller vessels for the
fully-resolved topologies in Table 6.3. Here, ¢ = 7yodes.A; nAs/Mnodes,a,, denotes the proportion
of nodes of the larger vessels A, which have a direct connection to a node of the smaller vessels
Ags. The presented data illustrates that for the GL261 and the SW1222 tumor almost every third
to every fourth node of the main branches Ay, is directly connected to a node of the smaller blood
vessel segments Ag, i.e., at every third to fourth node a smaller vessel branches away from Ap.
For the LS174T network, the connectivity is slightly smaller. Here, only 13 — 18 % of nodes in
larger vessels are connected to smaller vessels. In all cases, these numbers obviously again drop
when keeping a larger portion of the entire network in the set If..

In the hybrid approach, information about these smaller branching vessels is lost since they are
removed from the 1D representation of the vasculature. As stated above, equal pressures between
larger and smaller vessels are enforced as this equality also holds in the fully-resolved model at
branching points. The high connectivity between the two network parts supports the line-based
mortar penalty coupling between the resolved and homogenized part of the vasculature in which
the entire network of big vessels A, is coupled with the homogenized vasculature. Of course,
the connecting nodes between larger and smaller vessels are known here as is the full topology
of all networks, so the coupling between resolved and homogenized part could also be enforced
in a point-based manner at these locations. However, in the more realistic case when only the
architecture of larger vessels is known without the exact locations where smaller vessels branch
away, this is not the case. Therefore, the line-based coupling is adopted within the hybrid model
hereafter to compare the results with the fully-resolved reference solution. Note that the network
tips of Ay, (both in the interior of the domain and on the tumor hull) are actually also coupled
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with the homogenized vasculature since the discrete constraint of a vanishing weighted pressure
gap is enforced along the entire 1D discretization and, thus, also at the end nodes.

Finally, the elements connecting larger and smaller vessels are analyzed, i.e., those 1D el-
ements of the smaller vessels where one node is part of Ay, and the other part of Ag. These
elements are gathered and their mean diameter and mean absolute flow value is computed. Then,
the coefficient of variation of these quantities, C'Vp and C'V|q, is calculated as the ratio of stan-
dard deviation of the diameter, respectively flow to its mean in these connectivity elements. The
results are collected in Table 6.3. Obviously, the SW1222 case shows the highest variability in
both flow and diameter followed by the GL261 and the LS174T case. For all cases, the variabil-
ity of the flow is larger than for the diameter since the volumetric flow in a segment depends
on the fourth power of the diameter due to the employed Hagen-Poiseuille relationship. These
results are consistent with the topology of the entire network where the variability of the blood
vessel diameter is also larger for the SW1222 tumor than the GL261 and the LS174T tumor, see
Table 6.1. In Section 6.4.3 it will be shown that this higher variability makes it harder to match
the flow from large into small vessels between the two models.

Remark 6.2. The hybrid approach is also applicable to more organized, hierarchical networks
as, for example, the topology used by Vidotto et al. [266]. In this publication the network was
partitioned by a radius-based threshold, see Figure 1 therein. The larger vascular structures
contain very short branches leaving the main vessels. At the tips of these short branches, the
node-based coupling is performed. If one instead removed these very short branches and left
only the major, flow-carrying vessels in Ay, a line-based coupling along these vessels could
again be implemented.

6.3.4 Determination of Representative Elementary Volume Size

The existence of a resentative elementary volume (REV) is an important concept for different
homogenization procedures [ 15, 56]. Its definition is identical to the macroscopic length scale of
TCAT introduced in Section 2.1.1 with the prerequisite that it should be big enough to smooth
out fluctuations of spatial heterogeneities yet small enough to resolve the physical effects of
interest. In this section, the REVs with correct size in the context of the employed model and
data sets are chosen. Naturally, this involves investigating the properties of the smaller vessels
Ag in the following since this is the part of the vasculature which is homogenized and treated as a
porous continuum in the hybrid approach. Furthermore, five different sets of pressure boundary
conditions on the 1D network are studied. This is again due to the fact that different pressure
boundary conditions on the 1D network lead to different flow patterns in the vascular network
and, therefore, also different sets /1, and /g of large and small vessels (potentially with a different
distribution throughout the domain) with the employed flow-based criterion.
For this purpose, the following procedure has been devised:

1. For each network topology five different cases are created with a different set of pres-
sure boundary conditions on the 1D network for the fully-resolved model as described in
Section 6.3.2.1.

2. All cases are partitioned into the distinct sets of large and small vessels as described in
Section 6.3.3. Here, only the case 10 % is investigated for all different topologies but
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Figure 6.6: Determination of representative elementary volume (REV) size — evolution of blood
vessel volume fraction €} and surface-to-volume ratio (S/V'),, of smaller blood
vessels Ag is shown for increasing possible REV sizes. Figure taken from the author’s
article [137].

equivalent results have been obtained for leaving the top 5%, 15% or 20 % of vessels
with the largest flow in the system.

3. Random positions in the vasculature domain €2, in the range [, + 0.15 - lo, Tpar —
0.15 - L], [Ymin + 0.15 - 1y, Ymaz — 0.15 - ] and [zpin + 0.15 - I, 2Zimae — 0.15 - 1] are
selected. /; denotes the domain lengths in the respective coordinate directions and (.)ir
and (.)ma, the minimum and maximum coordinate value in each direction in €2,. In this
way, the random positions are chosen such that they do not lie too close to the boundaries
of the domain.
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4. For each of the random positions within the domain, a cube with edge length l.4,e =
1/300 - max(l,, max(l,,,)) is defined. The random position is chosen as the center of that
cube.

5. The size of the cubes is successively increased in all coordinate directions by [cqee While
keeping their centers fixed. The blood vessel volume fraction ¢}, and the surface-to-
volume ratio (S/V'),, of smaller blood vessels Ag is computed for each cube at each
size. If a cube protrudes from the domain during this enlargement, these quantities are
calculated on the intersection of the cube with the domain 2,,.

Per case with different boundary conditions this is performed for ten randomly generated cube
centers. Figure 6.6 illustrates the results for only three REVs per boundary condition case, that
is, in total 15 cases to not clutter the plots. The evolution of the blood vessel volume fraction €
and of the surface-to-volume ratio (S/V'), of the smaller blood vessels Ag for increasing the
edge length of the cubes is illustrated. Therein, the length scale is denoted as | = ¢/Veuben,
to account for cases when a larger cube protrudes from the domain €2,. All three topologies
exhibit similar features: 3, and (S/V),, fluctuate strongly for smaller lengths. Then, most
curves stabilize and remain almost stationary while increasing the size of the averaging volume.
Finally, for even larger volumes the curves slowly converge to the values of these quantities
across the entire domain. This behaviour can be expected in porous media [56] and the length
of the REVs [ggy can be defined at the point where the initial oscillations of too small control
volumes fade out and the values stabilize.

Splitting the domains into these REVs of equal size is not an easy task due to their irregular,
elliptic shape. However, it can be achieved with the following methodology: First, a regular
grid of REV centers is defined and an initial Voronoi tesselation is performed based on this
grid. Due to the shape of the domain this results in too small or too large REVs. Therefore, an
optimization of the Voronoi tesselation is performed with the objective function to define REVs
of equal volume and equal dimensions. The resulting REVs are visualized in Figure 6.7. The
mean deviation of the REVs from the previously determined volume and lengths of Figure 6.6
in all three coordinate directions is less than 5 % for the domains of all three tumor types.

Finally, these REVs are employed to study the distribution of blood vessels inside the domain.
For that, the non-dimensionalized radial distance of each REV 7Ry is defined as the distance
of the center of the REV to the center of the domain divided by the distance of the center of the
domain to the tumor hull in direction of the center of the REV. Again, this analysis is performed
for all three tumor types for five different sets of pressure boundary conditions on the 1D network
since those influence the flow in the 1D vasculature and, consequently, also the composition of
Ap, and Ag as previously mentioned. The results for the volume fraction of big vessels €} ,
small vessels 3 . and the entire vasculature £} are shown in Figure 6.8. The clearest structure
is evident for the SW1222 case: towards the tumor hull, £ and €}, and, thus, also the sum
of the former two, €}, gradually increase. Close to the center of the domain, there is still a
significant amount of smaller blood vessels while almost no larger blood vessels are present.
This is consistent with experimental data showing higher blood vessel density and perfusion in
the tumor periphery [59, 80] with only a few major vessels penetrating into the center of the
tumor [109]. These trends are also present in the LS174T tumor, albeit, far less pronounced than
for the SW1222 tumor. By contrast, the GL261 vascular network shows a completely different
behaviour. While the vascular density of large vessels remains almost constant over the tumor
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(a) SW1222, nggy = 78 (b) LS174T, nrev = 114 (c) GL261, nrgv = 55

Figure 6.7: Representative elementary volumes of all three tumor domains. Figure taken from
the author’s article [137].
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Figure 6.8: Dependency of volume fraction of big vessels Ay, small vessels Ag and entire vas-
culature A over non-dimensionalized radial distance from center of domain (data is
taken from five different sets of 1D blood pressure boundary conditions if 10 % of
1D blood vessels are retained in hybrid model for each network structure, dashed
lines indicate linear least squares fits). Figure taken from the author’s article [137].

radius, the one of the smaller blood vessels Ag drops and, thus, also the overall volume fraction
EX-

Remark 6.3. The validity of the obtained topologies and distributions for A1, and As and the ap-
plicability of the proposed hybrid approach is supported by state-of-the art optoacoustic in-vivo
imaging techniques [150]. The currently attainable spatial resolution is less than 50 um through-
out the tumor domain which is in the range of the diameter of larger vessels from Table 6.2.
Furthermore, the larger vessels which are retained in the hybrid model are more concentrated at
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the tumor periphery (at least for the SW1222 and LS174T case) and are, thus, more accessible to
imaging. Qualitatively, the topology of the larger vessels from Figure 6.5b is in good agreement
with corresponding imaging data from tumors [150] where larger feeding vessels are visible at
the tumor rim. From these experiments, one can extract a similar topology of larger vessels Ay,
to apply the hybrid model. Hence, it is reasonable to conclude that the employed methodology
of splitting into larger and smaller vessels yields a valid scenario resembling real experimental
data and can, therefore, be used to investigate the hybrid embedded/homogenized approach for
solid tumor perfusion.

6.4 Numerical Experiments

This section contains several numerical experiments to evaluate the performance of the hybrid
model in comparison to the fully-resolved one. First, a comparison metric is defined and the
parameters of the hybrid model are inversely inferred such that the best possible correspondence
between the models is achieved according to this metric. Subsequently, several other quanti-
ties are studied to compare the two models and a further improvement of the hybrid model is
presented via a vascular volume fraction dependent permeability for the homogenized vessels.

The tumor hull is smoothed and triangulated using Gmsh 4.4.1 [89] and its enclosed volume
is meshed with linear tetrahedral elements using Trelis 17.0 [49]. An exemplary mesh for the
SW1222 topology is shown in Figure 6.3 and parameters of the 3D mesh are given in Table 6.1.
As in the previous examples for 1D-3D coupling, the 3D mesh is completely independent of the
discretization of the 1D networks, that is, the nodes of the two meshes do not match. Parameters
for both models are listed in Table 6.4.

Remark 6.4. In preliminary simulations, the proper range for the penalty parameter € was deter-
mined. As a compromise between accuracy and a well-conditioned system matrix, the following
criterion was defined:

nnodes,AL

.
§—_ Lt Z M<1%. (6.22)

Nnodes,Ar, =1 p@ [Z]

This rule states that the mean relative pressure error 0 in terms of the length-independent nodal
pressure difference vector k~'g and the nodal pressure p° in the 1D network is less than 1 %. The
values for all cases are given in Table 6.4. As elaborated in Remark 4.6, the penalty parameter
has units of a permeability ([length]?/[time - pressure]) for the centerline coupling variant such
that the LM field represents a 1D-3D mass transfer term, or volumetric flow per length.

Remark 6.5. The main advantage of the hybrid model is not a reduction of computational cost
compared to the full model, but the fact that it relies only on data available through non-invasive
imaging. Nevertheless, a first preliminary evaluation comparing the computational costs of the
two models was performed in which the hybrid model was not significantly faster than the fully-
resolved one and in some cases even slower. The effort for finding 1D-3D elements interacting
with each other, building the integration segments and evaluating the coupling terms along the
ID vasculature is obviously smaller for the hybrid model since less 1D vessels are present.
However, this is balanced or even outweighed by its increased effort in several other aspects:
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Quantity Symbol  Value Unit Ref. Equations
Density of blood Pl pv 1060 kgm™3 [77] Eg'gg’(("g)’
Viscosity of blood 1P fa Pas [201] (6.2),(6.8)
Density of IF and blood plasma o 1000 kgm™3 (6.3).(6.4),
(6.10),(6.11)

Hydraulic conductivity of interstitial fluid &'/ 1.2782 x 107! pum?Pa's™! [29] (6.4),(6.11)
Transvascular hydraulic conductivity LyosLpy 21x107° umPa~ts™t  [13] (6.3),(6.10)
Oncotic reflection coefficient o 0.82 - [252] (6.3),(6.10)
Oncotic pressure of blood i 2666.4 Pa [252] (6.3),(6.10)
Oncotic pressure of interstitial fluid wt 1999.8 Pa [252] (6.3),(6.10)
Hydraulic conductivity of vasculature kY /u® see Table 6.5 pm?Pa-'s™! - (6.10)
Surface-to-volume ratio of smaller vessels (S/V),, see Table 6.5 um™* - (6.10)
Penalty parameter € pm?Pa~!ls~! Rem. 6.4 (6.19)

SW1222: case 5% 400

SW1222: case 10 %, 15 %, 20 % 100

LS174T: case 5% 100

LS174T: case 10 %, 15 %, 20 % 50

GL261: case 5% 100

GL261: case 10 %, 15 %, 20 % 50

[al The value for blood viscosity is calculated separately in each 1D element using the algebraic relationship of Pries
and Secomb [201] with hematocrit value fixed to 0.45.

Table 6.4: Parameters and values. Table taken from the author’s article [137].

The evaluation of the 3D elements is more costly since two equations per node (in §2,,) have to be
evaluated, the system size, which is dominated by the number of 3D nodes, and, thus, the linear
solver time is increased and the condition of the system is worse compared to the fully-resolved
case due to the penalty approach, which in turn raises the linear solver time. However, for all
studies the same 3D meshes were used for both hybrid and full model. The cost for the hybrid
model could be greatly reduced by employing a coarser 3D mesh. Vidotto et al. [266] showed
that this still gave acceptable results in terms of REV pressures for their approach.

6.4.1 Definition of a Metric for Comparison of the Two Models

To assess the performance of the hybrid model in predicting microvascular flow and IF pressure
inside solid tumors in comparison with the fully-resolved model, a suitable discrepancy metric
is a key factor in the inverse identification process. Ideally, the hybrid model should match the
fully-resolved one in terms of blood and IF pressure as well as blood and IF flow to obtain
an accurate representation of the perfusion through the tumor. Therefore, the employed metric
is defined as a combination of these quantities. The first contribution is the correspondence of
blood pressures in the large vessels A, which are present both in the fully-resolved and the
hybrid model. The coefficient of determination R? in terms of nodal blood pressures in the large
vessels between the two models is given by

2
S (P g = Pl

R=1-—2 g A‘ Wb (6.23)
Dot (p? [d] |full — pr, (PP full))
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where 1, (pf’] full) is the mean blood pressure in the large vessels of the fully-resolved model.
A value of R? = 1 would mean a perfect correspondence of both models while smaller values
suggest larger deviations. A negative R? indicates that the hybrid model performs worse than
simply taking the mean value of the fully-resolved model. The second contribution to the metric
is the correspondence of blood pressures in the small vessels Ag between the fully-resolved and
the hybrid model, which may be calculated as

Mnodes oI v . 2
S (B0 gy = B XLy
Yoy (p° 1] ‘full — Mg (pﬁlfull))Q |

Since the smaller vessels Ag are not retained in the hybrid model, nodal blood pressures in the
smaller vessels of the fully-resolved model are compared with the homogenized blood pressure
field p¥ of the hybrid model evaluated at the nodal positions X [i| of the smaller vessels. Again,
this is formulated in terms of a coefficient of determination, now involving all nodes in the small
vessels and py, (pf’} full) is the mean blood pressure in the small vessels of the fully-resolved
model.

Equivalently, the coefficient of determination of the IF pressure is given by

Ri=1- (6.24)

2
5= (i) |y~ 0110
Z?:ncides’ﬂ (Pl [1] ’full —H (pl ’ full))2

with the mean IF pressure p (pl} full) of the full model in the tissue domain (2. Instead of the
point-wise comparison of pressures in (6.24) and (6.25), one could also compare mean REV
pressures of the two models. This will additionally be calculated and mean (blood and IF) pres-
sures inside the REVs will be compared in Section 6.4.3. With the previous three equations, the
metrics for blood and IF pressure have been defined. Also the flow in the larger vessels Ay, is
covered since larger vessels present in both models have the same diameter, length and blood
viscosity. Therefore, if the nodal pressures match, also the flow between the nodes, i.e., inside
the elements is identical. The same applies for flow in the IF if the same 3D mesh and hydraulic
conductivity k'/u! is employed in both models which will be assumed hereafter. What is still
missing, is a metric for comparison of blood flow inside the smaller blood vessels Ag which are
homogenized in the hybrid model. The definition of this measure follows as

(6.25)

RIzel_

2
NREV 3 ﬁl _ U‘
Zi:l j=1 (Qj Ag,full QJ' As7hyb>
3 2
NREV 0 _ (0
Zi:l j=1 (Qj}As,full K (QU|As,full)>

i.e., for each of the nggy REVs, the volumetric flow @); of the fully-resolved and the hybrid
model in all three coordinate directions is compared via the coefficient of determination of flow
in the smaller vessels Rﬁow, At

Next, the calculation of flows in the REVs in both models is detailed. In the center of each
REV a square O; with dimensions [rgy X [grrv 1s defined such that its normal n; is aligned
with coordinate direction j. The volumetric flow in the homogenized part of the vasculature in

(6.26)

2 _
RﬂOW,AS =1-
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coordinate direction j is then given by

v kv ;
Qj’/\&hyb = /D —ﬁ"j'Vp dA (6.27)

J

as the surface integral of the flux through the square. For the fully-resolved model, it is defined
as

D 7TR4 8p@
Qj ‘ Ag,full = Z - 8/,6{} 85 - 8gn (t : nj) ; (628)
\:\jﬁAs

which is the sum of the volumetric flow of all segments which are part of the smaller vessels and
cut by the square O;. Therein, £ is the tangential vector of a segment pointing from its first to its
second node and sgn (e) denotes the sign function.

Finally, the total coefficient of determination between the two models is defined as the sum
of the contributions from blood pressure in large vessels (6.23), blood pressure in small ves-
sels (6.24), IF pressure (6.25) and flow in small vessels (6.26) as

1

R} =
tot 4

(R + R§ + R + Rijoyag) - (6.29)
This metric, where all four contributions are weighted equally, is employed to study the accuracy
of the hybrid model w.r.t. the full model and to find the optimal parameters of the hybrid model.

6.4.2 Optimization of the Parameters of the Hybrid Model

Compared to the fully-resolved model, the hybrid one has two additional parameters, which are
the hydraulic conductivity of the homogenized vessels £¥ /" in (6.9) governing blood flow and
the surface-to-volume ratio (S/V')a, accounting for transvascular flow from the homogenized
vessels into the IF in (6.10). The goal of this section is to determine these parameters such that
the agreement in terms of blood flow and blood and IF pressures of the hybrid model with the
fully-resolved model is maximized. For that, the total coefficient of variation (6.29) between the
two models deduced in the previous section is employed and the following optimization problem
is formulated in terms of the parameters of the hybrid model:

argmax RZ,. (6.30)
kv/uvv (S/V)AS

The goal is to find the parameters of the hybrid model, for which the correspondence of the
two models is optimized. With these optimal parameters the model discrepancy of the hybrid
model w.r.t. the fully-resolved one can then be evaluated. For the optimization procedure, a par-
allelized version of the least-squares method of the SciPy package (version 1.5.2) [228] has been
interfaced to the software framework QUEENS [24]. Internally, SciPy employs the Levenberg-
Marquardt algorithm to solve the nonlinear least-squares problem (6.30). Derivatives of the met-
ric (6.29) w.r.t. the parameters are approximated using forward finite differences. This implies
that the hybrid model has to be solved three times per iteration step. In preliminary simulations,
it was confirmed that different initial conditions from a sensible parameter range converged to
the same optimum.
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Since the full topology of the vasculature is available, one could also obtain these parameters
by a suitable homogenization procedure for the permeability as previously done for other hybrid
models [242, 266]. Here, this approach was not pursued for the following reasons: First, the
chaotic structure of the blood vessel network implying also a very chaotic blood flow pattern
typical for the solid tumors would make this very challenging. Second, the aim is to create a best-
case scenario by fitting the parameters of the hybrid model such that possible errors introduced
by a homogenization scheme are minimal.

The general algorithm can be described as follows:

1. Obtain a set of boundary conditions for the full model as described in Section 6.3.2.1 and
solve the full model to generate a reference solution.

2. Extract the topology of larger vessels for the hybrid model from the full model, conf. Sec-
tion 6.3.3, and apply boundary conditions on the hybrid model, conf. Section 6.3.2.2.

3. Find the optimal parameters of the hybrid model by maximizing the total coefficient of
variation (6.30). During the optimization procedure repeated evaluations of the hybrid
model with different parameters are required.

Representative results of the optimization scheme are depicted in Figure 6.9 for all four contri-
butions to the total coefficient of determination. Very good agreement between the two models in
terms of nodal pressures in the larger vessels p® can be observed in Figure 6.9a. This can be ex-
pected because the same boundary conditions on the large vessels are applied in both cases. Thus,
large and small pressure values show very good agreement, further away from these boundary
conditions in the medium pressure range, deviations become larger. The clusters with the largest
errors are separate branches which are not directly connected to nodes of the 1D network car-
rying boundary conditions. The correspondence for the nodal IF pressures p’ in Figure 6.9c is
also very good. For low IF pressures this is again due to the zero pressure boundary condition as-
signed on 0f) for both cases, but also for higher IF pressures inside the tumor, which is the actual
domain of interest, the pressure differences are very small. In this case, the maximum absolute
error is 237.1 Pa corresponding to a maximum relative error of 8.4 %. The pressure in the smaller
vessels, respectively the homogenized vasculature in the hybrid model, exhibits larger errors, see
Figure 6.9b. Overall, the agreement is still reasonable. The error is largest for branches ending
in tips with boundary conditions on the 1D vasculature either inside the domain or on the tumor
hull. For instance, this is the case for the larger errors around p° | e~ 3300 Pa. The boundary
conditions on these tips inside the domain are not retained in the hybrid model and for the tips on
the tumor hull, they are smeared over several 3D nodes as described in Section 6.3.2.2. Hence,
while the error in the medium pressure range is distributed symmetrically, larger deviations at
both ends of the pressure spectrum towards the smeared values are present. This error due to
point-wise non-matching boundary conditions can also not be improved by optimization of the
parameters. However, in Section 6.4.3, it will be shown that averaged REV pressures of both
models are in very good accordance. One can argue that this is a more interpretable and fairer
comparison metric as the hybrid model cannot be expected to exactly match the pressure dis-
tribution of the fully-resolved one (in particular on the boundary) since the information about
the exact topology of the smaller vessels is not represented. Finally, the results for the flow in
the smaller vessels are shown in Figure 6.9d. Here, the poorest agreement of the two models is
present. Especially larger flows are not met properly.
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Figure 6.9: Exemplary comparison of hybrid model (with optimized parameters) with fully-
resolved model for one specific network topology (SW1222, 10 % of 1D blood ves-
sels have been retained in hybrid model). In each subfigure, solution of hybrid model
is plotted over solution of fully-resolved model and the dashed line indicates perfect
agreement between the models with 1:1-correspondence. Comparison of blood pres-
sure in large vessels is depicted in subfigure a), blood pressure in small vessels in
b), IF pressure in c¢) and flow in small vessels in d). Coefficient of determination for
agreement between both variants is given for each quantity and overall coefficient
of determination calculated according to (6.29) is RZ, = 0.716 for this case. Figure
taken from the author’s article [137].
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Network Case kY/u? [um?] (S/V)ag [um™1] Esyv %] R RZ Ry Rigwas Bi
SWI1222 5%  16.060 £2.840 (6.423 +0.101) x 1073 2.17 0944 0.488 0.994 0.163 0.647
10% 3.846 4+ 0.506 (5.722 £ 0.069) x 1073 1.93 0.988 0.654 0.998 0.176 0.704
15% 1.612+£0.247 (5.077 +0.051) x 1073 2.66 0.993 0.739 0.999 0.262 0.748
20% 0.655 £ 0.122 (4.532 £ 0.048) x 1073 3.84 0989 0.792 0.999 0.193 0.743
LS174T 5% 1.799 + 0.105 (1.721 +0.073) x 1073 3.21 0905 0.643 0.990 0.282 0.705
10% 1.117+£0.096  (1.581 4 0.038) x 1073 3.18 0916 0.683 0.991 0.260 0.713
15% 0.745£0.032  (1.478 +0.020) x 1073 2.70 0930 0.695 0.992 0.244 0.715
20% 0.522 £ 0.064 (1.382 £ 0.021) x 1073 2.30 0944 0.718 0.993 0.207 0.715
GL261 5% 1.754 4+ 0.288 (6.184 £ 0.099) x 1073 3.35 0917 0.195 0.997 0.199 0.577
10% 0.802 £ 0.093 (5.688 +0.097) x 1073 3.63 0.927 0.233 0.996 0.107 0.566
15% 0.479+0.073  (5.200 £ 0.076) x 1073 4.12 0941 0.295 0.996 0.113 0.586
20% 0.321 £0.061 (4.756 £ 0.048) x 1073 4.21 0950 0.346 0.996 0.134 0.607

Table 6.5: Results of the optimization procedure for hydraulic conductivity and surface-to-
volume ratio of homogenized vasculature in the hybrid model. Relative error w.r.t.
calculated surface-to-volume ratio and R?-values for agreement between both variants
in terms of blood pressure in large vessels, blood pressure in small vessels, IF pressure
and flow in small vessels is additionally provided. Overall coefficient of determination
R? . between fully-resolved and hybrid model is calculated according to (6.29). (All
data includes the mean taken over five different sets of pressure boundary conditions
on the 1D network produced by the methodology described in Section 6.3.2.1, “case
X %” denotes the case where X % of the 1D blood vessels are retained in the hybrid
approach). Table taken from the author’s article [137].

Further results for all cases are collected in Table 6.5. For each tumor network, five differ-
ent sets of pressure boundary conditions on the 1D network are generated from which different
flow patterns and, therefore, also different sets of larger and smaller blood vessels emerge as
discussed in Section 6.3.3. Then, different cases, where 5 — 20 % of the larger vessels are kept
in the hybrid model, are investigated. Five sets of pressure boundary conditions on the 1D net-
work were enough to study the hybrid model since randomly picking only four out of the five
boundary condition cases changed the mean result by at most 8 %. Moreover, taking the mean
parameter values of a case X % over all different boundary condition cases instead of the op-
timal values for each specific case only changed the total coefficient of determination by less
than 2 %. Furthermore, the result of the optimization procedure for (S/V'), is compared with
the calculated surface-to-volume ratio of the smaller vessels for each case. The relative error
Egy is smaller than 5% for all cases validating that the optimization procedure converges to
a physically reasonable result. The permeability is largest for the SW1222 topology which can
be expected considering the much denser network of this case. For all tumors, it decreases if a
larger proportion of the 1D vessels is kept in the model, which is also sensible since the smaller
the proportion of homogenized vessels, the less permeable these vessels.

As already described above, all cases exhibit a very good correspondence in terms of blood
pressures in larger vessels and IF pressures, proven by the values for R} and R%, in Table 6.5.
If the fidelity of the hybrid model is increased by resolving a larger proportion of the network
structure, the agreement between the two models grows likewise. This is also the case for the
coefficient of determination of blood pressure in smaller vessels RZ. Here, the SW1222 and
the LS174T case exhibit comparable accuracy whereas the GL261 case experiences a larger
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[Pa] % [%] E'lxbs [Pa] Eﬁel [%ﬂ R?low*.AL—)AS RI%OW,A

a

Network Case FEY,

abs

SWI1222 5% 90.2 2.25 49.3 1.66 0.192 0.992
10% 57.2 1.43 32.2 1.08 0.091 0.999
15% 44.1 1.10 24.9 0.83 0.142 1.000
20% 42.1 1.05 215 0.72 0.100 1.000
LS174T 5% 113.7 2.88 73.0 3.83 0.640 0.813
10% 99.4 2.53 68.3 3.58 0.567 0.892
15% 97.6 2.48 63.0 3.30 0.513 0.931
20% 91.4 2.33 59.2 3.10 0.444 0.956
GL261 5% 104.2 2.64 41.6 2.16 0.472 0.962
10% 99.5 2.52 44.2 2.29 0.489 0.984
15% 87.8 2.22 44.9 2.33 0.435 0.993
20% 79.7 2.02 45.0 2.33 0.407 0.996

Table 6.6: Additional error measures for the agreement of both models. Shown are the absolute
and relative error of the hybrid approach in terms of mean REV blood pressure in
smaller vessels and mean REV interstitial fluid pressure and the R?-values for agree-
ment between both variants in terms of flow from large to small vessels and flow in the
entire vasculature. (All data includes the mean taken over five different sets of pres-
sure boundary conditions on the 1D network produced by the methodology described
in Section 6.3.2.1, ”case X %" denotes the case where X % of the 1D blood vessels
are retained in the hybrid approach). Table taken from the author’s article [137].

discrepancy. This can be attributed to the fact that this topology has the largest number of tips
at the tumor hull and also the largest number of dead ends in relation to its size, see Table 6.1.
Hence, the pressure error is largest due to non-matching boundary conditions between fully-
resolved and hybrid model as mentioned above. However, in Section 6.4.3 it will be shown that in
terms of REV blood pressures its conformity with the hybrid model is as good as the other cases.
The difference in flow in the small vessels is the largest source of error in all cases. Also taking
more 1D vessels into account for the hybrid model does not necessarily improve the behaviour.
This may be due to the chaotic flow patterns in the smaller vessels and to the fact that the
permeability tensor is defined as isotropic and constant over the entire domain €2,. Apparently,
this is insufficient to resolve the flow in the homogenized vasculature in comparison to the full
model. By giving a higher weight to the coefficient of determination of flow in the smaller
vessels Rﬁow’ A In the definition of the total coefficient of determination (6.29) no significant
improvements could be achieved. However, the agreement in terms of flow in the entire (resolved
and homogenized) vasculature, which will be investigated in the next section, is much better.

6.4.3 Additional Comparisons of the Results of Both Models

Subsequently, the agreement of the hybrid model with the optimized parameters from the previ-
ous section is studied in terms of several other quantities. For that, the mean REV IF pressure in
the j-th REV is defined as

— 1
() = v / pldv. (6.31)
REV; JREV;
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6 Validation and Parameter Optimization of the Hybrid Embedded/Homogenized Model

This is employed to study the absolute and relative mean IF pressure error between the two
models in each REV as

abs (P0) | g~ 70 s

‘ ) . (632)
P(J) ‘ full

Ezlibs(j) = abs (E(j)‘full - E(])’hyb> and Eiel(j) =

Equivalently, the mean blood pressure in the homogenized vasculature of the hybrid model in
the 7-th REV is given by

_ 1 .
HOI Voov, /R PV (6.33)

and by

nnodes,AS f‘lREVj

_ 1 N
7°(j -_ - p' [ (6.34)
( )| Bl Modes, AgNREV 121 i
for the smaller vessels of the fully-resolved model. The latter is simply the mean blood pressure
of all nyodes, AgnrEV, NOdes of the smaller blood vessels which lie inside the j-th REV. This allows
the definition of the absolute and relative mean blood pressure error (in the smaller vessels)
between the two models in each REV as

abs (ﬁ(j)’full B ﬁ(j)‘hyb>

E? ——
p°(j) | full

5) = s (5700 gy — P70 1) and Ea(d) =

. (6.35)

Furthermore, the mean value of these error measures over all ngrgy REVs is denoted by (e). Note
also that both the mean REV blood and IF pressure vary considerably between different REVs.
The pressure difference between single REVs varies in a range of 800 — 1200 Pa for the IF and
a range of 800 — 2000 Pa for blood. The data of this analysis is collected in Table 6.6. Overall,
a remarkable agreement of the mean REV pressures for both blood and IF can be observed in
all cases. As in Table 6.5, the SW1222 tumor has the best agreement, but also the GL261 case
which previously showed the biggest nodal blood pressure errors in the homogenized vessels is
very accurate in terms of mean REV blood pressure. As described above, the error is located
mainly on the tips of the smaller vessels, of which the GL261 has the most compared to its net-
work size. Nevertheless, the average blood pressure in the REVs is still matched very well for
this and all other cases even though locally the pressure error is larger. These small-scale spatial
fluctuations of blood pressures cannot be represented correctly in the homogenized vessels of
the hybrid model while macroscopically the average REV pressures show good agreement. An-
ticipating a validation with experimental data, it is anyhow not possible to perform a point-wise
comparison of (blood and IF) pressures such that the average REV pressure is the more relevant
and meaningful metric.

Additionally, the volumetric flow between large and small vessels is investigated and the re-
sults of both models are compared. In the hybrid model, the flow between large and small ves-

V—v
sels is given by the LM field A = M interpreted as a mass transfer term, or volumetric flow
per length, as detailed in Section 6.2.3. Note that this can represent both a flow from large 1D
vessels into the homogenized vasculature if locally the pressure in the resolved vasculature is

bigger than the homogenized pressure or, vice versa, a flow from the homogenized vasculature
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into the larger vessels if the homogenized pressure is bigger than the blood pressure in the 1D
vasculature. Consequently, for each REV the flow between the two compartments is given by the
integral of the LM field along the part of the larger vessels A;, N REV inside the specific REV
j,or

v—v

M () | :/A OREV‘)\ds. (6.36)

In the full model, the mass transfer between large and small vessels can directly be evaluated
inside the connecting elements of both sets, which are those elements of the smaller vessels
where one node is part of Ap, and the other part of Ag. Assuming that the first node is part of the
larger vessels and the second one part of the smaller vessels, the flow between large and small
vessels in the j-th REV is given by

P Mele,Ar,+AgNREV ; TR ap®
M () | gy = Z T8t s (6.37)

=1

as the sum of the volumetric flows in the elements connecting large and small vessels which lie
inside the specific REV j. The number of these elements is denoted by n¢je A, sasnREV, 1N the
previous equation. To compare the mass transfer between large and small vessels in both models,
a coefficient of determination is again defined as

— V—v ) D—v ) 2
ZJ':? ( M (j) |fu11 - M () |hyb>
Ripwnyshs = 1 — A (6.38)

D (ﬁ () | = 1 (M 0) ‘))

with the respective mass transfer terms for the hybrid and the full model for each REV. Once
more, /(o) denotes the mean of the mass transfer between large and small vessels of the full
model over all nggy REVs.

The reference solution of the fully-resolved model for this volumetric flow per REV varies
considerably between the different REVs and both positive values, representing an overall out-
flow from the larger vessels into the smaller vessels in a specific REV, and negative values,
representing an overall inflow into the larger vessels from the smaller vessels in a specific REV,
are present. This indicates that in- or outflow from larger to smaller vessels is indeed a mean-
ingful quantity describing the spatially varying flow patterns inside the vascular network. To
reproduce this behaviour in the hybrid model variant, a good agreement with the reference solu-
tion is desirable. The results for the coefficient of determination Rﬁow’ A —sAg ar€ again assembled
in Table 6.6. The LS174T case shows the best agreement with the fully-resolved model while
the SW1222 case delivers the worst results. This can be attributed to the much higher dispersion
of the diameter and, thus, also the flow in the connectivity elements, which have already been
studied by the coefficient of variability in Table 6.3. The LS174T case, which has the least dis-
persed distribution of both values, performs best in matching the flow between larger and smaller
vessels in the hybrid model. There is a small decline of the agreement for higher percentages of
retained vessels in all cases. However, the flow between large and small vessels is not included
in the parameter optimization procedure. Hence, the better performance in terms of the other
quantities could be at the expense of this metric.
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6 Validation and Parameter Optimization of the Hybrid Embedded/Homogenized Model

Finally, the correspondence between the two models in terms of blood flow in the entire vas-
culature A is studied. Previously, in Table 6.5 only flow in the smaller vessels Ag, respectively,
the homogenized vasculature was investigated. For the full model, the total flow in A in each
REV in coordinate direction j is calculated as in (6.28), but now both large and small vessels are
taken into account. For the hybrid model, the total flow can be obtained as the sum of the flow
in the homogenized vessels as given by (6.27) and the flow in the larger, resolved vessels, that
is, equation (6.28) evaluated for the larger vessels of the hybrid model. The two quantities are
compared in Table 6.6 defining a coefficient of determination for flow in the entire vasculature
Rﬁow’ A as in (6.26). Evidently, the agreement between the two models is very good and much
better than the previously reported agreement of flow in the smaller vessels Rﬁow’ A+ This is due
to the fact that, as expected, flow is dominated by the larger vessels. The values calculated for
flow in the entire vasculature are one to two orders of magnitude larger than those in the small
vessels depending on the investigated case. As it is possible to match the pressure in the large
vessels very well and, thus, also the flow therein, very good accordance can be achieved for the
total flow in both small and big vessels. As flow in the big vessels is decisive for the overall
perfusion of the domain and could also be more easily acquired with experiments for further val-
idation this is an encouraging result for the applicability of the hybrid approach. Nevertheless,
an enhancement of the correspondence of the hybrid model also in terms of flow in the smaller
vessels is demonstrated in the following section.

6.5 Improvements for the Hybrid Model

In this section, several possible improvements for the hybrid model are discussed and one of them
is implemented and tested. The most straightforward one would be to define the permeability
of the homogenized vessels not as a constant over the entire domain €2, but per REV. Instead
of an isotropic permeability tensor, one could easily integrate anisotropic effects based on the
blood vessel structure inside each REV. Both was done in the hybrid model of Vidotto et al.
[266], where a diagonal permeability tensor with different permeabilities in all three coordinate
directions was employed. This could potentially augment the agreement in terms of mass fluxes
in the homogenized vasculature, which is the main source of error in the hybrid model. However,
this was not integrated into the optimization procedure since this could result in overfitting of
the chaotic flow in the tumor such that every single boundary condition case would be met very
well but with largely different results for the permeability tensors between the cases with distinct
flow patterns. With a single scalar permeability the results for the permeability between different
boundary condition cases did not fluctuate greatly. Moreover, in a real-world case where only the
architecture of the larger vessels is known, it seems unrealistic to deduce the entire permeability
field from the limited amount of information.

Instead the model was enhanced by taking information of volume fractions of the smaller
vessels into account. The rationale behind this approach is that regions with a higher or smaller
microvascular density of small vessels could still be identified whereas the complete structure of
the smaller vessels cannot be obtained non-invasively. This information could then be employed
to enrich the hybrid model. The overall trend observed in Table 6.5 is that the higher the volume
fraction of the homogenized vessels, the larger their permeability. It also reasonable to assume
that areas with a higher vascular volume fraction are more permeable to blood flow. Therefore,
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Figure 6.10: Dependency of absolute flow in small vessels Ag of the full model on volume frac-
tion of small vessels in REVs for one representative case per tumor topology where
10 % of 1D blood vessels have been retained in hybrid model (dashed lines indi-
cate linear least squares fits with corresponding R*-values). Figure taken from the
author’s article [137].

the relationship of the volume fraction of smaller vessels ¢} in each REV on the perfusion of
the smaller blood vessels in the full model was investigated. Results are shown in Figure 6.10.
Here, the absolute volumetric flow in each coordinate direction (calculated as in (6.28) but not
taking the flow direction into account) is plotted over the volume fraction of the smaller vessels
s+ The clearest picture emerges for the LS174T topology with a good correlation of flow in
smaller vessels with their volume fraction. A similar, yet less distinctive trend is present for the
SW1222 case whereas no relationship can be observed for the GL261 tumor.
Therefore, inside each REV j the isotropic permeability tensor was defined as

k’U
ﬁ G) - I=a-c%, () I, (6.39)

that is, as a simple linear dependency of the permeability in the j-th REV on the volume fraction
of smaller vessels in the j-th REV with proportionality constant «. A nonlinear Kozeny-Karman
law was also tested, but slightly better results were obtained with the linear fit. Thus, only this
linear dependency will be studied hereafter. Next, the optimization of the nonlinear least-squares
problem (6.30) is performed for the proportionality constant «. Results are shown in Table 6.7
for the case 10 %, which can be compared with the cases with constant permeability over the
entire domain from Table 6.5. A slightly better agreement in terms of flow in the smaller ves-
sels R, ., is Obtained and, thus, also for the total coefficient of determination R, for the
SW1222 and GL261 case. Compared to that, the correspondence of flow in the smaller vessels
1s markedly better than the constant permeability case for the LS174T topology. This is coherent
with Figure 6.10 where the latter network showed the most evident correlation of blood flow
on volume fraction. Thus, one could expect that no significant improvement was possible for
the GL261 case where volume fraction and flow seem to be decoupled. However, also for the
SW1222 topology, which showed at least a moderate dependency of blood flow on volume frac-
tion, the agreement cannot be increased significantly. Therefore, at least for one of the studied
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Network  « [um?] R? RZ Ry Rigwns Bi

SW1222 37.0+5.9 0.988 0.653 0.998 0.189 0.707
LS174T 129.7+10.6 0.928 0.691 0.991 0.362 0.743
GL261 26.1£3.5 0.929 0.245 0996 0.117 0.572

Table 6.7: Results of the optimization procedure for non-constant permeability depending on
volume fraction of smaller vessels. 10 % of 1D blood vessels have been retained in
hybrid model for each tumor topology. Shown are the proportionality constant « re-
lating permeability and blood vessel volume fraction of smaller vessels inside each
REV according to (6.39). R2-values for agreement between both variants in terms of
blood pressure in large vessels, blood pressure in small vessels, IF pressure and flow
in small vessels is additionally provided. Overall coefficient of determination RZ,
between fully-resolved and hybrid model is calculated according to (6.29). (All data
includes mean taken over five different sets of pressure boundary conditions on the

1D network per case). Table taken from the author’s article [137].

cases it is beneficial to include blood vessel volume fraction information into the hybrid model
while it is not detrimental for the other two.

It also is conceivable that at least preferential directions of smaller vessels can be detected
non-invasively even though their complete structure cannot be resolved. A further enhancement
of the model could be achieved when taking this information about the anisotropy of smaller
vessels into account. However, it is important to emphasize that the whole study is based solely
on numerical results. Experimental findings indicate no dependency between blood vessel diam-
eter and flow in tumors [60, 61, 143] and a high vascular density does not automatically imply
efficient perfusion, nutrient supply and drug delivery for solid tumors [116]. These properties
could make it impossible to deduce permeabilities of blood vessels inside tumors from macro-
scopic quantities such as blood vessel volume fractions or preferential directions. By contrast,
non-invasive measurements of perfusion [59, 255] could prove helpful to enhance the hybrid
model.

Similarly, improvements are possible for flow from the larger into the smaller vessels. Equal
pressures in resolved and homogenized vasculature were assumed and, thereby, infinite (or at
least a very large) permeability governing the flow between the two compartments such that a
constraint of equal pressures holds along the resolved 1D vasculature. This has the major advan-
tage that the coupling between resolved and homogenized vasculature is essentially parameter-
free. Only the penalty parameter has to be chosen large enough such that a sufficient accuracy
in the pressure constraint is achieved as described in Remark 6.4. The GL261 and LS174T case
had a less dispersed distribution of the radius in connecting elements and, thus, of the perme-
ability between larger and smaller vessels. For these topologies, the approach could estimate the
mass transfer between larger 1D vessels and smaller homogenized vessels more accurately. The
SW1222 case had a much higher variability of radius and flow between Ay, and Ag. In this case,
it could be advantageous to employ finite permeabilities to model the mass transfer and assign
higher permeabilities to REV's or regions along the larger vessels where many branches go away
from the main vessels. However, this would require additional parameterization of the model as
well as additional data on regions where a lot of flow from larger into smaller vessels can be
expected.
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In addition, only very simple algorithms to optimize the parameters of the hybrid model were
employed. A much more powerful framework for coarse-graining physical models has been
developed by Grigo and Koutsourelakis [98] and demonstrated for flow through porous media.
This could also be applied in the present case to infer the optimal parameters of the hybrid model
per REV. However, this would require much more microstructural features, such as tortuosity,
blood vessel distances or radius data on the smaller homogenized blood vessels to calibrate the
hybrid model. Again, it is questionable if this data can be acquired non-invasively and if these
parameters are determining blood flow through tumors.

6.6 Summary of the Study and Outlook

In this chapter, a hybrid embedded/homogenized model for computational modeling of solid tu-
mor perfusion was investigated. Its guiding principle is that the complete morphology of vascular
networks including blood vessel diameters and topology cannot be acquired with currently avail-
able in-vivo imaging techniques. Thus, fully-resolved discrete models relying on this data cannot
be applied in real world” scenarios. If, however, the structure of larger vessels constituting the
main branches of the vasculature is available, the hybrid representation of the vasculature, where
only these larger branches are completely resolved, is a sensible alternative. The coupling be-
tween the resolved and homogenized part of the vasculature is realized via a line-based pressure
constraint along the 1D larger vessels and enforced by a mortar-type formulation with penalty
regularization. This also has the advantage that compared to previous hybrid models no addi-
tional parameter — apart from the penalty parameter which has to be chosen large enough — is
required to couple the two distinct representations of the vasculature.

The results of the hybrid model were compared with reference solutions generated by a fully-
resolved 1D-3D model. For that, three different network topologies extracted from three different
tumor types grown in mice were employed. These topologies consist of up to 420 000 vessel
segments and have dimensions of up to 6 mm x 8 mm x 11 mm. To date, this is the largest
and most challenging test case for a hybrid model, especially considering the abnormal and
tortuous structure of the networks typical for the vasculature inside tumors. The hybrid model
was generated from the fully-resolved model, representative elementary volumes were defined
and suitable boundary conditions assigned. The artificially created topologies of larger vessels
are representative of real in-vivo imaging data sets of larger vessels inside tumors such that it is
possible to draw meaningful conclusions for more realistic scenarios where the full topology is
not available and a hybrid approach is the only option.

For comparison of the results of the two models, several rigorous metrics were defined in-
volving the blood pressure in both resolved and homogenized vasculature, the pressure in the
interstitial fluid and blood flow in the homogenized vasculature. These metrics were then em-
ployed to obtain the optimal parameters for the hybrid model and to study its accuracy w.r.t. the
fully-resolved one. Very good agreement in terms of blood pressure in the larger vessels and
IF pressure was demonstrated. Larger deviations are present for blood pressure and flow in the
homogenized vasculature. However, these limitations can be expected since the information on
the smaller vessels is not retained in the hybrid model. Overall, the best correspondence was
achieved for the SW1222 case which also had the clearest vascular structure and distinction
between larger and smaller vessels. All topologies showed a very good agreement in terms of
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REV IF pressure and REV blood pressure in smaller vessels with mean deviations in a range of
20 — 70 Pa and 40 — 110 Pa respectively 0.7 — 3.8 % and 1.1 — 2.9 %. It is sufficient to resolve
5 — 10 % of all blood vessels segments by keeping them in the hybrid model since there is only
a marginal improvement of the agreement with the fully-resolved model in terms of all investi-
gated metrics when retaining a higher percentage (15 — 20 %) of blood vessels. Concerning the
flow between smaller and larger vessels, the error was mainly caused by the large variability of
diameter and flow in the connectivity elements between large and small vessels for the SW1222
case. Possibly, this error could be reduced by allowing a varying permeability for coupling the
two compartments. By including information about the blood vessel volume fraction of smaller
blood vessels into the definition of their permeability tensor a better agreement with flow therein
could be achieved for the LS174T case. Nevertheless, the abnormal vascular structure and blood
flow patterns of tumor vasculature could impede this approach.

Several other potential improvements were discussed and remain subject to future work. Fur-
thermore, studies of drug delivery or nutrient transport lie at hand, especially since the framework
is already capable of including species transport in all model compartments as demonstrated in
the previous chapters. Such investigations could ultimately enhance our understanding of the
limitations of current drug delivery strategies and aid in devising more targeted therapies.

The next step towards a more realistic or even clinical usage of hybrid computational mod-
els for tissue perfusion is to devise a strategy which combines data which is available non-
invasively [150]. Faced with such a scenario, where a hybrid model is the only applicable option
since the entire network topology is not known, the methods and metrics developed here could
be applied in the following way:

1. Gather all physiological data, which can be accessed via in-vivo measurements for the
specific case. For instance, this could be tissue perfusion, hypoxic areas, REV or point-
wise measurements of pressure or flow, volume fractions of homogenized blood vessels or
their preferential direction and the transport of tracer molecules through the domain.

2. Define the computational domain of interest as the embedded larger vessels and a sur-
rounding domain of homogenized vasculature following the extent of the tumor. If avail-
able, include the information about volume fractions and preferential directions of smaller
blood vessels in the definition of the permeability tensor.

3. Formulate an optimization problem similar to (6.30) to match the available information
about transport, e.g., REV or point-wise flow and pressure data. However, not only the
parameters of the homogenized vasculature would be part of the optimization as in this
contribution but also the large majority of the (homogenized or resolved) pressure bound-
ary conditions, which are additionally unknown. Note however, that far less boundary
conditions compared to a fully-resolved setting need to be applied.

4. Employ the obtained flow state for in-silico studies of drug delivery or the optimization of
treatment strategies.
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7.1 Summary

This thesis introduces a comprehensive computational framework for continuum-based model-
ing of (a-)vascular tumor growth. A number of highly relevant (bio-)physical phenomena are in-
cluded and studied such as ECM deformation by the growing tumor mass, oxygen consumption,
hypoxia, necrosis, TAF production, fibronectin uptake, chemo- and haptotaxis-driven angiogen-
esis, blood vessel collapse and regression, elevated IF pressure in the tumor core as a result of the
combination of increased leakage from blood vessels and inhibited drainage by lymphatic ves-
sels, mass transport of nutrients or drugs (both in vasculature and IF) and nanoparticle-mediated
hyperthermia.

The model is based on a continuum description of solid deformation, fluid flow and transport
processes in multiphase porous media. More specifically, it builds on TCAT to obtain a consis-
tent macroscale formulation. Based on previous work [224, 225, 229-233, 235], the governing
equations on the macroscale were introduced in Chapter 2. They are the building blocks for
the multiphase tumor growth model, namely, the balance of momentum of the solid phase, the
balance of mass of the solid phase, of the fluid phases and of species in both solid phase and
fluid phases, and the energy balance. The latter one is, however, only needed if hyperthermia
treatment is simulated. All equations are formulated in a general ALE setting allowing large
deformations of the computational domain including the embedded vascular network.

These equations were then used to build the different model variants in Chapter 3. The avas-
cular model corresponds to the original work of [224, 225, 229-233, 235] re-formulated to
a consistent ALE description. Subsequently, three different vascular variants were developed,
characterized by a homogenized, a discrete and a hybrid representation of the vascular network,
respectively. In the homogenized description, it is incorporated as an additional porous network
with blood flow and species transport such that a double-porosity formulation emerges. In the
discrete formulation, it is embedded as a 1D inclusion into the surrounding tissue domain. The
balance of mass of blood and species transport are solved inside the 1D domain and coupled
with the encompassing IF with 1D-3D (fluid and species) mass transfer terms. Two coupling
concepts for evaluating these terms are employed: a centerline-based and a surface-based variant
with line respectively surface source terms in the mass balances of the 3D domain. The line-
based method was shown to be problematic if the diameter of the 1D inclusion becomes smaller
than the element size in the 3D domain due to the involved singularity of the line source, see
Appendix A.l. Nevertheless, it can still be applied to the majority of practical problems where
this is not the case. The third variant employs a hybrid embedded/homogenized representation
of the vasculature. Its guiding principle is to resolve only the larger vessels by embedding them
as 1D inclusions and to homogenize the smaller ones. Coupling of the two representations is
achieved via constraints of matching blood pressure and matching species mass fractions be-
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tween the resolved and the homogenized portion of the vasculature. Such an approach can be
very advantageous as it relies only on in-vivo imaging data, that is, the structure and morphology
of the larger blood vessels.

The computational solution procedure for the entire model was presented in Chapter 4. Its
governing equations were discretized in time using the one-step-f-scheme and in space using
finite elements. A special focus was put on the interactions of the embedded 1D vasculature
with the surrounding tissue domain which are the transvascular exchange terms, the constraint
of matching blood pressure or species mass fraction in the 1D and the homogenized representa-
tion of the vasculature, and blood vessel diameter adaptation and collapse. A 1D segment-based
integration scheme was developed for the centerline-coupled variant and a 2D element-based in-
tegration scheme for the surface-coupled variant. Based on mesh tying approaches, two different
penalty-based constraint enforcement strategies, a mortar penalty and Gauss-point-to-segment
scheme, were proposed to couple the homogenized and the resolved representation of the vascu-
lature in the hybrid variant. The latter one may suffer from overconstrainment as demonstrated
in Appendix A.2. Special cases of collapsed 1D elements or free-hanging network sub-parts oc-
curring during blood vessel collapse and how to treat them from a modeling and implementation
perspective were illustrated. After time and space discretization, a coupled problem of five non-
linear residuals (for the most general case) emerges. It may be grouped into three distinct fields,
namely, ECM deformation, (1D and 3D porous) flow and (1D and 3D) species transport. The
residuals are consistently linearized for a Newton-Raphson solution procedure with the excep-
tion of some terms of minor importance. The coupling between the distinct fields may either be
resolved by a fully-monolithic, a hybrid monolithic-partitioned or two slightly different parti-
tioned solution procedures. Sophisticated block preconditioners are available in the framework
to solve the resulting linear system of equations, which has a 5 x 5 block pattern for the most
general fully-monolithic case, in combination with iterative solvers.

The flexibility and applicability of the developed computational framework was demonstrated
by various numerical examples in Chapter 5.

First, the four different algorithms for solving the nonlinear three-field problem were in-
vestigated using a representative numerical benchmark example. For standard parameters, the
fully-monolithic approach was faster than all other variants with a speed-up of 8.4 compared
to the nested-partitioned, 4.6 compared to the sequential-partitioned and 1.5 compared to the
monolithic-partitioned algorithm. Its superiority was further demonstrated over a wide range of
parameters. The strong coupling between fluid phases and ECM deformation limits the appli-
cability of partitioned schemes. Among the two investigated schemes, the sequential-partitioned
algorithm should be the method of choice as a smaller number of total nonlinear solver calls is
required. Only if the entire solution time is dominated by solving species transport, the nested-
partitioned scheme may be reasonable. Finally, for an undeformable ECM, a corresponding
monolithic (fluid-species) solution scheme is still more efficient. A partitioned one can be more
competitive though.

Subsequently, numerical examples of increasing complexity were presented. The interplay
between tumor growth and angiogenesis was investigated using the variant with homogenized
vasculature. It was demonstrated how low oxygen levels lead to TAF production and how the
resulting chemotaxis-driven angiogenesis enables fast tumor progression. Thereafter, the influ-
ence of haptotaxis and blood vessel remodeling was incorporated leading to a better, respectively,
worse vascularization, which, in turn, influences tumor growth. A second numerical example was
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devised to study nanoparticle-based drug delivery and hyperthermia treatment. First, vascular tu-
mor growth was simulated to obtain a physiologically reasonable transport phenotype for solid
vascular tumors with elevated IF pressure and decreased blood perfusion in the tumor center and
a steep pressure drop across the tumor boundary. Nanoparticles of various sizes were employed
for an in-silico study of transport through the tumor micro-environment. The EPR effect was
observed as they accumulated mainly in the tumor region, however, the active pressure gradient
led to a concentration at the tumor boundary and only a slow penetration into its interior. Smaller
molecules with higher diffusivities were also cleared more rapidly such that the larger molecules
with weights of 10kDa and 70 kDa had the highest drug delivery efficiency. This insight is
also supported by corresponding experimental data [67]. The result of the nanoparticle transport
study was then further employed to demonstrate the model’s capabilities to study hyperthermia
treatment. Temperature ranges corresponding to mild hyperthermia and thermal ablation were
reached depending on the specific absorption rate of the nanoparticles. Next, the model with
discrete representation of the vasculature was used to study tumor growth inside a 2D and a 3D
vascular network. A co-opting growth pattern was present in both examples. Cuffs of viable tu-
mor cells developed along the blood vessels where oxygen concentration was highest. In the 2D
example, the developed methodology for blood vessel collapse and regression was additionally
studied which resulted in a vascularization pattern frequently observed during vascular tumor
growth: only some larger internal vessels penetrated into the tumor core whereas smaller vessels
collapsed and regressed. Finally, the hybrid variant was used to illustrate the classical model of an
angiogenic switch. Angiogenesis occurred laterally from pre-existing blood vessels which were
coupled with blood flow and species transport in the neovasculature by the mortar-type method
with penalty regularization. It was demonstrated how angiogenesis deregulates mass transport in
the tumor microenvironment in favor of rapid tumor growth.

A validation of the vascular growth model with experimental data was beyond the scope of
this thesis. However, the resulting IF pressure ranges and profiles, oxygen, necrotic cell and
nanoparticle distributions, typically observed vascularizations, the time scales of angiogenesis
and tumor growth patterns (angiogenic switch and co-option) could be reproduced when em-
ploying sensible parameter values. Thus, the general applicability of the developed group of
models for simulating vascular tumor growth was proven. The next steps towards a more de-
tailed validation with experimental or clinical data will be outlined below.

A standalone and major contribution of this thesis is the hybrid embedded/homogenized rep-
resentation of the vasculature. It may not only be employed for vascular tumor growth but also
for perfusion through solid tumors as demonstrated in Chapter 6. Therein, its results were com-
pared with reference solutions of a fully-resolved discrete approach for three data sets of large
vascular networks inside solid tumors. As stated before, its big advantage is that it requires only
non-invasively available data. A detailed summary of the conducted study and an outlook into
future work can be found in Section 6.6.

7.2 Outlook

In the following paragraphs, several possible extensions and a road map for validation of the
model, in particular with respect to the involved uncertainties and currently available in-vivo
data will be presented.
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Exploiting the Potential of the Coupled Framework via Further Extensions One
of the unique features of the presented framework is the full coupling between all model com-
ponents and its flexibility for extensions. Hence, it is particularly well suited to incorporate
additional phenomena involving the interaction of different (bio-)physical fields or processes.

The interplay between cancer progression and the ECM has recently gained a lot of inter-
est from the biophysical research community as outlined in Chapter 1. Nevertheless, its causes
and effects are not well-understood. Simulations are needed to complement experimental find-
ings. The model can easily be enhanced by ECM remodeling, stiffening and its interaction with
tumor growth. For example, the degradation of the ECM by matrix metalloproteinases can be
integrated, see the single cell model of [271, 272] for details. In a similar fashion, ECM deposi-
tion, which was already partly addressed by Santagiuliana et al. [224], may be studied. Further
effects of matrix stiffening, increased cross-linking and remodeling by the interaction with the
growing tumor leading to a more malignant phenotype [47, 81, 144, 191] can be captured by suit-
able constitutive laws for the ECM, for which only simple hyperelastic behaviour was assumed
throughout this thesis. Different ECM components such as collagen can be included as species in
the ECM to obtain its composition by the interaction of dissolution, deposition and cross-linking.
Material laws depending on the ECM composition can be formulated. An additional implication
of ECM deposition and remodeling is drug resistance induced by a denser ECM, which can also
be considered. An improvement in modeling the mechanical interaction with the surrounding
tissue can be achieved by more realistic boundary conditions for the solid phase displacement,
which for the numerical examples presented here was either fixed or left free. The influence of
the surrounding tissue can be incorporated by a spring-type boundary condition.

Supplemental theoretical derivations from TCAT [170] can improve the model’s handling of
interfaces and, especially, cell-cell and cell-matrix interactions.

An additional straightforward extension is anti-angiogenic therapy. The original intention
of this type of treatment was to reduce tumors’ access to nutrients, thereby, starving them to
death [75]. However, this potential has not yet been realized due to insufficient efficacy and de-
velopment of resistances [37, 132]. A more recent finding is that anti-angiogenic therapy may
also lead to vascular normalization [37, 116—118], that is, a transformation of tumor blood ves-
sels into a more structurally and functionally normal vasculature. This is accompanied by bet-
ter perfusion and a reduction of IF pressure and may be a promising strategy to increase the
efficiency of drug delivery. Conceptually, this can be included in the model as follows: anti-
angiogenic agents are an additional species, which is transported by the vasculature and the IF
just as other drugs. In the homogenized variant, their effect on tumor vasculature can be incor-
porated by a reduction of the vascular volume fraction and decreased leakage into the IF via a
smaller hydraulic conductivity. In the discrete variant, a regression of redundant blood vessels
and a stabilization of larger vessels leading to more efficient blood flow and decreased leakage
are conceivable. The results of such numerical studies on anti-angiogenic therapy can then be
employed to examine if the access to nutrients may indeed be diminished leading to tumor re-
gression or rather to more aggressive tumor growth fueled by hypoxia. The impact of vascular
normalization on the efficiency of a subsequent therapy with a conventional or nanoparticle-
based drug after barriers such as increased interstitial fluid pressure have been removed is worth
studying as well.

Ancillary effects of hyperthermia treatment such as increased perfusion and oxygenation,
making tumors more accessible to other therapies like radio- or chemotherapy [43, 259], can
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easily be integrated into the coupled framework and its interaction with each other can be ex-
plored. Similarly, the release of nanoparticle-bound drugs triggered by external energy sources
and the combined effect of hyperthermia and chemotherapy may be of interest.

Furthermore, guidelines can be developed for the design of more potent delivery systems, e.g.,
size-altering nanoparticles achieving optimal in-vivo performance: these are larger nanoparticles
with longer blood half-life which disassemble into smaller particles with improved penetration
through tumor tissue [142, 149]. This can be taken into account by several nanoparticle species
of different sizes, diffusivities and vascular permeabilities with interrelating mass transfer terms
such that smaller particles are generated by the break-up of larger ones.

So far, the cytoxicity of drugs has not been yet been studied in detail. A natural extension is to
include their effect as a killing term acting on tumor cells or by decelerating tumor growth [50].

Another novel therapeutic strategy using nanoparticles is magnetic drug targeting [2, 3, 119].
Via the application of an external magnetic field, magnetic nanoparticles decorated with anti-
cancer drugs can be guided to the tumor site after intra-arterial injection. Thereafter, the thera-
peutic desorbs from its magnetic carrier. Compared to traditional small drugs or passive targeting
with the EPR effect, this enables a higher drug accumulation inside the tumor with minimal sys-
temic side effects. The effect of the external magnetic field can be included as a flux term in the
species mass balance equation on the macroscale. The interaction with blood flow, IF flow and
diffusion and the desorption of the cytotoxic drug can be simulated to guide drug design. More-
over, drug delivery can be improved by in-silico studies on the optimal magnetic field depending
on the extent of the tumor, the position of the magnets and their strength.

Sensitivity Analysis and Model Calibration Mirroring the numerous influences on in-
vivo cancer progression, the different model types contain a large number of biological or phys-
ical parameters as specified in Appendix C. While some of them can be considered fixed, such
as the density of water, others may be subject to uncertainties. This may be either because they
cannot be measured with sufficient accuracy in experiments or because they vary between differ-
ent tumors, patients or even intra-tumorally due to the intrinsic heterogeneity of cancer. Hence,
it is indispensible to perform a global sensitivity analysis on the model to quantify and rank the
impact of the input parameters’ uncertainty which is propagated to the model output [222, 223].
Thereby, the most influential parameters and their interaction effects may be elucidated. Thus,
the understanding of the model can be enhanced, it can be simplified by fixing non-influential
parameters and further calibration can be eased by focusing on the most important parameters.
Ideally, this should go hand in hand with experimental validation of the model to set the focus
on those aspects and parameters of the numerical model which can actually also be influenced
by experiments. An efficient strategy to perform sensitivity analysis if many parameters are in-
volved is to first use a simple screening method, e.g., the elementary effects method by Morris
[175] and Campolongo et al. [35]. Then, more insightful variance-based methods can be applied
on the subset of influential parameters [222, 223]. Using this methodology, first studies on the
sensitivity of the avascular model were conducted in the Master’s thesis of Rodenberg [219].
Further research should be concerned with the vascular variants, where even more parameters
are present.

After identifying the most influential parameters, the model has to be calibrated, that is, its
parameters have to be identified in order for the model output to match corresponding experi-
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ments. This is a classical example of an inverse problem [122, 254], for which suitable methods
are outlined in this paragraph. In the next one, the focus lies on the required experimental data.
Bayesian inference provides a unifying framework for model calibration, validation and uncer-
tainty quantification. Thereby, the mathematically ill-posed parameter identification problem is
reformulated as a statistical inference task for the model input parameters. This results in a poste-
rior distribution for the latter rather than an inexpressive point estimate as delivered by classical
deterministic treatments of the identification process, e.g., in form of a least-squares optimization
problem. The accuracy and robustness of the framework for uncertainty propagation is crucial
considering the inherently stochastic nature of cancer. First efforts to combine cancer modeling
with a Bayesian methodology have been made by [102, 121, 152, 153, 185] but most of the work
has been theoretical without a critical validation of the models due to the lack of well-suited ex-
perimental or clinical data. The software QUEENS [24], which was already applied in Chapter 6,
provides a computational framework for uncertainty quantification, Bayesian optimization and
inverse problems and will be used for the calibration and validation of the tumor growth model
in future work.

The probabilistic methods mentioned above can require thousands of forward evaluations of
the tumor growth model which might become prohibitively expensive or even unfeasible for
large problems. To reduce the computational cost, multi-fidelity approaches have recently be-
come popular. Their goal is to harness information from computationally cheap, low-fidelity
approximations of a more complex model [23]. One such approach is the Bayesian multi-fidelity
Monte Carlo method [21, 22, 133], whose general idea is to perform most of the sampling on
the cheap, low-fidelity approximation with only a few evaluations of the high-fidelity model.
The only demand on the low-fidelity model is that it exhibits a statistical dependency with the
output of the high-fidelity model. To fully exploit its advantages, it is important that the com-
putational cost of running the low-fidelity approximation is much smaller than the one of the
high-fidelity model. Apart from classical multi-fidelity scenarios such as a coarser mesh [22],
lower order polynomial degrees in the FE discretization or a lower floating point precision for
the low-fidelity model [182], several multi-fidelity scenarios are conceivable for the developed
group of tumor growth models. For instance, deformability can be neglected as a more efficient
approximation of the computationally expensive ALE formulation on a moving mesh. Similarly,
the homogenized variant may serve as a low-fidelity model version of the discrete or the hybrid
variant. For instance, the radially symmetric example for vascular tumor growth employed in
Section 5.3, whose run-time is several minutes, can be interpreted as a cheap, low-fidelity ap-
proximation of the 3D model with discrete representation of the vasculature from Section 5.4
with a computational run-time of several hours. This can enable efficient uncertainty quantifica-
tion, sensitivity analysis and calibration of the much more complex discrete model variant.

Towards a Validation using a Multi-Modal Approach A myriad of mathematical and
computational approaches has been proposed for modeling cancer. However, validation with
clinically relevant or, at least, experimental data is still pending. This is due to the fact that a
proper validation would require data at a spatial resolution which is not yet possible with state-of-
the-art imaging techniques, especially not in-vivo and at multiple time points [294]. The present
group of tumor growth models has a huge and unique potential to include clinically relevant
patient-specific data as it strives after a mechanistic description of cancer with a clear descrip-
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tion of biologically and physically relevant processes. Artificial components such as a generic
nutrient species are not necessary. Ideally, it would require the spatio-temporal distribution of
tumor cells, host cells, necrotic cells, vascular volume fraction, IF pressure, oxygen and other
relevant species such as drugs or TAFs and the ECM displacement field in the domain of interest.
This kind of high-resolution data which is required for physics-based tumor growth models is
currently not available even though a huge amount of data has been collected for cancer [218].

The alternative, which is proposed here instead, is a multi-modal validation, i.e., an approach
to combine available experimental or imaging data from different sources. Such data can for ex-
ample come from elastography [162], point-wise measurements of tissue deformation or stress
[236], the visualization of transport through tumor tissue at the currently possible spatial reso-
lution [150], the vascularization pattern in the domain of interest [236, 252] and imaging of the
oxygen distribution [150] with corresponding hypoxic and necrotic zones. A multi-physics ap-
proach such as the present tumor growth model combining deformation, fluid flow and species
transport seems to be ideally suited to handle such scenarios where data from single sources
is incomplete or not accessible, especially at the resolution required to parametrize a computa-
tional model. However, via the combination of multiple sources of data, a much clearer picture
emerges. For instance, IF pressure cannot be measured over large domains but only at specific
points. Combining these measurements with imaging data on the vascular volume fraction, flow
in the larger blood vessels and/or the distribution of an injected drug which will not reach areas of
higher IF pressure can provide a suitable data base to investigate and validate a transport model
through tumor tissue as applied in Chapter 6. A similar scenario can be to obtain the solid stress
field indirectly by its induced compression of blood vessels and the concurrent reduction of their
diameter [236] to validate the solid phase material and the stress generated by the growing tu-
mor. Obviously, the validation has to be performed and accompanied by the methods outlined in
the previous paragraph to quantify the associated uncertainty.

Finally, further advances in biomedical imaging will contribute to a higher quality of the
data needed for validation. An emerging field is theranostics, that is, combining therapy with
diagnostics, for example via nanoparticles which can simultaneously be used to image the extent
of a tumor and to deliver drugs [91].

Major contributions to the mechanistic modeling of tumor growth have been made in this
thesis. The ultimate goal of patient-specific predictions of cancer progression being one day as
common and reliable as weather forecasts are nowadays, may seem like an almost impossible
endeavour. Nevertheless, the tremendous challenges are outweighed by the huge potential of
predictive cancer models and science has proven over centuries that, in the long term, it is capable
of previously unimaginable achievements.
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A Additional Numerical Examples

A.1 Comparison of Different 1D-3D Coupling Variants
and Convergence Tests

In this section, a comparison of the two different coupling variants employed in this thesis,
namely, centerline coupling and lateral surface coupling, is performed. Both approaches are also
classified w.r.t. previous work on such problems of mixed dimensionality. For that, a model
problem whose governing equations are

TR* 9?p° =1
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corresponding to flow in the surrounding tissue domain, i.e., in the IF. A simple mass transfer
term
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depending on the pressure difference between embedded blood vessels and IF is employed. Thus,
for lateral surface coupling the terms
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appear in the corresponding weak forms. For centerline coupling, they simplify to

(6p", 7Dy -k (p° (s) — p' (z (s))))A0 and — (6p',mDy -k (p° (s) — p' (z (s))))AO . (AS)

The employed mass transfer term allows a comparison with previously developed 1D-3D cou-
pling formulations. Often subtle but important differences between the various formulations are
present which will be discussed hereafter. A more extensive overview is also given in the thesis
of Koch [125, Chapter 6]. There, two criteria are proposed to categorize the different approaches,
namely, (1) how the source term of the blood vessels is distributed in the domain (line, surface
or volume source) and (2) the type of evaluation and/or reconstruction of variables of the porous
domain problem to evaluate the source term.

In the centerline variant, a line source term is employed and the variables of the porous domain
are evaluated along the centerline of the inclusion. As previously discussed, this is problematic
since the employed line source leads to a singularity of the solution along the centerline of
the inclusion. Hence, the pressure (or mass fraction) at the centerline p! (x (s)) is not defined
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Figure A.1: Domain employed for convergence tests — diameter of inclusion is 0.2 and exem-
plary mesh with mesh size & = 0.125 and 16 x 16 elements is shown.

and can, strictly speaking, not be employed. Nevertheless, in a discretized setting where the
mesh size is sufficiently larger than the diameter of the inclusion, it is still a valid alternative
and corresponds to the lumped approach of D’Angelo [52]. To circumvent this problem, an
alternative formulation was proposed in the foundational works of [51-53]. The contributions to
the employed weak form read as

(51019, mDy - <p’3 (s) —p' (8)))
where p! denotes the average pressure along the perimeter of the inclusion calculated as

1
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Thus, the mass transfer is evaluated along the centerline and represents a line source in the porous
domain but the average value of the porous medium domain is taken to reconstruct the pressure
in the mass transfer term. This leads to a well-posed system for which convergence in weighted
or local norms can be shown [53, 129].

The surface-coupled variant introduces a surface source into the governing equations of the
3D domain and the variables of the porous medium domain are evaluated directly at the lateral
surface of the embedded network. In the original work discussing this approach [130], a slightly
different version was derived by splitting the values at the lateral surface in the average along
the perimeter (A.7) plus small fluctuations. This results in the following contributions:

(5p{’, Dy - K (pf’ (s) — ]7(8))) and — <(5]7, Dy - K <pqj (s) —pf (S)))A : (A.8)

0
Compared to (A.6), the perimeter-average is now also performed for the test functions. Note
that both these variants also include an integral along the perimeter of the inclusion as the aver-
age (A.7) has to be numerically evaluated. However, the version (A.8) has two distinct disadvan-
tages. First, the numerical evaluation is quite complex. At a specific position s along the center-
line, all GPs defined on the lateral surface for evaluating the product of averaged test functions

and — <5pl, Dy - K (pﬁ (s) —p (s))) (A.6)
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Figure A.2: Convergence of different 1D-3D coupling variants

for the second term in (A.8) interact with each other. This implies that a local assembly of one
pair of a 1D element and a 3D element is not possible. Second, and related to the first issue, as
the GPs interact with each other, also different DOFs of distinct elements all along the perimeter
contribute entries in the coupling matrices which leads to much denser patterns. Thus, the lateral
surface coupling variant (A.4), which was also employed in combination with a finite volume
discretization in [131], is preferable. Finally, volume source terms with smoothed approxima-
tions of the Dirac delta distribution via kernel functions have been introduced by [125—-127] but
are not further studied here.

In the following, the convergence behaviour of the two applied approaches in this thesis is il-
lustrated with the model problem (A.1)-(A.3). For that, an example originally presented by Koppl
et al. [130] is repeated. Here, it is adapted to a 3D domain, where a single blood vessel is em-
bedded into a cuboid of dimensions 2 x 2 x 1. The domain is depicted in Figure A.1. The blood
vessel lies along the z-axis at the origin of the domain in the middle of the block. The pressure
value is fixed to p” = 1 along the entire line which is discretized with a single 1D element. The
exact analytical solution for this quasi 2D example is given by

5 (1-R- ()

Pex() = {”*”” <1 i hl( R >> ri@) >R (A.9)
St r(x) <R

with

r(x)=vz-z+y-y. (A.10)

The IF pressure values at the outer surfaces of the block are fixed by a Dirichlet condition to the
appropriate values of (A.9). The sole parameter of the problem is set to x = 0.1.
The L?-error of the numerical solution of the IF pressure pl is evaluated as

ok — Pl = \//Q (= PLy) - (Pl — pLy) AV (A.11)
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and its convergence for refining the mesh of the 3D domain for inclusions with two different
diameters, namely 0.2 and 0.02, is studied in Figure A.2. For lateral surface coupling, the error
converges with a rate of h%/? as predicted and shown by Koppl et al. [130]. Better convergence
cannot be expected as the pressure solution (A.9) exhibits a kink at the lateral surface of the in-
clusion. Nevertheless, this could be remedied with a graded or d-resolving mesh at the interface
of the embedded tube [130] to obtain second order convergence in the L2-norm. However, as this
contradicts the major benefit of independent 1D and 3D meshes, this approach is not further fol-
lowed. As previously studied by D’ Angelo [52], the centerline coupling variant converges only if
the diameter is smaller than the mesh size. Then, its results are almost equivalent to the surface-
coupled variant. For smaller mesh sizes, convergence cannot be achieved due to the involved
singularity. This has recently also been investigated in the analogous solid mechanics problem
of embedding thin 1D structures, i.e., beams, into 3D solid volumes with similar results [246].
However, for practical problems of the tumor growth model, also smaller mesh sizes than the
diameter of the vascular networks seem to provide acceptable results. For instance, in [136] the
centerline variant was employed using a mesh size of A = 0.01 mm and the diameter of the net-
work was D = 0.015 28 mm. Macroscopically, no difference in the results was observed when
re-calculating the example with the surface-coupled variant in Section 5.4.

A.2 Comparison of GPTS and MP Constraint
Enforcement
A validation and comparison of the GPTS and MP constraint enforcement strategies is performed

in this section, which is taken from the author’s article [136]. For that, the model has been
simplified by neglecting any deformability and solving only the equations

TR
8,&@ 852

which is a simplified version of blood flow in the 1D reference domain (3.79) without mass
transfer into the IF, and

=0 on Ay, (A.12)

v
—Vo . (—Vopv> =0 in Qo, (AIS)

v

which is a simplified version of blood flow in the 3D reference domain (3.47) with constant
vascular volume fraction and without mass transfer to another phase, together with the constraint

g=p"(s,t) =p"(x(s),t) =0  on Ag (A.14)

i.e., the line-based constraint equation (3.110) for pressures. Figure A.3 depicts the compu-
tational domain which is used to solve these equations. A straight blood vessel with radius
R = 0.005 is embedded into a porous block with dimensions 1 x 1 x 1. Its endpoints are
[—0.5,—0.35, —0.35] and [0.5, —0.35, —0.35] and the origin of the domain lies in the middle of
the block. The permeability is set to k¥ = 1- 107 and the viscosities are 1, = s = 1.0. A
Neumann boundary condition is applied on the lower left end of the vessel in Figure A.3 and
on the upper right end the pressure is set to zero. The 3D block only carries no-flux boundary
conditions. It is discretized with a regular grid of 10 x 10 x 10 trilinear elements while the 1D
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Figure A.3: Computational domain and pressure solution of porous block with straight inclusion.
MP approach with ey;p = 107! is applied to couple pressures on both sides (radius
of 1D elements not to scale). Figure taken from the author’s article [136].
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(a) Gauss-point-to-segment (b) Mortar penalty

Figure A.4: Comparison of coupling approaches with different penalty parameters (red circles
denote 1D nodal values). Figure taken from the author’s article [136].

domain is discretized with 23 equally spaced linear elements such that the two discretizations
are non-conforming. As the element size in the 3D domain is larger by a factor of 10 than the
diameter of the inclusion, the centerline variant is employed.

Figure A.3 illustrates the pressure distribution in both domains. For a more detailed inves-
tigation, the pressures on the 1D domain p® and in the 3D domain p® along the inclusion A}
are plotted in Figure A.4. The chosen penalty parameters are at least two orders larger than the
characteristic order of magnitude defined by the permeability k", which leads to good fulfill-
ment of the constraint for all depicted values. The advantage of the MP formulation compared to
the GPTS approach becomes evident from these plots. For very large values of the penalty pa-
rameter the latter formulation becomes overconstrained due to a lack of inf-sup stability. When
increasing the penalty parameter it converges towards a collocation method where the discrete

219



A Additional Numerical Examples

constraint has to be fulfilled at every Gauss point. In this case the number of discrete constraints
is too high for the number of discrete degrees of freedom [226]. No convergence towards a
physically reasonable result can be expected for eqprs — 00 due to the overconstraint. Indeed,
if the penalty parameter is chosen even higher than the values shown in Figure A.4a a linear
pressure drop from inflow to outflow emerges since this is the only solution which satisfies the
constraint (A.14) at every Gauss point.

By contrast, the MP method converges to the solution of the Lagrange multiplier method. No
visible difference in the result is present for penalty parameters larger than ey;p = 0.1 (not shown
here). Still, in the range of moderate penalty parameters both methods perform with similar ac-
curacy such that the GPTS approach seems applicable especially when a very high accuracy for
fulfilling the constraints (3.110) for species and pressures is not needed. Indeed, from an im-
plementational point of view, the GPTS approach can also be integrated more easily since the
additional terms can be evaluated on element level together with the other transvascular mass ex-
change terms. By contrast, the penalized Lagrange multiplier method requires a global assembly
of the mortar matrices and only then the Lagrange multipliers can be eliminated. Nevertheless,
the MP method has been applied in all other examples of this thesis due to its theoretical advan-
tages outlined in this section. Further studies in the related context of beam-to-solid mesh tying
can be found in [ 134, 246].

A.3 Validation of Large Deformations of Embedded
Vasculature

In this section, the spatial integration for large deformations of the embedded vasculature do-
main is presented in more detail. An additional numerical example is used to prove its correct
implementation. A general scenario with large deformations is sketched in Figure A.5. The un-
deformed configuration is given in Figure A.5a. Then, the lower right node is moved to the
right as illustrated in Figure A.5b. Under the assumptions made in Section 3.4.1, the embed-
ded vasculature completely follows the resulting deformation inside the second element while
its remaining part in the first and third element remains fixed. Thus, the 1D domain changes its
length. Concurrently, the mapping between the element parameter space and the physical space
changes. In other words, the mapping and the partitioning of integration segments depend on the
deformation of the underlying 2D/3D mesh. In the illustrated example, the middle segment is
enlarged at the expense of the two other segments. Recall that the linearization of these terms
w.r.t. the solid phase displacement is not calculated in the framework since the respective terms
have been set to zero in (4.136) and (4.138).

To validate the implementation, a small academic example is studied. It involves the domain
depicted in Figure A.6a, which is a block of dimensions 8 X 2 x 2 meshed with 24 x 6 X 6 trilinear
elements. The centerline of the block is congruent with the x-axis. Inside the block, four separate
blood vessels with a diameter of 0.2 are embedded along the z-axis starting at [0, 0.5, +0.5] .
Each segment is discretized with eight linear elements. The block is then deformed according to
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Figure A.5: Sketch of large deformations of embedded vasculature domain including one-
dimensional segment-based integration for centerline coupling (in 2D)

the deformation map

x X
x(X,t)=|y| = |cos(n/4-X)-Y —sin(n/4-X)-Z (A.15)
z sin(m/4-X)-Y +cos(n/4-X) - Z

resulting in the twisted shape depicted in Figure A.6b. Evidently, the embedded blood vessels
completely follow the deformation of the surrounding domain. They form a spiral such that each
point on their centerline follows the respective point in the 3D domain.

Using the 1D-3D coupling variant, the example is set up such that the equation

82 pﬁ

— 53 +p'=0 (A.16)

is solved on each of the four initially straight segments of the embedded deformed domain with
the aforementioned 1D discretization. On the tips at the left hand side of the domain the pressure
is set to one, at the right hand side to zero.

Note that the arc-length in deformed configuration for all embedded vessels (with coordinates
[X, £0.5, £0.5]) may be calculated as

s(S) = /1+0.5-(7/4)2)- S ~ 1.14386 - S (A.17)
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0.0e+00 0.4 0.6 1.0e+00

(a) Undeformed configuration (b) Deformed configuration

Figure A.6: Large twist of embedded 1D domain

- - - analytical solution
0.8 —— numerical solution

Figure A.7: Comparison between analytical and numerical solution for large twist example

for this example from the deformation gradient F' of the twisting motion (A.15) and the initial
unit tangential vector of the embedded blood vessels t, = [1, 0, 0] according to (3.71). Thus, the
initial vasculature domain of each vessel Ag with S € [0, 8] is stretched to become the deformed
vasculature domain A, with s € [0,8 - /1 + 0.5 - (7/4)2)].

The 1D elements are now not straight any more but curved following the deformation of the
domain. However, the pressure between the nodes is still linearly interpolated with linear shape
functions. This is illustrated in Figure A.7 where the analytical solution of equation (A.16) on
one branch with the corresponding boundary conditions is compared to the numerical solution
obtained with eight linear elements. Obviously, the numerical solution matches the analytical
one very well. With further refinement, convergence towards the analytical solution is obtained.
While such a deformation seems unlikely in any biological scenario, this example demonstrates
the general applicability of the large deformation approach for the embedded vasculature.
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B Mass Transfer Relationships of the
Tumor Growth Model

In this appendix, the arithmetic expressions for the mass transfer relationships for phases and
species in the tumor growth model are summarized. The ones for the avascular compartment are
taken from the earlier papers of Schrefler and co-workers [225, 230, 232, 233] while the ones
including homogenized and discrete representation of the vasculature were added in Kremheller
et al. [135, 136]. The following sections are based on the two aforementioned publications by
the author. The terms employed for nanoparticle extravasation and drainage are given directly in
Section 5.3.

B.1 Phase Mass Transfer Relationships

Tumor Growth Based on Sciume et al. [230], growth of the tumor phase is described by

l—t wnZ _ an _
Mgrowtn = <7§rowth <nl—nf> ) (1 — th> St (B.1)
w — W n

env crit

where (e)_ denote the Macaulay brackets which return the value of their argument if the ar-
gument is positive and zero otherwise. The previous equation describes the consumption of
nutrients and water from the IF during tumor cell growth with coefficient 7/ ;- The multi-

plication with the mass (or volume) fraction of LTCs (1 —whN %) £S* indicates that only LTCs

are able to grow whereas NTCs are inert. In that formulation, tumor growth is regulated by the
local mass fraction of oxygen w™'. If it is smaller than a constant critical mass fraction w},, one
assumes that tumor growth is inhibited. This is reflected by the Macaulay brackets which return
zero in this case. The model parameter w"! denotes the oxygen mass fraction in healthy tissue.
Thus, depending on the locally available oxygen the Macaulay brackets vary between zero for
wt < wnl and one for w™! = w?!. An additional term inhibiting TC growth above a certain

critical tumor cell pressure was incorporated in [230] but is not considered throughout this thesis.

Leakage from Homogenized Vasculature into Interstitial Fluid Transcapillary leak-
age of fluid from the HV into the IF is modeled with the Starling equation, which describes fluid
flow across a semi-permeable membrane, as

v—l S
Mgt = p - (va> (p = ph) e, (B.2)
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with hydraulic conductivity L, and surface-to-volume ratio S/V" for transcapillary flow [115,
287]. If the effective pressure

peff — pv — Wosm (Wblood . 7_[_l) (B3)

is higher than the IF pressure p', a net outflow from the vessels into the interstitial fluid, i.e.,
leakage from the vasculature into the IF, occurs. Thus, the pressure difference between blood
and IF drives the flow across the semipermeable capillary blood vessel wall together with the
osmotic (or oncotic) pressure difference wogy, (7rb1°°d - 7Tl>. To a certain extent, the latter term
balances the fluid leakage from the vasculature into the IF as fluid is also pulled inward from IF
to vasculature due to differences in plasma protein concentrations. Furthermore, in (B.2) it has
been assumed that the leakage is proportional to the vascular volume fraction €*.

Drainage of Fluid via the Lymphatic System The lymphatic system is not considered
as a distinct phase including flow. However, it is assumed that it is present throughout the do-
main such that a continuous drainage of excessive fluid and waste products from the IF into the
lymphatic system occurs. For that, the relationship

Mrain = p' - (va) (' =), - <1 - > : (B.4)
ly pcoll,ly T

which is an adaptation of the lymphatic drainage term used by Wu et al. [287], is applied. Again,
a Starling equation is defined for the outflow of fluid into the lymph system. Additionally, the
tumor pressure-induced collapse of the lymph vessels, which is a major factor contributing to
interstitial hypertension as discussed in the main part of this thesis, is considered by the last
factor of (B.4). Until the collapsing pressure pioll,ly the drainage capacity of the lymph system
decreases linearly. Above this pressure, it is assumed that the lymph vessels have collapsed and
no uptake of fluid is possible anymore. It is further postulated that the lymphatic pressure is small
compared to the other pressures of the multiphase system, that is, p’ ~ 0. Again, Macaulay
brackets are employed such that only flow from IF into lymph system occurs and not vice versa.

B.2 Species Mass Transfer Relationships and
Intra-Phase Reaction Terms

Necrosis NTCs are present as a species of the tumor cells. Hence, necrosis is modeled as an
intra-phase reaction term of the TC phase, which, following Sciume et al. [230, 232, 233], reads

as ) i
wnl _ wnl B
t Nt ¢t crit N7 t
er = Vnecrosis i i (1 — W ) eS’. (BS)
Wi — W
env crit /4

This equation is closely related to the term for tumor growth (B.1). The rate of cell death is
regulated via the coefficient 7/, and proportional to the mass fraction of LTCs. In turn, the
local oxygen mass fraction w™' influences necrosis. Note that the numerator inside the Macaulay
brackets is switched w.r.t. (B.1) such that necrotic cells emerge only if the oxygen mass fraction
is below the critical mass fraction w”!.. Also here, necrosis due to excessive tumor stresses is
neglected.
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Consumption of Oxygen Both HCs and LTCs consume oxygen. The oxygen uptake of
LTCs is modeled via the mass transfer relation for oxygen

nl—t nl—nt nl _ nz nl _
Mcons = M = P)/grtowth w + ’}/gt sin z d = (1 — CdNt> €St. (B6)
wnl — oyt . 2 wnl

env crit env

Two contributions are incorporated: the first term accounts for the consumption of oxygen during
growth with coefficient vgfowth. Hence, it is zero if the oxygen level drops below the critical
oxygen threshold. The second term represents the normal metabolism of LTCs with parameter
&, Since the oxygen mass fraction always varies between 0 and w”! | the sine function varies
between 0 and 1. As it is assumed that NTCs do not consume any oxygen, the entire term is once
more scaled with the LTC mass fraction. Note that the two parameters were previously denoted
as Ygrowin and g, respectively [230, 232, 233].

The oxygen consumption by host cells is defined as

nl
wenv

nl—h nl—nh nl

Meons = M = 7[7;]1 - sin <g d ) : ESh (B.7)
equivalently to the second term for the normal metabolism of LTCs in (B.6) with HC oxygen
consumption coefficient 73",

Transcapillary Oxygen Exchange between Interstitial Fluid and Homogenized Vas-
culature Throughout this thesis, the primary variable for oxygen is its mass fraction (either
in the IF or the homogenized vasculature). However, oxygen concentration per unit volume of
plasma or tissue C™ [mlO,/ml] or oxygen partial pressures Pyg [mmHg]| are commonly used
for oxygen transport models [92, 237, 241, 250, 279]. Hence, oxygen mass fractions have to be
converted to oxygen partial pressures first in order to re-use the mass transfer relations which are
normally applied. The mass fraction of oxygen in the IF in terms of oxygen partial pressure in

the IF P.__ is given by Henry’s law as

oxy

o (PLy) =2 o = P, (B.8)
P P
where ¢ is the solubility of oxygen in the IF and p™ and p' are the respective densities of oxygen
and the IF. Oxygen transport in blood follows a more complex mechanism [279] since it can
be either dissolved in the blood plasma or bound to hemoglobin. Hence, the mass fraction of
oxygen in blood may be written as

wnE(Pv ):gcnizpn

- p E.(av,eﬂpv +Hp-Cy"- S (Pyy)) - (B.9)

oxy oxXy

As in (B.8) the first term represents the dissolved oxygen with effective solubility o, ¢ While the
second one stands for the oxygen bound to hemoglobin (whose contribution to the total amount
of oxygen is actually much larger). So, the mass fraction w™" accounts for the total mass frac-
tion of oxygen which is dissolved in plasma and bound to hemoglobin. Furthermore, Hp is the

225



B Mass Transfer Relationships of the Tumor Growth Model

discharge hematocrit, that is, the volume flux of red blood cells divided by the total blood vol-
ume flux [240] and C” the concentration of oxygen at maximum saturation. Constant discharge
hematocrit is assumed in the HV, see Table C.6. For the binding of oxygen to hemoglobin the
Hill equation

(Po)”

oxy
ngy)n + (Pg}xy,E)O)n
is typically applied. Here, the Hill exponent n and the partial pressure Py, <, at 50% oxygen

saturation have been introduced. As stated above, mass fractions of oxygen are the primary vari-
able of the oxygen transport model so, actually, the inverses of (B.8) and (B.9) are required to
get the oxygen partial pressure at a specific mass fraction. For oxygen in the IF (B.8) this is
trivial, however, the relation for oxygen in blood (B.9) is inverted numerically in the computa-
tional framework via a local Newton algorithm. Then, for transvascular oxygen exchange from

the vasculature into the IF, the relationship

(B.10)

oxy

5 (Pi) =7

nv—nl n S " ! v
My =v - p"- (V) (Pl —Poxy>+-s (B.11)
v

in terms of partial pressures of oxygen is employed. Basically, the parameter 7, models the
radial transport resistance of oxygen. Here, it represents the homogenized resistance of the cor-
responding discrete 1D-3D mass transfer term introduced in Section B.4. Further details are
given there. In addition, it is presumed that oxygen mass exchange is proportional to the vascu-
lar volume fraction £ and surface-to-volume ratio (S/V"), . Macaulay brackets are employed to
allow only oxygen transfer from the homogenized vasculature into the IF and not vice versa.

Simplified Model for Transcapillary Oxygen Exchange between Interstitial Fluid
and Homogenized Vasculature A simplified model for oxygen exchange was employed
in [135] and is also used in Section 5.2. The corresponding species mass transfer term of oxygen
from the homogenized vasculature into the IF reads as

nv—nl _v—l S Dc _ -
My =" My + py | == -<w”“—w"1> e (B.12)
| vVt ), N

Herein, the first summand denotes the flux of oxygen dissolved in the plasma with mass fraction
v—l
w™? due to transcapillary leakage M), over the blood vessel wall given by (B.2). The second

term is employed for the transcapillary diffusion with diffusion coefficient Dy, and blood vessel
wall thickness ¢. Again, this term is proportional to the volume fraction of the homogenized
vasculature.

Production of Tumor Angiogenic Factors Once LTCs become hypoxic, they start pro-
ducing TAFs which is incorporated by the term

TAFt—TAFI

~ t. TAFt __ Nt t TAF nl nl
Myoa =e'r —<1—w >5S-vpmd-H<whyp—w )
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Here, it was assumed that all the TAFs produced by LTCs with an intra-phase production term
elrTAFt equivalent to [225] are immediately transferred into the interstitial fluid. By employing
the Heaviside function H (e), it is ensured that TAFs are produced by the living tumor cells at
a rate of vgerg only if the nutrient mass fraction falls below an oxygen threshold w{}}fp, which is
termed hypoxic limit. Thus, the term in square brackets involving the cosine function scaled with
the Heaviside function varies between one for w"' = 0 and zero for w™' > wil! . In summary,
also the production of TAFs by LTCs depends on the local oxygen mass fraction in the IF.

Uptake of Fibronectin Following Anderson [6], the uptake and binding of fibronectin by
endothelial cells is modeled as a sink term, that is, in the TCAT formalism as an intra-phase
reaction term

— My, ==& = —(pe'w’® (B.14)

which is proportional to a model constant (,;,, the HV volume fraction €” and the fibronectin
mass fraction w!'®. This formulation was also used by Wirthl [281]. Strictly speaking, a more
consistent form would be an inter-phase exchange term from ECM to endothelial cells but since
they are not explicitly modeled and since mass transfer to and from the ECM has been assumed as
zero, here, an intra-phase reaction term is employed. In addition, no production term by endothe-
lial cells as in the original formulation of [6] is comprised in the current formulation. However,
one could also think of the term £°r% as the net difference between fibronectin production and
consumption which is assumed to be always negative.

Extravasation of nanoparticles The extravasation of nanoparticles from homogenized
vasculature into the IF is described by (5.4) which is a simplified version of (5.3) combining
both the interendothelial and the transendothelial pathway into a single term with apparent vas-
cular permeability P, ,pp.

Lymphatic drainage of nanoparticles Lymphatic drainage of nanoparticles from the IF
into the lymph vessels is described by (5.5).

B.3 1D-3D Fluid Mass Transfer Relationships

Leakage from Embedded Vasculature into Interstitial Fluid As for the leakage of
fluid from homogenized vasculature into IF given by (B.2), the Starling equation is applied. The
corresponding term for lateral surface coupling reads as

v—l

wD¢(s) R
Mo = / P Ly (p” (5) = p (2 (5,7)) — Wosm (7Tb100d — 7Tl)) dvy (B.15)
0
and for centerline coupling as

v—l

Migac = 7Dy - pt - Lys- (p{’ (5) = p (2 (5)) = Wosm (7rbl°°d — 71'[)) . (B.16)
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Therein, L, is again the hydraulic conductivity and wogy, (77°°¢ — ') the osmotic pressure
difference. This 1D-3D mass transfer term scaled with the respective Dirac measure also appears
in the mass balance of the IF as

v—l

58Dt : Mleak = 58Dt ' Pl ' Lp,f} : (pﬁ (5) - pl ((13 (Sa 7)) — Wosm (WblOOd - Wl)) (B17)
~ 0y, - mDy(S) - o L,;- (1073 (s) — P (x (s)) — Wosm (ka")d — 7Tl)) (B.18)

for the lateral surface coupling variant, respectively, the centerline coupling variant.

B.4 1D-3D Species Mass Transfer Relationships

Transcapillary Oxygen Exchange between Interstitial Fluid and Embedded Vascu-
lature For transvascular oxygen exchange from the embedded 1D vasculature into the IF, the
relation

nv—nl mDy(s) A A l
My, = / Yev (R) - p" - (Py (8) — Py (2 (5,7))) dvy (B.19)
0

~ Dy A (R) - p" - (P (5) — Pl ((5))) (B.20)
is employed for the two different coupling types. Hence, oxygen exchange depends on the differ-
ence in partial pressures of oxygen between embedded 1D blood vessels P;;y and surrounding
IF Péxy. The oxygen partial pressures again have to be calculated with the inverse relationships
of (B.8) and (B.9) depending on the respective mass fractions w”’ and w™?. This formulation
has been proposed by Welter et al. [279] based on earlier works of Hellums et al. [104]. Ba-
sically, the parameter 7, (R) models the radial transport resistance of oxygen. Such a radial
resistance [104] has also been employed elsewhere [237, 241, 250]. Here, a phenomenological

fit for varying radii is re-used [279, Appendix S1] reading as

Dyoy )

D R
fou (R) = 52 - Nu(R) = 2 - py (1—exp (‘E)) (B.21)

with parameters o, = 3.1 x 107 mmHg ™!, D, = 2.75 x 10~ mm?s™', p; = 8um and p, =
4.7. Thus, oxygen passes the blood vessel wall and goes into the IF with the following source
term

no—nl

Sop, - My = 0op, v (R) - p" - (P (s) — Pl (2 (5,7))) (B.22)
~ 05, - TDi(s) - Auw (R) - "+ (Pory (s) = By (m (5))) (B.23)

oxy oxy

scaled with the corresponding Dirac measure depending on which 1D-3D coupling variant is
used.
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C Employed Parameters

C.1 Parameters for the Extracellular Matrix

Quantity Symbol Value Unit Source Equations
Intrinsic permeability of the ECM & 1.0 x 10~ ®lal 2 [211]  (3.4D)
Density P’ 1000 kem™3 [232] (3.41)
Poisson’s ratio v® 0.4 — [232] 241
Young’s modulus E® 800! Pa [135] (2.41)

[a1 The baseline value for the performance comparison of Section 5.1 is set to k =
1.8 x 10715 m? [233, Table 3].
I The baseline value for the performance comparison of Section 5.1 is set to E* = 400 Pa.

Table C.1: Parameters for the ECM

C.2 Parameters for Tumor Cells, Host Cells and
Interstitial Fluid

Quantity Symbol  Value Unit Source Equations
Density of TC, HC and IF ol ol pt 1000 kgm3 [232]  (3.20),(3.21)
HC-IF interfacial tension on 72 mN/m [232 (3.36)
TC-HC interfacial tension Oih 36 mN/m [232] (3.36)
Coefficient a in saturation-pressure relationship a 590 Pa [232]  (3.35),(3.36)
Coefficient b in saturation-pressure relationship b 1 — [232 (3.35),(3.36)
Dynamic viscosity of IF 1 0.001®  Pas (3.20),(3.21)
Dynamic viscosity of HC and TC Ly ot 20 Pas [233]  (3.20),(3.21)
Relative permeability law exponent for I[F A 4 — [232]  (3.41)
Relative permeability law exponent for HCs and TCs Ay, A; 2 - [232] (3.41)
Growth coefficient of tumor cells Vhown 4 x107* kgm™¥s™' [233]  (B.])

lal Since the IF consists primarily of water, the value for the viscosity of water has been employed. In the examples
of Section 5.1 and 5.2, a value of i; = 0.01Pas is used as in [233, Table 3].

Table C.2: Parameters for TCs, HCs and IF
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C.3 Parameters for the Homogenized Vasculature

Quantity Symbol Value Unit Source Equations
Density of blood P’ 1060 kgm™3 [77] (3.47)
Viscosity of blood u 0.004 Pas [38] (3.47)
Diffusion coefficient of HV Dv 5.107 15[ m?s ! [6] (3.51)
Chemotactic coefficient Xo 7.5 x 107301 p2gl (3.67)
Haptotactic coefficient C) 1 x 1072l m?s! (3.51)
Constant for receptor-kinetic law w;ﬁg ! 1x 10710 - [6] (3.67)
(Isotropic) permeability of the HV kY 1 x 107171l m? (3.47)
Osmotic pressure difference Wosm (7 —7!) 1333 Pa [287] (B.3)
Transvascular hydraulic conductivity Ly 2.1 x 107 1Hebil my Pa~ts™1  [13] (B.2)
Surface-to-volume ratio of HV (S/V), 2 x 10* m™! [13] (B.2),(B.11)
Hydraulic conductivity and surface-to- ; 6Ll 1 ,

Vcﬁume ratio for lymp%/latic drainage (LP%)MJ 104 x 1076 Pa~t st [14] (B-4)
Threshold for lymphatic vessel collapse  pl 500} Pa [135] (B.4)
Threshold for blood vessel collapse Pl 60011 Pa (3.68)
Rate of blood vessel collapse Voot 1 x 106" st (3.68)

[al Half the value of Anderson [6].

bl This value has been estimated to obtain plausible results from the investigation of different chemotactic coeffi-
cients in Section 5.2.1 respectively in [135].

[c] Anderson [6] assumed that the haptotactic coefficient has the same order of magnitude as the chemotactic
coefficient. Therefore, it was set to the same value as the chemotactic coefficient x, from case 2 in Table 5.1.

[d] Estimated as two orders of magnitudes smaller than the permeability of the ECM from Table C.1 due to the high
irregularity and tortuosity of tumor vasculature. In Section 5.3, a value of £ = 1 x 107!* m? is employed as
the homogenized vasculature here corresponds to healthy pre-existing vasculature which is not as irregular and
tortuous as the neovasculature.

lel The value for tumor vasculature of Baxter and Jain [13] is used.

[l In the examples of Section 5.2, a slightly higher value of (Lpg)ly = 2 x 107 Pa~!s~! is employed. It corre-
sponds to the value used in Krembheller et al. [135], where the hydraulic conductivity of the lymphatic system
was estimated to be two orders of magnitude higher than the one of the neovasculature. This ensures a correct
behaviour of a functioning lymph system which drains the liquid leaking from the irregular neovasculature.

le] Was estimated such that a tumor cell saturation of S* &~ 0.3 completely inhibits lymphatic drainage.

[ See Remarks in Section 5.2.3.

lil Slightly different values were used for the NP transport study in Section 5.3, see page 143.

Table C.3: Parameters for blood flow, angiogenesis and transcapillary and lymphatic exchange

C.4 Parameters for Species Transport

Quantity Symbol Value Unit Source Equations

Diffusion coefficient of NTCs in TC D™V ofal m?s ! [230] (3.43)
Necrosis coefficient 1x1072 kegm™3s™' [233] (B.5)

t
Tnecrosis

[al NTCs are modeled as inert, thus, their diffusion coefficient is equal to zero.

Table C.4: Parameters for NTCs
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C.4 Parameters for Species Transport

Quantity Symbol Value Unit Source Equations
Diffusion coefficient of oxygen in IF Dy 32x 1077 m?s7! [232] (3.43)

Nonlinear diffusion law coefficient in IF ¢ 2 — [232]  (3.43)

Normal mass fraction of oxygen in IF wrl 4.2 x 10760 — [233] (B.1),(B.6),(B.7)
Critical mass fraction of oxygen ngt 1.0x 1076 — [233]  (B.1),(B.6)
Limit mass fraction in IF for hypoxia w{fyzp 40x107¢ — [225]  (B.13)

Density of oxygen P 1.429 kgm™3 known ggsf)g)(%g )2(3];31 D
Consumption due to growth Yotowin 24 x107" kgm™3s7h [232]  (B.6)
Consumption due to metabolism of TCs 6x 10  kem™3s7! [232] (B.7)
Consumption due to metabolism of HCs 3" 2 x 10741 kgm—3 57! (B.7)

Solubility of oxygen in the IF oy 3x107°  mmHg™' [196] (B.8)

[a This value can be obtained from Henry’s law for the oxygen mass fraction in the IF (B.8) with a partial
pressure of oxygen of Péxy = 97.8 mmHg (almost fully oxygen-saturated) together with the densities of
oxygen, IF and the solubility of oxygen in the IF.

] This value has been estimated based on the rate of consumption by TCs of the earlier contributions on the

model. It was assumed that HCs consume only one third of the oxygen needed by TCs.

Table C.5: Parameters for oxygen in the IF, consumption by cells, hypoxia and necrosis

Quantity Symbol Value Unit Source Equations
Effective solubility of oxygen in blood Qy off 3.1x107° mmHg ! [279]  (B.9)
Discharge hematocrit Hp 0.45 — [279] (B.9)
Oxygen concentration at max. saturation cpr 0.5 — [279] (B.9)

Hill exponent n 2.7 — [92] (B.10)
Partial pressure at 50% oxygen saturation ngy,5o 37 mmHg [92] (B.10)
Transvascular oxygen exchange coefficient 1.429 x 1078 mmmHg~'s™' [279] (B.11)
Diffusion coefficient of oxygen in blood Do, Dy? 2775 x 107110 2 g1 (3.63),(3.84)

lal Since the smaller vessels are regarded in a homogenized way, it was assumed that the average radius of the blood
vessels in the homogenized vasculature is 0.01 mm. The value for 7, was then calculated with the fit employed
by Welter et al. [279, Appendix S1].

! This value is a simple approximation. It has been obtained from the value of oxygen diffusion in blood plasma of
D, = 2.75 x 1072 m?s~! [279]. In the present model the mass fractions w"” respectively w"® represent both the
oxygen dissolved in plasma and bound to hemoglobin. At an oxygen partial pressure of . = P 55 = 37 mmHg
the ratio of the mass fraction of dissolved oxygen to the mass fraction of the total oxygen present is approximately
0.01. Hence, the value for D, [279] was scaled by this factor to only include diffusion of the oxygen dissolved in
the plasma and not the one bound to hemoglobin. Therefore, the oxygen transport model is similar to the one of
Beard and Bassingthwaighte [16] and Fang et al. [71].

Table C.6: Parameters for oxygen in the vasculature and transvascular exchange

Quantity Symbol Value Unit Source Equations
Diffusion coefficient of TAF in IF DTAFL 9.9 x 10~ 1@l 2 g1 [6] (3.43)
Coefficient ¢ for nonlinear diffusion law in IF ¢ 0 - (3.43)
Production rate of TAF under hypoxia Yo 1 x 10710 kem=3g~1 (B.13)

2l Throughout Section 5.2, values of D™4" = 3.5 x 107 and 4[2F = 1 x 10~? are used. The former

is the non-dimensional value employed by Anderson [6], which was also used in [135] and [225]. The
production rate of TAF under hypoxia yg;ng is scaled accordingly such that the ratio of diffusion and
production remains almost equal.

Table C.7: Parameters for TAF
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C Employed Parameters

Quantity Symbol Value Unit Source Equations
Diffusion coefficient of fibronectin in ECM D' ofal m?s! [6] (3.43)
Uptake rate of fibronectin Cup 1.1 x 1074 kgm=3 57! (B.14)

[l Fibronectin is bound to the ECM and does not diffuse [6].
(] Estimated.

Table C.8: Parameters for Fibronectin

Quantity Symbol Value Unit Source Equations
Diffusion coefficient of nanoparticles in IF Dyrt m?s~!  [45] (3.43)
Coefficient ¢ for nonlinear diffusion law in IF ) 0 - (3.43)
Apparent vascular permeability of nanoparticles P, ., ms™t  [67] 5.4
Diffusive drainage of nanoparticles (P2) W 1% 10721 g1 (5.5)

[al Depends on weight of particles, see Table 5.2.
(bl Estimated.

Table C.9: Parameters for nanoparticle transport

C.5 Parameters for the Embedded Vasculature

Quantity Symbol Value Unit Source Equations
Density of blood p° 1060 kgm™3 [77] (3.79)
Viscosity of blood ue 0.004(! Pas [38] (3.79)
Osmotic pressure difference Wosm (7r“ — 7Tl) 1333 Pa [287] (B.15)-(B.18)
Transvascular hydraulic conductivity L, ; 2.7 x 107120y Pa~ts™t [13] (B.2)

[ This constant value is employed for all numerical examples of Chapter 5. In Chapter 6 an empirical blood
viscosity law [201] is used.
I The value for normal vasculature of Baxter and Jain [13] is used.

Table C.10: Parameters for the embedded vasculature

C.6 Parameters for Hyperthermia Treatment

Quantity Symbol Value Unit Source Equations
Specific absorption rate ~ SAR 0.5 x 10" —3 x 107 Wkg! [41],Rem. 5.1 (5.9)
Blood temperature T 310.15 K known (5.10)
Heat exchange coefficent S3r 20 Wm2K™t [178] (5.10)
Heat capacities el 3470 JkgT' K1 [41] (2.47)
(Isotropic) conductivities k! 0.51 Wm Kt [41] (2.48)

[al Tt is assumed that all present phases have the same heat capacity and isotropic conductivity such
that the overall heat capacity and conductivity of the domain corresponds to the one given for tissue
by [41].

Table C.11: Parameters for hyperthermia treatment

232



C.7 Parameters for the Blood Vessel Diameter Adaption and Collapse Model

C.7 Parameters for the Blood Vessel Diameter Adaption
and Collapse Model

Quantity Symbol Value Unit Source Equations
Collapse factor Jeon 0.8 - (3.101)
Maximum saturation S’ 0.8 — (3.102)
Minimum saturation S’ 0.2 - (3.102)
Maximum diameter Dy, 20 um (3.102)
Minimum diameter D 3.2 pm (3.102)
Collapse threshold Deon—thresn 0.1 pm (3.103)

Table C.12: Parameters for the blood vessel diameter adaption and collapse model (estimated for
the numerical example of Section 5.5)
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