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Abstract

Contemporary tra�c models use agent-based approaches that microscopically represent
individuals, including their characteristics and behaviors. This work examines use cases
of agent-based models with respect to tra�c noise modeling with a focus on scenarios
for which an individual representation of actors is necessary. In particular, mutual inter-
actions between land use, tra�c and noise as well as equity aspects are investigated.

Building upon an existing noise model of an agent-based transport simulation, multiple
use cases are addressed. One use case deals with the feasibility of modeling an interac-
tion between transport, land use and noise that introduces sensitivity to tra�c noise for
individual residents and their location decisions. As a prerequisite for this, the negative
in�uence of noise on rental prices is estimated, whereby earlier �ndings in the literature
are con�rmed. Another scenario presents an extended analysis of environmental equity
by not only evaluating individual noise exposure but also individual causation. Thereby
it is shown that causation is even more unequally distributed than the exposure of noise.
The last use case presents possible implications of the introduction of large-scale auto-
mated and electric ride-pooling services on tra�c noise. It is shown that these services
can reduce noise, especially with an e�cient service design and accompanying policies.

The extensions of the applied noise model as well as the implemented feedback loop
in the integrated land use/transport model are available as part of open-source libraries
and may further be applied and developed in future endeavors.
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Zusammenfassung

Zeitgenössische Verkehrsmodelle nutzen agentenbasierte Ansätze, mit denen Individuen
inklusive ihrer Merkmale und Verhaltensweisen mikroskopisch dargestellt werden. Diese
Arbeit untersucht Anwendungsfälle agentenbasierter Modelle im Hinblick auf Verkehrslär-
mmodellierung mit einem Fokus auf Szenarien, für die eine individuelle Darstellung von
AkteurInnen notwendig ist. Insbesondere werden Wechselwirkungen zwischen Flächen-
nutzung, Verkehr und Lärm sowie Gerechtigkeitsaspekte untersucht.

Aufbauend auf einem bestehenden Lärmmodell einer agentenbasierten Verkehrssim-
ulation werden mehrere Anwendungsfälle adressiert. Ein Anwendungsfall befasst sich
mit der Möglichkeit, eine Wechselwirkung zwischen Verkehr, Lärm und Flächennutzung
zu modellieren, die eine Emp�ndlichkeit gegenüber Verkehrslärm für einzelne Bewohner-
Innen und deren Standortentscheidungen einführt. Als Voraussetzung dafür wird der
negative Ein�uss von Lärm auf Mietpreise geschätzt, wobei frühere Erkenntnisse aus
der Literatur bestätigt werden. Ein weiteres Szenario stellt eine erweiterte Analyse der
Umweltgerechtigkeit dar, indem nicht nur die individuelle Lärmbelastung, sondern auch
die individuelle Verursachung derselben bewertet wird. Dabei wird gezeigt, dass die
Lärmverursachung noch ungleicher verteilt ist als die Lärmbelastung. Der letzte Anwen-
dungsfall stellt mögliche Auswirkungen der Einführung von groÿ�ächigen automatisierten
und elektrischen Mitfahrdiensten auf den Verkehrslärm dar. Es zeigt sich, dass mögliche
Lärmminderungen stark von der Gestaltung der Dienste und begleitender Maÿnahmen
abhängen.

Die Erweiterungen des angewandten Lärmmodells sowie die implementierte Rückkop-
plungsschleife im integrierten Flächennutzungs-/Verkehrsmodell sind als Teil von Open-
Source-Bibliotheken verfügbar und können in zukünftigen Arbeiten weiter verwendet und
entwickelt werden.
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1 Introduction

The day will come when man will
have to �ght noise as inexorably as
cholera and the plague

Robert Koch

Even in the digital age, with all its possibilities of teleworking, telecommunication, on-
line services and on-demand entertainment, the necessity for the transportation of goods
and persons remains high. It is expected to grow, especially around metropolitan areas
(Mendez et al., 2017). As persons and goods move throughout space, their actions impact
their surroundings and environment. There are many examples of how transportation
(and its required facilities and services) interacts with the environment, including society,
nature and climate. Infrastructure such as roads and railways consume large amounts
of space, as do additional transport-dedicated facilities such as parking lots and train
stations. In addition, infrastructure may separate areas from each other, which can lead
to social segregation. Other impacts of transportation on the environment are air pol-
lutants and greenhouse gas emissions and tra�c noise. Some of those impacts have
in common that those responsible for causing them are not held accountable for their
actions. The economic literature refers to those as 'transport externalities'. In contrast
to, e.g., odorless gases, tra�c noise is one of the externalities which is most often actively
perceived by residents.

Tra�c noise is a common nuisance in the urban environment and is primarily driven
by road tra�c. The growth and densi�cation of cities lead to higher tra�c volumes and
noise levels and more people being exposed to these levels. According to the World Health
Organization (WHO), more than 43 % of the urban population in Europe is exposed to
road noise levels greater than 55 dB(A) (WHO, 2009). Noise can impair the health of
a�ected people and can lead to sleep disturbances, tinnitus and cardiovascular diseases.
In addition, it can a�ect residential location choices as residents derive lower satisfaction
from living at exposed locations (Maloir et al., 2009).

A modern de�nition of transportation is that of derived demand. Persons (or goods)
need to travel because they usually need to reach a location at which they can perform
an activity which they cannot perform at their current location. This in turn means that
the allocation of activity locations a�ects travel demand and, thus, transportation. In
this way, shaping land use also shapes transportation. However, in free markets, where
dwellers and employers are somewhat free to choose where to settle, transportation also
shapes land use. This is typically known as the land use/transport interaction cycle. An
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1 Introduction

even more complex view acknowledges that the transport-related environmental impacts
such as noise can have a feedback impact on land use, as people can be annoyed by noise
and instead choose to live in quiet neighborhoods. A fascinating historic example for an
interaction of tra�c noise and land use is the ancient Roman emperor Trajan, who is said
to have cut down on public building activity as a consequence of the tra�c noise that
was generated by the wagon tra�c that delivered building materials to the construction
sites (Brians, 1996). A recent example is the Elbtower, a planned 64-story building in
Hamburg (Germany), which will not host any apartments due to tra�c noise (Stanek,
2021).

Typically, tra�c noise is assessed by physical measurements and noise prediction mod-
els. Recently, Kaddoura et al. (2017) presented an integrated approach in which an
agent-based transport simulation was coupled with an o�cial noise prediction model.
Agent-based simulations use synthetic agents to represent individual persons or groups
and analyze complex systems and phenomena that emerge as an outcome of simple indi-
vidual interactions ('emergence'). This new approach has multiple advantages. On the
one hand, the agent-based simulation allows assessing noise emissions and immissions at
a �ne spatial and temporal resolution. In addition, transport scenarios implemented in
the simulation can easily be analyzed in terms of noise. This is useful for recent scenar-
ios that require simulating individuals explicitly, for example ride-hailing and -pooling.
However, the real power of this agent-based approach is that it allows modeling tra�c
noise as an emergent phenomenon. Noise exposure can be analyzed at the person level
since individual locations are known. Similarly, individual contribution to tra�c noise
can be represented as each individual can be traced throughout the transport network.
As both exposure and contribution per agent are known, issues of environmental equity
can be addressed in more detail.

This dissertation builds upon the initial work by Kaddoura et al. (2017) and addresses
new possibilities that arise from the usage of an agent-based simulation in the context
of road tra�c noise. In a �rst step, some existing limitations of the work by Kaddoura
et al. (2017) will be analyzed and resolved. In a next step, multiple use cases that bene�t
from an agent-based simulation of tra�c noise will be presented.

A �rst use case will implement an environmental feedback loop in an agent-based inte-
grated land use/transport simulation that models the interaction between land use and
transport. Thereby, individual agents whose locations and activities are determined by
the land use component will lead to travel patterns in the transport simulation, which,
in turn, leads to resulting noise immissions. Eventually, these noise immissions will then
a�ect the housing and relocation decisions of individual agents with di�erent preferences.
Similarly, the environmental noise will lead to reduced property prices in the land-use
model. The aim is to let residents react to their environment and, as such, improve
understanding of relocation patterns and issues of environmental equity.
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The second use case will look deeper into the equity aspects of tra�c noise. Given
the detailed microscopic resolution of an agent-based model, exposure and - as a novel
approach - causation of individual agents will be analyzed and compared.

Lastly, a use case that applies the agent-based transport simulation to model ride-
pooling as a modern transport service will be presented to understand impacts on tra�c
noise. Like for the other use cases, an agent-based approach is crucial to microscopically
model the behavior of ride-pooling passengers and providers and individual residents ex-
posed to the resulting tra�c noise.

The thesis continues with a literature review and de�nitions of tra�c noise, its negative
e�ects and existing noise models in chapter 2. Existing studies related to the given use
cases of an integrated land use/transportation/environmental model, equity issues, and
ride-pooling are presented to build a background from which speci�c research questions
are developed. The research questions then lead to the actual structure of the thesis.
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2 Literature Review and Research
Questions

This chapter serves as a basis for the introduced use cases in the introduction. Based
on de�nitions and existing literature, the actual research questions of this thesis will be
developed.

2.1 Tra�c Noise

2.1.1 De�nitions and Indicators

The presence of noise is usually quanti�ed by noise levels. Noise or sound levels are
determined by measurements or model estimates and are expressed in decibels (dB). The
unit Bel is an auxiliary quantity that converts the wide range of values of sound pressure
p perceptible by the human ear into a simpler scale. The human ear can perceive average
sound pressures between 0.00002 (hearing threshold) and 20 Pa (pain threshold). The
sound level L is de�ned as:

L = 20 · log10
( p
p0

)
[dB], (2.1)

where p is the sound pressure and p0 is the reference sound pressure of the hearing thresh-
old (p0 = 0.00002 Pa). Due to this correlation, a doubling of the sound pressure does
not lead to a doubling of the sound level. A doubling of the sound pressure corresponds
to an increase of the level by 6 dB. In general, it can be said that an increase of the level
by 10 dB corresponds to a perceived doubling of the volume. This, in turn, corresponds
to a tenfold increase of the sound pressure. The sound level can also be de�ned by the
sound energy W for which the relationship is W ∼ p2 and, thus:

L = 10 · log10
(W
W0

)
[dB], (2.2)

here, the reference value is W0 = 10−12 J .

The human ear is not equally sensitive to all sound frequencies. In general, lower
frequencies are perceived as less loud when compared to higher frequencies of the same
pressure. To account for this, �lters have been developed to represent the sensitivity of
the human ear better. The most common �lter is the A-�lter, which attenuates bass
and treble. As such, sound levels represented with an A �lter better reproduce human
sensations. To indicate the A-�lter, the unit is given as [dB(A)]. In general, all of the

5



2 Literature Review and Research Questions

subsequent levels in this dissertation will refer to A-�ltered decibels.

Because of the logarithmic level scale, one cannot obtain a resulting level by simple ad-
dition when adding up sound levels of multiple sources. One has to add up the underlying
sound energy values and use 2.2 to transform it to a level:

Lsum =
∑
i

Wi [J]

= 10 · log10
[∑

i

Wi

W0

]
[dB]

= 10 · log10
[∑

i

10
Li
10

]
[dB]

Since sound is a strongly �uctuating quantity over time, averaging levels are used to
measure sound e�ects over a longer period of time. Since it is not meaningful to average
the logarithmic level scale, the sound energies are averaged instead:

Leq =
1

T

∑
i

ti ·Wi [J], (2.3)

where T is the total measurement duration and ti is the duration of measurement i of
the sound energy Wi. Again this can be turned into a level:

Leq = 10 · log10

[
1
T

∑
i ti ·Wi

W0

]
[dB]

= 10 · log10
[ 1

T

∑
i

ti · 10
Li
10

]
[dB]

Leq is called energy equivalent continuous sound level. If T covers one hour, the indicator
is called hourly energy equivalent sound level.

Often noise is assessed for whole day periods. Therefore an aggregated measure is
commonly employed that adds up hourly noise levels and gives extra penalties to evening
and night time values:

LDEN = 10 · log10

[
1

24

(
23∑
t=0

100.1·(Leq,t+τ(t))

)]
, with (2.4)

τ(t) =


0 dB(A), 6 ≤ t < 18

5 dB(A), 18 ≤ t ≤ 22

10 dB(A), else.

(2.5)
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which is the Day-Evening-Night Level (LDEN) and τ(t) is the penalty given to hour t.
Leq,t is the hourly energy equivalent sound level over the period of hour t. The LDEN is
the most common indicator used around the world and is used in many di�erent appli-
cations (Word Health Organization, 2018). It is usually reported for outside exposure at
the most exposed facade of a building.

Road tra�c noise from passing vehicles comprises multiple factors. The two most
important components are propulsion and rolling noise. As shown in �gure 2.1, the
propulsion noise is dominant at low speeds. However, at around 30 km/h the rolling noise
becomes the dominant source of the total noise. The �gure also shows the logarithmic
relationship between vehicle speed and noise.

Figure 2.1: Components of vehicular noise for a passenger car. Based on van Blokland and
Peeters (2007).

A comparison of di�erent transport-related noise levels is shown in �gure 2.2.

2.1.2 Noise as a negative Tra�c Externality

2.1.2.1 Health Impacts

Reviews compiled for the WHO indicate that noise can reduce residents' well-being and
quality of life, leading to stress and stress-related diseases such as poor mental health
(Clark and Paunovic, 2018). Bluhm et al. (2004) reported positive correlations between
noise exposure and sleep disturbances. Tobías et al. (2015) �nd evidence for an associa-
tion between noise levels and cardiovascular as well as respiratory mortality and compare
the impact of reducing noise by 1 dB(A) to being similar with a reduction of 10µg of
PM2.5 (particulate matter). Another study by Leon Bluhm et al. (2007) found an odds
ratio of 1.38% for hypertension per 5 dB(A) of noise increase. Similarly, Babisch et al.
(2005) found an odds ratio of 1.3% for myocardial infarction. The two latter studies both
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Figure 2.2: Comparison of transport-related noise levels. Based on Rodrigue (nd).

found that the odds increased even higher when the person lived at the exposed loca-
tion for a long time. A meta-analysis of multiple studies by Babisch (2008) concluded a
dose-response relationship between noise exposure and cardiovascular risk for noise levels
above 60 dB(A). A more recent meta-analysis of the same author found a 20% higher
risk of coronary heart diseases for people exposed to high levels of noise (Babisch, 2014).
de Kluizenaar et al. (2009) found signi�cant increases in morning tiredness for night time
road noise exposure above 35 dB(A). Tra�c noise can also disturb local neighborhood
quality and impair recreation capacities. Hartig (2007) reports that residents going for a
walk in noisy areas even showed increased stress levels during the �rst half of the walk.

One study to be highlighted is the LARES report on noise e�ects and morbidity
(Niemann and Maschke, 2004). The LARES (Large Analysis and Review of European
housing and health Status) was conducted across eight European cities. The report
analyzes the relationship between several diseases diagnosed by physicians and noise pol-
lution and sleep disorders caused by noise. While controlling for possible confounders,
multiple signi�cant increased odds ratios have been found. The results were di�erenti-
ated for children, adults and older people. Figure 2.3 shows the signi�cantly increased
odd ratios for adults.

In contrast, other studies have found less clear or no relationship between noise and
health. Fyhri and Aasvang (2010) report that, although they found signi�cant relation-
ships between noise, annoyance and sleeping problems, they did not �nd a relationship
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Figure 2.3: Signi�cantly increased odds ratios for diagnosed diseases in relationship with a)
strong tra�c noise annoyance (left) and b) reported noise induced sleep disturbances
(right). Values taken from the LARES report.

between noise and cardiovascular problems. Another study found a 'positive, but not sta-
tistically signi�cant association between noise exposure and symptoms of distress' (Sygna
et al., 2014, p. 17). Fyhri and Klæboe (2009) investigated the relationship between noise
exposure, noise complaints as well as noise sensitivity and self reported hypertension and
heart problems with a structured equations modeling approach. They �nd an association
between noise sensitivity and heart problems but no relationship between noise exposure
and reported health problems.

2.1.2.2 Impacts on Residential Satisfaction and Relocation

The German environmental agency calls tra�c noise 'the bane of many Germans' lives'
(Umweltbundesamt, 2012). According to a survey on environmental consciousness, 55%
of the German population are disturbed by road tra�c noise (Rückert-John et al., 2013).
In addition, 34% and 23% of the population report disturbance caused by train and
aircraft noise, respectively (see table 2.1).

Table 2.1: Percentage of respondents who have felt disturbed by several noise sources in the
last 12 months. Values taken from (Rückert-John et al., 2013).

Source extremely
disturbed

strongly dis-
turbed

moderately
disturbed

somewhat
disturbed

not disturbed
at all

Railyway 0 2 7 13 78
Road 2 9 16 28 45
Industry 1 2 9 16 72
Aviation 1 3 7 18 71
Neighbors 1 4 7 25 63

Among all sources of transport noise, road tra�c noise is consistently being reported
as the one that annoys the most people. A review by Guski et al. (2017) con�rmed that
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there is a signi�cant relationship between (road) tra�c noise levels and the percentage of
the population that feels highly annoyed. Ouis (2001) pointed out that '[. . . ] decades of
research on this topic have permitted lately the establishment of a more or less quanti-
tative relationship between the objective quantities characterizing road tra�c noise and
the human subjective reaction to it as expressed by annoyance.' (Ouis, 2001, p. 101),
see also (Lambert et al., 1984; Osada, 1991; Fields, 1993).

Other studies con�rmed that noise can be a crucial factor that a�ects the willingness
to move, relocation choice and satisfaction with housing (Bradley and Jonah, 1979).
For example, (�róbek et al., 2015) identi�ed that 'quiet neighborhoods' ranked second
after 'a�ordable price' and before other common location factors, such as 'proximity
to workplace' or 'proximity to kindergarten' when asking respondents for neighborhood
characteristics of residential properties. In their study 'What Makes People Dissatis�ed
with their Neighborhoods?' Parkes et al. (2002) �nd signi�cant relationships between
noise and neighborhood appraisal. Al-harthy and Tamura (1999) present results of a
survey in Muscat city (Oman) in which 'quietness' ranked �rst among respondents' dis-
satisfaction with their neighborhood. Wardman and Bristow (2004) showed that reducing
noise levels is among the top three priorities for improvement in residential satisfaction.
A similar result has been found by Hanák et al. (2015) when evaluating the perception
of the residential environment. Shepherd et al. (2013) found a negative relationship be-
tween noise and self-reported quality of life, health and well-being. Osada et al. (1997)
used path analysis to identify that noise signi�cantly increases the willingness to move,
which can be explained directly by noise levels and other indirect consequences, including
noise annoyance. Lercher and Ko�er (1996) show that households who experience noise
levels above 55 dB(A) are 2.45 times as likely to express a willingness to move. The odds
increase to 6.8 for households that express a moderate or strong noise annoyance. In
a study carried out by Bendtsen et al. (2000), 'road tra�c noise' was the second most
common answer expressed by 25% of the people who plan to move when asked for the
three main reasons for moving. Furthermore, in a survey on livable public space in the
German cities Ravensburg and Heidelberg presented by Görgen and Fisch (2013), 15%
to 19% of the respondents who expressed a willing to move mentioned noise as one of
the main motivations for relocating. A similar �nding has been reported by Bauer-Wolf
et al. (2003), who present that 28% of the people moving from the city of Wien to the
suburbs state noise as their main reason to move.

The impact of noise on residential locations is a complex topic as it not only depends
on noise levels alone but also on its perception, sensitivity and even awareness of adverse
health impacts of noise (Han et al., 2015). Not every person is equally sensitive to noise.
While biological responses to noise exposure appear to be very similar across the pop-
ulation, the psychological response can di�er considerably. A study by Matsumura and
Rylander (1991) con�rmed that noise annoyance is strongly linked to noise sensitivity,
which is a personal trait that relates to other socioeconomic attributes. In this particular
study, approximately 25% of the studied population was found to be 'noise sensitive'.
Noise sensitivity as a mediator of noise annoyance can explain up to 9% of the variation
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in human responses to noise (Miedema and Vos, 2003). Miedema and Vos (1998) report
that the di�erence in noise annoyance between least and most sensitive persons had the
same impact as a di�erence of 11 dB(A) change of actual noise exposure. Figure 2.4
shows an illustrative visualization of the impact of sensitivity on annoyance.

This can also lead to the phenomenon of residential self-selection, where people who
are less sensitive to noise will bene�t from more a�ordable property prices and are more
willing to move to more noisy areas (Weinhold, 2008). Van Wee (2007) discusses that
this can lead to underestimating the negative impacts of transport on noise when as-
sessing new infrastructure in quiet areas, as these possibly accommodate higher shares
of noise-sensitive residents. However, a study by Nijland et al. (2009) did not �nd ev-
idence for the existence of a residential self-selection phenomenon due to noise. If the
e�ect exists, it is not easy to detect it. It should be mentioned that the existence of
person-/household-dependent noise sensitivities encourages the use of agent-based mod-
els in which each agent can be represented with individual traits.

Figure 2.4: Illustrative presentation of the relationship between noise exposure and annoyance
for highly and weakly noise-sensitive persons. Based on Miedema and Vos (2003).

Maloir et al. (2009) discuss how the impact of transport infrastructure on land use has
to be valued with a trade-o� between positive e�ects such as increased accessibility in the
surroundings and negative e�ects such as air pollution, noise and landscape destruction.
The negative e�ects are typically predominant adjacent to the source, while accessibil-
ities usually have a wider spatial impact. The strong local nature of negative impacts
often leads to 'not in my backyard' oppositions of households that live close to newly
planned infrastructure and oppose construction plans. The strength of the impacts thus
largely depends on the actual distance between roads and home locations. Maloir et al.
therefore argue for carefully assessing the positive and negative impacts on a local scale.
In addition, they point out that detrimental road infrastructure impacts can be twofold -
by harming the well-being of residents who consequently derive lower values from living
at exposed locations and, in addition, by a possible subsequent reduction in property
prices. Similarly, Schirmer et al. (2014) �nd that transport facilities are valued by peo-
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ple depending on them while at the same time noise and pollution make them undesirable.

Even though it is sometimes argued that people will eventually come to peace with or
get used to the noise, studies found evidence against this claim. Weinstein (1982) present
a study that concluded that there was no evidence of adaptation in self-reported annoy-
ance and other noise e�ects and respondents even got more pessimistic about adapting
over time. Here, adaptation only meant responding less negatively to noise and did not
include other actions such as improving sound insulation or even moving away.

2.1.2.3 Impacts on Property Values

The negative impact of road tra�c nuisances on housing is twofold � noise reduces the
housing satisfaction of residents and, in some cases, can lead to a reduction in property
values (Maloir et al., 2009). A typical link between land use and tra�c noise is the
impact of noise on real estate prices which has extensively been reviewed in previous
studies. In general, a signi�cant negative relationship can be found (Bateman et al.,
2001). A typical indicator is the Noise Sensitivity Depreciation Index (NSDI) which is
the percentage change in housing prices caused by an increase of dB(A) in noise level
exposure:

NSDI =
percentage change of housing price

increase of noise
(2.6)

In an overview of previous studies, Bateman et al. (2001) report NSDI values between
0.08% and 2.22%, with an average of 0.4%. Nelson (1982) found NSDI values between
0.17% and 0.63%, with 0.4% being the average. Two basic approaches for evaluating noise
impacts on real estate prices can be identi�ed. Surveys and stated preferences can be
used to identify willingness-to-pay for a reduction in noise (Theebe, 2004). An advantage
of this method is the low amount of required data. However, survey data may be biased
and might not re�ect true valuations paid on the market. The more common approach
is to use the hedonic pricing method, which allows to estimate the impact of di�erent
goods on prices based on observed transactions by employing a regression model. The
downside of observed transactions is that in very tight housing markets, in which people
have to take what they can get, the costs might re�ect compromises that underestimate
true valuations.

Most studies in the literature focus on the total price of buying a house or an apart-
ment. Theebe (2004) estimated NSDI values between 0.3% and 0.5% with the help of
hedonic pricing applied on a rich data set in the Netherlands. In his estimation, he in-
cluded accessibility values to control for positive aspects of infrastructure and to prevent
underestimation of noise impacts. However, he did not use noise as a continuous vari-
able but ranges of noise as dummy variables to allow for a nonlinear relationship between
noise and price. Noise impacts varied across sub-markets and did not signi�cantly change
throughout di�erent years. Szczepa«ska et al. (2014) conducted a study on tra�c noise
impacts on urban apartment prices. The data consisted of 215 apartments in multi-
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family houses in the city of Olsztyn in Poland. They found NSDI values between 0.74%
and 0.83%. Another study by Allen et al. (2015) used distance to highway as a proxy for
tra�c noise in a spatial regression. Based on a sample of 1,025 single-family detached
house transactions in Orange County, California, they found a price discount of 4% for
houses adjacent to highways, while also controlling for accessibility impacts. Wilhelms-
son (2000) conducted a study on the impact of noise on the values of single-family houses
in Sweden using the hedonic pricing approach. Loud properties sold with a discount of
up to 30% compared to more quiet houses. Using a double-log form regression, Kim et al.
(2007) found a relation in which a 1% increase in tra�c noise leads to a decrease of 1.3%
in land price per square meter in an urban area. In a cost-bene�t analysis by Becker and
Lavee (2002) in Israel, the reported NSDI values are 1.2% and 2.2% for urban and rural
areas, respectively. The application of hedonic pricing on property prices in Sweden by
Andersson et al. (2010) included a concave function to re�ect noise impact on prices and
was compared to a traditional semi-log regression model. While the traditional model
resulted in NSDI values between 1.15% and 1.17%, the concave speci�cation resulted in
values between 1.35% and 2.9%, depending on the base noise level. When comparing
NSDI between traditional Ordinary Least Squares (OLS) regression and a spatial lag
model, the di�erence was negligible. Baranzini and Ramirez (2005) studied the impact
of multiple noise sources on rent prices in Geneva and found an NSDI of 0.7% when
looking at all noise sources.

2.1.2.4 Issues of Environmental Equity

The spatial nature of exposure to transportation-related environmental stressors such as
noise and air pollutants as well as di�erent capabilities of coping (e.g. a�ordability of
sound insulation or relocation) can raise questions about environmental justice. Rodrigue
(2016) gives the example that, on a local level, 'a community may be a�ected by noise
levels well over its own contribution (notably those near major highways), while another
(in the suburbs) may be a�ected in a very marginal way and still signi�cantly contribute
to noise elsewhere during commuting' (Rodrigue, 2016, p. 261). In this comparison, in-
equality is compared solely based on various spatial conditions. However, inequality can
also be identi�ed when comparing socio-demographic attributes of the causers and the
a�ected. As discussed in the sections above, dwelling prices can be a�ected by environ-
mental conditions, and as such, qualities like 'quietness' become a matter of a�ordability.
In a free market without regulation, environmental outcomes 'are mainly left up to mar-
ket forces' (Kruize et al., 2007, p. 578). For example, Herridge and Low-Beer (1973)
report on the development of 'noise ghettos' because persons with high incomes can af-
ford to move into quieter neighborhoods, while low-income persons must stay or move
into noisy but inexpensive areas.

Greenberg and Cidon (1997) present two common de�nitions of environmental (in-)
equity:

Process inequity occurs when individuals (groups) are not fairly involved in the decision-
making process that can lead to environmental impacts (such as the decision on

13



2 Literature Review and Research Questions

where to put a waste plant). In this de�nition, unequal distribution of burdens
would be acceptable as long as the decision-making process is fair.

Outcome inequity occurs when the environmental burden itself is unequally distributed
among (groups of) individuals.

Most existing studies that address transport-related environmental equity issues focus
on outcome inequity and report how environmental burdens are distributed. Carrier et al.
(2016) show that areas with a higher share of low-income individuals and minorities have
a higher probability of being exposed to higher road tra�c noise levels when compared to
the rest of the population. Another study by Potvin et al. (2019) �nds that low-income
persons and minorities in Montreal live more often close to major roads. Remarkably, the
study also revealed that among those who live close to major roads, low-income persons
were less likely to be protected by noise barriers. Di�erent authors �nd similar �ndings
for Montreal, reporting associations between noise exposure and multiple socioeconomic
factors (Dale et al., 2015). For the Twin Cities, USA, Nega et al. (2013) demonstrate
an association between noise levels and household income and percentage of non-white
residents, among others. A review of studies on noise and environmental equity for the
European region concludes that there is a trend that con�rms a positive association be-
tween noise exposure and lower socioeconomic position (Dreger et al., 2019). This is also
supported by a report compiled for the European Commission (for Environment Policy,
2016). However, this report also acknowledges that the relationships are less clear in
European cities. Here, the city centers are often very attractive and inhabited by a�u-
ent persons, but they are also noisy. The report underlines that analyses of inequities
should also take into account the concept of vulnerability. A�uent households or persons
are more likely to cope better with high exposure (e.g. because of healthier lifestyles or
a�ordability of counter-measures) and, thus, are often less vulnerable than households
with a lower socioeconomic status. Lauÿmann et al. (2013) present another study that
analyzed the inequity of noise exposure in Germany. One of the interesting �ndings
is that the city classi�cation ('large city', 'medium city', 'small town' and 'rural area',
Bundesamt für Bauwesen und Raumordnung, 2020) showed di�erent frequencies of ex-
treme noise exposure, with residents in large cities reporting twice as likely to be highly
annoyed by road tra�c noise.

Some studies also report evidence against environmental inequity or opposite �ndings.
For example, Havard et al. (2011) identi�ed a positive association between noise exposure
and advantaged neighborhoods in Paris. The existence of inequity related to socioeco-
nomic variables seems to be highly case-speci�c.

For the city of Munich, which is the focus area of this dissertation, Kistler et al. (2017)
found that poor households were twice as likely to be annoyed by noise than more a�uent
households. An o�cial report published by the city administration of Munich showed that
districts that are exposed to more than 55 dB(A) are also more likely to be considered as
districts that face sociodemographic challenges such as higher rates of unemployment or a
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larger share of households with a foreign background (Landeshauptstadt München, 2015).

Some studies used the Gini index as a formal measure of inequality (Millimet and
Slottje, 2002; Maguire and Sheri�, 2011; Wu and Heberling, 2013). The Gini index G
tries to reduce distributions of a certain good (e.g. income or costs) to a single indicator.
It can be de�ned by:

G =

∑n
a=1

∑n
b=1 |xa − xb|
2n2x

(2.7)

Figure 2.5: A typical Lorenz curve and its relation to the Gini index.

Here, n is the total population (or the number of agents) and xa/xb is the number of
units of the studied good assigned to an individual a or b. This way, the G can be under-
stood as half of the relative mean absolute di�erence between observations (Sen et al.,
1973). A more intuitive explanation makes use of the underlying concept of the Lorenz
curve. A typical Lorenz curve is shown in �gure 2.5. In a Lorenz curve, the population
is sorted by their respective amount of the studied good in ascending order. The curve
then shows for a certain percentage of the population (x-axis) how much of the total
amount of the studied good they are attributed to (y-axis). If the distribution of a good
is perfectly equal, the curve is represented by the line of equality, as shown in �gure 2.5.
The more unequal a good is distributed, the larger the area between the line of equality
and the Lorenz curve will become (area A in �gure 2.5). If B is the area under the Lorenz
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curve, the Gini index can also be de�ned as G = A
A+B , i.e. as the ratio of A over the

total area A+B. G usually takes values from 0 (perfect equality) to 1 (perfect inequality).

The majority of studies have only looked at the distribution of environmental burdens.
However, as discussed above with the example of quiet suburbs with residents commut-
ing into the city, the contribution to noise exposure may be an additional factor to look
at when assessing environmental equity. This opens up another use case of agent-based
simulations coupled with an environmental model. Kaddoura (2019) already presented
an approach to attribute noise exposure contribution to individual agents by monetizing
the external cost. As such, agent-based models can be used to analyze and compare both
individual exposure and individual contribution to noise (or air pollutants) per agent at
a �ne spatio-temporal resolution. Like �ocks of birds or tra�c jams, environmental in-
equity can be understood as an emergent phenomenon that is not deliberately induced by
a single actor but results from the interplay of many microscopic interactions. Therefore,
agent-based models are particularly suited for this type of research (Campbell et al.,
2015).

Another aspect in the analyses of environmental equity is that the analyses can be
subject to the 'ecological fallacy'. Ecological fallacy can arise when the spatial scale of
an analysis is too coarse and thereby blurs the distribution of pollutants and exposed
individuals and their traits (Banzhaf et al., 2019). In a review of 110 environmental
justice studies, Baden et al. (2007) �nd that evidence of inequity becomes stronger when
smaller spatial units are used. This underlines that microscopic models may be more
suitable for addressing these issues.

2.2 Tra�c Noise Models

To analyze the impact of noise, one has to obtain data on sound levels. One possible
approach to retrieve the data is to measure noise physically. As a more �exible and less
expensive alternative, noise can be modeled by using tra�c noise models, of which many
have been developed over the years. The �rst models go back into the 1950s and modeled
the 50th percentile of tra�c noise based on distances and tra�c volume (Quartieri et al.,
2009). Later models also included the mean speed of vehicles and the share of heavy
vehicles. Reviews and comparisons of o�cial tra�c noise models are given by Quartieri
et al. (2009), Steele (2001), de Lisle (2016) and Garg and Maji (2014).

An overview of o�cial tra�c noise models and their main location of application is
given in table 2.2. Even though o�cial noise prediction models have di�erent formula-
tions for noise prediction, Quartieri et al. (2009) show that the resulting noise levels are
similar. In principle, most models rely on empirically estimated equations that usually
postulate a logarithmic functional relationship between tra�c volume and noise. The
estimations may be subject to 'site bias', leading to errors in the predictions at di�erent
sites (Guarnaccia et al., 2011). A special case is the CNOSSOS-EU model, as it aims to
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Table 2.2: Overview of O�cial Tra�c Noise Prediction Models

Tra�c Noise Model O�cal model or most com-
monly applied in

Reference

MPB-Routes 2008 (Nouvelle
Methode de Prevision de
Bruit)

France (Dutilleux et al., 2010)

CNR (Consiglio Nazionale
delle Ricerche)

Italy (Cannelli et al., 1983)

RLS-19 Germany (FGSV, 2019)
CoRTN procedure (Calcula-
tion of Road Tra�c Noise)

United Kingdom, Australia,
Hong Kong, New Zealand

(United Kingdom Depart-
ment of the Environment,
1988)

FHWA TNM (Federal High-
way Administration Tra�c
Noise Model)

United States, Canada, Mex-
ico

(US Federal Highway Admin-
istration, 2004)

ASJ RTN Model (Acoustical
Society of Japan Road Tra�c
Noise)

Japan (Sakamoto, 2015)

Son Road Switzerland (Heutschi, 2004)
Nord 2000 Norway, Denmark, Sweden,

Finland
(Jonasson and Storeheier,
2001)

CNOSSOS-EU European Union (Kephalopoulos et al., 2012)

harmonize the di�erent national prediction methods in the European Union. The goal
is to make results comparable and to allow for common standards for strategic noise
mapping. Khan et al. (2020) report that prediction results are comparable with previous
o�cial models (correlation between CNOSSOS-EU and Nord 2000: R=0.96).

In Germany, the standard for modeling tra�c noise for prevention and remediation
is de�ned in the Richtlinien für den Richtlinien für den Lärmschutz an Straÿen 1990
(RLS-90) which was updated in 2019 (RLS-19) (FGSV, 2019). The standard takes into
account various variables, such as noise propagation and re�ection, sound barriers, traf-
�c �ow, road dimension and geometry, among others. The base of the calculation is a
function that takes into account vehicles per hour and the percentage of heavy vehicles
and their speeds. Based on this, various correction terms are added, such as correc-
tions for road surfaces, gradients and absorption characteristics of buildings. Although
similar, the RLS is not fully compliant with the harmonized CNOSSOS-EU model and
leads to minor di�erences in predictions (Müller, 2014). For strategic noise mapping an
additional standard, the 'Berechnungsmethode für den Umgebungslärm von bodennahen
Quellen' implements the CNOSSOS-EU for Germany (Arbeitsring Lärm der Deutschen
Gesellschaft für Akustik (ALD), 2020).

Besides o�cial guidelines, other approaches for noise modeling can be found in the lit-
erature. Gulliver et al. (2015) present TRANEX, an open-source noise model for assessing
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noise exposure embedded in a Geographical Information System (GIS). Golmohammadi
et al. (2009) estimated a noise model based on multiple linear regression, including 12
explanatory variables, which account for road dimensions, tra�c �ows and tra�c speeds.
The model was estimated and applied to Iranian cities and showed a good model �t
(R2 = 0.901). A di�erent approach is taken by Cammarata et al. (1995); Mansourkhaki
et al. (2018) and studies reviewed by Kumar et al. (2011) where arti�cial neural net-
works are utilized to predict noise levels. While some of the studies showed remarkably
low estimation errors (average error: 0.76 dB, Genaro et al., 2010), it is acknowledged
that these models are hard to interpret and work like black-box models. In addition,
the models are highly data-driven and might not easily be transferable to di�erent study
regions. Similarly, Caponetto et al. (1997) present a fuzzy-logic approach combined with
a genetic algorithm to estimate noise levels. Again, the interpretability of the method is
limited and the results are highly dependent on the training data set. Guarnaccia et al.
(2017) combine time series analysis for predicting noise over multiple days of the week
and use an arti�cial neural network to correct for the residuals produced by the prediction.

Since noise prediction models require the local tra�c conditions such as tra�c vol-
umes and speeds as an input, it is a natural step to connect noise prediction models with
transport models, as highlighted by Can (2019, also see for a comprehensive overview)
and done for e.g. VISUM (Rickborn, 2012), VISSIM (Estévez-Mauriz and Forssén, 2018)
and AIMSUN (De Coensel et al., 2016).

Kaddoura et al. (2017); Kaddoura (2019) present an implementation of the RLS-90
for the Multi-Agent Transport Simulation (MATSim) which will be explained in more
detail in chapter 3. An advantage of using a (microscopic) transport model is that actual
time and location-dependent (albeit simulated) speed levels can be taken into account
and the prediction does not need to rely on speed limits only. More recent 'dynamic'
noise prediction models such as the RLS-19 are reported to result in better �ts when
compared to purely statistical models that do not account for speed (Guarnaccia et al.,
2018). The analysis of population exposures to noise may bene�t from a microscopic and
time-dependent model resolution as given in agent-based models. Agent-based models
provide insights into population groups and person-speci�c exposures. They allow to
include residential locations and activities such as being at home and other sensitive
sites like schools, o�ces, and hospitals. In addition, a time-dependent model allows to
account for the time of day (e.g. day vs. night) and exposure duration (e.g. short-term
vs. long-term).

2.3 Integrated Land-Use/Transport Models

The explicit interaction between land use and transport is often studied in Integrated
Land Use/Transport (ILUT) models. These models usually build upon the idea of the
land-use transport feedback cycle (Wegener and Fürst, 1999, see �gure 2.6) and typically
run for multiple years or decades into the future. The land use component of the model
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deals with the representation of synthetic dwellers (and �rms) and their (residential)
location choices in space. In agent-based ILUT models, a synthetic population repre-
sents individuals who age, relocate, die or give birth, among others. In addition, there is
usually a representation of the built environment, including sub-models for construction,
deterioration and renovation. Land use decisions such as relocations or construction of
buildings are explicitly in�uenced by locational characteristics, which, in turn, account
for transport-related conditions, often in the form of accessibility. On the other side,
the location of dwellers and �rms results in a given spatial arrangement of activities.

In the modern understanding of transport as derived demand in which people and
goods have to travel because they cannot perform the desired activity at their current
given location, the location of activities de�nes resulting travel demand. As such, the
activities link the land use and the transport component. The transport model simulates
the tra�c at a given resolution (i.e. micro-/meso or macroscopic) and, thus, estimates
travel times, costs and distances between locations. Based on these travel impedances,
accessibilities can be calculated. The provision of accessibilities by the transport model
closes the loop back to the land use component. ILUT models can di�er signi�cantly
in their level of detail (microscopic vs. macroscopic), spatial resolution (large zones vs.
�ne grid cells or micro-locations), level of (software) integration (�le-based vs. tightly
coupled in the same programming language) and level of operation (Moeckel et al., 2018).
ILUT models have been developed and applied for multiple decades with many theoreti-
cal and computational advancements since the �rst models going back to Lowry's model
of Metropolis (Lowry, 1964). Good overviews of ILUT models, as well as current ap-
plications and research directions, are given in Moeckel et al. (2018); Acheampong and
Silva (2015); Wegener (2021); Hunt et al. (2005).

Figure 2.6: Land-use/transport feedback cycle. Based on Wegener and Fürst (1999).
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In their paper 'Environmental Feedback in Urban Models' from 2008, Spiekermann
and Wegener (2008) expressed that environmental and ecological aspects have long been
ignored in ILUT models. While some models have been extended by environmental
submodules to become Land Use/Transport/Environment (LTE) models, Spiekermann
and Wegener highlight that most models only account for the e�ects of land use and
transportation on the environment, ignoring the opposite direction. As the environment
may a�ect the quality of neighborhoods, noise may also have an impact on land use
and � indirectly � travel patterns. Spiekermann and Wegener identi�ed the need for a
high spatial resolution as a key requirement for implementing environmental feedback.
Among others, they argue that noise is one of the key environmental factors for which
a feedback to land use can be observed in reality. While almost every environmental
indicator is a�ected by land use and transportation, only few of the indicators have a
feedback impact on land use. For transport, none of the environmental indicators seem
to have a direct impact (one example, that the author of this thesis can think of, is
a policy reaction to noise by implementing (nocturnal) speed limits, which may a�ect
tra�c �ow). Spiekermann and Wegener conclude that, as a minimum, the feedback from
the environment to land use by a�ecting household relocation decisions should be imple-
mented in LTE models. Acheampong and Silva (2015) con�rm that integrated models
should better account for environmental issues in future applications. In their overview
of contemporary land use/transport/environment models, Gu et al. (2015) state that
the environmental component has long been ignored and only recently gained attention.
Their review of recent models concluded that 'most model[s] contain only a minimum of
environmental indicators which are generated from the model as outputs, the feedback
on land use are not considered.' (Gu et al., 2015, p. 11). Similar to the traditional ILUT
cycle, �gure 2.7 illustrates how the di�erent interactions in LTE models may be modeled.

The CityPlan model presented by Gu and Young (1998) accounts for environmental
impacts such as noise and air pollution in an ILUT model but analyzes them as an output
only. However, while they claim that reactions to environmental conditions tend to be
slow, they acknowledge that 'with the increasing concerns regarding urban tra�c conges-
tion, air pollution emissions from road vehicles and tra�c noise problems, this feedback
will be getting stronger and needs to be incorporated into the model in the future.' (Gu
and Young, 1998, p. 184).

The DELTA integrated land use/transport model incorporates environmental indica-
tors such as noise and air pollutants based on outputs of the transport model (Simmonds,
1999, 2010). In this model, the indicators have either been calculated as zonal values
per indicator or as a single tra�c-density measure as a proxy for environmental impacts.
The authors recognize that meaningful zonal values might be problematic and that 'some
e�ects such as noise are highly localized and hence di�cult to represent except in models
representing individual properties' (Feldman and Simmonds, 2007, Transport-DELTA in-
terfaces and accessibility calculations section). In the DELTA model, the environmental
impact on relocation is represented by an environmental quality variable which consists
of multiple components, including noise and pollutants. The weight of the impact is
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Figure 2.7: Feedback in LTE models (taken from Moeckel et al. (2003)).

based on willingness-to-pay values for a reduction in these environmental stressors. As
such, environmental disutility is expressed in monetary terms.

Another example of an LTE model is the ILUMASS (Integrated Land-Use Modelling
and Transportation System Simulation) project which aimed at microscopically linking
transport and land-use models. It was also intended to feed back environmental impacts
to the land-use model (Beckmann et al., 2007). The study area Dortmund was divided
into 352,000 grid cells of 100x100 m size to be able to generate meaningful emission
values. However, due to the complexity of the project, very long model run times and a
�le-based data transfer, the ambitious goals were not met (Wagner and Wegener, 2012).
While the environmental sub-module was working for a small test scenario, it never be-
came operational for the entire integrated model.

There were no studies found for other contemporary ILUT models such as ILUTE,
PECAS or UrbanSim that present a linkage between environment and land-use/transport.

As pointed out by multiple studies above, a �ne spatial resolution is key to obtain rea-
sonable sensitivities to local decision factors such as travel times, accessibility or noise.
Many models use zone systems to keep computational costs low at the cost of spatial
aggregation.

The problem of spatial aggregation has been widely discussed and is referred to as
the Modi�able Areal Unit Problem (MAUP) as described by Openshaw (1977), which
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states that results of spatial analyses are in�uenced by the chosen zone size (scale ef-
fect) and the criteria used to form spatial units (aggregation e�ect) (Viegas et al., 2009).
While the aggregation e�ect is reported to be hardly solvable (Fotheringham and Wong,
1991), Openshaw (1984) proposes four ways of dealing with the scale e�ect: ignore it,
use individual data, use an 'appropriate' scale or use spatial units that the results pro-
duce a predicted outcome. According to St�epniak and Jacobs-Crisioni (2017), methods
to reduce the MAUP have been proposed for location-allocation problems. However,
the problem has not yet been resolved in spatial interaction models (such as in ILUT
models). They present an approach that uses interaction-weighted travel times based on
population density to reduce errors in aggregated zone-to-zone travel times. The impact
of MAUP on spatial interaction models, which was also analyzed by Putman and Chung
(1989) and Zhang and Zhou (2018), does not exist if individual (=non-aggregated) data
are used (Fotheringham, 1989).

While the problem of spatial biases is well known, 'the e�ects of spatial biases on
LUTI models remain largely unexplored and underestimated' (Thomas et al., 2015, p.
55). In a review of existing ILUT studies, Badoe and Miller (2000) identi�ed several
studies that 'have worked with zonal-aggregate variables for gross spatial units [. . . ] thus
clouding the e�ects [. . . ]' (Badoe and Miller, 2000, p. 260). The MAUP a�ects the
true representation of spatial attributes such as travel times (Homer and Murray, 2002).
Rosenbaum and Koenig (1997) report that zone-based land-use models may be limited
in their ability to assess policies that aim at in�uencing development at small spatial
scales, such as areas near a transit stop. Jones (2016) presented sensitivity analyses for
spatial biases in ILUT models caused by the spatial resolution (i.e. size, number and
shape of areal units/zones) and the spatial extent (i.e. size and boundaries of the study
area) of the model input. Results indicate that both resolution and extent signi�cantly
impact model outputs. New scenarios that address equity issues, pricing scenarios and
environmental impacts may require more detail, as 'for such scenarios, the traditional
feedback from land use to transport with aggregate accessibilities may not be su�cient'
(Moeckel et al., 2018, p. 466).

Integrated models that aim to represent environmental feedback should therefore work
with a detailed spatial representation. Preferably, the representation should be detailed
for all locational attributes. Otherwise, it is hard to argue that a locational factor such as
noise is modeled at a very microscopic scale while other (even more important) in�uential
factors such as travel times are only coarsely represented.
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2.4 New Mobility Concepts in the Context of Tra�c Noise
Modeling

2.4.1 Ridepooling

Recently, agent-based simulations have been extended and employed to analyze emerging
mobility options such as demand-responsive transportation, including ride-hailing and -
pooling. There have been multiple simulation studies in the �eld of (pooled) Autonomous
Mobility on-Demand (AMoD), often also described as Shared autonomous Vehicles (SaV)
applications. In the real world, several app-based dynamic ride-pooling services such as
UberPool 1, GrabShare 2, Clevershuttle 3 or MOIA 4 were introduced in recent years and
promise to reduce tra�c volumes and resources consumed in urban areas, as several car
trips can be bundled and replaced by a single pooled trip.

Previous studies have shown the potential of pooled on-demand mobility to reduce traf-
�c and vehicle �eets in urban areas (Martinez and Viegas, 2017; Alonso-Mora et al., 2017)
and suggested that ride-pooling can signi�cantly reduce air pollutants and Greenhouse
Gas Emissions (GHG) (Greenblatt and Saxena, 2015). However, the positive e�ects are
not only achieved through the introduction of these new services but must be accom-
panied by urban policies that make car travel less attractive and prevent a modal shift
away from public transport (Naumov et al., 2020).

Pernestål and Kristo�ersson (2019) and Jing et al. (2020) reviewed 26 and 44 simula-
tion studies that investigate the e�ects of autonomous vehicles, respectively. While each
study has a slightly di�erent focus, most focus on driverless taxi applications in urban
areas without pooling passengers. Results indicate that the introduction of unpooled
�eets causes an increase in Vehicle Kilometers Traveled (VKT) between 5 % and 35 %
compared to the existing system, mainly due to empty kilometers to pick up customers
and to reallocate vehicles. At the same time, it is stated by Pernestål and Kristo�ersson
(2019) that in most studies, one autonomous vehicle replaces between 6 and 14 conven-
tional cars. If rides are pooled, system e�ciency generally increases and VKT can be
reduced if penetration rate and request density are large enough.

Out of the 44 agent-based simulation studies of autonomous vehicles that Jing et al.
(2020) reviewed, almost half (20) made use of the simulation framework MATSim (Horni
et al., 2016). However, there have been extensive investigations in other frameworks that
need to be considered. Martinez and Viegas (2017) replaced all private car, bus and taxi
trips in Lisbon (approximately 565,000 inhabitants) with a ride-pooling �eet, serving all
requests with a maximum time loss of 15 minutes. They found an overall VKT reduction
of 25 %, a CO2 reduction of 32 % and that only 4.8 % of the city's current car �eet size

1https://www.uber.com/de/de/ride/uberpool/
2https://www.grab.com/sg/transport/share/
3https://www.clevershuttle.de/
4https://www.moia.io/
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is necessary to serve the demand.

Alonso-Mora et al. (2017) introduced an anytime optimal ride-pooling algorithm and
served all taxi rides (up to 460,700 daily) in Manhattan with a pooled �eet. They found
that the vehicle �eet may be drastically reduced from 13,000 single-occupied vehicles to
only 3,000 vehicles with a capacity of 4. Service levels are kept at a reasonable level with
an average waiting time of fewer than 3 minutes and an average trip delay of 3.5 minutes.
Engelhardt et al. (2019) based their investigation of a ride-pooling service on the same
algorithm and replaced between 1 % and 15 % of all car trips in Munich. Their results
show that with adoption rates below 5 %, total VKT increase, whereas higher adoption
rates lead to decreased VKT due to pooling. Vehicle �ow volumes were mainly reduced
on major roads.

Ruch et al. (2020) implemented four previously developed ride-pooling policies (Alonso-
Mora et al., 2017; Ma et al., 2013; Fagnant and Kockelman, 2018; Bischo� and Maciejew-
ski, 2016) in the framework AMoDeus (Ruch et al., 2018) that is based on the mobility
simulation of MATSim. They applied those four algorithms to an urban scenario with
16,400 requests and a rural scenario with 1,000 requests. Although VKT and �eet sizes
can be decreased through pooling compared to an un-pooled system, the e�ciency gain
may not be su�cient to compensate for privacy loss and decreased service levels to at-
tract customers. Pernestål and Kristo�ersson (2019) draw the same conclusion from their
reviewed papers and propose incentives or public policies to achieve a higher penetration
rate of pooled service to accomplish major VKT reductions through on-demand mobility
systems.

Bischo� et al. (2017) introduced another ride-pooling extension within MATSim called
Demand Responsive Transit (DRT). They applied a ride-pooling �eet to 27,336 taxi re-
quests that occurred on one day in Berlin. It is shown that VKT could be reduced by
15 % to 20 % compared to the existing taxi system if rides were pooled while average
waiting times are below 5 minutes. High pooling rates occur in the city center and in
the area of the airport where request density is highest.
The DRT extension is used in numerous simulation studies (Wang et al., 2018; Vosooghi
et al., 2019; Bischo� et al., 2018; Bischo� and Maciejewski, 2020; Leich and Bischo�,
2019).

In contrast to air pollutants and GHG, much less focus has been put on the impact
of ride-pooling and shared mobility on tra�c noise. Kaddoura et al. (2020) analyzed
noise impacts in the context of an un-pooled autonomous taxi �eet and �nd decreasing
levels of air pollution and slightly increasing noise levels in the inner-city area of Berlin.
However, the impacts of a pooled system on tra�c noise have not yet been investigated
systematically. As one of the few studies that look at noise in conjunction with ride-
pooling, Bista�a et al. (2021) include noise (costs) as a component in their analysis of
environmental bene�ts of ride-sharing services but do not report detailed results for im-
pacts on noise emissions or immissions. In addition, noise is only based on di�erences in
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travel distances and does not account for actual tra�c and the individual time-dependent
exposure.

As it has been shown that interventions implemented to reduce noise exposure can
be linked to positive health outcomes (Brown and Van Kamp, 2017), it is important to
study potential noise reductions of policies such as the implementation of ride-pooling
services. The implications that the introduction of a new mobility system has on an
existing mobility system are versatile and complex. While car tra�c noise depends on
the tra�c �ow volume, the relationship is non-linear and follows a logarithmic curve. In
addition, resulting noise immissions depend on vehicle speeds, road geometries and the
built environment, among others. Therefore, one cannot infer noise impacts by looking
at changes in VKT and tra�c volumes alone, which is why the impact of ride-pooling
on noise has to be studied explicitly.

2.4.2 Electric Vehicles and Noise

Another reduction could be expected from �eets of fully Electric Vehicles (EV) when
compared to Internal Combustion Engine Vehicles (ICEV). This has also been identi�ed
as one of the possible extensions to the initial noise model presented by Kaddoura (2019).
However, for constant driving speeds above 30 km/h, the main contribution to car tra�c
noise emerges from the tires rolling on the surface (also compare with �gure 2.1), which
reduces the potential of reducing noise with EVs (Bekke et al., 2013). Similarly, the
European Environmental Agency states that while electric cars contribute to lower noise
levels at low speeds, a recent regulation will require the installation of arti�cial sound
generators in all electric and hybrid vehicles by 2021 to improve pedestrian safety, which
may further reduce potential reductions in noise (European Environment Agency, 2018).
In a recent study, (Campello-Vicente et al., 2017) showed that EVs equipped with an
acoustic vehicle alerting system still emit lower levels of noise than conventional ICEV
(1 dB(A) less at 30 km/h, compared to EVs without alerting system: 2 dB(A)). The
reductions diminish for higher shares of heavy vehicles and lower shares of EVs in the
�eet. In the same study, the authors adapted the o�cial French noise prediction model
to correct emission values for electric �eets. In a simulation case study, they showed that
replacing ICEV with EVs leads to an improvement for 6 % to 10 % of the population in
terms of noise exposure.

In a state-of-the-art survey by (Iversen et al., 2013), the authors presented an overview
of studies dealing with possible noise reduction due to EVs. They reported mixed �nd-
ings, with reductions ranging between 1 and 15 dB(A) at di�erent speeds. Most refer-
ences indicate that the di�erence in noise levels vanishes between 30 and 50 km/h. They
stressed that these results include a high level of uncertainty and depend on how the
comparisons were carried out in detail. Jabben et al. (2012) presented a comparison of
noise measurements between ICEV and EV in a drive-by scenario and reported reduc-
tions between 11 dB(A) at very low speeds and 3 dB(A) at 50 km/h. The same authors
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implemented a noise prediction model with correction terms for fully electric �eets (Ver-
heijen and Jabben, 2010). The presented correction terms can be distinguished by vehicle
types and respective speeds. In an application, they found reductions of 3 to 4 dB(A)
in noise exposure, on average. Similarly, (Estévez-Mauriz and Forssén, 2018) report a
mean reduction of 4.5 dB(A) for an all-electric scenario compared to internal combustion
engine vehicles in a simulation study on the noise level at intersections.

2.5 Research Questions and Structure of the Thesis

Based on the literature review and starting from the work of Kaddoura et al. (2017),
multiple research questions have been de�ned to study new applications of tra�c noise
modeling in agent-based simulations.

The initial noise model by Kaddoura et al. (2017) points to future improvements re-
garding the implementation of shielding, re�ection and corrections for EV. Meanwhile,
the underlying o�cial guideline RLS-90 has been updated to the RLS-19. Therefore, as
a �rst step, the existing noise model will be presented, analyzed and then updated to the
latest guideline. In addition, correction terms missing in the initial implementation of
the RLS-90 as well as a correction term for EV will be implemented. As the correction
for shielding was identi�ed to be one of the most important missing terms, the shielding
correction is presented in more detail. In addition, the following research questions will
be addressed:

1. How high is the impact of neglecting shielding corrections in noise modeling in
dense urban environments?

2. Does the broad usage of EV lead to considerably lower noise immissions?

Building upon the updated noise model, this thesis concentrates on three basic use
cases of agent-based simulations. First, the gap in the literature identi�ed in section 2.3,
which is to incorporate environmental impacts in ILUT models, will be addressed for the
example of road tra�c noise. Hereby, with a focus on tra�c noise, an approach similar
to the study by Löchl and Axhausen (2010) will be applied. They present a hedonic
pricing study that compared ordinary regression against spatial modeling techniques to
estimate rent prices in Zurich with the aim of building a model for the UrbanSim ILUT
modeling framework. Consequently, this part of the thesis is split into two subsequent
parts that deal with the following questions:

3. Can simulated noise values coming out of an agent-based transport model explain
price variations of rent prices in observed data? If yes, how high is the estimated
impact?

4. Does the inclusion of model reactions to noise in agent-based ILUT models lead to
di�erent outcomes in relocation patterns of households? How high is the impact?
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2.5 Research Questions and Structure of the Thesis

The subsequent use case presents how an agent-based model can be used to analyze en-
vironmental equity issues at a more detailed level by tracing back exposure and causation
to individuals. The application looks at two questions:

5. Is the causation of noise more unequally distributed than the exposure thereof?

6. Is there a spatial pattern of noise contributors when looking at a larger metropolitan
area?

Lastly, the third use case uses recent capabilities of agent-based models to simulate
ride-pooling to analyze potential impacts in potential large-scale scenarios. As such, this
use case addresses the following questions:

7. Does a large-scale implementation of a ride-pooling service in a large city lead to
reduced noise immissions among residents?

8. How do penetration rate and service design in�uence potential changes in noise
immissions?

Based on these questions, the thesis is structured as follows:

� Chapter 3 presents the agent-based modeling framework, which will be used through-
out this thesis.

� Chapter 4 describes the two study areas in which the use cases will be carried out.

� Chapter 5 shows the implementation of the updates to the noise model prior to the
application of the following use cases. This chapter addresses question 1.

� Chapter 6 estimates noise impacts on rent prices of observed data. As such, it deals
with question 3.

� Chapter 7 builds upon chapter 6 and implements noise as a feedback to the existing
ILUT model with the goal of answering question 4.

� Chapter 8 analyzes environmental equity issues of tra�c noise in a spatial context
and targets research questions 5 and 6.

� Chapter 9 answers questions 2, 7 and 8 by presenting the results of large-scale
(electric) ride-pooling scenarios and their impacts on tra�c noise.

� Chapter 10 concludes the thesis and points to limitations and future work.

Figure 2.8 shows the structure of the main chapters of the thesis.
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2 Literature Review and Research Questions

Figure 2.8: Structure and chapters of the scenarios presented in this thesis.
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3 The FABILUT Modeling Suite

The Flexible, Agent-Based Integrated Land Use/Transport (FABILUT) modeling suite
consists of the Simple, Integrated Land use Orchestrator (SILO)1 (Moeckel, 2016) and the
transport simulation model MATSim2 (Horni et al., 2016). For travel demand generation,
the Microscopic Transportation Orchestrator (MITO)3 (Moeckel et al., 2020) is used in
this study. All three models are open source and written in Java, which allows for a tight
integration without the need for �le-based communication. The FABILUT modeling
suite can also be run with SILO and MATSim only, which e.g. allows simulating the
commute segment of tra�c (Ziemke et al., 2016).

The three main components used in this thesis will be presented in the following
sections.

3.1 SILO

SILO is a zone-based microscopic land-use model currently developed at the Technical
University of Munich. SILO models long- and short-term decisions based on a synthetic
population over multiple years in a one-year time-step resolution. The population con-
sists of households and their members. Each household lives in a synthesized dwelling and
persons can take individual jobs. The spatial level of resolution of dwellings and jobs are
either zones or microscopic coordinates, depending on implementation. Spatial decisions
like relocation and dwelling development are modeled with Logit models (Domencich and
McFadden, 1975). Markov models with applied transition probabilities simulate other
decisions like marriage, dwelling renovation and giving birth (Moeckel, 2016). Currently,
demographic changes, household relocation and real estate changes are covered within
SILO. The model has been successfully implemented and integrated for Maryland and
Austin (USA), Munich (Germany), Kagawa (Japan) and Bangkok (Thailand). SILO can
optionally run with a transport model to update travel times and, thus, accessibilities,
which in turn in�uence location choices. The model incrementally updates an initial
synthetic population in which each dwelling, household, person and job is represented
individually. The typical process of generating a synthetic population for SILO is de-
scribed in Moreno and Moeckel (2018).

1https://github.com/msmobility/silo
2https://github.com/matsim-org/matsim-libs/
3https://github.com/msmobility/mito
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3 The FABILUT Modeling Suite

3.2 MITO

MITO is a microscopic travel demand model which can be de�ned as a hybrid between
classical trip-based models and activity-based models. It overcomes some of the former
and is less complex than the latter (Moeckel et al., 2020). Similar to SILO, MITO takes
a microscopic synthetic population of households, persons, jobs and dwellings as an input
and generates disaggregated trips for each household/person. Most of the model has been
estimated with the help of the German travel survey MiD (Mobilität in Deutschland, eng.:
mobility in Germany, (Infas and DLR, 2010)). In the default setup, MITO distinguishes
between the purposes home-based work (HBW), home-based education (HBE), home-
based shopping (HBS), home-based other (HBO), non-home-based work (NHBW) and
non-home-based other (NHBO). Home-based means that a trip starts and ends at the
home location of a person's household, i.e. it resembles a round-trip. Non-home-based
trips start or end at work locations (NHBW) or any other destination that is not the
home of the trip maker (NHBO). The result of MITO is a set of microscopic trips for
each person in the synthetic population with an assigned purpose, destination, mode
and time of day. However, since MITO is not a full activity-based model, the trips are
independent of each other and do not represent a person's full activity schedule. In fact,
each of the trips is assigned with a separate agent in the assignment.

Figure 3.1: Overview of the MITO model.

MITO is de�ned by the following subsequent steps (see also �gure 3.1):

1. Trip Generation. In the trip generation step, MITO classi�es the synthetic house-
holds into pre-de�ned types and copies trips from similar households in the travel
time survey diary.

2. Travel Time Budget Calculation. MITO follows the notion of constant travel time
budgets as described by Zahavi (1974). The idea is that, on average, the time spent
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3.2 MITO

traveling remains rather constant throughout the years. In MITO, travel time
budgets are calculated for each household to in�uence destination choice (Moreno
and Moeckel, 2016).

3. Destination Choice. Destinations are chosen as microscopic x/y coordinates. For
work and education trips, the locations are pre-de�ned in the synthetic population.
For the remaining purposes, MITO uses a random utility model to choose from
a set of given locations. The utilities take into account purpose-dependent zonal
attraction and travel times and are also in�uenced by the calculated travel time
budgets.

4. Mode Choice. Mode choice is processed with the help of a nested multinomial
logit model that can be estimated with travel survey data. By default, MITO
distinguishes between seven modes (auto driver, auto passenger, bicycle, bus, train,
tram/metro and walk). The existing model used in this thesis is shown in �gure
3.2 and is described in more detail in Rayaprolu et al. (2018).

5. Time of Day Choice. The time of day choice is based on reported arrival times
in the travel survey. Probability distributions have been derived for each purpose.
For each trip, the time of day is randomly chosen from those distributions.

6. Assignment. MITO produces a list of individual trips with all the chosen char-
acteristics such as mode, destination and time of day. In theory, MITO can be
coupled with any dynamic tra�c assignment model to simulate tra�c. By default,
MATSim is used to serve this purpose whereby each MITO trip is converted into
a separate MATSim agent.

Figure 3.2: Nested Structure of the Mode Choice Model
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3 The FABILUT Modeling Suite

3.3 MATSim

MATSim (Horni et al., 2016) is a microscopic, agent-based framework for transport
simulation and analysis. In contrast to aggregated trip-based approaches, travel demand
in MATSim is derived from activities that agents perform throughout their simulated
day. To obtain a state of equilibrium, MATSim utilizes a co-evolutionary approach in
which each agent tries to maximize their score (i.e. utility) individually by adapting to
current transport situations. Agents increase their plan's score when spending time on
scheduled activities. Time spent traveling or waiting leads to negative scores. MATSim
uses an iterative approach that is shown in �gure 3.3 and is further explained in the
following subsections.

Figure 3.3: Overview of the MATSim cycle. Taken from (Horni et al., 2016).

3.3.1 Initial Demand

MATSim requires initial demand as an input to the simulation. Demand is treated as a
set of individual agents, including their scheduled activities throughout the day, so-called
plans. Typically, the demand has to be created prior to the simulation for which various
solutions exist. As a minimum, every agent should have one plan that includes durations
and locations of activities.

3.3.2 Assignment

In the assignment step, every agent carries out its currently selected plan and the resulting
demand is loaded onto the network. For explicitly simulated modes, MATSim uses a
queue-based tra�c �ow simulation by default. Links are represented as point-queues
with a spatial limit, meaning that the simulation keeps track of the number of vehicles
currently waiting on a link and limits the resulting amount according to the capacity
of the respective link. If the storage capacity is exceeded, congestion spill-backs can be
observed for upstream links. The queue-based approach allows to e�ciently simulate a
large number of agents in reasonable computation times. However, detailed intersection
logic or car-following behavior cannot be captured.
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3.3 MATSim

Figure 3.4: The standard MATSim events. Taken from (Horni et al., 2016).

3.3.3 Scoring

After each iteration, agents score their executed plan. Thereby agents receive positive
scores for performing activities and negative scores for time spent traveling or coming late
to an activity. Score accumulation usually follows a logarithmic pattern with diminishing
marginal score increases as the actual performed time approaches the usual time spent
for the type of activity. MATSim assumes that the simulation captures a whole 24 hour
day and requires that the �rst and last activity are the same for proper scoring (usually
'being at home'). Through this 'wrap-around' assumption, MATSim introduces as an
implicit utility of travel time savings as the limited time available can be spent on more
activity performing instead of traveling. If an agent travels less, it does not only reduce
the negative penalty in scores for traveling; it also is able to spend more time performing
an activity such as being at work which additionally increases the score.

3.3.4 Re-Planning

At the end of each iteration, a certain share of agents is allowed to re-plan or re-schedule
their daily activities. MATSim o�ers multiple individual strategies to allow agents to
adapt. Among others, these include re-routing according to the latest tra�c conditions,
changing the mode of (sub-)trips or changing the departure time. The remaining agents
choose from existing plans such that the plans that reached the highest score are the most
likely to be chosen in the next iteration. Through this iterative approach and adaptation,
the simulation usually converges towards a stochastic user equilibrium in which agents
cannot improve their plan by unilaterally changing it.

3.3.5 Analysis

At the end of a MATSim simulation, a detailed analysis can be carried out since all the
important steps are written out in an events �le that contains detailed information on
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3 The FABILUT Modeling Suite

the time, place and agent of e.g. a vehicle entering or leaving a link. The standard
MATSim events are shown in �gure 3.4. Apart from travel and delay times, this also
allows imputing additional information, such as air pollutants or noise emissions (see also
3.4).

3.4 Noise Extension

The noise extension of MATSim has been described by (Kaddoura et al., 2017). The
extension allows computing noise emissions, immissions and resulting damages at a �ne
spatial and temporal resolution. Based on the events thrown during a MATSim simula-
tion, the analysis can be carried out online (during the simulation, registered to 'listen'
to events) or o�ine (after the simulation, using the output events �le). The approach
is based on the German guideline for noise protection at streets (FGSV, 1990) and uses
a set of assumptions for simpli�cations. The essential steps of MATSim's noise analysis
are described in the following subsections.

3.4.1 Noise Emissions

First, emission levels per link have to be calculated, which are mainly driven by the tra�c
volumes in the simulation. Resulting average emission levels Lj,t in dB(A) are calculated
per link j and time bin t using the following general formula:

Lj,t = L25
j,t +Dv

j , (3.1)

where L25
j,t is the average noise emission level in dB(A) for a set of assumptions: a �xed

distance of 25 meters from the emitter, a height of 2.25 meters, a maximum speed level
of 100 km/h on a smooth asphalt road surface and a gradient of less than 5%. This level
is an hourly equivalent noise level as de�ned in 2.4. It is calculated as:

L25
j,t = 37.3 + 10 · log10 [Mj,t · (1 + 0.082 · pj,t)] , (3.2)

where Mj,t is the tra�c volume; pj,t is the HGV (heavy goods vehicle) share in %. Dv
j is

the speed correction term which is

Dv
j = Lcarj − 37.3 + 10 · log10

[
100 + (100.1·(L

hgv
j −Lcar

j ) − 1) · pj,t
100 + 8.23 · pj,t

]
, (3.3)

with

Lcarj = 27.7 + 10 · log10

[
1 +

(
0.02 · vcarj

)3]
(3.4)

Lhgvj = 23.1 + 12.5 · log10

(
vhgvj

)
, (3.5)

where vcarj denotes the maximum speed level for passenger cars in kilometers per hour;

and vhgvj denotes the maximum speed for HGV in kilometers per hour. Further road-
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3.4 Noise Extension

related correction terms provided by the RLS-90 (FGSV, 1990) are neglected. Time bins
can be de�ned arbitrarily but are usually set to 1 hour intervals. This allows MATSim
to show the course of noise emissions throughout time. Corrections for road surface and
gradients as well as re�ections are ignored to keep computation and input requirements
low.

3.4.2 Noise Immissions

Immission values are calculated for de�ned receiver points, which can be represented by a
spatial grid or at other prede�ned coordinates such as activity locations. The immission
at receiver point i per time bin t is obtained by logarithmic addition of emissions of
nearby links:

Leq,i,t = 10 · log10
∑
j

100.1·Li,j,t {Li,j,t > 0} , (3.6)

Li,j,t = Lj,t +Dd
i,j +Dα

i,j −Dz
i,j , (3.7)

where Leq,i,t is the total energy equivalent continuous sound immission level in dB(A) and
Li,j,t is the immission resulting from a single road j, which is based on the emission Lj,t
as de�ned in 3.1. In addition, the following correction terms are de�ned. The correction
term Dd

i,j follows the RLS-90 approach for 'long, straight lanes' and is de�ned as

Dd
i,j = 15.8− 10 · log10 (di,j)− 0.0142 · d0.9i,j , (3.8)

where di,j is the shortest distance between the road segment j and the receiver point i
in meters (minimally 5 meters). Dα

i,j is an angle correction which is not included in the
RLS-90 but comes from the Nordic prediction method (Nielsen, 1997). It was included
to account for di�erent link lengths albeit using the 'long, straight lane approach'. It is
de�ned as

Dα
i,j = 10 · log10

( α

180

)
, (3.9)

where α is the angle from receiver point i to road segment j in degrees. Dz
i,j is the

correction term which accounts for the e�ect of shielding that is implemented as part
of this dissertation (see chapter. 5). Besides the correction for shielding e�ects, other
correction terms such as the correction for re�ections or road gradients are also not
included in the initial MATSim extension.

3.4.3 Noise Exposure and Damages

Noise damages can be calculated to estimate the economic impact of tra�c noise and
as a key indicator to identify actual exposure (as immission is worse the more people
are actually a�ected). To do that, activity locations of agents are mapped to the closest
receiver point. Then, a measure of exposed agents per time bin t can be de�ned as
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3 The FABILUT Modeling Suite

Nj,t =
∑
n

an,j,t
T

(3.10)

here, Ni,t is the number of demand units exposed to noise at receiver point i in time
interval t. n is an individual agent performing a considered activity of duration an,i,t
and T is the time bin size. Noise damage costs and monetarization approaches were
de�ned in the German Empfehlungen für Wirtschaftlichkeitsuntersuchungen an Straÿen
(Forschungsgesellschaft für Straÿen- und Verkehrswesen, 1997, EWS, engl.: Recommen-
dations for pro�tability analyses near roads, ). Following that, noise costs emerge at
receiver points whose immission values exceed de�ned thresholds:

Ci,t =

{
cT ·Ni,t · 20.1·(Leq,i,t−Lmin

t ), Leq,i,t ≥ Lmint

0, Li,t < Lmint

(3.11)

The resulting damage Ci,t for each receiver point i in time interval t takes into account a
monetary cost rate cT in monetary units per dB(A) for each demand unit that is exposed
for the duration of T and Lmint is the threshold immission level which depends on the
time of day. If not stated otherwise, the following thresholds are used for the remainder
of this work (taken from Kaddoura et al. (2017)): 50 dB(A) during the day (6 a.m. to
6 p.m.); 45 dB(A) during the evening (6 p.m. to 10 p.m.) and 40 dB(A) during the
night time (10 p.m. to 6. a.m.). The monetary cost rate cT is derived by multiplying the
annual cost rate cannual with the time bin size T (in hours):

cT = cannual · T

(365 ∗ 24)
(3.12)

Again, the value for the annual cost rate is taken from (Kaddoura et al., 2017), which is
based on the EWS and translated to an equivalent rate for 2015: cannual = 63.3 EUR.

3.5 Demand-Responsive Transit Extension

For research questions 7 and 8, a ride-pooling scenario will be implemented to assess
noise implications of shared large-scale on-demand mobility systems. Several extensions
exist in MATSim to simulate on-demand mobility systems (Maciejewski, 2016). Hörl
(2017) developed an extension to simulate (pooled) autonomous taxis, which was further
extended by Ruch et al. (2018, 2020) with di�erent operational strategies and algorithms
to operate (pooled) autonomous on-demand systems. The DRT extension developed by
Bischo� et al. (2017) will be used in this thesis. Agents in MATSim can submit requests
for rides served by a �eet of taxi agents. When a trip request with pick-up and drop-o�
coordinates is submitted, the algorithm searches for a vehicle that can serve the request
within a de�ned maximum wait time and without exceeding a maximum travel time for
the waiting customer and all other customers in the vehicle. The performance of the DRT
system highly depends on the service parameters, as shown by Bischo� et al. (2017) and
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3.5 Demand-Responsive Transit Extension

Zwick and Axhausen (2020b).

Other pooling strategies, such as the one proposed by Alonso-Mora et al. (2017), collect
all requests for a certain time frame and dispatch requests and vehicles after a certain
time step, taking into account all requests and vehicles. In this way, the system gains
more knowledge of all possible assignments, which may increase the e�ciency in high-
demand scenarios with limited �eet sizes, as shown by Zwick and Axhausen (2020a). The
substantially lower computation time combined with a reasonable system performance
led to the decision to apply the algorithm by Bischo� et al. (2017). The DRT extension
includes a rebalancing strategy that reallocates idle vehicles to areas with a historically
high demand (Bischo� and Maciejewski, 2020). Several studies have shown the bene�-
cial e�ect of the rebalancing strategy on acceptance rates, travel times and wait times
with the potential drawback of increased VKT and consequently more noise exposure
(Bischo� and Maciejewski, 2020; Vosooghi et al., 2019; Zwick and Axhausen, 2020a).
The algorithm allows to operate a door-to-door service, in which all customers are picked
up and dropped o� at their desired origin and destination. Alternatively, a stop-based
system can be used, in which customers need to walk to and from a pre-de�ned stop
before and after the ride-pooling trip. The stop-based ride-pooling system promises to
decrease noise, especially in residential areas without stops, as pick-up and drop-o� rides
in these areas are avoided.

The output of DRT in MATSim allows to assess e�ciency and quality of the service,
including vehicles distances and rejection rates. For the noise analysis, the vehicles are
treated as normal passenger cars that are considered in the total (hourly) tra�c volume
of a given link.
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4 Study Areas and Scenarios

This chapter introduces the study areas and scenarios that will be used in the subsequent
chapters. An illustrative scenario will serve as a testbed for the extensions to the existing
noise model in MATSim. For most other subsequent use cases, the Munich metropolitan
area will be used. An exception is the chapter on environmental equity analysis. For
this, the MATSim open Berlin scenario is used.

4.1 Illustrative Scenario

For the noise model analysis and enhancements presented in chapter 5, an illustrative
scenario will be used. The scenario is based on a simple network shown in �gure 4.1
a), which consists of 7 nodes with multiple bi-directional links. The links are either
'suburban' or 'urban' with di�erent attributes that in�uence the capacity and the speed
of traveling agents. The demand for this scenario is likewise kept simple and consists
of 500 agents traveling from node 0 (home) to 7 (work), i.e. from left to right in the
morning and back home in the afternoon (see �gure 4.1 b)). All agents depart at the
same time for each leg. Since the central links have a reduced capacity, there will be some
congestion. Ideally, MATSim's iterative approach should lead to a stochastic equilibrium
in which roughly one half of agents use the upper and lower route each. The simple setup
allows easy analyses for the subsequent extensions.

Figure 4.1: a) Network and b) demand of the illustrative scenario.
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4.2 The Munich Metropolitan Area

The Munich metropolitan area will be the main study area of this thesis as it has a full
implementation of the FABILUT modeling suite, including SILO, MITO and MATSim.
Located in its south, Munich is Germany's third-largest city, with a population of 1.56
million (Landeshauptstadt Muenchen, 2020). Munich is surrounded by multiple larger
cities for which strong commuting �ows and economic interrelationships exist. Taking
that into account, the study area delineation (see �gure 4.2) has been chosen such that
it includes the four major cities Augsburg (blue in �gure 4.2, Ingolstadt (yellow), Land-
shut (green) and Rosenheim (orange) and additionally every municipality for which more
than 25% of the population commute to Munich (purple). On the basis of these extents,
the study area delineation has been smoothed and - if possible - cut along neighboring
county limits. Basing study area delineation on commuter relations has been stressed to
be essential to reduce spatial bias (Thomas et al., 2018).

Figure 4.2: Commuting relationships in the Munich metropolitan area
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4.2 The Munich Metropolitan Area

The zone system for SILO and MITO has been created using an automated zoning
algorithm described in Molloy and Moeckel (2017). The algorithm iteratively splits cells
such that the population contained in each zone is similar and zones are small where
the population is dense and large where the population is sparse. In addition, municipal
boundaries have been respected to avoid having a separate zone system that does not
match with jurisdictions and their available socioeconomic data. In total, the zone sys-
tem consists of 4,924 zones. The zone system is presented in �gure 4.3. It becomes clear
that the zone sizes are smallest in the �ve core cities.

Figure 4.3: Zone system of the Munich metropolitan area.

The synthetic population has been created using an iterative proportional update ap-
proach and is presented in Moreno and Moeckel (2018). The reference year is 2011
and includes approximately 4 million persons and jobs and 2.2 million households and
dwellings. Control totals at di�erent geographical scales ensured that the synthetic pop-
ulation represents a valid representation of the true population.

The MATSim network for the study was derived from OpenStreetMap (OSM) (Open-
StreetMap Contributors, 2018). The network consists of 504,109 links and can be con-
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sidered 'dense' as it includes all roads up until the 'residential' classi�cation of OSM1.

4.3 The Open MATSim Scenario for Berlin and
Brandenburg

For the agent-based equity analysis presented in chapter 8, complete daily activity
plans of agents are required. As the Munich scenario currently comes with MITO's
trip-based demand, the MATSim open Berlin scenario (Ziemke et al., 2019, https:

//github.com/matsim-scenarios/matsim-berlin) will be used for the equity part of
the thesis. The scenario covers the two federal states Berlin and Brandenburg and con-
tains full activity chains of agents, which is required to have an accurate estimate of
exposure and causation throughout a typical day. The scenario is provided with in-
put and output for a 5% sample (uncalibrated) and a 10% sample calibrated for tra�c
volumes, modal split and mode-speci�c trip distance distributions. For the subsequent
analysis, the calibrated 10% sample will be used. In addition, a list of links that represent
tunnels is provided and can be used for noise estimations.

Figure 4.4 shows Berlin as part of the whole study area, including the network, vehicle
locations and distribution of activities of agents.

Figure 4.4: The MATSim Open Berlin Scenario: network, vehicles and activity location. Taken
from (Ziemke et al., 2019).

1https://wiki.openstreetmap.org/wiki/Key:highway
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5 Noise Model Enhancements in
MATSim

The initial MATSim noise extension by Kaddoura et al. (2017) works well for time-
dependent and spatial noise analysis on a large scale. However, some intriguing questions
made it worthwhile to update and improve the initial extension. First of all, the neglect of
shielding e�ects of larger urban structures (i.e. buildings) can lead to an overestimation of
noise in dense urban settings, where large blocks of buildings between streets are common.
In the outlook of his thesis, Kaddoura (2019) identi�ed multiple future enhancements for
MATSim's noise model:

� Incorporation of noise shielding e�ects of buildings

� Incorporation of re�ection e�ects at building facades

� The impact of road surface and

� Consideration of di�erent vehicle types (electric vs. combustion engines)

In addition, the simpli�cation of always using the 'long straight lane' instead of di-
viding links into segments leads to artifacts when dealing with a variety of link lengths.
With the release of an updated national noise guideline, the RLS-19, it seemed natural to
update MATSim's noise extension as well. Here, the segmentation of links is mandatory
and the 'long straight lane' approach was discontinued. Lastly, as discussed earlier, a
correction for electric vehicles should be discussed and analyzed.

5.1 Discussion and Limitations of the Current Model

The current implementation of the RLS-90 always uses the 'long straight lane' approach
for emission and immission calculation. However, according to the guideline, this is only
applicable for links that are visible for at least a minimum length lz to both sides from
the projected closest point on the link. lz is de�ned as:

lz = 48 ∗ s√
100 + s

, (5.1)

where s is the projected closest distance. This means that for a receiver point which is
25 (50) meters away from the road, the road should extend roughly 107 (196) meters
to the left and right, not changing any tra�c characteristics, not becoming obstructed
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Figure 5.1: Long, straight lane approach of the RLS-90.

by a building and staying almost straight. In addition, the road has to stay inside the
area de�ned by the dashed lines, as shown in �gure 5.1. Although these conditions are
seldom true for MATSim links in urban settings, the guideline was implemented with
this approach only. In dense urban areas, links tend to be relatively short. Applying
the 'long, straight lane' approach to links shorter than lz results in longer links being
equally as loud as short links if tra�c volume is the same. Thus, the representation
of roads as MATSim links would heavily in�uence estimated noise levels. A MATSim
network generated with a higher segmentation of links into many smaller links would
lead to higher levels of noise, as each of those small links would equally contribute to the
sum of immissions in equation 3.7.

This is why the angle correction Dα
i,j was introduced. This correction term is not de-

�ned in the o�cial RLS-90 guideline and was taken from the Nordic prediction method
with questionable compatibility. The angle correction was meant to decrease noise from
smaller roads and to reduce the impact on link layout on noise estimation. However, the
angle does not only depend of the length on the link but also on the relative position
of the receiver point to the link. This leads to the artifact that equation 3.9 goes to-
wards negative in�nity for very small angles, which is when receiver points are (almost)
perpendicular to the link. This means that standing next to the end of the link would
suddenly lead to a large decrease in noise. This issue can be observed in �gure 5.2. Here,
the noise immission yields unrealistic 'gaps' at the receiver points at the beginning/end
of the links on the left and right sides of the network.

Another issue of this solution is that the angle correction also introduces an additional
implicit distance-dependent correction, even in cases where the 'long straight lane' ap-
proach is justi�ed and condition 5.1 holds true. If it is assumed for now that condition
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Figure 5.2: Noise immissions in the illustrative scenario with the old RLS-90 implementation.

of equation 5.1 holds exactly true and the link extends exactly lz to both sides from the
projected direct distance to the receiver point. Then one can express the angle α between
the link nodes and receiver point as

α = 2× tan−1( lz
s

) (5.2)

α = 2× tan−1(
48× s√

100+s

s
) (5.3)

α = 2× tan−1( 48√
100 + s

) (5.4)

(5.5)

With that, the angle immission Dα in cases where equation 5.1 holds exactly true is
dependent on s:

Dα
s = 10 · log10

(
2× tan−1( 48√

100+s
)

180

)
(5.6)

Figure 5.3 shows the resulting correction term in relation to s. In addition, the min-
imum extended distance lz is shown. It can be seen that towards a distance s of 500
meters, which is the default maximum radius in which links are taken into account in
MATSim, lz would need to be almost 1000 meters long on either side of the projected
nearest distance. In urban settings, it is improbable to have links with a length of two
kilometers. Nevertheless, even in cases where the condition is met, the introduced angle
correction imposes an additional distance-dependent correction of up to about 1.6 dB(A),
regardless of the actual link length for which it originally was introduced for.

This and the fact that the angle correction was not designed to work with the RLS-90
makes its application questionable. A solution to this would be to rely on the 'segmented
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Figure 5.3: Implicit correction term introduced by the angle correction.

link' approach de�ned in the RLS-90. Here, links would be segmented into sublinks and
the length of the actual segment would have an impact on the emission/immission cal-
culation.

Regarding the missing shielding correction thus far, Kaddoura (2019) presents a valid-
ity analysis of MATSim's noise model by comparing noise immissions in a study area in
Berlin against results from Krapf and Ibbeken (2012). While the noise estimates along
major roads show good agreement among both models' results, a large share of noise es-
timations along side-roads were more than 6 dB(A) louder in the MATSim model results.
Kaddoura acknowledges that one of the main reasons is the neglect of shielding e�ects.

5.2 Update to the RLS 19

Over the course of this dissertation, the three-decades-old RLS-90 guideline has been up-
dated with the release of the new RLS-19 noise prediction guideline. The new guideline
has been implemented in MATSim and was used for the presented results in this thesis.
This section describes the background of the RLS-19, the di�erences between the RLS-90
and its implementation in MATSim.

5.2.1 Background and Comparison to RLS-90

In comparison to the RLS-90, the RLS-19 distinguishes three instead of two di�erent
vehicle types by further subdividing the truck vehicle type into a light and heavy truck
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type. Motorbikes can be treated as heavy truck types. In addition, there no longer is an
approach similar to the 'long straight lanes' in the RLS-90. The new guideline only allows
an approach similar to the link segmenting approach in the old guideline. Here, links
have to be segmented into smaller sub-segments. Another di�erence is that the directive
also takes account of the fact that vehicle emissions have changed over the years. While
passenger cars, in general, have become larger and are equipped with larger tires, leading
to more noise, heavy-duty vehicles emit less noise because of advancements in technology.
Overall, most changes apply to the emission calculation. However, since there are also
subtle changes in the calculation of immissions, some of the equations will be presented
here.

Similar to the RLS-90, the immission values for hour t are calculated as the logarithm
of power sums over all emissions LW,j of relevant links. However, di�erent from the 'long,
straight lane' approach, the individual links j are actually subsegments of large roads. In
addition, there is a correction that takes into account the length of the link to eliminate
the impact of segmentation:

Leq,i,t = 10 ∗ log10
∑
j

100.1∗(LW,j,t+10∗log10[lj ]−DA,j−DRV 1,j−DRV 2,j) (5.7)

where lj is the length of link j, DA,j is a dampening correction for sound propagation
from the link and shielding of buildings, and DRV 1,j and DRV 2,j are correction terms for
the �rst and second order re�ection, respectively. The emission LW,j of a single link j is
calculated as

LW,j,t = 10 ∗ log10[Mj,t] + 10 ∗ log10
[∑

m

λj,m,t ×
100.1∗LW,j,m,t(vj,m,t)

vj,m,t

]
− 30, (5.8)

where Mj is the average hourly tra�c volume, λj,k is the share of vehicles of type m,
LW,j,m is the speed-dependant emission of a vehicle of type m and vj,k is the average
speed of a vehicle of type m on link j. Di�erent from the emission level L25

j,t de�ned in
3.2, LW,j,t is not based on the same assumptions of a �xed distance of 25 meters from the
emitter, a height of 2.25 meters, a maximum speed level of 100 km/h on a smooth asphalt
road surface and a gradient of less than 5%. The speed, road surfaces and gradients are
direct parameters of LW,j,t and LW,j,m,t(vj,m,t). Thus, to compare both, the following
transformation has to be applied (Wolfram Bartolomaeus, 2019):

LW,j,t = L25
j,t + 19.1 (5.9)

The type- and speed-dependent emission is de�ned as:

LW,j,m,t(vm,t) = LW0,m,t(vm,t) +Dsurf,m(vm,t) +Dgrad,m(g, vm,t) +Dinter(x) +Dre�,j(h) (5.10)

Here, LW0,m,t(vm,t) is the base emission value of a vehicle of type m with speed vm,t.
Dsurf,m(vm,t) is a correction for the road surface, Dgrad,m(g, vm,t) is a correction for the
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gradient g, Dinter(x) is a correction for intersections in a distance of x and Dre�(h) is a
correction for multiple re�ections for obstacles with a height h.

Figure 5.4 illustrates the di�erences in emissions between RLS-90 and RLS-19. Values
for the RLS-90 have been estimated by using equation 5.9.

Figure 5.4: Di�erences in speed dependent emissions Lw,t between RLS-90 and RLS-19 for
di�erent vehicle types. Based on Wolfram Bartolomaeus (2019)

As stated earlier, the 'long, straight lane' approach was discontinued in the RLS-19.
Instead, a link segmentation approach has become mandatory. Here, the road has to be
split into smaller segments so that each segment has uniform conditions along its length.
In addition, the length l of a segment should not exceed half of the distance between the
midpoint of the segment and the receiver s, i.e.:

l <
s

2
. (5.11)

The concept of link segmentation is also shown in �gure 5.5 (also compare to �gure
5.1). It should be noted that the condition in equation 5.11 also means that, in general,
segments closer to the receiver will be shorter. These will also be the more important
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ones, as they will contribute most to a receiver's immission. With growing distance to
the receiver point, segments will be longer. This ensures that accuracy is highest for the
closest and more important segments.

Figure 5.5: Link segmentation in the RLS-19

5.2.2 Implementation and Assessment

To comply with the new guideline and the segmented link approach, one can de�ne link
segments kj for each link j. Equation 5.7 thus sums up over all segments of each link:

Leq,i,t = 10 · log10
∑
j

∑
kj

10
0.1·(LW,kj ,t

+10·log10[lkj ]−DA,kj
−DRV1,kj

−DRV2,kj
) (5.12)

MATSim uses a mesoscopic queue-based representation of tra�c �ow. As such, average
speeds and volumes can only be analyzed at the link level. MATSim networks are usually
created from OSM ways. In OSM, it is assumed that road surface and gradient stay
constant across a way. Therefore, it is assumed that tra�c volumes and speeds, vehicle
type shares, velocities, gradient and road surface of each link segment stay constant
across the full link. Applying this assumption to equation 5.10 leads to (see Appendix
for a step-by-step transformation):

Leq,i,t = 10 · log10

[∑
j

(
100.1·LW,j,t · cj

)]
, with (5.13)

cj =
∑
kj

10
0.1·(Dinter(xkj )+10·log10[lkj ]−DA,kj

−DRV1,kj
−DRV2,kj

) (5.14)

Now only LW,j,t is dependent on t. The corrections for all segments cj only need to
be calculated once and can be stored as a single correction term during a pre-processing
step. This means that no matter how detailed links are split, the memory requirement
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remains the same. Since cj is a simple sum, segments can be processed one by one
by addition, which again keeps memory requirements low. The link segmentation was
implemented by employing a recursive algorithm, as shown in algorithm 1. The link is
treated as a single segment �rst. If the length of the link exceeds the maximum length
condition, the link is recursively split into smaller segments. For each of the segments,
correction terms are added up according to 5.14. As stated earlier, this process happens
once upon initialization. For the immission calculations in the individual hours t, the
emission LW,j,t is then multiplied by cj .

Algorithm 1: Link Segmentation and Correction Term Calculation

foreach receiver point i do
look up relevant link candidates in a 500 meter (con�gurable) bu�er radius;
foreach relevant link j do

create segment kj for the whole link;
cj = processSegment(i, kj);

end

end

Function processSegment(i, kj):
Data: Receiver point i, link segment kj with points P0 and P1

Result: correction term cj
de�ne ckj = 0;
identify midpoint Mkj of segment kj ;
calculate distance between receiver and midpoint di,Mkj

;

calculate max length maxL =
di,Mkj

2 ;
calculate length lkj of segment kj ;
if lkj < maxL then

ckj+ = calcSegmentCorrection (kj);
else

de�ne left point PLkj at
maxL

2 to the 'left' of Mkj ;
de�ne right point PRkj at

maxL
2 to the 'right' of Mkj ;

create segment PLkjPRkj ;
ckj+ = calcSegmentCorrection (PLkjPRkj );
create left segment P0PLkj ;
ckj+ = processSegment(P0PLkj);
create right segment PRkjP1;
ckj+ = processSegment(PRkjP1);

end

return cr,x
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Figure 5.6 shows the di�erences in resulting LDEN for the old and the new implemen-
tation. One can see that the RLS-19 results in slightly louder values around the road
sources. In addition, while the RLS-90 implementation shows erratic behavior around
the ends of links, the RLS-19 implementation produces smoother results at link ends and
around the whole network. This is driven by the fact that the RLS-19 was implemented
with a link segmentation approach while the RLS-90 relies on the angle correction as
discussed in 5.1.
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Figure 5.6: Illustrative presentation of LDEN values for a) the old RLS-90 and b) the new
RLS-19 implementation as well as c) their di�erences for the illustrative scenario.
Di�erences based on a decile scale.
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5.3 Correction for Intersections

The intersection correction Dinter(xkj ) is linearly dependent on the distance xkj from
the point source of the link segment kj to the nearest intersection and is calculated as
follows:

Dinter(xji) = κτ ∗max
{

1− xji
120

; 0
}

(5.15)

Here, κτ is the maximum correction term for the intersection type τ as de�ned in table
5.1. The table also shows the OSM tags that were used to identify the location of
intersections during data preparation.

Table 5.1: Maximum correction terms κτ and respective OSM identi�er tags.

Type τ Correction κτ in dB(A) OSM Tag
signalized intersection 3 'highway=tra�c_signals'

roundabout 2 'junction=roundabout'
other 0 -

5.4 Correction for Road Surfaces

The surface correction Dsurf,m(vkj ,m,t) is de�ned for di�erent surfaces and depends on the
vehicle type and its speed. Due to the lack of surface data, the di�erentiation of surface
types was limited to the surfaces with a positive correction term (i.e. louder surfaces).
These can commonly be obtained by using OSM data. Table 5.2 shows the implemented
link between OSM tags and surface correction terms.

Table 5.2: Surface correction terms for di�erent speeds and surfaces and their respective OSM
identi�er tags.

Surface type Dsurf,m(vkj ,m,t) in dB(A) for v >= ... OSM Tag
...30 km/h ...40 km/h ...50 km/h

cobblestone with smooth surface 1 2 3 'surface=sett'
other cobblestone 5 6 7 'surface=cobblestone'

5.5 Correction for Gradients

The gradient correctionDgrad,m(g, vkj ,m,t) depends on vehicle typem = {car,truck1,truck2},
speed vkj ,m,t and gradient g and is de�ned as follows:
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Dgrad,car(g, vkj ,car,t) =


g+6
−6 ·

90−min(vkj,car,t;70)
20 , g < −6

g−2
10 ·

(vji,car,t+70

100 , g > 2

0 else.

(5.16)

Dgrad,truck1(g, vkj ,truck1,t) =


g+4
−8 ·

vkj,truck1,t−20
10 , g < −4

g−2
10 ·

vkj,truck1,t

10 , g > 2

0 else.

(5.17)

Dgrad,truck2(g, vkj ,truck2,t) =


g+4
−8 ·

vkj,truck2,t

10 , g < −4
g−2
10 ·

vkj,truck2,t+10

10 , g > 2

0 else.

(5.18)

The gradient can be obtained from digital elevation models. Another source can be
OSM by evaluating the 'incline=...' tag. However, this tag is not widely present and
sometimes only tagged as 'up' or 'down' without a detailed percentage.

Since Munich is located in the Munich gravel plain and Berlin-Brandenburg is part of
the North German Plain, most parts of the study areas in this thesis are essentially �at.
For example, the largest road elevation in Munich has a maximum gradient of 4% which
would result in a negligible correction term. For the scenarios in this thesis, the gradient
correction is therefore set to 0.

5.6 Correction for Electric Vehicles

In line with uncertain noise bene�ts of electric vehicles, there is no distinction between
the type of engine in the o�cial guideline. However, as discussed in section 2.4.2, some
reductions in noise could emerge from fully electric �eets. For scenarios that model �eets
of electric vehicles, the calculation of emissions was adapted by adding another correction
term Delectric(vji,k,t), similar to the approach of (Verheijen and Jabben, 2010). For this
term, a simple interpolated speed-based reduction was implemented which is based on
the reductions presented by (Campello-Vicente et al., 2017):

Delectric(vkj ,m,t) = 5.59 · e−0.031·vkj,m,t (5.19)

In line with the RLS-19, the lower bound is set to 30 km/h which is the minimal speed
that is assumed for noise estimation. Thus, equation 3.1 becomes:

LW,kj ,m,t(vkj ,m,t) = LW0,m,t(vkj ,m,t) +Dsurf,k(vkj ,m,t) +Dgrad,m(g, vkj ,m,t)

+Dinter(xkj ) +Dre�(h) +Delectric(vkj ,m,t)
(5.20)
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Figure 5.7: Construction of the shielding term. Sectional view on the xy-z plane.

5.7 Correction for Shielding

This section introduces noise shielding of urban structures to the MATSim noise ex-
tension. More speci�cally, the correction term Dz

k,j that, according to FGSV (2019), is
applied to equation 3.7 is implemented in the code. As this has been identi�ed as one
of the largest limitations of the initial implementation and is less straightforward to im-
plement, this correction is presented in more detail. In contrast to previous versions, the
new implementation takes into account the shielding of noise at building facades. The
simpli�ed approach is based on the German noise modeling guidelines.

A previous implementation for the old RLS-90 and the 'long, straight lane' approach
has been described in Kuehnel et al. (2019).

5.7.1 Implementing the Shielding Correction

The correction term is calculated as follows:

Dz
kj ,i

= 10 · log10[3 + 80 · zkj ,i ·K
w
kj ,i

] (5.21)

Here, zkj ,i is the shielding term for receiver point i in relation to link segment kj and
Kw
kj ,i

is a weather correction. The shielding term zkj ,i is the extra distance that sound
beams have to travel because of the shielding (see �gure 5.7). It is obtained by adding up
the distance between the emission source and �rst edge of di�raction Akj ,i, the distance
between last edge of di�raction and receiver point Bkj ,i and the sum of distances between
di�raction edges Ckj ,i between Akj ,i and Bkj ,i, minus the distance between receiver point
and the midpoint of the segment skj ,i:

zkj ,i = Akj ,i +Bkj ,i + Ckj ,i − skj ,i (5.22)
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Figure 5.8: An example for an obstructing polygon (red) and a polygon not considered for
shielding (green). Bird's eye view on the x-y-plane.

Kw
i,j is a distance dependent correction:

Kw
kj ,i

= exp

(
−1

2000

√
Akj ,i ·Bkj ,i · skj ,i

2 · zkj ,i

)
(5.23)

For an obstruction to be taken into account into the shielding correction, it has to
intersect the direct line of sight between emission source and receiver. Therefore, the
algorithm will check whether the line of sight is obstructed (see �gure 5.8).

After determining all obstacles between the receiver point and the link, the shielding
value zkj ,i is calculated. The height of each obstacle is assumed to be given and �at roofs
are assumed. The construction of the distances Akj ,i,Bkj ,i and Ckj ,i is a two-dimensional
shortest path problem around the obstacles. This is equivalent to �nding the convex hull
of the edges of sound di�raction. One way to solve it is the so-called gift wrapping algo-
rithm (also known as Jarvis march, based on Jarvis (1973)). It is outlined in the following
for the problem at hand. Starting from the receiver point, the slopes of the connections
to all following edges are calculated. The edge with the highest slope is then �xed as
the next considered edge of di�raction, from which the slopes to the remaining edges are
determined. This process continues until the entire path between the receiver point and
emission link is constructed. Finally, the lengths of the path segments are used to de-
termine zkj ,i and the shielding correction term Dz

kj ,i
. The process is outlined in �gure 5.9.
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Figure 5.9: Construction of the shortest path around the obstacles, starting from the receiver
on the left. After calculating the slopes to all possible edges, the edge connected
with the highest slope is �xed (thick lines). The procedure is repeated starting
from the last �xed edge until the emission source is reached.
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To conclude, the approach can be summarized as follows:

Algorithm 2: Shielding correction term calculation
Data: Receiver point i, link segment kj
Result: shielding correction term Dz

kj ,i

identify midpoint Mkj of segment kj ;
construct line of sight iMkj ;
initialize set of edge candidates S;
identify obstacle candidates Ω from spatial search tree look-up by using the
bounding box of iMkj as a �rst intersection criteria;
foreach o ∈ Ω do

check actual intersection: I = iMkj ∩ o;
if I 6= ∅ then

store intersection edges: S = S ∪ I;
end

end

initialize set of shortest path edges Z;
initialize last �xed edge Efixed = i;
while Efixed 6= Mkj do

initialize max slope a = −∞;
initialize temporary edge T ;
foreach remaining edge Ecurr ∈ S do

calculate slope m of EfixedEcurr;
if m >= a then

a = m;
T = Ecurr;

end

end

Efixed = T ;
Z = Z ∪ Efixed;
S = S \ Z;

end

determine Akj ,i,Bkj ,i and Ckj ,i from edges in Z;
calculate zkj ,i following 5.22;
calculate Kw

kj ,i
following 5.23;

calculate Dz
kj ,i

following 5.21;

It is worth noting that the runtime for immission calculation increases signi�cantly
when the impact of shielding is included. The computationally most expensive part is
checking for geometric intersection which was performed using the Java Topology Suite
(JTS) library 1. A proper spatial search tree reduces unnecessary intersection checks and
was the most crucial part of keeping computation times feasible.

1https://github.com/locationtech/jts
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5.7.2 Illustrative Shielding Example

The implemented shielding functionality is �rst tested in the illustrative scenario that
was introduced in chapter 4. This time, two detached buildings are added on the left, as
shown in �gure 5.10. The two buildings have di�erent heights (10 meters for the upper
building, 20 meters for the lower building). In addition, a larger building block with an
inner yard and a small gap is added on the top right. The building block has a height of
20 meters.

Figure 5.10: Obstacles in the illustrative scenario.

In the next step, the calculation of noise was done with and without the shielding
correction. The results can be seen in �gure 5.11. There are multiple noteworthy obser-
vations. First of all, the e�ect of shielding is clearly visible behind the de�ned obstacles.
For the detached buildings, the shielding correctly has a slightly stronger impact behind
the lower building when compared to the upper building since it is twice as high. One
can see that the noise propagates in a cone shape to the left of the buildings. Lastly, it is
observable that shielding is more extensive when the receiver is very close to an obstacle.
Receiver points that lie further away experience larger immission values as their view
on the roads is not blocked completely. For the building block, it can be observed that
the inner yard correctly shows considerably lower noise immissions. The reductions are
slightly lower near the gap of the building block on the left.

5.7.3 Realistic Use Case of the Shielding Implementation

Now, the shielding impact is tested in a densely urban setting in the Munich scenario.
Noise damages (see section 3.4.3) are calculated to answer the �rst research question of
this thesis which aims to assess the impact of neglecting shielding corrections in dense
urban environments. The di�erence between noise damages obtained with and without
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Figure 5.11: Resulting LDEN values a) without and b) with the new shielding implementation.

the shielding calculation will serve as a proxy to quantify the impact.

5.7.3.1 Scenario Preparation

For the setup, travel demand is �rst generated by MITO and subsequently assigned in
MATSim. Around 8.8 million trips with a car share of 43% were created for the whole
study area. A �ve percent sample of the trips was converted into MATSim agents, which
was identi�ed as a reasonable tradeo� between computation time and model accuracy
(Llorca and Moeckel, 2019).

The most common structures in an urban environment are buildings. It is crucial to
have an accurate representation of buildings in order to estimate the impact of shielding.
In general, noise levels are lowered substantially behind larger building blocks and in
inner yards. Volunteered Geographic Information (VGI) like OSM contain information
about building footprints. OSM data has been downloaded for the Munich metropolitan
study area by cutting the Bavarian dataset provided by Geofabrik 2 to the study area de-

2https://download.geofabrik.de/
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lineation. In a next step, all objects tagged as buildings have been extracted and saved
to a geojson format which is the standard that has been used to read in obstacles in
the noise shielding extension. Figure 5.12 shows a map of the distributions of buildings
obtained from OSM. The �ve core cities Munich, Augsburg, Ingolstadt, Landshut and
Rosenheim clearly stick out. Figure 5.13 shows a close-up view of buildings in Munich.
While speci�c details on height or number of levels are sparse, the actual number and spa-
tial extent of buildings is considered su�ciently complete. In cases where no height tag
or level tag was present, an average building height of 10 meters was assumed, which is a
more conservative approximation for buildings with three to four levels (Nexiga GmbH,
nd).

Figure 5.12: Buildings in the Munich metropolitan area.

Within Munich, 160,490 building features were obtained. Height information of build-
ings was partially given by the 'height' OSM tag (1,286 cases). More common, the
number of levels is given in OSM where an average height of 3.5 meters per level was
assumed (20,394 cases).
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Figure 5.13: Buildings in Munich.

5.7.3.2 Resulting Shielding Impacts for Munich

The receiver point grid was de�ned with a spacing of roughly 15 meters in x- and y-
direction. A �ne grid is necessary to capture the e�ect of shielding in backyards. A grid
covering the center of the city with a dense building structure was created. The grid is
roughly 10 kilometers from East to West and 5 kilometers from North to South. In total,
about 225,000 receiver points were evaluated.
Figure 5.14 shows a comparison of simulated noise immission values expressed as the

LDEN value (day-evening-night index) for the inner city of Munich (part of the full re-
ceiver point grid). The building polygons are visualized on top. On the left side, the
immissions are shown without taking into account the shielding correction and mainly
decrease with the distance to roads. On the right side, the shielding correction is in-
cluded. Taking into consideration the e�ect of shielding yields a major reduction in noise
levels in most of the backyards. In addition, larger areas behind buildings are 'shadowed'
and thus show a reduction of immissions. As expected, unobstructed receiver points (e.g.
close to the roads) do not seem to be a�ected by shielding. Overall, the results con�rm
the functionality of the implemented shielding correction feature.

In the next step, noise exposure costs were analyzed using equation 3.11 and adding
up costs at all receiver points. The dwelling locations of residents are de�ned in the
synthetic population. As these were mapped to OSM buildings, 'home' activities were
taken into account for the exposure analysis to obtain a realistic distribution of activity
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locations. Without shielding correction, daily exposure costs (or noise damages) amount
to 1,945.36 EUR. When taking into account the e�ect of shielding, the noise damages
decrease to 1,555.69 EUR. This indicates that in densely populated urban areas, a noise
exposure analysis that neglects the e�ect of shielding may overestimate the damages by
up to 20%.

Figure 5.14: Immission LDEN levels before (left) and after (right) taking shielding into account.
While unprotected areas remain the same, covered areas and backyards of building
blocks show a major noise reduction.

To sum up, this section answers research question 1 of this thesis, which aims to identify
the impact of neglecting shielding corrections in dense urban environments. From the
use case shown here, the neglection would lead to an overestimation of noise damages
by up to 20%. However, it should be noted that this may be highly case-speci�c as it
largely depends on the distribution and interplay of roads, buildings and tra�c volumes
and speeds.

5.8 Re�ection Correction

In addition to the shielding e�ect, buildings and obstacles also exhibit a re�ection e�ect.
Re�ection occurs when noise hits a (smooth) wall and is re�ected by it. The guideline
RLS-19 considers re�ections in two ways:

� as part of the emission calculation. This is the correction termDre�,j(h) in equation
5.10 which only depends on the link segment.

� as part of the immission calculation. This includes the two correction termsDRV1,i,j

and DRV2,i,j in equation 5.7 for �rst and second-order re�ection, respectively.

The implementation is described in the respective subsections that follow.

5.8.1 Link segment dependent re�ection correction

This correction accounts for multiple re�ections and is applicable if the link segment j is
between two parallel walls with a distance no further than 100 m. Walls are considered
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parallel if their angle di�erence is less than �ve degrees. The term is de�ned as:

Dre�,j(h) = min
[
2 · h

w
; 1.6

]
(5.24)

where h is the height of the walls. If the walls have di�erent heights, the lower height is
used. w is the distance of the re�ecting walls in meters.

For the implementation, a simple ray-casting algorithm was used, in which a beam is
projected on both sides perpendicular to the link segment. The spatial search tree that is
already used for the shielding e�ect is then used to �nd possible polygons that intersect
the visible beam. If a polygon intersects the view beam, the edge that intersects the
beam �rst is taken. If there is an edge on both sides of the link, their distance from
each other is less than 100 m and they are parallel according to the above de�nition, the
correction term is applied. The conditions for multiple re�ections are illustrated in �gure
5.15.

Figure 5.15: Illustrative scenario for multiple re�ections. The link segment is surrounded by
two obstacles with almost perpendicular walls and a distance w of less than 100 m.

64



5.8 Re�ection Correction

Table 5.3: Re�ection correction terms

Re�ector type DRV1,i,j and DRV2,i,j in dB
Building walls and re�ecting noise walls 0.5
antire�ective noise walls 3.0
highly antire�ective 5.0

5.8.2 Receiver dependent re�ection correction

This term accounts for re�ections along single walls which are directed to a speci�c
receiver point. The RLS19 requires the consideration of re�ections when the height hR
of the re�ecting area is at least 1m. In addition, the condition hR ≥ 0.3 · √aR, where aR
is the smaller of the distances of source and re�ector or re�ector and receiver, must be
met.
In the case of re�ection, the emission link segment is mirrored on the axis of the re�ecting
surface, resulting in another -theoretical- emission source behind the re�ecting surface.
This process is shown in �gure 5.16. Note that only the part of the mirrored segment,
which is obscured by the re�ecting area, is considered (right side of �gure 5.16).

Figure 5.16: Construction of re�ected links behind re�ecting barriers.

To calculate the immission at the receiver, the mirror sound source is treated as a
regular sound source. However, the re�ection loss DRV1,i,j for the �rst-order re�ection
and, additionally, in the case of second-order re�ection, DRV2,i,j are subtracted from the
immission contribution of the mirror link (see table 5.3).
Figure 5.16 showed the construction of re�ected links when the re�ecting area is iden-

ti�ed. The more complicated part is to e�ciently identify those walls that actually
re�ect a given link segment for a given receiver. For this purpose, a two-step process was
implemented, which is explained in the following. Figure 5.17 shows a simple theoreti-
cal scenario with a receiver point (blue), two link segments j1 and j2 (black) and four
polygons with edges bcde, fghi, jklm and nopq (apricot).
During immission calculation, the noise module iterates over all receiver points and for

each of these points over all relevant links. Therefore, in the �rst step, all possible walls
that could re�ect noise from a link segment are identi�ed for each receiver point. There-
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Figure 5.17: Theoretical scenario for identi�cation of re�ection facades.

fore a simpli�ed angular sweep algorithm based on Asano (1985) was implemented. For
each polygon in a con�gurable radius around the receiver point, the maximum possible
angle between all polygon nodes is calculated. This is illustrated by the angles α, β, γ
and δ in �gure 5.18. This angle is divided into 10 (con�gurable) incremental angle steps.
For each step, a visibility ray is cast and it is checked which edge intersects the visibility
ray �rst. It is irrelevant where the intersection point is, so expensive intersection calcula-
tions can be avoided. It is only necessary to check whether the endpoints of an edge are
on di�erent sides of the visibility ray. The resulting re�ection candidates are indicated
in blue in �gure 5.18 (c, f, g, n, q, m). Note that for simpli�cation, only �ve visibility
rays for each polygon are shown.

When all relevant link segments are iterated over, the second part of the algorithm
identi�es all edges for each segment for which there is a direct visual relationship. Thereby
only edges are considered, which were identi�ed as possible re�ection candidates in the
�rst step. To simplify, a direct vision is assumed if there is no obstacle between the
midpoint of the edge and the segment's midpoint. In order to check this, a visibility ray
is generated between the midpoints. All surrounding polygons around the ray are queried
from the spatial search tree. For each of these polygons, it is then checked whether one
of their edges intersects the visibility ray. If no polygon interrupts the ray, there may be
a re�ection between the edge and segment on the receiver. This part of the algorithm is
illustrated in �gure 5.19.

While segment j1 (red) has no obstacles between its midpoint and possible re�ection
candidates, segment j2 can only re�ect on edges m, q and n, since the other edges are
blocked by edges b. As such, there are edges that can re�ect both segments (m, q, n -
yellow) and edges that can only re�ect segment j1 (c, f, g - magenta).
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Figure 5.18: Ray casting for re�ecting facade identi�cation step 1.

Figure 5.19: Ray casting for re�ecting facade identi�cation step 2.

Note that the identi�cation of possible re�ection edges does not necessarily mean that
there actually is a re�ection (for example, edge n is very unlikely to have a re�ection on
the receiver point). For each identi�ed segment-edge tuple, the actual re�ection has to
be constructed as shown in �gure 5.16.
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This approach described the construction of �rst-order re�ections. Because of the
complexity of computation and comparatively small impacts of �rst-order re�ections,
the second-order re�ections have not been implemented. A straightforward approach
would be to extend the �rst step of the algorithm to mark for each possible �rst-order
re�ection edge all other edges which are visible from the �rst order edge candidate.

5.9 Discussion of the Noise Model Extensions

The RLS-19, including a link segmentation approach and various correction terms, were
successfully added to MATSim's existing noise prediction model. It is shown that open-
source building data can be used for modeling noise shielding. As expected, the improved
noise computation methodology yields reduced noise levels in backyards and behind larger
buildings. The comparative exposure analysis for the Munich use case reveals a signi�cant
overestimation of noise damage costs when shielding e�ects of buildings are neglected.
As OSM data do not provide complete information about building heights, more compre-
hensive data sources may improve the model accuracy. The impact of shielding e�ects
on exposure analysis may be analyzed in more detail by looking at other noise-sensitive
activity types such as education or o�ce activities. It should be noted that the shielding
e�ects presented here do not include shielding from noise protection walls, which are
commonly not included in OSM data. In addition, shielding e�ects can also occur at
larger vegetation belts such as dense forests or hedges (Samara and Tsitsoni, 2011; Ow
and Ghosh, 2017). Regardless of the di�culty of obtaining vegetation data, vegetation
is not considered in the o�cial noise prediction models such as the RLS-19. Most of the
studies identi�ed a shielding e�ect for bands with a width of 15 to 100 meters. Since this
thesis focuses on urban environments of large cities where such large vegetation bands are
relatively uncommon, these e�ects are not considered further. The last remaining com-
ponent of the RLS-19 are second-order re�ections which could still be added in the future.

The presented enhanced noise model will be applied in the following chapters and use
cases. The �rst use case is presented in the next chapter and analyzes the impact of road
tra�c noise on rent prices.
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on Rent Prices

The sick die here because they can't
sleep,/ Though most people complain
about the food / Rotting undigested
in their burning guts. / For when
does sleep come in rented rooms? / It
costs a lot merely to sleep in this city!

Juvenal, Roman poet

A goal of this thesis is to add scenario sensitivity for tra�c noise in a microscopic
ILUT model. Therefore, as the next step, the impact of simulated car tra�c noise on
real rent prices in Munich is analyzed and compared to existing studies. It is shown
that modeled noise values from the transportation model are able to explain signi�cant
impacts on rent prices when using a hedonic pricing regression. When using noise as
a continuous variable, price discounts of 0.46% per dB(A) are found. A discount of up
to 10% for particularly loud locations is estimated when noise is used as a categorical
variable. Care should be taken when controlling for measures of centrality that correlate
with noise. While the usage of simulated noise values of a transport simulation together
with microscopic accessibilities can be considered novel, the results are in line with results
of previous studies and con�rm that environmental aspects can and should be considered
in integrated models.

This chapter deals with assessing whether simulation-based tra�c noise is able to
explain price discounts in apartment rental prices. Previous �ndings based on the RLS-
90 implementations have been published in Kuehnel and Moeckel (2020). The results
presented here follow the same basic methodology, however, the calculation of noise
has been updated to the newly implemented RLS-19 guideline. In addition, the noise
calculation now accounts for tunnels and more signi�cant variables have been added to
improve the estimation.

6.1 Apartments - Data Collection and Analysis

In contrast to most other studies that focus on the total value of real estate properties,
the present study analyzes rent prices of individual apartments. This allows better in-
tegration with the land use model, as agents in SILO relocate based on � among other
location factors � rent prices of dwellings. Data on rent prices for the city of Munich
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were collected by observing advertisements on immobilienscout24.de 1, one of the largest
online platforms for real estate properties in Germany. In total, the collected database
contains 3,144 geocoded records of apartments from the years 2016 to mid of 2018. The
mean rent per square meter over these three years was 17.27 EUR, 17.90 EUR and
18.03 EUR, respectively. For the estimation, the rent prices were scaled to the base year
of 2016 to correct for this gradual increase. The locations of the objects and their respec-
tive price per square meter can be seen in �gure 6.1. As expected, the price increases
towards the city center. The corrected data show a mean total rent of 1,209 EUR and a
mean rent per square meter of 18.04 EUR/m2 for Munich, which is considered to be the
most expensive housing market in Germany (o�cial data for newly rented apartments:
18 EUR/m2 (Bettina Funk, 2017)). In addition to monthly rent and size, the collected
records include information on the number of rooms, construction year, level, number
of accompanying parking spots, state (i.e. an indicator of how 'new' the apartment is)
and quality ('Average dwelling quality', 'Superior dwelling quality' and 'Luxury dwelling
quality') as reported by the property owner or real estate agent. The reported quality
of an apartment is subjective. However, it is assumed that the three classes exhibit an
ordinal scale and represent, on average, di�erences in quality levels reasonably well. The
state variable has seven levels: 'First time use', 'New building' (but not rented for the
�rst time), 'First time use after restoration', 'Restored', 'Modernized', 'Well-kept' and
'Renovated'. The three categories 'Restored', 'Modernized' and 'Renovated' are harder
to interpret and are often used interchangeably. However, they can be distinguished as
follows (Felix Mildner, 2019):

� 'Restored' usually means that the apartment or building was damaged or had a
defect that had to be professionally repaired. Examples for this are damp basements
or water damages.

� 'Modernized' means that the apartment or building is updated to current heating
and/or insulation standards and also includes larger interventions.

� 'Renovated' apartments have undergone smaller or optical updates, which are not
necessarily done by professionals. Examples are the installation of new �oors or
window blinds.

Other information, such as rent and area, is assumed to be correct, as there is no incen-
tive to provide wrong information, as long as the advertisement is not fake. Suspicious
outliers with unrealistic rent prices per m2 (i.e. lower than 5 or higher than 50 EUR per
m2) were excluded from the �nal dataset.

6.2 Simulated Noise Levels of Georeferenced Apartments

Starting from 2011, the land use model has been run until the year 2016, which will serve
as the reference year. Subsequently, travel demand for the whole Munich metropolitan

1https://www.immobilienscout24.de/
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Figure 6.1: Apartment prices per square meter of the obtained records.

study area was generated using MITO. In total, around 8.8 million trips were created
in MITO, of which around 3.5 million trips were made by car. A ten percent sample of
all car trips was assigned in MATSim to get a trade-o� between computational run time
and reasonable results. The network capacities were scaled down accordingly. In total,
175,340 car trips were assigned. Since the travel demand provided by MITO is already a
good starting solution that includes decisions on mode and departure time choice, only
100 iterations of MATSim were run for assignment and route choice. A previous study for
the same study region con�rmed the e�ciency of this combination of sample size and the
number of iterations (Llorca and Moeckel, 2019). Figure 6.2 shows the leg histogram for
the simulated car users in the last iteration. It represents the number of agents that ar-
rive, depart and are en route over the course of the day. One can identify a morning peak
at 8 AM and an afternoon peak at around 4 PM. As it is shown, the assignment not only
covers the peak hours but also gives reasonable tra�c �ows throughout the day, which
is important for averaged daily noise levels. A simple representation of heavy-duty ve-
hicles is included and has been disaggregated from German-wide aggregated commercial
�ows. For the remainder of this chapter, only the city of Munich itself will be analyzed.
The simulation of the greater study area was still required to capture in- and outbound
tra�c. The focus on a single city for noise impact evaluation is necessary to get a more
homogeneous data set, which inherits a more or less homogenous housing market. Rural
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areas around Munich feature di�erent housing markets in which the share of property
owners is much higher compared to the share of tenants.

Figure 6.2: Leg histogram of the MATSim simulation

Noise levels of car tra�c were obtained using the noise contribution of MATSim as
described in chapter 3 with the updated RLS-19 approach and the shielding extension
presented in chapter 5. Sound insulation of dwellings is hard to measure and not available
in the dataset of apartments and was thus ignored. Most buildings in this area are built
out of stone and have at least double-glazed windows, leading to comparable insulation
levels. To get an average noise level for a whole day, immissions are expressed in weighted
average LDEN values as de�ned in equation 2.5. Figure 6.3 shows computed noise emission
values for links in Munich during the eight AM peak hour. The maximum emission is 77
dB(A) and was observed on the outer motorway ring. The points in �gure 6.3 represent
the obtained apartment records. Their color is graduated based on LDEN immission
values. One can see that noise is highest along major roads and near the city center.
Apartments in the outskirts show a lower LDEN value.
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Figure 6.3: Apartment noise immission values.
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6.2.1 Plausibility Analysis

So far, the presented noise model and its extensions have not been validated. Unfortu-
nately, there are no available data from systematically measured tra�c noise for Munich.
However, the Bavarian Environmental Agency (BEA) publishes strategic noise maps as
part of the ful�llment of the EU noise directive. Therefore, these data are used to check
the simulated MATSim noise values for plausibility. The BEA data is published as a
web map service (WMS)2. The service allows querying the underlying data via HTTP
requests that include a GetFeatureInfo query3. Subsequently, all noise values at the
geocoded locations of the apartments were queried one by one. This resulted in a total of
422 unique locations of apartments for which a reference value of the BEA was available.

Figure 6.4: Histogram of di�erences of noise immission values LDEN,MATSim − LDEN,ref .

Figure 6.4 shows the distribution of di�erences between the simulated MATSim values
LDEN,MATSim and reference values LDEN,ref from the BEA. One can see that the di�er-
ences almost form an unskewed normal distribution. The mean is 3.93 dB(A) and the
median is 3.65 dB(A), which suggests that the MATSim noise values on average over-
estimate immissions by 3 to 4 dB(A) when compared to the values obtained from the

2https://www.umweltatlas.bayern.de/mapapps/resources/apps/lfu_laerm_ftz/index.html?

lang=de
3see https://geoportal.bayern.de/getcapabilities/CapabilitiesViewer?ows_url=https:

//www.lfu.bayern.de/gdi/wms/laerm/hauptverkehrsstrassen?&format=html&link=true for a de-
scription of available services. An example for the noise value at x=4465949 and y=5337789 would be:
https://www.lfu.bayern.de/gdi/wms/laerm/hauptverkehrsstrassen?request=GetFeatureInfo&

service=WMS&version=1.3.0&crs=31468&bbox=4465749,5337589,4466149,5337989&width=400&

height=400&layers=mroadbylden&i=200&j=200&query_layers=mroadbylden&INFO_FORMAT=text/

plain
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BEA. While there seems to be a systematic o�set, the general relation appears plausible,
as can be seen in �gure 6.5. The Pearson's correlation coe�cient between both measures
is r = 0.68, which can be considered moderately high.

Figure 6.5: Scatter plot of LDEN,ref versus LDEN,MATSim.

Figure 6.6 shows the spatial distribution of di�erences between LDEN,MATSim and
LDEN,ref . The �gure does not suggest that the di�erences are clustered or form a speci�c
spatial pattern at a large scale.
To put the bias in the di�erences in perspective, a di�erence of 3 dB is often seen

as the lower bound of a considerable change in German law (BImSchV, 1990). Several
reasons could lead to the systematic bias:

� The underlying tra�c volumes and speeds are overestimated by the underlying
simulation in MATSim. While the Munich model has been calibrated to represent
volumes reasonably well, validation on speed was not possible as of yet.

� The BEA does not only have access to real-world tra�c counts but also to better
models of the built environment (i.e. buildings, noise protection walls). The OSM
buildings used in the MATSim simulation often lack detail on the actual dwelling
height and may systematically bias the shielding e�ect.

� The data from the BEA is based on the 'Vorläu�ge Berechnungsmethode für den
Umgebungslärm an Straÿen (VBUS, engl: Preliminary calculation method for en-
vironmental noise at roads)` from 2006, a preliminary guideline for the implemen-
tation of the EU environmental noise directive (see section 2.2). The VBUS is
based on and similar to the RLS-90 guideline (Bartolomaeus and Schade, 2006).
As discussed in section 5.2.1 and as can be seen in �gure 5.4, the newly imple-
mented RLS-19 assumes higher base emission values for cars that could explain a
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Figure 6.6: Spatial locations of di�erences of noise immission values LDEN,MATSim−LDEN,ref
and network noise emissions.

large share of the bias (roughly 3 dB[A] at speeds between 40-50 km/h, a common
speed limit for primary roads).

� The data from the BEA only includes major roads with a volume above 8,200
vehicles per day. It is, therefore, possible that noise from roads with slightly fewer
volumes is omitted (especially if the receiver point lies in a side road) and, thus,
leads to a lower estimated noise value.

However, given that the mean di�erence is not prohibitively large, the correlation be-
tween both noise estimates is reasonably high and the data from the BEA is based on
an older guideline, the simulated noise values are considered acceptable for the following
analyses. It should be noted that the comparison with the BEA data cannot be seen as
validation as they, too, are model outputs and no measured 'ground truth'. As empha-
sized by Wolde (2003) and Murphy and King (2010), di�erences of �ve decibels are not
exceptional for outcomes of di�erent calculation methods.

6.3 Microscopic Accessibility Indicators

To account for higher prices closer to the city center, accessibilities measures are com-
monly used (Xiao Y, 2017). Accessibility can be understood as the potential for inter-
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action (Hansen, 1959). Various accessibility measures were tested, including distance
to the Munich city center, zonal accessibilities and microscopic accessibilities (Ziemke
et al., 2018). Based on model �t and reasonability of parameters, the latter was selected
for this research. The simple distance to city center measure cannot capture the spatial
structure of the city and ignores that some neighborhoods are connected better or worse
than others. The microscopic accessibility measure was preferred over the zonal indica-
tor to avoid spatial aggregation bias in larger zones. Ziemke et al. (2018) presented this
microscopic accessibility measure, which is integrated into the MATSim framework and
de�ned by the following logsum:

Ai =
1

µ
ln
∑
J

eµ·v
trav
i,j (6.1)

Where Ai is the accessibility at location i, µ is a scale parameter and vtravi,j is the
(negative) utility of traveling from i to opportunity j. Note that i and j are microscopic
places with x/y coordinates. The microscopic accessibility can be directly calculated
within MATSim for either a grid or for de�ned points i. Ziemke et al. (2018) showed
that opportunities j can be identi�ed with data from OSM, which makes the accessibil-
ity measure easy to calculate and the method transferable to other study areas. Results
suggest that this measure leads to intuitive patterns of accessibility. In this thesis, the
microscopic accessibility indicator is used as the centrality measure. A data set of all
amenities4 that would typically be identi�ed as activity locations (e.g. bars, shops,
doctors, banks, etc.) was retrieved from OSM for the whole study area and used for
the accessibility calculation in MATSim. The selection of OSM tags is shown in table
6.1. It is based on the accessibility extension by Ziemke et al. (2018) (in the version of 5).

The resulting MATSim facilities for the accessibility calculation based on OSM ameni-
ties for the whole Munich study area are shown in �gure 6.7. As expected, most ameni-
ties/facilities are located in the core cities. Facilities were collected for the whole study
area to avoid boundary e�ects at the city limits of Munich.

Figures 6.8 and 6.9 show computed microscopic MATSim accessibilities of recorded
apartments in Munich for the car and transit mode. Obviously, accessibility is the highest
in the city center. However, the �gure shows that accessibilities do not linearly decrease
with increasing distance to the center. Although the logsum is hard to interpret, one can
see that car accessibility, in general, is higher than transit accessibility, which suggests
that car travel times are shorter for most relations.

4https://wiki.openstreetmap.org/wiki/Key:amenity
5https://github.com/matsim-org/matsim-libs/blob/01167ed5fc375c2802c8c8c95d0a0defa78b7380/

contribs/accessibility/src/main/java/org/matsim/contrib/accessibility/utils/

AccessibilityFacilityUtils.java#L301-L343
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Table 6.1: OSM values for the 'amenity' tag used to identify amenities for accessibility calcu-
lations.

Group Value

sustenance

'bar'
'biergarten'

'cafe'
'drinking_water'

'fast_food'
'food_court'
'ice_cream'

'pub'
'restaurant'

education

'college'
'kindergarten'

'library'
'school'

'university'

transportation
'charging_station'

'fuel'

�nancial
'atm'
'bank'

healthcare

'clinic'
'doctors'
'hospital'
'pharmacy'

entertainment
'cinema'
'theatre'

other

'place_of_worship'
'police'

'post_box'
'post_o�ce'
'water_point'
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(a) Individual MATSim facilities

(b) Facility densities, based on logarithmic scale

Figure 6.7: MATSim faciltities converted from OSM amenities. a) individual facilities b) facility
densities based on a hexagonal grid.

79



6 Simulation-Based Tra�c Noise Impact on Rent Prices

Figure 6.8: Microscopic Car accessibilities.

Figure 6.9: Microscopic transit accessibilities.
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6.4 Hedonic Pricing of Noise Impacts on Apartment Prices

Hedonic pricing is used to estimate the impact of simulated tra�c noise on rent prices.
The theory was described by Rosen (1974). The idea is that in a competitive market,
the value of a composite good can be decomposed such that every component can be
attributed to an individual implicit value as a contribution to the total value. In the case
of real estate properties, di�erences in price can therefore be explained by the di�erent
attributes of each property. In the overview of Bateman et al. (2001), four groups of
explanatory variables are identi�ed:

� Structural variables (level, number of rooms)

� Accessibility variables (distance to city center, travel time to various points of
interest)

� Neighborhood variables (crime/ unemployment rates)

� Environmental variables (noise, pollution)

To infer the value of each component, multiple linear regression can be used:

y = α+ β1 · x1 + β2 · x2 + . . .+ βn · xn + ε (6.2)

Where y is the response variable or composite good. The parameter α is a constant term
and β1...n are estimated parameters for the predictor variables x1...n. The error term ε
accounts for variation that cannot be explained by the included predictor variables and
follows an independent identically distributed normal distribution with a mean of 0. In
this simple linear form, the change of one unit of xk would lead to a change of βk units
of y, all else held constant. In cases where a simple linear relationship is not justi�ed,
transformations to either response or predictor variable can be applied. Two commonly
used transformed models are the log-log-model and the semi-log model (Xiao Y, 2017).
In a log-log-model, predictor and response are transformed by taking the logarithm:

ln(y) = α+ β1 · ln(x1) + β2 · ln(x2) + . . .+ βn · ln(xn) + ε (6.3)

In a log-log formulation, the impact of a predictor can be interpreted as a (price)
elasticity (von Auer, 2016):

percentage change of response = β · percentage change of predictor (6.4)

Log-log relations can only be applied to positive continuous variables. In the semi-log
model, only the response variable is transformed by the logarithm:

ln(y) = α+ β1 · x1 + β2 · x2 + . . .+ βn · xn + ε (6.5)
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The semi-log model thus allows the incorporation of dummy variables. For small β,
the relation between response and the predictor is a semi-elasticity (von Auer, 2016):

percentage change of response = β · 100 · change in the predictor (6.6)

This makes the semi-log relation very convenient to infer the NSDI when noise is used
as a continuous variable:

NSDI = βnoise · 100 (6.7)

Where βnoise is the estimated noise coe�cient. In addition to using noise as a continu-
ous variable, the impact of a categorical classi�cation of noise was evaluated. As Theebe
(2004) pointed out, a noise level of 55 dB(A) can be identi�ed as the ambient noise level
from which housing prices start to decrease. Similarly, 55 dB(A) is the level at which
noise annoyance among residents is reported to rise (Ouis, 2001). This was con�rmed
when plotting rent prices against noise. Multiple re-classi�cations and re-estimations of
the models based on model �t and coe�cient signi�cance led to the four noise categories
low, moderate, loud and very loud noise. Low noise is used for immission values below the
55 dB(A) threshold. The moderate noise category describes values from 55 to 65 dB(A),
loud noise is de�ned between 65 and 75 dB(A) and very loud is de�ned for values above
75 dB(A). The calculated accessibility measures show a moderate correlation with noise
with a correlation coe�cient of 0.48 and 0.37 for car and transit accessibility, respec-
tively. While the correlation between independent variables is undesired in regression
analyses, this fairly moderate correlation is accepted to represent the positive impacts of
road infrastructure and to prevent introducing an omitted variable bias. However, car
and transit accessibility have a high correlation of 0.85. Therefore, it was decided to drop
the transit accessibility to obtain more precise estimates. The car accessibility is better
suited, as the accessibility variable is meant to account for the positive impact of road
infrastructure, which may not correlate as well with transit accessibility, which focuses on
individual access points and also includes rail and subway access. When including both
accessibilities into the model, the resulting coe�cients did not change signi�cantly, which
is why the more parsimonious model that only includes car accessibility was preferred.
The variables level and construction year turned out to be not signi�cant. The number
of rooms and the area of the apartment provided similar explanatory power and could be
used interchangeably. However, those two variables were highly correlated, and the more
signi�cant variable, namely area, was chosen. Obviously, the data set does not include
all variables that in�uence the rent price. It is assumed that those excluded variables
distribute randomly across all observations, and thus, are absorbed by the error term.

Two di�erent models are presented. Both of them include the log-transformed area,
the accessibility variables and the quality and state of the apartment as dummy variables.
The di�erence between both models is that one uses noise as a continuous variable while
the other one makes use of the categorical classi�cation. Table 6.2 shows the selected
variables and their usage in the models. Area is log-transformed, while the other variables
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Table 6.2: Selected variables and descriptive statistics for the hedonic pricing model.
Variable Unit Min Max Mean n (N=3,144) Used in model

Area m2 14 278 70.1 both (log transformed)
Noise (LDEN) dB(A) 45.61 83.05 61.84 1
Low noise Dummy 322 2 (baseline category)
Moderate noise Dummy 2000 2
Loud Noise Dummy 733 2
Very Loud Noise Dummy 89 2
Microscopic car acces-
sibility

- 6.54 8.52 7.91 both

Quality: Average Dummy 1,063 both
Quality: Superior Dummy 2,178 both (baseline category)
Quality: Luxury Dummy 289 all
State: First time use Dummy 434 both (baseline category)
State: New building Dummy 764 both
State: First time use
after restoration

Dummy 256 all

State: Restored Dummy 85 both
State: Modernized Dummy 171 both
State: Well-kept Dummy 915 both
State: Renovated Dummy 519 both

form a semi-log relation with the response variable. Multiple combinations by trial and
error led to the decisions of which transformations were applied based on coe�cient
signi�cance and model �t. The response variable in this study is the total monthly rent
for an apartment.

6.5 Results of the OLS Model

The results of the two speci�ed models are shown in table 6.3. All variables are signi�cant
at least at the 99.9% level. Robust standard errors were used to account for heteroscedas-
ticity in higher rent price ranges. Both models show similar and reasonable estimates for
area and quality. The area of an apartment has a positive impact on the total rent price.
Because of the log-log relation between predictor and response variable, the estimator
cannot be directly interpreted as price per square meter. Following equation 6.4 and
using estimates of table 6.3, a 1% change in area is thus re�ected in a change in rent
price between 0.7705% and 0.7706%, depending on the selected model. This non-linear
relationship means that prices per m2 are not constant and decrease at higher area levels.
This �nding was veri�ed by plotting rent price against area. The estimates for quality
show expected signs for 'Luxury dwelling quality' and 'Average dwelling quality', with
'Superior dwelling quality' being the baseline. According to equation 6.5, a luxury apart-
ment is rented for a roughly 17% higher price compared to superior apartments. Average
apartments are rented for 14% less. The adjusted R2 of both models are similarly high,
with a value of about 0.86.
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Microscopic car accessibility shows stable estimates across both model formulations.
For each unit increase of the microscopic accessibility, prices increase by about 22%.
The model that uses noise as a continuous variable shows a noise estimate of -0.0046.
Equation 6.7 leads to an NSDI of 0.46. An increase of 1 dB(A) thus refers to a discount
of 0.46% in rent prices. The minimum modeled noise level for an apartment is around
45 dB(A), while the maximum is 83 dB(A). The maximum implicated price di�erence
between the loudest and the quietest apartment is (83 dB � 38 dB) * 0.46 = 21%. When
noise is used as a categorical variable, a price discount of 10% for very loud apartments
can be found. For loud and moderately noisy apartments, the discount is 5.8% and 3.6%,
respectively.

Figure 6.10 shows a plot of predicted against actual values of the model that uses noise
as a categorical variable (model 2 in table 6.3) di�erentiated by apartment quality. It can
be seen that the linear �t matches well, although the variance of residuals increases with
rent level, especially for luxury apartments with prices above 2.000 EUR. This could be
explained by the fact that exclusive, high-quality apartments may feature a higher vari-
ance in rent prices, caused by unobserved (exclusive) variables such as concierge services,
shared gyms or whirlpools. The model gives a reasonable linear �t for the majority of
apartments with a price below 2.000 EUR.

The author tends to favor the second model, which uses noise as a categorical variable.
It is more reasonable that noise levels below the 55 dB(A) threshold do not have an
impact on price. Also, having noise as a continuous variable pretends an accuracy that is
not re�ected in the applied simulation approach. The microscopic accessibility measure
is assumed to be more accurate than zonal accessibility that has been used initially for
this study, especially for larger zones. In an earlier estimation, the noise estimates had a
substantially higher p-value and were less signi�cant when zonal accessibility was used.
In fact, microscopic accessibility overcomes the issues that results are in�uenced by zone
size. As the required input data is solely dependent on open source data from OSM, it
is easy to transfer this approach to di�erent study areas.

The accessibility measure can be seen as a confounding variable that avoids biases for
the estimates of noise. Accessibility is positively correlated with noise and price and
noise is negatively correlated with price. Omitting the accessibility measure, therefore,
leads to an underestimation of the negative impact of noise. When omitting any ac-
cessibility measure from the estimation, the noise estimate yields a positive change of
0.2% in rent prices per decibel, which shows the positive bias. This is con�rmed by
Maslianskaïa-Pautrel and Baumont (2016), who found that accessibility prevails over
noise disturbance when evaluating the impact of road infrastructure on prices. When
including the confounding variable, possible issues of multicollinearity that reduce the
precision of estimates need to be analyzed. A common measure for this is the Variance
In�ation Factor (VIF) which can detect collinearity among predictor variables in multiple
linear regression models (Belsley et al., 1980). It is calculated by running a regression
on each predictor against all other predictors and should ideally have a value of 1 in the
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Table 6.3: Estimation Results of the hedonic pricing model.

Dependent variable:
log(rent)

Model (1) Model (2)
log(area) 0.7705*** (0.0077) 0.7706*** (0.0077)

noise -0.0046*** (0.0006)

low noise 0 (Base)
moderate noise -0.0360*** (0.0103)

loud noise -0.0583*** (0.0127)
very loud noise -0.1005*** (0.0243)

microscopic car accessibilities 0.2272*** (0.0091) 0.2165*** (0.0091)
Parking available 0.0183 ** (0.0070) 0.0180** (0.0070)

Quality: Luxury 0.1666*** (0.0114) 0.1678*** (0.0114)
Quality: Superior 0 (Base) 0 (Base)
Quality: Average -0.1433*** (0.0082) -0.1430*** (0.0083)

State: First time use 0 (Base) 0 (Base)
State: New Building -0.0340*** (0.0096) -0.0298** (0.0097)

State: First time use after restoration -0.0817*** (0.0122) -0.0815*** (0.0124)
State: Restored -0.1021*** (0.0214) -0.1020*** (0.0215)

State: Modernized -0.1179*** (0.0151) -0.1171*** (0.0152)
State: Well-kept -0.1589*** (0.0106) -0.1580*** (0.0108)
State: Renovated -0.1694*** (0.0114) -0.1697*** (0.0115)

constant 2.4031*** (0.0753) 2.2390*** (0.0798)
Observations 3,145 3,145

R2 0.8597 0.8552
Adjusted R2 0.8591 0.8545

Residual Std. Error 0.1783 0.1757
F Statistic 1,213 1,124

Note:Signif. codes: `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1 robust SE in (brackets)
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Figure 6.10: Predicted versus actual plot of rent prices.

case of no multicollinearity. A typical cuto� point for problematic cases is a VIF greater
than 5 (Craney and Surles, 2002). Table 6.4 shows VIFs for the used predictors in model
2. All values are close to 1, which suggests that multicollinearity is not a problem in the
�tted model.
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Table 6.4: Variance in�ation factors.

Variable VIF Model (1) VIF Model (2)
log(area) 1.21 1.22

noise 1.35

low noise (Base)
moderate noise 3.42

loud noise 3.52
very loud noise 1.40

microscopic car accessibilities 1.59 1.65
Parking available 1.39 1.39

Quality: Luxury 1.14 1.14
Quality: Superior (Base) (Base)
Quality: Average 1.46 1.46

State: First time use (Base) (Base)
State: New Building 2.34 2.34

State: First time use after restoration 1.57 1.58
State: Restored 1.23 1.24

State: Modernized 1.47 1.49
State: Well-kept 2.97 3.01
State: Renovated 2.14 2.16
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6.6 Spatial Considerations

Newer studies point out that studies in spatial contexts may need to account for spatial
relationships explicitly. The underlying idea has become known by Tobler's �rst law of
geography, which states that 'everything is related to everything else, but near things are
more related than distant things' (Tobler, 1970, p. 236).

The process of model selection includes multiple steps. First, the results of the OLS
regression are used to spatially locate the residuals of the �tted values to have a �rst
impression of whether spatial patterns are present. Figure 6.11 reveals that while the
residuals look scattered at �rst glance, some local clusters can be observed, which sug-
gests that a spatial model could be applied.

Figure 6.11: Residuals of �tted values for the OLS model with a continuous noise variable. The
results when using a categorical variable are virtually the same.

Two approaches that have been applied in recent times are:

1. Geographically Weighted Regression (GWR) models allow insight into local de-
pendencies. Here, each dependent variable will have a distribution of estimates
resulting from multiple individual estimations at di�erent locations, taking di�er-
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ent neighbors into account. As such, the dependent variable's impact may change
and can be di�erent across space.

2. Spatial Econometric Models aim to take into account spatial dependencies by ap-
plying interaction terms that make neighbors in�uence each other. These models
rely on the de�nition of a spatial weights matrix and assume a 'global' relation-
ship between dependent and independent variables, i.e. similar to the ordinary
least squares regression, there will only be global estimates for each independent
variable.

A brief introduction followed by the application will be given for both types of spatial
models in the following subsections.

6.6.1 Geographically Weighted Regression

One of the �rst descriptions of GWR has been given by Brunsdon et al. (1996). The idea
is that the coe�cients of the independent variables are allowed to vary over space hetero-
geneously ('spatial nonstationarity'). This follows up to the observation by Fotheringham
et al. (1996), who found signi�cantly varying relationships over space that are obscured
by 'global' estimates and that these variations can be quite complex, which invalidates
simpler linear approaches. Therefore, for each observation, an individual regression is
applied in which only the nearest observations are taken into account, each weighted by
distance. The approach can be formulated as:

yi = Xβi + εi, (6.8)

i.e. multiple regressions dependent on the location/observation i are de�ned. For es-
timation, the weighted least squares method is used, which gives di�erent weights to
each observation when trying to minimize the sum of squared di�erences between actual
and predicted yi. Whereas typical weighted regressions apply a �xed weight for each
observation, the weights in the GWR model depend on the location of estimation i and
usually decrease with distance. For application in the present study, the 'GWmodel'6

(Gollini et al., 2015) R package is used. The package o�ers multiple 'kernel' functions
that de�ne the distance decay. In the results presented here, an exponential distance
decay function of the form wi,j = e−β·di,j is used to determine the weights. In addition
to the kernel function, a bandwidth for the selection of a subset of neighbors has to be
de�ned. This bandwidth can either be a �xed distance in which observations are still
taken into account or an adaptive number of nearest neighbors. Here, the adaptive band-
width is chosen to ensure that every observation has enough neighboring observations.
An automatic bandwidth selection was utilized to minimize the Akaike Information Cri-
terion (AIC), which is a common indicator to compare model performance, with a lower
value indicating a better �t. The selection process returns an adaptive bandwidth of 171,
meaning that for each regression at an observation, the 171 nearest neighbors are taken
into account. Using the exponential kernel function and an adaptive bandwidth of 171,

6https://cran.r-project.org/package=GWmodel
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a robust version of the GWR was applied to the dataset to reduce the impact of outliers
and heteroscedasticity.

The results are shown in tables 6.5 and 6.6 for the continuous noise variable model
and the one using a categorical variable, respectively. Note that since the number of esti-
mates per variable equals the number of observations, one actually obtains a distribution
of estimates.

It becomes obvious that the order of magnitude of estimates stays similar to the re-
sults of the simple OLS regression, which are close to the median values in many cases.
However, it has to be noted that quite a few variables vary strongly. Some of these even
have unintuitive changes in sign (e.g. the categorical noise variables, the accessibility
variable and the parking availability variable). The R2 increases in both model formula-
tions (from 0.8591 to 0.889 for the continuous noise model and from 0.8545 to 0.891 in
the categorical noise model formulation), which suggests that the GWR models better
explain variation in rent prices when compared to the OLS models.

The distribution of noise estimates for both models is shown in �gure 6.12. While
the overall trend con�rms a negative association between tra�c noise and rent prices,
here, too, it can be seen that the estimates vary strongly. For example, the loudest noise
category's estimates vary from -0.3 to 0.7, which, following the semi-elasticity, would
imply price di�erences between -30% and +70% for very loud apartments. Similarly, the
continuous noise variable estimates imply NSDI values ranging from -1% di�erence in
rent per decibel increase to +0.4% di�erence in price per decibel. Similar strong changes
can be seen in the accessibility variable, as is shown in tables 6.5 and 6.6.

Figure 6.12: Distribution of estimates of the continuous noise variable model (left) and the
categorical noise variable model (right).
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Table 6.5: Estimation Results of the GWR with a continuous noise variable.

Dependent variable:
log(rent)

Min 1st Quantile Median 3rd Quantile Max
log(area) 0.5230559 0.7602276 0.7756313 0.7927283 0.8245

noise -0.01 -0.005 -0.004 -0.002 0.004

microscopic car
accessibilities

-1.167 0.201 0.232 0.274 0.444

Parking available -0.094 -0.004 0.006 0.023 0.054

Quality: Luxury 0.126 0.165 0.176 0.188 0.367
Quality: Superior 0 (Base)
Quality: Average -0.305 -0.175 -0.151 -0.129 -0.003

State: First time
use

0 (Base)

State: New
Building

-0.247 -0.044 -0.032 -0.018 0.059

State: First time
use after restora-
tion

-0.142 -0.1 -0.078 -0.032 0.138

State: Restored -0.220 -0.126 -0.109 -0.087 0.005
State: Modern-
ized

-0.373 -0.134 -0.119 -0.091 -0.033

State: Well-kept -0.246 -0.169 -0.154 -0.130 0.007
State: Renovated -0.291 -0.196 -0.159 -0.117 -0.0161

constant 1.038 1.880 2.209 2.551 14.847
Observations 3,145
R2 0.895
Adjusted R2 0.889
AIC -3228.928
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Table 6.6: Estimation Results of the GWR with a categorical noise variable.

Dependent variable:
log(rent)

Min 1st Quantile Median 3rd Quantile Max
log(area) 0.539 0.758 0.773 0.790 0.819

low noise 0 (Base)
medium noise -0.201 -0.078 -0.046 -0.004 0.584
loud noise -0.275 -0.097 -0.058 -0.015 0.632
very loud noise -0.304 -0.154 -0.069 0.007 0.736

microscopic car
accessibilities

-1.470 0.199 0.225 0.269 0.396

Parking available -0.094 -0.005 0.004 0.022 0.050

Quality: Luxury 0.121 0.164 0.175 0.187 0.387
Quality: Superior 0 (Base)
Quality: Average -0.300 -0.174 -0.151 -0.129 -0.007

State: First time
use

0 (Base)

State: New
Building

-0.239 -0.039 -0.028 -0.011 0.048

State: First time
use after restora-
tion

-0.145 -0.105 -0.074 -0.041 0.069

State: Restored -0.189 -0.127 -0.107 -0.084 0.011
State: Modern-
ized

-0.378 -0.134 -0.115 -0.095 -0.030

State: Well-kept -0.252 -0.170 -0.153 -0.122 0.026
State: Renovated -0.283 -0.200 -0.166 -0.110 -0.005

constant 1.000 1.76 2.093 2.369 16.632
Observations 3,145
R2 0.898
Adjusted R2 0.891
AIC -3284.697

92



6.6 Spatial Considerations

While many studies �nd similar phenomena of strongly varying coe�cients, including
the �ip of signs, especially for spatially correlated/ neighborhood explanatory variables
(Hiebert and Allen, 2019; Dziauddin and Idris, 2017; Zhang et al., 2021; Tomal, 2020),
it is often presented uncommented.

Guo et al. (2008) show that the optimal bandwidth selection based on the AIC may
lead to small bandwidths, which over�t the model and lead to high coe�cient variability.
Similarly, Chang Chien et al. (2020) �nd that their applied GWR 'exacerbate[s] local
collinearity between covariates, both over�tting and under�tting the model with highly
varied and localized results' (Chang Chien et al., 2020, p. 1). Strong �uctuations of co-
e�cients as a sign of over�tting have also been described by Fotheringham et al. (2002),
who report that smaller bandwidths produce more tight estimators but may also result
in extreme coe�cients. Wheeler (2007) shows that the issue of local collinearity can lead
to contradictive signs even when there is no 'global' collinearity between the explana-
tory variables. Another issue is that in the case of predictor variables with little local
spatial variation (which is common in shared neighborhood attributes), collinearity with
the intercept may be present (Gollini et al., 2015). Lastly, local collinearity may lead to
the prediction of spatial patterns where they are not present in reality (Páez et al., 2011).

The problem can be intuitively visualized. For dense neighborhoods, the bandwidth
may not cover a large area. Since noise (or accessibility) can also be interpreted as en-
vironmental variables, these may change slowly and gradually over space. This means
that for small bandwidths, the local regression may not have much variation in these
predictors in the included observation points and thus fails to attribute price variations
to these variables. For example and as shown in table 6.2, only 89 out of 3,144 observa-
tions fall into the 'very loud' noise category, which means that a lot of local regression
points will not assign in�uential weights to observations that are exposed to this noise
category.

Gollini et al. (2015) and Lu et al. (2014) present multiple criteria and rule-of-thumb
cuto� values that can be investigated to detect multicollinearity issues:

� local correlations between predictors should be lower than 0.8

� local VIF values should be lower than 10

� local Variance Decomposition Proportions (VDP) should be lower than 0.5

� local (design matrix) Condition Numbers (CN) should be lower than 30

Two of these are presented in �gure 6.13. With the exception of very few outliers, the
local VIF values do not suggest systematic collinearity issues between predictors. How-
ever, the map of local CNs shows that all local regressions largely exceed the cuto� value
of 30 (median value is 134.2). As pointed out by Gollini et al. (2015), the VIF does not
capture collinearity between predictors and the intercept, while the CN does. In fact,
the accessibility variable and the local intercept both show very high VDP values (mean
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values 0.966 and 0.977), which suggests that problematic collinearity may be present
among them.

Figure 6.13: Local VIF values for each predictor (left) and local condition numbers (right) for
the model using the continuous noise variable.

Multiple approaches can be considered to alleviate the issues of over�tting, local
collinearity and strongly varying coe�cients:

� Choose di�erent bandwidths to avoid over�tting and 'smooth' the spatial pattern
of estimates. This is also stressed by Gollini et al. (2015), who point out that the
automatic bandwidth selection is based on the best model �t (i.e. best prediction
of the response variable) and not on the accurate prediction of the coe�cients.

� Mixed Geographically Weighted Regression (M GWR) can be used to �x certain
variables for which a 'global' estimation is obtained and spatial homogeneity is
assumed. Even more complex, multi-scale geographically weighted regression (MS
GWR) makes use of di�erent bandwidths for each predictor to account for the
di�erent spatial scales on which predictor coe�cients may change.

� Locally Compensated Ridge Geographically Weighted Regression (LCR GW) aims
to keep the coe�cients more stable by adding local bias to the estimates such that
high slopes are penalized. Thereby the estimates will be biased, but the standard
errors are reduced and over�tting is avoided.

Monte-Carlo tests can be used to test whether parameter estimates change signi�cantly
over space, i.e. to test whether a predictor can be considered stationary or non-stationary
(Lu et al., 2014). In the presented models, the test is signi�cant for all variables, indi-
cating that all variables show a spatial pattern of variation.

The LCR GW is a variant of ridge regression in which the ridge value λ varies locally
for each regression point and is only applied when the CN is higher than 30 (or any
con�gurable threshold). In these cases, λ is chosen such that the CN equals 30. In ridge
regression, the estimation not only minimizes the residual sum of squares but in addition
a penalty term λ ·β2 is added, such that higher estimators β will receive a higher penalty.
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This way, the magnitude of λ can be interpreted as a 'desensitization' parameter. If λ
equals zero, the estimation yields the same results as the OLS estimation. As λ goes
towards positive in�nity, the estimator β goes towards zero. Details on the LCR GW
estimation process are given by Gollini et al. (2015).

Results for the LCR GW regressions are presented in tables 6.7 and 6.8. While the
R2 values remain virtually the same, it becomes obvious that coe�cients vary less when
compared to the initial GWR results. In fact, there is no more sign �ip in the accessibil-
ity variable and the extreme magnitudes of minimum and maximum estimates for noise,
accessibility and intercept have considerably decreased as expected.

The reduced variance of coe�cient estimates is also shown in �gure 6.14. The resulting
spatial pattern of noise coe�cients is shown in �gure 6.15 as an example for the con-
tinuous variable. Interestingly, the patterns suggest that noise estimates are higher in
magnitude in the city center, from the center going north along the Isar river and east
of the Isar. These are areas that are usually considered upscale residential areas 7. Simi-
larly, the areas with the lowest (in magnitude) noise estimates in the north fall within the
lower/average residential locations. While the coe�cients should still be taken with care,
this could possibly hint at underlying phenomena. One hypothesis is that objects in the
upscale residential locations are more exclusive and their residents may have higher ex-
pectations from their homes and therefore put higher values on quietness. Similarly, the
local household and apartment structure may impact sensitivity. Whereas households of
young, �exible people may put a higher value on location and accept noise and live in
smaller apartments, other households such as families may be more sensitive to noise.
These possible reasons were also identi�ed by Wäscher (2018). This could be true even
if there is no signi�cant di�erence in noise sensitivity between more or less a�uent people.

Overall the GWR models con�rmed the negative relationship between tra�c noise and
rent price. In addition, the results suggest that the applied coe�cients are non-stationary
and vary across space. However, because of the presented issues of over�tting and local
collinearity between coe�cients, individual coe�cients should be treated with caution.
In addition, GWR is still considered a more exploratory tool since any hypothesis test-
ing and interpretation of (pseudo) t-values is limited (Gollini et al., 2015). Lastly, for
implementation in an ILUT model, the application is relatively complex, since local sen-
sitivities of coe�cients need to be interpolated for synthetic dwellings (especially for new
development). The limited applicability of a GWR regression for an ILUT model was
also acknowledged by Löchl and Axhausen (2010), who favored a spatial econometric
model with global coe�cients instead. The application of spatial econometric models is
presented next.

7compare with https://2019.mietspiegel-muenchen.de/wohnlagenkarte/
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Table 6.7: Estimation Results of the geographically weighted ridge regression with a continuous
noise variable.

Dependent variable:
log(rent)

Min 1st Quantile Median 3rd Quantile Max
log(area) 0.652 0.768 0.782 0.797 0.826

noise -0.014 -0.006 -0.004 -0.003 0.002

microscopic car
accessibilities

0.202 0.251 0.300 0.367 0.579

Parking available -0.052 0.005 0.013 0.027 0.057

Quality: Luxury 0.126 0.158 0.168 0.184 0.237
Quality: Superior 0 (Base)
Quality: Average -0.293 -0.172 -0.150 -0.129 -0.027

State: First time
use

0 (Base)

State: New
Building

-0.093 -0.045 -0.033 -0.017 0.051

State: First time
use after restora-
tion

-0.138 -0.094 -0.076 -0.044 0.058

State: Restored -0.237 -0.120 -0.104 -0.082 -0.008
State: Modern-
ized

-0.184 -0.127 -0.111 -0.086 -0.036

State: Well-kept -0.234 -0.166 -0.152 -0.125 -0.059
State: Renovated -0.276 -0.190 -0.151 -0.114 -0.013

constant 0.223 1.161 1.643 2.121 2.5984
Observations 3,145
R2 0.893
Adjusted R2 0.886
AIC -2699.475
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Table 6.8: Estimation Results of the geographically weighted ridge regression with a categorical
noise variable.

Dependent variable:
log(rent)

Min 1st Quantile Median 3rd Quantile Max
log(area) 0.650 0.767 0.780 0.797 0.824

low noise 0 (Base)
medium noise -0.209 -0.093 -0.064 -0.026 0.102
loud noise -0.306 -0.119 -0.083 -0.044 0.083
very loud noise -0.300 -0.188 -0.105 -0.043 0.070

microscopic car
accessibilities

0.194 0.242 0.294 0.355 0.531

Parking available -0.094 -0.005 0.004 0.022 0.050

Quality: Luxury 0.124 0.159 0.169 0.185 0.239
Quality: Superior 0 (Base)
Quality: Average -0.288 -0.172 -0.150 -0.128 -0.026

State: First time
use

0 (Base)

State: New
Building

-0.084 -0.042 -0.030 -0.014 0.042

State: First time
use after restora-
tion

-0.140 -0.104 -0.076 -0.046 0.035

State: Restored -0.244 -0.124 -0.103 -0.084 0.008
State: Modern-
ized

-0.190 -0.129 -0.115 -0.096 -0.033

State: Well-kept -0.252 -0.169 -0.153 -0.127 -0.055
State: Renovated -0.276 -0.196 -0.155 -0.114 -0.009

constant 0.202 1.029 1.530 1.992 2.345
Observations 3,14
R2 0.894
Adjusted R2 0.887
AIC -2695.862
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Figure 6.14: Distribution of estimates of the continuous noise variable model (left) and the
categorical noise variable model (right). Results for the LCR GWR models.

Figure 6.15: Spatial distribution of estimates of the continuous noise variable. Result for the
LCR GWR model. Colors based on deciles.
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6.6.2 Spatial Econometric Models

Spatial econometric models can take di�erent spatial interactions between neighboring
observations into account. Interactions are possible between the dependent and inde-
pendent variables and the error terms. The so-called 'Manski Model' or General Nesting
Spatial (GNS) includes all possibles interactions and is de�ned as (compare with OLS in
eq. 6.2):

y = ρWy +Xβ +WXΘ + u, with u = λWu+ ε (6.9)

here, W is the spatial weights matrix that de�nes neighborhood relations between
the di�erent observations and which must be provided as an input. W is a n · n matrix
that has all n observations as rows and column indices. The matrix contains a non-zero
value whenever two observations are considered as adjacent or neighbors (b, d and b, e in
the following example):

W =

a b c d e


0 0 0 0 0 a

0 0 0 1 1 b

0 0 0 0 0 c

0 1 0 0 0 d

0 1 0 0 0 e

(6.10)

As such, the term ρWy in equation 6.9 describes the spatial lag of the dependent variable
y, i.e. how strongly do the neighbors' y-values of a given observation impact the y-value
of the observation itself. In the context of hedonic pricing estimations, the spatial lag
y describes 'to what extend my neighborhood's price de�nes my price'. The strength of
this relationship is de�ned by ρ, which is an outcome of the estimation. The spatial lag of
the dependent variable is 'global', i.e. each observation in�uences all other observations,
as the lag is indirectly propagated to the neighbors of neighbors (and so forth).
The termWXΘ describes the spatial lag of the independent variables X. In other words,
it quanti�es what impact do the independent variables X of an observation's neighbors
have on the observation itself. The strength of this relationship is estimated and given
by the vector of lagged coe�cients Θ. The spatial lag of independent variables is called
'local'. Here, observations only in�uence their neighbors' dependent variable and their
impact does not propagate to the neighbors of neighbors.
Lastly, the term u = λWu+ ε describes that there is a spatial correlation of error terms
λu among neighbors. This means that residuals may be spatially correlated and capture
variance not explained by the given variables. The parameter λ estimates the strength
of the correlation.

In general, it is not recommended to apply the full Manski model but instead limit the
model speci�cation. The three basic models are:

1. The Spatially Lagged X Model (SLX) only includes the lag of the independent
variables (local model), i.e. λ = ρ = 0 =⇒ y = Xβ +WXΘ + ε
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2. The spatial lag model or Spatial Auto-Regressive Model (SAR) only includes the
lag of the dependent variable (global modal), i.e. Θ = λ = 0 =⇒ y = ρWy+Xβ+ε

3. The Spatial Error Model (SEM) does not assume any interpretable lag and only
accounts for spatially correlated error terms, i.e. ρ = Θ = 0 =⇒ y = Xβ +
u, with u = λWu+ ε

More complex models can be de�ned, which are combinations of the three basic models,
namely:

1. The spatial auto-regressive combined model (SAC) with a lagged dependent vari-
able and a spatial error term, i.e. Y = ρWY +Xβ + u, with u = λWu+ ε

2. The Spatial Durbin Model (SDM) with both dependent and independent lagged
variables, i.e. Y = ρWY +Xβ +WXΘ + ε

3. The spatial Durbin error model (SDEM) with a lagged independent variable and a
spatial error term, i.e. Y = Xβ +WXΘ + u, with u = λWu+ ε

An overview of spatial econometric models and their nesting structure based on Vega
and Elhorst (2015) is shown in �gure 6.16. All following analyses and estimations are
carried out with the 'spdep'8 package (Bivand et al., 2013) in R.

Figure 6.16: Overview of spatial Econometric models. Based on Vega and Elhorst (2015)

The decision for one of the presented types should be primarily driven by theory (Gib-
bons and Overman, 2012), i.e. whether a local or a global model describes the assumed
behavior better or whether the spatial impact should be expressed through error terms.
In the present hedonic pricing case, in which the impact of noise is investigated, a spatial
lag model is a usual choice. It is a common phenomenon that rent prices are oriented
towards average rent prices in a given neighborhood, which is usually re�ected in rent
indices. Contrarily, it might not be meaningful that individual neighbors' attributes have
an impact on their neighbors. For example, the fact that a certain apartment has a low

8https://cran.r-project.org/web/packages/spdep/spdep.pdf
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interior quality and, thus, a lower rent price, should not have an in�uence on a nearby
apartment. However, local spillovers in the form of spatially lagged X variables could
be used to describe (environmental) neighborhood characteristics (Maslianskaïa-Pautrel
and Baumont, 2016). For now, only the spatial error model and the spatial lag model
will be considered as they seem to be most common in such studies.

Next, the weight matrix W has to be de�ned. This can be done in multiple ways. One
way is to de�ne k nearest neighbors, such that for each observation, the k nearest other
observations are de�ned as neighbors (by having a '1' in the corresponding row-column
combination in W ). This has the advantage that every observation has the same amount
of in�uencing neighbors and that no observation is isolated without any neighbors. A
disadvantage is that some observations in outer/remote areas end up with neighbors that
are quite distant and should not have much of an impact. Another option is to de�ne a
distance band of distance d which creates a radius around each observation inside which
every other observation is marked as a neighbor. In this approach, it is guaranteed that
observations that are too distant (i.e. whose distance is larger than d) are not treated as
neighbors. However, depending on observation densities in the study area, it may happen
that some observations have many neighbors and others have only a few or even none. A
combination of the two approaches is to de�ne k nearest neighbors with a distance-based
weight. In this case, the k nearest observations are indicated as neighbors. However the
weight of the neighbor in W is a value between 0 and 1, depending on the distance such
that more distant observations are less in�uential than close observations (see Tobler's
�rst law of geography above). These weights are called Inverse Distance Weights (IDW).

In the following, the IDW approach is used for creating the weights matrix. The
weights are de�ned using a common exponential distance-decay-function de�ned as fol-
lows (Smith, nd):

wi,j = e−α·xi,j (6.11)

Here, wi,j is the (non-zero) weight for observation j being a neighbor of observation
i. xi,j is the distance between observation i and j. α is a scaling factor. For higher α,
the resulting weight decays more quickly and vice versa. The advantage over a linear or
power decay function is that distances can be zero, in which case the weight takes the
maximum value of 1. This can happen in the present data set, as sometimes multiple
apartment advertisements are located at the same address. To reduce the impact of
scaling factors such as the unit of distance, the weights of the matrix are normalized by
the row-normalization such that the weights of neighbors of each observation i sums up
to one, i.e. (Smith, nd):

n∑
j

wi,j = 1, i = 1, . . . , n (6.12)

After obtaining the weight matrix W , a statistical test on Moran's I can be performed
(Moran, 1950). Moran's I can be interpreted as a measure of spatial auto-correlation
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and is de�ned as:

I =
N

Ŵ
·
∑

i

∑
j wi,j(xi − x̄) · (xj − x̄)∑

i(xi − x̄)2
(6.13)

N is the number of spatial units/observations, Ŵ is the sum of all weights in W , xi
and xj are the values of the dependent variable of observation i and j, respectively. x̄
is the mean value across all observations. I takes values between -1 and 1. If the values
of all observations are distributed entirely randomly, I is near 0. If I turns towards -1
or 1, a higher spatial auto-correlation is present. I can be used to test whether spatial
auto-correlation is present and signi�cant. Table 6.9 shows I values for di�erent com-
binations of α and k. All of the given values are highly signi�cant and suggest that
spatial auto-correlation is present. However, the magnitude of I seems to decrease with
an increasing number of neighbors. This could be interpreted as a 'di�usion' of spatial
correlation if too many neighbors are de�ned.

Table 6.9: Moran's I values for di�erent combinations of k and α. All values are signi�cant at
p < 0.001.

k...

3 5 10 50 100
α... α... α... α... α...

0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

Moran's I 0.434 0.425 0.434 0.421 0.425 0.434 0.379 0.384 0.394 0.250 0.265 0.297 0.171 0.198 0.250

Figure 6.17 shows a so-called Moran plot for k = 5 and α = 2, which has been identi�ed
as one of the best performing combinations across the di�erent spatial models in terms of
model �t. It shows for each observation the observed rent price (x-axis) and the average
rent price of its neighbors (='lag', y-axis). Here, the rent prices of most observations are
quite close to the respective lag values (i.e. close to the red line). This means that the rent
prices of neighbors can be good indicators for rent prices and a spatial relationship exists.

In a next step, the Lagrange multiplier tests presented by Anselin (1988) can be used to
check whether a spatial error model or spatial lag model is appropriate or preferably over
a simple OLS model. The method which is described in more detail in Anselin (1988),
proposes that the statistics returned by the test indicate that a SEM or SAR model is a
better �t than the OLS model. In the present case, both statistics are highly signi�cant
for all selected combinations of k and α (p-values < 2.22 · 10−26 for k = 5 and α = −2),
which means that the null hypotheses, that the simple OLS model is more appropriate,
can be withdrawn and either of the two spatial models or even a more complex one, such
as the SDM or the Spatial Durbin Error Model (SDEM) can be applied. The simpler
SEM and SAR model results will be presented �rst.
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Figure 6.17: Moran plot of rent prices. The x-axis shows observed rent prices, the y-axis depicts
the average rent price of each individual's neighbors. Dashed lines dashed lines
show mean values; the red line de�nes y=x; the blue line is a linear �t.

6.6.2.1 Spatial Error Model Results

Estimation results of spatial error models can be interpreted similar to the OLS results.
For the sake of brevity only the results of the noise estimates and the spatial variable
λ will be discussed here (please see Appendix B for a table with complete results for
k = 5 and α = 2). The results for the noise estimates and λ are presented in tables
6.10 (continuous noise variable) and 6.11 (categorical noise variable) for di�erent k and
α. The tables show the percentage impact of noise variables on rent prices (i.e. the esti-
mate multiplied by 100, see equation 6.6), the estimate of λ and the AIC. In both tables
one can see that for high k the noise estimates become insigni�cant with p-values above
0.05. For the categorical noise variables this is also true for small α. For the estimations
with signi�cant noise estimates, the values are in similar magnitudes compared to the
OLS estimates but consistently lower. The AIC decreases with higher α and is lowest
for k = 10. In all cases, the AIC is lower than the AIC of the OLS model, which is -2261.1

The consistently lower estimates for the noise impacts compared to the OLS results
should be interpreted further. In theory, spatial error model estimates should not be
too di�erent from the OLS results, as the OLS estimator should be unbiased compared
to the spatial error model and di�erences should only be re�ected in di�erent standard
errors and p-values (Anselin, 2001). Any spatial error model should lead to the same
estimates as the OLS model (LeSage and Pace, 2009). In fact, there is a spatial Hausman
test described by Kelley Pace and LeSage (2008) which tests whether the estimates of a
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Table 6.10: Noise estimates for the continuous noise variable (multiplied by 100 to yield NSDI)
as well as λ and AIC for di�erent given k and α. Values in highlighted in gray are
not signi�cant. All other estimates as well as λ are always signi�cant at p < 0.001

.

k...

3 5 10 50 100
α... α... α... α... α...

0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

noise -0.31 -0.31 -0.31 -0.32 -0.32 -0.33 0.25 -0.25 -0.25 -0.08 -0.06 -0.07 -0.045338 -0.02 -0.019

λ 0.59 0.59 0.59 0.64 0.64 0.64 0.73 0.73 0.73 0.85 0.86 0.86 0.91 0.92 0.91

AIC -3424.6 -3433.1 -3445.5 -3369.6 -3387.6 -3416.5 -3420.1 -3443.5 -3483.2 -3153.8 -3235.9 -3361.5 -2956.6 -3088.3 -3288.9

Table 6.11: Noise estimates for the categorical noise variable (multiplied by 100 to yield per-
centage discounts) as well as ρ and AIC for di�erent given k and α. Note that all
impacts as well as ρ are always signi�cant at p < 0.001

k...

3 5 10 50 100
α... α... α... α... α...

0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

medium noise -1.98 -2-00 -2.02 -2.01 -2.13 -2.30 -1.03 -1.15 -1.39 0.22 0.40 0.26 0.52 0.96 0.91

loud noise -4.51 -4.54 -4.57 -4.93 -5.05 -5.23 -3.23 -3.32 -3.5 -0.51 -0.35 -0.72 0.54 0.86 0.39

very loud noise -6.43 -6.40 -6.31 -6.26 -6.44 -6.65 -4.91 -5.04 -5.33 -0.43 -0.01 -0.43 -0.34 0.71 0.66

λ 0.59 0.59 0.59 0.64 0.64 0.64 0.73 0.73 0.73 0.85 0.86 0.86 0.91 0.92 0.91

AIC -3417.7 -3426.2 -3438.8 -3363.9 -3381.8 -3410.6 -3414.8 -3438.3 -3478.2 -3149.4 -3232.2 -3358.3 -2952.6 -3085 -3286

spatial error model are signi�cantly di�erent from the OLS estimation. The authors state
that, if the test is signi�cant, it suggests that neither model is 'yielding regression pa-
rameter estimates matching the underlying parameters' (Kelley Pace and LeSage, 2008,
283). None of the models fails the Hausman test for the regression results presented here,
indicating that all of them should be treated with caution. A possible explanation why
the noise estimates are consistently lower might be that the spatial error component and
the noise variables explain similar things. Spatial error model assume spatial patterns in
omitted variables (Andersson et al., 2010; LeSage and Pace, 2009) and should therefore
be chosen to account for the impact of these omitted variables. However, tra�c noise
itself does follow a spatial pattern as well but is not omitted in the estimation. Neigh-
boring apartments along a busy road will experience similar noise levels and the same
is true for quiet neighborhoods in which most of the apartments experience low noise
immissions. The spatial component may therefore explain a major share of spatially
correlated noise. Noise as a characteristic not exclusive to an individual apartment could
be described better in terms of local spatial spillovers, which the SEM cannot represent
(Vega and Elhorst, 2015).
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LeSage and Pace (2009, p. 61) state that 'presence of omitted variables correlated
with the explanatory variable and spatial dependence in the disturbances will lead to a
DGP [data generation process] re�ecting the SDM model' and that 'passing this test [the
Hausman test] would be a good indication that speci�cation problems (such as omitted
variables correlated with the explanatory variables) were not present in the SEM model'.
In the hedonic model presented here, noise (and accessibility) are likely to be correlated
with other omitted spatial variables (e.g. amount of green space, building structure of
the neighborhood, income-level of residents, etc.). LeSage and Pace (2009) go on by
stating that the model should include a spatial lag of the dependent variable (similar to
the spatial lag model) and conclude that the SDM should be applied when spatially de-
pendent explanatory (such as noise and accessibility) are included. Even if a SEM would
better describe the true underlying data, 'the SDM estimates should still be consistent,
but not e�cient' (LeSage and Pace, 2009, 68).

Before turning to a more complicated SDM, results for a simple SAR will be presented
�rst.
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6.6.2.2 Spatial Auto-Regressive Model Results

Next, the results of the SAR estimations will be presented. In contrast to the OLS
and the SEM models, the estimated coe�cients are harder to interpret, as a change in
an independent variable for a given observation does not only change the rent price of
this observation but also the rent price of its neighbors, which in turn impacts the rent
prices of neighbors' neighbors and so forth (Golgher and Voss, 2016). The impact on
neighbors ultimately spills back to the actual observation. To estimate the in�uence of
independent variables, simulations are used to estimate the direct and the indirect im-
pacts, as the estimated β coe�cients and their p-values cannot be interpreted directly
due to spillback (the o�-diagonal elements of the partial derivative matrix are non-zero,
see Golgher and Voss (2016)). In the SAR model, the direct impact is the reaction of the
dependent variable of an observation on a change in the given independent variable of the
same observation. The indirect impact accounts for the spillback e�ects of neighboring
apartments. The sum of the direct and the indirect impact can be interpreted as the
'total' impact of a change of a dependent variable. Again, for the sake of brevity, only
the results of the noise estimates are presented (please see Appendix C for tables with
complete results for k = 5 and α = 2).

Tables 6.12 and 6.6.2.2 summarize impact results of the SARmodel for di�erent k and α
and for the continuous and the categorical noise variable model formulation, respectively.
The tables show the percentage impact of noise variables on rent prices (i.e. the estimate
multiplied by 100, see equation 6.6), the estimate of ρ and the AIC. In general, it can be
seen that the variation of α barely impacts estimation results. Contrarily, the number
of nearest neighbors included shows higher impacts on model results. For higher k, the
estimations generally lead to higher estimates for the noise variable, especially for the
indirect impact. This can be explained by the fact that more neighbors are included for
each observation and, thus, the spillover e�ect is larger because a change in noise in one
place leads to more neighboring places being a�ected. The resulting estimates are similar
to the ones obtained by the OLS regression, con�rming the previous results. The estimate
of ρ is also increasing for higher k. Since the weight matrices are row-normalized, ρWy
can be interpreted as the impact of the weighted average rent price of neighbors (e.g. for
ρ = 0.26 one term of the estimated rent price is 0.26 · ȳ, where ȳ is the weighted average
of rent prices of neighbors). As such, this lag is higher when more neighbors are included
which can be explained by more information being contained in the neighboring rent
prices if many neighbors are included. As ρ is positive, it con�rms the theory that there
is a positive correlation between rent prices of neighboring apartments, i.e. apartments
are expensive if they are located in an expensive neighborhood and vice versa. The AIC
is lower than the AIC of the OLS model in every case (AIC = -2440.5 and AIC = -2261.1
for the continuous noise and the categorical noise variable model, respectively), which
con�rms that these models perform better in terms of model �t. Across di�erent α and
k, the AIC is quite similar, however, the AIC is always lowest for k = 5 and α = 2,
i.e. for the models with a moderate number of neighbors and high exponential decay
function.
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Table 6.12: Direct, indirect and total impacts for the continuous noise variable (multiplied by
100 to yield NSDI) as well as ρ and AIC for di�erent given k and α. Note that all
impacts as well as ρ are always signi�cant at p < 0.001

k...

3 5 10 50 100
α... α... α... α... α...

0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

direct
noise

-0.35 -0.35 -0.35 -0.36 -0.36 -0.36 -0.36 -0.37 -0.37 -0.40 -0.40 -0.40 -0.40 -0.43 -0.41

indirect
noise

-0.07 -0.07 -0.07 -0.08 -0.08 -0.08 -0.1 -0.1 -0.1 -0.14 -0.14 -0.14 -0.14 -0.16 -0.16

total
noise

-0.42 -0.42 -0.42 -0.45 -0.45 -0.45 -0.46 -0.46 -0.47 -0.54 -0.55 -0.54 -0.54 -0.59 -0.58

ρ 0.17 0.17 0.17 0.19 0.19 0.19 0.21 0.22 0.22 0.26 0.27 0.27 0.26 0.28 0.28

AIC -2608 -2610 -2614.3 -2615 -2620 -2628 -2607 -2614 -2625 2519 -2538 -2565 2519 -2471 -2523

Table 6.13: Direct, indirect and total impacts for the categorical noise variable (multiplied by
100 to yield percentage discounts) as well as ρ and AIC

for di�erent given k and α. Note that all impacts as well as ρ are always signi�cant at
p < 0.001

k...

3 5 10 50 100
α... α... α... α... α...

0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

direct
medium noise

-3.1 -3.11 -3.01 -3.00 -2.97 -2.37 -2.41 -2.44 -3.10 -3.12 -3.16 -3.19 -3.14 -3.12

indirect
medium noise

-0.61 -0.62 -0.69 -0.70 -0.696 -0.65 -0.67 -0.68 -1.11 -1.15 -1.17 -1.10 -1.21 -1.23

total
medium noise

-3.73 -3.73 -3.71 -3.70 -3.66 -3.02 -3.08 -3.12 -4.21 -4.28 -4.33 -4.29 -4.34 -4.35

direct
loud noise

-4.77 -4.76 -5.06 -5.04 -4.98 -4.62 -4.65 -4.66 -5.61 -5.60 -5.58 -5.74 -5.68 -5.60

indirect
loud noise

-0.94 -0.94 -1.17 -1.17 -1.17 -1.26 -1.28 -1.30 -2.01 -2.07 -2.06 -1.98 -2.18 -2.21

total
loud noise

-5.72 -5.71 -6.23 -6.21 -6.15 -5.87 -5.93 -5.96 -7.62 -7.68 -7.64 -7.72 -7.87 -7.81

direct very
loud noise

-8.22 -8.21 -7.71 -7.69 -7.67 -7.11 -7.18 -7.24 -7.52 -7.56 -7.62 -8.58 -8.26 -7.88

indirect very
loud noise

-1.63 -1.63 -1.78 -1.79 -1.80 -1.93 -1.98 -2.03 -2.69 -2.79 -2.81 -2.96 -3.17 -3.11

total very
loud noise

-9.85 -9.84 -9.5 -9.48 -9.47 -9.04 -9.17 -9.27 -10.21 -10.34 -10.44 -11.55 -11.43 -10.99

ρ 0.17 0.17 0.19 0.19 0.19 0.22 0.22 0.22 0.26 0.27 0.27 0.26 0.27 0.28

AIC -2590 -2592.5 -2596 -2601.2 -2608.4 -2585.9 -2593.1 -2604.2 -2495.4 -2514.4 -2541.3 -2404.7 -2443.5 -2497.9

107



6 Simulation-Based Tra�c Noise Impact on Rent Prices

6.6.2.3 Spatial Durbin Model Results

The SDM nests both the SAR and the SEM as a special case and can be de�ned as:

y = ρWy +Xβ +WXΘ + ε (6.14)

In simple words, it adds a spatial lag on the explanatory X variables such that both the
dependent and the independent variables can be spatially correlated. As such, the model
allows for local and global spillovers. This way, the indirect impact can be divided into
local e�ects due to the lagged independent variables and the global e�ects emerging from
the lagged dependent variable and its feedback e�ect (Golgher and Voss, 2016). The
SDM model has been applied in numerous hedonic studies and has often proved superior
to simpler models (Osland, 2010).

Results for both continuous and categorical noise variable models for di�erent k are
shown in table 6.14. The parameter α is always kept at 2, as the results did barely
change between di�erent α. For tables with complete results for k = 5 and α = 2
please see Appendix D. The AIC values of the SDM model results are better than for
any of the previously presented models, which suggests better model performance. It
becomes clear that here, noise is mostly explained by the indirect e�ect. These e�ects
are similar in magnitude to the estimates of the OLS, GWR and SEM models. Since
the indirect impact in the SAR model (which is a global spillover) is smaller than the
corresponding direct impact, it may be that the indirect impact is mainly of local nature.

Multiple studies report similar �ndings for variables that could be characterized as
'local neighborhood' or 'environment' attributes in that they are often characterized by
spatial spillovers (i.e., indirect impacts) and that 'this way, SDM impact estimates can
explain important characteristics of the close neighborhood' (Herath et al., 2015, p. 19).
This is true when most of the indirect impact comes from the local spillover of immediate
neighbors (i.e., lagged independent variables). In a study analyzing the impact of natural
amenities on housing prices, Izón et al. (2016) �nd that distance to city parks has a sig-
ni�cant negative indirect impact. Maslianskaïa-Pautrel and Baumont (2016) �nd strong
and signi�cant indirect impacts of proximity to the sea, which is shared with neigh-
boring houses. Interestingly, Maslianskaïa-Pautrel and Baumont (2016) also included
noise as an explanatory variable which resulted in a signi�cant negative direct impact
and a slightly larger (in magnitude) positive signi�cant indirect impact. The authors
explain this di�erence by arguing that the negative direct impact represents the actual
disturbance due to noise while the positive direct impact accounts for the accessibility,
which they did not control for. The signi�cant positive indirect impact of accessibility
is also con�rmed in the present thesis. Eilers (2016) applied an SDM model for apart-
ment prices in Hamburg, Germany and, too, found that the variable 'quiet location' was
only signi�cant for the indirect impact, although with a negative relationship. The au-
thor concludes that such variables re�ect the composition of the neighborhood and its
quality. The negative association between quiet locations and apartments was explained
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Table 6.14: Direct, indirect and total impacts for the continuous/categorical noise variable
(multiplied by 100 to yield NSDI/percentage discounts) as well as ρ and AIC for
di�erent given k. Note that cells colored in gray are not signi�cant at p < 0.05. All
other impacts as well as ρ are always signi�cant at this level.

k...

3 5 10 3 5 10
α... α... α... α... α... α...
2 2 2 2 2 2

direct
noise

-0.07 -0.09 -0.08 - - -

indirect
noise

-0.62 -0.84 -0.81 - - -

total
noise

-0.69 -0.93 -0.89 - - -

direct
medium noise

- - - -0.75 -0.78 -0.11

indirect
medium noise

- - - -6.42 -6.79 -5.68

total
medium noise

- - - -7.17 -7.57 -5.78

direct
loud noise

- - - -2.16 -2.34 -1.17

indirect
loud noise

- - - -9.02 -10.69 -8.76

total
loud noise

- - - -11.18 -13.04 -9.94

direct very
loud noise

- - - -2.72 -2.81 -2.31

indirect very
loud noise

- - - -10.37 -14.56 -15.39

total very
loud noise

- - - -13.09 -17.36 -17.70

ρ 0.58 0.62 0.70 0.58 0.63 0.70

AIC -3583.7 -3544 -3569.8 -3565.5 -3521.5 -3554.9
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by such apartments usually being in the suburbs. This can be understood by the fact
that no kind of accessibility or centrality measure was used to control for the negative
aspect of living in more remote places. Dupraz et al. (2018) underline that the indirect
impacts of spatially lagged independent variables can explain environment variables (or
externalities) that are shared within the same neighborhood.

The idea of appraising the closer neighborhood in terms of noise exposure has also
been described in a study by Botteldooren et al. (2011), who �nd negative relationships
between tra�c noise and quality of life in residential neighborhoods. Similar �ndings
have been presented by Parkes et al. (2002).

In the presented case, the larger impact of local spillovers can be cross-validated when
running an SLX model (i.e., spatial lag in the independent variable only), of which the
results are not shown here. However, the SLX model con�rmed that the negative impact
is primarily indirect by local spillover (a summary of noise estimates for the SLX model
is included in �gures 6.18 and 6.19 of section 6.7).

However, another possible reason why noise mainly has an indirect impact in the
estimation could be similar to Herath et al. (2015, p. 19), who state that, in their
study, 'distances between neighboring apartments are small [. . . ] Therefore, this out-
come reiterates the same [direct] negative relation between distance from the greenbelt
and apartment price'. This can be supported by the fact that the mean distance to the
nearest neighbor in the given data set is only 44 meters and the median is 0 meters,
which is in fact very local. It is therefore very probable that the nearest neighbor of an
observation (which also has the highest weight) has a very similar noise value. The short
distances to the nearest neighbor can be explained by the fact that, oftentimes, more
than one apartment per building was o�ered. In these cases, the geo-coding would assign
the same address to all apartments of the same building. It is, therefore, obvious that
the noise estimate is better evaluated at the very local neighborhood. Of course, this
also points to a limitation of the collected data, as information on whether an apartment
is in the backyard of a building and hence quieter may be obscured when the address is
shared across di�erent parts of a building (complex). The observation that the indirect
impact increases with increasing k can be explained by the fact that the lagged local
spillover can be interpreted as 'how much would the observation's price change when all
of its neighbors change their independent value by 1 unit'. For higher k, less relative
weight is put on very close neighbors as it is split across all neighbors. Thus, the higher
estimated impact may compensate for the fact that the weight of the in�uential closest
neighbor is lower for higher k.

To test whether a SDM is more appropriate than an SEM, a simple likelihood ratio
test can be employed (Anselin, 2003; Mur and Angulo, 2006). In the presented cases, the
test results always suggest that the SDM is preferable.
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6.7 Hedonic Pricing Summary

The results of this chapter support the idea of integrating environmental aspects in an
ILUT model as tra�c noise has a signi�cant negative impact on rent prices. As such,
research question 3, whether simulated noise values are able to explain signi�cant rent
price discounts, can be answered with 'yes'. Regarding the magnitude of the impact,
this chapter showed that this partly depends on the used model. However, all models
resulted in reasonable values with most NSDI values in the range of 0.3 and 0.6.

Two simple OLS model formulations were estimated �rst, di�ering in the usage of
noise as a continuous and a categorical variable. The models show reasonable results in
terms of NSDI as compared to existing studies. An important �nding of this chapter is
that it is important to control as well as possible for the positive aspects of accessibility.
Otherwise, the noise estimate will be severely biased. It was shown that modeled noise
emissions as part of an ILUT model can be used to identify price discounts in rent prices
when evaluated against real-world real estate data. This justi�es the implementation of
noise exposure into the pricing model of a land use component to create this feedback
cycle.

When looking at the models using a spatial component, the negative relationship
between noise and rent prices was con�rmed. Since the GWR model results should be
considered exploratory and a direct application in SILO would be di�cult due to the spa-
tially non-stationary coe�cients, these are not further considered for application in the
ILUT model suite. The spatial econometric models can be used to obtain more 'global'
estimates/impacts. However, their application in the land use model is not straightfor-
ward either. For any model with a spatially correlated error term or a spatially lagged
dependent variable, out-of-sample predictions can become tricky, as the spatial structure
of the training dataset is part of the estimation process in the form of the spatial weights
matrix. In fact, comparing an OLS model with SAR, SEM and SDM, Bivand (2002)
showed that while the spatial models perform better for predictions on the training data
set, the simple linear OLS model may outperform spatial models for out-of-sample pre-
dictions. In addition, the application of spatial models turned out to be not feasible in
terms of runtime. The runtime for a model with a spatially lagged dependent variable
(SAR and SDM) for predicting the 3,144 observations of the training dataset takes about
30 seconds. Even if assumed linear, this would require about 6.9 hours of computation
time just for predicting the price of all 2.6 million dwellings in SILO for one year. Since
the weight matrix would also contain more objects, the required computation time would
probably be even higher, as the global spillover and feedback e�ects would ripple through
many more observations. Even in the case of the SLX model, which is more 'global' in
its assumptions, i.e., the local spillover e�ect and direct impact are the same anywhere in
space), the implementation turned out to be infeasible, as the calculation of the nearest
neighbors has a runtime complexity of O(n2) - where n is the number of objects - and the
distances between each of the 2.6 million dwellings would need to be calculated. This is
why, �nally, the OLS model will be applied in SILO as it is simple enough to be applied
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for out-of-sample observations in every year. The underlying assumption here is that the
coe�cients (especially in regards to noise) are reasonably well captured. Figures 6.18
and 6.19 summarize the estimates/impacts obtained by the di�erent models presented in
this chapter. It can be seen that, especially for the categorical noise variable, the OLS
estimates do not di�er largely from the results obtained by the spatial regression models.
The OLS model with a categorical noise variable is thus chosen for implementation in
SILO.

Figure 6.18: Summary of estimates/impacts for the continuous noise variable

Figure 6.19: Summary of estimates/impacts for the categorical noise variable
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7 Towards an Agent-Based Land
Use/Transport/Environment Model

Those who can a�ord it move away
from major roads because of health
hazards

Katrin Lompscher, Senator for
Health, Environment and Consumer
Protection. DER TAGESSPIEGEL,

September 2007

This chapter presents the integration of land use, transport and the environment in the
form of tra�c noise in the FABILUT model. As discussed in chapter 2, a detailed spatial
resolution is key for locational attributes. Microscopic agents/households as the central
decision unit need accurate information on dwelling attributes if small-scale e�ects are
under investigation. Therefore, as the �rst step for an integrated model that accounts for
the impact of tra�c noise, the existing integrated FABILUT modeling suite is enhanced
by a microscopic integration with the transport model, including a microscopic represen-
tation of travel times. After the microscopic integration, the environmental sub-module
will be added to expand the ILUT model to an LTE model.

7.1 Microscopic Integration of Land Use and Transport

Traditional (microscopic) ILUT models usually use zonal indicators for relocation pur-
poses, such as average rent per zone or zone-to-zone travel times for commute trips. Since
the environmental impact of noise is expected to be very local, a microscopic integration
at the coordinate level is preferable. Since MATSim operates at the coordinate level,
it is natural to explore a microscopic integration of the land-use model SILO and the
transport model MATSim. Therefore, as a �rst step, the initial integration described in
Ziemke et al. (2016), which was still based on zone-to-zone travel time skims provided by
MATSim, was enhanced by a microscopic integration. As such, the travel time feedback
from MATSim to SILO was implemented without aggregating travel times on a zone-to-
zone basis. Instead, SILO can now 'query' the MATSim router for individual travel time
requests made by agents in the synthetic population.

7.1.1 Travel Time Feedback

Travel times in SILO are required for:
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� Assessment of current household satisfaction of dwellers and their commute trips
to work

� Assessment of possible vacant dwellings and the hypothetical commute trip to work

� Assessment of possible vacant jobs and the hypothetical commute trip from home

Initially, MATSim would create/update skim matrices of size n2, where n is the number
of zones to store zone to zone travel times after each transport model execution. However,
this approach has multiple downsides:

� An individual matrix is required for each transport mode m

� An individual matrix is required for each 'time slice' (e.g., peak/o�-peak/night
hours) t

� Each individual matrix increases by 2n+ 1 additional cells for each additional zone

� No individual attributes can be considered (e.g., fuel type of car and permitted
routes, income-dependent tolls, di�erent valuation of time vs comfort, acceptable
access/egress times, etc...)

� Skims require spatial and temporal aggregation that lead to biases which can be
reduced by smaller zones or more time slices but will never vanish completely

� The simulation outcomes depend on the chosen zone system

� Zone systems necessarily lead to intra-zonal trips, which are hard to calibrate and
validate

This leads to the issue that the more detailed the matrices become, the more calcula-
tions need to be processed, as the number of records depends onm·t·n2. This also means
that these matrices take up a large part of the computer's memory. Many (if not most)
of the entries are never used throughout the simulation. Therefore, it seems natural to
directly query individual travel times instead of preemptively calculating every possible
combination.

In the new implementation, agents in SILO create queries that are routed by MATSim
router implementations that return individual routes that take into account tra�c from
the latest MATSim simulation run. Therefore, it is mandatory that dwellings and jobs
of the synthetic population are represented as microlocations with an x/y coordinate.
Figure 7.1 shows a visualization of a sample of queries registered during household re-
location decisions of the �rst simulation year for the Munich scenario of the FABILUT
model. It can be seen that query density is high where population density and job den-
sity are high. The implemented query architecture allows agents to query for expected
individual travel times from and to micro-locations in the form of x/y coordinates at
a speci�c time of day. Whenever SILO requires travel times, MATSim's trip router is
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queried. Transit is not explicitly simulated but only routed based on the schedule us-
ing the recent implementation of the e�cient raptor transit router (Rieser et al., 2018).
The router also includes access and egress times as well as transfer times for public
transport queries. For car travel time queries, it is assumed that the car is parked very
close to origin and destination, resulting in access and egress times that can be neglected.

Figure 7.1: Visualization of a sample of 25,000 travel time queries during one SILO simulation
year in the Munich study area. Lines depict queries from vacant dwellings (purple)
to current job locations (pink) of workers in households looking for a new dwelling.

Previously, skims were calculated for auto and transit travel times by routing between
weighted zone centroids of each zone at a de�ned and �xed peak hour (once for the
morning and once for the afternoon peak). For 4, 924 zones in the Munich study area,
each skim matrix has 4, 9242 = 24, 245, 776 travel time values, of which many entries
are never used. Zone centroids are obtained by geographically averaging the micro-
coordinates of dwellings, weighted by their residents' household size. This is in line with
St�epniak and Jacobs-Crisioni (2017), who report that population-weighted centroids are
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to be preferred to reduce uncertainty due to spatial aggregation. For intra-zonal travel
times, consider Z as the set of zones that include the n closest neighbors in terms of
travel times. The intra-zonal travel time tti,i of zone i is de�ned as a given share λ of
the average travel time to these closest neighbors:

tti,i = λ ∗
∑

j∈Z ti,j

n
(7.1)

where ti,j is the travel time from zone i to j and λ is a con�gurable parameter. By
trial-and-error, reasonable (i.e., not biased by systematic under- or overestimation) esti-
mates are obtained by setting n to 5 and λ to 0.66. In other words, the intrazonal travel
time is set to two-thirds of the average travel time to the next �ve zones. For individual
travel times, all queries ask for the explicit origin and destination x/y coordinates, i.e.,
no intrazonal travel times need to be calculated.

For transit travel times skims, all stops in a 1,000-meter radius around the weighted
centroid of the origin are routed to all stops in the same radius around the centroid of
the destination zone. In cases where no stops are found within the 1,000-meter radius,
the (single) closest stop to the centroid at any distance is selected. The most optimistic
route is then selected and access/egress times by walk are added between the stops of
the selected route and the centroids of zones. In a last step, the resulting zone-to-zone
travel time by transit is compared to the direct walk travel time. The shorter option is
saved in the skim matrix.

Using this, the bias between individual travel times and skims can be measured.

To showcase the problem of spatial aggregation in the case of transit, the implemented
model was applied to a simplistic hypothetical study area. Figure 7.2 shows a coarse
grid scenario which consists of 5x5 square zones with a side length of 5,000 meters each
(i.e., the area of the study area is 25km x 25km). Two U-shaped transit lines connect the
corners with the center of the study area. A �xed destination point was picked at the top
right corner (blue triangle). Next, the individual and skim travel times to this point were
queried in a 100x100 meters resolution. In the case of individual travel times, one can
clearly see isochrones around the �xed point that show increasing travel times as distance
increases. Here, the router would just return a direct walk trip in the transit case. It
is important to see that the isochrones span over the zonal boundaries. In the zone in
the second row in the last column, the isochrones have an uneven extension, which is
due to the transit stop that is located at the center of the zone and that connects to
the upper zone. Every other zone that is connected with the transit system has its own
isochrones around stops that stick out from the zones that are not connected. Here, one
can see that the size of the isochrones gets smaller as the number of stops to the target
zone increases. The isochrones in the top left transit zones are slightly larger than their
counterparts in the bottom right, which is due to the fact that the zones in the bottom
right are not directly connected and passengers need to transfer to the other line, which
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adds waiting time.

In the skim case, every zone consists of one value only. While the overall pattern is
similar, one can clearly see the issues that arise due to aggregation. The �rst issue is that
the top-right zone does not show the lowest travel time, which is due to the fact that the
intrazonal travel time takes an average to all nearest neighbors, including the zone to the
left that is inaccessible by public transport. Secondly, travel times abruptly change when
a zone border is crossed. This refers to the partitioning bias of the MAUP. While parts
of the fourth zone in the second row have some reasonable travel times in the individual
case, it is considered completely inaccessible in the skim case. A third issue is that the
skim travel time cannot capture the decreasing isochrone area in more distant zones, as
it computes the zonal value for the zone centroid, which is the geographical center in this
example. Finally, the skim travel times seem to be biased towards shorter travel times
in general. This is due to the fact that the destination, too, is represented by a zonal
centroid that is close to the transit stop in the upper right corner. This omits the egress
travel time to the actual location.

Figure 7.2: A comparison of obtained travel times for a hypothetical scenario. Zone system
and transit lines (left), skim zonal travel times to a �xed destination (middle) and
the respective individual travel times (right).

Further analyzes showed that time of day as well as network density additionally in�u-
enced the introduced bias. In addition, transit-captive relocating agents showed an in-
creased sensitivity to the actual stop location distances when searching for new dwellings
(Kuehnel et al., 2020).

The individual travel times add accuracy for the relocation behavior de�ned by the
relocation model presented in the next section. Both car and transit travel times will be
part of the decision process of relocating agents.

7.2 Microscopic Integration of the Environment

The next step is to extend the microscopic FABILUT modeling suite to account for en-
vironmental feedback using the example of road tra�c noise. The modeling suite allows
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linking road noise immissions to dwelling locations of residents microscopically at the
coordinate level to account for household relocation impacts. The model is thus capable
of representing the impacts of land use and transport on the environment and back from
the environment to land use. This new fully agent-based approach opens new possibili-
ties to analyze issues of environmental equity with the help of models, as the population
that is emitting and the population that is exposed are represented explicitly and can be
directly linked throughout the submodels. Complex studies such as location-dependent
taxes on environmental externalities and their implications on land use, transport and
environment will become possible. The work presented here has �rst been described in
Kuehnel et al. (2021b) which used simple percentage discounts for the price of dwellings.
The integration has since been updated to use the full hedonic pricing model.

In an ideal model, agents would derive lower utility from noisy dwellings, thus leading
to reduced demand. The real estate market would then react to the lower demand of noisy
dwellings and reduce their prices. In the previous chapter 6, the relationship between
the simulated noise immission values and their impact on residential rent prices has been
con�rmed. For the sake of simpli�cation, the integration into the FABILUT modeling
suite is twofold:

Relocation of agents is a�ected by implementing a noise-sensitive choice model. Agents
will be less likely to move to noisy places. Di�erent households (or household types)
may have di�erent sensitivities to noise.

Prices of dwellings are adjusted by applying the estimated hedonic pricing model pre-
sented in chapter 6.

7.2.1 Price Updates

In SILO, the pricing model is run once at the end of each simulation year. Prices of
each dwelling type are adjusted according to the current vacancy rate of this housing
type in the neighborhood. Prices increase steeply when the vacancy of a dwelling type
in a region is low since it means that high demand is present. Higher vacancy rates will
cause the dwelling prices to drop - but less steep so as landlords are less willing to accept
a decrease in rent revenues. The model does account for a certain structural vacancy
rate at which the market is considered to be at equilibrium and prices do not change.
However, this model re�ects the regional price trends of municipalities or districts in the
study area. It does not account for the individual attributes of a dwelling. Therefore,
the estimated hedonic pricing model is implemented in SILO. The OLS model with a
categorical noise variable was chosen to account for the fact that using a continuous noise
variable would also mean that changes in the lower ranges of noise would have a similar
impact as changes in noise at higher levels. However, it is assumed that noise will not
have a notable e�ect at lower values below 55 dB(A) as was also con�rmed when using
di�erent noise categories. To keep the yearly price adjustment rates of SILO's basic pric-
ing model, the predicted prices of the applied hedonic pricing model will be scaled by
the yearly adjustment rate. This way, it is ensured that prices do also react to changes
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in demand.

For the application of the estimated hedonic pricing model, the variables included need
to be present in SILO. The �rst independent variable is the area of the dwelling. In the
Munich use case of SILO, the dwellings of the synthetic population do not have area as an
attribute. Instead, the number of rooms per dwelling describes the size of the dwelling.
To convert the number of rooms into area, the observed real-world data from chapter 6
are used to estimate dwelling area with a simple linear regression, as shown in table 7.1.
As can be seen from the results, each additional room is correlated with an additional
area of 26.79 m2. The intercept/constant is estimated at 6.95 m2. Both estimators are
highly signi�cant and the model shows an R2 value of 0.74, which is reasonably high. As
such, this simple model is considered appropriate to represent areas of dwellings in SILO.

Table 7.1: Estimation results for dwelling area.

Dependent variable:
area

intercept 6.9533*** (0.7206)
rooms 26.7960*** (0.2821)

Observations 3,144
R2 0.7417

Adjusted R2 0.7417
Residual Std. Error 16.42

F Statistic 9024
Note: Signif. codes: `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1 robust SE in (brackets)

The next variable is the noise variable which is obtained by the MATSim noise ex-
tension. Similarly, the microscopic car accessibility is obtained by running MATSim's
accessibility extension. The accessibility calculation is only updated after each transport
model year and is assumed constant in-between years. In addition, accessibilities are
calculated per zone and not for each individual dwelling. The reasons are that, for once,
accessibility varies rather slowly over space (compare �gure 6.8) and, as such, nearby
dwellings within a zone should have a similar accessibility value. Secondly, the acces-
sibility calculation is computationally costly, as for each estimation point, the travel
times to all opportunities have to be routed. For the roughly 5,000 zones in SILO, the
calculation takes around 20 minutes per update year when heavily parallelized. This
computation time increases linearly with the number of estimation points and, as such,
becomes unfeasible if applied for each of the 2.6 million individual dwellings. It should be
noted, however, that this may introduce MAUP issues and abrupt changes across zone
boundaries. Given the slow variation over space it is assumed that these problems are
minor, especially in populated areas where zones are small.
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Table 7.2: Parking availability by dwelling type.

Dwelling Type Average Number of Parking Spaces
Single-Family Detached House 1.6
Single-Family Attached House 1.3

Multi-Family Apartment (less than 5 units per building) 1
Multi-Family Apartment (5 or more units per building) 0.8

The parking availability per dwelling is determined using the assumptions given in
Llorca et al. (nd) where, based on real estate advertisements, each dwelling type is
associated with an average number of parking spaces as shown in table 7.2.
Using these average numbers, parking is available for all dwelling types but the multi-

family apartment in a building with more than �ve units, which is common in the large
cities. For these dwellings, parking availability was randomly drawn with a probability
of 80%.

The quality variable is converted from the quality level in SILO, which is encoded with
an integer between 1 and 4 (4 being the highest quality). Here, levels 1 and 2 were set to
Average dwelling quality, 3 was set to superior dwelling quality and 4 was set to luxury
dwelling quality.

Lastly, the state variable had to be de�ned in SILO. As this is also not available in
the default study area setup, the state is simply based on the distribution of states in
the collected real estate data. Figure 7.3 shows the distribution of states based on the
age of the building. It can be seen that as age increases, the 'First Time Use' and 'New
Building' states decrease in frequency and states such as 'Renovated' or 'Well-Kept' in-
crease in frequency. For the application in SILO, newly constructed dwellings will be
assigned 'First Time use' state. Once the dwelling is occupied, the state is changed to
'New Building'. In subsequent years, based on the current age of the dwelling, the state
is randomly switched to a di�erent level with a probability based on the frequency of
each state for a given age. These updates occur whenever a dwelling enters a new age
bracket as de�ned by the categories seen in �gure 7.3. The same distribution is applied
to all dwellings in the base year.
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Figure 7.3: Distribution of apartment states depending on the building age.
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7.2.2 Relocation Decisions

Due to the lack of available data and existing noise-sensitive relocation choice models
for Munich, a model developed by Hunt (2010) is implemented and used. It is based on
a stated preference survey in which over 1,200 participants had to choose from dwelling
alternatives in Edmonton, Canada. Each respondent was asked to imagine moving to a
new home. Multiple hypothetical alternatives were presented, with each of them been
described with attributes of di�erent levels of prices, air quality, tra�c noise, travel time
changes to work, school and shopping, among others. Using the respondent's answers,
choice model parameters were estimated. Three versions of the model exist, which were
estimated for all households and for two subsamples of high-income and low-income
households, respectively. It was shown that high-income households are less sensitive to
price but more sensitive to noise and vice versa.

SILO uses a three-step approach for residential relocation. As a �rst step, every house-
hold decides on whether it wants to move at the beginning of each year. The probability
for the decision to move is based on a comparative evaluation between the current own
housing satisfaction and the average satisfaction in the current region. Once a household
decides to move, it will look for a target region in a second step. The region choice
is a discrete choice based on average vacancy rates, prices, accessibilities and potential
commute travel times of household members. The last step is the selection of a vacant
dwelling within the chosen region. Therefore, SILO randomly samples 20 di�erent vacant
dwellings and evaluates their utility. The choice follows a multinomial logit model:

p(d) =
eβ∗ud∑
i e
β∗ui

(7.2)

where ud is the utility of dwelling d and ui are utilities of all choice alternatives.
Utilities in SILO are usually de�ned in a utility function. The choice model of Hunt
works in a similar way and has a linear form:

Ui = β1 · x1 + β2 · x2 + . . .+ βn · xn (7.3)

where βn is the utility parameter associated with attribute xn.

SILO's own utility function has been replaced by the models that were estimated
in Hunt's study. Therefore, multiple adjustments and simpli�cations had to be made.
The impact of noise was found to be negative in terms of utility but was classi�ed as
a categorical variable that had to be translated into noise levels in SILO. The original
noise category 'Sometimes Disturbing' was dropped, as the magnitude of the estimate
was considered inconsistent among the models. It was valued less negatively than the
'Constant faint hum' category but is supposed to be worse in terms of noise. Similarly,
dwelling types had to be translated between both models. The classi�cations for low- and
high-income households, as well as the utility components, were presented by Canadian
Dollars, which were converted into Euro equivalents. Low-income households were de-
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Table 7.3: Classi�cations and relocation variables in the models by Hunt and their representa-
tion in SILO

Hunt (2010) SILO

Dwelling Type

Single Family Single Family Detached
Duplex Single Family Attached
Townhouse Multi-Family (2-4 families)
Walkup -
Highrise Multi-Family (5+ families)

Tra�c Noise

None LDEN < 30 dB(A)
Occasionally just noticeable LDEN 30-50 dB(A)
Constant faint hum LDEN 50-60 dB(A)
Sometimes disturbing - dropped -
Frequently disturbing LDEN < 60 dB(A)

Rent/Tax CAD 100 per month increase EUR 68 per month increase

Travel to work
10 min auto drive time increase 10 min auto drive time increase
10 min transit ride increase 10 min transit ride increase

�ned as households with an income below EUR 16,000. High-income households have an
income above EUR 68,000. Finally, many variables were not (yet) available in the current
SILO model (e.g., air quality, travel time to shopping, car and transit costs). However,
the utility components in the original model were based on comparative measures to the
current home of respondents (e.g., increase of transit costs by $1 compared to current
housing) or categorical variables that have a default category which is assigned with a
utility of 0. Thus, here, it is assumed that all alternative dwellings are equally good or
bad in the utility components that could not be captured in SILO. For instance, the air
quality is assumed to never be bad, such that the utility component for all dwellings is 0.
Likewise, variables like '1$ transit fare increase to work', which compares fares between
current housing and the potential new dwelling, were assumed to yield a di�erence of zero,
i.e., all dwellings would have the same transit fare costs associated with them. It should
be noted that ignoring these variables by assuming no di�erences between dwellings may
distort some of the �ndings. However, the included variables should be able to capture
noise sensitivity for a proof-of-concept of an integrated environmental feedback model.
Table 7.3 shows the selected variables that are captured in SILO and their representation.

Both sensitivities for relocation and for price had to be included in the model. If only
the price was updated, all households would perceive the less expensive dwellings as more
attractive even though there is a reason why the dwelling costs less. If only the relocation
choice model was adapted, the price discounts found in the hedonic pricing study would
not be part of the model and the reduced demand would not lead to di�erences in the
housing market. While one could say that the two e�ects would 'cancel' each other since
the less attractive noisy dwelling is also cheaper, this should still lead to a more distin-
guished pattern of household distribution. More a�uent households are more sensitive
to noise and less sensitive to price and will thus a�ord to move out of noisy places. Less
a�uent households are much more sensitive to price and are less likely to a�ord to move
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7 Towards an Agent-Based Land Use/Transport/Environment Model

away from noisy places, especially in tight housing markets.

The resulting reactions to noise can be explained by looking at �gure 7.4. The utili-
ties of dwellings that only vary in their noise levels are evaluated by the three di�erent
household types, compared to a �xed 'current dwelling'. It can be seen that, in gen-
eral, the higher noise categories are less favorable as they result in less utility. While
the high-income households have a high sensitivity to noise and react more and more
negatively to higher noise levels, the reaction is less clear in the other two household
types. Loud dwellings which exceed the price discount thresholds are rented for a lower
amount of rent. Less a�uent households are much more sensitive to price, which is why
the average household group has a less steep decrease in utility. In the case of low-income
households, the potentially high price discounts can actually lead to a better utility when
compared to more quiet dwellings, which do not get price discounts. Since the thresholds
for the noise categories in the utility function and for the price discounts di�er, the two
categories 'Constant' and 'Frequent' show some variation in utilities. Two dwellings with
noise values of 64 dB(A) and 66 dB(A) will both fall into the 'Frequent' noise category
while the �rst will only qualify for the 55-65 dB(A) discount and the latter experiences
the discount for values above 65 dB(A).

Figure 7.4: Illustrative comparison between noise sensitivities for di�erent household types.
The utility is calculated for dwellings with �xed similar attributes, only varying by
noise. Because of the price discounts of noisy dwellings, price-sensitive low-income
households may even favor the discount and 'accept' the noise exposure.

Referring to �gure 2.7, �gure 7.5 shows the actual implemented components of the
FABILUT modeling suite, including the environmental submodule, which is the noise
extension of MATSim. After every transport model execution, noise immission values
are updated for all dwellings. In between transport model execution years, the tra�c
state is assumed to be constant. For newly constructed dwellings, the noise submodule
will calculate immission values based on the latest tra�c conditions at the end of the
year.
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Figure 7.5: Implementation of the presented modeling suite
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7.3 Integrated Feedback Model Application

Two setups were run to verify the implementation. In both setups, the model was run
between 2011 and 2030 with transport model executions in 2011, 2018, 2024 and 2030.
Relocations were microscopically tracked, which allows tracing the movement of house-
holds grouped by di�erent socioeconomic traits, especially income. In the �rst setup,
households use the newly implemented relocation strategy based on Hunt, except that
all dwellings are perceived as equally (not) noisy, meaning that all dwellings get assigned
the same 'None' noise base category in the utility function. In addition, no price discounts
are applied. The second setup uses the actually translated noise category as de�ned in
table 7.3 and applies the presented noise-related price discounts. The hypothesis is that,
in the �rst setup, no signi�cant discrimination by income should be detectable. To verify
this, noise levels are still calculated for each dwelling, even though they are not used in
the utility function. In the second setup, however, high-income households should tend
to move to less noisy places as they are less sensitive to price and more sensitive to noise
than low-income households, for which the opposite is true. Next to the hypothesis that
the spatial distribution of households will be di�erent between the two setups, it will be
examined whether the exposure to tra�c noise generally increases as population and its
density and thus tra�c is increasing in the study area.

Therefore, the average incomes of households living in highly and less exposed dwellings
will be compared between the setups. In addition, the average LDEN of dwellings of high-
and low-income households will be compared.

As stated earlier, the presented approach tries to overcome issues of aggregated zonal
values. To verify that the aggregation of local noise immissions to zonal values indeed is
problematic, the standard deviations of LDEN levels have been calculated for every zone
and the dwellings contained within. As zones and network di�er in size and density,
standard deviations have been grouped by locations to distinguish between the �ve core
cities 'Munich', 'Augsburg', 'Rosenheim', Ingolstadt' and 'Landshut' and the remaining
zones, here called 'Rural'. Figure 7.6 shows the distribution of standard deviations for
each of the de�ned locations. Note that this �gure shows the distribution of standard
deviations of noise immissions for multiple zones and not the distribution of noise levels.
It becomes clear that standard errors are quite big in rural zones, which is expected
as zones are more coarse. With the exception of Rosenheim, the �ve core cities reveal
smaller standard deviations per zone. However, even in Munich, were zones are typically
quite small (200x200m), the mean standard deviation of noise levels is around 4.75 dB(A)
and the mean range between minimum and maximum noise immission within a zone is
19.5 dB(A). For Rosenheim, the reported values seem to overestimate the variance within
zones. This could be due to some network issues as there were some unrealistically high
congested links. All in all, the �ndings support the hypothesis that the aggregation of
immission values to zonal indicators is problematic and can cloud local di�erences.
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7.3 Integrated Feedback Model Application

Figure 7.6: Distribution of standard deviations of immission LDEN values per zone, grouped by
location.

Figure 7.7 shows simulated LDEN values for microscopic apartment locations in the
base year as well as the increase of the aggregated indicator throughout 2030 using the
noise-sensitive setup. Only dwellings that existed throughout the whole time period are
shown, which excludes dwellings that were built or demolished after 2011. One can see
dwellings close to the major motorways in both parts. All dwellings experienced an in-
crease in noise throughout the years. The settlements near major motorways stick out
in terms of absolute noise in 2011 and increase of noise until 2030. In addition, as the
center of the study area, Munich shows a strongly exposed area with a large number
of dwellings. Figure 7.8 shows a close-up of Munich, including the obtained building
polygons from OSM used for the shielding correction. It can be seen that the mapped
dwelling locations match to the buildings. Loud apartments can be seen along larger
roads, while backyards are typically quieter. The larger spots where no noise value is
shown include parks like the English Garden, Theresienwiese and the Olympic Village,
among others. Those are places without residential buildings.

While for the analyses shown in �gures 7.7 and 7.8 the noise-sensitive model was used,
table 7.4 shows a comparison between the noise-insensitive model and the noise-sensitive
model in which prices and relocations are a�ected by noise. Average noise exposure by
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Figure 7.7: Noise levels in 2011 (left) and increase of noise between 2011 and 2030 (right) as
well as link capacities per hour. Noise level ranges based on quantiles.

Figure 7.8: Noise levels in 2011 - close up for Munich including building polygons used for the
shielding calculations.
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income and average income by noise exposure of relocating households are shown for the
whole study area and Munich for 2011. Note that these values only include households
that actually moved in that simulation year and do not represent values for the whole
population. Considering the whole study area, highly-exposed households on average
show a considerably lower income than households that moved to more quiet dwellings
in both models. However, while the di�erence in the noise-insensitive model scenario is
about 308e, the di�erence increases to nearly 2284e when households and prices react
to the noise. Households that move to noisy dwellings thus have around 8% lower income
than households that move to quiet dwellings in the noise-sensitive model. A similar di-
rection can be seen when looking at the average noise exposure level. The di�erence
between high- and low-income households is around 0.2 dB(A) in the insensitive model
and 1.29 dB(A) in the noise-sensitive model. The latter leads to a 3% higher noise level
for low-income households. For Munich, the di�erence between average incomes is 1877e
and 252e for the noise-sensitive and the noise-insensitive model, respectively. Average
noise levels of relocating households are 1.25 dB(A) less for high-income households in
the noise-sensitive model and 0.22 dB(A) in the noise insensitive model. It can be ob-
served that average noise levels are higher in Munich, which is reasonable as the city is
much denser and is exposed to more tra�c than the rest of the study area. Figure 7.9
summarizes the di�erences between average incomes of relocations to quiet and noisy
dwellings.

Even in the noise-insensitive scenario, high-income households relocate to less noisy
dwellings when looking at the whole study area. This can be explained by the fact that
high-income households also put high emphasis on the dwelling type and prefer single
family houses in Hunt's model (every dwelling type other than 'single family' yields a
worse utility penalty than the loudest noise category for high-income households). As
single-family homes are more common in more quiet rural sides and suburbs, high-income
households will thus still move to more quiet areas even when noise is kept the same for
each dwelling. This e�ect is much smaller when only looking at relocations to Munich.
Here, the di�erences in income between residents of noisy and quiet dwellings are quite
small as multi-family houses are the most common dwelling type and noise is ignored.
The noise-sensitive model shows considerably higher reactions to noise in the relocation
behavior of high- and low-income households in the whole study area as well as in Munich
alone. A reason why the di�erences in average income and noise levels are rather small
is that accessibility and travel time to work are also valued highly by households, which
causes households to trade o� noise versus accessibility and, as such, may cloud some of
the negative e�ects of noise.

7.4 Discussion of the Implemented Feedback

In the presented approach, noise exposures of dwellings/households were successfully
traced throughout multiple years in an integrated modeling framework on an individ-
ual, microscopic level. Noise exposure levels were calculated for more than two million
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Table 7.4: Average income and noise exposure (in LDEN) of households that relocated in 2011.
Comparison of the noise-sensitive model ('Sensitive') and the insensitive model ('In-
sensitive').

Study Area Munich

Sensitive

∅ income, noisy (>65 dB(A)) EUR 26,007 EUR 25,793
∅ income, quiet (<30 dB(A)) EUR 28,291 EUR 27,670
∅ noise, high inc. (>EUR 68,000) 45.86 dB(A) 49.21 dB(A)
∅ noise, low inc. (<EUR 15,000) 47.15 dB(A) 50.46 dB(A)

Insensitive

∅ income, noisy (>65 dB(A)) EUR 27,926 EUR 27,530
∅ income, quiet (<30 dB(A)) EUR 28,234 EUR 27,782
∅ noise, high inc. (>EUR 68,000) 46.77 dB(A) 49.99 dB(A)
∅ noise, low inc. (<EUR 15,000) 46.97 dB(A) 50.21 dB(A)

Figure 7.9: Average incomes of households moving to quiet or noisy dwellings, presented for the
sensitive and the insensitive model as well as for the whole study area and Munich
only.

receiver points that represent dwellings of the land-use model. As shown in previous
studies, microscopic noise levels vary on a microscopic scale, especially when the impact
of shielding is taken into account. This approach can therefore represent noise exposure
better than zonal values could. The results suggest that the various household types react
di�erently to road tra�c noise, which veri�es the functionality of the implementation.
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High-income households -on average- relocated to more quiet dwellings than low-income
households that tend to take bene�t from the price discounts associated with high noise
exposure.

The microscopic, agent-based integration may be valuable

� to identify exposure levels of dwellings and households and project them into future
years. MATSim's resolution is capable of simulating noise for a typical 24-hour day
in �ne-grained time bins, accurately capturing evening and night time levels.

� to simulate changes in noise exposure due to policies on the land use and the
transport model side and the resulting feedback. This could include time-of-day
dependent, individual noise-sensitive taxes on car commutes, causing agents to
relocate closer to their workplace.

� to analyze microscopically who is exposed to and who is emitting road tra�c noise
to understand and simulate issues of environmental equity over the course of mul-
tiple years.

The price adjustment model was calibrated speci�cally for the Munich study area. It
is recognized as a limitation that the relocation choice model developed by (Hunt, 2010)
was simply transferred to this study area without recalibration. As a proof of concept,
however, the approach showed plausible and intuitive results. A large drawback is that
the conversion from categorical variables to a continuous immission value is somewhat
arbitrary. In addition, Hunt's choice model does not account for the size (in terms of
�oor space or number of rooms) of a dwelling, which is one of the most important factors
for relocation choice. If household relocation survey data were available for the Munich
region, a model could be estimated that better represents local conditions.

It is well known that is that exposure to noise is not the same as perceived nuisance
(Hamersma et al., 2014). As the framework is agent-based, more complex behavior could
be represented. For example, Coensel et al. presented an agent-based approach to ex-
plain the perception of environmental stressors (Coensel et al., 2007). Similarly, modeled
noise immissions at the building facade do not necessarily re�ect the noise annoyance
indoors. A surrogate could be the estimated percentage of people that are highly an-
noyed at speci�c immission values, an indicator commonly used in the European Union
(Council Directive 2002/49/EC, 2002).

The presented framework �lls the gap of microscopically integrating noise as a feedback
loop in an existing land-use/transport model. The results con�rm the setup and open new
possibilities of analyzing environmental stressors such as noise in an integrated context.
Regarding research question 4, it can be con�rmed that the inclusion of model reactions
to noise leads to di�erent outcomes in relocation patterns of households. For the whole
study area, the di�erence in average incomes between households moving to quiet or noisy
dwellings is roughly 3.6 times higher (2,291 EUR vs 639 EUR) in the noise-sensitive model
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when compared to the insensitive model. For Munich, this di�erence is about 9.2 times
higher (1,707 EUR vs 185 EUR) in the noise-sensitive model.
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8 Agent-Based Environmental Equity:
Who is exposed? Who is responsible?

In fact, the life expectancy of city
dwellers can almost be read on the
city map

Lärm, der zum Tode führt. DER
SPIEGEL, Juli 1996

This chapter investigates the relationship between individual exposure and causation
on the example of tra�c noise. While multiple studies investigated the equality of expo-
sure, the author is not aware of studies that linked (individual) exposure and causation
of external e�ects. While the methodology can be applied to analyze exposure-causation
by socioeconomic groups, this analysis looks at di�erences between the spatial location
of residents to answer research question 5 and 6.

The results of this chapter have been published in (Kuehnel et al., 2021a).

8.1 Methodology and Scenario Setup

Before comparing exposure and causation by agent, overall distributions are compared
by using the Gini index as de�ned in equation 2.7. Therefore, noise exposure and causa-
tion will be monetized. For each time bin (i.e., hour) of the simulation, MATSim throws
events for a) agents being exposed in that time bin and b) agents causing noise while
driving on a link. The exposure events include the noise damages as de�ned in equation
3.11. The causation events take into account all receiver points that are a�ected by the
event link and sum up the noise damage introduced by the given agent. Since the rela-
tionship between noise level (and, thus, damages) and tra�c volumes is non-linear and
follows a logarithmic curve, there are two possible options to calculate the noise costs of
a single vehicle. The marginal cost approach calculates the additional cost of one single
vehicle driving on the link (Kaddoura and Nagel, 2016). The resulting cost is also called
attributional cost. While the marginal cost explains the individual cost introduced by
an additional car using the link, the sum of all marginal costs does not add up to the
total costs of the receiver. The average takes the total noise damage of a receiver point
and divides it evenly between all agents that used link in the given time bin. Here, the
resulting cost is also called consequential cost and the sum of costs of all agents add up
to the total cost at the receiver. However, in most cases, each vehicle will be charged
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more than in the marginal cost approach. For the following analyses, the average cost
allocation approach is used such that each agent is held equally responsible when driving
on a given link. In addition, the di�erence of causation subtracted by exposure (δ) is
calculated to quantify the net exposure-causation relationship per agent. A positive δ
means that agents contribute more to noise damage than they su�er from it, and vice
versa.

For area classi�cation, the city and community classi�cation of the Bundesinstitut für
Bau-, Stadt- und Raumforschung (BBSR) (Bundesamt für Bauwesen und Raumordnung,
2020) is used. The typology consists of �ve categories: large city, medium city, small
city, small town and rural community. The classi�cation is based on population �gures
and central location function. Table 8.1 shows the de�nitions of the di�erent types and
the code used throughout the rest of this chapter.

Table 8.1: BBSR type de�nitions

Code Type De�nition
BBSR 10 large city more than 100,000 inhabitants
BBSR 20 medium city 20,000 - 100,000 inhabitants
BBSR 30 small city 10,000 - 20,000 inhabitants
BBSR 40 small town 5,000 - 10,000 inhabitants
BBSR 50 rural community less than 5,000 inhabitants

As can be seen in �gure 4.4 in chapter 4, activity locations of the scenario are dis-
tributed randomly across municipalities and are not linked to facility locations. Since
noise immissions are very sensitive to actual locations of receiver points, activity locations
of all activities were re-located to buildings nearby by using data from OSM. Thereby, the
route information of legs was removed while information on selected mode and departure
time were kept. Subsequently, the simulation from the relaxed scenario was run again
with a re-routing strategy of agents only. Although the relocation of activity locations to
building locations is simplistic, receiver point locations and, thus, noise exposure should
be more realistic on average. This will not allow for a detailed individual analysis of
exposure at the micro-level but should produce reasonable aggregates at larger scales.

After the MATSim assignment, receiver points were de�ned by creating one receiver
per 'home' activity in the output plans of agents to ensure adequate noise cost allocation.
For each receiver point, immission values and costs were calculated. Here, the buildings
obtained from OSM are also used to account for their noise shielding and re�ection e�ects.

Each receiver point was matched to its BBSR type by spatial location. The BBSR
typology in the study area can be seen in �gure 8.1. One can see that the large city
type is only present in the center and includes the cities of Potsdam and Berlin. Another
observation is that, in general, the municipalities become more rural with increasing dis-
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tance to the center of the study area.

A total of 491,351 receiver points were obtained from 'home' locations of the 10%
population sample in the open Berlin scenario (note that this does not re�ect the number
of agents, as some agents do not have a home activity at all and agents usually have
more than one `home' activity per day). The estimated noise levels LDEN are shown
in the center and on the right of �gure 8.1. The noise causation events emitted by
MATSim contain the amount of damage induced by an agent driving on a certain link at
a certain time bin. Therefore, one can identify the BBSR type of the area where the noise
event occurred. Thereby, one can get for each agent the distribution of noise damages
imposed on receivers of each BBSR type. Since it is also known where the agents live,
the distributions of noise damages can be linked to the BBSR type of causing agents.
Agents that do not have a 'home' activity are ignored in the causation analysis, which
excludes freight and bus driver agents.

Figure 8.1: Study area and BBSR types (left) and receiver point locations, noise levels and
network (center), including a close-up for Berlin (right). Noise levels based on
quantile ranges.

8.2 Environmental Equity Analysis Results

First, the Gini indices for exposure and causation were calculated and the respective
Lorenz curves are shown in �gure 8.2. The Gini index of noise exposure is 0.72, while
the Gini index of noise causation is 0.89. This means that both, exposure and causation
are distributed quite unequally. By comparing the indices and Lorenz curves, it can be
observed that the distribution of noise causation is more unequal than the distribution of
exposure, meaning that while around 40% of agents are exposed to most of the damage,
only around 20% of agents are actually responsible for the damage.
Figure 8.3 (left) shows the scatter plot of agents' noise exposure and noise causation in

monetary terms. This �gure shows a logarithmic decreasing trend, which indicates that
some agents contribute to much noise but are exposed to less noise and vice versa. That
is, not only is the distribution of causation and exposure generally unequal but there is
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Figure 8.2: Lorenz curves of noise exposure (left) and noise causation (right). Values refer to
costs in e.

also a certain inverse relationship in which the very people who su�er the most (least)
contribute the least (most) to su�ering.

Figure 8.3: Scatter plot of noise exposure and causation per agaent in monetary terms (left) and
distribution of the causation to exposure di�erence δ for each BBSR type (right).

The right part of �gure 8.3 shows the distribution of the causation-exposure di�erence
δ by BBSR type. Here, BBSR 10 sticks out clearly, with most of the agents having
a negative value, meaning that, on average, agents experience more damage than they
cause. This can be explained by the fact that noise levels, in general, are quite high in
the large cities and, more importantly, a large share of agents does not cause any noise
damage (by private car) at all as agents have more options to travel by other modes.
This becomes clearer when looking at table 8.2, which summarizes statistics regarding
the spatial distribution of noise causation and exposure. The share of agents that do not
cause any noise is highest in BBSR 10 (note that this does not represent the share of
non-car modes, as car users may drive on links that do not contribute to receiver points
that exceed the immission threshold Lmineq,t ). On the other hand, the share of agents
that is not experiencing any noise damage is lowest in BBSR 10 type (32.05%). Still,
the mean noise causation for BBSR 10 is very similar to the other community types,
which suggests that those agents that actually cause noise damages do so on a high level.
This is reasonable because while the per-agent exposure cost is similar in BBSR 10, the
population or receiver point density is much higher and, therefore, driving on a link can
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a�ect many more agents. The standard deviations of noise causation in each BBSR type
are generally larger than for noise exposure, which again shows that noise causation has
a higher variance than noise exposure and is less equally distributed.

Table 8.2: Noise causation and exposure by BBSR type
BBSR Mean noise

causation
(standard

deviation) [e]

Mean noise
exposure
(standard

deviation) [e]

Mean causation -
exposure di�erence δ

[e]

Share of agents
without noise
causation

Share of agents
without noise
exposure

BBSR 10 0.07 (0.28) 0.09 (0.12) -0.02 83.84% 32.05%
BBSR 20 0.08 (0.23) 0.05 (0.11) 0.03 63.11% 65.83%
BBSR 30 0.08 (0.24) 0.05 (0.11) 0.03 60.90% 62.72%
BBSR 40 0.08 (0.21) 0.06 (0.11) 0.02 57.49% 58.92%
BBSR 50 0.06 (0.16) 0.06 (0.11) 0.00 60.10% 59.48%

The Sankey diagram shown in �gure 8.4 shows for agents living in each BBSR type
(left) the distribution of noise damages caused by these agents in all BBSR types. Note
that the shares on the diagram's right cannot be interpreted as distributions of the total
noise exposure from di�erent BBSR types, as the share of agents living in each BBSR is
quite di�erent. It can be seen that a high share of noise damages stays in each respective
BBSR type. However, in BBSR 10, 97.3% of all noise costs are incurred within the same
type, while only 38% to 50% of noise costs stay inside other types. In contrast, BBSR
types 20, 30 and 40 all have a high share of noise costs caused in BBSR 10 (29%, 41%
and 40%), indicating more extensive commute �ows from those areas to BBSR 10. For
BBSR 50, the noise cost shares split up almost evenly across the other types (between
12% and 19%). A reason for that could be that municipalities of BBSR type 50 are
quite distant from Berlin and Potsdam and the respective commute patterns should be
relatively small. This can lead to a smaller share of noise pollution-induced in the large
cities. In addition, agents that travel from a BBSR 50 to the two cities of BBSR 10 need
to pass through communities of other types �rst, which further smooths the distribution.

Figure 8.4: Sankey diagram of noise causation distribution by BBSR type
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8.3 Discussion of the Equity Analysis

The study presented in this chapter con�rmed that agent-based models are suitable tools
to analyze equity issues that emerge from individual behavior. Unlike previous studies,
individual causation by using social costs as a proxy was analyzed in addition to ex-
posure to environmental stressors. While exposure and causation were both unequally
distributed, the inequality of causation is considerably higher. This is partly because
only part of the population owns a car and drives, but almost every home is located
near roads. As such, everyone bene�ts (e.g., in the form of accessibility) and su�ers (in
the form of negative external e�ects) from shared infrastructure. In addition to these
general conclusions, spatial patterns were identi�ed when looking at di�erent city and
community classi�cations and their exposure-causation relationship.

Future studies should look at overcoming limitations introduced by the simpli�ed al-
location of residents to buildings. Furthermore, more activity types in addition to being
at home should be considered. If more detailed and �ne-grained socio-demographic in-
formation were available, they should be taken into account by linking exposure and
causation to other attributes, such as income, car ownership or education. Other equity
analyses could account for the positive aspect of accessibility.

Millimet and Slottje (2002) stressed that the Gini index does not necessarily mean that
there is a reason for concerns. The authors, based on Paglin (1975), argue that inequal
environmental distribution is not a problem if the inequalities occur between population
groups with a similar income and higher polluted groups are compensated by having
higher incomes (e.g., people living in large cities having a higher socioeconomic status
but also more a higher exposure to pollution). However, they also acknowledge that if
di�erent populations cause the unequal distribution of environmental stressors within
a given locale, issues of fairness persist and that these questions can only be answered
with su�ciently disaggregated data. If more information on sociodemographic traits is
available, agent-based simulations could be considered su�ciently disaggregated. Given
that the bene�ts or 'positive' goods such as accessibility or income for each of the BBSR
types are not studied here, the �ndings should not be used for policy implications but
are meant to serve as an exploratory analysis using agent-based simulations, including
the assessment of individual causation.

As a result of this chapter, research question 5, which asked whether causation of noise
is more unequally distributed than exposure thereof, can be answered with 'yes', since
the Gini coe�cient for causation was found to be higher. In addition, the �nding that
di�erent BBSR types have di�erent shares of agents with/without noise causation and
the fact that almost all BBSR types produce a high share of noise in the BBSR type
10 leads to the conclusion that there is apparently a spatial pattern that shows that
dwellers in the large cities are more disproportionally a�ected by noise caused by agents
of surrounding smaller communities. Therefore, research question 6 can be answered
a�rmatively.
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9 Demand Responsive, Autonomous and
Electric Transit - The Impacts on
Tra�c Noise

[. . . ]we help cities reduce air
pollution, congestion, noise and
space constraints, and achieve their
sustainability goals

Part of the ride-pooling provider
MOIA's mission

This chapter presents an application of the updated noise model in conjunction with an
additional MATSim extension that allows simulating ride-pooling scenarios. This way,
the impacts of this new mobility concept on tra�c noise are investigated. The applica-
tion introduces an autonomous on-demand ride-pooling service to the existing transport
system in central Munich. Two mode choice scenarios are applied: A draconian one
in which the entire car travel demand within the service area is forced to use the new
ride-pooling system and a laissez-faire scenario in which all agents are allowed to use the
new mode and mode choice decisions are based on an incremental choice model (Kop-
pelman, 1983). For each mode choice scenario, a door-to-door and a stop-based service
are introduced and system e�ciencies, service levels and noise exposure of residential
dwellings are measured. In a stop-based service, passengers are picked up and dropped
o� at prede�ned stops and need to walk the �rst and last part of their journey.

The hypotheses are that a) noise exposure should be reduced by replacing conventional
car trips with pooled rides and b) residential exposure should decrease even more in a
stop-based service than in a door-to-door service and c) service levels (travel time, wait
time) are better in the draconian scenario as the service is not a�ected by congestion
caused by individually driven cars. Lastly, d), a fully electric �eet should lead to a con-
siderably lower noise exposure than a �eet of conventional vehicles. By analyzing these
aspects, research questions 2, 7 and 8 will be addressed.

The results presented here have �rst been published in Zwick et al. (2021).
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9.1 Data Preparation and Scenario Setup

MATSim's DRT extension, which has been introduced in section 3.5, will be used for
this chapter to investigate the large-scale application of a ride-pooling service. Noise
immissions are calculated for each dwelling of the synthetic population in the service
area. This allows assessing the environmental impact of noise immissions and how it
is a�ected by the introduction of ride-pooling. The noise analyses in the scenarios are
performed once assuming an all-electric �eet and once with a regular combustion �eet
to answer research question 2 of this thesis. Thereby, the correction term for electric
vehicles presented in section 5.6 will be applied.
The simulation is set up for the Munich metropolitan area as described in chapter 4.

The demand of the complete study area is taken as an input, even though the analysis
focuses on the core city of Munich. This ensures that in- and outbound tra�c is included.
The service area for the new ride-pooling system was de�ned to cover the service area of
the former ride-pooling service Clevershuttle1 in Munich shown in Figure 9.1. It covers
roughly 200 km2 and contains 1,531 public transport stops, provided by OSM, which are
used for the stop-based service. Previous studies by Zwick and Axhausen (2020b); Gu-
rumurthy and Kockelman (2020) have shown that the stop network design has a major
e�ect on system e�ciency, whereby a thinner stop network enables more e�cient pooling,
but customers face longer walking distances. More e�cient pooling and more distances
covered by walking are two reasons why a stop-based service should considerably reduce
road tra�c noise.

It is assumed that the public transport stop network is already fairly optimized for
the current public transport system. Curb space is already used for pick-up and drop-o�
areas, facilitating the usage of those stops for a ride-pooling system. However, additional
curb space would need to be created to account for additional vehicles using the stops.
For the base case, all agents of the greater study area that chose to travel by car are

simulated. Next, the resulting vehicle kilometers traveled (VKT) and noise exposure
within the service area are measured to obtain the base indicators for comparison in the
following scenarios. For ride-pooling scenarios in MATSim it is not feasible to simulate a
representative sample of travelers in MATSim to reduce computational runtimes. Sam-
pling would lead to artifacts in the pooling rate that are hard to interpret. If a pooled
vehicle can carry four passengers and the sampling rate is 10 %, it becomes impossible
to analyze the occupancy rate due to the discrete number of passengers in agent-based
modeling. Consequently, 100 % of the car trips are simulated in the base case, which is
also used to de�ne the demand of the �rst ride-pooling scenario.

In all scenarios, the dispatching algorithm is set up with a maximum wait time of
10 minutes and a maximum acceptable travel time of 1.5 tdirect + 10min, where tdirect
is the direct travel time between the origin and destination. This ensures a reasonable
balance between service e�ciency and service quality (Zwick and Axhausen, 2020b). Re-

1Clevershuttle shut down service in Munich in 2020
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Figure 9.1: Service area and (stop) network.

quests that cannot be served by any vehicle within the given constraints will be rejected
and are not further considered within the simulation. The stop time for every pick-up and
drop-o� is 30 seconds. The vehicles operate 24 hours, without accounting for down-times
for charging, maintenance or other operational issues. For both mode choice scenarios,
a door-to-door and a stop-based ride-pooling operation system are simulated, which, in
combination, leads to four di�erent cases for comparison.

In total, 647,677 dwellings of the synthetic population presented in section 4.2 lie within
the service area and will be evaluated to assess noise immissions (see �gure 9.1). For each
of these dwellings that were matched to OSM buildings, a receiver point is de�ned. As
larger buildings may contain multiple dwellings, the resulting average immission levels
will be weighted by household density. Therefore, the spatial location of changes in noise
immission levels actually matters, as noise reductions in remote areas will help fewer
residents than in crowded areas.

The processes to obtain the demand for the two mode choice scenarios are described
in the following two subsections.
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9.1.1 Draconian Scenario

In the �rst mode choice scenario, a radical but straightforward policy is assumed. All
existing private car trips that drive within the service area are replaced with ride-pooling
trips. Trips that neither start nor end in the service area are cut out to reduce the run-
time. External-to-internal trips (E-I) and internal-to-external trips (I-E) are transferred
to the ride-pooling system within the service area and are assumed to be transported by
an alternative mode outside the service area. Similar to a previous city-wide application
of on-demand mobility with un-pooled rides by Bischo� and Maciejewski (2016), trav-
elers using other modes in the base case cannot switch to ride-pooling and are ignored.
Through tra�c is not taken into account here. This can be justi�ed by the fact that the
service area does not include the outer motorway ring commonly used by trips neither
starting nor ending within the service area.

The door-to-door service is operated by 18,000 6-seater vehicles. The stop-based ser-
vice is simulated with 12,000 6-seater vehicles. These numbers have been identi�ed as
su�cient to serve at least 99.8 % of all requests without rejections.

9.1.2 Laissez-Faire Scenario

The second setting applies a laissez-faire scenario in which every agent may choose the
new ride-pooling mode (among all other existing modes). Therefore, MITO's mode
choice model has been extended by a ride-pooling mode to obtain somewhat realistic
mode shares. Due to the lack of data for model estimation and calibration, the agents'
decisions are based on an existing utility function which is implemented an incremental
logit model (Koppelman, 1983). As the original mode choice model does not include a
taxi mode, it is assumed that the mode car passenger is most similar to ride-pooling.
Similar to car passengers, agents are not driving themselves and do not need a car or a
driver's license. While agents use a third-party service and have to share their trip with
strangers, which makes it similar to transit modes, the level of comfort is considered to
be more similar to a private car. Agents do not have to rely on connections and transfers,
there is no prede�ned schedule and individual seats are guaranteed without the risk of
overcrowding. Lastly, even in the stop-based ride-pooling service, routes, in general, will
be more direct than transit routes as any stops can be connected for the start and end
of a trip. Utilities for the new mode were calculated by re-using the utility coe�cients
of the car passenger mode. The main di�erence in utility compared to auto passenger
are generalized costs. The generalized costs in MITO include travel time and monetary
costs. For the laissez-faire scenario, the generalized costs are adjusted to include wait
time, service costs per km and a detour factor for the actual travel time. The simulated
service employs an autonomous vehicle �eet. Therefore, a predicted per-kilometer fare
for an autonomous service is taken from Bösch et al. (2018) and is set to EUR 0.27. Ad-
ditionally, a �xed fare of EUR 2 is charged. A previous draconian scenario simulation is
used to obtain estimates for the average wait times and detour factors. Figure 9.2 shows
that the average wait times in the draconian scenario are constantly around 5 minutes for
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most parts of the service area. Thus, the waiting time for ride-pooling is set to 5 minutes
for all customers. Travel times are estimated using direct car travel time and multiplying
it with the average detour factor taken from a previous simulation. Di�erent from the
draconian scenario, only internal-to-internal trips are allowed within the service area to
be made by ride-pooling. The assumption is that most people would probably not use
another mode from/to the boundary of the study area and change from/to ride-pooling
if it is not enforced.

To serve at least 99.8 % of all requests, 8,000 6-seater vehicles are used for the door-
to-door service and 5,000 6-seater vehicles for the stop-based service.

9.2 Results of the Large-Scale Ride-Pooling Scenarios

The presented scenarios are analyzed with regard to system e�ciency and tra�c noise
impact within the service area shown in Figure 9.1. After presenting the base case results,
the system e�ciency is compared to the draconian and the laissez-faire scenarios with
the two proposed ride-pooling services. E�ciency and service indicators are important
to understand how impacts on resulting noise emerge and whether there are trade-o�s
between noise exposure levels and transport system e�ciency. Finally, the noise impacts
are assessed in each scenario.

In the base case, overall VKT within the service area is 9.8 million km, including the
VKT by incoming, outgoing and through tra�c. The average travel time for internal
trips is 13:01 minutes for an average trip length of 6.9 km. Consequently, the average
travel speed is 32 km/h, which is in line with values reported by Forbes (2008) and
Engelhardt et al. (2019). Access and egress trips for private car trips and parking search
tra�c are not considered.

9.2.1 Ride-Pooling System Performance

The transport system aims at transporting all agents in the shortest possible time to
their destination, including short wait and walk times. Table 9.1 shows performance in-
dicators for the door-to-door ride-pooling service and the stop-based ride-pooling service.

With a door-to-door ride-pooling service and a draconian policy, 18,000 vehicles are
used to serve almost 2 million rides that were previously conducted by private vehicles.
In total, the ride-pooling system leads to 7.0 million VKT, of which 8 % are driven empty
to pick up customers and for reallocation purposes. To facilitate the comparison between
the scenarios, the VKT is also measured inside the service area, which is 6.6 million km
in this case. In the base case, the VKT is 9.8 million km, which means that a substantial
reduction of VKT with the pooling system can be observed. The mean travel time is
15:12 minutes, the agents face an average detour of 40 % and an average wait time of
5:30 minutes. 2,926 requests (0.15 %) could not be served within the maximum wait
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Table 9.1: Overview of system performance indicators of the base case system and all ride-
pooling (RP) systems within the service area.

Base case Draconian scenario Laissez-faire scenario
Door-to-
door

Stop-based Door-to-
door

Stop-based

RP vehicles � 18,000 12,000 8,000 5,000
RP rides � 1,912,783 1,836,513 503,037 498,529
Rides per RP vehicle � 106 153 63 100
RP rejections � 2,926 0 179 132
RP kilometers [km] � 6.9 x 106 4.5 x 106 1.9 x 106 1.4 x 106

VKT in service area [km] 9.8 x 106 6.6 x 106 4.5 x 106 10.6 x 106 10.1 x 106

Share of empty km [%] � 8 7 5 6
Avg. travel time [min] 13:01 15:12 14:44 17:01 15:41
Avg. trip length [km] 6.9 9.7 9.6 9.4 9.2
Avg. detour [%] � 40 41 42 44
Avg. wait time [min] � 5:30 5:04 5:34 4:56
Median wait time [min] � 5:37 5:08 5:36 4:43
Avg. walk distance [m] � � 271 � 259
Avg. computation time
per iteration [h]

1/2 24 16 9 5

Note: Walk distance only includes walk to and from ride-pooling vehicles.

time of 10 minutes or the accepted detour parameter.

Using a stop-based ride-pooling service in the draconian scenario, a small part of the
requests are not served by the ride-pooling system. In these cases, the origin and des-
tination stops are the same. The remaining 1.8 million requests can be served by only
12,000 vehicles, leading to more than 150 rides per vehicle. The vehicle kilometers driven
are further reduced to 4.5 million km, which is a reduction of 54 % compared to the
base case. The average travel time drops to 14:44 minutes and the mean wait time to
5:04 minutes. Additionally, the agents need to walk on average 271 m to and from a
stop, or a total of 542 m per trip. None of the requests had to be rejected with the given
service constraints.

For the laissez-faire scenarios, MITO's mode choice model predicted a 16 % share for
autonomous ride-pooling trips starting and ending in the service area. For the majority
of these trips, two rides will be simulated, as these are home-based and include a return
trip. Roughly 47 % of the ride-pooling trips were previously made by the modes car or
car passenger, 20 % by public transport, 13 % by bike and 20 % by walk. In total, about
half a million ride requests are served by the on-demand system. 8,000 vehicles in the
door-to-door system and 5,000 vehicles in the stop-based system are necessary to serve
these requests. Similar to the draconian scenario, a small share of requests cannot be
served within the given service parameters and is rejected. Fewer kilometers are driven
with the ride-pooling system, as fewer rides are served. The total VKT in the service area,
however, increases to 10.7 million km for the door-to-door system and to 10.1 million km
for the stop-based system. This increase compared to the base case can be explained by
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increased number of trips conducted on the road network as the ride-pooling system not
only attracts private car users but also agents that previously used the modes transit,
walk or bike. With 5% and 6%, the share of empty VKT is slightly lower than in the
draconian scenario. Due to the higher tra�c volumes, travel times are noticeably higher
in the laissez-faire scenario with 17:01 minutes and 15:41 minutes, con�rming hypothesis
c). Customers also face slightly longer detours.

The number of ride-pooling rides and vehicles highly in�uence computation times per
iteration. In the base case, it only takes half an hour to simulate one iteration. The
simulation of the draconian door-to-door system takes roughly 24 hours per iteration.
The number of necessary iterations, however, increases with the number of car trips. To
reach a system equilibrium, 300 iterations were simulated for the base case, 4 iterations
for both draconian scenarios and 10 iterations for both laissez-faire scenarios.

Figure 9.2: Average wait times in minutes per zone for the door-to-door (left) and the stop-
based (right) service in the draconian scenario.

Figure 9.2 shows average waiting times per zone for the two ride-pooling systems in
the draconian scenario. The waiting times for the door-to-door service predominantly
vary between 4 and 7 minutes. Waiting times are slightly higher in the city center, where
request density is highest and, consequently, vehicle �ow volume increases and causes
some congestion in peak times. However, the negative e�ect on the customer side is
rather small. At the border of the service area a high variance of average waiting times
can be observed. The number of rides starting in some of the outer cells is very small,
which causes a higher variance. Additionally, a cluster of cells in the north-western part
of the service area with higher waiting times can be observed. In this area, many rides
occur due to an industrial zone with many working places and the location next to a
street with incoming and outgoing car tra�c that is replaced by the ride-pooling system.
The waiting times for the stop-based service vary between 4 and 6 minutes and spread
evenly across the service area. As the average waiting times are similar across both dra-
conian scenarios and do not vary drastically across the service area, an average waiting
time of 5 minutes for all ride-pooling trips was assumed to calculate possible ride-pooling
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shares in the laissez-faire scenario. As stated earlier, the waiting times are part of the
generalized costs.

Figure 9.3 shows the vehicle occupancy over time for the two ride-pooling services in
both mode choice scenarios. In the draconian scenario, the door-to-door service carries
six passengers during 4 % of the covered distance while the stop-based service carries
the maximum number of passengers during 25 % of the overall distance, indicating that
even larger vehicles than six-seaters could add e�ciency.

Figure 9.3: Vehicle occupancy for the door-to-door (left) and the stop-based (right) service in
the draconian (top) and laissez-faire (bottom) ride-pooling scenario.

The occupancy of the vehicle �eet in the laissez-faire scenario indicates a generally
lower occupancy than the draconian scenario. The door-to-door �eet only carries six
passengers during 1 % of the distance, whereas the stop-based �eet is fully occupied
during 10 % of the total distance. The lower occupancies in the laissez-faire scenarios
are caused by a lower request density, lower travel speeds and fewer detour possibilities
due to congested roads. Additionally, all incoming and outgoing tra�c in the draconian
scenario starts or ends at a street accessing the service area from outside, which leads to
bundling of requests at those peripheral locations.

9.2.2 Noise Analysis

Figure 9.4 presents the base scenario noise immissions for all receiver points within the
service area. While residential areas show noticeable lower noise levels, high noise values
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are observed near major roads. Overall, immissions are comparatively high, with about
half of urban dwellings experiencing an immission that exceeds 55 dB(A).

Figure 9.4: Base scenario noise exposure in the given service area in Munich. LDEN values
presented in quantile ranges.

Figure 9.5 shows the spatial distribution of di�erences in noise immissions in the ride-
pooling scenarios compared to the base case. The results in the maps shown here do not
include the electric correction term.

Noise levels �on average� are nearly the same in the base scenario and in the draconian
scenario with a door-to-door service. However, when looking at the spatial distribution
of di�erences, it can be seen that major noise reductions are estimated along major
roads. Pooling rates along major roads tend to be higher as these are more frequently
part of shared routes. Consequently, tra�c volumes on major roads are reduced. How-
ever, the simulation results show that those reductions are almost fully compensated
by increased noise in residential neighborhoods. This can be explained by detours and
additional kilometers driven near individual departure/arrival locations to pick up or
drop o� customers to ensure a door-to-door service. In addition, pooling rates around
pick-up/drop-o� points in residential areas tend to be lower than at major connecting
roads. The logarithmic dose-response relationship between tra�c volume and noise leads
to relatively high increases in noise in residential areas, where tra�c volumes are low
and small changes in volume lead to big changes in noise. More consistent and stronger
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Figure 9.5: Di�erences in LDEN values for the door-to-door (left) and the stop-based (right)
service in the draconian (top) and laissez-faire (bottom) ride-pooling scenario when
compared to the base scenario immission values for dwellings inside the study area.
Green values indicate a reduction of noise compared to the base case. Red values
represent an increase.

reductions in noise can be seen with a stop-based service, due to multiple reasons. First,
fewer vehicles are required as the pooling rate is higher, leading overall to lower tra�c
volumes. Second, a few hundred meters of the trips are done by walking and, lastly, quite
a few links do not experience any tra�c at all since vehicles only route between stops.
This �in contrast to a door-to-door service� leads to some very quiet residential roads
and neighborhoods. A few selected sites still experience an increase in noise. These are
primarily near stops where tra�c volumes can be higher.

The impacts on noise are generally more minor in the laissez-faire scenario, driven by
the fact that the �eet sizes are smaller and private car tra�c remains the main source
of tra�c noise. Again, the door-to-door service leads to more noise than the stop-based
service. However, since the overall tra�c volumes increase in many places, there is almost
no compensation at larger roads. With the stop-based service, changes in noise exposure
are minimal and happen in either direction with no distinct spatial pattern. This is re-
markable in that 53 % of the additional ride-pooling passengers previously used one of the
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modes walk, bike or public transport and are now additionally riding on the road network.

Figure 9.6: Hourly equivalent sound levels Leq across 24 hours for each scenario. Symbols
represent the mean across all receiver points, bars delimit standard deviations.

Figure 9.6 shows the temporal variations of the hourly equivalent sound level Leq for
each scenario. In general, the variation between scenarios is higher in the morning hours,
where tra�c volumes are typically low and changes in volume are re�ected by greater
changes in noise. During the day, the mean hourly sound levels stay very similar across
all scenarios, except the draconian stop-based scenario. Here, the mean Leq is constantly
signi�cantly lower than in the other scenarios. This indicates that the noise reduction is
stable across the day.
The gap between the last and the �rst hour of the day is a typical limitation of trans-
port models that run for one day only. However, because of its logarithmic nature (see
equation 2.5), the LDEN indicator is mainly driven by the maximum levels across a day
and therefore robust against inaccuracies in lower noise levels that occur at night.

Table 9.2 shows a comparison of descriptive statistics, while Figure 9.7 shows the over-
all distributions of LDEN values in the di�erent scenarios and the base case. Note that
the �gure also shows the results for the draconian scenario with the electric correction
term (i.e., under the assumption that �eet is fully electric). In the laissez-faire scenario,
the correction term did not lead to any noteworthy changes and is thus not shown here.
The depicted threshold of 55 dB(A) was chosen as the target threshold de�ned by the
European Union (2002)

Mean noise immissions increased slightly in the laissez-faire scenario. The overall dis-
tribution with a stop-based service looks similar to the base case distribution,. In con-
trast, a door-to-door service increases the share of highly exposed dwellings by around
5 %. Remarkably, the mean immission value in the draconian scenario with door-to-door
service is slightly higher than in the base case, although VKT in the service area are re-
duced by 33 %. However, when looking at the distribution and standard error, it shows
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Table 9.2: Descriptive statistics of noise immission results.
Base case Draconian scenario Laissez-faire scenario

Door-to- Door-to- Stop-based Stop-based Door-to- Stop-based
door door electric electric door

Mean LDEN [dB] 53.17 53.68 51.93 48.41 46.92 54.29 53.37
Median LDEN [dB] 52.57 53.77 51.83 48.31 46.72 54.00 52.85
Min LDEN [dB] 16.64 15.51 13.825 2.75 2.52 16.95 17.04
Max LDEN [dB] 87.99 84.68 83.77 83.84 82.94 88.39 88.37
S.E. LDEN [dB] 8.89 8.04 8.17 10.78 10.82 8.60 8.96
Share > 55dB [%] 40 43 34 30 26 45 41

Figure 9.7: Violin plots with quantiles for the distribution of LDEN values of dwellings in the
presented scenarios. The dashed line depicts the threshold value of 55 dB(A).

that the immissions are distributed more evenly across all dwellings. One could say that
this scenario makes noise exposure more equal. Nonetheless, the share of highly ex-
posed dwellings increases by 3 %. The draconian scenario with a stop-based ride-pooling
service, including the correction term for electric vehicles, shows the highest noise reduc-
tions, with a mean LDEN of 48.41 dB(A) and only 30 % of the dwellings being exposed to
more than 55 dB(A). The stop-based service here leads to higher standard errors and less
equally distributed immissions (compare 'quiet' residential neighborhoods in Figure 9.5).
Under the given assumptions, noise reductions can be quite signi�cant when a correction
is considered for electric vehicles. However, the results suggest that these only become
visible once a major share of the vehicles on the road is electric.

Figure 9.8 shows the density distribution of di�erences in LDEN values. While the over-
all distribution in Figure 9.7 suggests that, in the draconian door-to-door scenario, the
distribution did not change systematically apart from a slight increase, the distribution
of di�erences reveals that noise levels indeed change. However, in line with the spatial
distribution in Figure 9.5, changes happen in both directions and therefore 'compensate'
to some degree. The draconian stop-based scenarios show a clear trend towards reduced
noise levels, while the laissez-faire scenarios barely expose any noteworthy di�erences.
The electric correction term seems to maintain the shape of the distribution while push-
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Figure 9.8: Violin plots with quantiles for the distribution of di�erences of LDEN values of
dwellings as compared to the base case.

ing it more towards reduced noise levels.

Overall, it can be seen that a reduction of noise can be accomplished by a stop-based
ride-pooling service in a draconian scenario. The door-to-door service tends to increase
the noise in residential areas, where most people live and where tra�c increases because
of pick-up and drop-o� rides. In general, tra�c noise is mainly moderated through tra�c
volumes and speeds (see equation 5.8). Consequently, noise consistently reduces for the
stop-based service in which tra�c volumes decreased thoroughly, whereas for the door-
to-door service tra�c, volumes only decreased on major streets, leading to less clear
implications on noise and even louder levels in residential areas.

In the laissez-faire scenario, a stop-based service can keep noise at similar levels as
in the base case, even though the amount of road trips increases. Because of the loga-
rithmic dose-response relationship between tra�c volume and noise, the impacts on the
aggregated LDEN value is small compared to the changes in tra�c volumes and VKT.
The results con�rm that noise exposure is generally further decreased with a stop-based
service than with a door-to-door service.

9.3 Discussion of the Ride-Pooling Scenario

The proposed ride-pooling scenarios show the in�uence of di�erent mode choice set-
tings and service designs on a large scale. A state-of-the-art ride-pooling strategy was
employed and the impacts with an updated noise prediction model in MATSim were
assessed. However, the investigation has some limitations.

A limitation for the laissez-faire scenario is the di�culty of estimating reasonable mode
shares for the ride-pooling system. As observed ride-pooling data are not available for
Munich, one could re-estimate a mode choice model with automated ride-pooling based
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on stated preference data. However, since most of the current services are relatively new
and not autonomous, a survey may only include hypothetical mode choice options. More
reliable estimates could be derived by using estimated values of time (VOT) for pooled
rides to have a better idea of the impacts of (generalized) costs (see e.g. Alonso-González
et al. (2020)). Instead of doing the mode choice in MITO, the mode choice could be in-
cluded in MATSim, enabling the consideration of the actually experienced service levels
for each agent. However, since the simulation of ride-pooling with a 100 % sample runs
up to 24 hours per iteration, adding mode choice would require several weeks to run
the model, as many more iterations are required to reach an equilibrium. This could be
reduced partly by using a discrete mode choice model instead of random mutations in
MATSim as described in Hörl et al. (2018). The advantage of simulating mode choice
in MATSim would be the feedback loop from actual travel times to the decision making
throughout iterations. Nevertheless, even then, utility parameters would be hypothetical.

Another limitation is that both scenarios do not account for induced demand, as the
trip generation phase in MITO is not a�ected by the availability of the ride-pooling
system. In reality, however, it could happen that people do additional trips once cheap
automated ride-pooling trips become available, as observed by Henao and Marshall (2019)
for ride-hailing. This could be especially true for otherwise less mobile persons, i.e. per-
sons without cars/drivers' license, children, persons with disabilities or older people.

The two scenarios presented in this study show possible outcomes under a set of as-
sumptions and after the service is completely introduced/enforced. As pointed out in
Basu and Ferreira (2020), it should be acknowledged that exogenous assumptions and the
complete replacement assumption limit the use of studies like ours to the identi�cation of
long-term possibilities of new technologies. The authors stress the importance of market
dynamics, which can impact acceptance and regulations. Haboucha et al. (2017) pre-
sented a stated preference study and found quite a reluctance to use shared autonomous
vehicles (which were not even de�ned as a pooled service and just as a replacement to a
privately owned vehicle), with 25 % of respondents stating unwillingness to use shared
autonomous vehicles even if the service was free. In addition, respondents would instead
not use the autonomous service to send children to school, which indicated safety reser-
vations towards automated services. Parents would probably be even more cautious if
they had to decide to use a shared service that is pooled with strangers.

While the detours and empty-kilometers of ride-pooling vehicles can lead to increased
noise levels in residential areas, the present study does not account for the challenge of
parking search for car tra�c. A preceding study that included parking search in the simu-
lation found that tra�c volumes can be increased by up to 20 % in residential areas when
parking search is included (Bischo� and Nagel, 2017). As parking search only applies
to personally owned vehicles and not to pooled vehicles, the di�erences in noise levels
between the base scenario and the ride-pooling scenarios would be even more pronounced.
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9.3 Discussion of the Ride-Pooling Scenario

Another limitation of the approach is that commercial vehicles which signi�cantly con-
tribute to noise emission are ignored. The conclusions of this research, however, are likely
to hold true. The main limitation can be found on major roads where most commer-
cial vehicle tra�c contributes to noise. The impact of these scenarios is expected to be
slightly smaller once noise from commercial vehicles is added to the analysis.

The chosen correction term for electric vehicles may re�ect noise reductions reasonably
well for the applicable speed range of the implemented noise guideline. However, higher
reductions should emerge at intersections where acceleration noises of engines make up a
large share of the resulting noise immission. Therefore, it is assumed that possible noise
reductions at intersections are broadly underestimated since acceleration is not modeled
in MATSim and the guideline assumes a minimum speed of 30km/h. This underestima-
tion could be alleviated if s are required to be equipped with an acoustic alerting system
at low speeds.

Another limitation is that only one single operator was implemented, which only of-
fers pooled rides. Ruch et al. (2020) showed that it is unclear if the e�ciency gains of
ride-pooling compensate for the loss of privacy and a lower service level compared to
an unpooled system. Private operators may generate higher revenues by o�ering private
rides, which would again lead to more VKT and noise exposure. Thus, from a macroe-
conomic point of view, it could be bene�cial for policymakers to incentivize the supply
of pooled on-demand services compared to unpooled services.

Given the current limitations, the present analysis shows results that can be general-
ized. Major noise reductions can be achieved with a draconian replacement of all private
vehicles with electric pooled vehicles and a stop-based service. Although VKT are also
reduced with a door-to-door service, average noise exposure increases since more tra�c
occurs in residential areas. The laissez-faire scenarios indicate that only by implementing
the new service, road tra�c do not decrease as agents that previously chose other modes
than car are attracted. A stop-based system is again more e�cient than the door-to-door
service.

Does a large-scale implementation of a ride-pooling service in a large city lead to re-
duced noise immissions among residents? How does penetration rate and service design
impact potential changes in noise immissions? In conclusion, the �rst of these research
questions (research question 7) can be answered by 'it depends'. In the large-scale dra-
conian scenarios, it is shown that only in the case of a stop-based service consistent
reductions among a majority of residents can be achieved. With a door-to-door service,
immissions are reduced for some agents but are increased for others. This also partly
answers research question (8) regarding the impact of service design. For the penetration
rate, it was shown that the laissez-faire scenario did not yield substantial di�erences in
noise immissions. Low penetration rates, therefore, do not seem to lead to noteworthy
changes in noise immissions. Lastly, research question 2 'Does the wide usage of electric
vehicles lead to considerably lower noise immissions?' can be answered with 'yes, but
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on a low level' as the reduction from fully electric �eets indeed reduced noise immissions
but only in the draconian scenario and with a reduction of mean LDEN immissions of less
than 2 dB(A).
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10 Conclusion and Outlook

This thesis presented updates and use cases for an existing noise model in an agent-based
transport simulation. The use cases showed di�erent applications that highlight possible
noise model applications in the context of agent-based simulations. However, all of the
applications shown here still have limitations and lead to possible improvements and
more advanced future research, as described in the following paragraphs. These para-
graphs will also present the lessons learned in each of the use cases.

The updated noise model now complies with most parts of the o�cial RLS-19 guide-
line. Except for second-order re�ections, all other corrections have been implemented
and tested. Nonetheless, more focus could be spent on accurate input data. This is espe-
cially true for building data which was shown to be crucial in terms of shielding e�ects.
Therefore, it is essential to improve the quality of building data, especially in terms of
correct building heights. This information could then also be used to have more accurate
heights of receiver points, which are assumed to be the same for all receivers in this thesis.
Similarly, even though the presented study areas are mostly �at, gradients and terrain
heights are missing in this thesis and should be taken into account in areas with higher
di�erences in altitude. Another limitation is that the implemented link segmentation
approach only accounts for the correct length of segments. It does not check whether
conditions relating to the surrounding buildings/obstacles remain constant along seg-
ments. However, it is expected that this only slightly in�uences the results, as segments
close to the receiver are quite small. The work done in this part of the thesis included
a larger part of active development of source code, which is now hosted in the o�cial
MATSim repository1 and can be accessed freely. As such, this dissertation made use of
but also contributed to the concept of open-source models. It underlines the potential
of academic collaboration through open-source projects with an active community. On
a similar note, many data such as roads and buildings were taken from the volunteered
geographic information source OSM. Even though the quality and completeness vary
among the di�erent data attributes used in this thesis, the approach taken here presents
an example of the usefulness of such data sets for academic projects. The detailed devel-
opment of the noise model updates show the interdisciplinarity of modern tra�c models,
where software skills can be bene�cial, for example in the application of ray-tracing al-
gorithms to calculate noise re�ections.

The rent price analysis showed that it is hard to �nd a single 'true' coe�cient for the
impact of tra�c noise on prices. Nevertheless, it was one of the �rst times that a signi�-

1https://github.com/matsim-org/matsim-libs/tree/5d4df8361aebf1e2c458e47c95082896f2d362d7/

contribs/noise
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cant correlation was con�rmed for simulated noise values from an agent-based transport
simulation. In this thesis, it was not possible to obtain rent price data for the whole study
area. For the application in a land-use model that includes multiple municipalities, future
studies should identify whether the rent price impact varies substantially across munici-
palities (e.g., with a geographically weighted regression that includes records of multiple
municipalities) to assess whether a 'global' relationship between rent and noise is justi-
�ed. For the actual application of a pricing model in a land-use model, the analyses here
concluded that a more simple OLS model that includes an 'implicit spatial variable' in the
form of an accessibility indicator is better suited in terms of complexity and run-times.
The spatial models can help to better understand local relationships for a given data set
but are harder to apply for the prediction of out-of-sample data, as the spatial structure
of the training data set is part of the estimation process. In addition, it has been shown
that spatial models have a tendency of over-�tting the data. The identi�cation of price
impacts of tra�c noise has shown to be a great example of a statistic regression in which
the impact of confounding variables is very important, as roads can lead to positive (i.e.,
accessibility) and negative (i.e., noise) impacts. In this regard, the results presented in
this thesis also contributed to understanding the combined and individual impacts of
accessibility and noise on house prices and thereby hint to preferences of residents. Early
attempts of the pricing regression shown here also underlined the importance of a �ne
resolution of these neighborhood variables that led to better model �ts than models that
used spatially aggregated zonal variables.

Based on the results of the integration of noise feedback in ILUT models, it can be
said that the implementation of such feedback is feasible and leads to plausible results
when individual agents can react di�erently based on their preferences. Based on existing
literature, the feedback implemented in this thesis is one of the �rst-ever reported at such
a microscopic scale. Similar to the updated noise model, the feedback implementation is
hosted open source2. However, the integration shown here can only be viewed as a proof
of concept, as the underlying relocation model was not calibrated to the actual study
area. Given the complexity of the model and its interactions, it remains questionable
if the inclusion of such feedback is justi�ed. A main �nding of this part of the thesis
was that the technical implementation of such a model is more straightforward than its
conceptualization, as ILUT models tend to have many moving parts that may need to
be updated and adjusted. While the sensitivity to noise in relocation decisions has been
added, the presented scenario did not include an updated initial population, which should
already re�ect individual preferences towards noise. In contrast to housing prices, data
on observed residential relocations is very sparse and does not allow to analyze relocation
behavior in terms of noise sensitivity as one would require very �ne-grained spatial infor-
mation on individual resident's relocation patterns, which is usually subject to privacy.
In the current state, such feedback may be helpful to analyze the mechanism of reported
relocation preferences and to conduct sensitivity analyses for policies targeting equity
issues in an academic context. The implemented model is a good example for a use case

2https://github.com/msmobility/silo/tree/9091a3f67fc067329c69c3a30f304b0b5df57336
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in which the complexity of the model probably outweighs the little (and hard to validate)
gain in information.

Inequalities in the distributions of exposure and causation of noise have been con-
�rmed with the presented agent-based simulations. In a novel approach, individual noise
exposure and contribution at the agent level have been compared. One of the main
�ndings was that, in terms of equity, the causation of noise may be even more of con-
cern than exposure thereof. In addition, exposure and causation clearly show spatial
patterns. While the results underline the applicability of agent-based simulations for eq-
uity analyses, future research should look at more detailed information of di�erent agent
groups. The equity analyses would undoubtedly bene�t if more data, such as income or
car ownership, were available. As discussed before, equity analyses should probably look
at more indicators than noise alone, as agents may trade-o� di�erent nuisances accord-
ing to their preferences (for example, agents living in highly accessible areas with lots of
opportunities but also noise, and vice versa). The usage of the open Berlin scenario is an-
other example of opportunities that arise by empowering open data in academic research.

Lastly, the ride-pooling use case showed the capability of large-scale agent-based mod-
els to model noise emissions and respective immissions for future transport scenarios.
This use case is one of the �rst in literature that analyzes the impact of ride-pooling on
tra�c noise and found promising results when a large-scale stop-based service is used.
Future research could look into optimizing stop locations to minimize noise exposure of
nearby residents by putting these locations along major axes only. This could also be
combined with a policy that closes smaller residential roads for ride-pooling vehicles. The
results of this chapter showed that noise had to be analyzed explicitly, as the distribu-
tion of exposure cannot easily be inferred from aggregated indicators such as the vehicle
kilometers traveled. During the simulation studies, it also became clear that there are
computational limits that are important to consider when conducting large scenarios.
The simulation of 100% of the synthetic population took many hours for just one iter-
ation. If the scenarios had been designed more complex, e.g., by also allowing agents
to switch modes between iterations, the studies would have become unfeasible in terms
of run-time. The chapter may also serve as an example for results that may come as
a surprise if looked at super�cially. For one, ride-pooling does not necessarily reduce
noise levels, even if such services are usually promoted as environmentally friendly and
as a solution to many urban problems. Secondly, the replacement of conventional cars
by electric vehicles may not lead to notable reductions in noise, which some readers may
not expect.

In a more general view, this thesis con�rmed that road tra�c noise is a problem that
many residents in dense urban settings face. More importantly, noise remains an issue
that is hard to tackle, even with radical policies or technical advancements such as electric
vehicles. Agent-based approaches may improve the accuracy of identifying problematic
exposure and causation of noise at �ne spatial and temporal resolutions. The trend
towards ever-�ner resolution in transport and land-use models o�ers many opportunities
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to investigate new use cases similar to those described here. This gives modelers the
chance to understand the systems of transport and environment better. However, this
also comes at the cost of increased complexity and runtime and a successful application
heavily depends on the availability and quality of large amounts of data.
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A Appendix: Derivation of Immission
Calculation to Allow Pre-processing of
Correction Terms

We start from equation 5.20:

LW,kj ,i,t(vkj ,m,t) = LW0,m,t(vkj ,m,t) +Dsurfkj
,k(vkj ,m,t) +Dgradkj

,m(gkj , vkj ,m,t)

+Dinter(xkj ) +Delectric(vkj ,m,t)

We assume that velocity, surface and gradient stay constant across all segments kj of a link j:

vkj ,m,t
def
= vj,m,t, ∀kj ∈ j, ∀j

Dsurfkj
,m(vkj ,m,t)

def
= Dsurfj ,m(vj,m,t), ∀kj ∈ j, ∀j

Dgradkj
,k(gkj , vkj ,m,t)

def
= Dgradj ,m(gj , vj,m,t), ∀kj ∈ j, ∀j

Now only the intersection term Dinter(xkj ) still depends on the actual segment. We separate the inter-
section term and de�ne:

LW,kj ,m,t(vj,m,t) = LW,j,m,t(vj,m,t) +Dinter(xkj ), with

LW,j,m,t(vj,m,t) = LW0,m,t(vj,m,t) +Dsurf,m(vj,m,t) +Dgrad,m(g, vj,m,t) +Delectric(vj,m,t)

Using this, we update equation 5.8:

LW,kj ,t = 10 · log10[Mkj ,t] + 10 · log10
[∑

m

λkj ,m,t ·
10

0.1·(LW,j,m,t(vm,t)+Dinter(xkj
))

vj,m,t

]
− 30

LW,ki,t = 10 · log10[Mki,t] + 10 · log10
[∑

m

λkj ,m,t ·
10

0.1·LW,j,m,t(vj,m,t)+0.1·Dinter(xkj
)

vj,m,t

]
− 30

LW,kj ,t = 10 · log10[Mkj ,t] + 10 · log10
[∑

m

λkj ,m,t ·
100.1·LW,k,m,t(vj,m,t) · 100.1·Dinter(xkj

)

vj,m,t

]
− 30

LW,kj ,t = 10 · log10[Mkj ,t] + 10 · log10
[
10

0.1·Dinter(xkj
) ·
∑
m

λkj ,m,t ·
100.1·LW,j,m,t(vm,t)

vj,m,t

]
− 30

LW,kj ,t = 10 · log10[Mkj ,t] + 10 ·
{
log10

[
10

0.1·Dinter(xkj
)

]
+ log10

[∑
m

λkj ,m,t ·
100.1·LW,j,m,t(vm,t)

vj,m,t

]}
− 30

LW,kj ,t = 10 · log10[Mkj ,t] +Dinter(xkj ) + 10 · log10
[∑

m

λkj ,m,t ·
100.1·LW,j,m,t(vm,t)

vj,m,t

]
− 30
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A Appendix: Derivation of Immission Calculation to Allow Pre-processing of Correction Terms

Next, we also assume that tra�c volumes Mkj , and vehicle type shares λkj stay constant across all
segments kj of a link j:

Mkj

def
= Mj , ∀kj ∈ j, ∀j

λkj

def
= λj , ∀kj ∈ j, ∀j

Now we can separate the segment-dependent intersection term again:

LW,kj ,t = LW,j,t +Dinter(xkj ), with

LW,j,t = LW0,m,t(vm,t) + 10 · log10[Mj,t] + 10 · log10
[∑

m

λj,m,t ·
100.1·LW,j,m,t(vm,t)

vj,m,t

]
− 30

We can now update the immission calculation shown in equation 5.7:

Leq,i,t = 10 · log10
∑
j

∑
kj

10
0.1·(LW,j,t+Dinter(xkj

)+10·log10[lkj
]−DA,i,kj

−DRV1,kj
−DRV2,kj

)

We now separate time- from segment-dependent terms:

Leq,i,t = 10 · log10
[∑

j

∑
kj

10
0.1·(LW,j,t+Dinter(xkj

)+10·log10[lkj
]−DA,kj

−DRV1,kj
−DRV2,kj

)

]

Leq,i,t = 10 · log10
[∑

j

∑
kj

10
0.1·LW,j,t+0.1·(Dinter(xkj

)+10·log10[lkj
]−DA,kj

−DRV1,kj
−DRV2,kj

)

]

Leq,i,t = 10 · log10
[∑

j

∑
kj

100.1·LW,j,t · 100.1·(Dinter(xkj
)+10·log10[lkj

]−DA,kj
−DRV1,kj

−DRV2,kj
)

]

Leq,i,t = 10 · log10
[∑

j

100.1·LW,j,t ·
∑
kj

10
0.1·(Dinter(xkj

)+10·log10[lkj
]−DA,kj

−DRV1,kj
−DRV2,kj

)

]
Now, only the �rst part of the equation depends on t. The second part basically sums up all correction
terms for the respective link segments and can be summarized as ci :

Leq,i,t = 10 · log10

[∑
j

(
100.1·LW,j,t · cj

)]
, with

cj =
∑
kj

10
0.1·(Dinter(xkj

)+10·log10[lkj
]−DA,kj

−DRV1,kj
−DRV2,kj

)
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B Appendix: Spatial Error Model Results

Table B.1: Estimation results for the spatial error model (SEM) with k = 5 and α = 2.

Dependent variable:
log(rent)

continuous noise variable categorical noise variable
log(area) 0.7864*** (0.0062) 0.7865*** (0.0062)

noise -0.0030*** (0.0007)

low noise 0 (Base)
moderate noise -0.0202 . (0.0123)

loud noise -0.0457*** (0.0146)
very loud noise -0.0631*** ( 0.0227)

microscopic car accessibilities 0.2139*** (0.0153) 0.2072*** (0.0153)
Parking available 0.0122 . (0.0064) 0.0120 . (0.0044)

Quality: Luxury 0.1200*** (0.0109) 0.1210*** (0.0109)
Quality: Superior 0 (Base) 0 (Base)
Quality: Average -0.1256*** (0.0073) -0.1256*** (0.0073)

State: First time use 0 (Base) 0 (Base)
State: New Building -0.0199. (0.0111) -0.0194 (0.0111)

State: First time use after restoration -0.0803*** (0.0135) -0.0802*** (0.0135)
State: Restored -0.0816*** (0.0177) -0.0806*** (0.0177)

State: Modernized -0.1150*** (0.0147) -0.1145*** (0.0147)
State: Well-kept -0.1166*** (0.0116) -0.1152*** (0.0117)
State: Renovated -0.1249*** (0.0125) -0.1235*** (0.0125)

constant 2.3292*** (0.1154) 2.2158*** (0.1223)
Observations 3,144 3,144

λ 0.5956*** 0.5992***
AIC -3445 -3438

Note:Signif. codes: `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1 robust SE in (brackets)
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C Appendix: Spatial Auto-regressive
Model Results

Table C.1: Estimation results for the spatial auto-regressive (SAR) model with k = 5 and
α = 2: estimated coe�cients.

Dependent variable:
log(rent)

continuous noise variable categorical noise variable

log(area) 0.7248*** (0.0071) 0.7241*** (0.0071)

noise -0.0035*** (0.0005)

low noise 0 (Base)
moderate noise -0.0294 . (0.0108)

loud noise -0.0495*** (0.0125)
very loud noise -0.076*** (0.0202)

microscopic car accessibilities 0.2016*** (0.0089) 0.1942*** (0.0090)
Parking available 0.0113 . (0.0062) 0.0110 . (0.0062)

Quality: Luxury 0.1554*** (0.0107) 0.1563*** (0.0108)
Quality: Superior 0 (Base) 0 (Base)
Quality: Average -0.1236*** (0.0075) -0.1231*** (0.0075)

State: First time use 0 (Base) 0 (Base)
State: New Building -0.0183. (0.0100) -0.0152 (0.0101)

State: First time use after restoration -0.0649*** (0.0129) -0.0646*** (0.0130)
State: Restored -0.0720*** (0.0194) -0.0712*** (0.0177)

State: Modernized -0.1031*** (0.0151) -0.1026*** (0.0152)
State: Well-kept -0.1284*** (0.0108) -0.1274*** (0.0109)
State: Renovated -0.1226*** (0.0113) -0.1218*** (0.0114)

constant 1.3628*** (0.0858) 1.2114*** (0.0884)

Observations 3,144 3,144
ρ 0.1919*** 0.19499***

AIC -2628 -2608
Note:Signif. codes: `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1 robust SE in (brackets)
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C Appendix: Spatial Auto-regressive Model Results

Table C.2: Estimation results for the spatial autoregressive (SAR) model with k = 5 and α = 2:
direct, indirect and total impacts.

continuous categorical
direct indirect total direct indirect total

log(area) 0.7291*** 0.1678*** 0.8969*** 0.7286*** 0.1709*** 0.8995***

noise -0.0036*** -0.0008*** -0.0044***

low noise 0 (Base)
moderate
noise

-0.0296** -0.0069*** -0.0366***

loud noise -0.0498*** -0.0116 -0.0615***
very loud
noise

-0.0767*** -0.0179*** -0.0947***

microscopic
car accessi-
bilities

0.2028*** 0.0466*** 0.2495*** 0.1954*** 0.045*** 0.2412***

Parking
available

0.0114 0.0026 0.0140 0.0110 . 0.0025 . 0.0136 .

Quality:
Luxury

0.1564*** 0.0359*** 0.1924*** 0.1573****0.0369*** 0.1942***

Quality: Su-
perior

0 (Base) 0 (Base)

Quality: Av-
erage

-0.1244*** -0.0286*** -0.1530*** -0.1239*** -0.0290*** -0.1529***

State: First
time use

0 (Base) 0 (Base)

State: New
Building

-0.0184* -0.0042* -0.0226* -0.0153 -0.0036 -0.0189

State: First
time use af-
ter restora-
tion

-0.065*** -0.0150*** -0.0803*** -0.0650*** -0.0152*** -0.0803***

State: Re-
stored

-0.0724* -0.0166* -0.0891* -0.0717*** -0.0168*** -0.0885***

State: Mod-
ernized

-0.1037*** -0.0238*** -0.1276*** -0.1032*** -0.0242*** -0.1274***

State: Well-
kept

-0.1292*** -0.0297*** -0.1589*** -0.1282*** -0.0300*** -0.1583***

State: Reno-
vated

-0.1234*** -0.0284*** -0.1518*** -0.1226*** -0.0287*** -0.1514***
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Table D.1: Estimation Results for the spatial Durbin model (SDM) with k = 5 and α = 2:
Estimated coe�cients.

Dependent variable:
log(rent)

continuous noise variable categorical noise variable

log(area) 0.7910*** (0.0063) 0.7902*** (0.0063)

noise -0.0003 (0.0007)

low noise 0 (Base)
moderate noise -0.0029 (0.0125)
loud noise -0.0158 (0.0154)
very loud noise -0.0177 (0.0233)

microscopic car accessibili-
ties

0.0207 (0.0364) 0.0337 (0.0354)

Parking available 0.0101 (0.0064) 0.0096 (0.0064)

Quality: Luxury 0.1197*** (0.0107) 0.1197*** (0.0107)
Quality: Superior 0 (Base) 0 (Base)
Quality: Average -0.1242*** (0.0074) -0.1244*** (0.0074)

State: First time use 0 (Base) 0 (Base)
State: New Building -0.0223 . (0.0116) -0.0212 . (0.0116)
State: First time use after
restoration

-0.0719*** (0.0139) -0.0715*** (0.0139)

State: Restored -0.0784*** (0.0182) -0.0778*** (0.0183)
State: Modernized -0.1087*** (0.0151) -0.1077*** (0.0151)
State: Well-kept -0.1091*** (0.0122) -0.1084*** (0.0122)
State: Renovated -0.1095*** (0.0132) -0.1091*** (0.0132)

constant 0.9638*** (0.0780) 0.8175*** (0.0790)

lag: log(area) -0.5062*** (0.0143) -0.5070*** (0.0142)

lag: noise -0.0031*** (0.0009)

lag: low noise 0 (Base)
lag: moderate noise -0.0250 (0.0161)
lag: loud noise -0.0324 . (0.0194)
lag: very loud noise -0.0466 . (0.0291)

lag: microscopic car accessi-
bilities

0.0757* (0.0371) 0.0550 (0.0362)
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lag: Parking available -0.0266*** (0.0085) -0.0275*** (0.0085)

lag: Quality: Luxury -0.0539*** (0.0151) -0.0540*** (0.0151)
lag: Quality: Superior 0 (Base) 0 (Base)
lag: Quality: Average 0.0711*** (0.0107) 0.0733*** (0.0107)

lag: State: First time use 0 (Base) 0 (Base)
lag: State: New Building 0.0248 . (0.0146) 0.0284* (0.0146)
lag: State: First time use af-
ter restoration

0.0272 (0.0187) 0.0275 (0.0188)

lag: State: Restored -0.0071 (0.0296) -0.0059 (0.0297)
lag: State: Modernized 0.0615 . (0.0231) 0.0625 (0.0232)
lag: State: Well-kept 0.0097 (0.0161) 0.0100 . (0.0162)
lag: State: Renovated 0.0200 (0.0168) 0.0192 (0.0169)

Observations 3,144 3,144
ρ 0.62511*** 0.62912***
AIC -3544 -3521
Note:Signif. codes: `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1 robust SE in (brackets)

186



Table D.2: Estimation Results for the Spatial Durbin Model with k = 5 and α = 2: Direct,
indirect and total impacts.

continuous categorical
direct indirect total direct indirect total

log(area) 0.7889*** -0.0292*** 0.7597*** 0.7884*** -0.0249 0.7635***

noise -0.0008 -0.0084*** -0.0093***

low noise 0 (Base)
moderate
noise

-0.0078 -0.0678** -0.0756*

loud noise -0.0234 -0.1069*** -0.1303***
very loud
noise

-0.0280 -0.1455*** -0.1736***

microscopic
car accessi-
bilities

0.0364 0.2211*** 0.2575*** 0.0473 0.1920*** 0.2394***

Parking
available

0.0065 . -0.0505*** -0.0439** 0.0058 -0.0539* -0.0480 .

Quality:
Luxury

0.1233*** 0.05198 . 0.1753*** 0.1236*** 0.0537 0.1773***

Quality: Su-
perior

0 (Base) 0 (Base)

Quality: Av-
erage

-0.1254*** -0.0162 -0.1417*** -0.1253*** -0.0124 -0.1377***

State: First
time use

0 (Base) 0 (Base)

State: New
Building

-0.0204** 0.0271 . 0.0066 -0.0185 0.0379 . 0.0193

State: First
time use af-
ter restora-
tion

-0.0750*** -0.0440 -0.1190* -0.0746*** -0.0439. -0.1186***

State: Re-
stored

-0.0883*** -0.1400 -0.2284** -0.0876*** -0.1382*** -0.2259***

State: Mod-
ernized

-0.1098*** -0.0160 -0.1259 . -0.1086*** -0.0132 -0.1219***

State: Well-
kept

-0.1193*** -0.1455*** -0.2649*** -0.1188*** -0.1465*** -0.265***

State: Reno-
vated

-0.1181*** -0.1206*** -0.2387*** -0.1180*** -0.1246*** -0.2426*
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