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Abstract 
Driven by the increased availability of position and performance data, automated 
analyses are becoming the daily routine in many top-level sports. Methods from 
the domains of data mining and machine learning are more frequently used to 
generate new insights from massive amounts of data. This study evaluates the 
performance of four current models (multi-layer perceptron, convolutional 
network, recurrent network, gradient boosted tree) in classifying tactical 
behaviors on a beach volleyball dataset consisting of 1,356 top-level games. A 
three-way between-subjects analysis of variance was conducted to determine the 
effects of model, input features and target behavior on classification accuracy. 
Results show significant differences in classification accuracy between models as 
well as significant interaction effects between factors. Our models achieve 
classification performance similar to previous work in other sports. Nonetheless, 
they are not yet at the level to warrant practical application in day to day 
performance analysis in beach volleyball. 
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Introduction 

Due to the large amount of available data and the resulting possibility to convert that data into 
useful knowledge, methods from artificial intelligence (AI) and data mining have become 
increasingly useful tools in many industry scenarios (Russel, & Norvig, 2010). This 
development also took place in the sports domain, where automated data analysis is a fast 
developing trend to assist the decision-making of practitioners (Link, 2018; Claudino et al, 
2019).  
However, predicting performance in beach volleyball is a subject that has not received much 
attention compared to other major sports. This may be due to the fact that teams in beach 
volleyball mostly operate for themselves, and data is not readily available. Unlike sports as 
football, hockey or basketball, where access to positional data from electronic position 
detection is common, beach volleyball only recently (at the world championships 2017 in 
Vienna) started to include sensor data to enhance media coverage.  Additionally, the betting 
market, one of the biggest drivers for advances in performance prediction (Bunker, & Thabtah, 
2019), mostly concentrates on other, financially stronger sports in order to optimize earnings. 
The implementation and evaluation of different machine learning models on currently 
available performance data could serve as a first step to establish successful models from other 
application areas as viable methods of analysis. As Claudino et. al. (2019, p. 10) phrase it: 
Further evaluation research based on prospective methods is warranted to establish the 
predictive performance of specific AI techniques and methods. Additionally, the results of this 
study could inform future technological developments in the field of beach volleyball on the 
type of data and algorithms necessary for certain analyses. 

Related Work 
One of the earliest studies to consider AI in the analysis of sports performance was done by 
Lapham and Bartlett in 1995. They showed that the involvement of computers, with the help of 
methods from artificial intelligence, could be a rewarding future direction for the discipline. 
Since then, many different AI techniques were applied in a wide variety of sports, either to 
assess risk of injury (López-Valenciano et. Al., 2018), or to predict performance (Peterson, 
2018). 
In soccer, Perl & Memmert (2011) use DyCoN, a self-organizing neural network, to learn 
formation clusters from spatio-temporal data. These formation types are then fed to an analysis 
software to allow analysis of formation frequencies and interactions. Link and Hoernig (2017) 
employ a Bayesian network to classify ball control during individual ball possessions of soccer 
players with an accuracy of 96.7 percent. Bialkowski et al. (2015) learned the roles of players 
based on spatio-temporal data that describe their arrangement on the pitch. Using a minimum 
entropy model to partition the data into player roles, they showed that distinct formation 
classes can be discovered automatically. Spatio-temporal data was also used by Dick and 
Brefeld (2019) in combination with a deep  convolutional network to automatically rate 
dangerous situations in soccer based on player positioning on the pitch. 
The impact on spatio-temporal data on the possibilities of performance analysis can also be 
observed in basketball.  Here it was used to compare self-organizing maps, a class of 
unsupervised neural networks, with a dynamical controlled network to classify three different 
pre-selected plays (Kempe, Grunz, & Memmert, 2015).  Offensive play classification was also 
studied using deep recurrent neural networks by Wang and Zemel (2016), who state that the 
dynamic nature of team sports, especially the complexity of player interactions, makes this one 
of the hardest problems in sport analytics.  Bianchi, Facchinetti and Zuccolotto (2017) 
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combine self-organizing maps with a fuzzy clustering algorithm to identify five new positional 
player roles in basketball based on seasonal player statistics data.  On the other hand, Leicht, 
Gómez and Wood (2017) try to predict the match outcome in the Olympic basketball 
tournament using both a linear regression and a conditional inference classification tree. They 
conclude that even though the classification tree shows a slightly lower classification accuracy 
of 81.4% correctly classified matches, its ability to resolve non-linear phenomena offers 
greater practical utility. 
The working group around Schrapf and Tilp (Hassan, Schrapf, Ramadan, & Tilp, 2017a; 
Hassan, Schrapf, & Tilp, 2017b; Schrapf, Alsaied, & Tilp, 2017) employed various types of 
neural networks (self-organizing maps, radial basis function network, dynamical controlled 
network) to analyze tactical interaction patterns, tactical training outcome and to predict shot 
positions on the field in team handball. 
Of course, artificial intelligence methods also found applications in volleyball. Tümer and 
Koçer (2017) were able to successfully predict league standings of teams between seasons with 
98 percent accuracy using a multi-layer perceptron and match results and match location 
(home/away) as input features to their model. In order to improve the training process, 
dynamical programming was used in conjunction with a k-nearest neighbour classifier to 
detect jumps in training data and choose appropriate intensity intervals in the training process 
(Vales-Alonso, Chaves-Dieguez, Lopez-Matencio, Alcaraz, Parrado-Garcia, & Gonzalez-
Castano, 2015). To a similar purpose, Wang, Zhao, Chan and Li (2018) use inertial sensors 
placed on the wrists of volleyball players to assess their skill in the spiking technique. Their 
support vector machine was able to differentiate between elite, sub-elite and amateur players 
with an average accuracy of 94 percent. In another approach, Van Haaren, Ben Shitrit, Davis 
and Fua (2016) utilize a relational learning technique called inductive logic programming to 
automatically detect play patterns in high level volleyball data. They present the top ranked, as 
well as the most distinguishing offensive patterns per team and compare playing patterns 
between men and women. Results show that attacks from outside positions are among the most 
successful offensive patterns. Furthermore, women’s teams show more attack actions in the 
same number of rallies, hinting at a faster pace in men’s volleyball, which makes it harder to 
gain control of the ball after an attack from the opponent. 
However, even though beach volleyball is at least as popular as indoor volleyball, with 
425,000 cumulative visitors at the London Olympics 2012 (“Net gains - the evolution of beach 
volleyball”, 2016), and arguably easier to analyze due to the lesser number of players on the 
court, AI methods have not attracted much interest. The only study we found used a deep 
convolutional neural network based on wearable sensors to automatically monitor player loads 
in beach volleyball (Kautz, Groh, Hannink, Jensen, Strubberg, & Eskofier, 2017). 
The aim of this paper is to evaluate the application of AI methods on both positional as well as 
event data in beach volleyball. As far as the authors are aware, there exists no previous work to 
predict technical or tactical behaviors in beach volleyball. We will focus on three different 
neural network architectures together with a gradient boosted classification tree, some of the 
most used AI techniques employed to predict sporting performance (Claudino et. al., 2019), in 
order to cover a wider range of methods. 

Methods 

Data acquisition 
The dataset consists of 569 men’s and 787 women’s top-level games collected at FIVB world 
tour tournaments and championships in the years from 2013 to 2018. All data was annotated 
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by professional beach volleyball analysts by using custom-made observation software (Link, 

 For each rally in a game, the analysts 
collected more than 25 performance indicators (PIs) in addition to the discrete X and Y 
coordinates each for the serve, reception, set, approach and attack actions. These positions 
were tracked manually by the scouts through clicks on a calibrated projection of the beach 
volleyball field on the scouting video in the observation software. In total, our database 
contains 84,415 so-called standard sideouts. Standard sideouts in beach volleyball are 
classified as the rallies, in which the receiving team has the chance to attack after a structured 
build-up (total 3 contacts of the ball). These sideouts are known to be one of the most 
influencing factors to the result of a game (Zetou, Moustakidis, Tsigilis, & Komninakidou, 
2007). 

Data Preprocessing 
Since not all games were analyzed in full detail by the analysts, we had to eliminate those 
rallies that did not contain valid X/Y coordinates. All X/Y coordinates were flipped so that the 
attacking position always appeared on the bottom half of the court and afterwards normalized 
to an area of 1 meter around the beach-volleyball court (see Fig.1) to account for positions 
outside the actual playing area (e.g. services). Additionally, we only used the PIs relevant to a 
single standard sideout from the collected data, leaving out general information such as 
tournament, match score and player information. We also did not include the defense position 
in the analysis, because for certain attacks, e.g. attack errors that were hit to the outside, this 
position also encoded the point where the ball hit the ground. Including this position would 
trivialize the prediction of success and attack direction. In total, this resulted in 14 PI and 10 
positional (5 X/Y-coordinate pairs) input features for our models. 

 
Figure 1. Positions and event features captured in a typical standard sideout. The figure sketches the 8x8m area 

of the beach volleyball court as well as the 1 meter wide area around it that accounts for positions 
outside the playing field. The black and green dotted lines depict player movement from reception to 
attack, while the blue dotted line represents the ball movement after the set. 

Models 
Except for the gradient boosted tree, all models were implemented using the PyTorch (Paszke 
et. al., 2017) and fast.ai (Howard et. al., 2018) python libraries, running on Google Compute 
Engine (GCE) virtual machines. The boosted tree was implemented leveraging the XGBOOST 
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(Chen, & Guestrin, 2016) python library and also ran on GCE. 

Input features 

We presented the models two different sets of input features: One with only the 5 positional 
X/Y tuples and one with the positional data combined with the performance indicators. In 
order to combine positional data and PIs for the neural networks, PIs were passed through 
automatically sized embedding layers (Kocmi, & Bojar, 2017) before concatenating the 
resulting output vector with the positional data. For the XGBOOST model, PIs were encoded 
using a One-Hot encoding scheme before passing them to the model along with the positional 
features. 

Target variables 

In addition to the different input features, we also evaluated the performance of our predictions 
for different target variables. We tried to predict the SUCCESS of a rally, the attack 
DIRECTION and attack TECHNIQUE based on the events and/or positions that occurred in 
the rally before. The SUCCESS was encoded as point/no point in the sideout, while the 
TECHNIQUE could take the values smash (strong attack) or shot (more precise, less strong 
attack). Finally, six values (diagonal, short diagonal, dink, cut, middle, line) were captured for 
the DIRECTION variable. 

Training 

Each model was trained six times, one time per combination of input features and target 
variable. We randomly split our data in training and test sets using a split size of 20 percent for 
the test set. The learning rate for the neural networks was set to 5e-3, as determined by a 
learning rate finder (Smith, 2017). Training then consisted of 10 epochs using the 1-cycle 
policy (Smith, 2018) and the Adam optimizer (Kingma, & Ba, 2014), that were iterated 50 
times. The model with the best accuracy on the test set per 10-epoch-iteration was saved for 
model evaluation, resulting in 50 accuracy values per model-input-target combination. The loss 
function used in all neural network training cases was the cross-entropy loss, which combines 
a logarithmic softmax-layer with the negative log likelihood loss. 

XGBOOST 

The gradient boosted tree model was set up to fit 50 trees with a maximum depth of 5 nodes. 
The objective function was set to logistic regression for binary classification for the SUCCESS 
and TECHNIQUE target variables, and to softmax for multiclass classification for the 
DIRECTION target. 

MLP 

In the multi-layer perceptron (Rosenblatt, 1961), the 10 positional input features are first 
passed through a 1-dimensional batch-normalization layer (Ioffe, & Szegedy, 2015), with 
momentum set to 0.1. We then use three blocks of linear layers followed by rectified linear 
unit (ReLU) activation functions (Maas, Hannun, & Ng, 2013), and batch normalization layers 
with sizes of 128, 64 and 32 neurons each. The final linear layer then maps to the class size of 
the respective target variable. In the combined input feature case, the embedding output is 
concatenated to the output of the first batch-normalization layer before passing it to the linear 
layers. 
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Figure 2. MLP architecture for positions only input, batch normalization and activation layers are omitted 

CNN

Our convolutional network consisted of five 1-dimensional convolutional blocks with different 
kernel sizes, strides and dilations (Fig. 3) in order to capture different relative patterns between 
positions in the input. The concatenated output from those five blocks was then fed to three 
linear layers with batch-normalization and ReLU activations for classification. Again, we 
combined this architecture with embedding layers for the performance indicators, whose 
output was concatenated with the output of the convolutional blocks before it was passed to the 
linear layers. 

 
Figure 3. CNN architecture for the combined input case. BN-layers and activations are omitted for the linear 

layers. 

RNN – GRU

Our choice of recurrent neural network was a so called Gated-Recurrent-Unit (GRU) (Cho, 
Van Merriënboer, Gulcehre, Bahdanau, Bougares, Schwenk, & Bengio, 2014), a kind of Long-
Short-Term memory (LSTM) neural network that has proven to be easier to train on smaller 
datasets (Chung, Gulcehre, Cho, & Bengio, 2014). Our model consisted of a 5-layer GRU with 
a dropout rate of 20 percent, followed by  two linear layers with batch-normalization and 
ReLU activations for classification. Since recurrent networks expect input data to be 
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sequenced, the positional data was reshaped to a sequence of five X/Y-coordinate tuples for the 
playing positions, ordered by occurrence in a beach volleyball rally. To combine positional and 
PI data, embedding layers were used for the PIs. The output of the embeddings was then 
concatenated with the output of the GRU before passing it to the final linear classification 
layer.

Evaluation 
For the evaluation we performed a three-way ANOVA with classification accuracy as 
dependent variable and model, target variable and input features as factors. All statistical tests 
were performed using IBM SPSS Statistics for Windows, Version 23. G*Power analysis 
revealed that with a total sample size of 1200 accuracy values, small effect sizes (
could be detected with a power of 0.96. 

 
Figure 4. RNN architecture for the combined input case. Again, BN-layers and activations are omitted for the 

linear layers. 

Results. 

A three-way ANOVA was conducted to determine the effects of model, target variable and 
input features on the classification accuracy. There was a statistically significant three-way 
interaction between model, target variable and input features (F(6, 1176) 

-way 

simple two-way interaction between target and mod

statistically significant simple simple main effects of the model for the target variables 
 

of model for 

Bonferroni adjustment applied. Only two comparisons did not show significant differences in 
classification accuracy between models. The mean difference between the gradient boosted 
tree and the gated recurrent unit targeting the success variable, .001 percentage points (95% CI 
[- onally, the means between the 
convolutional neural net and the gated recurrent unit, .001 percentage points (95% CI [.000, 
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Table 1: : 3-factor ANOVA-Results, sum of squares, F-val
three twofold interactions and the threefold interaction (*). Cell means are depicted in figure 5. 

  SS F p  2 
Factor Model .0062 282.02  .001 
Factor Features .7254 99727.01  .115 

Factor Target 4.6522 319803.89  .735 

Model*Features .0001 2.52 .056  
Model*Target .0078 178.89  .001 

Features*Target .9267 63702.91  .146 
Model*Features*Target .004 92.37  .001 

Error .0086   .001 

 
Figure 5 shows the profile plot for the three-way interaction effect, together with the mean 
classification accuracies per combination of model, input data and target variable. 
Classification accuracies for the prediction of the attack direction  showed values at roughly 
37% for the positions-only input, and 51% for the combined input features. In contrast, the 
prediction of the attack technique showed relatively similar accuracies for both the combined 
(55%) and the positions-only input (54%). Finally, the difference in classification precision 
between the different input feautres for the predicition of the success showed even smaller 
discrepancies with roughly 59% correctly recognized rallies for both cases. 

 
Figure 5. Profile plot for the three-way interaction effect. The values on the y-axis depict the mean classification 

accuracy, while the x-axis shows the employed models. 

Discussion 

Results revealed consistent significant differences between models in terms of classification 
accuracy. Our classification results achieve better performance than strict guessing in all cases 
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(see figure 5), with prediction accuracies ranging from around 37% for the forecasting of the 
attack direction (guessing: 17%)  to almost 60% for the prediction of success and attack 
technique (guessing: 50%). The absolute differences in accuracy between models are in the 
range of .001 percentage points, however. The significant differences are most likely caused by 
the small within-group variances with coefficients of variation between .02% and 1.2%, which 
are the result of our evaluation method.  
However, these small variations also give reason to believe that there exists an upper bound to 
accuracy. Similar studies have found these upper bounds in other sports (Weissbock & Inkpen, 
2014) and gave difference in skill, as well as random chance as reasons for their existence. 
Given the available data and the innate complexity of the decision-making process, we believe 
that these upper bounds also exist in beach volleyball. 
Effect sizes reveal, that most of the variation in classification accuracy is explained by the 
target of the prediction. This can also be observed in figure 5 by comparing the models in the 
interaction plot, where the differences between the models for the different target variables are 
more pronounced compared to the differences between models for varying input features. The 
strongest increase in classification accuracy for this case can be observed  when using both 
position and PI data for the prediction of the attack direction compared to the prediction using 
only positional data. This is caused by the inclusion of the attack technique as an input feature 
in our opinion, which would also explain the high effect sizes of input features and the 
interaction between target variable and input features. Different attack techniques are used as a 
solution to certain block and defense constellations, which in turn imply specific shot 
directions due to standard defensive formations. One such example would be a line block in 
combination with a diagonal defense, which encourages a shot to the line as offensive solution. 
Interestingly, all effects involving the different models show eta-squared values lower or equal 
than .001, suggesting that it is not the choice of model, but the appropriate choice of input 
features and target variable in the sports context that affect  classification accuracy the most. 
This also means that future studies should try to include the positions of the opponent team as 
model inputs, since top-level beach volleyball players can perceive the opponent’s defensive 
formation during the approach and include this information in the decision-making process for 
the own attack. We did not have access to this type of data and it will most likely be only 
available if it becomes mandatory for all athletes to wear sensors providing positional data 
during tournaments in the future, however. 
Considering the absolute classification performance, our models are not yet at the level to 
warrant practical application in day to day performance analysis in beach volleyball. However, 
even though there are no comparable studies in beach volleyball, work in other sports has 
shown that performance prediction in team sports is one of the hardest problems due to the 
dynamical interaction process of the playing parties. As examples, Wang and Zemel (2016) 
reach 77.9% top-3 accuracy in classifying NBA offensive plays, while Weissbock, Viktor and 
Inkpen (2014) were able to correctly classify success (Win/Loss) in Ice Hockey with an 
accuracy of 60.25 %. Parmar, James, Hughes, Jones and Hearne (2017) achieve a prediction 
accuracy of 85.5% in predicting team wins in rugby from PIs, even though they use data 
aggregated over whole games. The performance of our models is in a similar accuracy range, 
considering we are not able to use continuous position data, as Wang and Zemel for example. 
In contrast to previous work, we are also not trying to predict match outcomes, but actions and 
success in single rallies, using only the prior sequence of events from that rally as input. Under 
these circumstances, the results are encouraging.  

Even though our model parameters were determined after a thorough experimentation phase, 
we are confident that more specialized models, with even more sophisticated feature 
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engineering can achieve higher accuracy values. Further studies could provide deeper 
comparisons between different network configurations per model (e.g. more linear layers or 
different hyper-parameter configurations) in order to increase classification performance. 
Especially the inclusion of continuous positional data, as provided by electronic tracking 
systems, may boost prediction performance considerably, since it inherently contains temporal 
information. Since we grouped the rallies for both men and women together, our models are 
not able to differentiate gender-specific behaviors. It could also make sense to train models for 
specific players or teams in order to gain more specific insights into individual tactics. This is 
especially important for practical performance analysis (Lames & McGarry, 2007), since it 
directly influences the possibilities to use our models e.g. for strategy generation against 
specific opponents as well as retrospective analysis of the own team for coaches and scouts. At 
the same time, this would greatly reduce the available training data and could lead to the 
inability to successfully train certain “deep” network models, however.  
We did not compare models using only PI data for several reasons. Some models (e.g. RNNs 
and CNNs) expect data to be spatially or temporally structured in order to generate best results, 
which is not the case for categorical performance data. Moreover, the long-term goal using AI 
in performance analysis would be to rely only on positional data to automatically predict 
performance measures in a beach volleyball rally, without the help of (manually) collected PI 
data. Lastly, even though the absolute classification performance between models didn’t differ 
much, the gradient boosted tree model still has a particular advantage, since it allows easy 
interpretation of its decisions and can even assign importance to different input features to rank 
them for the experts. Yet, considering the recent trend in interpretability research for neural 
networks (Melis, & Jaakkola, 2018), it can be expected that at least some of these features will 
be available for neural networks in the near future too.  
Future applications could also try to predict set/match outcome, for example employing 
recurrent neural networks to incorporate the course of the set/match. Another interesting 
approach would be to leverage the current advances in image recognition to classify successful 
rallies. Given the availability of continuous position data, this could be done by encoding 
player, and potentially ball positions together with additional information (e.g. velocity) in an 
image and using transfer learning to apply already trained models to the image classification 
task. This approach is already in use, for example to identify fraudulent website access via 
analysis of mouse movements (Esman, 2017). Another possible extension could try to group 
multiple models together using an ensemble method to increase classification accuracy for 
different target variables. 
Regardless of which method will be used in the future, the prediction of tactical behavior could 
influence many applications and provide valuable insights in successfull rally patterns in order 
to support both the scouting as well as the training process in beach volleyball.  
Scouts could be able to rely on models to automatically detect and update behaviors in real-
time, minimizing the required inputs to capture all tactical details per rally during live-
scouting. Additionally, sufficiently accurate models could be able to fill out manually scouted 
rallies, again reducing the workload for the scouts, who currently have to analyze beach 
volleyball games in a two-stage process  that takes roughly three hours per game. In turn, faster 
analysis of games could lead to a competitive advantage in tournaments, where athletes often 
have less then a day to prepare for their next match.  
Coaches could use models trained on single player’s or opponent team’s data in conjunction 
with a simulative approach to find tactical behaviours that provide the highest chance at 
success against certain opponents. In the same way, they could simulate variances of the 
behavior of their own teams to find strategies for improvement in training.  
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In addition to the betting market, who could employ advanced models for win/loss-prediction 
to offer improved betting odds, the media could use such models to enhance their broadcasts 
by showing live analysis (e.g. overlays for the most probable attack technique/direction used) 
and statistics of beach volleyball rallies, which would increase viewer engagement and help the 
sport to grow in popularity. 

Conclusion 
In conclusion, since all models show relatively similar performance, our results suggest that 
for the moment the available data is the limiting factor for a implementation of rally 
classification in beach volleyball practice. Given that our dataset may be one of the biggest 
collected records of beach volleyball performance data to date, the impact of machine learning 
techniques on todays practical applications seems small. However, if we look at the evolution 
of data in other sports together with the recent development in beach volleyball, the use of 
continuous positional data for prediction may be possible in the near future. For this reason, 
and because we think the search for efficient solutions in performance analysis is one of the 
main tasks of computer science in sports, we encourage further studies in the AI domain to 
evaluate the performance of methods in different sports, using different data representations. 
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