
Transport and Telecommunication Vol. 21, no.4, 2020 

245 

 
Transport and Telecommunication, 2020, volume 21, no. 4, 245–254 
Transport and Telecommunication Institute, Lomonosova 1, Riga, LV-1019, Latvia 
DOI 10.2478/ttj-2020-0019 

 
A BIG DATA DEMAND ESTIMATION MODEL FOR URBAN 

CONGESTED NETWORKS 

Guido Cantelmo1, Francesco Viti 2 
1 Department of Civil, Geo and Environmental Engineering Chair of Transportation Systems Engineering 

Technical University of Munich, (TSE) Arcisstraße 21, 80333 Munich, Germany 
g.cantelmo@tum.de  

 
2 MobiLab Transport Research Group, Department of Engineering, University of Luxembourg 

6, Avenue de la Fonte L-8367, Esch-sur-Alzette, Luxembourg 
+352 464445352, francesco.viti@uni.lu 

 
 
The origin-destination (OD) demand estimation problem is a classical problem in transport planning and management. 

Traditionally, this problem has been solved using traffic counts, speeds or travel times extracted from location-based sensor data. 
With the advent of new sensing technologies located on vehicles (GPS) and nomadic devices (mobile and smartphones), new 
opportunities have emerged to improve the estimation accuracy and reliability, and more importantly to better capture the dynamics 
of the daily mobility patterns. In this paper we frame this new data in a comprehensive framework which estimates origin-
destination flows in two steps: the first step estimates the total generated demand for each traffic zone, while the second step adjusts 
the spatial and temporal distribution on the different OD pairs. We show how mobile data can be used to obtain OD matrices that 
reflect the aggregated movements of individuals in complex and large-scale instances, while speed information from floating car 
data can be used in the second step. We showcase the added value of big data on a realistic network comprising Luxembourg’s 
capital city and its surrounding. We simulate traffic by means of a commercial simulation software, PTV-Visum, and leverage real 
mobile phone data from the largest telco operator in the country and real speed data from a floating car data service provider. 
Results show how OD estimation improves both in solution reliability and in convergence speed. 

Keywords: Dynamic OD estimation; mobile phone data; bi-level optimisation  

1. Introduction 

Dynamic traffic models represent essential tools for efficient and cost-effective transport planning, 
for assessing properties such as robustness and resilience, and for managing traffic in real time. These 
models take as input the demand flows from each origin and destination and at any time period, and in 
turn estimate and/or predict route and link flows and travel times.  

In order to generate the mobility demand, usually taking the form of Origin-Destination (OD) 
matrices, traditional approaches combine data and mathematical models translating the individual 
decision-making process into aggregated sub-models (generation, distribution, mode and route choice 
assignment), which are based on different assumptions related to mobility principles, and are 
characterised by a number of parameters that are calibrated using traffic data, the most adopted ones 
being traffic counts obtained from loop detectors (Cascetta and Nguyen, 1988). Unfortunately, the 
demand matrix is at best a coarse representation of the individuals’ mobility and activity-travel patterns – 
such as the typical commuting behaviour during a working day. However, daily demand patterns can 
substantially differ because of several elements, including weather conditions or road works, big events as 
well as because of the inherent variability, stochasticity and complexity of the travel demand. Deviations 
between estimated and actual demand patterns can be mitigated by adjusting the results using the traffic 
measurements. This problem, which is known in the literature as the Dynamic Origin-Destination 
Estimation (DODE) problem, exploits a properly specified objective function for estimating the time-
dependent OD flows. 

While the DODE problem has been initially treated as an extension of its static counterpart, the 
last decades have witnessed a considerable effort in developing methodologies able to deal with the 
spatial and temporal dynamics of the traffic flows. As traffic models are applied in both offline (medium-
long term planning and design) and online (real-time management) contexts, the DODE is commonly 
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classified between sequential or simultaneous approaches, where usually the first is adopted for online 
while the second for offline applications (Cascetta et al., 1993). By limiting our focus to the offline case 
(for online OD estimation we refer to e.g. Cantelmo et al., 2020), the DODE is usually formulated as a bi-
level optimisation problem, where in the upper level the OD flows are updated by minimising the error 
between simulated and observed traffic data, while in the lower level the DTA solves the combined Route 
Choice (RC) and Dynamic Network Loading (DNL) problems (Tavana, 2001). A generic formulation can 
be expressed as:  

         
          

 
 
 
 
                       
                       
                       
                        

 
 
 
 
,    (1a) 

 
where      represent, respectively, simulated and measured link performances, n/    calibrated and 
observed values on the node, x/   indicate the estimated and historical values for the OD flows (seed 
matrix) and r/    the simulated and observed route flows. Finally,     designates the estimated demand 
matrix for time interval n, while                 is the estimator of the errors between 
simulated/estimated and measured/a priori values for the corresponding parameters. Each estimator may 
be specified depending on the available data. The dependence between supply and demand in Equation 
(1a) is obtained directly by performing a dynamic traffic assignment (DTA), so that: 
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with   ,    and    specified by a selected Dynamic Traffic Assignment (DTA) model. 

Typically, link flows are available in different points of the network, hence    is usually specified, 
together with the component controlling the deviation from the seed matrix   . Additionally, link speeds 
and densities have been proved to capture the non-linear relation between demand and supply parameters 
(Balakrisnha et al., 2007; Frederix et al., 2010). Moreover, recent works showed how more elaborate 
information, such as point-to-point data, can also be included in this function and in turn largely improve 
the overall estimation accuracy (Antoniou et al., 2016; Barcelò and Montero, 2015; Mitsakis et al., 2013). 
With the advent of new information, communication and sensing technologies, obtaining node-specific or 
route-specific data has become easier. Antoniou et al. (2011) proposes a new classification based on the 
functionalities of the sensor – e.g. point-sensors, point-to-point sensors, area-wide sensors. For instance, 
route (point-to-point) information can be extracted from GPS data installed on probe vehicles to obtain 
route flow proportions (Nigro et al., 2017). Additionally, more recent works have done a significant 
progress into including new data sources, such as Call Detail Records (CDR), GSM data, sensing data and 
geospatial data especially for modelling the spatial and temporal dynamics of trips generation and 
distribution (Di Donna et al., 2015; Toole et al., 2015; Carrese et al., 2019). 

An additional advantage of the approach presented in Equation (1) is that all variables are jointly 
estimated, considering that OD flows over different time intervals are likely to be correlated (Frederix et 
al., 2013). However, for large networks, this approach becomes less reliable since often sufficient traffic 
data observations are not available (Marzano et al., 2009). Therefore, being an underdetermined problem, 
its solution strongly relies on the prior knowledge of the OD flows and its structure. This prior, or seed 
matrix, is usually estimated using the so-called stationary models, the most popular of which are the four-
step model (McNally, 2007), and activity-based travel demand models (Ben-Akiva and Bowman, 1995). 
However, if the structure of the seed matrix is different from the real one, the estimation can converge to 
a local optimum that could be very different from the actual solution (Frederix et al., 2013). A possible 
solution to overcome this issue is to reformulate the objective function in order to reduce the number of 
variables. This can be done, for instance, by using Principal Component Analysis (PCA) (Djukic et al., 
2012). Alternatively, Cascetta et al. (2013) introduced the so-called quasi-dynamic assumption, which 
assumes that the generated demand for a certain OD pair is time dependent, while its spatial distribution 
remains invariant for a certain time period. Under this assumption, the DODE problem becomes less 
underdetermined and more likely to find more reliable results. Similarly, Cantelmo et al. (2014) proposed 
a two-step procedure, which separates the DODE in two sub-optimization problems. The first step 
searches for generation values that best fit the traffic data while keeping spatial and temporal distributions 
constant. In the second step, the standard bi-level procedure searches for a more reliable demand matrix.  



Transport and Telecommunication Vol. 21, no.4, 2020 

247 

In this work, we adopt the two-step estimation framework developed by Cantelmo et al. (2014) 
and leverage big mobility data especially for obtaining useful information to construct the seed matrix. 
We use mobile phone data in the first step, i.e. in estimating the total number of trips produced or 
attracted to each zone and speeds from Floating Car Data (FCD) to improve the results in the second step. 
Section 2 will present the estimation framework together with the adopted gradient approximation method 
used to explore the solution space. Section 3 demonstrates the effectiveness of using GSM and FCD data 
for improving the estimation results and the convergence speed of the results in large scale networks. To 
support the claim that the model is ready for practical implementation, it is interfaced with PTV-Visum, a 
widely adopted software tool for traffic analysis. Finally, section 4 provides the main conclusions of the 
work. 

2. Methodology 

As pointed out by Antoniou et al. (2016), the seed matrix is a key input for all state-of-the-art 
DODE models. By separating the estimation process into a first step that aims at estimating the total 
number of trips generated by each zone and a second step that focuses on the spatial and temporal 
distribution of the OD flows, we show how to more effectively use different (big) mobility data sources, 
such as mobile phone data (which is a more reliable source for capturing the temporal profile of the 
demand for all modes of transport) and GPS/floating car data, which is more indicated to capture the 
spatial and temporal variations of the supply by providing speed profiles at link at route levels. 

2.1. Problem framework: Two-Steps approach 

This section will only briefly introduce the Two-Step approach. An interested reader can find more 
details in (Cantelmo et al., 2014; Cantelmo et al., 2015a). The Two-Step approach is an ideal tool for 
applications on large-scale networks and for using different data sources. The first step improves the 
historical demand matrix by performing a broad evaluation of the solution space and estimating a “good” 
updated seed matrix to be used in the second step. This way, the proposed model reduces the number of 
variables to be estimated in the first step. The idea of performing successive iterations and linearisations 
has been already introduced and validated in Ashok and Ben-Akiva (2001) for online DODE, showing 
that the reliability of the results generally increases. 

Following Cascetta et al. (2013), the objective function described in equation (1a) can be enhanced 
by exploiting information on aggregated socio-demographic data such as generation data by traffic zones. 
The objective function (1a) can be then reformulated as: 

    
      

          

 
 
 
 
   

                     
   

                     
   

                     
   

                      
 
 
 
 
 (2a) 

subject to 

 nDOdEx nSeed
OD

O
n

OD
n  ,,      ,

|
, (2b) 

where: 
- En

O = generated flow from traffic zone O and time interval n; 

-   
  = generation vector containing the generated flow from all zones in time interval n; 

-   
   = demand flow from origin zone O to destination zone D in time interval n; 

-     
      

 = distribution share to traffic zone i from traffic zone O in time interval n. 

Constraint (2b) is the main difference with the general quasi-dynamic formulation proposed in 
Cascetta et al. (2013), where     

       is updated during the optimization process, whereas constraint (2b) 
assumes a constant value of the distribution, bringing two major advantages. First, as the number of 
unknown variables strongly decreases, the approach can be applied to larger networks. Second, this 
approach does not necessarily require to explicitly account for historical OD flows within the objective 
function. As pointed out in Section 1, historical OD flows are usually included within equation (1a) in 
order to reduce the number of possible solutions. However, this information is already considered within 
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constraint (2b), that over-impose, to the estimated matrix, the spatial/temporal structure of the historical 
demand. However, a main drawback of this formulation is that it is likely to provide a relatively poorer fit 
of the traffic data, as already pointed out in Cantelmo et al. (2015a). On the other hand, the goal of the 
first step is to act on the seed matrix in order to obtain a “right level of demand”, to be used in the second 
step in order to optimise the dynamic distributions OD trips. This leads to the following considerations: 

 Total generated trips can limit a demand overestimation during the DODE, which is otherwise 
likely to occur when dealing with congested networks; 

 As generation models are considered the most reliable models in transport engineering 
applications, total generated trips are more reliable than OD trips; 

 Adopting the generation values inside the DODE, as in (2), reduces the number of variables.  

2.2. Optimisation method: Simultaneous Perturbation Stochastic Approximation 

The optimisation method adopted in this paper is the Simultaneous Perturbation Stochastic 
Approximation (SPSA) algorithm proposed by Spall (2012). The SPSA is a stochastic version of the 
deterministic finite difference method, which is computationally too expensive for large networks 
(Frederix et al., 2011), and it as has been proven to be very effective for tackling the DODE problem, and 
many authors proposed enhanced versions of the original algorithm (e.g. Cipriani et al., 2011; Cantelmo 
et al., 2014; Antoniou et al., 2015; Tympakianaki et al., 2015; Qurashi et al., 2020). By assuming a one-
sided perturbation as in Cipriani et al., (2011) we compute the approximated gradient    at each iteration 
as: 

                         
   

     
 

     
   (3a) 

                   
        
   
        , (3b) 

with    the vector with the estimated variables,       the objective function value in   , ci the 
perturbation step, Grad_rep is the number of replications to compute the average gradient and Δ is a 
vector with elements {-1,1}.  

Given a properly specified objective function and a descent direction – the gradient   – the 
parameters are updated at each iteration according to: 

             , (4) 

where    is the stepsize and    is again the vector of parameters to be updated, the OD or the Generation 
flows if we are minimizing, respectively, objective functions (1) or (2). Concerning the value of   , we 
proposed to use a line search to find the optimal value in order to reduce the overall computational time.  

Given the stochastic nature of the model, it is recommended to repeat the perturbation multiple 
times in order to obtain a good approximation. If only one replication is used, then       . The main 
advantage of using this formulation is that it allows to reduce the number of simulations needed while still 
providing a proper approximation of the gradient. 

2.3. Including mobile phone data in the first step 

While the correlation between network traffic states and mobile phone data is well known, this 
area-wide information is hard to implement within the DODE, since it provides at most the geographic 
position at connected antenna levels, so no direct match on the road network is possible. However, by 
clustering antennas located on the border of each traffic zone, it is possible to use active connections that 
are entering or exiting the zones (i.e. the number of handovers) and use them as proxy of the movements 
in and out of a certain zone (Derrmann et al., 2019). Unfortunately, mobile network data is subject to 
intrinsic errors (e.g. the users are split between multiple network operators, the degree of activity on the 
network as well as the general mobile penetration rates). However, this information can be used as input 
to estimate the temporal profiles of the generated demand on a certain area, as shown in Di Donna et al. 
(2015). In Cantelmo et al. (2015b) we proposed the following two criteria to exploit demand emission 
flows estimated through the mobile network data: 1) Antenna clusters need to be large enough to 
minimize the “ping-pong” effect, i.e. counting the same users ‘bouncing’ back and forth between two 
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antennas, and 2) Cluster edges shall be positioned so as to maximise the difference between number of 
people entering and leaving the study area. We will use the same approach in this paper on a large-scale 
instance. 

2.4. Including floating car data in the second step 

To consider the relation between the temporal characteristics of congestion and their impact on the 
spatial and temporal distribution of the OD flows, a utility-based choice model has been adopted 
(Cantelmo et al., 2018). Concerning the congestion dynamics on the supply side, traffic counts and 
floating car data can be used in a single estimation process to determine flows and speeds on all measured 
links. In practice, sensors are placed on a limited number of links, and for privacy concerns, floating car 
data are often aggregated and only average speeds are shared. This limits most of the application of this 
data for dynamic demand estimation, but we show in our case study that through the adoption of the Two-
Step approach we can still reduce the estimation error systematically. Clearly, the availability of more 
detailed probe vehicles data such as GPS position would strongly be an asset, as shown for instance in 
Cipriani et al. (2015). 

2.5. MAMBA-DEV and MAMBA-DEV-A packages 

To be able to solve the DODE problem on large real-sized networks, we developed a Matlab 
package that uses PTV Visum as DTA model. The package allows performing assignment-free dynamic 
or static OD estimation, using a deterministic and/or stochastic approximation of the gradient. The model 
also includes the Two-Steps approach, as well as the possibility to use several data sources, including 
mobile phone data. While the MAMBA-DEV package has been designed for Luxembourg City, it can 
work with any network. Similarly, MAMBA-DEV-A package is a Matlab package that allows to use the 
utility-based DODE approach proposed in Cantelmo et al. (2018) in combination with PTV Visum. This 
package uses static OD matrices as an input and provides dynamic, purpose-dependent OD matrices 
based on the available traffic data. The departure time choice module of MAMBA-DEV-A has been used 
to create the dynamic OD matrix for this study. 

3. Case study: Luxembourg City 

3.1. Estimating the total generated demand 

We show the application of the Two-Step approach on the road network of Luxembourg (Figure 1, 
left). The network consists of 3700 links and 1469 nodes. The network includes all national motorways 
up to the northern city of Ettelbruck, and from the capital to the east, west and south borders. 
Additionally, the network includes also primary and secondary roads. We collected socio-demographic 
data from the national open-data portal (https://data.public.lu). These data shared by the National Institute 
of Statistics (STATEC) include the growth of the population for each year, the population by province 
and the number of cross-borders. Based on these statistics, a static matrix for the morning commute has 
been estimated through a classical Four-Step model. We then employed the utility-based model 
developed in Cantelmo et al. (2018) to derive a within-day dynamic OD matrix. This dynamic matrix 
accounts for 46 traffic zones and represents the historical demand (Seed Matrix) for the experiments 
presented in the next sub-sections. 

 

Figure 1. Road Network of Luxemborg City (left); Antenna densities in and out of the city (right) 
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In our case study, we used antenna densities and handovers from the national mobile phone 
operator Post, which has the largest number of customers in the country. The data has been aggregated 
into two large clusters; the first cluster captures the trips generated from the city to the external zones, 
while the second captures those entering Luxembourg City, as shown in Figure 1 (right). This procedure 
can be easily extended to any urban area, where connection handovers can be used to calculate the flows 
exchanged between the study area and the external centroids. In this study, we propose to use the 
difference between entering and exiting flow, as in Equation (3): 
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Figure 2. Profile obtained through the real-data (left); Profile obtained through the 4-Step approach and the proposed  

departure time choice model (right) 

where IntZonesGSM
nE   and ExtZonesGSM

nE   are the aggregated mobile handovers during time period n by the 
internal or external zones, respectively. Figure 2 shows the profiles of GSM

nE for the real data (left) and 
the a-priori OD matrix (right). The profile obtained by combining the 4-Step model with a departure time 
choice model is comparable to the one obtained with the GSM data, indicating that the mobile phone data 
is a good proxy of the total generated flows. We can also identify two errors within the a-priori OD 
matrix. First, the average departure time for the morning peak is significantly earlier in the mobile phone 
data than in the 4-Step model. Second, there is a difference in the y-axis scale. The reason is that, in this 
application, we calculate the OD flows for the morning and evening commute, thus the demand in the 
afternoon is highly underestimated. This suggests that, by including Equation (5) within the objective 
function of the Dynamic Demand Estimation Problem, we can use GSM data as a soft constraint to 
correct the demand obtained through classical demand generation models. 

3.2. Estimating the spatial and temporal distribution of OD flows  

The National Open Data portal and the Luxembourgish National Road Administration agency 
collects and provides traffic counts on most of the motorways and primary roads of the Grand Duchy 
(Open data portal (https://data.public.lu/en/) and Luxemburgish National Road Administration 
(https://pch.gouvernement.lu/en.html)). After some data cleaning, 54 counting stations have been 
retained, all located on the main arterial roads going to Luxembourg City (highways, national roads) and 
on the ring road. Unfortunately, only three detectors are located inside the City ring. This means that we 
can expect to have a realistic representation of the demand at regional scale, but not inside the city. 
Additionally, traffic counts are aggregated on an hourly basis, which is too large for a network with an 
average free-flow travel time of 20 minutes, i.e. congestion dynamics cannot be properly captured. 
Moreover, the available data collected from traffic counts did not contain information on mean speeds, 
which are an essential input when dealing with large congested networks. To compensate for this lack of 
information, average speeds have been collected from Floating Car Data (FCD). For this study, only data 
related to the main highways and the ring road of Luxembourg were available. These have been provided 
by the Luxembourgish company Motion-S. The obtained information is based on the average of all probe 
vehicles and does not contain specifications about time and location. FCD carry definitely more 
information than just the average speeds, as demonstrated in Nigro et al. (2017), but national privacy laws 
do not allow sharing sensible data. Nevertheless, the available average speed broadly captures, in this 
study, the congestion on the ringway at a network level. The downside is that many possible solutions 
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exist, which can create congestion on the ring. As a consequence, the most logical solution for the DODE 
should be to keep the demand as close as possible to the historical demand, while at the same time 
reproducing the speed profile. Since this information is strongly aggregated, we expect the Two-Step 
approach to provide reliable results by exploiting the link flows and speeds as constraints within the 
objective function. This claim is numerically illustrated in the next section. 

3.3. Results 

In this paper we compare the Two-Steps approach (TS) with a more conventional Single-Step (SS) 
method. The Single-Step OD estimation is formulated in this paper as a single constrained optimisation 
problem. In both cases, the SPSA was adopted as the optimisation method. We performed two different 
sets of experiments: 

I. Only traffic counts are included within the OF. 
II. Traffic counts and GSM/FCD data are included within the OF. 

 
We test two different scenarios. In order to test the effectiveness of the GSM data, we test the 

model on a synthetic scenario for Luxembourg City. The reason is that GSM data are only available 
within Luxembourg City but, as mentioned, real data are only available on the regional network. The 
second experiment uses real data (FCD and traffic counts) on the entire network, as previously discussed.  

The Root Mean Squared Error (RMSE) is the chosen as estimator: 

                  
   

 , (6) 

where N is the number of observations,     is the observed value for the measured data and    is the 
simulated one.  

3.3.1. Synthetic experiments 

The reduced network consists of 2744 links, 1480 nodes and 17 traffic zones. OD flows are 
estimated over 24 hours assuming a 30-minutes departure interval. Under this assumption, the dynamic 
matrix contains 13872 variables to be estimated. The real matrix amounts to 239.966 trips.  

 
Figure 3. Performance of the Two-Steps approach with GSM as compared to Single-Step 

Table 1. Root Mean Square Error of speeds and OD flows 
 
 

Seed TS SS 

RMSE Speed (Km/h) 
 3.73 2.98 3.66 

RMSE OD (Veh/h) 
 42.25 40.01 66.02 
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As shown in Figure 3, when the number of variables is large, the Single Step (SS) model performs 
only a local adjustment of the OD demand. Specifically, to obtain a reliable estimation of the gradient, the 
number of stochastic perturbations should be approximately 10% of the number of variables (Cipriani  
et al., 2011). This entails 1382 DTA simulations for each iteration. The Two-Steps (TS) approach 
achieves a similar error with and without the mobile phone network data. However, as reported in Figure 
3, when mobile data are included within the OF, the number of iterations required for solving the DODE 
strongly decreases. As predictable, the same property is not observed for the SS model, which simply 
collapses on the closest local minimum. However, when this model is combined with the mobile 
network data, the error on the link flows decreases with respect to the base case presented in Scenario 
I (the RMSE is 3% lower). The error for each model is summarized in Table 1. 

3.3.2. Experiments with real data 

The second experiment includes the entire regional network previously introduced. In this 
experiment, we consider the morning peak period between 5 AM and noon (8 hours). The seed-matrix 
accounts for 307.544 trips and 16928 time-dependent OD pairs. We compare the estimation accuracy in 
terms of Root Mean Square Error (RMSE) on link flows, links speeds and how much the solution 
deviates from the OD pair when using the FCD. Figure 4 (right) depicts the Spider Chart of the estimation 
error for speeds, flows and seed-matrix – i.e. the initial point. For each measure, this relative error has 
been calculated as: 

          
            

                                  . (7) 

Figure 4 intuitively shows the dynamics behind the optimization. The Single-Step approach does 
not manage to move away from the initial point to reduce the error on the link flows. As the Two-Steps 
approach moves to a new solution during the first phase of the optimization, the distance with respect to 
the initial matrix increases, while the error on the link flows is twice smaller than the one for the Two-
Step. However, the Two-Step also increases the error on the speeds, which was expected as this 
information has a low weight in the goal function. 

  

Figure 4. Performance of the Two-Steps approach with GSM as compared to Single-Step 

A second result concerns the stability of the estimations. Similar dynamics are observed for the TS 
approach in both experiments. This means that the Two-Step approach not only manages to have a larger 
OF improvement in terms of speeds but also to provide more reliable results. These findings are in line 
with the conclusions already presented in Cantelmo et al. (2015b). In general, we can claim that, since the 
two steps approach sequentially reduces the dimension of the solution space while keeping a lower 
number of variables with respect to the conventional Single-Step approach, it will provide a more reliable 
estimation.  

4. Conclusions 

This paper introduced a novel dynamic demand estimation framework and showed how big 
mobility data such as mobile phones and floating car data can be adopted into a novel Two-Steps 
approach on large-scale congested networks. 
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From a methodological point of view, the proposed approach relaxes the strong limitation of 
having a good starting demand matrix. The capability of the DODE solution algorithm to correct the 
biases within the temporal and spatial structure of the demand is a strict requirement for having robust 
results. Mobile phone data is shown to improve the performances of the estimation. Then, we show that 
by using floating car data and link flows on the second step, the model is capable of further improving the 
estimation results, while not affecting significantly the structure of the OD matrix. 

Next step in this research will be to extend the study to multimodal networks, an in particular the 
utility-based model will be extended to include mode choice and transit data. 
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